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Preface 
This book seeks to provide a systematic introduction to dynamic trans­

portation network models. Intelligent vehicle highway systems are a major 
new motivation for dynamic transportation network modeling; in response, 
this book offers important insights into the complexity and challenge of these 
problems and their implications for IVHS. The book is not intended, however, 
to review classical transportation network models and algorithms. Instead, it 
offers a new framework for dynamic transportation network modeling. Thus, it 
should serve as a benchmark for assessing future research results. Nevertheless, 
the models in this text are not yet fully evaluated and are subject to revision 
based on future research. 

A summary of the necessary mathematical background, including static 
optimization, optimal control and variational inequalities, provides a reference 
for transportation engineers involved in ATMIS projects. By understanding the 
mathematical requirements of dynamic transportation network problems, the 
professional community can appreciate the intensified research effort required 
for elaborating this new dimension of transportation science. 
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Nagurney, University of Massachusetts at Amherst, provided continuing en­
couragement for our research during the past four years. Ms. Yu-Fang Zhang, 
Ms. Piyushimita Thakuriah and Mr. Mark Mathes, University of Illinois at 
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Chapter 1 

Introduction 

Intelligent Vehicle Highway Systems (IVHS) seek to apply advanced computer, 
telecommunication, and information technologies to vehicles, transportation 
networks and operational plans, in order to relieve traffic congestion, reduce 
travelers' journey times, improve safety, reduce atmospheric emissions and en­
ergy consumption, and increase the productivity of transportation investment. 
Using IVHS technologies, vehicles and the infrastructure will exchange vast 
amounts of data back and forth, making possible the warning and avoidance 
of congestion or hazardous conditions, the automatic collection of tolls, the 
efficient dispatching of trucks and buses, dramatic improvements in safety and 
other benefits. 

Within the framework of IVHS, Advanced Traveler Information Systems 
(ATIS) will provide historical, real-time and predictive information to support 
travel decisions; this will in turn influence the travel choices of individuals and 
consequently improve the time and quality of travel. Successive generations of 
advanced route guidance systems will improve utilization of the overall capacity 
of highway and transit systems so as to reduce travel times, congestion and 
accidents. By providing early detection of incidents and congestion in the 
transportation network, route guidance systems will redistribute traffic among 
the available modes and routes when there is excess capacity in some parts of 
the road network or shift the departure times of travelers to avoid peak-hour 
congestion when no additional road capacity is available. Furthermore, route 
guidance systems will provide travelers with accurate, current information on 
both transit and road networks so that some motorists can make their own 
time-cost tradeoffs and shift to transit, if appropriate. 



2 Chapter 1. Introduction 

1.1 Requirements for Dynamic Network 
Modeling 

Traditional static network equilibrium models were developed for long range 
transportation planning. They are not suitable for analyzing and evaluating 
dynamic route guidance systems which need capability to solve transportation 
problems in real time (Boyce, 1989). Friesz et al (1989) have analyzed some 
of the fundamental properties of dynamic models which are pertinent to such 
route guidance systems. At present, there exists little operational capability 
to solve large-scale, dynamic network equilibrium models corresponding to the 
above technological concepts in IVHS. The broad goal of current research in 
this area is to formulate dynamic models which do correspond to the above 
objectives, and have some reasonable prospects for solution for large urban 
transportation networks on the present or next generation of computers. This 
book seeks to contribute to this important goal. 

This book aims to present a new generation of dynamic network equilib­
rium models, incorporating dynamic travel choice problems including traveler's 
destination choice, mode choice, departurej arrival time choice and route choice. 
These models are expected to be able to function as off-line dynamic travel 
forecasting and evaluation tools, and eventually as real-time on-line models of 
urban transportation networks. Research on dynamic transportation network 
models is evolving very rapidly; a rich set of new formulations and solution 
algorithms are presented in this book. The full evaluation of these new models 
and solution algorithms is a matter for future research. Moreover, extensions 
to problems of location choice remain to be tackled. 

We first describe the general dynamic travel choice problem. Travelers 
seeking to travel from their current locations to their specified destinations, 
and to depart or arrive at specified times, require best modes, departure times 
and routings for their trips. These needs could be provided in accordance with 
one of several objectives, such as the following: 

1. each driver seeks to be routed onto the current best route at each in­
tersection for current traffic conditions, given a specified departure time 
(we refer to this type of route choice as minimizing instantaneous travel 
time); 

2. each driver seeks to minimize his or her actual travel time, given a spec­
ified departure time; 

3. each driver agrees to accept a route at his or her specified departure time 
that minimizes the travel time of all vehicles traveling during a longer 
time period; 

4. each traveler agrees to accept a mode, destination, departure time and 
route that minimizes the travel time of all travelers, but makes his or her 
arrival time as close to a specified target as possible. 
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Each of these objectives corresponds conceptually to a proposed route guidance 
system. 

In addition to ATIS, Advanced Traffic Management Systems (ATMS) 
will predict traffic congestion and provide real time optimal control strategies 
for freeways and arterials. As one important component of ATMS, dynamic 
traffic control systems will respond to changing traffic conditions so as to control 
ramp flows to improve the efficiency of freeways, to maintain priorities for high­
occupancy vehicles and to coordinate signal timing strategies across regional 
arterial network. 

In conjunction with ATIS and ATMS, Advanced Public Transportation 
Systems (APTS) is another important component of IVHS. APTS apply ad­
vanced navigation, information and communication technologies that most ben­
efit public transportation. Major benefits are also expected because the appli­
cation of these technologies will attract travelers to transit and ridesharing 
modes, thereby reducing traffic congestion, atmospheric emissions and energy 
consumption. 

Figure 1.1 shows the framework of an integrated APTS / ATMS / ATIS 
system. The analysis of such systems is also summarized by Kaysi et al (1993). 

Transit Dynamic Traffic Control 
Information Route Guidance 

Center System 

11 11 Traffic 
Surveillance 

Traffic Predic1i211 System 
---------
I I 

I Dynamic I 1 Travel Choice : 
Models \ 

O-D Matrix I I Database: 
Estimation & I I Travel --+ 

Prediction \ . ~ ~me"Costs 4-- Surface Freeway 
I Dynarruc Street Control 
I Simulation I Control 
I Models I 

I I ---------

Figure 1.1: Structure of an Integrated APTS/ ATMS/ ATIS System 

This book seeks to present our recent research findings on formulating 
dynamic models which bear a reasonable correspondence to the above objec­
tives. The problems of dynamic travel choice (destination, mode, departure 
time, route choice, enroute diversion and parking) are described in a combined 
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modeling framework. Using the optimal control theory approach, various dy­
namic travel choice models are formulated for a congested transportation net­
work. If the analysis time period is discretized, these optimal control problems 
reduce to nonlinear programming problems. Solution algorithms are presented 
for solving some of these problems. Finally some numerical examples illustrate 
the properties of these models. In the following, we first analyze the transporta­
tion network models in general. Then, we review the development of dynamic 
network models and describe the hierarchy of models in this book. 

1.2 Urban Transportation Network Analysis 

Existing urban transportation network models or travel choice models can be 
classified according to the application purposes: long term and short term. Ur­
ban travel choice modeling activities to support the planning of urban freeway 
and transit networks began in the mid-50s. Initially, models were oriented to­
wards the task of evaluating alternative land use patterns and transportation 
network proposals. Later, some efforts to consider the optimal design and ex­
tension of land use and transportation networks were undertaken with modest 
success. (Boyce et aI, 1970). 

Urban travel choice models are usually associated with network equilib­
rium concepts. The models for long-term planning purpose are usually static. 
Most of the static user equilibrium (UE) models are established to be consistent 
with the Wardrop's first principle (Wardrop, 1952). This principle requires for 
used routes between a given origin-destination pair that the route cost equals 
the minimum route cost, and that no unused route has a lower cost. This user 
equilibrium has been employed as the key behavioral assumption in most static 
urban transportation network models. 

The first mathematical programming formulation for the static user equi­
librium problem was proposed by Beckmann, McGuire and Winsten (1956) as 
an equivalent optimization problem. Their formulation considered the general 
case in which origin-destination flows are determined by a demand function. 
The fixed demand case follows immediately from their result. This formula­
tion allows the derivation of existence, uniqueness (in terms of link flows) and 
optimality conditions of the solution, satisfying Wardrop's UE principle. This 
model was studied extensively by Dafermos and Sparrow (1969) and efficiently 
solved by LeBlanc et al (1975) who used the minimum-cost-route algorithm 
to implement the Frank-Wolfe algorithm. Sheffi (1985) gives a comprehensive 
account of the static UE problem. More recently, the more general problem 
with asymmetric link interactions had been addressed by Smith (1979) and 
Dafermos (1980, 1982), as have other variants of the basic formulation. The 
asymmetric link interactions require the model to be formulated as a variational 
inequality (VI) problem (Nagurney, 1993). 

In the category of static user equilibrium models, there are many exten­
sions which incorporate joint trip distribution/mode/route choice (Florian and 
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Nguyen, 1978) and residential location (Boyce, 1980). The above deterministic 
models are based on the assumption that drivers have perfect information and 
comply with the UE travel choice criterion. 

Another important area is stochastic travel choice modeling. The initial 
stochastic travel choice model for stochastic network loading was proposed by 
Dial (1971) who described a flow-independent logit route choice model. Da­
ganzo and Sheffi (1977) formulated a stochastic user-equilibrium (SUE) route 
choice model which is a generalization of the UE criterion, defined as follows: 
at SUE, no traveler can improve his or her perceived travel time by unilaterally 
changing routes. The SUE models are more realistic than the deterministic 
UE models since SUE assumes drivers to have less than perfect information 
when choosing routes. Detailed reviews of user-equilibrium models have been 
prepared by Friesz (1985), Florian (1986) and Boyce et al (1988). 

In addition to models for long term analyses, there are models for short 
term purposes, which can be termed dynamic models. Previously, most network 
equilibrium models focused on the static description of traffic flows on the 
network, implying that flows and travel times are invariant over the duration 
of the peak period. In response to the untenable assumption of static traffic 
flow over the entire peak period, several models of dynamic route choice have 
been proposed. These short term or dynamic models can predict large time­
dependent variations of traffic in a road network and should be able to predict 
the travel times of vehicles during their journey. Thus they are appropriate for 
the assessment of the impact of IVHS systems on highway network performance. 
In the long run, they should be useful in managing the real time operations of 
IVHS systems. A comprehensive review of dynamic models is given in the next 
section. 

In dynamic transportation networks, the traditional traveler behavior 
assumption of the static models needs significant revision to consider short 
term variations of traffic. Thus, we are no longer considering a day-to-day 
traffic equilibrium. Instead, we are trying to influence or control traffic and 
travel patterns of travelers optimally by providing accurate traffic information 
(such as travel time) and effective traffic control measures. Therefore, we will 
no longer use the term "user-equilibrium" for dynamic traffic. Instead, we use 
"user-optimal" to represent the objective we are seeking to achieve. 

In an ATIS system, there are two kinds of information available to trav­
elers: current and future travel time information. Current travel time informa­
tion can be obtained using the currently prevailing instantaneous link travel 
times. Future travel time information can be obtained using predicted link 
travel times. We discuss these two kinds of travel times in more detail in 
Chapter 4. More generally, both time and cost are considered. 

For a dynamic transportation network, the types of control might be 
classified as follows: total control; partial control; no control (Lo et al, 1994). 
Total control mandates full compliance by travelers; that is, travelers are not 
given any choice as to whether they would like to comply or not. Some ex­
amples include traffic signal control at intersections and ramp metering at an 
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entrance to a freeway. Partial control tries to actively influence traffic patterns, 
but compliance is not mandatory; for example, route guidance from change­
able message signs. By providing information on best routes to travelers, traffic 
patterns may be altered and more travellers can be diverted to less congested 
routes or time periods. It is up to the travelers themselves to decide whether 
to follow the advice. This kind of control is rather flexible. No control pro­
vides real-time traffic information to the travelers, but specific routing is not 
proposed for individual travelers. It is entirely up to the travelers themselves 
to decide what to do with the information. Current radio broadcasts on traffic 
congestion and accident information in metropolitan areas is a simple example 
of no control. 

Each type of control in the above classification requires a substantial 
modeling effort for dynamic traffic analysis and evaluation. The development 
of models and algorithms for optimizing flows in real time on transportation 
networks will be fundamental to the success of the ATMS/ ATIS component of 
IVHS. The near term objective of ATMS/ ATIS systems is to provide accurate 
traffic information, mainly travel time information so that travelers may adjust 
their travel patterns individually. In the long run, when more and more trav­
elers are equipped with more mature ATIS systems, the coordination of route 
and departure time choices will become crucial. It is in this context that some 
of our dynamic network models are proposed. 

1.3 Overview of Dynamic Network Models 

Dynamic network models can be classified as flow-based models and vehicle­
based models. Flow-based models are based on macroscopic flow equations; 
vehicle-based models are based on microscopic movement of vehicles. Flow­
based models are more applicable for large-scale transportation networks, since 
mathematical representations and capabilities appropriate for the correspond­
ing dynamic network problems are more suitable. 

Vehicle-based models comprise both simulation and optimization mod­
els. INTEGRATION (Van Aerde, 1992) and DYNASMART (Mahmassani et 
aI, 1992) are examples of simulation models. Ghali and Smith (1993) pre­
sented a set of dynamic network models using packets to represent traffic flows 
on links. Their models are basically vehicle-based. Lafortune et al (1991) also 
presented an integer-based dynamic system-optimal (DSO) traffic assignment 
model. 

There have been two stages of development of flow-based dynamic net­
work models. Yagar (1971), Hurdle (1974) and Merchant and Nemhauser 
(1978a) were among the first to consider dynamic models for congested traffic 
networks. But the assumptions of these models are very limiting and they are 
unsuitable for application to general large-scale networks. Important break­
throughs began to occur in the late 1980s when IVHS ignited the potential 
applicability of such models to the next generation of surface transportation 
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systems. 
The study of dynamic route choice models over a general road network 

was begun by Merchant and Nemhauser (1978a, 1978b) who presented a dy­
namic system-optimal (DSO) route choice model for a many-to-one network. 
Subsequently, Carey (1987) reformulated the Merchant-Nemhauser problem as 
a convex nonlinear program which has analytical and computational advantages 
over the original formulation. DSO route choice models over a multiple origin­
destination (0-0) network were established by using optimal control theory 
(Friesz et aI, 1989; Ran and Shimazaki, 1989a). Recently, many simulation­
based DSO route choice models have also been proposed by various researchers, 
especially for freeway corridor problems (Chang et al 1993). 

An important dynamic generalization of the static UE concept is called 
dynamic user-optimal (DUO) route choice. One dynamic user-optimal (DUO) 
route choice problem is to determine vehicle flows at each instant of time on 
each link resulting from drivers using minimal-time routes. Friesz et al (1989) 
proposed a DUO route choice model by considering the equilibration of instan­
taneous unit route costs. Furthermore, a generalized DUO route choice model 
over a multiple origin-destination network was presented by Wie, Friesz and 
Tobin (1990). In the formulation of some dynamic models (Friesz et aI, 1989; 
Wie, 1989; Ran and Shimazaki, 1989a), only the inflow into each link at a given 
time is defined as a control variable; the exit flow from each link is considered 
to be a function of the number of vehicles on that link. If the exit flow function 
is nonlinear, it is imp9ssible to establish an optimization model of DUO route 
choice for a network for multiple origin-destination pairs. By defining the exit 
flow as a control variable, Ran and Shimazaki (1989b) presented a DUO route 
choice model which considered the equilibration of instantaneous travel times. 
Subsequently, Ran, Boyce and LeBlanc (1993) formulated a set of new instan­
taneous DUO route choice models with flow propagation constraints. Some 
of the basic constraints for a dynamic network model were also discussed in 
Ran et al (1992a). Among other dynamic network models, Janson (1991) pre­
sented a set of dynamic network models using average link travel time/flow 
relationships and proposed a heuristic solution algorithm. 

Further studies concern the extension of deterministic dynamic network 
models to stochastic dynamic network models. Vythoulkas (1990) developed a 
logit-type stochastic dynamic route choice model for a general network. How­
ever, some of the key constraints, such as the flow propagation, are miss­
ing, which results in unrealistic traffic flows under general network conditions. 
Cascetta (1991) and Cascetta et al (1993) presented a dynamic stochastic route 
choice model for day-to-day route choices using a stochastic process theory ap­
proach. Ran et al (1992) formulated two logit-type stochastic dynamic user­
optimal (SDUO) route choice models considering both instantaneous and actual 
travel times for general transportation networks. 

Computational issues of dynamic route choice problems have received 
increasing attention in recent years. Following Merchant and Nemhauser's 
(1978b) proposal of a conceptual algorithm for solving a single-destination 
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DSO route choice model, Ho (1980) solved the same model by successively 
optimizing a sequence of linear programs. Subsequently, Ho (1990) presented 
a nested decomposition algorithm for the same problem and implemented this 
algorithm on a hypercube computer. Ran and Shimazaki (1989) proposed a 
time decomposition algorithm to solve a multiple-destination DSO assignment 
model. Using the time-space expansion technique, Boyce et al (1991) presented 
a Frank-Wolfe algorithm to solve an instantaneous DUO route choice model. 
Codina and Barcelo (1991) also applied a time decomposition algorithm to solve 
a preliminary DUO route choice model. Janson (1993) solved a combined de­
parture time/route choice problem using a heuristic based on the Frank-Wolfe 
algorithm. 

The choice of departure time has been addressed by several researchers, 
including Abkowitz (1981) and Hendrickson and Plank (1984), who developed 
work trip scheduling models. De Palmaet al (1983) and Ben-Akiva et al (1984) 
modeled departure time choice over a simple network with one bottleneck us­
ing the general continuous logit model. Mahmassani and Herman (1984) used 
a traffic flow model to derive the equilibrium joint departure time and route 
choice pattern over a parallel route network. Mahmassani and Chang (1987) 
further developed the concept of equilibrium departure time choice and pre­
sented the boundedly-rational user equilibrium concept under which all drivers 
in the system are satisfied with their current travel choices, and thus feel no 
need to improve their outcome by changing to an alternate choice. Friesz et 
al (1993) formulated a simultaneous departure time/route choice model using 
the variational inequality approach. An overview of our modeling activity in 
dynamic departure time, mode and route choices was presented in LeBlanc et 
al (1992); in addition, papers presented at various conferences formed the basis 
for several chapters of this book. 

1.4 Hierarchy of Dynamic Network Models 

In this section, we give an overview of the chapters of the book and their inter­
relationships. In Chapter 2, we summarize the basic concepts and principles of 
continuous time optimal control theory. This background knowledge provides 
a basis for the formulation of dynamic network models in this book. Discrete 
time optimal control problems are introduced in Chapter 3. Then, nonlinear 
programming (NLP) problems and their similarity to the discrete time opti­
mal control problems are discussed. The conventional Frank-Wolfe algorithm 
and diagonalization technique are presented for solving NLP problems. For 
more advanced readers, an introduction to variational inequality theory is also 
provided. 

We began our dynamic network model research from the dynamic route 
choice problem, also known as the dynamic traffic assignment problem. Based 
on the two types of travel times- instantaneous link travel times and actual 
link travel times, two route choice models can be formulated. The relation 
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of these dynamic route choice problems is depicted in Figure 1.2. The dis­
cussion of the two types of travel times is given in Chapter 4 together with 
all the constraint conditions necessary for dynamic network models. In addi­
tion to flow conservation conditions, flow propagation constraints are especially 
emphasized. Other important constraints include link capacity and spiUback 
constraints. 

Multi-Group Combined 
InstantaneouslIdeal DUO 

Multi-Group Combined 
InstantaneouslIdeal DSUO 

Figure 1.2: A Hierarchy of Dynamic Route Choice Models 

In Ran and Shimazaki (1989b), an instantaneous DUO route choice 
model that avoids the use of a link exit flow function was presented. Using 
the same approach, three instantaneous DUO optimal control models are pre­
sented in Chapter 5. The trip pattern is assumed to be known a priori in 
the dynamic route choice problem. We define a decision node for each route 
between each O-D pair as any node on that route including the origin. The 
instantaneous route travel time between a decision node and the destination 
node is calculated by using the currently prevailing link times. The instanta­
neous DUO route choice problem is to determine vehicle flows at each instant 
of time on each link resulting from drivers using minimal-time routes under 
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currently prevailing travel times. The instantaneous DUO route choice model 
is formulated using the optimal control theory approach. These models are 
fundamentally different from earlier DSO and DUO route choice models by: 

1. using a different definition of DUO; 

2. employing exit flows as a set of control variables rather than functions; 

3. including new formulations of the objective function; 

4. including a formulation of flow propagation constraints. 

In Chapter 6, the continuous time formulation of the DUO route choice program 
is transformed into a discrete time NLP formulation. Since the model is convex, 
the discrete version should be efficiently solvable for the optimal solution for 
large networks. We present a new algorithm for solving this NLP in Chapter 
6. It is solved by the Frank-Wolfe technique embedded in a diagonalization 
procedure. In the diagonalization procedure, the estimated link travel times are 
updated iteratively and the Frank-Wolfe technique is applied in each iteration 
to solve the resulting NLP. For the linearized Frank-Wolfe subproblem, an 
expanded time-space network is constructed so that the subproblem can be 
decomposed according to O-D pairs and can be viewed as a set of minimal-cost 
route problems. Flow propagation constraints representing the relationship 
between link flows and travel times are satisfied in the minimal-cost route 
search so that only flow conservation constraints for links and nodes remain. 
The proposed formulation has computational advantages since the gradient 
vector of the objective function with respect to the control and state variables 
is always nonnegative which allows for much more efficient minimal-cost route 
calculations. Preliminary computational results from applying the algorithm 
to a test network are reported. 

In Chapter 7, we propose another concept of DUO route choice which 
reflects ideal route choice behavior of travelers. The formulation of the ideal 
DUO route choice problem is based on the underlying choice criterion that 
each traveler uses the route that minimizes his/her future (actual) travel time 
when departing from the origin to his/her destination. Thus, for any O-D pair, 
vehicles departing the origin at the same time must arrive at the destination 
at the same time under ideal DUO route choice conditions. In this chapter, an 
optimal control program of ideal DUO route choice model is presented. A solu­
tion algorithm based on a penalty and diagonalization/Frank-Wolfe algorithm 
is presented. 

In Chapter 8, we consider two stochastic dynamic user-optimal (SDUO) 
route choice models which are stochastic extensions of our previous determin­
istic DUO route choice models. The formulation of the instantaneous SDUO 
route choice problem is based on the underlying choice criterion that each trav­
eler uses the route that minimizes his/her perceived instantaneous travel time 
when departing from any decision node to his/her destination. The solution 
of this instantaneous SDUO model results in instantaneous stochastic network 



1.4. Hierarchy of Dynamic Network Models 11 

flows at each decision node based on a logit function of mean (measured) in­
stantaneous travel times of alternative routes. In parallel, we present an ideal 
SDUO route choice model based on stochastic flows with a logit function of 
mean future travel times experienced by drivers over alternative routes for 
each 0-D pair. 

In Chapter 9, we first discuss solution algorithms (DYNASTOCH) for 
flow-independent instantaneous SDUO and ideal SDUO route choice problems. 
These algorithms are very similar to STOCH algorithm proposed by Dial (1971) 
for static logit-type assignment. Then, we use the diagonalization technique 
and DYNASTOCH to solve our instantaneous SDUO and ideal SDUO route 
choice problems. One important advantage of these algorithms is that route 
enumeration is avoided. 

Next we study a joint dynamic departure time and route choice prob­
lem in Chapter 10. In this problem, travelers' departure times can be shifted 
based on origin-destination travel times corresponding to each possible depar­
ture time. This problem, then, is to determine travelers' departure times and 
choose their best routes at each instant of time. We present a bilevel pro­
gramming formulation of this DUO departure time and route choice problem. 
The model extends our previous DUO model to the case where both departure 
time and route over a general road network must be chosen. Our lower-level 
program solves the DUO departure time choice problem, and our upper-level 
program solves the DUO route choice problem. The optimality conditions of 
the bilevel program demonstrate that our formulation is consistent with the de­
sired DUO departure time and route choice properties. We suggest a heuristic 
algorithm for solving the bilevel program (the upper problem can be solved ex­
actly). A numerical example illustrates that total travel time can be decreased 
by choosing appropriate departure times. 

In Chapter 11, a combined DUO mode/departure time/route choice 
model with multi-class travelers is presented for a general transportation net­
work. Our model extends the dynamic user-optimal departure time/route 
choice conditions to include mode choice as well. The model extends the earlier 
combined departure time/route choice model to the case where dynamic traf­
fic flows by different modes affect other modes' costs. By formally stratifying 
travelers into different groups, an accurate analysis of the time-cost tradeoff in 
mode choice is possible. This model presents a two-stage non-hierarchical pro­
gramming formulation of this DUO mode/departure time/route choice prob­
lem. The first-stage program solves the dynamic mode choice problem. Simul­
taneously, the second-stage program represents a hierarchical leader-follower 
program which solves the DUO departure time and route choice problem for 
motorists. The optimality conditions of the two-stage program demonstrate 
that our formulation is consistent with the DUO mode/departure time/route 
choice conditions. The hierarchy of dynamic travel choice models is summa­
rized in Figure 1.3. 

In Chapter 12, we extend our dynamic network models to a broader 
framework using the variational inequality (VI) approach. We first discuss 
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Destination Choice 

Mode Choice 

Departure Time Choice 

Route Choice 

Figure 1.3: A Hierarchy of Dynamic Travel Choice Models 

instantaneous DUO route choice problems and formulate route-based and link­
based VI models for single group and multi-group travelers. The link-based 
models are computationally more tractable than the route-based models. The 
relationship of VI models and optimal control models is also investigated. We 
show that the optimal control models in Chapter 5 are special cases of general 
VI models. 

In Chapter 13, both route-based and link-based VI models for ideal DUO 
route choice problems are formulated, and their relationship to optimal control 
models is investigated. We show that VI models can be reformulated as optimal 
control models under relaxation and solved using the diagonalization/Frank­
Wolfe algorithm. General VI formulations for joint departure time/route choice 
problems are presented in Chapter 14; both route-based and link-based VI 
models are discussed for this joint dynamic travel choice problem. We show 
that VI models can be reformulated as optimal control models under relaxation. 

In Chapter 15, a set of DSO route choice models are formulated. For 
comparison, we discuss in detail a DSO route choice model which minimizes 
total travel time under the same set of constraints as the instantaneous DUO 
route choice models in Chapter 5. Subsequently, a set of DSO route choice mod­
els with elastic departure times are discussed. Specifically, the time-minimizing 
problem is emphasized in the context of emergency evacuation. Furthermore, 
two types of dynamic congestion pricing schemes are presented. 



1.4. Hierarchy of Dynamic Network Models 13 

In order to implement the above dynamic network models in realistic ur­
ban transportation networks, we investigate time-dependent travel time func­
tions for signalized arterial and freeway segment links in Chapter 16. Dynamic 
link travel times are first classified according to various applications. Subse­
quently, travel time functions for arterial links with longer and shorter time 
horizons are discussed separately, and two sets of functions are recommended 
for dynamic transportation network problems. Implications of those functional 
forms are analyzed and some modifications for dynamic network models are 
suggested. In addition, based on dynamic link tra~el time functions, we discuss 
how many independent variables are necessary to describe the temporal traffic 
flow and properly estimate the time-dependent travel time over an arterial link. 
As a result, six link flow variables and corresponding link state equations are 
proposed as the basis for formulating dynamic transportation network mod­
els. Finally, time-dependent travel time functions for freeway segment links 
are recommended. 

Various implementation issues are discussed in Chapter 17. Among those 
issues, we focus on the following items: dynamic traffic prediction; dynamic 
traffic control; incident management; dynamic congestion pricing; operations 
and control for automated highway systems (AHS); dynamic transportation 
planning. The application of dynamic network models to these tasks is dis­
cussed specifically. In addition, we analyze how these models can serve oper­
ating and evaluation functions in IVHS systems. The detailed requirements of 
IVHS systems for dynamic network models are also identified. Subsequently, 
we discuss data needs of dynamic network models to accomplish the above im­
plementation tasks. The following items are identified as the most important: 
time-dependent O-D matrices; network geometry data and intersection/ramp 
control data; traffic flow data for calibrating various dynamic link travel time 
functions; traveler information for stratifying travelers into multiple groups and 
calibrating travel disutility functions. 

The flowchart of the logical sequence of this book is shown in Figure 
1.4. Throughout this book, the main emphasis is on dynamic travel choice 
models formulated using the optimal control theory approach.. For dynamic 
route choice problems, we extend deterministic models to stochastic models 
(Chapters 8 and 9). Then, we discuss more general VI formulations for both 
route choice and departure time choice problems in Chapters 12-14. Thus, for 
readers who are not familiar with dynamic transportation network models, op­
timal control models (Chapters 4-7) may be the most interesting. For advanced 
readers, Chapters 8 and 9 as well as Chapters 12-14 provide a broader picture 
of models and a good starting point for future research. In general, Chapters 
1-7 can be used as a classroom reference for advanced transportation network 
courses, especially for those with a strong IVHS orientation. 
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1.5 Notes 

The success of ATMS/ ATIS systems depends on development and successful 
applications of advanced transportation models and control models. This field 
will need to develop models and algorithms that use real-time data to determine 
optimal control strategies of traffic. They must enable real-time management 
of traffic while accommodating both pre-trip planning and en route travel plan 
modification. They must also provide the means of evaluating the benefits 
of various aspects of IVHS. Technologies that are likely to be useful include 
artificial intelligence, expert systems and parallel computing. Traffic modeling 
for ATMS/ ATIS includes: 

1. travel forecasting models; 

2. optimal routing methods; 

3. support systems for traffic management centers; 

4. dynamic route choice models; 

5. traffic simulation models; 

6. network-wide optimization programs; 

7. driver/traveler behavior models (human factors). 

In addition, developments in traffic modeling should take into account multi­
modal travel requirements, such as HOV or public transit, and should also 
include the development of the following capabilities: 
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1. real-time, traffic-adaptive logic for signal control; 

2. real-time, traffic-adaptive logic for freeway control, including ramp and 
possibly mainline metering; 

3. real-time integration of freeway and surface street control; 

4. transit and emergency vehicle priorities. 

Research into each of the above tasks is a long term effort. This book 
is intended to provide a framework and some background knowledge to study 
and investigate the above complicated application problems. We developed 
those dynamic network models bearing the above tasks in mind. Nevertheless, 
application of dynamic network models in IVHS is still premature. The main 
concerns for dynamic network models which prevent their large-scale applica­
tions include: 

1. accurate representation of traffic propagation and travel time functions 
for links; 

2. accurate representation of travel choice behavior; 

3. validation of models using real-time data. 

However, extensive potential applications of dynamic network models can be 
expected in future ATIS/ ATMS systems, including dynamic route guidance, 
freeway ramp control, arterial signal optimization/coordination and automated 
highway, etc. We expect to summarize those applications in a subsequent book. 



Chapter 2 

Continuous Optimal Control 
Problems 

Optimal control theory has been extensively used in solving many engineering 
problems, such as in mechanical engineering and aeronautics engineering. Its 
application in transportation engineering has been limited to traffic signal con­
trol on surface streets and ramp metering control on freeways. Recently, with 
the rapid advance of supercomputing facilities and techniques, solution of op­
timal control theory formulations of large-scale problems has become feasible. 
Therefore, the application of this approach to dynamic transportation network 
modeling is attractive. The objective of conventional optimal control theory is 
to determine optimal control strategies that will cause a process to satisfy the 
physical constraints and at the same time minimize or maximize some perfor­
mance criterion. In this book, we will use optimal control theory to formulate 
and analyze time-dependent transportation network problems. Those optimal 
control models have many similarities with the optimization models for solving 
static counterparts of these problems which are formulated and solved using 
nonlinear programming theory. 

In this chapter, we review some basic concepts of optimal control theory, 
which are sufficient to provide a basis for formulating dynamic transportation 
network models and analyzing the conditions necessary for the existence of an 
optimal solution. In Section 2.1, we present definitions which are associated 
with any optimal control problem. In Section 2.2, we discuss optimal con­
trol problems assuming that the admissible controls are not bounded (no con­
straints) and derive the corresponding necessary conditions. These necessary 
conditions are then employed to find the optimal control law for the impor­
tant linear regulator problem. Furthermore, Pontryagin's minimum principle 
is introduced as a generalization of the fundamental theorem of the calculus of 
variations. 

In Section 2.3, optimal control problems with general bounded control 
and state variables are discussed. For problems with bounded control and state 



18 Chapter 2. Continuous Optimal Control Problems 

variables, we discuss a generalization of Pontryagin's Minimum Principle and 
the corresponding partial differential equations of the necessary (optimality) 
conditions derived using a general Hamiltonian function. In Section 2.4, we 
discuss some optimal control problems with simple constraints on control and 
state variables. These optimal control problems will be used in the analysis 
of dynamic transportation network models in later chapters. In Section 2.5, 
bilevel optimal control problems are discussed; here we are concerned with 
interrelationships between two interdependent optimal control problems. 

2.1 Definitions for Optimal Control Theory 

The basic theory of optimal control is derived from the calculus of variations. 
Compared with the calculus of variations, optimal control theory has many 
advantages in solving time-dependent optimization problems. It also has many 
similarities with static optimization problems, such as nonlinear programming 
(NLP) theory. We will discuss these relationships in detail in Chapter 3. 

Before presenting the optimality conditions for the optimal control prob­
lem, we introduce some basic definitions. The formulation of an optimal control 
problem is associated with a time-dependent process or system and requires the 
following: 

1. a mathematical representation of the process to be controlled or to be 
optimized; 

2. a statement of the physical constraints; 

3. specification of a performance criterion or an objective function. 

Dynamic Process/Dynamic System 

The modeling of a dynamic process seeks to obtain the simplest mathematical 
description that adequately predicts the response of the physical system to all 
anticipated inputs. We restrict our discussion to systems described by ordinary 
differential equations. We define 

as the state variables (or simply the states) of the process at time t, and 

as the control variables (or the controls) to the process at time t. The system or 
process may be described by n first-order differential equations, where x;(t) = 
dx;(t)/dt: 

Xl(t) = h[Xl(t), X2(t), ... , xn(t), Ul(t), U2(t), ... , um(t), tj 

X2(t) = !2[Xl(t), X2(t), ... , xn(t), Ul(t), U2(t),"', um(t), tj 
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(2.1) 

We define the state vector of the system as 

x(t) = 

and the control vector as 

u(t) = 

The state equations can then be written in vector notation as 

x(t) = f[x(t), u(t), tj (2.2) 

where f is also a vector. 

State Variables 

The starting point for optimal control investigations is a mathematical model 
in state variable form. Why are state variables used in control problems? 
Formulating a mathematical model in state variable form is convenient because: 

1. the concept of state has a strong physical motivation; 

2. the state variable form is easy to use in theoretical investigations and the 
resulting differential equations are suitable for digital or analog solution; 

3. the state form provides a unified framework for the study of nonlinear 
and linear systems. 

Referring to the state of a system, we have the following definition: 

Definition 2.1 The state of a system is a set of quantities Xl(t), 
X2(t), ... , xn(t) which, if known at t = 0, are determined for t ~ 0 
by specifying the inputs to the system for t ~ o. 



20 Chapter 2. Continuous Optimal Control Problems 

System Classification 

Systems are described by the terms linear, nonlinear, time-invariant and time­
variant (explicit function of time). We shall classify systems according to the 
form of their state equations. For example, if a system is nonlinear and time­
variant, the state equations are written as 

x(t) = f[x(t), u(t), t] (2.3) 

When the system does not depend on time t explicitly, a special form of the 
above nonlinear dynamic systems is represented by equations of the form 

x(t) = f[x(t), u(t)] (2.4) 

which is time-invariant. Many dynamic transportation network problems have 
time-invariant state equations. If a system is linear and time-invariant, its state 
equations are 

x(t) = A(t)x(t) + B(t)u(t) (2.5) 

where A(t) and B(t) are n x nand n x m matrices with time-dependent ele­
ments. State equations for one special type of linear dynamic systems have the 
form 

x(t) = Ax(t) + Bu(t) (2.6) 

where A and B are constant matrices. 

Performance Measure/Objective Function 

In order to evaluate the performance of a system quantitatively, the system 
controller needs to select a performance measure or an objective function. An 
optimal control is defined as one that minimizes (or maximizes) this objec­
tive function. In certain cases, the objective function may be self-explanatory, 
whereas in other problems the objective function may be artificial. For exam­
ple, the statement, "To minimize the total travel time over a traffic network," 
clearly indicates that the objective function is defined from a system point of 
view. On the other hand, the statement, "To achieve equal minimal travel 
times over each used route for each O-D pair," does not directly suggest an 
objective function. In such a problem, the modeler may need to design an 
artificial objective function so that the resulting optimization conditions of the 
optimal control program represent desired physical properties. However, such 
an objective function may not have any direct physical interpretation. We shall 
discuss the definition of an objective function in more detail in the following 
chapters for various dynamic network problems. 

In the following, we assume that the performance of a system can be 
evaluated by a measure J of the form 

J = iT F[x(t), u(t), t] dt + S[x(T), T] (2.7) 
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where 0 and T are initial and final times; F and S are scalar functions. T may 
be pre-specified or changeable according to the problem requirement. If T is 
changeable, it is termed "free". F is a cost term that depends on the state and 
control variables at any time t. S is associated with final state x(T) and the 
final time T. It is sometimes termed a salvage cost in economics. 

Starting from the initial state x(O) = Xo, assigning values to control 
variables u(t) for t E [0, T] will cause a system to achieve some value for each 
state variable. The sequence of values achieved by each state variable through 
time is termed a state trajectory. Minimization of the objective function with 
respect to the control variables assigns unique real values to each trajectory of 
the system so that some optimal controls can be found. 

We now present an explicit statement of the optimal control problem 
(OCP). First, some definitions of various forms of optimal controls are pre­
sented. 

Definition 2.2 If a functional relationship of the form 

u* (t) = f[x(t), t] (2.8) 

can be found for the optimal control at each instant of time t, then 
the function f is called an optimal control law. 

Notice that equation (2.8) implies that f is a rule which determines the optimal 
control at time t for any admissible state value at time t. For example, if 

u*(t) = G x(t) (2.9) 

where G is an m x n matrix of real constants, then we say that the optimal 
control law is linear and time-invariant. 

Definition 2.3 If the optimal control is determined as a function 
of time for a specified initial state value, i.e., 

u*(t) = e[x(O), t] (2.10) 

then the optimal control is said to be in open-loop form. 

Thus, the optimal open-loop control is optimal only for a particular initial state 
value. In other words, if the optimal control law is known, the optimal control 
history starting from any initial state value can be generated. 

Conceptually, it is helpful to imagine the difference between a closed­
loop optimal control law and an open-loop optimal control law as shown in 
Figure 2.1. Although engineers normally prefer closed-loop solutions to optimal 
control problems, there are cases when an open-loop control may be desirable. 
For example, in radar tracking of a satellite, once the orbit is set, very little 
can happen to cause an undesired change in the trajectory parameters. In this 
situation a pre-programmed control for the radar antenna might well be used. 
However, in dynamic transportation network problem, it is hard to find an 
open-loop control in general. Thus, open-loop optimal control is not our major 
focus. 
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u*(t) 
CONTROLLER PROCESS 

Closed-Loop Optimal Control 

u*(t) 
CONTROLLER PROCESS 

Opens at time 0 

Open-Loop Optimal Control 

Figure 2.1: Closed-Loop and Open-Loop Optimal Controls 

Definition 2.4 If the optimal control is determined as a function 
of the state variable only, i.e., 

u*(t) = f[x(t)] (2.11) 

then the optimal control is an optimal feedback control. 

A typical example of feedback control is the classic servomechanism problem 
where actual and desired outputs are compared and any deviation produces 
a control signal that attempts to reduce the discrepancy to zero. In dynamic 
transportation network problems, there are many applications of such a control 
law. 

With the above basic definitions in mind, we begin our discussion of 
optimal control problems in next three sections. First, we present the simplest 
form of optimal control problem which has no constraints on state and control 
variables. 

2.2 Continuous Problems with No Constraints 

In this section, we mainly present two types of optimal control problems which 
differ from each other by the specification of either a fixed end time or a free 
end time. 
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2.2.1 Fixed Beginning and Fixed End Times 

We now consider a dynamic system having a cost function F[x(t), u(t), t] for 
a fixed time period [0, TJ. The optimal control problem is to seek a control 
function u which is feasible, or admissible, in order to minimize the objective 
function as follows: 

mm J = loT F[x(t), u(t), t] dt + S[x(T) , TJ (2.12) 
X,u 

s.t. 
i(t) = f[x(t), u(t), t] (2.13) 

T and x(o) = Xo fixed; x(T) free (2.14) 

where F[x(t), u(t), t] has continuous partial derivatives with respect to x(t) and 
S[x(T) , TJ has continuous partial derivatives with respect to x(T). 

We use the method of Lagrange multipliers to adjoin the system differ­
ential state equations to the objective function, which gives 

I loT {F[x(t), u(t), t] + A(t) [f[x(t), u(t), t] - i(t)]} dt 

+ S[x(T), TJ (2.15) 

where A(t) is a vector of Lagrange multipliers associated with the dynamic state 
equations. It is standard in optimal control theory to designate the major part 
of the integrand of equation (2.15) as the Hamiltonian, 

1£ = F[x(t), u(t), t] + A(t) f[x(t), u(t), t] (2.16) 

Then, the first-order necessary conditions for the optimal control problem may 
be summarized as follows: 

01£ = of[x(t), u(t), t] A(t) EJf[x(t) , u(t), t] = 0 
ou(t) ou(t) + ou(t) 

_ '\(t) = 01£ = of[x(t), u(t), t] . A(t) EJf[x(t) , u(t), t] 
ox(t) ox(t) + ox(t) 

i(t) = o~~) =f[x(t), u(t), t] 

x(o) = Xo 

A(T) = oS[x(T), TJ 
ox(T) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21 ) 

Equations (2.19) and (2.20) are simply the restatement of state equation 
(2.13) and boundary condition (2.14). Equations (2.20) and (2.21) are termed 
the transversality conditions which constitute two-point boundary conditions 
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for the set of differential equations. The above first-order necessary condi­
tions are derived using Pontryagin's Minimum (or Maximum) Principle or the 
Hamilton-Jacobi equation. The Pontryagin's Minimum Principle can simply 
be stated as follows. The inequality 

1t[u* (t)] ~ 1t[u(t)] (2.22) 

is valid for all admissible u(t), where * represents that the solution is optimal. 
Sometimes, we directly use this principle to analyze complicated optimal con­
trol problems. It is also interesting to compute the total derivative with respect 
to time t as 

d1t 
dt 

aF . [aF ar]. [aF ar ] at + x(t) ax(t) + A(t) ax(t) + u(t) au(t) + A(t) au(t) 

. ar 
+ A(t) r + A(t) at (2.23) 

Now, we consider that equation (2.17) mayor may not hold. Substituting 
equations (2.17) and (2.19) into equation (2.23), we obtain 

d1t aF . a1t ar 
dt = at + u(t) au(t) + A(t) at (2.24) 

Thus, if F and f are not explicit functions of time t, the Hamiltonian is constant 
along an optimal trajectory where a1tjau = o. It can be shown that this is true 
along an optimal trajectory, even if we cannot require a1tjau = o. Therefore, 
the following additional condition holds 

d1i = 0 
dt 

(2.25) 

when F and f are not explicit functions of time. This is an important result 
which we will use in later developments. In the following, we discuss a special 
problem using the above first-order necessary conditions. 

The Linear Regulator 
We now study a particular optimal control problem which has its solution as a 
linear feedback control law. The typical problem is stated as follows. We have 
a linear differential system 

x(t) = A(t) x(t) + B(t) u(t), x(O) = Xo 

and wish to find the control which minimizes the objective function 

J = ~ iT [x(t) Q(t) x(t) + u(t) R(t) u(t)] dt + ~x(T) W x(T) 
20 2 

(2.26) 

(2.27) 

Without loss of generality, we assume Q(t), R(t) and Ware symmetric ma­
trices. We may solve this problem using the first-order necessary conditions or 
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the Minimum Principle. The Hamiltonian is 

1 1 
1i[x(t), u(t), ~(t), t] = 2x(t) Q(t) x(t) + 2u(t) R(t) u(t) 

+ ~(t) A(t) x(t) + ~(t) B(t) u(t) (2.28) 

Application of the first-order necessary conditions requires, for an optimal con­
trol, that 

81-£ 
8u(t) = 0 = R(t) u(t) + ~(t) B(t) (2.29) 

and 

81i . 
8x(t) = -~(t) = Q(t) x(t) + ~(t) A(t) (2.30) 

with the boundary condition 

~(T) = 8S[x(T)] = W (T) 
8x(T) x 

(2.31 ) 

Thus, from equation (2.29), we require that 

u(t) = -R-I(t) B(t) ~(t) (2.32) 

We shall inquire whether we can convert this to a closed-loop control by as­
suming that the solution for the Lagrange multiplier is similar to equation 
(2.31 ) 

~(t) = pet) x(t) (2.33) 

where pet) is a symmetric matrix, with n x n time-dependent elements. If we 
substitute relation (2.33) into equations (2.26) and (2.32), we must require 

x(t) = A(t) x(t) - B(t) R-I(t) B(t) pet) x(t) (2.34) 

Also, from equations (2.33) and (2.30), we require that 

.\(t) = pet) x(t) + pet) x(t) = -Q(t) x(t) - A(t) pet) x(t) (2.35) 

Combining equations (2.34) and (2.35), we obtain 

[pet) + pet) A(t) + A(t) pet) 

- pet) B(t) R-I(t) B(t) pet) + Q(t)] x(t) = 0 (2.36) 

Since this equation must hold for all nonzero x(t), the term premultiplying x(t) 
must be zero. Thus, the pet) matrix, which must satisfy equation (2.36), is 
called the Riccati matrix equation, and must be positive definite, so that 

pet) = -P(t)A(t) - A(t)P(t) + P(t)B(t)R-I(t)B(t)P(t) - Q(t) (2.37) 
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with a boundary condition given by equations (2.31) and (2.33), stated as 

P(T) = W (2.38) 

Thus, we may solve the Riccati matrix equation backward in time from T to 
o and obtain P(t). The solution for P(t) will be illustrated in Example 2.2.1 
below. Define the matrix K(t) as 

K(t) = _R-l(t) B(t) P(t) (2.39) 

Combining equations (2.32), (2.33) and (2.39), we obtain a closed-loop control 
of the form 

u(t) = K(t) x(t) (2.40) 

Q(t), R(t), and W must be at least positive semidefinite in order to establish 
the sufficient condition for a minimum. In addition, we know from equation 
(2.32) that R(t) must have an inverse; therefore, it is sufficient that R(t) be 
positive definite and the Q(t) and W be at least positive semidefinite. A de­
tailed discussion on sufficient conditions is not given in this book. Interested 
readers should refer to the notes at the end of this chapter. 

Example 2.2.1. Find the feedback optimal control law for the scalar system 

x = x(t) + u(t), x(O) = xo (2.41) 

to minimize the objective function 

(2.42) 

The state and control variables are unconstrained. The final time T is specified 
and x(T) is free. 

Raccati equation (2.37) and boundary condition (2.38) become 

p(t) = -2p(t) + p2(t), p(T) = 4 (2.43) 

Solving the above differential equation, we obtain the solution 

2 
p(t) = 1- e(2t-2T-ln2) (2.44) 

Thus, using equation (2.39), we have 

K(t) = _R-l(t) B(t) P(t) = -1- e(2t:2T-ln2) (2.45) 

The optimal feedback control law is 

u(t) = K(t) x(t) (2.46) 
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2.2.2 Fixed Beginning and Free End Times 

We consider an optimal control problem with a fixed beginning Xo and a free 
end time T. But we have additional constraints for the final state x(T) and 
final time T as follows 

N[x(T), T] = 0 (2.47) 

This kind of free end time conditions has several practical implications. Some 
system-optimal problems fall into this category of problems. One typical ex­
ample is a system-optimal problem which has an objective function of reducing 
the total travel time subject to a fixed amount of traffic within an area at end 
time T. The optimal control problem is presented as follows: 

s.t. 

mm J = foT F[x(t), u(t), t] dt + S[x(T), T] (2.48) 
X,u io 

:ic(t) = f[x(t), u(t), t] 

x(O) = Xo, N[x(T), T] = 0 

T free 

(2.49) 

(2.50) 

(2.51 ) 

where F[x(t), u(t), t] has continuous partial derivatives with respect to x(t) 
and u(t), and S[x(T) , T] and N[x(T), T] possess continuous partial derivatives 
with respect to x(T). 

As before, we use the method of Lagrange multipliers to adjoin the 
system differential state equations to the objective function, which gives 

I = loT {F[x(t), u(t), t] + '\(t) [f[x(t), u(t), t] - :ic(t)]} dt 

+ S[x(T), T] + v(T) N[x(T), T] (2.52) 

where '\(t) and v(T) are vectors of Lagrangian multipliers associated with the 
dynamic state equations and constraints for states at end time T, respectively. 
As before, we define a scalar function, the Hamiltonian, as 

1i = F[x(t), u(t), T] + '\(t) f[x(t), u(t), t] (2.53) 

We also define another scalar function as 

0[x(T), v(T), T] = S[x(T), T] + v(T) N[x(T), T] (2.54) 

Then, the first-order necessary conditions for the optimal control problem may 
be summarized as follows: 

81i _ _ 8F[x(t), u(t), t] ,\() 8f[x(t), u(t), t] 
8u(t) - 0 - 8u(t) + t 8u(t) (2.55) 

_ ~(t) = 81i = 8F[x(t), u(t), t] '\(t) 8f[x(t), u(t), t] 
8x(t) 8x(t) + 8x(t) 

(2.56) 
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x(t) = 8~%) = f[x(t), u(t), t] 

x(O) = Xo 

'x(T) = 8e = 8S[x(T), T] (T)8N[x(T), T] 
8x(T) 8x(T) + v 8x(T) 

81i 
8v(T) = 0 = N[x(T), T] 

1i[x(T), u(T), 'x(T), T] + 8S[X~~), T] + v(T) 8N[~~), T] = 0 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

(2.61 ) 

These represent 2n differential equations for the two-point boundary value 
problems. Equations (2.58)-(2.61) are termed transversality conditions. Sup­
pose boundary condition (2.60) has q equations and there are n state equations. 
Then, equation (2.59) provides n conditions with q Lagrange multipliers v(T) 
to be determined. Equation (2.60) provides q equations to eliminate the La­
grange multipliers v(T), and equation (2.61) provides one additional equation 
which is used to determine the unspecified end time T. 

2.3 Continuous Problems with Equality and 
Inequality Constraints 

In this section, we consider optimal control problems with nonlinear equality 
and inequality constraints on state and control variables. Those constraints can 
represent most practical constraints in realistic applications. The set of equality 
constraints for control and state variables are denoted as G[u(t), x(t), t] = 0 
and the set of inequality constraints are denoted as K[u(t), x(t), t] ~ o. We 
assume G and K are continuous and differentiable with respect to u, x and t. 

2.3.1 Fixed Beginning and Fixed End Times 

We first consider an optimal control problem with a fixed beginning Xo and 
fixed end time T. The optimal control problem is formulated as follows 

s.t. 

mIll J = foT F[x(t), u(t), t]dt + S[x(T), T] 
X,u Jo 

d~~t) = f[u(t), x(t), t] 

G[u(t), x(t), t] = 0 

K[u(t), x(t), t] ~ 0 

x(O) = Xo, T fixed. 

(2.62) 

(2.63) 

(2.64) 

(2.65) 

(2.66) 
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Denote the Lagrangian multipliers associated with equations (2.63)-(2.65) as 
.\(t), u(t) and 71(t), respectively. We construct the augmented Hamiltonian 1£ 
for the above optimal control problem as 

1£ F[x(t), u(t), t] + '\(t) f[u(t), x(t), t] 

+ u(t) G[u(t), x(t), t] + 71(t) K[u(t), x(t), t] (2.67) 

where 

(t) { > 0 if K = 0 
71 =0 ifK<O 

The first order necessary conditions for the optimal control program are 

81£ = 0 
8u(t) 

. 81£ 
-.\(t) = 8x(t) 

8F[x(t), u(t), t] .\(t) 8f[u(t), x(t), t] 
8u(t) + 8u(t) 

( ) 8G[u(t), x(t), t] ( ) 8K[u(t), x(t), t] 
+ u t 8u(t) + 71 t 8u(t) (2.68) 

8F[x(t), u(t), t] .\(t) 8f[x(t), u(t), t] 
8x(t) + 8x(t) 

( ) 8G[u(t), x(t), t] ( ) 8K[u(t), x(t), t] (2 9) 
+ u t 8x(t) + 71 t 8x(t) .6 

x(t) = 8~~) = f[x(t), u(t), t] (2.70) 

81£ 
8u(t) = 0 =G[u(t), x(t), t] (2.71) 

81£ 
871(t) = K[u(t), x(t), t] ~ 0 (2.72) 

x(O) = xo (2.73) 

.\(T) = 
8S[x(T), T) 

(2.74) 
8x(T) 

Equations (2.68)-(2.69) are similar to equations (2.17) and (2.18) except the 
additional terms resulting from equality and inequality constraints on the con­
trol and state variables. Equation (2.70) is a restatement of the state equation 
(2.63). Equations (2.71)-(2.72) are restatements of the equality and inequality 
constraints. Equations (2.73)-(2.74) are two-point boundary conditions. 
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2.3.2 Fixed Beginning and Free End Times 

We now consider an optimal control problem for a time period [0, T] where the 
end time T is free. This optimal control problem is presented as follows: 

mm J = loT F[x(t), u(t), t] dt + S[x(T), T] (2.75) X,u 

s.t. 
x(t) = f[x(t), u(t), t] (2.76) 

G[u(t), x(t), t] = 0 (2.77) 

K[u(t), x(t), t] :::; 0 (2.78) 

x(O) = xo (2.79) 

N[x(T), T] = 0 (2.80) 

T free (2.81 ) 

where N[x(T), T] possess continuous partial derivatives with respect to x(T). 
We construct the augmented Hamiltonian 1i for the above optimal control 
problem as 

'H F[x(t), u(t), t] + ..\(t) f[u(t), x(t), t] 
+ O'(t) G[u(t), x(t), t] + .,,(t) K[u(t), x(t), t] (2.82) 

where 
(t) { > 0 if K = 0 

." =0 ifK<O 

and ..\(t), O'(t) and .,,(t) are vectors of Lagrangian multipliers associated with 
the dynamic state equations and constraints for state and control variables. 
We define another scalar function as 

0[x(T), v(T), T] = S[x(T), T] + v(T) N[x(T), T] (2.83) 

where v(T) is a vector of Lagrange multipliers associated with constraints for 
states at end time T. Then, the first-order necessary conditions for the optimal 
control problem may be summarized as follows: 

o1i = 0 
ou(t) 

. o'H 
-..\(t) = ox(t) 

of[x(t), u(t), t] ..\(t) of[u(t), x(t), t] 
ou(t) + ou(t) 

( ) oG[u(t), x(t), t] ( ) oK[u(t), x(t), t] 
+ 0' t ou(t) +." t ou(t) (2.84) 

of[x(t), u(t), t] ..\(t) of[x(t), u(t), t] 
ox(t) + ox(t) 

( ) oG[u(t), x(t), t] ( ) oK[u(t), x(t), t] ( ) 
+ 0' t ox(t) +." t ox(t) 2.85 
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x(t) = 8~~) = f[x(t), u(t), t] 

81i 
8u(t) = 0 = G[u(t), x(t), t] 

81i 
8.,,(t) = K[u(t), x(t), t] ~ 0 

x(O) = xo 

'\(T) = 88 = 8S[x(T), T] (T) 8N[x(T), T] 
8x(T) 8x(T) + v 8x(T) 

N[x(T), T] = 0 

1i[x(T) , u(T), .\(T) , T] + 8S[X~~), T] + v(T) 8N[~~), T] = 0 
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(2.86) 

(2.87) 

(2.88) 

(2.89) 

(2.90) 

(2.91 ) 

(2.92) 

Equations (2.84)-(2.85) are 2n differential equations for the two-point bound­
ary value problems. Equations (2.86)-(2.88) are simply the restatement of 
state equation (2.76) and constraints (2.77)-(2.78). Equations (2.89)-(2.92) are 
boundary or transversality conditions. Equation (2.90) provides n conditions 
with q Lagrange multipliers to be determined. Equation (2.91) provides q equa­
tions to eliminate the Lagrange multipliers, and equation (2.92) provides one 
additional equation which is used to determine the unspecified end time T. 

Bang-Bang Control and Minimum Time Problem 

We now discuss a special case of the free end time problem - the Bang-Bang 
control and minimum time problem. This problem has potential applications 
in evacuation purposes, which are important for managing traffic congestion in 
emergencies. 

In a variety of applications, maximum effort control problems have be­
come increasingly important. It is natural to ask under what circumstances 
optimal controls will always be at maximum effort, or Bang-Bang. To do this, 
we restrict each component of the control vector, u(t), to some bounded interval 
as follows: 

ai ~ Ui ( t) ~ bi , V i (2.93) 

where ai and bi are lower and upper bounds, respectively. We also consider 
a nonlinear differential system where the control enters in a linear fashion as 
follows: 

x(t) = f[x(t), t] + g[x(t), t] u(t), x(O) = xo (2.94) 

We consider an objective function which contains only linear terms in control 
variables. The objective function is as follows 

J = loT {F[x(t), t] + h[x(t), t] u(t)} dt + S[x(T), T] (2.95) 
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Thus, the Hamiltonian will also be linear in u(t). It follows that 

1i[x(t), u(t), A(t), tj F[x(t), tj + h[x(t), tj u(t) 

+ A(t) {f[x(t), tj + g[x(t), tj u(t)} 
F[x(t), tj + A(t)f[x(t), tj 

+ {h[x(t), tj + A(t)g[X(t), t]} u(t) (2.96) 

Since the Hamiltonian is linear in the control vector, u(t), minimization of the 
Hamiltonian with respect to u(t) requires that 

u.(t) _ {a; if { h[x(t), tj + A(t)g[X(t), t]}; > 0 
• - b; if { h[x(t), tj + A(t)g[X(t), t]}; < 0 

Thus, when the control vector appears linearly in both the state equa­
tion and the objective function, and each component of the control vector is 
bounded, the optimal control is Bang-Bang. We call the above criterion the 
Bang-Bang control rule. The only exception to this occurs in the case where 

h[x(t), tj + A(t) g[x(t), tj = 0 (2.97) 

Then the Hamiltonian is not a function of u(t) and can not be minimized with 
respect to u(t). When equation (2.97) holds for more than isolated points in 
time, the optimization problem is said to possess a singular solution, a problem 
which we will not discuss in detail. A singular solution is possible with respect 
to a particular control component, u(t), if the ith component of equation (2.97) 
is O. For this problem, the first-order necessary conditions may be summarized 
as 

i(t) = 8~%) = f[x(t), tj + g[x(t), tj u(t) (2.98) 

. 81i 
-'\(t) = 8x(t) 

8F[x(t), tj 8h[x(t), tj () 
8x(t) + 8x(t) u t 

'( ) 8f[x(t), t] '() 8g[x(t), tj () 
+ A t 8x(t) + A t 8x(t) u t (2.99) 

where u(t) is determined using the Bang-Bang rule. Since we have not specif­
ically stated the end conditions, we discuss the general problem. When we 
specify information concerning the desired states at the end time and the ini­
tial condition vector, we have a two-point boundary value problem with half of 
the conditions specified at the initial time and half at the end time. 

A possible method for solving the first-order necessary conditions for 
this formulation consists of reversing time in these equations. Starting at the 
determined or specified terminal vector x(T), we integrate back from this point 
with a constant control (Bang-Bang) until the switching point is obtained using 
the Bang-Bang control rule. 
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We now illustrate various solutions to a particular case which results 
in bang-bang control-the minimum time problem for constant linear systems 
with a scalar input. In this problem, we desire to transfer an n vector constant 
differential system 

*(t) = Ax(t) + Bu(t), x(o) = xo (2.100) 

to its origin, x(T) = 0, in minimal time. Thus, we have the objective function 

J = lT dt =T (2.101 ) 

with the restriction that 

-1:::; u(t) :::; +1 (2.102) 

The Hamiltonian for our problem is 

1i[x(t), u(t), .\(t)] = 1 + .\(t) A x(t) + .\(t) B u(t) (2.103) 

We must minimize the Hamiltonian with respect to a choice of u(t). Thus, we 
require 

u*(t) = -sign [..\(t) B] (2.104) 

where sign [.\(t) B] = 1 when .\(t) B > 0 and sign [.\(t) B] -1 when 
.\(t) B < o. Thus, the Hamiltonian with the optimal control u*(t) is 

1i[x(t), .\(t)] = 1 + .\(t) A x(t) - .\(t) B sign [.\(t) B] (2.105) 

Since 1i does not depend explicitly on t, d1i/dt = o. Furthermore, since the 
end time T is free, we know from equation (2.92) that 1i[x(T), u(T), '\(T)] = o. 
Thus, we have 

1i[x(t), .\(t)] = 0 'V t E [0, T] 

On the optimal trajectory, the state equations are 

*(t) = 8~~) = A x(t) + B u(t) = A x(t) - B sign [..\(t)B] 

. 81i 
.\(t) = -- = -A.\(t) 

8x(t) 

(2.106) 

(2.107) 

(2.108) 

To avoid a singular solution, we must ensure that .\(t) B can not be zero over 
a time interval of nonzero length. From equation (2.108), we see that this is 
almost certainly the case unless .\(0) were identically 0, which is not possible. 
The solution to equation (2.108) is 

.\(t) = e-A(t-T) .\(T) (2.109) 
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It is convenient for us to rewrite equation (2.107) using a new time variable 

r=T-t (2.110) 

and a new state variable 

~(r) = x(t) = x(T - r) (2.111) 

Substituting equations (2.109)-(2.111) into equation (2.107), we obtain 

de de dt de dx . AT 
- = -. - = -- = - = -A e(r) + B slgn[.\(T)e BJ 
dr dt dr dt dt 

(2.112) 

Since e(O) = x(T) = 0, the above equation has its solution 

(2.113) 

A state x(O) == Xo from which the origin can be reached in a specified minimal 
time T may now be obtained if we substitute a value of '\(T) in equation (2.113) 
and than calculate x(O) and '\(T). Thus, .\(t) is working as a sort of influence 
function. 

Since it is the direction and not the magnitude of the .\(T) vector which 

determines sign ['\(T)eAwB], all states which can be reached in a given min­
imal time may be determined if we allow .\(T) to assume all values over a 
unit sphere. At points where .\(T)eAw B is 0, we have a switching point. It 
is possible to show that if the eigenvalues of A are real, there are, at most, 
n - 1 switchings or changes of sign of the control. We will now give examples 
of calculations of Bang-Bang controls. 

Example 2.3.1. Use the Minimum Principle to discuss possible optimal con­
trollaws and optimal trajectories for the system 

(2.114) 

(2.115) 

where the objective function is to minimize 

(2.116) 

Coefficients a;j (i = 1,2, j = 1,2), b; (i = 1,2), Ck (k = 0, 1,2) are constants. 
There is a constraint on control variables 

o ::; u;(t) ::; 1 Vi = 1,2 (2.117) 
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The state variables are unconstrained. The final time T is specified and x(T) 
is free. 

given (2.118) 

The Hamiltonian is formulated as 

1£ Co + C1Ul(t) + C2U2(t) + Al[allxl(t) + a12x2(t) + blUl(t)] 

+ A2[a2lxl(t) + a22x2(t) + b2U2(t)] 

where A(t) are Lagrange multipliers associated with the state equations. Re­
organizing the Hamiltonian based on control variables, we have 

1£ Co + Al[allxl + a12x2] + A2[a2lxl + a22x2] 

+ [Cl + Albl]Ul + [C2 + A2b2]U2 

Using the Minimum Principle 

1£[u*(t)] ~ 1£[u(t)], (2.119) 

we obtain the optimal control as follows: 

U~(t) = { 
0 if Cl + Albl ~ 0 
1 if Cl + Albl < 0 

u;(t) = { 
0 if C2 + A2b2 ~ 0 
1 if C2 + A2b2 < 0 

Substituting the optimal control into the state equation, we obtain the 
optimal trajectory. There are four possible combinations of optimal controls. 
We discuss only one here. When 

U~(t) = 0 U;(t) = 0, 

we have state equations as follows 

Xl(t) = allxl(t) + a12 x2(t) 

X2(t) = a2lxl(t) + a22x2(t) 

Solving the above two equations, we obtain the optimal trajectories 

xi(t) = BleO/ lt + B2e0/2t 

x;(t) = _1_ [(0::1 - all)BleO/ lt + (0::2 - all)B2e0/2t ] 
a12 

where B1, B2 are integral constants and 0::1, 0::2 have values as follows 

(2.120) 

(2.121) 

(2.122) 

(2.123) 

(2.124) 
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(2.125) 

Substituting boundary conditions X1(O) = 1 and X2(O) = 0 into equations 
(2.122)-(2.123), we obtain the coefficients 

(2.126) 

(2.127) 

Example 2.3.2. Consider a traffic signal control problem at an intersection. 
Figure 2.2 shows a signal controlled four-leg intersection with one-way streets. 
To simplify our problem, we assume no turning movements are allowed at this 
intersection and there are queues at both approaches. Denote arriving flow 
rates as q1(t) and q2(t) in vehicles per hour, and saturation flows as 81 and 82 

in vehicles per hour. Define green times for both approaches as g1(t) and g2(t) 
in seconds, respectively, It follows that 

g1(t) + g2(t) = C - L (2.128) 

where C is the cycle length (in seconds) and L is the lost time (in seconds) due 
to acceleration and deceleration at the intersection. We assume both C and L 
are fixed. 

Figure 2.2: Four-Leg Intersection 

Denote u(t) as the average number of vehicles per hour which can pass 
the intersection for approach 1. It follows that 

u(t) = 81 g1 (t) 
C 

(2.129) 
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For approach 2, the average number of vehicles per hour which can pass the 
intersection is 82 g2(t)/C. Thus, we can obtain the relationship between the 
flows passing the intersection for both approaches as follows 

82 g2(t) = _ 82 U(t) + 82(1 _ L) 
C 81 C 

(2.130) 

Denote the numbers of queuing vehicles at approaches 1 and 2 as X1{t) and 
X2{t), respectively. Thus, we can write the state equations as follows 

(2.131) 

(2.132) 

where u(t) is subject to 

umin ~ u(t) ~ U max (2.133) 

By substituting the minimum and maximum green times for approach 1 into 
equation (2.129), we can determine Umin and umax• We also have nonnegativity 
conditions for state variables as follows 

(2.134) 

In this example, the objective function is to minimize the total number of 
queuing vehicles at the intersection from time 0 to time T so that Xl (T) = 
x2(T) = 0 where the end time T is free. In other words, we seek to minimize 
the cumulative net queue and finally clear queues at both approaches at time 
T. It follows that 

Min (2.135) 

We assume that X1(0) and X2(0) are given in this example. This problem has 
two fixed boundary points at times 0 and T. 

The Hamiltonian is constructed as 

1-£ X1(t) + X2(t) + Al (t)[q1(t) - u(t)] 
L 82 + A2(t)[q2{t) - 82(1 - -) + -u(t)] 
C 81 

(2.136) 

The first-order necessary conditions require that 

(2.137) 

Denoting the integral constants as C1 and C2, we have 

(2.138) 
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Define an auxiliary variable z(t) as 

( ) \ () 82 \ () 81 - 82 82C2 - 81 Cl Z t = -"I t + -"2 t = ---t + -----
81 81 81 

(2.139) 

By placing terms associated with control variable u(t) together, the Hamilto­
nian is rewritten as 

1i Xl(t) + X2(t) + Al ql(t) 
L 

+ A2[q2(t) - 82(1- C)] + z(t) u(t) 

In order to minimize the Hamiltonian, we require that 

z(t) > 0 => u(t) = Umin 

z(t) < 0 => u(t) = umax 

(2.140) 

(2.141) 

We assume that approach 1 has higher capacity than approach 2, i.e., 81 > 82. 

We note that equation (2.139) is a first-order equation oft and t has a positive 
coefficient (81 - 82)/81' If z(t) starts from a negative value, i.e., z(t) < 0 for 
t < te (a critical time instant), then u(t) = Umax for t < te and u(t) = Umin 

for t > te' Otherwise, when z(t) starts from a positive value, i.e., z(t) > 0 for 
t 2: 0, u(t) = Umin holds for t 2: O. Thus, from equations (2.139) and (2.141), 
we conclude that: 

1. u(t) can only have values of Umax or Umin; it does not take any interme­
diate value between Umax and Umin; 

2. the control changes at most only one time; 

3. when u(t) changes, the initial control is u(t) = Umax (the higher capacity 
approach has the priority.) 

Denote Q;(t) as the cumulative number of arrivals at time t along approach i 
and G;(t) as the cumulative number of departures at time t along approach i. 
It follows that 

Q;(t) = lt qj(r) dr Vi = 1,2 (2.142) 

(2.143) 

G2(t) = ft 82 [1 _ L - ~u( r)] dr 10 C 81 
(2.144) 

Thus, the state equations can be reformulated as 

Xj(t) = Xj(O) + Q;(t) - Gi(t) Vi = 1,2 (2.145) 
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In other words, Q;(t) are the cumulative arrivals and G;(t) are the cumulative 
departures. As shown in Figure 2.3, when the cumulative arrivals are given, 
the optimal cumulative departures are given by the straight lines. The slopes of 
the lines for approach 1 are Umax and Umin. The slopes of the lines for approach 
2 are given as 

(2.146) 

The time t. and T are determined by the cumulative arrivals. The two curves 
merge at time T. 

XP) 

XlO) I Umin 

~ I 
I GP) 
I 

t 
0 ts T 

xit) 

t 

Figure 2.3: Cumulative Arrivals and Departures at the Intersection 

2.4 Continuous Problems with Equality and 
N onnegativity Constraints 

We now consider a set of special optimal control problems which will be widely 
used in the following chapters for problem formulation and analysis for dynamic 
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transportation networks. The state equations are linear 

dx(t) = A u(t) 
dt 

(2.147) 

where A is a matrix of constants. We consider only linear equality constraints 
for control variables 

G u(t) = 0 (2.148) 

and nonlinear equality constraints involving only state variables 

K[x(t)] = 0 (2.149) 

where G is a matrix of constants. 

2.4.1 Fixed Beginning and Fixed End Times 

We now consider an optimal control problem with a fixed end time T. The 
optimal control problem is formulated as follows 

min J = fT F[x(t), u(t)]dt + S[x(T)] 
X,u Jo 

(2.150) 

s.t. Lagrange Multiplier 

Linear State Equations x(t) = A u(t) A(t) (2.151) 
Linear Control Variable Constraints G u(t) = 0 u(t) (2.152) 

State Variable Constraints K[x(t)] = 0 .,,(t) (2.153) 

x(t) ~ 0, u(t) ~ 0, 

x(O) given. 

(2.154) 

(2.155) 

We construct the augmented Hamiltonian 1£ for the above optimal control 
problem as 

1£ = F[x(t), u(t)] + A(t) A u(t) + u(t) G u(t) + .,,(t) K [x(t)] (2.156) 

The first order necessary conditions for the optimal control program are 

81£ _ 8F[x(t), u(t)] '() A ( ) G 
8u(t) - 8u(t) + A t + u t ~ 0, (2.157) 

81£ 
and u(t) 8u(t) = 0, (2.158) 

_ '\(t) = 81£ = 8F[x(t), u(t)] (t) 8K[x(t)] 
8x(t) 8x(t) +." 8x(t) (2.159) 
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x(t) = 8~) = A u(t) 

81i 
-- = 0= Gu(t) 
8u(t) 

81i 
811(t) = K[x(t)] = 0 

A(T) = 8S[x(T)] 
8x(T) 

x(O) = xo 

x(t) ~ 0, u(t) ~ o. 
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(2.160) 

(2.161) 

(2.162) 

(2.163) 

(2.164) 

(2.165) 

Equations (2.157)-(2.159) are similar to equations (2.17) and (2.18) except 
for additional terms resulting from equality constraints on control and state 
variables. The inequality in equation (2.157) is caused by the nonnegativity 
constraint on 'the control variable. Equation (2.160) is a restatement of state 
equation (2.151). Equations (2.161)-(2.162) are restatements of the equality 
constraints. Equations (2.163)-(2.165) are two-point boundary conditions. 

2.4.2 Fixed Beginning and Free End Times 

We now consider an optimal control problem for a time period [0, T] where end 
time T is free. This optimal control problem is given as follows: 

mm J = loT F[x(t), u(t), t] dt + S[x(T), T] 
x,u 

(2.166) 

s.t. 

Linear State Equations 

Linear Control Variable Constraints 

State Variable Constraints 

x(t) ~ 0, 

x(O) = xo 

x(t) = A u(t) 

G u(t) = 0 

K[x(t)] = 0 

u(t) ~ 0, 

N[x(T), T] = 0 

T free 

Lagrange Multiplier 

A(t) (2.167) 

u(t) (2.168) 

l1(t) (2.169) 

(2.170) 

(2.171) 

(2.172) 

where N[x(T), T] possess continuous partial derivatives with respect to x(T). 
We construct the augmented Hamiltonian 1i for the above optimal control 
problem as 

1i = F[x(t), u(t), t] + A(t) A u(t) + u(t) G u(t) + l1(t) K [x(t)] (2.173) 
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We define another scalar function as 

e[x(T), v(T), T] = S[x(T), T] + v(T) N[x(T), T] (2.174) 

where v(T) is a vector of Lagrange multipliers. The first order necessary con­
ditions for the optimal control program are 

81i = 8F[x(t), u(t), t] .\(t) A (t) G > 0 
8u(t) 8u(t) + + u -, 

81i 
and u(t) 8u(t) = 0, 

_ .\(t) = 81i = 8F[x(t), u(t)] (t) 8K[x(t)] 
8x(t) 8x(t) + 11 8x(t) 

x(t) = 8~7t) = A u(t) 

81i 
8u(t) = 0 = G u(t) 

81i 
811(t) = K[x(t)] 2': 0 

.\(T) = 8e = 8S[x(T), T] (T) 8N[x(T), T] 
8x(T) 8x(T) + v 8x(T) 

N[x(T), T] = 0 

x(O) = xo 

x(t) 2': 0, u(t) 2': o. 

(2.175) 

(2.176) 

(2.177) 

(2.178) 

(2.179) 

(2.180) 

(2.181) 

(2.182) 

(2.183) 

(2.184) 

Equations (2.175)-(2.177) are 3n differential equations for the two-point bound­
ary value problems. Equations (2.178)-(2.180) are simply the restatement 
of state equation (2.167) and constraints (2.168)-(2.169). Equations (2.181)­
(2.183) are boundary or transversality conditions. Equation (2.181) provides n 
conditions with q Lagrange multipliers to be determined. Equation (2.182) pro­
vides q equations to eliminate the Lagrange multipliers, and equation (2.183) 
provides one additional equation which is used to determine the unspecified 
end time T. 

2.5 Hierarchical Optimal Control Problems 

In this section, we discuss some bilevel optimal control problems. We first 
discuss the utilization of leader-follower or Stackelberg strategy concepts in 
the control structuring of interconnected systems. These control methods are 
appropriate for system problems where there are multiple criteria, multiple 
decision makers, decentralized information and natural hierarchy of decision 
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making levels. In dynamic transportation network problems, the multi-level 
formulation approach is very important. For example, travelers' choices, in­
cluding departure time/mode/destination/route, constitute a natural hierar­
chy of decision making. Another example is the routing strategies in ATMIS 
systems. System-optimal and user-optimal strategies are conHicting in general. 
By imposing dynamic congestion pricing, we can formulate a bilevel model 
which coordinates the two routing criteria. 

The basic leader-follower strategy was originally suggested for static 
duopoly by von Stackelberg (1952). The generalization of this concept to 
dynamic nonzero-sum two-person games was given by Cruz. Based on Cruz 
(1978), we first discuss a static two-person game which will be extended to 
multi-level optimal control problems. 

2.5.1 ,Static Two-Person Games 

The basic idea of a leader-follower strategy for a static two-person game is 
simple. Players 1 and 2 choose static controls Ul E Rand U2 E R, respectively. 
There are two scalar costs J1(Ut,U2) and J2(Ut,U2) associated with Players 
1 and 2, respectively. Designate Player 1 as the leader and Player 2 as the 
follower. For each control Ul chosen by Player 1, Player 2 chooses U2 = h(Ul) 
where h is determined by Ul and U2 such that for Player 2, his/her cost using 
controls [ut, h( ut)] is smaller than or equal to a cost using any controls (ut, U2). 
It follows that 

for each Ul and for all U2 (2.185) 

For simplicity, we assume that for each control Ub h( ut) yields a unique U2. 
The leader chooses an optimal control ui such that his/her cost using opti­
mal controls [ui, h( u'D] is smaller than or equal to a cost using any controls 
rUb h( Ul)]. It follows that 

for all u2 (2.186) 

Then, the optimal strategy ui is termed the Stackelberg strategy for Player 
1 and ui = h (ui) is termed the Stackelberg strategy for Player 2 when the 
leader is Player 1. 

In this problem, we assume that the leader knows the cost mapping 
of the follower, but the follower doesn't know the cost mapping of the leader. 
However, the follower knows the control strategy of the leader and he/she takes 
this into account in computing his/her strategy. This reaction behavior of the 
follower is known to the leader who optimizes his/her choice of control Ul. 

Similarly, when Player 1 is the follower and Player 2 is the leader, we 
have 

for each U2 and for all Ul (2.187) 
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and 

for all U2 (2.188) 

where 11 is determined by U2 and Ul. The optimal control u;* is the leader 
Stackelberg strategy, and optimal control ui* = It (u;*) is the follower Stack­
elberg strategy. 

Sometimes, we may refer to a Nash strategy or Nash control when we 
use game theory to tackle multi-level optimization problems. A Nash strategy 
pair (ih, U2) is defined by 

for all Ul (2.189) 

and 

for all U2 (2.190) 

where the tilde ( ...... ) denotes that the control is a Nash control. We note that 
the Nash strategy may not be unique. As before, we define U2 = h(ut) where 
h is determined by Ul and U2. It follows that 

J2[ih, U2] = h[ih, T2(ih)] 

Combining equations (2.186) and (2.191), we have 

h[ui, h(ui)] ~ h[It(U2), U2] 

(2.191) 

(2.192) 

Similarly, we define Ul = It(U2) where It is determined by Ul and U2. It follows 
that 

Combining equations (2.188) and (2.193), we have 

h[lt(u;*), u;*] ~ h(Ul, U2) 

(2.193) 

(2.194) 

Thus, for the leader, a Stackelberg strategy is at least as good as any Nash 
strategy. For the follower, the Stackelberg strategy mayor may not be prefer­
able compared to a Nash strategy. 

2.5.2 Dynamic Games 

Consider a dynamic system 

(2.195) 

where x E Rn is the state, Ul E Rm, and U2 E Rm2 are the controls, and I 
is a piecewise continuous function from Rn x Rm, x Rm2 to Rn. The time 
interval [0, T] is fixed and the initial state x(O) = Xo is given. In a dynamic 
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system, it is necessary to specify what type of information is available to each 
player. Suppose no state measurements are available. In this case, we consider 
open-loop strategies. Associated with each player is a scalar cost function, i.e., 

J; = lT F;(x, Ul, uz) dt + S;[x(T)] Vi = 1,2 (2.196) 

Designate Player 1 as the leader. The dynamic game can be written as a bilevel 
problem as follows. 

The Leader Problem 

min J1 = lT F1(x, Ull uz) dt + St[x{T)] 

The Follower Problem 

min Jz = lT Fz(x, Ull uz) dt + Sz[x(T)] 

s.t. 

i:(t) = f(x, u}, uz) 

x(O) = Xo 

The Hamiltonian function for the follower problem is written as 

1iz(x, Ul, uz,p) = Fz(x, u}, uz) + p{t) f{x, Ul, uz) 

(2.197) 

(2.198) 

(2.199) 

(2.200) 

(2.201) 

where p(t) is the Lagrange multiplier. The necessary conditions for the follower 
problem are 

o1iz = 0 
ouz{t) 

.;,{ t) - _ o1iz 
1'\ - ox(t) 

(T) = _ oSz[x(T)] 
P ox(T) 

(2.202) 

(2.203) 

(2.204) 

In order to obtain the overall necessary conditions for this dynamic 
game, we need to place the necessary conditions (2.202)-{2.211) and constraints 
(2.199)-{2.200) of the follower problem as constraints for the leader problem. 
It follows that 

(2.205) 
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.( ) 81i2 
P t = - 8x(t) 

(T) 8S2[x(T)]_ 
p + 8x(T) - 0 

(T) 8S2[X(T)] = 0 
p + 8x(T) 

(T) = _ 8S2[x(T)] 
P 8x(T) 

x(O) = Xo 

(2.206) 

(2.207) 

(2.208) 

(2.209) 

(2.210) 

(2.211) 

(2.212) 

where equations (2.206)-(2.207) are considered as state equations for the re­
defined one-level problem. This is an optimal control problem with equality 
constraint and constraint for final states x(T) and p(T). The Hamiltonian 
function 1i1 for the redefined one-level problem is 

l£I (x, UI, U2, p, AI, A2, (32) FI (x, UI, U2) + Al (t) I( x, uI, U2) 

+ A2(t) (- 8a1i2) + (32(t) 81la 2 (2.213) 
x U2 

where AI(t), A2(t), (32(t) are Lagrange multipliers. We define another scalar 
function as 

8S2 [x(T)] 
e[x(T),p(t), veT), T] = SI[x(T)] + veT) {p(T) - 8x(T) } (2.214) 

where veT) is a Lagrange multiplier. The necessary conditions for the redefined 
one-level problem are 

81£ I = 0 
8Ui(t) 

Vi = 1,2 (2.215) 

(2.216) 
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(2.217) 

" (T) = 80 = 8Sd(x(T)] _ (T) 8S2 [(x(T)] 
1 8x(T) 8x(T) II 8x(T) (2.218) 

(2.219) 

Therefore, the necessary conditions for (Ul, U2) to be an open-loop Stack­
elberg strategy pair are equations (2.202)-(2.211) and (2.215)-(2.219). Explicit 
solution in terms of the Riccati matrix equations can be obtained for the linear­
quadratic problem. However, necessary conditions for the closed-loop Stackel­
berg strategy are extremely difficult to characterize. Simplification is possible 
when the structure of the control law is constrained, e.g., restricting the control 
law to be linear and the effects of random initial conditions are averaged. 

Instead of discussing detailed control strategies, we state some conclu­
sions from the literature (Cruz, 1978). The open-loop strategy for the leader 
for the entire duration of the game is declared in advance. If the follower mini­
mizes its cost function, it obtains its follower Stackelberg strategy which is the 
optimal reaction to the declared leader strategy. By declaring his/her strategy 
in advance, the leader influences the follower to react in a manner which mini­
mizes the follower's cost function, but more importantly, in a manner which is 
favorable to the leader. This is a direct interpretation of the definition of the 
leader's strategy. Similarly, for closed-loop strategies where the state is avail­
able for measurement, the leader has to declare his control law for the entire 
duration of the game. In situations where either player might be p,leader, both 
cases should be examined because both players may insist on leader strategies 
in which case there may be disequilibrium, or both may play follower strategies 
and a stalemate may occur. 

2.5.3 Bilevel Optimal Control Problems 

We now generalize the above dynamic games into bilevel optimal control prob­
lems. Sometimes, we term this kind of optimization problem as hierarchical 
optimization, which is contrary to the bilevel optimization problems having 
less coordination or non-hierarchical properties. To simplify our presentation, 
we only discuss optimal control problems with equality and nonnegativity con­
straints which are constrained by fixed beginning and end times. Consider two 
linear dynamic systems 

dx,(t) = A. u.(t) 
dt •• Vi = 1,2 (2.220) 
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The two dynamic systems have two decision makers, each with an objective 
function as follows 

(2.221) 

i = 1,2 

where each objective function depends on controls and states of both dynamic 
systems. To make the problem more general, we assume that control variables 
of both systems are co-related by the following linear constraints 

(2.222) 

where Gl, G 2 are vectors of constants. We designate Player (decision maker) 1 
as the leader. We then formulate the bilevel optimal control problem as follows. 

Upper Level Problem 

s.t. 
dXl(t) _ A ( ) 
~ - 1 Ul t 

G 1 Ul(t) + G 2 U2(t) = 0 

K 1[Xl(t)] = 0 

Xl(t) ~ 0, Ul(t) ~ 0 

Xl(O) given. 

where X2(t), U2(t) are determined by the following lower level problem: 

Lower Level Problem 

s.t. 
dX2(t) A ( ) 
~= 2 u 2 t 

X2(t) ~ 0, U2(t) ~ 0 

X2(0) given. 

(2.224) 

(2.225) 

(2.226) 

(2.227) 

(2.228) 

(2.230) 

(2.231 ) 

(2.232) 

In the lower level problem, Xl(t), Ul(t) are determined by the upper level 
problem. In this bilevel problem, the leader (upper level problem) has the pri­
ority to minimize its objective function J1• We now examine the necessary 
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conditions for the bilevel optimal control problem. We first consider the neces­
sary conditions for the lower level problem which is designated as the follower. 
The overall necessary conditions for the bilevel problem are constructed by 
placing the necessary conditions and constraints of the lower level problem as 
constraints for the upper level problem. 

We construct the augmented Hamiltonian 1iz for the lower level problem 
as 

(2.233) 

where p(t) is a vector of Lagrange multipliers. The first order necessary con­
ditions for the lower level optimal control program are 

given 

(2.234) 

(2.235) 

(2.236) 

(2.237) 

(2.238) 

(2.239) 

(2.240) 

Then, we convert the bilevel optimal control problem into a one-level optimal 
control problem by placing necessary conditions (2.234)-(2.240) of the lower 
level problem as constraints for the upper level problem. It follows that 

s.t. 
dXI(t) A ( ) 
~ = 1 UI t (2.242) 

dxz(t) A ( ) 
~= Z U 2 t (2.243) 

. ( ) 81iz 
p t = - 8xz(t) (2.244) 

G 1 UI(t) + Gz uz(t) = 0 (2.245) 

K1[XI(t)] = 0 (2.246) 
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o1fz > 0 
ouz(t) -

o1fz 
uz(t) ouz(t) = 0 

UI(t) 2': 0, XZ(t) 2': 0, UZ(t) 2': 0 

XI(O), xz(O) given 

p(T) = 8SZ[XI(T), xz(T)] 
oxz(T) 

(2.247) 

(2.248) 

(2.249) 

(2.250) 

(2.251) 

where equations (2.242)-(2.244) are considered as state equations. We then 
construct the augmented Hamiltonian 1f1 for the converted one-level optimal 
control program as 

o1fz 
FI + AI(t) Al UI(t) + Az(t) Az uz(t) + A3(t) [- oxz(t)] 

+ u(t) [GI UI(t) + Gz uz(t)] + .,,(t) KI[XI(t)] 
o1fz o1fz 

+ f31(t) ouz(t) + f3z(t) [uz(t) ouz(t)] (2.252) 

where AI(t), Az(t), A3(t), u(t), .,,(t), f3 1 (t), f3z(t) are Lagrange multipliers and 
f31(t) ~ o. We define another scalar function as . 

oSz[x(T)] 
0[x(T), p(t), v(T), T] = Sdx(T)] + v(T) {p(T) - oxz(T) } (2.253) 

where v(T) is a vector of Lagrange multipliers. The first order necessary con­
ditions for the converted one-level optimal control program are 

o1f1 -- > 0 Vi = 1,2 
ou;(t) -

(2.254) 

o1f1 
u;(t) ou;(t) = 0 Vi = 1,2 (2.255) 

. o1f1 
A;(t) = - 8x;(t) Vi = 1,2 (2.256) 

. o1f1 
A3(t) = - 8p(t) (2.257) 

x;(t) = o~~(~) = A; u;(t) Vi = 1,2 (2.258) 

. o1f 1 o1fz 
p(t) = OA3(t) = - OX2(t) (2.259) 



2.6. Notes 

81f l 
8CT(t) = 0 = G l Ul(t) + G 2 U2(t) 

81f l 
811(t) = Kdxl(t)] = 0 

81f l 81f2 

8(32(t) = U2(t) 8U2(t) 

80 
A;(T) = 8x;(T) 'if i = 1,2 

80 
A3(T) = 8p(T) = v(T) 

X;(O) = XiQ, 'if i = 1,2 

X;(t) ~ 0, U;(t) ~ 0 'if i = 1,2 
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(2.260) 

(2.261 ) 

(2.262) 

(2.263) 

(2.264) 

(2.265) 

(2.266) 

(2.267) 

Therefore, the necessary conditions for the bilevel program are equa­
tions (2.234)-(2.240) and (2.254)-(2.267). However, the detailed analysis of the 
necessary conditions is complicated, especially when the two level problems 
have many constraints. In general, the analytical solution for the above bilevel 
program is not possible even for simple cost functions. 

On the other hand, if we assume that the above problem has no hierar­
chical relationship, we can solve the two level problems separately and transmit 
some shared variables back and forth. In this way, no leader-follower relation­
ship is assumed between the two level problems. Thus, this situation can be 
termed a coordination problem where the shared variables function as coordi­
nators. This approach can also be extended to a multi-level optimal control 
problem where the hierarchical relationship is hard to identify. 

2.6 Notes 

In classical control system design, the ultimate objective is to obtain a controller 
that will allow a system to perform in a desirable manner. The objective in 
control problem formulation for transportation networks is also to obtain a set 
of control variables which can adjust traffic flows in the network to behave in 
desired ways. 

Many complex transportation problems can be formulated and solved 
using optimal control theory. However, at the present time, optimal control 
theory does not constitute a generally applicable procedure for the design of 
a simple controller. The optimal control law, if it can be obtained, usually 
requires a digital computer for implementation (an important exception is the 
linear regulator problem discussed in section 2.3), and all of the states must be 
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available for feedback to the controller. These limitations may preclude imple­
mentation of the optimal control law; however, the theory of optimal control is 
still useful, because knowing the optimal control law may provide insight help­
ful in designing a suboptimal, but easily implemented controller. The optimal 
control law provides a standard for evaluating proposed suboptimal designs. 
In other words, by knowing the optimal control law we have a quantitative 
measure of performance degradation caused by using a suboptimal controller. 

The basic knowledge of the optimal control problem can be found in any 
standard optimal control text. At the elementary level, readers may consult the 
text by Kirk (1970). Bryson and Ho (1975) provide many examples with which 
readers may find it is easier to understand the theory. Other closely related 
texts are Kamien and Schwartz (1981) and Sage and White (1977). A proof of 
optimality conditions for optimal control problems with general constraints for 
state and control variables is provided by Russak (1970). The applications of 
game theory in dynamic systems and optimal control problems are summarized 
by Cruz (1978). For an advanced text on multi-level optimal control problems, 
readers may consult the text by Singh and Titli (1978). 



Chapter 3 

Discrete Optimal Control, 
Mathematical Programming and 
Variational Inequality Problems 

In this chapter, we present more mathematical background which is necessary 
for modeling and solution of dynamic transportation network problems. This 
chapter will cover discrete optimal control, mathematical programming and 
variational inequality problems. First, we introduce the discrete optimal con­
trol problem (OCP). To simplify our presentation, we consider discrete optimal 
control problems with fixed end times as examples in Section 3.1. The discus­
sion is focused on the analysis of optimality conditions. Then, some mathe­
matical programming (MP) problems are presented in Section 3.2. Specifically, 
nonlinear programming (NLP) problems with equality and nonnegativity con­
straints are presented for comparison. Similarities between discrete optimal 
control problems and mathematical programming are emphasized. 

Beyond optimal control problems and nonlinear programming problems, 
we also provide some basic concepts of variational inequality problems which 
are capable of formulating and analyzing more general problems than the con­
strained optimization approach. Variational inequality (VI) problems are pre­
sented in Section 3.3 and are suggested for advanced readers with knowledge 
of optimization problems. We first define variational inequality problems for 
both static and dynamic problems. We then introduce some fundamental defi­
nitions, along with qualitative results for variational inequality problems, such 
as conditions for existence and uniqueness of solutions. 

In Section 3.4, we present algorithms for solving NLP and VI, including 
one-dimensional search, the Frank-Wolfe algorithm and a relaxation method. 
Unlike traditional algorithms for solving optimal control problems, we suggest 
using these algorithms to solve discrete optimal control problems. 



54 Chapter 3. Discrete OCP, MP and VI 

3.1 Discrete Optimal Control Problems with 
Fixed Beginning and End Times 

In this section, we consider several discrete optimal control problems with fixed 
end times. These problems are widely used in our formulations and solutions 
in the following chapters. The analysis of optimal control problems with free 
end times follows very easily. We first discuss discrete optimal control problems 
with no constraints. Then, discrete optimal control problems with equality and 
inequality constraints are analyzed. Finally, we investigate discrete optimal 
control problems with equality and nonnegativity constraints. 

In discrete optimal control problems, we discretize the time period [0, T] 
into K + 1 small time intervals or increments, i.e., k = 1,2,"" K + 1. For 
simplicity, each interval is assumed to have equal length D.. In general, we use 
the first difference approximation to replace x(t). It follows that 

. () x( k + 1) - x( k) 
xt ~ D. (3.1) 

In most analysis, it is convenient to assume D. is a unit value. Thus, the above 
difference approximation can be rewritten as 

x(t) ~ x(k + 1) - x(k) 

Thus, the discrete state equation can be written as 

x(k + 1) = x(k) + f[x(k), u(k), k] 

In the same way, the discretization of the Lagrange multipliers 

can be rewritten as 

.\(t) ~ A(k + 1) - A(k) 
D. 

.\(t) ~ A(k + 1) - A(k) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

In continuous optimal control problems, we minimize cost functions 
which are integrals of scalar cost functions. We now consider a dynamic system 
having a cost function F[x(k), u(k), k] for each time interval k. Thus, we are 
interested in minimization of cost functions which are summations of scalar 
functions. It follows that 

K 

min J = L F[x(k), u(k), k] + S[x(K + 1), K + 1] (3.6) 
X,U k=l 

3.1.1 Fixed End Times: No Constraints 

The discrete optimal control problem is to seek an admissible control function 
u in order to minimize the objective function 

mm 
x,u 

K 

J = L F[x(k), u(k), k] + S[x(K + 1), K + 1] 
k=l 

(3.7) 
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s.t. 

x(k + 1) = x(k) + f[x(k), u(k), k] 

K and x(l) = Xl fixed; x(K + 1) free 
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(3.8) 

(3.9) 

where F[x(k), u(k), k] possesses continuous partial derivatives with respect to 
x(k) and u(k), and S[x(K + 1), K + 1] has continuous partial derivatives with 
respect to x(K + 1). S[x(K + 1), K + 1] is associated with the end time (K + 1) 
only, and is termed the salvage cost in many economics problems. 

We define the Hamiltonian as 

1l = F[x(k), u(k), k] + A(k) f[x(k), u(k), k] (3.10) 

where A(k) is the vector of Lagrange multipliers associated with the dynamic 
state equations. Then, the first-order necessary conditions for the optimal 
control problem are summarized as follows: 

~ = 8F[x(k), u(k), k] A(k) 8f[x(k), u(k), k] = 
8u(k) 8u(k) + . 8u(k) 0 

A(k + 1) - A(k) 
81l 

8x(k) 
8F[x(k), u(k), k] A(k) 8t[x(k), u(k), k] 

8x(k) + 8x(k) 

81l 
x(k + 1) - x(k) = 8A(k) = f[x(k), u(k), k] 

x(l) = Xl 

A(K ) = 8S[x(K + 1), K + 1] 
+ 1 8x(K + 1) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

Equations (3.13) and (3.14) are simply the restatement of state equation 
(3.8) and boundary condition (3.9). Equations (3.14) and (3.15) are termed 
transversality conditions which constitute two-point boundary conditions for 
the set of differential equations. The above first-order necessary conditions are 
derived using the discrete Minimum (or Maximum) Principle or the Hamilton­
Jacobi equation. The discrete Minimum Principle can simply be stated as 
follows. The inequality 

1l[u*(k)] ::; 1l[u(k)] (3.16) 

is valid for all admissible u(k), where * represents that the solution is opti­
mal. Sometimes, we directly use this principle to perform solution analyze of 
complicated discrete optimal control problems. 
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3.1.2 Fixed End Times: Equality and Inequality Con­
straints 

In this section, we consider discrete optimal control problems with nonlin­
ear equality and inequality constraints on state and control variables. Those 
constraints can represent most practical constraints in realistic applications. 
The set of equality constraints for control and state variables are denoted 
as G[u(k),x(k),k] = 0 and the set of inequality constraints are denoted as 
K[u(k),x(k),k]:::; O. We assume both G and K are continuous and differen­
tiable with respect to u, x and k. The optimal control problem is formulated 
as follows 

s.t. 

mIll 
X,U 

K 

J = L F[x(k), u(k), k] + S[x(K + 1), K + 1] 
k=l 

x(k + 1) = x(k) + f[x(k), u(k), k] 

G[u(k), x(k), k] = 0 

K[u(k), x(k), k] :::; 0 

x(1) = x!, K fixed. 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21 ) 

Denote the Lagrangian multipliers associated with equations (3.18)-(3.20) as 
A(k), u(k) and 71(k), respectively. We construct the augmented Hamiltonian 
1l for the above optimal control problem as 

1l F[x(k), u(k), k] + A(k) f[u(k), x(k), k] 

+ u(k) G[u(k),x(k),k] + 71(k) K[u(k),x(k),k] (3.22) 

where 
(k) { > 0 if K = 0 

71 =0 ifK<O 

The first order necessary conditions for the optimal control program are 

81£ 
8u(k) = 0 

8F[x(k), u(k), k] A(k) 8f[u(k), x(k), k] 
8u(k) + 8u(k) 

+ (k)8G[u(k),x(k),k] (k)8K[u(k),x(k),k] (323) 
u 8u(k) + 71 8u(k) . 

81£ 
-A(k) + A(k + 1) = 8x(k) 

8F[x(k), u(k), k] A(k)8f[x(k), u(k), k] 
8x(k) + 8x(k) 

+ (k) 8G[u(k), x(k), k] (k) 8K[u(k), x(k), k] 
u 8x(k) + 71 8x(k) (3.24) 
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81l 
x(k + 1) - x(k) = 8>'(k) = f[x(k), u(k), k] 

81l 
8u(k) = 0 = G[u(k), x(k), k] 

81l 
811(k) = K[u(k), x(k), k] ~ 0 

x(l) = Xl 

>.(K 1) = 8S[x(K + 1), K + 1] 
+ 8x(K + 1) 
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(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

Equations (3.23)-(3.24) are similar to equations (3.11) and (3.12) except for 
additional terms resulting from equality and inequality constraints on the con­
trol and state variables. Equation (3.25) is a restatement of state equation 
(3.18). Equations (3.26)-(3.27) are restatements of the equality and inequality 
constraints. Equations (3.28)-(3.29) are two-point boundary conditions. 

3.1.3 Fixed End Times: Equality and Nonnegativity Con­
straints 

We now consider a set of special discrete optimal control problems which will be 
widely used in the follow'ing chapters for formulation and analysis of dynamic 
transportation network models. The state equations are linear 

x(k + 1) = x(k) + A u(k) (3.30) 

where A is a matrix of constants. We consider only linear equality constraints 
for control variables 

G u(k) = 0 (3.31 ) 

and nonlinear equality constraints involving only state variables 

K[x(k)] = 0 (3.32) 

where G is a matrix of constants. The discrete optimal control problem is 
formulated as follows 

mm 
x,u 

K 

J = L: F[x(k), u(k), k] + S[x(K + 1), K + 1] 
k=l 

(3.33) 

s.t. Lagrange Multiplier 

Linear State Equations x(k + 1) = x(k) + A u(k) >.(k) 

Linear Control Variable Constraints G u(k) = 0 

State Variable Constraints K[x(k)] = 0 

u(k) 

l1(k) 

(3.34) 

(3.35) 

(3.36) 
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x(k) ~ 0, u(k) ~ 0, 

x(1) given. 

(3.37) 

(3.38) 

We construct the augmented Hamiltonian 1£ for the above discrete optimal 
control problem as 

1£ = F[x(k), u(k), k] + '\(k) A u(k) + O'(k) G u(k) + 71(k) K [x(k)] (3.39) 

The first order necessary conditions for the discrete optimal control program 
are 

81l = 8F[x(k), u(k), k] '(k) A (k) G 
8u(k) 8u(k) + A + 0' ~ 0, 

and 

-'\(k) + '\(k + 1) 

81l 
u(k) 8u(k) = 0, 

81£ 
8x(k) 
8F[x(k), u(k), k] (k) 8K[x(k)] 

8x(k) + 71 8x(k) 

81£ 
x(k + 1) - x(k) = 8'\(k) = A u(k) 

81£ 
80'(k) = ° = G u(k) 

81£ 
871(k) = K[x(k)] = ° 

.\(K 1) = 8S[x(K + 1)] 
+ 8x(K + 1) 

x(1) = Xl 

x(k) ~ 0, u(k) ~ 0. 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

Equations (3.40)-(3.42) are similar to equations (3.11) and (3.12) except for 
additional terms resulting from equality constraints on control and state vari­
ables. The inequality sign in equation (3.40) is caused by the nonnegativity 
constraint for the control variable. Equation (3.43) is a restatement of the 
state equation (3.34). Equations (3.44)-(3.45) are restatements of the equality 
constraints. Equations (3.46)-(3.48) are two-point boundary conditions. 
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3.2 Mathematical Programming Problems 

This section reviews some concepts related to the formulation and solution of 
mathematical optimization programs. The focus of the discussion is on the 
conditions that characterize the solution of such programs and the constraint 
conditions which are similar to discrete optimal control problems. To have a 
systematic description of mathematical programming problems, we first discuss 
unconstrained minimization problems. Then, we explore minimization prob­
lems with general constraints and the Karush-Kuhn-Tucker conditions. The 
relationship between the discrete optimal control problem and mathematical 
programming problem is then investigated. In comparison with bilevel opti­
mal control problems, bilevel mathematical programming problems are also 
presented. 

3.2.1 Unconstrained Minimization 

We first discuss minimization problems without constraints. Our problem is 
to find a set of variables Xl, X2,· .. , Xn that minimize an objective function 
Z(Xl, X2,···, xn). Let x denote the vector of decision variables, i.e. x = 
(Xl, X2,···, xn). Using vector notation, the minimization program without con­
straints can be stated as 

min Z(x) 
x 

(3.49) 

Since the function to be minimized is unconstrained, the first-order nec­
essary condition for a minimum at x = x* is that the gradient of Z(x) vanish at 
x*. The gradient of Z(x) with respect to x*, \7xZ(x), is the vector of partial 
derivatives, that is, 

\7x Z(x) = [a Z(x) , a Z(x) , ... , a Z(x)] 
aXI aX2 aXn 

(3.50) 

At every point x, the gradient points in the direction of the steepest increase 
in Z(x). The first-order necessary conditions for a minimum are 

\7 Z(x*) = 0 (3.51) 

In other words, each element of the gradient has to equal to zero. Equivalently, 

az(x*) a = 0 V i = 1,2, ... , n (3.52) 
Xi 

The sufficient conditions that X* is the local minimum of Z(x) depend 
on establishing that Z(x) is locally convex in the vicinity of x*. In other words, 
any line sequent joining two points Xl and X2 lies above the surface Z(x). The 
strict convexity of Z(x) can be established if Z(x) is positive definite, as now 
defined. In general, suppose we have an n x n matrix F(x) 
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and an arbitrary vector y = [Vb· .. , vnl. The matrix F(x) is positive semidefi­
nite if 

yT F(x) y ~ 0, 

where T denotes the transpose. F( x) is positive definite if 

yT F(x) y > 0, 

F ( x) is strongly posi ti ve definite if 

v y i= 0, y ERn 

for some a > 0, 

If i(X) is the smallest eigenvalue, which is necessarily real, of the symmetric 
part of F(x), that is, ![F(x) + FT(x)], then it follows that: 

1. F(x) is positive semidefinite if and only if i(X) ~ 0; 

2. F(x) is positive definite if and only if ,(x) > 0. 

We define the Hessian matrix of the objective function Z(x) as 

,PZ(x) a2z(x) a2z(x) 
ax~ aXl aX2 aXl aXn 

a2z(x) a2z(x) a2z(x) 

\72 Z(x) = aX2 aXl ax~ aX2 aXn 

a2z(x) a2z(x) a2z(x) 
aXn aXl aXn aX2 ax~ 

To show that a stationary point, x*, is a local minimum, it is sufficient to 
demonstrate that Z(x) is positive definite in the vicinity of x = x*. 

3.2.2 Nonlinear Programs with General Constraints 

A typical mathematical programming problem is to choose the values of a set of 
variables, Xl, X2, ... , Xn, which minimize an objective function Z(X1, X2,· .. , xn), 
subject to certain constraints. Each constraint can be expressed as an inequal­
ity of a function g(X1, X2,···, xn) of the variables. The set of possible values of 
Xl, X2, ... , Xn that comply with all constraints is termed the feasible region. A 
general minimization problem with M constraints can be written as 

s.t. 
gl(Xb X2, ... , xn) ~ bl 

g2(X1, X2, ... , xn) ~ b2 

(3.53) 

(3.54) 

(3.55) 

(3.56) 
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where gi(X1, X2, ... , xn) ~ bi denotes the ith constraint on the variables. This 
problem can include any type of constraints. Using vector notation, the above 
problem can be written in a standard form as follows 

s.t. 

min Z(x) 
x 

g(x) ~ b 

(3.57) 

(3.58) 

where g(x) [gl(X), g2(X), ..• , gm(x)] and b = (b1, b2, ... , bm). If Z(x) is 
a nonlinear function or the constraints are nonlinear, the above mathematical 
programming problem is termed a nonlinear programming (NLP) problem. On 
the other hand, when Z(x) is a linear function and the constraints are linear, 
the above mathematical programming problem is termed a linear programming 
(LP) problem. 

A generalization of the Lagrangian method can be used to derive the 
first-order necessary conditions for general mathematical programs. The La­
grangian for this program is given by 

.c(x, 1-') = Z(x) + L J1.j [bj - gj(x)] 
j 

where J1.j is the Lagrange multiplier for constraint j and J1.j ~ o. 

(3.59) 

The stationary point of the Lagrangian of a convex function is not at a 
minimum or a maximum of .c(x, 1-'), but rather at a saddle point of the La­
grangian. In fact, .c(x*, u*) minimizes .c(x, 1-') with respect to x and maximizes 
it with respect to 1-'. This condition can be stated as 

.c(x*,I-') ::; .c(x*, 1-'*) ::; .c(x, 1-'*) (3.60) 

In order to write the first-order necessary conditions of Lagrangian, note that its 
minimization is unconstrained with respect to x. Maximization with respect to 
1-', however, is subject to the nonnegativity constraints. Therefore, the saddle 
point of .c(x, 1-') satisfies the following set of first-order necessary conditions: 

a.c(x*,I-'*) = 0 
aXi 

a.c(x*, 1-'*) 
W =0 

J aJ1.j 
and 

Vi (3.61 ) 

a.c(x*,I-'*) < 0 
aJ1.j -

Vj (3.62) 

In addition, it is required that J1.j ~ 0, V j. Condition (3.61) simply states that 
the gradient vanishes at the stationary point. Condition (3.62) describes the 
condition for a maximum of a function subject to nonnegativity constraints. 
Since .c(x,l-') has to be maximized with respect to I-' = (J1.1, ... , J1.m), the 
maximum of .c(x,l-') with respect to J1.j can occur either at a point where 
a.c(x,I-')/aJ1.j = 0 or at a point where J1.j = o. In the later case, it must be 
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true that aL(x,I-')/aJ.lj ::; o. This observation gives rise to conditions (3.62). 
Thus, conditions (3.61)-(3.62) can be written explicitly as 

J.lj [bj - gj(x*)] = 0 V j 

II~ > 0 
1""'1 - Vj 

Vj (3.63) 

(3.64) 

(3.65) 

(3.66) 

These necessary conditions (3.63)-(3.66) are called the Karush-Kuhn-Tucker 
conditions. They are widely used in the analysis of optimality conditions for 
mathematical programming problems. 

The Lagrangian approach implies that constrained minimization prob­
lems can be solved as unconstrained problems by finding the saddle point of 
the Lagrangian. This point can be found by minimizing the Lagrangian with 
respect to x given 1-', and then maximizing over all values of 1-'. The Lagrangian 
is widely used as an aid in the formulation of first-order necessary conditions. 

Note that the functional form of the Lagrangian demonstrates why the 
Lagrange multipliers, or dual variables, can be interpreted as a measure of the 
sensitivity of the optimal solution to a constraint relaxation. At the solution 
point, 

L(x*, 1-'*) = Z(x*) + L J.lj [bj - gj(x*)] 
j 

(3.67) 

At this point L(x*, 1-'*) = Z(x*). If constraint k is relaxed by a small amount, 
tlbk, and bk in (3.67) is replaced by bk - tlbk, the new minimum value of 
L(x*, 1-'*) will approximately equal the old value (before the relaxation) minus 
J.lktlbk. Thus a relaxation of constraint k by tlbk improves the optimal value 
of the objective function by approximately J.lktlbk. 

A special case of mathematical programming is linear programming 
(LP). In a linear minimization problem, both the objective function and the 
constraints are linear functions of the decision variables. A linear program can 
be written as 

s.t. 

I 

m~n Z(x) = L Ci Xi 

i=1 

I 

Laij Xi ~ bj 
i=1 

Vj 

(3.68) 

(3.69) 
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where c. and a'i are constants. In some cases, multiple minima may exist 
because the strict convexity conditions of nonlinear programming do not apply 
to linear programs. Some of these minima, however, will always be at the inter­
section of several constraints or at the corners of the feasible region. Therefore, 
the minimum value of Z(x) can still be determined if only the corners of the 
feasible region are considered. 

3.2.3 Discrete Optimal Control and Nonlinear Programs 

Section 3.1 described the relationship between discrete and continuous optimal 
control problems. In this section, we explore the relationship between discrete 
optimal control and nonlinear programming problems. We recognize both as 
being multivariate extremization problems subject to various equality and in­
equality constraints. There are several approaches to reduce discrete optimal 
control problems to nonlinear programming problems. In the following, we only 
present a simple transformation to show the analytical relationship. As an ex­
ample, we discuss how we can transform the following discrete optimal control 
problem into an NLP. The discrete optimal control problem is as follows: 

s.t. 

min 
x,u 

K 

J = L F[x(k), u(k), k] + S[x(K + 1), K + 1] 
k=l 

x(k + 1) = x(k) + f[x(k), u(k), k] 

K and x(l) = Xl fixed; x(K + 1) free 

We define a vector y as follows: 

Yl = u(l) 

YK = u(K) 

YK+l = x(l) 

Y2K+l = x(K + 1) 

(3.70) 

(3.71) 

(3.72) 

Note that Y" i = 1" .. , 2K + 1, must satisfy all corresponding constraints and 
boundary conditions of the discrete optimal control problem. The objective 
function can be rewritten as 

mIn 
Y 

K 

Z(y)=LF[YK+.,y(i),i] + S[y(2K+1),2K+1] 
.=1 

(3.73) 
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The state equation and boundary conditions can be rewritten as 

Vi = 1,2,···,K 

YK+l given 

(3.74) 

(3.75) 

Thus, the discrete optimal control problem can be written in the form of the 
nonlinear programming problem: 

s.t. 

mm Z(y) 
Y 

g(y) ~ 0 

(3.76) 

(3.77) 

If the discrete optimal control problem was generated from a continu­
ous optimal control problem, clearly the solution to the associated nonlinear 
programming problem will only approximate the solution to the original con­
tinuous control problem. From the discussion of the discrete optimal control 
problem and the nonlinear programming problem, we can see that if control 
variables u( k) and state variables x( k) are considered as individual variables 
and the state equations are transformed into corresponding NLP constraints, 
then the discrete optimal control problem is in fact a kind of nonlinear program­
ming problem. Thus, solution algorithms for nonlinear programming problems 
can be used for solving discrete optimal control problems. 

3.2.4 Nonlinear Programs with Linear Equality and Non-
negativity Constraints 

Constrained minimization problems with nonnegativity and equality constraints 
are of special interest in the study of static network equilibrium problems. They 
also have an important role in dynamic network equilibrium pr.oblems, espe­
cially when continuous dynamic problems are transformed into discrete forms. 
The general form of these problems is 

min Z(x) 
x 

(3.78) 

s.t. 

2: aij Xi = bj j = 1,2, ... , J (3.79) 

Xi ~ 0 i = 1,2,· .. , I (3.80) 

To find the first-order necessary conditions for a minimum for such a problem, 
write the Lagrangian with respect to the equality constraints: 

L:(x,p.) = Z(x) + 2:/-lj [bj - 2:aij Xi] 
j 

(3.81 ) 
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Then the stationary point of this Lagrangian has to be determined, subject to 
the constraint 

X· > 0 , - i = 1,2,·· ·,1 (3.82) 

Unlike the case discussed previously, this problem includes nonnegativity con­
straints. Consequently, the stationary point of the NLP program has to be 
determined by the following conditions: 

* 8£{x*, 1-'*) 
Xi = 0 

8Xi 
and 

8£{x*, 1-'*) = 0 

8J-lj 

8£{x*,I-'*) > 0 
8Xi -

Vi 

X· > 0 , - Vi 

Vi (3.83) 

(3.84) 

(3.85) 

Equation (3.84) requires, simply, that the derivatives of £(x, 1-') with respect to 
I-' vanish at the minimum. No other condition is necessary since the values of 
the I-' are not constrained to be nonnegative. This condition, then, is identical 
to the original constraints. The first-order conditions for the NLP programs 
with linear equality and nonnegativity constraints can be written explicitly as 
follows: 

(3.86) 

8Z(x*) _" * .. > 0 \J ; 

8 L...Juja" v. 
Xi j 

(3.87) 

(3.88) 

(3.89) 

The same conditions can be derived also by applying the Karush-Kuhn-Tucker 
conditions (3.63)-(3.66) directly. 

3.2.5 Bilevel Mathematical Programs 

In this section, we focus on bilevel mathematical programming problems, which 
have a correspondence to bilevel optimal control problems. We consider two 
decision-makers or competitive players who must find vectors x and y, respec­
tively, to minimize their individual objective functions Zl(X, y) and Z2(X, y). 
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It is assumed that player 1 has the first choice and selects x, followed by player 
2 who selects y. In the most general situation, the value of each objective 
function depends upon the decisions made by both players. In addition, the 
choice made by player 1 may affect the set of feasible strategies open to player 
2, implying the existence of jointly dependent constraints. 

The bilevel nonlinear programming problem (BNP) can be stated as: 

where y solves 

s.t. 

min Zl(X,y) 
x 

g(x,y)::; 0 

(3.90) 

(3.91 ) 

(3.92) 

Alternately, this problem can be viewed as a two-person, nonzero-sum game 
with perfect information where the order of play is specified at the outset and 
the players' strategy sets are no longer assumed to be disjoint. As a conse­
quence, the moves available to player 2 (the follower) depend on the actions 
of player 1 (the leader). This interpretation is in accord with the definition of 
the Stackelberg game which is discussed in Section 2.5. The leader problem 
is termed the upper level problem and the follower is termed the lower level 
problem. 

This problem can be considered a generalization of a mathematical pro­
gram where the constraint region is determined implicitly by the lower level 
optimization problem. An alternate representation of the BNP may be derived 
by converting the bilevel program into a standard one-level mathematical pro­
gram. This can be achieved by appending the follower's Karush-Kuhn-Tucker 
conditions to the leader's constraint set. 

The Karush-Kuhn-Tucker conditions for the lower level problem are: 

Vy Z2 (x,y) + A Vyg(x,y) = 0 (3.93) 

Ag(X,y) = 0 (3.94) 

A>O (3.95) 

where A is the m-dimensional vector of Lagrange multipliers associated with 
the lower level problem and V is the gradient operator. The above conditions 
have to be satisfied by the overall bilevel problem. 

The reformulated one-level problem is stated as: 

min Zl(X,y) 
x,y,A 

(3.96) 
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s.t. 

Vy Z2(x, y) + A Vyg(x, y) = 0 

A g(x,y) = 0 

g(x,y):::; 0 

(3.97) 

(3.98) 

(3.99) 

(3.100) 

By imposing certain regularity conditions, it can be shown that the solution to 
the above one-level problem is also the solution to the BNP when the follower's 
problem is convex. 

Now we derive the first-order necessary conditions for the one-level pro­
gram. The Lagrangian for the equivalent one-level program is 

.c(x, y, A, 1-', v, w) = Zl(X, y) + I-' [VyZ2(X, y) + A Vyg(x, y)] 

+ v [A g(x, y)] + w g(x, y) (3.101) 

where 1-', v, ware Lagrange multipliers, and w ~ o. Let Zt, Z2, and g be 
once continuously differentiable. Then the necessary conditions for the bilevel 
program are 

a.c 
-=0 ax 

a.c 
-=0 ay 

VXZ1(x, y) + I-' [VXYZ2(x, y) + A Vxyg(x, y)] 

+ [VA+W]Vxg(x,y) (3.102) 

Vy Z1(x, y) + I-' [V~Z2(X, y) + A V~g(x, y)] 

+ [v A + w] Vyg(x,y) 

a.c 
al-' = 0 = Vy Z2(X,y)+A Vyg(x,y) 

a.c 
av = 0 = A g(x, y) 

a.c aw = g(x,y):::; 0 

w>O 

A>O 

(3.103) 

(3.104) 

(3.105) 

(3.106) 

(3.107) 

(3.108) 

In general, the analysis and interpretation of the above necessary conditions are 
very difficult for most dynamic transportation network problems. Conceptually, 
the bilevel programming framework can be extended to more than two levels, 
which is also termed the hierarchical or multilevel programming problem. 
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3.3 Variational Inequality Problems 

The variational inequality problem is a general problem formulation that en­
compasses a set of mathematical problems, including nonlinear equations, opti­
mization problems, complementarity problems and fixed point problems. Vari­
ational inequalities were originally developed as a tool for the study of certain 
classes of partial differential equations such as those that arise in mechanics. 
The focus of this section is on variational inequality problems suitable for the 
analysis of dynamic network equilibrium models. 

3.3.1 Definitions for Variational Inequality Problems 

In this section, we present several types of variational inequality problems. 
First, we discuss the variational inequality for static problems. Here, we are 
dealing with a vector of decision variables x = (Xl, X2,"', Xn) and a vector 
of cost functions f(x) = [hex), hex), ... , fn(x)]. Define G as a given closed 
convex set of the decision variables x; f is a vector of given continuous functions 
defined on Rn. Then, we define the static case as follows. 

Definition 3.3.1. The finite-dimensio'nal variational inequality 
problem is to determine a vector x· E G C Rn, such that 

f[x·] . [x - x·] 2: 0, 'VxEG (3.109) 

In geometric terms, variational inequality (3.109) states that f(x·) is orthogonal 
to the feasible set G at the point x·. 

Now, we discuss the variational inequality for dynamic problems. Unlike 
the static problem, we are concerned with a vector of control variables u(t) = 
[Ul(t),U2(t), ... , um(t)] and their dynamic processes 

x(t) = h[x(t), u(t)] 

where the state variables x(t) = [Xl(t), X2(t), ... , xn(t)] and state equations 
h = [hl(t), h2(t), ... , hn(t)]. Associated with the dynamic processes, there is a 
vector of cost functions F(t) = [Fl(t), F2(t), ... , Fm(t)]. Each element of the 
cost function vector is a function of state and control variables, i.e., 

Fj(t) = Fj[x(t), u(t)] i = 1,2,···, m 

Since the state variables x( t) can be determined by the state equations when 
the control variables u(t) are given, the vector of cost functions can be further 
simplified as F(t) = F[u(t)]. Define G(t) as a given closed convex set of the 
control variables u(t). We assume F(t) is a set of given continuous functions 
from G(t) to Rn(t). Then, we give the following definition of the dynamic 
variational inequality problem. 

Definition 3.3.2. The finite-dimensional variational inequality 
problem is to determine a control vector u·(t) E G(t) C Rn(t), 
such that 
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F[u*(t)]· [u(t) - u*(t)] ~ 0, v u(t) E G(t) (3.110) 

This definition facilitates the formulation of dynamic network equilibrium prob­
lems as variational inequality problems. However, the following definition is 
also useful where continuous time problems need to be transformed to discrete 
time problems and comparisons need to be made with static problems. 

Definition 3.3.3. The finite-dimensional variational inequality 
problem is to determine a control vector u*(t) E G(t) C Rn(t), 
such that 

lT FT[u*(t)]. [u(t) - u*(t)] dt ~ 0, v u(t) E G(t) (3.111) 

Many dynamic transportation network equilibrium problems can be formulated 
as systems of equations. The systems of equations can be written as 

F[u*(t), x*(t)] = ° (3.112) 

This problem· can be regarded as a special case of a variational inequality. 
We next discuss several problems related to the variational inequality. 

These problems include optimization problems and complementarity problems. 
We first discuss the relationship between an optimization problem and a vari­
ational inequality problem. In this discussion, we mainly consider the static 
case; the analysis can be readily extended to their dynamic counterparts. 

Optimization Problems 

A general optimization problem is to maximize or minimize an objective func­
tion, and in the case of a constrained problem, subject to a given set of 
constraints. Both unconstrained and constrained mathematical programming 
problems can be formulated as variational inequality problems. The following 
two theorems describe the relationship between an optimization problem and 
a variational inequality problem. 

Theorem 3.3.1. Let x* be a solution to the minimization problem: 

mm 
x 

Z(x) 

s.t. x E G, 

(3.113) 

where Z is continuously differentiable and G is closed and con­
vex. Then, x* is a solution to the variational inequality problem: 

\l ZT(x*). (x - x*) ~ 0, VxE G. (3.114) 

Proof: Denote an auxiliary function Y(a) = Z[x*+a(x-x*)], where a E [0,1] 
is the decision variable. Note that Y(a) achieves its minimum at a = 0, since 

[x* + a(x - x*)]la=O = x* 
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Thus, the derivative dYjdo: must be nonnegative within the interval 0: E [0,1]; 
i.e., 

dY 
do: = '\7 ZT (x*) . (x - x*) ~ 0 

Therefore, we obtain variational inequality (3.114) and x* is a solution to 
(3.114). 

Theorem 3.3.2. If Z(x) is a convez function and x* is a solution 
to variational inequality (9.114), then x* is a solution to minimiza­
tion problem (9.119). 

Proof: Since Z(x) is convex, we have 

Z(x) ~ Z(x*) + '\7ZT(x*). (x - x*) ~ 0, VXEG. (3.115) 

Note that ('\7 zT (x*).(x-x*) ~ 0) is true because x* is a solution to variational 
inequality (3.114). Therefore, from inequality (3.115) we have 

Z(x) ~ Z(x*), V x E G (3.116) 

In other words, x* is a minimum of mathematical program (3.113). 
Note that the above two theorems apply to both constrained and uncon­

strained optimization problems, because the feasible set G mayor may not be 
constrained. In addition, the variational inequality problem can be formulated 
as an optimization problem when a certain symmetry condition holds. More 
specifically, if the variational inequality formulation of the optimality conditions 
is characterized by a function with a symmetric Jacobian, then the solution of 
the optimality conditions and the solution of a particular optimization problem 
are the same. We have the following theorem to depict this relationship. 

Theorem 3.3.3. If F(x) is a set of continuously differentiable 
functions on G and the Jacobian matriz 

fill. fill. Mi 
aXl aX2 ax" 

'\7F(x) = 
ffi ffi ~ 
aXl aX2 ax" 

!lEa. !lEa. !lEa. 
aXl lJX2 ax" 

is symmetric and positive semidefinite. Then, there is a real-valued 
convez function Z(x) satisfying 

'\7Z(x) = F(x) 

where '\7Z(x) is the gradient vector of function Z(x). The solu­
tion x* to variational inequality (9.114) is also the solution to the 
optimization problem: 
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min 
x 

Z(x) (3.117) 

s.t. x E G. 

Proof: Since \7F(x) is symmetric and positive semidefinite, it follows from 
Green's Theorem that 

Z(x) = J F(x)dx 

where J is a line integral. Since x* is the solution to variational inequality 
(3.114), using Theorem 3.3.2, we conclude that x* is also the solution to opti­
mization problem (3.117). 

By Theorem 3.3.3, a variational inequality problem can be reformulated 
as a convex optimization problem only when the cost function F(x) is symmet­
ric and positive semidefinite. Thus, the variational inequality problem encom­
passes the optimization problem. Therefore, the variational inequality is the 
more general problem in that it can also accomodate a function F(x) with an 
asymmetric Jacobian matrix. Historically, some static transportation network 
equilibrium problems which cannot be formulated as optimization problems 
were formulated successfully and solved as variational inequality problems. A 
similar observation can be made for dynamic transportation network equilib­
rium problems. Only certain types of dynamic problems can be formulated as 
optimal control problems. Many dynamic problems do not satisfy the symme­
try condition and have to be formulated as variational inequalities directly. 

We note that although the above theorems are only proven for static 
problems, they apply to dynamic problems as well. To avoid repetition, we 
omit the proofs. Note that in dynamic problems, the corresponding optimiza­
tion problems have to be replaced by optimal control problems. 

Complementarity Problems 

Complementarity problems are defined on the nonnegative orthant. The non­
linear complementarity problem is a system of equations and inequalities stated 
as follows: 

Find x* ;::: 0 such that 

f(x*);:::O and fT(x*).x*=O (3.118) 

When f(x) is a set of linear functions, that is, f(x) = Ax + B, where A is an 
n x n matrix and Ban n x 1 vector, problem (3.118) is a linear complementarity 
problem. In general, the complementarity problem is a special case of the 
variational inequality problem. The relationship between the complementarity 
problem and the variational inequality problem is as follows. 

Theorem 3.3.4. The variational inequality (3.109) and the com­
plementarity problem (3.118) have precisely the same solutions, if 
any solutions exist. 
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Proof: First, we need to prove that ifx* satisfies variational inequality (3.109), 
then it also satisfies complementarity problem (3.118). Denote ei as an n­
dimensional vector with 1 in the ith location and 0 elsewhere, i.e., 

o 

o 
ei = 1 

o 

o 

Substituting x = x* +e; into variational inequality (3.109), we have Ji(X*) ~ o. 
We can choose anyei with 1 at any i-th location so that each component of 
f;(x*) is nonnegative. Thus, f(x*) ~ o. 

Now substituting x = 2x* into variational inequality (3.109), we obtain 

f(x*) . (x*) ~ o. (3.119) 

Then, substituting x = 0 into variational inequality (3.109), we obtain 

f(x*) . (-x*) ~ O. (3.120) 

Equations (3.119) and (3.120) together imply that f(x*) . x* = o. Thus, we 
obtain complementarity problem (3.118). 

Second, if x* satisfies complementarity problem (3.118), then 

f(x*) ·x* = 0 (3.121) 

Since we can find any feasible x ~ 0 and f(x*) ~ 0, we obtain 

f(x*)· x ~ 0 (3.122) 

Subtracting equation (3.121) from equation (3.122), we obtain the variational 
inequality 

f(x*)· (x - x*) ~ 0 (3.123) 

3.3.2 Existence and Uniqueness Conditions 

N ext we discuss the existence and uniqueness of the variational inequality prob­
lem for static problems. The conclusions will also apply to variational inequali­
ties for the dynamic problems. Existence of a solution to a variational inequal­
ity problem follows from continuity of the function f entering the variational 
inequality, provided that the feasible set G is compact. In general, we have the 
following existence theorem. 
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Theorem 3.3.5. If G is a compact convex set and f(x) is contin­
uous on G, then the variational inequality problem has at least one 
solution x* . 

73 

The proof of this theorem requires the use of Brouwer's Fixed Point 
Theorem and is not given here (Nagurney, 1993). Qualitative properties of 
existence and uniqueness are easily obtained under certain mono tonicity con­
ditions. First, we present the following definitions. 

Definition 3.3.4. A vector of functions f(x) is monotone on G if 

(3.124) 

where xl and x 2 are any two points on G. 

Definition 3.3.5. A vector of functions f(x) is strictly monotone 
on G if 

(3.125) 

Definition 3.3.6. A vector of functions f(x) is strongly monotone 
on G if for some a > 0 

(3.126) 

Assume that f(x) is continuously differentiable on G and V'f(x) is strongly 
positive definite. Then f(x) is strongly monotone. Then, we have the following 
theorem for uniqueness. 

Theorem 3.3.6. Suppose that f(x) is strictly monotone on G. 
Then, the solution is unique, if one exists. 

In the following, we present some easier methods for checking the mono­
tonicity of functions. 

Theorem 3.3.7. Suppose that f(x) is continuously differentiable 
on G and the Jacobian matrix 

£ll. £ll. !lh.. ,h·, ax, OX n 

vf(x) = !!h.. !!h.. !!h.. ax, ax, OXn 

~ ~ ~ ax, ax, OXn 

is positive semidefinite (or positive definite), then f(x) is monotone 
(or strictly monotone). 
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Theorem 3.3.8. Assume that f is continuously differentiable at 
some x. Then f(x) is locally strictly (or strongly) monotone at x if 
V'f(x) is positive definite (or strongly positive definite), that is, 

(3.127) 

for some a > 0, V vERn (3.128) 

where v is an arbitrary vector with components of real values. 

Given the above two theorems for monotonicity, we have the following 
theorem for uniqueness. 

Theorem 3.3.9. Assume that f(x) is continuously differentiable on 
G and that V'f(x) is strongly positive definite, then f(x) is strongly 
monotone. 

The following theorem provides a condition under which both existence 
and uniqueness of the solution to the variational inequality problem are guar­
anteed. No assumption on the compactness of the feasible set G is made. This 
is important for very complicated dynamic problems when convexity of the 
feasible set is difficult to prove. 

Theorem 3.3.10. If f(x) is strongly monotone, then there exists 
precisely one solution x· to the variational inequality (3.109). 

The proof of existence follows from the fact that strong monotonicity implies 
coercivity, whereas uniqueness follows from the fact that strong monotonicity 
implies strict monotonicity. In conclusion, in the case of an unbounded fea­
sible set G, strong monotonicity of the function f guarantees both existence 
and uniqueness. If G is compact, then existence is guaranteed if f is continu­
ous, and only the strict mono tonicity condition is needed for uniqueness to be 
guaranteed. The first conclusion is important for some complicated dynamic 
problems. 

3.4 Solution Algorithms for Mathematical Pro­
grams and Variational Inequalities 

In this section, we present several solution algorithms for mathematical pro­
gramming problems. These algorithms are also suitable for solving correspond­
ing discrete optimal control problems. To simplify our presentation, we concen­
trate on the most widely used algorithms for dynamic transportation network 
equilibrium problems. For other algorithms, we refer readers to mathemati­
cal programming texts. We first present the interval reduction algorithm for 



3.4. Solution Algorithms 75 

a one-dimensional minimization problem. Then, the Frank-Wolfe algorithm 
is discussed. Finally, we present the relaxation or diagonalization algorithm 
for variational inequality problems. Although the algorithms are presented 
for static mathematical programming problems, they are extended to dynamic 
problems in subsequent chapters. 

3.4.1 One Dimentional Minimization 

In this section, we consider the minimization of a nonlinear function Z (x) of a 
single variable x. It is well known from elementary calculus that the necessary 
condition for a differentiable function in one variable, Z(x), to have a minimum 
at x = x* is that the derivative of Z( x) evaluated at x* equals zero. In other 
words, 

_d Z_(,--x *--"-) = 0 
dx 

(3.129) 

This is a first-order condition for a minimum. If there is a minimum at x*, this 
condition mu~t hold. To prove that this stationary point is a minimum, we 
need to prove that it is a global minimum. In other words, the value of Z(x) 
is lower than Z (x) at any other x. 

A sufficient condition for a stationary point to be a global minimum is 
that the function is strictly convex. The strict convexity condition is equivalent 
to requiring that the second derivative of Z(x) be positive, that is 

(3.130) 

We now discuss the methods for determining x*. It is assumed that x lies 
within some finite interval [a, b) and Z(x) is continuous and uniquely defined 
everywhere in that interval. These requirements ensure the existence of a finite 
minimum of Z(x) for some x in the interval. For simplicity, we assume Z(x) 
is ditonic (has one extreme point) over the interval [a, b), implying that it has 
only a single, unique minimum in that interval. 

The study of one-dimensional optimization methods is important mainly 
because such an optimization or line search is often a part of an algorithm de­
signed to find a minimum of multivariate functions. We discuss two basic 
methods, the bisection and golden section methods. Both methods use the in­
terval reduction approach. The interval reduction approach involves iterative 
procedures in which each iteration is focused on a current interval. The cur": 
rent interval is a portion of [a, b], denoted as [a(n), b(n»). This interval must be 
determined to include the minimal point x*. At each iteration, this interval is 
examined and divided into two parts: the part in which the minimum cannot 
lie and the current interval for the next iteration. The part in which the mini­
mum cannot lie is discarded and the procedure is repeated for the new current 
interval. The procedure starts by designating [a, b) as the first current interval, 
i.e., a(O) = a and b(O) = b. The interval is then reduced at each successive iter­
ation until a small enough current interval (smaller than a prespecified value) 



76 Chapter 3. Discrete OCP, MP and VI 

for x* is obtained. Basically we have two interval reduction methods which 
differ from each other only in the rules used to examine the current interval 
and to decide which portion of it can be discarded. 

Bisection Method 

The bisection method exploits the fact that the function is monotonic on each 
side of the minimum. In other words, the derivative ofthe function, dZ(x )/dx, 
is negative for x < x* and positive for x > x*. The algorithm computes the 
derivative of Z(x) at the midpoint of the current interval, [a(n),b(n)], at itera­
tion n. Denote this point as x(n). If dZ(x(n»)/dx < 0, then x* > x(n). Thus, 
the interval [a(n), x(n)] can be discarded. The next current interval will be 
[x(n), b(n)]. If dZ(x(n»)/dx > 0, then x* < x(n). Thus, the interval [x(n), b(n)] 
can be discarded. The next current interval will be [a(n), x(n)]. A prespecified 
convergence criterion la(n) - b(n)1 ::; f (f is a very small value) can be used 
to terminate the procedure and the middle point of the remaining interval is 
taken as the estimate of x*. 

Golden Section Method 

The golden section method is based on a comparison of the values of Z(x) at two 
points, xin) and x~n), where xin) < x~n). The two points are within the current 
interval, [a(n), b(n)J, at iteration n. The two interior points are determined by 
using a reduction ratio of 0.618 or precisely (VS - 1)/2. The interior points 
are selected so that xin) is 0.618 of the current interval length to the left of 

b(n) and x~n) is 0.618 of the current interval length to the right of a(n). Since 
the value of 0.618 is known as the golden section, this one-dimensional search 
method is termed the golden section method. 

At iteration n, if Z(xin») > Z(x~n»), the optimum must lie to the right 

of Z(xin») because the function is ditonic. Thus, the interval [a(n), xin)] can 
be discarded. The new interval for iteration (n + 1) is [a(n+1), b(n+1)], where 
a(n+1) = xin) and b(n+1) = b(n). If Z(xin») < Z(x~n»), the optimum must lie to 

the left of Z(x~n») because the function is ditonic. Thus, the interval [x~n), b(n)] 
can be discarded. The new interval for iteration (n+ 1) is [a(n+1), b(n+l)], where 
a(n+1) = a(n) and b(n+1) = x~n). 

The interval reduction process continues with two new interior points 
x~n+1) and x~n+1) for iteration (n + 1). Thus, at each iteration, the golden 
section procedure makes use of one of the interior points from the last interval; 
only one new point needs to be calculated at each iteration. 

The bisection method has a faster convergence speed than the golden 
section method. However, it requires computing the derivatives of Z(x) at each 
iteration. On the other hand, the golden section method involves computing 
the function Z(x) itself. Thus, the bisection algorithm can be preferable to the 
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golden section method if calculating the derivatives is easier than calculating 
the function itself. 

3.4.2 Frank-Wolfe Algorithm 

The Frank-Wolfe (F -W) algorithm was originally suggested by Frank and Wolfe 
(1956) as a procedure for solving quadratic programming problems with lin­
ear constraints. It is also known as the convex combination algorithm. This 
method is extensively used in determining equilibrium flows in static trans­
portation network problems. In this book, it is extended to solve the dynamic 
transportation network equilibrium problems. 

We consider a convex minimization program with linear constraints: 

mm Z(x) 
x 

(3.131) 

s.t. 

Vj (3.132) 

where aij and bj are constant coefficients (i = 1,,,,, Ij j = 1,,,, ,J). The 
algorithm is basically a feasible descent direction method. At iteration (n+ 1), it 
generates a point x(nH) = (x~nH), ... , x~nH») from x(n) = (x~n), ... , x~n») so 
that Z(x(nH») < Z(x(n»). Thus, the essence of this algorithm is the calculation 
ofx(n+l) from x(n). The algorithmic step can be written in a standard form as 

(3.133) 

where d(n) = (d~nH), ... ,d~nH») is a descent direction vector and Q(n) is a 
nonnegative scalar known as the step size or move size. This equation means 
that at each point x(n), a direction d(n) is identified along which the function is 
decreasing. Then, the step size Q(n) determines how far the next point x(nH) 
will be along the direction d(n). 

The F -W method selects the feasible descent direction not only based on 
how steep each candidate direction is in the vicinity ofx(n), but also according 
to how far it is possible to move along this direction. It chooses a direction 
based on the product of the rate of descent in the vicinity of x(n) in a given 
direction and the length of the feasible region in that direction.· This product 
is the drop or the possible reduction in the objective function value which can 
be achieved by moving in this direction. Thus, the algorithm uses the direction 
that maximizes the drop. 

To find a descent direction, the algorithm checks the entire feasible re­
gion for an auxiliary feasible solution, y( n) = [y~ n) , ... , y~ n)j, such that the 
direction from x(n) to y(n) provides the maximum drop. In seeking the feasible 
direction, the bounding of the move size does not require a separate step of 
the algorithm. The bounding is accomplished as an integral part of choosing 
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the decent direction. The direction from x(n) to any feasible solution, y, is 
the vector (y - x(n») (or the unit vector (y - x(n»)/Ily - x(n)ll). The slope of 
Z(x(n») in the direction of (y - x(n») is given by the projection of the opposite 
gradient [_'\7Z(x(n»)] in this direction, i.e., 

(3.134) 

The drop in the objective function in the direction (y - x(n») is obtained by 
multiplying this slope by the distance from x(n) to y, Ily - x(n)lI, i.e., 

(3.135) 

This term has to be maximized (in y) subject to the feasibility of y. Alterna­
tively, the term can be multiplied by (-1) and minimized. It follows that 

(3.136) 

s.t. 

Vj (3.137) 

where constraint set (3.137) is equivalent to the original constraint set (3.132) 
by replacing x with y: Thus, finding the descent direction amounts to solving 
a linear program, in which Yi is the decision variable. Note that '\7 Z(x(n») is 
constant at x( n) and the term '\7 ZT (x( n ») . (x( n ») can be discarded from the 
objective function. Thus, the linearized problem can be simplified as 

min (3.138) 

s.t. 

Vj (3.139) 

The objective function coefficients are 8Z(x(n»)/8xt, 8Z(x(n»)/8x2, ... , 
8Z(x(n»)/8xI. These coefficients are the derivatives of the original objective 
function at x(n), which are known at iteration n. The decision variables of pro­
gram (3.136)-(3.137) are y(n) = (y~n),y~n), ... ,y~n») and the decent direction 
is the vector pointing from x(n) to y(n), i.e., d(n) = (y(n) - x(n»), or in an ex-

panded form, d~n) = y~n) _x~n), V i. Once the decent direction is known, other 
algorithmic steps involve the determination of the move size and a convergence 
test. 

As in many other descent methods, the move size in the direction of d(n) 
equals the distance to the point along d(n) which minimizes Z(x). The F-W 
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method does not require a special step to bracket the search for an optimal 
move size in order to maintain feasibility. The new solution, x(n+l), must lie 
between x(n) and y(n). Because y(n) is a solution of the linearized problem, 
it naturally lies at the boundary of the feasible region. In other words, the 
search for a descent direction automatically generates a bound for a line search 
by accounting for all constraints when the descent direction is determined. 
Since the search interval is bracketed, the bisection or golden section method 
can be used to find the step size a by solving the minimization of Z(x) along 
d(n) = (y(n) _ x(n». It follows that 

min Z[x(n) + a(y(n) - x(n»] (3.140) 
O~a~l 

Once the optimal solution of this line search, a(n), is found, the next 
point can be generated using the following formula 

x(n+l) = x(n) + a(n)(y(n) _ x(n» 

Note that equation (3.141) can be written as 

x(n) = (1 _ a(n»x(n) + a(n)y(n) 

(3.141) 

The new solution is thus a convex combination (or a weighted average) of x(n) 
and y(n). An appropriate convergence criterion is to check the lower bound of 
the objective function at each iteration. By convexity, 

(3.142) 

Thus, the value of the linearized objective function yields a lower bound at 
Z(x(n». 

An appropriate convergence criterion is 

The numerator of equation (3.144) is sometimes called the gap. 
The F -W algorithm can be summarized as follows: 

Step 0: Initialization. 
Find a feasible solution x(O). Set iteration counter n := O. 

Step 1: Direction Finding. 
Find y(n) that solves the linear program (3.138)-(3.139). 

Step 2: Step Size Determination. 
Find a(n) that solves 

(3.143) 

(3.144) 

(3.145) 
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Step 3: Move. 
Set x(n+l) = x(n) + a(n)(y(n) _ x(n»). 

Step 4: Convergence Test. 
If V'Z(x(n»). (y - x(n»)/LB(x(n») < f, stop. Otherwise, let n:= n + 1 and go 
to Step 1. 

The algorithm converges in a finite number of iterations. Since the F -W 
algorithm involves a minimization of a linear program as part of the direction­
finding step, it is useful only in cases in which this linear program can be 
solved relatively easily. It is also useful when algorithms which are generally 
more efficient than the F -W method can not be utilized due to the size of the 
problem. Minimization problems for dynamic transportation networks pos­
sess both properties: they include a large number of variables and the linear 
program associated with the direction finding step can be efficiently solved. 

3.4.3 Relaxation Algorithm 

In this section, we present an iterative method for the solution of the variational 
inequality problem. For a static problem, the variational inequality problem is 
to determine a vector x* E G C Rn , such that 

fT(X*)· (x - x*) ~ 0, VxE G (3.146) 

where f is a vector of continuous functions. Assume that there exists a vector 
of auxiliary smooth functions g(x, y) on G x G and" g E Rn. The function 
g(x, y) has the following properties: 

1. g(x, x) = f(x) for all x on G; 

2. for every fixed x, y E G, the Jacobian matrix V'g(x, y) is symmetric and 
positive definite. 

In other words, the decision variables x for the functions f are partitioned into 
two groups x and y. Since the Jacobian matrix V'g(x,y) is symmetric and 
positive definite, the line integral J g(x, y) dx creates a new function Z(x, y) 
on G x G and Z E R. For any fixed y E G, function Z(x, y) is strictly convex 
and 

g(x, y) = V'xZ(x, y) (3.147) 

At each iteration n, we solve the following variational inequality subproblem: 

VxEG 

or an equivalent mathematical programming problem: 

min Z(x, x(n-l») 
XEG 

(3.148) 

(3.149) 
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for which a unique solution x(n) exists. The solution to program (3.149) may 
be computed using any appropriate mathematical programming algorithm. 
For transportation equilibrium network problems, the F -W algorithm is most 
widely used for such purpose. We note that a variational inequality subproblem 
can be constructed in various ways, some easier to solve than others. 

If the sequence of solution x(n) is convergent, i.e., x(n) --+ x* as n --+ 00, 

variational inequality subproblem (3.148) yields 

fT(X*)' (x - x*) = gT(x*, x*) . (x - x*) ~ 0, VxEG (3.150) 

Thus, x* is a solution to variational inequality problem (3.146). The relaxation 
method is stated as follows: 

Step 0: Initialization. 
Find a set offeasible decision variables x(n). Set n := O. 

Step 1: Relaxation. 
Solve the mathematical programming subproblem: 

min Z(x(n) x(n-l») 
XeG ' 

(3.151) 

obtaining solution x(n). 

Step 2: Convergence Test. 
If Ix(n) - x(n-l)1 ::; f, for a prespecified small value f, then stop. Otherwise, 
set n := n + 1, and go to Step 1. 

We note that in the relaxation method, each component gi(X, y) offunc­
tion g(x, y) should correspond to the relaxation of variable Xi 

gi(X, y) = fi(Yb"', Yi-b Xi, Yi+b"', Yn) i = 1" ",n (3.152) 

This relaxation method is sometimes termed the diagonalization method be­
cause the Hessian matrix of Z is diagonal, since all cross-link effects have been 
fixed. The mathematical programming subproblem is also known as the di­
agonalized problem. Therefore, the relaxation method resolves variational in­
equality (3.146) into a sequence of variational inequality subproblems (3.148) 
or mathematical programming subproblems (3.149). 

3.5 Notes 

Discrete optimal control problems have been discussed in various optimal con­
trol texts. At the elementary level, readers may consult the text by Sage and 
White (1977) and Bryson and Ho (1975). The necessary conditions for general 
nonlinear programming problems were provided by Kuhn and Tucker (1951). 
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The material reviewed for mathematical programming can be found in any 
standard mathematical programming text, such as Luenberger (1984). Further 
discussion of reducing discrete optimal control problems to mathematical pro­
gramming problems can be found in texts by Tabak and Kuo (1971) and Canon 
et al (1970). For multi-level mathematical programming problems, readers may 
consult the paper by Bard (1984). 

A comprehensive summary of variational inequality problems is provided 
by Nagurney (1993). The text by Kinderlehrer and Stampacchia (1980) pro­
vides an introduction to some variational inequality problems. For the rigorous 
proofs of the existence and uniqueness for dynamic problems, especially optimal 
control problems, please refer to Cesari (1983). 

The computational algorithms for mathematical programming problems 
are summarized by Bazaraa et al (1993). The F-W algorithm and its applica­
tions in static transportation equilibrium problems are described in detail by 
Sheffi (1985). The relaxation method is described in more detail in Nagurney 
(1993). 



Chapter 4 

Network Flow Constraints and 
Definitions of Travel Times 

In this chapter, the constraints for dynamic traffic necessary for a urban trans­
portation network are presented. These constraints include flow conservation 
for links and nodes, flow propagation, first-in-first-out (FIFO) and oversatura­
tion. Associated with these constraints and different needs for dynamic travel 
time information, two definitions of travel time are considered. 

4.1- Flow Conservation Constraints 

The multiple origin-destination network flow problem is considered. A traffic 
network is represented by a directed graph 9 = (.N, A), where .N is the set of 
nodes and A is the set of directed links. A node can represent an origin and a 
destination, as well as an intersection. In the following, the index r will denote 
an origin node and the index s will denote a destination node. 

Consider the fixed time period [O,T], which is long enough to allow all 
travelers departing during the peak period to complete their trips. Let 

number of vehicles traveling on link a at time tj 
number of vehicles traveling on link a over route p with 
origin r and destination s at time t. 

In the following, all variables with subscript p and superscripts rs denote the 
variables with route p, origin r and destination s. It follows that 

Va. (4.1) 

Let ua(t) denote the inflow rate (vehicles/hour or vehicles/minute) into 
link a at time t and va(t) denote the exit flow rate from link a at time t. The 
inflow ua(t) and exit flow va(t) on link a are both regarded as control variables. 
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The number of vehicles xa(t) on link a is defined as the state variable for link 
a. The state equation for link a can then be written as 

dxr. (t) 
ap = r. (t) _ r. (t) 
dt uap vap Va,p, r, s. (4.2) 

Figure 4.1 illustrates the flow variables for link a . 

• 
_________ 1 

Figure 4.1: Flow Variables for Link a 

The number of vehicles on link a at an initial time t = 0 is assumed to equal 0: 

Va,p, r, s. (4.3) 

Therefore, the number of vehicles on link a at any time t is given by 

x~~(t) = lot [u~~(w) - v~~(w )]dw Va,p, r, s. (4.4) 

If the number of vehicles on link a at an initial time t = 0 is not equal to 0, 

x~~(O) > 0, Va,p, r,s, (4.5) 

then, the number of vehicles on link a at any time t is given by 

x~~(t) = x~~(O) + lot [u:~(w) - v:~(w)]dw Va,p,.r, s. (4.6) 

In most models in this book, we consider the case when x~~(O) = O. For the case 
when x~~(O) > 0, the models and corresponding solution algorithms require 
modification at time 0 accordingly. Finally, all variables must be nonnegative 
at all times: 

Va,p, r, s. (4.7) 

Denote the required instantaneous flows from origin node r to destination 
node S at time t as r' (t), which is a given function of time in any dynamic 
route choice problem. Flow conservation at node j (j =J. r, s) for route p between 
O-D pair rs requires that the flow exiting from the link pointing into node j 
at time t equals the flow entering the link which leave node j at time t. Thus, 
the flow conservation equations can be expressed as 

Vj =J. r,s;p,r,s (4.8) 
aEB(j) aEA(j) 
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where AU) is the set of links whose tail node is j (after j), and BU) is the set 
of links whose head node is j (before j). Figure 4.1 illustrates flow conservation 
at node j. 

Ua(t) a e AU) 

Figure 4.2: Flow Conservation at Node j 

Conservation of flow at origin node r (r i- s) requires the flow originating at 
origin r at time t to equal the flow entering the links which leave origin r at time 
t. Thus, the flow conservation equations for the origin nodes can be expressed 
as 

L L u~~(t) = r' (t) Vr I- s; s. (4.9) 
aEA(r) P 

Denote the instantaneous flows arriving at destination node s from origin node 
r at time t as the control variable er'(t), and let e;'(t) denote these flows over 
route p at time t. Conservation of flow at destination node s (s I- r) requires 
the flow exiting at destination s at time t to equal the flow exiting the links 
which lead to destination s at time t. Thus, the flow conservation equations 
for the destination nodes can be expressed as 

L L v~~(t) = er , (t) Vr; s i- r. (4.10) 
aEB(,) P 

Denote the cumulative number of vehicles arriving at destination s from origin 
r over route p by time t as E;'(t). It follows that 

dE;'(t) = er'(t) 
dt P 

Vp, r, s I- r. (4.11) 

At the initial time t = 0, 

Er,(O) - 0 P -, Vp,r,s. (4.12) 
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Finally, the variables must be nonnegative at all times: 

erO(t) > 0 p -, Er·(t) > 0 p -, Vp,r,s. (4.13) 

4.2 Definitions of Dynamic Travel Times 

The instantaneous link travel time at any time t is defined as the travel time 
that would be experienced by vehicles traversing a link when prevailing traffic 
conditions remain unchanged. The instantaneous route travel time at any time 
t is the sum of the instantaneous link travel times over all links in this route 
at time t. Thus, the instantaneous route travel time would be experienced by 
a vehicle if prevailing traffic conditions do not vary until the vehicle reaches its 
destination. 

The instantaneous travel time ca[xa(t), ua(t), Va (t)], or simply ca(t), over 
link a is assumed to be dependent on the number of vehicles xa(t), the inflow 
ua(t) and the exit flow va(t) on link a at time t. We assume the instantaneous 
travel time ca(t) on link a is the sum of two components: 1) an instantaneous 
flow-dependent cruise time Yla[Xa(t), ua(t)] over link a; 2) an instantaneous 
queuing delay Y2a[Xa(t), va(t)]. It follows that 

(4.14) 

The two components Yla[Xa(t), ua(t)] and Y2a[Xa(t), va(t)] are assumed to be 
nonnegative and differentiable with respect to xa(t), ua(t) and xa(t), va(t), re­
spectively. 

Consider the flow which originates at node r at time t and is destined 
for node s. There is a set of routes {p} between O-D pair (r, s). Define the 
instantaneous travel time function ~;. (t) for each route p between (r, s) as 

~;. (t) = L ca[Xa(t), ua(t), va(t)] Vr,s,p; (4.15) 
aEr.p 

the summation is over all links a in route p from origin r to destination s. 
Define the minimal instantaneous route travel time a r• (t) as the minimal 

travel time that would be experienced by a vehicle departing from origin r to 
destination s at time t, if prevailing traffic conditions do not vary until the 
vehicle reaches its destination. If the instantaneous link travel time ca(t) is 
determined, the minimal instantaneous 0-D travel time a r ° (t) can be computed 
as aro(t) = millp ~;O(t), where ar·(t) is a functional of all link flow variables 
at time t, or 7rro (t) = 7rr • [u(t), v(t), x(t), t]. 

The future link travel time or actual link travel time is the travel time 
over a link actually experienced by vehicles. This time can also be called the 
projected time. Define Ta(t) as the actual travel time over link a for vehicles 
entering link a at time t. Ta(t) is assumed to be dependent on the number of 
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vehicles xa(t), the inflow ua(t) and the exit flow va(t) on link a at time t. It 
follows that 

Ta(t) = L Ta[Xa(t), ua(t), Va(t)) 'Va (4.16) 
aEr.p 

Similarly, the future route travel time or actual route travel time is the 
time actually experienced over a route by vehicles. Define 'T/;' (t) as the travel 
time actually experienced over route p by vehicles departing origin r toward 
destination s at time t. We use a recursive formula to compute the route 
travel time 'T/;' (t) for all allowable routes. Assume route p consists of nodes 
(r, 1,2,···, i,···, s). Denote 'T/;i(t) as the travel time actually experienced over 
route p from origin r to node i by vehicles departing origin r at time t. Then, 
a recursive formula for route travel time 'T/;' (t) is: 

'Vp, r, ij i = 1,2,···, Sj 

where link a = (i - 1, i). 
Define 7£'r. (t) as the minimal travel time actually experienced by mo­

torists departing from origin r to destination s at time t. If the actual link 
travel time Ta(t) is determined, the minimal actual O-D travel time Tr'(t) can 
be computed as 7£'r. (t) = miIlp 'T/;' (t). 7£'r. (t) is a functional of all link flow vari­
ables at time w 2: t, or 7£'r'(t) = 7£'r'[u(w),v(w),x(w)lw 2: t). This functional is 
neither a state variable nor a control variable, and it is' not fixed. This func­
tional is not available in closed form. Nevertheless, it can be evaluated when 
u(w), v(w) and x(w) are temporarily fixed. 

Various dynamic route choice models are formulated in the following 
chapters based on instantaneous and actual travel times. More discussion on 
various definitions of travel times and their applications is found in Chapter 
16. 

4.3 Flow Propagation Constraints 

It is necessary to ensure that the entering and exiting flows, as well as the vehi­
cles remaining on links, are consistent with the link travel times. We write these 
constraints using actual link travel times. In static network models, these flow 
propagation constraints are not necessary because a flow is assumed to prop­
agate instantaneously over its entire journey from its origin to its destination. 
Vehicles don't remain on a link for a duration of time in order that a queue can 
form. Thus, queuing phenomena cannot be captured correctly in any static 
network model. 

Flow propagation constraints can be written based on links or nodes. 
In this book, we suggest using link flow propagation constraints, which can be 
formulated in two different ways as now described. 
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4.3.1 Type I 

Let U;;(t) denote the cumulative number of vehicles entering link a on route 
p with O-D pair rs by time t, and V:; (t) denote the cumulative number of 
vehicles leaving link a on route p with O-D pair rs by time t. U;;(t) and 
V:;(t) are state variables for link a. The state equation for link a can then be 
written as 

Va,p, r, s. (4.17) 

Va,p, r, s. (4.18) 

The cumulative numbers of vehicles entering and exiting link a at an initial 
time t = 0 are assumed to equal 0: 

U;;(O) = 0, V:;(O) = 0, Va,p, r, s. (4.19) 

When the number of vehicles on link a at an initial time t = 0 equals 0, the 
number of vehicles at any time t is given by 

Va,p, r, s. (4.20) 

Figure 4.3 illustrates the relationship of cumulative entering and exiting flows 
on link a. Finally, all variables must be nonnegative at all times: 

U;;(t) 2: 0, V:;(t) 2: 0, 

Cumulative Number of Vehicles 
(Entering and Exiting) 

o t 

Va,p, r, s. 

Timet 

Figure 4.3: Cumulative Entering and Exiting Flows on Link a 

(4.21) 

The node flow conservation equations defined in the last section do not 
change. For link a on route p between O-D pair rs, the total number of vehicles 
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entering link a by time t must have exited link a by time [t + Ta(t)]. It follows 
that 

Va,p, r, s. (4.22) 

Figure 4.4 illustrates the flow propagation on link a. The expression of this 

Cumulative Number of Vehicles 
(Entering and Exiting) 

tJt) 

o t 

I 
I VJt+tJtJ 
I 
I 

t +tJt) 

Figure 4.4: Flow Propagation on Link a 

Timet 

flow propagation constraint is very simple and its meaning is also intuitive. 
However, the following flow propagation constraints are easier to handle in 
optimal control problems and are used in most of our models. 

4.3.2 Type II 

We formulate the second type of link flow propagation constraints as follows. 
Let x~~(t) denote the number of vehicles on link a using route p between O-D 
pair rs at time t. By definition, 

L x~~(t) = xa(t) Va. (4.23) 
r.p 

For any intermediate node j # r on route p, denote a subroute p as the section 
of route p from node j to destination s. For any link a E B(j), vehicles on link 
a using route p at any time t must result in either: 

1. extra vehicles on downstream links on subroute p at time t + Ta(t), or 

2. increased exiting vehicles at the destination at time t + Ta(t). 

It follows that 

X~~(t) = L {x;;;[t + Ta(t)] - x;;;(tn + {E;' [t + Ta(t)] - E;' (tn 
hEft 
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Va,j,p, r, s; j:f:. r; a E B(j). (4.24) 

A detailed discussion of this constraint is given in Chapter 5 following the 
formulation of an instantaneous DUO route choice model. We note that the flow 
conservation constraints discussed in the previous section can be used directly 
when the above link flow propagation constraint is used in the formulation. 

In some of our dynamic network models, especially in optimization for­
mulations, we need to write these constraints using estimates of actual link 
travel times. These link travel time estimates must be updated in an iterative 
procedure known in the transportation science literature as the relazation or 
diagonalization technique (Sheffi, 1985). In this procedure, the travel times 
over each link a, Ta(t), are estimated for flows entering the link at each time t. 
These functions Ta(t) are held fixed, and the model is solved. Then, the link 
travel times corresponding to the solution xa{t), ua{t) and va{t) obtained are 
compared to the functions Ta(t). If the link travel times corresponding to the 
solution are different from Ta{t), the values of Ta(t) are reset to these travel 
times and the process is repeated. Given the robust nature of the relaxation 
(diagonalization) technique, we expect that the solution will converge to the 
DUO solution. This procedure is discussed in detail in Chapter 6 and is jus­
tified in Chapter 13 as a standard approach for solving a general variational 
inequality model. The revised flow propagation constraints are as follows: 

X:~{t) = L {x~;[t + Ta{t)]- x;;;(t)} + {E;"[t + Ta{t)]- E;"{t)} 
hEp 

Va,j,p, r, s;j:f:. r; a E B(j). (4.25) 

These constraints are associated with state variables only. This property is 
fully exploited in the analysis of the optimality conditions for optimal control 
models in Chapter 5. 

In the later chapters, the above two sets of flow propagation constraints 
are used in appropriate models so to simplify the formulation and to improve 
the effectiveness of the corresponding computational algorithms. As we noted 
above, the flow propagation constraints can be formulated using node-based 
constraints instead of link-based constraints. Thus, other flow propagation 
constraints can be formulated. However, these constraints should be decided 
in conjunction with the corresponding formulation of the dynamic model. 

4.4 First-In-First-Out Constraints 

First-In-First-Out (FIFO) conditions mayor may not occur in actuality. How­
ever, FIFO should be strictly guaranteed when there is only one lane and no 
extra space for turning movements at intersections. When there are both left­
turn and right-turn lanes on a street link, FIFO may still be violated and the 
extent of violation will depend on the channelization of lanes at the intersection. 
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In a continuous time model, the flow propagation constraints state that 
any inflow u~'(t) into link a has to remain on the link for travel time Ta(t), 
regardless of the origin-destination source of this inflow. Thus, the flow prop­
agation constraints imply FIFO constraints in a continuous time model if a 
rigorous travel time function is used in the flow propagation constraints. In 
the following, we use a discrete time example to illustrate how the flow prop­
agation constraints should imply FIFO constraints. The example network is 
shown in Figure 4.5. It is 3-link, 4-node network (links 1-2, 2-3, 3-4) with O-D 
trips j13(k) = (0,1,0,1,0,1,0,1,0,1) and j14(k) = (1,0,1,0,1,0,1,0,1,0) for 
time interval k = 1, .. ·,10. Therefore, one vehicle enters link 1-2 in each time 
interval k = 1, ... , 10. 

Figure 4.5: Example Network 

The FIFO condition requires that one vehicle exit link 1-2 and go to node 
4 and then another go to node 3, etc. We assume that link 2-3 is blocked due to 
some incident at k = 1. When the first vehicle arrives at node 2 and enters link 
2-3, it cannot exit node 3 and enter link 2-4 since the travel time is extremely 
high and it has to remain link 2-3. Thus, the link travel time on link 2-3 will 
increase for subsequent vehicles. Our physical flow propagation constraint for 
link flow and travel time states that the second vehicle entering link 1-2 during 
period 2 (k = 2) cannot arrive at node 3, since link 2-3 is highly congested. 
This will increase the travel time for vehicles entering link 1-2 during period 
3. This process continues and there will be no vehicles exiting node 3. This 
framework implicitly defines the FIFO constraints. 

In the following, we discuss FIFO or its violation, overtaking, in more 
detail. Overtaking denotes that a late entering vehicle flow propagates faster 
than an earlier entering vehicle flow and exits earlier than the earlier entering 
vehicle flow. Overtaking violates the FIFO rule for traffic propagation on links, 
although it might happen on two-lane links. We consider traffic propagation on 
link a for two time instants t and t + tlt in continuous time problems. Denote 
the link travel time for flows entering link a at time t as Ta(t). The travel time 
for flows entering link a at time t + tlt is Ta(t + tlt). When the summation 
of link travel time at time t + tlt plus tlt is smaller than the link travel time 
at time t, i.e., Ta(t) > Ta(t + tlt) + tlt, overtaking will occur so that FIFO is 
violated. Because flows entering link a during time t + tlt will exit the link 
after clock time t + tlt + Ta (t + tlt) which is earlier than the clock time t + Ta (t), 
the exiting time for flows entering link a at time t. 

Thus, if we require that overtaking should not occur, we must allow the 
clock time t+Ta(t), when flows entering at time t must exit link a, to be smaller 
than the clock time t + tlt + Ta(t + tlt), the exiting time for flows entering link 
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a at time t + tlt. It follows that 

t + Ta(t) < t + tlt + Ta(t + tlt) (4.26) 

Dividing the above equation by tlt, we obtain 

1 Ta(t + tlt) - Ta(t) 
+ tlt > 0 (4.27) 

Taking the limit of the above equation (tlt -+ 0), 

(4.28) 

or 
(4.29) 

The above condition must be met to avoid overtaking in any dynamic route 
choice model using link travel time functions in the flow propagation con­
straints. If the decreasing rate of travel time on any link a exceeds 1, overtaking 
will occur. 

Even with the flow propagation constraints in a general discrete time 
model, the FIFO constraints may still be violated when the time interval is 
quite large. For example, assume link travel times at instants t and t + tlt are 
2 minutes and 40 seconds, respectively. If tlt = 1 minute, then 

Ta(t + tlt) - Ta(t) 
tlt 

40 - 120 
-6-0- = -1.33 < -1 (4.30) 

Thus, overtaking does occur in this example. However, condition (4.27) can 
be satisfied by choosing appropriate link length and time interval length in a 
discrete time environment. 

Some nonconvex conditions can be introduced to guarantee FIFO condi­
tion (4.27). However, those constraints greatly increase the complexity of the 
model and its solution. In the continuous time environment, FIFO condition 
(4.27) is generally satisfied by realistic travel time functions such as those pro­
posed in Chapter 16. As shown there, our proposed link travel time function 
for a signal-controlled arterial has three parts: 

1. an uncongested cruise time over the first part of the link; 

2. a queuing delay at the exit part of the link; 

3. a uniform delay due to signal setting. 

Since the major delay is the queuing delay which assumes FIFO, the condition, 
Ta(t) > -1, will not occur ifthe link travel time function is validated using real 
traffic flow data. 

Our major concern is the overtaking problem in discrete models. In 
particular, overtaking may occur in the afternoon peak period when traffic 



4.5. Link Capacity and Oversaturation 93 

flow is declining rapidly together with travel time. Recall that by equation 
(4.30), overtaking does not occur when 

Ta(t + ~t) - Ta(t) 
---'--~-'-t---'--'- > -1 (4.31) 

Thus, the length of time interval ~t and the link travel time Ta(t), or the link 
length, determine whether overtaking occurs or not. Note that the link length 
determines the free flow travel time, which is a major factor affecting equation 
(4.31) because the queuing delay assumes FIFO on the link. If the time interval 
~t increases, link travel time Ta(t) must be smaller or the link must be shorter 
so that equation (4.31) holds. If time interval ~t decreases, link travel time 
Ta(t) must be higher or the link must be longer in order for equation (4.31) to 
hold. 

The detailed values of time interval ~t and link length associated with 
any specific link travel time function should be determined using numerical 
experiments in any practical application. In general, overtaking will not occur 
for most definitions of link lengths (over 100 feet) and time intervals (shorter 
than 2 minutes) if the free flow speed is assumed to be 50 miles/hour in the 
experiment. However, as we note in discrete models, no matter how accurate 
the link traffic dynamics model is, overtaking or a "jump" may still occur when 
the time interval is too large. On the other hand, for most problems, we are 
only interested in the aggregate behavior of flows and FIFO is not so important 
in those situations. Furthermore, we should note that the FIFO assumption 
itself is also an approximation of reality. 

4.5 Link Capacity and Oversaturation 

There are two basic constraints for link capacity. The first constraint is the 
maximal number of vehicles on the link. The second constraint is the maximal 
exit flow rate from the link. More detailed analyses of their impacts on dynamic 
network models are discussed in Chapter 16. 

4.5.1 Maximal Number of Vehicles on a Link 

Let la denote the length of link a and earn denote the maximal traffic density 
(vehicles/mile). The maximal number of vehicles that link a can accommodate 
is laearn. The number of vehicles on link a must be less than or equal to the 
maximal number of vehicles on the link. It follows that 

'Va (4.32) 

This constraint applies for any dynamic network model. Since this constraint 
involves only state variables, it could be added to the formulation without in­
curring any analysis problem in our desired optimality conditions for optimal 
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control models. However, the computational algorithm would need to be re­
vised. When solving a route choice problem including the above constraint, we 
could add a penalty term to the objective function and solve it as an ordinary 
dynamic route choice problem. 

4.5.2 Maximal Exit Flow from a Link 

Another constraint concerns the exit flow capacity vam at the exit of a link. It 
follows that 

Va (4.33) 

In a network, the exit capacity constraint for an upstream link is also an in­
flow capacity constraint for downstream links. This constraint can be added 
directly in the formulation or combined in the link travel time functions. If 
it is directly added in the optimal control formulation, more analysis of the 
optimality conditions of dynamic network models is necessary when the exit 
flow capacity is reached. Moreover, the computational algorithm needs to be 
revised. A method of combining this constraint with link travel time functions 
is discussed in Chapter 16. 

In most of our dynamic traffic network models, we consider this exit 
capacity constraint in the travel time functions. Thus, it is not necessary to 
define an explicit constraint in these network models. 

4.5.3 Constraints for Spillback 

Oversaturation may occur anywhere and during any time interval when traf­
fic demand exceeds capacity. When queues at critical intersections develop 
upstream, then they cause the so-called spill back problem. 

In an oversaturated situation, continuing excess demand relative to sup­
ply could transform local oversaturation to regional oversaturation. Thus, in 
dynamic network models, corresponding constraints should be formulated to 
reflect this phenomenon. In an advanced control/assignment framework, those 
constraints should be consistent with each type of traffic control strategy. The 
two main types of traffic control strategies are: 1) minimize delay and stops; 
2) keep traffic moving or maximize productivity (Lieberman, 1993). We leave 
the control policy for further study in the context of combined dynamic travel 
choice/signal control models. Here, we only formulate constraints that describe 
physical spill back queues. 

An extreme case occurs if the queue on link a approaches the maximum, 
i.e. xa(t) = laeam. In this situation, the queue may extend into upstream 
links, which causes a spillback problem. However, if the above constraint as 
well as upper bound constraints for cumulative O-D departures and associated 
access delays at origin nodes are added in the assignment problem, the spillback 
problem can still be handled in our dynamic traffic network models. 

When a spillback queue develops upstream towards origins, such as park­
ing lots, queuing delays at origins will occur. This is an additional constraint 
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for dynamic network models. We construct a dummy link b associated with 
each origin node r; see Figure 4.6. The state equation for any origin r is as 
follows: 

dx' (t) 
_bp _ _ fr'(t) _ ' (t) 

dt - p vbp Vb,p, r, S; bE rs. (4.34) 

Lf;'(t) = r'(t) Vr,s. (4.35) 
p 

XS(t) 

fret) 

bp' vS,jt) 

- ..... ------~ ~ · · · · · • 0- · · · · · · · ® 
Link b 

Figure 4.6: Example of Spill back 

We assume the number of spill back vehicles at time 0 is o. It follows that 

x' (0) - 0 bp - Vb,p, r, S; b E rs. (4.36) 

Thus, the flow conservation equation for origin r should be revised as 

L u~~(t) = Vbp(t) Vb,p, r, S; b E rs. (4.37) 
aEA(r) 

Of course, we also need the flow propagation constraint for dummy link b. 
We assume there is no upper bound for the queue length xb(t) since an origin 
always has enough capacity to accommodate vehicles. The queuing delay at 
the origin is as follows 

Vb E rs (4.38) 

where 

Xb(t) = L L Xbp(t) Vb(t) = L L Vbp(t) 
p p 

The exact form of this formula should be associated with specific queuing pat­
terns at origin nodes. Figure 4.7 illustrates the queuing delay at origin r. 
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4.6 Summary of Notation 

Xa(t) 
ua(t) 
va(t) 
Ya(k) 

PaCk) 
qa(k) 
r'(t) 

rS(t) 

er'(t) 
Er'(t) 

Er'(k) 

(J'r. (t) 
AU) 
BU) 
Ta(t) 
faCt) 

11;' (t) 

* state variable 

number of vehicles on link a at time t (main problem variable) * 
inflow rate into link a at time t (main problem variable) ** 
exit flow rate from link a at time t (main problem variable) ** 
number of vehicles on link a at the beginning of time 
interval k (subproblem variable) 
inflow into link a during interval k (subproblem variable) 
exit flow from link a during interval k (subproblem variable) 
departure flow rate from origin r toward destination s 
at time t (given) 
cumulative number of departing vehicles from origin r to 
destination s by time t (given) 
arrival flow rate at destination s from origin r at time t ** 
cumulative number of vehicles arriving at destination s 
from origin r by time t (main problem variable) * 
cumulative number of vehicles arriving at destination s 
from origin r by time t (subproblem variable) 
instantaneous travel time for link a at time t 
instantaneous route travel time for route P between (r, s) at 
time t 
minimal instantaneous route travel time between (r, s) at time t 
set of links whose tail node is j (after j) 
set of links whose head node is j (before j) 
actual travel time over link a for flows entering link a at time t 
estimated actual travel time over link a for flows entering 
link a at time t 
actual travel time for route P between (r, s) for flows 
departing origin r at time t 
minimal actual route travel time between (r, s) for flows 
departing origin r at time t 

** control variable 

4.7 Notes 

Flow conservation constraints are intuitive and essential for any dynamic net­
work model. In contrast with static traffic network models, there are two kinds 
of travel times in a dynamic traffic network model: instantaneous travel time 
and actual travel time. These two kinds of travel times reflect the dynamic 
nature and complexity of dynamic traffic problems. 

Flow propagation constraints can also be represented by some alterna­
tive constraints which imply flow propagation in flow conservation constraints. 
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Cumulative Number of Departures 

Timet 
o t 

Figure 4.7: Queuing Delay at Origin r 

Those models include traffic simulation models and the hydrodynamics method. 
One recent example is the cell transmission model proposed by Daganzo (1993) 
which assumes traffic flow propagation by cell transmission (flow transfers from 
cell to cell, where a cell is a small link segment). The advantages ofthose mod­
els are that link flow propagation is directly represented and link travel times 
are directly provided, while link travel time function is not presented in the 
model. For more discussion on FIFO, readers may refer to Carey (1992). De­
tailed discussion on oversaturation and spill back can be found in Lieberman 
(1993). 



Chapter 5 

Instantaneous Dynamic 
User-Optimal Route Choice 
Models 

In this chapter, we discuss optimal control models for instantaneous dynamic 
user-optimal route choice problems. Using a network with two parallel routes, 
we first present an example to illustrate the instantaneous dynamic user-optimal 
concept in Section 5.1. The general definition of instantaneous dynamic user­
optimal state is given in Section 5.2. Then, we present three instantaneous 
dynamic user-optimal route choice models. Model 1 is described in Section 5.3. 
In Section 5.4, the equivalence of Model 1 with DUO route choice is demon­
strated by proving the equivalence of the first order necessary conditions of the 
model with the instantaneous DUO route choice conditions. In Section 5.5, the 
second DUO model employing a different link travel time function assumption 
is formulated, and the equivalence of Model 2 with the instantaneous DUO 
route choice conditions is also demonstrated. In Section 5.6, the third instan­
taneous DUO model employing a simpler link travel time function assumption 
is formulated, and its equivalence with the instantaneous DUO conditions is 
also demonstrated. Finally, we present a discrete-time numerical example in­
dicating that this class of models yields realistic results. 

5.1 An Example with Two Parallel Routes 

Consider a network with one O-D pair and two parallel routes (see Figure 5.1). 
Assume that there exists only one bottleneck on each route. For simplicity, 
we assume that the bottleneck is close to the entry point on each route. Then 
the route travel times are assumed to depend on the inflow rate and have the 
following simple form: 

(5.1) 
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(5.2) 

1 

2 

Figure 5.1: Example Network 

Suppose there is a departure flow /(t) = 0.5t from origin r to destination s at 
time t E [0,4]. Flow conservation at origin r requires that 

(5.3) 

In addition, the inflows must be nonnegative, i.e., 

(5.4) 

The dynamic user-optimal route choice criterion requires that the departing 
flow use the minimal travel time route. It follows that 

(5.5) 

Solving equations (5.3)-(5.5), we obtain the optimal inflows as follows: 

ui(t) = { 
0.5t if t < 2 
0.1875t + 0.625 if t > 2 

u;(t) = { 
o. if t < 2 
0.3125t - 0.625 if t > 2 

The corresponding optimal route travel times are 

ci(t) = { 10. + 2.5t ift < 2 
13.125 + 0.9375t ift > 2 

c;(t) = { 15. ift < 2 
13.125 + 0.9375t if t 2: 2 

The minimal route travel time (jr. (t) is 

r'(t) _ { Cl(t) = 10. + 2.5t ift < 2 
(j - ct(t) = c;(t) = 13.125 + 0.9375t if t > 2 
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The optimal inflows and optimal route travel times are illustrated in Figure 
5.2. Thus, the dynamic user-optimal route choice conditions for this example 
can be summarized as follows: 

a = 1,2; (5.6) 

if U a > 0 a = 1,2; (5.7) 

(5.8) 

5.2 Definition of Instantaneous DUO State 

We now consider a general transportation network. We define a decision node 
for each route p of each O-D pair as any node on the route including the ori­
gin. The instantaneous route travel time between a decision node and the 
destination node is calculated using the currently prevailing link travel times. 
Significantly, with many current traveler information systems, such as radio 
broadcasts of traffic conditions, the information provided to travelers on free­
ways is the estimated instantaneous route travel time. Thus, at present many 
travelers do choose routes based on current or instantaneous travel times. 

Consider the flow originating at node r at time t and destined for node 
s. There is a set of routes {p} between O-D, pair (r, s). In general, for any link 
a and any O-D pair rs, link a is defined as being used at time t if u~' (t) > o. 
Furthermore, a route p between rand s is defined as being used at time t if 
u~~(t) > 0, where link a is the first link on route p from r to s. The above 
general definition will be used in Chapter 12 for general variational inequality 
models for instantaneous DUO route choice problems. 

In this chapter, we formulate three alternative optimal control models, 
each of which equivalent to the instantaneous DUO route choice conditions. 
Our objective here is to explore the complexity of the problem. As shown in 
Chapter 12, these optimal control models are specific versions of a more general 
variational inequality model. Thus, in this chapter we use more restricted 
definitions of used links and routes as follows. For any link a on any route from 
origin r to destination s, link a is defined as being used at time t if u~' (t) > 0 
and v~' (t) > O. Furthermore, a route p between rand s is defined as being 
used at time t if u~~(t) > 0 and v~~(t) > 0 for all links a on route p from r to 
s. 

We assume that the time-dependent origin-destination trip pattern is 
known a priori. In other words, the departure times of travelers are given. The 
instantaneous dynamic user-optimal (DUO) route choice problem is to deter­
mine vehicle flows at each instant of time on each link resulting from drivers 
using minimal-time routes under the currently prevailing travel times. In this 
chapter, we consider the following dynamic generalization of the conventional 
static user-optimal state. 
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Optimal Inflows 
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Figure 5.2: Dynamic User-Optimal Inflows and Travel Times 



5.3. Instantaneous Route Choice Modell 

Link-Time-Based Instantaneous DUO State: If, for each O-D 
pair at each decision node at each instant of time, the instantaneous 
travel times for all routes that are being used equal the minimal 
instantaneous route travel time, the dynamic traffic flow over the 
network is in a link-time-based instantaneous dynamic user-optimal 
state. 
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In Chapter 12, we generalize the above definition to the situation of travel 
disutility and multi-group travelers instead of travel times for a single group of 
travelers only. 

Although the instantaneous user-optimal travel times for all routes that 
are being used are equal at each decision node at each instant of time, route 
flows with the same departure time and the same origin-destination may actu­
ally experience somewhat different route travel times. This is because the route 
time may subsequently change due to changing network traffic conditions, even 
though at each decision node the flows select the route that is currently the 
best. 

In optiinal control theory terminology, the dynamic user-optimal route 
choice problem is to find the dynamic trajectories of link states and inflow and 
exit flow control variables, given the time-dependent O-D flow requirements, 
the network and the link travel time functions. The formulation of the problem 
in this chapter is based on the underlying choice criterion that each traveler 
uses the route that minimizes his/her instantaneous travel time when departing 
from the origin or any intermediate node to his/her destination. This route 
choice rule implies that in a travel-time-based instantaneous dynamic user­
optimal state, the trajectories of the link flow states and inflows and exit flows 
are such that the instantaneous travel times at each decision node of all used 
routes connecting any given O-D pair will be identical and not greater than 
the instantaneous travel times of routes which are not being used. 

5.3 Instantaneous Route Choice Modell 

5.3.1 Model Formulation 

Recall from Chapter 4 that the instantaneous travel time ca[xa(t), ua(t), va(t)), 
or simply ca(t), over link a is assumed to be dependent on the number of 
vehicles xa(t), the inflow ua(t) and the exit flow va(t) on link a at time t. 
This instantaneous link time is the travel time that would be incurred if traffic 
conditions on the link remain unchanged while traversing the link. In Model 
1, we assume the instantaneous travel time ca(t) on link a is the sum of two 
components: 1) an instantaneous flow-dependent running time gla[Xa(t), ua(t)) 
over link aj 2) an instantaneous queuing delay g2a[Xa(t), va(t)). It follows that 

(5.9) 

The two components gla[Xa(t), ua(t)] and g2a[Xa(t), Va(t)] of the time-dependent 
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link travel time function ca[xa(t), ua(t), va(t)] are assumed to be nonnegative 
and differentiable with respect to xa(t), ua(t) and xa(t), va(t), respectively. The 
instantaneous travel time function 'I/J;' (t) for each route p between O-D pair 
(r, s) is 

'I/J;'(t) = L ca[xa(t), ua(t), va(t)] Vr,s,p; (5.10) 
aEr,p 

the summation is over all links a in route p from origin r to destination s. 
Using optimal control theory, the equivalent optimization model of the 

instantaneous dynamic user-optimal route choice problem (Modell) is for­
mulated as follows. 

min 
u,v,x,e,E 

i T {iua(t) i va(t) } L gla[xa(t),w]dw + g2a[xa(t),w]dw dt (5.11) 
o a 0 0 

s.t. 
Relationship between state and control variables: 

dxr, (t) ap _ r, (t) _ rs (t) Va,p, r, S; (5.12) dt - uap vap 

dEr'(t) 
~t = e;"(t) Vp, r; s =I- r; (5.13) 

Flow conservation constraints: 

r"(t) = L L u~~(t) Vr,s; (5.14) 
aEA(r) P 

L v~~(t) = L u~~(t) Vj,p, r, s;j =I- r, S; (5.15) 
aEB(j) aEA(j) 

L L v~~(t) = er'(t) Vr, S; s =I- r; (5.16) 
aEB(,) P 

Flow propagation constraints: 

X~~(t) = L {x;;;[t + Ta(t)]- x;;;(t)} + {E;'[t + Ta(t)]- E;'(t)} 
bEp 

Va E B(j); j =I- r; p, r, s; (5.17) 

Definitional constraints: 

L u~~(t) = ua(t), L v~~(t) = Va(t), Va; (5.18) 
r.p r.p 

L x~~(t) = xa(t), Va; (5.19) 
r,p 
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Nonnegativity conditions: 

vro (t) > 0 ap _ 

ero(t) > 0 p -, Ero(t) > 0 p -, 

Boundary conditions: 

E;O(O) = 0, 

xro (0) = 0 ap , 

'rip, r, Sj 

'rIa,p, r, s. 

'rIa,p, r, Sj 

'rip, r, Sj 
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(5.20) 

(5.21 ) 

(5.22) 

(5.23) 

The objective function terms are similar to the objective function of the well­
known static user-optimal (UO) model. The first two constraints (5.12)-(5.13) 
are state equations for the flow on each link a and for cumulative arrivals at 
each destination. Equations (5.14)-(5.16) are flow conservation constraints at 
each node including origins and destinations. The other constraints include flow 
propagation constraints, definitional constraints, nonnegativity, and boundary 
conditions. In addition, we need several definitional constraints as follows: 

L v:~(t) = va(t), 
rop rop 

Lx~~(t) = x~O(t), 
p ro 

L e;o (t) = ero (t). 
p 

In summary, the control variables are u~~(t), v~~(t), and e;o (t)j the state vari­
ables are x~~(t) and E;o (t). Modell can be solved by discretizing time so 
that it becomes an ordinary nonlinear program and by using a fixed estimate 
of each link travel time Ta(t), which is updated in an iterative diagonalization 
(or relaxation) fashion. 

We illustrate the constraints of Modell using the example network with 
three links in Figure 5.3. Assume that O-D flow P4(t) = 10 for a short time 
period t E [O,€] (€ ~ Tl(t» and f14(t) = 0 at time t > €. Conservation of 
flow constraints (5.14) require that u14(t) = 10 at time t E [0, €] (flow enters 
link 1). Thus, x14 (t) becomes positive by constraints (5.12) (vehicles are on 
link 1). When x14(t) decreases, constraint (5.12) requires vI4 (t) to become 
positive (flow exits link 1), and constraint (5.15) for node 2 requires u~4(t) to 
equal vI4(t) (flow enters link 2). Analogously, constraint (5.12) requires x~4(t) 
to increase, since u~4(t) has become positive. Thus, the conservation of flow 
constraints (together with the flow propagation constraints) requires that flow 
moves from the origin to the destination, successively entering a link, staying 
on the link, and then exiting the link. 

The flow propagation constraints (5.17) for this network are now statedj 
since there is only one route, we suppress the route subscript p and begin with 
link 3. 

(5.24) 
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Figure 5.3: Example Network with Inflow 

(5.25) 

X~4(t) {X~4[t + Tl(t)) - X~4(t)} + {X~4[t + Tl(t)) - X~4(t)} 

+ {E14[t + Tl(t)) - E14(t)} (5.26) 

These constraints ensure that flows stay on each link for an amount of time 
consistent with the link's travel time. For example, (5.22) and (5.24) require 
that E14[t + T3(t)) = 0 until x!4(t) becomes positive. When x!4(t) does become 
positive, E[t + T3(t)) must also become positive. Only then can e[t + T3(t)) 
become positive (see (5.13) and note that this is route p = 1), and thus by 
(5.16), only then can v!4[t + T3(t)) become positive. This ensures that v!4(t) 
cannot become "prematurely" positivej i.e., flows must stay on link 3 for an 
amount of time consistent with T3(t). 

Constraints (5.25) require that flow on link 2 at time t must result in 
either: 

1. added flow on link 3 at time t + T2(t) (in case any existing flow on link 3 
at time t has not yet cleared by time t + T2(t))j or 

2. added arrivals at the destination at time t + T2(t) (if link 3 is very short, 
vehicle flows at the end of link 2 may have traversed link 3 and exited 
destination node 4 at time t + T2(t), while vehicle flows at the beginning 
of link 2 may still be on link 3 at time t + T2(t)). 

To illustrate constraint (5.25) further, suppose that vehicle flows first appear 
on link 2 at time to: x~4(to) > 0, but x~4(t) = 0 for t < to. Suppose also that 
there are no vehicle flows on link 3 and none have exited at time to' Thus, 0 = 
x~4(to-f) (since vehicles first appear on link 2 at time to) = x!4[to-f+T2(to-f)) 
(by (5.25)) for any f ~ to' Thus, x~40 must equal zero at all times prior to time 
to + T2(to), so vehicles must stay on link 2 during the entire period [to, T2(to))' 
This insures that x~4(t) propagates consistently with travel timeT2(t) over link 
2 at each instant t. 

Analogously, constraints (5.26) require that flow on link 1 at time t must 
result in either: 

1. added flows on link 2 or 3 at time t + Tl(t) (in case flows on links 2 and 
3 at time t have not yet cleared by time t + Tl(t))j or 

2. added arrivals at the destination at time t + Tl(t). 

Thus, this equation insures that X~4(t) propagates consistently. 
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5.3.2 Optimality Conditions 

The extended Hamiltonian function for the instantaneous DUO route choice 
program (5.11)-(5.23) is constructed as 

1i ~ {1"6(t) gla[Xa(t), w]dw + 1"6(t) g2a[Xa(t), w]dw } 

+ L L '\~~(t)[u~~(t) - v~~(t)] + L L L v;· (t)e;' (t) 
r. ap 

+ L L 17~' (t)[r' (t) - L L u~~(t)] 
aEA(r) P 

r. itr. p aEB(j) aEA(j) 

+ L L L Il~~(t) {X~~(t) + L Xb;(t) + E;' (t) 
r.p jtr aEB(j) bEft 

L x;;;[t + Ta(t)]- E;' [t + Ta(t)]} 
bEft 

where '\~~(t) are Lagrange multipliers associated with the link state equations, 
v;'(t) are Lagrange multipliers associated with the destination node state equa­
tions, 17j;(t) are Lagrange multipliers associated with the node flow conserva­
tion equations, and Il~~(t) are the Lagrange multipliers associated with the flow 
propagation equations. For each link a which points from node I to node m, 
the first order necessary conditions of instantaneous DUO route choice program 
(5.11)-(5.23) include 

VI; a E A(l), p, r, s, (5.27) 

and r, () art 
Uap t au~~(t) = 0 Va,p, r, S; (5.28) 

a~~t) = g2a[Xa(t), va(t)]- '\~~(t) + 17~p(t) ~ 0, 

Vm; a E B(m),p, r, s, (5.29) 

and r,() art 
Vap t av~~(t) = 0 Va,p, r, S; (5.30) 
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and 

81i 
-->0 
8e~3(t) - , Vp,r,s, 

er3(t)~ = 0 
p 8e~3 (t) 

Vp,r,s; 

dA~~(t) _ 81i 
dt 8x~~(t) 

Va,p, r, S; 

u:~(t) ~ 0, V~~(t) ~ 0, 

er'(t) > 0 p -, 

81i 
8E;3(t) 

X:~(t) ~ 0, 

Er3(t) > 0 p -, 

Vp,r,s; 

Va,p, r,s; 

Vp,r,s. 

Note that O"~;(t) = O"~'(t) when node 1 equals origin r. 

5.3.3 DUO Equivalence Analysis 

(5.31 ) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

Since the objective function of optimal control program (5.11)-(5.23) is convex 
with respect to the control variables, there is a unique optimal solution. We now 
show that the set of link states, inflows and exit flows that solves this program 
also satisfies the travel-time-based instantaneous dynamic user-optimal route 
choice conditions. This equivalence is demonstrated below by proving that 
the first order necessary conditions for the optimal control program (5.11)­
(5.23) are identical to the instantaneous dynamic user-optimal conditions. The 
equivalence between the instantaneous DUO route choice conditions and the 
first order necessary conditions of the optimal control program means that the 
instantaneous DUO route choice conditions are satisfied at the optimal solution 
of this program. 

Combining equations (5.27)-(5.28) with equations (5.29)-(5.30), the fol­
lowing equations can be derived for each link a which points from node 1 to 
node m. 

81i 81i () rs() r.() 
au~~(t) + av~~(t) = Ca t - O"'p t + O"mp t ~ 0, 

Va E A(1) n B(m);p, r, S; 

and Va,p, r, S; 

and Va,p, r, s. 

(5.37) 

(5.38) 

(5.39) 

For route p between origin node r and destination node s, let i denote node 
r or any intermediate node on this route. Denote route p as (i, 1,2,···, n, s). 
T?e instantaneous travel time 'IjJ¥ (t) for the remaining route p between i and 
SIS 

'IjJ~3(t) = :E Ca[Xa(t), ua(t), Va (t)] Vi E p, r, s. (5.40) 
aEi3p 
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Suppose we consider a set of routes p from r --+ i --+ s and the corre­
sponding set of subroutes p. The flow conservation constraint at node i can be 
revised as 

Vi,p, r, S; i oj; r, s. (5.41) 
aEB(i) aEA(i) 

The fourth term in the Hamiltonian function should be revised as 

r, i#;r. P aEB(j) aEA(j) 

so that (1'[;(t) = (1'['(t) for the set of subroutes p. Note that all derivations 
from equation (5.27) to equation (5.39) will follow for this set of subroutes p. 
Now if route p is being used at time t, u~'(t) and v~'(t) are both positive by 
definition. Thus, by (5.37)-(5.39), 

tP~· (t) [(1'[. (t) - (1'1' (t)] + [(1'l;(t) - (1';;(t)] + ... 
+ [(1'~'_l,p(t) - (1'~~(t)] + [(1'~~(t) - (1'~'(t)] 

(1'i' (t) - (1'~'(t) 

for every route p being used at time t. Note that (1'[;(t) = (1'[·(t) in the above 
equation. Thus, routes being used from i to s at time t have travel times equal 
to [(1'[·(t) - (1'~' (t)]. More generally, we obtain the following for each remaining 
route p between i and s. 

u~~(t) v~;(t) [tP~·(t) - (1'i·(t) + (1':. (t)] = 0 Va, i,p, r, s;a E p, i E p; (5.42) 

Vi E p, r, S; 

Va,p, r, S; a E p.' 

(5.43) 

(5.44) 

Conditions (5.42)-(5.44) hold for each remaining route p between i and 
s, where i is any intermediate node (including the origin) between each O-D 
pair (r, s) in the network. For route p connecting node i and destination s, if 
each link is being used at time t, then u~~(t) and v~~(t) will be positive, so 
that the quantities in brackets in equation (5.42) will be zero, i.e., equation 
(5.43) will hold as an equality. Thus, routes which are being used at time t 
have travel times equal to [(1'['(t) - (1'~·(t)]. . 

Equation (5.43) states that the difference of Lagrange multipliers [(1'[' (t)­
(1'~' (t)] of node-destination pair (i, s) is less than or equal to the instantaneous 
travel times on all routes connecting this node-destination pair (i, s). Therefore, 
this difference of Lagrange multipliers [(1'['(t)-(1'~'(t)] equals the instantaneous 
minimal route travel time between node i and destination s. For any remaining 
unused route p between i and s, at least one link a in route p is not being used 
at time t. Thus the inflow u~~(t) or the exit flow v~~(t) is equal to zero, so 
that (5.43) may hold as a strict inequality, i.e., the instantaneous travel time 
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'ljJ~' (t) on remaining route p will not be less than the instantaneous minimal 
route travel time [ai'(t) - a~'(t)]. 

Furthermore, if we consider any pair of decision nodes i and j between 
origin r and destination s, the above results also hold for each sub-route be­
tween i and j. Thus, at the optimal solution to Modell, flows always use the 
instantaneous minimal time sub-routes, even if all links on an entire route are 
not in use at the same time. 

Since intermediate node i could be origin node r, the above results also 
hold for routes from r to s. With the above interpretation, it is now clear 
that equations (5.42)-(5.44) state the travel-time-based instantaneous dynamic 
user-optimal conditions. This optimal control program (5.11)-(5.23) can be 
referred to as an instantaneous DUO route choice program or an instantaneous 
DUO equivalent optimal control problem. 

5.4 Instantaneous Route Choice Model 2 

5.4.1 Model Formulation 

Various DUO route choice models can be formulated with alternative link travel 
time assumptions. In Modell, the instantaneous travel time ca(t) over link a 
is assumed to be dependent on the number of vehicles xa(t), the inflow ua(t), 
and the exit flow va(t) on link a at time t. In this section, the instantaneous 
link travel time ca(t) is assumed to be dependent only on xa(t) and va(t): 

(5.45) 

The time-dependent link travel time function ca[xa(t), va(t)] is again assumed 
to be nonnegative and differentiable for all xa(t) and va(t). 

Using optimal control theory, the equivalent optimization program of 
the instantaneous dynamic user-optimal route choice problem (Model 2) is 
formulated as follows. 

mm 
u,v,x,e,E 

f {ra(t) } Jo ~ Jo ca[xa(t),w] dw dt (5.46) 

s.t. constraints (5.12)-(5.23). 

The objective function is similar to the objective function of the well-known 
static user-optimal model. The constraints are identical to those of Model 1. 

In Modell, the instantaneous travel time Ca[xa(t), ua(t), Va(t)] over link 
a is assumed to be the sum of two components: 1) an instantaneous flow­
dependent running time Yla[Xa(t), ua(t)] over link a, and 2) an instantaneous 
queuing delay Y2a[Xa(t), va(t)]. If Yla[Xa(t), ua(t)] is set equal to zero and the 
queuing delay Y2a[Xa(t), va(t)] is extended to include the running time, Modell 
is equivalent to Model 2. We prove in the next section that the unique optimal 
solution to Model 2 is in a travel-time-based instantaneous DUO state. 
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5.4.2 Optimality Conditions 

The extended Hamiltonian for Model 2 is constructed as 

, rt, aEA(r) P 

+ E E E O";;(t)[ E v~;(t) - E u~;(t)] 
r, itr' p aEB(j) aEA(j) 

+ E EO":'(t)[ E E V~;(t) - er'(t)] 
r ,tr aEB(,) P 

+ E E E Il~;(t) {x~;(t) + L X;;;(t) + E;'(t) 
r,p Nr aEB(j) bEp 

L X;;;[t + Ta(t)]- E;'[t + Ta(t)]} 
bEp 

where A~~(t) are Lagrange multipliers associated with the link state equations, 
v;'(t) are Lagrange multipliers associated with the destination node state equa­
tions, O"j;(t) are Lagrange multipliers associated with the node flow conserva­
tion equations, and Il~;(t) are Lagrange multipliers associated with the flow 
propagation equations. For each link a which points from node I to node m, 
the first order necessary conditions of Model 2 include 

81£ H' ( ) r, ( ) 8u~~(t) = "ap t - O"lp t ~ 0, V/j a E A(l), p, r, s, (5.47) 

and ur , (t) 81£ = 0 
ap 8u~~(t) 

Va,p,r,Sj (5.48) 

8v~t) = ca[x(t), V(t)]-A~~(t)+O";;:p(t) ~ 0, Vmja E B(m),p,r,s, (5.49) 

and 
81£ 

vr , (t) = 0 
ap 8v~~(t) 

Va,p,r,Sj (5.50) 

~>o 
8e;'(t) - , 

Vp,r,s, (5.51) 

and er'(t)~ = 0 
p 8e;' (t) 

Vp,r,Sj (5.52) 
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d'\~~(t) _ 81i 
Va,p, r, Sj (5.53) dt 8x~~(t) , 

dlP(t) 81i 
(5.54) -p--- Vp,r,sj 

dt 8E;"(t) 

u~~(t) ~ 0, v~~(t) ~ 0, x~~(t) ~ 0, Va,p,r,sj (5.55) 

er"(t) > 0 p -, Er"(t) > 0 p -, Vp,r,s. (5.56) 

The equivalence of the instantaneous dynamic user-optimal conditions 
and Model 2 is demonstrated by showing that the unique trajectories of link 
states, inflows and exit flows that solve Model 2 also satisfy the instantaneous 
dynamic user-optimal conditions. As with Modell, this equivalence is demon­
strated by proving that the first order necessary conditions for Model 2 are 
identical to the instantaneous dynamic user-optimal conditions. 

Combining equations (5.47)-(5.48) with equations (5.49)-(5.50), the same 
equations as equations (5.42)-(5.44) for Modell can be derived for each link a 
which points from node I to node m. Thus, we follow the derivation of opti­
mality conditions for Modell and obtain the same equations (5.37)-(5.39) for 
each remaining route p between intermediate node i and destination s. Sim­
ilarly, we can obtain the same interpretation of the optimality conditions for 
Model 2 as those for ModelL It is now clear that the optimality conditions of 
Model 2 state the instantaneous dynamic user-optimal route choice conditions. 
Therefore, Model 2 is an equivalent instantaneous DUO route choice program. 

5.5 Instantaneous Route Choice Model 3 

Now, the instantaneous link travel time ca(t) is assumed to depend only on 
Xa(t): 

(5.57) 

The time-dependent link travel time function ca[xa(t)] is again assumed to be 
nonnegative and differentiable for all xa(t). In addition, the actual link travel 
time Ta(t) is introduced, and also assumed to be dependent only on xa(t), Le., 

(5.58) 

Using optimal control theory, the equivalent optimization program of 
the instantaneous dynamic user-optimal route choice problem (Model 3) is 
formulated as follows. 

mm 
u,11,x,e,E 

(T {["a(t) } 
10 ~ 10 Ca[Xa(t)] dw dt (5.59) 

s.t. constraints (5.12)-(5.23). 
The constraints are identical to those of Model 1 except that the flow propa­
gation constraints need to be revised. The flow propagation constraints can be 
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expressed directly based on the actual link travel time function Ta(t), instead 
of its estimate Ta(t) in a diagonalization fashion. The new flow propagation 
constraints are 

X~~(t) = L {x;;;[t + Ta (t)] - x;;;(t)} + {E;' [t + Ta (t)] - E;' (t)} 
bEp 

Va E B(j); j =P r; p, r, s. (5.60) 

The instantaneous link travel time function ca(t) in Model 3 is a special case 
of ca[xa(t), ua(t), va(t)] in Modell or ca[xa(t), va(t)] in Model 2. We can for­
mulate the extended Hamiltonian function and derive the first-order necessary 
conditions. Since the actual link travel time Ta(t) is also assumed to be depen­
dent only on xa(t), the terms in flow propagation constraints (5.60) have no 
impact on the partial derivative of the Hamiltonian function with respect to 
control variables u~~(t) and v~~(t). Following the same process as in Modell, 
the same equations as (5.42)-(5.44) for Modell can be derived for each link a 

which points from node 1 to node m. 
Thus, we follow the derivation of optimality conditions for Model 1 and 

obtain the same equations (5.37)-(5.39) for each remaining route p between 
intermediate node i and destination s. Similarly, we can obtain the same inter­
pretation of the optimality conditions for Model 3 as those for Model 1. It is 
now clear that the optimality conditions of Model 3 state the instantaneous dy­
namic user-optimal route choice conditions. Therefore, optimal control Model 
3 is an equivalent instantaneous DUO route choice program. Since the flow 
propagation constraints are expressed directly using the actual link travel time 
function Ta(t), instead of its estimate Ta(t) in a diagonalization fashion, Model 
3 is a complete optimal control model. It will be shown in Chapter 12 that it 
is equivalent to a variational inequality. 

5.6 A Numerical Example 

We illustrate the solution of Modell with the 4-link, 4-node test network shown 
in Figure 5.4. A symmetrical network is intentionally used to demonstrate that 
the route travel times in the solution are equal. To convert OCP model (5.11)­
(5.23) into an NLP, assignment time period [0, T] is subdivided into K = 5 
small time intervals, and the OCP is reformulated as a discrete time NLP. 
We then use an algorithm based on the Frank-Wolfe and diagonalization tech­
niques to solve this NLP. This algorithm was coded in FORTRAN and solved 
on a IBM 3090-300J. The details of the algorithm are presented in Chapter 
6; only computational results for a small network are given to illustrate the 
instantaneous DUO traffic flows. 

The following link travel time functions were used in the computations: 

ca(k) = gla(k) + g2a(k) 



114 Chapter 5. Instantaneous Dynamic User-Optimal Route Choice Models 

gla(k) = f31a + f32a[Ua(k)]2 + f33a[xa(k)]2 

g2a(k) = f34a + f35a[va(kW + f36a[xa(kW 

where time interval k = 1, 2, .. ,,5. Parameter values for each link travel time 
function are given in Table 5.1, and the trip table is given in Table 5.2. The 
optimal link flows and corresponding optimal link travel times are given in 
Table 5.3. The optimal route travel times are given in Table 5.4. In this 
discrete time example, xa(k) represents vehicles on the link at the beginning 
of interval k; ua(k) and va(k) represent inflow and exit flow during interval k. 

IJ-----.t2 

3J-----.t4 

Figure 5.4: Test Network 

Table 5.1: Parameters of Link Travel Time Functions 

link a f31a f32a f33a f34a f35a f36a 
1-2 1. 0.001 O. O. 0.015 0.003 
1-3 1. 0.001 O. O. 0.015 0.003 
2-4 1. 0.001 O. O. 0.015 0.003 
3-4 1. 0.001 O. O. 0.015 0.003 

Table 5.2: Required Flows from Origin 1 to Destination 4 

Time Interval k 
Flow finterval 

In this example, note from Table 5.4 that travel times on routes 1-2-4 
and 1-3-4 are equal during each interval (except for small differences result­
ing from incomplete convergence). Thus, the results indicate the existence of 
dynamic user optimality in the intuitive sense that the two routes have equal 
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Table 5.3: Optimal Numbers of Vehicles, Inflows, Exit Flows and Travel Times 

Interval Link Vehicles Inflow Exit Flow Vehicles Travel Time 
k a xa(k + 1) ua(k) va(k) xa(k) ca(k) 
1 1-2 10.0 10.0 0.0 0.0 1.:.1 
2 1-2 4.5 0.0 5.5 10.0 1.8 
3 1-2 0.0 0.0 4.5 4.5 1.4 
4 1-2 0.0 0.0 0.0 0.0 1.0 
5 1-2 0.0 0.0 0.0 0.0 1.0 
1 1-3 10.0 10.0 0.0 0.0 1.1 
2 1-3 4.4 0.0 5.6 10.0 1.8 
3 1-3 0.0 0.0 4.4 4.4 1.3 
4 1-3 0.0 0.0 0.0 0.0 1.0 
5 1-3 0.0 0.0 0.0 0.0 1.0 
1 2-4 0.0 0.0 0.0 0.0 1.0 
2 2-4 5.5 5.5 0.0 0.0 1.0 
3 2-4 4.5 4.5 5.5 5.5 1.6 
4 2-4 0.0 0.0 4.5 4.5 1.4 
5 2-4 0.0 0.0 0.0 0.0 1.0 
1 3-4 0.0 0.0 0.0 0.0 1.0 
2 3-4 5.6 5.6 0.0 0.0 1.0 
3 3-4 4.4 4.4 5.6 5.6 1.6 
4 3-4 0.0 0.0 4.4 4.4 1.3 
5 3-4 0.0 0.0 0.0 0.0 1.0 

Table 5.4: Dynamic User-Optimal Route Travel Times 

Interval Route Travel Times 
k Route 1-2-4 Route 1-3-4 
1 2.1 2.1 
2 2.8 2.8 
3 3.0 2.9 
4 2.4 2.3 
5 2.0 2.0 
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travel times in each interval, even though the two routes are only partially used; 
i.e., we do not have u~~(k) > 0 and v~~(k) > 0 for all links on the two routes. 

Note from Table 5.3 that the average travel time that vehicles incur on 
link 1-2 from the beginning of interval 2 is 1.8 intervals (some vehicles have 
smaller travel times and some have larger); 10 vehicles are on the link at the 
beginning of interval 2. Some vehicles exit during interval 2, which reduces the 
travel time in subsequent intervals. Thus, 5.5 vehicles exit during interval 2 
(decreasing the travel time to 1.4 intervals for interval 3) and 4.5 vehicles exit 
during interval 3. Note also that 5.5 vehicles are on link 2-4 at the beginning 
of interval 3, and the average travel time is 1.6 from the beginning of interval 
3. Also, 4.5 vehicles enter this link during interval 3, 5.5 vehicles exit during 
interval 3, and 4.5 vehicles exit during interval 4, reducing the travel time to 
only 1.0 for interval 5. At the beginning of interval 6 (column Xa (k + 1) in rows 
k = 5), no vehicle remains on any link. 

5.7 Notes 

5.7.1 Several Formulation Issues 

There are many possible dynamic generalizations of the static user-optimal 
route choice model. Some of them may be suitable for providing instantaneous 
information and advising vehicles of their best routes in a dynamic route guid­
ance system. Since our instantaneous DUO route choice models have a direct 
correspondence to the static UO assignment model, other static UO formula­
tions can be expected to have their DUO counterparts. Various optimal control 
formulations should be investigated and their corresponding solution charac­
teristics, such as the uniqueness of the optimal control strategies, should be 
studied. 

In Chapter 12, our instantaneous DUO route choice models are extended 
to more realistic situations when both capacity constraints and oversaturation 
constraints are taken into account. In this section, we discuss several specific 
problems encountered in our model formulations to date, in part to document 
dead ends that have been explored and rejected . 

• Time Period [0, T] 
In reality, the "travel period" is infinitely long; that is, the ongm­

destination flows never become permanently zero. Since we want a finite hori­
zon model, it is inherent that there must be a boundary condition to represent 
the artificial termination period in our models. If the time period is too short, 
travelers who do not reach the end of their paths at the end of the time horizon 
are not "using" their path, and thus they can take literally any path. This can 
be prevented by using a long enough time horizon so that all flow clears the 
network. The rolling horizon method could be used to represent more realistic 
traffic flows which never become permanently zero. 
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• Penalty and Salvage Costs 
In the development of flow propagation constraints, we initially used the 

penalty cost Da[xa(t)] to "force" the vehicle flows to continue propagation. 
Also, a salvage cost Sa [xa(T)] was used as the artificial boundary condition for 
the final time instant to clear the traffic flow in the network. These constraints 
are standard in optimal control theory. 

In reality, traffic flow will not clear and will continue to appear in the 
network in an infinite time horizon. However, since we are only able to analyze 
a finite time period, we need a boundary condition to clear the traffic of interest 
(such as peak hour traffic) at the end of the analysis period. This boundary 
condition can either be represented by salvage cost in the objective function or 
be represented by a set of physical constraints at the destination. 

Later, we introduced a set of physical constraints at the destination. 
These constraints state that the cumulative exiting vehicles from destinations 
equal some amount of cumulative vehicles departing origins. It follows that 

Vr,s (5.61 ) 

where r:; is a prespecified maximum O-D travel time, such as 60 or 120 minutes 
for a typical peak hour period. 

In our computation experience, we found that the penalty and salvage 
cost terms produced a long-tailed result; i.e., a small amount of traffic remains 
in the network for an excessively long time. This result suggested the use of 
physical constraints in the model. Thus, these terms are now represented by 
the more accurate flow propagation constraints. 

5.7.2 Properties of Models 

The definition of instantaneous DUO is similar to that given in Friesz et al 
(1989). However, in their model, the route travel costs are equal at every instant 
of time; in contrast, in our models, instantaneous route travel times equal the 
minimum instantaneous travel time only at each decision node that has flows 
to the destination. We show that our alternative definition allows the resulting 
models to equilibrate flows using route travel times based only on link driving 
times. This is a fundamental difference in the definition of instantaneous route 
travel time between their model and our models. We discuss this point further 
in the following. 

Moreover, we discuss some fundamental differences among existing dy­
namic route choice models. These models diverge at two points: 1) system­
optimal vs. user-optimal; and 2) the interpretation of route travel time. Fol­
lowing Merchant and Nemhauser (1978), Carey (1987) presented improved dy­
namic system-optimal models which considered the minimization of cumulative 
instantaneous route travel times. However, the dynamic user-optimal state was 
not considered in his models. Friesz et al (1989) presented an instantaneous 
dynamic user-optimal route choice model which did consider the equilibration 
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of instantaneous unit route travel cost. In their model, however, the instanta­
neous unit route travel cost is defined as 

Vr,s,p, (5.62) 

where the numerator of the second term is the time variation (rate of change) 
of the Lagrange multiplier Aa(t) and the denominator is the derivative of exit 
flow function ga[xa(t)] with respect to link state variable xa(t). Since both 
of these could· change from problem to problem, their presence may present a 
difficulty for the physical interpretation of the model. In contrast, our models 
only use the summation of instantaneous link travel times as the instantaneous 
route travel time: 

¢;$(t) = L ca[xa(t), ua(t), Va (t)] Vr,s,p. (5.63) 
aEr$p 

This explicit definition of instantaneous route travel time reflects the dynamic 
route choice behavior and decision criterion of travelers. It is also consistent 
with the definition of instantaneous route travel time in the DSO route choice 
models of Merchant-Nemhauser (1978) and Carey (1987). We note that it is 
not known how to formulate an optimization program which is consistent with 
our definition of instantaneous route travel time if exit flow functions instead 
of exit flow variables are used. 



Chapter 6 

A Computational Algorithm for 
Instantaneous Dynamic U ser­
Optimal Route Choice Models 

In this chapter, solution algorithms are considered for solving the instantaneous 
DUO route choice models presented in Chapter 5. A capability to solve the 
DUO route choice problem is needed for several reasons. First, it appears that 
properties of alternative models can only be fully understood by computing so­
lutions to hypothetical and real test problems. Unlike their static counterparts, 
dynamic models are sufficiently opaque that they are difficult to understand 
analytically. Second, computational solutions for standard test problems based 
on actual networks are needed to evaluate how well alternative models describe 
reality. Third, solutions for large networks are required to evaluate the poten­
tial effectiveness of proposed in-vehicle navigation and route guidance systems. 
Ultimately, such models might be used to guide the operation of such systems; 
however, the requirements of such systems are so undefined at this time that 
any discussion of algorithmic requirements is highly speculative. 

The objective of this chapter is to describe in detail an algorithm for 
solving one of the instantaneous DUO route choice models and to illustrate its 
performance with a toy network. Through the development and implementa­
tion of the algorithm, additional insights into the model's properties have been 
gained. These properties are also discussed. 

In Section 6.1, we reformulate the instantaneous DUO route choice model 
as a discrete-time nonlinear program (NLP). Then the diagonalization tech­
nique and the Frank-Wolfe algorithm are employed to solve the NLP. In the 
diagonalization procedure, the estimated link travel time is updated iteratively. 
Then we apply the Frank-Wolfe technique to solve the NLP. An expanded time­
space network is constructed in Section 6.2 so that each LP subproblem can be 
decomposed according to O-D pairs and can be viewed as a set of minimal-cost 
route problems. The flow propagation constraints representing the relation-
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ship of link flows and travel times are satisfied in modified minimal-cost route 
searches in Section 6.3 so that only flow conservation constraints for links and 
nodes remain. Since the model is convex, the discrete version should be efficient 
to solve for large networks. A numerical example is given in Section 6.4. 

6.1 The Algorithm 

6.1.1 Discrete Instantaneous DUO Route Choice Model 

The Frank-Wolfe algorithm (Frank and Wolfe, 1956) is reasonably efficient 
for solving nonlinear programming problems (NLP) with network constraints, 
and has been widely used for solving the static UO model on urban networks 
(LeBlanc et aI, 1975). They showed that solving the static UO model simpli­
fies to solving a sequence of minimal-cost route (shortest path) problems and 
line searches. Thus, the computing times can be reduced by orders of mag­
nitude for large-scale networks, as compared with solving a sequence of linear 
programming problems. 

To convert our instantaneous DUO route choice model into an NLP, 
the time period [0, T] is subdivided into K small time increments. Each time 
increment is a unit of time. Then, U a (k) represents the inflow into link a 
during interval k and va(k) represents the exit flow from link a during interval 
k. To simplify the formulation, we modify the estimated actual travel time on 
each link in the following way so that each estimated travel time is equal to a 
multiple of the time increment. 

Ta(k) = i if i - 0.5 :S Ta(k) < i + 0.5, 

where i is an integer and 0 :S i :S K. We note that this round-off method is 
used only in the flow propagation constraints. More accurate flow propagation 
constraints can be obtained by making the time intervals smaller. We also 
note that evaluation of the instantaneous link travel time function and objective 
function does not have this round-off error so that the subsequent minimal-cost 
route search does not have this round-off error. 

An optimal control program can then be reformulated as a discrete time 
NLP as follows: 

mm Z 
u,v,x,E 

+ (6.1) 

s.t. 

Va,p,r,sjk= 1,···,Kj (6.2) 
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Ero(k + 1) = Ero(k) + I: I: v~~(k) Vr;s f r;k = 1,···,J(; (6.3) 
aEB(o) P 

I: I:u~~(k)=rO(k) Vr...J. s· k - 1 ... J( . ., , -, , , (6.4) 
aEA(r) P 

I: v~~(k) - I: u~~(k) = ° Vj,p, r, s;j f r, S; k = 1,···, J(; (6.5) 
aEB(j) aEA(j) 

x~~(k) = I: {xb;[k + Ta(k)] - xb;(k)} + {E;O[k + Ta(k)] - E;O(k)} 
hEft 

Va E B(j);j f r;p,r,s;k= 1,···,J( + 1; (6.6) 

u~~(k) ~ 0, v~~(k) ~ 0, x~~(k+1) ~ 0, Va,p, r, S; k = 1,···, J(; (6.7) 

E;O(k + 1) ~ 0, Vp, r, S; k = 1,···, J(; (6.8) 

E;O(l) = ° Vp, r, S; (6.9) 

x~~(l) = 0, Va,p, r,s. (6.10) 

6.1.2 The Diagonalization/Frank-Wolfe Algorithm 

Denote the subproblem variables as p, q, y, E, corresponding to the main prob­
lem variables u, v, x, E. Applying the Frank-Wolfe algorithm to the minimiza­
tion of the discretized DUO route choice program requires, at each iteration, a 
solution of the following linear program (LP) : 

min Z 
p,q,y,E 

\7"Z(u, v, x, E) pT + \7v Z(u, v, x, E) qT 

T -T + \7xZ(u, v, x, E) Y + \7EZ(U, V, X, E) E (6.11) 

s.t. 

Va, p, r, S; k = 1,· .. , J(; (6.12) 

Ero(k+1) = Ero(k)+ I: I:q~~(k) Vr;sf r;k = 1,···,J(; (6.13) 
aEB(o) P 

I: I:p~~(k) = rO(k) Vr f s;k = 1,···,J(; (6.14) 
aEA(r) P 

I: q~;(k) - I: p~~(k) = ° j,p,r,s;Vjfr,s;k=l,···,J(; (6.15) 
aEB(j) aEA(j) 

y~;(k) = I: {Yb;[k + Ta(k)] - Yb;(k)} + {E;O[k + Ta(k)] - E;O(k)} 
bEft 

Va E B(j); j f r; p, r, S; k = 1, ... , J( + 1; (6.16) 
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E;"(k + 1) ~ 0, Vp,r,s;k = 1,···,K; 

E;"(l) = 0, Vp,r,s; 

y~;(l) = 0, Va,p, r, s. 

Objective function (6.11) is equivalent to: 

(6.18) 

(6.19) 

(6.20) 

z = tLL [8U~~k)P~;(k)+ 8V~~k)q~;(k)+ 8Xr"~:+1)Y~;(k+1)] 
k=l r," ap ap ap ap 
K 

+ L L 8Er"~: + 1) E;"(k + 1) (6.21) 
k=l r,.,p p 

The components of the gradient of Z( u, v, x, E) with respect to control and 
state variables u, v, x, E are 

() 8Z(u,v,x,E) [() ()] 
tla k = 8ua(k) = gla Xa k ,Ua k 

() 8Z(u,v,x,E) [() ()] 
tZa k = 8va(k) = gZa Xa k , 'Va k 

8Z(u, v, x, E) 
8xa(k) 

Va;k= 1, .. ·,K; 

Va;k = 1, .. ·,K; 

raCk) 8gla [xa(k),w]dw + raCk) 8gza [xa(k),w]dw 
10 8xa(k) 10 8xa(k) 

Va;k=2,···,K; 

(K 1) _ 8Z(u, v, x, E) _ 
t3a + - 8xa(K + 1) - 0 Va; 

r"(k) _ 8Z(u, v, x, E) _ 
t4 - 8Er"(k) - 0 Vr,s;k= 2,···,K + 1. 

The objective function can be rewritten as 

K 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

Z = L L [tla(k)p~;(k) + tZa(k)q~;(k) + t3a(k + l)y~;(k + 1)] (6.27) 
k=l r,",a,p 

Since gla and gZa are nonnegative and increasing functions, it follows that 

Va; k = 1, ... , K. (6.28) 
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This property has a significant impact on the solvability of this model for large 
networks, since these components will be link cost coefficients in a minimal-cost 
network subproblem. 

Note that there are no capacity constraints on the links. In addition to 
the flow propagation constraints (6.16) and link definitional constraints (6.12), 
the only constraints are non-negativity and conservation of flow. Furthermore, 
the constraints apply to each origin-destination pair independently, so linear 
program (6.11)-(6.20) can be decomposed by origin-destination pair. The re­
sulting subproblem for each O-D pair (r, s) is given by 

s.t. 

K 

mIn 
p,q,y,E 

L L [ha p~~(k) + t2a q~~(k) + t3~(k + 1) y~~(k + 1)] (6.29) 
k=1 ap 

Va,pjk= 1,···,Kj 

Ero(k + 1) = Er"(k) + L Lq~~(k) Vk=l,···,Kj 

(6.30) 

(6.31) 
aEB(") P 

L LP~~(k) = r"(k) Vk = 1,···,Kj (6.32) 
aEA(r) P 

L q~~(k) - L p~~(k) = 0 Vj,pj j =P r, sjk = 1,···, Kj (6.33) 
aEB(j) aEA(j) 

y~~(k) = L {y~;[k + fa(k)]- y~;(k)} + {E;"[k + fa(k)]- E;"(k)} 

Va E B(j)j j =P rj p, r, Sj k = 1,·· ., K + Ij 

q~~(k)~O, y~~(k+l)~O, Vajpjk=I,···,Kj 

E;"(k+l)~O, Vpjk=I,···,Kj 

E;"(I) = OJ VPj 

Va,p. 

(6.34) 

(6.35) 

(6.36) 

(6.37) 

(6.38) 

For each O-D flow r"(i) for each time interval i = 1,···,K, the above sub­
problem can be further decomposed as follows, where each variable with index 
i denotes the value caused by O-D flow r" (i) for each interval i = 1, ... , K. 

K 

mm 
p,q,y,E 

L L [ha p~~(k, i) + t2a q~~(k, i) 
k=1 ap 

+ t3~ (k + l)y~~(k + 1, i)] (6.39) 

s.t. 

y~~(k+l, i) = y~~(k, i)+p~~(k, i)-q~~(k, i) Va,pjk= 1,···,Kj (6.40) 
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Er"(k+l,i)=Er"(k,i)+ L Lq~;(k,i) Vk=I, .. ·,Kj (6.41) 
aEB(") P 

L LP~~(i,i) = r"(i) Vk = ij (6.42) 
aEA(r) P 

L: q~;(k, i) - L: p~;(k, i) = 0 Vj,pjj # r,sjk = 1,···,Kj (6.43) 
aEB(j) aEA(j) 

y~~(k,i) 
bEp 

+ {E;"[k + fa(k), i]- E;"(k, in 

Va E B(j)j j # rj p, r, Sj k = 1, ... , K + Ij (6.44) 

p~~(k,i)~O, q~~(k,i)~O, y~~(k+l,i)~O, Va,pjk=I, .. ·,Kj (6.45) 

E;"(k + 1, i) ~ 0, 

E;"(I, i) = OJ 

y~~(I, i) = 0 

Vpjk = 1, .. ·,Kj 

Vp; 

Va,p; 

(6.46) 

(6.47) 

(6.48) 

The above LP subproblem for each O-D flow r" (i) for each time interval 
i = 1",', K between each O-D pair (r, s) can be viewed as a one-to-one 
minimal-cost route problem over an expanded time-space network using an 
artificial origin (see the next subsection and Section 6.2). It can be solved by 
determining the minimal-cost routes from the artificial origin to a super desti­
nation and completing an all-or-nothing assignment. By revising the costs for 
some artificial links, the minimal cost route is searched while the flow prop­
agation constraints are automatically satisfied by construction of the links of 
the expanded time-space networks (see Section 6.2). The flow variables p~;(k), 
q~~(k), y~~(k + 1), E;" (k + 1) are determined by solving the minimal-cost route 
problems for all artificial origin-destination pairs between each original O-D 
pair (r, s) for each time interval and assigning the O-D flows to the links. 

In this combined algorithm, we define the diagonalization procedure as 
the outer iteration and the F -W procedure as the inner iteration. Denote the 
new solution at inner F -W iteration (n + 1) as 

u~n+l)(k) = u~n)(k) + a(n)[u~n)(k) - p~n)(k)] Va; k = 1"", K; (6.49) 

v~n+l)(k) = v~n)(k) + a(n)[v~n)(k) - q~n)(k)] Vaj k = 1"", K; (6.50) 

x~n+l)(k) = x~n)(k) + a(n)[x~n)(k) - y~n)(k)] Va; k = 1"", K + 1; (6.51) 
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where a(n) is the optimal step size of the one-dimensional search problem in 
the F -W algorithm. The one-dimensional search problem is to find step size 
a(n) that solves 

min 
O~a(n)~l 

(6.52) 

where u~n+l)(k), v~n+l)(k), x~n+l)(k) must be substituted using the above 
definitional equations. 

The algorithm for solving our instantaneous DUO route choice model is 
illustrated in the flowchart in Figure 6.1 and is summarized as follows: 

Step 0: Initialization. 
Find an initial feasible solution {x~l)(k)}, {u~l)(k)}, {v~l)(k)}, {E(1)(k)}. 
Set the outer iteration counter m = 1. 

Step 1: Diagonalization. 
Find a new estimate of the actual link travel time fJn)(k) and solve the 
instantaneous DUO program. Set the inner iteration counter n = 1. 

[Step 1.1]: Update. Calculate tla(k), t2a(k) and t3a(k) using equa­
tions (6.22)-(6.25). 

[Step 1.2]: Direction Finding. Based on {tla(k)}, {t2a(k)} and 
{t3a(k)} and satisfying the flow propagation constraints (6.44), search 
the minimal-cost route forward from each artificial origin to the su­
per destination over an expanded time-space network for each O-D pair 
(r, s). Perform an all-or-nothing assignment, yielding subproblem solu-
tion {PaCk)}, {qa(k)}, {Ya(k)}, {Erl(k)}. 

[Step 1.3]: Line Search. Find the optimal step size a(n) that solves 
the one-dimensional search problem. 

[Step 1.4]: Move. Find a new solution by combining {ua(k)}, {va(k)}, 
{xa(k)}, {Erl(k)} and {PaCk)}, {qa(k)}, {Ya(k)}, {Erl(k)}. 

[Step 1.5]: Convergence Test for Inner Iterations. If n equals a 
prespecified number, go to step 2; otherwise, set n = n + 1 and go to step 
1.1. 

Step 2: Convergence Test for Outer Iterations. 
If fJm)(k) :::: f~m+1)(k), stop. The current solution, {ua(k)}, {va(k)}, 
{xa(k)}, {Ers(k)}, is in a near instantaneous DUO state; otherwise, set 
m = m + 1 and go to step 1. 

The number of inner iterations n and the number of outer iterations m are inter­
related. If we set m larger, then n should be set smaller accordingly, and vice 
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Inner Iterations: 
Solve Route Choice Model (NLP) for 
Link Flows Using F-W Algorithm. 

Figure 6.1: Flowchart of the Solution Algorithm 

versa. In general, n = 1 to 3 is sufficient to speed up convergence. Similar ex­
perience with a diagonalization and F -W algorithm for solving static UO traffic 
equilibrium problems was reported by Mahmassani and Mouskos (1988). In or­
der to speed up convergence, an incremental assignment technique is suggested 
for finding a good starting solution before the diagonalization procedure. Since 
the linear subproblem can be decomposed by each artificial origin-destination 
pair, this problem is a good candidate for solution with parallel computing 
techniques. 

To speed up the serial computing speed, we can construct a super origin 
which connects all artificial origins. Thus, we can search the minimal-cost 
route forward from the super origin to the super destination over an expanded 
time-space network for each physical destination s. Therefore, the number of 
iterations within Step 1.2 can be reduced by the order of the number of origins. 
A significant saving of total CPU time can be achieved for a large network with 
many O-D pairs, although a marginal increase of CPU time is incurred due to 
the slight enlargement of the expanded time-space network. (A super origin is 
created and is connected with all artificial origins.) 

6.1.3 Solving the LP Subproblem Using an Expanded 
Time-Space Network 

In addition to flow propagation constraints, there are 3 types of constraints in 
the LP subproblem: link flow state equations, node flow conservation equations 
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Original Network: 
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Figure 6.2: Expansion for Link a for 3 Time Periods 
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and nonnegativity /boundary constraints. Since there are 3 variables associated 
with each physical link, we replace each link with 3 separate artificial links for 
each time period, by adding artificial nodes to define the new links. Figure 6.2 
shows the expansion for link a which points from 1 to m for 3 time periods. The 
initial state for link a is assumed to be xa(l) = O. Note that a total of 9 nodes 
are required for the expansion of each physical link. The next section discusses 
how these new links and nodes can be numbered. If node m is a destination, 
the expansion is shown in Figure 6.3. Figure 6.4 shows the expanded network 
for an example problem with 3 links, 3 nodes, 3 time periods, 3 origin (node 
1) and 2 destinations (nodes 2 and 3). The initial state for each link is also 
assumed to be xa(l) = 0 (a = 1,2,3) and the instantaneous O-D trips are given 
as P2(k), P 3 (k), k = 1,2,3. 
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Original Network: 
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Figure 6.3: Expansion for Link a for 3 Time Periods (m is a destination) 



6.2. Time-Space Network Expansion 129 

Original Network: 

Expanded Time-Space Network: 
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6.2 Time-Space Network Expansion 

In the expansion of the time-space network, each physical node is expanded 
into additional nodes only (i.e., no extra links are introduced). However, since 
there are 3 separate variables per link, each link is expanded into 3 links, which 
requires additional nodes as well. Since the LP problem can be decomposed 
by each artificial origin-destination pair for all O-D pairs, we initially only 
consider a one-to-one network. The subproblem variables p~~(k, i), q~~(k, i), 
y~~ (k + 1, i), E;' (k + 1, i) are viewed as flows over the artificial links of the 
expanded time-space network, which is constructed as follows. 

1. Nodes: Each node j is expanded to K nodes, one for each time period. 
We denote these as j(k), k = 1,···,K, with new node numbers j(k) = 
(N + A)(k - 1) + j. For example, we consider the time-space expansion 
of a 3-node, 2-link network for 3 time periods (Figure 6.5). The physical 
nodes in the original network are numbered as 1, 2, 3 and physical links 
are numbered as 1 = (1,2) and 2 = (2,3). Node 1 is an origin and node 3 
is a destination. Thus, N = 3 and A = 2. For the expansion of physical 
nodes 1, 2, 3, the new node numbers are 1, 2, 3 for period 1; 6, 7, 8 for 
period 2; and 11, 12, 13 for period 3. 

2. Links: Since there are 3 variables for each link, each link a=(l, m) is 
expanded to K nodes and 3K links, as follows: 
a) K transshipment nodes na(k), k = 1,···, K, with new node numbers 
na(k) =(N + A)(k - 1) + N + a. For the expansion of physical link 1 
and 2 in Figure 6.5, the new transshipment node numbers are 4 and 5 for 
period 1, 9 and 10 for period 2, and 14 and 15 for period 3. 
b) K links (l(k), na(k)), k = 1,···, K, where each new link a has link 
number [3A(k -1) + a], flow Pa(k, i) and cost tla(k). In Figure 6.5, these 
new links are 1 = (1,4) and 2 = (2,5) for period 1; 8 = (6,9) and 9 = 
(7,10) for period 2; and 15 = (11,14) and 16 = (12,15) for period 3. 
c) K links (na(k), m(k)), k = 1,···, K, where each new link a has link 
number [3A(k - 1) + A + al, flow qa(k, i) and cost t2a(k). In Figure 6.5, 
these new links are 3 = (4,2) and 4 = (5,3) for period 1; 10 = (9,7) and 
11 = (10,8) for period 2; and 17 = (14,12) and 18 = (15,13) for period 3. 
d) (K - 1) links (na(k), na(k + 1)), k = 1,···, K - 1, where each new 
link a has link number [3A(k - 1) + 2A + al, flow y~'(k + 1, i) and cost 
t 3a ( k + 1) for corresponding 0-D pair (r, s). In Figure 6.5, these new links 
are 5 = (4,9) and 6 = (5,10) for period 1; 12 = (9,14) and 13 = (10,15) 
for period 2; 
e) one link a = (na(K), S) with new link number [3A(K - 1) + 2A + a], 
flow y~' (K + 1, i) and cost iii' for corresponding 0-D pair (r, s); in Figure 
6.5, these new links are 19 = (14,16) and 20 = (15,16) for period 3. 

3. Origin Nodes: Each origin node r is expanded to K origin nodes r(k), 
k = 1,···, K. In Figure 6.5, origin 1 is expanded to nodes 1,6 and 11. 



132 Chapter 6. A Computational Algorithm for Instantaneous DUO Models 

4. Destination Nodes: The destination node s is expanded to: 
a) one super destination S; in Figure 6.5, the physical destination node 
3 is expanded to super destination 16; 
b) K nodes s(k), k = 1"", K; (nodes 3, 8 and 13 in Figure 6.5); 
c) K links a = (s(k), s(k + 1)), k = 1"", K - 1 and a = (s(K), S), with 
new link number [3AK + kJ, flow Er"(k + 1,i) and cost t~"(k + 1) = 0 
for corresponding artificial origin-destination pair for all O-D pair (r, s); 
(links 7 = (3,8), 14 = (8,13), 21 = (13,16) for periods 1,2,3). 

In summary, the expanded time-space network has [(3A+ l)K] links and [(N + 
A)K + 1] nodes. The expanded time-space network ofthe example (Figure 6.5) 
has 21 links and 16 nodes. 

Link state equation (6.40) for each physical link a can be viewed as a set 
of flow conservation equations for artificial nodes na (k ), k = 1"", K in the 
expanded time-space network. For example, in Figure 6.2, the conservation of 
flow constraint for node n(3) is p(3, i) + y(3, i) = q(3, i) + y( 4, i). This is equiv­
alent to link state equation (6.40). Together with node flow conservation equa­
tions and nonhegativity constraints, these equations constitute the constraints 
for a one-to-one minimal-cost route problem with flow propagation constraints. 
Since the cost functions for the artificial links over the expanded time-space 
network are nonnegative, the original LP subproblem is transformed into a 
one-to-one minimal-cost route problem with flow propagation constraints. 

The following explanation describes how the travel cost iii" for artificial 
link a = (na(K), S) is determined for corresponding O-D pair (r, s). In the 
expanded time-space network, each dummy node na(K), which is expanded 
from each link a for the last time interval K, has a link pointing to the super 
destination S. However, it is not always true that every physical link in the 
original network will lead to destination s. In order to represent this situation, 
an indicator variable cSa for each new link a in the expanded time-space network 
is defined as follows: 

{ 
1 if the expanded link a can be reached backwards 

cSa = from dummy node s(K) expanded from destination s 
o otherwise 

Then, the travel cost iii" for dummy link a = (na(K), S) can be determined as: 

i~" = { t3a(K + 1) = 0 ~f 
a +00 If 

In this way, the property that flows cannot move backwards from destination s 
to some links {a} is also guaranteed in the expanded time-space network. For 
example, in Figure 6.4, when node 2 is a destination, link 27 and 28 are not 
reachable from node 14 (which is expanded from node 2 for period 3). Thus, 
cS~7 = 0 and cS~8 = 0 so that i27 = 00 and i 28 = 00 when node 2 is a destination. 

We now assume a many-to-many network. Since the original LP sub­
problem can be decomposed according to O-D pairs, the LP subproblem can be 



6.3. Flow Propagation Constraints 133 

viewed as a set of minimal-cost route problems with propagation constraints. 
Minimal-cost routes are searched forward from each artificial origin to the su­
per destination. Suppose there are S destinations in a many-to-many network. 
Each destination node s can be expanded to: one super destination Sj K 
nodes s(k), k = 1,···, Kj and K links a = (s(k), s(k + 1)), k = 1,···, K - 1 
and a = (s(K), S), with new link number [3AK +(s-l)K +k], flow Er"(k+1, i) 
and cost i;i"(k + 1). 

For the many-to-many case, we use the same network notation for the 
expanded time-space network as for the one-to-one network so that the compu­
tational code can be simplified. Therefore, we use one super destination S to 
represent the super destinations expanded from all destinations {s} and define 
the cost i;i"(K + 1) for each dummy link a = (s(K), s(k + 1)) k = 1,···, K - 1 
and a = (s( K), S) as follows: 

• {t4"(k+1)=0 
t;i"(k + 1) = 

. +00 

if minimal cost route between any artificial 
O-D pair (r(k), S) is searched 
otherwise 

where artificial 0-D pair (r( k ), S) is expanded from original 0-D pair r s for 
time interval k. The above cost setting reflects that when considering artificial 
0-D pair (r( k), S) for any 0-D pair r s, other destinations s become interme­
diate nodes. There is no cumulative effect for these nodes s. In summary, the 
expanded time-space network has [(3A + S)K] links and [(N + A)K + 1] nodes 
for a many-to-many network. 

6.3 Flow Propagation Constraints in Minimal­
Cost Route Searches 

In searching for the minimal-cost route between each artificial origin-destination 
pair (r(k), S), flow propagation constraint (6.44) is automatically satisfied by 
temporally adjusting the costs for 2K artificial links a = (na(k), na(k + 1)), 
k = 1,···, K - 1, a = (na(K), S) and a = (na(k), m(k)), k = 1,···, K. These 
artificial links are expanded from original link a=(l, m). 

The temporal cost adjustment procedure begins when an artificial node 
l(k) is being searched in the minimal-cost route search. This procedure is as 
follows: 

if i - 0.5 :S Ta(k) < i + 0.5 (i = 0,1, ... , K), 
then the feasible subroute will be [l(k), n(k),···, n(k + i), m(k + i)] 
for the time-space subnetwork expanded from link a=(l, my. 

This subroute is guaranteed to have the minimal cost by setting the costs of 
other artificial links in the time-space subnetwork (except links on the above 
subroute) temporally equal to infinity. 

In Figure 6.3, we assume the minimal-cost route is searched from 1(1) to 
S. If Ta(1) = 2, the feasible subroute is [1(1), n(l), n(2), n(3), m(3)]. This cost 
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adjustment procedure should be performed for each artificial origin-destination 
pair (r(k), S). 

6.4 Computational Experience 

The algorithm was coded in FORTRAN and solved on a IBM 3090-300J and 
on a CRAY Y-MP /464. For the purpose of illustration, we give computational 
results for a small test problem with 12 arcs and 9 nodes. The network is shown 
in Figure 6.6. This problem required approximately 5 seconds on the IBM for 
20 incremental iterations for the initial solution, 3 inner F -W iterations per 
outer iteration and 40 outer diagonalization iterations to converge. We have 
also solved a problem with 60 links, 36 nodes, 9 time intervals, 4 origins and 4 
destinations on the CRAY using CFT77. The CPU time was approximately 68 
seconds. The following link travel cost functions were used in the computations. 

ca(k) = gla(k) + g2a(k) 

gla(k) = f31a + f32a[ua(k)]2 + f33a[xa(kW 

g2a(k) = f34a + f35a[va(k)]2 + f36a[xa(kW 

The parameters for each link travel cost function are given in Table 6.1. The 
number of vehicles xa(l) on each link a at initial time k = 1 is assumed to equal 
o. Two O-D pairs and 7 time intervals are considered, and the corresponding 
trip table for each time interval is given in Table 6.2. The optimal link flow 
trajectories and corresponding optimal link travel costs are given in Table 6.3. 

Table 6.3 shows that 10.0+ 10.0 = 20.0 vehicles enter the network during 
interval 1 and 5.0+5.0 = 10.0 enter during interval 2 (on links 1-2 and 1-4). For 
node 5, 18.1 vehicles enter links 2-5 and 4-5 during intervals 2-4. No vehicles 
remain on these 2 links at the end of interval 4, and 3.1 vehicles enter links 
5-6 and 5-8 pointing out of node 5 continuing to node 9 during intervals 2-5. 
Thus, 18.1- 3.1 = 15.0 vehicles exit the network at node 5 during intervals 1-5 
so that the requirements for O-D pair 1-5 for intervals 1-5 are met. At node 
9, 3.5 + 3.1 + 0.7 + 3.6 + 3.1 + 1.0 = 15.0 vehicles exit links 6-9 and 8-9 into 
node 9 during intervals 5-7. Note that no vehicles remain on links 6-9 and 8-9 
at the end of interval 7 and no vehicles remain on other links on the network 
at the end of interval 6. 

Inspection of Table 6.3 reveals that several links are being used in the 
sense defined in Chapter 5; also a few portions of routes are being used. In 
no case is an entire route used because of the short duration of the O-D flows. 
Even so, it is interesting to ask whether the instantaneous route travel times 
are equal. 

Table 6.4 provides a comparison of instantaneous route travel times for 
the 2 O-D flows. The travel times for the 2 routes used from node 1 to node 5 
are equal in each time interval. The travel times for the 6 routes from node 1 
to node 9 are equal in each interval except intervals 3, 4 and 5. In interval 3, 
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note that routes 1-4-7-8-9 and 1-2-3-6-9 have the minimal route travel costs for 
O-D pair 1-9, since they avoid the congestion at destination node 5. The other 
routes for O-D pair 1-9 have higher costs in interval 3 because of flows exiting 
the network from node 5. Moreover, the predominant flow from node 1 to node 
9 avoids node 5 in interval 3. Likewise in intervals 3, 4 and 5, routes 1-4-7-8-9 
and 1-2-3-6-9 with predominant flows have equal cost; because these flows are 
already on routes avoiding congestion at node 5, these 2 routes have slightly 
higher costs than the unused routes through node 5 in intervals 4 and 5. This 
simple example illustrates the inherent complexity of the dynamic route choice 
model, as compared with its static counterpart. 

6.5 Notes 

An algorithm for solving the instantaneous dynamic user-optimal route choice 
model was presented in this chapter. One significant aspect of our algorithm 
is that by using a time-space expanded network, the Frank-Wolfe LP subprob­
lem requires only the solution of minimal-cost route problems for each O-D 
pair. This expansion technique allows standard algorithms for static traffic as­
signment to solve dynami~ route choice models. Thus, the DUO route choice 
model and solution algorithm have an elegant correspondence with the static 
UO route choice model and its Frank-Wolfe algorithm. Therefore, it may be 
possible to extend other static UO formulations and solution algorithms to 
dynamic versions. This algorithm should be tested on a large-scale transporta­
tion network; other efficient algorithms, such as the algorithm of Leventhal et 
al (1973), also need to be investigated. 
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Figure 6.6: Test Network 

Table 6.1: Parameters of Link Cost Functions 

link a f3la f32a f33a f34a f35a f36a 
1-2 1. 0.001 o. o. 0.015 0.002 
2-3 1. 0.001 o. o. 0.015 0.002 
1-4 1. 0.001 o. o. 0.015 0.002 
2-5 1. 0.001 o. O. 0.015 0.002 
3-6 1. 0.001 o. o. 0.015 0.002 
4-5 1. 0.001 o. o. 0.015 0.002 
5-6 1. 0.001 o. o. 0.015 0.002 
4-7 1. 0.001 o. o. 0.015 0.002 
5-8 1. 0.001 o. o. 0.015 0.002 
6-9 1. 0.001 o. o. 0.015 0.002 
7-8 1. 0.001 o. o. 0.015 0.002 
8-9 1. 0.001 o. o. 0.015 0.002 

Table 6.2: O-D Trip Table for Each Time Interval k 

Time Interval k 1 2 3 4 5 6 7 
f1'''(k) 10. 5. o. o. o. o. o. 
Jl9(k) 10. 5. o. o. o. o. o. 
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Table 6.3: Optimal Trajectories of Link Flows and Travel Times 

Interval Link Vehicles Inflow Exit Flow Vehicles Travel Time 
k a xa(k + 1) ua(k) va(k) xa(k) ca(k) 
1 1-2 10.0 10.0 0.0 0.0 1.10 
2 1-2 7.9 5.0 7.1 10.0 1.99 
3 1-2 1.7 0.0 6.2 7.9 1.70 
4 1-2 0.0 0.0 1.7 1.7 1.05 
5 1-2 0.0 0.0 0.0 0.0 1.00 
6 1-2 0.0 0.0 0.0 0.0 1.00 
1 2-3 0.0 0.0 0.0 0.0 1.00 
2 2-3 3.0 3.0 0.0 0.0 1.01 
3 2-3 2.6 2.6 3.0 3.0 1.16 
4 2-3 0.4 0.4 2.6 2.6 1.12 
5 2-3 0.0 0.0 0.4 0.4 1.00 
6 2-3 0.0 0.0 0.0 0.0 1.00 
1 1-4 10.0 10.0 0.0 0.0 1.10 
2 1-4 7.9 5.0 7.1 10.0 1.99 
3 1-4 1.6 0.0 6.2 7.9 1.71 
4 1-4 0.0 0.0 1.6 1.6 1.04 
5 1-4 0.0 0.0 0.0 0.0 1.00 
6 1-4 0.0 0.0 0.0 0.0 1.00 
1 2-5 0.0 0.0 0.0 0.0 1.00 
2 2-5 4.2 4.2 0.0 0.0 1.02 
3 2-5 3.6 3.6 4.2 4.2 1.31 
4 2-5 1.2 1.2 3.6 3.6 1.22 
5 2-5 0.0 0.0 1.2 1.2 1.03 
6 2-5 0.0 0.0 0.0 0.0 1.00 
1 3-6 0.0 0.0 0.0 0.0 1.00 
2 3-6 0.0 0.0 0.0 0.0 1.00 
3 3-6 3.0 3.0 0.0 0.0 1.01 
4 3-6 2.6 2.6 3.0 3.0 1.16 
5 3-6 0.4 0.4 2.6 2.6 1.12 
6 3-6 0.0 0.0 0.4 0.4 1.00 
1 4-5 0.0 0.0 0.0 0.0 1.00 
2 4-5 4.2 4.2 0.0 0.0 1.02 
3 4-5 3.6 3.6 4.2 4.2 1.32 
4 4-5 1.3 1.3 3.6 3.6 1.23 
5 4-5 0.0 0.0 1.3 1.3 1.03 
6 4-5 0.0 0.0 0.0 0.0 1.00 
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Table 6.3: Optimal Trajectories of Link Flows and Travel Times (continued) 

Interval Link Vehicles Inflow Exit Flow Vehicles Travel Time 
k a xa(k + 1) ua(k) va(k) xa(k) ca(k) 
1 5-6 0.0 0.0 0.0 0.0 1.00 
2 5-6 0.0 0.0 0.0 0.0 1.00 
3 5-6 0.5 0.5 0.0 0.0 1.00 
4 5-6 0.5 0.5 0.5 0.5 1.01 
5 5-6 0.2 0.2 0.5 0.5 1.00 
6 5-6 0.0 0.0 0.2 0.2 1.00 
1 4-7 0.0 0.0 0.0 0.0 1.00 
2 4-7 2.9 2.9 0.0 0.0 1.01 
3 4-7 2.6 2.6 2.9 2.9 1.15 
4 4-7 0.3 0.3 2.6 2.6 1.11 
5 4-7 0.0 0.0 0.3 0.3 1.00 
6 4-7 0.0 0.0 0.0 0.0 1.00 
1 5-8 0.0 0.0 0.0 0.0 1.00 
2 5-8 0.0 0.0 0.0 0.0 1.00 
3 5-8 0.7 0.7 0.0 0.0 1.00 
4 5-8 0.5 0.5 0.7 0.7 1.01 
5 5-8 0.7 0.7 0.5 0.5 1.01 
6 5-8 0.0 0.0 0.7 0.7 1.01 
1 6-9 0.0 0.0 0.0 0.0 1.00 
2 6-9 0.0 0.0 0.0 0.0 1.00 
3 6-9 0.0 0.0 0.0 0.0 1.00 
4 6-9 3.5 3.5 0.0 0.0 1.01 
5 6-9 3.1 3.1 3.5 3.5 1.22 
6 6-9 0.7 0.7 3.1 3.1 1.16 
7 6-9 0.0 0.0 0.7 0.7 1.01 
1 7-8 0.0 0.0 0.0 0.0 1.00 
2 7-8 0.0 0.0 0.0 0.0 1.00 
3 7-8 2.9 2.9 0.0 0.0 1.01 
4 7-8 2.6 2.6 2.9 2.9 1.15 
5 7-8 0.3 0.3 2.6 2.6 1.11 
6 7-8 0.0 0.0 0.3 0.3 1.00 
1 8-9 0.0 0.0 0.0 0.0 1.00 
2 8-9 0.0 0.0 0.0 0.0 1.00 
3 8-9 0.0 0.0 0.0 0.0 1.00 
4 8-9 3.6 3.6 0.0 0.0 1.01 
5 8-9 3.1 3.1 3.6 3.6 1.23 
6 8-9 1.0 1.0 3.1 3.1 1.17 
7 8-9 0.0 0.0 1.0 1.0 1.02 
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Table 6.4: Comparison of Instantaneous Route Travel Times 

Interval Routes from 1 to 5 
k 1-2-5 1-4-5 
1 2.10 2.10 
2 3.01 3.01 
3 3.01 3.03 
4 2.27 2.27 
5 2.03 2.03 
6 2.00 2.00 

Interval Routes from 1 to 9 
k 1-4-7-8-9 1-4-5-8-9 1-4-5-6-9 1-2-3-6-9 1-2-5-6-9 1-2-5-8-9 
1 4.10 4.10 4.10 4.10 4.10 4.10 
2 5.00 5.01 5.01 5.00 5.01 5.01 
3 4.87 5.03 5.03 4.87 5.01 5.01 
4 4.31 4.29 4.29 4.34 4.29 4.29 
5 4.34 4.27 4.25 4.34 4.25 4.27 
6 4.17 4.18 4.16 4.16 4.16 4.18 
7 4.02 4.02 4.01 4.01 4.01 4.02 



Chapter 7 

An Ideal Dynamic U ser­
Optimal Route Choice Model 

In this chapter, we present an ideal dynamic user-optimal route choice model for 
a network with multiple origin-destination pairs. The model extends our pre­
vious instantaneous DUO route choice model in an important respect: route 
equilibrium is based on actual travel times rather than instantaneous travel 
times at the time of the choice. In Section 7.1, additional network flow con­
straints and the definition of ideal DUO state are presented. The equivalent 
equality constraints of the ideal DUO route choice conditions are developed 
in Section 7.2. Then, an optimal control formulation of the travel-time-based 
ideal DUO route choice problem is presented in Section 7.3. In Section 7.4, 
this model is reformulated as a discrete time NLP. Subsequently, penalty and 
diagonalization/Frank-Wolfe methods are suggested to solve this NLP. 

7.1 Additional Network Flow Constraints and 
Definition of the Ideal DUO State 

For the formulation oftravel-time-based ideal DUO route choice model, we need 
to add more route flow conservation constraints. Assume there are P routes 
from origin r to destination s (these can be generated as needed). Denote 
indicator parameters as 

br , _ {1 if link a is on route p between O-D pair (r, s) 
ap - 0 otherwise. 

Flow conservation at origin node r relates departure rates (r'(t) and f;'(t)) to 
the flow entering each link emanating from the origin. These flow conservation 
equations for origin r can be expressed as 

f;'(t) = L b~;u:~(t) TIp, r, Sj r # Sj (7.1) 
aEA(r) 
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~ f;8(t) = r 8(t) Vr, S; r =f s. (7.2) 
p 

Denote the cumulative number of vehicles departing from origin r to 
destination s from time 0 to t as the state variable Fr8(t). Also, F;8(t) denotes 
the cumulative number of departing vehicles from origin r toward destination 
s along route p by time t. Then, we have an additional state equation for each 
origin r 

dFr8 (t) 
p = r 8 (t) 
dt P 

Vp, r =f s, s. (7.3) 

Also, at initial time t = 0, 

Fr8(0) - 0 p -, Vp,r,s. (7.4) 

Denote the instantaneous flow rate arriving at destination node s from 
origin node r at time t as er8 (t), which is also a control variable. Control vari­
able e;8(t) denotes the arrival rate on route p. Flow conservation at destination 
node s relates arriving flows (er8 (t) and e;8 (t)) to the flows exiting each link 
leading to destination s at time t. Thus, the flow conservation equations for 
destination s can be expressed as 

e;8 (t) = ~ 6~; v~;(t) Vp, r, S; s =f r; (7.5) 
aEB(8) 

Vr, S; s =f r. (7.6) 
p 

Denote the cumulative number of vehicles arriving at destination s from 
origin r by time t as the state variable Er8(t); E;8(t) denotes the cumulative 
number of vehicles arriving at destination s from origin r along route p by time 
t. Thus, we have an additional state equation for each destination s 

dEr'(t) 
P = epr8(t) 
dt 

At the initial time t = 0, 

Vp, r, s =f r. 

Vp,r,s. 

These variables must be nonnegative at all times: 

Er8(t) > 0 p -, Fr'(t) > 0 p -, er , (t) > 0 p -, f;' (t) ;::: 0 

(7.7) 

(7.8) 

Vp, r, s. (7.9) 

Now we define the ideal DUO route choice problem. The dynamic user­
optimal route choice problem is to find the dynamic trajectories of link states 
and inflow and exit flow control variables, given the network, the link travel 
time functions and the time-dependent O-D departure rate requirements. In 
Chapter 5, we defined the link-time-based instantaneous DUO route choice 
state as follows. 



7.1. Definition of Ideal DUO State 

Link-Time-Based Instantaneous DUO State: If, for each 0-
D pair at each decision node at each instant of time, the instanta­
neous travel times to the destination over all routes that are being 
used equal the minimal instantaneous route travel time, the dynamic 
traffic flow over the network is in a link-time-based instantaneous 
dynamic user-optimal state. 
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In this earlier definition of DUO, the instantaneous user-optimal travel times for 
all routes that are being used are equal at each decision node at each instant 
of time. The corresponding model provides the currently prevailing traffic 
information to travelers. However, route flows with the same departure time 
and the same origin-destination may actually experience somewhat different 
route travel times, because the route time may subsequently change due to 
changing network traffic conditions, even though at each decision node the 
flows select the route that is currently best. Therefore, in this chapter we 
propose an alternative definition of DUO that reflects the ideal route choice 
behavior of travelers. The formulation of the problem is based on the underlying 
choice criterion that each traveler uses the route that minimizes his/her actual 
travel time when departing from the origin or any intermediate node to his/her 
destination. 

Travel-Time-Based Ideal DUO State: If, for each O-D pair at 
each instant of time, the actual travel times experienced by travelers 
departing at the same time are equal and minimal, the dynamic 
traffic flow over the network is in a travel-time-based ideal dynamic 
user-optimal state. 

The above definition can also be called a predictive DUO model, since the actual 
route travel time is predicted using the corresponding route choice model. This 
model assumes each traveler will have perfect information about the future 
network conditions and will comply with the guidance instructions based on 
ideal DUO route choice conditions. Travelers will not regret what decisions 
they have made before their journeys. 

In this ideal DUO route choice problem, a route p between rand s is 
defined as being used at time t if f;' ( t) > o. This is a less restrictive definition 
than for the case ofinstantaneous DUO in Chapter 5 and is consistent with the 
general definition of used routes in the variational inequality models in Chapter 
13. We ensure that the above ideal DUO route choice conditions are satisfied 
through explicit equality constraint conditions in the following section. 

7.2 Equivalent Equality Constraints for Ideal 
DUO Route Choice Conditions 

Define 11;" (t) as the travel time actually experienced over route p by vehicles 
departing origin r toward destination s at time t. Also denote 7rr , (t) as the 
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minimal travel time experienced by vehicles departing from origin r to desti­
nation s at time t. 7rr , (t) is a functional of all link flow variables at time w ~ t, 
i.e., 7rr'(t) = 7rr ,[u(w), v(w), x(w)lw ~ t]. This functional is neither a state 
variable nor a control variable, and it is not fixed; moreover, it is not available 
in closed form. Nevertheless, it can be evaluated when u(w), v(w) and x(w) are 
temporarily fixed, as in a Frank-Wolfe algorithm, which is all that is required 
for solving the model. 

The travel-time-based ideal DUO route choice conditions can then be 
expressed as follows: 

17;'· (t) ~ 7rr ,· (t) TIp, r, S; 

f;'(t) ~ 0 TIp, r, s. 

(7.10) 

(7.11) 

(7.12) 

The asterisk in the above equations denotes that the flow variables are the 
optimal solutions under the travel-time-based ideal DUO state. For any O-D 
pair (r, s), if there is a positive inflow over route p, i.e., f;'· (t) ~ 0, equation 
(7.11) requires that 

TIp, r, s. (7.13) 

Thus, route inflow f;·· (t) uses the minimal actual travel time 7rr ,· (t). If the 

inflow over route p is zero, i.e., f;o· (t) = 0, equation (7.11) requires that 
[17;0- (t) - 7rro - (t)] be either zero or positive (by equation (7.10)). In other 
words, route p has either the minimal travel time or higher travel time at time 
t. On the other hand, if route p has higher travel time at time t, i.e., 17;'· (t) > 
7rr ,· (t), equation (7.11) requires that route p has zero inflow at time t U;,· (t) = 
0). By transforming the above inequality DUO route choice conditions into 
equivalent equality constraints for cumulative departures/arrivals and route 
flows, we formulate an optimal control program in Section 7.3. 

Next, we discuss two different approaches for computing the minimal 
travel time 7rr , (t). The first method is to compute link travel times and use 
a recursive formula to compute the route travel time 17;'(t) for all allowable 
routes. Assume route p consists of nodes (r,1,2,.··,i,···,s). Denote 17;i(t) 
as the travel time actually experienced over route p from origin r to node i by 
vehicles departing origin r at time t. Then, a recursive formula for route travel 
time 17;' (t) is: 

TIp, r, i; i = 1,2, ... , S; 

where link a = (i - 1, i). Then, 7rr , (t) = millp 17;' (t). This is the conventional 
approach discussed in Chapter 4. 

A second method for computing 7rr '(t) avoids enumerating routes; there­
fore, we prefer this approach in this chapter. In a travel-time-based ideal DUO 
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state, the cumulative number of vehicles departing from origin r by time t 
must equal the number of vehicles arriving at destination s by time t + 7fro(t), 
regardless of their routes taken. It follows that 

t t+7I'rs (t) 1 rO(w)dw = 1 er'(w)dw Vr,Sj (7.14) 

or 
Vr,s. (7.15) 

The relationship of Fr'(t) and Ero(t) to 7fro(t) is shown in Figure 7.1. Recall 
that the flow propagation constraints ensure that ero (t) cannot become pre­
maturely positive. The asterisk is ignored in the following derivation of the 
equality constraints for the travel-time-based ideal DUO route choice condi­
tions. 

Cumulative Number of Vehicles 

(Dep'arture and Arrival) 

o t t +rC(t) Timet 

Figure 7.1: Relationship of Fr'(t) and ETO(t) to 7fTO(t) 

In the route choice problem, the cumulative number of departing vehicles 
Fro (t) is given, since the r o (t) are exogenous in the route choice problem. 
Also, the cumulative number of arriving vehicles Ero(t) can be computed by 
equations (7.5)-(7.7). Then, from (7.15), the following numerical procedure 
within a diagonalization technique can be used to compute 7fTO (t). This involves 
estimating 7fro (t) and calculating Fro (t) and Ero (t). If Fro (t) =f. Ero [t+ 7fTO (t)], 
we increase or decrease 7fro (t) until convergence occurs. We discuss this further 
in Section 7.4. 

Next we consider the constraints for departure rate and arrival rate over 
each route. Consider a small time interval [t, t + ~t]. The number of vehicles 
departing along each route p during this interval is 

Vp,r,s. 
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The travel-time-based ideal DUO route choice conditions require that all vehi­
cles departing during time interval [t, t+~tl spend the minimal O-D travel times 
and arrive at destination s within time interval [t+7rr'(t), (t+~t)+7rr' (t+~t)], 
no matter which route they choose. The number of arrivals along each route p 
during this interval is 

'rip,r,s. (7.16) 

Therefore, under the travel-time-based ideal DUO route choice conditions, the 
total number of vehicles departing from origin r along route p during time 
interval [t, t+~tl must equal the total number of vehicles arriving at destination 
s along route p during time interval [t+7rr, (t), (t+~t) +7rr • (t+ ~t)l. It follows 
that 

F;' (t + ~t) - F;" (t) = E;' [(t + ~t) + 7rr " (t + ~t)l- E;" (t + 7rr , (t)) 'rip, r, s. 
(7.17) 

A simple network with 2 links and 2 nodes illustrates the above equations 
(see Figure 7.2). Suppose there are 4 vehicles departing from the origin in 
the period 8:00-8:01 AM. Thus, the departure time is t = 8:00 and the time 
interval ~t equals 1 minute. Assume 7rr'(t) = 10 minutes and 7rr'(t+~t) = 11 
minutes. Then, these 4 vehicles must arrive at the destination in the period 
8:10 to 8:12, regardless ofthe routes taken. Also, assume that 2 ofthe 4 vehicles 
use link 1, and the 2 other vehicles use link 2. The travel-time-based ideal DUO 
route choice conditions require for each route (link 1 or '2) that the number of 
arrivals in 8:10-8:12 AM must equal the number of departures in 8:00-8:01 
AM, regardless of the routes taken. 

1 

2 

Figure 7.2: Two-Link Network 

Consider the limit of the following equation taken from equation (7.17): 

E;'[(t + ~t) + 7rr'(t + ~t)l- E;"(t + 7rr'(t)) _ F;'(t + ~t) - F;'(t) 
~t ~t 

'rip,r,s. (7.18) 
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Assume that the actual travel time 1/"r6(t) is differentiable with respect to t. 
Expanding 1/"r6 (t + At) in a Taylor series about the point t gives 

Vr,s, (7.19) 

where ,j-r6(t) denotes the derivative of 1/"r'(t) with respect to time t, and O(At) 
denotes terms in the expansion of order two and greater in At. These latter 
terms are smaller in magnitude than At as At approaches zero. Using equation 
(7.19) to substitute for 1/"r6(t+At) in the first term in equation (7.18), we have 

E;' [(t + At) + 1/"r. (t + At)] 
= E;' {(t + At) + (1/"r6(t) + ,j-r'(t) At + O(At))} 

= E;6 ([t + 1/"r6 (t)] + [1 + ,j-r6 (t)] At + O(At)} Vp, r, s. 

Also, using X == t + 1/"r6(t) and AX == [1 + fr6(t)] At + O(At) in a Taylor 
series expansion of F(X + AX) about the point X for the right-hand-side of 
the above equation, we have 

E;' ([t + 1/"r'(t)] + [1 + fr6(t)] At + O(At)} = 
E;' [t + 1/"r, (t)] + E;6 [t + 1/"r6 (t)] ([I + ,j-r, (t)] At + O(At)} 

+ 0 ([I + ,j-r6(t)] At + O(At)} Vp, r, s. 

Using 

we obtain 

E;' [(t + At) + 1/"r6 (t + At)] = 
E;'[t + 1/"r6(t)] + e;6[t + 1/"r6(t)] ([I + ,j-r6(t)] At + O(At)} 

+ 0 ([I + ,j-r6(t)] At + O(At)} Vp, r, s. (7.20) 

Thus, by substituting the right-hand-side of equation (7.20) into equation 
(7.18), the left-hand-side of equation (7.18) becomes 

(7.21) 

When At _ 0, O(At) - 0 and ([I + ,j-r'(t)] At + O(At)} - 0 so that 
o ([I + ,j-r'(t)] At + O(At)} _ o. Allowing At _ 0 in (7.21), by definition 
of the derivative, the left-hand-side equals e;'[t + 1/"r'(t)] [1 + ,j-r6(t)], and the 
right-hand-side of (7.18) equals 1;6 (t). It follows that as At - 0, the following 
constraints are equivalent to (7.17) 

Vp,r,s. (7.22) 

The term ,j-r6 (t) is the rate of change of minimal O-D actual travel time. When 
,j-r'(t) = 0, the minimal O-D actual travel time is constant. Constraints (7.22) 
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require that any route departure flow f;' (t) at time t must use the O-D specific 
minimal travel time 1C'r, (t) so as to arrive at the destination at time t + 1C'r, (t). 
Furthermore, since cumulative departures at time t equal cumulative arrivals at 
time t+1C'r, (t) for each O-D pair rs, all departure flows necessarily use minimal 
time routes at any time t. Thus, using constraints (7.15) and (7.22), the route 
choice model will generate traffic flows which satisfy travel-time-based ideal 
DUO route choice conditions (7.10)-(7.12). These two constraints (7.15) and 
(7.22) are one of the main contributions of this chapter. They make our ideal 
DUO route choice model distinct from other formulations. 

Furthermore, we demonstrate in the following that constraints (7.22) can 
be derived from constraints (7.15) and definitional constraints as follows: 

p p 

Note the second definitional constraint is included in the definitional constraint 

LE;'(t) = Er'(t), Vr,s (7.24) 
p 

when the assignment period T is long enough to clear the traffic flow consid­
ered in the analysis. Substituting the left-hand-sides of equations (7.23) into 
equation (7.15), 

L{F;'(t) - E;'[t + 1C'r'(t)]} = 0, Vr,s. (7.25) 
p 

By definition, 1C'r'(t) :$ l1;'(t) for all routes p. By the flow propagation 
constraint, for each route p and each O-D pair rs at any time t, the cumulative 
number of vehicles having arrived at the destination s by time [t + 1C'r'(t)] must 
be equal to or smaller than the cumulative number of vehicles that has departed 
from origin r by time t. It follows that 

where time t applies to any instant from 0 to T. Combining equations (7.25) 
and (7.26), 

Vr,s,p. (7.27) 

Taking derivatives of the above equations by using the chain rule (note that 
since F;'(t) is the integral of f;'(t), F;'(t) = .t;'(t)), we have 

f;' (t) - e;' [t + 1C'r, (t)] [1 + irr, (t)] = 0 Vr,s,p. (7.28) 

Thus, the above constraint is redundant when constraints (7.15) and (7.23) are 
enforced. Therefore, we obtain equality constraints (7.15) and (7.23) which are 
equivalent to the travel-time-based ideal DUO route choice conditions. 
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7.3 An Optimal Control Model of Ideal DUO 
Route Choice 

Using optimal control theory, the travel-time-based ideal dynamic user-optimal 
route choice problem is formulated as follows. 

u,t),x,e,WJ}.,F;B;1f" lT ~ {lua
(t) Yla[xa(t),w]dw 

+ l va
(t) Y2a[Xa(t),W]dW} dt (7.29) 

s.t. 
Relationships between state and control variables: 

dxrs 
~ = ur• (t) - vrs (t) dt ap ap Va,p, r, S; (7.30) 

dErs(t) 
~t =e;S(t) Vr,s,p; (7.31) 

dFrs(t) 
p = rS(t) Vr,s,p; (7.32) dt p 

Flow conservation constraints: 

t;S(t) = I: {yrs urs (t) ap ap Vp,r,s; (7.33) 
aEA(r) 

e;S(t) = I: {yrs vrs (t) ap ap Vp,r,s; (7.34) 
aEB(s) 

I: v~~(t) = I: u~~(t) V j, p, r, S; j i=- r, S; (7.35) 
aEB(j) aEA(j) 

Constraints equilibrating actual route travel times: 

Vr,s; (7.36) 

Flow propagation constraints: 

x~~(t) = I: {x;;;[t + Ta(t)] - x;;;(t)} + {E;S [t + Ta(t)] - E;s (t)} 
bEp 

Vr,s,p,j;aE B(j);j i=- r; (7.37) 

Definitional constraints: 

I: u~~(t) = ua(t), I: v~;(t) = va(t), Va; (7.38) 
rsp rsp 
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L x:~(t) = xa(t), Lx:'(t) = xa(t), Va,r,s; 
r,p r, 

L E;' (t) = Er, (t), L F;' (t) = pr' (t), Vr,s; 
p p 

Lf;'(t) = r"(t), Le;'(t) = er"(t), Vr,s; 
p p 

Nonnegativity conditions: 

x:~(t) 2: 0, u:~(t) 2: 0, v:;(t) 2: ° Va,p, r, S; 

e;8(t) 2:0, f;"(t) 2:0, E;'(t) 2:0, F;'(t)2:0 Vp,r,s; 

Boundary conditions: 

(7.39) 

(7.40) 

(7.41) 

(7.42) 

(7.43) 

E;'(O) = 0, F;"(O) = ° Vp,r,s; x:~(O) = 0, Va,p,r,s. (7.44) 

In program (7.29)-(7.44), the route-specific departure variables f;' (t) and F;' (t) 
must be determined. The objective function is similar to the objective function 
of the well-known static user-optimal (UO) model. We note that other objec­
tive functions can also be used since constraints (7.36) and (7.40) enforce ideal 
DUO route choice. 

The first three constraints (7.30)-(7.32) are state equations for each link 
a and for cumulative effects at origins and destinations. equations (7.33)-(7.35) 
are flow conservation constraints at each node including origins and destina­
tions. Equations (7.36) and (7.40) are constraints which equilibrate actual 
route travel times for departure route flows. Other constraints include flow 
propagation constraints, definitional constraints, nonnegativity, and boundary 
conditions. In summary, the control variables are u:;(t), v:;(t), e;'(t), and 
f;"(t); the state variables are x~;(t), E;'(t), and F;'(t); the functionals are 
7rr "(t), which must be determined by diagonalization as discussed in Section 
7.4. Note that constraints (7.36) and (7.40) apply to the above optimization 
program. Those two constraints guarantee that the optimal control problem 
will generate traffic flows satisfying the ideal DUO route choice conditions, 
given any O-D departure flows. 

7.4 Solution Algorithm 

As with the instantaneous DUO route choice model, we propose an algorithm 
to solve the ideal DUO route choice model. This ideal DUO route choice model 
has nonlinear constraints (7.36) which equilibrate actual route travel times for 
departing route flows. By placing these constraints as penalty terms in the 
objective function, we obtain a similar formulation to the instantaneous DUO 
route choice model. Since the revised objective function involves link flow 
and O-D flow variables, we can avoid enumerating routes in computing the 
objective function. Then using the diagonalization and Frank-Wolfe techniques, 
the resulting NLP program can be solved. 
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7.4.1 Discrete Formulation of the Ideal Model 

To convert our ideal DUO route choice problem into an NLP, time period 
[0, T] is subdivided into K small time intervals. (The time intervals are not 
necessarily equal.) To simplify the formulation, we modify the estimated actual 
travel time on each link in the following way so that each estimated travel time 
is equal to a multiple of the time increment. 

Ta(k) = i if i - 0.5 ~ Ta(k) < i + 0.5, 

where i is an integer and 0 ~ i ~ K. We note that the above approximation 
applies to flow propagation constraints and the computation of route travel 
times. 

In the resulting discrete time problem, xa(k) represents vehicles on the 
link at the beginning of interval k; U a (k) and Va (k) represent inflow and exit 
flows during interval k. Let Ta(k) denote the travel time for vehicles entering 
link a at the beginning of interval k = [k, k + 1], and let 1("r"(k) be the average 
minimal r - s travel time for vehicles departing origin r during interval k. Let 
r"(k) denote the O-D departure flow during interval k. 

The optimal control program can then be reformulated as a discrete time 
NLP as follows: 

mm Z 
u,v,x,e,E,/,F,'JI'" 

+ 

s.t. 

x~~(k + 1) = x~~(k) + u~~(k) - v~~(k) Va,p, r, s; k = 1"", K; 

F;"(k + 1) = F;'(k) + f;'(k) Vp, r, s; k = 1"", K; 

E;"(k + 1) = E;"(k) + e;"(k) Vp, r, s; k = 1"", K; 

f;" (k) = L 6:;u~~(k) Vp, r, s; k = 1"", K; 
aEA(r) 

e;"(k) = L 6:;v:~(k) Vp,r,s;k= 1,"',K; 
aEB(") 

(7.45) 

(7.46) 

(7.47) 

(7.48) 

(7.49) 

(7.50) 

'" varp" (k) - '" urap" (k) = 0 V' . .../.. k 1 K (7 51) L...J L...J },p,r,S;} r r,s; = ,"',; . 
aEB(j) aEA(j) 

x~~(k) = L {x;;;[k + Ta(k)]- x;;;(k)} + {E;"[k + Ta(k)] - E;"(k)} 
bEp 

Va E B(j); j -::p r; p, r, s; k = 1, .. " K + 1; (7.52) 
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Vr,s;k= 1, .. ·,K; 

u~~(k) ;::: 0, v~~(k);::: 0, x~~(k + 1);::: 0, Va,p, r, s; k = 1, .. ·, K; 

E;6(k + 1) ;::: 0, F;6(k + 1) ;::: 0, Vp, r, s; k = 1, .. ·, K; 

E;'(1) = 0 F;S(1) = 0 Vp, r, s; 

x~~(1) = 0, Va,p, r, s. 

In addition, we require the following definitional constraints. 

L u~~(k) = ua(k), L v~~(k) = va(k), L x~~(k) = xa(k), Va; 
rsp r6p rop 

Le;S(k) = ero(k), LE;'(k) = Ero(k), Vr,s; 
p p 

L J;'(k) = rO(k), L F;'(k) = r'(k), Vr,s. 
p p 

(7.53) 

(7.54) 

(7.55) 

(7.56) 

(7.57) 

(7.58) 

(7.59) 

(7.60) 

Nonlinear constraints (7.53) may not hold strictly as equalities because of cu­
mulative round-off errors of link flow variables over routes after time discretiza­
tion. 

7.4.2 The Penalty Method 

The penalty method has had very few applications to route choice models. 
Inouye (1986) used the barrier method to solve the static VO problem with 
explicit link capacity constraints. He combined capacity constraints into the 
objective function and then used the Frank-Wolfe algorithm to solve the mod­
ified problem. In this section, we apply the penalty method to the constraints 
associated with the relationship between travel times and link flows. We 
place equality constraints (7.53) in the objective function as penalty terms. 
Then, only flow conservation and flow propagation equations remain, and the 
diagonalization/Frank-Wolfe technique can be used to solve the modified pro­
gram. The penalty function dr'(k) replacing constraint (7.53) is defined as 

Vr,s;k = 2,···,K + 1. 

We then reformulate the discrete time NLP as follows: 

min Z 
u,v,x,e,E,j,F,r 

s.t. 

x~~(k + 1) = x~~(k) + u~~(k) - v~~(k) Va,p,r,s;k= 1,···,K; (7.62) 
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VrjS # rjpjk = 1,···,}(j (7.63) 

Vrjs#rjpjk= 1,···,}(j (7.64) 

L: t;'(k) = r'(k), Vr,Sj (7.65) 
p 

t;'(k)- L: u~~(k)=O Vp,r,sjk= 1,···,}(j (7.66) 
aEA(r) 

t;'(k) = L: tS;;u~~(k) Vp,r,sjk= 1,···,}(j (7.67) 
aEA(r) 

Vp,r,sjk= 1,···,}(j (7.68) 

L: v~~(k) - L: u~~(k) = 0 VJ· ~ r s· k - 1 ..• }(. I , , -, , , (7.69) 
aEB(j) aEA(j) 

x~~(k) = L: {x;;;[k + Ta(k)]- x;;;(k)} + {E;'[k + Ta(k)]- E;'(k)} 
bEp 

Va E B(j)jj # rjp, r, Sj k = 1,···,}( + 1j (7.70) 

u~~(k):2:0, v~;(k):2:0, x~~(k+1):2:0, Va,p,r,sjk=1,··.,}(j (7.71) 

e;'(k):2: 0, t;'(k):2: 0, Vp,r,sjk= 1,···,}(j (7.72) 

E;'(k+ 1):2: 0, F;'(k+ 1):2: 0, Vp,r,sjk=1,···,}(j (7.73) 

Vp,r,Sj (7.74) 

x~~(1) = 0, Va,p, r, s. (7.75) 

In the objective function, the last term is the penalty term associated with 
equality constraint equation (7.53). The penalty coefficient J.t(n) is a large 
positive number and increases with iteration n. It is well known that this 
penalty function dr. has continuous first partial derivatives. 

8dr'(k) = 2 {Fr'(k) _ Er'[k + ~r'(k)]} > ° \.J k }( 8Er'[k + 7rr'(k)] "- vr, Sj = 2,···, + 1. 
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7.4.3 The Diagonalization/Frank-Wolfe Algorithm 

We then apply the diagonalization technique as introduced in Chapter 6. In 
this procedure, the actual travel times over each link a, Ta(k), are temporarily 
fixed as fa (k) and are updated iteratively. At each iteration, since each fa (k) 
is temporarily fixed, the minimal O-D travel time functional 7rr '(k) can be 
computed and is also temporarily fixed as 7rr'(k). After solving the route 
choice problem for fixed fa(k), link travel times corresponding to the solution 
obtained for xa(k), ua(k) and va(k) are compared to functions Ta(k). If link 
travel times corresponding to the solution are different from Ta(k), their values 
are reset to these travel times and the process is repeated. After link travel time 
Ta(k) is updated, minimal O-D travel time 7rr'(k) can be updated so that the 
penalty terms can be updated. Then we can proceed to the next diagonalization 
iteration. Given the robust nature of the diagonalization technique, we expect 
that the solution will converge to the ideal DUO solution. 

We use the same diagonalization/Frank-Wolfe algorithm presented in 
Chapter 6 for solving the instantaneous DUO traffic assignment problem. De­
note the subproblem variables as p, q, y, E, e, 1, P, corresponding to the main 
problem variables u, v, x, E, e, j, F. To distinguish the notation, we use 1 to 
denote a route in the subproblem. Applying the Frank-Wolfe algorithm to the 
minimization of the discretized ideal DUO program requires, at each iteration, 
a solution of the following linear program (LP): 

s.t. 

y~i(k + 1) = y~i(k) + p~Hk) - q~~(k) Va, 1, r, Sj k = 1,"" Kj 

P{S(k + 1) = P{'(k) + l{'(k) VI, r, Sj k = 1,,", Kj 

E[S(k+l)=E['(k)+er'(k) V/,r,sjk=I,"',Kj 

L f['(k) = r'(k) = 0 Vr, Sj k = 1,"" Kj 

f[S(k)- L p~Hk)=O V/,r,sjk=I,"',Kj 
aEA(r) 

l{'(k) = L o~iu:i(k) V/,r,sjk= 1,"',Kj 
aEA(r) 

cr, (k) - ""' or, vr• (k) I - L...J al al V/,r,sjk= 1,"',Kj 
aEB(s) 

(7.76) 

(7.77) 

(7.78) 

(7.79) 

(7.80) 

(7.81) 

(7.82) 

(7.83) 

L q~i(k)- L p:i(k) = 0 Vj, I, r, Sjj =/; r, Sj k = 1"", Kj (7.84) 
aEB(j) aEA(j) 
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y~i(k) = I)Ybi [k + Ta(k)] - Ybi (k)} + {E," [k + Ta(k)] - E," (k)} 
bE; 

Va E B(j)j j "# rj I, r, Sj k = 1, ... , K + 1j 

y~i(k+1)~0, p~i(k)~O, q~i(k)~O, Va,l,r,sjk=1,···,Kj 

el"(k) ~ 0, II" (k) ~ 0, VI, r, Sj k = 1,···, Kj 

E,"(k+1)~0, Fr"(k+1)~0, VI,r,sjk=1,···,Kj 

E,"(1) = 0, 

y~j(1) = 0, 

VI, r, Sj 

Va, I, r, s. 

The objective function (7.76) is equivalent to: 
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(7.85) 

(7.86) 

(7.87) 

(7.88) 

(7.89) 

(7.90) 

(7.91) 

The components of the gradient of Z with respect to the control and state 
variables u, v, x, E are 

az 
tla(k) = aua(k) = gla[xa(k), ua(k)] Vaj k = i,···, Kj (7.92) 

az 
t2a(k) = aVa(k) =g2a[xa(k),va(k)] Vajk= 1,···,Kj (7.93) 

az 
aXa(k) 

("a(k) ag1a[xa(k),w]dw + fa(k) ag2a [xa(k),w]dw 
10 aXa(k) 10 aXa(k) 

Vaj k = 2,···, Kj 

az 
aEr"[k+ 7("r"(k)] 
2J.t(n). {r"(k) - Er"[k + jtr"(k)]} 

(7.94) 

(7.95) 

(7.96) 

Vr, Sj k = 2, ... , K + 1j (7.97) 
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The objective function can be rewritten as 

K 

Z = L L L [tla(k)p~i(k) + t2a(k)q~i(k) + t~~(k + 1)y~i(k + 1)] 
k=l r,' a,' 
K+1 

+ L Lt~'(k)Er'(k) (7.98) 
k=2 r,'" 

Since gla and g2a are nonnegative and increasing functions, it follows that 

tla(k), t2a(k) :::: 0, Va; k = 1,···, K; 

t3~(k+1)::::0, Va,r,s;k=1,··.,K. 

t~'(k+1)::::0, Vr,s;k=1,···,K. 

(7.99) 

(7.100) 

(7.101 ) 

This has a significant impact on the solvability of this model for large net­
works, since these components will be link cost coefficients in a minimal-cost 
network problem. Note that there are no capacity constraints on the links; the 
only constraints are non-negativity and conservation of flow. Furthermore, the 
constraints apply to each origin-destination pair independently, so linear pro­
gram (7.76)-(7.90) can be decomposed by origin-destination pair. The resulting 
subproblem for each O-D pair (r,s) is given by 

min 
P,Q,lI,E 

+ 

K 

L L [tlaP~i (k) + t2aq~i(k) + t~~(k + 1)y~i (k + 1)] 
k=l a' 
K+l 

L Lt~'(k)Er'(k) (7.102) 
k=2 , 

s.t. constraints (7.77)-(7.90). 

In addition to the fourth term, the above program is identical to the 
LP subproblem of the discrete time instantaneous DUO route choice model. 
The fourth term involves flow variables associated with the origin and desti­
nation nodes only. Thus, the above LP subproblem for each O-D pair (r, s) 
can be viewed as a many-to-one minimal-cost route problem over an expanded 
time-space network using artificial origins. It can be solved by determining the 
minimal-cost routes from all artificial origins to a super destination and com­
pleting an all-or-nothing assignment. Flow variables p:Hk), q:Hk), y:i<k + 1), 
Er'(k+ 1), are determined by solving the minimal-cost route problem for each 
O-D pair (r, s) and assigning the O-D flows to the links. 

In this combined algorithm, we define the diagonalization procedure as 
the outer iteration and the F -W procedure as the inner iteration. Denote the 
new solution at inner F -W iteration (n + 1) as 

u~n+l)(k) = u~n)(k) + a(n)[u~n)(k) - p~n)(k)], Va; k = 1,···, K; (7.103) 
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v~n+1)(k) = v~n)(k) + a(n)[v~n)(k) - q~n)(k)], Va; k = 1,···, K; (7.104) 

x~n+l)(k) = x~n)(k) + a(n)[x~n)(k) - y~n)(k)], Va; k = 1,···, K + 1; (7.105) 

E(n+1)(k) = E(n)(k)+a(n)[E(n)(k)_E(n)(k)], Vr, S; k = 1,···, K+1; (7.106) 

where a(n) is the optimal step size of the one-dimensional search problem in 
the F -W algorithm. The one-dimensional search problem is to find step size 
a(n) that solves 

K+l 

+ L L j.l(n)dro [E(n+1)(k)] (7.107) 
k=2 r,o 

where u~n+l)(k), v~n+l)(k), x~n+1)(k), E(n+1)(k) are replaced by the defini­
tional equations in the above. 

7.4.4 Summary of the Algorithm 

The algorithm for solving our ideal DUO route choice model is illustrated in 
the flowchart in Figure 7.3 and is summarized as follows. 

Step 0: Initialization. 
Find an initial feasible solution {x~l)( k)}, {u~l)( k)}, {v~l)(k n, {E(1)(k n. 
Set the outer iteration counter m = 1. 

Step 1: Diagonalization. 
Find a new estimate of actual link travel time r!n)(k) and solve the DUO 
program. Set the inner iteration counter n = 1. 

[Step 1.1]: Update. Calculate tla(k), t2a(k), t3a(k) and t4°(k) using 
equations (7.92)-(7.97). 

[Step 1.2]: Direction Finding. Based on {tla(k)}, {t2a(k)}, {taa(k)} 
and {t4°(k)}, search the minimal-cost route forward from each artificial 
origin to the super destination over an expanded time-space network for 
each O-D pair (r, s). Perform an all-or-nothing assignment, yielding sub­
problem solution {Pa(k)}, {qa(k)}, {Ya(k)}, {Ero(k)}. 

[Step 1.3]: Line Search. Find the optimal step size a(n) that solves 
the one dimensional search problem. 

[Step 1.4]: Move. Find a new solution by combining {ua(k)}, {va(k)}, 
{xa(k)}, {Ero(k)} and {Pa(k)}, {qa(k)}, {Ya(k)}, {Ero(k)}. 
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[Step 1.5]: Convergence Test for Inner Iterations. If n equals the 
prespecified number, go to step 2; otherwise, set n = n + 1 and go to step 
1.1. 

Step 2: Convergence Test for Outer Iterations. 
If T~m)(k) ~ T~m+l)(k), and the penalty term Ek Er,. /-l(n)dr'(k) ~ 0, 
stop. The current solution, {ua(k)}, {va(k)}, {xa(k)}, {Er'(k)}, is in a 
near ideal DUO state; otherwise, set m = m + 1 and go to step 1. 

In order to speed up convergence, an incremental assignment technique is sug­
gested for finding a good starting solution before applying the diagonalization 
procedure. 

Inner Iterations: 
Solve Route Choice Model (NLP) for 1+----.., 
Link Flows Using F-W Algorithm. 

Figure 7.3: Flowchart of the Solution Algorithm 

7.5 Notes 

In our model, a continuous flow of traffic is implicitly assumed - when vehicles 
approach a decision node (intersection), drivers can continue straight ahead or 
turn left or right without physically blocking the road. In reality, this may not 
be literally true. For example, suppose two vehicles traveling on a one-lane road 
arrive at an intersection. The DUO route choice conditions in our model may 
require the first vehicle to wait and then make a left turn, but allow the second 
vehicle to go straight ahead without waiting. In this situation, the dynamic 
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physical conditions will be violated since in reality the second vehicle would 
have to wait for the first one. This implies that our model literally represents 
only networks with turning lanes of sufficient length to accommodate all turning 
vehicles. 

An advantage of the proposed model is that the flow propagation con­
straints can serve as a black box. If accurate link travel time functions are not 
available, the model still works because the flow propagation constraints can be 
easily replaced by appropriate traffic flow models. The resulting formulation is 
a set of nonlinear dynamic equations, or a nonlinear complementarity problem. 

In the following, we provide some insights into the instantaneous and 
ideal DUO route choice models. Our dynamic route choice models are opti­
mization oriented. Ultimately, some optimal control measures are necessary to 
help to achieve our goal. Those controls may include optimal routing, signal 
optimization, and other means. Consequently, these control problems can be 
modeled using optimal control theory. In traffic prediction problems, including 
dynamic route choice models, many uncertain events can occur in the future, 
such as traffic. accidents, illegal double parking on streets, etc. In other words, 
disturbances for future traffic might be large enough to cause the traffic predic­
tion and traffic control models based on predicted future travel times (or actual 
travel times as defined in this book) to fail. In those cases, optimal control mod­
els based on instantaneous travel times might provide more meaningful results 
since feedback is taken into account in the optimal control models and drivers 
can adjust their routes en-route using current traffic information. In terms of 
optimal control theory and the uncertainty characteristic of our problem, in­
stantaneous travel time prediction might be the only choice in some situations. 
This is one of the reasons why feedback control theory was developed. 

Of course, the ideal dynamic user-optimal route choice model, which 
equalibrates actual route travel times in the future, is also useful when some 
future disturbance (incidents and other future events) are predictable, such as 
the increased traffic flow from a baseball stadium after a game. In conclusion, 
the best solution is to provide both instantaneous and ideal user-optimal route 
choice models for use in various appropriate situations. When a future dis­
turbance is more predicable, we can use the ideal dynamic user-optimal route 
choice model. When a future disturbance is less predicable, we may prefer the 
instantaneous model. 



Chapter 8 

Stochastic Dynamic U ser­
Optimal Route Choice Models 

Dynamic route guidance systems are being developed in order to inform and 
guide drivers regarding their best departure times and routes so as to avoid 
congestion delay. However, drivers mayor may not rely on the information 
provided by the route guidance system to adjust their departure times and 
routes. Furthermore, drivers without navigation systems do not have perfect 
information on the network traffic and must use their own experience and 
perception of current traffic conditions to make travel decisions. Thus, there 
is a need to develop dynamic route choice models under imperfect information 
as well as perfect information. 

To date, many dynamic route choice models have been presented, regard­
ing both route and departure time choices (see Chapter 1 for an overview). 
However, very few existing models can be applied to the situation with im­
perfect traffic information or indeterministic traffic conditions. Moreover, de­
terministic dynamic user-optimal (DUO) route choice models assign flows to 
minimal travel time routes only. Those deterministic models can not represent 
the realistic traffic flow dispersion across different travel time routes. In re­
sponse to this gap, this chapter presents two stochastic dynamic user-optimal 
(SDUO) route choice models which are stochastic extensions of our determin­
istic DUO route choice models presented in Chapters 5 and 7. We note that 
there is another approach to represent traffic flow dispersion across different 
travel time routes. This approach stratifies vehicles into different groups and 
uses group-specific travel disutilities to determine dynamic user-optimal routes. 
We will discuss this approach in Chapters 12-13. 

The perceptions of travel times have also been studied using stochas­
tic static route choice models. Stochastic route choice models have been ex­
plored extensively under the assumption of static traffic conditions (Daganzo 
and Sheffi, 1977; Fisk, 1980; Sheffi and Powell, 1983, etc.). Recently, Cas­
setta (1991) studied the variation of dynamic route choice from day to day. 
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Vythoulkas (1990) also extended stochastic static route choice models into the 
dynamic route choice framework. 

The SDUO route choice problem is to find dynamic trajectories of link 
states and inflow and exit flow control variables, given time-dependent O-D 
departure rates, the network, link travel time functions and some assumptions 
about the randomness of imperfect traffic information. Basically, SDUO prob­
lems can be classified according to the following: 

1. random components in traveler's perceptions of travel times; 

2. randomness of origin-destination flows; 

3. randomness of the link traffic states. 

In this chapter, we will include only the random component in travelers' per­
ception of travel times. Then route choice is a process of selection among 
alternative routes, for which the perceived time-dependent travel times include 
a random error. We note that the proposed models in this chapter represent 
only our initial effort to tackle this very difficult problem. Logit-type dynamic 
route choice models are used in our formulations in this chapter because of their 
advantages of mathematical tractability, although logit-type models have IIA 
(Independence of Irrelevant Alternatives) properties which cause inaccuracy in 
route choice dispersion. In subsequent studies, we will examine more realistic, 
but more complicated distributions of route choice dispersion. 

In this chapter, the stochastic route choice assumption is introduced into 
dynamic route choice problems so that our SDUO models are dynamic general­
izations of conventional stochastic static user-optimal (SUO) models under the 
assumption of dispersed travel choice. Stochastic dynamic route choice models 
are better representations than deterministic dynamic route choice models be­
cause travelers' route choice dispersion is taken into account. We concentrate 
our analysis on the modeling aspects of SDUO route choice formulation in this 
chapter. Solution algorithms for solving the two models are presented in the 
next chapter. 

Compared with deterministic dynamic route choice models, the proposed 
stochastic dynamic route choice models represent at least a better approxima­
tion to real world conditions because in SDUO route choice models, O-D de­
parture flows are dispersed across different travel time routes. On the contrary, 
deterministic DUO route choice models assign O-D departure flows to minimal 
travel time routes only. Furthermore, SDUO models provide better representa­
tions of travelers' route choice behavior than their static counterparts because 
time-dependent traffic flows and travel times are explicitly taken into account. 

In this chapter, we first present definitions of travel times in stochas­
tic dynamic problems in Section 8.1. The constraints and the instantaneous 
SDUO model are then described in Section 8.2. The formulation of the instanta­
neous SDUO route choice problem is based on the underlying choice criterion 
that each traveler uses the route that minimizes his/her perceived instanta­
neous travel time when departing from the origin or any intermediate node to 
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his/her destination. Subsequently, the equivalence of the model with instan­
taneous SOUO route choice is demonstrated by proving the equivalence of the 
optimality conditions of the model with the instantaneous SOUO route choice 
conditions. The solution of this instantaneous SOUO route choice model will 
result in instantaneous stochastic network flows at each decision node based 
on a logit function of mean instantaneous travel times of alternative routes. 
Here, we use logit-type of distribution because of closed form properties for 
choice probability. We note that this is a first step toward a more realistic 
distribution. It is also shown that our instantaneous DUO route choice model 
in Chapter 5 is a particular case of the instantaneous SOUO route choice model 
when the variance of instantaneous route travel time perception is zero. 

In Section 8.3, we present an ideal SOUO route choice model based 
on stochastic flow loading with a logit function of mean actual travel times 
experienced by drivers over alternative routes for each 0-0 pair. It is shown 
that our previous deterministic ideal DUO route choice model in Chapter 7 is 
a special case of the ideal SOUO route choice model when the variance of the 
perceived actual route travel time is zero. In Section 8.4, some properties of 
SOUO route choice models are discussed. 

8.1 Definitions of Travel Times in Stochastic 
Situations 

Recall that in an ATIS system, there are two kinds of travel time information 
which can be provided to travelers: current information and future predictions. 
Current travel time information can be obtained using the currently prevailing 
instantaneous link travel times. Correspondingly, future travel time informa­
tion can be obtained using predicted actual link travel times. 

The instantaneous travel time at time t is defined as the travel time that 
is experienced by vehicles traversing link a when prevailing traffic conditions 
remain unchanged. Let Ca(t) denote the instantaneous travel time on link a 

at time t as perceived by a traveler randomly chosen from the population of 
travelers. Ca(t) is a random variable that is assumed to have mean ca(t). The 
mean or measured (as opposed to perceived) instantaneous travel time Ca (t) over 
link a at time t is assumed to be dependent on the number of vehicles Xa(t), 
the inflow ua(t) and the exit flow va(t) on link a at time t. In this model, we 
assume the mean instantaneous travel time ca(t) on link a is the sum of two 
components: 1) an instantaneous flow-dependent cruise time gla[Xa(t), ua(t)] 
over link aj and 2) an instantaneous queuing delay g2a[Xa(t), va(t)]. It follows 
that 

(8.1) 

The two components gla[Xa(t), ua(t)] and g2a[Xa(t), va(t)] are assumed to be 
nonnegative and differentiable with respect to xa(t), ua(t) and xa(t), va(t), re­
spectively. 
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Consider the flow which originates at node r at time t and is destined for 
node s. There is a set ofroutes {p} between O-D pair rs. Denote the minimal 
free flow travel time from node i to destination node s as 0'~6. In this chapter, 
an efficient route between rs is redefined to include only links a = (i, j) such 
that node j is closer to destination s than node i, i.e., O'~' > O't' (Dial, 1971). 
In the following, all route related constraints are defined using efficient routes. 
By using efficient routes, the cyclic flow problem in some dynamic assignment 
models can be prevented. Define the mean or measured instantaneous travel 
time 1/J;'(t) for each route p between rs as 

1/J;' (t) = I: ca[xa(t), ua(t), va(t)) Vr,s,p; (8.2) 
aEr,p 

the summation is over all links a in route p from origin r to destination s. 
Thus, the mean instantaneous route travel time is that experienced by vehicles 
if prevailing traffic conditions do not vary until vehicles reach their destination. 
This instantaneous route travel time provides a first approximation to the time­
dependent vehicle travel time. 

Next, define Ta(t) as the mean actual travel time over link a for vehicles 
entering link a at time t. Let Ta(t) denote the perceived actual travel time 
for flows entering link a at time t. Ta(t) is a random variable with mean 
Ta(t). As described in Chapter 16, an actual link travel time function has a 
similar form to an instantaneous link travel time function. We refer readers to 
Section 16.1 for a detailed discussion of the difference between instantaneous 
and actual link travel times. Similarly, define 17;'(t) as the mean actual travel 
time experienced over route p by vehicles departing origin r toward destination 
s at time t. Once the mean actual link travel time Ta(t) is determined, the mean 
actual route travel time 17;' (t) can be computed using the following recursive 
formula: 

Vr, s, p; i, j E P (8.3) 

where link a = (i, j) is on route p. 

The new notation for this chapter is summarized as follows: 

Ca(t) 
ca(t) 

w;'(t) 

perceived instantaneous travel time for link a at time t 
mean instantaneous travel time for link a at time t 
perceived instantaneous route travel time for route p 
between rs at time t 



8.2. Instantaneous SDUO Route Choice Model 165 

n;'(t) 

mean instantaneous route travel time for route p 
between rs at time t 
perceived actual travel time over link a for flows 
entering link a at time t 
mean actual travel time over link a for flows 
entering link a at time t 
estimated mean actual travel time over link a for flows 
entering link a at time t 
perceived actual travel time for flows departing origin r 
toward destination s over route p at time t 
mean actual travel time experienced by flows departing 
origin r toward destination s over route p at time t 
minimal free flow travel time from node i to 
destination node s 

() route choice dispersion parameter 

8.2 Instantaneous snuo Route Choice Model 

8.2.1 Model Formulation 

The formulation of the instantaneous SDUO route choice problem is based on 
the underlying choice criterion that each traveler uses the route that minimizes 
his/her perceived instantaneous travel time when departing from the origin or 
any intermediate node to his/her destination. In the following, we extend a 
similar analysis for stochastic static route choice given by Sheffi (1985) to the 
case of instantaneous dynamic route choice. 

For each origin-destination pair, there are many alternative routes p, 
each with some instantaneous travel time for each time instant. Due to vari­
ations in perceptions and exogenous factors, these instantaneous route travel 
times are perceived differently by each traveler. We represent the perceived 
instantaneous route travel time as a random variable for each time instant t. 
Given his or her perception of instantaneous route travel time at each time 
instant t, each traveler is assumed to choose the route with minimal perceived 
instantaneous travel time. Given a probability density function for the instan­
taneous route travel time at each time t, the instantaneous stochastic dynamic 
user-optimal route choice problem is to determine how many travelers will use 
each route at each decision node at each instant of time. 

Let w;· (t) denote the perceived instantaneous route travel time on route 
p between origin r and destination s at each time t. Then, we assume that 

Vr,s,p, (8.4) 

where ~;'(t) is a random error term associated with the route p under con­
sideration. Furthermore, assume that the mean of the error E[~;' (t)] = 0, or 
E[w;'(t)] = .,p;"(t). In other words, the average perceived instantaneous route 
travel time is the mean instantaneous route travel time. 
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The share of travelers choosing route p at each time t, P;6(t), is 

In other words, the probability that a given route for each O-D pair is chosen 
at time t is the probability that its instantaneous route travel time is perceived 
to be the lowest of all the alternative routes. Once the distribution of perceived 
instantaneous route travel times is specified, the probability of selecting each 
alternative route can be calculated and the route flow can be assigned as follows: 

Vr,s,p (8.6) 

where J;"(t) is a control variable specifying the departure rate on route p from 
r to s at time t. In this chapter, we assume that 

Vr,s,p, (8.7) 

where () is a nonnegative parameter that scales the perceived instantaneous 
route travel time, and f;6(t) is a random error term associated with the route 
p under consideration (Sheffi., 1985). We assume that the errors f;6 (t) are 
identically and independently distributed (i.i.d.) Gumbel variates for each time 
instant t. Other distributions of the perceived instantaneous route travel times 
will be discussed in subsequent studies. Based on random utility theory, the 
logit route choice probability can be expressed as 

exp[ _8lj1pr. (t)] 
pr6(t) _ =-_-:--"---:--:-::-

p - L, exp[-8lj1[6(t)] 
Vr,s,p. (8.8) 

As 8 ..... 00, var[w;6 (t)] ..... 0 and the perceived instantaneous travel time 
between the O-D equals the mean instantaneous travel time .. In this case, 
travelers will choose the minimal-time route at each time instant, as in the 
deterministic instantaneous DUO route choice model in Chapter 5. We note 
that the above analysis for each O-D pair also applies for each decision node­
destination pair. 

Analogous to the deterministic instantaneous DUO route choice model, 
we can use a conventional definition of used links and routes. For any link a 
and any O-D pair rs, link a is defined as being used at time t if U~6 (t) > o. 
Furthermore, a route p between rand s is defined as being used at time t if 
u~~(t) > 0, where link a is the first link on route p from r to s. The above 
definition will be used in general variational inequality models for instantaneous 
SDUO route choice problems. In this chapter, we are formulating optimal 
control models which are equivalent to the instantaneous SDUO route choice 
conditions. These optimal control models are related to the general variational 
inequality models. Thus, we use the following relaxed definition of used links 
and routes in this optimal control model. For a link a on any route from origin 
r to destination s, link a is being used at time t if U~6(t) > 0 and V~6(t) > o. 
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Furthermore, a route p between rand s is being used at time t if u ~. ( t) > 0 
and v~' (t) > 0 for all links a E rsp. We note that this definition only applies 
to this instantaneous SDUO route choice model. 

The instantaneous stochastic dynamic user-optimal (SDUO) route choice 
problem is to determine vehicle flows at each instant of time on each link 
resulting from drivers using perceived minimal-time routes under the currently 
prevailing travel times. The instantaneous stochastic dynamic user-optimal 
state is the following dynamic generalization of the conventional stochastic 
static user-optimal (SUO) state. 

Instantaneous SDUO State: If, for each O-D pair at each de­
cision node at each instant of time, the perceived instantaneous 
travel times for all routes that are being used equal the minimal 
perceived instantaneous route travel time, the dynamic traffic flow 
over the network is in an instantaneous stochastic dynamic user­
optimal state. 

This definition is the stochastic generalization of the one given in Chapter 
5. It assumes that all drivers make their route choice decisions using their 
perceptions of the current prevailing O-D travel times so that traffic flows are 
more dispersed over alternative routes than the deterministic dynamic route 
choice models. 

As in deterministic instantaneous DUO route choice models in Chapter 
5, we write the flow prbpagation constraints using estimates of the mean actual 
link travel times. These link time estimates must be updated in an iterative 
diagonalization solution procedure. Denote Ta(t) as the estimated mean actual 
travel time over link a for flows entering link a at time t. Then, the flow 
propagation constraints are as follows: 

x~~(t) = I: {x;;;[t + Ta(t)l- x;;;(t)} + {E;'[t + Ta(t)l- E;'(t)} 
bE;; 

Va E PjP, r, s. (8.9) 

Using optimal control theory, an equivalent optimization model of the 
instantaneous stochastic dynamic user-optimal route choice problem is formu­
lated as follows. 

u,~;,~,E lT {~ [lUa
(t) Yla[xa(t),wldw + l Va

(t) Y2a[xa(t),wldw 1 
+ ~ [I: I: I: u~~(t) In u~~(t) 

r. p a 

I: I: I: v~~(t) In V~~(t)l } dt (8.10) 
r. p a~B(.) 
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s.t. 
Relationship between state and control variables: 

dxr, 
~ = ur , (t) - vr , (t) dt ap ap 

Flow conservation constraints: 

r'(t) = L L u~~(t) 
aEA(r) P 

Va,p, r,s; 

Vp, r; s i- r; 

Vr...J. s·s· T , , 

L v~~(t) = L u~~(t) Vj,p,r,s;ji- r,s; 
aEB(j) aEA(j) 

er'(t) = L L v~~(t) Vr, s i- r; 
aEB(,) P 

Flow propagation constraints: 

X~~(t) = L {Xb;[t + Ta(t)]- Xb;(t)} + {E;'[t + Ta(t)]- E;'(t)} 
bEp 

Va E PiP, r, s; 

Definitional constraints: 

L u~~(t) = u~'(t), L u~'(t) = ua(t), Va; 
p r. 
L v~~(t) = v~' (t), E v~'(t) = va(t), Va; 

p r. 
Lx~~(t) = x~·(t), L x~'(t) = xa(t), Va; 

p r. 
Le;'(t) = er'(t), L E;' (t) = E r• (t), Vr,s; 

p p 

Nonnegativity conditions: 

r, (t) > 0 r, (t) > 0 vr • (t) > 0 V xap _, uap _, ap _ a,p,r,s; 

er'(t) > 0 p -, Er'(t) > 0 p -, Vp,r,s; 

Boundary conditions: 

Er,(O) - 0 p -, Vp,r,s; Xr,(O) = 0 ap , Va,p, r, S; 

(8.11) 

(8.12) 

(8.13) 

(8.14) 

(8.15) 

(8.16) 

(8.17) 

(8.18) 

(8.19) 

(8.20) 

(8.21 ) 

(8.22) 

(8.23) 
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where the expressions u(t) In u(t) and v(t) In v(t) are assigned the value zero 
at u(t) = 0 and v(t) = 0, respectively. The first two terms of the objective 
function are similar to the objective function of the well-known stochastic static 
UO model. The third and fourth terms of the objective function are also similar 
to the route flow entropy terms in the objective function of the stochastic UO 
model. In the last term of the objective function, the entropy function applies 
to all except the last link on every route between every O-D pair. 

The first two constraints (8.11)-(8.12) are state equations for flows on 
each link a and for the arrivals at destinations. Equations (8.13)-(8.15) are flow 
conservation constraints at each node including origins and destinations. The 
other constraints include flow propagation constraints, definitional constraints, 
nonnegativity, and boundary conditions. In summary, the control variables 
are u~~(t), v~~(t), e;6 (t); the state variables are x~~(t), E;6 (t). We prove in 
the next section that the optimal solution to the model is in an instantaneous 
SDUO state. 

Generally we assume the route choice dispersion parameter (} to be non­
negative. As 8 -+ 00, the third and fourth terms in the objective function will 
vanish and the solution will approach the deterministic instantaneous user­
optimal solution. 

8.2.2 Optimality Conditions and Equivalence Analysis 

Optimality Conditions 

We construct the extended Hamiltonian as follows. 

1i ~ {l ua
(t) gla[xa(t),w]dw + l va

(t) g2a[xa(t),w]dw } 

+ ~ [L L L u~~(t) In u~~(t) - L L L v~;(t) In V~;(t)l 
rs p a r6 p af/.B(6) 

+ L L '\~;(t)[u~~(t) - v~;(t)] + L L L v;'(t)e;'(t) 
r. ap r 'i"r p 

aEA(r) P 

+ L L L a;;(t)[ L v~;(t) - L u:~(t)] 
r. ii"r. p aEB(j) aEA(j) 

+ LLa:S(t)[ L L v~;(t) - er'(t)] 
r 'i"r aEB(.) P 

+ L L L Jl~~(t) {x:~(t) + L x;;;(t) + E;6(t) 
r. p aEp bEp 
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Lx);;[t + fa (t)] - E;'[t + fa(t)]} 
hEft 

where A~~(t) are Lagrange multipliers associated with the link state equations, 
v;'(t) are Lagrange multipliers associated with the destination node state equa­
tions, aj;(t) are Lagrange multipliers associated with the node flow conserva­
tion equations, and I-t~~(t) are Lagrange multipliers associated with the flow 
propagation equations. For each link a which points from node 1 to node m, 
the first order necessary conditions of the instantaneous SDUO route choice 
program (8.10)-(8.23) include 

8~~(t) = gla[Xa(t), ua(t)] + ~ [lnu~~(t) + 1] + A~~(t) - ar;(t) ~ 0, 

Va E A(I), p, r, s, (8.24) 

r, () 81i \J (I) ( ) and uap t 8u~~(t) = 0 va E A ,p, r, Sj 8.25 

8V~~t) = g2a[Xa(t), va(t)] - ~ [In v~~(t) + 1] - A~~(t) + a;':p(t) ~ 0, 

Va E B(m), m i Sj p, r, s, (8.26) 

8~~t) = g2a[Xa(t), va(t)] - A~~(t) + a;':p(t) ~ 0, 

Va E B(m), m = SjP, r, s, 

and Vr • (t) 81i = 0 \J ap 8v~~(t) va,p, r, Sj 

81i --- > 0, Vp, r, s, 
8e;'(t) -

and er'(t)~ = 0 \J P ( ) vp, r, Sj 
8e;' t 

dA~~(t) _ 81i 
Va,p,r,Sj 

dt 8x~~(t) 

X~~(t) ~ 0, u~~(t) ~ 0, 

er'(t) > 0 p -, 

v~~(t) ~ 0, 

Er'(t) > 0 p -, 

Vp,r,Sj 

Note that a~;(t) = a~'(t) when node 1 equals origin r. 

Va,p, r, Sj 

Vp,r,s. 

(8.27) 

(8.28) 

(8.29) 

(8.30) 

(8.31) 

(8.32) 

(8.33) 

(8.34) 
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Equivalence Analysis 

We now show that the set of link states, inflows and exit flows that solves this 
program also satisfies the instantaneous stochastic dynamic user-optimal route 
choice conditions. This equivalence is demonstrated below by proving that the 
first order necessary conditions for optimal control program (8.10)-(8.23) are 
identical to the instantaneous stochastic dynamic user-optimal route choice 
conditions. The equivalence between the instantaneous SDUO route choice 
conditions and the first order necessary conditions of the optimal control pro­
gram means that the instantaneous SDUO route choice conditions are satisfied 
at the optimal solution of this program. 

Combining equations (8.24)-(8.25) with equations (8.26)-(8.28), the fol­
lowing equations can be derived for each link a pointing from node 1 to node 
m. 

a~~(t) + av~~t) = ca(t) - (1,; (t) + (1!'r:p (t) + ~ [In u~~(t) -In v~~(t)] ~ 0, 

Va E A(l) n B(m)jp, r, Sj (8.35) 

a~~(t) + av~~t) = ca(t) - (1,;(t) + (1:'(t) + ~ [In u~~(t) + 1] ~ 0, 

Va E A(l) n B( s)j p, r, s. (8.36) 

where node m equals destination S so that (1!'r:p (t) = (1~' (t). 
Furthermore, if u~~(t) > 0 and v~~(t) > 0, by (8.24)-(8.28), 

ca(t) = (1,;(t) - (1!'r:p (t) - ~ [lnu~~(t) -lnv:~(t)] 

Va E A(l) n B(m)jp, r, Sj 

ca(t) = (1,; (t) - (1~' (t) - ~ [In u~~(t) + 1] 

Va E A(l) n B(s)jp, r, s. 

(8.37) 

(8.38) 

For route p between origin node r and destination node s, let i denote 
node r or any intermediate node on this route. Denote route p as a sequence of 
nodes (i, 1,2, .. " n, s) and also as a sequence of links (1,2,· . " k). The mean 
instantaneous travel time .,p~·(t) for the remaining route p between i and S is 

.,p~·(t) = L Ca[Xa(t), ua(t), va(t)] Vi E p, r, s. (8.39) 
aEi.p 

Consider a set of routes p which are from r --+ i --+ S and the corresponding set 
of subroutes p. The flow conservation constraint at node i can be revised as 

L v~~(t) = L u~~(t) Vi,p, r, Sj i t= r, s. (8.40) 
aEB(i) aEA(i) 
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The fourth term in the Hamiltonian function should be revised aB 

P aEB(j) aEA(j) 

so that ar;(t) = arO(t) for the set of subroutes p. Note that all derivations 
from equation (8.24) to equation (8.38) follow for this set of subroutes p. 

Now if u~~(t) > 0 and v~~(t) > 0, route p is being used at time t. Thus, 
by equations (8.37)-(8.38), 

tPfio (t) [aiO (t) - a~o (t)] + [a~;(t) - a~;(t)] + ... 
+ [a~~l,p(t) - a~~(t)] + [a~~(t) - a~o (t)] 

~[ln ulfi(t) -In vlfi(t)]-~[ln u2fi(t) -In v2fi(t)]- ... 

~[lnu(LI)p(t) -lnv[LI)p(t)]- ~[lnukfi(t) + 1] 

1 
aiO(t) - a~O(t) - o[lnu1fi(t) + 1] (8.41) 

for every route p being used at time t. In equation (8.41), for any intermediate 
node j between upstream link a and downstream link b, 

(8.42) 

Thus, in the second line of equation (8.41), all terms except In u1fi(t) are can­
celed. Reorganizing equation (8.41), we have 

Ulfi(t) = exp[-8tPfio (t)] exp[8ai" (t) - 8a~o (t) - 1] (8.43) 

Summing the above equation over all subroutes ii, 

L ul~(t) = exp[8ai" (t) - 8a;" (t) - 1] L exp[-8tP~· (t)] (8.44) 
q q 

so that 
'"' uro (t) 

[ ll ro (t) II ro () 1] LJij Iq 
exp uai - ua. t - = 2:qexp[-8tP~O(t)] (8.45) 

Combining equations (8.43) and (8.45) for any subroute p of the set {ii}, 

ro ro exp[-8tP~O(t)] 
UIp(t) = ~ UIq(t)2:qexp[_8tP~O(t)] (8.46) 

where 2:q ul~(t) is the total flow entering the first links on subroutes ii from 
origin r arriving at node i and departing toward destination s at each time 
instant t; link 1 is the first link on subroute p from i to s. 

Equation (8.46) holds for each remaining route p between i and s, where 
i is any intermediate node (including the origin) between each O-D pair rs 
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in the network. For route p connecting node i and destination s, flows for 
each O-D pair are assigned according to the above logit function of measured 
instantaneous route travel times. 

When () -+ 00, the variance of the perceived instantaneous route travel 
times is zero. Thus, by equations (8.7) and (8.41), we have 

q,~"(t) -+ 1jJ~'(t) = ai'(t) - a:"(t) (8.47) 

Since we assume u~'(t) > ° and v~'(t) > 0, route p is being used by definition. 
Thus, the routes which are being used at time t have minimal instantaneous 
travel times equal to [ai' (t) - a~' (t)]. This is the case of deterministic instan­
taneous DUO route choice. 

The deviations from the instantaneous DUO can be attributed to drivers' 
ignorance of (or non-compliance with) current travel time information provided. 
This is also a learning process. The value, () = 0, corresponds to total driver 
ignorance (no compliance) in route travel times in which case either route is 
equally probable. As drivers increase their compliance to the provided pre­
vailing travel time information at each decision node, the flow on the shortest 
instantaneous travel time route will increase until an instantaneous DUO state 
is attained. 

We note that the above analysis applies to any two decision nodes i and 
j between r - s. Since the intermediate node i could be the origin node r, the 
above results also hold for routes from r to s. It follows that 

r'(t) = ur'(t) = fr'(t) exp[-(}1jJ;" (t)] 
p Ip L:q exp[ -(}1jJ~" (t)] 

(8.48) 

With the above interpretation, it is now clear that equations (8.46) state the 
instantaneous stochastic dynamic user-optimal route choice conditions. 

8.3 Ideal SDUO Route Choice Model 

The ideal stochastic dynamic user-optimal (SDUO) route choice problem is 
to determine vehicle flows at each instant of time on each link resulting from 
drivers using minimal perceived actual travel time routes. In the following, 
we first discuss additional network flow constraints for the ideal SDUO route 
choice model. 

8.3.1 Constraints for Mean Actual Route Travel Times 

Denote the cumulative number of departing vehicles from origin r to destination 
s over route p as a control variable F;'(t). We have 

dFr'(t) 
p = ,1;' (t) dt p 

Vp, r :f. s, s. (8.49) 
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At the initial time t = 0, 

Vp,r,s. (8.50) 

Denote the indicator parameters 6~; as 

6T ' _ {I if link a is on route p between O-D pair rs 
ap - 0 otherwise. 

The flow conservation equations for origin r can be rewritten as 

f;' (t) = L 6~~ u~~(t) Vp,r,s; (8.51 ) 
aEA(r) 

L f;' (t) = r' (t) Vr # s, s. (8.52) 
p 

The flow conservation equations for destination s can be rewritten as 

e;' (t) = L 6~~ v~;(t) Vp,r,s; (8.53) 
aEB(.) 

Vr,s # r. (8.54) 
p 

In the above equations, f;' (t), u~~(t), e;' (t) and v~;(t) are all control variables. 
For any route p, the cumulative number of vehicles departing from origin 

r by time t must equal the number of vehicles arriving at destination s over 
route p by time t + 17;' (t). It follows that 

t t+f/rB(t) 1 f;'(w)dw = 1 P e;'(w)dw Vr,s,p; (8.55) 

or 
Vr,s,p. (8.56) 

The cumulative number of departing vehicles F;' (t) and the cumulative 
number of arriving vehicles E;' (t) can be computed by using flow conservation 
equations at origins and destinations. Thus, the mean actual route travel time 
17;·(t) can be determined from the above equation, as shown in Figure 8.l. 
Taking the derivatives of the above equation with respect to time t, it follows 
that 

e;' [t + 17;" (t)][1 + r7;' (t)] = f;" (t) Vp,r,s. (8.57) 

The term r7;'(t) is the rate of change of mean actual route travel time. When 
r7;' (t) = 0, the mean actual route travel time is constant. However, this con­
straint for departure/arrival flow rates is redundant, because it can be derived 
using equation (8.56). This constraint is mentioned here so that the compar­
ison of the ideal SDUO route choice model with the deterministic ideal DUO 
route choice model in Chapter 7 can be made in subsequent sections. 
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Cumulative Number of Vehicles 

(Departure and Arrival) 

o t t +r(Jt) Time t 

Figure 8.1: Relation of F;'(t) and E;'(t) to 77;'(t) 
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8.3.2 Definition of Ideal SDUO and Logit-Based Route 
Flow Constraints 

For each origin-destination pair, there are many alternative efficient routes p, 
each with some mean actual travel time for flow departing from each origin to 
each destination at each time t. Due to variations in perception and exogenous 
factors, actual route travel times are perceived differently by each traveler. 
We assume the perceived actual route travel time to be a random variable for 
each time instant t. Given his or her perception of actual route travel time at 
each time instant t, each traveler is assumed to choose the route with minimal 
perceived actual travel time. Let n;' (t) denote the perceived actual route travel 
time for flows departing origin r toward destination s on route p at each time 
t. Then, we assume that 

n;' (t) = 77;' (t) + e;' (t) Vr,s,p, (8.58) 

where e;'(t) is a random error term associated with the route p under consid­
eration. Furthermore, assume that E[e;'(t)] = 0, i.e., E[n;'(t)] = 77;'(t). In 
other words, the average perceived actual route travel time is the mean actual 
route travel time. Based on a probability density function for the actual route 
travel time at each time t, the ideal SDUO route choice problem is to determine 
how many travelers will use each route at each origin node at each instant of 
time. The share of travelers choosing route p at time t, P;" (t), is given by 

P;"(t) = Pr[n;"(t) ~ n;"(t), V routes q between rand s] Vr,s,p. (8.59) 

In other words, the probability that a given efficient route is chosen at time t is 
the probability that its actual route travel time is perceived to be the lowest of 
all the alternative routes. Once the distribution of the perceived route travel 
times is specified, the probability of selecting each alternative route can be 
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calculated and the time-dependent route flow can be assigned as follows: 

Vr,s,p. (8.60) 

In this section, we assume that 

Vr,s,p, (8.61) 

where () is a nonnegative parameter that scales the perceived actual route travel 
time, and f;' (t) is a random error term associated with the route p under con­
sideration. We assume that f;'(t) are identically and independently distributed 
(i.i.d.) Gumbel variates for each time instant. Other distributions of the per­
ceived actual route travel times will be discussed in subsequent studies. Fol­
lowing random utility theory, a logit route choice probability can be expressed 
as 

exp [ - ()77pr , (t)] 
pr' (t) - =---;---=--'-:--:-;-

p - L:q exp[ -()77~' (t)] 
Vr,s,p. (8.62) 

In this model, a route p between rs is defined as being used at time t if f;' (t) > 
o. Thus, for each route p being used at time t, the logit-based stochastic route 
flow is 

r' (t) = r' (t) exp[ -()77;' (t)] 
p L:q exp[-()77~·(t)] 

Vr,s,p. (8.63) 

When () -+ 00, var[n;'(t)] -+ 0, and the perceived actual travel time 
between O-D equals the mean actual travel time. In this case, travelers will 
choose the minimal actual travel time route at each time instant, as in the 
deterministic ideal DUO route choice model in Chapter 7. We then propose a 
definition of the ideal SDUO state which is the stochastic generalization of our 
previous deterministic ideal DUO state in Chapter 7. 

Ideal SDUO State: If, for each O-D pair at each instant of time, 
the actual travel times perceived by travelers departing at the same 
time over used routes are equal and minimal, the dynamic traffic 
flow over the network is in an ideal stochastic dynamic user-optimal 
state. 

This definition represents another kind of perception of travel times by trav­
elers. The above definition can also be called as a predictive (or anticipatory) 
SDUO since the mean actual route travel time is a predicted mean route travel 
time. Because we assume a Gumbel distribution of the perception errors, the 
equilibration of the perceived actual route travel times is ensured by the logit 
route flow constraints (8.63). Furthermore, because the mean actual route 
travel times 77;'(t) can be determined by constraint conditions (8.56), the logit 
route flow constraints (8.63) are placed in the model directly without showing 
that the optimality conditions of the model are consistent with the ideal SDUO 
route choice conditions. Further discussion of the logit route flow constraints 
will be given later. 
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8.3.3 Model Formulation 

Using optimal control theory, an optimization program of the ideal stochastic 
dynamic user-optimal route choice problem is formulated as follows. 

(8.64) 

s.t. 
Relationship between state and control variables: 

dxr• 
~ = ur • (t) - vr • (t) dt ap ap 'rIa,p,r, S; (8.65) 

dFr·(t) 
p = fr·(t) 
dt p 

'rip, r =I s, S; (8.66) 

d~;·(t) _ r.() 
dt - ep t 'rip, r, s =I r; (8.67) 

Flow conservation constraints: 

f;· (t) = L c~; u~~(t) 'rip, r =I s, S; (8.68) 
aEA(r) 

L v~;(t) = L u~;(t) Vj,p,r,s;j=l r,s; (8.69) 
aEB(j) aEA(j) 

er • (t) - ~ cr. vr• (t) p - L..J ap ap 'rip, r, s =I r; (8.70) 
aEB(.) 

Logit route flow constraints: 

'rIr,s,p; (8.71) 

Constraints for mean actual route travel times: 

'rIr,s,p; (8.72) 

Flow propagation constraints: 

x~~(t) = L {x;;;[t + Ta(t)] - x;;;(t)} + {~;·[t + Ta(t)] - ~;·(t)} 
bEft 

'ria E p;p, r, S; (8.73) 
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Definitional constraints: 

L u~;(t) = u~'(t), L u~'(t) = ua(t), Va; (8.74) 
p r. 

L v~;(t) = v~'(t), L v~'(t) = va(t), Va; (8.75) 
p r. 

L x~;(t) = x~'(t), L x~'(t) = xa(t), Va; (8.76) 
p r. 

z: e;' (t) = er• (t), Z:E;'(t) = Er'(t), Vr,s; (8.77) 
p p 

z: f;' (t) = r' (t), z: F;'(t) = pr'(t), Vr,s; (8.78) 
p p 

Nonnegativity conditions: 

x~;(t) 2: 0, u~;(t) 2: 0, vr'(t) > 0 ap _ Va,p, r, S; (8.79) 

er, (t) > 0 p -, f;' (t) 2: 0, Er'(t) > 0 p -, pr'(t) > 0 p -, Vp,r,s; (8.80) 

Boundary conditions: 

F;'(O) = 0, E;'(O) = 0 Vp,r,s; x~'(O) = 0, Va,r,s; (8.81 ) 

In this program, the two terms of the objective function are similar to 
the objective function of the well-known static user-optimal (UO) route choice 
model. The first three constraints (8.65)-(8.67) are state equations for flows 
on each link a, departures at origins, and arrivals at destinations. Equations 
(8.68)-(8.70) are flow conservation constraints at each node including origins 
and destinations. Equations (8.71) are logit route flow constraints which can 
be explicitly written as constraints in the model because the mean actual travel 
times 17;'(t) are functionals and can be computed directly by equations (8.72). 
In contrast to this ideal SDUO route choice model, the stochastic route flow 
conditions in the instantaneous SDUO route choice model in Section 8.2 are 
satisfied indirectly as optimality conditions and need not be written as con­
straints directly in the model. Equations (8.72) are constraints for mean actual 
route travel times. The other constraints include flow propagation constraints, 
definitional constraints, nonnegativity and boundary conditions. 

In summary, in this program the control variables are u~~(t), v~~(t), 
e;'(t), and f;'(t); the state variables are x~;(t), E;'(t), and F;'(t); and the 
functionals are 17;' (t). Compared with the deterministic ideal DUO route choice 
model in Chapter 7, stochastic route flow constraints (8.71) are added. Con­
straints (8.72) for the mean actual travel times replace similar constraints in 
the deterministic model. 
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8.3.4 Analysis of Dispersed Route Choice 

Generally we assume fJ to be nonnegative. In the following we will show that 
when fJ -+ 00, the solution approaches that of deterministic dynamic user­
optimal route choice model based on actual route travel times in Chapter 7. 
Rewriting the logit-based route flow constraints (8.71), we have 

1;6 (t) r 6 (t) 
exp[ -fJ7Jp6 (t)] - Em exp[-fJ7J~ (t)] Vr,s,p. (8.82) 

Now assume that there is another route q from r to s which has flow 1;6 (t) at 
each instant of time. Thus, it follows that 

exp[-fJ 7J~6(t)] 

1;6 (t) r6(t) 
Vr,s,q. (8.83) Em exp[-fJ 7J~(t)] 

Comparing the above two equations, we have 

1;6 (t) 1;6 (t) 
exp[-fJ 7Jp6(t)] - exp[-fJ 7J~6(t)] 

Vp,q, r, s. (8.84) 

Assume that flows 1;6 (t) and 1;6 (t) are positive. Taking the logarithms of the 
above equation, it follows that 

In .r; 6 (t) + fJ 7J; 6 (t) = In J; 6 ( t) + fJ 7J; 6 ( t) Vp,q, r, s. (8.85) 

Dividing the above equation by fJ, we have 

Vp,q, r,s. (8.86) 

As (J -+ 00, the first terms of both the left-hand-side and the right-hand-side 
will approach zero. Thus, we have 

Vp,q,r,s. (8.87) 

The above equation demonstrates that for any O-D pair rs, any route 
carrying positive O-D departure flow has equal mean actual travel time. This 
is one of the optimality conditions for the deterministic ideal dynamic user­
optimal route choice model in Chapter 7. Together with constraints (8.72) for 
the mean actual route travel times, these constraints for the ideal SDUO route 
choice model reduce to the corresponding optimality conditions for the deter­
ministic ideal DUO route choice model when () -+ 00. Therefore we conclude 
that the optimality conditions of model (8.64)-(8.81) state the required ideal 
SDUO route choice conditions. 
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8.4 Notes 

We have formulated two stochastic dynamic route choice problems as equivalent 
optimal control programs. The solutions of the optimal control models result 
in dispersed dynamic route choice governed by a logit distribution incorporat­
ing both mean instantaneous route travel times and mean actual route travel 
times. In stochastic dynamic route choice models, the O-D departure flows are 
dispersed across different travel time routes so that stochastic dynamic mod­
els represent more realistic travel choice behavior than deterministic models. 
This is one of the major merits of stochastic dynamic route choice models over 
deterministic dynamic route choice models. 

In reality, drivers may rely on current information or predictive infor­
mation to choose routes. Thus, drivers can be stratified into different groups. 
In each group, drivers may have different compliance to current information or 
future predictive information. In other words, a more realistic model could be 
a combined instantaneous and ideal SDUO route choice model with multiple 
groups of travelers. 

We are investigating other SDUO route choice models based on different 
types of distributions for travel time perception errors. However, realistic dis­
tributions of travel time perception errors should depend on real data collected 
from IVHS operational tests such as the ADVANCE Project. Our models only 
provide a theoretical approach toward a better understanding of stochastic 
dynamic travel choices and travel time predictions. 

It is expected that other SDUO route choice models based on different 
types of distributions of travel time perception errors will be developed. Figure 
8.2 describes how realistic SDUO route choice models might be developed. 
Our future research also includes calibration of the route choice dispersion 
parameters and development of more general models incorporating stochastic 
mode and departure time choice. Using realistic link travel time functions in 
Chapter 16, we plan to implement our models on larger networks. 

Logit Model: 

~Instantaneou~ . • . I 
. , ./ICombmed. 
I Ideal r 

Probit Model: 

DSUO Models with realistic distributions 
of perception errors of route travel times 
(non-closed form) 

Figure 8.2: Toward Realistic SDUO Route Choice Models 



Chapter 9 

Solution Algorithms for 
Stochastic Dynamic U ser­
Optimal Route Choice Models 

Chapter 8 described two logit-type SDUO route choice models which are stochas­
tic generalizations of deterministic dynamic user-optimal route choice models 
previously presented in Chapters 5 and 7. To solve these models for large 
networks, we need to develop solution algorithms avoiding route enumeration. 
Thus, the stochastic dynamic network algorithms in this chapter are link-based 
procedures that avoid route enumeration and perform dynamic assignments us­
ing only link and node variables. Some new notation is presented in Section 
9.1. In Sections 9.2 and 9.3, two multiple-route dynamic route choice algo­
rithms (DYNASTOCH) similar to Dial's efficient-route algorithm (STOCH) 
are suggested to solve two discrete-time flow-independent instantaneous and 
ideal SDUO route choice models. Then, the discrete formulation of the flow­
dependent instantaneous SDUO route choice model is presented in Section 
9.4 and a solution algorithm is presented to solve this model. In Section 9.5, 
the discrete formulation of ideal SDUO route choice model is presented and a 
solution algorithm is also proposed. In both solution algorithms for the flow­
dependent SDUO route choice models, the DYNASTOCH algorithms are used 
to solve their subproblems so that explicit route enumeration can be avoided. 
The method of successive averages (MSA) and other methods are suggested to 
solve the one-dimensional search problems. Numerical examples are presented 
in Section 9.6 to illustrate the solution of the proposed algorithms. 

9.1 Some New Notation 

Denote the minimal free flow travel time from node i to destination node s as 
O"~'. An efficient route from origin r to destination s is redefined to include 
only links a = (i, j) such that node j is closer to destination s than node i, 
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i.e., 17~' > 17~'. In the following, all route-related constraints are defined using 
efficient routes. These routes need not be explicitly enumerated to solve our 
models. In our solution algorithms in Sections 9.2 and 9.3, we show that these 
routes can be implicitly generated. 

To convert our continuous SDUO route choice problems into discrete 
formulations, the time period [0, T] is subdivided into K small time intervals. 
Each time interval is a unit of time. Our notation is summarized as follows: 

p,q 
xa(k) 
ua(k) 
va(k) 

r'(k) 

r'(k) 

Ta(k) 

1f;'(k) 

17~' 
D~; 

() 

* state variable 
** control variable 

indexes for routes 
number of vehicles on link a at beginning of interval k * 
inflow rate into link a during interval k ** 
exit flow rate from link a during interval k ** 
departure rate from origin r toward destination s 
during interval k (given) 
cumulative number of departing vehicles from origin r to 
destination s at the beginning of interval k (given) 
arrival rate at destination s from origin r during 
interval k ** 
cumulative number of vehicles arriving at destination s 
from origin r at the beginning of interval k * 
mean actual travel time over link a for flows entering 
link a during interval k 
mean estimated actual travel time over link a for flows 
entering link a during interval k 
mean instantaneous travel time on link a during 
interval k 
mean instantaneous travel time on route p from r to s 
during interval k 
minimal mean instantaneous travel times for flows 
departing from origin r to node i during interval k . 
mean actual travel time for flows departing from origin 
r to destination s over route p during interval k 
minimal mean actual travel times for flows departing 
from origin r toward node i during interval k . 
minimal free flow travel time from node i to destination s 
1, if link a is on route p from r to Sj = 0, otherwise. 
route choice dispersion parameter 

The mean instantaneous travel time 1f;' (t) for each route p from r to s 
is defined as 

1f;'(k) = E ca[xa(k),ua(k),va(k)] Vr,s,pj (9.1) 
aEr,p 

where the summation is over all links a in route p from origin r to destination s. 
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The minimal mean instantaneous route travel time u r, (k) = min {til;' (k) Ip}. 
Define 77;'(k) as the mean actual travel time experienced over route P by 

vehicles departing origin r toward destination s during time interval k. Once 
the mean actual link travel time Ta(t) is determined, the mean actual route 
travel time 77;' (k) is computed using the following approach. Assume route p 

consists of nodes (r, 1,2,···, i - 1, i,···, s). Denote 77;i(k) as the mean actual 
travel time experienced over route p by vehicles departing origin r toward node 
i during time interval k. Then, a recursive formula for mean actual route travel 
time 77;' (k) is: 

Vp, r, i; i = 1,2,··., s; 

where link a = (i - 1, i). The entering time on link a is rounded as follows: 

where i is an integer and 0 ~ i ~ K. The impact of round-off errors on solutions 
will be discussed in subsequent studies. The minimal mean actual route travel 
time 1rr'(k) = min {77;'(k)lp}. 

In the following, we first discuss flow-independent SDUO route choice 
problems. In our general flow-dependent SDUO route choice problems, these 
problems function as subproblems in the solution procedure. 

9.2 An Algorithm for the Flow-Independent 
Instantaneous SDUO Route Choice Model 

We first discuss the flow-independent instantaneous SDUO route choice model 
and its solution algorithm. The flow-independent instantaneous SDUO route 
choice problem is to assign time-dependent vehicle flows between each O-D 
pair based on a route choice probability calculated using the fixed instantaneous 
route travel times for each time interval. We note that in this flow-independent 
problem, the instantaneous link travel times Ca (k) do not depend on the link 
flow variables ua(k), va(k) and xa(k). 

The solution algorithm given here is similar to the algorithm proposed 
by Dial (1971) for static flow-independent stochastic network assignment. Our 
algorithm effectively implements a logit-type instantaneous route choice model 
at the network level. It does not assign probabilities and flows to all routes 
connecting each O-D pair. Instead, it is assumed that many of these routes 
constitute unreasonable travel choices that would not be actually considered. 
Consequently, our algorithm includes a preliminary phase which identifies the 
set of efficient routes connecting each O-D pair. The O-D departure flows are 
then assigned only to these routes during each time interval k, using the logit 
formula based on fixed instantaneous route travel times. 
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9.2.1 Statement of the Algorithm 

The steps of this algorithm for one O-D pair rs are outlined below. These 
steps should be repeated for each O-D pair in the network. In view of the 
correspondence to Dial's STOCH algorithm (1971), the following is called DY­
NASTOCH1 algorithm to represent a dynamic version of STOCH algorithm 
for the flow-independent instantaneous SDUO route choice problem. 

Step 0: Initialization. 
Compute the minimal instantaneous travel time O"ri (k) from origin r to 
all other nodes for vehicles departing origin r during time interval k. 
Calculate the likelihood for each link a = (i, j) during time interval k: 

L .. k _ { exp{B [O"ri(k) - O"ri(k) - ca(k)]}, if O"~' > O"t' 
("})( ) - 0 otherwise , 

In this expression, Ca (k) is the mean instantaneous travel time on link 
(i, j) during time interval k. 

Step 1: Backward Pass. 
By examining all nodes j in ascending sequence with respect to O"j'(k), 
calculate the weight for each link a = (i, j) during each time interval k: 

{ 
L(i,j)(k), if j = s (destination) 

W(i,j)(k) = L(i,j)(k) I: W(j,m)(k), otherwise 
(j,m)EA(j) 

When the origin r is reached, this step is completed. 

Step 2: Forward Pass. 
Consider all nodes i in descending sequence with respect to O"i'(k), start­
ing with origin r. When each node i is considered during each time 
interval k, compute the inflow of link (i, j) during each time interval k 
using the following formula: 

if i = r (origin) 

otherwise 

This step is implemented iteratively until destination s is reached. Note 
that the sum in each denominator includes all links emanating from the 
upstream node of the link under consideration. The sum of the exit flow 
variables is taken over all links arriving at the upstream node of the link 
under consideration. 

The flow generated by this algorithm is equivalent to a logit-based flow­
independent route assignment between each O-D pair, given that only efficient 
routes are considered. We next present a proof for this algorithm. 
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9.2.2 Proof of the Algorithm 

We now prove that the above algorithm does generate logit-based flow-independ­
ent instantaneous SDUO route choices between each O-D pair. We note that 
each link likelihood L(i,j){k), is proportional to the logit probability that link 
a = (i, j) is used during interval k by a traveler chosen at random from among 
the population of trip-makers between rand s, given that the traveler is de­
parting from origin r during interval k. The probability that a given route will 
be used is proportional to the product of all the likelihoods of the links com­
prising this route. The probability of using route 1 between rand s, P{'{k), 
for vehicles departing r during interval k, is then 

P{'{k) = G(k) II {L(i,j)(k)}6;i (9.2) 
aEI 

where G(k) is a proportionality constant for each time interval k and the prod­
uct is taken over all links in the network. The incidence variable t5~i ensures 
that P{'(k) will include only those links in the lth route between rand s. 
Substituting the expression for the likelihood L(i,j)(k) in the above equation, 
the choice probability of choosing a particular efficient route becomes 

aEI 

G(k) exp {o L: {uri (k) - uri (k) - ca(k)} t5~i} (9.4) 
aEI 

G(k) exp{O[ur'(k)-tPl'(k)]} (9.5) 

The last equality results from the following summations: 

L: {urj (k) - uri (k)} = ur, (k) - urr (k) = ur , (k) (9.6) 
aEI 

and 

L:ca(k) = tPf'{k) (9.7) 
aEI 

Since 

(9.8) 

the proportionality constant must equal 

G(k) _ 1 
- ~ exp {O [ur'{k) - tP~'(k)]} 

(9.9) 
q 
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Thus, 

P{'(k) 
exp{O [aT'(k) - "p,'(k)]} 

1: exp {O [aT'(k) - "p~'(k)]} 
q 

exp {-O "p,' (k)]} 
1: exp {-O "p;'(k)} 
q 

(9.10) 

(9.11) 

The above equation (9.11) depicts a logit model of route choice during each 
time interval k among the efficient routes connecting O-D pair rs. Thus, the 
algorithm does generate a logit-type route choice probability formula using 
instantaneous route travel times. 

The DYNASTOCH1 algorithm does not require explicit route enumera­
tion. It does require the calculation of time-dependent minimal instantaneous 
travel time routes for every O-D pair in the network during each time interval 
k. In the following, we show that the forward pass of the algorithm will gener­
ate a time-dependent logit-based assignment. To do so, we only need to show 
that the calculated link inflows are obtained in a manner consistent with the 
expression in the forward pass. This is done by proving the algorithm diverts 
trips from each node i during each interval k according to appropriate condi­
tionallink probabilities. A conditional link probability during interval k is the 
probability that a trip between rand s will use a particular link a = (i, j) dur­
ing interval k, given that it goes through the link's tail node i. This probability 
is stated as 

) _ Prob(i,j),i(k) _ Prob(i,j)(k) _ Prob(i,j)(k) 
Prob(i j)1;(k _ _ _ =-____ -':-"'..L..:-~ 

, Probi(k) Prob;(k) 1: Prob(i,I)(k) 
(9.12) 

I 

Denote P as an efficient route from r to s. The probability of using link 
a = (i, j) during interval k is the summation of probabilities of using route P 
during interval k, where link a = (i,j) is on route P. It follows that 

Prob(i,j)(k) = Probp(k) (9.13) 

P: (i,j) in P 

It is useful to write (9.13) in a more elaborate form, so as to facilitate cancella­
tion of common factors in the numerator and denominator of equation (9.12). 
To do so, an efficient route through link (i, j) can be partitioned into three sets 
of links: 

1. Pi = {all links topologically preceding link (i, j)}; 

2. link (i,j) = {(i,j)}; 

3. Pj = {all links topologically following link (i,j)}. 
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Denote Pi as the set of Pi and Pj as the set of Pj. Then 

L Probp(k) = 
P: (i,j) in P 

h(k) L(i,j)(k) {L II L(m,n)(k)} {L II L(m,n)(k)} (9.14) 
PEP. (m,n) PEPj (m,n) 

Equation (9.14) follows from the fact that all the efficient routes can be con­
structed by independently choosing a member from each of Pi and Pj and 
putting link (i, j) in between. Such combinations constitute efficient routes. 
Substituting (9.13) and (9.14) into (9.12), it follows that 

Prob(i,j)li( k) 

h(k) L(i,j)(k) {L: II L(m,n)(k)} {L: II L(m,n)(k)} 
PEP. (m,n) PEPj (m,n) 

L: h(k) L(i,l)(k) {L: II L(m,n)(k)} {L: II L(m,n)(k)} 
I PEP. (m,n) PEPj (m,n) 

h(k) L(i,j)(k) {L: II L(m,n)(k)} {L: II L(m,n)(k)} 
PEP. (m,n) PEPj (m,n) 

h(k) {L: II L(m,n)(k)} L: {L(i,,)(k) {L: II L(m,n)(k)}} 
PEP. (m,n) I PEPj (m,n) . 

(9.15) 

By the link weights calculated in the Backward Pass (Step 1), the quotient in 
Forward Pass (Step 2) is equal to the right-hand-side of equation (9.15). Thus, 
we complete the proof that the diversion inflows are indeed those implied by the 
probability defined in equation (9.2). Therefore, our algorithm does generate 
a logit-type route flow assignment using instantaneous route travel times. The 
proof is complete. We also note that the flow over each link should satisfy the 
flow propagation constraints. For a detailed discussion of these constraints, we 
refer readers to Chapter 4. 
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9.3 An Algorithm for the Flow-Independent 
Ideal snuo Route Choice Model 

We now discuss the flow-independent ideal SDUO route choice model and its 
solution algorithm. The flow-independent ideal SDUO route choice problem is 
to assign vehicle flows between each O-D pair based on a route choice probabil­
ity calculated using the given actual route travel times for each time interval. 
We note that the ideal SDUO route choice problem is different from the in­
stantaneous SDUO route choice problem because it uses the actual route travel 
times instead of instantaneous route travel times. 

The solution algorithm given here is also similar to Dial's algorithm for 
static flow-independent stochastic network assignment. This algorithm effec­
tively implements a logit-type ideal dynamic route choice model at the network 
level. As in the instantaneous model, it assigns probabilities and flows to effi­
cient routes connecting each O-D pair for each time interval. This algorithm 
also includes a preliminary phase which identifies the set of efficient routes 
connecting each O-D pair. The O-D departure flows are then assigned only 
to these routes during each interval k, using the logit formula based on actual 
route travel times. This algorithm is very similar to the algorithm presented in 
Section 9.2 for the flow-independent instantaneous SDUO route choice model. 
However, in this algorithm, all probabilities Prob(i,i)I;(t) for assigning inflows 
to link (i, j) are evaluated during time interval t instead of time interval k. 
Here, interval t is the arrival time interval at node i. Thus, all derivations in 
DYNASTOCH1 must be revised using time interval t instead of time interval 
k. 

9.3.1 Statement of the Algorithm 

The steps of this algorithm for one O-D pair rs are outlined below. These steps 
must be repeated for each O-D pair in the network. Similar to the DYNAS­
TOCH1 algorithm in Section 9.2, the following procedure is called the DYNAS­
TOCH2 algorithm to represent its dynamic version for the flow-independent 
ideal SDUO route choice problem. 

Step 0: Initialization. 
Compute the minimal actual travel time 7C'j S(t) from node j to destination 
s for vehicles departing node j during interval t. Calculate the likelihood 
for each link (i, j) during each interval t: 

if O"~. > O"~. 
otherwise 

In this expression, Ta(t) is the mean actual travel time on link a = (i,j) 
during time interval t. 
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Step 1: Backward Pass. 
By examining all nodes j in ascending sequence with respect to 7rj '(t), 
calculate the weight for each link a = (i, j) during each time interval t: 

{ 
L(i,j)(t), if j = s (destination) 

W(i,j)(t) = L(i,j)(t) I: W(j,m)[t + 'Ta(t)], otherwise 
(j,m)EA(j) 

When the origin r is reached, this step is completed. 

Step 2: Forward Pass. 
Consider all nodes i in descending sequence with respect to 7ri • (t), starting 
with origin r. When each node i is considered during each time interval t, 
compute the inflow of link (i, j) during each interval t using the following 
formula: 

r'(t) 

{ I: V(n'i)(t)} 
(n,i)EB(i) 

I: W(i,l)(t) , if i = r (origin) 
(i,I)EA(i) 

I: W(i,l)(t) , otherwise 
(i,I)EA(i) 

This step is implemented iteratively until destination s is reached. Note 
that the sum in the denominator includes all links emanating from the 
upstream node of the link under consideration. The sum of the exit flow 
variables is taken over all links arriving at the upstream node of the link 
under consideration. 

The flow generated by this algorithm is equivalent to a logit-based flow­
independent route assignment between each O-D pair, given that only reason­
able routes are considered. The proof for this algorithm is similar to that for 
the instantaneous SDUO route choice model. In the following, we present a 
proof for this algorithm. 

9.3.2 Proof of the Algorithm 

We now prove that the algorithm does generate logit-based flow-independent 
ideal SDUO route choices between each O-D pair. We note that each link 
likelihood L(i,j)(t), is proportional to the logit probability that link a = (i,j) 
is used during time interval t by a traveler chosen at random from among the 
population of trip-makers between rand s, given that the traveler is at node i 
during interval t. The probability that a given route will be used is proportional 
to the product of all the likelihoods of the links comprising this route. Suppose 
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route 1 consists of nodes (r, 1,2, .. " i -1, i, .. " n, s) and links (1,2, .. " h). The 
probability of using route 1 between rand s, P{'(k), for vehicles departing r 
during interval k and arriving at node i during interval t, is then 

P{'(k) = G(k) II {L(i,j)(t)}.5:~ (9.16) 
aEl 

where G(k) is a proportionality constant for each time interval k and the prod­
uct is taken over all links in the network. Here, t = k + TJ[i(k). The incidence 
variable 6~; ensures that P{' (k) will include only those links in the Ith route 
between rand s. Substituting the expression for the likelihood L(i,j)(t) in the 
above equation, the choice probability of choosing a particular' efficient route 
becomes 

aEl 

G(k) exp {8L{7riO (t) - 7ri '[t + Ta(t)]- Ta(t)} 6~i} (9.18) 
aEl 

G(k) exp{8 [7rr'(k) -TJ['(k)]} (9.19) 

The last equality results from the following summations: 

L {7ri ' (t) - 7rio [t + Ta(t)]} 
aEl 

and 

+ 7r1'[k + TJ[l(k)]- 7r2°[k + TJ[2(k)] 

+ 
+ 7rn'[k + TJ[n(k)]- 7rU[k + TJ['(k)] 

7rro(k) - 7rU[k + TJ['(k)] 

7rr'(k) (9.20) 

LTa(t) = Tl(k) + T2[k + TJ[l(k)] + ... + 7'h[k + TJ[n(k)] = TJ[' (k) (9.21) 
aEl. 

Since 

(9.22) 

the proportionality constant must equal 

(9.23) 
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Thus, 

Pt'(k) 
exp {O [7rr'(k) - 71f'(k)]} 

E exp {O [7rr '(k) - 71~'(k)]} 
q 

exp { -0 711' (k)]} 
E exp{-071~'(k)} 
q 

(9.24) 

(9.25) 

Equation (9.25) depicts a logit model of route choice during each interval k 
among the efficient routes connecting 0-0 pair rs. This algorithm does gener­
ate a route choice probability using actual route travel times. 

The OYNASTOCH2 algorithm does not require route enumeration. It 
does require the calculation of time-dependent minimal actual travel time 
routes for every 0-0 pair in the network during each time interval k. In the 
following, we show that the forward pass of the algorithm will generate a time­
dependent logit-based route flow assignment. To do so, we only need to show 
that the calculated link inflows are obtained in a manner consistent with the 
expression in the forward pass. This is done by proving the algorithm diverts 
trips from each node i during each time interval t (arrival time interval at node 
i) according to appropriate conditional link probabilities. A conditional link 
probability during interval t is the probability that a trip between rand s will 
use a particular link a = (i,j) during interval t, given it goes through the link's 
tail node i during interval t. This probability is stated as 

() Prob(i,j),i(t) Prob(i,j)(t) Prob(i,j)(t) 
Prob(i,j)li t = Probi(t) = Probi(t) = E Prob(i,j)(t) 

j 

(9.26) 

The probability of using link a = (i, j) during interval t is the summation 
of probabilities of departure trips using route P at origin r during interval k, 
where link a = (i, j) is on route P, given that the traveler reaches node i during 
interval t = k + 71]1 (k). It follows that 

Probp(t) (9.27) 

P: (i,j) in P 

It is more useful to write (9.27) in a more elaborate form, so as to 
facilitate cancellation of common factors in the numerator and denominator of 
equation (9.26). To do so, an efficient route through link (iJ) can be partitioned 
into three sets of links: 

1. Pi = {all links topologically preceding link (i,j)}; 

2. link (i, j) = {( i, j)}; 

3. Pj = {all links topologically following link (i, j)}. 
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Denote Pi as the set of Pi and Pj as the set of Pj . Then 

L Probp(t) = 
P: (i,j) in P 

h(t) L(i,j)(t) {L II L(m,n)(t l )} {L II L(m,n)(tll )} (9.28) 
PEP, (m,n) PEPj (m,n) 

Note that t' + TJpi(t') = t where t' < t, and t + TJ~m(t) = til where til > t. 
Equation (9.28) follows from the fact that all efficient routes can be constructed 
by independently choosing a member from each of Pi and Pj and putting link 
(i, j) in between, given that flows arrive at node i during interval t. Such 
combinations constitute efficient routes. Substituting (9.27) and (9.28) into 
(9.26), it follows that 

Prob( i,j)li( t) 

h(t) L(i,j)(t) {L n L(m,n)(t l )} {L n L(m,n)(tll )} 
PEP, (m,n) PEPj (m,n) 

Lh(t) L(i,l)(t) {L n L(m,n)(t l )} {L n L(m,n)(tll )} 
I PEP, (m,n) PEPj (m,n) 

h(t) L(i,j)(t) {L n L(m,n)(t l )} {L n L(m,n)(tll )} 
PEP, (m,n) PEPj (m,n) 

h(t) {L n L(m,n)(t l )} L {L(i,')(t) {L n L(m,n)(tll )}} 
PEP, (m,n) I PEPj (m,n) 

L(i,j)(t) {L n L(m,n)(tll )} TrT (t) 
PEPj (m,n) Yf (i,j) 

{ { }} 
- L W(i,,)(t) 

L L(i,/)(t) L n L(m,n) (til) (i,/) 
I PEPj (m,n) 

(9.29) 

where the numerator of (9.29) is the definition OfW(i,j)(t). By the link weights 
calculated in the Backward Pass (Step 1), the quotient in Forward Pass (Step 
2) is equal to the right-hand-side of equation (9.29). Thus, we complete the 
proof that the diversion inflows are indeed those implied by the probabilities 
defined in equation (9.16). We also note the flow over each link should satisfy 
the flow propagation constraints. 



9.4. An Algorithm for the Instantaneous SDUO Model 193 

9.4 An Algorithm for the Instantaneous snuo 
Route Choice Model 

9.4.1 A Discrete Time Instantaneous Model 

To convert our instantaneous SDUO route choice problem into an NLP, the time 
period [0, T] is subdivided into K small time intervals. (The time intervals are 
not necessarily equal.) To simplify the formulation, we modify the estimated 
mean actual travel time on each link in the following way so that each estimated 
mean travel time is equal to a multiple of the time interval. 

Ta(k) = i if i - 0.5:::; Ta(k) < i + 0.5, 

where i is an integer and 0 :::; i :::; K. 
The optimal control program presented in Chapter 8 can then be refor­

mulated as a discrete time NLP as follows: 

mm 
u,v,x,e,E 

K { raCk) raCk) E ~ 10 gla[xa(k),w]dw + 10 g2a[xa(k),w]dw 

+ ~[I: I: I: u~~(k) In u~~(k) 
r, p a 

(9.30) 

s.t. 
Relationship between state and control variables: 

x~~(k + 1) = x~~(k) + u~~(k) - v~~(k) Va,p, r, Sj k = 1,···, Kj (9.31) 

Er'(k+1)=Er'(k)+ I: I:v:~(k) Vr,sjk=l,···,Kj (9.32) 
aEB(.) P 

Flow conservation constraints: 

I: I: u~~(k) = r'(k) Vr,sjk = 1,···,Kj (9.33) 
aEA(r) P 

I: v:~(k)- I: u:~(k)=O Vj,p,r,Sjj#r,sjk=l,···,Kj (9.34) 
aEB(j) aEA(j) 

Flow propagation constraints: 

x:~(k) = I: {xb;[k + Ta(k)] - xb;(k)} + {E;'[k + Ta(k)] - E;'(k)} 
bEp 



194 Chapter 9. Solution Algorithms for Stochastic Dynamic Models 

Va E B(j);j f riP, r, s; k = 1"", K + 1; 

Definitional constraints: 

L u:~(k) = u:"(k), L u:"(k) = ua(k), Va;k = 1,···,K; 
p r" 

L v:~(k) = v:"(k), Va;k= 1,,,·,K; 
p r" 

(9.35) 

(9.36) 

(9.37) 

L x:~(k) = x:"(k), Va; k = 1, " ., K + 1; (9.38) 
p 

L E;"(k + 1) = Er"(k + 1), Vr,s;k = 1,···,K; (9.39) 
p 

Nonnegativity conditions: 

x:~(k + 1) C 0, u:~(k) 2: 0, v:~(k) 2: 0, Va,p, r, S; k = 1,,,,, K; (9.40) 

E;"(k + 1) 2: 0, Vp,r,s;k= 1,···,K; (9.41) 

Boundary conditions: 

Vp,r,s; xr"(l)=O ap , Va,p, r,s. (9.42) 

9.4.2 Solution Algorithm 

Since the objective function involves route flow variables u~~(k) and v~~(k), the 
objective function cannot be computed using link flow variables after solving 
the subproblem. Thus, as for stochastic static route choice models, the method 
of successive averages (MSA) (Powell and Sheffi, 1982) is suggested to solve 
the one-dimensional search problem. Other one-dimensional search methods 
suggested by Chen and Alfa (1991) for stochastic static route choice models 
can also be used. 

As discussed in Chapter 8, the first-order necessary conditions of the con­
tinuous time model fit a logit-type instantaneous route choice model. This flow­
independent subproblem can be efficiently solved using the DYNASTOCH1 
algorithm discussed in Section 9.1 without route enumeration. We note that 
the DYNASTOCH1 algorithm is much different from Dial's STOCH algorithm 
in that DYNASTOCH1 has to be implemented on an expanded time-space 
network presented in Chapter 6 and the flow propagation constraints ensure 
the flow progression over links. In the following algorithm, the inner iteration 
involves direction finding and flow variable updates; and the outer iteration 
involves updating estimates of actual link travel time fa(k) in the flow propa­
gation constraints. The flowchart of the algorithm for solving our instantaneous 
SDUO route choice model is shown in Figure 9.1 and the algorithm is summa­
rized as follows: 
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Step 0: Initialization. 
Find an initialfeasible solution {x~l)(k)}, {u~l)(k)}, {v~l)(k)}, {E(1)(k)}. 
Set the outer iteration counter m = 1. 

Step 1: Diagonalization. (Outer Iteration.) 
Find a new estimate of the actual link travel time f~m)(k) for the flow 
propagation constraint and solve the flow-dependent instantaneous SDUO 
route choice program as follows. Set the inner iteration counter n = 1. 

[Step 1.1]: Update. Calculate the link travel time functions using the 
temporarily fixed link flow variables. 

[Step 1.2]: Direction Finding. Implement the DYNASTOCH1 algo­
rithm for the logit-based dynamic route flows based on the temporarily 
fixed instantaneous link travel time and find an auxiliary set of link flow 
variables. 

[Step 1.3]: Move. Use the step size a(n) = l/(n + 1) generated 
by MSA to find a new solution by combining current solution {ua(k)}, 
{va(k)}, {xa(k)}, {Er'(k)} and previous solution {Pa(k)}, {qa(k)}, {Ya(k)}, 
{ j;r, ( k)} as follows. 

u~n+1)(k) = u~n)(k) + [p~n)(k) - u~n)(k)]/(n + 1) 

v~n+l)(k) = v~n)(k) + [q~n)(k) - v~n)(k)]/(n + 1) 

x~n+1)(k) = x~n)(k) + [y~n)(k) - x~n)(k)]/(n + 1) 

E~n+l)(k) = E~n)(k) + [E~n)(k) - E~n)(k)]/(n + 1) 

[Step 1.4]: Convergence Test for Inner Iterations. If n equals a pre­
specified number, go to step 2; otherwise, set n = n + 1 and go to step 
1.1. 

Step 2: Convergence Test for Outer Iterations. 
If f~m)(k) ~ f~m+l)(k), stop. The current solution, {ua(k)}, {va(k)}, 
{xa(k)}, {Er'(k)}, is in a near instantaneous SDUO state; otherwise, set 
m=m + 1 and go to step 1. 

According to Powell and Shefli (1982), the inner iteration procedure will 
converge. Since the convergence of outer iteration (diagonalization) is also ro­
bust (Florian and Spiess, 1982), we expect that our algorithm will converge 
to our desired instantaneous SDUO route choice solutions. In order to speed 
up convergence, an incremental assignment technique is suggested for finding a 
good starting solution before the diagonalization procedure. Since the subprob­
lem can be decomposed by each artificial origin-destination pair, this problem 
is also a good candidate for solution with parallel computing techniques. 
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Inner Iterations: 
Solve Flow-Independent Instantaneous SDUO 
Route Choice Problem Using DYNASTOCHI 
Algorithm and Find Step Size Using MSA. 

Figure 9.1: Flowchart of the Instantaneous Solution Algorithm 

9.5 An Algorithm for the Ideal snuo Route 
Choice Model 

9.5.1 A Discrete Time Ideal Model 

As before, we modify the estimated mean actual travel time on each link in the 
following way so that each estimated mean travel time is equal to a multiple of 
the time increment. 

Ta(k) = i if i - 0.5 ~ Ta(k) < i + 0.5, 

where i is an integer and 0 ~ i ~ K. We note that the above approximation is 
for flow propagation constraints only. It does not apply to the computation of 
route travel times. 

The optimal control program presented in Chapter 8 can then be refor­
mulated as a discrete time NLP as follows: 

mm 
u,v,x,e,E,j,Fpr 

t, ~ {lU4
(k) gla[xa(k), w]dw 

+ l V4
(k) g2a[Xa(k),W]dW} (9.43) 
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s.t. 
Relationship between state and control variables: 

x~~(k + 1) = x~~(k) + u~~(k) - v~~(k) Va,p, r, S; k = 1"", K; (9.44) 

F;'(k+ 1) = F;'(k)+f;'(k) Vr,s,p;k=1,···,K; (9.45) 

E;'(k + 1) = E;'(k) + e;8(k) Vr, s,p; k = 1"", K; (9.46) 

Flow conservation constraints: 

f;'(k) = L b~; u~~(k) Vp,r,s;k= 1,···,K; (9.47) 
aEA(r) 

'" vrap' (k) - '" ura'p(k) = 0 W' • .4 k 1 K (9 48) L..J L..J v),p,r,s;) T r,s; = , ... ,; . 
aEB(j) aEA(j) 

e;'(k) = L b~; v~~(k) Vp,r,sf. r;k = 1,···,K; (9.49) 
aEB(. ) 

Logit route flow constraints: 

Vr, s, p; k = 1" .. , K; 

Constraints for mean actual route travel times: 

Vr,s,p;k= 1,···,K; 

Flow propagation constraints: 

x~~(k) = L {x;;;[k + Ta(k)]- x;;;(k)} + {E;'[k + Ta(k)]- E;'(k)} 
bEfi 

Va E B(j);j f. riP, r, S; k = 1"", K + 1; 

Definitional constraints: 

L u~~(k) = u~'(k), L u~'(k) = ua(k), Va;k = 1,···,K; 
p r, 

L v~~(k) = v~'(k), L v~'(k) = va(k), Va;k= 1,···,K; 
p r. 

L x~~(k) = x~'(k), L x~'(k) = xa(k), Va; k = 1, ... , K + 1; 
p r, 

Le;'(k) = er'(k), L E;'(k) = Er'(k), Vr,s;k = 1,···,K + 1; 
p p 

(9.50) 

(9.51 ) 

(9.52) 

(9.53) 

(9.54) 

(9.55) 

(9.56) 
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p p 

N onnegativi ty conditions: 

x~~(k + 1) ~ 0, u~~(k) ~ 0, v~~(k) ~ 0, \Ia,p, r, Sj k = 1"", Kj (9.58) 

'lip, r, Sj k = 1"", Kj (9.59) 

Boundary conditions: 

Er6(1) - 0 p -, Fr6(1) - 0 p -, 'lip, r, Sj x r6 (1) = 0 ap , \Ia,p,r,s. (9.60) 

Since the objective function can be evaluated using link flow variables ua(k), 
va(k) and xa(k), the objective function can be computed after solving the 
subproblem. Thus, traditional one-dimensional search methods such as the 
bisection method can be used. 

The nonlinear route flow constraints (9.51) may not hold strictly as 
equalities because of cumulative round-off errors of link flow variables over 
routes after time discretization. In the inner iteration of the following algo­
rithm, the logit-type assignment constraints (9.50) and nonlinear route flow 
constraints (9.51) are automatically satisfied by implementing the DYNAS­
TOCH2 algorithm. Since the flow propagation constraints are temporarily 
fixed in each outer iteration (diagonalization), the remaining constraints are 
the logit-type assignment constraints (9.50), route flow constraints (9.51), flow 
conservation constraints and nonnegativity. Thus, the DYNASTOCH2 algo­
rithm can be used to solve the subproblem within each outer iteration. In the 
outer iterations, the estimates of actual link travel times in the flow propagation 
constraints are updated iteratively. 

9.5.2 Solution Algorithm 

The flowchart of a heuristic algorithm for solving our ideal SDUO route choice 
model is shown in Figure 9.2j the algorithm is summarized as follows. 

Step 0: Initialization. 
Find an initial feasible solution {x~l)(k n, {u~l)(k n, {v~l)(k n, {E(l)(k n. 
Set the outer iteration counter m = 1. 

Step 1: Diagonalization. (Outer Iteration) 
Find a new estimate of actual link travel time T~m)(k) for the flow propa­
gation constraints and solve the flow-dependent ideal SDUO route choice 
program as follows. Set the inner iteration counter n = 1. 

[Step 1.1]: Update. Calculate the link travel time functions using the 
temporarily fixed link flow variables. 
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[Step 1.2]: Direction Finding. Implement the OYNASTOCH2 algo­
rithm for the logit-based dynamic route flows based on the temporarily 
fixed actual link travel time and find an auxiliary set of link flow variables. 

[Step 1.3]: Line Search. Find the optimal step size a(n) that solves 
the one dimensional search problem using the bisection method. 

[Step 1.4]: Move. Find a new solution by combining current solu­
tion {ua(k)}, {va(k)}, {xa(k)}, {Ero(k)} and previous solution {Pa(k)}, 
{qa(k)}, {Ya(k)}, {Ero(k)}. 

[Step 1.5]: Convergence Test for Inner Iterations. If n equals a pre­
specified number, go to step 2; otherwise, set n = n + 1 and go to step 
1.1. 

Step 2: Convergence Test for Outer Iterations. 
If T~m)(k) := dm+1)(k), stop. The current solution, {ua(k)}, {va(k)}, 
{xa(k )}, {Ero(k)}, is in a near ideal SOUO state; otherwise, set m = m+1 
and go to step 1. 

In order to speed up convergence, the incremental assignment technique is 
also suggested for finding a good starting solution before the diagonalization 
procedure. 

Inner Iterations: 
Solve Flow-Independent Ideal SOUO Route 
Choice Problem Using OYNASTOCH2 Algorithm 
and Find Step Size Using Bisection Method. 

Figure 9.2: Flowchart of the Ideal Solution Algorithm 
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9.6 Numerical Examples 

We illustrate the solutions of both SDUO route choice models with the 4-link, 
4-node test network shown in Figure 9.3. Time period [0, T] is subdivided into 
K = 8 small time intervals. The algorithms were coded in FORTRAN and 
solved on a IBM 3090-300J. 

Figure 9.3: Test Network 

The following link travel time functions were used in the computations: 

ca(k) = Ta(k) = Yla(k) + Y2a(k) 

Yla(k) = f3la + f32a[ua(k)]2 + f33a[xa(k)]2 

Y2a(k) = f34a + f35a[va(kW + f36a[x a(kW 

where time interval k = 1,2,···,8. The same trip table for both models is 
given in Table 9.1. The parameters for each link travel time function for the 
two models are given in Tables 9.2 and 9.3, respectively. The route choice 
dispersion parameter () is given as 1 for both models. The optimal link flows 
and the corresponding optimal link travel times for the two models are given 
in Tables 9.4 and 9.6, respectively. The optimal route travel times for the 
two models are given in Tables 9.5 and 9.7, respectively. In this discrete time 
example, Xa (k) represents vehicles on the link at the beginning of interval kj 
U a (k) and Va (k) represent inflow and exit flow during interval k. 

Table 9.1: Required Flows from Origin 1 to Destination 4 

Time Interval k 
Flow finterval 

In this example, note from Table 9.5 and 9.7 that the mean instantaneous travel 
times and mean future travel times on routes 1-2-4 and 1-3-4 are not equal 
during each interval. These travel times are a property of the logit-type route 
flows in each interval. 
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Table 9.2: Parameters of Link Travel Time Functions for Instantaneous Model 

link a f3la f32a f33a f34a f35a f36a 
1-2 1. 0.001 O. O. 0.015 0.002 
1-3 2. 0.006 O. O. 0.030 0.004 
2-4 1. 0.001 O. O. 0.015 0.002 
3-4 1. 0.006 O. O. 0.030 0.004 

Table 9.3: Parameters of Link Travel Time Functions for Ideal Model 

link a f3la f32a f33a f34a f35a f36a 
1-2 1. 0.001 O. O. 0.015 0.002 
1-3 2. 0.001 O. O. 0.015 0.002 
2-4 1. 0.001 O. O. 0.015 0.002 
3-4 1. 0.001 O. O. 0.015 0.002 

9.7 Notes 

Stochastic route choice models and solution algorithms have been studied ex­
tensively under the assumption of static traffic conditions. Dial (1971) pre­
sented the STOCH method to perform a logit-based, flow-independent stochas­
tic traffic assignment. Daganzo and Sheffi (1977) presented a probit-based 
stochastic user-optimal route choice model. Subsequently, a Monte Carlo sim­
ulation approach to solving this problem were presented by Sheffi and Powell 
(1982). Fisk (1980) proposed a stochastic user-optimal (SUO) route choice 
model based on logit-type route flow method. The method of successive av­
erages (MSA) was suggested to solve this model (Sheffi, 1985). Recently, two 
improved algorithms were proposed by Chen and Alfa (1991) for solving the 
logit-type SUO route choice model. Their algorithms use information in the 
objective function to speed up the convergence of the one-dimensional search. 

In this chapter, we have suggested algorithms for solving two stochastic 
dynamic route choice problems. The solutions of the models result in dispersed 
dynamic route choice governed by a logit distribution incorporating both mean 
instantaneous route travel times and mean actual route travel times. Two 
DYNASTOCH algorithms were proposed to solve the subproblems of the two 
SDUO route choice models. The DYNASTOCH algorithms are implemented 
using link flow variables so that explicit route enumeration can be avoided. The 
algorithms are implemented over an expanded time-space network which en­
ables our previously developed solution techniques for dynamic network models 
to be fully used. Future research also includes developing other efficient solu­
tion algorithms and calibration of the route choice dispersion parameters for 
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Table 9.4: Optimal Link Flows and Travel Times for Instantaneous Model 

Interval Link Vehicles Inflow Exit Flow Vehicles Travel Time 
k a xa(k + 1) ua(k) va(k) xa(k) ca(k)&ra(k) 
1 1-2 28.8 28.8 0.0 0.0 1.83 
2 1-2 25.1 0.0 3.6 10.8 2.85 
3 1-2 14.3 0.0 10.8 25.1 4.02 
4 1-2 0.0 0.0 14.3 14.3 4.49 
1 1-3 11.2 11.2 0.0 0.0 2.76 
2 1-3 11.2 0.0 0.0 11.2 2.50 
3 1-3 2.3 0.0 8.9 2.3 2.18 
4 1-3 0.0 0.0 2.3 0.0 2.00 
1 2-4 0.0 0.0 0.0 0.0 1.00 
2 2-4 3.6 3.6 0.0 0.0 1.01 
3 2-4 10.8 10.8 3.6 3.6 1.34 
4 2-4 21.5 14.3 3.6 10.8 1.64 
5 2-4 14.3 0.0 7.2 21.5 2.70 
6 2-4 14.3 0.0 0.0 14.3 1.41 
7 2-4 5.9 0.0 8.4 14.3 2.47 
8 2-4 0.0 0.0 5.9 5.9 1.60 
1 3-4 0.0 0.0 0.0 0.0 1.00 
2 3-4 0.0 0.0 0.0 0.0 1.00 
3 3-4 8.9 8.9 0.0 0.0 1.48 
4 3-4 8.5 2.3 2.7 8.9 1.57 
5 3-4 2.3 0.0 6.2 8.5 2.46 
6 3-4 2.1 0.0 0.2 2.3 1.02 
7 3-4 0.0 0.0 2.1 2.1 1.15 

Table 9.5: Instantaneous Route Travel Times 

Interval Mean Instantaneous Route Travel Times 
k Route 1-2-4 Route 1-3-4 
1 2.83 3.76 
2 3.86 3.50 
3 5.36 3.66 
4 6.13 3.57 
5 3.70 4.46 
6 2.41 3.02 
7 3.47 3.15 
8 2.60 3.0 
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Table 9.6: Optimal Link Flows and Travel Times for Ideal Model 

Interval Link Vehicles Inflow Exit Flow Vehicles Travel Time 
k a xa(k + 1) ua(k) va(k) xa(k) Ca(k)&Ta(k) 
1 1-2 24.5 24.5 0.0 0.0 1.60 
2 1-2 21.5 0.0 3.0 24.5 2.33 
3 1-2 5.5 0.0 16.0 21.5 5.77 
4 1-2 0.0 0.0 5.5 5.5 1.52 
1 1-3 15.5 15.5 0.0 0.0 2.24 
2 1-3 15.5 0.0 0.0 15.5 2.48 
3 1-3 0.0 0.0 15.5 15.5 6.08 
4 1-3 0.0 0.0 0.0 0.0 2.00 
1 2-4 0.0 0.0 0.0 0.0 1.00 
2 2-4 3.0 3.0 0.0 0.0 1.01 
3 2-4 16.0 16.0 3.0 3.0 1.41 
4 2-4 18.6 5.5 2.9 16.0 1.67 
5 2-4 5.5 0.0 13.1 18.6 4.26 
6 2-4 5.5 0.0 0.0 5.5 1.06 
7 2-4 0.0 0.0 5.5 5.5 1.52 
1 3-4 0.0 0.0 0.0 0.0 1.00 
2 3-4 0.0 0.0 0.0 0.0 1.00 
3 3-4 15.5 15.5 0.0 0.0 1.24 
4 3-4 12.6 0.0 2.9 15.5 1.60 
5 3-4 0.0 0.0 12.6 12.6 3.70 

Table 9.7: Ideal Route Travel Times 

Interval Mean Actual Route Travel Times 
k Route 1-2-4 Route 1-3-4 
1 3.01 3.48 
2 6.59 4.08 
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logit SDUO route choice models. Using realistic link travel time functions, we 
will implement our models and solution algorithms on larger networks. 

We are investigating other SDUO route choice models based on different 
types of distributions of travel time perception errors. A straightforward ex­
tension is the dynamic generalization of probit route choice models. However, 
more realistic distributions of travel time perception errors than the normal 
distribution should be considered, such as the Gamma distribution. This issue 
provides a challenge to both mathematical modeling and estimation of param­
eters of the distribution of perception errors from data. 



Chapter 10 

Combined Departure Time/ 
Route Choice Models 

A dynamic route guidance system seeks to improve the utilization of trans­
portation network capacity and reduce travel times, congestion and the effect 
of incidents. Provided with early detection of incidents and congestion, users of 
the system will be able to choose alternative routes, if there is excess capacity 
in the network, or shift their departure times to avoid congestion when no road 
capacity is available. 

Journey-to-work travelers have especially important requirements for 
avoiding congested routes in order to arrive at work on time. Each depar­
ture time choice is based on minimal origin-destination travel times at each 
possible departure time. Of course, any change in departure times will alter 
the traffic flow patterns in the network so that route and departure time deci­
sions of other travelers will be affected. 

The choice of departure time has been addressed by several researchers, 
including Abkowitz (1981) and Hendrickson and Plank (1984), who developed 
work trip scheduling models. De Palmaet al (1983) and Ben-Akiva et al (1984) 
modeled departure time choice over a simple network with one bottleneck us­
ing the general continuous logit model. Mahmassani and Herman (1984) used 
a traffic flow model to derive the equilibrium joint departure time and route 
choice pattern over a parallel route network. Mahmassani and Chang (1987) 
further developed the concept of equilibrium departure time choice and pre­
sented the boundedly-rational user-equilibrium concept under which all drivers 
in the system are satisfied with their current travel choices, and thus feel no 
need to improve their outcome by changing decisions. More recently, several 
departure time choice models have been proposed by various researchers using 
different approaches on dynamic traffic networks. Janson (1993) formulated a 
dynamic user-equilibrium route choice model in which O-D flows have variable 
departure times and scheduled arrival times. Friesz et al (1993) presented a 
joint departure time and route choice model using the variational inequality ap-
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proach. Ghali and Smith (1993) also considered this problem using microscopic 
representation of vehicle streams. 

In this chapter, we present a dynamic, user-optimal departure time and 
route choice model for a general network with multiple origin-destination pairs. 
We model this choice problem by specifying that a given number of travelers are 
ready for departure between each origin-destination pair at time o. However, 
their departure times may be delayed to reduce their overall travel costs. This 
model extends our initial DUO route choice model in one important respect: 
both departure time and route over a road network must be chosen. Our 
model is formulated as a bilevel optimal control problem. The lower-level model 
represents the DUO departure time choice problem, and the upper-level model 
represents the DUO route choice problem. 

Additional network constraints are presented in Section 10.1 and the 
bilevel model is formulated in Section 10.2. In Section 10.3, the equivalence 
of its optimality conditions with the desired DUO departure time/route choice 
conditions is demonstrated. The properties of the model are also discussed. In 
Section lOA, we suggest a heuristic algorithm for solving the bilevel program 
and then give a numerical example to illustrate that total travel time can be 
decreased by choosing appropriate departure times. 

10.1 Additional Network Constraints 

We consider the following joint departure time and route choice situation: a 
given number of vehicles are scheduled to depart from each origin r to each 
destination s at an initial time o. Denote the cumulative number of departing 
vehicles from origin r to destination s from time 0 to t as the state variable 
Fr" (t). In this problem, the total number of departing vehicles Fro (T) for each 
O-D pair (r, s) is assumed to be given. Also, F;"(t) denotes the cumulative 
number of departing vehicles from origin r toward destination s along route p 
by time t. 

In addition, denote the instantaneous departure rate from origin node r 
toward destination node s at time t as r" (t), which is a function oftimej f;" (t) 
denotes the departure rate on route p and f;" (t) and r" (t) are control variables 
to be determined according to the actual travel time between the origin and 
the destination. Then, we have an additional state equation for each origin r 

dFr"(t) 
P = fr"(t) 
dt P 

Vp, r =j:. s, s. (10.1) 

Also, at initial time t = 0, 

Vp,r,s. (10.2) 

Assume that there are P routes from origin r to destination s (these can 
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be generated as needed). Denote the indicator parameters o~; as 

or, _ {1 if link a is on route p between O-D pair (r, s) 
ap - 0 otherwise. 
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Flow conservation at origin node r relates the departure rates (r' (t) and 
f;' (t» to the flow entering each link emanating from the origin. These flow 
conservation equations for origin r can be expressed as 

f;' (t) = L 0:; u~~(t) Vp, r, Sj r # Sj (10.3) 
aEA(r) 

Vr,Sj r # s. (lOA) 
p 

Denote the cumulative number of vehicles arriving at destination S from 
origin r by time t as the state variable Er'(t)j E;'(t) denotes the cumulative 
number of vehicles arriving at destination S from origin r along route p by time 
t. Denote the instantaneous flows arriving at destination node s from origin 
node r at time t as er , (t), which is also a control variable. The control variable 
e;' (t) denotes the arrival rate on route p. Thus, we have an additional state 
equation for each destination S 

dEr'(t) 
~t = e;'(t) Vp, r, S # r. (10.5) 

At the initial time t = 0, 

Vp,r,s. (10.6) 

These variables must be nonnegative at all times: 

E;' (t) ~ 0, F;' (t) ~ 0, e;' (t) ~ 0, 1;' (t) ~ 0, Vp, r, s. (10.7) 

Flow conservation at destination node S relates the arriving flow (er'(t) 
and e;'(t» to the flow exiting each link leading to destination S at time t. 
Thus, the flow conservation equations for destination s can be expressed as 

e;'(t) = L 0:; v:; (t) Vp, r, Sj S # rj (10.8) 
aEB(,) 

L e;' (t) = er , (t) Vr, SjS # r. (10.9) 
p 

10.2 Formulation of the Bilevel Program 

A number of vehicles are ready to depart at the initial time 0, but these drivers 
may prefer to delay their departure times in order to reduce their driving time. 
Drivers are assumed to make their departure time choices so as to minimize 
their individual disutility functions defined on travel time and pre-trip delay. 
The criteria for choosing each departure time consist of: 
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1. the waiting time before departure; 

2. the actual travel time between the origin and destination; 

3. a bonus for early arrival or a penalty for late arrival. 

Of course, the change of departure flow rates will affect the traffic on the 
network so that the travel times for other travelers could change. 

In reality, drivers' choices of departure time and route are interrelated 
decisions. Given a desired arrival time, say at the workplace, choice of departure 
time depends on the driver's estimate of en route travel time. Likewise, choice 
of route depends on the travel times of alternative routes, which also may vary 
by time of day. In the formulation presented here, these choices are represented 
as a bilevel optimal control problem, which is equivalent to a dynamic leader­
follower game (Cruz, 1978). 

The dynamic route choice problem is formulated as a single optimal 
control problem. In the equivalent dynamic game, this formulation corresponds 
to a single co.ntroller allocating fixed departure flows at each time t to user­
optimal routes, given the departure frequencies. We define this controller to 
be the leader of the game. 

For each origin-destination (O-D) pair, a departure time coordinator de­
termines the departing flows at each time t. These departure coordinators are 
defined as the followers of the game, and are represented by n(n - 1) O-D­
specific optimal control problems to which the user-optimal travel time at time 
t is exogenous. Since these problems are independent by O-D pair, n(n - 1) 
separate problems can be used to represent all O-D pairs. See Figure 10.1. 

Upper Level: 
Route Choice 
Controller: 

Allocate given departure flows to routes such 
that all used routes have equal travel times. 

where the departure flows are given by: 

Lower Level: 
Departure Time 
Coordinator 
for 0-D Pair rs: 

Allocate departure flows from r tos , given O-D 
travel times, to minimize a weighted sum of 
waiting and travel times and arrival penalty. 

Figure 10.1: Bilevel Choice Program Formulation 

Our formulation assumes that the route choice controller, who is respon­
sible for allocating all O-D flows to routes, knows the objective of each depar­
ture coordinator. Through this knowledge, the route choice coordinator is able 
to achieve a lower value of his/her objective function than if the departure time 
objectives were unknown. In contrast, the departure time coordinators know 
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only the O-D travel times at time t provided to them. Knowledge of the route 
choice objective is not needed for their coordination task. 

It is worth noting that the opposite formulation can also be examined 
- departure time choice at the upper level, represented by a single controller, 
and route choice at the lower level. However, our model which chooses equilib­
rium routes subject to the requirement that departure times be optimal for all 
travelers is equally plausible. Furthermore, our bilevel optimal control problem 
is much more tractable. 

Next, we formulate the lower level problem as n(n - 1) optimal control 
problems representing the departure time coordinators. Then, the upper level 
optimal control problem representing the route choice controller is defined in 
Section 10.2.2. Finally, the bilevel problem is presented. We demonstrate in 
Section 10.3 that the solution of our model satisfies the desired departure time 
and route choice conditions. 

10.2.1 Lower Level Problem: Departure Time Choice 

We first consider the lower-level problem of departure time choice. A disutility 
function ur , (t) based on departure times is defined for travelers departing from 
origin r to destination s at time t. This disutility function represents a weighted 
sum of: 

1. waiting time at the origin node; 

2. driving time during the trip; 

3. a bonus for early arrival or a penalty for late arrival. 

Denote 7frs (t) as the minimal travel time experienced by vehicles departing 
from origin r to destination s at time t. That is, 7fr'(t) is a functional of 
all link flow variables at time t, i.e., 7fr'(t) = 7fr,[u(w), v(w), x(w),w] where 
w ~ t. This functional is neither a state variable nor a control variable, and it 
is not fixed; moreover, it is not available in closed form. Nevertheless, it can 
be evaluated when u(w), v(w) and x(w) are temporarily fixed. 

We define one unit of disutility to equal one unit of in-vehicle driving 
time, and one unit of waiting time prior to departure to be equivalent to a units 
of disutility (a :::; 1). Since all travelers are able to depart at time 0, at is the 
disutility due to waiting. Sometimes, a can become negative so that waiting 
time at the origin is a utility instead of disutility. In other words, drivers prefer 
to stay at home and regard waiting at home as a utility. Furthermore, we 
assume there is a desired arrival time interval [t;, - ~r" t;, + ~r.] for travelers 
at each destination s, where t;, is the center of the required arrival time interval 
(e.g. work start time) associated with travelers departing from origin r toward 
destination s. ~r' represents the arrival time flexibility at destination s for 
travelers departing from origin r toward destination s. 

We also define the disutility for early or late arrival as follows 

V' [t, 7fr, (t); t;,] = 
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{ 
61[t+7rr$(t)_t;s+~;$F 

12[t + 7J"r'(t) - t;s - ~;.F 

if t + 7rr • (t) < t;. - ~;. (early arrival) 
if It + 7rr • (t) - t;.1 :S ~;. 
if t + 7rrs (t) > t;. + ~;. (late arrival) 

where t is the departure time of travelers and ,1, 12 are parameters (,1 < 
0, 12 ~ a). This arrival time disutility function is shown in Figure 10.2. Thus, 
the disutility function for the joint departure time and route choice problem is 
constructed as 

Vr,s, (10.10) 

where t is the departure time of travelers. In some situations where arrival 
time is more important, the impact of waiting time on the disutility function 
is not significant. Thus, the term at can be dropped for these situations. On 
the other hand, when the arrival time is not important, the disutility term 
VrsO (due to early or late arrival) can be dropped. However, the disutility at 
becomes important to determine the departure time and has to be kept in the 
disutility function W S (t). 

Arrival BonuslPenalty 
rs rl} *J 'Dplt, 1t (t); tr 

t * trs t +r{ft) Time t 

Figure 10.2: Bonus/Penalty for Early/Late Arrival 

The dynamic user-optimal departure time choice conditions can then be 
defined as: 

if r'(t) > 0 Vr,s; (10.11) 

ifr'(t) =0 Vr,s; (10.12) 

where U;':in is the minimal rs disutility. Additional boundary conditions are 
the following. 

rS(O) = 0 Vr,s. (10.13) 
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Also, by definition of r'(t) (the 0-0 departure rate) and Fr'(t) (the cumula­
tive departure rate), it follows that 

lT r'(t)dt = r'(T) is given Vr,Sj (10.14) 

or 

Vr,s. (10.15) 

In Section 10.2.3, we state the Lower Level Problem whose solution yields 
conditions (10.11)-(10.12), given the functionals 7rr '(t). 

10.2.2 Upper Level Problem: Route Choice 

Next we discuss the upper-level problem of route choice. The dynamic user­
optimal route choice problem is to find the dynamic trajectories of link states 
and inflow and exit flow control variables, given the network, the link travel 
time functions and the time-dependent 0-0 departure rate requirements. The 
0-0 departure rates are specified by the lower level problem and are therefore 
exogenous to the upper level problem. In this joint DUO departure time/route 
choice problem, the minimal instantaneous 0-0 travel time is not a good basis 
for adjustment of departure times. Thus, we use the ideal DUO route choice 
model developed in Chapter 7 as our upper-level problem. The formulation for 
the route choice upper-level problem is summarized in the next bilevel model. 

10.2.3 Bilevel Program Formulation 

U sing optimal control theory, a bilevel optimization program of the dynamic, 
user-optimal departure time and route choice problem is formulated as follows. 

Upper Level: Ideal DUO Route Choice 

s.t. 

mm 
tJ,v ,x,e,E ,/;-,F;·;7r 

lT ~ {lua(t) gla [Xa(t), w]dw 

+ l va
(t) g2a[xa(t),w]dw } dt 

Relationships between state and control variables: 

dE;' (t) = epr, (t) V dt r,S,pj 

(10.16) 

(10.17) 

(10.18) 
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dFrs(t) 
p =r'(t) Vr,s,pj dt p 

Flow conservation constraints: 

f;' (t) = L 
fJr, ur, (t) ap ap Vp,r,sj 

aEA(r) 

e;' (t) = L 
fJr. vr• (t) ap ap Vp,r,sj 

aEB(.) 

L v~~(t) = L u~~(t) Vj,p,r,sjj# r,Sj 
aEB(j) aEA(j) 

Constraints equilibrating actual route travel times: 

Vr,Sj 

Flow propagation constraints: 

x~~(t) = L {x;;;[t + Ta(t)] - x;;;(t)} + {E;' [t + Ta(t)] - E;' (t)} 
bEp 

Vr, s,p,jj a E B(j)j j # rj 

Definitional constraints: 

L u~~(t) = ua(t), Vaj 
r.p r,p 

Vaj 
r.p rs 

L E;'(t) = Er'(t), L F;'(t) = r'(t), Vr,sj 
p p 

Lf;'(t) = fr'(t), Le;'(t) = er'(t), Vr,sj 
p p 

Nonnegativity conditions: 

vr , (t) > 0 ap - Va,p, r, Sj 

e;' (t) ;::: 0, f;' (t) ;::: 0, E;'(t);::: 0, F;' (t) ;::: 0 Vp,r,Sj 

Boundary conditions: 

(10.19) 

(10.20) 

(10.21) 

(10.22) 

(10.23) 

(10.24) 

(10.25) 

(10.26) 

(10.27) 

(10.28) 

(10.29) 

(10.30) 

Er·(O) - 0 p -, Vp,r,Sj Va,p,r,s. (10.31) 

where r' (t) and F r , (t) solve 
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Lower Level: DUO Departure Time Choice 

min f I: f {at+7rr'(t)+Vr'[t,7rr'(t)jt;,]}dw dt 
T {lrB(t) } 

Irs ,Fro Jo r, Jo 
s.t. 

dpr'(t) = J'"'(t) 
dt 

pr'(O) = 0 pr'(T) 

VrjSj 

given 

J'"'(t) 2 0, pr'(t) 2 0 

Vr,Sj 

Vr,s. 

213 

(10.32) 

(10.33) 

(10.34) 

(10.35) 

In lower-level model (10.32)-(10.35), we only have state equations, boundary 
conditions and nonnegativity conditions. The control variables are J'"' (t), and 
the state variables are Fr'(t), which represent total departures over all routes. 

In upper-level model (10.16)-(10.31), route-specific departure variables 
f;' (t) and F;'(t) must be determined. The upper-level objective function 
is similar to the objective function of the well-known static user-optimal (UO) 
model. We note that other objective functions can also be used since constraints 
(10.23) enforce the ideal DUO route choice. The first three constraints (10.17)­
(10.19) are state equations for each link a and for cumulative effects at origins 
and destinations. Equations (10.20)-(10.22) are flow conservation constraints 
at each node including origins and destinations. Equation (10.23) is constraint 
which equilibrates flows based on actual route travel times. Other constraints 
include flow propagation constraints, definitional constraints, nonnegativity, 
and boundary conditions. 

In summary, in the upper-level program the control variables are u~~(t), 
vr , (t) er , (t) and fr, (t)· the state variables are xr , (t) E r , (t) and F r , (t)· the 

ap 'P' P' ap 'P' P' 
functionals are 7rr , (t), which must be determined in a diagonalization fashion 
as discussed in Chapter 7. Note that the upper-level problem alone is an ideal 
DUO route choice model for the case of fixed departure times, because the 
route flow constraints guarantee the ideal DUO route choice conditions without 
regard to whether the O-D flows J'"'(t) are fixed exogenously or decided by a 
lower-level departure time choice problem. 

10.3 Optimality Conditions and Equivalence 
Analysis 

10.3.1 Optimality Conditions 

We first derive the optimality conditions for the lower-level model (10.32)­
(10.35). The Hamiltonian for the lower-level model is 

r"(t) 
1fl = I: 1 [at + 7rr , (t) + Vr , [t, 1I"r, (t)j t;,]] dw + I: /1r, (t)J'"' (t) 

r, 0 r, 
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where j.tr6(t) is the Lagrange multiplier associated with each origin-destination 
pair's state equation (10.33). For each rs, the first order necessary conditions 
of the lower-level program (10.32)-(10.35) include 

-;:-:-81£--;-17 = at + 7rr6(t) + Vr'[t 7rr·(t)·t* 1 + IIr'(t) > 0 8r.(t) "r. ... -, 

Jr. (t) 81£1 - 0 
8r·(t) -

dj.tr·(t) _ 
dt 

r'(t) ~ 0, 

Vr,s; 

Vr,s; 

Vr,s. 

Vr,s; (10.36) 

(10.37) 

(10.38) 

(10.39) 

An alternative representation of bilevel program (10.16)-(10.35) can be 
given by converting it into a standard optimization model. As suggested by 
Cruz (1978) and Bard (1984), this can be achieved by appending the optimality 
conditions (10.36)-(10.39) of the departure time choice model (lower problem) 
to the constraint set ofthe route choice model (upper problem). The solution to 
the resulting single level model would also be a solution to the original bilevel 
departure time/route choice problem. The equivalent single level program is 
reformulated as: 

Min (10.16) 

s.t. (10.17)-(10.31) (Upper level model constraints) 

(10.33)-{10.35) (Lower level model constraints) 

(10.36)-{10.39) (Lower level model optimality conditions) 

We do this only to analyze the optimality conditions of the bilevel program. 
From an algorithmic point of view, the model would still be solved as a bilevel 
program. 

We can construct the Hamiltonian for this single level program and de­
rive the corresponding first order necessary conditions for each link a, origin 
node r and destination node s. For our analysis of optimality, we need only 
one part of the constraints of the single level program: constraints (10.36)­
(10.39) and (10.23). Other constraints and first order necessary conditions are 
not used for our analysis of the DUO state. We now show that constraints 
(10.36)-(10.39) for this single level program are identical to the DUO depar­
ture time choice. Also, we note that constraints (10.23) for this single level 
program directly guarantee the ideal DUO route choice conditions. 

10.3.2 DUO Equivalence Analysis 

Constraints (10.36)-{10.39) for the equivalent single level program are also the 
optimality conditions of the lower level departure time choice model. In the 
following, we prove that these conditions are equivalent to DUO departure 
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time choice conditions so that the equivalent single level program generates 
departure flows satisfying the DUO departure time choice conditions. 

The costate equation (10.38) can be integrated as 

Vr,Sj (10.40) 

where A is an integral constant. This equation applies to any time t E [0, T]. 
Thus, from equations (10.36)-(10.39), we obtain the following equations. 

r'(t) {at + 7rr'(t) + Vr'[t, 7rr'(t)jt;,] + A} = 0, Vr, Sj 

at + 7rr'(t) + Vr, [t, 7rr'(t)j t;.] ~ -A, Vr, Sj 

r'(t) ~ 0, Vr,s. 

(10.41) 

(10.42) 

(10.43) 

Note that the left hand side of (10.42) consists of: 1) disutility due to the 
waiting time; 2) minimal actual O-D travel time; and 3) a bonus for early arrival 
or a penalty for late arrival. The above conditions (10.41)-(10.43) hold for each 
O-D pair (r, s) in the network. For any O-D pair (r, s), if there are vehicles 
departing at time t, then r' (t) will be positive, so the quantities in braces 
in equation (10.41) will be zero, i.e., equation (10.42) will hold as an equality. 
(Since the total disutility in braces of equation (10.41) is positive by definition, 
A is clearly negative.) Thus, travelers departing at time t have disutility equal 
to -A. Inequality (10.42) states that at optimality, this rs disutility is less than 
or equal to the disutility for departures at any time t. Therefore, the disutility 
for departures at time t equals the minimal disutility'for origin-destination 
(r, s) at any time t. For any time t, if there are no vehicles departing origin r, 
then the departure rate r' (t) equals zero, so that (10.42) may hold as a strict 
inequality. Thus, the disutility at + 7rr , (t) + Vr• [t, 7rr'(t); t;,] at any time twill 
not be less than the minimal disutility IAI. The above interpretation implies 
that the optimality conditions of the lower-level program are consistent with 
the DUO departure time choices. 

Since the optimality conditions for the lower level departure time choice 
model are one part of the constraints for the equivalent single level program, the 
above analysis results also apply to this problem. Thus, the equivalent single 
level program (and thus the bilevel optimal control program) will generate O-D 
departure flows which satisfy the DUO departure time choice conditions. 

Note that constraints (10.23) still apply to the above equivalent single 
level program. These constraints guarantee that the bilevel optimal control 
program generates traffic flows satisfying the ideal DUO route choice condi­
tions, given any O-D departure flows determined by the revised constraint set 
of the single level program. 

We have shown that the set of departure flows and link flows that solves 
the equivalent single level program satisfy both the DUO departure time choice 
conditions and the ideal DUO route choice conditions. Therefore, the solution 
to the original bilevel departure time/route choice program satisfies both the 
DUO departure time choice conditions and the ideal DUO route choice condi­
tions. 
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10.4 Solution Algorithm and An Example 

As noted by many researchers, the bilevel nonlinear program is generally non­
convex; therefore, it is very difficult to find its global optimal solution. In the 
following, we present a heuristic solution algorithm which solves a discretized 
version of our bilevel optimal control problem. A numerical example is also pre­
sented to illustrate that total disutility of travel can be decreased by choosing 
appropriate departure times. 

To convert our optimal control problem into a nonlinear programming 
problem (NLP), time period [0, T] is subdivided into K small time intervals. 
Time interval k is denoted as k = [k, k + 1]. (These time intervals are not 
necessarily equal.) Then, the optimal control program can be reformulated as 
a discrete time NLP. 

1004.1 Solution Algorithm 

In the resulting discrete time problem, xa(k) represents vehicles on the link 
at the beginning of interval k; Ua (k) and Va (k) represent inflow and exit flow 
during interval k. Let Ta(k) denote the travel time for vehicles entering link a 
at the beginning of interval k = [k, k+1], and let 7rr'(k) be the average minimal 
r - s travel time for vehicles departing origin r during interval k. Let r' (k) 
denote the O-D departure flow during interval k. 

We use the diagonalization technique to solve our bilevel NLP. In this 
procedure, the actual travel times over each link a, Ta(k), are temporarily fixed 
and are updated iteratively. At each iteration, since each Ta(k) is temporarily 
fixed, the minimal O-D travel time functional 7rr '(k) can be computed and is 
also temporarily fixed. 

By discretizing the time period, the upper level route choice model be­
comes a discrete time NLP, and the lower level departure time choice model 
becomes a discrete time linear programming problem (LP). In our heuristic al­
gorithm, at each iteration, the lower level departure time choice model is solved 
first to obtain the O-D departure flows r'Ck). The upper level route choice 
model is solved by the Frank-Wolfe technique (Frank and Wolfe, 1956) with 
penalty functions for the nonlinear constraints (10.23). We note that in the 
route choice problem, since constraints (10.23) are put in the objective func­
tion as penalty terms, only flow conservation and flow propagation equations 
remain so that the Frank-Wolfe technique can be used to solve the modified 
program. 

After solving the route choice problem for fixed Ta(k), the link travel 
times corresponding to the solution obtained for xa(k), ua(k) and va(k) are 
compared to the functions Ta(k). If the link travel times corresponding to the 
solution are different from Ta(k) and the penalty term does not approach zero, 
the Ta(k) are reset to these travel times and the process is repeated. Given 
the robust nature of the diagonalization technique, we expect that the solution 
will converge to the DUO solution. The flowchart of the solution procedure is 
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shown in Figure 10.3. 
The LP departure time subproblem is rather simple to solve. The main 

difficulty of solving the bilevel program is solving the NLP route choice sub­
problem efficiently. 

Solve Departure Time 
Choice Model (LP) 
for rtk) 

Solve Route Choice 
Model (NLP) for 
Link Flows and f;Yk) 

No 

Figure 10.3: Flowchart of the Solution Algorithm 

10.4.2 Numerical Example 

We illustrate the solution of our bilevel choice model with the 4-link, 4-node test 
network shown in Figure lOA. The assignment time period [0, T] is subdivided 
into K = 8 small time intervals. The algorithm was coded in FORTRAN and 
solved on a IBM 3090-300J. As proposed in Chapter 5, the following link travel 
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time functions were used in the computations: 

Ta(k) = ca(k) = gla(k) + gZa(k) 

gla(k) = i3la + i3za[ua(k)]Z + i33a[xa(kW 

gZa(k) = i34a + i35a[va(k)]Z + i36a[xa(kW 

where the time interval k = 1,2, .. ,,8. The same function is used to represent 
both the instantaneous and actual link travel time functions in order to simplify 
the presentation. The parameters for each link travel time function are given 
in Table 10.1. 

1 ..... ---.... 2 

31----...... 4 

Figure lOA: Test Network 

In this example, we compare the travel times and disutilities from origin 
1 to destination 4 under two different specified departure flow patterns. Since 
the network is symmetric, constraints (10.23), which equilibrate the actual 
route travel times, are satisfied automatically. Thus, it is not necessary to use 
penalty functions to enforce these constraints in this example, although with a 
general network it would be. The initial and improved departure flow patterns 
are given in Table 10.2; the user optimal link flows and the corresponding link 
travel times for the initial departure flow pattern are shown in Table 10.3. The 
optimal link flows and optimal link travel times for the improved departure 
flow pattern are given in lOA. 

Table 10.1: Parameters of Link Travel Time Functions 

link a i3la i3za i33a i34a i35a i36a 
1-2 1. 0.001 O. O. 0.015 0.002 
1-3 1. 0.001 O. O. 0.015 0.002 
2-4 1. 0.001 O. O. 0.015 0.002 
3-4 1. 0.001 O. O. 0.015 0.002 

We first discuss the flow propagation in the network, using link 2-4 in 
Table lOA as an example (see Figure 10.5). 
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Table 10.2: Departure Flow Patterns from Origin 1 to Destination 4 

Initial Pattern 

Interval k 6~. 1 ~. 1 ~. 1 :.1 g.1 :.1 ~.I :. 1 O-D Flow 

Improved Pattern 

Interval k 
O-D Flow 

• Interval 2: Vehicles from link 1-2 enter link 2-4 during interval 2: U24(2) = 
6.5. Since the travel time on link 2-4, T24(2), is 1.0 interval for the first 
vehicles entering at the beginning of interval 2, these vehicles exit link 
2-4 during interval 3: V24(3) = 6.5. 

• Interval 3: There are U24(3) = 8.5 vehicles entering link 2-4 during inter­
val 3. Since travel time T24(3) is 1.8 intervals for the first vehicles entering 
at the beginning of interval 3, only V24(4) = 7.4 of the 8.5 vehicles exit 
during interval 4, and the remaining 1.1 vehicles exit during interval 5. 

• Interval 4: The travel time T24( 4) is 2.0 intervals for the first vehicles 
entering at the beginning of interval 4. There are U24( 4) = 6.2 additional 
vehicles entering during interval 4. The remaining 1.1 vehicles already 
on the link (see the paragraph above) exit during interval 5, allowing 5.5 
vehicles also to exit, for a total of 6.6 exiting vehicles; 6.2 - 5.5 = 0.7 
vehicles of the 6.2 vehicles entering during interval 4 exit during interval 
6. 

• Interval 5: u24(5) = 8.8 vehicles enter during interval 5. Those vehicles 
begin to exit link 2-4 during interval 6 (6.2 vehicles) and finish exiting 
during interval 7 (2.6 vehicles). 

We now consider the improvement of travel times and disutilities from 
origin 1 to destination 4 as a result of the changed departure flow pattern. 
Assume that parameter a: for waiting time equals 0.5; there is no arrival penalty 
in this example. 

With the initial departure flow pattern shown in Table 10.2, the O-D 
travel time for the first vehicle departing at the beginning of interval 1 is 3 
time intervals. (In Table 10.3, vehicles start to exit links 2-4 and 3-4 during 
interval 3; the O-D travel times are rounded integers.) Also, the O-D travel 
time for the last vehicle departing at the end of interval 1 is 6 time intervals. 
(In Table 10.3, vehicles finish exiting link 2-4 and 3-4 during interval 7). The 
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average O-D travel time for these vehicles is (3 + 6)/2 = 4.5 time intervals. 
Since the average waiting time is zero for the departure flow pattern shown in 
Table 10.2, total disutility averages (0'·0 + 4.5)·60 = 270 units. 

By way of comparison, with the improved departure flow pattern shown 
in Table 10.2, the O-D travel time for the first vehicle departing at the beginning 
of interval 1 is also 3.0 intervals. (Vehicles start to exit links 2-4 and 3-4 
during interval 3; see footnote * in Figure 10.5.) Also the O-D travel time for 
the last vehicle departing at the end of interval 1 is 4.0 intervals; see footnote 
* in Figure 10.5. The O-D travel time for the first vehicle departing at the 
beginning of interval 3 is 3.0 intervals. Also, the O-D travel time for the last 
vehicle departing at the end of interval 3 is 7.0 - 3.0 = 4.0 intervals; see 
footnote ** in Figure 10.5. The average O-D travel time for vehicles departing 
during interval 1 is (3 + 4)/2 = 3.5 time intervals, and the waiting time is 
O. The average O-D travel time for vehicles departing during interval 3 is 
(3 + 4)/2 = 3.5 intervals, and the waiting time is 2 intervals. Total disutility 
averages [(0'.0 + 3.5).30 + (0'.2 + 3.5)·30] = 240 units. (Recall that 0' = 0.5.) 
Thus, by delaying some departures, total disutility due to waiting and traveling 
is reduced. 

10.5 Notes 

In contrast to departure time choice, arrival time choice may be more significant 
for drivers. One example is the home-to-work trip in which a latest arrival 
time needs to be strictly guaranteed. Our model uses desired arrival time to 
determine driver departure times. The penalty for late arrival must be very 
large. On the other hand, the disutility due to waiting at the origin is not 
important. In Chapter 11, we explored how the desired arrival time can be 
specified for different groups of travelers in a joint mode/departure time/route 
choice problem. In future research, we will also address work-to-home trips 
whose arrival time requirements seem to be more elastic since drivers are more 
concerned with avoiding congestion. The utility due to waiting at the origin is 
important because drivers prefer to stay at workplaces until traffic congestion 
decreases. Consequently, the arrival penalty is not significant. 

The bilevel program in this chapter is formulated as a hierarchical op­
timal control model. We note that this program can also be regarded as non­
hierarchical so that the analysis of the optimality conditions is simpler. In 
other words, the upper-level route choice program and the lower-level depar­
ture time choice program have no leader-follower relationship in this case and 
can be solved simultaneously. 
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Table 10.3: Optimal Link Flows and Travel Times for Initial O-D Flows 

Interval Link Vehicles Inflow Exit Flow Vehicles Travel Time 
k a xa(k + 1) ua(k) va(k) xa(k) ca(k) & Ta(k) 
1 1-2 30.0 30.0 0.0 0.0 1.9 
2 1-2 21.7 0.0 8.3 30.0 3.8 
3 1-2 21.7 0.0 0.0 21.7 1.9 
4 1:- 2 12.4 0.0 9.2 21.7 3.2 
5 1-2 0.0 0.0 12.4 12.4 3.6 
1 1-3 30.0 30.0 0.0 0.0 1.9 
2 1-3 21.7 0.0 8.3 30.0 3.8 
3 1-3 21.7 0.0 0.0 21.7 1.9 
4 1-3 12.4 0.0 9.2 21.7 3.2 
5 1-3 0.0 0.0 12.4 12.4 3.6 
1 2-4 0.0 0.0 0.0 0.0 1.0 
2 2-4 8.3 8.3 0.0 0.0 1.1 
3 2-4 0.0 0.0 8.3 8.3 2.2 
4 2-4 9.2 9.2 0.0 0.0 1.1 
5 2-4 13.4 12.4 8.3 9.2 2.4 
6 2-4 3.8 0.0 9.6 13.4 2.7 
7 2-4 0.0 0.0 3.8 3.8 1.2 
1 3-4 0.0 0.0 0.0 0.0 1.0 
2 3-4 8.3 8.3 0.0 0.0 1.1 
3 3-4 0.0 0.0 8.3 8.3 2.2 
4 3-4 9.2 9.2 0.0 0.0 1.1 
5 3-4 13.4 12.4 8.3 9.2 2.4 
6 3-4 3.8 0.0 9.6 13.4 2.7 
7 3-4 0.0 0.0 3.8 3.8 1.2 
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Table 10.4: Optimal Link Flows and Travel Times for Improved O-D Flows 

Interval Link Vehicles Inflow Exit Flow Vehicles Travel Time 
k a xa(k + 1) ua(k) va(k) xa(k) ca(k) & Ta(k) 
1 1-2 15.0 15.0 0.0 0.0 1.2 
2 1-2 8.5 0.0 6.5 15.0 2.1 
3 1-2 15.0 15.0 8.5 8.5 2.5 
4 1-2 8.8 0.0 6.2 15.0 2.0 
5 1-2 0.0 0.0 8.8 8.8 2.3 
1 1-3 15.0 15.0 0.0 0.0 1.2 
2 1-3 8.5 0.0 6.5 15.0 2.1 
3 1-3 15.0 15.0 8.5 8.5 2.5 
4 1-3 8.8 0.0 6.2 15.0 2.0 
5 1-3 0.0 0.0 8.8 8.8 2.3 
1 2-4 0.0 0.0 0.0 0.0 1.0 
2 2-4 6.5 6.5 0.0 0.0 1.0 
3 2-4 8.5 8.5 6.5 6.5 1.8 
4 2-4 7.4 6.2 7.4 8.5 2.0 
5 2-4 9.5 8.8 6.6 7.4 1.9 
6 2-4 2.6 0.0 6.9 9.5 1.9 
7 2-4 0.0 0.0 2.6 2.6 1.1 
1 3-4 0.0 0.0 0.0 0.0 1.0 
2 3-4 6.5 6.5 0.0 0.0 1.0 
3 3-4 8.5 8.5 6.5 6.5 1.8 
4 3-4 7.4 6.2 7.4 8.5 2.0 
5 3-4 9.5 8.8 6.6 7.4 1.9 
6 3-4 2.6 0.0 6.9 9.5 1.9 
7 3-4 0.0 0.0 2.6 2.6 1.1 
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** These vehicles departed the origin during interval 3. 

Figure 10.5: Flow Propagation on Link 2-4 
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Chapter 11 

Combined Departure Time/ 
Mode/Route Choice Models 

We consider the efficient operation of an integrated transportation system 
within an IVHS environment. A dynamic route guidance system would im­
prove utilization of the overall capacity of the transportation system so as to 
reduce travel times, congestion and incidents. By providing early detection 
of incidents and congestion in the transportation network, the route guidance 
system would redistribute traffic among the available modes and routes when 
there is excess capacity in some parts of the road network or shift the depar­
ture times of travelers to avoid peak-hour congestion when no additional road 
capacity is available. Furthermore, the route guidance system would provide 
travelers with accurate, current information on both transit and road networks 
so that some motorists could make their own time-cost tradeoffs and shift to 
transit, if appropriate. 

In this chapter, we address the dynamic mode/departure time/route 
choice problem with multiple stratifications of users, each with a different 
propensity to use transit or high occupancy vehicles. This stratification could 
be by income level, automobile ownership, or vehicle occupancy regulation. 
As in conventional planning models, socio-economic factors can be considered 
in mode choice models in time-dependent circumstances. The advantage of 
formally considering multiple classes of users, who value their time and conve­
nience differently, is to model travelers' mode choices more accurately. 

Furthermore, different people have different propensities to use different 
travel modes. For example, senior citizens may prefer local streets to freeways; 
therefore, freeways may constitute a specific mode for this particular group 
of travelers. In principle, by considering groups or classes of travelers with 
specified time-cost tradeoffs in each group, it is possible to predict mode choice 
deterministically. 

A shift of travelers from cars to transit or from low-occupancy cars to 
high-occupancy cars may significantly decrease road congestion and increase 
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the efficiency of the overall transportation system. Moreover, in the road net­
work, journey-to-work trips have especially important requirements for avoid­
ing congested routes so as to arrive at work on time. Since each departure 
time choice is based on prevailing origin-destination travel times, any change 
in departure times will alter the traffic flow patterns in the network so that 
route choice decisions of other travelers will be modified. Therefore, in order to 
achieve this balanced allocation to various departure times and different modes, 
an integrated model including all elements (mode, departure time and route 
choice) should be constructed. 

There have been extensive studies in mode choice analysis. Wilson 
(1969) studied the trip distribution, modal split and trip assignment prob­
lem using entropy maximizing methods. Florian and Nguyen (1978) presented 
a combined trip distribution, modal split and trip assignment model. Route 
choice in their model is based on the user-optimal principle, and the mode 
choice is given by a logit model. Boyce (1978) also discussed the equilibrium 
solutions for combined location, mode choice and trip assignment models. 

Studies into multiple groups of travelers in travel choice models were 
begun by Dafermos (1972). She presented traffic assignment models in a 
multiclass-user transportation network. Later, LeBlanc and Abdulaal (1982) 
presented combined mode split/assignment and distribution/mode split/assign­
ment models with multiple groups of travelers. 

In this chapter, we present a dynamic user-optimal (DUO) mode, depar­
ture time and route choice model for a transportation network with multiple 
origin-destination pairs. The model developed in this chapter extends the joint 
departure time/route choice model in Chapter 10 to the case in which the com­
bined mode, departure time and route choice should be considered with multi­
ple classes of travelers. We model this choice problem by specifying that a given 
number of travelers are ready for departure between each origin-destination pair 
at the beginning of each of several short time periods. However, motorists may 
shift to transit or delay their departure times to reduce their overall travel 
costs. The model extends our previous dynamic user-optimal departure time 
and route choice model in two important respects: 1) alternative mode choices 
are available; and 2) travelers are stratified into different groups according to 
travelers' socio-economic characteristics. 

The model is formulated as a two-stage simultaneous (non-hierarchical) 
optimization program. The first-stage problem represents dynamic logit-type 
modal choice. The second-stage problem represents a hierarchical leader-follow­
er problem which solves the DUO departure time and route choice problem for 
motorists. 

The problem is described in the next section. The formulation of the 
two-stage model is described in Sections 11.2, 11.3, and 11.4. In Section 11.5, 
the equivalence of the optimality conditions of the two-stage program with the 
DUO mode/departure time/route choice conditions is demonstrated. Finally, 
the properties of the model are discussed. 
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11.1 Two-Stage Travel Choice Model 

A multiple origin-destination transportation network is considered. For sim­
plicity, the transportation network is defined to consist of a transit network and 
a road network. Consider a fixed time period [0, T]. The length of the time 
period is sufficient to allow all travelers in peak period to complete their trips. 
We consider the following mode, departure time, and route choice situation 
with (K + 1) points Tl, T2 , ••• , TK +1 on the time horizon for the fixed time 
period [0, T]. These points divide the time period [0, T] into K intervals, where 
TI = ° and TK+I = T. Any interval k is denoted as [Tic, THI], k = 1,2,···, K, 
and these intervals mayor may not be equal in length. The length of each in­
terval would typically be 15 to 30 minutes for non-peak periods. For the peak 
periods, this interval should be set to be consistent with the time headway of 
transit operations, such as 5 or 10 minutes. We also assume no departure time 
choice option for transit users, implying that head ways are uniform over the 
time period [0, T]. 

For each O-D pair rs, the group of travelers departing during period 
k can be further stratified into K smaller sub-groups according to the socio­
economic characteristics of each traveler. There are several approaches to strat­
ify travelers. The typical one for mode choice problem is to classify travelers 
based on income and age (see Table 11.1). There are 9 combinations in this 
approach. Other approaches of stratification are discussed in the multi-group 
route choice problems in Chapter 12. 

Table 11.1: Stratification of Travelers Based on Income and Age 

Degree of Change 
Income High I Middle 1 Low 

Age Old I Middle I Young 

For any interval k, travelers in group m are ready to depart by transit or 
car at an initial time Tic. Thus, based on the total disutilities of using transit 
and using car, travelers are split into 2 groups. For each O-D pair rs and each 
traveler group m, the total number of travelers departing during interval k is 
denoted as R:;: ( k) and is given exogenously. Similarly, let Q:;: ( k) and G:;: ( k ) 
denote the total numbers of travelers of group m departing by transit and 
automobile, respectively, from origin r to destination s during interval k. It 
follows that 

given Vm,r,s,k. (11.1) 

Moreover, motorists may prefer to delay their departure times within period 
[Tic, THI] in order to reduce their driving times. Note that motorists departing 
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during interval k can only shift their departure times within interval k. In 
future studies, the above assumption can be relaxed so that motorists departing 
during interval k can shift their departure times within intervals 1 ~ k. 

Drivers are assumed to make their departure time choices so as to min­
imize their individual disutility functions defined on travel time and pre-trip 
delay. The criteria for choosing each departure time consist of: 

1. the waiting time before departure; 

2. the actual travel time between the origin and destination; 

3. a bonus for early arrival or a penalty for late arrival. 

Of course, a change of departure flow rate will change the traffic on the road 
network so that the actual origin-destination travel times will change. 

Travelers' choices of mode, departure time and route are interrelated 
decisions. Given a desired arrival time, say at the workplace, choices of mode 
and departure time depend on the traveler's estimate of en route travel time 
on each mode. Thus, choice of mode depends on the travel disutilities of 
alternative modes, which also may vary by time of day. Because there is a 
partition of the decision variables between two ordered stages: mode choice 
and departure time/route choice for motorists, we use a two-stage simultaneous 
optimization programming formulation in which mode choices are first-stage 
decision variables and departure time/route choices for motorists are second­
stage decision variables. See Figure 11.1. 

Furthermore, in the road network, choice of route depends on the travel 
times of alternative routes, which also may vary by time of day. In the second­
stage optimization program (Figure 11.1), these choices are represented as a 
hierarchical bilevel optimal control program, which is equivalent to a dynamic 
leader-follower game (Cruz, 1978). The dynamic route choice problem for mo­
torists is formulated as a single optimal control problem. In the equivalent 
dynamic game, this formulation corresponds to a single controller allocating 
fixed departure flows at each time t to user-optimal routes, given the departure 
frequencies. We define this controller to be the leader of the game. 

For each O-D pair, a departure time coordinator for motorists determines 
the departing flows at each time t. These departure coordinators are defined as 
the followers ofthe game, and are represented by n( n -1) O-D-specific optimal 
control problems to which the user-optimal travel time at time t is exogenous. 
Since these problems are independent by O-D pair, n(n -1) separate problems 
for each interval k can be used to represent all O-D pairs. 

The hierarchical bilevel program for motorists assumes that the route 
choice controller, who is responsible for allocating all O-D flows to routes 
for each time interval k, knows the objective of each departure coordinator. 
Through this knowledge, the route choice coordinator is able to achieve a lower 
value of his/her objective function than if the departure time objectives were 
unknown. In contrast, the departure time coordinators know only the O-D 
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I STAGE 1: I Mode Choice Allocation 

For each time interval k, allocate total departing persons to 
each mode based on a logit function of disutilities of each mode. 

auto auto transit transit 

O-D Simultaneous disutility O-D disutility 

trips Optimization for each trips for each 
O-D O-D 

I STAGE 2: I HIGHWAY NETWORK TRANSIT NETWORK 

Hierarchical Departure Time/ Flow-Independent 
Route Choice for Motorists Route Choice 

For each time 
Upper Level: For each time interval k, interval k, find 
Route Choice allocate given departure flows time-dependent 
Controller: to routes such that all used minimal cost (time 

routes have equal travel times. and fare) routes 

where the departure flows are given by: exogenously. 

Lower Level: For each time interval k, 
Departure Time allocate departure flows from 
Coordinator for r to s, given O-D travel times, 
O-D Pairrs: to minimize a weighted sum 

of waiting and travel times, 
arrival bonus/penalty, and 
operating cost. 

Figure 11.1: Two-Stage Simultaneous Travel Choice Model 
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travel times at time t provided to them. Knowledge of the route choice objec­
tive is not needed for their coordination task. 

In the following the lower level problem for motorists representing the 
departure time coordinators is formulated as n( n -1) optimal control problems. 
Then, the upper level optimal control problem for motorists is defined to rep­
resent the route choice controller. Finally, the overall two-stage simultaneous 
travel choice program is presented in Figure 11.1. 

11.2 First Stage: Mode Choice Problem 

We consider the mode-choice problem for travelers in group m during any 
interval [Tk' Tk+lJ. For simplicity, it is assumed that the automobile occupancy 
factor is 1; however, an occupancy factor could be used to convert the person 
flow to vehicle flow since both automobile and transit flows are expressed in 
terms of persons per unit of time. We require the modal share for automobile 
and transit be given by a binary logit function for each time interval k: 

P() exp( -Oml-'~(k» 
auto = --~----~~~~~~~--~~ 

exp( -Bmv:;: (k» + exp( -Oml-'~(k» 
(11.2) 

. exp( -Bm v;': (k» 
P( transIt) = --;---=--~-:-----"",-,-:-,,-,-=-----:-::77'" 

exp( -Bmv:;: (k» + exp( -Bml-'~(k» 
(11.3) 

where I-'~ (k) and v:;: (k) are the minimal total disutilities by auto and by 
transit, respectively, for travelers in group m departing during time interval 
k from r to s, and Bm is a positive parameter which needs to be calibrated. 
Using the above function, we can calculate G~(k), which is the total number 
of departing motorists in group m during interval k and is also required for the 
second-stage departure time/route choice program for motorists. 

We formulate the mode choice problem as a discrete-time nonlinear pro­
gramming problem (NLP), which is a dynamic extension of many previous 
models in the static environment. Our model is presented in Section 11.4. The 
minimal total disutility by car, I-'~(k), will be determined in the second-stage 
departure time/route choice problem for motorists. 

We first discuss the route choice problem for the transit network. Since 
the transit network has fixed fares and travel times, minimal cost routes can be 
determined exogenously in order to compute v;':(k), the minimal total disutility 
by transit. The transit network is assumed to consist of a set of access links, 
transfer links and transit line segments. As stated in Florian and Nguyen 
(1978), a transit route is composed of a number of segments. We associate 
a time-dependent travel cost with each route of the transit network during 
interval k as follows: 

1. a walking (or driving time) and a waiting time with access links to/from 
stations; 

2. a walking time and a waiting time with a transfer link; 
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3. an in-vehicle time with a line segment; 

4. origin-destination fare. 

For any interval k, it is assumed that the link travel cost is independent 
of the transit link flows. Thus, the time-dependent travel cost C, (k) over route 
p for travelers departing during interval k can be easily computed. We suppose 
that a dynamic user-optimal state occurs on the road network, which will be 
discussed in Section 11.3, where we discuss departure time choice and route 
choice. Similarly, we suppose that a dynamic user-optimal state occurs on the 
transit network. That is 

C,(k) = v;':(k)/Tlm 

C,(k) ~ v;':(k)/Tlm 

if Q::,:,(k) > 0 

if Q::':,(k) = 0 

(11.4) 

(11.5) 

where TIm is the disutility scaling parameter associated with the social-economic 
characteristics of group m travelers. Since C,(k) is fixed, v;':(k)/Tlm is the min­
imal travel cost from r to s for travelers departing during interval k. Thus, the 
route choice problem in a transit network is simply a time-dependent minimal 
route cost problem for each interval k. 

11.3 Second Stage: Departure Time/Route 
Choice- for Motorists 

Next we consider the second-stage problem of departure time/route choice for 
the road network. The second-stage problem can be formulated as an opti­
mization program or a variational inequality. In this chapter, we consider how 
to formulate a bilevel optimal control program for departure time/route choice. 
The variational inequality model is presented in Chapter 14. 

11.3.1 Lower-Level: Departure Time Choice for Motorists 

A disutility function U;':(t) based on departure times is defined for group m 
drivers departing from origin r to destination s at time t. This function rep­
resents a weighted sum of total elapsed time during the journey, including 
the waiting time at the origin node, the driving time during the trip, any 
bonus/penalty for early/late arrival, and auto operating cost. We focus the 
following discussion on the disutility for any group m motorists. We define 
one unit of in-vehicle driving time to equal 1m units of disutility, and one unit 
of waiting time prior to departure to be equivalent to am units of disutility 
(am $ 1). 

For each group of travelers departing during interval k, there is a re­
quired arrival time interval [t;.(k) - ~r.(k), t;.(k) + ~r.(k)] at each destina­
tion s, where t;.(k) is the center ofthe required arrival time interval associated 
with travelers departing from origin r during interval k toward destination s. 
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~r. (k) represents the arrival time flexibility at destination s for travelers de­
parting from origin r during interval k toward destination s. We also define 
the disutility for early or late arrival as follows: 

{ 
gl;[t + 1rr'(t) - t;.(k) + ~;.(kW 

,82;[t + 1rr '(t) - t;.(k) - ~;.(kW 

ift + 1rr8(t) < t;.(k) - ~;.(k) 

if It + 1rr'(t) - t;.(k)1 ::; ~;.(k) 
ift + 1rr'(t) > t;.(k) + ~;.(k) 

where time t is the departure time of travelers and ,8li, ,82; are parameters 
(,8li ::; 0, ,82; ~ c.¥). This relationship is shown in Figure 11.2. This disutility 
oflate arrival is continuous and differentiable with respect to t and 1rr·(t). 

Arrival BonuslPenalty 

U)t, itt); tr:(k)] 

t t +r(s(t) Time t 

Figure 11.2: Arrival Time Disutility 

Let cr. denote the auto operating cost from origin r to destination S; for 
simplicity, we assume this cost is fixed for each O-D pair. We define one unit of 
operating cost to equal em units of disutility. Even though the operating cost 
is not directly associated with the departure time choice of motorists, it is an 
important decision element when choosing between transit and car and is used 
in the mode choice model. Thus, the disutility function for group m motorists 
departing during interval k is constructed as 

(11.6) 

where time t is the departure time of travelers of group m departing during 
interval k and Tk is the starting time of interval k. Note that since travelers of 
group m desire to depart at time n, c.¥m(t - Tk) is the disutility of waiting. 
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For 0-D pair r B and any time t, denote f:; (t) and F:;" (t) as the departure 
rate and the cumulative number of departures of group m motorists, respec­
tively. Then for motorists, we construct the dynamic user-optimal departure 
time choice conditions as 

U:;(tj k) = /1!;:(k) 

U:;:(tj k) ~ /1!;:(k) 

if f:;: (t) > 0 

if f:;: (t) = 0 

"1m, r, B, k, t E (Tk' n+l)j 

"1m, r, B, k, t E (Tk' Tk+l)j 

(11. 7) 

(11.8) 

where /1:;: (k) is the minimal rB disutility for group m motorists departing during 
interval k. By definition of f:;:(t) (the O-D departure rate) and F;;:(t) (the 
cumulative number of departing vehicles), it follows that 

lt J:;: (t)dt = F:;: (t) (11.9) 

or 

(11.10) 

where F:;" (t) and f:; (t) are state and control variables, respectively. Also, we 
have corner point or boundary conditions as follows: 

k 

F:n'(Tk+1) = L G!;:(j) Vm,r,B,kj (11.11) 
j=l 

Vm,r,Sj (11.12) 

where the total number of departing group m motorists during interval j (1 S 
j S k), G:;: (j), is given by the first-stage mode choice program. When solving 
the second-stage departure time/route choice program for motorists, the lower­
level departure time choice model decides the instantaneous departure rate 
f:; (t) for each group m and each O-D pair rB. Then, the departure rates sum 
up as follows: 

r"(t) = Lf:;(t) Vr,B 
m 

where r"(t) is the input for the upper-level route choice model for motorists. 

11.3.2 Upper-Level: Route Choice for Motorists 

In this section, we discuss the upper-level problem of route choice in the hierar­
chical departure time/route choice program for the road network. We assume 
that all motorists in all groups choose minimal travel time routes. The strat­
ification of travelers is used for mode and departure time choices. Thus, the 
dynamic route choice problem is the same as in Chapter 7. The stratification 
of travelers for route choice problem is addressed in Chapters 12-13. 

The dynamic route choice problem is to find the dynamic trajectories of 
link states and inflow and exit flow control variables, given the road network, 
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the link travel time functions and the time-dependent O-D flow requirements. 
The O-D requirements are specified by the lower-level departure time choice 
problem for motorists and are therefore temporarily fixed in the upper-level 
route choice problem for motorists. The formulation of the problem is based 
on the underlying choice criterion that each traveler uses the route that min­
imizes his/her actual travel time when departing from the origin to his/her 
destination. 

As formulated in Chapter 7, the minimal actual 0-D travel time 7rr 6 (t) 
for motorists departing at time t from origin r to destination s can be deter­
mined from the following equation 

Vr,s (11.13) 

where Fr6(t) is given by the lower-level departure time choice model and E r6 [t+ 
7rr6(t)] is computed from flow conservation equations for destinations. This 
constraint is also used to guarantee that the motorists departing at the same 
time t from origin r to destination s should arrive at the destination s at the 
same time [t + 7rr6 (t)]. The detailed analysis is given in Chapter 7. Note that 
in the above equation, the actual travel time 7rr6 (t) may be greater than any 
interval [Tk' Tk+l]. Thus, we implicitly assume that 7rr6 (t) is differentiable over 
the time period [0, T]. 

11.4 Formulation of the Two-Stage Travel 
Choice Model 

U sing optimal control and nonlinear programming theory, a two-stage simul­
taneous optimization program of the dynamic user-optimal mode, departure 
time and route choice model is formulated as follows. 

FIRST-STAGE: Mode Choice 

W,l!] ~ ~ ~ { G;:': (k) [()~ In G;:': (k) + Jl;:': (k) ] 

+ Q;:':(k) [()~ In Q;:':(k) + V;;(k)] } 

s.t. 

G;:':(k) + Q;:':(k) = R;:':(k) given Vm,r,s,k; 

G;:':(k) ~ 0, Q;:':(k) ~ ° Vm,r,s,k; 

where the minimal disutility Jl:;:(k) for motorists solves 

(11.14) 

(11.15) 

(11.16) 

SECOND-STAGE: Departure Time/Route Choice for Motorists 
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Upper-Level: Route Choice for Motorists 

min 
u,'V,z,e,E,J;· ,F;-;7r 

i T {lU~(t) L Yla[Xa(t), w]dw 
o a 0 

i"~(t) } 
+ 0 Y2a [Xa(t), w]dw dt 

s.t. 
dxr. 
~ = ur• (t) - vr• (t) Va,p, r, s; dt ap ap 

dEr'(t) 
p = r'(t) Vp,r,s; dt ep 

dFr• (t) 
p = t,r'(t) Vp,r,s; dt p 

f;'(t) = L 6r• ur• (t) ap ap Vp,r,s; 
aEA(r) 

e;'(t) = E or. vr, (t) ap ap Vp,r,s; 
aEB(,) 

L v~~(t) = E u~~(t) Vj,p, r, s;j =F r, S; 
aEB(j) aEA(j) 

r'(t) = Er'[t + ?rr'(t)] Vr,s; 

X~~(t) = L {x;;;[t + Ta(t)] - x;;;(tn + {E;' [t + Ta(t)] - E;' (tn 
bEp 

Vr,s,p,j;a E B(j);j =F r; 

L u:~(t) = ua(t), L v:~(t) = va(t), Va; 
r.p r.p 

E x~~(t) = xa(t), E x~'(t) = xa(t), Va; 
r.p r, 

E E;' (t) = Er• (t), L F;'(t) = r'(t), Vr,s; 
p p 

L f;' (t) = r' (t), L e;'(t) = er'(t), Vr,s; 
p p 

x~~(t) ~ 0, u:~(t) ~ 0, v~~(t) ~ 0 Va, p, r, s; 

e;' (t) ~ 0, f;' (t) ~ 0, E;' (t) ~ 0, F;' (t) ~ 0 Vp, r, S; 

E;'(O) = 0, F;'(O) = 0 Vp, r, S; x:~(O) = 0, Va,p, r, S; 
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(11.17) 

(11.18) 

(11.19) 

(11.20) 

(11.21) 

(11.22) 

(11.23) 

(11.24) 

(11.25) 

(11.26) 

(11.27) 

(11.28) 

(11.29) 

(11.30) 

(11.31) 

(11.32) 

where the O-D departure r'(t) and Fr'(t) for motorists solve 
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Lower-Level: Departure Time Choice for Motorists 

K lTk+l {If;;''(t) } 
min L LL U;;:(t;k)dw dt 

j"',f:;:,F;:"B k=l Tk r, m 0 

s.t. 

k 

F:;:(Tk+d = L G:;:(j) Vm,r,s,k; 
j=l 

F:;"(Td = F:;"(O) = 0 Vm,r,s; 

rS(t) = Lf;;:(t) Vr,s,t E (Tk,Tk+l); 
m 

F:;"(t) ~ 0 

where G:;: (k) is given by first-stage mode choice program. 

(11.33) 

(11.34) 

(11.35) 

(11.36) 

(11.37) 

(11.38) 

The first-stage program (11.14)-(11.16) is a discrete time NLP program. 
Two terms in the objective function are conventional entropy functions of trip 
flows by transit and by auto, respectively, for each interval k. The only con­
straints are flow conservation (11.15) and nonnegativity (11.16). The decision 
variables are G~(k) and Q~(k), which represent the total numbers of trav­
elers by car and by transit, respectively. The disutility function Jl~ (k) for 
motorists is determined by the second-stage departure time choice program. 
The disutility function v;': (k) for transit travelers is calculated exogenously. 

The second-stage program (11.17)-(11.38) is a hierarchical bilevel opti­
mal control program for motorists. The upper-level model (11.17)-(11.32) for 
motorists is the ideal DUO route choice model presented in Chapter 7. In 
this model, the route specific departure variables f;'(t) and F;"(t) must be 
found. The two terms of the objective function are similar to the objective 
function of the well-known static user-optimal (UO) model. The first three 
constraints (11.18)-(11.20) are state equations for each link a and cumulative 
effects at origins and destinations. Equations (11.21)-(11.23) are flow conser­
vation constraints at each node including origins and destinations. Equation 
(11.24) equilibrates the actual route travel times. The other constraints in­
clude flow propagation, definitional, nonnegativity, and boundary conditions. 
In summary, in the upper-level model the control variables are u~~(t), v~~(t), 
e;'(t), and f;"(t); the state variables are x~~(t), E;'(t), and F;'(t); and the 
functionals are 1rr8 (t). The inputs for this upper-level model include the in­
stantaneous O-D flow rate r' (t), which is a decision variable in the lower-level 
departure time choice model. 

In the lower-level departure time choice model (11.33)-(11.38) for mo­
torists, we have only state equations (11.34), boundary conditions (11.35) 
and (11.36), flow conservation equations (11.37) and nonnegativity conditions 
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(11.38). The control variables are t:: (t) and r' (t), and the state variables are 
F:.a'(t), which represent cumulative group m motorist departures from origin 
r to destination s. The inputs for this model include G~(k) and 1I'r'(t). The 
total number of motorists G~ (k) in group m during interval k is determined 
by the first-stage mode choice program. The actual O-D travel time function 
1I'r, (t) for motorists is determined by the upper-level route choice model for mo­
torists. As shown in the optimality conditions, the minimal disutility I'~ (k) for 
motorists can be computed after solving this bilevel model. Note that I'~(k) 
is an input to the first-stage program. 

The relationship of decision variables in the overall two-stage simultane­
ous optimization program is shown in Figure 11.3. The lower-level departure 
time choice model provides a set of corner point (boundary) conditions at in­
tervals Th T2 , .. " TK +1 for the bilevel departure time/route choice program 
for motorists. Also, in the two-stage simultaneous optimization program, the 
first-stage mode choice program provides boundary conditions for a cluster of 
hierarchical departure time/route choice programs for each interval k in the 
second-stage program. We prove in the next section that the optimal solution 
to the two-stage simultaneous optimization program satisfies the required DUO 
mode/departure time/route choice conditions. 

11.5 Optimality Conditions 

Since the two-stage travel choice programs (11.14)-(11.16) and (11.17)-(11.38) 
are solved simultaneously, we discuss the optimality conditions of each program 
separately. 

11.5.1 Optimality Conditions for First-Stage Program 

The Lagrangian for the first-stage mode choice program (11.14)-(11.16) is 

1:, = I: I: I: {G!':(k) [i-InG!':(k) + I'!':(k)] 
r, k m m 

+ Q!,:(k) [8~ InQ!,:(k) + V;;: (k)] } 

+ I: I: I: 77!': (k)[G!,:(k) + Q!': (k) - R!,:(k)] 
r, k m 

where 77~(k) is the Lagrange multiplier associated with group m travelers for 
each O-D pair rs and interval k. Then if G~(k) > ° and Q~(k) > 0, one part 
of the Karush-Kuhn-Tucker conditions are the following: 

1 
8m ~n G!': (k) + 1] + I'!': (k) + 77!': (k) = 0, Vm,r,s,k, (11.39) 

1 
8m ~n Q!,:(k) + 1] + v;;:(k) + 77!,:(k) = 0, Vm,r,s,k. (11.40) 
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I FIRST STAGE: I Decision Variables: q,';tk), Q~tk) 

Mode Choice Input: RJk), ~~tk), U:Jk) 

Grfk) Simultaneous 
~rs(k) Q:;tk) urs(k) m Optimization m m 

ISECOND STAGE: IHIGHWAY NETWORK TRANSIT NETWORK 

Hierarchical Departure Time/ Flow-Independent 
Route Choice for Motorists Route Choice 

Upper Level: Route Choice Controller Input: Qr(k) 
m 

Decision Variables: ua(t), va (t), ~ (t), e;s(t), 
rs rs rs rt 

Ep(t),Jp(t), Fp (t), 1t t) 

Input: frs(t), Frs(t) 

1t rtt) rs rs 
f U), F (t) 

Lower Level: Departure Time Coordinator 
for O-D Pair rs 

Decision Variables: 
rs rs 

F':ft) f (t), fmU), 

Input: 
rs rt 

Gm(k), 1t t) 

Figure 11.3: Decision Variables in the Two-Stage Travel Choice Program 
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We single out a particular origin-destination pair rs. Thus, for each group 
m travelers during interval k, the O-D flows for each mode are given by the 
expression 

G:;!(k) = exp( -Om lI:;!(k) - 1) . exp( -OmJ.l:;! (k)), 

Q:;!(k) = exp( -Omll:;!(k) - 1) . exp( -Om v;': (k)), 

"1m, r, s, k, 

Vm,r,s, k. 

Substituting the above two equations into equation (11.15), we obtain 

ex (-0 rO(k) _ 1) _ R:;!(k) 
p m 11m - exp( -Om J.l:;! (k)) + exp( -Om v;;: (k)) , 

Vm,r,s,k. 

(11.41 ) 

(11.42) 

(11.43) 

Substituting the above equation into equation (11.41), we obtain the modal 
share expression for automobile users 

Gro(k) - Rro(k) exp(-OmJ.l:;!(k)) \.I k (1144) 
- m ) ( ( ))' vm, r, s,. . 

m exp( -OmJ.l:;!(k) + exp -Omv;;: k 

Equation (11.44) is the required logit-type mode choice condition for interval 
k. 

11.5.2 Optimality Conditions for Second-Stage Program 

Since the lower-level model (11.33)-(11.38) for motorists is a cluster of OCP 
programs for each interval [Tk' Tk+1] , k = 1,2, .. " K, we first derive the opti­
mality conditions for an arbitrary interval [Tk' Tk+11. The Hamiltonian of the 
lower-level model for each interval k is 

J:;:(t) 

1£1 = LL 1 U;':(tjk)dw + LL4>:;!(t) f;':(t) 
ro m 0 ro m 

where 4>:;!(t) is the Lagrange multiplier associated with group m travelers for 
each O-D pair rs. For each rs, the first order necessary conditions of the 
lower-level model (11.33)-(11.38) include 

81f1 = Uro(t· k) + A,ro(t) > 0 
8f;;:(t) m' 'I'm -, 

(11.45) 

and f ro(t) 81f1 - 0 
m 8f;;:(t)- (11.46) 

d4>:;: (t) 
dt 

01i1 = 0 
8F:;'o (t) 

(11.47) 

f;': (t) ~ 0, (11.48) 
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An alternative representation of bilevel program (11.17)-(11.38) for mo­
torists can be given by converting it into a standard optimization program. As 
suggested by Cruz (1978) and Bard (1984), this can be achieved by appending 
the optimality conditions of the departure time choice model (lower problem) 
to the constraint set of the route choice model (upper problem). The solution 
to the resulting single level program would also be a solution to the original 
bilevel departure time/route choice program. Then the equivalent single level 
program for motorists is reformulated as 

Min (11.17) 

s.t. (11.18)-(11.32) (Upper level model constraints) 

(11.34)-(11.38) (Lower level model constraints) 

(11.45)-(11.48) (Lower level model optimality conditions) 

This conversion is used only to analyze the optimality conditions of the bilevel 
program for motorists. From an algorithmic point of view, the model is still 
solved as a bilevel program. 

Next, we discuss the optimality conditions of the lower level departure 
time choice model. The costate equation (11.47) can be integrated as 

'<Im,r,s,k; (11.49) 

where A~ (k) is an integral constant for interval k, and this equation applies 
for any time t E [Tk, Tk+1l. Denote 

which is an input to the first-stage mode choice model. By definition, we have 

'<Im,r,s,k. (11.50) 

Substituting equation (11.50) into equations (11.45)-(11.46), we obtain the fol­
lowing equations. 

J;': (t){U;': (t; k) - Jl~ (k)} = 0, '<1m, r, s, k, t E [Tk , Tk+1l; (11.51) 

u;,: (t; k) 2: Jl~ (k), '<1m, r, s, k, t E [Tk, Tk+ll; (11.52) 

J;': (t) 2: 0, '<1m, r, s, k, t E [n, Tk+ll. (11.53) 

The above conditions (11.51)-(11.53) hold for any group m of travelers 
and each O-D pair rs during any interval k. In the following, we discuss the 
above equations (11.51)-(11.53) for each specific group m of travelers and each 
O-D pair (r, s) during any interval k. For any O-D pair (r, s), ifthere are group 
m vehicles departing at time t E [Tk, Tk+1l, then J;':(t) will be positive, so the 
quantities in braces in equation (11.51) will be zero, i.e., equation (11.52) will 
hold as an equality. Thus, the drivers which depart at time t E [Tk, Tk+1l have 
disutility equal to Jl~(k). Equation (11.52) states that at the optimal solution, 
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the rs disutility p.~(k) is less than or equal to the disutility for departures 
at any time t E [Tk' Tk+1]. Therefore, the disutility for departing at time 
t E [Tk' Tk+1] equals the minimal disutility for origin-destination (r, s) at any 
time t E [Tk' Tk+l]. For any time t E [Tk' n+1], if there are no vehicles in 
group m departing origin r, then the departure rate f:;: (t) equals zero, so that 
(11.52) may hold as a strict inequality. Thus, the disutility U:;:(tj k) at any 
time t E [Tk' Tk+l] will not be less than the minimal disutility p.!;:(k). The 
above interpretation implies that the optimality conditions of the lower-level 
model are consistent with the DUO departure time choices for motorists. 

Since the optimality conditions for the lower level departure time choice 
model are one part of the constraints for the equivalent single level model for 
motorists, the above results also apply to this problem. Thus, the equivalent 
single level model for motorists will generate O-D departure flows which sat­
isfy the DUO departure time choice conditions. Note that constraints (11.24) 
still apply to the above equivalent single level model for motorists. Those two 
constraints guarantee that the bilevel optimal control model for motorists gen­
erates traffic flows satisfying the ideal DUO route choice conditions, given any 
O-D departure flows determined by the revised constraint set of the single level 
model for motorists. . 

We have shown that the set of departure flows and link flows that solves 
the equivalent single level model for motorists satisfy both the DUO departure 
time choice conditions and the ideal DUO route choice conditions. Therefore, 
the solution to the original second-stage departure time/route choice model 
satisfies both the DUO departure time choice conditions and the ideal DUO 
route choice conditions. 

In summary, the optimality conditions of the two-stage programs (11.14)­
(11.38) state the DUO mode, departure time and route choice properties. 

11.6 Notes 

We have presented a combined model in which dynamic user-optimal mode, 
departure time and route choice occurs. It is recognized that different travelers 
perceive the time-cost tradeoff differently, and thus distinct groups of travelers 
are included in the model. The advantage over sequential dynamic models is 
that the time-dependent interaction among the mode choice, departure time 
choice and route choice is inherently recognized. 

The most likely application of the model which we outlined is in real-time 
ATIS in conjunction with APTS. Since time-dependent road pricing policies can 
be easily adopted in our model, an extended combined model incorporating 
time-dependent road pricing (especially congestion pricing) will find important 
application in an ATMS. The calibration of the mode choice model requires 
the determination of the parameter Om which plays a key role in determining 
the modal shares on the road and transit networks. In contrast to the static 
mode choice model, the disutilities for both motorists and transit users are 
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time-dependent. Thus, the estimation procedure for Om is more complicated 
and remains a major task in the future. 

The model presented in this chapter can be extended to include more 
than two modes. In particular, bus lanes and HOV (High Occupancy Vehicle) 
lanes can be specified as a special mode in road networks. The modal choice 
model discussed in the chapter assumes that no interactions exist between the 
transit links and the auto links. However, this assumption is not generally 
applicable to bus transit. Buses move with road traffic and experience the 
same time-dependent congestion and delays as automobiles. The interaction of 
the two interdependent modes can be studied using the multi-group variational 
inequality models for route choice problems in Chapters 12 and 13. 

Generally, a two-stage programming model is very hard to solve. For 
this combined model, since the mode choice program will result in a logit type 
mode choice function for transit users and motorists, the main difficulty lies in 
how to solve the departure time choice and route choice programs efficiently. 



Chapter 12 

Variational Inequality Models of 
Instantaneous Dynamic U ser­
Optimal Route Choice Problems 

In this chapter, we present several variational inequality (VI) models for in­
stantaneous dynamic user-optimal route choice problems for a network with 
multiple origin-destination pairs. In Section 12.1, a route-time-based VI model 
is first proposed. The equivalence of the VI model with the route-time-based 
instantaneous DUO route choice conditions is demonstrated. In order to gen­
eralize this route-based model, travelers are stratified into several groups and 
a multi-group route-cost-based VI model is developed in Section 12.2. 

Since explicit route enumeration is needed to solve these route-based 
VI models, we also formulate two types of link-based VI models. In Section 
12.3, a link-time-based VI model is proposed and the equivalence of the VI 
model with the travel-time-based instantaneous DUO route choice conditions 
is demonstrated. The multi-group link-cost-based VI model is presented in Sec­
tion 12.4. In Section 12.5, we discuss the relationships between VI models and 
optimization models. As an example, we demonstrate that the link-time-based 
VI model presented in Section 12.3 can be reduced to an optimal control model 
similar to those presented in Chapter 5. Thus, the diagonalization algorithm 
and the F -W technique in Chapter 6 can be used to solve this link-time-based 
VI model. In the solution, we note that explicit route enumeration is unneces­
sary. 
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12.1 A Route-Time-Based VI Model of Instan­
taneous Route Choice 

12.1.1 Route-Time-Based Conditions 

Recall from Chapter 4 that the instantaneous travel time ca(t) over link a is 
assumed to be dependent on the number of vehicles xa(t), the inflow ua(t) and 
the exit flow va(t) on link a at time t. This instantaneous link time is the travel 
time that would be incurred if traffic conditions on the link remain unchanged 
while traversing the link. We assume the instantaneous travel time ca(t) on 
link a is the sum of two components: 1) an instantaneous flow-dependent run­
ning time gla[Xa(t), ua(t)] over link aj and 2) an instantaneous queuing delay 
g2a[Xa(t), va(t)]. It follows that 

(12.1) 

The two components gla[Xa(t), ua(t)] and g2a[Xa(t), va(t)] ofthe time-dependent 
link travel time function ca[xa(t), ua(t), Va (t)] are assumed to be nonnegative 
and differentiable with respect to Xa(t), ua(t) and xa(t), va(t), respectively. 

Consider the flow which originates at node r at time t and is destined 
for node s. There is a set of routes {p} between O-D pair rs. Define the 
instantaneous travel time function 1/J;' (t) for each route p between rs as 

1/J;' (t) = L ca[xa(t), ua(t), va(t)] . Tir,s,pj (12.2) 
aEr,p 

where the summation is over all links a in route p from origin r to destination 
s. Denote f;' (t) as the route inflow from origin r to destination s over route 
p at time t. We define route p from origin r to destination s as being used 
at time t if f;' (t) > O. Then, we recall the definition of the route-time-based 
instantaneous dynamic user-optimal (DUO) state as follows. 

Route-Time-Based Instantaneous DUO State: If, for each 
O-D pair at each instant of time, the instantaneous travel times 
for all routes that are being used equal the minimal instantaneous 
route travel time, the dynamic traffic flow over the network is in a 
route-time-based instantaneous dynamic user-optimal state. 

We now write the route-time-based instantaneous DUO route choice con­
ditions which are equivalent to the above definition. Denote ar , (t) as the min­
imal instantaneous route travel time from origin r to destination s at time t. 
The equivalent instantaneous DUO route choice conditions can be stated as 
follows: 

1/J;'. (t) - ar ,· (t) ~ 0 Tip, r, Sj (12.3) 

(12.4) 
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f;' (t) ? 0 Vp,r,s. (12.5) 

Equation (12.4) states that if there is a positive route inflow f;'- (t) > 0, 
the instantaneous route travel time 'l/J;.- (t) must equal the minimal instanta­
neous route travel time err.- (t). Otherwise, the instantaneous route travel time 
'l/J;.- (t) may be greater than or equal to the minimal instantaneous route travel 
time err ,- (t). 

The above route-time-based definition of an instantaneous DUO state 
and its corresponding route choice conditions are defined for each O-D pair 
only. They are not defined for each decision node-destination pair as in Chapter 
5 (which is equivalent to the link-time-based instantaneous DUO route choice 
in Section 12.3). Thus, rerouting strategies are not provided for travelers at 
intermediate decision nodes or intersections. 

12.1.2 Dynamic Network Constraints 

The constraint set for the route-time-based VI model is summarized as follows. 

Relationship between state and control variables: 

dxr , 
~ = ur , (t) - vr • (t) dt ap ap Va,p, r, S; (12.6) 

dEr'(t) 
~t = e;'(t) Vp, r; s f:. r; (12.7) 

Flow conservation constraints: 

r'(t) = L Lu~~(t) Vr,s; (12.8) 
aEA(r) P 

L v~~(t) = L u~~(t) Vj,p, r, s;j f:. r, S; (12.9) 
aEB(j) aEA(j) 

L L v~~(t) = er • (t) Vr, S; s f:. r; (12.10) 
aEB(,) P 

Flow propagation constraints: 

x~~(t) = L {x;;;[t + Ta(t)]- x;;;(t)} + {E;'[t + Ta(t)]- E;'(t)} 
bEp 

Va E B(j); j f:. r; p, r, S; (12.11) 

Definitional constraints: 

L u~~(t) = ua(t), L v~~(t) = va(t), Va; (12.12) 
r,p r.p 
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L x:~(t) = xa(t), Va; 
r,p 

Nonnegativity conditions: 

r, (t) > 0 vr , (t) > 0 \.J uap _, ap _ va,p, r, S; 

er'(t) > 0 p -, Er'(t) > 0 p -, 

Boundary conditions: 

E;'(O) = 0, 

x:'(O) = 0, 

Vp,r,s; 

Va,r,s. 

Vp,r,s; 

(12.13) 

(12.14) 

(12.15) 

(12.16) 

(12.17) 

We note that other constraints, such as FIFO constraints, capacity constraints 
and oversaturation constraints, can be added to this VI model. To simplify the 
analysis, we ignore them here. 

12.1.3 The Route-Time-Based VI Model 

The equivalent variational inequality formulation of the route-time-based in­
stantaneous DUO route choice conditions (12.3)-(12.5) may be stated as follows. 

Theorem 12.1. The dynamic traffic flow pattern satisfying the net­
work constraint set (12.6)-(12.17) is in a route-time-based instanta­
neous DUO route choice state if and only if it satisfies the variational 
inequality problem: 

(12.18) 

Proof of Necessity. 

We need to prove that the route-time-based instantaneous DUO route 
choice conditions (12.3)-(12.5) imply variational inequality (12.18). For any 
route p, a feasible inflow at time t is 

f;' (t) ~ o. (12.19) 

Multiplying instantaneous DUO route choice condition (12.3) by the above 
equation, we have 

Vp,r,s. (12.20) 

We subtract equation (12.4) from equation (12.20) and obtain 

Vp,r,s. (12.21 ) 
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Summing equation (12.21) for all routes p and all O-D pairs rs, it follows that 

L L [I;' (t) - I;'· (t)] [tP;,· (t) - (jr,· (t)] 
r, p 

L L [I;' (t) - I;'· (t)] tP;,· (t) - L (jr,· (t) L [I;' (t) - I;'· (t)] 
r, p r, p 

L L [I;' (t) - I;'· (t)] tP;,· (t) > 0 (12.22) 
r, p 

where the flow conversation equation 

p p 

holds for each O-D rs at each time t. Integrating the above equation from 0 
to T, we obtain variational inequality (12.18). 

Proof of Sufficiency. 

We need to prove that any solution I;'· (t) to variational inequality 
(12.18) satisfies the route-time-based instantaneous DUO route choice condi­
tions (12.3)-(12.5). We know that the first and third instantaneous DUO route 
choice conditions (12.3) and (12.5) hold by definition. Thus, we need to prove 
that the second instantaneous DUO route choice condition (12.4) also holds. 

Assume that the second instantaneous DUO route choice condition (12.4) 
does not hold only for a route q for O-D pair kn during time interval [tl -6, tt + 
6] E [0, T], i.e., 

I;n· (t) > 0 and tP!n· (t) - (jkn· (t) > 0 V t E [tl - 6, tl + 6] (12.23) 

Since the second instantaneous DUO route choice condition (12.4) holds for all 
other routes other than route q for O-D pair kn at any time t and for O-D pair 
kn at any time t rt. [tt - 6, tl + 6], it follows that 

(12.24) 

We note that all other terms in the above equation vanish because of instanta­
neous DUO route choice condition (12.4). 

For each O-D pair rs, we can always find one minimal instantaneous 
travel time route 1 for vehicles departing origin r at time t, where route 1 was 
evaluated under the optimal route inflow pattern u;,· (tn. For this route I, 



248 Chapter 12. VI Models of Instantaneous Route Choice 

the first instantaneous DUO route choice condition (12.3) becomes an equality 
by definition. It follows that 

VI, r, s. (12.25) 

Next, we need to find a set offeasible route inflows I;' (t) so that the following 
equations 

Vp,r,s (12.26) 

always hold. We consider departure flows r'(t) for all O-D pairs at each time 
t. For each O~D pair rs at each time t, we assign O-D departure flow r' (t) 
to the minimal travel time route I, which was evaluated under the optimal 
route inflow pattern U;,- (tn. This will generate a set offeasible route inflow 
patterns U;'(tn which always satisfies equation (12.26) because flows are not 
assigned to routes with non-minimal travel times which were evaluated under 
the optimal route inflow pattern U;,- (tn. Summing equations (12.26) for all 
routes p and all O-D pairs rs, it follows that 

L L I;'(t) [1/1;'- (t) - crr .- (t)] = 0 (12.27) 
r, p 

Integrating the above equation for time period [0, Tj, we have 

(12.28) 

We subtract equation (12.24) from equation (12.28) and obtain 

iT L L [I;' (t) - 1;'- (t)] [1/1;'- (t) - crr ,- (t)] dt 
o r, p 

( {L L [/;8 (t) - 1;'- (t)] 1/1;'- (t) 
10 r. p 

L crr ,- (t) L [I;' (t) - 1;'- (t)]} dt 
r, p 

iT L L 1/1;'- (t) [I;" (t) - 1;'- (t)] dt < 0 (12.29) 
o r. p 

where the flow conversation equation 

p p 

holds for each O-D rs at each time t so that the second term of the equation 
vanishes. The above equation contradicts variational inequality (12.18). There­
fore, any optimal solution U;·- (tn to variational inequality (12.18) satisfies 



12.2. A Multi-Group Route-Cost-Based VI Model 249 

the second instantaneous DUO route choice condition (12.4). Since we proved 
the necessity and sufficiency ofthe equivalence of variational inequality (12.18) 
to route-time-based instantaneous DUO route choice conditions (12.3)-(12.5), 
the proof is complete. 

12.2 A Multi-Group Route-Cost-Based VI 
Model of Instantaneous Route Choice 

In this section, we define an instantaneous dynamic user-optimal (DUO) model 
based on travel costs or disutilities instead of travel times. To be consistent 
with Chapter 11, we still stratify travelers into M groups for each O-D pair 
according to the socio-economic characteristics of each traveler. When M = 1, 
the following definition and VI model reduces to a single group model, but 
one which is different from the above VI model based on instantaneous travel 
times. 

For multi-group route choice problems, there are several approaches of 
stratifying travelers into groups. The first approach is to classify travelers 
based on income and age (see Table 12.2). There are 9 combinations in this 
approach. The second approach is to classify travelers based on route diversion 
willingness (see Table 12.2). There are 3 combinations in this approach. 

The third approach is to classify travelers based on driving behavior 
(see Table 12.3), which was proposed by Codelli et al (1993). There are 3 
combinations in this approach. The above stratifications can also be combined 
into more detailed classifications. We leave the subsequent analysis of those 
combinations for empirical studies. 

Table 12.1: Stratification of Travelers Based on Income and Age 

Degree of Change 
Income High I Middle I Low 

Age Old I Middle I Young 

Table 12.2: Stratification of Travelers Based on Route Diversion Willingness 

lOne Route I Few Alternative Routes (2-3) I En Route Diversion I 
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Table 12.3: Stratification of Travelers Based on Driving Behavior 

Cautious Driver Rushed Driver Ruthless Driver 

12.2.1 Multi-Group Route-Cost-Based Conditions 

The instantaneous route disutility function is dependent on the instantaneous 
route travel time, fuel consumption enroute, automobile operating cost, etc. 
Denote cma(t) as the instantaneous disutility function for travelers of group m 
entering link a at time t. It follows that 

Vm,a (12.30) 

where a ma is a fixed instantaneous disutility parameter for group m travelers on 
link a and f3m~ is a parameter to transform instantaneous link travel time ca(t) 
into the disutility of group m travelers. Denote "b~p(t) as the instantaneous 
route travel disutility for group m travelers from origin r to destination s at 
time t, and u~ (t) as the minimal instantaneous route travel disutility for group 
m travelers from origin r to destination s at time t. The instantaneous route 
travel disutility for all allowable routes is computed as follows: 

"b;;:p(t) = L cma(t) Vm,p, r, s (12.31) 
aEr.p 

where the summation is over all links a on route p. The minimal instantaneous 
route travel disutility for each O-D pair (r, s) is 

u;;: (t) = min "b;;:p(t) 
p 

Vm,r,s (12.32) 

We then present the definition of the multi-group route-cost-based instanta­
neous DUO state as follows. 

Multi-Group Route-Cost-Based Instantaneous DUO State: 
If, for each group m and each O-D pair at each instant of time, the 
instantaneous travel disutilities for all routes that are being used 
equal the minimal instantaneous route travel disutility, the dynamic 
traffic flow over the network is in a multi-group route-cost-based 
instantaneous dynamic user-optimal state. 

Denote f:;:p(t) as the route inflow of group m from origin r to destination 
s over route p at time t. The equivalent route-based multi-group instantaneous 
DUO route choice conditions can be summarized as follows: 

Vm,p,r,sj (12.33) 
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I;;; (t) [¢~; (t) - t7~. (t)] = 0 Vm,p,r,s; (12.34) 

Vm,p,r,s. (12.35) 

The above definition of the multi-group instantaneous DUO state and the 
corresponding route-based route choice conditions are defined for each origin­
destination pair. They are not defined for each decision node-destination pair 
as Chapter 5 (which is similar to the link-based definitions in the next sections). 
Thus, this definition does not provide any rerouting strategies for travelers at 
any intermediate intersection. 

12.2.2 Dynamic Network Constraints 

The dynamic network constraints are written for each group of travelers, desig­
nated by index m The constraint set for this problem is summarized as follows. 

Relationship between state and control variables: 

dxr. 
map r. (t) r. (t) 
~ = umap - vmap "1m, a, p, r, s; (12.36) 

dEr • (t) 
mp = r. (t) 
dt emp Vm,p, r; s # r; (12.37) 

Flow conservation constraints: 

/;;(t) = L L u~ap(t) Vm,r,s; (12.38) 
aEA(r) P 

L v~ap(t) = L u~ap(t) Vj, m,p, r, s;j # r,s; (12.39) 
aEB(j) aEA(j) 

L L v~ap(t) = e~(t) "1m, r, S; S # r; (12.40) 
aEB(.) P 

Flow propagation constraints: 

X~~(t) = L{Xb;[t + Ta(t)]- Xb;(t)} + {E;'[t + Ta(t)]- E;'(t)} 
bEft 

Va E B(j); j # r; p, r, S; (12.41) 

Definitional constraints: 

L U~ap(t) = ua(t), E V~ap(t) = Va(t), Va; (12.42) 
mr.p mr.p 

L X~ap(t) = Xa(t), Va; (12.43) 
mr.p 
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Nonnegativity conditions: 

Boundary conditions: 

E!;:p(O) = 0, 

x!;:ap(O) = 0, 

V!;:ap(t) ~ 0 "1m, a, p, r, S; 

Vm,p,r,s; 

Vm,p,r,s; 

Vm,a,p, r, s. 

(12.44) 

(12.45) 

(12.46) 

(12.47) 

12.2.3 The Multi-Group Route-Cost-Based VI Model 

Then, the equivalent variational inequality formulation of multi-group route­
cost-based instantaneous DUO route choice conditions (12.33)-(12.35) may be 
stated as follows. 

Theorem 12.2. The dynamic traffic flow pattern satisfying network 
constraint set (12.36)-(12.47) is in a multi-group route-cost-based 
instantaneous DUO route choice state if and only if it satisfies the 
variational inequality problem: 

(12.48) 

The proofs of necessity and sufficiency for variational inequality (12.48) follow 
in the same manner as in Section 12.1.3 for the single group route-time-based 
case. 

12.3 A Link-Time-Based VI Model of Instan­
taneous Route Choice 

Both VI models presented above are route-based; their solution requires explicit 
route enumeration. Although the route-based model is intuitive in terms of 
understanding, route enumeration is a great burden if the network is large, 
which is termed the curse of dimensionality in optimal control theory. Figure 
12.1 shows a 5 x 5 one-way square grid network with N = 25 nodes and L = 36 
links. The total number of routes from node 1 to node 25 is 64. 

Table 12.4 illustrates the increase of links and routes with the increase of 
nodes in such a grid network. Basically, the number of links increases linearly 
with the increase of nodes. However, the number of routes increases exponen­
tially with the increase of nodes. For example, when there are only 100 nodes, 
the number of routes is well over 20,000. When there are 400 nodes, the number 
of routes is over 109 . We note that the routes in these one-way grid networks 
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Figure 12.1: Example Grid Network 

are efficient routes in the sense of the definition of Dial (1971); i.e., any link 
on the route takes the vehicles further away from the origin and closer to the 
destination. From Table 12.4, we can conclude that explicit route enumeration 
is infeasible for large networks. 

Table 12.4: Number of Nodes, Links and Routes 

N umber of Nodes N 4 9 16 25 36 49 64 100 400 
N umber of Links L 4 12 24 40 60 84 120 180 760 
Number of Routes 2 6 20 64 202 660 2212 > 20,000 > 10\,1 

To distinguish the link-based model from the route-based model, we can 
focus on the variational inequality instead of their constraints because both 
constraints are route-based. If the variational inequality can be formulated 
using link-based variables instead of route-based variables, a carefully designed 
solution algorithm for such a variational inequality will not require explicit 
route enumeration. We will demonstrate this point later. This is also true for 
optimization problems. If the objective function of an optimization program 
can be formulated using link-based variables instead ofroute-based variables, a 
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carefully designed solution algorithm will not need explicit route enumeration. 
Recall that in the mathematical programming formulation for the static user­
optimal route choice model, the objective function can be formulated using 
either link-based variables or route-based variables. However, the link-based 
objective function is preferred because for such a link-based objective function, 
the Frank-Wolfe algorithm does not need explicit route enumeration. This 
property is also true for the optimal control models in this book. 

Because dynamic traffic flow does not have a constant flow rate during 
propagation over links and routes, route-based VI models can not be trans­
formed into link-based VI models. Thus, it is very difficult to develop a solution 
algorithm for a route-based VI without explicit route enumeration. This issue 
is the most critical constraint for applying route-based VI to realistic trans­
portation networks. Therefore, we propose a link-based VI which overcomes 
this problem. In addition to this contribution, we note that our formulation 
approach is different from others (Smith, 1993; Friesz et aI, 1993). 

The set of dynamic network constraints for the link-time-based VI model 
is identical to constraint set (12.6)-(12.17) of the route-time-based VI model 
in Section 12.1. The basic difference between the two models is that the varia­
tional inequality of the link-time-based VI model is formulated using link-based 
flow variables instead of route-based variables as in the route-time-based VI 
model. 

12.3.1 Link-Time-Based Conditions 

In contrast to the previous sections, we now introduce a new set of instanta­
neous DUO route choice conditions based on link and node variables, instead of 
route-based variables. In this problem, link a is defined as being used at time t 
if ua(t) > O. A route p from decision node i to destination s is defined as being 
used at time t if u~p(t) > 0 for the first link a E p. In the following, we define 
an instantaneous DUO route choice state based on link and node variables. 

Link-Time-Based Instantaneous DUO State: If, for any de­
parture flow from each decision node to each destination node at 
each instant of time, the instantaneous travel times equal the min­
imal instantaneous route travel time, the dynamic traffic flow over 
the network is in a link-time-based instantaneous dynamic user­
optimal state. 

The above definition of an instantaneous DUO state is identical to that 
in Chapter 5. Note that the route-time-based instantaneous DUO state defined 
in Section 12.1 is a subset of the link-time-based instantaneous state because 
the decision node includes the origin so that each O-D pair is one decision 
node-destination pair. 

Define a i .- (t) as the minimal instantaneous travel time for vehicles de­
parting from node i to destination s at time t, the asterisk denoting that the 
travel time is computed using link-time-based instantaneous DUO traffic flows. 
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For link a = (i, j), the minimal instantaneous travel time a i ." (t) from node i to 
destination S should be equal to or less than the minimal instantaneous travel 
time ail" (t) from node j to destination s plus the instantaneous link travel 
time c:(t) at time instant t. It follows that 

Va = (i, j), s. (12.49) 

If any departure flow from node i to destination s enters link a at time t, or 
u~(t) > 0, then the link-time-based instantaneous DUO route choice conditions 
require that link a is on the minimal instantaneous travel time route. In other 
words, the instantaneous minimal travel time a i ." (t) for vehicles departing 
node i toward destination s at time t should equal the minimal instantaneous 
travel time a i '" (t) from node j to destination s plus the instantaneous link 
travel time c:(t) at time instant t. It follows that 

if u~" (t) > 0 Va = (i,j), s. (12.50) 

The above equations are also equivalent to the following: 

Va = (i, j), s. (12.51) 

Denote 0~" (t) as the difference between the minimalinstantaneous travel time 
from node j to destination s and the instantaneous travel time from node i to 
destination s plus the instantaneous travel time on link a at time t. It follows 
that 

Va,sja = (i,j). (12.52) 

Thus, the link-time-based instantaneous DUO route choice conditions can be 
summarized as follows: 

0~" (t) ~ 0 

u~" (t) 0~" (t) = 0 

u~(t) ~ 0 

Va = (i, j), Sj 

Va = (i, j), Sj 

Va=(i,j),s. 

(12.53) 

(12.54) 

(12.55) 

Now, we state a lemma concerning the relationship between the link­
time-based and the route-time-based instantaneous DUO route choice condi­
tions. 

Lemma 12.1. Link-time-based instantaneous DUO route choice 
conditions (12.53)-(12.55) imply route-time-based instantaneous DUO 
route choice conditions (12.3)-(12.5). 
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Proof. 

If we consider node i as an origin r, then link-time-based instantaneous 
DUO route choice conditions (12.53)-(12.55) apply to O-D pair rs. Thus, 
equations (12.53)-(12.55) can be written as 

ui'· (t) + c:(t) - ur,· (t) ~ 0 Va = (r, i), r, Sj 

u~,· (t) [ui '· (t) + c:(t) - ur ,· (t)] = 0 Va = (r, i), r, Sj 

Va = (r,i), r, S 

(12.56) 

(12.57) 

(12.58) 

Suppose there are P routes from origin r to destination S via link a. Since equa­
tion (12.74) applies to all links a exiting origin r, we can define an instantaneous 
travel time on route p as tfJ;'· (t). If link a is on route p, this instantaneous 
route travel time tfJ;'· (t) must be greater than or equal to the minimal instan­
taneous travel time from node i to destination S plus the instantaneous travel 
time on link a at time t. It follows that 

(12.59) 

By equation (12.56), we have 

(12.60) 

which is identical to equation (12.3). Furthermore, if there is a flow on link a, 
i.e., u~,· (t) > 0, then by equations (12.56)-(12.57), we have 

ui'· (t) + c: (t) - ur ,· (t) = 0 (12.61) 

Specify p as the route via link a and the minimal instantaneous travel time 
subroute from node i to destination s. Thus, the flow f;'· (t) on route p is 
positive at time t and we have 

(12.62) 

In other words, we have 

(12.63) 

For any positive link inflow u~,· (t) > 0, we can generate a corresponding 
positive route inflow f;'· (t) and the corresponding equation (12.63). Thus, 
equation (12.63) applies to any positive route inflow 1;'. (t). We conclude that 
it applies to any route between any O-D pair rs. Note that the above equation 
applies to any zero route inflow f;'· (t) = 0 as well. Therefore, equations 
(12.60) and (12.63) imply the route-time-based instantaneous DUO route choice 
conditions (12.3)-(12.5). The proof is complete. 
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12.3.2 The Link-Time-Based VI Model 

The equivalent variational inequality formulation of link-time-based instanta­
neous DUO route choice conditions (12.53)-(12.55) may be stated as follows. 

Theorem 12.3. The dynamic traffic flow pattern satisfying network 
constraint set (12.6)-(12.17) is in a link-time-based instantaneous 
DUO route choice state if and only if it satisfies the variational 
inequality problem: 

(12.64) 

Proof of Necessity. 

We need to prove that link-time-based instantaneous DUO route choice 
conditions (12.53)-(12.55) imply variational inequality (12.64). For any link a, 
a feasible inflow at time t is 

u~(t) ~ o. Va = (i,j),s. (12.65) 

Multiplying equation (12.65) and equation (12.53) we have 

u~(t) 0~'(t) ~ 0 Va, Sj a = (i, j). (12.66) 

We subtract equation (12.54) from equation (12.66) and obtain 

Va, Sj a = (i, j). (12.67) 

Summing equation (12.67) for all links a and all destinations s, it follows that 

LL [u~(t) - u~'(t)] 0~'(t) ~ 0 where a = (i, j). (12.68) 
a 

Integrating the above equation from 0 to T, we obtain variational inequality 
(12.64). 

Proof of Sufficiency. 

We need to prove that any solution u~' (t) to variation~l inequality 
(12.64) satisfies link-time-based instantaneous DUO route choice conditions 
(12.53)-(12.55). We know that the first and third instantaneous DUO route 
choice conditions (12.53) and (12.55) hold by definition. Thus, we need to 
prove that the second instantaneous DUO route choice condition (12.54) also 
holds. 
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Assume that the second instantaneous DUO route choice condition (12.54) 
does not hold only for a link b = (1, m) for a destination n during a time interval 
[d - fJ, d + fJ] E [0, T), i.e., 

uf(i»O and 0f(i) >0 iE[d-fJ,d+fJ] (12.69) 

Thus, we have 

uf(i) 0f(i) > 0 (12.70) 

where 

0f (i) = amn - (i) + cb(i) - a'n - (i) > 0 where b = (1, m). (12.71) 

Note that the second instantaneous DUO route choice condition (12.54) holds 
for all links other than link b = (1, m) for destination n at time i. Equation 
(12.54) also holds for link b = (1, m) for destinations s # n at time i and for 
link b = (1, m) for destinations n at time i rt. [d - fJ, d + fJ]. It follows that 

rT l d+6 Jo L L 0~- (i) u~- (i) di = uf (i) 0f (i) di > 0 
o s a d-6 

(12.72) 

We note that all other terms in the above equation vanish because of instanta­
neous DUO route choice condition (12.54). 

For each O-D pair rs, we can always find one minimal travel time route 
p for vehicles departing origin r at time i, where route p was evaluated under 
optimal flow pattern {u~- (i)}. For each link a on this route p, the first instan­
taneous DUO route choice condition (12.53) becomes an equality by definition. 
It follows that 

0~- (i) = a js - (i) + c~(i) - a i .- (i) = 0 Va,s;a = (i,j);a E p. (12.73) 

Next, we need to find a set of feasible inflows u~(t) so that the following equa­
tions 

u~(t) 0~- (i) = 0 Va,s;a = (i,j) (12.74) 

always hold. We adjust all the departure flows r' (t) for all O-D pairs at time 
i. For each O-D pair rs at each time i, we assign O-D departure flow rS(t) to 
the minimal travel time route p, which was evaluated under the optimal flow 
pattern {u~- (i)}. This will generate a set offeasible inflow patterns {u~(i)} = 
L:r u~'(i) which always satisfies equations (12.73) and (12.74) because flows 
are not assigned to routes with non-minimal instantaneous travel times which 
were evaluated under the optimal flow pattern {u~- (i)}. Summing equations 
(12.74) for all links a and all destinations s, it follows that 

L L u~(t) 0~- (t) = 0 where a = (i,j). (12.75) 
a 
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Integrating the above equation (12.75) for interval [0, TJ, we have 

iT L L u~{t) e~· (t) dt = 0 
o , a 

(12.76) 

We subtract equation (12.72) from equation (12.76) and obtain 

fT L L e~· (t) [u~{t) - u~· (t)] dt < 0 
10 , a 

(12.77) 

The above equation contradicts variational inequality (12.64). Therefore, any 
optimal solution {u~· (tn to variational inequality (12.64) satisfies the second 
instantaneous DUO route choice condition (12.54). Since we proved the ne­
cessity and sufficiency of the equivalence of variational inequality (12.64) to 
link-time-based instantaneous DUO route choice conditions (12.53)-{12.55), the 
proof is complete. 

12.4 A Multi-Group Link-Cost-Based VI Model 
of Instantaneous Route Choice 

In this section, we consider a link-based multi-group VI model for the instanta­
neous dynamic user-optimal problem. The dynamic network constraints have to 
be written for each group of travelers designated by index. m. The constraint set 
for this problem is identical to the constraint set (12.36)-{12.47) for the route­
based multi-group VI model in Section 12.2. As before, the basic difference 
between the two models is that the variational inequality of the multi-group 
link-cost-based model is formulated using link-based flow variables instead of 
route-based variables as in the multi-group route-cost-based VI model. 

12.4.1 Multi-Group Link-Cost-Based Conditions 

The instantaneous route disutility function is dependent on the instantaneous 
route travel time, fuel consumption enroute and automobile operating cost, etc. 
Denote cma(t) as the instantaneous disutility function for group m travelers 
entering link a at time t. It follows that 

Vm,a (12.78) 

where Ctma is a fixed instantaneous disutility parameter for group m travelers on 
link a and f3ma is a parameter to transform instantaneous link travel time ca{t) 
into the disutility of group m travelers. Denote t,b!;:p{t) as the instantaneous 
route travel disutility for group m travelers from origin r to destination s at 
time t. The instantaneous route travel disutility for all allowable routes p 
between decision node i and destination s is computed as follows: 

t,b~p{t) = L cma{t) Vm,p,i,s (12.79) 
aEi,p 
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where the summation is over all links a on route p. We then define a multi­
group link-cost-based instantaneous DUO state as follows. 

Multi-Group Link-Cost-Based Instantaneous DUO State: 
If, for any departure flow of group m from each decision node to 
each destination node at each instant of time, the instantaneous 
travel disutilities equal the minimal instantaneous route travel disu­
tility, the dynamic traffic flow over the network is in a multi-group 
link-cost-based instantaneous dynamic user-optimal state. 

Define a~(t) as the minimal instantaneous route travel disutility for 
group m travelers from node i to destination s at time t. The asterisk denotes 
that the travel dis utility is computed using multi-group link-cost-based instan­
taneous DUO traffic flows. For group m travelers on link a = (i, i), the minimal 
instantaneous travel disutility a~' (t) from node i to destination s should be 
equal to or less than the minimal instantaneous travel disutility at.:" (t) from 
node i to destination s plus the instantaneous link travel disutility c;"a (t) at 
time instant t, It follows that 

"1m, a = (i, i), s. (12.80) 

If any departure flow of group m from node i to destination s enters link a 
at time t, or u:"a(t) > 0, then the multi-group link-cost-based instantaneous 
DUO route choice conditions require that link a is on the minimal instanta­
neous travel disutility route. In other words, the instantaneous minimal travel 
disutility a~' (t) for vehicles departing node i toward destination s at time 
t should equal the minimal instantaneous travel disutility at.:" (t) for vehicles 
departing node i to destination s plus the instantaneous link travel disutility 
c;"a (t) at time instant t. It follows that 

ifu:':a(t) > 0 Vm,a = (i,i),s. (12.81) 

The above equations are also equivalent to the following: 

[at,:' (t) + c;"a (t) - a~' (t)] u:':a (t) = 0 "1m, a = (i,i), s. (12.82) 

Denote e:';a (t) as the difference between the minimal instantaneous travel disu­
tility from node i to destination s and the instantaneous travel disutility from 
node i to destination s plus the instantaneous travel disutility on link a for 
group m at time t. It follows that 

"1m, a, Sj a = (i, i). (12.83) 

Thus, the multi-group link-cost-based instantaneous DUO route choice condi­
tions can be summarized as follows: 

"1m, a = (i, i), Sj (12.84) 
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u:':a (t) e:':a (t) = 0 

u:na(t) ~ 0 

Vm, a = (i,j), Sj 

Vm, a = (i,j), s. 

(12.85) 

(12.86) 

Similar to Lemma 12.1, we can prove that multi-group link-cost-based instan­
taneous DUO route choice conditions (12.84)-(12.86) imply route-based multi­
group instantaneous DUO route choice conditions (12.33)-(12.35). 

12.4.2 The Multi-Group Link-Cost-Based VI Model 

The equivalent variational inequality formulation of multi-group link-cost-based 
instantaneous DUO route choice conditions (12.84)-(12.86) may be stated as 
follows. 

Theorem 12.4. The dynamic traffic flow pattern satisfying network 
constraint set (12.36)-(12.47) is in a multi-group link-cost-based 
instantaneous DUO route choice state if and only if it satisfies the 
variational inequality problem: 

(12.87) 

The proofs of necessity and sufficiency follow in the same way as for the single 
group case. 

12.5 Relationships Between VI Models and 
Optimization Models 

As illustrated in Chapter 3, VI models can be reformulated as optimization 
models under certain symmetry conditions. We show in this section that the 
VI model can be reformulated as an optimal control problem which is identical 
to the optimal control models with similar constraints presented in Chapter 5. 
We will not discuss each VI model in this chapter, but focus our analysis on 
the link-time-based VI model for the instantaneous DUO route choice problem 
of Section 12.3. Similar analyses can be performed for other VI models for 
various instantaneous DUO route choice problems. 

Consider the following VI problem from Section 12.3: 

(12.88) 

In order to present a partitionable VI, we need to transform the original VI 
into a partitionable VI using some new definitions as follows. Recall that the 
instantaneous link travel time function can be expressed as 

Va. (12.89) 
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Denote an auxiliary link travel time function A!· (t) as 

Va, Sj a = (i, j). (12.90) 

Recall that in Section 12.3, we defined another auxiliary link travel time func­
tion 

Va,Sja = (i,j). (12.91) 

Substituting equations (12.89)-(12.90) into equation (12.91), we obtain 

ai '· (t) + gla[Xa(t), ua(t)] + g2a[Xa(t), va(t)]- a i •• (t) 

gla[Xa(t), ua(t)]- a i •• (t) + A~· (t) 2: 0 

Va, Sj a = (i, j). (12.92) 

Based on equation (12.90), we define a related auxiliary link travel time function 

Va,Sja = (i,j). (12.93) 

Using the above new definitions, link-time-based instantaneous DUO route 
choice conditions (12.53)-(12.55) are rewritten as equivalent conditions as fol­
lows. 

0!· (t) 2: 0 Va = (i,j), Sj (12.94) 

0~· (t) = 0 Va = (i,j),sj (12.95) 

u!· (t) 0!· (t) = 0 Va = (i, j), Sj (12.96) 

v~· (t) 0!· (t) = 0 Va = (i, j), Sj (12.97) 

u~(t) 2: 0 Va = (i, j), Sj (12.98) 

v~(t) 2: 0 Va = (i, j), s. (12.99) 

Equation (12.94) is equivalent to equation (12.53), and equation (12.96) is 
equivalent to equation (12.54). Then, the link-time-based variational inequality 
(12.88) or Theorem 12.3 can be restated as an equivalent VI in the following 
theorem. 

Theorem 12.5. The dynamic traffic flow pattern satisfying network 
constraint set (12.6)-(12.17) is in a link-time-based instantaneous 
DUO route choice state if and only if it satisfies the variational 
inequality problem: 

l T LL {0!*(t) [u!(t)-u!·(t)] 
o • a 

+ 0!· (t) [v~ (t) - v~· (t)]} dt 2: 0 (12.100) 
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The second term in the above variational inequality equals zero. It is placed 
within the VI so that the reformulation of the VI as an optimal control problem 
can be performed more easily. Therefore, the above VI is equivalent to the 
link-time-based instantaneous DUO route choice conditions (12.53)-(12.55) or 
(12.94)-(12.99). The proofs of necessity and sufficiency are straightforward and 
not given here. 

Substituting definitions (12.92) and (12.93) into equation (12.100), vari­
ational inequality (12.100) is equivalent to 

[T L L {[gla[Xa(t), ua(t)]- a i .- (t) + >'!" (t)] [u!(t) - u!" (t)] 
10 • a 

+ [g2a[Xa(t), Va(t)]- >'!" (t) + ai'"(t)] [v!(t) - v!" (t)]} dt 

[T L {gla[Xa(t), ua(t)] [ua(t) - u:(t)] 
10 a 

+ g2a[Xa(t), va (t)] [va(t) - v:(t)]} dt 

+ loT ~~ {[-ai'"(t) + >.!"(t)] [u!(t)-u!"(t)] 

+ [->'!"(t)+ai."(t)] [v!(t)-v!"(t)]} dt ~ 0 (12.101) 

We now show that a relaxation or diagonalization procedure can be designed 
so that the above VI can be formulated as an optimal control model in each 
relaxation iteration. In other words, our optimal control model in Chapter 5 
is a special case of this VI. Now we assume that the actual link travel time 
Ta(t) is fixed temporarily in the flow propagation constraints at each relaxation 
iteration. Then, the cross-effects of flow variables at different time instants can 
be separable at each iteration. In other words, a Jacobian submatrix of the 
instantaneous link travel time ca(t) with respect to the inflow ua(t) for each 
time instant can be written as 

[~ 
0 

o I 8",(t) 

'V.c:(t) = ; 
~ 0 8U2(t) 

0 ~ 
8u n (t) 

where n is the total number of links in the network. Obviously, the above 
matrix is symmetric. We note that xa(t) does not enter the Jacobian submatrix 
because it is a state variable. Another Jacobian sub-matrix of the instantaneous 
link travel time ca(t) with respect to the exiting flow va(t) for each time instant 
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can be written as 

~ 0 0 OVl(t) 
0 Og22(t) 0 

'VVC:(t) = 
OV2(t) 

0 0 Og2n(t) 
OVn(t) 

which is also symmetric. Then, at each time instant t, there is an optimization 
problem which is equivalent to the integrand of variational inequality (12.100): 

Min ~ {l ua (t) gla[Xa(t), w] dw + l va(t) g2a[Xa(t), w] dw } 

+ LL {u~(t) [_~i'· (t) + ,\~. (t)] + v~(t) [-,\~. (t) + ~i··(t)]} 
a 

a 

(12.102) 
a 

Reorganizing the above equation based on each node j, we have 

Min ~ {l ua (t) gla[Xa(t), w]dw + l va(t) g2a[Xa(t), w]dw } 

+ L L ,\~. (t) [u~(t) - v~ (t)]- L ~r.· (t) L u~(t) 
a aEA(r) 

• itr. aEB(j) aEA(j) 

+ L~"·(t) L v~(t) 
aEB(. ) 

~ {l Ua (t) gla[Xa(t), w]dw + l Va (t) g2a[Xa(t), w]dw } 

+ LL'\~·(t)[u~·(t) - v~'(t)]- LL~r··(t) L u~'(t) 
aEA(r) 

r. itr. aEB(j) aEA(j) 

+ LL~"·(t) L v~'(t) 
r .tr aEB(.) 
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The above equation is equivalent to the following partial Hamiltonian function 
with flow conservation constraints only: 

1i ~ {lU4
(t) Yla[Xa(t),w]dw + lfJ4

(t) Y2a[xa(t),w]dw } 

+ L L A~· (t)[U~~(t) - V~~(t)] 
r. ap 

r. i#r. p aEB(j) aEA(j) 

r .#r aEB(.) P 

where the flow propagation constraint is not included. Thus, we can simply 
state the objective function of the optimization program as 

Min lT ~ {lU4
(t) Yla[Xa(t),w] dw 

+ l V4
(t) Y2a[Xa(t),w] dW} dt (12.103) 

because other terms in the partial Hamiltonian function are associated with link 
and node flow conservation equations. Therefore, link-time-based variational 
inequality (12.88) can be reformulated as an optimal control problem with 
objective function (12.103) and constraints (12.6)-(12.17) at each relaxation 
iteration. In other words, we have demonstrated that our original optimal 
control model in Chapter 5 is a special relaxation or diagonalization problem 
of VI formulation (12.88). We note that the actual link travel time Ta(t) is fixed 
temporarily in the flow propagation constraints at each relaxation iteration. 

The solution procedure in Chapter 6 is in fact the relaxation algorithm 
for solving VI model (12.88). Therefore, similar solution procedures can be 
developed for solving the link-based multi-group VI model for the instantaneous 
DUO route choice problem. 

Next, we consider a special case in which the instantaneous link travel 
time function depends on the state variable only, namely, 

Va. (12.104) 

Likewise, the actual link travel time function is: 

Va. (12.105) 

The same derivation and analysis from (12.90) to (12.101) applies here. How­
ever, it is not necessary to design a relaxation procedure in this case. Because 
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link travel time functions depend on the state variable only, the cross-effects of 
flow variables at different time instants are separable. In other words, the two 
Jacobian submatrices of the instantaneous link travel time ca(t) with respect 
to the inflow ua(t) and exit flow va(t) for each time instant can be written as 

'VUC:(t) = 0 

'Vvc:(t) = 0 

which are symmetric. Thus, we can obtain the following optimization program: 

Min (12.106) 

s.t. constraints (12.6)-(12.17). 

The above optimal control problem is equivalent to variational inequality (12.88). 
Equation (12.106) is an objective function for a kind of dynamic system-optimal 
route choice problem. It is a special case of our general instantaneous DUO 
route choice problems when assumptions (12.104)-(12.105) hold. 

12.6 Notes 

Variational inequality formulation approaches originated with static transporta­
tion network problems. The static user-optimal route choice problem was for­
mulated as an equivalent set of inequalities by Smith (1979). Later, Dafermos 
(1980) developed an elastic demand model with disutility functions using the VI 
approach. An elastic demand model with demand functions was introduced by 
Dafermos and Nagurney (1984b). Fisk and Boyce (1983) also presented alter­
native VI formulations for network equilibrium travel choice problems. Nagur­
ney (1993) summarized the modeling and algorithmic aspects of VI models for 
static traffic assignment problems. Recently, Friesz et al (1993) formulated a 
VI model for the simultaneous departure time/route choice problem. Smith 
(1993) also presented a route-based VI formulation using the packet represen­
tation of vehicle groups. Both dynamic models are route-based, which require 
explicit route enumeration for formulation and solution. 

As discussed in Sections 12.1-12.4, route-based and link-based definitions 
of instantaneous DUO are not necessarily equivalent. Route-based definitions 
do not provide any routing strategies at intermediate decision nodes and have 
less applicability compared to the link-based definitions in ATIS systems. Fur­
thermore, link-based DUO definitions imply route-based DUO definitions and 
are more realistic in terms of users' route choice behavior. Therefore, in this 
book and in studies of dynamic incident management, we focus on models 
formulated according to the link-based DUO definitions. 



Chapter 13 

Variational Inequality Models of 
Ideal Dynamic User-Optimal 
Route Choice Problems 

In this chapter, we present both route-based and link-based variational inequal­
ity models for the ideal dynamic user-optimal route choice problem. In Section 
13.1, a route-time-based VI model for ideal DUO route choice is proposed. 
This model is the most straight-forward formulation of route-time-based, ideal 
DUO route choice conditions. In Section 13.2, a multi-group route-time-based 
VI model is developed. In this model, each group of travelers is associated with 
a disutility function. Thus, the route-based ideal DUO route choice conditions 
are defined for each group of travelers on the basis of travel disutilities instead 
of travel times only. 

Route-time-based VI models have an intuitive interpretation. However, 
they encounter a computational difficulty in terms of explicit route enumera­
tion. A link-time-based VI model is therefore proposed in Section 13.3. We 
prove that the link-time-based ideal DUO route choice conditions imply the 
route-time-based ideal DUO route choice conditions. In parallel to the route­
based VI models, a multi-group link-based VI model is also presented in Section 
13.4. 

In Section 13.5, the relationships between VI models and optimization 
models are discussed. As an example, the link-time-based VI model is refor­
mulated as optimal control problem. Thus, an algorithm without explicit route 
enumeration can be designed to solve this VI. 
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13.1 A Route-Time-Based VI Model of Ideal 
Route Choice 

13.1.1 Route-Time-Based Conditions 

Recall from Chapter 4 that the actual link travel time is the travel time over a 
link actually experienced by vehicles. The actual travel time Ta(t) over link a 
for vehicles entering link a at time t is assumed to be dependent on the number 
of vehicles xa(t), the inflow ua(t) and the exit flow va(t) on link a at time t. It 
follows that 

Ta(t) = L Ta[Xa(t), ua(t), Va (t)] Va (13.1 ) 
aET'p 

Suppose we have a set of routes {p} and f;' (t) is the route inflow from 
origin r to destination s at time t. Denote 71;'(t) as the actual travel time from 
origin r to destination s over route p at time t, and 7rT ' (t) as the minimal ac­
tual route travel time from origin r to destination s at time t. In Chapter 4 we 
defined a recursive formula to compute the route travel time 71;' (t) for each al­
lowable route as follows. Assume route p consists of nodes (r, 1,2, ... , i, ... , s). 
Denote 71;i(t) as the travel time actually experienced over route p from origin 
r to node i by vehicles departing origin r at time t. Then, a recursive formula 
for route travel time 71;'(t) is: 

Vp, r,i; i = 1,2,···, s; 

where link a = (i - 1, i). 
If the actual link travel time Ta(t) is determined, the minimal actual 

O-D travel time 7rT'(t) can be computed as 7rT'(t) = minp 71;' (t). 7rT'(t) is a 
functional of all link flow variables at timew: 7rT '(t) = 7rT '[u(w), v(w), x(w)lw 2: 
t]. This functional is neither a state variable nor a control variable, and it is 
not fixed. This functional is not available in closed form. 

For any route p from origin r to destination s, route p is defined as being 
used at time t if f;' (t) > o. In this chapter, we assume that the time-dependent 
origin-destination trip pattern is known a priori. Thus, the departure times of 
travelers are given. From Chapter 7, recall the definition of the ideal dynamic 
user-optimal (DUO) state as follows. 

Travel-Time-Based Ideal DUO State: If, for each O-D pair at 
each instant of time, the actual travel times for all routes that are 
being used equal the minimal actual route travel time, the dynamic 
traffic flow over the network is in a travel-time-based ideal dynamic 
user-optimal state. 

The route-time-based ideal DUO route choice conditions which are equiv­
alent to the above definition are defined as follows. 

Vp,r,s; (13.2) 
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Vp,r,Sj (13.3) 

Vp,r,s. (13.4) 

The above definition of an ideal DUO state and its corresponding route choice 
conditions are defined for each O-D pair. They are not defined for each decision 
node-destination pair as in Chapter 4 (which is equivalent to link-based defini­
tion in Section 13.3). Thus, rerouting strategies are not provided for travelers 
at intermediate intersections. 

13.1.2 Dynamic Network Constraints 

The constraint set for this route-time-based VI model is summarized as follows. 

Relationship between state and control variables: 

dXT' 
~ = uT' (t) - vT' (t) Va,p, r, Sj (13.5) dt ap ap 

dE;'(t) = eT'(t) 
dt p 

Vp, rj S t rj (13.6) 

Flow conservation constraints: 

r'(t) = L L u~~(t) Vr,sj (13.7) 
aEA(r) P 

L v~~(t) = L u~~(t) Vj,p, r, Sjj t r, Sj (13.8) 
aEB(j) aEA(j) 

L L v~~(t) = er, (t) Vr,sjs t rj (13.9) 
aEB(,) P 

Flow propagation constraints: 

X~~(t) = L{x;;;[t + 7'a(t)]- x;;;(t)} + {E;'[t + 7'a(t)]- E;'(t)} 
bEp 

Va E B(j)j j t rj p, r, Sj (13.10) 

Definitional constraints: 

L u~~(t) = ua(t), L v~~(t) = va(t), Vaj (13.11) 
r.p T.p 

L x~~(t) = xa(t), Vaj (13.12) 
T.p 
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Nonnegativity conditions: 

x~~(t) 2: 0, u~~(t) 2: 0, vr• (t) > 0 ap _ Va,p, r, Sj 

er'(t) > 0 p -, Er'(t) > 0 p -, Vp,r,Sj 

Boundary conditions: 

E;'(O) = 0, 

x~~(O) = 0, 

Vp,r,Sj 

Va,p,r,s. 

(13.13) 

(13.14) 

(13.15) 

(13.16) 

13.1.3 The Route-Time-Based VI Model 

The equivalent variational inequality formulation of route-time-based ideal 
DUO route choice conditions (13.2)-(13.4) may be stated as follows. 

Theorem 13.1. The dynamic traffic flow pattern satisfying network 
constraint set (13.5)-(13.16) is in a route-time-based ideal DUO 
route choice state if and only if it satisfies the variational inequality 
problem: 

(13.17) 

Prool 01 Necessity. 

We need to prove that the ideal DUO route choice conditions (13.2)­
(13.4) imply variational inequality (13.17). For any route p, a feasible inflow 
at time tis 

1;' (t) 2: o. (13.18) 

Multiplying ideal DUO route choice condition (13.2) by the above equation, 
we have 

Vp,r,s. (13.19) 

We subtract equation (13.3) from equation (13.19) and obtain 

Vp,r,s. (13.20) 

Summing equation (13.20) for all routes p and all O-D pairs rs, it follows that 

r. p 

L L [I;' (t) - 1;'- (t)] 17;'- (t) - L 7rr ,- (t) L [I;' (t) - 1;'- (t)] 
r, p r, p 

L L [I;' (t) - 1;'- (t)] 17;'- (t) 2: 0 (13.21) 
r, p 
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where the flow conversation equation 

p p 

holds for each O-D rs at each time t. Integrating the above equation (13.21) 
from 0 to T, we obtain variational inequality (13.17). 

Proof of Sufficiency. 

We need to prove that any solution f;8· (t) to variational inequality 
(13.17) satisfies ideal DUO route choice conditions (13.2)-(13.4). We know 
that the first and third ideal DUO route choice conditions (13.2) and (13.4) 
hold by definition. Thus, we need to prove that the second ideal DUO route 
choice condition (13.3) also holds. 

Assume that the second ideal DUO route choice condition (13.3) does not 
hold only for a route q for O-D pair kn during time interval [tl-b, tl +b] E [0, T], 
i.e., 

f:n• (t) > 0 and 77!n· (t) - 7rkn• (t) > 0 Vt E [ti - b, tl + b] (13.22) 

Since the second ideal DUO route choice condition (13.3) holds for all routes 
other than route q for O-D pair kn at time t, it follows that 

(13.23) 

We note that all other terms in the above equation vanish because of ideal 
DUO route choice condition (13.3). 

For each O-D pair rs, we can always find one minimal actual travel time 
route 1 for vehicles departing origin r at time t, where route 1 was evaluated 
under the optimal flow pattern U;8· (tn. For this route 1, the first ideal DUO 
route choice condition (13.2) becomes an equality by definition. It follows that 

VI, r,s. (13.24) 

Next, we need to find a set of feasible route inflows f;8 (t) so that the following 
equations 

Vp,r,s (13.25) 

always hold. We consider all the departure flows r 8 (t) for all O-D pairs at 
each time t. For each O-D pair rs at each time t, we assign O-D departure 
flow r 8 (t) to the minimal travel time route 1, which was evaluated under the 
optimal flow pattern U;8· (t)}. This will generate a set of feasible route inflow 
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patterns U;' (tn which always satisfies equation (13.25) because flows are not 
assigned to routes with non-minimal travel times which were evaluated under 
the optimal route inflow pattern U;,O (tn. Summing equations (13.25) for all 
routes p and all O-D pairs rs, it follows that 

2:2:I;'(t) [77;,o(t)_7rr ,o(t)] =0 (13.26) 
r, p 

Integrating the above equation for time period [0, T], we have 

(13.27) 

We subtract equation (13.23) from equation (13.27) and obtain 

( 2:2: [/;'(t) - 1;,0 (t)] [77;'(t) - 7rr '(t)] dt 
Jo r, p 

lT {2: 2: [/;'(t) - 1;,0 (t)] 77;'(t) 
o r, p 

~ ."'(t) ~ [t;' (t) - t;" (t)] } dt 

lT 2: 2: 77;,0 (t) [I;' (t) - 1;,0 (t)] dt < 0 
o r, p 

(13.28) 

where the flow conservation 

p p 

holds for each O-D pair rs at each time t so that the second term vanishes. The 
above equation contradicts VI problem (13.17). Therefore, any optimal solution 
U;,O (tn to variational inequality (13.17) satisfies the second ideal DUO route 
choice condition (13.3). Since we proved the necessity and sufficiency of the 
equivalence of variational inequality (13.17) to route-time-based ideal DUO 
route choice conditions (13.2)-(13.4), the proof is complete. 

13.2 A Multi-Group Route-Cost-Based VI 
Model of Ideal Route Choice 

In this section, we define an ideal dynamic user-optimal (DUO) model based on 
travel costs or disutilities instead of travel times. To be consistent with Chapter 
12, we still stratify travelers into M groups for each O-D pair. When M = 1, 
the following definition and VI model reduces to a single group model, but one 
which is different from the above VI model based on actual travel times. 



13.2. A Multi-Group Route-Cost-Based VI Model 273 

13.2.1 Multi-Group Route-Cost-Based Conditions 

The actual route disutility function depends on the actual route travel time, 
fuel consumption enroute and automobile operating cost, etc. Denote Tma(t) 
as the actual disutility function for travelers of group m entering link a at time 
t. It follows that 

Vm,a (13.29) 

where O'ma is a fixed actual disutility parameter for group m travelers on link a 
and f3ma is a parameter to transform actual link travel time Ta(t) into the disu­
tility of group m travelers. Denote ij~p(t) as the actual route travel disutility 
for group m travelers from origin r to destination s at time t, and 1i"~ (t) as 
the minimal actual route travel disutility for group m travelers from origin r to 
destination s at time t. We also need to use a recursive formula to compute the 
route travel disutility ij~p(t) for all allowable routes. Assume route p consists 
of nodes (r, 1,2"", i,"', s). Denote ij:Jp(t) as the travel disutility actually 
experienced over route p from origin r to node j by vehicles departing origin r 
at time t. Then, a recursive formula for route travel disutility ij~p(t) is: 

Vm,p, r,jjj = 1,2"", Sj 

where link a = (j -1, j) and time [t + 77;U- 1)(t)] is the arrival time at link a for 
group m travelers. We then define a multi-group travel-cost-based ideal DUO 
state as follows. 

Multi-Group Travel-Cost-Based Ideal DUO State: If, for 
each group m and each O-D pair at each instant of time, the actual 
travel disutilities for all routes that are being used equal the min­
imal ideal route travel disutility, the dynamic traffic flow over the 
network is in a multi-group travel-cost-based ideal dynamic user­
optimal state. 

Recall that f;':p(t) is the route inflow of group m from origin r to destination 
S at time t. The equivalent multi-group ideal DUO route choice conditions can 
be summarized as follows: 

ij:;:; (t) - 1i":;:' (t) ~ 0 Vm, p, r, Sj (13.30) 

(13.31) 

Vm,p, r, s. (13.32) 

13.2.2 Dynamic Network Constraints 

The revised constraint set for the multi-group route-cost-based model is sum­
marized as follows. 
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Relationship between state and control variables: 

dxr, 
map _ r, (t) r, (t) 
~ - umap - Vmap "1m, a, p, r, Sj (13.33) 

dEr, (t) 
mp = r, .(t) 
dt emp Vm,p, rj sf: rj (13.34) 

Flow conservation constraints: 

/:;:(t) = L L u:-':ap(t) Vm,r,Sj (13.35) 
aEA(r) P 

L v:-':ap(t) = L u:-':ap(t) Vj, m,p, r, Sjj f: r, Sj (13.36) 
aEB(j) aEA(j) 

L L v:-':ap(t) = e:-,: (t) "1m, r, Sj S f: rj (13.37) 
aEB(,) P 

Flow propagation constraints: 

x~~(t) = L{x;;;[t + Ta(t)] - x;;;(t)} + {E;'[t + Ta(t)] - E;'(t)} 
bEP 

Va E B(j)j j f: rj p, r, Sj (13.38) 

Definitional constraints: 

L u:-':ap(t) = ua(t), L v;;:ap(t) = Va(t), Vaj (13.39) 
mr,p mr,p 

L x:-':ap(t) = xa(t), Vaj (13.40) 
mr.p 

Nonnegativity conditions: 

V:-':ap(t) ~ 0 "1m, a, p, r, Sj (13.41) 

Vm,p,r,Sj (13.42) 

Boundary conditions: 

Vm,p,r,Sj (13.43) 

"1m, a, p, r, s. (13.44) 
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13.2.3 The Multi-Group Route-Cost-Based VI Model 

The equivalent variational inequality formulation of multi-group route-cost­
based ideal DUO route choice conditions (13.30)-(13.32) may be stated as fol­
lows. 

Theorem 19.2. The dynamic traffic flow pattern satisfying network 
constraint set (13.33)-(13.44) is in a multi-group travel-cost-based 
ideal DUO route choice state if and only if it satisfies the variational 
inequality problem: 

(13.45) 

The proof of necessity and sufficiency for variational inequality (13.45) follows 
in the same manner as in Section 13.1.3 for the single group route-time-based 
case. 

13.3 A Link-Time-Based VI Model of Ideal 
Route Choice 

The set of dynamic network constraints for the link-time-based VI model is 
identical to constraint set (13.5)-(13.16) of the route-time-based VI model in 
Section 13.1. The basic difference between the two models is that the VI itself 
of the link-time-based VI model is formulated using link-based flow variables 
instead of route-based variables as in the route-time-based VI model. 

13.3.1 Link-Time-Based Conditions 

Similar to Chapter 12, we introduce a new set of ideal DUO route choice 
conditions based on link and node variables, instead of route-based variables. 
As in Section 13.1.1" the definition of the travel-time-based ideal DUO route 
choice state is given as follows. 

Travel-Time-Based Ideal DUO State: If, for each O-D pair at 
each instant of time, the actual travel times ezperienced by travelers 
departing at the same time are equal and minimal, the dynamic 
traffic flow over the network is in a travel-time-based ideal dynamic 
user-optimal state. 

Note also that the link-time-based ideal DUO state is defined in a somewhat 
different way than the link-time-based instantaneous DUO state in Section 
12.3.1. In the case of an ideal DUO state, the equilibration of route travel 
times is stated for each 0-D pair instead of each decision node-destination pair 
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as in the case of instantaneous DUO state because the ideal DUO is focused 
on the optimal state of finishing the entire journey. 

We now write the equivalent mathematical inequalities for the above 
definition using link variables, in contrast to the route-based formulation in 
Section 13.1. In this case, for any route from origin r to destination s, link a 
is defined as being used at time t if u~' (t) > O. Define 7rri • (t) as the minimal 
travel time actually experienced by vehicles departing origin r to node i at 
time t, the asterisk denoting that the travel time is computed using ideal DUO 
traffic flows. For link a = (i, j), the minimal travel time 7rr j" (t) from origin r 
to j should be equal to or less than the minimal travel time 7rri • (t) from origin 
r to i plus the actual link travel time Ta[t + 7rri(t)] at time instant [t + 7rri (t)], 
where this time instant is the earliest clock time when the flow departing origin 
r at time t can enter link a. It follows that 

Va = (i, j), r. 

If, for each O-D pair rs, any departure flow from origin r at time tenters 
link a at the earliest clock time [t + 7rri • (t)], or u~· [t + 7rri • (t)] > 0, then the 
ideal DUO route choice conditions require that link a is on the minimal travel 
time route. In other words, the minimal travel time 7rr j" (t) from origin r to j 
should equal the minimal travel time 7rri • (t) from origin r to i plus the actual 
link travel time Ta[t + 7rri • (t)] at time instant [t + 7rri • (t)]. It follows that 

7rr j" (t) = 7rri • (t) + Ta[t + 7rri • (t)], if u:··[t + 7rri • (t)] > 0 Va = (i,j), r, s. 

The above equation is also equivalent to the following: 

Va = (i,j), r, s. 

Thus, the link-time-based ideal DUO route choice conditions can be summa-
rized as follows: . 

Va = (i,j), rj 

u~·· [t + 7rri • (t)] [7rri • (t) + Ta[t + 7rri • (t)] - 7rr j" (t)] = 0 

Va = (i, j), r, Sj 

u:· [t + 7rri • (t)] ~ 0 Va = (i, j), r, s. 

(13.46) 

(13.47) 

(13.48) 

Lemma 13.1: Link-time-based ideal DUO route choice conditions 
(13.46}-(13.48) imply route-time-based ideal DUO route choice con­
ditions (13.2}-(13.4). 

Proof: 

We need to prove for each O-D pair rs that under link-time-based ideal 
DUO route choice conditions (13.46)-(13.48) any vehicle flows departing from 
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origin r at time t must arrive at destination s at the same time by using the 
minimal actual travel time routes. 

For simplicity, we first consider the case with only two route departure 
flows fr$(t) > 0, f;'(t) > ° for one O-D pair rs at time t. It follows that 

Jr'(t) + f;'(t) = r$(t) (13.49) 

Suppose fr'(t), f;'(t) take routes 1 and 2, respectively. Routes 1 and 2 
are minimal-travel-time routes generated under the link-time-based ideal DUO 
route choice conditions. For simplicity, assume that route 1 comprises 4 links: 
1 = (r, h), 2 = (h, i),,,,, 4 = (j, s)j and route 2 comprises 5 links: 5 = (r, k), 6 = 
(k, 1)"",9 = (m, s). Note that routes 1 and 2 may have overlapping links. Also 
note that this assumption can be generalized to any route with any number of 
links. Using link-time-based ideal DUO route choice conditions (13.46)-(13.48), 
we have 

(13.50) 

u~'* (t) > 0, u~'[t + 1I'rk* (t)] > 0"", u~'[t + 1I'rm* (t)] > ° (13.51) 

This is because route 1 and route 2 are generated under link-time-based ideal 
DUO route choice conditions (13.46)-(13.48) so that there are inflows into links 
1,2, .. ,,9 over route 1 and route 2. If route 1 and route 2 do not have overlap­
ping links, the inflow on each link over route 1 and 2 is positive at the instant 
of time when departure flows arrive at the link. It follows that 

u~f (t) > 0, umt + 1I'rh* (t)] > 0,' . " u~Ht + 1I'rj* (t)] > ° (13.52) 

r,*( ) r,[ rk*( )] r.[ rm* ( )] u52 t > 0, u62 t + 11' t > 0, ... , u92 t + 11' t > ° (13.53) 

where the second subscripts 1 and 2 represent routes 1 and 2, respectively. 
Note that the instants of time when departure flows arrive at the links are 
ensured by link-time-based ideal DUO route choice conditions (13.46)-(13.48). 
For example, [t + 1I'rh* (t)] is the instant of time when departure flow fr'(t) 
arrives at link 2. In other words, if departure flows fr'(t) > 0, f;$(t) > ° 
satisfy link-time-based ideal DUO route choice conditions (13.46)-(13.48), we 
obtain equations (13.52)-(13.53). 

If routes 1 and 2 have overlapping links, conditions (13.52)-(13.53) still 
hold. For example, iflink 2 is identical to link 6 (routes 1 and 2 are overlapping 
on link 2 or link 6), [t + 1I'rh* (t)] = [t + 1I'rk* (t)] is the instant of time when 
departure flows arrive at link 2. Both flows must experience the same link travel 
time 7'2 [t+1I'rh* (t)] and exit link 2 at the same time [t+1I'ri* (t)]. Then the inflows 
on subsequent links over routes 1 and 2 still satisfy equations (13.52)-(13.53). 

Denote the arrival flows over routes 1 and 2 as e'i' [t + 1I'r.* (t)] and 
e2' [t + 1I'r.* (t)], which are associated with departure flows fr' (t) and f;' (t), 
respectively. Note that routes 1 and 2 are minimal travel time routes. Using 
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route-based flow propagation constraints (13.10) for the last links 4 = (j, s) 
and 9 = (m, s) over routes 1 and 2, we obtain that 

e~' [t + 7fr,o (t)] > 0, e2' [t + 7fr. o (t)] > 0 (13.54) 

where 

Note that 

u~f (t), u2Ht + 7frho (t)],···, u~i[t + 7frr (t)], e~'[t + 7fr,o (t)] 

and 
u~f (t), u~W + 7frko (t)],·· ., u~;[t + 7frmo (t)], e2' [t + 7fr ,o (t)] 

are the two sets of inflows over routes 1 and 2, respectively. Since these flows 
are positive, we conclude that the departure flows fI'(t) and f2'(t) arrive at 
destination sat the same time [t + 7fr ,* (t)]. Thus, the link-time-based ideal 
DUO route choice conditions guarantee for O-D pair rs that flows departing 
at time t have the same arrival time [t + 7fr. o (t)]. 

If we consider a general case having multiple route departure flows 
f;' (t) > 0 for any O-D pair rs at time t, the above analysis still applies to 
any positive departure flow over any route p between O-D pair rs. There­
fore, link-time-based ideal DUO route choice conditions (13.46)-(13.48) imply 
route-time-based ideal DUO route choice conditions (13.2)-(13.4). 

13.3.2 The Link-Time-Based Model 

Denote n~r (t) as the difference of the minimal travel time from r to i and the 
travel time from r to j via minimal travel time route from r to i and link a for 
vehicles departing from origin at time t. It follows that 

Va,rja = (i,i). (13.55) 

We then rewrite the link-time-based ideal DUO route choice conditions as: 

Va = (i, i), rj 

u:· o [t + 7fr;* (t)] n:r (t) = 0 Va = (i, i), r, Sj 

U ra' [t + 7fri° (t)] ~ 0 \.I (..) va = z, J ,r, s. 

(13.56) 

(13.57) 

(13.58) 

Then, the equivalent variational inequality formulation of link-time-based ideal 
DUO route choice conditions (13.56)-(13.58) may be stated as follows. 

Theorem 13.3. The dynamic traffic flow pattern satisfying con­
straints (13.5)-(13.16) is in a link-time-based ideal DUO route choice 
state if and only if it satisfies the variational inequality problem: 



13.3. A Link-Time-Based VI Model 279 

Proof of Necessity. 

We need to prove that link-time-based ideal DUO route choice conditions 
(13.56)-(13.58) imply variational inequality (13.59). For any link a, a feasible 
inflow at time [t + ?frio (t)] is 

(13.60) 

Multiplying equation (13.60) and DUO route choice condition (13.56), we have 

u~' [t + ?frio (t)] n~j* (t) ~ 0 Va, r, Sj a = (i, j). (13.61 ) 

We subtract the second ideal DUO route choice condition (13.57) from equation 
(13.61) and obtain 

{ u~' [t + ?frio (t)] - u~'o [t + ?frio (t)]} n~j* (t) ~ 0 Va, r, Sj a = (i, j). (13.62) 

Summing equation (13.62) for all links a and all O-D pairs rs, it follows that 

~ ~ { u~'[t + ?friO (t)] - u~'· [t + ?friO (t)]} n~j* (t) ~ 0 (13.63) 
r. a 

Integrating the above equation from 0 to T, we obtain variational inequality 
(13.59). 

Proof of Sufficiency. 

We need to prove that any solution u~'· [t + ?friO (t)] to ~ariational in­
equality (13.59) satisfies link-time-based ideal DUO route choice conditions 
(13.56)-(13.58). We know that the first and third ideal DUO route choice con­
ditions (13.56) and (13.58) hold by definition. Thus, we need to prove that the 
second ideal DUO route choice condition (13.57) also holds. 

Assume that the second ideal DUO route choice condition (13.57) does 
not hold only for a link b = (1, m) for O-D pair kn during time interval [tl -
e, tl + e] E [0, T], Le., 

and (13.64) 

In other words, we have 

(13.65) 

Since the second ideal DUO route choice condition (13.57) holds for all cases 
other than link b = (1, m) for O-D pair kn during time interval [tl - e, tl + e], 
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it follows that 

I t1 +6 
U: n ·[t+7rk1·(t)] n:m·(t)dt >0 

tl-6 
(13.66) 

We note that all other terms in the above equation vanish because of ideal 
DUO route choice condition (13.57). 

For each O-D pair rs, we can always find one minimal travel time route 
p for vehicles departing origin r at time t, where route p is evaluated under the 
optimal flow pattern {u~,· [t + 7rri • (t)]). For this route p, the first ideal DUO 
route choice condition (13.56) becomes an equality by definition. It follows 
that 

n:i"(t) = 0 Va,r,s;a= (i,j);a Ep. (13.67) 

Next, we need to find a set offeasible inflows u~·[t+7rri· (t)] so that the following 
equations 

Va, r, S; a = (i, j) (13.68) 

always hold. We adjust all the departure flows r s (t) for all O-D pairs at time 
t. For each O-D pair rs at each time t, we assign O-D departure flow r'(t) to 
the minimal travel time route p, which was evaluated under the optimal flow 
pattern {u~·· [t + 7rri • (t)]). This will generate a set of feasible inflow patterns 
{u~s [t + 7rri • (t)]} which always satisfies equations (13.67) and (13.68) because 
flows are not assigned to routes with non-minimal actual travel times which 
were evaluated under the optimal flow pattern {u~·· [t + 7rri • (t)]). Summing 
equations (13.68) for all links a and all O-D pairs rs, it follows that 

where a = (i,j). (13.69) 
r. a 

Integrating the above equation from 0 to T, we obtain 

(LLU~·[t+7rri·(t)]n~i"(t)dt =0 
10 r. a 

(13.70) 

We subtract equation (13.66) from equation (13.70) and obtain 

( L L n~i" (t) {u~'[t + 7rri • (t)]- u~·· [t + 7rri • (t)]} dt < 0 (13.71) 
10 rs a 

The above equation contradicts variational inequality (13.59). Therefore, any 
optimal solution {u~s· [t + 7rri • (t)]} to variational inequality (13.59) satisfies 
the second ideal DUO route choice condition (13.57). Since we proved the 
necessity and sufficiency of the equivalence of variational inequality (13.59) to 
link-time-based ideal DUO route choice conditions (13.56)-(13.58), the proof is 
complete. 
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In this section, we consider a multi-group ideal dynamic user-optimal (DUO) 
model based on travel costs or disutilities instead of travel times. To be con­
sistent with Chapter 12, we stratify travelers into M groups for each O-D pair. 
When M = 1, the following definition and VI model reduce to a single group 
model, but which is different from the VI model based on actual travel times. 
The constraint set for this problem is identical to the constraint set (13.33)­
(13.44) for the multi-group route-time-based VI model in Section 13.2. 

13.4.1 Multi-Group Link-Cost-Based Conditions 

The disutility function depends on travel time, fuel consumption, operating 
cost, etc. Denote Tma(t) as the actual disutility function for group m travelers 
entering link a at time t. It follows that 

Vm,a (13.72) 

where Ckma is a fixed actual disutility parameter for group m travelers on link 
a and f3ma is a parameter to transform actual link travel time Ta(t) into the 
disutility of group m travelers. 

Denote ig;:p(t) as the actual route travel disutility for group m travelers 
from origin r to destination 8 at time t. Also denote 7i"!;:(t) as the minimal 
actual route travel disutility for group m travelers from origin r to destination 
8 at time t, and 1f'!;: (t) as the corresponding actual route travel time for group 
m travelers departing origin r to destination 8 at time t. We also need to use a 
recursive formula to compute the route travel disutility ij!;:p(t) for all allowable 
routes. Assume route p consists of nodes (r, 1,2, ... , i, .. ·,8). Denote ij~p(t) 
as the travel disutility actually experienced over route p from origin r to node 
j by vehicles departing origin r at time t. Then, a recursive formula for route 
travel disutility ij!;:p(t) is: 

Vm,p,r,j;j= 1,2,···,8; 

where link a = (j - 1, j) and time [t + 17;(j-l)(t)] is the arrival time instant at 
link a for group m travelers. Recall the definition of the multi-group travel-cost­
based ideal DUO state in Section 13.2 which also applies to the link-cost-based 
problem. 

Multi-Group Travel-Cost-Based Ideal DUO State: If, for 
each group and each O-D pair at each instant of time, the actual 
travel disutilities for all routes that are being used equal the mini­
mal actual route travel disutility, the dynamic traffic flow over the 
network is in a multi-group ideal dynamic user-optimal state. 
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We now write the equivalent mathematical inequalities for the above definition 
using link variables, in contrast to the route-based formulation in Section 13.2. 
For group m on link a = (i, j), the minimal travel disutility 7f~. (t) from origin 
r to j should be equal or less than the minimal travel disutility 7f;;!. (t) from 
origin r to i plus the actual link travel disutility Tma [t + 1i";;! (t)] at time instant 
[t + 1i";;!(t)], where this time instant is the earliest clock time when the flow 
departing origin r at time t can enter link a over the minimal travel disutility 
route. It follows that 

7f~. (t) + Tma[t + 1i"~. (t)] ~ 7f;-f (t) "1m, a = (i, j), r. 

If, for each group m and each O-D pair rs, any departure flow from origin rat 
time t enters link a at the earliest clock time [t+1i";;!· (t)], or u::r!a[t+1i";;!· (t)] > 0, 
then the multi-group ideal DUO route choice conditions require that link a is on 
the minimal travel disutility route. In other words, the minimal travel disutility 
7f~. (t) from origin r to j should equal to the minimal travel disutility 7f;;!. (t) 
from origin r to i plus the actual link travel disutility Tma [t + 1i";;!. (t)] at time 
instant [t + 1i";;!. (t)]. It follows that 

7f~·(t) = 7f;-,!·(t)+Tma[t+1i"~·(t)], ifu::r!:[t+1i"~·(t)] > 0, Vm,a = (i,j),r,s. 

The above equation is also equivalent to the following: 

Thus, the multi-group link-cost-based ideal DUO route choice conditions can 
be summarized as follows: 

Vm,a = (i,j),r; 

[7f;-'!. (t) + Tma[t + 1i";-,!·(t)] - 7f~·(t)] u::r!:[t + 1i";-,!. (t)] = ° 
"1m, a = (i, j), r, S; 

"1m, a = (i, j), r, s. 

(13.73) 

(13.74) 

(13.75) 

Similar to Lemma 13.1, we can easily prove that the multi-grouplink-cost-based 
ideal DUO route choice conditions imply the multi-group route-cost based ideal 
DUO route choice conditions. The detailed proof is omitted here. 

13.4.2 The Multi-Group Link-Cost-Based VI Model 

For group m travelers, denote fi:;{: (t) as the difference of the minimal travel 
disutility from r to j and the travel disutility from r to j via minimal travel 
disutility route from r to i and link a for vehicles departing from origin r at 
time t. It follows that 

Vm,a,r;a=(i,j). (13.76) 
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We then rewrite the multi-group link-cost-based ideal DUO route choice con­
ditions as follows: 

fi:t: (t) 2: 0 

u~: [t + 1i":;:. (t)] fi:t: (t) = 0 

"1m, a = (i, j), rj 

"1m, a = (i,j),r,sj 

(13.77) 

(13.78) 

U~a[t+1i":;:·(t)]2:0 "1m, a = (i,j),r,s. (13.79) 

The equivalent variational inequality formulation of multi-group link­
cost-based ideal DUO route choice conditions (13.77)-(13.79) may be stated as 
follows. 

Theorem 13.4. The dynamic traffic flow pattern satisfying network 
constraint set (13.33)-(13.44) is in a multi-group link-cost-based 
ideal DUO route choice state if and only if it satisfies the variational 
inequality problem: 

iT L L fi:t: (t) {u~a [t + 1i":;:. (t)] - u~: [t + 1i":;:. (t)]} dt 2: 0 (13.80) 
o r. rna 

The proof follows in a manner similar to Section 13.3.2 (single group, link­
time-based) except that the arrival time at each link [t + 71":;:. (t)] is determined 
by the travel time 1i":;:. (t) over the minimal cost route in stead of the minimal 
travel time 71":;:. (t). 

13.5 Relationships Between VI Models and 
Optimization Models 

We now consider the relationship between VI models and optimization models. 
As in Chapter 12, we will not discuss each VI model in this chapter. As an 
example, we focus our analysis on the link-time-based VI model for the ideal 
DUO route choice problem. We show in the following that the VI model can 
be reformulated as an optimal control problem which is similar to the optimal 
control models presented in Chapter 5. Similar analyses can be performed for 
the other VI models for the various ideal DUO route choice problems. 

In this section, we discuss the following VI problem: 

To simplify our analysis, we assume the time period [0, T] is long enough so 
that all departure flows can be cleared at final time T. In other words, any 
positive departure from origin r at time t will arrive at destination S at time 
t + 7I"r.· (t) ~ T. 
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We consider a simplified link travel time function as follows: 

'Va. (13.82) 

As shown in Chapter 16, some link travel time functions for arterial roads and 
freeway segments do not dependent on exit flow explicitly. Thus, the above 
assumption is reasonable. 

In order to present a partitionable VI, we need to transform the original 
VI into a partitionable VI using some new definitions as follows. For link a and 
O-D pair rs at time instant [t + 7rri• (t)], denote an auxiliary link travel time 
function A~'· [t + 7rri• (t)] as 

A~·· [t + 7rri • (t)] = _7rrr (t) 'Va, r, Sj a = (i, j). (13.83) 

Recall that in Section 13.3, for link a and O-D pair rs at time instant [t + 
7rri • (t)], we defined an auxiliary link travel time function 

n~r (t) = 7r.ri • (t) + Ta[t + 7rri • (t)] - 7rrr (t) 'Va, rj a = (i, j). (13.84) 

Substituting equation (13.83) into equation (13.84), we obtain 

n~r (t) = 7rrio (t) + Ta[t + 7rrio (t)] + A~'o [t + 7rrio (t)] ~ 0 

'Va, r, Sj a = (i, j). (13.85) 

For link a and O-D pair rs at time instant [t + 7rri • (t)], we define a related 
auxiliary link travel time function as 

'Va, r, Sj a = (i, j). (13.86) 

Using the above new definitions, link-time-based ideal DUO route choice con­
ditions (13.56)-(13.58) are rewritten as equivalent conditions as follows. 

n~j* (t) ~ 0 'Va = (i,j),r,sj (13.87) 

Q~r (t) = 0 'Va = (i,j), r, Sj (13.88) 

u~·· [t + 7rri • (t)] n~r (t) = 0 'Va = (i,j),r,sj (13.89) 

v!o [t + 7rrio (t)] Q~r (t) = 0 'Va = (i,j),r,sj (13.90) 

u~' [t + 7rrio (t)] ~ 0 'Va = (i,j),r,sj (13.91 ) 

v~' [t + 7rrio (t)] ~ 0 'Va = (i, j), r, s. (13.92) 

We note that equation (13.87) is equivalent to equation (13.56) and equation 
(13.89) is equivalent to equation (13.57). Then, the link-time-based variational 
inequality (13.81) in Theorem 13.3 can be restated as an equivalent VI in the 
following theorem. 
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Theorem 13.5. The dynamic traffic flow pattern satisfying network 
constraint set (13.5)-(13.16) is in a travel-time-based ideal DUO 
route choice state if and only if it satisfies the variational inequality 
problem: 
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loT ~ ~ { n~j" (t) [u~' [t + 1I'r;* (t)] - u~,* [t + 1I'r;* (t)]] 

+ n~j" (t) [V~8 [t + 1I'r;* (t)] - v~·* [t + 1I'ri· (t)]]) dt ~ 0 (13.93) 

The second term in the above variational inequality equals O. It is placed within 
the VI so that the reformulation of the VI as an optimal control problem can 
be performed more easily. Therefore, the above VI is equivalent to link-time­
based ideal DUO route choice conditions (13.56)-(13.58) or (13.87)-(13.92). 
The proofs of necessity and sufficiency are straightforward and not given here. 

Substituting definitions (13.85) and (13.86) into equation (13.93), vari­
ational inequality (13.93) is equivalent to 

rT L L {[ 1I'ri· (t) + Ta [t + 1I'ri* (t)] + A~'* [t + 1I'ri* (t)]] 
10 r. a 

. [u~'[t + 1I'r;* (t)] - u~'* [t + 1I'ri* (t)]] 

+ [-A~'* [t + 1I'ri~ (t)] + 1I'rj" (t)] [v~' [t + 1I'ri* (t)] - v~·* [t + 1I'r;* (t)]]) dt 

i T L L Ta [t + 1I'ri* (t)] [u~ [t + 1I'ri* (t)] - u~* [t + 1I'ri* (t)]] dt 
Ora 

+ loT ~~ {[1I'ri*(t)+A~'*[t+1I'r;*(t)]] 

. [u~' [t + 1I'ri* (t)] - u~·· [t + 1I'ri· (t)]] 

+ [-A~'· [t + 1I'ri* (t)] + 1I'rj" (t)] 

. [v~·[t+1I'ri*(t)]_v~·*[t+1I'ri·(t)]]} dt > 0 (13.94) 

We now show that a double relaxation or diagonalization procedure can 
be designed so that the above VI can be formulated as an optimal control 
model in each relaxation iteration. At the first-level relaxation, we assume 
that the actual link travel time Ta(t) in the flow propagation constraints and the 
resulting minimal actual travel times 1I'ri (t) in the above variational inequality 
are fixed temporarily at each relaxation iteration. Then, the cross-effects of 
flow variables at different time instants can be separated at each iteration. We 
define a new time variable e~ = t + 1I'ri* (t) where 1I'r;* (t) is fixed temporarily 
at each relaxation iteration. Suppose there are R origins. Then, for each link 
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a and origin r at time instant e~, we have 

(13.95) 

The actual link travel time Ta(e~) at time instant e~ can be expressed as 

(13.96) 

Since the variational inequality for the ideal DUO route choice is different 
from the variational inequality for instantaneous DUO route choice, the cross­
effects of origin-specific link flow variables are asymmetric and can not be 
eliminated. Thus, we need to design a second-level relaxation for this VI. Thus, 
we can derive a similar optimal control problem as in the instantaneous case. 
To this end, we fix temporarily all other link flow variables Ua(e~'), Xa(e~') 
(r' # r) in equation (13.96) at each second-level relaxation iteration. Denote n 
as the total number of links in the network. Then, a Jacobian submatrix of the 
actual link travel time Ta(e~) with respect to the inflow u~(e~) for each time 
instant e~ can be written as 

8rl(e:) 0 0 
8ur(e~) 

0 8r2(e:) 0 
V'uT;(e~) = 

8u;(W 

0 0 8r,,(e:) 
8u~(e~) 

8rl(e:) 0 0 8Ul(e~) 

0 8r,(e:) 0 
8U2(e~) 

0 0 8r,,(e;) 
8u,,(e~) 

where the cross-effects of all other link flow variables Ua ( e~), X a ( e~) (r' # r) 
can be eliminated. Obviously, the above matrix is symmetric. We note that 
xa(e~) does not enter the Jacobian submatrix because it is a state variable. 

At each second-level relaxation iteration, another Jacobian sub-matrix 
of the actual link travel time Ta(e~) with respect to the exiting flow v~(e~) for 
each time instant e~ can be written as 

8rl(e:) 
8vr(e,;:) 

o 

o 

o 

o 

o 
o 
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o 
o 
o 

o 0 8r,,(e;) 
811,,(e~) 
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=0 

which is also symmetric. Then, at each time instant e:, there is an optimization 
problem which is equivalent to variational inequality (13.93), as follows: 

u; (e;) 
Min L L f Ta[U!(e~),···, w,' .. , u:(e~), x!(e~),· .. , x:(e~)] dw 

r a Jo 
+ LL u~'(e~) [7I"ri·(e~)+"~··(e~)] r. a 

+ LL v~'(e~) [-"~··(e~)+7I"rr(e~)] (13.97) 
r. a 

3 Destination 

---..... 0 
Origin 

G) 2 

Figure 13.1: Example Network with Two Origins 

We now use the simple network in Figure 13.1 to illustrate the above 
analysis. The actual travel time Ta(e:) on link 3 at time instant e! can be 
expressed as 

(13.98) 

At each second-level relaxation iteration, link flow variables u~(ej) and x~(ej) 
associated with origin 2 have to be fixed temporarily in equation (13.98). Then, 
we can find an optimization problem which is equivalent to the variational 
inequality. In the optimization problem, the first two terms for link 3 at each 
time instant ej are 
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(13.99) 

Note that in both terms, all flow variables are defined for time ej. 
Reorganizing equation (13.97) based on each node j, we have 

u;(e;) 
Min LL f Ta[U!(e~), .. ·,w, ... ,u~(e~),x!(e~), ... ,x~(e~)] dw 

r a 10 
+ L L ,\~- (e~)[u:o (e~) - v~s (e~)] - L 7rro - (e~) L u:o (e~) 

ro a aEA(r) 

o itro aEB(j) aEA(j) 

+ La"- (e~) L v~(e~) 
otr aEB(o) 

u;(e;) 
L L f Ta[U!(e~), .. " w, .. " u~(e~), x!(e~), .. " x~(e~)] dw 

r a 10 

rs a rto • aEA(r) 

r str aEB(. ) 

The above equation is equivalent to the following partial Hamiltonian function 
with flow conservation constraints only: 

r. a 

rt· • aEA(r) 

+ L L L ai '- (e~)[ L v~~(e~) - L u:~(e~)] 
ro itr. P aEB(j) aEA(j) 

+ LLa"-(e~)[ L Lv~~(e~)-er'(e~)] 
r .tr aEB(.) P 

Note the flow propagation constraint is not included. Thus, we can simply 
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state the objective function of the optimization program as 

T u:(e:) 
Min 1 L, 1 Ta[U!(e~), .. · ,W,"', u:(e~), 

o r,a 0 

x!(e~),···, x:(e~)] dw dt (13.100) 

because other terms in the partial Hamiltonian function are associated with link 
and node flow conservation equations. Note that e~ = t + 7rrio (t) where 7rrio (t) 
is fixed temporarily at each second-level relaxation iteration. Also note that all 
flow variables at time instants e~ > T are zero. Therefore, link-time-based vari­
ational inequality (13.81) can be reformulated as an optimal control problem 
with objective function (13.100) and constraints (13.5)-(13.16) at each double 
relaxation iteration. In other words, we have demonstrated that our original 
optimal control model in Chapter 5 is a special relaxation or diagonalization 
problem of VI formulation (13.81). We note that the actual link travel time 
Ta(t) is fixed temporarily in the flow propagation constraints at each first-level 
relaxation iteration. We also note that the relaxation for the ideal DUO VI 
model is different from the instantaneous DUO VI model. The double relax­
ation procedure is summarized in Figure 13.2. 

13.6 Notes 

If there is only one origin, the cross-effects between origins can be eliminated. 
Thus, the second-level relaxation can be dropped and the above optimal con­
trol problem will be identical to the optimal control model in Chapter 5 for 
instantaneous DUO route choice. Furthermore, if there is only one destination, 
a similar conclusion can be drawn because the VI formulation and the relax­
ation for the above origin-based model applies to the destination-based model 
as well. This conclusion has important implications for freeway corridor models 
when the CBD is considered as one destination. We speculate that under one 
destination, our origin-based model would also lead to the conclusion that both 
instantaneous DUO and ideal DUO models yield the same results. However, 
this conclusion needs more theoretical study and a numerical demonstration. 
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(Initialization: ) 

First-Level Relaxation: 

fix 'ta (t) in flow propagation constraints 

and fix -itt) in the objective function. 

Second-Level Relaxation: 

'r ' r fix u; <S ) , x; (I; ) in the integral for u; q;r 

Convergence Test for No 

First-Level Relaxation? 

Yes 

Convergence Test for No 
Second-Level Relaxation? 

Yes 

Figure 13.2: Flowchart of the Double Relaxation Procedure 



Chapter 14 

Variational Inequality Models of 
Dynamic Departure Time/ 
Route Choice Problems 

In this chapter, we consider an ideal situation where all travelers are equipped 
with navigation devices and fully comply with the dynamic user-optimal cri­
terion when choosing routes, departure times and modes. We first present a 
dynamic, user-optimal departure time/route choice model for a general net­
work with multiple origin-destination pairs. We model this choice problem by 
specifying that a given number of travelers are ready for departure between 
each origin-destination pair at time O. However, their departure times may be 
delayed to reduce their overall travel costs. A route-based variational inequal­
ity model for joint departure time/route choice is presented in Section 14.1. 
In a parallel fashion, a link-based variational inequality model is proposed in 
Section 14.2. The relationship between the variational inequality models and 
the optimization models is discussed in Section 14.3. 

14.1 A Route-Based VI Model of Departure 
Time/Route Choice 

A number of vehicles are ready to depart at an initial time 0, but these drivers 
may prefer to delay their departure times in order to reduce their driving times. 
Drivers are assumed to make their departure time choices so as to minimize 
their individual disutility functions defined on travel time and pre-trip delay. 
Of course, the change of departure flow rates will change the traffic in the 
network so that the travel times for other travelers could change. 
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14.1.1 Route-Based Conditions 

We first consider the joint departure time/route choice conditions. A disutility 
function U;' (t) based on departure times is defined for travelers departing 
from origin r to destination s over route p at time t. This disutility function 
represents a weighted sum of: 

1. waiting time at the origin nodej 

2. driving time during the tripj 

3. a bonus for early arrival or a penalty for late arrival. 

Consider the flow which originates at node r at time t and is destined for node 
s. There is a set of routes {p} between O-D pair rs. Define 71;'(t) as the travel 
time actually experienced over route p by vehicles departing origin r toward 
destination s at time t. We use a recursive formula to compute the route 
travel time 71;' (t) for each allowable route. Assume route p consists of nodes 
(r, 1"", i - 1, i,"', s). Denote 71;i(t) as the travel time actually experienced 
over route p from origin r to node i by vehicles departing from origin r at time 
t. Then, a recursive formula for route travel time 71;" (t) is: 

'rip, r, ij i = 1,2"", Sj 

where link a = (i - 1, i). 
We define one unit of disutility to equal one unit of in-vehicle driving 

time, and one unit of waiting time prior to departure to be equivalent to a 
units of disutility (a ::; 1)j a could be negative since staying at home may 
have positive utility. Since all travelers are able to depart at time 0, at is the 
disutility for a departure at time t due to waiting. Furthermore, we assume 
there is a desired arrival time interval [t;. - ~r"' t;" + ~r.l for travelers at each 
destination s, where t;. is the center of the required arrival time interval (e.g. 
work starting time) associated with travelers departing from origin r toward 
destination s. ~r' represents the arrival time flexibility at destination s for 
travelers departing from origin r toward destination s. 

The disutility function for the route-based joint departure time and route 
choice problem is constructed as 

U;· (t) = at + 71;· (t) + V;· [t, 71;· (t)j t;.l 'rIp,r,s, (14.1) 

where t is the departure time of travelers and V;' [t, 71;' (t)j t;,] is the disutility 
for early or late arrival which is defined as follows 

Vr'[t 71rs (t)·t* ] = 
P 'P 'r. 

{ 
~l[t + 71;"(t) - t;, + ~;.F 

12 [t + 71;· (t) - t;. _ ~;.]2 

ift + 71;"(t) < t;. - ~;, (early arrival) 
if It + 71;' (t) - t;.1 ::; ~;. 
ift + 71;'(t) > t;. + ~;. (late arrival) 
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where t is the departure time of travelers and 11 and 12 are parameters (12 ~ 
a). 11 is negative because early arrival should be encouraged rather than 
discouraged. This arrival time disutility function is shown in Figure 14.1. 

Arrival BonuslPenalty 
TS Tit) *J '\}JLt, \ (t ; tT 

o~--~=-__ --------~--~---. t:S t +\ft) Time t 

Figure 14.1: Arrival Time Disutility 

The dynamic user-optimal departure time/route choice conditions re­
quire that for each O-D pair rs at any time t, if there is a positive departure 
flow f;" (t) > 0 over route p, the disutility U;·' (t) for route p must equal 
the minimal rs disutility U;':i: over time t. Furthermore, if the departure flow 
f;" (t) over route p equals 0 at time t, the disutility U;·' (t) over route p at 
time t must be greater than or equal to the minimal rs disutility U;':i:. The 
route-based DUO departure time/route choice conditions can be written as 

U r •• (t) - U r .: > 0 p man _ Tip,r,s; 

f;" (t) [U;·' (t) - U;':i:] = 0 Tip, r, S; 

f;' (t) 2:: 0 Tip, r, s. 

(14.2) 

(14.3) 

(14.4) 

where the asterisk denotes that the travel disutility is computed using DUO 
departure flows and route flows. 

14.1.2 Dynamic Network Constraints 

In this section, the constraint set for our dynamic user-optimal departure 
time/route choice problem is first summarized as follows. 

Relationships between state and control variables: 

dxr • 
~ = urI (t) - v r • (t) dt ap ap Tia,p,r, S; (14.5) 
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dE;'(t) = e;'(t) 
dt 

Vr,s,pj 

dFro(t) 
P = r.:(t) Vr,s,pj 
dt P 

Flow conservation constraints: 

f;'(t) = L {/'ur'(t) ap ap Vp,r,sj 
aEA(r) 

e;'(t) = L 
{jro vr• (t) ap ap Vp,r,sj 

aEB(o) 

L v~~(t) = L u~~(t) Vj,p,r,sjj# r,Sj 
aEB(j) aEA(j) 

Flow propagation constraints: 

x~~(t) = L {x;;;[t + Ta(t)] - x;;;(t)} + {E;' [t + Ta(t)] - E;' (t)} 
bE'; 

Vr,s,p,jja E B(j)jj # rj 

Definitional constraints: 

L u~~(t) = ua(t), L v~;(t) = va(t), Vaj 
r.p rop 

L x~;(t) = xa(t), Lx~'(t) = xa(t), Va,r,sj 
r.p ro 

L E;O(t) = Er'(t), L F;'(t) = pr'(t), Vr,Sj 
p p 

L f;' (t) = r' (t), Le;O(t) = er'(t), Vr,Sj 
p p 

Nonnegativity conditions: 

x~~(t) ~ 0, u~~(t) ~ 0, v~~(t) ~ 0 Va,p, r, Sj 

e;'(t) ~ 0, f;'(t) ~ 0, E;'(t) ~ 0, F;'(t) ~ 0 Vp, r, Sj 

r'(t) ~ 0, pr'(t) ~ 0 Vr, Sj 

Boundary conditions: 

F r , (T) given Vr,Sj 

(14.6) 

(14.7) 

(14.8) 

(14.9) 

(14.10) 

(14.11) 

(14.12) 

(14.13) 

(14.14) 

(14.15) 

(14.16) 

(14.17) 

(14.18) 

(14.19) 

E;'(O) = 0, F;'(O) = 0 Vp, r, Sj x~~(O) = 0, Va,p, r, s. (14.20) 

The first three constraints (14.5)-(14.7) are state equations for each link 
a and for the cumulative effects at origins and destinations. Equations (14.8)­
(14.10) are flow conservation constraints at each node including origins and 
destinations. Other constraints include flow propagation constraints, defini­
tional constraints, nonnegativity and boundary conditions. In summary, the 
control variables are u~~(t), v~~(t), e;' (t), and f;' (t)j the state variables are 
x~~(t), E;' (t), and F;' (t)j the functionals are 7rr • (t). 
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14.1.3 The Route-Based VI Model 

The equivalent variational inequality formulation of route-based DUO depar­
ture time/route choice conditions (14.2)-(14.4) may be stated as follows. 

Theorem 14.1. The dynamic traffic flow satisfying constraints (14.5)­
(14.20) is in a route-based DUO departure time/route choice state 
if and only if it satisfies the variational inequality problem: 

(14.21 ) 

Proof of Necessity. 

We need to prove that route-based DUO departure time/route choice 
conditions (14.2)-(14.4) imply variational inequality (14.21). Multiplying equa­
tions (14.2) and (14.4), we have 

Vp,r,s. (14.22) 

We subtract equation (14.3) from equation (14.22) and obtain 

Vp,r,s. (14.23) 

Summing equation (14.23) for all routes p and all O-D pairs rs, it follows that 

(14.24) 
r. p 

Integrating the above equation (14.24) from time 0 to T, we have 

fT z:: z:: [U;,· (t) - U:;:i:] [1;' (t) - f;·· (t)] dt 2:: 0 
10 r, p 

(14.25) 

or 

f z:: {z:: u;,· (t) [I;'(t) - f;'· (t)] 
10 r, p 

L L U:;:i: [f;'(t) - f;·· (t)l} dt > 0 
r, p 

(14.26) 

By the definition of departure flows, we have 
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Thus, the second term of equation (14.26) is 0 and equation (14.26) becomes 
variational inequality (14.21). 

Proof of Sufficiency. 

We need to prove that any solutions f;" (i) to variational inequality 
(14.21) satisfy DUO departure time/route choice conditions (14.2)-(14.4). We 
know that the first and third DUO departure time/route choice conditions 
(14.2) and (14.4) hold by definition. Thus, we only need to prove that the 
second DUO departure time/route choice condition (14.3) also holds. 

Assume that DUO departure time/route choice condition (14.3) does 
not hold only for route q between O-D pair kn during a short time interval 
[d - ti, d + til E [0, TJ, i.e., 

and 

or 
f;n' (i) {u;n' (t) - U~i:} > 0 

Integrating equation (14.28) from (d - ti) to (d + ti), we have 

or 

l
d+6 ld+6 

f: n' (t) U:n' (t) dt > f:n' (t) U!::: dt 
d-6 d-6 

(14.27) 

(14.28) 

(14.29) 

(14.30) 

We now need to find a set of feasible departure route inflows f;" (t) which will 
contradict variational inequality (14.21). 

For routes between O-D pairs rs # kn, we allow the feasible departure 
route inflows f;" (t) to equal the optimal departure route inflows f;" (t) at 
each instant of time. For O-D pair kn, we can always find a route 1 with the 
minimal disutility u,kn' (t) = U~i: for a short time interval [b- €, b+ €l E [0, T]. 
We note that route I is evaluated under the optimal departure route inflow 
pattern u;" (in. For other routes p # q, 1 between O-D pair kn, we allow the 
feasible departure route inflows f;n(t) to equal the optimal departure route 

inflows f;n' (i) at each instant of time. For routes q,l between O-D pair kn, 
we allow the feasible departure route inflows f;n(t), fr(t) to equal optimal 

departure route inflows f;n' (t) and f,kn' (t) for times outside the time interval 
[d - 6, d + til and [b - €, b + €J, respectively. Furthermore, we shift all departure 
inflows over route q during time interval [d - ti, d + til to route lover the time 
interval [b - €, b + €J, during which disutility U,kn' (i) = U~i:. It follows that 

(14.31) 
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Variational inequality (14.21) becomes 

f LL u;"(t) [f;"(t)-t;"(t)] dt 
Jo r. p 

= iT {u,kn' (t) [f,kn(t) - f,kn' (t)] 

+ U:n' (t) [f:n(t) - f: n' (t)]} dt (14.32) 

The second term of equation (14.32) becomes 

Substituting equation (14.30) into equation (14.33), we have 

(14.34) 

The first term of equation (14.32) becomes 

(14.35) 
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where Ur·(t) = U!~:(t) for time interval [b - €, b+ €]. Substituting equation 
(14.31) into equation (14.35), we have 

(14.36) 

Summing equations (14.34) and (14.36) and substituting into equation (14.32), 
we obtain 

[T L L U;,· (t) [1;' (t) - 1;'. (t)] dt 
Jo r, , 

< lT u;n· (t) f;n(t) dt - {ld
-

6 + 1:6} u;n· (t) f;nO (t) dt (14.37) 

Furthermore, since f;n(t) = 0 for time interval [d-6, d+6] and f;n(t) = f;n· (t) 
for time intervals [0, d - 6], and [d + 6, T], we simplify equation (14.37) as 

[T L L U;,· (t) [1;' (t) - f;'· (t)] dt 
Jo r. , 

< {ld
-

6 + 1:6} u;n· (t) f;n(t) dt - {ld
-

6 + 1:6} u;n· (t) f;n· (t) dt 

{ld
-

6 + 1:6} u;n· (t) [f;n(t) - f;n· (t)] dt = 0 (14.38) 

The above equation contradicts variational inequality (14.21). Therefore, any 
optimal solutions {f;'. (t)} to variational inequality (14.21) satisfy the second 
DUO departure time/route choice condition (14.3). Since we ha.ve proved the 
necessity and sufficiency of the equivalence of variational inequality (14.21) to 
the route-based DUO departure time/route choice conditions (14.2)-(14.4), the 
proof is complete. 

14.2 A Link-Based VI Model of Departure 
Time/Route Choice 

Because dynamic traffic flow does not have a constant flow rate during prop­
agation over links and routes, the route-based VI can not be transformed into 
a link-based VI. Thus, it is very difficult to develop a solution algorithm for 
a route-based VI without explicit route enumeration. In Chapter 13, we pre­
sented a link-based VI model for the ideal DUO route choice problem so that 
route enumeration can be avoided in both the formulation and the solution 
procedure. This approach allows the dynamic VI route choice model to be 
applied to realistic transportation networks. 
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Using a similar approach, we extend the dynamic route choice model 
to include departure time choice as well. A link-based ideal dynamic user­
optimal (DUO) departure time/route choice model is presented for a network 
with multiple origin-destination pairs in this section. Since this VI model is 
link-based, it has computational advantages over route-based models. 

The set of dynamic network constraints for the link-based VI model 
is identical to constraint set (14.5)-(14.20) of the route-based VI model in 
Section 14.1. The basic difference between the two models is that the link-based 
VI model is formulated using link-based flow variables instead of route-based 
variables. 

14.2.1 Link-Based Conditions 

Departure Time Choice Conditions 

We first consider the departure time choice problem. A disutility function 
U r6 (t) based on departure times is defined for travelers departing from origin r 
to destination· s at time t. Denote 7rr6 (t) as the minimal travel time experienced 
by vehicles departing from origin r to destination s at time t. We also define 
the disutility for early or late arrival as follows 

if t + 7rr6 (t) < t;6 - ~;6 (early arrival) 
iflt+7rr6 (t)-t* I<~* ,., _ ,., 
if t + 7rr • (t) > t;6 + ~;6 (late arrival) 

where t is the departure time of travelers and 1'1 and 1'2 are parameters (1'1 ~ 0, 
1'2 ~ a). Thus, the disutility function for the joint departure time and route 
choice problem is constructed as 

'<Ir,s, (14.39) 

where t is the departure time of travelers. 
The dynamic user-optimal departure time choice conditions require that 

for each O-D pair rs at any time t, if there is a positive departure flow r 6 (t) > 
0, the disutility ur6 (t) must equal the minimal rs disutility U;':in over time 
t. Furthermore, if the departure flow r 6 (t) equals 0 at time t, the disutility 
ur6 (t) at time t must be greater than or equal to the minimal rs disutility 
U;':in' The DUO departure time choice conditions can be written as 

U r6• (t) - Ur•. > 0 man - '<Ir,s; 

r·· (t) {Ur6• (t) - U;':in} = 0 '<Ir,s; 

r 6 (t) ~ 0 '<Ir, s. 

(14.40) 

(14.41) 

(14.42) 

where the asterisk denotes that the travel disutility is computed using DUO 
departure flows. 
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Ideal DUO Route Choice Conditions 

We then consider the route choice problem. The actual travel time Ta[Xa(t), ua(t), 
va(t)], or simply Ta(t), over link a is assumed to be dependent on the number 
of vehicles xa(t), the inflow ua(t) and the exit flow va(t) on link a at time 
t. We assume the travel time Ta(t) is the sum of two components: 1) a flow­
dependent cruise time gla[Xa(t), ua(t)] over the uncongested part of link a and 
2) a queuing delay g2a[Xa(t), va(t)] at the end of link a. It follows that 

(14.43) 

The two components gla[Xa(t), ua(t)] and g2a[Xa(t), va(t)] ofthe time-dependent 
link travel time function Ta[Xa(t), ua(t), va(t)] are assumed to be nonnegative 
and differentiable with respect to xa(t), ua(t) and xa(t), va(t), respectively. Re­
call that the travel-time-based ideal DUO route choice state is defined as: 

Travel-Time-Based Ideal DUO State: If, for each O-D pair at 
each instant of time, the actual travel times experienced by travelers 
departing at the same time are equal and minimal, the dynamic 
traffic flow over the network is in a travel-time-based ideal dynamic 
user-optimal state. 

For vehicles departing from origin r at time t, denote n~i* (t) as the difference 
between the minimal travel time from r to j and the travel time from origin r 
to node j via the minimal travel time route from origin r to node i and link a. 
It follows that 

Va,r;a = (i,j). 

Thus, the link-time-based ideal DUO route choice conditions are: 

n~r (t) 2:: 0 

u:·- [t + 7rri - (t)] n:i* (t) = 0 

u:'[t + 7rri - (t)] 2:: 0 

Va = (i, j), r; 

Va = (i, j), r, S; 

Va = (i, j), r, s. 

Joint DUO Departure Time/Route Choice Conditions 

(14.44) 

(14.45) 

(14.46) 

(14.47) 

In order to simplify the presentation, we rewrite the combined link-based DUO 
departure time/route choice conditions as follows: 

n:i*(t) 2:: 0 

u:·- [t + 7rri - (t)] n:i* (t) = 0 

u:· [t + 7rri - (t)] 2:: 0 

Va = (i,j),r; 

Va = (i, j), r, S; 

Va = (i,j),r,s; 
U r .- (t) - ur.: > 0 V min _ r, S; 

r'- (t) {W O- (t) - U:;i:} = 0 Vr, S; 

r' (t) 2:: 0 Vr, s. 

where U:;in is the minimal rs disutility over time t. 

(14.48) 

(14.49) 

(14.50) 

(14.51) 

(14.52) 

(14.53) 
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14.2.2 The Link-Based VI Model 

The equivalent variational inequality formulation of link-based DUO departure 
time/route choice conditions (14.48)-(14.53) may be stated as follows. 

Theorem 14.2. Dynamic traffic flow satisfying constraints (14.5)­
(14.20) is in a DUO departure time/route choice state if and only 
if it satisfies the variational inequality problem: 

( {L L n:r (t) {u:' [t + 7rri • (t)] - U:,· [t + 7rri • (t)] } 
Jo r, a 

+ ~ W,· (t) {r'(t) - r'· (t)} } dt > 0 (14.54) 

Proof of Necessity. 

We need to prove that DUO departure time/route choice conditions 
(14.48)-(14.53) imply variational inequality (14.54). We first discuss the ideal 
DUO route choice conditions (14.48)-(14.50). Multiplying equations (14.48) 
and (14.50), we have 

u:'[t + 7rri • (t)] n:r (t) ~ 0 Va, r, Sj a = (i,j). (14.55) 

Subtracting equation (14.49) from equation (14.55), we obtain 

{ u:' [t + 7rri • (t)] - u:,· [t + 7rri • (t)]} n:r (t) ~ 0 Va, r, Sj a = (i, j). (14.56) 

Summing equation (14.56) for all links a and all O-D pairs rs, it follows that 

L: L: { u:' [t + 7rri • (t)] - u:,· [t + 7rri • (t)]} n:r (t) ~ 0 
r, a 

where a = (i,j). (14.57) 

Integrating the above equation (14.57) from time 0 to T, we have 

(14.58) 

We next discuss DUO departure time choice conditions (14.51)-(14.53). 
Multiplying equations (14.51) and (14.53), we have 

Vr,s. (14.59) 

We subtract equation (14.52) from equation (14.59) to obtain 

Vr, s. (14.60) 
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Summing equation (14.60) for all O-D pairs rs, it follows that 

Integrating the above equation from time 0 to T, we have 

iT L uro - (t) {fro (t) - r o- (t)} dt 
o ro 

iT L U;':in {rO(t) - r o- (t)} dt ~ 0 
o ro 

(14.62) 

or 

( L uro - (t) {rO(t) - r o- (tn dt 
10 ro 

L U;':in ({rO(t) - r o- (tn dt > 0 
r. 10 

(14.63) 

By the definition of departure flows, we have 

Thus, the second term of equation (14.63) is 0 and equation (14.63) becomes 

(14.64) 

Combining equations (14.58) and (14.64), we obtain variational inequality 
(14.54). 

Proof of Sufficiency. 

We need to prove that any solutions u~o- [t + 1rri - (t)] and r o- (t) to vari­
ational inequality (14.54) satisfy DUO departure time/route choice conditions 
(14.48)-(14.53). We know that the first and third ideal DUO route choice 
conditions (14.48) and (14.50) hold by definition. The fourth and sixth DUO 
departure time choice conditions (14.51) and (14.53) also hold by definition. 
Thus, we only need to prove that the second ideal DUO route choice condition 
(14.49) and the fifth DUO departure time choice condition (14.52) also hold. 

In order to prove the above statement, we need to prove that the follow­
ing three cases are not true. 

1. The second ideal DUO route choice condition (14.49) does not hold, but 
the fifth DUO departure time choice condition (14.52) does hold. 
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2. The fifth DUO departure time choice condition (14.52) does not hold, 
but the second ideal DUO route choice condition (14.49) does hold. 

3. Both the second ideal DUO route choice condition (14.49) and the fifth 
DUO departure time choice condition (14.52) do not hold. 

Case 1 

The proof for Case 1 is similar to that for a pure ideal DUO route choice 
problem. Assume that the second ideal DUO route choice condition (14.49) 
doeS not hold only for a link b = (I, m) for O-D pair pq during a short time 
interval [d - 6, d + 6] where [d - 6, d + 6] E [0, T), i.e., 

utq* [t + T 'd* (t)] > 0 and 

o:m* (t) = T'd* (t) + 7lI[t + Tkl* (t)] - Tkm* (t) > 0 

Multiplying the above two equations, we have 

u:q* [t + Tkl* (t)] o:m* (t) > 0 

The first term in the variational inequality (14.54) becomes 

rT L L O:j* (t) u:,* [t + 7rri * (t)] dt 
10 r, a 

l d +6 
u:q* [t + Tkl* (t)] o:m* (t) dt > 0 

d-6 

(14.65) 

(14.66) 

(14.67) 

We note that all other terms in the above equation vanish because the ideal 
DUO route choice condition (14.49) holds for other links and O-D pairs at each 
time instant and for link b = (I, m) for O-D pair pq at time instants which are 
not within time interval [d - 6, d + 6]. 

For each O-D pair rs, we can always find one minimal travel time route 
k for vehicles departing origin r at time t, which was evaluated under the 
optimal flow pattern {u:,* [t + 7rri* (t)]). For this route k, the first ideal DUO 
route choice condition (14.48) becomes equality by definition. It follows that 

o:j* (t) = 7rri* (t) + Ta[t + 7rri* (t)] - 7rr j* (t) = 0 

Va,r,Sja = (i,j)ja E k. (14.68) 

Next, we need to find a set offeasible inflows u:'[t+7rri* (t)] so that the following 
equation 

Va, r, Sja = (i,j) (14.69) 

always holds. We choose the feasible departure flows r' (t) to equal the optimal 
departure flows r'* (t) for all O-D pairs rs at each instant of time. Thus, 
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the second term in (14.54) will vanish. We also need to re-route all feasible 
departure flows rO(t) for all O-D pairs at each instant oftime. For each O-D 
pair rs, we assign the feasible O-D departure flow r o (t) to the minimal travel 
time route k, which was evaluated under the optimal flow patterns {u~o· [t + 
7rd • (t)]). This generates a set offeasible inflow patterns {u~O [t+7rri• (t)]} which 
always satisfies equation (14.69) (because either n~i* (t) = 0 for links on route 
k or u~' [t + 7rri • (t)) = 0 since no flow is routed onto those links which are not 
on route k). Summing equations (14.69) for all links a and all O-D pairs rs, it 
follows that 

L: L: u~O[t + 7rri • (t)] n~i* (t) = 0 where a = (i,j). (14.70) 

Integrating the above equation, we have 

(14.71) 

We subtract equation (14.67) from equation (14.71) and obtain 

( L L n~j· (t) {u~'[t + 7rri• (t)) - u~o· [t + 7rri • (t))} dt < 0 (14.72) 
Jo r. a 

Note that the second term in (14.54) equals o. It follows that 

( {L: L n~i* (t) {u~o [t + 7rri • (t)) - u~o· [t + 7rri • (t))} 
Jo ro a 

+ ~ wo• (t) {r8(t) - r o• (t)}} dt < 0 (14.73) 

The above equation contradicts variational inequality (14.54). Therefore, any 
optimal solutions {u~·· [t + 7rri • (t)]} and {r'· (tn to variational inequality 
(14.54) that satisfy the fifth DUO departure time choice condition (14.52) also 
satisfy the second ideal DUO route choice condition (14.49). 

Case 2 

Assume that the fifth DUO departure time choice condition (14.52) does 
not hold only for O-D pair pq during a short time interval [d - fJ, d + fJ) where 
[d - fJ, d + fJ) E [0, T), i.e., 

fpq· (t) > 0 and (14.74) 

or 
(14.75) 
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We now need to find a set of feasible departure flows r' (t) and link inflows 
u~'[t + 7rri ' (t)] which will contradict variational inequality (14.54). 

For O-D pairs rs f. pq, we allow the feasible departure flows r' (t) to 
equal the optimal departure flows r" (t) at each instant of time. For O-D pair 
pq, we shift all departure flows during time interval [d - 6, d + 6] to the time 
interval [d + 6, Tj, during which disutility Upq' (t) = U~~n' (if d + 6 = T, we 
shift all departure flows during time interval [d - 6, d + 6] to the time interval 
[O,d - 6] and the proof will follow.) Thus, the second term of variational 
inequality (14.54) becomes 

lT ~ ur" (t) {r' (t) - r" (t)} dt 

lT Upq' (t) {fpq(t) - fpq' (t)} dt 

{l d
-

6 + 1:6} upq' (t) {fpq (t) - fpq' (t)} dt 

1d+6 
+ d-6 upq' (t) {fpq (t) - fpq' (t)} dt 

U~~n {ld
-

6 + 1:6} {fpq(t) - fpq' (t)} dt 

l d+6 
upq' (t) fpq' (t) dt 

d-6 
(14.76) 

Note that in the above equation, Upq' (t) = U~~n for time instants which do not 
lie within time interval [d - 6, d + 6]. For any time instant t during time interval 
[d - 6, d + 6], the adjusted feasible departure flow fpq(t) = o. By definition of 
departure flows, we have 

lT fpq(t) dt = Fpq(T) = lT fpq' (t) dt 

Substituting into equation (14.76), it follows that 

fT {fpq (t) - fpq' (t) } dt _ld+6 
~ d-6 

{fpq (t)dt - fpq' (t)} dt 

l d+6 
fpq' (t) dt 

d-6 

Integrating equation (14.75) from (d - 6) to (d + 6), we have 

fd+6 
Jd-6 fpq' (t) {Upq' (t) - U~~n} dt > 0 

(14.77) 

(14.78) 
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or 

(14.79) 

Substituting equations (14.77) and (14.79) into equation (14.76), we have 

U:n~n {l d- 6 + fT } {fpq(t) - fpq· (t)} dt - fdH Upq• (t) fpq· (t) dt 
o JdH Jd-6 

l
d+6 ld+6 

U:n~n fpq· (t) dt - Upq• (t) fpq· (t) dt 
d-6 d-6 

l
d+6 ld+6 < U:n~n fpq· (t) dt - U::'~n fpq· (t) dt = 0 

d-6 d-6 
(14.80) 

Following the above adjustment of feasible departure flows, the link in­
flows should be adjusted accordingly so as to be feasible. As illustrated in Case 
1, for each O-D pair rs, we can always find one minimal travel time route k for 
vehicles departing origin r at time t, which was evaluated under the optimal 
flow pattern {U~6· [t + 7rri• (t)]). For this route k, the first ideal DUO route 
choice condition (14.48) becomes an equality by definition. It follows that 

n:i" (t) = 7rri• (t) + Ta[t + 7rri • (t)] - 7rri" (t) = 0 

Va,r,sja= (i,j)jaE k. (14.81) 

Next, we need to find a set offeasible inflows u:'[t+7rri• (t)] so that the following 
~~tioo . 

u:O[t + 7rri • (t)] n:i" (t) = 0 Va,r,Sja = (i,j) (14.82) 

always holds. For each O-D pair rs at each time instant t, we assign the feasible 
O-D departure flow r' (t) to the minimal travel time route k only, which was 
evaluated under the optimal flow pattern {u~o· [t + 7rri • (t)]). This will generate 
a feasible inflow pattern {u~·[t+7rri· (t)]} which always satisfy equation (14.82). 
Summing equations (14.82) for all links a and all O-D pairs rs, it follows that 

where a = (i, j). (14.83) 
ro a 

Subtracting equation (14.49) from equation (14.83) and integrating the result­
ing equation, we have 

iT L L n:i" (t) {u:o [t + 7rri• (t)] - u:,· [t + 7rd • (t)]} dt = 0 (14.84) 
o ro a 

Combining equations (14.76), (14.80) and (14.84), it follows that 

fT {E E n~i" (t) {u~' [t + 7rri • (t)] - u~o· [t + 7rri• (t)] } 
Jo r. a 

+ ~ Uro• (t) {ro (t) - r o• (t)} } dt < 0 (14.85) 
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The above equation contradicts variational inequality (14.54). Therefore, any 
optimal solutions {u~'* [t + 7rri * (t)]} and {r'* (t)} to variational inequality 
(14.54) that satisfy the second ideal DUO route choice condition (14.49) also 
satisfy the fifth DUO departure time choice condition (14.52). 

Case 3 

Case 3 includes the following two sub-cases: 3a) conditions (14.49) and 
(14.52) do not hold for different O-D pairs; 3b) conditions (14.49) and (14.52) 
do not hold for the same O-D pair. 

Case 3a 

Assume that the second ideal DUO route choice condition (14.49) does 
not hold for O-D pair kn for time interval [dl - bl, d l + bl] and the fifth DUO 
departure time choice condition (14.52) does not hold for O-D pair pq for time 
interval [d2 - b2, d2 + b2]. Note that the two O-D pairs are different, but the 
two time intervals mayor may not be different. For O-D pair kn, we assume 
that the second ideal DUO route choice condition (14.49) does not hold only 
for a link b = (1, m) during time interval [dl - bt, dl + bl], i.e., 

u~n*[t+rkl*(t)]>O and 

n~m* (t) = rkl* (t) + ra [t + rkl (t)] - rkm* (t) > 0 (14.86) 

Following the derivation from (14.65) to (14.73) in Case 1, we can find 
a set of feasible inflows u!n[t + 7rri * (t)] for O-D pair kn so that the following 
equation holds: 

lT {~n!i" (t) {u!n[t + rki* (t)] - u!n* [t + rki* (t)]} 

+ Ukn*(t){fkn(t)-fkn*(t)}}dt<O (14.87) 

Note that in the derivation of the above equation, we follow the process in Case 
1 by assuming there is only one O-D pair kn. 

For O-D pair pq, we assume that the fifth DUO departure time choice 
condition (14.52) does not hold during time interval [d2 - b2, d2 + b2]. 

f pq* (t) > 0 and (14.88) 

Following the derivation from (14.74) to (14.85) in Case 2, we can find a set of 
feasible departure flows fpq(t) and inflows u!n[t + rki* (t)] so that the following 
equation holds: 

lT {~n~i" (t) {u~q[t + r pi* (t)] - u~q* [t + r pi* (t)]} 

+ upq* (t) {fpq(t) - f pq* (t)}} dt < 0 (14.89) 
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Note that in the derivation ofthe above equation, we follow the process in Case 
2 by assuming there is only one 0-D pair pq. 

For other 0-D pairs r s, we choose the feasible departure flows r s ( t) 
to equal the optimal departure flows r'· (t) at each instant of time t. Thus, 
the second terms in (14.54) for those O-D pairs will vanish. We also need to 
re-route all feasible departure flows r' (t) for those O-D pairs at each instant of 
time. For each O-D pair rs at each instant of time, we assign the feasible O-D 
departure flow r' (t) to the minimal travel time route h, which was evaluated 
under the optimal flow pattern {u~,· [t + 7rri • (t)]). This will generate a set of 
feasible inflow patterns {u~' [t + 7rri • (t)]} which always allows the first terms in 
(14.54) to equal 0 for those O-D pairs rs, as illustrated in Case 1. 

Combining equations (14.87) and (14.89) and the above analysis, 

( {L L n~j* (t) {u~o [t + 7rri • (t)] - u~·· [t + 7rri • (t)] } 
10 r, a 

+ ~ ur'· (t) {r' (t) - r o• (t) } } dt < 0 (14.90) 

The above equation contradicts variational inequality (14.54). Therefore, any 
optimal solutions {u~·· [t + 7rri • (t)]} and {frs· (tn to variational inequality 
(14.54) will satisfy both the second ideal DUO route choice condition (14.49) 
and the fifth DUO departure time choice condition (14.52). 

Case 3b 

Assume that the second ideal DUO route choice condition (14.49) and 
the fifth DUO departure time choice condition (14.52) do not hold for the 
same O-D pair pq, but for time intervals [d1 - b1, d1 + b1] and[d2 - b2 , d2 + 
b2 ], respectively. Note that the two time intervals can be either identical or 
different. Since the fifth DUO departure time choice condition (14.52) does not 
hold during time interval [d2 - b2 , d2 + b2 ], it follows that 

and (14.91) 

Following the derivation from (14.74) to (14.80) in Case 2, we can find a set 
offeasible departure flows fpq(t) so that the following equation holds for O-D 
pair pq: 

(14.92) 

Note that in the derivation ofthe above equation, we follow the process in Case 
2 by assuming there is only one 0-D pair pq. 

For O-D pair pq, we also need to adjust the link inflow pattern accord­
ingly so that they will be feasible. We assume that the second ideal DUO route 
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choice condition (14.49) does not hold only for a link b = (1, m) during time 
interval [d1 - 61. d1 + 61], i.e., 

u~q* [t + rPl" (t)] > 0 and 

n~m· (t) = rpl* (t) + ra[t + rpl(t)]- rpm· (t) > 0 (14.93) 

Following the derivation from equations (14.65) to (14.72) in Case 1, we can 
find a set offeasible inflows u~q[t+rpi· (t)] so that the following equation always 
hold for O-D pair pq: 

i T L n~j" (t) {u~q[t + rpi• (t)] - u~q* [t + rpi• (t)]} dt < 0 (14.94) 
o a 

Note that in the derivation of the above equation, we follow the process in Case 
1 by assuming there is only one 0-D pair pq. 

Combining equations (14.92) and (14.94), we have 

[ {~w,;r (i) {u~lt+ ",;. (i)]- u~· Ii + ",;. (i)]} 

+ Upq* (t) {fpq(t) - fpq· (t)} } dt < 0 (14.95) 

Thus, we found a set offeasible departure flows f pq (t) and inflows u~q[t+rpi* (t)] 
so that the above equation holds for O-D pair pq. 

For other O-D pairs rs, we choose the feasible departure flows r&(t) to 
equal the optimal departure flows r&· (t) at each instant of time. Thus, the 
second terms in (14.54) for those O-D pairs vanish. We also reroute the feasible 
departure flows r& (t) for those O-D pairs at each time instant. For each O-D 
pair rs, we assign the feasible O-D departure flow r&(t) to the minimal travel 
time route h, which was evaluated under the optimal flow pattern {u~&· [t + 
7rri* (t)]). This generates a set offeasible inflow patterns {u~& [t+7rri* (t)]} which 
always allow the first terms in VI (14.54) for those O-D pairs to equal 0, as 
illustrated in Case 1. 

Combining equations (14.95) and the above analysis, we have 

i T {L L n~j" (t) {u~' [t + 7rri • (t)] - u~&· [t + 7rri • (t)] } 
o r& a 

+ ~ U r &· (t) {r' (t) - r'* (t)} } dt < 0 (14.96) 

The above equation contradicts variational inequality (14.54). Therefore, any 
optimal solutions {u~'* [t + 7rri* (t)]} and {fr'· (tn to variational inequality 
(14.54) will satisfy both the second ideal DUO route choice condition (14.49) 
and the fifth DUO departure time choice condition (14.52). Since we have 
proved the necessity and sufficiency of the equivalence of variational inequality 
(14.54) to DUO departure time/route choice conditions (14.48)-(14.53), the 
proof is complete. 
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VI Models and Optimization Models for 
Departure Time/Route Choice 

We now consider the relationship between VI models and optimization models. 
As in Chapter 13, we do not discuss each VI model in this chapter. As an 
example, we focus our analysis on the link-based VI model for DUO departure 
time/route choice problem. We show in the following that under relaxation 
and some regularity conditions, the VI model can be reformulated as an op­
timal control problem. Similar analysis can be performed for the route-based 
VI model for DUO departure time/route choice problem. Therefore, in this 
section, we discuss the following VI problem: 

iT {L L n~r (t) {u~' [t + 7rri • (t)] - u~,· [t + 7rri • (t)] } 
o r, a 

+ ~ Ur ,· (t) {r' (t) - r'· (t)} } dt 2: 0 (14.97) 

To similify our analysis, we assume the time period [0, T] is long enough so 
that all departure flows can be cleared by final time T. In other words, any 
positive departure from origin r at time t will arrive at destination s at time 
t + 7rr ,· (t) ::; T. 

We consider a simplified link travel time function as follows: 

Va. (14.98) 

Following a similar derivation in Chapter 13 for the ideal DUO route choice 
problem, we can design a similar double relaxation or diagonalization proce­
dure so that the above VI can be formulated as an optimal control model in 
each relaxation iteration. At the first-level relaxation, we assume that the ac­
tuallink travel time Ta(t) in the flow propagation constraints and the resulting 
minimal actual travel times 7rri(t) in the above variational inequality are fixed 
temporarily at each relaxation iteration. Furthermore, the resulting minimal 
actual travel times 7rrs (t) in the disutility function ur • (t) are also fixed tem­
porarily at each relaxation iteration. Then, the cross-effects of flow variables 
at different time instants can be separated at each iteration. We define a new 
time variable as e~ = t + 7rri • (t) where 7rri • (t) is fixed temporarily at each 
relaxation iteration. Suppose there are R origins. Then, for each link a and 
origin r at time instant e~, we have 

(14.99) 

The actual link travel time Ta(e~) at time instant e~ can be expressed as 

(14.100) 

Since the cross-effects of origin-specific link flow variables are asymmetric 
and cannot be eliminated, we need to design a second-level relaxation for this 
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VI. In other words, we need to fix temporarily all other link flow variables 
Ua(e~/), Xa(e~/) (r' :/; r) in Equation (14.100) at each second-level relaxation 
iteration. Thus, we obtain the objective function of the optimization program 
as 

(14.101) 

Note that e~ = t+1rrio (t) where 1rrio (t) is fixed temporarily at each second-level 
relaxation iteration. Also note that all flow variables at time instants e~ > T 
are o. Therefore, link-based variational inequality (14.97) can be reformulated 
as an optimal control problem with objective function (14.101) and constraints 
(14.5)-(14.11) at each double relaxation iteration. 

14.4 Notes 

Several departure time choice models have been proposed by various researchers 
using different approaches on dynamic traffic networks. -Janson (1993) formu­
lated a dynamic user-optimal route choice model in which trips have variable 
departure times and scheduled arrival times. Friesz et al (1993) presented a 
joint departure time and route choice model using the variational inequality 
approach. Ghali and Smith (1993) also considered this problem using a micro­
scopic representation of vehicle streams. 

In this chapter, a link-based VI model for DUO departure time/route 
choice was presented. The necessity and sufficiency proofs of the VI model 
demonstrate that this model is consistent with the link-based DUO departure 
time/route choice conditions. Using a link-based VI formulation, explicit route 
enumeration can be avoided in computation. This feature allows our model 
to be applied to large-scale dynamic transportation networks with general link 
travel time functions. 

Two major constraints prevent us from applying existing dynamic trans­
portation network models to ATIS systems. The first concerns the accurate 
representation of travelers' choice behavior. In future extensions, utility func­
tions instead of pure travel times should be used in route choice problems. 
Different perceptions and compliance with information must be investigated 
by stratifying travelers into multiple groups. The second concerns the accurate 
representation of traffic dynamics on each street link. Link traffic dynam­
ics may be very complicated; as pointed out by Newell (1990) and Daganzo 
(1993), a set of appropriate closed-form link travel time functions might involve 
the interactions of neighboring link flows. This feature prevents formulating 
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an appropriate optimization model for a realistic departure time/route choice 
problem. Thus, the general VI formulation approach was proposed for such 
applications. However, VI models require more computational capability than 
optimization models. 

The proposed link-based VI model for DUO departure time/route choice 
can be extended to include arrival time choice, destination choice and mode 
choice as well. Our next step is to develop efficient solution algorithms for the 
DUO departure time/route choice VI model. We expect that the Frank-Wolfe 
and diagonalization techniques proposed by Boyce et al (1991) and Ran et al 
(1993) can be applied to solve this model. Other solution algorithms, such as 
the projection algorithm, implemented by Nagurney (1986) for static network 
equilibrium VI models, are also extendable to our dynamic VI problem. We 
note that the solution algorithm for our DUO departure time/route choice VI 
model has to be implemented on an expanded time-space network as proposed 
in Boyce et al (1991). Other important problems, such as incident related 
dynamic route choice problems and dynamic congestion pricing problems, will 
be studied as extensions of this VI model. 



Chapter 15 

Dynamic System-Optimal Route 
Choice and Congestion Pricing 

In this chapter, we present several dynamic system-optimal (DSO) route choice 
models for a network with multiple origin-destination pairs. The constraint set 
for DSO route choice models can be much more comprehensive, including con­
straints such as the capacity and over saturation spillback constraints. However, 
the more constraints we have, the more difficult will be the solution algorithm. 
Thus, for large-scale networks, we need to make a trade-off between the reality 
of formulations and the difficulty of the solution algorithm. The modeling com­
plexity can be pursued as long as realistic traffic flows can be fully represented 
and reasonable computational times can be achieved. 

In a DSO route choice problem, various objective functions can be for­
mulated. Each objective function corresponds to a specific requirement for the 
overall system. In Section 15.1, we present several typical objective functions 
for a DSO route choice model. In Section 15.2, a DSO route' choice model 
which minimizes total travel time is formulated and a solution algorithm is 
presented. In Section 15.3, we discuss a set of DSO route choice models with 
elastic departure times. Time-optimal models for evacuation purposes are also 
formulated. In Section 15.4, we consider dynamic congestion pricing strategies 
which can make a dynamic system-optimal state consistent with a dynamic 
user-optimal state. 

15.1 Objective Functions for Dynamic System­
Optimal Models 

Depending on the objective of the central controller of a Traffic Management 
Center (TMC), there are various measures of control effectiveness which can 
be considered as objective functions. In the following, we enumerate several 
objective functions which are most widely considered in general DSO route 
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choice models: 

1. minimize total travel timej 

2. minimize total travel cost or disutilitYj 

3. minimize total number of vehicles during time period [0, T]j 

4. minimize average congestion level during time period [0, T]j 

5. minimize the length of the congested time period [0, T]. 

We first consider the problem of minimizing the total travel time of all 
vehicles within a time period [0, T]. Using optimal control theory, the objective 
function for this dynamic system-optimal route choice problem is formulated 
as follows: 

min (15.1) 

In this objective function, if we replace the link travel time function Ta(t) with 
the link travel cost function Ta(t), then we obtain an objective function which 
minimizes the total travel cost during time period [0, T]: 

min (15.2) 

Equations (15.1) and (15.2) are different because the link travel cost 
function Ta(t) includes other factors, such as automobile operating cost, link 
tolls, gasoline consumption, etc. The relationship between equations (15.1) and 
(15.2) and congestion pricing is discussed in detail in Section 15.4. 

We now consider how to minimize the total number of vehicles traveling 
on the network during time period [0, T]. This objective function may be stated 
as follows: 

min (15.3) 

Since the initial value xa(O) is generally given, the above objective function is 
equivalent to 

lllln (15.4) 
a 

Thus, we obtain an objective function which minimizes the total number of 
vehicles on the network at the final time T. This objective function is useful 
for reducing the average congestion level of peak-hour traffic when the final 
time T is set within the peak-hour. 
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Next, we consider a quantitative definition of the congestion level for 
the network. The congestion level D(t) is defined as an indicator of average 
congestion in the network at any time t. There are several possible approaches 
to defining D(t): 

1. the ratio of mean travel time to mean free-flow travel time; 

2. the ratio of mean free-flow speed to mean flow speed; 

3. mean relative density; 

where the calculation of the means is flow weighted. For example, we can use 
the mean relative density as a measure of the level of congestion. The relative 
density D a ( t) for link a is then defined as 

Da(t) = xa(t)j1a 
eam 

Va (15.5) 

where la is the link length and eam is the maximum density of traffic on link 
a. Therefore, the congestion level D(t) for the network can be defined as 

(15.6) 

where U a is the inflow on link a. Then, the objective function that minimizes 
the mean relative density during time period [0, T] is expressed as 

mm (15.7) 

The above objective functions can be applied to situations either with 
or without elastic departure times. For problems with elastic departure times, 
a special type of DSO route choice problem is to find the minimum time period 
[0, T] if the total number of departure vehicles is known. This objective function 
can be stated as follows: 

min T (15.8) 

This type of DSO route choice problem is discussed in detail in Section 15.3. 

15.2 Total Travel Time Minimization 

15.2.1 The Model 

We first consider the classic problem of minimizing the total travel time of all 
vehicles within a time period [0, T]. In this model, the O-D departure flows 
r8(t) are given. In order to compare the DSO route choice model with the 
DUO route choice model, we use the constraints for the instantaneous DUO 
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route choice model as given in Chapter 5. Using optimal control theory, the 
direct optimization model of the DSO route choice problem is formulated as 
follows. 

u,~,~,E iT L ua(t) Ta[Xa(t), ua(t), Va(t)] dt 
a 

s.t. 
Relationship between state and control variables: 

dXTS 
~ = UT8 (t) _VT8 (t) Va,p, r, S; dt ap ap 

dE~:(t) = e;B(t) Vp, r, s =I- r; 

Flow conservation constraints: 

L L u~;(t) = r8(t) Vr =I- s· s· , , 
aEA(T) P 

L lI~;(t) = L u~;(t) Vj,p,r,s;j =l-r,s; 
aEBU) aEAU) 

L L v~;(t) = eTB(t) Vr, s; s =I- r; 
aEB(s) p 

Flow propagation constraints: 

X~;(t) = L {x;;; [t + Ta(t)] - x;;;(t)} + {E;· [t + Ta (t)] - E;B (t)} 
bEp 

Va E B(j);j =I- r;p,r,s; 

Definitional constraints: 

Va; 
TBp TBp 

Va; 
TBp TB 

Nonnegativity conditions: 

X TB (t) > 0 ap -, UTB(t) > 0 ap -, vrB(t) > 0 V ap _ a,p,r,s; 

eTB(t) > 0 p -, ET8(t) > 0 p -, Vp,r,s; 

Boundary conditions: 

Vp,r,s; 

(15.9) 

(15.10) 

(15.11) 

(15.12) 

(15.13) 

(15.14) 

(15.15) 

(15.16) 

(15.17) 

(15.18) 

(15.19) 

(15.20) 
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Va,p,r,s. (15.21) 

The objective function is analogous to the objective function of the well-known 
static system-optimal (SO) model. The flow propagation constraints are based 
on the actual link travel time 'Ta(t) instead of its fixed estimate Ta(t). In 
summary, the control variables are u:~(t), l1~;(t), and e;B(t); the state variables 
are :r::~(t) and E;B(t). 

The objective function can also be defined using link travel costs instead 
of link travel times, as already noted above. A generalized link travel cost 
function would include a weighted sum of travel time, atmospheric emissions, 
gasoline consumption, physical strain of driving, etc. After such a generalized 
link travel cost function is defined in any practical situation, the link travel 
time function can be replaced and the above DSO route choice problem directly 
applied to our purpose. 

We note that we cannot conduct an analysis of optimality conditions 
similar to that for the instantaneous DUO route choice model. Since the actual 
link travel time 'Ta(t) is a functional of flow variables ua(t), l1a(t), :r:a(t), the 
first-order necessary conditions are very complex. The resulting marginal link 
cost has several terms which have cross-effects with link flows on downstream 
links. This marginal cost is so complex that an analytical expression is not 
meaningful. 

15.2.2 Solution Algorithm 

This DSO route choice model can be solved using the same algorithm pre­
sented in Chapter 6. We need only to revise the link cost functions for the 
LP subproblem. We reformulate the DSO route choice model as a discrete­
time nonlinear program (NLP). Then the diagonalization technique and the 
Frank-Wolfe algorithm are employed to solve the NLP. In the diagonalization 
procedure, the estimated link travel time is updated iteratively. Then we apply 
the Frank-Wolfe technique to solve the NLP. An expanded time-space network 
is constructed so that each LP subproblem can be decomposed according to 
O-D pairs and can be viewed as a set of minimal-cost route problems. The 
flow propagation constraints which represent the relationship of link flows and 
travel times are satisfied in the modified minimal-cost route search so that only 
flow conservation constraints for links and nodes remain. 

Discrete DSO Route Choice Model 

To convert our DSO route choice problem into an NLP, the assignment time 
interval [0, T] is subdivided into K small time increments. (The time increments 
are not necessarily equal.) In each diagonalization iteration, we modify the 
estimated actual link travel times in the flow propagation constraints in the 
following way so that each estimated travel time is equal to a multiple of the 
time increment. 

Ta(k) = i if i - 0.5 ~ Ta(k) < i + 0.5, 
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where i is an integer and 0 ~ i ~ K. The optimal control program can then 
be reformulated as a discrete time NLP as follows: 

K 

min 
u,v,z,E 

Z = L L ua(k) Ta[xa(k),ua(k),va(k)] 
1.=1 a 

(15.22) 

s.t. 

Va,p,r,sjk = 1,···,Kj (15.23) 

ErS(k + 1) = Ers(k) + L L v:;(k) VrjS irjk = 1,··.,Kj (15.24) 
aEB(s) P 

L L u:;(k) = rS(k) Vr...J. s· k -1 ... K· r , -, , , (15.25) 
aEA(r) P 

L v:;(k) - L u:;(k) = 0 Vj,p,r,Sjj i r,sjk = 1,··.,Kj (15.26) 
aEB(j) aEA(j) 

x:;(k) = L {x;;;[k + Ta(k)]- x;;;(k)} + {E;S[k + Ta(k)]- E;S(k)} 
bEji 

Va E B(j)jj i rjp,r, Sj k = 1,···, K + 1j (15.27) 

u:;(k)~O, v:;(k)~O, x:;(k+1)~0, Va,p,r,sjk=l, ... ,Kj 

E;S(k + 1) ~ 0, Vp,r,sj k = 1,··· ,Kj 

E;S(l) =0 Vp,r,sj 

Va,p,r,s. 

Diagonalization/Frank-Wolfe Algorithm 

(15.28) 

(15.29) 

(15.30) 

(15.31) 

Denote the subproblem variables as p, q, y, E, corresponding to the main prob­
lem variables u,v,x,E. Applying the Frank-Wolfe algorithm to the minimiza­
tion of the discretized DSO program requires, at each iteration, a solution of 
the following linear program (LP): 

min Z = \1uZ (u,v,x,E) pT + \1"Z(u,v,x,E) q'J' 
P,Q,lI,E 

( T -T + \1zZ u,v,x,E) y + \1EZ(u,v,x,E) E (15.32) 

s.t. 

ErS(k + 1) = Ers(k) + L L q:;(k) Vrj S i rj k = 1,···, Kj (15.34) 
aEB(s) P 
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L LP:;(k) = rS(k) Vr ....L s· k -1 ... K· I , -, , , (15.35) 
aEA(r) P 

L q:;(k)- L p~;(k)=O Vj,p,r,s;ji=r,s;k=1,···,K; (15.36) 
aEB(j) aEA(j) 

y~;(k) = L {Yb';[k + Ta(k)]- yb';(k)} + {E;S[k + Ta(k)]- E;S(k)} 
bEji 

Va E B(j);j i= r;p,r,s;k = 1,·· ·,K + 1; (15.37) 

p~;(k)2:0, q~;(k)2:0, y~;(k+1)2:0, Va,p,r,s;k=1,···,K; (15.38) 

E;S(k+1) 2: 0, Vp,r,s;k=1,··.,K; (15.39) 

ErS(1) - 0 p -, 

Objective function (15.32) is equivalent to: 

Vp,r,s; 

Va,p,r,s. 

(15.40) 

(15.41) 

(15.42) 

The components ofthe gradient of Z(u, v, x, E) with respect to the control and 
state variables u, v, x, E are 

(k) = 8Z(u,v,x,E) = (k) (k) 8Ta(k) 
tla 8ua(k) Ta + U a 8ua(k) Va;k = 1,·· .,K; (15.43) 

(k) = 8Z(u,v,x,E) = (k) 8Ta(k) 
t 2a 8va(k) U a 8va(k) 

Va; k = 1,· .. , K; (15.44) 

(k) = 8Z(u,v,x,E) = (k)8Ta(k) 
taa 8xa(k) U a 8xa(k) Va;k = 2,·· ·,K; (15.45) 

(K ).;... 8Z(u,v,x,E) _ 
t3a +1 - 8xa(K+1) -0 Va; (15.46) 

rS(k) _ 8Z(u,v,x,E) _ 
t4 - 8Ers(k) - 0 Vr, s; k = 2, ... , K + 1. (15.47) 

Therefore, the objective function can be rewritten as 

K 

Z= L L [ha(k)p~;(k)+ha(k)q~;(k)+taa(k+1)y:;(k+1)] (15.48) 
k=l r,8,a,p 
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As before, we define the diagonalization procedure as the outer iteration 
and the F -W procedure as the inner iteration in this combined algorithm. 
Denote the new solution at inner F -W iteration (n + 1) as 

u~n+l)(k) = u~n)(k) + a(n)[u~n)(k) - p~n)(k)} 

v~n+l)(k) = v~n)(k) + a(n)[v~n)(k) - q~n)(k)} 

x~n+l)(k) = x~n)(k) + a(n)[x~n)(k) - y~n)(k)] 

Va;k=I,.··,K; (15.49) 

Va; k = 1,·· ., K; (15.50) 

Va;k=I, ... ,K+I; (15.51) 

where a(n) is the optimal step size of the one-dimensional search problem in 
the F-W algorithm at iteration n. The one-dimensional search problem is to 
find step size a(n) that solves 

(15.52) 

where u~n+I)(k), v~n+l)(k), x~n+l)(k) must be substituted using the above 
definitional equations. The algorithm for solving our DSO route choice model 
can then be stated as follows: 

Step 0: Initialization. 
Find an initial feasible solution {x~l)(k)}, {u~l)(k)}, {v~l)(k)}, {E(l)(k)}. 
Set the outer iteration counter m = 1. 

Step 1: Diagonalization. 
Find a new estimate of actual link travel time r~m\k) and solve the DSO 
program. Set the inner iteration counter n = 1. 

[Step 1.1]: Update. Calculate t1a(k), t2a(k) and t3a(k) using equa­
tions (15.43)-(15.46). 

[Step 1.2}: Direction Finding. Based on {haCk)}, {t2a(k)} and 
{taa(k)} and satisfying flow propagation constraints (15.2.2), search the 
minimal-cost route forward from each artificial origin to the super desti­
nation over an expanded time-space network for each O-D pair rs. Per­
form an all-or-nothing assignment, yielding subproblem solution {Pa (k)}, 
{qa(k)}, {Ya(k)}, {Er8(k)}. 

[Step 1.3}: Line Search. Find the optimal step size a(n) that solves 
the one-dimensional search problem. 

[Step 1.4}: Move. Find a new solution by combining {ua(k)}, {va(k)}, 
{xa(k)}, {Er8(kH and {PaCk)}, {qa(k)}, {Ya(k)} and {Ers(k)}. 

[Step 1.5}: Convergence Test for Inner Iterations. If n equals a 
prespecified number, go to step 2; otherwise, set n = n + 1 and go to step 
1.1. 
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Step 2: Convergence Test for Outer Iterations. 
If T~m)(k) ~ T~m+l)(k), stop. The current solution, {ua(k)}, {va(k)}, 
{xa(k)} and {Er8(k)}, is in a near DSO state; otherwise, set m = m + 1 
and go to step 1. 

In order to speed up convergence, an incremental assignment technique is sug­
gested for finding a good initial solution before applying the diagonalization 
procedure. Since the linear subproblem can be decomposed by each artificial 
origin-destination pair, this problem is a good candidate for solution with par­
allel computing techniques. 

15.3 DSO Route Choice with Elastic Depar­
ture Times 

We now consider DSO route choice with elastic departure times, which is sim­
ilar to the DUO departure time/route choice problem in terms of its problem 
statement. However, these two problems are different in that the DSO route 
choice with elastic departure times seeks to achieve the system-optimal objec­
tive by adjusting both departure time and routes. Thus, this problem is also 
a simultaneous departure time/route choice problem. The DSO route choice 
with elastic departure time is easier to formulate and the resulting optimal 
control program is easier to solve. 

In these models, the O-D departure flows r8(t) are variables. The cu­
mulative number of departure vehicles from origin r to destination s at time t 
is 

Vr,s;r =I s. (15.53) 

We assume that the total number of departures FrB(T) between O-D pair rs in 
assignment period [0, T] are given and all vehicles are ready to depart at time 
O. In other words, we have 

given Vr,s;r=ls. (15.54) 

This type of O-D departure condition is also called an isoperimetric condition 
and is shown in Figure 15.1. 

The auxiliary state equation for departing vehicles is 

Vr,s (15.55) 

where the departure flow rate r 8 (t) is an additional control variable and Frs 
is an additional state variable in the optimal control programs. The initial 
condition is 

Vr,s. (15.56) 
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Cumulative Number of Departures 

waiting time 

---------...... ----....;..--I~ Time t 
o t T 

Figure 15.1: Isoperimetric O-D Departure Condition 

Since the adjustment of departure times is associated with delays at 
origins, we adopt the method for handling spillback constraints in Chapter 4 
to treat the delays at origins. We create a dummy link b at each origin r to 
accommodate the vehicles waiting at origin r. The state equation for dummy 
link b at origin r is as follows 

dxb(t) _ fr8( ) 8( ) -- - t -Vb t 
dt 

Vb,r,sjb E rs. (15.57) 

We assume the number of spillback vehicles at time 0 is zero. It follows that 

xb(O) = 0 Vb, r, Sj b E rs. (15.58) 

Thus, the flow conservation equation for origin r should be revised as 

L U~8(t) = vW) Vr f= Sj bE rs. (15.59) 
aEA(r) 

As a result, the DSO route choice problem with isoperimetric O-D conditions is 
transferred into a conventional DSO route choice problem with fixed initial link 
states and fixed final auxiliary states. Of course, we also need the flow propa­
gation constraint for dummy link b. Associated with the spillback constraints, 
link flow capacity constraints are necessary and placed in the constraint set for 
the DSO route choice problem. We assume there is no upper bound for the 
queue length xi:( t) since an origin always has enough capacity to accommodate 
vehicles. The queuing delay at the origin is as follows 

Vb E rs (15.60) 
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where 

S S 

The total delay at origin r is the waiting time plus possible spillback delay, i.e., 
t + Tb[Xb(t),Vb(t)]. 

15.3.1 Fixed Final Time T 

We first consider the problem of minimizing the total travel time of all vehi­
cles within a time period [0, T]. Using optimal control theory, the equivalent 
optimization model of the dynamic system-optimal route choice problem is 
formulated as follows. 

min foT {La ua(t) Ta[Xa(t),ua(t),Va(t)] 
n,v,r,j,F,e,E 10 

+ ~ r(t) {t + Tb[Xb(t), Vb(t)]} } dt (15.61 ) 

s.t. 
Relationship between state and control variables: 

dxrs 
~ = urS(t) _ vrS(t) dt ap ap Va,p,r, S; (15.62) 

Vp,r,s I- r; (15.63) 

Flow conservation and spillback constraints: 

dxS (t) 
bp = frs(t) _ S (t) dt p vbp Vb,p, r, S; bE rs. (15.64) 

L u~~(t) = Vbp(t) Vp,r I- sib E rs; (15.65) 
aEA(r) 

L v~;(t) = L u~~(t) Vj,p,r,s;j I- r,s; (15.66) 
aEB(j) aEA(j) 

L L v~;(t) = ers(t) Vr, S; s I- r; (15.67) 
aEB(s) P 

Flow propagation constraints for links a, b: 

X~~(t) = L{x:;~[t + Ta(t)]- x:;;(t)} + {E;S[t + Ta(t)]- E;S(t)} 
dEp 

Va E B(j); j I- r; p, r, S; (15.68) 
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Xbp(t) = l)xd~[t + Tb(t)]- Xd~(t)} + {E;S[t + Tb(t)]- E;S(t)} 
dEp 

Vb E rSjp,r,Sj 

Link Capacity: 

Vaj 

Vaj Vb E rSj 

Definitional constraints: 

L u~~(t) = ua(t), L v~;(t) = va(t), Vaj 
rsp rBp 

L x~~(t) = xa(t), Vaj 

rBp rs 

Vb E rSj 
S 

L f;S(t) = rB(t), Vrj 

p S 

Nonnegativity conditions: 

X rs (t) > 0 urs (t) > 0 ap -, ap -, V r8 (t) > 0 V ap _ va,p,r,Sj 

Vb E rSjp,Sj 

Boundary conditions: 

given Vr,Sj 

Vp,r,Sj 

X~~(O) = 0, Va,p,r,Sj Vb E rSjp,s. 

(15.69) 

(15.70) 

(15.71) 

(15.72) 

(15.73) 

(15.74) 

(15.75) 

(15.76) 

(15.77) 

(15.78) 

(15.79) 

(15.80) 

(15.81) 

The above model is similar to the DSO route choice model in Section 
15.2 except for the addition of link capacity constraints, oversaturation con­
straints and the corresponding delays at origins. This model can be solved 
using a similar diagonalization/F-W algorithm. However, the time-space net­
work expansion should include a set of dummy links for the spillback vehicles 
and origins. 
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15.3.2 Free Final Time T 

We next consider the DSO route choice problem with elastic departure time 
and free final time T. We first discuss a model with an objective function which 
minimizes the total travel time in the network. This formulation is identical 
to equations (15.61)-(15.81) except that T is now a variable which has to be 
determined to minimize the total travel time as shown in Figure 15.2. As shown 
in equation (15.61), the total travel time consists of two parts: 1) travel time 
in the network; 2) queuing delay at origins. When the time period [0, T] is 
short (or the vehicles enter the network during a short time period [0, T]), the 
total queuing delay at origins is small, but the total travel time in the network 
is high because the network is more congested. On the other hand, when the 
time period [0, T] is long, the total queuing delay at origins becomes larger. 
Since the departing vehicles are spread out more evenly in a longer time period 
[0, T]), the network is less congested and the total travel time in the network is 
smaller. Thus, there exists an optimal final time T* by which the total travel 
time achieves its minimum. 

Objective Function 

Total Travel Time 

in Network 

o T* Assignment Time T 

Figure 15.2: Optimal Assignment Time in DSO Route Choice Problem 

We note that the queuing delay at origins becomes important in de­
termining the minimal total travel time and the optimal final time T* in the 
minimization problem with free optimal time period T. If the waiting time or 
queuing delay at origins is not considered in the objective function, the optimal 
time period T becomes infinite so that the departure vehicles are assigned onto 
the network over an infinite time horizon. There will be no congestion in the 
network and the total congestion delay will approach zero. However, our major 
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interest in the free final time period is to identify the minimum T by which 
all departing vehicles leave the origins. This problem is now discussed in more 
detail. 

In some emergency situation, we may wish to evacuate all persons from 
one place to other places within a minimal time period. This typical evacuation 
problem may have wide applications in emergency situations like hurricanes, 
earthquakes and fires. In this problem, the performance index of interest is the 
elapsed time to transfer the system from its initial state to a specified state. 

The assignment time period [0, T] is free and is a variable in this problem. 
The objective function is 

min T 

Under this objective function, an extreme requirement is that at the end of the 
time period there are no vehicles on the network or at least no vehicles on links 
within a certain range of the emergency areas. Thus, the associated additional 
boundary constraints for physical links a and dummy links bare 

xa(T) = 0 Va, Vb 

To be more practical, we may only require that vehicles be cleared at origins 
at final time T. It follows that 

The equivalent optimal control program of the time-optimal route choice 
problem is formulated as follows. 

min T (15.82) 

s.t. 
Relationship between state and control variables: 

dx r8 
---.!!:E. = U r8 (t) _ V r8 (t) 

dt ap ap 
Va,p,r,Sj (15.83) 

Vp, r, S =1= rj (15.84) 

Flow conservation and spillback constraints: 

dx B (t) 
bp = fr8(t) _ 8 (t) dt p Vbp Vb,p,r,sjbE rs. (15.85) 

L u~;(t) = Vbp(t) Vp, r =1= Sj b E rSj (15.86) 
aEA(r) 

L v~;(t) = L u~;(t) Vj,p,r,Sjj =1= r,Sj (15.87) 
aEB(j) aEA(j) 
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Vr, Sj S =I- rj (15.88) 
aEB(B) P 

Flow propagation constraints for links a, b: 

X:~(t) = L {x:;;[t + Ta(t)]- x:;~(t)} + {E;B[t + Ta(t)]- E;B(t)} 
dEp 

Va E B(j)j j =I- rj p, r, Sj (15.89) 

xtp(t) = L{x:;~[t + Tb(t)]- x:;~(t)} + {E;B[t + Tb(t)]- E;B(t)} 
dEp 

Vb E rSjp,r,Sj 

Link Capacity: 

Vaj 

Vaj Vb E rSj 

Definitional constraints: 

L u~~(t) = ua(t), Vaj 
rBp rBp 

L x~~(t) = xa(t), Vaj 
rBp rB 

Vb E rSj 
B 

Vr; 
p B 

Nonnegativity conditions: 

x~~(t) 2:: 0, u~~(t) 2:: 0, v~;(t) 2:: ° Va,p,r,sj 

/;B(t) 2:: 0, F;B(t) 2:: 0, e;S(t) 2:: 0, E;S(t) 2:: 0, Vp,r,sj 

Xbp(t) 2:: 0, Vbp(t) 2:: 0, Vb E rSj p, Sj 

Boundary conditions: 

given Vr,Sj 

Vp,r,Sj 

(15.90) 

(15.91) 

(15.92) 

(15.93) 

(15.94) 

(15.95) 

(15.96) 

(15.97) 

(15.98) 

(15.99) 

(15.100) 

(15.101) 

x~;(o) = 0, Va,p,r,sj Xbp(O) = 0, xbp(T) = 0, Vb E rSjp,s. (15.102) 

Compared with other DSO route choice models, the time-optimal model has 
a distinct objective function, min T. At the final time T, vehicles at origins 
are cleared as shown in boundary conditions (15.102). Figure 15.3 illustrates 
the relationship between the optimal final time T* and cumulative departures 
between O-D pair rs. 
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Cumulative Number of Departures 

F"S(T*) -----------------

o 

15.4 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Any fehsible T 

Assignment Time T 

Figure 15.3: Optimal Time Period in Time-Optimal Problem 

Dynamic Congestion Pricing 

We now consider the dynamic congestion pricing problem in which the dy­
namic system-optimal objective can be achieved while preserving the dynamic 
user-optimal route choice properties. Previous research on congestion pricing 
has concentrated on policy and practical implementation issues. A summary 
of recent changes in policy is given by Small (1992), emphasizing the changing 
political acceptance of congestion pricing. The theory of marginal cost pricing 
has been explored by many researchers in the context of static transportation 
networks; for example, see Beckmann et al (1956), Dafermos (1972) and Smith 
(1979). Few theoretical studies on congestion pricing are related to large trans­
portation networks in real time. Recently, some models have been proposed by 
de Palma and Lindsey (1992) and Ghali and Smith (1993). Both of them use 
simple networks to explore the properties of dynamic tolls. 

We first discuss some possible dynamic congestion pricing strategies. 
Following a summary of dynamic network constraints, we present two kinds 
of dynamic toll strategies. Two dynamic link toll models are then formulated 
as two bilevel programs which are based on two different kinds of route choice 
assumptions. 

15.4.1 Various Dynamic Congestion Pricing Strategies 

Information and control have been identified as two major approaches to com­
bat traffic congestion in an ATMIS system. Recently, congestion pricing has 
received increasing attention from policy makers as an effective measure of con­
trolling congestion. With advances in ATMIS technology, real-time congestion 
pricing is becoming increasingly feasible. 
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Dynamic tolls can be collected with the application of automatic vehicle 
identification (AVI) technology. In conjunction with a dynamic route guid­
ance system (DRGS) , effective traffic controls and congestion pricing can be 
implemented together to influence the routing strategies by either a central 
controller or individual drivers so that congestion levels in the transportation 
network can be controlled or adjusted. 

The Federal Highway Administration (FHWA) has invited applications 
from local authorities for demonstration projects on congestion pricing. In 
the evaluation of strategic IVHS System Architectures, congestion pricing was 
identified as one of the most important control schemes in future IVHS sys­
tems. What seemed impossible only a few years ago seems now possible with 
the ATMIS technological achievements and the change of policy, which in turn 
motivates the development of dynamic congestion pricing models for large scale 
transportation networks. We envision the application of such models as con­
tributing to the evaluation of proposed ATMIS systems. Eventually, such mod­
els may prove useful as well in the operation of such systems. In the short run, 
however, our principal objective is to improve understanding of the properties 
of dynamic congestion pricing models defined on large, complex road networks. 

This section seeks to investigate possible dynamic congestion pricing 
strategies using dynamic network models. Our focus is on technical aspects 
rather than policy issues. Furthermore, in this section we concentrate on the­
oretical models which explore possibilities of congestion pricing in conjunction 
with dynamic system-optimal route choice models. Traffic controls, including 
both surface street signal control and freeway ramp control, are assumed to be 
fixed in the current models. By considering the impact of congestion pricing, 
we focus our attention on routing strategies instead of traffic signal controls. 

Consider an ideal situation with an AVI system installed and an auto­
matic toll debiting system available. We also assume each vehicle is provided 
with perfect traffic information and travelers will comply with the user-optimal 
route guidance instructions. As discussed in Section 15.1, system optimal ob­
jectives can be defined in a variety of ways in dynamic transportation network 
problems. Thus, there are more toll strategies in dynamic problems than in 
their static counterpart. Because of the difficulty of keeping track of each ve­
hicle's route, we focus our attention on non-route based dynamic tolls. This 
class of dynamic congestion tolls can be classified as link toll and area toll, both 
defined based on the usage of road capacity. The link toll is charged for vehicles 
present on that link and is changing from link to link. The area toll is charged 
for vehicles present within a congested area and is uniform across the area. It 
applies to any vehicle traveling in the network during the toll time period. In 
the following, we mainly discuss different modeling aspects for link tolls. We 
evaluate the performance of the congestion toll policy using the reduction of 
traffic congestion or total travel time on the network. 

Within the link toll category, we consider two types of dynamic con­
gestion pricing strategies under two kinds of route choice behavior assump­
tions, namely instantaneous DUO and ideal DUO. Before discussing the pricing 
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strategies, we summarize the dynamic network constraints for such models. 

15.4.2 Dynamic Network Constraints 

In the following bilevel programs, the O-D departure flows rB(t) are given. 
In order to model a more practical situation, spillback constraints are added 
in the constraint set. As we discussed in Chapter 4 and the previous section, 
we define a dummy link b at each origin r to accommodate the spillback ve­
hicles. The queuing delay at origin r is Tb[Xb(t),Vb(t)]. The dynamic network 
constraints for our models are summarized as follows. 

Relationship between state and control variables: 

dXrB 
---2:E. = U rB (t) _ v rB (t) dt ap ap Va,p,r,s; (15.103) 

dErB(t) 
~t = e;B(t) Vp,r,s =/:- r; (15.104) 

Flow conservation and spillback constraints: 

dXB (t) _bp_ = jrB(t) _ B (t) dt p vbp Vb,p, r, s; bE rs. (15.105) 

L u~~(t) = Vbp(t) Vp,r =/:- ,~; bE rs; (15.106) 
aEA(r) 

L v~~(t) = L u~~(t) Vj,p,r,s;j =/:-r,s; (15.107) 
aEB(j) aEA(j) 

L L v~;(t) = er8 (t) Vr,s; s =/:- r; (15.108) 
aEB(B) P 

Flow propagation constraints for links a, b: 

X~~(t) = L{x:i;[t + Ta(t)]- x:i;(t)} + {E;8[t + Ta(t)]- E;8(t)} 
dEp 

Va E B(j);j =/:- r;p,r,s; (15.109) 

Xbp(t) = L {x:i; [t + Tb( t)] - x:i;(t)} + {E;B [t + Tb(t)] - E;8( t)} 
dEp 

Link Capacities: 

Va; 

Vb E rs;p,r,s; 

Va; 

Vb E rs; 

(15.110) 

(15.111) 

(15.112) 
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Definitional constraints: 

L u~;(t) = ua(t), L v~;(t) = va(t), Va; 
rap rap 

Va; 
rap ra 

Vb E rs; 
a a 

L f;a(t) = ra(t), Vr; 
p a 

Nonnegativity conditions: 

x~;(t) 2:: 0, u~;(t) 2:: 0, v~;(t) 2:: OVa, p, r, S; 

f;a(t) 2:: 0, F;B(t) 2:: 0, e;B(t) 2:: 0, E;B(t) 2:: 0, Vp,r,s; 

Xbp(t) 2:: 0, Vbp(t) 2:: 0, Vb E rs; p, S; 

Boundary conditions: 

given Vr,s; 

ErB(O) - ° p -, Vp,r,s; 

xrB(O) = ° ap , Va,p,r,s; Vb E rs;p,s. 
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(15.113) 

(15.114) 

(15.115) 

(15.116) 

(15.117) 

(15.118) 

(15.119) 

(15.120) 

(15.121) 

(15.122) 

15.4.3 Tolls Based on Instantaneous DUO Route Choice 

Denote the time-dependent toll on link a at time t as 'Ya(t) in dollars. For 
simplicity, the total link travel cost on link a at time t is 

(15.123) 

where l¥a is a term representing the fixed cost (dollars) on link a and (3a is a 
time-independent parametertransforming travel time (minutes) into travel cost 
( dollars). The toll 'Ya (t) is collected to achieve a system-optimal flow pattern in 
the network while preserving DUO route choice properties. Thus, the objective 
of our problem is to minimize the total travel time over the entire network 
during time period [0, T]. This dynamic toll problem can be easily formulated 
as a route-based model. However, a route-based toll is hard to collect in practice 
and solving a route-based model requires explicit route enumeration, which is 
infeasible for a large network. Thus, we formulate a link-based model which 
overcomes these difficulties. We use a leader-follower game to formulate such a 
dynamic congestion pricing problem. The objective of the upper-level problem 
(or the leader of the game) is to minimize the total travel time; the decision 
variable is the dynamic link toll 'Ya(t). The instantaneous DUO route choice 
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model is formulated as the lower-level problem (or the follower of the game), in 
which the decision variables are the link flow variables ua(t), va(t) and xa(t). 
The upper level problem is a time-dependent minimization problem, whereas 
the lower-level problem is formulated as a variational inequality. 

We first briefly describe the variational inequality formulation of the 
instantaneous DUO route choice problem for the lower-level problem. The 
formulation is a simplified version of the link-based multi-group VI model for 
the instantaneous DUO route choice problem in Chapter 12. For simplicity, we 
only consider one group in this toll model. Denote ~;S(t) as the instantaneous 
route travel cost from origin r to destination s at time t. The instantaneous 
route travel cost for all allowable routes is computed using the following formula 

~!S(t) = L ca(t) Vp,i,s (15.124) 
aEisp 

where the summation is over all links a on route p. 
Recall the definition of the link-cost-based instantaneous DUO state as 

follows. 

Link-Cost-Based Instantaneous DUO State: If, for any de­
parture flow from each decision node to each destination node at 
each instant of time, the instantaneous travel costs equal the mini­
mal instantaneous route travel cost, the dynamic traffic flow over the 
network is in a link-cost-based instantaneous dynamic user-optimal 
state. 

Define o-is(t) as the minimal instantaneous route travel cost from node 
i to destination s at time t. The asterisk denotes that the travel time is com­
puted using link-cost-based instantaneous DUO traffic flows. Denote e:* (t) as 
the difference between the minimal instantaneous travel cost from node j to 
destination s and the instantaneous travel cost from node i to destination s 
plus the instantaneous travel cost on link a at time t. It follows that 

Va,s;a = (i,j). (15.125) 

Thus, the link-cost-based instantaneous DUO route choice conditions can be 
summarized as follows: 

e:*(t) ~ 0 

u:* (t) e:* (t) = 0 

u!(t) ~ 0 

Va = (i,j),s; 

Va = (i,j),s; 

Va = (i,j),s. 

(15.126) 

(15.127) 

(15.128) 

Note that the above conditions also apply to dummy link b created at each 
origin r to accomodate spillback flows at origin r. Then, the equivalent varia­
tional inequality formulation of the link-cost-based instantaneous DUO route 
choice conditions (15.126)-(15.128) may be stated as follows. 
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Theorem 15.1. The dynamic traffic flow pattern satisfying network 
constraint set (15.103)-(15.122) is in a link-cost-based instantaneous 
DUO route choice state if and only if it satisfies the variational 
inequality: 

(15.129) 

In the above variational inequality, the summation over link a includes dummy 
link b. The proof of the necessity and sufficiency of the above variational 
inequality is similar to that in Chapter 12. 

Our upper-level problem is a dynamic system-optimal problem which 
minimizes the total travel time on the network during period [0, T]. Since 
we have spillback constraints, we have a dummy link b at each origin r to 
accommodate the spillback vehicles. As before, the queuing delay at origin r 
is Tb(t)[Xb(t), Vb(t)]. Thus, the bilevel program is formulated as 

min 
"( 

iT { ~ ua(t) Ta(t) + ~ r(t) Tb(t)} dt 

where u, v and x solve the following variational inequality: 

(15.130) 

(15.131 ) 

In the upper-level problem, we minimize the total travel time instead of 
total tra.vel cost, because the link toll policy is designed to control the total 
congestion level. Since the analysis on optimality conditions of the bilevel 
problem is very complicated, it is impossible to obtain a simple analytical 
expression for link tolls in terms of link travel times. Thus, a simple toll similar 
to the conventional marginal cost in static problems does not exist unless some 
relaxation methods are used. 

In the bilevel program, the variational inequality has to be solved subject 
to the network flow constraint set defined in the previous section. In general, 
the above bilevel program is difficult to solve. In Chapter 12, we demonstrated 
that under relaxation, the lower level variational inequality can be transformed 
into the equivalent optimal control model presented in Chapter 5. An efficient 
algorithm including diagonalization and Frank-Wolfe techniques was proposed 
in Chapter 6 to solve this variational inequality. Thus, the lower level problem 
can be solved exactly. Since the upper level problem is linear, we expect that 
an iterative heuristic can be used to solve the bilevel program. 

15.4.4 Tolls Based on Ideal DUO Route Choice 

After a link toll "Ya(t) is imposed, the final link travel cost on link a at time t is 

(15.132) 



334 Chapter 15. DSO Route Choice and Congestion Pricing 

where <¥a is a term representing the fixed cost (dollars) on link a and f3a is 
a time-independent parameter to transform travel time (minutes) into travel 
cost (dollars). Similar to the previous instantaneous DUO, this problem is 
formulated in a bilevel structure. In the upper level problem, the total travel 
time is minimized. In the lower level problem, we have a variational inequality 
problem which equilibrates the actual route travel costs based on travel times 
and link tolls. 

We now discuss how we formulate a variational inequality for the lower­
level ideal DUO route choice problem. The formulation is a simplified version 
of the link-based multi-group VI model for the ideal DUO route choice problem 
in Chapter 13. For simplicity, we only consider one group in this toll model. 
Denote ii;' (t) as the actual route travel cost from origin r to destination s 
at time t. Also denote 7fr , (t) as the minimal actual route travel cost from 
origin r to destination s at time t, and jr'(t) as the corresponding actual 
route travel time from origin r to destination s at time t. We also need to use 
a recursive formula to compute the route travel cost ii;' (t) for all allowable 
routes. Assume route p consists of nodes (r, 1,2, ... , i, ... , s). Denote ii;j (t) as 
the travel disutility actually experienced over route p from origin r to node j 
by vehicles departing origin r at time t. Then, a recursive formula for route 
travel cost ii;'(t) is: 

Vp, r,j;j = 1,2,···, s; 

where link a = (j - 1, j) and time [t + 1J;U- 1)(t)] is the arrival time instant at 
link a. 

Recall the definition of the travel-cost-based ideal DUO state as follows. 

Travel-Cost-Based Ideal DUO State: If, for each group and 
each O-D pair at each instant of time, the actual travel costs for all 
routes that are being used equal the minimal actual route travel cost, 
the dynamic traffic flow over the network is in a travel-cost-based 
ideal dynamic user-optimal state. 

Denote fi~i* (t) as the difference of the minimal travel cost from r to j 
and the travel cost from r to j via the minimal travel cost route from r to i 
and link a for vehicles departing from origin r at time t. It follows that 

Va, r; a = (i, j). (15.133) 

We then rewrite the link-cost-based ideal DUO route choice conditions: 

fi:i* (t) ;:::: 0 

u:'* [t + jri* (t)] fi:i* (t) = 0 

u~' [t + jri* (t)] ;:::: 0 

Va = (i, j), r; 

Va = (i, j), r, S; 

Va = (i,j), r, s. 

(15.134) 

(15.135) 

(15.136) 
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Note that the above conditions also apply to dummy link b created at 
each origin r to accomodate spillback flows at origin r. The equivalent varia­
tional inequality formulation of link-cost-based ideal DUO route choice condi­
tions (15.134)-(15.136) may be stated as follows. 

Theorem 15.2. The dynamic traffic flow pattern satisfying con­
straints (15.103)-(15.122) is in a link-cost-based ideal DUO route 
choice state if and only if it satisfies the variational inequality: 

iT L L n~j" (t) {U~B[t + 1fr ;" (t)]- U~B" [t + 1fr ;" (t)]} dt ~ 0 (15.137) 
o rB a 

In the above variational inequality, the summation over link a includes dummy 
link b. The proof of the necessity and sufficiency of the variational inequality 
is similar to that in Chapter 13. 

The dynamic link toll is designed so the total travel time on the network 
is minimized for period [0, T]. Thus, the bilevel program is formulated as 

min 
'Y 

where u, v and z solve the following variational inequality: 

(15.138) 

iT L L n~j" (t) {U~B[t + 1fr ;" (t)]- U~B" [t + 1fri" (t)]} dt ~ 0 (15.139) 
o rB a 

Because the optimality conditions for this bilevel program are very com­
plex, no simple analytical link toll can be obtained for even a two-parallel-link 
network. Thus, the equivalence of the toll to the difference of marginal and unit 
link costs in the static network model does not exist in a dynarIDc congestion 
pricing problem. 

15.5 Notes 

Merchant and Nemhauser (1978a, 1978b) presented a dynamic system-optimal 
(DSO) route choice model for a many-to-one network. Subsequently, Carey 
(1987) reformulated the Merchant-Nemhauser problem as a convex nonlinear 
program which has analytical and computational advantages over the original 
formulation. Ho (1980) solved the same model by successively optimizing a 
sequence of linear programs. Later on, Ho (1990) presented a nested decom­
position algorithm for the same problem and implemented this algorithm on a 
hypercube computer. 

DSO problems have also been studied systematically by Ran (1989). For 
DSO problems with minimal travel costs, Ran (1989) suggested several algo­
rithms in addition to the relaxation and Frank-Wolfe algorithm. Among those 
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algorithms, the Time Decomposition Algorithm was highly recommended. The 
Spatial Decomposition Algorithm and Sequential Gradient Restoration Algo­
rithm were also discussed. Recently, many simulation-based DSO route choice 
models were proposed by various researchers, especially for freeway corridor 
problems (Mahmassani et al 1993 and Chang et al 1993). Those models pro­
vide another approach to studying DSO route choice problems. 

We have formulated two types of congestion pricing models for a dynamic 
transportation network. Through the formulation, we find that the conven­
tional marginal cost pricing strategy in static networks is no longer applicable 
to dynamic congestion pricing problems. To find appropriate congestion pric­
ing strategies in dynamic networks requires much more computational effort. 
Simple analytical results are not available. 

We expect that our proposed models can function as tools in the eval­
uation of possible congestion pricing strategies in light of evolving IVHS tech­
nologies. Eventually, they are expected to work together with traffic control 
schemes to combat traffic congestion in urban areas and become on-line oper­
ational tools ~n ATMIS systems. 



Chapter 16 

Link Travel Time Functions for 
Dynamic Network Models 

Extensive research has occurred in recent years on dynamic transportation 
network models, and especially on dynamic route choice models; these models 
have important applications in future ATIS and ATMS systems. However, 
most of the existing models lack a basis in traffic engineering. A significant 
problem for dynamic route choice is that the traditional BPR (Bureau of Public 
Roads, the predecessor of the Federal Highway Administration, U.S. DOT) 
volume-delay function is not applicable to a time-dependent traffic network. 
Meanwhile, since no proper dynamic link travel time functions exist, current 
dynamic route choice models assume various functional forms which are either 
too abstract or cannot provide realistic travel time estimates, even for a small 
network. Thus, it is becoming increasingly urgent to develop a set of time­
dependent link travel time functions for dynamic route choice problems. 

In this chapter, the independent variables necessary to describe the dy­
namic traffic flow and estimate the corresponding time-dependent travel time 
over a highway link are discussed. In order to standardize the dynamic route 
choice formulation to be used in ATIS and ATMS applications, this chapter 
seeks to provide a solid foundation based on the principles of traffic engineering. 
For the purpose of short-term travel time forecasting, dynamic link travel time 
functions are also necessary to transform traffic flow data from probe vehicles 
or roadway detectors into travel times. The application of those functions in 
IVHS projects can also be expected. 

Link travel time or delay functions have been extensively studied in 
traffic flow theory and traffic engineering research. These functions can be 
classified based on road types. In general, the following types of roadway links 
have different link travel time functions: 

1. Arterial Streets 

(a) Links with Signalized Intersections 
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• Fixed Signal Control 

• Actuated Signal Control 

(b) Links with U nsignalized Intersections 

• Major/Minor Priority Intersections 

• All-Way-Stop Intersections 

2. Freeways 

• Freeway Segment 

• Ramps 

• Weaving Sections 

3. Local Streets 

• Stop/Yield Control 

• No Control 

The objective of this chapter is to review currently available delay mod­
els, identify suitable functions, and develop them into dynamic link travel time 
functions which would be applicable to dynamic route choice models. The 
focus is on exploring dynamic travel time functions for signalized arterial net­
work links and freeway segments. In Section 16.1, we discuss the classification 
of dynamic link travel times for various applications. In Sections 16.2 and 
16.3, travel time functions for arterials with long and short time horizons are 
discussed separately, and two sets of functions are recommended for dynamic 
route choice models. The implications of those functional forms are analyzed 
in Section 16.4 and some modifications for dynamic models are suggested. In 
Section 16.5, we propose dynamic travel time functions for freeway segments. 

16.1 Functions for Various Purposes 

For an arterial link, travel time is considered to consist of two main compo­
nents. The first is the travel time (or cruise time) over the uncongested portion 
of the link; the second is the congested travel time or queuing delay at the 
intersection, plus the travel time through the intersection to the downstream 
link. For a freeway segment, link travel time is also considered to consist of 
two main components. The first is the uncongested cruise time over the link; 
the second is the congested travel time or queuing delay on the link. Never­
theless, we use similar formulae for link travel time functions for both arterial 
and freeway segments. 

Recall that the instantaneous travel time ca(t) at time t is the travel 
time that is experienced by vehicles traversing link a when prevailing traffic 
conditions remain unchanged. It is the sum of two components: 
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1. an instantaneous flow-dependent cruise time Dal(t) over the first part of 
link a for an arterial segment; for a freeway segment, the uncongested 
cruise time over the link; 

2. an instantaneous queuing delay Da2(t). 

It follows that 
(16.1) 

The instantaneous route travel time function 1/J;'(t) for each route p 
between O-Dpair rs is defined as the sum of the instantaneous link travel 
times over all links in route p: 

1/J;' (t) = L ca(t) Vp,r,s. (16.2) 
aEr,p 

Thus, the instantaneous route travel time is that time experienced by a vehicle, 
if prevailing traffic conditions do not vary until the vehicle reaches its desti­
nation. This instantaneous route travel time provides a first approximation to 
the time-dependent vehicle travel time. 

Also recall that Ta(t) is the actual travel time over link a for vehicles 
entering link a at time t. Similarly, 77;' (t) is the actual travel time experienced 
over route p by vehicles departing from origin r toward destination s at time 
t. Once the actual link travel time Ta(t) is determined, the actual route travel 
time 77;' (t) can be computed using the recursive formula discussed in Chapter 
4. 

Since network traffic conditions change over time, the actual route time 
may be significantly different from the instantaneous route travd time, espe­
cially when the route or travel time is long. Otherwise, the instantaneous route 
travel time provides a good estimate of the actual route travel time. The in­
stantaneous route travel time is easily obtained or estimated compared to the 
actual route travel time since the prevailing traffic flow data can be obtained 
in real-time from a probe vehicle or a roadway detector. 

The difference between the instantaneous link travel time and the actual 
link travel time may be insignificant since the length of links is generally short 
(0-1 miles), as is the travel time (several seconds to a few minutes). In con­
clusion, we would like to develop a temporal link travel time function which 
is a good representation of both the instantaneous link travel time and the 
actual link travel time. In the following, the link travel time function refers 
to the actual link travel time function. However, we note that when a link is 
extremely congested or oversaturated, these two kinds of link travel times may 
be quite different. 

For arterials, vehicle delay at the exit from the link comprises both de­
terministic and stochastic components. As the analysis time interval shortens, 
the stochastic delay becomes less significant. The stochastic delay also depends 
on the exit capacity of a link. On this basis, the application of queuing and 
delay models may be divided into two categories. In the first category, flow 
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and capacity information is required to predict queues and delays defined on a 
longer time-scale (e.g. successive 5 to 30 minute intervals). It is only possible to 
predict overall quantities such as the average queue length, or the average delay 
per vehicle evaluated over a complete traffic peak. In this case, the stochastic 
delay constitutes a significant part of the total delay and cannot be neglected in 
any travel time estimation. The travel time function in this category is suitable 
for off-line evaluation of ATMS and ATIS systems. 

In the second category, the flow and capacity information is required to 
estimate queues and delays defined on a short time-scale (e.g. successive 1 to 
5 minute intervals). It is possible to determine in detail the time variation of 
the average queue length and vehicular delay. The stochastic delay is therefore 
negligible, and only deterministic oversaturation delay must be considered in 
this case. Travel time functions in this category are suitable for real-time on-line 
evaluation of ATMS and ATIS systems. The functions proposed in the chapter 
might be calibrated for vehicle-actuated and fixed-time signals separately. We 
note that turning flows at an intersection are not considered in this chapter. 

For freeway segments, we consider the flow and capacity variation which 
is required to estimate queues and delays defined only on a short time-scale 
(e.g., less than 5 minutes). Thus, it is possible to determine in detail the time 
variation of the average density and vehicular delay. The stochastic delay is 
therefore negligible, and only deterministic delay must be considered in this 
case. These travel time functions for freeway segments are suitable for real­
time on-line evaluation of ATMS and ATIS systems. 

16.2 Functions for Arterials: Longer-Time Hori­
zons 

In this section, we consider the dynamic link travel time functions for an 
analysis interval of 5-30 minutes or longer. We seek to apply delay formulae in 
the literature to derive corresponding temporal link travel time functions. In 
the delay formulae, the input is the average flow rate arriving at the downstream 
intersection. In our dynamic route choice model in Chapter 5, we use three 
variables (Xa(t), ua(t), va(t)) to represent the dynamics of traffic on a link; 
however, the arrival flow rate at the downstream intersection of the link does 
not correspond to any of these three variables. To overcome this difficulty, we 
divide a physical link a = (A, B) into two dummy links: link a1 = (A, D) and 
a2 = (D, B) (see Figure 16.1). The location of dummy node D is undetermined 
and is movable. We assume that link a1 = (A, D) contains an uncongested 
vehicle stream and a2 = (D, B) contains a traffic queue. Thus, the length of a2 

is the length of the physical queue on link a. When there is no queue on link 
a, the length of dummy link a2 equals zero and dummy link a1 has the same 
length as link a. 
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Figure 16.1: Traffic on an Arterial Road Link 

The state equations for the two dummy links are: 

dXal(t) 
dt = Ual(t) - Val(t) (16.3) 

dXa2(t) 
dt = Ua2(t) - Va2(t) (16.4) 

Flow conservation for the two dummy links requires: 

(16.5) 

Now, we use six variables, Xal(t),Ual(t),Val(t),Xa2(t),Ua2(t) and Va2(t), to de­
scribe the dynamic traffic on each link a. Since three equations (16.3)-(16.5) 
are associated with each physical link a, only three variables are independent. 

Next we consider a discrete time problem. Denote Llk = [k, k+ 1] as the 
length of the time interval in hours. In this discrete time formulation, xa(k) 
represents vehicles on the link at the beginning of interval kj ua(k) and va(k) 
represent inflow and exit flow during interval k. Writing the above equations 
in a discrete-time form, it follows that 

xal(k + 1) = xal(k) + ual(k)Llk - val(k)Llk 

xa2(k + 1) = xa2(k) + ua2(k)Llk - va2(k)Llk 

Val E a, kj 

Va2 E a, kj 

(16.6) 

(16.7) 

(16.8) 

Thus, in general the average link travel time Ta(k) per vehicle during time 
interval k can be expressed as the sum of two components: 1) a flow-dependent 
cruise time Dal(k) over the first part ofthe linkj and 2) a queuing delay Da2 (k). 
It follows that 

Va (16.9) 

Next we consider the cruise time Dal(k) (in seconds) over the first part 
of link a. Using Greenshields formula (Greenshields, 1933), the average cruise 
speed walek) (miles/hour) for inflow entering link a during time interval k is 

(16.10) 
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where Wao is the free flow speed and eam (vehicles/mile) is the maximal density 
(jam density) of traffic on link a. Thus, the traffic density eal(k) for inflow 
entering link a during time interval k can be expressed as 

(16.11) 

Therefore, inflow Ual (k) can be expressed as 

(16.12) 

We then derive the cruise speed wal(k) for inflow entering link a during time 
interval k as 

Wao { wal(k) = 2 1 + 1 _ _4u...:...;a l:c.:.,.( k-<..) } 

eamWao 
(16.13) 

In the above derivation, we assume that the cruise traffic is in an uncon­
gested state. Denote la as the length of link a (miles). The length ofthe vehicle 
queue at the beginning of time interval k is xa2(k)/eam . Thus, the actual length 
of the cruise from inflow until reaching the queue is [la - xa2(k)/eam ). There­
fore, the actual cruise time (in seconds) over link a for inflow entering link a 

during time interval k is 

(16.14) 

However, we note that for an arterial link, the dependency of cruise speed on 
inflow is not very significant (McShane and Roess, 1990). The cruise speed 
on an arterial link is mainly associated with the class of the arterial and the 
geometry of the link. 

Before we analyze the intersection delay, the concept of link capacity 
needs to be clarified. In a temporal traffic network, there are different maximal 
discharge rates of traffic on a link. Generally, there are three roadway sections 
which have individual capacity constraints. The three link elements are: entry, 
midblock road section and exit of a link. Therefore, when we use the word 
capacity in a temporal traffic network, it is necessary to indicate whether it is 
an inflow capacity, a mid block flow capacity or an exit flow capacity. Since 
capacities per lane at entry and midblock are usually higher than at the exit 
point, we will refer only to the exit capacity when considering the flow capacity 
of a link. 

It is assumed that the capacity at the exit of a link is a function of time, 
J.ta = J.ta(k), for each link a (in vehicles/hour). In practice, it is necessary to 
evaluate the exit capacity for each time interval given the exit flow va2(k) in 
the relevant interacting link flows. Capacity calculation methods also depend 
on the type of junction; the three main types are traffic signals, major/minor 
priority and roundabouts. We only discuss signal capacity in this chapter. 
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Mathematical models used to estimate intersection delay are queuing 
models. Since we are considering a rather long time interval, the delay at 
the exit of the link involves deterministic and stochastic delay. Steady state 
queuing theory is widely used but predicts infinite queues and delays when 
the demand reaches the capacity available to it. However, when demand is 
close to capacity, or when the capacity is exceeded for short periods, the queue 
growth lags behind the expectations of steady state theory, and the rate of 
variation of demand and capacity cannot be ignored. Deterministic queuing 
theory, on the other hand, in which the delay is obtained as a simple integral 
of demand minus capacity, can sometimes be used when demand and capacity 
vary in time. However, this treatment ignores the random nature of traffic 
arrivals and departures within a rather long time interval, and leads to serious 
underestimates in the delay unless the capacity is exceeded by a considerable 
margin. When demand just reaches capacity, zero delays are predicted by the 
deterministic model. 

Thus, the most important region for delay estimation is where demand 
(inflow) and capacity are approximately equal; this is the region which is in­
adequately represented both by the steady state and deterministic approaches. 
Methods are needed which adequately treat the entire range of demand and 
capacity, and take proper account of the random nature of traffic and of the 
variations in time of demand and capacity. 

Here, we deal solely with queues and the corresponding approach delays. 
Another type of delay is geometric delay at a yield sign; such delay is suffered in 
the absence of queues because of the need for vehicles to slow down, negotiate 
the intersection, and accelerate back to normal speed. Such delays are not 
treated here, but must be considered in any practical implementation. 

The average delay per vehicle, Da2(k), for vehicles arriving at the down­
stream intersection of link a during time interval k can be expressed as the sum 
of two delay terms: 

Va (16.15) 

where da1 (k) is the non-random delay (delay due to signal cycle effects calcu­
lated assuming non-random arrivals at the average inflow rate), and da2(k) is 
the overflow delay including effects of random arrivals as well as any oversatu­
ration delays experienced by vehicles arriving during the specified flow period. 

Denote Pa(k) as the degree of saturation at the exit from link a during 
time interval k. It follows that 

(k) = ua2(k) 
Pa /la(k) 

(16.16) 

Non-random delay at the intersection is estimated by assuming that the num­
ber of vehicles which arrive during each signal cycle is fixed and equivalent to 
the average flow (demand) rate per cycle. Different expressions are used for the 
non-random delay term according to the arrival characteristics (uniform or pla­
tooned) and the signal characteristics (one or two green periods). The uniform 
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delay formula which is valid for the case of a single green period with arrivals 
at a constant rate throughout the signal cycle is the first term of Webster's 
formula (1958): 

0.5e [1 - g(k)jeF 
1 - Pa(k) g(k)je 

(16.17) 

where e is the signal cycle time in seconds, and g(k) is the effective green time 
in seconds during time interval k. To include the effects of traffic progression 
on delays at traffic signals, Fambro et al (1991) and Messer (1990) suggested 
converting the above uniform delay formula into a non-uniform arrival term to 
account for the progression effects as follows: 

0.5e [1- g(k)jeF 1 - P(k) 
1- Pa(k) g(k)je 1- g(k)je 
0.5e [1- g(k)je][1- P(k)] 

1- Pa(k) g(k)je 
(16.18) 

where P(k) i~ the proportion of traffic arriving in the green phase in time 
interval k. 

Recently, a more general delay formula for this uniform delay term was 
proposed by Akcelik and Rouphail (1991): 

da1 (k) 0.5[e - g(k)] 
0.5e [1- g(k)je]2 
1- Pa(k) g(k)je 

for Pa(k) > 1.0 (16.19) 

for Pa(k) :::; 1.0 

Note that the above formulas are not smooth (no continuous first-order deriva­
tives). If we want to combine those functions into our framework, we need to 
smooth those functions, since a smooth function is necessary for the solution 
of dynamic route choice problems. 

Overflow delay estimation has attracted extensive research. Its devel­
opment was initially reported by Kimber and Hollis (1979). Later on, Hurdle 
(1984) further discussed the assumptions and limitations of those delay mod­
els. Several countries proposed time-dependent delay formulas in their capacity 
guides, including the U.S. (TRB, 1985), Canada (Teply, 1984) and Australia 
(Akcelik, 1981). 

The 1985 Highway Capacity Manual (HCM) suggested a delay formula 
to account for both short-term (random or Poisson) and long-term overflows 
of queues to subsequent cycles due to continuous oversaturation. However, 
it has been widely criticized in recent years. Akcelik (1988) noted that the 
HCM equation predicted higher delays for oversaturated conditions than did 
the Australian and Canadian formulas. He recommended a general formula for 
the overflow delay as follows: 

= 900~k [Pa(k)r . 
,------------------------

{[pa(k) - 1] + [Pa(k) - 1]2 + m[p:~lk) ~a;(k)]} (16.20) 
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where Pao(k) is the degree of saturation below which the overflow delay da2(k) 
is negligible. This can be expressed as 

Pao(k) = a + b s(k) g(k) 

where s( k) is the saturation flow rate in vehicles per second during time interval 
k, (s(k) g(k)) is the capacity per cycle during time interval k, and a, b, m and 
n are calibration parameters. 

However, Akcelik's formula is not smooth at the point Pao(k). One 
alternative is to drop this term in the current development of link time functions 
for dynamic modeling purposes. Burrow (1989) proposed a generalized version 
of Akcelik's model for overflow delay. This model is: 

= 900~k [Pa(k)]R . 

{[pa(k) - 1] + a + [Pa(k) - 1]2 + m~a(~~) ::]} (16.21) 

where a is an additional term used to encompass the more general form above 
and f3 is a term related to Pa(k) in Akcelik's model. The above formula can be 
considered as an alternative to our suggestion since it is a smooth function. 

In the above models, it is assumed that the initial queue xa2(k) is zero 
when the overflow period ~k begins. However, this initial queue should be 
counted in our dynamic delay model and the queuing delay (in seconds) caused 
by initial queue xa2(k) can be expressed as (Akcelik and Rouphail, 1991): 

3600 Xa2(k) 
J-ta(k) 

(16.22) 

The above formula is suitable for the case when the approaching flow ua2(k) is 
greater than or equal to exiting flow Va2 (k). For other cases, it may overestimate 
the delays caused by the initial queue. Those cases need further study in the 
future. In the meantime, we suggest the following overflow delay equation for 
the dynamic problem: 

da2 (k) = 3600::2(~1 + 900~k [Pa(k)]R . 

{[pa(k) - 1] + [Pa(k) -1]2 + J-t~~a)(~k } (16.23) 

In summary, we propose the following dynamic link travel time function 
for the case of a long time interval (~k ~ 5 minutes): 

Va (16.24) 

where Dal(k) is given by (16.14), da1 (k) is given by (16.17) and da2(k) is given 
by (16.23). 
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16.3 Functions for Arterials: Short-Time Hori­
zons 

Now we consider a rather short time period of 1-5 minutes in length. It is 
reasonable to assume that the impact of randomness of traffic arrivals at the 
traffic signal is negligible during such a short time. Thus, the stochastic delay 
is neglected and only deterministic uniform and oversaturation delays are con­
sidered. There have been some recent studies in this area such as the model 
presented by Takaba (1991). Furthermore, if we want to consider a time interval 
of less than one minute, it is necessary to know the offset for each intersection 
signal and determine the non-random delays. 

For a short time interval problem, the delay at the exit from the link is 
considered deterministic in contrast with that occurring in a long time interval 
problem. Nevertheless, the cruise time formula (16.14) is still applicable since 
it is based on the average speed of the inflow. Thus, the average link travel 
time per vehicle during time interval k is still expressed as 

The main difference between a longer time period and a shorter time 
period is the second term Da2 (k). As the time interval becomes shorter, the 
stochastic delay decreases. Thus, for simplicity, delay term Da2 (k) can be 
developed in a deterministic manner for a short time period. The average 
delay per vehicle, Da2'(k), for vehicles arriving at the exit from link a during 
time interval [k, k + 1] can also be expressed as the sum of two delay terms: 

where da1 (k) is the cyclic delay (delay due to signal cycle effects calculated 
assuming non-random arrivals at the average inflow rate in each cycle), and 
da2 ( k) is the delay due to oversaturation experienced by vehicles arriving during 
the specified flow period. The first delay term is given by Webster's formula. 
For formula (16.19), smoothing is necessary for our purposes. 

We next discuss the second delay term da2 (k). The decision variable 
is the queue length on physical link a. As discussed before, link a = (A, B) 
is decomposed into two dummy links, a1 = (A, D) and a2 = (D, B). After 
the cruise time Da1 (k), vehicles entering link a during time interval [k, k + 1] 
should either reach the queue on link (D, B) or proceed to downstream links. 
As before, the location of dummy node D is movable. Thus, the length of link 
a2 = (D, B) is the length of queuing flow. 

The deterministic (initial) queue encountered by the first vehicle arriving 
at the beginning of time interval [k, k + 1] is xa2(k). The deterministic queue 
encountered by the last vehicle arriving at the end of time interval [k, k + 1] is 
([ua2(k) - va2(k)]~k + xa2(k)}. The average queue for vehicles arriving during 
time interval [k, k + 1] is ([ua2(k) - va2(k)]~k/2 + xa2(k)}. Thus, the aver­
age deterministic queuing discharge time or queuing delay da2 (k) per vehicle 
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arriving during time interval [k, k + 1] can be expressed as 

(16.25) 

where da2(k) is in seconds. 
In summary, we propose the following dynamic link travel time function 

for a short time interval: 

Va (16.26) 

where Dal(k) is given by (16.14), da1 (k) is given by (16.17) and da2(k) is 
given by (16.25). Sometimes, we use the link travel time function for vehicles 
entering link a at the beginning of interval [k, k + 1]. We note that most 
numerical examples in this book use this kind of link travel time function for 
computations. In this situation, the queuing delay da2 (k) (seconds) per vehicle 
arriving at the beginning of interval [k, k + 1] should be revised as 

(16.27) 

Then, queuing delay da2(k) in dynamic link travel time function (16.26) should 
be replaced by equation (16.27). 

16.4 Implications of Functions for Arterial Net­
works 

16.4.1 Number of Link Flow Variables 

The selection of suitable link travel time functions for discrete-time dynamic 
route choice largely depends on the length of the analysis time interval. Travel 
times for longer time intervals must account for stochastic delays at intersec­
tions. The intersection delays in travel time functions for shorter time intervals 
are predominantly deterministic. 

In addition to the models presented in this text, various dynamic route 
choice models have been proposed by many researchers. These models use some 
variations of time-dependent link travel time functions. A number of models 
still use the static BPR volume-delay function for a time-dependent traffic net­
work problem. However, the BPR function is based on an implicit assumption 
of steady state traffic flow. This assumption is invalid in a time-dependent and 
stochastic traffic network. Furthermore, in using time-dependent delay formu­
lae, traffic engineering practice implies that the BPR function cannot predict 
intersection delays properly (HeM, 1985). Therefore, using the BPR function 
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as the basis for dynamic route choice models would generate results that are 
too approximate to be realistic in a real-time environment. 

Some dynamic route choice models use a single flow variable (i.e. the 
number of vehicles on a link or average flow rate over a link for each time 
interval) to describe the dynamics of traffic flow on a link. From the above 
analysis, it is evident that one flow variable for a link is insufficient to capture 
the dynamic characteristics of traffic flow on a link and cannot be used to 
estimate the time-dependent delays properly at the intersection. Therefore, 
the six link flow variables and link state equations suggested in this chapter 
are proposed as the basis for dynamic route choice models. Associated with 
these proposed dynamic link time functions, we need to modify our dynamic 
network models on arterial networks as well. 

16.4.2 Notes on Functions for Arterial Links 

In the derivation of dynamic link travel time functions, it is basically assumed 
that delays are caused by the signal control at the downstream intersection 
assuming isolated control. Since these travel time functions are developed to 
apply in dynamic network models, the interaction of upstream and downstream 
intersections should be taken into account. 

There is a critical queue length requirement for each link (Rouphail 
and Akcelik, 1991). The critical queue length, Na , is defined as the longest 
downstream queue that allows upstream platoons to accelerate to and discharge 
at the full saturation flow rate. It follows that 

Va. (16.28) 

The critical queue length is assumed fixed for a given set of platoon speeds and 
speed change rates of the cruise inflow. This constraint reflects the reduction 
of inflow capacity as a result of downstream queue interaction effects, which 
in turn has an impact on delays at downstream intersection. However, the 
functional relationship between the critical queue length and the cruise speed 
may complicate the formulation of dynamic network models. This difficulty 
needs further investigation. In the following, we mainly discuss the factors 
affecting the stochastic delay term in the link travel time function for longer 
time horizons. 

In the case of longer time horizons, the stochastic delay term is derived 
by assuming that the downstream intersection is an isolated intersection subject 
to Poisson arrivals, independent of the stochastic delay at other intersections. 
Newell (1990) noted that under certain conditions, this assumption may grossly 
overestimate the stochastic delay on an arterial. This factor is especially impor­
tant in dynamic network models since intersections in a network can no longer 
be considered isolated. Newell (1990) further pointed out that the cumulative 
stochastic delay on links over an arterial is mainly dependent on the stochastic 
delay at the critical intersection. 
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Also, van As (1991) noted that the randomness of arrivals in a traffic 
network is significantly reduced when the arrivals at upstream intersections 
are highly congested. Thus, delay is significantly overestimated in networks if 
the proposed formulae do not allow for the narrower distribution of arrivals, 
especially if the network is near saturation. The adjustment of dynamic link 
travel time functions to account for oversaturation effects in a longer time 
horizon case is another important issue in the application of dynamic network 
models. 

16.5 Functions for Freeway Segments 

Dynamic link travel time functions for freeway segments are simpler than those 
for arterials. In general, the average link travel time per vehicle Ta(k) during 
time interval k can be expressed as the sum of two components: 1) a free-flow 
cruise time Dal over the link; and 2) a flow-dependent congestion delay Da2 (k). 
It follows that 

Ta(k) = Dal + Da2(k) 

The free-flow cruise time (seconds) on link a is 

la 
Dal = 3600-

WaO 

Va (16.29) 

Va (16.30) 

where la is the link length (miles) and WaO is the free-flow speed (miles/hour) on 
link a. The second delay term is caused by the traffic ahead of a vehicle when it 
enters link a. For simplicity, we assume that the average traffic density on link 
a determines this congestion delay. We note that a non-uniform distribution 
of traffic over link a may bring an error to this delay formula. However, as link 
a becomes shorter, the traffic is distributed more uniformly and this formula 
becomes more accurate. 

The deterministic queue encountered by the first vehicle arriving at the 
beginning of time interval [k, k + 1] is xa(k). The deterministic queue en­
countered by the last vehicle arriving at the end of time interval [k, k + 1] is 
([ua(k) - va(k )]Ak + xa(k n. The average queue encountered by vehicles arriv­
ing during time interval [k, k + 1] is ([ua(k) - va(k)]Ak/2 + xa(kn. Thus, the 
average traffic density (vehicles/mile) encountered by vehicles arriving during 
time interval [k, k + 1] is 

ea(k) = ([ua(k) - va(k)]Ak/2 + xa(kn 
la 

(16.31) 

We assume that the second delay term Da2(k) (seconds) can be expressed as 

(16.32) 

where a is a real-valued parameter and m is an integer parameter. Both of 
them need to be calibrated. 
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In summary, we 'propose the following dynamic link travel time function 
for freeway segments. 

Va (16.33) 

where Dal is given by equation (16.30) and Da2(k) by equation (16.32). This 
formula is different from the traditional BPR function because the second delay 
term depends on the average traffic density encountered by vehicles arriving 
during time interval [k, k + 1] instead of average traffic How on the link. Some­
times, we use the link travel time function for vehicles entering link a at the 
beginning of interval [k, k+ 1]. In this situation, the average traffic density (ve­
hicles/mile) encountered by vehicles arriving at the beginning of time interval 
[k,k+1] is 

(16.34) 

Then, queuing delay Da2(k) in dynamic link travel time function (16.33) should 
be computed using equations (16.32) and (16.34) instead of equations (16.32) 
and (16.31). 

16.6 Notes 

This chapter has investigated different aspects of time-dependent link travel 
time functions for signal-controlled arterial and freeway' links. For an arterial 
link, the following conclusions are emphasized. 

1. Two sets of dynamic link travel time functions are proposed depending on 
the analysis time horizon. These functions can be applied to discrete-time 
dynamic network models. 

2. For each link, six variables (three of which are independent) are necessary 
to describe the dynamics of traffic How and calculate temporal link travel 
time on an arterial link with a signal controlled intersection. 

3. Each physical link is decomposed into two dummy links in order to iden­
tify the queue length on the physical link. Thus, the link travel time func­
tions for each physical link depend on the How variables of two dummy 
links so that link interaction enters the dynamic link travel time functions. 
This interaction should be considered in dynamic network formulations. 

There are many critical assumptions underlying the delay equations for 
arterial links. Those assumptions are especially important for the longer time 
interval delay model. The generalization of those assumptions will make the 
travel time functions more realistic. Among those assumptions, the most crit­
ical factors are the impact of signal coordination and the case when the How 
is not zero after the peak ends. For the short time interval problem, we also 
need to investigate more realistic inHow arrival patterns at the exit of a link. 
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Validation of the proposed dynamic link travel time functions is a major task 
for future research. 

A dynamic link travel time function for a freeway segment link is also 
proposed. The major delay in the travel time function is dependent on the 
average traffic density on the freeway link. However, this function needs to be 
calibrated and validated. 

The proposed link travel time functions for arterial and freeway segments 
are still subject to future challenges and validations from many sources. The 
first challenge is from traffic simulation models. Microscopic simulation models 
might provide detailed answers to many remaining questions for dynamic link 
travel time functions and also serve as validation tools. 

The second challenge is from hydrodynamics theory (Newell, 1993) and 
its discrete form, the highway cell transmission model (Daganzo, 1993). The 
second challenge is more theory-oriented. Hydrodynamics theory and its dis­
crete form may provide a basis for the derivation of dynamic link travel time 
functions, especially for freeway segments. We believe that with all these efforts 
plus a large amount of realistic data generated from many IVHS operational 
tests, we can produce appropriate link travel time functions for both freeway 
and arterial links. Consequently, those functions will ensure a good represen­
tation of travel times and traffic propagation on arterial and freeway links. 



Chapter 17 

Implementation in IVHS 

The rapid evolution of IVHS technologies presents more and more specific re­
quirements for dynamic network modeling. Conversely, implementation of dy­
namic models is becoming more and more important for the design and eval­
uation of IVHS. In Section 17.1, several applications of dynamic models to 
IVHS components are discussed.· We mainly investigate the technical aspects 
of applying these models. Subsequently, we discuss various data requirements 
for implementing these dynamic models in Section 17.2. 

17.1 Implementation Issues 

Dynamic transportation network models describe the basic operating functions 
as well as providing evaluation tools for IVHS. To simplify our discussion on 
the application of dynamic models, we focus on the following items: 

1. traffic prediction; 

2. traffic control; 

3. incident management; 

4. congestion pricing; 

5. operations and control for automated highway systems (AHS); 

6. transportation planning. 

In the following, we investigate various issues for dynamic network models in 
serving each of the above applications. 

17.1.1 Traffic Prediction 

Dynamic transportation network models function as predictive models for many 
ATMIS systems. Travelers' choice behavior determines which dynamic route 
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choice model best fits in the predictive module of a realistic ATMIS. In general, 
no single-group dynamic route choice model can represent the travel choices 
of the entire population. The most plausible model is a reasonable combina­
tion of several dynamic route choice models, including both deterministic and 
stochastic models. As discussed in Chapter 12, travelers can be stratified into 
different groups based on the following route diversion behavior: 1) prespecified 
routes; 2) a few alternative routes; 3) many alternative routes. The popula­
tion and characteristics of each group can be determined with surveys and 
updated periodically. For travelers with prespecified routes, the route must be 
first generated exogenously. In general, this route includes a freeway segment 
and some surface streets. For networks with fewer alternative routes, such as 
the San Francisco Bay Area, the population with prespecified routes may be 
large. On the other hand, for networks with many alternative routes, such as 
the Chicago Area, the population with prespecified routes is relatively small. 
Similar arguments apply to travelers with few and many alternative routes. 

For recurrent and non-recurrent congestion, both instantaneous and ideal 
DUO route choice criteria may apply. Note that in this application, the DUO 
state is defined using a general definition of travel disutility including fuel con­
sumption, auto operating cost, etc., in addition to travel time. The population 
of travelers using either the instantaneous or ideal DUO route choice criterion 
could be determined by survey. Senior citizens or cautious travelers may prefer 
to choose routes based on traffic information from their past experience. In 
other words, they may choose routes using the ideal DUO criterion. On the 
other hand, young or aggressive travelers may prefer to choose routes based on 
current traffic information. That is, they may choose routes using the instan­
taneous DUO criterion. 

For a traffic network, the multimodal problem should be handled explic­
itly. Conventional modes include HOV, bus, truck and passenger car. HOV 
lanes should be designated as separate links and may be subject to possible 
pricing or toll charges during congested periods. These will alter the travel 
cost and subsequently change the flow pattern of HOV lanes. Bus constitutes 
a special mode which should be handled carefully in the modeling. In general, 
buses move slowly and cause additional delays to other vehicles. For a road 
link with bus traffic, the travel time function needs to be adjusted for through 
traffic in the right lane and right turning traffic, since the impact of bus traffic 
is significant. For the left turn lane, buses only affect traffic flow at the time 
when making a left turn. Truck traffic flows also need to be transformed into 
equivalent passenger car flows. However, possible revisions of the travel time 
functions may be necessary, especially for turning movements because trucks 
make wide turns and take longer times for turning. 

Since bus routes are fixed, there is no route choice for bus traffic itself. 
Thus, it belongs to the group with prespecified routes. Truck traffic can be 
classified with the group with fewer alternative routes because some roads are 
closed to truck traffic. The trip chaining problem is not explicitly considered 
in this framework. However, a similar modeling framework is applicable to the 
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situation of trip chaining when time-dependent trip information is available. 
Concerning the route choice criterion, a more plausible model for dy­

namic traffic prediction may be a combination of instantaneous/ideal DUO / 
SDUO route choice models. For travelers without route guidance devices or not 
complying with guidance information, instantaneous/ideal SDUO route choice 
models can be used to model this group of travelers. The population with 
prespecified routes may be quite large so that the dispersion parameter for this 
group is small. Table 17.1 presents route choice criteria for these two groups of 
travelers. Table 17.2 summarizes the stratification of travelers and their corre­
sponding travel choice criteria. A general VI model for the above multi-group, 
multi-criteria route choice problem can be formulated by generalizing the VI 
models of Chapters 12 and 13. 

Table 17.1: Route Choice Criteria for Different Travelers 

Travelers Route Choice Criteria 
Guided Travelers Instantaneous DUO I Ideal DUO 

Travelers with No Guidance Instantaneous SDUO I Ideal SDUO 

Table 17.2: Groups of Travelers and Travel Choice Criteria 

Modes Passenger Car Trucks HOV Bus 
Groups No Y Y Y Y 

by Few Y Y Y N 
Diversion Many Y Y N N 

Travel Instantaneous DUO Y Y Y N 
Choice Ideal DUO Y Y Y N 

Criterion Instantaneous SDUO Y Y Y N 
Ideal SDUO Y Y Y N 

Y - Yes; N - No. 

Furthermore, dynamic traffic prediction problems can be classified into 
several types based on time periods and travel purposes. Basically, we have: 

1. morning home-to-work period (6:30 am - 9:30 am); 

2. midday non-commuting period (9:30 am - 3:30 pm); 

3. work-to-home period (3:30 pm - 7:30 pm); 

4. evening period (7:30 pm - 10:30 pm); 
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5. night period (10:30 pm - 6:30 am). 

The times indicated are illustrative and need to be determined by survey. For 
dynamic traffic prediction during the morning home-to-work period, the major 
concern is the travel time and the arrival time. The joint mode/departure 
time/route choice program might be revised as a joint mode/arrival time/route 
choice program. The arrival times for commuting travelers need to be specified 
and a large penalty charged for late arrival. Among the four modes specified 
in Table 17.2, the priority of bus and HOV should be guaranteed in terms of 
travel time reliability. For dynamic traffic prediction during other periods, the 
models should be revised accordingly to reflect characteristics of the period of 
interest. 

17.1.2 Traffic Control 

Dynamic network models can be extended to incorporate traffic control mea­
sures, such as signal control and congestion pricing. Congestion pricing is 
discussed in Section 17.1.4. We now investigate how the dynamic models are 
used in dynamic traffic control and coordination problems. In general, we can 
construct a bilevel program for the combined dynamic traffic prediction and 
control problem (Figure 17.1). In the upper level, we have a dynamic traffic 
control model, which can be formulated using various objective functions as 
follows: 

1. minimize total travel time; 

2. minimize total travel cost or disutility; 

3. minimize total number of vehicles during time period [0, T); 

4. minimize average congestion level during time period [0, T); 

5. minimize the length of the congested time period [0, T); 

6. minimize total emissions during time period [0, T). 

In the lower level, we have a dynamic traffic prediction model, which determines 
dynamic traffic flows in the network by considering the control strategies pro­
vided by the upper level model. The above bilevel program is solved so that 
an optimal control strategy can be found while the traffic flow follows the de­
sired DUO /SDUO route choice criteria. This bilevel program can be either 
hierarchical or non-hierarchical, depending on the nature of the problem. The 
control strategies can also be classified as centralized or decentralized, which 
can generate different versions of the objective function for the upper level 
control model. 
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Upper Level: 
Dynamic Traffic 
Controller: 

Determine optimal traffic control strategies 
based on the predicted dynamic flows. 

where the dynamic traffic flows are given by: 

Lower Level: 

357 

Dynamic Traffic 
Predictor: 

Determine DUO/SDUO dynamic traffic flows 
using the provided dynamic traffic control strategy. 

Figure 17.1: A Bilevel Program for Dynamic Traffic Prediction and Control 

17.1.3 Incident Management 

Incident management is another area in which dynamic network models can 
play an important role. Traditional incident management strategy minimizes 
incident congestion by clearing incidents as quickly as possible and divert­
ing traffic before vehicles are trapped in the incident queue. However, such 
simple incident management plans cannot solve most incident congestion prob­
lems. Instead, a systematic and comprehensive incident management strategy 
is needed to tackle the incident congestion problem, as offered by advanced 
ATMISj APTS technologies. Such an incident management strategy could use 
travelers' information on origins, destinations and departure times to develop 
a coordinated strategy to advise each person regarding a best mode and route 
to their destination on a real time basis. In this way, we can achieve either 
user-optimal or system-optimal objectives by appropriately integrating avail­
able information and control measures. 

In the context of such an incident management strategy, dynamic trans­
portation network models are necessary for incident-related routing and travel 
time prediction. These models are both information and control oriented. The 
prediction procedure assumes either of two types of routing of vehicles: normal 
conditions and incident conditions. Routing for normal conditions provides 
time-dependent traffic flows and travel times under normal traffic conditions. 
Routing for incident conditions provides forecasts and suggestions following an 
incident. Both instantaneous and ideal DUOjSDUO route choice models can 
be used for this procedure. The system-optimal objective can also be applied to 
incident rerouting in conjunction with dynamic congestion pricing. Oversatu­
ration and spill back can be serious problems when incidents happen. In the use 
of dynamic network models in response to incidents, corresponding constraints 
should be formulated to reflect these phenomena. 

An incident can occur anywhere on a link. For simplicity, in the models 
we can specify that an incident is always located at the exit point of a link 
since a link with an incident can always be partitioned into two shorter links 
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by placing a dummy node at the location of the incident. Thus, the location 
of the incident can be designated at the exit point of some shorter link. The 
models require that the start time and duration of an incident be reported by 
some source, such as the highway patrol. The duration of incident is defined 
as the period from the reported time through the clearance of the incident. 

When incidents occur in a highway network, there are several ways for 
travelers to avoid congestion. Travelers already en route can shift to less con­
gested routes which are less affected by the incident. If an incident happens in 
a central business district, some travelers may choose different parking places 
( destinations) and use other modes such as walking or buses to their final 
destinations. Travelers who have not yet departed may choose to delay their 
departures or shift to rapid transit. Thus, travelers' choices under incident con­
ditions can be summarized as: route, departure time, mode and destination. 
Instead of discussing all these choices, we focus on route choice in the following. 

A major difficulty of incident-related dynamic network models is that the 
continuity properties of most dynamic network models are destroyed. To over­
come this difficulty, we consider a multi-period dynamic travel choice procedure 
in which each incident-related dynamic travel choice is treated separately and 
the continuity of traffic flow at the time and location of an incident instant is 
preserved. A detailed procedure is now described. 

We consider two types of dynamic routing strategies under two route 
choice behavioral assumptions. The first type of route choice behavior is based 
on current or instantaneous travel time information. The second is based on 
projected or actual travel time information. 

Instantaneous DUO/SDUO routing strategies pertain to drivers under 
incidents based on current traffic conditions. This framework is helpful in han­
dling many unpredictable events that occur in traffic flow, such as accidents 
and illegal double parking on streets, etc. In case of such unforeseen events, 
optimal control models based on instantaneous travel times can provide im­
proved results when feedback is taken into account and drivers adjust their 
routes enroute using updated traffic information. 

Ideal DUO/SDUO routing strategies are appropriate for drivers' diver­
sion under incidents based on projected travel time information. These strate­
gies are useful when some future disturbance (incidents and other future events) 
are predictable, such as the increased traffic flow from a baseball stadium after 
a game. In general, if the future disturbance is more predictable, we can use 
the ideal DUO/SDUO route choice model. If the future disturbance is less 
predictable, we may prefer the instantaneous DUO/SDUO route choice model. 
Thus, the group stratification discussed in the dynamic traffic prediction mod­
ule should be adjusted to the nature of the incident. An expert system can be 
designed to achieve this goal. 

Under unpredictable incidents, our strategy is designed as a multi-period 
routing procedure. For simplicity, we first discuss the case of one incident 
only. We advise motorists of minimal travel cost routes based on current traffic 
information. Now, assume that an incident begins on link b at time tl and will 
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be cleared at time TI . We divide the period [0, TJ into three periods: [0, tIl, 
[tl' TI ] and [Tt, TJ. At the transition points tl and Tt, there are sudden capacity 
reductions and increases, respectively, resulting in discontinuities of traffic flows 
on incident link b. In our routing strategy, we assume that motorists choose 
routes based on current traffic information. Thus, for period [0, tl] (before 
the incident occurs), motorists' route choices are based on current travel cost 
information generated using an instantaneous DUO/SDUO route choice model 
over the whole time span [0, Tl, as if no incident would occur. It covers the 
entire time period [0, T]. During the initial period [0, tIl, rerouting is provided 
by a normal instantaneous DUO/SDUO route choice procedure. 

During incident period [tt, TIl, rerouting advice must be rearranged. We 
consider the impact of the incident on the reduction of capacity. We assume 
that the capacity reduction is uniform during the incident duration in order 
to simplify the problem. During incident period [tt, TI ], rerouting is provided 
from time tl through T, as if the incident would not be cleared until time 
TI . This strategy is consistent with the route choice criterion of current traffic 
information, because the clearance time of incident is not known at the initial 
moment of the incident. This process is called incident-based routing. During 
incident conditions, we reroute vehicle flows which are already on the network 
and route O-D departures for period [tl' T] at the same time. Regarding the 
vehicles already on the network, we consider each link as a dummy origin 
from which flows may have different destinations. Thus, those vehicle flows 
on each link a at time instant tl can be considered as dummy O-D flows. A 
routing procedure similar to the initial routing can be implemented for the 
same network with a reduced capacity on the incident link for period [tt, TJ. 

We now consider the last period [Tt, Tl, which can be called the recovery 
routing period. During period [Tt, T] when the incident is cleared, the capacity 
of the incident link is recovered. Routing is provided as normal instantaneous 
DUO/SDUO route choice. Still, the vehicle flows which are already on links at 
time instant Tl must be considered as dummy O-D flows during the incident 
period. The above approach can be generalized to a general situation where 
there are multiple incidents occurring in the network during period [0, T]. 

17.1.4 Congestion Pricing 

Dynamic tolls can be collected with the application of automatic vehicle iden­
tification (AVI) technology. In conjunction with a dynamic route guidance 
system, effective traffic controls and congestion pricing can be implemented to­
gether to influence the routing strategies employed by either a central controller 
or individual drivers so that congestion levels in the transportation network can 
be controlled or adjusted. 

It is anticipated that real-time congestion pricing can be evaluated using 
dynamic network models. Our focus is on technical aspects instead of policy 
issues. Traffic controls, including both surface street signal control and freeway 
ramp control, are assumed to be fixed in the current models. Their interaction 
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with dynamic congestion pricing will be modeled as future extensions. In con­
sidering the impact of congestion pricing, therefore, we focus our attention on 
routing strategies instead of traffic signal controls. Various toll strategies and 
their modeling issues are discussed in the following. 
Bottleneck Tolls A typical example of a bottleneck toll is a bridge toll. The 
relationship between the congestion level and the toll level at the bottleneck 
can be represented using a time-dependent function. Thus, dynamic tolls can 
be combined with dynamic link travel cost functions, and dynamic prediction 
models can be applied to this situation. 
Link and Route Tolls As discussed in Chapter 15, a bilevel program can be 
constructed to determine dynamic link tolls. We use a leader-follower game 
to formulate such a dynamic congestion pricing problem. The objective of 
the upper-level problem (or the leader of the game) is to minimize the total 
travel time; the decision variable is the dynamic link toll. In the upper-level 
problem, we minimize the total travel time instead of total travel cost, because 
the link toll policy is designed to control the total congestion level. The DUO 
route choice problem (or the follower of the game) is formulated as the lower­
level problem, in which the decision variables are the link flow variables. The 
upper level problem is a time-dependent minimization problem, whereas the 
lower-level problem is formulated as a variational inequality. 

A bilevel program can also be constructed to determine dynamic route 
tolls. This program is similar to that for dynamic link tolls. However, solving 
this model requires explicit route enumeration. 
Area Congestion Tolls An alternative congestion pricing strategy, area tolls 
or congestion zone tolls, may be easier to implement than the link or route 
toll policy. This dynamic congestion pricing strategy is designed to control 
the congestion level within the central business district (CBD) area, such as 
downtown Los Angeles. We charge a uniform toll which may be time-varying 
and adjustable depending on the congestion level within the CBD area. In our 
continuous time model, we assume that the toll is continuous in time. This toll 
applies to any vehicle traveling within the CBD area during peak hour periods. 

As with link tolls, this problem can also be formulated as a bilevel model. 
The upper level is the congestion control or toll policy decision level and the 
lower level is the description of responsive traffic status. The control authority 
keeps track of the congestion level in terms of average saturation degree in 
the CBD area and charges a congestion toll for each vehicle present in CBD 
areas during the toll period. However, such a bilevel model is computationally 
difficult for a large network. Thus, we need to formulate a single level model 
which endogenously considers the interaction of dynamic congestion toll policy 
and travelers' choice responses. This formulation is similar to that for the 
bottleneck toll problem. 

Dynamic toll models can function as tools in the evaluation of possi­
ble congestion pricing strategies in light of the advance of IVHS technologies. 
Eventually, they are expected to work together with traffic control schemes to 
combat traffic congestion in urban areas and become on-line operational tools 
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in ATMIS systems. 

17.1.5 Operations and Control for AHS 

Dynamic transportation network models can be directly used as operations and 
control models in advanced IVHS systems. One example is an Automated High­
way System (AHS). Some proposed AHS have only automated lanes. Thus, 
lane-changing itself is a matter of route choice which can be controlled by the 
central controller. A one-lane segment between two barriers can be considered 
as a link as shown in Figure 17.2. Thus, the dynamic prediction models can 
be adopted directly in the control of AHS. Furthermore, some proposed AHS 
have both automated lanes and non-automated lanes. The routing model for 
this case is more complicated than the previous one. 

I 
barriers ~ 

\ 

a link 

Figure 17.2: A Segregated Automated Highway System 

17.1.6 Transportation Planning 

Dynamic transportation network models can be generalized for application to 
long term planning purposes. Since dynamic models can predict traffic varia­
tions more accurately, they provide a good alternative to traditional planning 
models which are based on static equilibrium concepts. Furthermore, dynamic 
models can investigate disequilibrium aspects of traffic from day-to-day traffic 
variations. 

With the rapid evolution of IVHS systems, the concepts and principles 
of IVHS are affecting the long-term transportation planning process. Thus, 
dynamic transportation network models can be extended as dynamic planning 
tools for a metropolitan area with various IVHS field projects. Combining 
dynamic location choices into dynamic planning models could become another 
area of interest in order to evaluate the long-term impact of IVHS projects on 
facility and residential locations. 
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17.2 Data Requirements 

Inputs and parameter calibration for dynamic network models imply an exten­
sive data collection effort. In general, most data required for dynamic models 
does not presently exist. Proposed and ongoing IVHS field tests provide an 
excellent opportunity to collect such data. Associated with our dynamic trans­
portation network models, the following data requirements are identified: 

1. time-dependent O-D matrices; 

2. network geometry and intersection/ramp control data; 

3. traffic flow data for calibrating various dynamic link travel time functions; 

4. traveler information for stratifying travelers into multi-groups and cali­
brating travel disutility functions. 

17.2.1 Time-Dependent O-D Matrices 

A time-dependent O-D matrix is considered as given in dynamic route choice 
models. For joint departure time/route choice models, the total number of 
departures between each O-D pair during a certain period of time has to be 
given. However, such a time-dependent O-D matrix does not exist in general. 
To overcome this difficulty, a tentative approach is to transform a 24 hour O-D 
matrix into an approximate time-dependent 0-D matrix by using a prespecified 
transformation function. 

In estimating a time-dependent O-D matrix, the traditional maximum 
likelihood method can be used. Data collected from probe vehicles and traffic 
counts will serve this purpose. In addition, a time-dependent O-D matrix has 
to be estimated for different modes, such as passenger car, tru.ck, HOV and 
bus. 

The zone size for the time-dependent O-D matrix must be appropriate to 
the scale of the model. In general, it is smaller than the zones defined for static 
planning models. The time intervals for time-dependent O-D estimation can 
be 5, 10, 15 or 30 minutes, depending on the problem requirements. We note 
that zone size also depends on the length of a time interval. If a time interval is 
smaller, the zone can be larger and vice versa. During a time interval, the O-D 
departure flow rate is assumed to be constant. Since the O-D departure flow 
rate does not change substantially, as compared with the traffic flow during a 
short time interval, the interval for estimating a time-dependent O-D matrix 
can be larger than the interval used in dynamic route choice problems. 

17.2.2 Network Geometry and Control Data 

Network geometry and control data for dynamic problems must be more de­
tailed than for static problems. For freeways, data are required for freeway 
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segments, ramps and weaving areas. In general, network geometry and control 
data for freeways include: 

1. link length; 

2. free flow speed and speed limit on freeway segments and ramps; 

3. length of weaving areas; 

4. types of ramp control. 

If a freeway has HOV lanes, these lanes should be treated as a set of special 
links. The length of HOV lanes and charges for single occupancy vehicles are 
additional data inputs. If there is main line metering on the freeway, a control 
algorithm is needed. 

For arterials, the network geometry and control data include: 

1. link length; 

2. length and number of lanes for turning movements; 

3. number of mid block lanes; 

4. number of bus stops on each link; 

5. pedestrian activity; 

6. number of bus/HOY lanes; 

7. free flow speed and speed limit; 

8. intersection control data. 

The intersection controls can be classified more specifically as follows: 

1. links with signalized intersections: 

(a) fixed signal control; 

(b) actuated signal control; 

2. links with unsignalized intersections: 

(a) major/minor priority intersections; 

(b) all-way-stop intersections. 

For local streets, the intersection controls can be classified as: 

1. stop/yield control; 

2. no control. 

Intersection control data need to be collected for each of the above control 
types. In addition, offset data are necessary for signalized intersections. 
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17.2.3 Traffic Flow Data 

Traffic flow data are needed to calibrate dynamic link travel time functions. 
Ideally, both detector data and probe data are desired. For a freeway segment, 
speed/occupancy and travel time data are required. When validating dynamic 
link travel time functions under highly congested conditions, information on 
queue length is also necessary. 

For an arterial link, the following traffic flow data are required: 

1. inflow/exit flow rates; 

2. queue length; 

3. link travel time; 

4. intersection control parameter. 

These traffic flow data can also be used to validate the FIFO constraints and 
oversaturation constraints. 

17.2.4 Traveler Information 

Since more realistic dynamic network models are based on travel costs or disu­
tilities instead of travel times, it is necessary to stratify travelers into multi­
ple groups according to their socio-economic characteristics. As discussed in 
Chapters 11-13 and in the dynamic prediction module in Section 17.1, trav­
eler information should be collected based on: income and age; route diversion 
willingness; driving behavior; compliance degree with guidance information; 
compliance with current or predicted information. 

In the following, we present some parameters which need to be calibrated 
and some travel characteristics data which need to be collected: . 

1. fixed travel disutilities (fuel consumption, automobile operating costs, 
etc.); 

2. parameters to transform travel times into disutilities; 

3. dispersion parameter for SDUO route choice models; 

4. desired arrival time interval; 

5. parameter for early arrival bonus; 

6. parameter for late arrival penalty; 

7. dispersion parameter for mode choice. 

The above data must be collected for each group of travelers and parameters 
must be calibrated for each group of travelers as well. 
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17.3 Notes 

The implementation issues discussed in Section 17.1 involve only a portion of 
the potential applications of dynamic network models. As the backbone of 
ATMS and ATIS, dynamic network models can be applied in different traf­
fic control systems and various user services for travelers. Since IVHS will 
definitely change travelers' behavior and the location offaciIities, dynamic net­
work models can be useful in both aspects. Another area is the integration with 
telecommunication systems, because transportation and telecommunication are 
more and more closely related in IVHS. The data requirements in Section 17.2 
are generated based on the present level of development of dynamic network 
modeling. Further requirements are possible as the state of the art of dynamic 
network modeling evolves. 

Successful deployment of dynamic network models in ATMS and ATIS 
requires extensive effort in the future. According to Yagar and Santiago (1993) 
and Solanki and Rathi (1993), ongoing research on dynamic network models 
should address the following issues: 

1. integration of models of freeways and surface streets; 

2. modeling dynamic route selection; 

3. emulation of adaptive signal systems; 

4. replication of surveillance and communication functions; 

5. representation of driver behavior in ATMS/ ATIS implementation; 

6. incorporation of safety, energy and environmental impacts; 

7. common databases and interfaces with other models; 

8. interface with data reduction software at a Traffic Control Center; 

9. real time capability; 

10. simulation of Automated Vehicle Control Systems and Automated High­
way Systems. 
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