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Preface

This book seeks to provide a systematic introduction to dynamic trans-
portation network models. Intelligent vehicle highway systems are a major
new motivation for dynamic transportation network modeling; in response,
this book offers important insights into the complexity and challenge of these
problems and their implications for IVHS. The book is not intended, however,
to review classical transportation network models and algorithms. Instead, it
offers a new framework for dynamic transportation network modeling. Thus, it
should serve as a benchmark for assessing future research results. Nevertheless,
the models in this text are not yet fully evaluated and are subject to revision
based on future research.

A summary of the necessary mathematical background, including static
optimization, optimal control and variational inequalities, provides a reference
for transportation engineers involved in ATMIS projects. By understanding the
mathematical requirements of dynamic transportation network problems, the
professional community can appreciate the intensified research effort required
for elaborating this new dimension of transportation science.
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provided valuable encouragement and advice. Professor Mark Daskin, North-
western University, and Professor Warren Powell, Princeton University, con-
tributed numerous valuable comments on many chapters. Professor Floyd Han-
son, University of Illinois at Chicago, taught the first author numerous skills
from supercomputing techniques to advanced optimal control theory. Pro-
fessor Hani Mahmassani, University of Texas at Austin, and Professor Anna
Nagurney, University of Massachusetts at Amherst, provided continuing en-
couragement for our research during the past four years. Ms. Yu-Fang Zhang,
Ms. Piyushimita Thakuriah and Mr. Mark Mathes, University of Illinois at
Chicago, generously helped with the preparation of the manuscript.

The research described here was begun when the first author was a
graduate student at the University of Tokyo; Dr. Toshikazu Shimazaki, Dr.
Masao Kuwahara and Dr. Takashi Akamatsu helped him to begin his research
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continuing support and constructive comments are appreciated. Appreciation
is also extended to Professor Carlos Daganzo and Drs. Steven Shladover, Stein
Weissenberger and Hong K. Lo, University of California at Berkeley, for their
valuable advice and encouragement.

Appreciation is extended to Professors Bruce Janson, University of Col-
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Chapter 1

Introduction

Intelligent Vehicle Highway Systems (IVHS) seek to apply advanced computer,
telecommunication, and information technologies to vehicles, transportation
networks and operational plans, in order to relieve traffic congestion, reduce
travelers’ journey times, improve safety, reduce atmospheric emissions and en-
ergy consumption, and increase the productivity of transportation investment.
Using IVHS technologies, vehicles and the infrastructure will exchange vast
amounts of data back and forth, making possible the warning and avoidance
of congestion or hazardous conditions, the automatic collection of tolls, the
efficient dispatching of trucks and buses, dramatic improvements in safety and
other benefits.

Within the framework of IVHS, Advanced Traveler Information Systems
(ATIS) will provide historical, real-time and predictive information to support
travel decisions; this will in turn influence the travel choices of individuals and
consequently improve the time and quality of travel. Successive generations of
advanced route guidance systems will improve utilization of the overall capacity
of highway and transit systems so as to reduce travel times, congestion and
accidents. By providing early detection of incidents and congestion in the
transportation network, route guidance systems will redistribute traffic among
the available modes and routes when there is excess capacity in some parts of
the road network or shift the departure times of travelers to avoid peak-hour
congestion when no additional road capacity is available. Furthermore, route
guidance systems will provide travelers with accurate, current information on
both transit and road networks so that some motorists can make their own
time-cost tradeoffs and shift to transit, if appropriate.
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1.1 Requirements for Dynamic Network
Modeling

Traditional static network equilibrium models were developed for long range
transportation planning. They are not suitable for analyzing and evaluating
dynamic route guidance systems which need capability to solve transportation
problems in real time (Boyce, 1989). Friesz et al (1989) have analyzed some
of the fundamental properties of dynamic models which are pertinent to such
route guidance systems. At present, there exists little operational capability
to solve large-scale, dynamic network equilibrium models corresponding to the
above technological concepts in IVHS. The broad goal of current research in
this area is to formulate dynamic models which do correspond to the above
objectives, and have some reasonable prospects for solution for large urban
transportation networks on the present or next generation of computers. This
book seeks to contribute to this important goal.

This book aims to present a new generation of dynamic network equilib-
rium models, incorporating dynamic travel choice problems including traveler’s
destination choice, mode choice, departure/arrival time choice and route choice.
These models are expected to be able to function as off-line dynamic travel
forecasting and evaluation tools, and eventually as real-time on-line models of
urban transportation networks. Research on dynamic transportation network
models is evolving very rapidly; a rich set of new formulations and solution
algorithms are presented in this book. The full evaluation of these new models
and solution algorithms is a matter for future research. Moreover, extensions
to problems of location choice remain to be tackled.

We first describe the general dynamic travel choice problem. Travelers
seeking to travel from their current locations to their specified destinations,
and to depart or arrive at specified times, require best modes, departure times
and routings for their trips. These needs could be provided in accordance with
one of several objectives, such as the following:

1. each driver seeks to be routed onto the current best route at each in-
tersection for current traffic conditions, given a specified departure time
(we refer to this type of route choice as minimizing instantaneous travel
time);

2. each driver seeks to minimize his or her actual travel time, given a spec-
ified departure time;

3. each driver agrees to accept a route at his or her specified departure time
that minimizes the travel time of all vehicles traveling during a longer
time period;

4. each traveler agrees to accept a mode, destination, departure time and
route that minimizes the travel time of all travelers, but makes his or her
arrival time as close to a specified target as possible.
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Each of these objectives corresponds conceptually to a proposed route guidance
system.

In addition to ATIS, Advanced Traffic Management Systems (ATMS)
will predict traffic congestion and provide real time optimal control strategies
for freeways and arterials. As one important component of ATMS, dynamic
traffic control systems will respond to changing traffic conditions so as to control
ramp flows to improve the efficiency of freeways, to maintain priorities for high-
occupancy vehicles and to coordinate signal timing strategies across regional
arterial network.

In conjunction with ATIS and ATMS, Advanced Public Transportation
Systems (APTS) is another important component of IVHS. APTS apply ad-
vanced navigation, information and communication technologies that most ben-
efit public transportation. Major benefits are also expected because the appli-
cation of these technologies will attract travelers to transit and ridesharing
modes, thereby reducing traffic congestion, atmospheric emissions and energy
consumption.

Figure 1.1 shows the framework of an integrated APTS/ATMS/ATIS
system. The analysis of such systems is also summarized by Kaysi et al (1993).

Transit Dynamic ( A
Information > Route Guidance »| Traffic Control
Center | System
4
Traffic
v ] .
- - — ~ Surveillance
Traffic Prediction System
M —— T 4
1 Dynamic |1
1 I Travel Choice :
Models
O-D Matrix |/, b v ]
Estimation & § 1 >
Prediction y i Surface
- 1 Fi
) Dynamic / Street é:zg
1% Simulation {'s Control
: Models : :
\___  memeemmo=== J \C J

Figure 1.1: Structure of an Integrated APTS/ATMS/ATIS System

This book seeks to present our recent research findings on formulating
dynamic models which bear a reasonable correspondence to the above objec-
tives. The problems of dynamic travel choice (destination, mode, departure
time, route choice, enroute diversion and parking) are described in a combined
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modeling framework. Using the optimal control theory approach, various dy-
namic travel choice models are formulated for a congested transportation net-
work. If the analysis time period is discretized, these optimal control problems
reduce to nonlinear programming problems. Solution algorithms are presented
for solving some of these problems. Finally some numerical examples illustrate
the properties of these models. In the following, we first analyze the transporta-
tion network models in general. Then, we review the development of dynamic
network models and describe the hierarchy of models in this book.

1.2 Urban Transportation Network Analysis

Existing urban transportation network models or travel choice models can be
classified according to the application purposes: long term and short term. Ur-
ban travel choice modeling activities to support the planning of urban freeway
and transit networks began in the mid-50s. Initially, models were oriented to-
wards the task of evaluating alternative land use patterns and transportation
network proposals. Later, some efforts to consider the optimal design and ex-
tension of land use and transportation networks were undertaken with modest
success. (Boyce et al, 1970).

Urban travel choice models are usually associated with network equilib-
rium concepts. The models for long-term planning purpose are usually static.
Most of the static user equilibrium (UE) models are established to be consistent
with the Wardrop’s first principle (Wardrop, 1952). This principle requires for
used routes between a given origin-destination pair that the route cost equals
the mintmum route cost, and that no unused route has a lower cost. This user
equilibrium has been employed as the key behavioral assumption in most static
urban transportation network models.

The first mathematical programming formulation for the static user equi-
librium problem was proposed by Beckmann, McGuire and Winsten (1956) as
an equivalent optimization problem. Their formulation considered the general
case in which origin-destination flows are determined by a demand function.
The fixed demand case follows immediately from their result. This formula-
tion allows the derivation of existence, uniqueness (in terms of link flows) and
optimality conditions of the solution, satisfying Wardrop’s UE principle. This
model was studied extensively by Dafermos and Sparrow (1969) and efficiently
solved by LeBlanc et al (1975) who used the minimum-cost-route algorithm
to implement the Frank-Wolfe algorithm. Sheffi (1985) gives a comprehensive
account of the static UE problem. More recently, the more general problem
with asymmetric link interactions had been addressed by Smith (1979) and
Dafermos (1980, 1982), as have other variants of the basic formulation. The
asymmetric link interactions require the model to be formulated as a variational
inequality (VI) problem (Nagurney, 1993).

In the category of static user equilibrium models, there are many exten-
sions which incorporate joint trip distribution/mode/route choice (Florian and



1.2. Urban Transportation Network Analysis 5

Nguyen, 1978) and residential location (Boyce, 1980). The above deterministic
models are based on the assumption that drivers have perfect information and
comply with the UE travel choice criterion.

Another important area is stochastic travel choice modeling. The initial
stochastic travel choice model for stochastic network loading was proposed by
Dial (1971) who described a flow-independent logit route choice model. Da-
ganzo and Sheffi (1977) formulated a stochastic user-equilibrium (SUE) route
choice model which is a generalization of the UE criterion, defined as follows:
at SUE, no traveler can improve his or her perceived travel time by unilaterally
changing routes. The SUE models are more realistic than the deterministic
UE models since SUE assumes drivers to have less than perfect information
when choosing routes. Detailed reviews of user-equilibrium models have been
prepared by Friesz (1985), Florian (1986) and Boyce et al (1988).

In addition to models for long term analyses, there are models for short
term purposes, which can be termed dynamic models. Previously, most network
equilibrium models focused on the static description of traffic flows on the
network, implying that flows and travel times are invariant over the duration
of the peak period. In response to the untenable assumption of static traffic
flow over the entire peak period, several models of dynamic route choice have
been proposed. These short term or dynamic models can predict large time-
dependent variations of traffic in a road network and should be able to predict
the travel times of vehicles during their journey. Thus they are appropriate for
the assessment of the impact of IVHS systems on highway network performance.
In the long run, they should be useful in managing the real time operations of
IVHS systems. A comprehensive review of dynamic models is given in the next
section.

In dynamic transportation networks, the traditional traveler behavior
assumption of the static models needs significant revision to consider short
term variations of traffic. Thus, we are no longer considering a day-to-day
traffic equilibrium. Instead, we are trying to influence or control traffic and
travel patterns of travelers optimally by providing accurate traffic information
(such as travel time) and effective traffic control measures. Therefore, we will
no longer use the term “user-equilibrium” for dynamic traffic. Instead, we use
“user-optimal” to represent the objective we are seeking to achieve.

In an ATIS system, there are two kinds of information available to trav-
elers: current and future travel time information. Current travel time informa-
tion can be obtained using the currently prevailing instantaneous link travel
times. Future travel time information can be obtained using predicted link
travel times. We discuss these two kinds of travel times in more detail in
Chapter 4. More generally, both time and cost are considered.

For a dynamic transportation network, the types of control might be
classified as follows: total control; partial control; no control (Lo et al, 1994).
Total control mandates full compliance by travelers; that is, travelers are not
given any choice as to whether they would like to comply or not. Some ex-
amples include traffic signal control at intersections and ramp metering at an
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entrance to a freeway. Partial control tries to actively influence traffic patterns,
but compliance is not mandatory; for example, route guidance from change-
able message signs. By providing information on best routes to travelers, traffic
patterns may be altered and more travellers can be diverted to less congested
routes or time periods. It is up to the travelers themselves to decide whether
to follow the advice. This kind of control is rather flexible. No control pro-
vides real-time traffic information to the travelers, but specific routing is not
proposed for individual travelers. It is entirely up to the travelers themselves
to decide what to do with the information. Current radio broadcasts on traffic
congestion and accident information in metropolitan areas is a simple example
of no control.

Each type of control in the above classification requires a substantial
modeling effort for dynamic traffic analysis and evaluation. The development
of models and algorithms for optimizing flows in real time on transportation
networks will be fundamental to the success of the ATMS/ATIS component of
IVHS. The near term objective of ATMS/ATIS systems is to provide accurate
traffic information, mainly travel time information so that travelers may adjust
their travel patterns individually. In the long run, when more and more trav-
elers are equipped with more mature ATIS systems, the coordination of route
and departure time choices will become crucial. It is in this context that some
of our dynamic network models are proposed.

1.3 Overview of Dynamic Network Models

Dynamic network models can be classified as flow-based models and vehicle-
based models. Flow-based models are based on macroscopic flow equations;
vehicle-based models are based on microscopic movement of vehicles. Flow-
based models are more applicable for large-scale transportation networks, since
mathematical representations and capabilities appropriate for the correspond-
ing dynamic network problems are more suitable.

Vehicle-based models comprise both simulation and optimization mod-
els. INTEGRATION (Van Aerde, 1992) and DYNASMART (Mahmassani et
al, 1992) are examples of simulation models. Ghali and Smith (1993) pre-
sented a set of dynamic network models using packets to represent traffic flows
on links. Their models are basically vehicle-based. Lafortune et al (1991) also
presented an integer-based dynamic system-optimal (DSO) traffic assignment
model.

There have been two stages of development of flow-based dynamic net-
work models. Yagar (1971), Hurdle (1974) and Merchant and Nemhauser
(1978a) were among the first to consider dynamic models for congested traffic
networks. But the assumptions of these models are very limiting and they are
unsuitable for application to general large-scale networks. Important break-
throughs began to occur in the late 1980s when IVHS ignited the potential
applicability of such models to the next generation of surface transportation
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systems.

The study of dynamic route choice models over a general road network
was begun by Merchant and Nemhauser (1978a, 1978b) who presented a dy-
namic system-optimal (DSO) route choice model for a many-to-one network.
Subsequently, Carey (1987) reformulated the Merchant-Nemhauser problem as
a convex nonlinear program which has analytical and computational advantages
over the original formulation. DSO route choice models over a multiple origin-
destination (O-D) network were established by using optimal control theory
(Friesz et al, 1989; Ran and Shimazaki, 1989a). Recently, many simulation-
based DSO route choice models have also been proposed by various researchers,
especially for freeway corridor problems (Chang et al 1993).

An important dynamic generalization of the static UE concept is called
dynamic user-optimal (DUO) route choice. One dynamic user-optimal (DUO)
route choice problem is to determine vehicle flows at each instant of time on
each link resulting from drivers using minimal-time routes. Friesz et al (1989)
proposed a DUO route choice model by considering the equilibration of instan-
taneous unit route costs. Furthermore, a generalized DUO route choice model
over a multiple origin-destination network was presented by Wie, Friesz and
Tobin (1990). In the formulation of some dynamic models (Friesz et al, 1989;
Wie, 1989; Ran and Shimazaki, 1989a), only the inflow into each link at a given
time is defined as a control variable; the exit flow from each link is considered
to be a function of the number of vehicles on that link. If the exit flow function
is nonlinear, it is impossible to establish an optimization model of DUO route
choice for a network for multiple origin-destination pairs. By defining the exit
flow as a control variable, Ran and Shimazaki (1989b) presented a DUO route
choice model which considered the equilibration of instantaneous travel times.
Subsequently, Ran, Boyce and LeBlanc (1993) formulated a set of new instan-
taneous DUO route choice models with flow propagation constraints. Some
of the basic constraints for a dynamic network model were also discussed in
Ran et al (1992a). Among other dynamic network models, Janson (1991) pre-
sented a set of dynamic network models using average link travel time/flow
relationships and proposed a heuristic solution algorithm.

Further studies concern the extension of deterministic dynamic network
models to stochastic dynamic network models. Vythoulkas (1990) developed a
logit-type stochastic dynamic route choice model for a general network. How-
ever, some of the key constraints, such as the flow propagation, are miss-
ing, which results in unrealistic traffic flows under general network conditions.
Cascetta (1991) and Cascetta et al (1993) presented a dynamic stochastic route
choice model for day-to-day route choices using a stochastic process theory ap-
proach. Ran et al (1992) formulated two logit-type stochastic dynamic user-
optimal (SDUO) route choice models considering both instantaneous and actual
travel times for general transportation networks.

Computational issues of dynamic route choice problems have received
increasing attention in recent years. Following Merchant and Nemhauser’s
(1978b) proposal of a conceptual algorithm for solving a single-destination
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DSO route choice model, Ho (1980) solved the same model by successively
optimizing a sequence of linear programs. Subsequently, Ho (1990) presented
a nested decomposition algorithm for the same problem and implemented this
algorithm on a hypercube computer. Ran and Shimazaki (1989) proposed a
time decomposition algorithm to solve a multiple-destination DSO assignment
model. Using the time-space expansion technique, Boyce et al (1991) presented
a Frank-Wolfe algorithm to solve an instantaneous DUO route choice model.
Codina and Barcelo (1991) also applied a time decomposition algorithm to solve
a preliminary DUO route choice model. Janson (1993) solved a combined de-
parture time/route choice problem using a heuristic based on the Frank-Wolfe
algorithm.

The choice of departure time has been addressed by several researchers,
including Abkowitz (1981) and Hendrickson and Plank (1984), who developed
work trip scheduling models. De Palma et al (1983) and Ben-Akiva et al (1984)
modeled departure time choice over a simple network with one bottleneck us-
ing the general continuous logit model. Mahmassani and Herman (1984) used
a traffic flow model to derive the equilibrium joint departure time and route
choice pattern over a parallel route network. Mahmassani and Chang (1987)
further developed the concept of equilibrium departure time choice and pre-
sented the boundedly-rational user equilibrium concept under which all drivers
in the system are satisfied with their current travel choices, and thus feel no
need to improve their outcome by changing to an alternate choice. Friesz et
al (1993) formulated a simultaneous departure time/route choice model using
the variational inequality approach. An overview of our modeling activity in
dynamic departure time, mode and route choices was presented in LeBlanc et
al (1992); in addition, papers presented at various conferences formed the basis
for several chapters of this book.

1.4 Hierarchy of Dynamic Network Models

In this section, we give an overview of the chapters of the book and their inter-
relationships. In Chapter 2, we summarize the basic concepts and principles of
continuous time optimal control theory. This background knowledge provides
a basis for the formulation of dynamic network models in this book. Discrete
time optimal control problems are introduced in Chapter 3. Then, nonlinear
programming (NLP) problems and their similarity to the discrete time opti-
mal control problems are discussed. The conventional Frank-Wolfe algorithm
and diagonalization technique are presented for solving NLP problems. For
more advanced readers, an introduction to variational inequality theory is also
provided.

We began our dynamic network model research from the dynamic route
choice problem, also known as the dynamic traffic assignment problem. Based
on the two types of travel times— instantaneous link travel times and actual
link travel times, two route choice models can be formulated. The relation
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of these dynamic route choice problems is depicted in Figure 1.2. The dis-
cussion of the two types of travel times is given in Chapter 4 together with
all the constraint conditions necessary for dynamic network models. In addi-
tion to flow conservation conditions, flow propagation constraints are especially
emphasized. Other important constraints include link capacity and spillback
constraints.

Dynamic Route Choice Models

N

DSO Route Choice Models DUO Route Choice Models

N

Instantaneous DUO Ideal DUO

\/

Multi-G-roup Combined
Instantaneous/Ideal DUO

v A4
Instantaneous DSUO Ideal DSUO

~,

Multi-Group Combined
Instantaneous/Ideal DSUO

Figure 1.2: A Hierarchy of Dynamic Route Choice Models

In Ran and Shimazaki (1989b), an instantaneous DUO route choice
model that avoids the use of a link exit flow function was presented. Using
the same approach, three instantaneous DUO optimal control models are pre-
sented in Chapter 5. The trip pattern is assumed to be known e priori in
the dynamic route choice problem. We define a decision node for each route
between each O-D pair as any node on that route including the origin. The
instantaneous route travel time between a decision node and the destination
node is calculated by using the currently prevailing link times. The instanta-
neous DUO route choice problem is to determine vehicle flows at each instant
of time on each link resulting from drivers using minimal-time routes under
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currently prevailing travel times. The instantaneous DUO route choice model
is formulated using the optimal control theory approach. These models are
fundamentally different from earlier DSO and DUO route choice models by:

1. using a different definition of DUO;

2. employing exit flows as a set of control variables rather than functions;
3. including new formulations of the objective function;

4. including a formulation of flow propagation constraints.

In Chapter 6, the continuous time formulation of the DUO route choice program
is transformed into a discrete time NLP formulation. Since the model is convex,
the discrete version should be efficiently solvable for the optimal solution for
large networks. We present a new algorithm for solving this NLP in Chapter
6. It is solved by the Frank-Wolfe technique embedded in a diagonalization
procedure. In the diagonalization procedure, the estimated link travel times are
updated iteratively and the Frank-Wolfe technique is applied in each iteration
to solve the resulting NLP. For the linearized Frank-Wolfe subproblem, an
expanded time-space network is constructed so that the subproblem can be
decomposed according to O-D pairs and can be viewed as a set of minimal-cost
route problems. Flow propagation constraints representing the relationship
between link flows and travel times are satisfied in the minimal-cost route
search so that only flow conservation constraints for links and nodes remain.
The proposed formulation has computational advantages since the gradient
vector of the objective function with respect to the control and state variables
is always nonnegative which allows for much more efficient minimal-cost route
calculations. Preliminary computational results from applying the algorithm
to a test network are reported.

In Chapter 7, we propose another concept of DUO route choice which
reflects ideal route choice behavior of travelers. The formulation of the ideal
DUO route choice problem is based on the underlying choice criterion that
each traveler uses the route that minimizes his/her future (actual) travel time
when departing from the origin to his/her destination. Thus, for any O-D pair,
vehicles departing the origin at the same time must arrive at the destination
at the same time under ideal DUO route choice conditions. In this chapter, an
optimal control program of ideal DUO route choice model is presented. A solu-
tion algorithm based on a penalty and diagonalization/Frank-Wolfe algorithm
is presented.

In Chapter 8, we consider two stochastic dynamic user-optimal (SDUO)
route choice models which are stochastic extensions of our- previous determin-
istic DUO route choice models. The formulation of the instantaneous SDUO
route choice problem is based on the underlying choice criterion that each trav-
eler uses the route that minimizes his/her perceived instantaneous travel time
when departing from any decision node to his/her destination. The solution
of this instantaneous SDUO model results in instantaneous stochastic network
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flows at each decision node based on a logit function of mean (measured) in-
stantaneous travel times of alternative routes. In parallel, we present an ideal
SDUO route choice model based on stochastic flows with a logit function of
mean future travel times experienced by drivers over alternative routes for
each O-D pair.

In Chapter 9, we first discuss solution algorithms (DYNASTOCH) for
flow-independent instantaneous SDUO and ideal SDUO route choice problems.
These algorithms are very similar to STOCH algorithm proposed by Dial (1971)
for static logit-type assignment. Then, we use the diagonalization technique
and DYNASTOCH to solve our instantaneous SDUO and ideal SDUO route
choice problems. One important advantage of these algorithms is that route
enumeration is avoided.

Next we study a joint dynamic departure time and route choice prob-
lem in Chapter 10. In this problem, travelers’ departure times can be shifted
based on origin-destination travel times corresponding to each possible depar-
ture time. This problem, then, is to determine travelers’ departure times and
choose their best routes at each instant of time. We present a bilevel pro-
gramming formulation of this DUO departure time and route choice problem.
The model extends our previous DUO model to the case where both departure
time and route over a general road network must be chosen. Our lower-level
program solves the DUO departure time choice problem, and our upper-level
program solves the DUO route choice problem. The optimality conditions of
the bilevel program demonstrate that our formulation is consistent with the de-
sired DUO departure time and route choice properties. We suggest a heuristic
algorithm for solving the bilevel program (the upper problem can be solved ex-
actly). A numerical example illustrates that total travel time can be decreased
by choosing appropriate departure times.

In Chapter 11, a combined DUO mode/departure time/route choice
model with multi-class travelers is presented for a general transportation net-
work. Our model extends the dynamic user-optimal departure time/route
choice conditions to include mode choice as well. The model extends the earlier
combined departure time/route choice model to the case where dynamic traf-
fic flows by different modes affect other modes’ costs. By formally stratifying
travelers into different groups, an accurate analysis of the time-cost tradeoff in
mode choice is possible. This model presents a two-stage non-hierarchical pro-
gramming formulation of this DUO mode/departure time/route choice prob-
lem. The first-stage program solves the dynamic mode choice problem. Simul-
taneously, the second-stage program represents a hierarchical leader-follower
program which solves the DUO departure time and route choice problem for
motorists. The optimality conditions of the two-stage program demonstrate
that our formulation is consistent with the DUO mode/departure time/route
choice conditions. The hierarchy of dynamic travel choice models is summa-
rized in Figure 1.3.

In Chapter 12, we extend our dynamic network models to a broader
framework using the variational inequality (VI) approach. We first discuss
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instantaneous DUO route choice problems and formulate route-based and link-
based VI models for single group and multi-group travelers. The link-based
models are computationally more tractable than the route-based models. The
relationship of VI models and optimal control models is also investigated. We
show that the optimal control models in Chapter 5 are special cases of general
VI models.

In Chapter 13, both route-based and link-based VI models for ideal DUO
route choice problems are formulated, and their relationship to optimal control
models is investigated. We show that VI models can be reformulated as optimal
control models under relaxation and solved using the diagonalization/Frank-
Wolfe algorithm. General VI formulations for joint departure time/route choice
problems are presented in Chapter 14; both route-based and link-based VI
models are discussed for this joint dynamic travel choice problem. We show
that VI models can be reformulated as optimal control models under relaxation.

In Chapter 15, a set of DSO route choice models are formulated. For
comparison, we discuss in detail a DSO route choice model which minimizes
total travel time under the same set of constraints as the instantaneous DUO
route choice models in Chapter 5. Subsequently, a set of DSO route choice mod-
els with elastic departure times are discussed. Specifically, the time-minimizing
problem is emphasized in the context of emergency evacuation. Furthermore,
two types of dynamic congestion pricing schemes are presented.
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In order to implement the above dynamic network models in realistic ur-
ban transportation networks, we investigate time-dependent travel time func-
tions for signalized arterial and freeway segment links in Chapter 16. Dynamic
link travel times are first classified according to various applications. Subse-
quently, travel time functions for arterial links with longer and shorter time
horizons are discussed separately, and two sets of functions are recommended
for dynamic transportation network problems. Implications of those functional
forms are analyzed and some modifications for dynamic network models are
suggested. In addition, based on dynamic link travel time functions, we discuss
how many independent variables are necessary to describe the temporal traffic
flow and properly estimate the time-dependent travel time over an arterial link.
As a result, six link flow variables and corresponding link state equations are
proposed as the basis for formulating dynamic transportation network mod-
els. Finally, time-dependent travel time functions for freeway segment links
are recommended.

Various implementation issues are discussed in Chapter 17. Among those
issues, we focus on the following items: dynamic traffic prediction; dynamic
traffic control; incident management; dynamic congestion pricing; operations
and control for automated highway systems (AHS); dynamic transportation
planning. The application of dynamic network models to these tasks is dis-
cussed specifically. In addition, we analyze how these models can serve oper-
ating and evaluation functions in IVHS systems. The detailed requirements of
IVHS systems for dynamic network models are also identified. Subsequently,
we discuss data needs of dynamic network models to accomplish the above im-
plementation tasks. The following items are identified as the most important:
time-dependent O-D matrices; network geometry data and intersection/ramp
control data; traffic low data for calibrating various dynamic link travel time
functions; traveler information for stratifying travelers into multiple groups and
calibrating travel disutility functions.

The flowchart of the logical sequence of this book is shown in Figure
1.4. Throughout this book, the main emphasis is on dynamic travel choice
models formulated using the optimal control theory approach. For dynamic
route choice problems, we extend deterministic models to stochastic models
(Chapters 8 and 9). Then, we discuss more general VI formulations for both
route choice and departure time choice problems in Chapters 12-14. Thus, for
readers who are not familiar with dynamic transportation network models, op-
timal control models (Chapters 4-7) may be the most interesting. For advanced
readers, Chapters 8 and 9 as well as Chapters 12—-14 provide a broader picture
of models and a good starting point for future research. In general, Chapters
1-7 can be used as a classroom reference for advanced transportation network
courses, especially for those with a strong IVHS orientation.
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1.5 Notes

The success of ATMS/ATIS systems depends on development and successful
applications of advanced transportation models and control models. This field
will need to develop models and algorithms that use real-time data to determine
optimal control strategies of traffic. They must enable real-time management
of traffic while accommodating both pre-trip planning and en route travel plan
modification. They must also provide the means of evaluating the benefits
of various aspects of IVHS. Technologies that are likely to be useful include
artificial intelligence, expert systems and parallel computing. Traffic modeling
for ATMS/ATIS includes:

1.
2
3
4.
5
6

7.

travel forecasting models;

. optimal routing methods;

. support systems for traffic management centers;

dynamic route choice models;

. traffic simulation models;

. network-wide optimization programs;

driver/traveler behavior models (human factors).

In addition, developments in traffic modeling should take into account multi-
modal travel requirements, such as HOV or public transit, and should also
include the development of the following capabilities:
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1. real-time, traffic-adaptive logic for signal control;

2. real-time, traffic-adaptive logic for freeway control, including ramp and
possibly mainline metering;

3. real-time integration of freeway and surface street control;
4. transit and emergency vehicle priorities.

Research into each of the above tasks is a long term effort. This book
is intended to provide a framework and some background knowledge to study
and investigate the above complicated application problems. We developed
those dynamic network models bearing the above tasks in mind. Nevertheless,
application of dynamic network models in IVHS is still premature. The main
concerns for dynamic network models which prevent their large-scale applica-
tions include:

1. accurate representation of traffic propagation and travel time functions
for links;

2. accurate representation of travel choice behavior;
3. validation of models using real-time data.

However, extensive potential applications of dynamic network models can be
expected in future ATIS/ATMS systems, including dynamic route guidance,
freeway ramp control, arterial signal optimization/coordination and automated
highway, etc. We expect to summarize those applications in a subsequent book.



Chapter 2

Continuous Optimal Control
Problems

Optimal control theory has been extensively used in solving many engineering
problems, such as in mechanical engineering and aeronautics engineering. Its
application in transportation engineering has been limited to traffic signal con-
trol on surface streets and ramp metering control on freeways. Recently, with
the rapid advance of supercomputing facilities and techniques, solution of op-
timal control theory formulations of large-scale problems has become feasible.
Therefore, the application of this approach to dynamic transportation network
modeling is attractive. The objective of conventional optimal control theory is
to determine optimal control strategies that will cause a process to satisfy the
physical constraints and at the same time minimize or maximize some perfor-
mance criterion. In this book, we will use optimal control theory to formulate
and analyze time-dependent transportation network problems. Those optimal
control models have many similarities with the optimization models for solving
static counterparts of these problems which are formulated and solved using
nonlinear programming theory.

In this chapter, we review some basic concepts of optimal control theory,
which are sufficient to provide a basis for formulating dynamic transportation
network models and analyzing the conditions necessary for the existence of an
optimal solution. In Section 2.1, we present definitions which are associated
with any optimal control problem. In Section 2.2, we discuss optimal con-
trol problems assuming that the admissible controls are not bounded (no con-
straints) and derive the corresponding necessary conditions. These necessary
conditions are then employed to find the optimal control law for the impor-
tant linear regulator problem. Furthermore, Pontryagin’s minimum principle
is introduced as a generalization of the fundamental theorem of the calculus of
variations.

In Section 2.3, optimal control problems with general bounded control
and state variables are discussed. For problems with bounded control and state
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variables, we discuss a generalization of Pontryagin’s Minimum Principle and
the corresponding partial differential equations of the necessary (optimality)
conditions derived using a general Hamiltonian function. In Section 2.4, we
discuss some optimal control problems with simple constraints on control and
state variables. These optimal control problems will be used in the analysis
of dynamic transportation network models in later chapters. In Section 2.5,
bilevel optimal control problems are discussed; here we are concerned with
interrelationships between two interdependent optimal control problems.

2.1 Definitions for Optimal Control Theory

The basic theory of optimal control is derived from the calculus of variations.
Compared with the calculus of variations, optimal control theory has many
advantages in solving time-dependent optimization problems. It also has many
similarities with static optimization problems, such as nonlinear programming
(NLP) theory. We will discuss these relationships in detail in Chapter 3.

Before presenting the optimality conditions for the optimal control prob-
lem, we introduce some basic definitions. The formulation of an optimal control
problem is associated with a time-dependent process or system and requires the
following;:

1. a mathematical representation of the process to be controlled or to be
optimized;

2. a statement of the physical constraints;
3. specification of a performance criterion or an objective function.

Dynamic Process/Dynamic System

The modeling of a dynamic process seeks to obtain the simplest mathematical
description that adequately predicts the response of the physical system to all
anticipated inputs. We restrict our discussion to systems described by ordinary
differential equations. We define

z1(t), z2(t), - -+, 2a(2)
as the state variables (or simply the states) of the process at time ¢, and
u1(t), uz(t), -+, um(?)

as the control variables (or the controls) to the process at time ¢. The system or
process may be described by n first-order differential equations, where #;(¢) =

d:c;(t)/dt:
21(t) = flz1(), 22(t), - -, 2 (t), ua(2), ua(t), - - -, um(t), 1]

2(t) = fale1(t), 22(2), - - -5 2 (2), wa(2), wa(t), - - -y um(t), 1]
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(2.1)

En(t) = falz1(t), z2(t), -+, 2n(t), ur(t), uz(t), -+ - um(t), ]

We define the state vector of the system as

o) T
mz(t)
x(t) = :
[ za(t)
and the control vector as
C () ]
ua(t)
u(t) = :
[ um(t) |
The state equations can then be written in vector notation as
x(t) = £[x(t), u(?), ] (2.2)

where f is also a vector.
State Variables

The starting point for optimal control investigations is a mathematical model
in state variable form. Why are state variables used in control problems?
Formulating a mathematical model in state variable form is convenient because:

1. the concept of state has a strong physical motivation;

2. the state variable form is easy to use in theoretical investigations and the
resulting differential equations are suitable for digital or analog solution;

3. the state form provides a unified framework for the study of nonlinear
and linear systems.

Referring to the state of a system, we have the following definition:

Definition 2.1 The state of a system i3 a set of quantities z1(t),
zo(t), -+ -, zn(t) which, if known att = 0, are determined fort > 0
by specifying the inputs to the system fort > 0.
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System Classification

Systems are described by the terms linear, nonlinear, time-invariant and time-
variant (explicit function of time). We shall classify systems according to the
form of their state equations. For example, if a system is nonlinear and time-
variant, the state equations are written as

x(t) = £x(t), u(t), 4 (2.3)

When the system does not depend on time ¢ explicitly, a special form of the
above nonlinear dynamic systems is represented by equations of the form

x(t) = fx(t), u(?)] (2.4)

which is time-invariant. Many dynamic transportation network problems have
time-invariant state equations. If a system is linear and time-invariant, its state
equations are

x(t) = A()x(t) + B(t)u(t) (2.5)

where A(t) and B(t) are n x n and n X m matrices with time-dependent ele-
ments. State equations for one special type of linear dynamic systems have the
form

x(t) = Ax(t) + Bu(?) (2.6)

where A and B are constant matrices.
Performance Measure/Objective Function

In order to evaluate the performance of a system quantitatively, the system
controller needs to select a performance measure or an objective function. An
optimal control is defined as one that minimizes (or maximizes) this objec-
tive function. In certain cases, the objective function may be self-explanatory,
whereas in other problems the objective function may be artificial. For exam-
ple, the statement,“To minimize the total travel time over a traffic network,”
clearly indicates that the objective function is defined from a system point of
view. On the other hand, the statement, “To achieve equal minimal travel
times over each used route for each O-D pair,” does not directly suggest an
objective function. In such a problem, the modeler may need to design an
artificial objective function so that the resulting optimization conditions of the
optimal control program represent desired physical properties. However, such
an objective function may not have any direct physical interpretation. We shall
discuss the definition of an objective function in more detail in the following
chapters for various dynamic network problems.

In the following, we assume that the performance of a system can be
evaluated by a measure J of the form

J= /0 " Plx(t), u(0), 1] dt 4+ SE(T), T] @2.7)
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where 0 and T are initial and final times; F' and S are scalar functions. T may
be pre-specified or changeable according to the problem requirement. If T is
changeable, it is termed “free”. F is a cost term that depends on the state and
control variables at any time t. S is associated with final state x(T') and the
final time T. It is sometimes termed a salvage cost in economics.

Starting from the initial state z(0) = =z, assigning values to control
variables u(t) for ¢t € [0,T] will cause a system to achieve some value for each
state variable. The sequence of values achieved by each state variable through
time is termed a state trajectory. Minimization of the objective function with
respect to the control variables assigns unique real values to each trajectory of
the system so that some optimal controls can be found.

We now present an explicit statement of the optimal control problem
(OCP). First, some definitions of various forms of optimal controls are pre-
sented.

Definition 2.2 If a functional relationship of the form
u'¢) = £[x(t), 4 (2.8)

can be found for the optimal control at each instant of time t, then
the function £ i3 called an optimal control law.

Notice that equation (2.8) implies that f is a rule which determines the optimal
control at time ¢ for any admissible state value at time ¢. For example, if

u*(t) = G x(t) (2.9)

where G is an m x n matrix of real constants, then we say that the optimal
control law is linear and time-invariant.

Definition 2.3 If the optimal control is determined as a function
of time for a specified initial state value, i.e.,

u*(t) = e[x(0),1] (2.10)
then the optimal control is said to be in open-loop form.

Thus, the optimal open-loop control is optimal only for a particular initial state
value. In other words, if the optimal control law is known, the optimal control
history starting from any initial state value can be generated.

Conceptually, it is helpful to imagine the difference between a closed-
loop optimal control law and an open-loop optimal control law as shown in
Figure 2.1. Although engineers normally prefer closed-loop solutions to optimal
control problems, there are cases when an open-loop control may be desirable.
For example, in radar tracking of a satellite, once the orbit is set, very little
can happen to cause an undesired change in the trajectory parameters. In this
situation a pre-programmed control for the radar antenna might well be used.
However, in dynamic transportation network problem, it is hard to find an
open-loop control in general. Thus, open-loop optimal control is not our major
focus.
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I u(t) x(t)

CONTROLLER | PROCESS

Closed-Loop Optimal Control

I+ u*(t) x(t)

CONTROLLER [———){ PROCESS
Q » Opens at time 0

Open-Loop Optimal Control

Figure 2.1: Closed-Loop and Open-Loop Optimal Controls

Definition 2.4 If the optimal control is determined as a function
of the state variable only, i.e.,

u*(t) = f[x(¢)] (2.11)
then the optimal control i3 an optimal feedback control.

A typical example of feedback control is the classic servomechanism problem
where actual and desired outputs are compared and any deviation produces
a control signal that attempts to reduce the discrepancy to zero. In dynamic
transportation network problems, there are many applications of such a control
law.

With the above basic definitions in mind, we begin our discussion of
optimal control problems in next three sections. First, we present the simplest
form of optimal control problem which has no constraints on state and control
variables.

2.2 Continuous Problems with No Constraints
In this section, we mainly present two types of optimal control problems which

differ from each other by the specification of either a fixed end time or a free
end time.
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2.2.1 Fixed Beginning and Fixed End Times

We now consider a dynamic system having a cost function F[x(t), u(t),t] for
a fixed time period [0,7]. The optimal control problem is to seek a control
function u which is feasible, or admissible, in order to minimize the objective
function as follows:

T
min J = / Flx(t), u(t), ] dt + S[x(T), T] (2.12)
. 0
s.t.
x(t) = £[x(t), u(t), ] (2.13)
T and x(0) = x, fixed; x(T') free (2.14)

where F[x(t), u(t),t] has continuous partial derivatives with respect to x(¢) and
S[x(T), T] has continuous partial derivatives with respect to x(T).

We use the method of Lagrange multipliers to adjoin the system differ-
ential state equations to the objective function, which gives

T
I = / {FIx(t), u(t), f] + At) [E[x(2), u(t), ] - %()]} dt
+ Sx(T),T] (2.15)

where A(t) is a vector of Lagrange multipliers associated with the dynamic state
equations. It is standard in optimal control theory to designate the major part
of the integrand of equation (2.15) as the Hamiltonian,

H = Flx(t),u(t), t] + A@) f[x(¢), u(t), 1] (2.16)

Then, the first-order necessary conditions for the optimal control problem may
be summarized as follows: '

OH_ _ OF[x(t), u(t), ] of[x(t), u(t), ] _

@ - ouw DT g 0 (2.17)
—A(t) = ai"é) _ BF[xgt’z&tl;(t),t] + A(t)af_[xg%)(ﬁ,i] (2.18)
(1) = gy = TBx(0),u(t), (2.19)

x(0) = xo (2.20)

AT) = g_s([;cx(_(:r_i’?),T] (2.21)

Equations (2.19) and (2.20) are simply the restatement of state equation
(2.13) and boundary condition (2.14). Equations (2.20) and (2.21) are termed
the transversality conditions which constitute two-point boundary conditions
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for the set of differential equations. The above first-order necessary condi-
tions are derived using Pontryagin’s Minimum (or Maximum) Principle or the
Hamilton-Jacobi equation. The Pontryagin’s Minimum Principle can simply
be stated as follows. The inequality

Hlu*(t)] < H[u(?)] (2.22)

is valid for all admissible u(t), where x represents that the solution is optimal.
Sometimes, we directly use this principle to analyze complicated optimal con-
trol problems. It is also interesting to compute the total derivative with respect
to timet as

dH oF oF
T m*“ﬂam+(%aﬁ+(ﬂam+(%aJ
+ A@)f+ A(t)a (2.23)

Now, we consider that equation (2.17) may or may not hold. Substituting
equations (2.17) and (2.19) into equation (2.23), we obtain

dH OF . oH

=5 g + MO, (2.24)

Thus, if F' and f are not explicit functions of time #, the Hamiltonian is constant
along an optimal trajectory where 8H/0u = 0. It can be shown that this is true
along an optimal trajectory, even if we cannot require 8%/8u = 0. Therefore,
the following additional condition holds

dH
dt
when F and f are not explicit functions of time. This is an important result

which we will use in later developments. In the following, we discuss a special
problem using the above first-order necessary conditions.

=0 (2.25)

The Linear Regulator

We now study a particular optimal control problem which has its solution as a
linear feedback control law. The typical problem is stated as follows. We have
a linear differential system

x(t) = A(t) x(t) + B(t) u(?), x(0) = xo (2.26)
and wish to find the control which minimizes the objective function
T
= %/0 [(x(¢) Q@) x(t) + u(?) R(¢) u(?)] dt + %X(T) Wx(T) (2.27)

Without loss of generality, we assume Q(t), R(t) and W are symmetric ma-
trices. We may solve this problem using the first-order necessary conditions or
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the Minimum Principle. The Hamiltonian is

Hix(t),u(®), M) f] = 3x(t) Q) x() + yu(t) R(t) u()
+ AM®) AW x() FAO B u@)  (2.28)

Application of the first-order necessary conditions requires, for an optimal con-
trol, that

oH

m =0=R(t) u(®) + A(t) B(t) (2.29)
and
5%—) = _A®) = Q(t) x(2) + A(t) A) (2.30)
with the boundary condition
A(T) = % =W x(T) (2.31)

Thus, from equation (2.29), we require that
u(t) = —R™1(t) B(t) A¥) (2.32)

We shall inquire whether we can convert this to a closed-loop control by as-
suming that the solution for the Lagrange multiplier is similar to equation
(2.31)

A(t) = P(¢) x(t) (2.33)

where P(t) is a symmetric matrix, with n x n time-dependent elements. If we
substitute relation (2.33) into equations (2.26) and (2.32), we must require

x(t) = A(t) x(t) — B(t) R™1(t) B(t) P(t) x(¢) (2.34)
Also, from equations (2.33) and (2.30), we require that
A(t) = P(t) x(t) + P(¢) x(t) = —Q(t) x(t) — A(t) P(t) x(t) (2.35)
Combining equations (2.34) and (2.35), we obtain
[P(t) +P(t) A(t) + A(t) P(2)
~ P@)BORM)BOPH+ QW] x)=0  (2.36)

Since this equation must hold for all nonzero x(t), the term premultiplying x(#)
must be zero. Thus, the P(t) matrix, which must satisfy equation (2.36), is
called the Riccati matrix equation, and must be positive definite, so that

P(t) = —P(t)A(t) — A()P(t) + P()B(t)R-1()B()P(t) — Q(t) (2.37)
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with a boundary condition given by equations (2.31) and (2.33), stated as
P(T)=W (2.38)

Thus, we may solve the Riccati matrix equation backward in time from T to
0 and obtain P(t). The solution for P(¢) will be illustrated in Example 2.2.1
below. Define the matrix K(t) as

K(t) = ~R~1(t) B(t) P(t) (2.39)

Combining equations (2.32), (2.33) and (2.39), we obtain a closed-loop control
of the form

u(t) = K(t) x(2) (2.40)

Q(t), R(t), and W must be at least positive semidefinite in order to establish
the sufficient condition for a minimum. In addition, we know from equation
(2.32) that R(¢) must have an inverse; therefore, it is sufficient that R(t) be
positive definite and the Q(¢) and W be at least positive semidefinite. A de-
tailed discussion on sufficient conditions is not given in this book. Interested
readers should refer to the notes at the end of this chapter.

Example 2.2.1. Find the feedback optimal control law for the scalar system
z.= z(t) + u(t), z(0) = zg (2.41)
to minimize the objective function

J= % /0 " B0dt +2 (T (2.42)

The state and control variables are unconstrained. The final time T is specified
and z(T) is free.
Raccati equation (2.37) and boundary condition (2.38) become

B(t) = —2p(t) + P*(t), p(T) =4 (2.43)
Solving the above differential equation, we obtain the solution
2
p(t) = T @iy (2.44)
Thus, using equation (2.39), we have
K(t) = ~R~0) B() P() = ~——aroarsy (2.45)

The optimal feedback control law is

u(t) = K(t) z(t) (2.46)
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2.2.2 Fixed Beginning and Free End Times

We consider an optimal control problem with a fixed beginning xo and a free
end time T. But we have additional constraints for the final state x(T") and
final time T as follows

N[x(T), T]=0 (2.47)

This kind of free end time conditions has several practical implications. Some
system-optimal problems fall into this category of problems. One typical ex-
ample is a system-optimal problem which has an objective function of reducing
the total travel time subject to a fixed amount of traffic within an area at end
time T. The optimal control problem is presented as follows:

T .
min J = / Flx(t), u(?), 8] dt + S[x(T), T| (2.48)
) 0
s.t.
x(2) = £[x(t), u(?), 1] (2.49)
x(0) = xo, N[x(T),T] = 0 (2.50)
T free (2.51)

where F[x(t),u(t),t] has continuous partial derivatives with respect to x(t)
and u(t), and S[x(T), T] and N[x(T'), T] possess continuous partial derivatives
with respect to x(T).

As before, we use the method of Lagrange multipliers to adjoin the
system differential state equations to the objective function, which gives

I = / {Flx(t), u(t), f] + M) [£[x(2), u(t), f] - x(2)]} dt
+ S[x(T), T] + v»(T) N[x(T), T| (2.52)

where A(t) and v(T') are vectors of Lagrangian multipliers associated with the
dynamic state equations and constraints for states at end time T', respectively.
As before, we define a scalar function, the Hamiltonian, as

.7'{ = Flx(t),u(t), T]+ A(@®) £f[x(?), u(t), ] (2.53)
We also define another scalar function as
OIX(T), ¥(T), T] = S[x(T), T] + v(T) Nx(T), ] (2.54)

Then, the first-order necessary conditions for the optimal control problem may
be summarized as follows:

oM _ OF[x(t)ut)t] . . Offx(t)u(t)
=" e - O (2.55)



28 Chapter 2. Continuous Optimal Control Problems

x(t) = 5‘% £[x(t), u(?), 1] (2.57)
x(0) = %o (2.58)

00 _ 8S[x(T),T] ON[x(T), T)

A =5 = “oxm YD oxm (2.59)
oM
T(T) =0= N[X(T), T] (2.60)
(@), (@), A@), 1) + BEDTEDT g (5

These represent 2n differential equations for the two-point boundary value
problems. Equations (2.58)-(2.61) are termed transversality conditions. Sup-
pose boundary condition (2.60) has ¢ equations and there are n state equations.
Then, equation (2.59) provides n conditions with ¢ Lagrange multipliers v(T')
to be determined. Equation (2.60) provides g equations to eliminate the La-
grange multipliers 2(T'), and equation (2.61) provides one additional equation
which is used to determine the unspecified end time T

2.3 Continuous Problems with Equality and
Inequality Constraints

In this section, we consider optimal control problems with nonlinear equality
and inequality constraints on state and control variables. Those constraints can
represent most practical constraints in realistic applications. The set of equality
constraints for control and state variables are denoted as Glu(t),x(t),t] = 0
and the set of inequality constraints are denoted as K[u(t),x(t),t] > 0. We
assume G and K are continuous and differentiable with respect to u, x and t.

2.3.1 Fixed Beginning and Fixed End Times

We first consider an optimal control problem with a fixed beginning xo and
fixed end time T. The optimal control problem is formulated as follows

T
min 7= /0 Flx(t), u(?), f}dt + S[x(T), ] (2.62)
s.t.
d’c‘l(t) = f[u(t), (), 1] (2.63)
Glu(t),x(t),t]=0 (2.64)
Kfu(t), x(t),] < 0 (2.65)

x(0) =xo, T fixed. (2.66)
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Denote the Lagrangian multipliers associated with equations (2.63)-(2.65) as
A(t), o(t) and n(t), respectively. We construct the augmented Hamiltonian H
for the above optimal control problem as

Moo= Flx(t),u(t), ]+ A) flu(t), x(t), 1
+ ot) Glu(),x(t), 1]+ n(t) K[ut), x(t), 1 (2.67)

where

(t) >0 ifK=0
n =0 fK<0

The first order necessary conditions for the optimal control program are

oH _  OF[x(t),u(t),?] of[u(t), x(t), t]

au@) 0 T e T B
PSS CR DX AL XX R
\ _ oH — aF[x(t)a u(t)st] af[x(t)vu(t)st]
—A®) = ox(t) ax(t) +A) ax(t)
N "(t)?‘q[u;gi)(’—“;;(t)’t] L n(t)%m (2.69)
x(t) = % = £x(t), u(t), 1] (2.70)
oH
5o = 0 = Clu),x(t), 4 2.71)
oM
D) = Ku(?), x(t),tf] > 0 (2.72)
x(0) = Xo (2.73)
AT) = ﬂ;((%’—ﬂ (2.74)

Equations (2.68)-(2.69) are similar to equations (2.17) and (2.18) except the
additional terms resulting from equality and inequality constraints on the con-
trol and state variables. Equation (2.70) is a restatement of the state equation
(2.63). Equations (2.71)-(2.72) are restatements of the equality and inequality
constraints. Equations (2.73)-(2.74) are two-point boundary conditions.
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2.3.2 Fixed Beginning and Free End Times

We now consider an optimal control problem for a time period [0, T'] where the
end time T is free. This optimal control problem is presented as follows:

T

r)rculrlx J :/ F[x(t),u(t),t] dt + S[x(T), T] (2.75)
) 0
s.t.

x(t) = f[x(t), u(t),] (2.76)
Glu(t),x(t),t]=0 (2.77)
Ku(t),x(t),t] < 0 (2.78)
x(0) = xo (2.79)
N[x(T),T]=0 (2.80)
T free (2.81)

where N[x(T'), T] possess continuous partial derivatives with respect to x(T).
We construct the augmented Hamiltonian H for the above optimal control
problem as

H o= Flx(t),ut), ]+ A(t) flu(t), x(t), 1
+ o(t) Glu(®), x(t), ]+ n(t) Klu(t), x(t), 1 (2.82)

t) >0 fK=0
M) Zo itK<o

and A(t), o(t) and n(t) are vectors of Lagrangian multipliers associated with
the dynamic state equations and constraints for state and control variables.
We define another scalar function as

where

Olx(T), ¥(T), T] = SIX(T), T] + 1(T) Nx(T), ] (2.83)

where v(T) is a vector of Lagrange multipliers associated with constraints for
states at end time T'. Then, the first-order necessary conditions for the optimal
control problem may be summarized as follows:

OH _ OF[x(t), u(t), ] of[u(t), x(t), t] _
Bu@) -0 T O I ™)
+ o) BG[u;fl)(,tJ)((t),t] n(t) BK[uE(;l)E:;(t),t] (2.89)
oM oF[x(t)u(),1] Of[x(t), u(t), 1
A =5m = ax@ T
b on?CROO KO,

x) T %@
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x(t) = % = £[x(£), u(t), 1 (2.86)
oM
5egsy = 0 = Clu(®), x(t).4 (2.87)
oM
5o = Klu(®), x0), 1 <0 (2.88)
x(0) = xo (2.89)
A(T) = aigr) - ‘955;(2)’71 +u(T) —aN{[;;((";))’ 7] (2.90)
N[x(T), T] = 0 (2.91)
Hix(@), u(@), \D), 7]+ ZEOT ) TED T _ o (3.9

Equations (2.84)-(2.85) are 2n differential equations for the two-point bound-
ary value problems. Equations (2.86)-(2.88) are simply the restatement of
state equation (2.76) and constraints (2.77)-(2.78). Equations (2.89)-(2.92) are
boundary or transversality conditions. Equation (2.90) provides n conditions
with ¢ Lagrange multipliers to be determined. Equation (2.91) provides ¢ equa-
tions to eliminate the Lagrange multipliers, and equation (2.92) provides one
additional equation which is used to determine the unspecified end time T'.

Bang-Bang Control and Minimum Time Problem

We now discuss a special case of the free end time problem — the Bang-Bang
control and minimum time problem. This problem has potential applications
in evacuation purposes, which are important for managing traffic congestion in
emergencies.

In a variety of applications, maximum effort control problems have be-
come increasingly important. It is natural to ask under what circumstances
optimal controls will always be at maximum effort, or Bang-Bang. To do this,
we restrict each component of the control vector, u(t), to some bounded interval
as follows:

a; <ui(t)<by, Vi (2.93)

where a; and b; are lower and upper bounds, respectively. We also consider
a nonlinear differential system where the control enters in a linear fashion as
follows:

x(t) = f[x(), t] + g[x(t), ] u(?),  x(0) =x0 (2.99)

We consider an objective function which contains only linear terms in control
variables. The objective function is as follows

T
7= [ {Flx(t),0+ Blx(t), 1 w(®)} dt + SEe(T), 7] (2.95)
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Thus, the Hamiltonian will also be linear in u(t). It follows that

H[x(t),u(t), A(t),t] = F[x(¢),t]+h[x(t),t] u(?)
+ (@) {£[x(2), ] + g[x(¢), t] u(t)}
= F[x(t),t] + A@®)f[x(2),1]
+ {h[x(t),t] + A(t)g[x(t),t]} u(t)  (2.96)

Since the Hamiltonian is linear in the control vector, u(t), minimization of the
Hamiltonian with respect to u(t) requires that

u;i(t) = { a; if { h(x(?),t]+ A(t)g[x(t),t]}; > 0
' b if { h[x(t),7] + A(t)g[x(t),1]}i < 0

Thus, when the control vector appears linearly in both the state equa-
tion and the objective function, and each component of the control vector is
bounded, the optimal control is Bang-Bang. We call the above criterion the
Bang-Bang control rule. The only exception to this occurs in the case where

hx(t), ] + A(t) glx(z), 1] = 0 (2.97)

Then the Hamiltonian is not a function of u(t) and can not be minimized with
respect to u(t). When equation (2.97) holds for more than isolated points in
time, the optimization problem is said to possess a singular solution, a problem
which we will not discuss in detail. A singular solution is possible with respect
to a particular control component, u(t), if the ith component of equation (2.97)
is 0. For this problem, the first-order necessary conditions may be summarized
as

k() = 5 = T0x(0), 1)+ Blx(0), 1 () (2.98)
c . OH  OF[x(t),t] & Oh[x(t),t]
AO=5@m = “ox@) T ox@p) "0
+ a0 By (209)

where u(t) is determined using the Bang-Bang rule. Since we have not specif-
ically stated the end conditions, we discuss the general problem. When we
specify information concerning the desired states at the end time and the ini-
tial condition vector, we have a two-point boundary value problem with half of
the conditions specified at the initial time and half at the end time.

A possible method for solving the first-order necessary conditions for
this formulation consists of reversing time in these equations. Starting at the
determined or specified terminal vector x(7T'), we integrate back from this point
with a constant control (Bang-Bang) until the switching point is obtained using
the Bang-Bang control rule.
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We now illustrate various solutions to a particular case which results
in bang-bang control—the minimum time problem for constant linear systems
with a scalar input. In this problem, we desire to transfer an n vector constant
differential system

x(t) = Ax(t) + Bu(t), x(0) = xo (2.100)
to its origin, x(T") = 0, in minimal time. Thus, we have the objective function
T
J= / dt=T (2.101)
0
with the restriction that
—1<u(t) <+1 (2.102)

The Hamiltonian for our problem is
Hx(t),u(®), A@)] = 1+ A(®) A x(t) + A(t) Bu(?) (2.103)

We must minimize the Hamiltonian with respect to a choice of u(t). Thus, we
require

u*(t) = —sign [A(t) B] (2.104)

where sign [A(t) B] = 1 when A(f) B > 0 and sign [A(f) B] = —1 when
A(t) B < 0. Thus, the Hamiltonian with the optimal control u*(¢) is

Hx(t), A(®)] = 1+ A(t) A x(t) — A(t) B sign [A(t) B] (2.105)

Since ‘H does not depend explicitly on ¢, dH/dt = 0. Furthermore, since the
end time T is free, we know from equation (2.92) that H[x(T), u(T), A(D)] =0.
Thus, we have

Hx(t),A(t)] =0 Vte[0,T) (2.106)
On the optimal trajectory, the state equations are

oH

x(t) = YOI = A x(t) + B u(t) = A x(t) — B sign [A(¢)B] (2.107)
A@t) = 837(1) —AX(t) (2.108)

To avoid a singular solution, we must ensure that A(t) B can not be zero over
a time interval of nonzero length. From equation (2.108), we see that this is
almost certainly the case unless A(0) were identically 0, which is not possible.
The solution to equation (2.108) is

A(t) = e AL-T)\(T) (2.109)
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It is convenient for us to rewrite equation (2.107) using a new time variable
r=T—t (2.110)
and a new state variable
Er)=2z@t)=z(T-1) (2.111)
Substituting equations (2.109)-(2.111) into equation (2.107), we obtain

d¢ de dt  dé d . .
ﬁ = d_f = —d—f = d_:: =-A¢(r)+B s:gn[A(T)eA B] (2.112)

Since £(0) = z(T) = 0, the above equation has its solution
¢(r) = / e~ AC-Y)B sign [\(T)eA“B] dw (2.113)
0

A state x(0) = x¢ from which the origin can be reached in a specified minimal
time T may now be obtained if we substitute a value of A(T') in equation (2.113)
and than calculate x(0) and A(T'). Thus, A(t) is working as a sort of influence
function.

Since it is the direction and not the magnitude of the A(T') vector which
determines sign [A(T)eA“’ B], all states which can be reached in a given min-
imal time may be determined if we allow A(T) to assume all values over a

unit sphere. At points where A(T)eA“’B is 0, we have a switching point. It
is possible to show that if the eigenvalues of A are real, there are, at most,
n — 1 switchings or changes of sign of the control. We will now give examples
of calculations of Bang-Bang controls.

Example 2.3.1. Use the Minimum Principle to discuss possible optimal con-
trol laws and optimal trajectories for the system

Ii?l(t) = auzl(t) + Glzxz(t) + blul(t) (2114)

iz(t) = agl:cl(t) + azzmz(t) + b2’l£2(t) (2115)
where the objective function is to minimize
T
J= / [Co + Crus(t) + Coug(t)] dt (2.116)
0

Coefficients a;; (1 =1,2,j=1,2), b; (i = 1,2), Cx (k = 0,1,2) are constants.
There is a constraint on control variables

0<wu(t) <1 Vi=1,2 (2.117)
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The state variables are unconstrained. The final time T is specified and z(T)
is free.

1?1(0) =Ti0 .’L‘2(0) = T20 given (2.118)
The Hamiltonian is formulated as

H = Co+ Crui(t) + Caua(t) + Mfanzi(t) + arzz2(t) + brui(t))
+  Az[a21z1(t) + azeza(t) + baua(?))

where A(t) are Lagrange multipliers associated with the state equations. Re-
organizing the Hamiltonian based on control variables, we have

H = Co+ Mlan1z1 + a1zz2] + Az[az1z1 + azz2)
+ [C1+ Aibi]ur + [C2 + Azba]us
Using the Minimum Principle
H[u*(8)] < H[u(t), (2.119)
we obtain the optimal control as follows:

u*(t)— 0 ifCi+Ab12>20
1 - 1 ifCi+XMb1 <0

0y 0 ifCa+ 220220
u2(t)—{ 1 ifCy4X2b2<0

Substituting the optimal control into the state equation, we obtain the
optimal trajectory. There are four possible combinations of optimal controls.
We discuss only one here. When

WH=0  uw)=0,

we have state equations as follows

£1(t) = a1121(t) + a1222(t) (2.120)
Z2(t) = a2121(t) + azzz2(t) (2.121)
Solving the above two equations, we obtain the optimal trajectories
z}(t) = B1e**! + Bye®*! (2.122)
25() = 51—2 (1 — a11) Bye™ ! + (a2 — a11)Bae] (2.123)

where B, B; are integral constants and «;, a2 have values as follows

o = (a11 + az2) + v/(a11 — a22)? + 4a13a3:
1 —

5 (2.124)
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@y = (a11 + az2) — \/(1111 — a22)? + 4ajza2;
- 2

(2.125)

Substituting boundary conditions z;(0) = 1 and z2(0) = 0 into equations
(2.122)-(2.123), we obtain the coefficients

Q3 — a4l

By =20 (2.126)
By="%1 (2.127)
Q1 — Q2

Example 2.3.2. Consider a traffic signal control problem at an intersection.
Figure 2.2 shows a signal controlled four-leg intersection with one-way streets.
To simplify our problem, we assume no turning movements are allowed at this
intersection and there are queues at both approaches. Denote arriving flow
rates as ¢1(t) and ga(t) in vehicles per hour, and saturation flows as s; and s;
in vehicles per hour. Define green times for both approaches as g;(t) and g(t)
in seconds, respectively, It follows that

91(t) + 92(t) = C - L (2.128)

where C is the cycle length (in seconds) and L is the lost time (in seconds) due
to acceleration and deceleration at the intersection. We assume both C and L
are fixed.

xy(t)

a1) T 1)

xy(1)
Figure 2.2: Four-Leg Intersection

Denote u(t) as the average number of vehicles per hour which can pass
the intersection for approach 1. It follows that

u(t) = f%l(t) (2.129)
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For approach 2, the average number of vehicles per hour which can pass the
intersection is sy g2(t)/C. Thus, we can obtain the relationship between the
flows passing the intersection for both approaches as follows

52 g2(t) _

82 L
C —gu(t) + 32(1 - E) (2130)

Denote the numbers of queuing vehicles at approaches 1 and 2 as z;(¢) and
z4(t), respectively. Thus, we can write the state equations as follows

1(t) = q1(t) — u(?) (2.131)
. L S9
(L‘z(t) = Q2(t) - 82(1 - -C—) + —u(t) (2.132)
51
where u(t) is subject to
Umin < U(t) < Umax (2.133)

By substituting the minimum and maximum green times for approach 1 into
equation (2.129), we can determine upi, and umax- We also have nonnegativity
conditions for state variables as follows

.’L‘](t) Z 0, l‘z(t) Z 0 (2.134)

In this example, the objective function is to minimize the total number of
queuing vehicles at the intersection from time 0 to time T so that z;(T) =
z9(T) = 0 where the end time T is free. In other words, we seek to minimize
the cumulative net queue and finally clear queues at both approaches at time
T. It follows that

T
Min J= / [21(t) + 22(2)] dt (2.135)

We assume that x,(0) and z5(0) are given in this example. This problem has
two fixed boundary points at times 0 and T.
The Hamiltonian is constructed as

Ho= z1(t) + 22(t) + A ()[qa(t) — u(?)]
+ Aa(t)lga(t) — sa(1 - %) + Su(t)] (2.136)
The first-order necessary conditions require that
A(t) = —0H/[0z; = -1,  Aq(t) = —8H/8zy = —1 (2.137)
Denoting the integral constants as Cy and Cs, we have

/\l(t) =—t+Cy, /\2(t) =—t+C,y (2138)
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Define an auxiliary variable z(t) as

53Cy — 5.C4
S1

2(8) = =M (t) + Z—z,\z(t) =2 S" 24 4 (2.139)
1 1

By placing terms associated with control variable u(t) together, the Hamilto-
nian is rewritten as

Ho o= z(t) +z2(t) + A a(t)
£ Malo®) - a1 - 2]+ 20) u(t) (2.140)
In order to minimize the Hamiltonian, we require that
2() >0 = u(t) = Umin
2(0) <0 = u(t) = Umax (2.141)

We assume that approach 1 has higher capacity than approach 2, i.e., s; > s,.
We note that equation (2.139) is a first-order equation of ¢ and ¢ has a positive
coefficient (s1 — s2)/s1. If z(t) starts from a negative value, i.e., z(t) < 0 for
t < t. (a critical time instant), then u(t) = umax for t < t. and u(t) = Umin
for ¢t > t,. Otherwise, when z(t) starts from a positive value, i.e., z(t) > 0 for
t > 0, u(t) = Umin holds for ¢ > 0. Thus, from equations (2.139) and (2.141),
we conclude that:

1. u(t) can only have values of %max OF Umin; it does not take any interme-
diate value between umax and Umin;

2. the control changes at most only one time;

3. when u(t) changes, the initial control is u(t) = umax (the higher capacity
approach has the priority.)

Denote Q;(t) as the cumulative number of arrivals at time ¢ along approach ¢
and G;(t) as the cumulative number of departures at time ¢ along approach i.
It follows that

Q;(t):/tq;(r) dr  Vi=1,2 (2.142)
Gr(t) = / w(r)dr (2.143)

Galt) = /0 52 [1 - g - -l—u(r)] dr (2.144)

51
Thus, the state equations can be reformulated as

z;(t) = z:;(0) + Qi(t) — Gi(t) Vi=1,2 (2.145)
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In other words, Q;(t) are the cumulative arrivals and G;(t) are the cumulative
departures. As shown in Figure 2.3, when the cumulative arrivals are given,
the optimal cumulative departures are given by the straight lines. The slopes of
the lines for approach 1 are umax and upin. The slopes of the lines for approach
2 are given as

L 1 L 1
Ymin = 52(1 - 6,' - ;‘;Umax), Ymax = 52(1 - E - gumin) (2-146)

The time t, and T are determined by the cumulative arrivals. The two curves
merge at time 7.

X1,
X4(0) +Q,4(0)
|
[ Umin I
*1(0) ‘\{\ I
|
|Gl |
Umax } :
>t
0 tg T
x,(t) 4
%(0)+Q,(0) \_ !
|
|
|
x,(0) !
| -

Figure 2.3: Cumulative Arrivals and Departures at the Intersection

2.4 Continuous Problems with Equality and
Nonnegativity Constraints

We now consider a set of special optimal control problems which will be widely
used in the following chapters for problem formulation and analysis for dynamic
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transportation networks. The state equations are linear

dx(t)

= Au(t) (2.147)

where A is a matrix of constants. We consider only linear equality constraints

for control variables
Gu(t)=0 (2.148)

and nonlinear equality constraints involving only state variables
K[x(t)]=0 (2.149)

where G is a matrix of constants.

2.4.1 Fixed Beginning and Fixed End Times

We now consider an optimal control problem with a fixed end time T. The
optimal control problem is formulated as follows

T

min J = / Flx(t), u(t)|dt + S[x(T)] (2.150)
, 0
s.t. Lagrange Multiplier

Linear State Equations x(¢) = A u(2) A2) (2.151)
Linear Control Variable Constraints Gu(t)=0 o(t) (2.152)
State Variable Constraints K|[x(¢)] =0 n(t) (2.153)
x(t)>0, u(t) >0, : (2.154)
x(0)  given. (2.155)

We construct the augmented Hamiltonian H for the above optimal control
problem as

H = F[x(t),u®)]+ A(@) A u(t) + o(t) G u(t) + n(t) K [x(2)] (2.156)
The first order necessary conditions for the optimal control program are

M _ OF[x(t),u(t))]

Bu@) ~  oup) A+ G20, (2.157)
and u(t)-g% =0, (2.158)
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x(t) = 3—‘:’\% = Au() (2.160)
oM
5o = 0= G ) (2.161)
oM _
gy = Kix] =0 (2.162)
A(T) = % (2.163)
x(0) = xo (2.164)
x(t)>0, u{t)> 0. (2.165)

Equations (2.157)-(2.159) are similar to equations (2.17) and (2.18) except
for additional terms resulting from equality constraints on control and state
variables. The inequality in equation (2.157) is caused by the nonnegativity
constraint on the control variable. Equation (2.160) is a restatement of state
equation (2.151). Equations (2.161)-(2.162) are restatements of the equality
constraints. Equations (2.163)-(2.165) are two-point boundary conditions.

2.4.2 Fixed Beginning and Free End Times

We now consider an optimal control problem for a time period [0, T] where end
time T is free. This optimal control problem is given as follows:

T
min J = / F[x(t),u(?),t] dt + S[x(T), T) (2.166)
, 0
s.t. Lagrange Multiplier
Linear State Equations x(t) = A u(t) At)  (2.167)
Linear Control Variable Constraints G u(t) =0 o(t) (2.168)
State Variable Constraints K[x(t)] = 0 n(t) (2.169)
x(t)>0, u(t)>0, (2.170)
x(0) = xo N[x(T),T]=0 (2.171)
T free (2.172)

where N[x(T'), T] possess continuous partial derivatives with respect to x(T').
We construct the augmented Hamiltonian H for the above optimal control
problem as

H = Flx(t),u(t), f] + At) A u(t) + o(t) G u(t) + n(t) K [x(t)]  (2.173)
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We define another scalar function as
OX(T), v(T), T] = SX(T), T| + W(T) NIX(T), T (2.174)

where v(T') is a vector of Lagrange multipliers. The first order necessary con-
ditions for the optimal control program are

OH _ OF[x(t),u(t),1]

= sw — TAD AT G20, (2.175)
and u(t)% =0, (2.176)
_A®) = a?:({t) _oF [’;(’:z;)“(t)] () algf(‘t()t)] (2.177)
x(t) = 5% = Au(®) (2.178)

oM

oM
oy = K] 2 0 (2.180)
A(T) = ai’g) - asg;((TT)), 7] +V(T)8—N—(;[)§£(§)—)’—Il (2.181)
N[x(T),T] = 0 (2.182)
x(0) = xo (2.183)
x(t)>0, u(t)>o. (2.184)

Equations (2.175)-(2.177) are 3n differential equations for the two-point bound-
ary value problems. Equations (2.178)-(2.180) are simply the restatement
of state equation (2.167) and constraints (2.168)-(2.169). Equations (2.181)-
(2.183) are boundary or transversality conditions. Equation (2.181) provides n
conditions with ¢ Lagrange multipliers to be determined. Equation (2.182) pro-
vides ¢ equations to eliminate the Lagrange multipliers, and equation (2.183)
provides one additional equation which is used to determine the unspecified
end time T'.

2.5 Hierarchical Optimal Control Problems

In this section, we discuss some bilevel optimal control problems. We first
discuss the utilization of leader-follower or Stackelberg strategy concepts in
the control structuring of interconnected systems. These control methods are
appropriate for system problems where there are multiple criteria, multiple
decision makers, decentralized information and natural hierarchy of decision
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making levels. In dynamic transportation network problems, the multi-level
formulation approach is very important. For example, travelers’ choices, in-
cluding departure time/mode/destination/route, constitute a natural hierar-
chy of decision making. Another example is the routing strategies in ATMIS
systems. System-optimal and user-optimal strategies are conflicting in general.
By imposing dynamic congestion pricing, we can formulate a bilevel model
which coordinates the two routing criteria.

The basic leader-follower strategy was originally suggested for static
duopoly by von Stackelberg (1952). The generalization of this concept to
dynamic nonzero-sum two-person games was given by Cruz. Based on Cruz
(1978), we first discuss a static two-person game which will be extended to
multi-level optimal control problems.

2.5.1 .Static Two-Person Games

The basic idea of a leader-follower strategy for a static two-person game is
simple. Players 1 and 2 choose static controls u; € R and u; € R, respectively.
There are two scalar costs Jq(u1,u2) and Ja(u1,uz) associated with Players
1 and 2, respectively. Designate Player 1 as the leader and Player 2 as the
follower. For each control u; chosen by Player 1, Player 2 chooses uy = fa(u1)
where f; is determined by u; and ug such that for Player 2, his/her cost using
controls [uy, f2(u1)] is smaller than or equal to a cost using any controls (u1, uz).
It follows that

Ja[u1, f2(u1)] < J2(ug, us) for each u; and for all u, (2.185)

For simplicity, we assume that for each control uy, fa(u1) yields a unique us.
The leader chooses an optimal control uj such that his/her cost using opti-

mal controls [u}, f2(u})] is smaller than or equal to a cost using any controls
[u1, f2(uy1)]- It follows that

Jilul, f2(ul)] < Jilug, fa(u1)] for all u, (2.186)

Then, the optimal strategy uj is termed the Stackelberg strategy for Player
1 and uj = fa(u}) is termed the Stackelberg strategy for Player 2 when the
leader is Player 1.

In this problem, we assume that the leader knows the cost mapping
of the follower, but the follower doesn’t know the cost mapping of the leader.
However, the follower knows the control strategy of the leader and he/she takes
this into account in computing his/her strategy. This reaction behavior of the
follower is known to the leader who optimizes his/her choice of control u;.

Similarly, when Player 1 is the follower and Player 2 is the leader, we
have

J1[f1(u2), u2) < J1(u1, uz) for each us and for all u; (2.187)
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and

Ja[fi(uz"), u5] < Ja[fi(u2), ua] for all uy (2.188)

where f; is determined by us and u;. The optimal control u}* is the leader
Stackelberg strategy, and optimal control u}* = f1(u3*) is the follower Stack-
elberg strategy.

Sometimes, we may refer to a Nash strategy or Nash control when we
use game theory to tackle multi-level optimization problems. A Nash strategy
pair (@1, @t2) is defined by

Jl(ﬁl, ftg) S Jl(ul, ﬂz) for all (/5] (2189)
and
Jg(ﬂl, ﬂz) _<_ Jz(ﬁl, Ug) for all U2 (2190)

where the tilde (~) denotes that the control is a Nash control. We note that
the Nash strategy may not be unique. As before, we define @, = f2(i;) where
f2 is determined by @; and 2. It follows that

Taliiy, @g) = Ja[iiy, Ta(di1)] (2.191)
Combining equations (2.186) and (2.191), we have
J1[ul, f2(ul)] < J1lf1(d2), Us] (2.192)

Similarly, we define i; = f1(é2) where f; is determined by @; and is. It follows
that

Jl(ﬂl, ﬁz) = Jl[Tl(ﬁz), 17,2] (2.193)
Combining equations (2.188) and (2.193), we have
Ta[f1(ug"), up"] < Ja(iha, U2) (2.194)

Thus, for the leader, a Stackelberg strategy is at least as good as any Nash
strategy. For the follower, the Stackelberg strategy may or may not be prefer-
able compared to a Nash strategy.

2.5.2 Dynamic Games

Consider a dynamic system
#(t) = f(z, u1,u2) (2.195)

where ¢ € R™ is the state, u; € R™ and us € R™2 are the controls, and f
is a piecewise continuous function from R"™ x R™! x R™? to R". The time
interval [0, 7] is fixed and the initial state £(0) = zo is given. In a dynamic
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system, it is necessary to specify what type of information is available to each
player. Suppose no state measurements are available. In this case, we consider
open-loop strategies. Associated with each player is a scalar cost function, i.e.,

T
J,.=/ Fi(z,u1,ug) dt + Si[z(T)] Vi=1,2 (2.196)
0

Designate Player 1 as the leader. The dynamic game can be written as a bilevel
problem as follows.

The Leader Problem

min J; = /0 ¥ P, w1, u2) db + $1[2(T)] (2.197)
The Follower Problem
min J = /0 " Fa(y u, ) dt + Safe(T)) (2.198)
s.t.
#(t) = f(z,u1,u2) (2.199)
z(0) = zo (2.200)

The Hamiltonian function for the follower problem is written as

HZ(I) U, u2,p) = FZ(“") ui, u2) + p(t) f(xv ui, U.g) (2201)

where p(t) is the Lagrange multiplier. The necessary conditions for the follower
problem are

oM
e (";) = (2.202)
B(t) = _581% (2.203)
p(T) = —%ﬂ (2.204)

In order to obtain the overall necessary conditions for this dynamic
game, we need to place the necessary conditions (2.202)-(2.211) and constraints
(2.199)-(2.200) of the follower problem as constraints for the leader problem:.
It follows that

T
min J; = / Fi(z, uy,u2) dt + S1[z(T)] (2.205)
0
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" i(t) = f(=, w1, us) (2.206)
B(t) = —g% (2.207)

a(?:(i) = (2.208)

p(T) + %[(ig,—?] = (2.209)

p(T) + ?%%%ﬂ =0 (2.210)

p(T) = —%1(%)] (2.211)

2(0) = 2o (2.212)

where equations (2.206)-(2.207) are considered as state equations for the re-
defined one-level problem. This is an optimal control problem with equality
constraint and constraint for final states z(T') and p(T). The Hamiltonian
function H; for the redefined one-level problem is

Hi(z, u1, ug, p, A1, A2, B2) = F1(1‘,U1,U2)+/\1(t) f(z,uy,uz)

+ a0 2 m0 T2 o)

where A;(t), A2(2), 32(t) are Lagrange multipliers. We define another scalar
function as

98,[z(T)]

O[=(T), p(t), v(T), T) = Si=(D)] + v(T) {p(T) - 5, 752)

(2.214)

where v(T) is a Lagrange multiplier. The necessary conditions for the redefined
one-level problem are

IH,
du; (t)

=0 Vi=1,2 (2.215)

oM,y

Al( )= ~ 3z (t) (2.216)
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Aa(t) = — g;f tl) (2.217)
M(T) = ai(e;) = as;i(ég)] —(T) ———8525(””12?)] (2.218)
Xa(T) = 5}‘;%_) = u(T) (2.219)

Therefore, the necessary conditions for (u1, u3) to be an open-loop Stack-
elberg strategy pair are equations (2.202)-(2.211) and (2.215)-(2.219). Explicit
solution in terms of the Riccati matrix equations can be obtained for the linear-
quadratic problem. However, necessary conditions for the closed-loop Stackel-
berg strategy are extremely difficult to characterize. Simplification is possible
when the structure of the control law is constrained, e.g., restricting the control
law to be linear and the effects of random initial conditions are averaged.

Instead of discussing detailed control strategies, we state some conclu-
sions from the literature (Cruz, 1978). The open-loop strategy for the leader
for the entire duration of the game is declared in advance. If the follower mini-
mizes its cost function, it obtains its follower Stackelberg strategy which is the
optimal reaction to the declared leader strategy. By declaring his/her strategy
in advance, the leader influences the follower to react in a manner which mini-
mizes the follower’s cost function, but more importantly, in a manner which is
favorable to the leader. This is a direct interpretation of the definition of the
leader’s strategy. Similarly, for closed-loop strategies where the state is avail-
able for measurement, the leader has to declare his control law for the entire
duration of the game. In situations where either player might be a leader, both
cases should be examined because both players may insist on leader strategies
in which case there may be disequilibrium, or both may play follower strategies
and a stalemate may occur.

2.5.3 Bilevel Optimal Control Problems

We now generalize the above dynamic games into bilevel optimal control prob-
lems. Sometimes, we term this kind of optimization problem as hierarchical
optimization, which is contrary to the bilevel optimization problems having
less coordination or non-hierarchical properties. To simplify our presentation,
we only discuss optimal control problems with equality and nonnegativity con-
straints which are constrained by fixed beginning and end times. Consider two
linear dynamic systems

2t = A; u,-(t) Vi=1,2 (2.220)
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The two dynamic systems have two decision makers, each with an objective
function as follows

T
min Ji = /0 Fi[xa(t), us(t), xa(t), ua(t)]dt + Si[x1(T), x2(T)]  (2.221)

1=1,2

where each objective function depends on controls and states of both dynamic
systems. To make the problem more general, we assume that control variables
of both systems are co-related by the following linear constraints

G, ul(t) + G, llg(t) =0 (2.222)

where G1, G4 are vectors of constants. We designate Player (decision maker) 1
as the leader. We then formulate the bilevel optimal control problem as follows.

Upper Level Problem

T
)?ll,ii.lill J1= A Fl[xl(t), ul(t), x2(t), ug(t)] dt + Sl[xl(T), Xz(T)] (2223)

s.t.
di;t(t—) = Aju(t) (2.224)
Giui(t)+ Gauy(t) =0 (2.225)
Ki[x1(t)] = 0 (2.226)
x1(() >0, uy(t)>0 (2.227)
x1(0)  given. (2.228)

where x3(t),uz(t) are determined by the following lower level problem:

Lower Level Problem

T
min Jz = /0 Fz[xl(t), ul(t), Xz(t), uz(t)] dt + Sz[xl(T), X2(T)] (2229)

X2,U2

s.t.
dxdzt(t) = Az uy(t) (2.230)
Xz(t) Z 0, 112(t) Z 0 (2231)
x2(0)  given. (2.232)

In the lower level problem, x;(t), u;(¢) are determined by the upper level
problem. In this bilevel problem, the leader (upper level problem) has the pri-
ority to minimize its objective function J;. We now examine the necessary
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conditions for the bilevel optimal control problem. We first consider the neces-
sary conditions for the lower level problem which is designated as the follower.
The overall necessary conditions for the bilevel problem are constructed by
placing the necessary conditions and constraints of the lower level problem as
constraints for the upper level problem.

We construct the augmented Hamiltonian H; for the lower level problem
as

Hz = Fg[xl(t), ul(t),X2(t), ll2(t)] + p(t) Ag ug(t) (2233)

where p(t) is a vector of Lagrange multipliers. The first order necessary con-
ditions for the lower level optimal control program are

OH2 _ OF, [xl(t), ul(t),X2(t), u2(t)]

St o +Ayp(t) >0 (2.234)
ug(t)g?l—:% =0 (2.235)

B0 = gy = gl e
d"dzt(t) = ::E:) = A, uy(t) (2.237)

p(T) = 222 [x;)(s();)cg(T)] (2.238)

x2() >0, uy(t)>0 (2.239)

x2(0) given (2.240)

Then, we convert the bilevel optimal control problem into a one-level optimal
control problem by placing necessary conditions (2.234)-(2.240) of the lower
level problem as constraints for the upper level problem. It follows that

T
111(1,1‘51 Jl = /0 Fl[xl(t), ul(t), Xg(t), 112(t)] dt + Sl [X](T), XQ(T)] (2241)

s.t.
d"—;fﬁ = Ay uy(t) (2.242)
dxd2t(t) = A; ua(t) (2.243)
p(t) = - ai?(i) (2.244)
G, ul(t) + G u2(t) =0 (2.245)

Ki[x1(t)] = 0 (2.246)
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OH,
By > (2.247)
2(t) 3?17:(2;) = (2.248)
x1(1) >0, ui(t)>0, x2(t)>0, uz(t)>0 (2.249)
x1(0),  x2(0) given (2.250)

_ 082[x1(T), x2(T)]
p(T) - aX2 (T)

(2.251)

where equations (2.242)-(2.244) are considered as state equations. We then
construct the augmented Hamiltonian 7, for the converted one-level optimal
control program as

0H,

H, = F+ A](t) A, ul(t) + Az(t) A, 112(t) + Ag(t) [—m]
+  o(t) [G1ui(t) + Gz uz(t)] + n(t) Ka[x1(2)]
+ L) oy a0 [aa(t) o ] (2:252)

where A1(t), A2(t), As(t), o(t), n(t), B1(t), By (t) are Lagrange multipliers and
B1(t) < 0. We define another scalar function as

352 [x(T)]

OLx(), (1), (T), T) = Six(T)) +v(T) {p(T) - ="}

(2.253)

where v(T') is a vector of Lagrange multipliers. The first order necessary con-
ditions for the converted one-level optimal control program are -

oM, .
S 2 ° Vi=1,2 (2.254)
oM, .

u;(t) Fu(t) = 0 Vi=1,2 (2.255)

, oM, - |
M(t) =~ 5 Vi=1,2 (2.256)

oH

Aa(t) = 70 (tl) (2.257)

L = A u(t) Vi=1,2 (2.258)

oM, oM,
PO = 5@ — )

(2.259)
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aaffi) =0 = G; ui(t) + Gy us(t) (2.260)
My o
W = KI[ I(t)] =0 (2’261)
oM, oM,
38:(0) ~ Bwalt) (2.262)
oMy 0
28,0 ~ " out) (2.263)
A,‘(T) = —31?-((9T) Vi=1,2 (2.264)
Ao(T) = % = u(T) (2.265)
x:(0) = Xio, Vi=1,2 (2.266)
xi(1)>0, w(t)>0 Vi=1,2 (2.267)

Therefore, the necessary conditions for the bilevel program are equa-
tions (2.234)-(2.240) and (2.254)-(2.267). However, the detailed analysis of the
necessary conditions is complicated, especially when the two level problems
have many constraints. In general, the analytical solution for the above bilevel
program is not possible even for simple cost functions.

On the other hand, if we assume that the above problem has no hierar-
chical relationship, we can solve the two level problems separately and transmit
some shared variables back and forth. In this way, no leader-follower relation-
ship is assumed between the two level problems. Thus, this situation can be
termed a coordination problem where the shared variables function as coordi-
nators. This approach can also be extended to a multi-level optimal control
problem where the hierarchical relationship is hard to identify.

2.6 Notes

In classical control system design, the ultimate objective is to obtain a controller
that will allow a system to perform in a desirable manner. The objective in
control problem formulation for transportation networks is also to obtain a set
of control variables which can adjust traffic flows in the network to behave in
desired ways.

Many complex transportation problems can be formulated and solved
using optimal control theory. However, at the present time, optimal control
theory does not constitute a generally applicable procedure for the design of
a simple controller. The optimal control law, if it can be obtained, usually
requires a digital computer for implementation (an important exception is the
linear regulator problem discussed in section 2.3), and all of the states must be
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available for feedback to the controller. These limitations may preclude imple-
mentation of the optimal control law; however, the theory of optimal control is
still useful, because knowing the optimal control law may provide insight help-
ful in designing a suboptimal, but easily implemented controller. The optimal
control law provides a standard for evaluating proposed suboptimal designs.
In other words, by knowing the optimal control law we have a quantitative
measure of performance degradation caused by using a suboptimal controller.

The basic knowledge of the optimal control problem can be found in any
standard optimal control text. At the elementary level, readers may consult the
text by Kirk (1970). Bryson and Ho (1975) provide many examples with which
readers may find it is easier to understand the theory. Other closely related
texts are Kamien and Schwartz (1981) and Sage and White (1977). A proof of
optimality conditions for optimal control problems with general constraints for
state and control variables is provided by Russak (1970). The applications of
game theory in dynamic systems and optimal control problems are summarized
by Cruz (1978). For an advanced text on multi-level optimal control problems,
readers may consult the text by Singh and Titli (1978).



Chapter 3

Discrete Optimal Control,
Mathematical Programming and
Variational Inequality Problems

In this chapter, we present more mathematical background which is necessary
for modeling and solution of dynamic transportation network problems. This
chapter will cover discrete optimal control, mathematical programming and
variational inequality problems. First, we introduce the discrete optimal con-
trol problem (OCP). To simplify our presentation, we consider discrete optimal
control problems with fixed end times as examples in Section 3.1. The discus-
sion is focused on the analysis of optimality conditions. Then, some mathe-
matical programming (MP) problems are presented in Section 3.2. Specifically,
nonlinear programming (NLP) problems with equality and nonnegativity con-
straints are presented for comparison. Similarities between discrete optimal
control problems and mathematical programming are emphasized.

Beyond optimal control problems and nonlinear programming problems,
we also provide some basic concepts of variational inequality problems which
are capable of formulating and analyzing more general problems than the con-
strained optimization approach. Variational inequality (VI) problems are pre-
sented in Section 3.3 and are suggested for advanced readers with knowledge
of optimization problems. We first define variational inequality problems for
both static and dynamic problems. We then introduce some fundamental defi-
nitions, along with qualitative results for variational inequality problems, such
as conditions for existence and uniqueness of solutions.

In Section 3.4, we present algorithms for solving NLP and VI, including
one-dimensional search, the Frank-Wolfe algorithm and a relaxation method.
Unlike traditional algorithms for solving optimal control problems, we suggest
using these algorithms to solve discrete optimal control problems.
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3.1 Discrete Optimal Control Problems with
Fixed Beginning and End Times

In this section, we consider several discrete optimal control problems with fixed
end times. These problems are widely used in our formulations and solutions
in the following chapters. The analysis of optimal control problems with free
end times follows very easily. We first discuss discrete optimal control problems
with no constraints. Then, discrete optimal control problems with equality and
inequality constraints are analyzed. Finally, we investigate discrete optimal
control problems with equality and nonnegativity constraints.

In discrete optimal control problems, we discretize the time period [0, T
into K + 1 small time intervals or increments, i.e., ¥ = 1,2,---, K + 1. For
simplicity, each interval is assumed to have equal length A. In general, we use
the first difference approximation to replace x(t). It follows that

x(t) ~ x(k + 1) — x(k) (3.1)
‘ A
In most analysis, it is convenient to assume A is a unit value. Thus, the above
difference approximation can be rewritten as

x(t) = x(k + 1) — x(k) (3.2)
Thus, the discrete state equation can be written as
x(k + 1) = x(k) + £[x(k), u(k), k] (3.3)
In the same way, the discretization of the Lagrange multipliers
Ak +1) = A(k)

) ~ -

(3.4)

can be rewritten as )
A@) = A(k+1) - A(k) (3.5)
In continuous optimal control problems, we minimize cost functions
which are integrals of scalar cost functions. We now consider a dynamic system
having a cost function F[x(k),u(k), k] for each time interval k. Thus, we are
interested in minimization of cost functions which are summations of scalar
functions. It follows that

K
min J = > Flx(k),u(k), k] + Sx(K +1),K +1] (3.6)
! k=1

3.1.1 Fixed End Times: No Constraints

The discrete optimal control problem is to seek an admissible control function
u in order to minimize the objective function

K
min J = > Flx(k),u(k), k] + S[x(K +1), K +1] (3.7)
! k=1
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s.t.
x(k + 1) = x(k) + £[x(k), u(k), k] (3.8)

K and x(1) = x; fixed; x(K + 1) free (3.9)

where F[x(k),u(k), k] possesses continuous partial derivatives with respect to
x(k) and u(k), and S[x(K + 1), K + 1] has continuous partial derivatives with
respect to x(K +1). S[x(K +1), K +1] is associated with the end time (K +1)
only, and is termed the salvage cost in many economics problems.

We define the Hamiltonian as

H = Flx(k), u(k), k] + A(k) £[x(k), u(k), k] (3.10)

where A(k) is the vector of Lagrange multipliers associated with the dynamic
state equations. Then, the first-order necessary conditions for the optimal
control problem are summarized as follows:

oH _ OF[x(k),u(k), k] of[x(k), u(k), k] _

gup) - a7 am 0 (3.11)
AE+D) -AE) = g

ZiECRCE IS CETLY B

x(k + 1) — x(k) = a_‘z;‘_k) = £[x(k), uk), ¥ (3.13)

x(1) = x1 ' (3.14)

dS[x(K +1),K +1]
Ox(K +1)

AK+1)= (3.15)

Equations (3.13) and (3.14) are simply the restatement of state equation
(3.8) and boundary condition (3.9). Equations (3.14) and (3.15) are termed
transversality conditions which constitute two-point boundary conditions for
the set of differential equations. The above first-order necessary conditions are
derived using the discrete Minimum (or Maximum) Principle or the Hamilton-
Jacobi equation. The discrete Minimum Principle can simply be stated as
follows. The inequality

H[u* (k)] < Hlu(k)] (3.16)

is valid for all admissible u(k), where * represents that the solution is opti-
mal. Sometimes, we directly use this principle to perform solution analyze of
complicated discrete optimal control problems.
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3.1.2 Fixed End Times: Equality and Inequality Con-
straints

In this section, we consider discrete optimal control problems with nonlin-
ear equality and inequality constraints on state and control variables. Those
constraints can represent most practical constraints in realistic applications.
The set of equality constraints for control and state variables are denoted
as Glu(k),x(k),k] = 0 and the set of inequality constraints are denoted as
K[u(k), x(k), k] < 0. We assume both G and K are continuous and differen-
tiable with respect to u, x and k. The optimal control problem is formulated
as follows

K
min J = > Fx(k),u(k), k] + S[x(K +1), K +1] (3.17)

’ k=1

s.t.

x(k +1) = x(k) + f[x(k),u(k), k] (3.18)
Glu(k),x(k), k] =0 (3.19)
K[u(k),x(k), k] <0 (3.20)
x(1) =x1, K fixed. (3.21)

Denote the Lagrangian multipliers associated with equations (3.18)-(3.20) as
A(k), o(k) and n(k), respectively. We construct the augmented Hamiltonian
‘H for the above optimal control problem as
H = Flx(k),u(k), k] + A(k) flu(k), x(k), k]
+ o(k) Glu(k), x(k), K|+ n(k) Klu(k), x(k) k] (3.22)

where

>0 IfK=0
"(k){ =0 fK<0

The first order necessary conditions for the optimal control program are

oH _  OF[x(k),u(k), k| of [u(k), x(k), k]

Gut) 0 ou®) O
LSOO AL ECE G
CAR)+AGR+1) = %5
OF [x(k), u(k), k] of [x(k), u(k), k]
ax®) AT 5%m
+ a(k)aG[“g:z(’:)(k L) BN aK[“g;)(’ :)(k)’ o (329
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x(k + 1) — x(k) = 5?\%03 = £[x(k), u(k), k] (3.25)
oM

50y = 0 = Clu(k),x(k), H (3.26)
oM

W(k) - K[u(k)vx(k)v k] <0 (3'27)

x(1) = x; (3.28)

AK +1)= aS[ngi (;11’ 1"){ +1] (3.29)

Equations (3.23)-(3.24) are similar to equations (3.11) and (3.12) except for
additional terms resulting from equality and inequality constraints on the con-
trol and state variables. Equation (3.25) is a restatement of state equation
(3.18). Equations (3.26)-(3.27) are restatements of the equality and inequality
constraints. Equations (3.28)-(3.29) are two-point boundary conditions.

3.1.3 Fixed End Times: Equality and Nonnegativity Con-
straints

We now consider a set of special discrete optimal control problems which will be
widely used in the following chapters for formulation and analysis of dynamic
transportation network models. The state equations are linear

x(k + 1) = x(k) + A u(k) (3.30)

where A is a matrix of constants. We consider only linear equality constraints
for control variables

Guk)=0 v (3.31)
and nonlinear equality constraints involving only state variables
K[x(k)]=0 (3.32)

where G is a matrix of constants. The discrete optimal control problem is
formulated as follows

K :
min J = kzle[x(k), u(k), k] + S[x(K +1), K +1] (3.33)
s.t. Lagrange Multiplier
Linear State Equations x(k+1)=x(k)+ Au(k) Xk) (3.34)
Linear Control Variable Constraints Gu(k)=0 o(k) (3.35)
State Variable Constraints K(x(k)] =0 n(k) (3.36)
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x(k)>0, u(k)>0, (3.37)
x(1) given. (3.38)

We construct the augmented Hamiltonian M for the above discrete optimal
control problem as

H = F[x(k),u(k), k] + A(k) A u(k) + o(k) G u(k) + n(k) K [x(k)] (3.39)
The first order necessary conditions for the discrete optimal control program

are

oH  OF[x(k),u(k), k]

u(k) = au(k) +A(k) A+o(k)G>0, (3.40)
and u(k')%)~ =0, (3.41)
CA(R) £ AR +D) = %’5

x(k+1)—x(k) = Bi—,’(-ﬁc) = A u(k) (3.43)

oH
o) =0=Gu(k) (3.44)

oM
AK +1) = %{Iﬁﬁg)l (3.46)
x(1) = x; (3.47)
x(k) >0, u(k) > 0. (3.48)

Equations (3.40)-(3.42) are similar to equations (3.11) and (3.12) except for
additional terms resulting from equality constraints on control and state vari-
ables. The inequality sign in equation (3.40) is caused by the nonnegativity
constraint for the control variable. Equation (3.43) is a restatement of the
state equation (3.34). Equations (3.44)-(3.45) are restatements of the equality
constraints. Equations (3.46)-(3.48) are two-point boundary conditions.
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3.2 Mathematical Programming Problems

This section reviews some concepts related to the formulation and solution of
mathematical optimization programs. The focus of the discussion is on the
conditions that characterize the solution of such programs and the constraint
conditions which are similar to discrete optimal control problems. To have a
systematic description of mathematical programming problems, we first discuss
unconstrained minimization problems. Then, we explore minimization prob-
lems with general constraints and the Karush-Kuhn-Tucker conditions. The
relationship between the discrete optimal control problem and mathematical
programming problem is then investigated. In comparison with bilevel opti-
mal control problems, bilevel mathematical programming problems are also
presented.

3.2.1 Unconstrained Minimization

We first discuss minimization problems without constraints. Our problem is

to find a set of variables z,zs,---,z, that minimize an objective function
Z(zy,22,"-+,Zn). Let x denote the vector of decision variables, i.e. x =
(21,22, -, zn). Using vector notation, the minimization program without con-

straints can be stated as
n;én Z(x) (3.49)
Since the function to be minimized is unconstrained, the first-order nec-

essary condition for a minimum at x = x* is that the gradient of Z(x) vanish at
x*. The gradient of Z(x) with respect to x*, 7xZ(x), is the vector of partial

derivatives, that is,
8 Z(x) 9 Z(x) 8 Z(x)
Z(x) = e
Vx Z(x) [ dzy ' Ozy ° " Oza
At every point x, the gradient points in the direction of the steepest increase
in Z(x). The first-order necessary conditions for a minimum are

(3.50)

vVZ(x*)=0 (3.51)

In other words, each element of the gradient has to equal to zero. Equivalently,
9Z(x*

%:0 Vi=1,2,---,n (3.52)
3

The sufficient conditions that z* is the local minimum of Z(x) depend
on establishing that Z(x) is locally convex in the vicinity of z*. In other words,
any line sequent joining two points z; and z, lies above the surface Z(x). The
strict convexity of Z(x) can be established if Z(x) is positive definite, as now
defined. In general, suppose we have an n X n matrix F(x)

Fll(x) e Fl,.(x)

Far(x) --- Fan()
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and an arbitrary vector v = [v1,- -, v,;]. The matrix F(x) is positive semidefi-
nite if
vIF(x)v>0, VYveR"
where T denotes the transpose. F(z) is positive definite if
vIF(x)v>0, VYv#0,veER"
F(z) is strongly positive definite if
vI F(x) v> a||v||?, forsomea>0, VveR"

If v(x) is the smallest eigenvalue, which is necessarily real, of the symmetric
part of F(x), that is, 2[F(x) + F7(x)], then it follows that:

1. F(x) is positive semidefinite if and only if v(x) > 0;
2. F(x) is positive definite if and only if y(x) > 0.

We define the Hessian matrix of the objective function Z(x) as

?z(x) 2’z(x) .. 9°2(X)
8x? Az, Ox2 oz, Oz,
?z(x) o°z(x) .. 9°2(x%)
VZZ(X) — oz, 071 a2 Oxy O,
?z(x) 0°z(x) ., 9%°2(x
oz, Oz, Oz, Oxo oz

To show that a stationary point, x*, is a local minimum, it is sufficient to
demonstrate that Z(x) is positive definite in the vicinity of x = x*.

3.2.2 Nonlinear Programs with General Constraints

A typical mathematical programming problem is to choose the values of a set of
variables, £1, 3, - +, 5, which minimize an objective function Z(z1, 22, -+, Zn),
subject to certain constraints. Each constraint can be expressed as an inequal-
ity of a function g(z1, 22, - -, zn) of the variables. The set of possible values of
Z1,Zg, -+, T, that comply with all constraints is termed the feasible region. A
general minimization problem with M constraints can be written as

n%én Z(Il,(lfg,"',xn) (3.53)
s.t.

gl(l’laz%""xn) >b (354)

92(1:131‘2,"',:8") Z b2 (3.55)

gm(mlaz%""zn) > b (3.56)
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where g;(z1, 22, -, &n) > b; denotes the ith constraint on the variables. This
problem can include any type of constraints. Using vector notation, the above
problem can be written in a standard form as follows

min  Z(x) (3.57)

s.t.
g(x) 2 b (3.58)

where g(x) = [91(x),92(x), -, gm(x)] and b = (b1, b2, +,bm). I Z(x) is
a nonlinear function or the constraints are nonlinear, the above mathematical
programming problem is termed a nonlinear programming (NLP) problem. On
the other hand, when Z(x) is a linear function and the constraints are linear,
the above mathematical programming problem is termed a linear programming
(LP) problem.

A generalization of the Lagrangian method can be used to derive the
first-order necessary conditions for general mathematical programs. The La-
grangian for this program is given by

L(x,p) = Z(x) + Z pj [bj — g;(x)] (3.59)

where p; is the Lagrange multiplier for constraint j and u; > 0.

The stationary point of the Lagrangian of a convex function is not at a
minimum or a maximum of £(x, u), but rather at a saddle point of the La-
grangian. In fact, £(x*,u*) minimizes £(x, u) with respect to x and maximizes
it with respect to p. This condition can be stated as

L(x*, p) < L(x", p*) < L(x, p*) (3.60)

In order to write the first-order necessary conditions of Lagrangian, note that its
minimization is unconstrained with respect to x. Maximization with respect to
p, however, is subject to the nonnegativity constraints. Therefore, the saddle
point of L(x, p) satisfies the following set of first-order necessary conditions:

OL(\ 1) _

] .61
97, Vi (3.61)

ujaﬁ(x,u)___o and B,C(x,p)so

Vj 3.62
o0 o j (3.62)

In addition, it is required that px; > 0, V j. Condition (3.61) simply states that
the gradient vanishes at the stationary point. Condition (3.62) describes the
condition for a maximum of a function subject to nonnegativity constraints.
Since L£(x,p) has to be maximized with respect to p = (g1, -, tm), the
maximum of £(x,pu) with respect to p; can occur either at a point where
dL(x,pu)/0u; = 0 or at a point where p; = 0. In the later case, it must be
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true that dL(x,p)/du; < 0. This observation gives rise to conditions (3.62).
Thus, conditions (3.61)-(3.62) can be written explicitly as

92 (x Z u 3géix =0 Vj (3.63)
bj—gi(x*) <0 Vj (3.64)

pj [bj —gi(x*)]=0 V¥ (3.65)

w >0 Vi (3.66)

These necessary conditions (3.63)-(3.66) are called the Karush-Kuhn-Tucker
conditions. They are widely used in the analysis of optimality conditions for
mathematical programming problems.

The Lagrangian approach implies that constrained minimization prob-
lems can be solved as unconstrained problems by finding the saddle point of
the Lagrangian. This point can be found by minimizing the Lagrangian with
respect to x given g, and then maximizing over all values of u. The Lagrangian
is widely used as an aid in the formulation of first-order necessary conditions.

Note that the functional form of the Lagrangian demonstrates why the
Lagrange multipliers, or dual variables, can be interpreted as a measure of the
sensitivity of the optimal solution to a constraint relaxation. At the solution
point,

L(x"p") = Z(x*) + Zuj [b; — gi(x")] (3.67)

At this point £L(x*, u*) = Z(x*). If constraint k is relaxed by a small amount,
Abg, and by in (3.67) is replaced by by — Abi, the new minimum value of
L(x*, u*) will approximately equal the old value (before the relaxation) minus
uxAbg. Thus a relaxation of constraint ¥ by Abx improves the optimal value
of the objective function by approximately p; Abg.

A special case of mathematical programming is linear programming
(LP). In a linear minimization problem, both the objective function and the
constraints are linear functions of the decision variables. A linear program can
be written as

I
ngn Z(x) = Z i T (3.68)
i=1
s.t.

I
Za,-j z; > b; Vi (3.69)
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where ¢; and a;; are constants. In some cases, multiple minima may exist
because the strict convexity conditions of nonlinear programming do not apply
to linear programs. Some of these minima, however, will always be at the inter-
section of several constraints or at the corners of the feasible region. Therefore,
the minimum value of Z(x) can still be determined if only the corners of the
feasible region are considered.

3.2.3 Discrete Optimal Control and Nonlinear Programs

Section 3.1 described the relationship between discrete and continuous optimal
control problems. In this section, we explore the relationship between discrete
optimal control and nonlinear programming problems. We recognize both as
being multivariate extremization problems subject to various equality and in-
equality constraints. There are several approaches to reduce discrete optimal
control problems to nonlinear programming problems. In the following, we only
present a simple transformation to show the analytical relationship. As an ex-
ample, we discuss how we can transform the following discrete optimal control
problem into an NLP. The discrete optimal control problem is as follows:

K
min J = > Flx(k),u(k), k] + S[x(K +1),K +1] (3.70)
! k=1
s.t.
x(k + 1) = x(k) + £[x(k), u(k), k] (3.71)
K and x(1) = x; fixed; x(K + 1) free (3.72)

We define a vector y as follows:

y1=u(l)
yk = u(K)
YK41 = x(l)

Y2k+1 = x(K +1)

Note that y;, i = 1,--+,2K + 1, must satisfy all corresponding constraints and
boundary conditions of the discrete optimal control problem. The objective
function can be rewritten as

K
rr;}n Z(y) =) Flyk+i,y(i),i] + Sly(2K +1),2K +1] (3.73)

i=1
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The state equation and boundary conditions can be rewritten as
Yk+i+1 = YE+i +f[yK4i,¥i, 4] Vi=1,2,---, K (3.74)

YK+1 given (3.75)

Thus, the discrete optimal control problem can be written in the form of the
nonlinear programming problem:

min Z(y) (3.76)

s.t.
g(y)<o (3.77)

If the discrete optimal control problem was generated from a continu-
ous optimal control problem, clearly the solution to the associated nonlinear
programming problem will only approximate the solution to the original con-
tinuous control problem. From the discussion of the discrete optimal control
problem and the nonlinear programming problem, we can see that if control
variables u(k) and state variables x(k) are considered as individual variables
and the state equations are transformed into corresponding NLP constraints,
then the discrete optimal control problem is in fact a kind of nonlinear program-
ming problem. Thus, solution algorithms for nonlinear programming problems
can be used for solving discrete optimal control problems.

3.2.4 Nonlinear Programs with Linear Equality and Non-
negativity Constraints

Constrained minimization problems with nonnegativity and equality constraints
are of special interest in the study of static network equilibrium problems. They
also have an important role in dynamic network equilibrium problems, espe-
cially when continuous dynamic problems are transformed into discrete forms.
The general form of these problems is

n;én Z(x) (3.78)
s.t.
Yoajzi=b  j=1,2---,J , (3.79)
i
2i>0  i=1,2,---,1 (3.80)

To find the first-order necessary conditions for a minimum for such a problem,
write the Lagrangian with respect to the equality constraints:

L(x,p) = Z(x) + Eﬂj b — Za.-j zi] (3.81)
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Then the stationary point of this Lagrangian has to be determined, subject to
the constraint

;>0  i=1,2..-1 (3.82)

Unlike the case discussed previously, this problem includes nonnegativity con-
straints. Consequently, the stationary point of the NLP program has to be
determined by the following conditions:

xfac(xal-‘)zo and a‘c(xa”‘)zo

Vi :
e s i (3.83)
aL * *
LK) i (3.84)
O
;>0 Vi (3.85)

Equation (3.84) requires, simply, that the derivatives of £(x, ) with respect to
p vanish at the minimum. No other condition is necessary since the values of
the p are not constrained to be nonnegative. This condition, then, is identical
to the original constraints. The first-order conditions for the NLP programs
with linear equality and nonnegativity constraints can be written explicitly as
follows:

1 O0Z(x* . .

zi[ BE::,- ) _ Z“ia‘f ]=0 Vi (3.86)
i
dZ(x*) . )
o Zj:uja.-,- >0 Vi (3.87)
Y ajei=b Vj (3.88)
i

>0 Vi (3.89)

The same conditions can be derived also by applying the Karush-Kuhn-Tucker
conditions (3.63)-(3.66) directly.

3.2.5 Bilevel Mathematical Programs

In this section, we focus on bilevel mathematical programming problems, which
have a correspondence to bilevel optimal control problems. We consider two
decision-makers or competitive players who must find vectors x and y, respec-
tively, to minimize their individual objective functions Z;(x,y) and Z3(x,y).
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It is assumed that player 1 has the first choice and selects x, followed by player
2 who selects y. In the most general situation, the value of each objective
function depends upon the decisions made by both players. In addition, the
choice made by player 1 may affect the set of feasible strategies open to player
2, implying the existence of jointly dependent constraints.

The bilevel nonlinear programming problem (BNP) can be stated as:

n;(in Z1(x,y) (3.90)
where y solves
nijn Zy(x,y) (3.91)
s.t.
g(x,y)<0 (3.92)

Alternately, this problem can be viewed as a two-person, nonzero-sum game
with perfect information where the order of play is specified at the outset and
the players’ strategy sets are no longer assumed to be disjoint. As a conse-
quence, the moves available to player 2 (the follower) depend on the actions
of player 1 (the leader). This interpretation is in accord with the definition of
the Stackelberg game which is discussed in Section 2.5. The leader problem
is termed the upper level problem and the follower is termed the lower level
problem.

This problem can be considered a generalization of a mathematical pro-
gram where the constraint region is determined implicitly by the lower level
optimization problem. An alternate representation of the BNP may be derived
by converting the bilevel program into a standard one-level mathematical pro-
gram. This can be achieved by appending the follower’s Karush-Kuhn-Tucker
conditions to the leader’s constraint set.

The Karush-Kuhn-Tucker conditions for the lower level problem are:

VyZZ(xa y)+A Vyg(X, y) =0 (3.93)
Ag(x,y)=0 (3.94)
A>0 (3.95)

where X is the m-dimensional vector of Lagrange multipliers associated with
the lower level problem and V is the gradient operator. The above conditions
have to be satisfied by the overall bilevel problem.

The reformulated one-level problem is stated as:

min Z1(x,y) (3.96)
XY, A



3.2. Mathematical Programming Problems 67

s.t.
VyZa(x,y)+ A Vyg(x,y) =0 (3.97)
Ag(x,y)=0 (3.98)
g(x,y) <0 (3.99)
A>0 (3.100)

By imposing certain regularity conditions, it can be shown that the solution to
the above one-level problem is also the solution to the BNP when the follower’s
problem is convex.

Now we derive the first-order necessary conditions for the one-level pro-
gram. The Lagrangian for the equivalent one-level program is

‘C(xv Ys A By Y, “") = Zl(x, Y) + p [VyZ2 (x, y) +A Vyg(x, y)]
+ vxgxy)l+ws(xy) (3.101)

where p, v, w are Lagrange multipliers, and w > 0. Let Z;, Z;, and g be
once continuously differentiable. Then the necessary conditions for the bilevel
program are

oL

32 =0 = VxZi(xy)+p[VxyZa(x,y) + A Vxyg(x,¥)]
+ [ A+ w] Vxg(x,y) (3.102)
ac 2 2
3y 0 = VyZi(x,y)+#[VyZa(x,y) + A Vyg(x,¥)]
+ [v A+ W] Vyg(x,y) (3.103)
oL '
i 0=VyZ;(x,y) + A Vyg(x,y) (3.104)
oL
o 0=2Ag(x,y) (3.105)
aL
& < .
% gy <o (3.106)
w>0 (3.107)
A>0 (3.108)

In general, the analysis and interpretation of the above necessary conditions are
very difficult for most dynamic transportation network problems. Conceptually,
the bilevel programming framework can be extended to more than two levels,
which is also termed the hierarchical or multilevel programming problem.
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3.3 Variational Inequality Problems

The variational inequality problem is a general problem formulation that en-
compasses a set of mathematical problems, including nonlinear equations, opti-
mization problems, complementarity problems and fixed point problems. Vari-
ational inequalities were originally developed as a tool for the study of certain
classes of partial differential equations such as those that arise in mechanics.
The focus of this section is on variational inequality problems suitable for the
analysis of dynamic network equilibrium models.

3.3.1 Definitions for Variational Inequality Problems

In this section, we present several types of variational inequality problems.
First, we discuss the variational inequality for static problems. Here, we are
dealing with a vector of decision variables x = (z,z2,-+,2,) and a vector
of cost functions f(x) = [f1(x), f2(x),- -, fa(x)]. Define G as a given closed
convex set of the decision variables x; f is a vector of given continuous functions
defined on R™. Then, we define the static case as follows.

Definition 3.3.1. The finite-dimensional variational inequality
problem 13 to determine a vector x* € G C R", such that

f[x*]- [x—x*] >0, VxeG (3.109)

In geometric terms, variational inequality (3.109) states that f(x*) is orthogonal
to the feasible set G at the point x*.

Now, we discuss the variational inequality for dynamic problems. Unlike
the static problem, we are concerned with a vector of control variables u(t) =
[u1(t),u2(t), - -, um(t)] and their dynamic processes

x(t) = h(x(t), u(?)]

where the state variables x(t) = [z1(t), z2(t), -+, zn(t)] and state equations
h = [hi(t), h2(t), - - -, ha(t)]. Associated with the dynamic processes, there is a
vector of cost functions F(¢) = [Fi(t), Fa(t), -+, Fm(t)]. Each element of the
cost function vector is a function of state and control variables, i.e.,

Fi(t):Ff[x(t))u(t)] 1= 1,2""’m

Since the state variables x(t) can be determined by the state equations when
the control variables u(t) are given, the vector of cost functions can be further
simplified as F(t) = F[u(t)]. Define G(t) as a given closed convex set of the
control variables u(t). We assume F(t) is a set of given continuous functions
from G(t) to R"(t). Then, we give the following definition of the dynamic
variational inequality problem.

Definition 3.3.2. The finite-dimensional variational inequality
problem is to determine a control vector u*(t) € G(t) C R"(t),
such that
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Flu* ()] - [u(t) — u*(t)] > o, Y u(t) € G(t) (3.110)

This definition facilitates the formulation of dynamic network equilibrium prob-
lems as variational inequality problems. However, the following definition is
also useful where continuous time problems need to be transformed to discrete
time problems and comparisons need to be made with static problems.

Definition 3.3.3. The finite-dimensional variational inequality
problem is to determine a control vector u*(t) € G(t) C R"(t),
such that

/ U BT ()] - [u(®) — u (9] dt > 0, Vu(t) €G(t)  (3.111)
0

Many dynamic transportation network equilibrium problems can be formulated
as systems of equations. The systems of equations can be written as

Flu* (), x*(t)] = 0 (3.112)

This problem can be regarded as a special case of a variational inequality.

We next discuss several problems related to the variational inequality.
These problems include optimization problems and complementarity problems.
We first discuss the relationship between an optimization problem and a vari-
ational inequality problem. In this discussion, we mainly consider the static
case; the analysis can be readily extended to their dynamic counterparts.

Optimization Problems

A general optimization problem is to maximize or minimize an objective func-
tion, and in the case of a constrained problem, subject to a given set of
constraints. Both unconstrained and constrained mathematical programming
problems can be formulated as variational inequality problems. The following
two theorems describe the relationship between an optimization problem and
a variational inequality problem.

Theorem 3.3.1. Let x* be a solution to the minimization problem:
min 7 (x) (3.113)
s.t. X € G,

where Z is continuously differentiable and G is closed and con-
vex. Then, x* is a solution to the variational inequality problem:

vZT(x*)- (x-x*)>0, Vx€G. (3.114)

Proof: Denote an auxiliary function Y () = Z[x*+a(x—x*)], where a € [0, 1]
is the decision variable. Note that Y («) achieves its minimum at o = 0, since

[x* + a(x — x*)]|a=0 = X"
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Thus, the derivative dY//da must be nonnegative within the interval a € [0, 1];
i.e.,

dY

o= vZT(x*)-(x—x")>0
Therefore, we obtain variational inequality (3.114) and x* is a solution to

(3.114).

Theorem 3.3.2. If Z(x) i3 a convez function and x* is a solution
to variational inequality (3.114), then x* i3 a solution to minimiza-
tion problem (3.113).

Proof: Since Z(x) is convex, we have
Z(x) > Z(x*)+vZT(x*) - (x—x*) >0, VxeG. (3.115)

Note that (V27 (x*)-(x—x*) > 0) is true because x* is a solution to variational
inequality (3.114). Therefore, from inequality (3.115) we have

Z(x)> Z(x"),Vx€eG (3.116)

In other words, x* is a minimum of mathematical program (3.113).

Note that the above two theorems apply to both constrained and uncon-
strained optimization problems, because the feasible set G may or may not be
constrained. In addition, the variational inequality problem can be formulated
as an optimization problem when a certain symmetry condition holds. More
specifically, if the variational inequality formulation of the optimality conditions
is characterized by a function with a symmetric Jacobian, then the solution of
the optimality conditions and the solution of a particular optimization problem
are the same. We have the following theorem to depict this relationship.

Theorem 3.3.3. If F(x) is a set of continuously differentiable
functions on G and the Jacobian matriz

oF; oF, ... 9OFf
8z, Bxo Oxy
oF, 8F, .. OF;
VF(X) = oz, Bz, oz,
or, oF, ., OF,
Oz, 22 oz,

8 symmetric and positive semidefinite. Then, there is a real-valued
conver function Z(x) satisfying

VZ(x) = F(x)

where \7Z(x) is the gradient vector of function Z(x). The solu-
tion xX* to variational inequality (3.114) is also the solution to the
optimization problem:
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n;én Z(x) (3.117)
st. X€EG.

Proof: Since 7F(x) is symmetric and positive semidefinite, it follows from
Green’s Theorem that

Z(x) = /F(x)da:

where [ is a line integral. Since x* is the solution to variational inequality
(3.114), using Theorem 3.3.2, we conclude that x* is also the solution to opti-
mization problem (3.117).

By Theorem 3.3.3, a variational inequality problem can be reformulated
as a convex optimization problem only when the cost function F(x) is symmet-
ric and positive semidefinite. Thus, the variational inequality problem encom-
passes the optimization problem. Therefore, the variational inequality is the
more general problem in that it can also accomodate a function F(x) with an
asymmetric Jacobian matrix. Historically, some static transportation network
equilibrium problems which cannot be formulated as optimization problems
were formulated successfully and solved as variational inequality problems. A
similar observation can be made for dynamic transportation network equilib-
rium problems. Only certain types of dynamic problems can be formulated as
optimal control problems. Many dynamic problems do not satisfy the symme-
try condition and have to be formulated as variational inequalities directly.

We note that although the above theorems are only proven for static
problems, they apply to dynamic problems as well. To avoid repetition, we
omit the proofs. Note that in dynamic problems, the corresponding optimiza-
tion problems have to be replaced by optimal control problems.

Complementarity Problems

Complementarity problems are defined on the nonnegative orthant. The non-
linear complementarity problem is a system of equations and inequalities stated
as follows:

Find x* > 0 such that

f(x*)>0 and fT(x*)-x*=0 (3.118)

When f(x) is a set of linear functions, that is, f(x) = Ax + B, where A is an
n xn matrix and B an n x 1 vector, problem (3.118) is a linear complementarity
problem. In general, the complementarity problem is a special case of the
variational inequality problem. The relationship between the complementarity
problem and the variational inequality problem is as follows.

Theorem 3.3.4. The variational inequality (3.109) and the com-
plementarity problem (3.118) have precisely the same solutions, if
any solutions erist.
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Proof: First, we need to prove that if x* satisfies variational inequality (3.109),
then it also satisfies complementarity problem (3.118). Denote e; as an n-
dimensional vector with 1 in the ith location and 0 elsewhere, i.e.,

0

—

e; =

0

Substituting x = x* +e; into variational inequality (3.109), we have f;(x*) > 0.
We can choose any e; with 1 at any i-th location so that each component of
fi(x*) is nonnegative. Thus, f(x*) > 0.

Now substituting x = 2x* into variational inequality (3.109), we obtain

f(x*)-(x*)>0. (3.119)
Then, substituting x = 0 into variational inequality (3.109), we obtain
f(x*)-(—x*)>0. (3.120)

Equations (3.119) and (3.120) together imply that f(x*) - x* = 0. Thus, we
obtain complementarity problem (3.118).
Second, if x* satisfies complementarity problem (3.118), then

f(x*)-x*=0 (3.121)
Since we can find any feasible x > 0 and f(x*) > 0, we obtain
f(x*)-x>0 (3.122)

Subtracting equation (3.121) from equation (3.122), we obtain the variational
inequality
f(x*) - (x—x*)>0 (3.123)

3.3.2 Existence and Uniqueness Conditions

Next we discuss the existence and uniqueness of the variational inequality prob-
lem for static problems. The conclusions will also apply to variational inequali-
ties for the dynamic problems. Existence of a solution to a variational inequal-
ity problem follows from continuity of the function f entering the variational
inequality, provided that the feasible set G is compact. In general, we have the
following existence theorem.
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Theorem 3.3.5. If G is a compact convez set and f(x) is contin-
uous on G, then the variational inequality problem has at least one
solution x*.

The proof of this theorem requires the use of Brouwer’s Fixed Point
Theorem and is not given here (Nagurney, 1993). Qualitative properties of
existence and uniqueness are easily obtained under certain monotonicity con-
ditions. First, we present the following definitions.

Definition 3.3.4. A vector of functions f(x) is monotone on G if

[f(x!) —f(xD)]-(x! =x}) >0 Vx4Lx’eq (3.124)
where x! and x? are any two points on G.

Definition 3.3.5. A vector of functions f(x) is strictly monotone
on G if

) —f(x?)]-(x! =x) >0 Vx,x’e@G, x!'#x? (3.125)
Definition 3.3.6. A vector of functions f(x) is strongly monotone
on G if for some a > 0

F(x!) - £x))T - (x! =x?) > a||x —x?||?, Vx',x*’€@G (3.126)

Assume that f(x) is continuously differentiable on G and V£(x) is strongly
positive definite. Then f(x) is strongly monotone. Then, we have the following
theorem for uniqueness.

Theorem 3.3.6. Suppose that f(x) is strictly monotone on G.
Then, the solution is unique, if one ezists.

In the following, we present some easier methods for checking the mono-
tonicity of functions.

Theorem 3.3.7. Suppose that f(x) is continuously differentiable
on G and the Jacobian matriz

8z, Oz, oz,
8f 8L ., 2f
Vf(x) = Bz Bz, Oz p
8z, 8zxqy By

is positive semidefinite (or positive definite), then f(x) is monotone
(or strictly monotone).
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Theorem 3.3.8. Assume that £ is continuously differentiable at
some X. Then £(z) 18 locally strictly (or strongly) monotone at x if
VE(X) is positive definite (or strongly positive definite), that is,

vIif(x)v > 0, VveR',v#£0 (3.127)

vIVE)v > a||v|]% for some a«>0, VveR" (3.128)
where v i3 an arbitrary vector with components of real values.

Given the above two theorems for monotonicity, we have the following
theorem for uniqueness.

Theorem 3.3.9. Assume that f(x) is continuvously differentiable on
G and that VE(x) is strongly positive definite, then f(x) i3 strongly
monotone.

The following theorem provides a condition under which both existence
and uniqueness of the solution to the variational inequality problem are guar-
anteed. No assumption on the compactness of the feasible set G is made. This
is important for very complicated dynamic problems when convexity of the
feasible set is difficult to prove.

Theorem 3.3.10. If f(x) is strongly monotone, then there ezists
precisely one solution x* to the variational inequality (3.109).

The proof of existence follows from the fact that strong monotonicity implies
coercivity, whereas uniqueness follows from the fact that strong monotonicity
implies strict monotonicity. In conclusion, in the case of an unbounded fea-
sible set G, strong monotonicity of the function f guarantees both existence
and uniqueness. If G is compact, then existence is guaranteed if f is continu-
ous, and only the strict monotonicity condition is needed for uniqueness to be
guaranteed. The first conclusion is important for some complicated dynamic
problems.

3.4 Solution Algorithms for Mathematical Pro-
grams and Variational Inequalities

In this section, we present several solution algorithms for mathematical pro-
gramming problems. These algorithms are also suitable for solving correspond-
ing discrete optimal control problems. To simplify our presentation, we concen-
trate on the most widely used algorithms for dynamic transportation network
equilibrium problems. For other algorithms, we refer readers to mathemati-
cal programming texts. We first present the interval reduction algorithm for
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a one-dimensional minimization problem. Then, the Frank-Wolfe algorithm
is discussed. Finally, we present the relaxation or diagonalization algorithm
for variational inequality problems. Although the algorithms are presented
for static mathematical programming problems, they are extended to dynamic
problems in subsequent chapters.

3.4.1 One Dimentional Minimization

In this section, we consider the minimization of a nonlinear function Z(z) of a
single variable z. It is well known from elementary calculus that the necessary
condition for a differentiable function in one variable, Z(z), to have a minimum
at z = z* is that the derivative of Z(z) evaluated at z* equals zero. In other

words,
dZ(z")
de 0

This is a first-order condition for a minimum. If there is a minimum at «*, this
condition must hold. To prove that this stationary point is a minimum, we
need to prove that it is a global minimum. In other words, the value of Z(z)
is lower than Z(z) at any other z.

A sufficient condition for a stationary point to be a global minimum is
that the function is strictly convex . The strict convexity condition is equivalent
to requiring that the second derivative of Z(z) be positive, that is

(3.129)

d*Z(z*)
i >0 (3.130)

We now discuss the methods for determining z*. It is assumed that z lies
within some finite interval [a,b] and Z(z) is continuous and uniquely defined
everywhere in that interval. These requirements ensure the existence of a finite
minimum of Z(z) for some z in the interval. For simplicity, we assume Z(z)
is ditonic (has one extreme point) over the interval [a, b], implying that it has
only a single, unique minimum in that interval.

The study of one-dimensional optimization methods is important mainly
because such an optimization or line search is often a part of an algorithm de-
signed to find a minimum of multivariate functions. We discuss two basic
methods, the bisection and golden section methods. Both methods use the in-
terval reduction approach. The interval reduction approach involves iterative
procedures in which each iteration is focused on a current interval. The cur-
rent interval is a portion of [a, b], denoted as [a(™), b(")]. This interval must be
determined to include the minimal point £*. At each iteration, this interval is
examined and divided into two parts: the part in which the minimum cannot
lie and the current interval for the next iteration. The part in which the mini-
mum cannot lie is discarded and the procedure is repeated for the new current
interval. The procedure starts by designating [a, b] as the first current interval,
i.e., al® = a and b(®) = b. The interval is then reduced at each successive iter-
ation until a small enough current interval (smaller than a prespecified value)
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for z* is obtained. Basically we have two interval reduction methods which
differ from each other only in the rules used to examine the current interval
and to decide which portion of it can be discarded.

Bisection Method

The bisection method exploits the fact that the function is monotonic on each
side of the minimum. In other words, the derivative of the function, dZ(z)/dz,
is negative for £ < z* and positive for £ > z*. The algorithm computes the
derivative of Z(z) at the midpoint of the current interval, [a(™), 5(®)], at itera-
tion n. Denote this point as z(®). If dZ(2(™))/dz < 0, then z* > z(®), Thus,
the interval [a(®), 2(")] can be discarded. The next current interval will be
[z, (™). If dZ(z(™)/dz > 0, then 2* < z(®). Thus, the interval [z(®), b(*)]
can be discarded. The next current interval will be [a(™), .r(")]. A prespecified
convergence criterion |a(® — b(®)| < € (e is a very small value) can be used
to terminate the procedure and the middle point of the remaining interval is
taken as the estimate of z*.

Golden Section Method

The golden section method is based on a comparison of the values of Z(z) at two
points, :L'(ln) and :cgn), where :L'(ln) < :cg"). The two points are within the current
interval, [a(®), b(®)], at iteration n. The two interior points are determined by
using a reduction ratio of 0.618 or precisely (v5 — 1)/2. The interior points
are selected so that xﬁ") is 0.618 of the current interval length to the left of

b and :L'(Z") is 0.618 of the current interval length to the right of a(®). Since
the value of 0.618 is known as the golden section, this one-dimensional search
method is termed the golden section method. ,

At iteration n, if Z (:L'(l")) >Z (:L'g")), the optimum must lie to the right
of Z (z(l")) because the function is ditonic. Thus, the interval [a(™), :c(l")] can
be discarded. The new interval for iteration (n + 1) is [a(®*1), b(+1)], where
a(+1) = £{™ and b+ = b, If Z(2{) < Z(2{™), the optimum must lie to
the left of Z(z5")) because the function is ditonic. Thus, the interval [z{™, b(")]
can be discarded. The new interval for iteration (n+1) is [a(®+1), 5(*+1)], where
a®+D) = g and p(»+D) = xgn). :

The interval reduction process continues with two new interior points
:c(1"+1) and :c(2"+1) for iteration (n + 1). Thus, at each iteration, the golden
section procedure makes use of one of the interior points from the last interval,;
only one new point needs to be calculated at each iteration.

The bisection method has a faster convergence speed than the golden
section method. However, it requires computing the derivatives of Z(z) at each
iteration. On the other hand, the golden section method involves computing
the function Z(z) itself. Thus, the bisection algorithm can be preferable to the
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golden section method if calculating the derivatives is easier than calculating
the function itself.

3.4.2 Frank-Wolfe Algorithm

The Frank-Wolfe (F-W) algorithm was originally suggested by Frank and Wolfe
(1956) as a procedure for solving quadratic programming problems with lin-
ear constraints. It is also known as the convex combination algorithm. This
method is extensively used in determining equilibrium flows in static trans-
portation network problems. In this book, it is extended to solve the dynamic
transportation network equilibrium problems.

We consider a convex minimization program with linear constraints:

n%én Z(x) (3.131)
s.t.

Za;j z; > b; Vi (3.132)

where a;; and b; are constant coefficients (i = 1,---,I;5 = 1,---,J). The
algorithm is basically a feasible descent direction method. At iteration (n+1), it
generates a point x(*+1) = (z{"*1) ... ("1 from x(n) = ™, ..., 2{) so
that Z(x("+1)) < Z(x(")). Thus, the essence of this algorithm is the calculation
of x("+1) from x(*). The algorithmic step can be written in a standard form as

x(n+1) - x(ﬂ) + a(") d(") (3133)

where d(®) = (d(1"+1), . ~~,d(,"+1)) is a descent direction vector and o(®) is a
nonnegative scalar known as the step size or move size. This equation means
that at each point x(®), a direction d(®) is identified along which the function is
decreasing. Then, the step size a(®) determines how far the next point x(*+1)
will be along the direction d(®).

The F-W method selects the feasible descent direction not only based on
how steep each candidate direction is in the vicinity of x(*), but also according
to how far it is possible to move along this direction. It chooses a direction
based on the product of the rate of descent in the vicinity of x(*) in a given
direction and the length of the feasible region in that direction. This product
is the drop or the possible reduction in the objective function value which can
be achieved by moving in this direction. Thus, the algorithm uses the direction
that maximizes the drop.

To find a descent direction, the algorithm checks the entire feasible re-
gion for an auxiliary feasible solution, y(*) = [y&"), . --,y(l")], such that the
direction from x(*) to y(*) provides the maximum drop. In seeking the feasible
direction, the bounding of the move size does not require a separate step of
the algorithm. The bounding is accomplished as an integral part of choosing
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the decent direction. The direction from x(®) to any feasible solution, y, is
the vector (y — x(®)) (or the unit vector (y — x(™))/||ly —x(™)||). The slope of
Z(x™) in the direction of (y —x(®)) is given by the projection of the opposite
gradient [~V Z(x(™))] in this direction, i.e.,

(y = x(™)

-vZT(x™)y. X

(3.134)

The drop in the objective function in the direction (y — x(®)) is obtained by
multiplying this slope by the distance from x(®) to y, |ly — x(™)|, i.e.,

-vZT(x™) . (y — x) (3.135)

This term has to be maximized (in y) subject to the feasibility of y. Alterna-
tively, the term can be multiplied by (-1) and minimized. It follows that

8Z(x(")

== (3.136)

min VZT(x™). (y — x™) = Z

s.t.

daju>b Vi (3.137)
1
where constraint set (3.137) is equivalent to the original constraint set (3.132)
by replacing x with y. Thus, finding the descent direction amounts to solving
a linear program, in which y; is the decision variable. Note that VZ(x(™)) is
constant at x(®) and the term VZ7(x(™) . (x(™)) can be discarded from the
objective function. Thus, the linearized problem can be simplified as

BZ(X(")) .

min F®)(y) = V27 (x™).y =) —— v

(3.138)

s.t.

daju>b Vi (3.139)

The objective function coefficients are 98Z(x(™))/dz;, 8Z(x™)/dzs, ---,
8Z(x())/dz;. These coefficients are the derivatives of the original objective
function at x(®), which are known at iteration n. The decision variables of pro-
gram (3.136)-(3.137) are y(®) = (yﬁ"), yg"), o ',ygn)) and the decent direction
is the vector pointing from x(®) to y(®), i.e., d® = (y(") —x(™), or in an ex-
panded form, df") = y,(") - :cE"), V i. Once the decent direction is known, other
algorithmic steps involve the determination of the move size and a convergence
test.

As in many other descent methods, the move size in the direction of d®)
equals the distance to the point along d(®) which minimizes Z(x). The F-W
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method does not require a special step to bracket the search for an optimal
move size in order to maintain feasibility. The new solution, x(*+1), must lie
between x(®) and y(*). Because y(®) is a solution of the linearized problem,
it naturally lies at the boundary of the feasible region. In other words, the
search for a descent direction automatically generates a bound for a line search
by accounting for all constraints when the descent direction is determined.
Since the search interval is bracketed, the bisection or golden section method
can be used to find the step size « by solving the minimization of Z(x) along
d® = (y(®) — x(™), 1t follows that

i (n) (n) _ x(m)
015121511 Z[x'" + a(y x\™)) (3.140)

Once the optimal solution of this line search, a(®), is found, the next
point can be generated using the following formula

x(+D) = x() 4 a(")(y(") —x(®) (3.141)
Note that equation (3.141) can be written as
x(") f— (1 —_ a("))x(") + a(")y(")

The new solution is thus a convex combination (or a weighted average) of x(*)
and y(). An appropriate convergence criterion is to check the lower bound of
the objective function at each iteration. By convexity,

Z(x*) > 2(x™) + VZ(x™) - (x* - x(")) (3.142)

Thus, the value of the linearized objective function yields a lower bound at
Z(x™),

LB(x™) = 2(x™) + vZ(x™) . (y — x™) (3.143)
An appropriate convergence criterion is ,
vZ(x™) . (y - x™)/LB(z™) < € (3.144)

The numerator of equation (3.144) is sometimes called the gap.
The F-W algorithm can be summarized as follows:

Step 0: Initialization.
Find a feasible solution x(?). Set iteration counter n := 0.

Step 1: Direction Finding.
Find y(®) that solves the linear program (3.138)-(3.139).

Step 2: Step Size Determination.
Find a(®) that solves

i (n) (n) _ x(n)
Orsrgglz[x +a(y x™)] (3.145)
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Step 3: Move.
Set x("*+1) = x(?) 4 () (y(®) — x(»)),

Step 4: Convergence Test.
If VZ(x™) . (y — x(™)/LB(z(™) < ¢, stop. Otherwise, let n := n+ 1 and go
to Step 1.

The algorithm converges in a finite number of iterations. Since the F-W
algorithm involves a minimization of a linear program as part of the direction-
finding step, it is useful only in cases in which this linear program can be
solved relatively easily. It is also useful when algorithms which are generally
more efficient than the F-W method can not be utilized due to the size of the
problem. Minimization problems for dynamic transportation networks pos-
sess both properties: they include a large number of variables and the linear
program associated with the direction finding step can be efficiently solved.

3.4.3 Relaxation Algorithm

In this section, we present an iterative method for the solution of the variational
inequality problem. For a static problem, the variational inequality problem is
to determine a vector x* € G C R", such that

ffx*)-(x-x*)>0, VxeG (3.146)

where f is a vector of continuous functions. Assume that there exists a vector
of auxiliary smooth functions g(x,y) on G X G and'g € R". The function
g(x,y) has the following properties:

1. g(x,x) = f(x) for all x on Gj

2. for every fixed x, y € G, the Jacobian matrix Vg(x,y) is symmetric and
positive definite.

In other words, the decision variables x for the functions f are partitioned into
two groups x and y. Since the Jacobian matrix Vg(x,y) is symmetric and
positive definite, the line integral [g(x,y) dz creates a new function Z(x,y)
on G x G and Z € R. For any fixed y € G, function Z(x,y) is strictly convex
and

g(x,¥) = VxZ(x,y) (3.147)
At each iteration n, we solve the following variational inequality subproblem:
g(x™,x*-V). (x—x™)>0, VxeG (3.148)

or an equivalent mathematical programming problem:

s (n-1)
Inin Z(x,x ) (3.149)
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for which a unique solution x(™) exists. The solution to program (3.149) may
be computed using any appropriate mathematical programming algorithm.
For transportation equilibrium network problems, the F-W algorithm is most
widely used for such purpose. We note that a variational inequality subproblem
can be constructed in various ways, some easier to solve than others.

If the sequence of solution x(®) is convergent, i.e., x(") — x* as n — oo,
variational inequality subproblem (3.148) yields

fT(x*) - (x—x")=gT(x*,x") - (x—x*)>0, Vxe@G (3.150)

Thus, x* is a solution to variational inequality problem (3.146). The relaxation
method is stated as follows:

Step 0: Initialization.
Find a set of feasible decision variables x(®). Set n := 0.

Step 1: Relaxation.
Solve the mathematical programming subproblem:

i () x(n-1)
min Z(x\"),x ) (3.151)

obtaining solution x(™).

Step 2: Convergence Test.
If |x(") - x("‘l)l < ¢, for a prespecified small value ¢, then stop. Otherwise,
set n:=n+ 1, and go to Step 1.

We note that in the relaxation method, each component g;(x,y) of func-
tion g(x,y) should correspond to the relaxation of variable x;

gi(xay):fi(yl,"°,yi—lyxivyi+1""7yﬂ) i= 1)"')” (3-152)

This relaxation method is sometimes termed the diagonalization method be-
cause the Hessian matrix of Z is diagonal, since all cross-link effects have been
fixed. The mathematical programming subproblem is also known as the di-
agonalized problem. Therefore, the relaxation method resolves variational in-
equality (3.146) into a sequence of variational inequality subproblems (3.148)
or mathematical programming subproblems (3.149).

3.5 Notes

Discrete optimal control problems have been discussed in various optimal con-
trol texts. At the elementary level, readers may consult the text by Sage and
White (1977) and Bryson and Ho (1975). The necessary conditions for general
nonlinear programming problems were provided by Kuhn and Tucker (1951).
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The material reviewed for mathematical programming can be found in any
standard mathematical programming text, such as Luenberger (1984). Further
discussion of reducing discrete optimal control problems to mathematical pro-
gramming problems can be found in texts by Tabak and Kuo (1971) and Canon
et al (1970). For multi-level mathematical programming problems, readers may
consult the paper by Bard (1984).

A comprehensive summary of variational inequality problems is provided
by Nagurney (1993). The text by Kinderlehrer and Stampacchia (1980) pro-
vides an introduction to some variational inequality problems. For the rigorous
proofs of the existence and uniqueness for dynamic problems, especially optimal
control problems, please refer to Cesari (1983).

The computational algorithms for mathematical programming problems
are summarized by Bazaraa et al (1993). The F-W algorithm and its applica-
tions in static transportation equilibrium problems are described in detail by
Sheffi (1985). The relaxation method is described in more detail in Nagurney
(1993).



Chapter 4

Network Flow Constraints and
Definitions of Travel Times

In this chapter, the constraints for dynamic traffic necessary for a urban trans-
portation network are presented. These constraints include flow conservation
for links and nodes, flow propagation, first-in-first-out (FIFO) and oversatura-
tion. Associated with these constraints and different needs for dynamic travel
time information, two definitions of travel time are considered.

4.1 Flow Conservation Constraints

The multiple origin-destination network flow problem is considered. A traffic
network is represented by a directed graph G = (V, A), where A is the set of
nodes and A is the set of directed links. A node can represent an origin and a
destination, as well as an intersection. In the following, the index r will denote
an origin node and the index s will denote a destination node.

Consider the fixed time period [0,T], which is long enough to allow all
travelers departing during the peak period to complete their trips. Let

zq4(t) = number of vehicles traveling on link a at time t;
zgp(t) = number of vehicles traveling on link a over route p with
origin r and destination s at time ¢.

In the following, all variables with subscript p and superscripts s denote the
variables with route p, origin » and destination s. It follows that

D ah(t) = zalt) Va. (4.1)

rap

Let uq(t) denote the inflow rate (vehicles/hour or vehicles/minute) into
link a at time ¢ and v,(¢) denote the exit flow rate from link a at time ¢. The
inflow uq(t) and exit flow v,4(t) on link a are both regarded as control variables.
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The number of vehicles z4(t) on link @ is defined as the state variable for link
a. The state equation for link a can then be written as

d:(,’z" (t) rs rs
d’; = Ugy(t) — vg,(t) Va,p,r,s. (4.2)

Figure 4.1 illustrates the flow variables for link a.

x,(1)

Uy(t) v,(t)

—— -i-------|——.

Figure 4.1: Flow Variables for Link a

The number of vehicles on link a at an initial time ¢ = 0 is assumed to equal 0:
zqp(0) = 0, Va,p,r,s. (4.3)

Therefore, the number of vehicles on link a at any time ¢ is given by

t
zop(t) = /0 [ugp(w) — vgp(w)]dw Va,p,r,s. (4.4)
If the number of vehicles on link @ at an initial time ¢ = 0 is not equal to 0,
z4p(0) > 0, Va,p,r,s, (4.5)

then, the number of vehicles on link a at any time ¢ is given by

t
27 (1) = 2750 + / [l () — o1 ()] Va,p,rys.  (4.6)

In most models in this book, we consider the case when z7(0) = 0. For the case
when z7(0) > 0, the models and corresponding solution algorithms require
modification at time 0 accordingly. Finally, all variables must be nonnegative
at all times:

zap(t) 20, Ugp(t) > 0, Vgp(t) 20, Ya,p,r,s. (4.7)

Denote the required instantaneous flows from origin node r to destination
node s at time t as f"*(¢), which is a given function of time in any dynamic
route choice problem. Flow conservation at node j (j # r, s) for route p between
O-D pair rs requires that the flow exiting from the link pointing into node j
at time # equals the flow entering the link which leave node j at time t. Thus,
the flow conservation equations can be expressed as

Do V)= ) up) Vj#r sipr,s (4.8)

a€B(j) a€A(f)
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where A(j) is the set of links whose tail node is j (after j), and B(j) is the set
of links whose head node is j (before j). Figure 4.1 illustrates flow conservation
at node j.

u(t) a € A()

U,(t) j
a€B()

A 4

N

Figure 4.2: Flow Conservation at Node j

Conservation of flow at origin node r (r # s) requires the flow originating at
origin r at time ¢ to equal the flow entering the links which leave origin r at time
t. Thus, the flow conservation equations for the origin nodes can be expressed

as

Z Z ugp(t) = f*(t) Vr # s;s. (4.9)

a€A(r) p

Denote the instantaneous flows arriving at destination node s from origin node
r at time ¢ as the control variable ™ (t), and let e;’(t) denote these flows over
route p at time t. Conservation of flow at destination node s (s # r) requires
the flow exiting at destination s at time ¢ to equal the flow exiting the links
which lead to destination s at time ¢. Thus, the flow conservation equations
for the destination nodes can be expressed as

S > ) =e(t) Vris # r. (4.10)
a€B(s) P

Denote the cumulative number of vehicles arriving at destination s from origin
r over route p by time ¢ as E;’°(t). It follows that

dET*(t
—Zt—(—l =€y’ (t) Vp,r,s # r. (4.11)

At the initial time ¢ = 0,
E;*(0) =0, Vp,r,s. (4.12)
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Finally, the variables must be nonnegative at all times:

er'(t) > 0, E*(t) > 0, Vp, 7, 5. (4.13)

4.2 Definitions of Dynamic Travel Times

The instantaneous link travel time at any time ¢ is defined as the travel time
that would be experienced by vehicles traversing a link when prevailing traffic
conditions remain unchanged. The instantaneous route travel time at any time
t is the sum of the instantaneous link travel times over all links in this route
at time ¢t. Thus, the instantaneous route travel time would be experienced by
a vehicle if prevailing traffic conditions do not vary until the vehicle reaches its
destination.

The instantaneous travel time c4[z4(t), ua(t), va(t)], or simply cq(t), over
link a is assumed to be dependent on the number of vehicles z4(t), the inflow
uq(t) and the exit flow v4(t) on link @ at time ¢. We assume the instantaneous
travel time c4(t) on link a is the sum of two components: 1) an instantaneous
flow-dependent cruise time g14[z4(t), ua(t)] over link a; 2) an instantaneous
queuing delay gog[a(t), va(t)]- It follows that

ca(t) = 91a[Ta(t), ua(t)] + 924 [2a(t), va(?)]- (4.14)

The two components g14[z4(t), ua(t)] and g24[za(t), va(t)] are assumed to be
nonnegative and differentiable with respect to z4(t), uq(t) and z4(t), v4(t), re-
spectively.

Consider the flow which originates at node r at time ¢ and is destined
for node s. There is a set of routes {p} between O-D pair (r,s). Define the
instantaneous travel time function ¢, (t) for each route p between (r, s) as

¥y (t) = E Ca[Za(t), ua(t), va(t)] Vr, s, p; (4.15)

aErsp

the summation is over all links @ in route p from origin r to destination s.

Define the minimal instantaneous route travel time o"*(t) as the minimal
travel time that would be experienced by a vehicle departing from origin r to
destination s at time ¢, if prevailing traffic conditions do not vary until the
vehicle reaches its destination. If the instantaneous link travel time cq(t) is
determined, the minimal instantaneous O-D travel time o™ (t) can be computed
as 07*(t) = min, ¥3° (), where o™ (¢) is a functional of all link flow variables
at time t, or 7% (t) = 7" [u(t), v(t), z(t), t].

The future link travel time or actual link travel time is the travel time
over a link actually experienced by vehicles. This time can also be called the
projected time. Define 7,(t) as the actual travel time over link a for vehicles
entering link a at time ¢. 7,(¢) is assumed to be dependent on the number of
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vehicles z4(t), the inflow u4(t) and the exit flow v,(t) on link a at time t. It
follows that

Ta(t) = Z Ta[Za(t), ua(t), va(t)] Va (4.16)

a€rsy

Similarly, the future route travel time or actual route travel time is the
time actually experienced over a route by vehicles. Define ' (t) as the travel
time actually experienced over route p by vehicles departing origin r toward
destination s at time . We use a recursive formula to compute the route
travel time 7’ (t) for all allowable routes. Assume route p consists of nodes
(ry1,2,-++,4,++,s). Denote n;‘ (t) as the travel time actually experienced over
route p from origin r to node ¢ by vehicles departing origin r at time ¢. Then,
a recursive formula for route travel time 77’ (t) is:

i (8) = mpCEI(t) + rat + np ¢V (8)] Vp,ryisi=1,2, 1,8

where link a = (i — 1,17).

Define #7*(t) as the minimal travel time actually experienced by mo-
torists departing from origin r to destination s at time ¢. If the actual link
travel time 74(t) is determined, the minimal actual O-D travel time 77*(t) can
be computed as 7" (t) = min, np*(t). 77*(t) is a functional of all link flow vari-
ables at time w > t, or 7"*(t) = 7"*[u(w), v(w), £(w)|w > t]. This functional is
neither a state variable nor a control variable, and it is not fixed. This func-
tional is not available in closed form. Nevertheless, it can be evaluated when
u(w), v(w) and z(w) are temporarily fixed.

Various dynamic route choice models are formulated in the following
chapters based on instantaneous and actual travel times. More discussion on
various definitions of travel times and their applications is found in Chapter
16.

4.3 Flow Propagation Constraints

It is necessary to ensure that the entering and exiting flows, as well as the vehi-
cles remaining on links, are consistent with the link travel times. We write these
constraints using actual link travel times. In static network models, these flow
propagation constraints are not necessary because a flow is assumed to prop-
agate instantaneously over its entire journey from its origin to its destination.
Vehicles don’t remain on a link for a duration of time in order that a queue can
form. Thus, queuing phenomena cannot be captured correctly in any static
network model.

Flow propagation constraints can be written based on links or nodes.
In this book, we suggest using link flow propagation constraints, which can be
formulated in two different ways as now described.
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4.3.1 Typel

Let Ugp(t) denote the cumulative number of vehicles entering link a on route
P w1th O-D pair rs by time ¢, and V] (t) denote the cumulative number of
vehicles leaving link @ on route p W1th O-D pair rs by time t. Ugs(t) and
Vap () are state variables for link a. The state equation for link a can then be
ertten as

dU”( ) _ = ug(t) Ya,p,r,s. (4.17)
dt ap LN wb I

V” t
dt( ) Vap(t) Va,p,r,s. (4.18)

The cumulative numbers of vehicles entering and exiting link a at an initial
time ¢ = 0 are assumed to equal 0:

Uzs(0) = 0, VI (0) =0, Va,p,r,s. (4.19)

When the number of vehicles on link a at an initial time ¢ = 0 equals 0, the
number of vehicles at any time ¢ is given by

2op(t) = Ugp(8) = Vap (1) Va, p, 7, . (4.20)

Figure 4.3 illustrates the relationship of cumulative entering and exiting flows
on link a. Finally, all variables must be nonnegative at all times:

S 20,  UD@® >0, VI()>0, Vap,ns (4.21)

Cumulative Number of Vehicles
(Entering and Exiting)

I 3

AT
Y >
0 t Time t

Figure 4.3: Cumulative Entering and Exiting Flows on Link a

The node flow conservation equations defined in the last section do not
change. For link a on route p between O-D pair rs, the total number of vehicles
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entering link a by time ¢t must have exited link a by time [t + 74()]. It follows
that

Ugp(t) = Vap [t + 7a(t)] Va,p,r,s. (4.22)

Figure 4.4 illustrates the flow propagation on link a. The expression of this

Cumulative Number of Vehicles
(Entering and Exiting)

a

U;?t) T(t)

Vrj t+1(t)

\ 4

0 t 1,(0) t+1(1) Time t

Figure 4.4: Flow Propagation on Link a

flow propagation constraint is very simple and its meaning is also intuitive.
However, the following flow propagation constraints are easier to handle in
optimal control problems and are used in most of our models.

4.3.2 Typell

We formulate the second type of link flow propagation constraints as follows.
Let z55(t) denote the number of vehicles on link a using route p between O-D
pair rs at time t. By definition,

D aka(t) = z4(t) Va. (4.23)

For any intermediate node j # r on route p, denote a subroute p as the section
of route p from node j to destination s. For any link a € B(jj), vehicles on link
a using route p at any time ¢ must result in either:

1. extra vehicles on downstream links on subroute p at time ¢ + 7,(t), or
2. increased exiting vehicles at the destination at time ¢ + 74(2).

It follows that

zip(t) = ) _{2hlt + 7a(®)] - shp(8)} + {E*[t + 7a(t)] - By (2)}
bes
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Va, j,p, 7, 5 # ria € B(j). (4.24)

A detailed discussion of this constraint is given in Chapter 5 following the
formulation of an instantaneous DUO route choice model. We note that the flow
conservation constraints discussed in the previous section can be used directly
when the above link flow propagation constraint is used in the formulation.
In some of our dynamic network models, especially in optimization for-
mulations, we need to write these constraints using estimates of actual link
travel times. These link travel time estimates must be updated in an iterative
procedure known in the transportation science literature as the relazation or
diagonalization technique (Shefli, 1985). In this procedure, the travel times
over each link a, 74(t), are estimated for flows entering the link at each time ¢.
These functions 7,(t) are held fixed, and the model is solved. Then, the link
travel times corresponding to the solution z4(t), uq(t) and v,(t) obtained are
compared to the functions 7,(¢). If the link travel times corresponding to the
solution are different from 7,(t), the values of 7,(t) are reset to these travel
times and the process is repeated. Given the robust nature of the relaxation
(diagonalization) technique, we expect that the solution will converge to the
DUO solution. This procedure is discussed in detail in Chapter 6 and is jus-
tified in Chapter 13 as a standard approach for solving a general variational
inequality model. The revised flow propagation constraints are as follows:

2 (t) = D _{ablt + 7a(t)] — 255 (D)} + {Ep° [t + 7a(t)] — B} ()}
bep -

Va, j,p,7,s;j # r;a € B(j). (4.25)

These constraints are associated with state variables only. This property is
fully exploited in the analysis of the optimality conditions for optimal control
models in Chapter 5.

In the later chapters, the above two sets of flow propagation constraints
are used in appropriate models so to simplify the formulation and to improve
the effectiveness of the corresponding computational algorithms. As we noted
above, the flow propagation constraints can be formulated using node-based
constraints instead of link-based constraints. Thus, other flow propagation
constraints can be formulated. However, these constraints should be decided
in conjunction with the corresponding formulation of the dynamic model.

4.4 First-In-First-Out Constraints

First-In-First-Out (FIFO) conditions may or may not occur in actuality. How-
ever, FIFO should be strictly guaranteed when there is only one lane and no
extra space for turning movements at intersections. When there are both left-
turn and right-turn lanes on a street link, FIFO may still be violated and the
extent of violation will depend on the channelization of lanes at the intersection.
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In a continuous time model, the flow propagation constraints state that
any inflow uj’(t) into link a has to remain on the link for travel time 7,(t),
regardless of the origin-destination source of this inflow. Thus, the flow prop-
agation constraints imply FIFO constraints in a continuous time model if a
rigorous travel time function is used in the flow propagation constraints. In
the following, we use a discrete time example to illustrate how the flow prop-
agation constraints should imply FIFO constraints. The example network is
shown in Figure 4.5. It is 3-link, 4-node network (links 1-2, 2-3, 3-4) with O-D
trips f13(k) = (0,1,0,1,0,1,0,1,0,1) and f}*(k) = (1,0,1,0,1,0,1,0,1,0) for
time interval k = 1,-..,10. Therefore, one vehicle enters link 1-2 in each time
interval k = 1,---,10.

O——0 O——0

Figure 4.5: Example Network

The FIFO condition requires that one vehicle exit link 1-2 and go to node
4 and then another go to node 3, etc. We assume that link 2-3 is blocked due to
some incident at £ = 1. When the first vehicle arrives at node 2 and enters link
2-3, it cannot exit node 3 and enter link 2-4 since the travel time is extremely
high and it has to remain link 2-3. Thus, the link travel time on link 2-3 will
increase for subsequent vehicles. Our physical flow propagation constraint for
link flow and travel time states that the second vehicle entering link 1-2 during
period 2 (k = 2) cannot arrive at node 3, since link 2-3 is highly congested.
This will increase the travel time for vehicles entering link 1-2 during period
3. This process continues and there will be no vehicles exiting node 3. This
framework implicitly defines the FIFO constraints.

In the following, we discuss FIFO or its violation, overtaking, in more
detail. Overtaking denotes that a late entering vehicle flow propagates faster
than an earlier entering vehicle flow and exits earlier than the earlier entering
vehicle flow. Overtaking violates the FIFO rule for traffic propagation on links,
although it might happen on two-lane links. We consider traffic propagation on
link a for two time instants t and ¢t + At in continuous time problems. Denote
the link travel time for flows entering link a at time ¢ as 74(t). The travel time
for flows entering link a at time t + At is 7,(t + At). When the summation
of link travel time at time ¢t + At plus At is smaller than the link travel time
at time ¢, i.e., Tq(t) > 74(t + At) + At, overtaking will occur so that FIFO is
violated. Because flows entering link a during time ¢ + At will exit the link
after clock time t+ At + 74 (t+ At) which is earlier than the clock time ¢+ 74(t),
the exiting time for flows entering link a at time t.

Thus, if we require that overtaking should not occur, we must allow the
clock time t+74(t), when flows entering at time ¢ must exit link a, to be smaller
than the clock time t + At + 7,(t + At), the exiting time for flows entering link
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a at time t + At. It follows that

t+74(t) < t+ At + 74(t + At) (4.26)
Dividing the above equation by At, we obtain

Ta(t + At) — 74(2) S

1+ ~ 0 (4.27)
Taking the limit of the above equation (At — 0),
1+ 74(t) > 0 (4.28)
or
Fa(t) > —1 (4.29)

The above condition must be met to avoid overtaking in any dynamic route
choice model using link travel time functions in the flow propagation con-
straints. If the decreasing rate of travel time on any link @ exceeds 1, overtaking
will occur.

Even with the flow propagation constraints in a general discrete time
model, the FIFO constraints may still be violated when the time interval is
quite large. For example, assume link travel times at instants ¢ and ¢t 4+ At are
2 minutes and 40 seconds, respectively. If At = 1 minute, then

Ta(t + At) — 1,(t) 40— 120
At T80

=-133< -1 (4.30)

Thus, overtaking does occur in this example. However, condition (4.27) can
be satisfied by choosing appropriate link length and time interval length in a
discrete time environment.

Some nonconvex conditions can be introduced to guarantee FIFO condi-
tion (4.27). However, those constraints greatly increase the complexity of the
model and its solution. In the continuous time environment, FIFO condition
(4.27) is generally satisfied by realistic travel time functions such as those pro-
posed in Chapter 16. As shown there, our proposed link travel time function
for a signal-controlled arterial has three parts:

1. an uncongested cruise time over the first part of the link;
2. a queuing delay at the exit part of the link;
3. a uniform delay due to signal setting.

Since the major delay is the queuing delay which assumes FIFO, the condition,
74(t) > —1, will not occur if the link travel time function is validated using real
traffic flow data.

Our major concern is the overtaking problem in discrete models. In
particular, overtaking may occur in the afternoon peak period when traffic
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flow is declining rapidly together with travel time. Recall that by equation
(4.30), overtaking does not occur when

Ta(t + At) — 74(2) S
At

1 (4.31)

Thus, the length of time interval At and the link travel time 74(t), or the link
length, determine whether overtaking occurs or not. Note that the link length
determines the free flow travel time, which is a major factor affecting equation
(4.31) because the queuing delay assumes FIFO on the link. If the time interval
At increases, link travel time 74(t) must be smaller or the link must be shorter
so that equation (4.31) holds. If time interval At decreases, link travel time
74(t) must be higher or the link must be longer in order for equation (4.31) to
hold.

The detailed values of time interval At and link length associated with
any specific link travel time function should be determined using numerical
experiments in any practical application. In general, overtaking will not occur
for most definitions of link lengths (over 100 feet) and time intervals (shorter
than 2 minutes) if the free flow speed is assumed to be 50 miles/hour in the
experiment. However, as we note in discrete models, no matter how accurate
the link traffic dynamics model is, overtaking or a “jump” may still occur when
the time interval is too large. On the other hand, for most problems, we are
only interested in the aggregate behavior of flows and FIFO is not so important
in those situations. Furthermore, we should note that the FIFO assumption
itself is also an approximation of reality.

4.5 Link Capacity and Oversaturation

There are two basic constraints for link capacity. The first constraint is the
maximal number of vehicles on the link. The second constraint is the maximal
exit flow rate from the link. More detailed analyses of their impacts on dynamic
network models are discussed in Chapter 16.

4.5.1 Maximal Number of Vehicles on a Link

Let I, denote the length of link a and €4y, denote the maximal traffic density
(vehicles/mile). The maximal number of vehicles that link a can accommodate
is lzeqm. The number of vehicles on link a must be less than or equal to the
maximal number of vehicles on the link. It follows that

z4(t) < lo€am Va (4.32)

This constraint applies for any dynamic network model. Since this constraint
involves only state variables, it could be added to the formulation without in-
curring any analysis problem in our desired optimality conditions for optimal
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control models. However, the computational algorithm would need to be re-
vised. When solving a route choice problem including the above constraint, we
could add a penalty term to the objective function and solve it as an ordinary
dynamic route choice problem.

4.5.2 Maximal Exit Flow from a Link

Another constraint concerns the exit flow capacity vq,, at the exit of a link. It
follows that
ve(t) < vam Va (4.33)

In a network, the exit capacity constraint for an upstream link is also an in-
flow capacity constraint for downstream links. This constraint can be added
directly in the formulation or combined in the link travel time functions. If
it is directly added in the optimal control formulation, more analysis of the
optimality conditions of dynamic network models is necessary when the exit
flow capacity is reached. Moreover, the computational algorithm needs to be
revised. A method of combining this constraint with link travel time functions
is discussed in Chapter 16.

In most of our dynamic traffic network models, we consider this exit
capacity constraint in the travel time functions. Thus, it is not necessary to
define an explicit constraint in these network models.

4.5.3 Constraints for Spillback

Oversaturation may occur anywhere and during any time interval when traf-
fic demand exceeds capacity. When queues at critical intersections develop
upstream, then they cause the so-called spillback problem.

In an oversaturated situation, continuing excess demand relative to sup-
ply could transform local oversaturation to regional oversaturation. Thus, in
dynamic network models, corresponding constraints should be formulated to
reflect this phenomenon. In an advanced control/assignment framework, those
constraints should be consistent with each type of traffic control strategy. The
two main types of traffic control strategies are: 1) minimize delay and stops;
2) keep traffic moving or maximize productivity (Lieberman, 1993). We leave
the control policy for further study in the context of combined dynamic travel
choice/signal control models. Here, we only formulate constraints that describe
physical spillback queues.

An extreme case occurs if the queue on link a approaches the maximum,
i.e. zq(t) = lgegm. In this situation, the queue may extend into upstream
links, which causes a spillback problem. However, if the above constraint as
well as upper bound constraints for cumulative O-D departures and associated
access delays at origin nodes are added in the assignment problem, the spillback
problem can still be handled in our dynamic traffic network models.

When a spillback queue develops upstream towards origins, such as park-
ing lots, queuing delays at origins will occur. This is an additional constraint
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for dynamic network models. We construct a dummy link b associated with
each origin node r; see Figure 4.6. The state equation for any origin r is as
follows:

daiy (1) _ T (t) — vi, (2 Vb ;b 4.34
T_ P ()-vbp() YDy Ty S30€ TS, (‘ )

Y H®=10 vr,s. (4.35)

4

xblf t vy p( t

fr?t) —>—------->@-—-a—-—-—0®-—-—-—-—-—-—-—>@

Link b

Figure 4.6: Example of Spillback

We assume the number of spillback vehicles at time 0 is 0. It follows that
z3,(0) =0 Vb, p,r,5;b € rs. (4.36)
Thus, the flow conservation equation for origin r should be revised as

Z Ugp(t) = vp,(t) Vb, p,r,s;b € rs. (4.37)
a€cA(r)

Of course, we also need the flow propagation constraint for dummy link b.
We assume there is no upper bound for the queue length z}(t) since an origin

always has enough capacity to accommodate vehicles. The queuing delay at
the origin is as follows

(t) = p[zs(t), vs(t)] Vbe rs (4.38)
where

zo(t) =D D 2hy(t) w(t) =YY vhy(t)
8 P s r

The exact form of this formula should be associated with specific queuing pat-
terns at origin nodes. Figure 4.7 illustrates the queuing delay at origin r.
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4.6 Summary of Notation

zq(t) = number of vehicles on link @ at time ¢ (main problem variable) *
uq(t) = inflow rate into link a at time ¢ (main problem variable) *x
ve(t) = exit flow rate from link a at time ¢ (main problem variable) **
Ya(k) = number of vehicles on link a at the beginning of time
interval k (subproblem variable)
pa(k) = inflow into link a during interval k (subproblem variable)
¢a(k) = exit flow from link a during interval k (subproblem variable)
fr*(t) = departure flow rate from origin r toward destination s
at time ¢ (given)
F™(t) = cumulative number of departing vehicles from origin r to
destination s by time ¢ (given)
e™(t) = arrival flow rate at destination s from origin r at time ¢ *x*
E™(t) = cumulative number of vehicles arriving at destination s
from origin r by time ¢ (main problem variable) *
E™(k) = cumulative number of vehicles arriving at destination s
from origin r by time ¢ (subproblem variable)
ca(t) = instantaneous travel time for link @ at time ¢
¥p°(t) = instantaneous route travel time for route p between (r,s) at
time ¢
o™(t) = minimal instantaneous route travel time between (r, s) at time ¢
A(j) = set of links whose tail node is j (after j)
B(j) = set of links whose head node is j (before j)
74(t) = actual travel time over link a for flows entering link a at time ¢
74(t) = estimated actual travel time over link a for flows entering
link a at time ¢
ny*(t) = actual travel time for route p between (r, s) for flows
departing origin r at time ¢
7™(t) = minimal actual route travel time between (r, s) for flows

departing origin r at time ¢

* state variable
*x control variable

4.7 Notes

Flow conservation constraints are intuitive and essential for any dynamic net-
work model. In contrast with static traffic network models, there are two kinds
of travel times in a dynamic traffic network model: instantaneous travel time
and actual travel time. These two kinds of travel times reflect the dynamic
nature and complexity of dynamic traffic problems.

Flow propagation constraints can also be represented by some alterna-
tive constraints which imply flow propagation in flow conservation constraints.
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Figure 4.7: Queuing Delay at Origin r

Those models include traffic simulation models and the hydrodynamics method.
One recent example is the cell transmission model proposed by Daganzo (1993)
which assumes traffic flow propagation by cell transmission (flow transfers from
cell to cell, where a cell is a small link segment). The advantages of those mod-
els are that link flow propagation is directly represented and link travel times
are directly provided, while link travel time function is not presented in the
model. For more discussion on FIFO, readers may refer to Carey (1992). De-
tailed discussion on oversaturation and spillback can be found in Lieberman
(1993).



Chapter 5

Instantaneous Dynamic
User-Optimal Route Choice
Models

In this chapter, we discuss optimal control models for instantaneous dynamic
user-optimal route choice problems. Using a network with two parallel routes,
we first present an example to illustrate the instantaneous dynamic user-optimal
concept in Section 5.1. The general definition of instantaneous dynamic user-
optimal state is given in Section 5.2. Then, we present three instantaneous
dynamic user-optimal route choice models. Model 1 is described in Section 5.3.
In Section 5.4, the equivalence of Model 1 with DUO route choice is demon-
strated by proving the equivalence of the first order necessary conditions of the
model with the instantaneous DUO route choice conditions. In Section 5.5, the
second DUO model employing a different link travel time function assumption
is formulated, and the equivalence of Model 2 with the instantaneous DUO
route choice conditions is also demonstrated. In Section 5.6, the third instan-
taneous DUO model employing a simpler link travel time function assumption
is formulated, and its equivalence with the instantaneous DUO conditions is
also demonstrated. Finally, we present a discrete-time numerical example in-
dicating that this class of models yields realistic results.

5.1 An Example with Two Parallel Routes

Consider a network with one O-D pair and two parallel routes (see Figure 5.1).
Assume that there exists only one bottleneck on each route. For simplicity,
we assume that the bottleneck is close to the entry point on each route. Then
the route travel times are assumed to depend on the inflow rate and have the
following simple form:

c1(t) = 10 + 5uy(t) (5.1)
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Cz(t) =15+ 3U2(t) (52)

2

Figure 5.1: Example Network

Suppose there is a departure flow f(t) = 0.5¢ from origin r to destination s at
time ¢ € [0,4]. Flow conservation at origin r requires that

uy () + ua(t) = 0.5¢ (5.3)
In addition, the inflows must be nonnegative, i.e.,
u1(t) > 0, uz(t) >0 (5.4)

The dynamic user-optimal route choice criterion requires that the departing
flow use the minimal travel time route. It follows that

c1(t) = e2(t) if uy(t) >0 and wug(t) >0 (5.5)
Solving equations (5.3)-(5.5), we obtain the optimal inflows as follows:

ui(t) = 0.5¢ ift<?2
1= 0.1875t+0.625 ift>2

wl(t) = 0. ift <2
2271 0.3125¢ —0.625 ift > 2
The corresponding optimal route travel times are

e = | 10425t ift <2
At =19 13.125+0.9375¢ ift > 2

s(t) = 15. ift<2
W= 13.125+0.9375¢ ift > 2

The minimal route travel time o”*(t) is

= { ) =10+ 25 ift<2
)= en(t) = ei(t) = 13.125+ 09375t if ¢ > 2
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The optimal inflows and optimal route travel times are illustrated in Figure
5.2. Thus, the dynamic user-optimal route choice conditions for this example
can be summarized as follows:

ca(t) > 0™(2) a=1,2; (5.6)
ca(t)=0™() fus>0 a=1,2; (5.7)
uy(t) >0, uz(t) >0 (5.8)

5.2 Definition of Instantaneous DUOQO State

We now consider a general transportation network. We define a decision node
for each route p of each O-D pair as any node on the route including the ori-
gin. The instantaneous route travel time between a decision node and the
destination nede is calculated using the currently prevailing link travel times.
Significantly, with many current traveler information systems, such as radio
broadcasts of traffic conditions, the information provided to travelers on free-
ways is the estimated instantaneous route travel time. Thus, at present many
travelers do choose routes based on current or instantaneous travel times.

Consider the flow originating at node r at time ¢ and destined for node
s. There is a set of routes {p} between O-D.pair (r,s). In general, for any link
a and any O-D pair rs, link a is defined as being used at time ¢ if uf*(¢) > 0.
Furthermore, a route p between r and s is defined as being used at time ¢ if
uz;,(t) > 0, where link a is the first link on route p from r to s. The above
general definition will be used in Chapter 12 for general variational inequality
models for instantaneous DUO route choice problems.

In this chapter, we formulate three alternative optimal control models,
each of which equivalent to the instantaneous DUO route choice conditions.
Our objective here is to explore the complexity of the problem. As shown in
Chapter 12, these optimal control models are specific versions of a more general
variational inequality model. Thus, in this chapter we use more restricted
definitions of used links and routes as follows. For any link a on any route from
origin r to destination s, link a is defined as being used at time ¢ if u}*(¢) > 0
and v*(t) > 0. Furthermore, a route p between r and s is defined as being
used at time ¢ if uy;(t) > 0 and vj;(t) > 0 for all links a on route p from r to
s.

We assume that the time-dependent origin-destination trip pattern is
known a priori. In other words, the departure times of travelers are given. The
instantaneous dynamic user-optimal (DUO) route choice problem is to deter-
mine vehicle flows at each instant of time on each link resulting from drivers
using minimal-time routes under the currently prevailing travel times. In this
chapter, we consider the following dynamic generalization of the conventional
static user-optimal state.
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Optimal Inflows
I 3

2 b m e e e e m—————

1375 b e e e e e e e e A e - o

Optimal Travel Times
/ (1)
15 \

0 . ey /

a

16.875

.
>

0 1 2 3 4 Timet

Figure 5.2: Dynamic User-Optimal Inflows and Travel Times
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Link-Time-Based Instantaneous DUO State: If, for each O-D
pair at each decision node at each instant of time, the instantaneous
travel times for all routes that are being used equal the minimal
instantaneous route travel time, the dynamic traffic flow over the
network is in a link-time-based instantaneous dynamic user-optimal
state.

In Chapter 12, we generalize the above definition to the situation of travel
disutility and multi-group travelers instead of travel times for a single group of
travelers only.

Although the instantaneous user-optimal travel times for all routes that
are being used are equal at each decision node at each instant of time, route
flows with the same departure time and the same origin-destination may actu-
ally experience somewhat different route travel times. This is because the route
time may subsequently change due to changing network traffic conditions, even
though at each decision node the flows select the route that is currently the
best.

In optimal control theory terminology, the dynamic user-optimal route
choice problem is to find the dynamic trajectories of link states and inflow and
exit flow control variables, given the time-dependent O-D flow requirements,
the network and the link travel time functions. The formulation of the problem
in this chapter is based on the underlying choice criterion that each traveler
uses the route that minimizes his/her instantaneous travel time when departing
from the origin or any intermediate node to his/her destination. This route
choice rule implies that in a travel-time-based instantaneous dynamic user-
optimal state, the trajectories of the link flow states and inflows and exit flows
are such that the instantaneous travel times at each decision node of all used
routes connecting any given O-D pair will be identical and not greater than
the instantaneous travel times of routes which are not being used.

5.3 Instantaneous Route Choice Model 1

5.3.1 Model Formulation

Recall from Chapter 4 that the instantaneous travel time cq[2a(t), ua(2), va(t)],
or simply c4(t), over link a is assumed to be dependent on the number of
vehicles z4(t), the inflow u,(t) and the exit flow v4(¢) on link a at time t.
This instantaneous link time is the travel time that would be incurred if traffic
conditions on the link remain unchanged while traversing the link. In Model
1, we assume the instantaneous travel time cq(¢) on link a is the sum of two
components: 1) an instantaneous flow-dependent running time g14[24(t), %a(t)]
over link a; 2) an instantaneous queuing delay g2a[za(2), va(t)]. It follows that

€a(t) = g1a[za(t), ua(?)] + g2a[2a(?), va(t)]- (5.9)

The two components g14[24 (%), ua(t)] and g24[Ta(t), va(t)] of the time-dependent
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link travel time function c4[z4(t), ua(t), v4(t)] are assumed to be nonnegative
and differentiable with respect to z4(t), ua(t) and z4(t), va(t), respectively. The
instantaneous travel time function ¢’ (t) for each route p between O-D pair
(rys) is

()= Y calza(t), ua(t), va(t)] Vr, s, p; (5.10)

a€rsp

the summation is over all links a in route p from origin r to destination s.

Using optimal control theory, the equivalent optimization model of the
instantaneous dynamic user-optimal route choice problem (Model 1) is for-
mulated as follows.

u,v,z,e,E

T ua(t) v4(2)
min /0 Za: {/0 91a[Ta(t), w]dw +/0 gza[xa(t),w]dw}dt (5.11)

s.t.
Relationship between state and control variables:
dz??(t)
D = upt) —vig®)  Vaprs (5.12)
dET*(t
2t( ) = ey’ (1) Vp,r;s#£ 1 (5.13)

Flow conservation constraints:

=Y Y un vr, s; (5.14)

a€A(r) p
D val)= D ug() Vipyrysij £ 1,8 (5.15)
a€B(j) acA(j) :
D Dva®) =€) Vr,s;s # 13 (5.16)

a€B(s) P
Flow propagation constraints:

zhn(t) = D {zbplt + Ta(®)] — 25p(0)} + { B}’ [t + 7a(t)] — B} (£)}
bep

Ya € B(j);j # r;p, 7, 53 (5.17)

Definitional constraints:

> uia(t) = ua(t), > ui(t) = va(t), Va; (5.18)

rsp Tsp

> ana(t) = za(t), Va; (5.19)

Tsp
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Nonnegativity conditions:

x;;,(t) >0, u;;,(t) >0, v;;(t) >0 Va,p,r,s; (5.20)

ey’ (t) >0, E;’(t) >0, Vp,r,s; (5.21)
Boundary conditions:

E;*(0) =0, Vp,r,s; (5.22)

zgp(0) =0, Va,p,r,s. (5.23)

The objective function terms are similar to the objective function of the well-
known static user-optimal (UO) model. The first two constraints (5.12)-(5.13)
are state equations for the flow on each link @ and for cumulative arrivals at
each destination. Equations (5.14)-(5.16) are flow conservation constraints at
each node including origins and destinations. The other constraints include flow
propagation constraints, definitional constraints, nonnegativity, and boundary
conditions. In addition, we need several definitional constraints as follows:

> uia(t) = ua(t), > () = va(t),

Tsp rap

> wa(t) = 22 (t), > e () = za(t),
Ze;’ (t) = e™(2).
»

In summary, the control variables are ugy(t), v5,(t), and ey’ (t); the state vari-
ables are zj7(t) and E;°(t). Model 1 can be solved by discretizing time so
that it becomes an ordinary nonlinear program and by using a fixed estimate
of each link travel time 7,(t), which is updated in an iterative diagonalization
(or relaxation) fashion.

We illustrate the constraints of Model 1 using the example network with
three links in Figure 5.3. Assume that O-D flow f1%(¢) = 10 for a short time
period t € [0,€] (¢ < 71(t)) and f14(t) = 0 at time ¢t > e. Conservation of
flow constraints (5.14) require that u*(t) = 10 at time t € [0, €] (How enters
link 1). Thus, z}*(¢) becomes positive by constraints (5.12) (vehicles are on
link 1). When z}*(t) decreases, constraint (5.12) requires v}*(t) to become
positive (flow exits link 1), and constraint (5.15) for node 2 requires u}*(t) to
equal v}*(t) (flow enters link 2). Analogously, constraint (5.12) requires z3*(t)
to increase, since u}*(t) has become positive. Thus, the conservation of flow
constraints (together with the flow propagation constraints) requires that flow
moves from the origin to the destination, successively entering a link, staying
on the link, and then exiting the link.

The flow propagation constraints (5.17) for this network are now stated;
since there is only one route, we suppress the route subscript p and begin with
link 3.

z3*(t) = EYM[t 4+ 73(t)] — EM™(t) (5.24)
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£ty > Q———— —— -® 2 0

Figure 5.3: Example Network with Inflow

z3'(t) = {23t + ()] — 23° (1)} + { B[t + Ra(t)] — EM(2)} (5.25)

z'() = A=t + 1) - 22* (O} + {z3'[t + 11 ()] - 23°(1)}
+ {EM[t+ ()] - EM ()} (5.26)

These constraints ensure that flows stay on each link for an amount of time
consistent with the link’s travel time. For example, (5.22) and (5.24) require
that E'4[t + 73(t)] = 0 until z3*(¢) becomes positive. When z3*(¢) does become
positive, E[t + 73(t)] must also become positive. Only then can e[t + 73(t)]
become positive (see (5.13) and note that this is route p = 1), and thus by
(5.16), only then can v}%[t + 73(t)] become positive. This ensures that v3*(t)
cannot become “prematurely” positive; i.e., flows must stay on link 3 for an
amount of time consistent with 73(¢).

Constraints (5.25) require that flow on link 2 at time ¢ must result in
either:

1. added flow on link 3 at time t + 7(¢) (in case any existing flow on link 3
at time t has not yet cleared by time t + 75(t)); or

2. added arrivals at the destination at time ¢ 4 72(t) (if link 3 is very short,
vehicle flows at the end of link 2 may have traversed link 3 and exited
destination node 4 at time t + 75(¢), while vehicle flows at the beginning
of link 2 may still be on link 3 at time t + 7(t)).

To illustrate constraint (5.25) further, suppose that vehicle flows first appear
on link 2 at time t,: z3*(t,) > 0, but z1%(t) = 0 for ¢t < t,. Suppose also that
there are no vehicle flows on link 3 and none have exited at time ¢,. Thus, 0 =
£3%(t,—e€) (since vehicles first appear on link 2 at time t,) = z1*[t,—e+T2(to—¢€)]
(by (5.25)) for any € < t,. Thus, 3*(-) must equal zero at all times prior to time
to + T2(to), so vehicles must stay on link 2 during the entire period [t,, 72(2,)].
This insures that z3*(t) propagates consistently with travel time 7;(¢) over link
2 at each instant ¢.

Analogously, constraints (5.26) require that flow on link 1 at time ¢ must
result in either:

1. added flows on link 2 or 3 at time ¢ + 71(t) (in case flows on links 2 and
3 at time ¢ have not yet cleared by time t 4 71(t)); or

2. added arrivals at the destination at time t + 71(¢).

Thus, this equation insures that z}*(t) propagates consistently.
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5.3.2 Optimality Conditions

107

The extended Hamiltonian function for the instantaneous DUO route choice

program (5.11)-(5.23) is constructed as

2

a

H

rsp j#r a€B(5)

uq(t) va(t)
{L gla[xa(t)’w]dw+/ g2a[xa(t),w]dw}

bep

+ ST an ) — v+ 33> vt (t)er (t)
‘ rs ap T s#r p
+ Y )OI @ - Y Y une)]
s r#s a€A(r) p
LD IPIPIH0DBEHOLIPPLHC)
rs j#rs p a€B(j) a€A(s)
DDA DI OEA )
T s#r a€B(s) p
+ >3 > NZZ(t){zZZ(t)-FZxZZ(t)‘FEZ’(t)

bep

D apalt + Fa(t)] — B[t + 7a(t)]

|

where A7? (t) are Lagrange multipliers associated with the link state equations,
v,°(t) are Lagrange multipliers associated with the destination node state equa-

tions,
tion equations, and uf(t) are the Lagrang

o%5(t) are Lagrange multipliers associated with the node flow conserva-

e multipliers associated with the flow

propagation equations. For each link a which points from node ! to node m,
the first order necessary conditions of instantaneous DUO route choice program

(5.11)-(5.23) include

5;%@ = g1a[za(t), ua(t)]+A5p (t) —0p, (t) > 0,
and ugs(t ) Bure (t)
%{i% = g2a[2a(t), va(t)] —
ap
and ( )

ra (t)

Vi;a € A(l),p,r,s, (5.27)

Va, p, r, s; (5.28)
Aap(t) + amp(t) > 0,
Vm;a € B(m),p,r, s, (5.29)
Va,p,r,s; (5.30)
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oH

>0, Vpms, 5.31
ae;’(t) ( )
and ) M __ 0 Vp, 1, s; 5.32)

ae;a(t) - b, TS ( .

»(8) _ oM .
o B %) Va,p,r,s; (5.33)
dvi(t) oM

P =— Vp, r, s; 5.34
dt OET(t) ( )
uz,(t) >0, v;;,(t) >0, :L';;,(t) >0, Ya,p,r,s; (5.35)
ey’ (1) >0, E”(t) >0, Vp, r, s. (5.36)

Note that o7, (¢) = 07°(t) when node ! equals origin r.

5.3.3 DUO Equivalence Analysis

Since the objective function of optimal control program (5.11)-(5.23) is convex
with respect to the control variables, there is a unique optimal solution. We now
show that the set of link states, inflows and exit flows that solves this program
also satisfies the travel-time-based instantaneous dynamic user-optimal route
choice conditions. This equivalence is demonstrated below by proving that
the first order necessary conditions for the optimal control program (5.11)-
(5.23) are identical to the instantaneous dynamic user-optimal conditions. The
equivalence between the instantaneous DUO route choice conditions and the
first order necessary conditions of the optimal control program means that the
instantaneous DUO route choice conditions are satisfied at the optimal solution
of this program.

Combining equations (5.27)-(5.28) with equations (5.29)-(5.30), the fol-
lowing equations can be derived for each link a which points from node ! to
node m.

IH oM .
= - t >
D@ T o)~ O 7RO+ 20,

Va € A(l) N B(m);p, 1, s; (5.37)
and ugp(t ) u{,;,(t) =0 Va,p,r,s; (5.38)
and e (t)——H-— =0 Ya,p,r,s. (5.39)

ap av;;(t) sy 1y
For route p between origin node r and destination node s, let i denote node
r or any intermediate node on this route. Denote route p as (¢,1,2,---,n,s).

The instantaneous travel time gb;;’ (¢) for the remaining route p between ¢ and

gb:;’(t) — Z ca[za(t), ua(t), va(t)] Viep,r,s. (5.40)

a€isp
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Suppose we consider a set of routes p from r — ¢ — s and the corre-
sponding set of subroutes p. The flow conservation constraint at node ¢ can be
revised as

D )= Y ua() Vi,p, 7, 531 # 1y 8. (5.41)

a€B(1) a€A(i)

The fourth term in the Hamiltonian function should be revised as

XYY v - Y un)

T8 i#rs P a€B(j) a€A(4)

so that of7(t) = of*(t) for the set of subroutes . Note that all derivations
from equatlon (5. 27) to equation (5.39) will follow for this set of subroutes 3.
Now if route p is being used at time ¢, u}’(¢) and v]*(¢) are both positive by
definition. Thus, by (5.37)-(5.39),

5 (t) [07° () — o1° ()] + [o7p(2) — o3 (D)) + -
+ lonlip(t) - ,.p(t)]+[0,.p(t)—0§’(t)]
= ;') —0,(2)

for every route p being used at time . Note that 077 (¢) = 0]*(?) in the above
equation. Thus, routes being used from i to s at tlme t have travel times equal
to [07%(t) — 03°(t)]. More generally, we obtain the following for each remaining
route p between 7 and s.

Ugp(t) vgp(t) [1/; @)—oi"®t)+ 0" ()] =0 Va,i,p,r,s;a€p,i €p; (5.42)

¥ (1) 2 of* (t) - o} () Viep,ns; (5-43)
upp(t) >0, wia(t) >0, Va,p,r,s;a € p. (5.44)

Conditions (5.42)-(5.44) hold for each remaining route p between i and
s, where ¢ is any intermediate node (including the origin) between each O-D
pair (r, s) in the network. For route p connectmg node ¢ and destination s, if
each link is being used at time ¢, then uf;(t) and vj;(t) will be positive, so
that the quantities in brackets in equation (5.42) Will be zero, i.e., equation
(5.43) will hold as an equality. Thus, routes which are being used at time ¢
have travel times equal to [o7*(t) — o7 (2)).

Equation (5.43) states that the difference of Lagrange multipliers [o7*(¢)—
o7?(t)] of node-destination pair (¢, s) is less than or equal to the instantaneous
travel times on all routes connecting this node-destination pair (7, s). Therefore,
this difference of Lagrange multipliers [07*(t) — o}®(t)] equals the instantaneous
minimal route travel time between node ¢ and destination s. For any remaining
unused route p between ¢ and s, at least one link @ in route p is not being used
at time t. Thus the inflow uf}(t) or the exit flow v3}(t) is equal to zero, so
that (5.43) may hold as a stnct inequality, i.e., the mstantaneous travel time
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z/;:;’ (t) on remaining route p will not be less than the instantaneous minimal
route travel time [o7*(t) — 03°(2)].

Furthermore, if we consider any pair of decision nodes ¢ and j between
origin 7 and destination s, the above results also hold for each sub-route be-
tween ¢ and j. Thus, at the optimal solution to Model 1, flows always use the
instantaneous minimal time sub-routes, even if all links on an entire route are
not in use at the same time.

Since intermediate node i could be origin node r, the above results also
hold for routes from r to s. With the above interpretation, it is now clear
that equations (5.42)-(5.44) state the travel-time-based instantaneous dynamic
user-optimal conditions. This optimal control program (5.11)-(5.23) can be
referred to as an instantaneous DUO route choice program or an instantaneous
DUO equivalent optimal control problem.

5.4 Instantaneous Route Choice Model 2

5.4.1 Model Formulation

Various DUQ route choice models can be formulated with alternative link travel
time assumptions. In Model 1, the instantaneous travel time c4 (%) over link a
is assumed to be dependent on the number of vehicles z4(t), the inflow u4(2),
and the exit flow v4(t) on link @ at time ¢. In this section, the instantaneous
link travel time c4(t) is assumed to be dependent only on z4(t) and v,(2):

ca(t) = cqlza(t), va(t)]- (5.45)

The time-dependent link travel time function c,[z4(t), v4(t)] is again assumed
to be nonnegative and differentiable for all z4(t) and vg4(2).

Using optimal control theory, the equivalent optimization program of
the instantaneous dynamic user-optimal route choice problem (Model 2) is
formulated as follows.

T vq(t)
min e / E {/ Ca[za(t),w] dw} dt (5.46)
u,v,7,€, 0 a 0

s.t. constraints (5.12)—(5.23).

The objective function is similar to the objective function of the well-known
static user-optimal model. The constraints are identical to those of Model 1.
In Model 1, the instantaneous travel time c4[z4(t), uq(t), v4(t)] over link
a is assumed to be the sum of two components: 1) an instantaneous flow-
dependent running time g14[4(t), ua(t)] over link a, and 2) an instantaneous
queuing delay ga4[z4(t), va(t)]. I g1a[za(t), ua(t)] is set equal to zero and the
queuing delay g24[z4(t), v4(t)] is extended to include the running time, Model 1
is equivalent to Model 2. We prove in the next section that the unique optimal
solution to Model 2 is in a travel-time-based instantaneous DUO state.
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5.4.2 Optimality Conditions
The extended Harmiltonian for Model 2 is constructed as

va(t)

H = Z/ Calza(t), w]dw
+ ZZ re i) — o]+ Y S D v ()er (t)

LT N
+ ZZGI’(t)[f”(t)— PIPIHO)
s r#s a€A(r) »p
+ S anol Y v - Y ui)]
rs j#rs p a€B(j) a€A(j)
F YT Ol S - e )]
T s#r a€B(s) p

Tsp j#r a€B(j) bep

+ 20, uz;(t>{r;;(t)+2wz;<t)+E;’<t)

_ Z chalt + Ta(t)] - Ep*[t + 'T'a(t)]}

bep

where A7} (¢) are Lagrange multipliers associated with the link state equations,

vp*(t) are Lagrange multipliers associated with the destination node state equa-
tions, a7s(t) are Lagrange multipliers associated with the node flow conserva-
tion equatlons, and pf (t) are Lagrange multipliers associated with the flow
propagation equations. For each link a which points from node ! to node m,
the first order necessary conditions of Model 2 include

aH TS Ts .
W A p(t) Olp (t) >0, Vija € A(l),p, r, s, (5.47)
TS aH — .
and “”(t)au;;(t) =0 Va,p,r,s; (5.48)
TN ol (t), o) =N () 40T (1) 20, Vm;a € B(m)p,ms, (5.49)
Bv';,(t)
rs aH —_ .
and Vap(t) 5o (1) =0 Va, p,r,s; (5.50)
IH
— >0 Y .
ae;’(t) - y p’ r, s, (5 51)
rs aH —_ .
and ey’ () P (D) = 0 Vp,r,s; (5.52)
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drrs(t) OH

ap - _ v, .

dt 3:cf,;,(t)’ @y Py Ty S5 (5’53)
dvi’(t) IH
4 — "/ .

7 0 D, T, 8; (5.54)
ugy(t) > 0, vgp(t) >0, Zap(t) >0, Va,p,r,s; (5.55)
ey’ (1) >0, E,’(t) >0, Vp,r, s. (5.56)

The equivalence of the instantaneous dynamic user-optimal conditions
and Model 2 is demonstrated by showing that the unique trajectories of link
states, inflows and exit flows that solve Model 2 also satisfy the instantaneous
dynamic user-optimal conditions. As with Model 1, this equivalence is demon-
strated by proving that the first order necessary conditions for Model 2 are
identical to the instantaneous dynamic user-optimal conditions.

Combining equations (5.47)-(5.48) with equations (5.49)-(5.50), the same
equations as equations (5.42)-(5.44) for Model 1 can be derived for each link a
which points from node ! to node m. Thus, we follow the derivation of opti-
mality conditions for Model 1 and obtain the same equations (5.37)-(5.39) for
each remaining route p between intermediate node ¢ and destination s. Sim-
ilarly, we can obtain the same interpretation of the optimality conditions for
Model 2 as those for Model 1. It is now clear that the optimality conditions of
Model 2 state the instantaneous dynamic user-optimal route choice conditions.
Therefore, Model 2 is an equivalent instantaneous DUO route choice program.

5.5 Instantaneous Route Choice Model 3

Now, the instantaneous link travel time cq(t) is assumed to depend only on
z4(t):

cq(t) = cafza(t)]. (5.57)
The time-dependent link travel time function ¢4[z4(t)] is again assumed to be
nonnegative and differentiable for all z4(t). In addition, the actual link travel
time 74(t) is introduced, and also assumed to be dependent only on z4(?), i.e.,

Ta(t) = Ta[za(?)]. (5.58)

Using optimal control theory, the equivalent optimization program of
the instantaneous dynamic user-optimal route choice problem (Model 3) is
formulated as follows.

T uq(t)
min . / E {/ ca[za(?)] dw} dt (5.59)
u,v,7,€, 0o 0

s.t. constraints (5.12)—(5.23).
The constraints are identical to those of Model 1 except that the flow propa-
gation constraints need to be revised. The flow propagation constraints can be
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expressed directly based on the actual link travel time function 7,4(t), instead
of its estimate 7,(t) in a diagonalization fashion. The new flow propagation
constraints are

2o (t) = Y _{zhplt + 7a(t)] - 25 ()} + {B}° [t + 7a(t)] — E}* (1)}

bep

Va € B(j);j #7;py7, 8. (5.60)

The instantaneous link travel time function c4(t) in Model 3 is a special case
of ca[za(t), ua(t), va(t)] in Model 1 or ¢4[z4(t), va(t)] in Model 2. We can for-
mulate the extended Hamiltonian function and derive the first-order necessary
conditions. Since the actual link travel time 74(t) is also assumed to be depen-
dent only on z4(t), the terms in flow propagation constraints (5.60) have no
impact on the partial derivative of the Hamiltonian function with respect to
control variables ug;(t) and vj;(¢). Following the same process as in Model 1,
the same equations as (5.42)-(5.44) for Model 1 can be derived for each link a
which points from node ! to node m.

Thus, we follow the derivation of optimality conditions for Model 1 and
obtain the same equations (5.37)-(5.39) for each remaining route  between
intermediate node ¢ and destination s. Similarly, we can obtain the same inter-
pretation of the optimality conditions for Model 3 as those for Model 1. It is
now clear that the optimality conditions of Model 3 state the instantaneous dy-
namic user-optimal route choice conditions. Therefore, optimal control Model
3 is an equivalent instantaneous DUO route choice program. Since the flow
propagation constraints are expressed directly using the actual link travel time
function 74(t), instead of its estimate 7,(t) in a diagonalization fashion, Model
3 is a complete optimal control model. It will be shown in Chapter 12 that it
is equivalent to a variational inequality.

5.6 A Numerical Example

We illustrate the solution of Model 1 with the 4-link, 4-node test network shown
in Figure 5.4. A symmetrical network is intentionally used to demonstrate that
the route travel times in the solution are equal. To convert OCP model (5.11)-
(5.23) into an NLP, assignment time period [0,T] is subdivided into K = 5
small time intervals, and the OCP is reformulated as a discrete time NLP.
We then use an algorithm based on the Frank-Wolfe and diagonalization tech-
niques to solve this NLP. This algorithm was coded in FORTRAN and solved
on a IBM 3090-300J. The details of the algorithm are presented in Chapter
6; only computational results for a small network are given to illustrate the
instantaneous DUO traffic flows.

The following link travel time functions were used in the computations:

ca(k) = g1a(k) + g2a(k)
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91a(k) = Bra + Paalta(k))? + Baa[za(k)]?
924(k) = Baa + Bsal[va(k)]? + Bea[za(k))?

where time interval k¥ = 1,2,.--,5. Parameter values for each link travel time
function are given in Table 5.1, and the trip table is given in Table 5.2. The
optimal link flows and corresponding optimal link travel times are given in
Table 5.3. The optimal route travel times are given in Table 5.4. In this
discrete time example, z4(k) represents vehicles on the link at the beginning
of interval k; uq(k) and ve(k) represent inflow and exit flow during interval k.

1 »(2

4

) 4

3

Figure 5.4: Test Network

Table 5.1: Parameters of Link Travel Time Functions

linka | Bia | B2a | B3a | Paa | Psa B6a
1—2 1 0.001 | O. 0. | 0.015 | 0.003
1—3 1. 1 0.001 | O. 0. | 0.015 | 0.003
2—4 1. {1 0.001 ] oO. 0. | 0.015 | 0.003 |
3—4 1 0.001 0. 0. 0.015 | 0.003

Table 5.2: Required Flows from Origin 1 to Destination 4

TimeInterval k | 1 [ 2| 3[4 |5
Flow/interval | 20. [ 0. 0. 0. | O.

In this example, note from Table 5.4 that travel times on routes 1-2—4
and 1-3-4 are equal during each interval (except for small differences result-
ing from incomplete convergence). Thus, the results indicate the existence of
dynamic user optimality in the intuitive sense that the two routes have equal
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Table 5.3: Optimal Numbers of Vehicles, Inflows, Exit Flows and Travel Times

Interval | Link Vehicles | Inflow | Exit Flow | Vehicles | Travel Time
k a za(k+1) | uq(k) vg (k) zq4(k) ca(k)
1 1—2 10.0 10.0 0.0 0.0 1.1
2 1—2 4.5 0.0 5.5 10.0 1.8
3 1—2 0.0 0.0 4.5 4.5 1.4
4 1—2 0.0 0.0 0.0 0.0 1.0
5 1—2 0.0 0.0 0.0 0.0 1.0
1 1—3 10.0 10.0 0.0 0.0 1.1
2 1—3 4.4 0.0 5.6 10.0 1.8
3 1—3 0.0 0.0 4.4 4.4 1.3
4 1—3 0.0 0.0 0.0 0.0 1.0
5 1—3 0.0 0.0 0.0 0.0 1.0
1 2—4 0.0 0.0 0.0 0.0 1.0
2 2—4 5.5 5.5 0.0 0.0 1.0
3 2—4 4.5 4.5 5.5 5.5 1.6
4 2—4 0.0 0.0 4.5 4.5 1.4
5 2—4 0.0 0.0 0.0 0.0 1.0
1 3—4 ’ 0.0 0.0 0.0 0.0 1.0
2 3—4 5.6 5.6 0.0 0.0 1.0
3 3—4 4.4 4.4 5.6 5.6 1.6
4 3—4 0.0 0.0 4.4 4.4 1.3
5 3—14 0.0 0.0 0.0 0.0 1.0

Table 5.4: Dynamic User-Optimal Route Travel Times

Interval Route Travel Times
k Route 1-2-4 | Route 1-3-4
1 2.1 2.1
2 2.8 2.8
3 3.0 2.9
4 2.4 2.3
5 2.0 2.0
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travel times in each interval, even though the two routes are only partially used;
i.e., we do not have ug}(k) > 0 and vj;(k) > 0 for all links on the two routes.

Note from Table 5.3 that the average travel time that vehicles incur on
link 1-2 from the beginning of interval 2 is 1.8 intervals (some vehicles have
smaller travel times and some have larger); 10 vehicles are on the link at the
beginning of interval 2. Some vehicles exit during interval 2, which reduces the
travel time in subsequent intervals. Thus, 5.5 vehicles exit during interval 2
(decreasing the travel time to 1.4 intervals for interval 3) and 4.5 vehicles exit
during interval 3. Note also that 5.5 vehicles are on link 2—4 at the beginning
of interval 3, and the average travel time is 1.6 from the beginning of interval
3. Also, 4.5 vehicles enter this link during interval 3, 5.5 vehicles exit during
interval 3, and 4.5 vehicles exit during interval 4, reducing the travel time to
only 1.0 for interval 5. At the beginning of interval 6 (column z,(k+1) in rows
k = 5), no vehicle remains on any link.

5.7 Notes

5.7.1 Several Formulation Issues

There are many possible dynamic generalizations of the static user-optimal
route choice model. Some of them may be suitable for providing instantaneous
information and advising vehicles of their best routes in a dynamic route guid-
ance system. Since our instantaneous DUO route choice models have a direct
correspondence to the static UO assignment model, other static UO formula-
tions can be expected to have their DUO counterparts. Various optimal control
formulations should be investigated and their corresponding solution charac-
teristics, such as the uniqueness of the optimal control strategies, should be
studied. '

In Chapter 12, our instantaneous DUO route choice models are extended
to more realistic situations when both capacity constraints and oversaturation
constraints are taken into account. In this section, we discuss several specific
problems encountered in our model formulations to date, in part to document
dead ends that have been explored and rejected.

e Time Period [0, T

In reality, the “travel period” is infinitely long; that is, the origin-
destination flows never become permanently zero. Since we want a finite hori-
zon model, it is inherent that there must be a boundary condition to represent
the artificial termination period in our models. If the time period is too short,
travelers who do not reach the end of their paths at the end of the time horizon
are not “using” their path, and thus they can take literally any path. This can
be prevented by using a long enough time horizon so that all flow clears the
network. The rolling horizon method could be used to represent more realistic
traffic flows which never become permanently zero.
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e Penalty and Salvage Costs

In the development of flow propagation constraints, we initially used the
penalty cost Dg[z4(t)] to “force” the vehicle flows to continue propagation.
Also, a salvage cost S, [z4(T')] was used as the artificial boundary condition for
the final time instant to clear the traffic flow in the network. These constraints
are standard in optimal control theory.

In reality, traffic flow will not clear and will continue to appear in the
network in an infinite time horizon. However, since we are only able to analyze
a finite time period, we need a boundary condition to clear the traffic of interest
(such as peak hour traffic) at the end of the analysis period. This boundary
condition can either be represented by salvage cost in the objective function or
be represented by a set of physical constraints at the destination.

Later, we introduced a set of physical constraints at the destination.
These constraints state that the cumulative exiting vehicles from destinations
equal some amount of cumulative vehicles departing origins. It follows that

E™(T) = F™*(T - 17*) Vr, s (5.61)

where 77! is a prespecified maximum O-D travel time, such as 60 or 120 minutes
for a typical peak hour period.

In our computation experience, we found that the penalty and salvage
cost terms produced a long-tailed result; i.e., a small amount of traffic remains
in the network for an excessively long time. This result suggested the use of
physical constraints in the model. Thus, these terms are now represented by
the more accurate flow propagation constraints.

5.7.2 Properties of Models

The definition of instantaneous DUO is similar to that given in Friesz et al
(1989). However, in their model, the route travel costs are equal at every instant
of time; in contrast, in our models, instantaneous route travel times equal the
minimum instantaneous travel time only at each decision node that has flows
to the destination. We show that our alternative definition allows the resulting
models to equilibrate flows using route travel times based only on link driving
times. This is a fundamental difference in the definition of instantaneous route
travel time between their model and our models. We discuss this point further
in the following.

Moreover, we discuss some fundamental differences among existing dy-
namic route choice models. These models diverge at two points: 1) system-
optimal vs. user-optimal; and 2) the interpretation of route travel time. Fol-
lowing Merchant and Nemhauser (1978), Carey (1987) presented improved dy-
namic system-optimal models which considered the minimization of cumulative
instantaneous route travel times. However, the dynamic user-optimalstate was
not considered in his models. Friesz et al (1989) presented an instantaneous
dynamic user-optimal route choice model which did consider the equilibration
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of instantaneous unit route travel cost. In their model, however, the instanta-
neous unit route travel cost is defined as

)= [ca[xa(t)]+l’-£t-)——] Yr, s, p, (5.62)

P PAERD)

where the numerator of the second term is the time variation (rate of change)
of the Lagrange multiplier Aq(¢) and the denominator is the derivative of exit
flow function gq4[z,(t)] with respect to link state variable z4(t). Since both
of these could change from problem to problem, their presence may present a
difficulty for the physical interpretation of the model. In contrast, our models
only use the summation of instantaneous link travel times as the instantaneous
route travel time:

()= > Ca[za(t), ua(t), va(?)] Vr, s, p. (5.63)

a€Ersp

This explicit definition of instantaneous route travel time reflects the dynamic
route choice behavior and decision criterion of travelers. It is also consistent
with the definition of instantaneous route travel time in the DSO route choice
models of Merchant-Nemhauser (1978) and Carey (1987). We note that it is
not known how to formulate an optimization program which is consistent with
our definition of instantaneous route travel time if exit flow functions instead
of exit flow variables are used.



Chapter 6

A Computational Algorithm for
Instantaneous Dynamic User-
Optimal Route Choice Models

In this chapter, solution algorithms are considered for solving the instantaneous
DUO route choice models presented in Chapter 5. A capability to solve the
DUO route choice problem is needed for several reasons. First, it appears that
properties of alternative models can only be fully understood by computing so-
lutions to hypothetical and real test problems. Unlike their static counterparts,
dynamic models are sufficiently opaque that they are difficult to understand
analytically. Second, computational solutions for standard test problems based
on actual networks are needed to evaluate how well alternative models describe
reality. Third, solutions for large networks are required to evaluate the poten-
tial effectiveness of proposed in-vehicle navigation and route guidance systems.
Ultimately, such models might be used to guide the operation of such systems;
however, the requirements of such systems are so undefined at this time that
any discussion of algorithmic requirements is highly speculative.

The objective of this chapter is to describe in detail an algorithm for
solving one of the instantaneous DUO route choice models and to illustrate its
performance with a toy network. Through the development and implementa-
tion of the algorithm, additional insights into the model’s properties have been
gained. These properties are also discussed.

In Section 6.1, we reformulate the instantaneous DUO route choice model
as a discrete-time nonlinear program (NLP). Then the diagonalization tech-
nique and the Frank-Wolfe algorithm are employed to solve the NLP. In the
diagonalization procedure, the estimated link travel time is updated iteratively.
Then we apply the Frank-Wolfe technique to solve the NLP. An expanded time-
space network is constructed in Section 6.2 so that each LP subproblem can be
decomposed according to O-D pairs and can be viewed as a set of minimal-cost
route problems. The flow propagation constraints representing the relation-



120 Chapter 6. A Computational Algorithm for Instantaneous DUO Models

ship of link flows and travel times are satisfied in modified minimal-cost route
searches in Section 6.3 so that only flow conservation constraints for links and
nodes remain. Since the model is convex, the discrete version should be efficient
to solve for large networks. A numerical example is given in Section 6.4.

6.1 The Algorithm

6.1.1 Discrete Instantaneous DUO Route Choice Model

The Frank-Wolfe algorithm (Frank and Wolfe, 1956) is reasonably efficient
for solving nonlinear programming problems (NLP) with network constraints,
and has been widely used for solving the static UO model on urban networks
(LeBlanc et al, 1975). They showed that solving the static UO model simpli-
fies to solving a sequence of minimal-cost route (shortest path) problems and
line searches. Thus, the computing times can be reduced by orders of mag-
nitude for large-scale networks, as compared with solving a sequence of linear
programming problems.

To convert our instantaneous DUO route choice model into an NLP,
the time period [0, 77 is subdivided into K small time increments. Each time
increment is a unit of time. Then, u,(k) represents the inflow into link a
during interval k¥ and v, (k) represents the exit flow from link @ during interval
k. To simplify the formulation, we modify the estimated actual travel time on
each link in the following way so that each estimated travel time is equal to a
multiple of the time increment.

Ta(k)=1 if i-0.5<7,(k)<:i+0.5,

where 7 is an integer and 0 < i < K. We note that this round-off method is
used only in the flow propagation constraints. More accurate flow propagation
constraints can be obtained by making the time intervals smaller. We also
note that evaluation of the instantaneous link travel time function and objective
function does not have this round-off error so that the subsequent minimal-cost
route search does not have this round-off error.

An optimal control program can then be reformulated as a discrete time
NLP as follows:

K wa(k)
ugl,.}tl;lE’ zZ = ZZ{/O gla[xa(k),w]dw

k=1 a
vo (k)
+ /0 92a [:ca(k),w]dw} (6.1)

s.t.

Tap(k + 1) = 255(k) + ugy(k) — v (k) Va,p,r,s5;k=1,---,K; (6.2)



6.1. The Algorithm 121

E?(k+1)=E™(k)+ Z Zv (k) Vris#rk=1,---,K; (6.3)

a€B(s) p

DD ub(k) = (k) Vr#sik=1, -, K; (6.4)

a€A(r) p

Z U;;z(k)_ Z U;;(k)=0 Vj,p,r,s;j;ér,s;kz1,---,K; (65)

a€B(j) a€A(jF)
(k) =D _{aiplk + 7a(k)] — i (k)} + { B} [k + 7a (k)] — Ej* (k)}
bep '
VaEB(j);j;ér;p,r,s;kzl,---,K+1; (66)
Ugp (k) >0, vgp(k) >0, zgp(k+1)>0, Va,p,r,s;k=1,---,K; (6.7)

Ef(k+1)>0, vp,r,s55k=1,--+,K; (6.8)
Er(1)=0 Vp,r,s; (6.9)
Zap(1) =0, Va,p,r,s. (6.10)

6.1.2 The Diagonalization/Frank-Wolfe Algorithm

Denote the subproblem variables as p, ¢, y, E, corresponding to the main prob-
lem variables u, v, z, E. Applying the Frank-Wolfe algorithm to the minimiza-
tion of the discretized DUO route choice program requires, at each iteration, a
solution of the following linear program (LP) :

min Z = VuZ(u,v,2z,E)p’ +veZ(u,v,z,E)q"
v, E

+ ViZ(u,v,z,E) yT +veZ(u,v,2, E) ET (6.11)

s.t.
yap(k +1) =y, (k) +Pay(k) 4 (k) Va,p,r,s5k=1,---,K; (6.12)
E(k+1)=E"(k)+ Y. Y qi(k) Vris#rik=1,---,K; (6.13)
a€B(s) p
Z Zp;;;(k):f”(k) VT#S;IC:].,---,K; (6’14)

a€A(r) p

z Qap(k) Z p;;,(k) =0 j,P,T,S;Vj?/—‘ Ty S;k—_- 1,"',K; (6-15)
a€B(j) a€A(F)

yon (k) = Y _{viplk + 7a(k)] — vp (B)} + { B[k + 7a(R)] — B}’ (k)}
bep
VaEB(j);j#r;p,r,s;k:l,---,K+1; (6‘16)
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p;:,(k) >0, qz;(k) >0, yg;(k + 1) > 0, Vaaps LER]] k= 1,-- 'aK; (617)

Ey(k+1)>0, Vp,rsik=1,--+, K; (6.18)
Ey(1) =0, Vp, 1, s; (6.19)
Yap(1) =0, Va,p,r,s. (6.20)

Objective function (6.11) is equivalent to:

0z LYA v
kzlrz,a:%: [3 rs (k) ap(k) + ra (k)qap(k) + :L‘-—_—,',;,(k + l)yap(lc + 1)]
+ kz: Z aEra(k + 1) E”(k + 1) (6.21)
1r,8,p

The components of the gradient of Z(u,v,z, E) with respect to control and
state variables u, v, z, E are

_0Z(u,v,z,E) L )
t1a(k) = dua(k) = g1a[Ta(k), ua(k)] Va;k=1,---,K; (6.22)
9Z(u,v,z, F
) = ZoB5 D) = g faBvak)] Vaik=1 K (629)
8Z(u,v,z, F
tSa(k) = (3.1:4(]6) )
a(k) a(k)
— / agla[za(k)sw] dw +/ ag?a[za(k)’w] dw
0 aza(k) 0 al’a(k)
Va;k=2,---,K; (6.24)
8Z(u,v,z, FE
tz3a(K+1)= _('#(K—ji—-l—)) = Va; (6.25)
t;’(k)z%%ﬂzo Vrsik=2,--, K +1. (6.26)

The objective function can be rewritten as
) K
Z=3 Y [ta(t)pip(k) + taa(R)aip(k) +taa(k + D)yip(k + 1)) (6.27)
k=1r,s,a,p

Since g1, and gy, are nonnegative and increasing functions, it follows that

t1a(k) > 0,24(k) > 0,230(k +1) >0, Va;k=1,--- K. (6.28)
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This property has a significant impact on the solvability of this model for large
networks, since these components will be link cost coefficients in a minimal-cost
network subproblem.

Note that there are no capacity constraints on the links. In addition to
the flow propagation constraints (6.16) and link definitional constraints (6.12),
the only constraints are non-negativity and conservation of flow. Furthermore,
the constraints apply to each origin-destination pair independently, so linear
program (6.11)-(6.20) can be decomposed by origin-destination pair. The re-
sulting subproblem for each O-D pair (7, s) is given by

K
min_ D> [ta Pap(k) + taa @5 (k) + tha(k + 1) yia (k + 1)] (6.29)
p,q,y’

k=1 ap
s.t.
yap(k+1) - y (k)—}-p;’p(k)—q;;(k) Va,pik=1,---, K; (6'30)
EP(k+1)=E"(k)+ > > a(k) Vk=1,---,K;  (6.31)
a€B(s) P
S Yk =) V=1, K (6.32)
aCA(r) p

Z qap(k) Z p;;(k) =0 Vi,pij#£rsik=1,---,K; (6'33)

a€B(j) a€A(j)

(k) =D {vialk + 7a(k)] — vip (F)} + {Ep* [k + 7a (k)] — B}’ (k)}
bep
Va € B(j);j £ rpyrysik=1,--- K +1; (6.34)

pap(k) >0, qap(k) >0, y;;;(k + 1) >0, Va;p; k=1,---,K; (635)

E;’(k+1)20, Vpyk=1,---,K; (6.36)
E’(1)=0; Vp; (6.37)
Yap(1) =0 Va, p. (6.38)

For each O-D flow f"*(i) for each time interval i = 1,---, K, the above sub-
problem can be further decomposed as follows, where each variable with index
i denotes the value caused by O-D flow f7*(i) for each interval i =1,.--, K.

K
min_ D0 [t1a Pop(ky i) + taa qp(k, 1)

Py, B k=1 ap
+  the (k4 Dy (k+ 1,3)] (6.39)
s.t.

yap(k+1 z) = Ya (ka i)+p;:,(k, i)—q;;,(k, 2) Va,p;k=1,---,K; (6'40)
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E’m(k—}- l,i) = E'r.s(k z Z Zq (k 1 Vk=1,---,K; (6.41)
a€B(s) P
D Pl =570 Vk = i; (6.42)
a€A(r) P

S ogak,i)— D pha(k,i) =0  Vipji#rsk=1---,K; (6.43)

a€B(j) a€A(5)

vin(kyi) = > {viplk + 7a(k),i] — via(k, i)}
bep

+ {Ep [k + 7a(k),d] — E7' (K, 1)}

Ya € B(j);j £ ripyrysik=1,--- K +1; (6.44)

pap(k Z)>0 q (k”)ZO, y;;(k+1$l)20v Vavp;k:]""',K; (645)

Ep(k+1,9) >0, Vpik=1,-, K; (6.46)
E;’(1,i) =05 Vp; (6.47)
yap(l Z) =0 Va, p; (6.48)

The above LP subproblem for each O-D flow f"*(i) for each time interval
i = 1,---,K between each O-D pair (r,s) can be viewed as a one-to-one
minimal-cost route problem over an expanded time-space network using an
artificial origin (see the next subsection and Section 6.2). It can be solved by
determining the minimal-cost routes from the artificial origin to a super desti-
nation and completing an all-or-nothing assignment. By revising the costs for
some artificial links, the minimal cost route is searched while the flow prop-
agation constraints are automatically satisfied by construction of the links of
the expanded time-space networks (see Section 6.2). The flow variables pg} (k),
55 (k), y5s(k+1), E5*(k+1) are determined by solving the minimal-cost route
problems for all art1ﬁc1al origin-destination pairs between each original O-D
pair (r, s) for each time interval and assigning the O-D flows to the links.

In this combined algorithm, we define the diagonalization procedure as
the outer iteration and the F-W procedure as the inner iteration. Denote the
new solution at inner F-W iteration (n + 1) as

ultO(k) = uI(k) + W ulR) - p ()] Vask =1, K5 (6.49)
o I(k) = o (k) + W[l (k) - V()] Vak=1,---,K; (6.50)

2P tO(k) = 2(M(k) + ™2™ (k) — y™ (k)] Va;k=1,---,K +1; (6.51)
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where a(®) is the optimal step size of the one-dimensional search problem in
the F-W algorithm. The one-dimensional search problem is to find step size
a(™) that solves

K u£n+1)(k)
: (n+1)
oSy ZZ{/O Srelea™ ), wlds

k=1 a
o{"D (k)
+ / gz,,[xs,"“)(k),w]dw} (6.52)
0

where u$"tV(k), vV (k), 2{"(k) must be substituted using the above

definitional equations.
The algorithm for solving our instantaneous DUO route choice model is
illustrated in the flowchart in Figure 6.1 and is summarized as follows:

Step 0: Initialization.
Find an initial feasible solution {z{(k)}, {ulV(k)}, {v{V(k)}, {ED (k)}.

Set the outer iteration counter m = 1.

Step 1: Diagonalization.
Find a new estimate of the actual link travel time 'T}E")(k) and solve the
instantaneous DUO program. Set the inner iteration counter n = 1.
[Step 1.1]: Update. Calculate t14(k), t2a(k) and t3q(k) using equa-
tions (6.22)-(6.25).
[Step 1.2]: Direction Finding. Based on {ti4(k)}, {t24(k)} and
{tsa(k)} and satisfying the flow propagation constraints (6.44), search
the minimal-cost route forward from each artificial origin to the su-
per destination over an expanded time-space network for each O-D pair
(r,s). Perform an all-or-nothing assignment, yielding subproblem solu-

tion {pa(k)}, {ga(k)}, {va(k)}, {E™(K)}.

[Step 1.3]: Line Search. Find the optimal step size (™) that solves
the one-dimensional search problem.

[Step 1.4]: Move. Find a new solution by combining {us(k)}, {va(k)},
{za(k)}, {E™(k)} and {pa(k)}, {ga(k)}s {va(R)}, {E™(K)}.
[Step 1.5]: Convergence Test for Inner Iterations. If n equals a

prespecified number, go to step 2; otherwise, set n = n+ 1 and go to step
1.1.

Step 2: Convergence Test for Outer Iterations.
1f 7™ (k) ~ 7™V (k), stop. The current solution, {us(k)}, {va(k)},
{z4(k)}, {ET*(k)}, is in a near instantaneous DUO state; otherwise, set
m = m+ 1 and go to step 1.

The number of inner iterations n and the number of outer iterations m are inter-
related. If we set m larger, then n should be set smaller accordingly, and vice
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(mitialize T,(k))

4

Inner Iterations:
Solve Route Choice Model (NLP) for
Link Flows Using F-W Algorithm.

'y
No

Outer Iterations:
Diagonalization Convergence?

[T4(k)]

Figure 6.1: Flowchart of the Solution Algorithm

versa. In general, n = 1 to 3 is sufficient to speed up convergence. Similar ex-
perience with a diagonalization and F-W algorithm for solving static UO traflic
equilibrium problems was reported by Mahmassani and Mouskos (1988). In or-
der to speed up convergence, an incremental assignment technique is suggested
for finding a good starting solution before the diagonalization procedure. Since
the linear subproblem can be decomposed by each artificial origin-destination
pair, this problem is a good candidate for solution with parallel computing
techniques.

To speed up the serial computing speed, we can construct a super origin
which connects all artificial origins. Thus, we can search the minimal-cost
route forward from the super origin to the super destination over an expanded
time-space network for each physical destination s. Therefore, the number of
iterations within Step 1.2 can be reduced by the order of the number of origins.
A significant saving of total CPU time can be achieved for a large network with
many O-D pairs, although a marginal increase of CPU time is incurred due to
the slight enlargement of the expanded time-space network. (A super origin is
created and is connected with all artificial origins.)

6.1.3 Solving the LP Subproblem Using an Expanded
Time-Space Network

In addition to flow propagation constraints, there are 3 types of constraints in
the LP subproblem: link flow state equations, node flow conservation equations
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Original Network:
O——0O

Expanded Time-Space Network:

@
w
N—
ol L
~
W&

y4) | t;@)
3
—p n(3) q() @
t2(3)
¥(3) t3(3)
p@2) 2
1(2) »{(n(2) @ ;{m(2)>
O t (2) S £,

y2) ty @)
p(1) (1)
t1 (0 152(1)

Figure 6.2: Expansion for Link a for 3 Time Periods

and nonnegativity /boundary constraints. Since there are 3 variables associated
with each physical link, we replace each link with 3 separate artificial links for
each time period, by adding artificial nodes to define the new links. Figure 6.2
shows the expansion for link @ which points from ! to m for 3 time periods. The
initial state for link a is assumed to be z,(1) = 0. Note that a total of 9 nodes
are required for the expansion of each physical link. The next section discusses
how these new links and nodes can be numbered. If node m is a destination,
the expansion is shown in Figure 6.3. Figure 6.4 shows the expanded network
for an example problem with 3 links, 3 nodes, 3 time periods, 3 origin (node
1) and 2 destinations (nodes 2 and 3). The initial state for each link is also
assumed to be £4(1) = 0 (a = 1, 2, 3) and the instantaneous O-D trips are given
as f12(k), f13(k), k=1,2,3.
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Original Network:
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Figure 6.3: Expansion for Link a for 3 Time Periods (m is a destination)
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Original Network:

‘Super

Destination

Figure 6.4: Expansion for 3-Link Network for 3 Time Periods
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Original Network:
@ 1 @ 2 @

Expanded Time-Space Network:
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Figure 6.5: Expansion of Example Network (2 Links)
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6.2 Time-Space Network Expansion

In the expansion of the time-space network, each physical node is expanded
into additional nodes only (i.e., no extra links are introduced). However, since
there are 3 separate variables per link, each link is expanded into 3 links, which
requires additional nodes as well. Since the LP problem can be decomposed
by each artificial origin-destination pair for all O-D pairs, we initially only
consider a one-to-one network. The subproblem variables pii(k, 1), g5, (k, ),
Yap(k + 1,7), Ep*(k + 1,1) are viewed as flows over the artificial links of the
expanded time-space network, which is constructed as follows.

1. Nodes: Each node j is expanded to K nodes, one for each time period.
We denote these as j(k), k = 1,---, K, with new node numbers j(k) =
(N + A)(k — 1) + j. For example, we consider the time-space expansion
of a 3-node, 2-link network for 3 time periods (Figure 6.5). The physical
nodes in the original network are numbered as 1, 2, 3 and physical links
are numbered as 1 = (1,2) and 2 = (2,3). Node 1 is an origin and node 3
is a destination. Thus, N = 3 and A = 2. For the expansion of physical
nodes 1, 2, 3, the new node numbers are 1, 2, 3 for period 1; 6, 7, 8 for
period 2; and 11, 12, 13 for period 3.

2. Links: Since there are 3 variables for each link, each link a=(l,m) is
expanded to K nodes and 3K links, as follows:
a) K transshipment nodes nq(k), k = 1,---, K, with new node numbers
ng(k) =(N + A)(k — 1) + N + a. For the expansion of physical link 1
and 2 in Figure 6.5, the new transshipment node numbers are 4 and 5 for
period 1, 9 and 10 for period 2, and 14 and 15 for period 3.
b) K links (I(k),nq.(k)), ¥ = 1,---, K, where each new link & has link
number [3A(k — 1) +a), flow p,(k, ) and cost t14(k). In Figure 6.5, these
new links are 1 = (1,4) and 2 = (2,5) for period 1; 8 = (6,9) and 9 =
(7,10) for period 2; and 15 = (11,14) and 16 = (12,15) for period 3.
¢) K links (nq4(k), m(k)), k = 1,--+, K, where each new link a has link
number [3A(k — 1) + A + a], flow g4(k,7) and cost t34(k). In Figure 6.5,
these new links are 3 = (4,2) and 4 = (5,3) for period 1; 10 = (9,7) and
11 = (10,8) for period 2; and 17 = (14,12) and 18 = (15,13) for period 3.
d) (K — 1) links (nq(k),nqa(k + 1)), k = 1,---, K — 1, where each new
link @ has link number [3A(k — 1) + 24 + a], flow y}*(k + 1,1) and cost
taqa(k +1) for corresponding O-D pair (r, s). In Figure 6.5, these new links
are 5 = (4,9) and 6 = (5,10) for period 1; 12 = (9,14) and 13 = (10,15)
for period 2;
e) one link @ = (nq(K),S) with new link number [3A(K — 1) + 24 + a],
flow y7* (K +1,1) and cost £5* for corresponding O-D pair (r, s); in Figure
6.5, these new links are 19 = (14,16) and 20 = (15,16) for period 3.

3. Origin Nodes: Each origin node r is expanded to K origin nodes r(k),
k=1,---, K. In Figure 6.5, origin 1 is expanded to nodes 1, 6 and 11.
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4. Destination Nodes: The destination node s is expanded to:
a) one super destination &; in Figure 6.5, the physical destination node
3 is expanded to super destination 16;
b) K nodes s(k), k =1,---, K; (nodes 3, 8 and 13 in Figure 6.5);
¢) K links a = (s(k),s(k+1)), k=1,---,K — 1 and & = (s(K), S), with
new link number [3AK + k], flow E™*(k + 1,i) and cost t}*(k + 1) = 0
for corresponding artificial origin-destination pair for all O-D pair (r, s);
(links 7 = (3,8), 14 = (8,13), 21 = (13,16) for periods 1,2,3).

In summary, the expanded time-space network has [(34+ 1) K] links and [(N +
A)K +1] nodes. The expanded time-space network of the example (Figure 6.5)
has 21 links and 16 nodes.

Link state equation (6.40) for each physical link a can be viewed as a set
of flow conservation equations for artificial nodes nq(k), £ = 1,---, K in the
expanded time-space network. For example, in Figure 6.2, the conservation of
flow constraint for node n(3) is p(3, ) + y(3, ¢) = ¢(3,¢) +y(4,¢). This is equiv-
alent to link state equation (6.40). Together with node flow conservation equa-
tions and nonnegativity constraints, these equations constitute the constraints
for a one-to-one minimal-cost route problem with flow propagation constraints.
Since the cost functions for the artificial links over the expanded time-space
network are nonnegative, the original LP subproblem is transformed into a
one-to-one minimal-cost route problem with flow propagation constraints.

The following explanation describes how the travel cost #5* for artificial
link @ = (nq(K),S) is determined for corresponding O-D pair (r,s). In the
expanded time-space network, each dummy node nq4(K), which is expanded
from each link a for the last time interval K, has a link pointing to the super
destination S. However, it is not always true that every physical link in the
original network will lead to destination s. In order to represent this situation,
an indicator variable 63 for each new link g in the expanded time-space network
is defined as follows:

1 if the expanded link @ can be reached backwards
8 = from dummy node s(K) expanded from destination s
0 otherwise '

Then, the travel cost #5* for dummy link & = (n,(K), S) can be determined as:

ire — tSa(K+ 1) =0 if 63 =1
¢ +00 if 65=0

In this way, the property that flows cannot move backwards from destination s
to some links {a} is also guaranteed in the expanded time-space network. For
example, in Figure 6.4, when node 2 is a destination, link 27 and 28 are not
reachable from node 14 (which is expanded from node 2 for period 3). Thus,
62, = 0 and 62 = 0 so that {57 = 0o and f23 = co when node 2 is a destination.

We now assume a many-to-many network. Since the original LP sub-
problem can be decomposed according to O-D pairs, the LP subproblem can be
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viewed as a set of minimal-cost route problems with propagation constraints.
Minimal-cost routes are searched forward from each artificial origin to the su-
per destination. Suppose there are S destinations in a many-to-many network.
Each destination node s can be expanded to: one super destination §; K
nodes s(k), k = 1,---,K; and K links a = (s(k),s(k+ 1)), k=1,---, K -1
and @ = (s(K), S), with new link number [3AK +(s—1)K +k], flow E™*(k+1, 1)
and cost 3’ (k + 1).

For the many-to-many case, we use the same network notation for the
expanded time-space network as for the one-to-one network so that the compu-
tational code can be simplified. Therefore, we use one super destination S to
represent the super destinations expanded from all destinations {s} and define
the cost #5*(K + 1) for each dummy link & = (s(K),s(k+1)) k=1,---, K —1
and @ = (s(K), S) as follows:

t%°(k + 1) =0 if minimal cost route between any artificial
ek +1)= O-D pair (r(k),S) is searched
400 otherwise

where artificial O-D pair (r(k),S) is expanded from original O-D pair rs for
time interval k. The above cost setting reflects that when considering artificial
O-D pair (r(k),S) for any O-D pair rs, other destinations § become interme-
diate nodes. There is no cumulative effect for these nodes §. In summary, the
expanded time-space network has [(34 + S)K] links and [(N + A)K + 1] nodes
for a many-to-many network.

6.3 Flow Propagation Constraints in Minimal-
Cost Route Searches

In searching for the minimal-cost route between each artificial origin-destination
pair (r(k),S), flow propagation constraint (6.44) is automatically satisfied by
temporally adjusting the costs for 2K artificial links @ = (nq(k), na(k + 1)),
k=1,---,K —1,a=(n.(K),S) and a = (n4(k),m(k)), k = 1,---, K. These
artificial links are expanded from original link a=(I, m).

The temporal cost adjustment procedure begins when an artificial node
I(k) is being searched in the minimal-cost route search. This procedure is as
follows:

ifi—05<7k)<i+05 (=01, K)

then the feasible subroute will be [I(k), n(k),---,n(k + ), m(k + ©)]

for the time-space subnetwork ezxpanded from link a=(1,m).
This subroute is guaranteed to have the minimal cost by setting the costs of
other artificial links in the time-space subnetwork (except links on the above
subroute) temporally equal to infinity.

In Figure 6.3, we assume the minimal-cost route is searched from I(1) to
S. If 7,(1) = 2, the feasible subroute is [I(1),n(1), n(2), n(3), m(3)]. This cost
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adjustment procedure should be performed for each artificial origin-destination

pair (r(k), S).

6.4 Computational Experience

The algorithm was coded in FORTRAN and solved on a IBM 3090-300J and
on a CRAY Y-MP/464. For the purpose of illustration, we give computational
results for a small test problem with 12 arcs and 9 nodes. The network is shown
in Figure 6.6. This problem required approximately 5 seconds on the IBM for
20 incremental iterations for the initial solution, 3 inner F-W iterations per
outer iteration and 40 outer diagonalization iterations to converge. We have
also solved a problem with 60 links, 36 nodes, 9 time intervals, 4 origins and 4
destinations on the CRAY using CFT77. The CPU time was approximately 68
seconds. The following link travel cost functions were used in the computations.

ca(k) = g1a(k) + g24(k)

gla(k) = Pra + ,BZa[Ua(k)]2 + ,B3a[xa(k)]2
gZa(k) = faa + ,BSa[va(k)]2 + ,BSa[xa(k)]2

The parameters for each link travel cost function are given in Table 6.1. The
number of vehicles £4(1) on each link a at initial time k = 1 is assumed to equal
0. Two O-D pairs and 7 time intervals are considered, and the corresponding
trip table for each time interval is given in Table 6.2. The optimal link flow
trajectories and corresponding optimal link travel costs are given in Table 6.3.

Table 6.3 shows that 10.0+10.0 = 20.0 vehicles enter the network during
interval 1 and 5.0+ 5.0 = 10.0 enter during interval 2 (on links 1-2 and 1-4). For
node 5, 18.1 vehicles enter links 2-5 and 4-5 during intervals 2-4. No vehicles
remain on these 2 links at the end of interval 4, and 3.1 vehicles enter links
5-6 and 5-8 pointing out of node 5 continuing to node 9 during intervals 2-5.
Thus, 18.1 — 3.1 = 15.0 vehicles exit the network at node 5 during intervals 1-5
so that the requirements for O-D pair 1-5 for intervals 1-5 are met. At node
9,35+3.1+4+0.7+3.6+3.1+1.0=15.0 vehicles exit links 6-9 and 8-9 into
node 9 during intervals 5-7. Note that no vehicles remain on links 6-9 and 8-9
at the end of interval 7 and no vehicles remain on other links on the network
at the end of interval 6. ‘

Inspection of Table 6.3 reveals that several links are being used in the
sense defined in Chapter 5; also a few portions of routes are being used. In
no case is an entire route used because of the short duration of the O-D flows.
Even so, it is interesting to ask whether the instantaneous route travel times
are equal.

Table 6.4 provides a comparison of instantaneous route travel times for
the 2 O-D flows. The travel times for the 2 routes used from node 1 to node 5
are equal in each time interval. The travel times for the 6 routes from node 1
to node 9 are equal in each interval except intervals 3, 4 and 5. In interval 3,
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note that routes 1-4-7-8-9 and 1-2-3-6-9 have the minimal route travel costs for
O-D pair 1-9, since they avoid the congestion at destination node 5. The other
routes for O-D pair 1-9 have higher costs in interval 3 because of flows exiting
the network from node 5. Moreover, the predominant flow from node 1 to node
9 avoids node 5 in interval 3. Likewise in intervals 3, 4 and 5, routes 1-4-7-8-9
and 1-2-3-6-9 with predominant flows have equal cost; because these flows are
already on routes avoiding congestion at node 5, these 2 routes have slightly
higher costs than the unused routes through node 5 in intervals 4 and 5. This
simple example illustrates the inherent complexity of the dynamic route choice
model, as compared with its static counterpart.

6.5 Notes

An algorithm for solving the instantaneous dynamic user-optimal route choice
model was presented in this chapter. One significant aspect of our algorithm
is that by using a time-space expanded network, the Frank-Wolfe LP subprob-
lem requires only the solution of minimal-cost route problems for each O-D
pair. This expansion technique allows standard algorithms for static traffic as-
signment to solve dyna,mib route choice models. Thus, the DUO route choice
model and solution algorithm have an elegant correspondence with the static
UO route choice model and its Frank-Wolfe algorithm. Therefore, it may be
possible to extend other static UO formulations and solution algorithms to
dynamic versions. This algorithm should be tested on a large-scale transporta-
tion network; other efficient algorithms, such as the algorithm of Leventhal et
al (1973), also need to be investigated.
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Figure 6.6: Test Network

Table 6.1: Parameters of Link Cost Functions

link a | B4 B2a B3a | Paa Bsa B6a
1—2 1. 10.001 | oO. 0. | 0.015 | 0.002
2—3 1. | 0.001 | oO. 0. | 0.015 | 0.002
1—4 1. | 0.001 | O. 0. | 0.015 | 0.002
2—5 1. {1 0.001] 0. 0. { 0.015 | 0.002
3—6 1. | 0.001 | O. 0. | 0.015 | 0.002
4—5 1. [ 0.001 | O. 0. | 0.015 | 0.002
5—6 1. 1 0.001 | o. 0. | 0.015 | 0.002
4—7 1. | 0.001 | o. 0. | 0.015 | 0.002
5—8 1. | 0.001 | oO. 0. | 0.015 | 0.002 |
6—9 1. | 0.001 | oO. 0. | 0.015 | 0.002
7—8 1. | 0.001 | o. 0. | 0.015 | 0.002
8—9 1. | 0.001 | O. 0. { 0.015 | 0.002

Table 6.2: O-D Trip Table for Each Time Interval k

Time Interval k 1 213145 ]16]|7
(k) 10. | 5. 0. 0. . |o.
f%(k) 10. [5.]0.]0.[0.[0.]o0.

[$)]
(=]
(=}
=4
[l
(=}
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Table 6.3: Optimal Trajectories of Link Flows and Travel Times
Interval | Link | Vehicles | Inflow | Exit Flow | Vehicles | Travel Time
k a | zq(k+1) | ua(k) vq (k) zq4(k) cq(k)
1 1—2 10.0 10.0 0.0 0.0 1.10
2 1—2 7.9 5.0 7.1 10.0 1.99
3 1—2 1.7 0.0 6.2 7.9 1.70
4 1—2 0.0 0.0 1.7 1.7 1.05
5 1—2 0.0 0.0 0.0 0.0 1.00
6 1—2 0.0 0.0 0.0 0.0 1.00
1 2—3 0.0 0.0 0.0 0.0 1.00
2 2—3 3.0 3.0 0.0 0.0 1.01
3 2—3 2.6 2.6 3.0 3.0 1.16
4 2—3 0.4 0.4 2.6 2.6 1.12
5 2—3 0.0 0.0 0.4 0.4 1.00
6 2—3 0.0 0.0 0.0 0.0 1.00
1 1—4 10.0 10.0 0.0 0.0 1.10
2 1—4 7.9 5.0 7.1 10.0 1.99
3 1—4 1.6 0.0 6.2 7.9 1.71
4 1—4 0.0 0.0 1.6 1.6 1.04
5 1—4 0.0 0.0 0.0 0.0 1.00
6 1—4 0.0 0.0 0.0 0.0 1.00
1 2—5 0.0 0.0 0.0 0.0 1.00
2 2—5 4.2 4.2 0.0 0.0 1.02
3 2—5 3.6 3.6 4.2 4.2 1.31
4 2—5 1.2 1.2 3.6 3.6 1.22
5 2—5 0.0 0.0 1.2 1.2 1.03
6 2—5 0.0 0.0 0.0 0.0 1.00
1 3—6 0.0 0.0 0.0 0.0 1.00
2 3—6 0.0 0.0 0.0 0.0 1.00
3 3—6 3.0 3.0 0.0 0.0 1.01
4 3—6 2.6 2.6 3.0 3.0 1.16
5 3—6 0.4 0.4 2.6 2.6 1.12
6 3—6 0.0 0.0 0.4 0.4 1.00
1 4—5 0.0 0.0 0.0 0.0 1.00
2 4—5 4.2 4.2 0.0 0.0 1.02
3 4—5 3.6 3.6 4.2 4.2 1.32
4 4—5 1.3 1.3 3.6 3.6 1.23
5 4—5 0.0 0.0 1.3 1.3 1.03
6 4—5 0.0 0.0 0.0 0.0 1.00
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Table 6.3: Optimal Trajectories of Link Flows and Travel Times (continued)

Interval | Link | Vehicles | Inflow | Exit Flow | Vehicles | Travel Time

k a | za(k+1) | ua(k) va (k) zq(k) ca(k)
1 5—6 0.0 0.0 0.0 0.0 1.00
2 5—6 0.0 0.0 0.0 0.0 1.00
3 5—6 0.5 0.5 0.0 0.0 1.00
4 5—6 0.5 0.5 0.5 0.5 1.01
5 5—6 0.2 0.2 0.5 0.5 1.00
6 5—6 0.0 0.0 0.2 0.2 1.00
1 4—7 0.0 0.0 0.0 0.0 1.00
2 4—7 2.9 2.9 0.0 0.0 1.01
3 4—7 2.6 2.6 2.9 2.9 1.15
4 4—7 0.3 0.3 2.6 2.6 1.11
5 4—7 0.0 0.0 0.3 0.3 1.00
6 |4—7| 0.0 0.0 0.0 0.0 1.00
1 5—8 0.0 0.0 0.0 0.0 1.00
2 5—8 0.0 0.0 0.0 0.0 1.00
3 5—8 0.7 0.7 0.0 0.0 1.00
4 5—8 0.5 0.5 0.7 0.7 1.01
5 5—8 0.7 0.7 0.5 0.5 1.01
6 5—8 0.0 0.0 0.7 0.7 1.01
1 6—9 0.0 0.0 0.0 0.0 1.00
2 6—9 0.0 0.0 0.0 0.0 1.00
3 6—9 0.0 0.0 0.0 0.0 1.00
4 6—9 3.5 3.5 0.0 0.0 1.01
5 6—9 3.1 3.1 3.5 3.5 1.22
6 6—9 0.7 0.7 3.1 3.1 1.16
7 6—9 0.0 0.0 0.7 0.7 1.01
1 7—8 0.0 0.0 0.0 0.0 1.00
2 7—8 0.0 0.0 0.0 0.0 1.00
3 7—8 2.9 2.9 0.0 0.0 1.01
4 7—8 2.6 2.6 2.9 2.9 1.15
5 7—8 0.3 0.3 2.6 2.6 1.11
6 7—8 0.0 0.0 0.3 0.3 1.00
1 8—9 0.0 0.0 0.0 0.0 1.00
2 8—9 0.0 0.0 0.0 0.0 1.00
3 8—9 0.0 0.0 0.0 0.0 1.00
4 8—9 3.6 3.6 0.0 0.0 1.01
5 8—9 3.1 3.1 3.6 3.6 1.23
6 8—9 1.0 1.0 3.1 3.1 1.17
7 8—9 0.0 0.0 1.0 1.0 1.02
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Table 6.4: Comparison of Instantaneous Route Travel Times

Interval | Routes from 1 to 5
k 1-2-5 1-4-5
1 2.10 2.10
2 3.01 3.01
3 3.01 3.03
4 2.27 2.27
5 2.03 2.03
6 2.00 2.00
Interval Routes from 1 to 9
k 1-4-7-8-9 | 1-4-5-8-9 | 1-4-5-6-9 | 1-2-3-6-9 | 1-2-5-6-9 | 1-2-5-8-9
1 4.10 4.10 4.10 4.10 4.10 4.10
2 5.00 5.01 5.01 5.00 5.01 5.01
3 4.87 5.03 5.03 4.87 5.01 5.01
4 4.31 4.29 4.29 4.34 4.29 4.29
5 4.34 4.27 4.25 4.34 4.25 4.27
6 4.17 4.18 4.16 4.16 4.16 4.18
7 4.02 4.02 4.01 4.01 4.01 4.02




Chapter 7

An Ideal Dynamic User-
Optimal Route Choice Model

In this chapter, we present an ¢deal dynamic user-optimal route choice model for
a network with multiple origin-destination pairs. The model extends our pre-
vious instentaneous DUO route choice model in an important respect: route
equilibrium is based on actual travel times rather than instantaneous travel
times at the time of the choice. -In Section 7.1, additional network flow con-
straints and the definition of ideal DUO state are presented. The equivalent
equality constraints of the ideal DUO route choice conditions are developed
in Section 7.2. Then, an optimal control formulation of the travel-time-based
ideal DUO route choice problem is presented in Section 7.3. In Section 7.4,
this model is reformulated as a discrete time NLP. Subsequently, penalty and
diagonalization/Frank-Wolfe methods are suggested to solve this NLP.

7.1 Additional Network Flow Constraints and
Definition of the Ideal DUO State

For the formulation of travel-time-based ideal DUO route choice model, we need
to add more route flow conservation constraints. Assume there are P routes
from origin r to destination s (these can be generated as needed). Denote
indicator parameters as

5 — 1 iflink a is on route p between O-D pair (r, s)
ar 0 otherwise.

Flow conservation at origin node r relates departure rates (f™*(¢) and f;°(t)) to
the flow entering each link emanating from the origin. These flow conservation
equations for origin » can be expressed as

)= 3 apue(®) Vp,r,8;7 # 55 (7.1)
acA(r)
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P AUESM0 Vr, 81 # s. (7:2)
P
Denote the cumulative number of vehicles departing from origin r to

destination s from time 0 to ¢ as the state variable F"*(t). Also, Fy;*(t) denotes
the cumulative number of departing vehicles from origin r toward destination
s along route p by time ¢. Then, we have an additional state equation for each
origin r

dF7s(t

Z—t() = fp*(t) Vp,r # s, s. (7.3)

Also, at initial time ¢t = 0,
F;*(0) =0, Vp,r,s. (7.4)

Denote the instantaneous flow rate arriving at destination node s from
origin node r at time ¢ as €"*(¢), which is also a control variable. Control vari-
able 3 (t) denotes the arrival rate on route p. Flow conservation at destination
node s relates arriving flows (e"*(¢) and ey’ (t)) to the flows exiting each link
leading to destination s at time f. Thus, the flow conservation equations for
destination s can be expressed as

)= D Gpvip) | Vpnss#n (7.5)
a€B(s)
Ee;‘ @) =e"@) Vr,s;5 # 7. (7.6)
P

Denote the cumulative number of vehicles arriving at destination s from
origin r by time ¢ as the state variable E7*(t); E;’(¢) denotes the cumulative
number of vehicles arriving at destination s from origin r along route p by time
t. Thus, we have an additional state equation for each destination s

dET (1)
p — et . .
0 =% ® Vp,r,s £ N (A

At the initial time t = 0,
E‘(0)=0 Vp,r, s. (7.8)
These variables must be nonnegative at all times:
Ep*(t) >0, Fpt(t) > 0, e’ (t) >0, ') >0 Vp,rs. (7.9)

Now we define the ideal DUO route choice problem. The dynamic user-
optimal route choice problem is to find the dynamic trajectories of link states
and inflow and exit flow control variables, given the network, the link travel
time functions and the time-dependent O-D departure rate requirements. In
Chapter 5, we defined the link-time-based instantaneous DUO route choice
state as follows.
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Link-Time-Based Instantaneous DUO State: If, for each O-
D pair at each decision node at each instant of time, the instanta-
neous travel times to the destination over all routes that are being
used equal the minimal instantaneous route travel time, the dynamic
traffic flow over the network is in a link-time-based instantaneous
dynamic user-optimal state.

In this earlier definition of DUO, the instantaneous user-optimal travel times for
all routes that are being used are equal at each decision node at each instant
of time. The corresponding model provides the currently prevailing traffic
information to travelers. However, route flows with the same departure time
and the same origin-destination may actually experience somewhat different
route travel times, because the route time may subsequently change due to
changing network traffic conditions, even though at each decision node the
flows select the route that is currently best. Therefore, in this chapter we
propose an alternative definition of DUO that reflects the ideal route choice
behavior of travelers. The formulation of the problem is based on the underlying
choice criterion that each traveler uses the route that minimizes his/her actual
travel time when departing from the origin or any intermediate node to his/her
destination.

Travel-Time-Based Ideal DUO State: If, for each O-D pair at
each instant of time, the actual travel times experienced by travelers
departing at the same time are equal and minimal, the dynamic
traffic flow over the network is in a travel-time-based ideal dynamic
user-optimal state.

The above definition can also be called a predictive DUO model, since the actual
route travel time is predicted using the corresponding route choice model. This
model assumes each traveler will have perfect information about the future
network conditions and will comply with the guidance instructions based on
ideal DUO route choice conditions. Travelers will not regret what decisions
they have made before their journeys.

In this ideal DUO route choice problem, a route p between r and s is
defined as being used at time ¢ if f;°(¢) > 0. This is a less restrictive definition
than for the case of instantaneous DUO in Chapter 5 and is consistent with the
general definition of used routes in the variational inequality models in Chapter
13. We ensure that the above ideal DUO route choice conditions are satisfied
through explicit equality constraint conditions in the following section.

7.2 Equivalent Equality Constraints for Ideal
DUO Route Choice Conditions

Define 17;" (t) as the travel time actually experienced over route p by vehicles
departing origin r toward destination s at time ¢. Also denote 7"*(t) as the



144 Chapter 7. An Ideal Dynamic User-Optimal Route Choice Model

minimal travel time experienced by vehicles departing from origin r to desti-
nation s at time £. 77*(t) is a functional of all link flow variables at time w > t,
ie., 77 (t) = 7" [u(w), v(w),z(w)lw > t]. This functional is neither a state
variable nor a control variable, and it is not fixed; moreover, it is not available
in closed form. Nevertheless, it can be evaluated when u(w), v(w) and z(w) are
temporarily fixed, as in a Frank-Wolfe algorithm, which is all that is required
for solving the model.

The travel-time-based ideal DUO route choice conditions can then be
expressed as follows:

";"(t) > 7" () Vp, 7, s; (7.10)
75 [T @ - m) =0 Vp,7,s; (7.11)
H@=0 Vp,r,s. (7.12)

The asterisk in the above equations denotes that the flow variables are the
optimal solutions under the travel-time-based ideal DUO state. For any O-D
pair (r, s), if there is a positive inflow over route p, i.e., f;"(t) > 0, equation
(7.11) requires that

77;3.(0 =7 (1) Vp,r, s. (7.13)

Thus, route inflow f;"'(t) uses the minimal actual travel time 77" (¢). If the
inflow over route p is zero, i.e., f;"(t) = 0, equation (7.11) requires that
[n;".(t) — 77" (t)] be either zero or positive (by equation (7.10)). In other
words, route p has either the minimal travel time or higher travel time at time
t. On the other hand, if route p has higher travel time at time ¢, i.e., n,'," t) >
77" (t), equation (7.11) requires that route p has zero inflow at time ¢ (f} (1) =
0). By transforming the above inequality DUO route choice conditions into
equivalent equality constraints for cumulative departures/arrivals and route
flows, we formulate an optimal control program in Section 7.3.

Next, we discuss two different approaches for computing the minimal
travel time 7" (). The first method is to compute link travel times and use
a recursive formula to compute the route travel time 7;°(t) for all allowable
routes. Assume route p consists of nodes (r,1,2,-:-,%,--+,s). Denote n;‘(t)
as the travel time actually experienced over route p from origin r to node i by
vehicles departing origin r at time ¢. Then, a recursive formula for route travel
time 7y’ (t) is:

i (t) = mpt= () + malt + njC 1 ()] Vp,ryisi= 1,2, -, 5

where link a = (¢ — 1,4). Then, 77*(t) = min, 77°(¢). This is the conventional
approach discussed in Chapter 4.

A second method for computing 7"*(t) avoids enumerating routes; there-
fore, we prefer this approach in this chapter. In a travel-time-based ideal DUO
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state, the cumulative number of vehicles departing from origin » by time ¢
must equal the number of vehicles arriving at destination s by time t + 7" (¢),
regardless of their routes taken. It follows that

t4+x7o(t)

/ot [ (w)de = / e (w)dw Vr, s; (7.14)

o

- Fre(t) = E™[t + 17 ()] Vr, s. (7.15)

The relationship of F"*(¢t) and E™*(t) to n"*(t) is shown in Figure 7.1. Recall
that the flow propagation constraints ensure that €"*(t) cannot become pre-
maturely positive. The asterisk is ignored in the following derivation of the
equality constraints for the travel-time-based ideal DUQO route choice condi-
tions.

Cumulative Number of Vehicles

(Departure and Arrival)

h

E"t+ )]

L »
>

t+TC (1) Time t

Figure 7.1: Relationship of F™(t) and E™*(t) to 7"*(t)

In the route choice problem, the cumulative number of departing vehicles
Fr*(t) is given, since the f7*(t) are exogenous in the route choice problem.
Also, the cumulative number of arriving vehicles E7*(t) can be computed by
equations (7.5)-(7.7). Then, from (7.15), the following numerical procedure
within a diagonalization technique can be used to compute 77*(¢). This involves
estimating 77*(¢) and calculating F*(t) and E™(t). If F™*(t) # E™*[t+7"* ()],
we increase or decrease 7"*(t) until convergence occurs. We discuss this further
in Section 7.4.

Next we consider the constraints for departure rate and arrival rate over
each route. Consider a small time interval [, + At]. The number of vehicles
departing along each route p during this interval is

Fp*(t+ At) - Fp*(t) Vp,r,s.
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The travel-time-based ideal DUO route choice conditions require that all vehi-
cles departing during time interval [t, t+At] spend the minimal O-D travel times
and arrive at destination s within time interval [t+77*(t), (t+At)+ 7" (t+At)],
no matter which route they choose. The number of arrivals along each route p
during this interval is

EJ’[(t+ At) + 77 (t + At)] — Ep*(t + 7"°(t)) Vp,r,s. (7.16)

Therefore, under the travel-time-based ideal DUO route choice conditions, the
total number of vehicles departing from origin r along route p during time
interval [t, t+At] must equal the total number of vehicles arriving at destination
s along route p during time interval [t+7"* (), (t+ At)+7"* (t + At)]. It follows
that

F'(t+At)—Fp*(t) = E*[(t+ At)+ 7 (t+ At)| - E* (¢ +77°(¢))  Vp,7ys.
(7.17)
A simple network with 2 links and 2 nodes illustrates the above equations
(see Figure 7.2). Suppose there are 4 vehicles departing from the origin in
the period 8:00-8:01 AM. Thus, the departure time is ¢ = 8:00 and the time
interval At equals 1 minute. Assume 7"*(¢) = 10 minutes and 7" (t + At) = 11
minutes. Then, these 4 vehicles must arrive at the destination in the period
8:10 to 8:12, regardless of the routes taken. Also, assume that 2 of the 4 vehicles
use link 1, and the 2 other vehicles use link 2. The travel-time-based ideal DUO
route choice conditions require for each route (link 1 or 2) that the number of
arrivals in 8:10-8:12 AM must equal the number of departures in 8:00-8:01
AM, regardless of the routes taken.

2

Figure 7.2: Two-Link Network

Consider the limit of the following equation taken from equation (7.17):

Ep[(t+ At)+ 77 (t + At)] — E5*(t+ 77°(2)) _ F3*(t + At) — F3*(t)
At - At

Vp,r,s. (7.18)
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Assume that the actual travel time 77*(t) is differentiable with respect to ¢.
Expanding 77*(t 4+ At) in a Taylor series about the point ¢ gives

7" (t 4+ At) = 7" (t) + 77 (t) At + O(A?) vr, s, (7.19)

where 77*(t) denotes the derivative of 77#(t) with respect to time ¢, and O(At)
denotes terms in the expansion of order two and greater in Af. These latter
terms are smaller in magnitude than At as At approaches zero. Using equation
(7.19) to substitute for 7" (¢t + At) in the first term in equation (7.18), we have

E*[(t+ At) 4+ 7" (t + At)]
Ep? {(t + At) + (77 (t) + 7" (t) At + O(At))}
= Ef{t+7"(@)]+[1+7"°(¢)] At+O(At)}  Vp,rs.

Also, using X =t + 7"°(t) and AX = [1 + 77*(t)] At + O(At) in a Taylor
series expansion of F(X + AX) about the point X for the right-hand-side of
the above equation, we have

Ef {[t+ =" (@) +[1477()] At + O(At)} =
ES[t+ 77 (t)] + E;"[t + W'f(t)] {[1+ 7"*(t)] At + O(At)}
+ O{[1+#"(t)] At+ O(At)} Vp,r,s.
Using .
B+ ()] = €[t + 77 (1)
we obtain
E’[(t+ At)+ 7" (t + At)) =
EFft+a" )]+ e[t + 7" ()] {[1+7"(t)] At + O(At)}
+ O{[1+a"°(t)] At + O(At)} Vp,r,s.  (7.20)

Thus, by substituting the right-hand-side of equation (7.20) into equation
(7.18), the left-hand-side of equation (7.18) becomes

O(At)} + O {[1+ 7"*(t)] At + O(A¢t)}
At At

eptle+ @) {7 0] + (r.21
When At — 0, O(At) — 0 and {[1+ 77*(t)] At + O(At)} — 0 so that

O {[1+ #"*(t)] At + O(At)} — 0. Allowing At — 0 in (7.21), by definition
of the derivative, the left-hand-side equals e;*[t + #"*(t)] [1 + #"*(t)], and the
right-hand-side of (7.18) equals f;*(t). It follows that as At — 0, the following
constraints are equivalent to (7.17)

S lt+ 7m0 (1)] - [L+ 77 (1) = £3°(t) Vp,r, 5. (7.22)

The term #7*(t) is the rate of change of minimal O-D actual travel time. When
#74(t) = 0, the minimal O-D actual travel time is constant. Constraints (7.22)
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require that any route departure flow f;? (t) at time ¢ must use the O-D specific
minimal travel time 7"*(¢) so as to arrive at the destination at time ¢ + 7"*(t).
Furthermore, since cumulative departures at time ¢ equal cumulative arrivals at
time ¢t + 7" (¢) for each O-D pair rs, all departure flows necessarily use minimal
time routes at any time ¢. Thus, using constraints (7.15) and (7.22), the route
choice model will generate traffic flows which satisfy travel-time-based ideal
DUO route choice conditions (7.10)-(7.12). These two constraints (7.15) and
(7.22) are one of the main contributions of this chapter. They make our ideal
DUO route choice model distinct from other formulations.

Furthermore, we demonstrate in the following that constraints (7.22) can
be derived from constraints (7.15) and definitional constraints as follows:

S Ep(t) = FT(), Y EPlt+a(t)] = BTt +7(t)), Vrs. (7.23)

Note the second definitional constraint is included in the definitional constraint

S Er(t) = E™(t), Vr, s (7.24)

when the assignment period T is long enough to clear the traffic flow consid-
ered in the analysis. Substituting the left-hand-sides of equations (7.23) into
equation (7.15),

YA @) - Bt + " ()]} =0, Vr,s. (7.25)

By definition, 77*(t) < 75°(t) for all routes p. By the flow propagation
constraint, for each route p and each O-D pair rs at any time ¢, the cumulative
number of vehicles having arrived at the destination s by time [t + 77*(¢)] must
be equal to or smaller than the cumulative number of vehicles that has departed
from origin » by time ¢. It follows that

Fp*(t) > E’[t+ 7" (t)], or F;'(t)— E’[t+7"*(t)] >0, Vr,s,p (7.26)

where time ¢ applies to any instant from 0 to T. Combining equations (7.25)
and (7.26),
Fp*(t)— Ep*[t + 77 ()] = 0, Vr, s, p. (7.27)

Taking derivatives of the above equations by using the chain rule (note that
since F*(t) is the integral of f7°(¢), F;*(t) = f;°(t)), we have
@) —elt+ 7" @)][1+47(t)] =0 Vr, s, p. (7.28)

Thus, the above constraint is redundant when constraints (7.15) and (7.23) are
enforced. Therefore, we obtain equality constraints (7.15) and (7.23) which are
equivalent to the travel-time-based ideal DUO route choice conditions.
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7.3 An Optimal Control Model of Ideal DUO
Route Choice

Using optimal control theory, the travel-time-based ideal dynamic user-optimal
route choice problem is formulated as follows.

T ug(t)
u,v,z,e IEI'I}I&: Fpor /O Z {L gla[xa(t),w]dw

a

va(t)
+ / 92a[:ca(t),w]dw}dt (7.29)
0
s.t.
Relationships between state and control variables:
dz;’
ugp(t) — vgp(t)  Va,p,r,s; (7.30)
dt
dE?*(t) .
;t = ep () Vr, s, p; (7.31)
dF” t
() =f' () vr, s, p; (7.32)
Flow conservatlon constraints:
Tt = D Shaula() Vp, r, 5; (7.33)
a€A(r)
G )= D Gvin(t) Vp, 1, 5; (7.34)
a€B(s)
> vt =Y up) Viprsitns  (1.35)
a€B(j) a€A(F)

Constraints equilibrating actual route travel times:
F*() = E[t+ n"*(1)] Vr, s; (7.36)
Flow propagation constraints:
() = > {zhplt + ()] — zhp ()} + { B} [t + 7a()] — B} (1)}
bep
Vr,s,p,jia € B(j);j # 13 (7.37)
Definitional constraints:

> uip(t) = uat), 3 un(e) = valt), Va; (7.38)

rsp rsp
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Do) =zat), Yz (t) = za(t), Va,r, s; (7.39)

rsp rs

S Ep(t) = E™(), S F(t) = FT (1), Vr,s;  (7.40)

Y =), Y oert) =€), Vr, s; (7.41)

Nonnegativity conditions:
:c;;,(t) >0, Ugp(t) > 0, vap(t) > 0 Va, p, T, s; (7.42)
e’ (t) >0, fp'(t)>0, E*(t)>0, F,*(t)>0 Vp,r,s;  (7.43)

Boundary conditions:
EF(0)=0, F*(0)=0 Vprs 24(0)=0, Va,prs (7.44)

In program (7.29)-(7.44), the route-specific departure variables f*(t) and F;*(t)
must be determined. The objective function is similar to the objective function
of the well-known static user-optimal (UO) model. We note that other objec-
tive functions can also be used since constraints (7.36) and (7.40) enforce ideal
DUO route choice.
The first three constraints (7.30)-(7.32) are state equations for each link
a and for cumulative effects at origins and destinations. equations (7.33)-(7.35)
are flow conservation constraints at each node including origins and destina-
tions. Equations (7.36) and (7.40) are constraints which equilibrate actual
route travel times for departure route flows. Other constraints include flow
propagation constraints, definitional constraints, nonnegativity, and boundary
conditions. In summary, the control variables are uy}(t), vgs(t), €5*(t), and
7°(t); the state variables are zg;(t), E;*(t), and Fy*(t); the functionals are
7"*(t), which must be determined by diagonalization as discussed in Section
7.4. Note that constraints (7.36) and (7.40) apply to the above optimization
program. Those two constraints guarantee that the optimal control problem
will generate traffic flows satisfying the ideal DUO route choice conditions,
given any O-D departure flows.

7.4 Solution Algorithm

As with the instantaneous DUO route choice model, we propose an algorithm
to solve the ideal DUO route choice model. This ideal DUO route choice model
has nonlinear constraints (7.36) which equilibrate actual route travel times for
departing route flows. By placing these constraints as penalty terms in the
objective function, we obtain a similar formulation to the instantaneous DUO
route choice model. Since the revised objective function involves link flow
and O-D flow variables, we can avoid enumerating routes in computing the
objective function. Then using the diagonalization and Frank-Wolfe techniques,
the resulting NLP program can be solved.
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7.4.1 Discrete Formulation of the Ideal Model

To convert our ideal DUO route choice problem into an NLP, time period
[0, 7] is subdivided into K small time intervals. (The time intervals are not
necessarily equal.) To simplify the formulation, we modify the estimated actual
travel time on each link in the following way so that each estimated travel time
is equal to a multiple of the time increment.

ra(k) =i if i—0.5< r(k)<i+0.5,

where 7 is an integer and 0 < i < K. We note that the above approximation
applies to flow propagation constraints and the computation of route travel
times.

In the resulting discrete time problem, z,(k) represents vehicles on the
link at the beginning of interval k; ug(k) and ve(k) represent inflow and exit
flows during interval k. Let 74(k) denote the travel time for vehicles entering
link a at the beginning of interval k = [k, k + 1}, and let 7" (k) be the average
minimal r — s travel time for vehicles departing origin r during interval k. Let
fr*(k) denote the O-D departure flow during interval k.

The optimal control program can then be reformulated as a discrete time
NLP as follows:

K wa(k)
o, L2 >N /0 g1a[za(k), w]dw

k=1 a

va(k)
+ /0 gZa[xa(k),w]dw} (7.45)

s.t.

zib(k+1) = (k) + ulp(k) — via(k)  Va,p,rsk=1,---,K;  (7.46)

Fy'(k+1) = Fp* (k) + f;" (k) Vp,r,sk=1,---,K; (7.47)

Ept(k+1) = Ep*(k) +e;° (k) Vp,r,s;k=1,---,K; (7.48)

;‘(k) = Z 6;}‘,u;;(k) Vp,r,s;k=1,---,K; (7.49)
a€A(r)

ent(k) =S raoia(k) Vp,r,sk=1,---, K; (7.50)
a€B(s)

Z v;;(k)_ Z u;;;(k):() Vj,p,T’,S;j:/—‘T',S;k: L---, K; (751)
a€B(j) a€A(f)

zhn (k) = Y {=iplk + ra(k)] — 25p(k)} + { B}’ [k + 7a (k)] - B3’ (k)}
bep
VGEB(j);j#r;p,r,s;k:l,---,K—{-l; (752)
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Fr*(k) = E"[k + n"° (k)] Vr,s;k=1,---,K; (7.53)

ugy (k) >0, vgp(k) >0, zg,(k+1)>0, VYa,p,r,s;k=1,---,K; (7.54)
E(k+1) >0, Fp'(k+1) >0, Vp,r,s;k=1,---,K; (7.55)
E‘(1)=0 F'(1)=0 Vp,r, s; (7.56)

zop(1) =0, Va,p,r,s. (7.57)

In addition, we require the following definitional constraints.

S ulp(k) = ua(k), Y vis(k) =va(k), Y zin(k) =2q(k), Va; (7.58)

rsp Tsp Tsp

Ee”(k)—e”(k), ZE"(k) E™(k), Vrs; (7.59)

Z 12 (k) = £ (k), Z Fr*(k) = F™*(k), Vr,s. (7.60)
P
Nonlinear constraints (7.53) may not hold strictly as equalities because of cu-
mulative round-off errors of link flow variables over routes after time discretiza-
tion.

7.4.2 The Penalty Method

The penalty method has had very few applications to route choice models.
Inouye (1986) used the barrier method to solve the static UO problem with
explicit link capacity constraints. He combined capacity constraints into the
objective function and then used the Frank-Wolfe algorithm to solve the mod-
ified problem. In this section, we apply the penalty method to the constraints
associated with the relationship between travel times and link flows. We
place equality constraints (7.53) in the objective function as penalty terms.
Then, only flow conservation and flow propagation equations remain, and the
diagonalization/Frank-Wolfe technique can be used to solve the modified pro-
gram. The penalty function d"*(k) replacing constraint (7.53) is defined as

d™ (k) ={F"(k)— E"[k + 71'”(k)]}2 Vr,s;k=2,---,K + 1.
We then reformulate the discrete time NLP as follows:

A wa(k)
o in 2 = ZZ{ / g1a[za(k), w]dw

k=1 a
va(k) K+1
+ / 92a[a(k),wldw} + D) pMdm (k) (7.61)
0 k=2 1,

s.t.

xz;)(k + 1) = zz;(k) + “Z;’;(k) - ’U;;,(k) Va’p’ Ty 83 k= 1, R K; (7'62)
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F*(k+1) = F;*(k) + f;* (k) Vrss#rmpk=1,---,K; (7.63)
E}'(k+1) = E;* (k) + 5’ (k) Vrss#rmpk=1,.---,K; (7.64)
SO k) = £ (k), Vr, s; (7.65)
p
frr(e)— Y una(k)=0 Vp,r,s55k=1,---,K; (7.66)
a€A(r)

k)= &pum(k) Vp,r,s5k=1,---,K; (7.67)

a€A(r)
et (k)= > &pvin(k) Vp,r,s;k=1,---, K; (7.68)

a€B(s)

S ownk) = Y uip(k)=0 Vigrsk=1---,K; (7.69)

a€B(j) a€A(s)

zon(k) = Y _{ailk + 7a(k)] — 25p(k)} + {E5* [k + 7a(k)] — E5* (k)}
bep

VYa € B(j);j #rip,rys3k=1,---, K+ 1; (7.70)

Ugp(k) >0, vgp(k) >0, zgp(k+1)>0, Va,p,r,s;k=1,---,K; (7.71)
e’ (k) >0, fp' (k) >0, Vp,r,s;k=1,-.. -,K; (7.72)

E;'(k+1) >0, F*(k+1) >0, Vp,r,s;k=1,---,K; (7.73)
ES(1)=0 F,’(1)=0 Vp,r,s; (7.74)

Zap(1) =0, Va,p,r,s. (7.75)

In the objective function, the last term is the penalty term associated with
equality constraint equation (7.53). The penalty coefficient u(®) is a large

positive number and increases with iteration n. It is well known that this
penalty function d"* has continuous first partial derivatives.

ad"* (k)
BE™ [k + 77 (k)]

=2 {F*(k) = E"[k+ 1" (k)]} >0 Vr,s;k=2,---, K + 1.
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7.4.3 The Diagonalization/Frank-Wolfe Algorithm

We then apply the diagonalization technique as introduced in Chapter 6. In
this procedure, the actual travel times over each link a, 7,(k), are temporarily
fixed as 7,(k) and are updated iteratively. At each iteration, since each 7,(k)
is temporarily fixed, the minimal O-D travel time functional #"*(k) can be
computed and is also temporarily fixed as #"*(k). After solving the route
choice problem for fixed 74(k), link travel times corresponding to the solution
obtained for z4(k), uq(k) and ve(k) are compared to functions 74(k). If link
travel times corresponding to the solution are different from 7,(k), their values
are reset to these travel times and the process is repeated. After link travel time
7a(k) is updated, minimal O-D travel time 77*(k) can be updated so that the
penalty terms can be updated. Then we can proceed to the next diagonalization
iteration. Given the robust nature of the diagonalization technique, we expect
that the solution will converge to the ideal DUO solution.

We use the same diagonalization/Frank-Wolfe algorithm presented in
Chapter 6 for solving the instantaneous DUO traffic assignment problem. De-
note the subproblem variables as p,q,y, E, €, f, F, corresponding to the main
problem variables u,v,z, E e, f, F. To distinguish the notation, we use ! to
denote a route in the subproblem. Applying the Frank-Wolfe algorithm to the
minimization of the discretized ideal DUO program requires, at each iteration,
a solution of the following linear program (LP):

min = Z=vuZ -p"+voZ T +v.Z -yT +vEZ-ET  (7.76)
P9,y E,8f,F

s.t.

vat (k +1) = vii (k) + Pt (k) — @ (k) Va,l,rs5k=1,---,K;  (7.77)

Fl*(k+1)= F[* (k) + f{* (k) vi,r,s;k=1,---, K; (7.78)

Er*(k+1) = ET* (k) + & (k) Vi,rsk=1,--,K; (7.79)

S fk)y=fr(k)=0 Vrs;k=1,---,K; (7.80)

1

(k)= Y phi(k)=0 Vi,rsk=1,--+,K; (7.81)
a€A(r)

) = S au(h) Vhnsk=1eK  (1.82)
a€A(r)

é{’(k) = Z 6;1802;(16) VI’ Ty 3;k: la"'aK; (783)
a€B(s)

Z q;f(k)_ Z p;';(k):o Vjalar,s;j7l:r,3;k:1a”"K; (784)

a€B(j) a€A(js)
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vat (B) = Y _{vii [k + 7a(B)] = w57 (1)} + {EJ* [k + 7a(R)] — B{* (k)}

bel
Va € B(j);j £ rl,r,sik=1,--, K +1; (7.85)
yag(k+1)>0, p} (k)>0 ¢;i(k) >0, Va,l,r,s;k=1,---,K; (7.86)

er’(k) >0, 72 (k) >0, vir,s;k=1,.---,K; (7.87)
Ef*(k+1)>0, Fr*(k+1)>0, Virsk=1,---,K; (7.88)
Ei'(1)=0, Vi, s; (7.89)

yri(1) =0, Va,l,r,s. (7.90)

The objective function (7.76) is equivalent to:

Zzz |: ra(k)pal( )+ ro(k)qal(k)

k=1rs a,l
K+1
+ az"(k+1)y“’(k+1) M kzzrzua ”(k) E@) (o)

The components of the gradient of Z with respect to the control and state
variables u, v, z, E are

EYA &
tla(k) = M = gla[za(k), Ua(k)] Va; k= 1, .. ',K; (792)
YA
taa(k) = m = g2a[2a(k), va(k)] Vas;k=1,.---,K; (7.93)
8z
B 7 h®
PO S TORE
o Oz, (k) o Ozq (k)
Va;k=2,---,K; (7.94)
i 3 8z _
taa(K +1) = ki =0 Y A (7.95)
rs aZ e — =Ts .
t3° (k) = BE”(k) =0 Vrs;k=2,---,7°(1)+1; (7.96)
rs =TS8 _ 32
kT ® = SEt )

26 - {F7 (k) — B[k + 7" (k)]}
Vr,sik=2,--- K +1; (7.97)
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The objective function can be rewritten as

K
D20 > [tra(k)pi (k) + taa(k)asi (k) + t5a(k + 1)yi (k + 1)]

k=1 rs a,l

/

K+1

+ )t (k)E; () (7.98)

k=2 r,s,l

Since g14 and go, are nonnegative and increasing functions, it follows that

t1a(k), t24(k) > 0, Va;k=1,---,K; (7.99)
the(k+1) >0, Va,r,s;k=1,---, K. (7.100)
t3’(k+1)>0, Vr,s;k=1,---, K. (7.101)

This has a significant impact on the solvability of this model for large net-
works, since these components will be link cost coefficients in a minimal-cost
network problem. Note that there are no capacity constraints on the links; the
only constraints are non-negativity and conservation of flow. Furthermore, the
constraints apply to each origin-destination pair independently, so linear pro-
gram (7.76)-(7.90) can be decomposed by origin-destination pair. The resulting
subproblem for each O-D pair (r,s) is given by

K
min 3 Y [traphi (k) + taaqli (k) + 855 (k + 1)yl (k + 1)]
Py B k=1 al
K+1
+ >N (k) B (k) (7.102)
k=2 1
s.t. constraints (7.77)-(7.90).

In addition to the fourth term, the above program is identical to the
LP subproblem of the discrete time instantaneous DUO route choice model.
The fourth term involves flow variables associated with the origin and desti-
nation nodes only. Thus, the above LP subproblem for each O-D pair (r,s)
can be viewed as a many-to-one minimal-cost route problem over an expanded
time-space network using artificial origins. It can be solved by determining the
minimal-cost routes from all artificial origins to a super destination and com-
pleting an all-or-nothing assignment. Flow variables pfj (k), ¢%] (k), yof (k + 1),
E7*(k +1), are determined by solving the minimal-cost route problem for each
O-D pair (r, s) and assigning the O-D flows to the links.

In this combined algorithm, we define the diagonalization procedure as
the outer iteration and the F-W procedure as the inner iteration. Denote the
new solution at inner F-W iteration (n + 1) as

u$ (k) = ul(k) + ™[ (k) — pM(k)], Va;k=1,---,K; (7.103)
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v D(k) = o™M(k) + ™[pM(k) - ¢™M(K)]), Va;k=1,---,K; (7.104)
0D (k) = 2 (k) + ™[z (k) — ™ (k)], Va;k=1,---,K +1; (7.105)
E®+D(k) = E®(k)+a™[E™)(k)-EM™)(K)], Vr,s;k=1,---,K+1; (7.106)

where (™) is the optimal step size of the one-dimensional search problem in
the F-W algorithm. The one-dimensional search problem is to find step size
a™ that solves

K u{* (k)
<. . ("+D k d
0<atm<1 ZZ{/O gralza™ k), wlde

k=1 a
o+ (k)
+ / gza[wg"“)(k)"*’]dw}
o
K+1
+ 30 S W™t [ECD(k)] (7.107)
k=2 r,s

where uf,"+l)(k), v,(,"+l)(k), zg"H)(k), E(®+1)(k) are replaced by the defini-
tional equations in the above.

7.4.4 Summary of the Algorithm

The algorithm for solving our ideal DUO route choice model is illustrated in
the flowchart in Figure 7.3 and is summarized as follows.

Step 0: Initialization.
Find an initial feasible solution {z5"(k)}, {uS)(k)}, {v$V(k)}, {ED(k)}.
Set the outer iteration counter m = 1.

Step 1: Diagonalization.
Find a new estimate of actual link travel time Té")(k) and solve the DUO
program. Set the inner iteration counter n = 1.

[Step 1.1]: Update. Calculate t14(k), t24(k), taq(k) and t3°(k) using
equations (7.92)-(7.97).

[Step 1.2]: Direction Finding. Based on {t14(k)}, {t24(k)}, {t34(k)}
and {t3*(k)}, search the minimal-cost route forward from each artificial
origin to the super destination over an expanded time-space network for
each O-D pair (r, s). Perform an all-or-nothing assignment, yielding sub-
problem solution {ps(k)}, {ga(k)}, {va(k)}, {E™*(K)}.

[Step 1.3]: Line Search. Find the optimal step size a(") that solves
the one dimensional search problem.

[Step 1.4]: Move. Find a new solution by combining {us(k)}, {va(k)},
{za(k)}, {E™(k)} and {pa(k)}, {g9a(F)}, {a(k)}, {£7(F)}.
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[Step 1.5]: Convergence Test for Inner Iterations. If n equals the
prespecified number, go to step 2; otherwise, set n = n+1 and go to step
1.1.

Step 2: Convergence Test for Outer Iterations.
If Tém)(k) ~ T(m+1)(k), and the penalty term ) . ) ., u(")d”(k) ~ 0,
stop. The current solution, {uqs(k)}, {va(k)}, {za(k)}, {E”(k)}, isin a
near ideal DUO state; otherwise, set m = m + 1 and go to step 1.

In order to speed up convergence, an incremental assignment technique is sug-
gested for finding a good starting solution before applying the diagonalization

procedure.
( Initialize Ta(k) ’

A

Inner Iterations:
Solve Route Choice Model (NLP) for
Link Flows Using F-W Algorithm.

[Update T (k) & @

No

Outer Iterations:
Diagonalization Convergence?
[T (k)] & Penalty Term = 0?

Figure 7.3: Flowchart of the Solution Algorithm

7.5 Notes

In our model, a continuous flow of traffic is implicitly assumed — when vehicles
approach a decision node (intersection), drivers can continue straight ahead or
turn left or right without physically blocking the road. In reality, this may not
be literally true. For example, suppose two vehicles traveling on a one-lane road
arrive at an intersection. The DUO route choice conditions in our model may
require the first vehicle to wait and then make a left turn, but allow the second
vehicle to go straight ahead without waiting. In this situation, the dynamic
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physical conditions will be violated since in reality the second vehicle would
have to wait for the first one. This implies that our model literally represents
only networks with turning lanes of sufficient length to accommodate all turning
vehicles.

An advantage of the proposed model is that the flow propagation con-
straints can serve as a black box. If accurate link travel time functions are not
available, the model still works because the flow propagation constraints can be
easily replaced by appropriate traffic flow models. The resulting formulation is
a set of nonlinear dynamic equations, or a nonlinear complementarity problem.

In the following, we provide some insights into the instantaneous and
ideal DUO route choice models. Our dynamic route choice models are opti-
mization oriented. Ultimately, some optimal control measures are necessary to
help to achieve our goal. Those controls may include optimal routing, signal
optimization, and other means. Consequently, these control problems can be
modeled using optimal control theory. In traffic prediction problems, including
dynamic route choice models, many uncertain events can occur in the future,
such as traffic accidents, illegal double parking on streets, etc. In other words,
disturbances for future traffic might be large enough to cause the traffic predic-
tion and traffic control models based on predicted future travel times (or actual
travel times as defined in this book) to fail. In those cases, optimal control mod-
els based on instantaneous travel times might provide more meaningful results
since feedback is taken into account in the optimal control models and drivers
can adjust their routes en-route using current traffic information. In terms of
optimal control theory and the uncertainty characteristic of our problem, in-
stantaneous travel time prediction might be the only choice in some situations.
This is one of the reasons why feedback control theory was developed.

Of course, the ideal dynamic user-optimal route choice model, which
equalibrates actual route travel times in the future, is also useful when some
future disturbance (incidents and other future events) are predictable, such as
the increased traffic flow from a baseball stadium after a game. In conclusion,
the best solution is to provide both instantaneous and ideal user-optimal route
choice models for use in various appropriate situations. When a future dis-
turbance is more predicable, we can use the ideal dynamic user-optimal route
choice model. When a future disturbance is less predicable, we may prefer the
instantaneous model.



Chapter 8

Stochastic Dynamic User-
Optimal Route Choice Models

Dynamic route guidance systems are being developed in order to inform and
guide drivers regarding their best departure times and routes so as to avoid
congestion delay. However, drivers may or may not rely on the information
provided by the route guidance system to adjust their departure times and
routes. Furthermore, drivers without navigation systems do not have perfect
information on the network traffic and must use their own experience and
perception of current traffic conditions to make travel decisions. Thus, there
is a need to develop dynamic route choice models under imperfect information
as well as perfect information.

To date, many dynamic route choice models have been presented, regard-
ing both route and departure time choices (see Chapter 1 for an overview).
However, very few existing models can be applied to the situation with im-
perfect traffic information or indeterministic traffic conditions. Moreover, de-
terministic dynamic user-optimal (DUO) route choice models assign flows to
minimal travel time routes only. Those deterministic models can not represent
the realistic traffic flow dispersion across different travel time routes. In re-
sponse to this gap, this chapter presents two stochastic dynamic user-optimal
(SDUO) route choice models which are stochastic extensions of our determin-
istic DUO route choice models presented in Chapters 5 and 7. We note that
there is another approach to represent traffic flow dispersion across different
travel time routes. This approach stratifies vehicles into different groups and
uses group-specific travel disutilities to determine dynamic user-optimal routes.
We will discuss this approach in Chapters 12-13.

The perceptions of travel times have also been studied using stochas-
tic static route choice models. Stochastic route choice models have been ex-
plored extensively under the assumption of static traffic conditions (Daganzo
and Sheffi, 1977; Fisk, 1980; Sheffi and Powell, 1983, etc.). Recently, Cas-
setta (1991) studied the variation of dynamic route choice from day to day.
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Vythoulkas (1990) also extended stochastic static route choice models into the
dynamic route choice framework.

The SDUO route choice problem is to find dynamic trajectories of link
states and inflow and exit flow control variables, given time-dependent O-D
departure rates, the network, link travel time functions and some assumptions
about the randomness of imperfect traffic information. Basically, SDUO prob-
lems can be classified according to the following:

1. random components in traveler’s perceptions of travel times;
2. randomness of origin-destination flows;
3. randomness of the link traffic states.

In this chapter, we will include only the random component in travelers’ per-
ception of travel times. Then route choice is a process of selection among
alternative routes, for which the perceived time-dependent travel times include
a random error. We note that the proposed models in this chapter represent
only our initial effort to tackle this very difficult problem. Logit-type dynamic
route choice models are used in our formulations in this chapter because of their
advantages of mathematical tractability, although logit-type models have IIA
(Independence of Irrelevant Alternatives) properties which cause inaccuracy in
route choice dispersion. In subsequent studies, we will examine more realistic,
but more complicated distributions of route choice dispersion.

In this chapter, the stochastic route choice assumption is introduced into
dynamic route choice problems so that our SDUO models are dynamic general-
izations of conventional stochastic static user-optimal (SUO) models under the
assumption of dispersed travel choice. Stochastic dynamic route choice models
are better representations than deterministic dynamic route choice models be-
cause travelers’ route choice dispersion is taken into account. We concentrate
our analysis on the modeling aspects of SDUO route choice formulation in this
chapter. Solution algorithms for solving the two models are presented in the
next chapter.

Compared with deterministic dynamic route choice models, the proposed
stochastic dynamic route choice models represent at least a better approxima-
tion to real world conditions because in SDUO route choice models, O-D de-
parture flows are dispersed across different travel time routes. On the contrary,
deterministic DUO route choice models assign O-D departure flows to minimal
travel time routes only. Furthermore, SDUO models provide better representa-
tions of travelers’ route choice behavior than their static counterparts because
time-dependent traffic flows and travel times are explicitly taken into account.

In this chapter, we first present definitions of travel times in stochas-
tic dynamic problems in Section 8.1. The constraints and the instantaneous
SDUO model are then described in Section 8.2. The formulation of the instanta-
neous SDUO route choice problem is based on the underlying choice criterion
that each traveler uses the route that minimizes his/her perceived instanta-
neous travel time when departing from the origin or any intermediate node to
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his/her destination. Subsequently, the equivalence of the model with instan-
taneous SDUO route choice is demonstrated by proving the equivalence of the
optimality conditions of the model with the instantaneous SDUO route choice
conditions. The solution of this instantaneous SDUO route choice model will
result in instantaneous stochastic network flows at each decision node based
on a logit function of mean instantaneous travel times of alternative routes.
Here, we use logit-type of distribution because of closed form properties for
choice probability. We note that this is a first step toward a more realistic
distribution. It is also shown that our instantaneous DUO route choice model
in Chapter 5 is a particular case of the instantaneous SDUO route choice model
when the variance of instantaneous route travel time perception is zero.

In Section 8.3, we present an ideal SDUQO route choice model based
on stochastic flow loading with a logit function of mean actual travel times
experienced by drivers over alternative routes for each O-D pair. It is shown
that our previous deterministic ideal DUO route choice model in Chapter 7 is
a special case of the ideal SDUO route choice model when the variance of the
perceived actual route travel time is zero. In Section 8.4, some properties of
SDUO route choice models are discussed.

8.1 Definitions of Travel Times in Stochastic
Situations

Recall that in an ATIS system, there are two kinds of travel time information
which can be provided to travelers: current information and future predictions.
Current travel time information can be obtained using the currently prevailing
instantaneous link travel times. Correspondingly, future travel time informa-
tion can be obtained using predicted actual link travel times.

The instantaneous travel time at time ¢ is defined as the travel time that
is experienced by vehicles traversing link ¢ when prevailing traffic conditions
remain unchanged. Let C,(t) denote the instantaneous travel time on link a
at time ¢ as perceived by a traveler randomly chosen from the population of
travelers. Cq(t) is a random variable that is assumed to have mean c,(t). The
mean or measured (as opposed to perceived) instantaneous travel time cq(t) over
link @ at time ¢ is assumed to be dependent on the number of vehicles z4(t),
the inflow u,(t) and the exit flow v4(t) on link @ at time ¢. In this model, we
assume the mean instantaneous travel time c4(t) on link a is the sum of two
components: 1) an instantaneous flow-dependent cruise time g14[z4(t), ua(t)]
over link a; and 2) an instantaneous queuing delay gaq4[z4(t), v4(t)]. It follows
that

Ca(t) = ga1(2a(t), ua(t)] + 92a[2a(t), va(?)]- (8.1)
The two components gi4[zq(t), ua(t)] and ga4[za(t), va(t)] are assumed to be

nonnegative and differentiable with respect to z4(t), ua(t) and z4(t), v4(t), re-
spectively.
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Consider the flow which originates at node r at time ¢ and is destined for
node s. There is a set of routes {p} between O-D pair rs. Denote the minimal
free flow travel time from node i to destination node s as ¢%*. In this chapter,
an efficient route between rs is redefined to include only links a = (¢, j) such
that node j is closer to destination s than node i, i.e., 0% > oJ* (Dial, 1971).
In the following, all route related constraints are defined using efficient routes.
By using efficient routes, the cyclic flow problem in some dynamic assignment
models can be prevented. Define the mean or measured instantaneous travel
time ¢7*(t) for each route p between rs as

@)= Y cala(t), ta(t), va(t)] Vr, s, p; (8.2)

acrsp

the summation is over all links a in route p from origin 7 to destination s.
Thus, the mean instantaneous route travel time is that experienced by vehicles
if prevailing traffic conditions do not vary until vehicles reach their destination.
This instantaneous route travel time provides a first approximation to the time-
dependent vehicle travel time.

Next, define 7,(t) as the mean actual travel time over link a for vehicles
entering link a at time ¢. Let T4(t) denote the perceived actual travel time
for flows entering link a at time t. Tg4(¢) is a random variable with mean
7a(t). As described in Chapter 16, an actual link travel time function has a
similar form to an instantaneous link travel time function. We refer readers to
Section 16.1 for a detailed discussion of the difference between instantaneous
and actual link travel times. Similarly, define 7’ (t) as the mean actual travel
time experienced over route p by vehicles departing origin r toward destination
s at time t. Once the mean actual link travel time 74(t) is determined, the mean
actual route travel time 7,°(t) can be computed using the following recursive
formula:

5 (8) = njf () + Talt + 0’ (2)] Vr,s,p;i,j € p (8.3)

where link a = (4, j) is on route p.

The new notation for this chapter is summarized as follows:

Cq(t) = perceived instantaneous travel time for link a at time ¢
ca(t) = mean instantaneous travel time for link a at time ¢
¥7*(t) = perceived instantaneous route travel time for route p

between rs at time ¢
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¥p’(t) = mean instantaneous route travel time for route p
between rs at time ¢
Ta.(t) = perceived actual travel time over link a for flows
entering link a at time ¢
7s(t) = mean actual travel time over link a for flows
entering link a at time ¢
74(t) = estimated mean actual travel time over link a for flows
entering link a at time ¢
Q7°(t) = perceived actual travel time for flows departing origin r
toward destination s over route p at time ¢
' () = mean actual travel time experienced by flows departing
origin r toward destination s over route p at time ¢
0* = minimal free flow travel time from node i to
destination node s
@ = route choice dispersion parameter

8.2 Instantaneous SDUO Route Choice Model
8.2.1 Model Formulation

The formulation of the instantaneous SDUO route choice problem is based on
the underlying choice criterion that each traveler uses the route that minimizes
his/her perceived instantaneous travel time when departing from the origin or
any intermediate node to his/her destination. In the following, we extend a
similar analysis for stochastic static route choice given by Sheffi (1985) to the
case of instantaneous dynamic route choice.

For each origin-destination pair, there are many alternative routes p,
each with some instantaneous travel time for each time instant. Due to vari-
ations in perceptions and exogenous factors, these instantaneous route travel
times are perceived differently by each traveler. We represent the perceived
instantaneous route travel time as a random variable for each time instant .
Given his or her perception of instantaneous route travel time at each time
instant ¢, each traveler is assumed to choose the route with minimal perceived
instantaneous travel time. Given a probability density function for the instan-
taneous route travel time at each time ¢, the instantaneous stochastic dynamic
user-optimal route choice problem is to determine how many travelers will use
each route at each decision node at each instant of time.

Let ¥}*(t) denote the perceived instantaneous route travel time on route
p between origin r and destination s at each time ¢. Then, we assume that

W (t) = op’ (t) +£,°(t) vr, s, p, (8.4)

where £7° (t) is a random error term associated with the route p under con-
sideration. Furthermore, assume that the mean of the error E[¢;*(t)] = 0, or
E[%7*(t)] = ¥;°(t)- In other words, the average perceived instantaneous route
travel time is the mean instantaneous route travel time.



166 Chapter 8. Stochastic Dynamic User-Optimal Route Choice Models

The share of travelers choosing route p at each time t, Py (t), is
Pro(t) = Pr[¥;°(t) < ¥3°(t), Vroutes ¢ between r and s] Vr,s,p. (8.5)

In other words, the probability that a given route for each O-D pair is chosen
at time ¢ is the probability that its instantaneous route travel time is perceived
to be the lowest of all the alternative routes. Once the distribution of perceived
instantaneous route travel times is specified, the probability of selecting each
alternative route can be calculated and the route flow can be assigned as follows:

' (@) = )Py (t) Vr,s,p (8.6)

where f;*(t) is a control variable specifying the departure rate on route p from
r to s at time ¢. In this chapter, we assume that

U (1) = ¥ (t) — % 0 Vr, s, p, (8.7)
where 6 is a nonnegative parameter that scales the perceived instantaneous
route travel time, and €,’(t) is a random error term associated with the route
p under consideration (Sheffi, 1985). We assume that the errors €;*(t) are
identically and independently distributed (i.i.d.) Gumbel variates for each time
instant t. Other distributions of the perceived instantaneous route travel times
will be discussed in subsequent studies. Based on random utility theory, the
logit route choice probability can be expressed as ‘

exp[—0¢;° (1)]
> exp[—6¢74 (1)]

As § — oo, var[¥}*(t)] — 0 and the perceived instantaneous travel time
between the O-D equals the mean instantaneous travel time. - In this case,
travelers will choose the minimal-time route at each time instant, as in the
deterministic instantaneous DUO route choice model in Chapter 5. We note
that the above analysis for each O-D pair also applies for each decision node-
destination pair.

Analogous to the deterministic instantaneous DUO route choice model,
we can use a conventional definition of used links and routes. For any link a
and any O-D pair rs, link a is defined as being used at time ¢ if u’(¢) > 0.
Furthermore, a route p between r and s is defined as being used at time # if
ugy(t) > 0, where link a is the first link on route p from r to s. The above
definition will be used in general variational inequality models for instantaneous
SDUO route choice problems. In this chapter, we are formulating optimal
control models which are equivalent to the instantaneous SDUO route choice
conditions. These optimal control models are related to the general variational
inequality models. Thus, we use the following relaxed definition of used links
and routes in this optimal control model. For a link a on any route from origin
r to destination s, link a is being used at time ¢ if u}*(¢) > 0 and v}*(t) > 0.

Pri(t) = vr, s, p. (8.8)
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Furthermore, a route p between r and s is being used at time ¢ if ul*(¢) > 0
and v5*(¢) > 0 for all links a € rsp. We note that this definition only applies
to this instantaneous SDUO route choice model.

The instantaneous stochastic dynamic user-optimal (SDUO) route choice
problem is to determine vehicle flows at each instant of time on each link
resulting from drivers using perceived minimal-time routes under the currently
prevailing travel times. The instantaneous stochastic dynamic user-optimal
state i1s the following dynamic generalization of the conventional stochastic
static user-optimal (SUO) state.

Instantaneous SDUO State: If, for each O-D pair at each de-
cision node at each instant of time, the perceived instantaneous
travel times for all routes that are being used equal the minimal
perceived instantaneous route travel time, the dynamic traffic flow
over the network 8 in an instanianeous stochastic dynamic user-
optimal state.

This definition is the stochastic generalization of the one given in Chapter
5. It assumes that all drivers make their route choice decisions using their
perceptions of the current prevailing O-D travel times so that traffic flows are
more dispersed over alternative routes than the deterministic dynamic route
choice models.

As in deterministic instantaneous DUO route choice models in Chapter
5, we write the flow propagation constraints using estimates of the mean actual
link travel times. These link time estimates must be updated in an iterative
diagonalization solution procedure. Denote 7,4(t) as the estimated mean actual
travel time over link a for flows entering link @ at time ¢. Then, the flow
propagation constraints are as follows:

zip(t) = Y _{oiplt + Ta(t)] — 2y ()} + { B[t + 7a(t)] — B}* (1)}
bep

Va € p;p,r,s. (8.9)

Using optimal control theory, an equivalent optimization model of the
instantaneous stochastic dynamic user-optimal route choice problem is formu-
lated as follows.

T uq(t) va(t)
min . / Z / 91a[Za(t), w]dw + / 92a[24(t), w]dw
u,v,z,e, 0 0 0

a

[ZZZ“ (t)lnu ®)
Y3 S @ mv@)]| pdt (8.10)

rs p a¢B(s)
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s.t.
Relationship between state and control variables:

Ts

Zz
# = Z;(t) - ’U;;,(t) Vd,p, Ty 83

dE'(t) .,
T =% Vp,ris# 1

Flow conservation constraints:

o= Y up) Vr # s;s;

a€A(r) p
Z ’U;;(t) = Z u;;(t) Vispyry 83§ #£ 1y s
a€B(j) a€A(j)
SHOEE DRI A0) Vr,s # 1
a€B(s) p

Flow propagation constraints:

zop(t) = D (el + 7a(t)] — hp(6)} + {E}* [t + 7a(8)] — B (1)}

bep

Va € p;p, 1, s;

Definitional constraints:

) ula(t) = u' (), D ug'(t) = ua(t), Va;
St (e) = o (1), S0t (1) = valt) Va;
S 2t (1) = 2 (1), S 214 (t) = za(t), Va;

Yot =e"(t), DB () = B (), vr, s;

4

Nonnegativity conditions:

2op(t) 20,  ug(t) >0, v (t)>0 Va,p,rs;
ep’(t) >0, E*(t) >0, Vp,r,s;

Boundary conditions:

E2(0)=0, Vprs; Zep(0) =0,  Va,p,r,s;

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)

(8.16)

(8.17)

(8.18)

(8.19)

(8.20)

(8.21)

(8.22)

(8.23)
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where the expressions u(t)Inu(t) and v(t)lnv(t) are assigned the value zero
at u(t) = 0 and v(t) = 0, respectively. The first two terms of the objective
function are similar to the objective function of the well-known stochastic static
UO model. The third and fourth terms of the objective function are also similar
to the route flow entropy terms in the objective function of the stochastic UO
model. In the last term of the objective function, the entropy function applies
to all except the last link on every route between every O-D pair.

The first two constraints (8.11)-(8.12) are state equations for flows on
each link a and for the arrivals at destinations. Equations (8.13)-(8.15) are flow
conservation constraints at each node including origins and destinations. The
other constraints include flow propagation constraints, definitional constraints,
nonnegativity, and boundary conditions. In summary, the control variables
are ugs(t), vgy(t), €3’ (t); the state variables are z7’(t), E;*(t). We prove in
the next section that the optimal solution to the model is in an instantaneous
SDUO state.

Generally we assume the route choice dispersion parameter 8 to be non-
negative. As § — oo, the third and fourth terms in the objective function will
vanish and the solution will approach the deterministic instantaneous user-
optimal solution.

8.2.2 Optimality Conditions and Equivalence Analysis
Optimality Conditions
We construct the extended Hamiltonian as follows.

ua(t) va(t)
Z {/0 g1a[Ta(t), w]dw +/0 gza[fca(t),w]dw}

a

+ % ZZZUZ‘I’,(t)lnu @) - ZE Z ap(t) Invgy ()

rs p a¢B(s)

S mm ) - @]+ 3 Y ur@er )

H

rs ap T s#r p
+ S areirrm - Y Y une)
s r#s a€A(r) p
+ DY D MY vt - Y un®)]
T8 j#rs p a€B(j) a€A(j)
+ D N ol Y. Y i) - e (1)
Tos#r acB(s) P
+ NS ) mha) + Dz ) + B (1)

rs p a€p bep
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— el + ()] - Bt + 7a(t)]

bep

where A7 (t) are Lagrange multipliers associated with the link state equations,

vpt(t) are Lagrange multipliers associated with the destination node state equa-
tions, o7, (t) are Lagrange multipliers associated with the node flow conserva-
tion equatlons, and pf (t) are Lagrange multipliers associated with the flow
propagation equations. For each link a which points from node ! to node m,
the first order necessary conditions of the instantaneous SDUO route choice
program (8.10)-(8.23) include

OH Ao .
B0~ = g1a[2a(t), ua(t)] + = [1nu 2(8) + 1] + Apa(t) — o (t) > 0,
Va € A(),p, 7, s, (8.24)
and Ugp(t ) Va € A(l),p, 7, s; (8.25)
ura (t)
oM 1 ve e
—aUZ;’(t) = gZG[l‘a(t), va(t)] — 6 [ln ’Uap(t) + 1] /\ (t) + o' (t) >0,
Va € B(m),m # s;p,r, s, (8.26)
OH
o = 92a[Ta(t), va(t)] — Agp(t) + o (t) > 0,
avap(t) 2 [ ( ) ( ) p( )
Va € B(m),m = s;p, , s, (8.27)
and via (t) Bv{izi(t) 0 Va,p,r,s; . (8.28)
oH
>0, Vprs, (8.29)
der (t)
Ts aH
and €p (t)w =0 Vp,r,s; (8.30)
dAp(t) oH
P = v ; 8.31
dt axr;’(t) a,p, T, S5 ( )
dvi(t) OH
ot = Vp, 7 5; 8.32
dt aE;‘(t) p’ r’ 3’ ( )
Tap(t) 20, ugp(t) 20,  vi(t) 20, Va,p,r, s; (8.33)
e”(t) >0, E”(t) >0, Vp,r,s. (8.34)

Note that o75(t) = 07*(t) when node ! equals origin r.
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Equivalence Analysis

We now show that the set of link states, inflows and exit flows that solves this
program also satisfies the instantaneous stochastic dynamic user-optimal route
choice conditions. This equivalence is demonstrated below by proving that the
first order necessary conditions for optimal control program (8.10)-(8.23) are
identical to the instantaneous stochastic dynamic user-optimal route choice
conditions. The equivalence between the instantaneous SDUO route choice
conditions and the first order necessary conditions of the optimal control pro-
gram means that the instantaneous SDUO route choice conditions are satisfied
at the optimal solution of this program.

Combining equations (8.24)-(8.25) with equations (8.26)-(8.28), the fol-
lowing equations can be derived for each link a pointing from node ! to node
m.

oM oM
ura (t) vra (‘t)

=ca(t) —ofg (t) + opmp(t) + 5 [lnu (t) —Inv3(t)] >0,

Va € A(l) N B(m); p, 7, s; (8.35)
oM
dus () T v ()
ap ap

= calt) ~ o () + 07 (0) + 5 (M) +1] 2 0,

Va € A(l) N B(s); p, 7, s. (8.36)

where node m equals destination s so that oy;,(t) = 07’ (%).
Furthermore, if uf3(t) > 0 and v}}(t) > 0, by (8.24)-(8.28),

ca(t) = 33 (1) — o5ty (t) — 5 [In o () ~ oy (1)

Va € A(I) N B(m);p, 1, s; (8.37)
calt) = o3 (t) = o7 (1) = 5 [y () + 1]
Va € A(l) N B(s); p, 7, s. (8.38)

For route p between origin node r and destination node s, let ¢ denote
node r or any intermediate node on this route. Denote route p as a sequence of
nodes (7,1,2,---,n,s) and also as a sequence of links (1,2,---,k). The mean
instantaneous travel time ¢’ (¢) for the remaining route p between i and s is

'(/);;’ (t) = Z Ca[za(t), uu(t)’ va(t)] Vie p,r 8. (839)
a€isp

Consider a set of routes p which are from » — i — s and the corresponding set
of subroutes p. The flow conservation constraint at node ¢ can be revised as

> v = Y uin) Vi,p,rsi#ns  (8.40)

a€B(i) a€A(i)
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The fourth term in the Hamiltonian function should be revised as
NN oD D) v~ > um()
T8 ifrs P a€B(j) a€A(F)

so that of7(t) = o’(¢) for the set of subroutes p. Note that all derivations
from equatlon (8. 24) to equation (8.38) follow for this set of subroutes p.

Now if ug;(t) > 0 and vy, (t) > 0, route p is being used at time ¢. Thus,
by equations (8.37)-(8.38),

Yt) = [0]°(t) — o' ()] + [oT5(t) — oha(t)] + - -
+ [Un 1,p(t) —onp ()] + [0" (t) — 03" (t)]
- a[lnu;;;(t)—lnv;;;(t)] L ugs(t) - mogs) — -
_ %[111 W 15(8) — gy p(8)] - 5[111 ufh(t) + 1]
= o'() =07 (t) ~ plimufp(t) + 1 (8.41)

for every route p being used at time ¢. In equation (8.41), for any intermediate
node j between upstream link a and downstream link b,

Vap(t) = ups(t) (8.42)

Thus, in the second line of equation (8.41), all terms except In u7}(t) are can-
celed. Reorganizing equation (8.41), we have

u(t) = expl—8u (8)] expldof* (t) — 007" (1) — 1] (8.43)

Summing the above equation over all subroutes ¢,

E u13(t) = exp[fo]°(t) — 607* (t) — 1] Zexp[ 0 (t)] (8.44)
so that ve
25 uig(®)
>4 exp[—047 (t)]
Combining equations (8.43) and (8.45) for any subroute p of the set {¢},

explfol’(t) — 603 (t) — 1] = (8.45)

exp[—60y
ialt) = 2 i) = ‘2¢§f)<]t>] (849

where };uj (t) is the total flow entering the first links on subroutes § from
origin r arriving at node ¢ and departing toward destination s at each time
instant ¢; link 1 is the first link on subroute 5 from i to s.

Equation (8.46) holds for each remaining route p between i and s, where
i is any intermediate node (including the origin) between each O-D pair rs
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in the network. For route p connecting node 7 and destination s, flows for
each O-D pair are assigned according to the above logit function of measured
instantaneous route travel times.

When 8 — oo, the variance of the perceived instantaneous route travel
times is zero. Thus, by equations (8.7) and (8.41), we have

T () = ¢ () = oF*(t) — o7*(2) (8.47)

Since we assume u}’(t) > 0 and v}*(t) > 0, route p is being used by definition.
Thus, the routes which are being used at time ¢ have minimal instantaneous
travel times equal to [07?(t) — o7°(t)]. This is the case of deterministic instan-
taneous DUO route choice.

The deviations from the instantaneous DUO can be attributed to drivers’
ignorance of (or non-compliance with) current travel time information provided.
This is also a learning process. The value, § = 0, corresponds to total driver
ignorance (no compliance) in route travel times in which case either route is
equally probable. As drivers increase their compliance to the provided pre-
vailing travel time information at each decision node, the flow on the shortest
instantaneous travel time route will increase until an instantaneous DUO state
is attained.

We note that the above analysis applies to any two decision nodes ¢ and
Jj between r — s. Since the intermediate node ¢ could be the origin node r, the
above results also hold for routes from r to s. It follows that

exp[—6y;° (¢)]
2 g exp[—0v7* (1)]

With the above interpretation, it is now clear that equations (8.46) state the
instantaneous stochastic dynamic user-optimal route choice conditions.

fp' @) = up(8) = [ (2) (8.48)

8.3 Ideal SDUO Route Choice Model

The ideal stochastic dynamic user-optimal (SDUO) route choice problem is
to determine vehicle flows at each instant of time on each link resulting from
drivers using minimal perceived actual travel time routes. In the following,
we first discuss additional network flow constraints for the ideal SDUO route
choice model.

8.3.1 Constraints for Mean Actual Route Travel Times

Denote the cumulative number of departing vehicles from origin r to destination
5 over route p as a control variable F;’(t). We have

dE )
—'ét—— = f3°(t) Vp,r # s, s. (8.49)
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At the initial time t = 0,
F7*(0) =0, Vp,r,s. (8.50)
Denote the indicator parameters &g, as

5T — 1 if link a is on route p between O-D pair rs
ap 0 otherwise.

The flow conservation equations for origin r can be rewritten as

@)=Y &puim(®) Vp, 7, 8; (8.51)
a€A(r)
S5 =) Vr# s, (8.52)
14

The flow conservation equations for destination s can be rewritten as

e’ (t) = Z bap Vap(t) Vp,r, s; (8.53)
a€B(s)

D ent(t) =e™(t) Vr,s # 1. (8.54)

In the above equations, fp*(t), ug5(t), €5’ (t) and vj;(t) are all control variables.

For any route p, the cumulative number of vehicles departing from origin
r by time ¢ must equal the number of vehicles arriving at destination s over
route p by time ¢ + np*(t). It follows that

t t+0;°(t)
/ ' (W)dw = / ey’ (w)dw Vr, s, p; (8.55)
o [2]

or
FI*(t) = B[t +n5° (1)) Vr, s, p. (8.56)

The cumulative number of departing vehicles F*(¢) and the cumulative
number of arriving vehicles E7? (t) can be computed by using flow conservation
equations at origins and destinations. Thus, the mean actual route travel time
' (t) can be determined from the above equation, as shown in Figure 8.1.
Taking the derivatives of the above equation with respect to time ¢, it follows
that

e [t +ny" I+ 0p° ()] = f° (2) Vp, 7, s. (8.57)

The term 7} (t) is the rate of change of mean actual route travel time. When
My’ (t) = 0, the mean actual route travel time is constant. However, this con-
straint for departure/arrival flow rates is redundant, because it can be derived
using equation (8.56). This constraint is mentioned here so that the compar-
ison of the ideal SDUO route choice model with the deterministic ideal DUO
route choice model in Chapter 7 can be made in subsequent sections.
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Figure 8.1: Relation of F;*(t) and Ep*(t) to n3*(t)

8.3.2 Definition of Ideal SDUO and Logit-Based Route
Flow Constraints

For each origin-destination pair, there are many alternative efficient routes p,
each with some mean actual travel time for flow departing from each origin to
each destination at each time ¢. Due to variations in perception and exogenous
factors, actual route travel times are perceived differently by each traveler.
We assume the perceived actual route travel time to be a random variable for
each time instant f. Given his or her perception of actual route travel time at
each time instant ¢, each traveler is assumed to choose the route with minimal
perceived actual travel time. Let 27°(t) denote the perceived actual route travel
time for flows departing origin r toward destination s on route p at each time
t. Then, we assume that

00 () =m (1) + &°(t) Vr, s, p, (8.58)

where £7°(t) is a random error term associated with the route p under consid-
eration. Furthermore, assume that E[¢*(t)] = 0, i.e., E[Q°(t)] = np*(t). In
other words, the average perceived actual route travel time is the mean actual
route travel time. Based on a probability density function for the actual route
travel time at each time ¢, the ideal SDUO route choice problem is to determine
how many travelers will use each route at each origin node at each instant of
time. The share of travelers choosing route p at time t, P;*(t), is given by

Py*(t) = Pr(9Q,°(t) < Q3°(t), V routes ¢ between r and s] Vr,s,p. (8.59)

In other words, the probability that a given efficient route is chosen at time ¢ is
the probability that its actual route travel time is perceived to be the lowest of
all the alternative routes. Once the distribution of the perceived route travel
times is specified, the probability of selecting each alternative route can be
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calculated and the time-dependent route flow can be assigned as follows:
L' @t) = )P (t) Vr, s, p. (8.60)

In this section, we assume that

1
UW) =) - 5@ Vnsp, (8.61)

where 6 is a nonnegative parameter that scales the perceived actual route travel
time, and €;°(t) is a random error term associated with the route p under con-
sideration. We assume that €,’(t) are identically and independently distributed
(i.i.d.) Gumbel variates for each time instant. Other distributions of the per-
ceived actual route travel times will be discussed in subsequent studies. Fol-
lowing random utility theory, a logit route choice probability can be expressed

as

exp[—6n;° (t)]
3, exp[—6ny* (t)]
In this model, a route p between rs is defined as being used at time ¢ if i @) >
0. Thus, for each route p being used at time ¢, the logit-based stochastic route

flow is
e o exp[—0n;°(t)]
0 = O o

When § — oo, var[Q*(t)] — 0, and the perceived actual travel time
between O-D equals the mean actual travel time. In this case, travelers will
choose the minimal actual travel time route at each time instant, as in the
deterministic ideal DUO route choice model in Chapter 7. We then propose a
definition of the ideal SDUO state which is the stochastic generalization of our
previous deterministic ideal DUO state in Chapter 7.

Ppi(t) = vr, s, p. (8.62)

Vr, s, p. (8.63)

Ideal SDUO State: If, for each O-D pair at each instant of time,
the actual travel times perceived by travelers departing at the same
time over used routes are equal and minimal, the dynamic traffic
flow over the network is in an ideal stochastic dynamic user-optimal
state.

This definition represents another kind of perception of travel times by trav-
elers. The above definition can also be called as a predictive (or anticipatory)
SDUO since the mean actual route travel time is a predicted mean route travel
time. Because we assume a Gumbel distribution of the perception errors, the
equilibration of the perceived actual route travel times is ensured by the logit
route flow constraints (8.63). Furthermore, because the mean actual route
travel times 7y’ (t) can be determined by constraint conditions (8.56), the logit
route flow constraints (8.63) are placed in the model directly without showing
that the optimality conditions of the model are consistent with the ideal SDUO
route choice conditions. Further discussion of the logit route flow constraints
will be given later.
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8.3.3 Model Formulation

Using optimal control theory, an optimization program of the ideal stochastic
dynamic user-optimal route choice problem is formulated as follows.

uq(t)
Z {/0 91a[za(t), w]dw

a

T
min /
“1”13191E1.f1F;r 0
ve(t)
+ / 92a[2a(t),w]dw ¢ dt (8.64)
0
s.t.

Relationship between state and control variables:

1'8

dt - u (t) - v (t) V(l,p, LR H (865)
Fra(t)
—a = Vp,r £ 5,55 (8.66)
dE;*(t) ve
— =% @ Vp,r,s# 1 (8.67)
Flow conservation constraints:
=3 e un®) Vo1 # 5,53 (8.68)
acA(r)
Do vm®= Y un) Vi, pyry 55 # 153 (8.69)
a€B(j) a€A(§)
)= Y & via(®) Vp, s £ 7; (8.70)
a€B(s)

Logit route flow constraints:

T8 __ gTs xp[_en""a(t)]
Bt )= O om0

Constraints for mean actual route travel times:

Vr, s, p; (8.71)

Fo*(t) = Ep°[t + n’ (1)) Vr, s, p; (8.72)

Flow propagation constraints:

zon(t) = D _{ziplt + ra(t)] — hp(1)} + {E}°[t + 7a(t)] — B} (1)}

bep

Va € p;p, 7, s; (8.73)
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Definitional constraints:

D uis(t) = ug (), > unt(t) = ua(t), Va; (8.74)
) 4 TS

> i (t) = vi (1), D up () = va(?), Va; (8.75)

TS

D zia(t) =25t (t), >zt (t) = za(t), Va; (8.76)

Ee;a(t) — ™ (1), ZE;a(t) = E™(t), Vr, s; (8.77)
p

b4

Ef;’(t) = (1), ZF;’(t) = F™(t), vr, s; (8.78)

p 4

Nonnegativity conditions:
zep(t) 20,  ui(t) 20, v (t)>0 Va,prs; (8.79)

() >0, ()20, E(#)>0, F*'(t)>0, Vprs  (8.80)

Boundary conditions:
F,’(0)=0, E*(0)=0 Vpr,s; zi’(0)=0, Va,rs; (8.81)

In this program, the two terms of the objective function are similar to
the objective function of the well-known static user-optimal (UO) route choice
model. The first three constraints (8.65)-(8.67) are state equations for flows
on each link a, departures at origins, and arrivals at destinations. Equations
(8.68)-(8.70) are flow conservation constraints at each node including origins
and destinations. Equations (8.71) are logit route flow constraints which can
be explicitly written as constraints in the model because the mean actual travel
times 7°(t) are functionals and can be computed directly by equations (8.72).
In contrast to this ideal SDUO route choice model, the stochastic route flow
conditions in the instantaneous SDUO route choice model in Section 8.2 are
satisfied indirectly as optimality conditions and need not be written as con-
straints directly in the model. Equations (8.72) are constraints for mean actual
route travel times. The other constraints include flow propagation constraints,
definitional constraints, nonnegativity and boundary conditions.

In summary, in this program the control variables are upy(t), vy (2),
ep’(t), and f;*(t); the state variables are z3,(t), Ep’(t), and Fy*(t); and the
functionals are 7;°(t). Compared with the deterministic ideal DUO route choice
model in Chapter 7, stochastic route flow constraints (8.71) are added. Con-
straints (8.72) for the mean actual travel times replace similar constraints in
the deterministic model.
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8.3.4 Analysis of Dispersed Route Choice

Generally we assume § to be nonnegative. In the following we will show that
when # — oo, the solution approaches that of deterministic dynamic user-
optimal route choice model based on actual route travel times in Chapter 7.
Rewriting the logit-based route flow constraints (8.71), we have

O (1)
exp[—6n5* ()] 3, exp[~6n5: (1))

Vr, s, p. (8.82)

Now assume that there is another route ¢ from r to s which has flow f;*(t) at
each instant of time. Thus, it follows that

f;a (t) f” (t)
= vr, s, q. 8.83
SR T O]  Sop xP-0 T 0] (5:59)
Comparing the above two equations, we have
rs t T8 t
f' () fg () Vp,q,r,s. (8.84)

exp[—0 n5* ()] ~ exp[—6 mp* (1)]

Assume that flows f;*(¢) and f3°(t) are positive. Taking the logarithms of the
above equation, it follows that

In f7*() + 6 n," (t) = In fg*(t) + 6 mg’ (t) Vp.g,7,s. (8.85)

Dividing the above equation by 6, we have

1 1
g In f7°(t) + 3’ (t) = ] In £7°(t) + ng* () Vp,q,r,s. (8.86)

As 8 — oo, the first terms of both the left-hand-side and the right-hand-side
will approach zero. Thus, we have

mp (1) =15’ (2) Vp, g, 5. (8.87)

The above equation demonstrates that for any O-D pair rs, any route
carrying positive O-D departure flow has equal mean actual travel time. This
is one of the optimality conditions for the deterministic ideal dynamic user-
optimal route choice model in Chapter 7. Together with constraints (8.72) for
the mean actual route travel times, these constraints for the ideal SDUO route
choice model reduce to the corresponding optimality conditions for the deter-
ministic ideal DUO route choice model when # — co. Therefore we conclude
that the optimality conditions of model (8.64)-(8.81) state the required ideal
SDUO route choice conditions.
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8.4 Notes

We have formulated two stochastic dynamic route choice problems as equivalent
optimal control programs. The solutions of the optimal control models result
in dispersed dynamic route choice governed by a logit distribution incorporat-
ing both mean instantaneous route travel times and mean actual route travel
times. In stochastic dynamic route choice models, the O-D departure flows are
dispersed across different travel time routes so that stochastic dynamic mod-
els represent more realistic travel choice behavior than deterministic models.
This is one of the major merits of stochastic dynamic route choice models over
deterministic dynamic route choice models.

In reality, drivers may rely on current information or predictive infor-
mation to choose routes. Thus, drivers can be stratified into different groups.
In each group, drivers may have different compliance to current information or
future predictive information. In other words, a more realistic model could be
a combined instantaneous and ideal SDUO route choice model with multiple
groups of travelers.

We are investigating other SDUO route choice models based on different
types of distributions for travel time perception errors. However, realistic dis-
tributions of travel time perception errors should depend on real data collected
from IVHS operational tests such as the ADVANCE Project. Our models only
provide a theoretical approach toward a better understanding of stochastic
dynamic travel choices and travel time predictions.

It is expected that other SDUO route choice models based on different
types of distributions of travel time perception errors will be developed. Figure
8.2 describes how realistic SDUO route choice models might be developed.
Our future research also includes calibration of the route choice dispersion
parameters and development of more general models incorporating stochastic
mode and departure time choice. Using realistic link travel time functions in
Chapter 16, we plan to implement our models on larger networks.

Logit Model: Probit Model:

, Combined .

AN

DSUO Models with realistic distributions
of perception errors of route travel times
(non-closed form)

Figure 8.2: Toward Realistic SDUO Route Choice Models



Chapter 9

Solution Algorithms for
Stochastic Dynamic User-
Optimal Route Choice Models

Chapter 8 described two logit-type SDUO route choice models which are stochas-
tic generalizations of deterministic dynamic user-optimal route choice models
previously presented in Chapters 5 and 7. To solve these models for large
networks, we need to develop solution algorithms avoiding route enumeration.
Thus, the stochastic dynamic network algorithms in this chapter are link-based
procedures that avoid route enumeration and perform dynamic assignments us-
ing only link and node variables. Some new notation is presented in Section
9.1. In Sections 9.2 and 9.3, two multiple-route dynamic route choice algo-
rithms (DYNASTOCH) similar to Dial’s efficient-route algorithm (STOCH)
are suggested to solve two discrete-time flow-independent instantaneous and
ideal SDUO route choice models. Then, the discrete formulation of the flow-
dependent instantaneous SDUO route choice model is presented in Section
9.4 and a solution algorithm is presented to solve this model. In Section 9.5,
the discrete formulation of ideal SDUO route choice model is presented and a
solution algorithm is also proposed. In both solution algorithms for the flow-
dependent SDUO route choice models, the DYNASTOCH algorithms are used
to solve their subproblems so that explicit route enumeration can be avoided.
The method of successive averages (MSA) and other methods are suggested to
solve the one-dimensional search problems. Numerical examples are presented
in Section 9.6 to illustrate the solution of the proposed algorithms.

9.1 Some New Notation

Denote the minimal free flow travel time from node 7 to destination node s as
ot’. An efficient route from origin r to destination s is redefined to include
only links @ = (3, j) such that node j is closer to destination s than node i,
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i.e., oi* > 0J*. In the following, all route-related constraints are defined using
efficient routes. These routes need not be explicitly enumerated to solve our
models. In our solution algorithms in Sections 9.2 and 9.3, we show that these
routes can be implicitly generated.

To convert our continuous SDUO route choice problems into discrete
formulations, the time period [0, T is subdivided into K small time intervals.
Each time interval is a unit of time. Our notation is summarized as follows:

p,q = indexes for routes
zq(k) number of vehicles on link a at beginning of interval k& *

uq(k) = inflow rate into link a during interval k& *x
va(k) = exit flow rate from link a during interval k *x
fr*(k) = departure rate from origin r toward destination s
during interval k (given)
F™(k) = cumulative number of departing vehicles from origin r to
destination s at the beginning of interval k (given)
e’(k) = arrival rate at destination s from origin r during
interval k #x '
E™(k) = cumulative number of vehicles arriving at destination s
from origin r at the beginning of interval k *
7e(k) = mean actual travel time over link a for flows entering
link a during interval k
7s(k) = mean estimated actual travel time over link a for flows
entering link a during interval &
¢qo(k) = mean instantaneous travel time on link a during
interval k
7’(k) = mean instantaneous travel time on route p from r to s
during interval k
o™ (k) = minimal mean instantaneous travel times for flows
departing from origin r to node ¢ during interval k .
n,’(k) = mean actual travel time for flows departing from origin
r to destination s over route p during interval k
77(k) = minimal mean actual travel times for flows departing
from origin r toward node ¢ during interval k .
o!* = minimal free flow travel time from node i to destination s
6ap = 1,if link a is on route p from r to s; = 0, otherwise.
# = route choice dispersion parameter

* state variable
*% control variable

The mean instantaneous travel time 37’ (¢) for each route p from r to s
is defined as

;’(k) = Z ca[za(k), ua(k), va(k)] vr, s, p; (9.1)

a€rsp

where the summation is over all links a in route p from origin r to destination s.
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The minimal mean instantaneous route travel time ¢"* (k) = min {4;°(k)|p}.

Define ny*(k) as the mean actual travel time experienced over route p by
vehicles departing origin r toward destination s during time interval k. Once
the mean actual link travel time 74(t) is determined, the mean actual route
travel time 73’ (k) is computed using the following approach. Assume route p
consists of nodes (r,1,2,---,i— 1,4,--+,5). Denote n",‘(k) as the mean actual
travel time experienced over route p by vehicles departing origin r toward node
i during time interval k. Then, a recursive formula for mean actual route travel
time np* (k) is:

(k) = m (k) + ralk + D (k)] Vp,myisi= 1,2, -, 5
where link @ = (i — 1,%). The entering time on link a is rounded as follows:
FHmO Dk i i-05< k40 O(k) <it0.5,

where i is an integer and 0 < i < K. The impact of round-off errors on solutions
will be discussed in subsequent studies. The minimal mean actual route travel
time 7" (k) = min {n;*(k)|p}.

In the following, we first discuss flow-independent SDUO route choice
problems. In our general flow-dependent SDUO route choice problems, these
problems function as subproblems in the solution procedure.

9.2 An Algorithm for the Flow-Independent
Instantaneous SDUO Route Choice Model

We first discuss the flow-independent instantaneous SDUO route choice model
and its solution algorithm. The flow-independent instantaneous SDUO route
choice problem is to assign time-dependent vehicle flows between each O-D
pair based on a route choice probability calculated using the fixed instantaneous
route travel times for each time interval. We note that in this flow-independent
problem, the instantaneous link travel times c4(k) do not depend on the link
flow variables u,(k), vq(k) and z4(k).

The solution algorithm given here is similar to the algorithm proposed
by Dial (1971) for static flow-independent stochastic network assignment. Our
algorithm effectively implements a logit-type instantaneous route choice model
at the network level. It does not assign probabilities and flows to all routes
connecting each O-D pair. Instead, it is assumed that many of these routes
constitute unreasonable travel choices that would not be actually considered.
Consequently, our algorithm includes a preliminary phase which identifies the
set of efficient routes connecting each O-D pair. The O-D departure flows are
then assigned only to these routes during each time interval k, using the logit
formula based on fixed instantaneous route travel times.
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9.2.1 Statement of the Algorithm

The steps of this algorithm for one O-D pair rs are outlined below. These
steps should be repeated for each O-D pair in the network. In view of the
correspondence to Dial’s STOCH algorithm (1971), the following is called DY-
NASTOCH]1 algorithm to represent a dynamic version of STOCH algorithm
for the flow-independent instantaneous SDUO route choice problem.

Step 0: Initialization.
Compute the minimal instantaneous travel time o™ (k) from origin r to
all other nodes for vehicles departing origin r during time interval k.
Calculate the likelihood for each link a = (7, j) during time interval k:

oy f exp{0 [0 (k) — o™i (k) — ca(R)]}, if of > oi?
L) (k) = { 0, otherwise

In this expression, cq(k) is the mean instantaneous travel time on link
(3, 7) during time interval k.

Step 1: Backward Pass. '
By examining all nodes j in ascending sequence with respect to o7°(k),
calculate the weight for each link a = (%, j) during each time interval k:

L j)(k), if j = s (destination)
Wiiy(B) =19 Lijyk) X Wgm)(k), otherwise
(3,m)€EA(F)

When the origin r is reached, this step is completed.

Step 2: Forward Pass.
Consider all nodes i in descending sequence with respect to o**(k), start-
ing with origin r. When each node i is considered during each time
interval k, compute the inflow of link (¢, j) during each time interval k
using the following formula:

re N Wa (k) e s . .
fre (k) ) Vé(;,)m)(k)’ if i = r (origin)
(,m)EA()
Ui, (k) = I |
Z . U(n,i)(k) ;,J“E(i)m)(k), otherwise
(n,i)€B(3) et s

This step is implemented iteratively until destination s is reached. Note
that the sum in each denominator includes all links emanating from the
upstream node of the link under consideration. The sum of the exit flow
variables is taken over all links arriving at the upstream node of the link
under consideration.

The flow generated by this algorithm is equivalent to a logit-based flow-
independent route assignment between each O-D pair, given that only efficient
routes are considered. We next present a proof for this algorithm.
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9.2.2 Proof of the Algorithm

We now prove that the above algorithm does generate logit-based flow-independ-
ent instantaneous SDUO route choices between each O-D pair. We note that
each link likelihood L(; ;)(k), is proportional to the logit probability that link
a = (%, j) is used during interval k by a traveler chosen at random from among
the population of trip-makers between r and s, given that the traveler is de-
parting from origin » during interval k. The probability that a given route will
be used is proportional to the product of all the likelihoods of the links com-
prising this route. The probability of using route I between r and s, P/’ (k),
for vehicles departing r during interval k, is then

Prrk) = Gk) [T {Z6ak)} (9.2)

a€l

where G(k) is a proportionality constant for each time interval k and the prod-
uct is taken over all links in the network. The incidence variable 7] ensures
that P*(k) will include only those links in the Ith route between r and s.
Substituting the expression for the likelihood L; ;)(k) in the above equation,
the choice probability of choosing a particular efficient route becomes

Pr(k) = G(k) [Jexp {6 {0 (k) — o™ (k) —calk)} &3t} (9-3)

acl
= G(k) exp{GZ{a'f(k)-a"'(k)—c,,(k)} ;;} (9.4)
a€l
= G(k) exp {8 [0 (k) — ¥7*(k)]} (9.5)

The last equality results from the following summations:

S - R =0 W) =0T (W) ="E)  (09)

a€l

and

> ca(k) = ¥7* (k) (9.7)

a€l

Since
> Pre(k) = 1.0, (9.8)
q
the proportionality constant must equal

G(k) =

1
; exp {6 [o7* (k) — v (k)] } (9.9)
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Thus,

e exp{8 0™ () = o (B)])
R = 5 exp (0 ()~ 7 ] (810)

exp {—6 yj*(k)]}
; exp {8 y*(k)}

(9.11)

The above equation (9.11) depicts a logit model of route choice during each
time interval k among the efficient routes connecting O-D pair rs. Thus, the
algorithm does generate a logit-type route choice probability formula using
instantaneous route travel times.

The DYNASTOCH]1 algorithm does not require explicit route enumera-
tion. It does require the calculation of time-dependent minimal instantaneous
travel time routes for every O-D pair in the network during each time interval
k. In the following, we show that the forward pass of the algorithm will gener-
ate a time-dependent logit-based assignment. To do so, we only need to show
that the calculated link inflows are obtained in a manner consistent with the
expression in the forward pass. This is done by proving the algorithm diverts
trips from each node ¢ during each interval k according to appropriate condi-
tional link probabilities. A conditional link probability during interval k is the
probability that a trip between r and s will use a particular link a = (¢, §) dur-
ing interval k, given that it goes through the link’s tail node ¢. This probability
is stated as

Prob(;,j),,-(k) _ Prob(;,]-)(k) _ Prob(,-,j)(k)
Prob;(k) ~ Probj(k) ~ Y Probg (k)
1

PI‘Ob(,',]')“(k) = (912)

Denote P as an efficient route from r to s. The probability of using link
a = (1,7) during interval k is the summation of probabilities of using route P
during interval k, where link a = (3, j) is on route P. It follows that

Prob j)(k) = > Probp(k) (9.13)
P: (i,j) in P

It is useful to write (9.13) in a more elaborate form, so as to facilitate cancella-
tion of common factors in the numerator and denominator of equation (9.12).
To do so, an efficient route through link (7, j) can be partitioned into three sets
of links:

1. P; = {all links topologically preceding link (¢, j)};

2. link (¢,5) = {(s, ) };

3. P; = {all links topologically following link (¢, 5)}.
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Denote P; as the set of P; and P; as the set of Pj. Then

Z Probp(k) =
P: (i,j) In P
h(k) L j)(k) {Z II L(m,n)(k)} { > II L(m,n)(k)}(9-14)
PeP; (m,n) PeP; (m,n)

Equation (9.14) follows from the fact that all the efficient routes can be con-
structed by independently choosing a member from each of P; and P; and
putting link (¢, ) in between. Such combinations constitute efficient routes.
Substituting (9.13) and (9.14) into (9.12), it follows that

Prob; ;i(k)

h(k) L(i,j)(k){ > II L(mn)(k)}{ > I L(mn)(k)}

Pi(m,n) P; (m,n)

= h(k) La,n(k){ > 1 L(m,.)(k)}{ > 1 L(,,.,,,)(k)}

Pi (m,n) PeP; (m,n)

h(k) L(i,j)(k){ > I L(m n)(k)}{ > Il Lm, n)(k)}

Pi (m,n) P; (m,n)

€P;i (m,n) i (myn

L 5)(k) {IE I1 L(m,n)(k)}

3 (myn)

_ Wi (k)
Wein(k
;{L(i,z)(k){ | L(m,.)(k)}} ZI: Gy (k)

P; (myn)

(9.15)

By the link weights calculated in the Backward Pass (Step 1), the quotient in
Forward Pass (Step 2) is equal to the right-hand-side of equation (9.15). Thus,
we complete the proof that the diversion inflows are indeed those implied by the
probability defined in equation (9.2). Therefore, our algorithm does generate
a logit-type route flow assignment using instantaneous route travel times. The
proof is complete. We also note that the flow over each link should satisfy the
flow propagation constraints. For a detailed discussion of these constraints, we
refer readers to Chapter 4.
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9.3 An Algorithm for the Flow-Independent
Ideal SDUO Route Choice Model

We now discuss the flow-independent ideal SDUO route choice model and its
solution algorithm. The flow-independent ideal SDUOQ route choice problem is
to assign vehicle flows between each O-D pair based on a route choice probabil-
ity calculated using the given actual route travel times for each time interval.
We note that the ideal SDUO route choice problem is different from the in-
stantaneous SDUO route choice problem because it uses the actual route travel
times instead of instantaneous route travel times.

The solution algorithm given here is also similar to Dial’s algorithm for
static flow-independent stochastic network assignment. This algorithm effec-
tively implements a logit-type ideal dynamic route choice model at the network
level. As in the instantaneous model, it assigns probabilities and flows to effi-
cient routes connecting each O-D pair for each time interval. This algorithm
also includes a preliminary phase which identifies the set of efficient routes
connecting each O-D pair. The O-D departure flows are then assigned only
to these routes during each interval k, using the logit formula based on actual
route travel times. This algorithm is very similar to the algorithm presented in
Section 9.2 for the flow-independent instantaneous SDUO route choice model.
However, in this algorithm, all probabilities Prob(,-’j)h-(t) for assigning inflows
to link (7,j) are evaluated during time interval ¢ instead of time interval k.
Here, interval ¢ is the arrival time interval at node i. Thus, all derivations in
DYNASTOCH1 must be revised using time interval ¢ instead of time interval
k.

9.3.1 Statement of the Algorithm

The steps of this algorithm for one O-D pair rs are outlined below. These steps
must be repeated for each O-D pair in the network. Similar to the DYNAS-
TOCH]1 algorithm in Section 9.2, the following procedure is called the DYNAS-
TOCH?2 algorithm to represent its dynamic version for the flow-independent
ideal SDUO route choice problem.

Step 0: Initialization.
Compute the minimal actual travel time 77°(¢) from node j to destination
s for vehicles departing node j during interval ¢. Calculate the likelihood
for each link (%, j) during each interval ¢:

Lg(t) = exp{f [r**(t) — 7I*[t + 7a(t)] — 7a(t)]}, if 0f > 03?
G 0, otherwise

In this expression, 7,(¢) is the mean actual travel time on link e = (¢, j)
during time interval ¢.
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Step 1: Backward Pass. .
By examining all nodes j in ascending sequence with respect to #7*(t),
calculate the weight for each link a = (i, j) during each time interval ¢:

L (1), if j = s (destination)
Wii®) =19 Lejpt) ¥ Wymlt+7a(t)], otherwise
(jvm)EA(j)

When the origin » is reached, this step is completed.

Step 2: Forward Pass.
Consider all nodes 7 in descending sequence with respect to 7*(t), starting
with origin r. When each node ¢ is considered during each time interval ¢,
compute the inflow of link (%, j) during each interval ¢ using the following

formula:
uGi,j)(t) =
fre(t) > Wap(t) o if ¢ = r (origin)
(,)EA(%)
<

Wii,i)(®)
{ 3 v(,.,.-)(t)} ) ]W(i,l)(t) , otherwise
\

(n,9)€B() (,DEA()

This step is implemented iteratively until destination s is reached. Note
that the sum in the denominator includes all links emanating from the
upstream node of the link under consideration. The sum of the exit flow
variables is taken over all links arriving at the upstream node of the link
under consideration.

The flow generated by this algorithm is equivalent to a logit-based flow-
independent route assignment between each O-D pair, given that only reason-
able routes are considered. The proof for this algorithm is similar to that for
the instantaneous SDUO route choice model. In the following, we present a
proof for this algorithm.

9.3.2 Proof of the Algorithm

We now prove that the algorithm does generate logit-based flow-independent
ideal SDUO route choices between each O-D pair. We note that each link
likelihood L; j)(t), is proportional to the logit probability that link a = (%, )
is used during time interval ¢ by a traveler chosen at random from among the
population of trip-makers between r and s, given that the traveler is at node ¢
during interval t. The probability that a given route will be used is proportional
to the product of all the likelihoods of the links comprising this route. Suppose
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route ! consists of nodes (r,1,2,---,i—1,4,---,n,s) and links (1,2,---,h). The
probability of using route ! between r and s, P/*(k), for vehicles departing r
during interval & and arriving at node 7 during interval ¢, is then

Prk) = G [[{Zen®}" (9.16)

ael

where G(k) is a proportionality constant for each time interval ¥ and the prod-
uct is taken over all links in the network. Here, t = k + nJ*(k). The incidence
variable 67 ensures that P/*(k) will include only those links in the lth route
between r and s. Substituting the expression for the likelihood L(; j)(t) in the
above equation, the choice probability of choosing a particular efficient route
becomes

Pl (k)

G(k) Hexp {6 {7**(t) — T*[t + 14 (t)] — 7a(?)} §m} (9.17)

a€l

Il

G(k) exp {9 DA — [t + ()] - 7a(t)} 521‘} (9.18)
a€l
= G(k) exp {0 [r"*(k) — ni*(k)]} (9.19)

The last equality results from the following summations:

S - @l = k) - T+ (b))

a€l
+ 7k 4+ aft (k)] = 72 [k + 0 ? (k)]
+
+ 7k + " (k)] — 7 [k + n* (k)]
1"t (k) — 7 [k + nf* ()]
= (k) (9.20)
and
D ra(t) = (k) + o[k + qi (B)] + - - + [k + pf"(B)] = nj* (k) (9.21)
acl
Since
> Pr(k) = 1.0, (9.22)

q
the proportionality constant must equal

1
3 exp {8 [x7 (k) — ny* (k)] }

q

G(k) =

(9.23)
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Thus,
rorn_ exp {0 [r7(k) — nj* (k)]}
Pl(k) = §exp{o[1rn(k)—n;'(k)]} (524
exp {—6 n7*(k)]} (9.25)

> exp {-6 ny*(k)}

q9

Equation (9.25) depicts a logit model of route choice during each interval k
among the efficient routes connecting O-D pair rs. This algorithm does gener-
ate a route choice probability using actual route travel times.

The DYNASTOCH?2 algorithm does not require route enumeration. It
does require the calculation of time-dependent minimal actual travel time
routes for every O-D pair in the network during each time interval k. In the
following, we show that the forward pass of the algorithm will generate a time-
dependent logit-based route flow assignment. To do so, we only need to show
that the calculated link inflows are obtained in a manner consistent with the
expression in the forward pass. This is done by proving the algorithm diverts
trips from each node i during each time interval ¢ (arrival time interval at node
i) according to appropriate conditional link probabilities. A conditional link
probability during interval ¢ is the probability that a trip between r and s will
use a particular link @ = (¢, j) during interval ¢, given it goes through the link’s
tail node ¢ during interval ¢. This probability is stated as

Prob(,-,j),,-(t) _ Prob(,-,j)(t) _ Prob(,-,j)(t)

Prob j)ji(t) = Probi(t) ~ Probi(t) Y. Prob ;(?)
i

(9.26)

The probability of using link @ = (3, j) during interval ¢ is the summation
of probabilities of departure trips using route P at origin r during interval k,
where link a = (3, j) is on route P, given that the traveler reaches node i during
interval ¢ = k + nH (k). It follows that

Prob(; j)(t) = Z Probp(t) (9.27)
P: (i,j)in P

It is more useful to write (9.27) in a more elaborate form, so as to
facilitate cancellation of common factors in the numerator and denominator of
equation (9.26). To do so, an efficient route through link (i,j) can be partitioned
into three sets of links:

1. P; = {all links topologically preceding link (3, j)};
2. link (4,5) = {(,5)};

3. P; = {all links topologically following link (i, )}.
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Denote P; as the set of P; and P; as the set of P;. Then

Z Probp (t) =

P: (i,j) in P

h(2) L(-',j)(t){ > II L<m,n>(t'>} { > II L<m,n>(t">}(9-zs>

PEP: (myn) PeP; (m,n)

Note that t' + nn*(t') = t where t' < t, and ¢ + nii"(t) = t” where t" > t¢.
Equation (9.28) follows from the fact that all efficient routes can be constructed
by independently choosing a member from each of P; and P; and putting link
(3,7) in between, given that flows arrive at node i during interval ¢. Such
combinations constitute efficient routes. Substituting (9.27) and (9.28) into
(9.26), it follows that

Prob(;,j)li(t)

h(t) L(e,j)(t){ > II L(m n)(t)}{ > II Limmy(t )}

lm" G,mn

Elih(t) L(e,t)(t){ > I L(m n)(t)}{ > I L(m,n)(t”)}

Pi (m,n) €P; (m,n)

h(t) L(i,j)(t){ > II L(m n)(t')}{ > I L)@ )}

Pi (m,n) Pj (m,n)

h(t){ > I L(m,n)(t’)}E{L(;,z)(t){ > II L(,,,,,.)(t")}}
P 1 P

€P; (m,n) €P; (m,n)

L(«',j)(t){ > H L(m n)(t" )}

-7 m" W(‘y])(t)
= = (9.29)
Wi (t
E{L(e,r)(t){ Y I L(m,,,)a")}} & Ven)
! PEP; (mn

where the numerator of (9.29) is the definition of W(; j)(¢). By the link weights
calculated in the Backward Pass (Step 1), the quotient in Forward Pass (Step
2) is equal to the right-hand-side of equation (9.29). Thus, we complete the
proof that the diversion inflows are indeed those implied by the probabilities
defined in equation (9.16). We also note the flow over each link should satisfy
the flow propagation constraints.
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9.4 An Algorithm for the Instantaneous SDUO
Route Choice Model

9.4.1 A Discrete Time Instantaneous Model

To convert our instantaneous SDUO route choice problem into an NLP, the time
period [0, T is subdivided into K small time intervals. (The time intervals are
not necessarily equal.) To simplify the formulation, we modify the estimated
mean actual travel time on each link in the following way so that each estimated
mean travel time is equal to a multiple of the time interval.

Ta(k)=1 if ©-0.5<7,(k)<i+0.5,

where 7 is an integer and 0 < i < K.
The optimal control program presented in Chapter 8 can then be refor-
mulated as a discrete time NLP as follows:

uq(k) v, (k)
u,zr;flzl,rel,E Z Z {/ 91a[a(k), w]dw + /(; 92a[za(k), w]dw

k=1 a

+ g[ZZZu (k) In uf3 (k)
= 353N (k) (k)]} (9.30)

Ts p a¢B(s)

s.t.
Relationship between state and control variables:

zos(k+1) = (k) + ugy (k) — vgp (k)  Va,p,ry,s3k=1,--4,K;  (9.31)

E*(k+1)=E"(k)+ Y > via(k) Vrsk=1,---,K;  (9.32)
a€B(s) P

Flow conservation constraints:

> D uln(k) = f(k) Vrsik =10, K; (9.33)

a€A(r) P
dooupk)y— Y up(k)y=0 Viprsj#Ensk=1,--,K; (9.34)
a€B(j) a€A(f)

Flow propagation constraints:

zip(k) = Y _{ziplk + 7a(k)] - bp ()} + {Bp* [k + 7a(k)] — E;* (k)}

bep
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VaeB(j)§j¢r;P,ra3;k=1,“‘,K+1§ (935)

Definitional constraints:

Soupk) = ult(k), Y ul(k)=uuk), Vak=1,--,K; (9.36)
Zv;;(k) = v;‘(k), Zv;"(k) = va(k), Va; k=1,--.,K; (9_37)

P
Zm;;,(k) =z’ (k), Zm;’(k) = zq4(k), Va;k=1,---,K +1; (9.38)
y 4 rs

SEPR+)=E*(k+1), Vrsk=1--K (939
p

Nonnegativity conditions:
Top(k+1) >0, ug (k) >0, vy (k)>0, Va,p,r,s;k=1,---,K; (9.40)

E;'(k+1) >0, Vp,r,s5k=1,..-, K; (9.41)

Boundary conditions:

EF(1)=0 Vp,r,s; Zop(1) =0, Va,p,r,s. (9.42)

9.4.2 Solution Algorithm

Since the objective function involves route flow variables u;, (k) and vg;(k), the
objective function cannot be computed using link flow variables after solving
the subproblem. Thus, as for stochastic static route choice models, the method
of successive averages (MSA) (Powell and Sheffi, 1982) is suggested to solve
the one-dimensional search problem. Other one-dimensional search methods
suggested by Chen and Alfa (1991) for stochastic static route choice models
can also be used.

As discussed in Chapter 8, the first-order necessary conditions of the con-
tinuous time model fit a logit-type instantaneous route choice model. This flow-
independent subproblem can be efficiently solved using the DYNASTOCH1
algorithm discussed in Section 9.1 without route enumeration. We note that
the DYNASTOCH]1 algorithm is much different from Dial’s STOCH algorithm
in that DYNASTOCH]1 has to be implemented on an expanded time-space
network presented in Chapter 6 and the flow propagation constraints ensure
the flow progression over links. In the following algorithm, the inner iteration
involves direction finding and flow variable updates; and the outer iteration
involves updating estimates of actual link travel time 7,(k) in the flow propa-
gation constraints. The flowchart of the algorithm for solving our instantaneous
SDUO route choice model is shown in Figure 9.1 and the algorithm is summa-
rized as follows:
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Step 0: Initialization.
Find an initial feasible solution {z{"(k)}, {u{"(k)}, {v{"(k)}, {ED(k)}.
Set the outer iteration counter m = 1.

Step 1: Diagonalization. (Outer Iteration.)

Find a new estimate of the actual link travel time i'ém)(k) for the flow
propagation constraint and solve the flow-dependent instantaneous SDUO
route choice program as follows. Set the inner iteration counter n = 1.

[Step 1.1]: Update. Calculate the link travel time functions using the
temporarily fixed link flow variables.

[Step 1.2]: Direction Finding. Implement the DYNASTOCH]1 algo-
rithm for the logit-based dynamic route flows based on the temporarily
fixed instantaneous link travel time and find an auxiliary set of link flow
variables.

[Step 1.3]: Move. Use the step size a(® = 1/(n + 1) generated
by MSA to find a new solution by combining current solution {u4(k)},

{va(k)}, {za(k)}, {E7*(k)} and previous solution {pa(k)}, {¢a(k)}, {ya(k)},
{E™(k)} as follows.

u{D(k) = u{M(E) + [ (k) - wD (k)/(n + 1)
oD (k) = o (k) + [6fV (k) — oV (B)/(n + 1)
2 D(k) = 2(M(k) + [1 (k) — 2 (k)]/(n + 1)

EQHI(k) = B (k) + [BES)(k) — B (R))/(n + 1)

[Step 1.4]: Convergence Test for Inner Iterations. If n equals a pre-
specified number, go to step 2; otherwise, set n = n + 1 and go to step
1.1,

Step 2: Convergence Test for Outer Iterations.
If 7™ (k) ~ 7™*(k), stop. The current solution, {uq(k)}, {va(k)},
{za(k)}, {E™(k)}, is in a near instantaneous SDUO state; otherwise, set
m=m-+1 and go to step 1.

According to Powell and Sheffi (1982), the inner iteration procedure will
converge. Since the convergence of outer iteration (diagonalization) is also ro-
bust (Florian and Spiess, 1982), we expect that our algorithm will converge
to our desired instantaneous SDUO route choice solutions. In order to speed
up convergence, an incremental assignment technique is suggested for finding a
good starting solution before the diagonalization procedure. Since the subprob-
lem can be decomposed by each artificial origin-destination pair, this problem
is also a good candidate for solution with parallel computing techniques.
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(Initialize TLk) )

Inner Iterations:

Solve Flow-Independent Instantaneous SDUO
Route Choice Problem Using DYNASTOCH1
Algorithm and Find Step Size Using MSA.

T (k)

Outer Iterations:
Diagonalization Convergence?

[Ta(k)]

Figure 9.1: Flowchart of the Instantaneous Solution Algorithm

9.5 An Algorithm for the Ideal SDUO Route
Choice Model

9.5.1 A Discrete Time Ideal Model

As before, we modify the estimated mean actual travel time on each link in the
following way so that each estimated mean travel time is equal to a multiple of
the time increment.

a(k) =14 if i—0.5<7,(k)<i+0.5,

where ¢ is an integer and 0 < ¢ < K. We note that the above approximation is
for flow propagation constraints only. It does not apply to the computation of
route travel times.

The optimal control program presented in Chapter 8 can then be refor-
mulated as a discrete time NLP as follows:

K uq (k)
o R D { /0 g1a[za(k), w)dw

k=1 a

va (k)
+ /(; J2a [:ca(k),w]dw} (9.43)
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s.t.
Relationship between state and control variables:

Tap(k +1) = 2o (k) + ugy (k) —vgp(k)  Ve,p,rs5k=1,---,K; (9.44)

F'(k+1)=F*(k) + fp* (k)  Vrs,pk=1,--+,K; (9.45)
Ep(k+1)=E(k)+e,’(k)  Vrs,pk=1,--,K; (9.46)
Flow conservation constraints:
frre)y= Y emus(k)  Vprsk=1,--, K; (9.47)
a€A(r)

Z Vap (k) — Z ugp(k) =0 Vj,p,rs55# rsik=1,---,K; (9.48)

a€B(j) a€A(j)

(k)= D Spvia(k) Vprs#Erk=1,--,K; (9.49)
a€B(s)
Logit route flow constraints:
exp[—67;° (k)]
5, expl—bmy (k)]

Constraints for mean actual route travel times:

f;a(k) = fr‘(k) VT’,S,p; k= L., K; (9‘50)

Fro(k) = EP[k+ (k)] Vros,pk=1,--, K; (9.51)

Flow propagation constraints:

zip (k) = Y _{ehplk + 7a(k)] = 25 (R)} + {Ep* [k + 7a (k)] — E}* (k)}

bep

Va € B(j)ij# riprysik=1,--,K+1;  (9.52)

Definitional constraints:

Zu k)= ul'(k), Y ul(k)=ue(k), Vajk=1,--,K; (9.53)
Z ap(k) = vg’ (), Zv;’(k) =vg(k), Vajk=1,---,K; (9.54)
Z:c (k) =2i'(k), > _ai*(k)=a(k), Vak=1,---,K+1; (9.55)

SRy =), OB (k)= EU(R), Vrsk=1, K41 (9.56)
14 14
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S ER) = ), SE (k)= FU®E), Yrsk=1,-, K+ (9.57)
y4 y4

Nonnegativity conditions:
eop(k+1) >0, ug(k) >0, vy, (k)>0, Va,p,rsk=1---,K; (9.58)

ey’ (k) >0, fp°(k) >0, Ef(k+1)>0, F*(k+1)>0,
Vp,r,s5k=1,---,K; (9.59)

Boundary conditions:
E;*(1) =0, F,’(1) =0, Vp,r,s; zop(1) =0, Va,p,r,s. (9.60)

Since the objective function can be evaluated using link flow variables uq(k),
ve(k) and z,(k), the objective function can be computed after solving the
subproblem. Thus, traditional one-dimensional search methods such as the
bisection method can be used.

The nonlinear route flow constraints (9.51) may not hold strictly as
equalities because of cumulative round-off errors of link flow variables over
routes after time discretization. In the inner iteration of the following algo-
rithm, the logit-type assignment constraints (9.50) and nonlinear route flow
constraints (9.51) are automatically satisfied by implementing the DYNAS-
TOCH?2 algorithm. Since the flow propagation constraints are temporarily
fixed in each outer iteration (diagonalization), the remaining constraints are
the logit-type assignment constraints (9.50), route flow constraints (9.51), flow
conservation constraints and nonnegativity. Thus, the DYNASTOCH?2 algo-
rithm can be used to solve the subproblem within each outer iteration. In the
outer iterations, the estimates of actual link travel times in the flow propagation
constraints are updated iteratively.

9.5.2 Solution Algorithm

The flowchart of a heuristic algorithm for solving our ideal SDUO route choice
model is shown in Figure 9.2; the algorithm is summarized as follows.

Step 0: Initialization.
Find an initial feasible solution {x,(,l)(k)}, {u((,l)(k)}, {v,(,l)(k)}, {EM(k)}.
Set the outer iteration counter m = 1.

Step 1: Diagonalization. (Outer Iteration)
Find a new estimate of actual link travel time rﬁm)(k) for the flow propa-
gation constraints and solve the flow-dependent ideal SDUO route choice
program as follows. Set the inner iteration counter n = 1.

[Step 1.1]: Update. Calculate the link travel time functions using the
temporarily fixed link flow variables.
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[Step 1.2): Direction Finding. Implement the DYNASTOCH? algo-
rithm for the logit-based dynamic route flows based on the temporarily
fixed actual link travel time and find an auxiliary set of link flow variables.

[Step 1.3]: Line Search. Find the optimal step size (™) that solves
the one dimensional search problem using the bisection method.

[Step 1.4]: Move. Find a new solution by combining current solu-
tion {ua(k)}, {va(k)}, {za(k)}, {E™*(k)} and previous solution {ps(k)},
{ga(F)}, {va(R)}, {E™*(K)}.

[Step 1.5): Convergence Test for Inner Ierations. If n equals a pre-
specified number, go to step 2; otherwise, set n = n + 1 and go to step
1.1,

Step 2: Convergence Test for Outer Iterations.
If 7{™ (k) ~ 7{™*(k), stop. The current solution, {us(k)}, {va(k)},
{za(k)}, {E™(k)}, is in a near ideal SDUO state; otherwise, set m = m+1
and go to step 1.

In order to speed up convergence, the incremental assignment technique is
also suggested for finding a good starting solution before the diagonalization
procedure.

( Initialize T k) )

Inner Iterations:

Solve Flow-Independent Ideal SDUO Route
Choice Problem Using DYNASTOCH?2 Algorithm
and Find Step Size Using Bisection Method.

Outer Iterations:
Diagonalization Convergence?

[T(k)]

Figure 9.2: Flowchart of the Ideal Solution Algorithm
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9.6 Numerical Examples

We illustrate the solutions of both SDUO route choice models with the 4-link,
4-node test network shown in Figure 9.3. Time period [0, T is subdivided into
K = 8 small time intervals. The algorithms were coded in FORTRAN and
solved on a IBM 3090-300J.

o
(U 0o
®

Figure 9.3: Test Network

The following link travel time functions were used in the computations:
Ca(k) = Ta(k) = gla(k) + gZa(k)

91a(k) = Bra + Baaltia(k)]? + Baa[za(k)]?

gZa(k) = ﬂ4a + ﬂfm[va(k)]2 + ,360[xa("7)]2

where time interval k¥ = 1,2,--.,8. The same trip table for both models is
given in Table 9.1. The parameters for each link travel time function for the
two models are given in Tables 9.2 and 9.3, respectively. The route choice
dispersion parameter 6 is given as 1 for both models. The optimal link flows
and the corresponding optimal link travel times for the two models are given
in Tables 9.4 and 9.6, respectively. The optimal route travel times for the
two models are given in Tables 9.5 and 9.7, respectively. In this discrete time
example, z4(k) represents vehicles on the link at the beginning of interval k;
uq(k) and ve(k) represent inflow and exit flow during interval k.

Table 9.1: Required Flows from Origin 1 to Destination 4

Time Interval k 1 21341516 |7
Flow/interval | 40.[0.[0.]0.][0.[0.]0.]O0.

oo

In this example, note from Table 9.5 and 9.7 that the mean instantaneous travel
times and mean future travel times on routes 1-2-4 and 1-3-4 are not equal
during each interval. These travel times are a property of the logit-type route
flows in each interval.
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Table 9.2: Parameters of Link Travel Time Functions for Instantaneous Model

link a | Bia B2a B3a | Paa Bsa Bsa

1—2 1. 0.001}| O. 0. | 0.015 | 0.002
1—3 2. 0.006 | 0. 0. | 0.030 | 0.004
2—4 1. | 0.001 ] O. 0. 0.015 | 0.002
3—4 1. | 0.006 | 0. 0. | 0.030 | 0.004

Table 9.3: Parameters of Link Travel Time Functions for Ideal Model

link a | Bia B2a B3a | Paa Bsa Bea
1—2 1. 0.001 | o. 0. 0.015 | 0.002
1—3 2. 0.001 | O. 0. 0.015 | 0.002
2—4 1. 0.001 | o. 0. 0.015 | 0.002
3—4 1. [ 0.001 | O. 0. 0.015 | 0.002

9.7 Notes

Stochastic route choice models and solution algorithms have been studied ex-
tensively under the assumption of static traffic conditions. Dial (1971) pre-
sented the STOCH method to perform a logit-based, flow-independent stochas-
tic traffic assignment. Daganzo and Shefli (1977) presented a probit-based
stochastic user-optimal route choice model. Subsequently, a Monte Carlo sim-
ulation approach to solving this problem were presented by Sheffi and Powell
(1982). Fisk (1980) proposed a stochastic user-optimal (SUO) route choice
model based on logit-type route flow method. The method of successive av-
erages (MSA) was suggested to solve this model (Sheffi, 1985). Recently, two
improved algorithms were proposed by Chen and Alfa (1991) for solving the
logit-type SUO route choice model. Their algorithms use information in the
objective function to speed up the convergence of the one-dimensional search.

In this chapter, we have suggested algorithms for solving two stochastic
dynamic route choice problems. The solutions of the models result in dispersed
dynamic route choice governed by a logit distribution incorporating both mean
instantaneous route travel times and mean actual route travel times. Two
DYNASTOCH algorithms were proposed to solve the subproblems of the two
SDUO route choice models. The DYNASTOCH algorithms are implemented
using link flow variables so that explicit route enumeration can be avoided. The
algorithms are implemented over an expanded time-space network which en-
ables our previously developed solution techniques for dynamic network models
to be fully used. Future research also includes developing other efficient solu-
tion algorithms and calibration of the route choice dispersion parameters for
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Table 9.4: Optimal Link Flows and Travel Times for Instantaneous Model

Interval | Link Vehicles | Inflow | Exit Flow | Vehicles | Travel Time
k a zq(k+1) | uq(k) vq (k) zq(k) | ca(k)&era(k)
1 1—2 28.8 28.8 0.0 0.0 1.83
2 1—2 25.1 0.0 3.6 10.8 2.85
3 1—2 14.3 0.0 10.8 25.1 4.02
4 1—2 0.0 0.0 14.3 14.3 4.49
1 1—3 11.2 11.2 0.0 0.0 2.76
2 1—3 11.2 0.0 0.0 11.2 2.50
3 1—3 2.3 0.0 8.9 2.3 2.18
4 1—3 0.0 0.0 2.3 0.0 2.00
1 2—4 0.0 0.0 0.0 0.0 1.00
2 2—4 3.6 3.6 0.0 0.0 1.01
3 2—4 10.8 10.8 3.6 3.6 1.34
4 2—4 21.5 14.3 3.6 10.8 1.64
5 2—4 14.3 0.0 7.2 21.5 2.70
6 2—4 14.3 0.0 0.0 14.3 1.41
7 2—4 5.9 0.0 8.4 14.3 2.47
8 2—4 0.0 0.0 5.9 5.9 1.60
1 3—4 0.0 0.0 0.0 0.0 1.00
2 3—4 0.0 0.0 0.0 0.0 1.00
3 3—4 8.9 8.9 0.0 0.0 1.48
4 3—4 8.5 2.3 2.7 8.9 1.57
5 3—4 2.3 0.0 6.2 8.5 2.46
6 3—4 2.1 0.0 0.2 2.3 1.02
7 3—4 0.0 0.0 2.1 2.1 1.15

Table 9.5: Instantaneous Route Travel Times

Interval | Mean Instantaneous Route Travel Times
k Route 1-2-4 Route 1-3-4
1 2.83 3.76
2 3.86 3.50
3 5.36 3.66
4 6.13 3.57
5 3.70 4.46
6 2.41 3.02
7 3.47 3.15
8 2.60 3.0
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Table 9.6: Optimal Link Flows and Travel Times for Ideal Model

Interval | Link Vehicles | Inflow | Exit Flow | Vehicles | Travel Time
k a zq(k+1) | uq(k) vq (k) zq(k) | ca(k)&ra(k)
1 1—2 24.5 24.5 0.0 0.0 1.60
2 1—2 21.5 0.0 3.0 24.5 2.33
3 1—2 5.5 0.0 16.0 21.5 5.77
4 1—2 0.0 0.0 5.5 5.5 1.52
1 1—3 15.5 15.5 0.0 0.0 2.24
2 1—3 15.5 0.0 0.0 15.5 2.48
3 1—3 0.0 0.0 15.5 15.5 6.08
4 1—3 0.0 0.0 0.0 0.0 2.00
1 2—4 0.0 0.0 0.0 0.0 1.00
2 2—4 3.0 3.0 0.0 0.0 1.01
3 2—4 16.0 16.0 3.0 3.0 1.41
4 2—4 18.6 5.5 2.9 16.0 1.67
5 2—4 5.5 0.0 13.1 18.6 4.26
6 2—4 5.5 0.0 0.0 5.5 1.06
7 2—4 ) 0.0 0.0 5.5 5.5 1.52
1 3—4 0.0 0.0 0.0 0.0 +1.00
2 3—14 0.0 0.0 0.0 0.0 1.00
3 3—4 15.5 15.5 0.0 0.0 1.24
4 3—14 12.6 0.0 2.9 15.5 1.60
5 3—4 0.0 0.0 12.6 12.6 3.70

Table 9.7: Ideal Route Travel Times

Interval | Mean Actual Route Travel Times

k Route 1-2-4 Route 1-3-4
1 3.01 3.48
2 6.59 4.08
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logit SDUO route choice models. Using realistic link travel time functions, we
will implement our models and solution algorithms on larger networks.

We are investigating other SDUO route choice models based on different
types of distributions of travel time perception errors. A straightforward ex-
tension is the dynamic generalization of probit route choice models. However,
more realistic distributions of travel time perception errors than the normal
distribution should be considered, such as the Gamma distribution. This issue
provides a challenge to both mathematical modeling and estimation of param-
eters of the distribution of perception errors from data.



Chapter 10

Combined Departure Time/
Route Choice Models

A dynamic route guidance system seeks to improve the utilization of trans-
portation network capacity and reduce travel times, congestion and the effect
of incidents. Provided with early detection of incidents and congestion, users of
the system will be able to choose alternative routes, if there is excess capacity
in the network, or shift their departure times to avoid congestion when no road
capacity is available.

Journey-to-work travelers have especially important requirements for
avoiding congested routes in order to arrive at work on time. Each depar-
ture time choice is based on minimal origin-destination travel times at each
possible departure time. Of course, any change in departure times will alter
the traffic flow patterns in the network so that route and departure time deci-
sions of other travelers will be affected. -

The choice of departure time has been addressed by several researchers,
including Abkowitz (1981) and Hendrickson and Plank (1984), who developed
work trip scheduling models. De Palma et al (1983) and Ben-Akiva et al (1984)
modeled departure time choice over a simple network with one bottleneck us-
ing the general continuous logit model. Mahmassani and Herman (1984) used
a traffic flow model to derive the equilibrium joint departure time and route
choice pattern over a parallel route network. Mahmassani and Chang (1987)
further developed the concept of equilibrium departure time choice and pre-
sented the boundedly-rational user-equilibrium concept under which all drivers
in the system are satisfied with their current travel choices, and thus feel no
need to improve their outcome by changing decisions. More recently, several
departure time choice models have been proposed by various researchers using
different approaches on dynamic traffic networks. Janson (1993) formulated a
dynamic user-equilibrium route choice model in which O-D flows have variable
departure times and scheduled arrival times. Friesz et al (1993) presented a
joint departure time and route choice model using the variational inequality ap-
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proach. Ghali and Smith (1993) also considered this problem using microscopic
representation of vehicle streams.

In this chapter, we present a dynamic, user-optimal departure time and
route choice model for a general network with multiple origin-destination pairs.
‘We model this choice problem by specifying that a given number of travelers are
ready for departure between each origin-destination pair at time 0. However,
their departure times may be delayed to reduce their overall travel costs. This
model extends our initial DUO route choice model in one important respect:
both departure time and route over a road network must be chosen. Our
model is formulated as a bilevel optimal control problem. The lower-level model
represents the DUO departure time choice problem, and the upper-level model
represents the DUO route choice problem.

Additional network constraints are presented in Section 10.1 and the
bilevel model is formulated in Section 10.2. In Section 10.3, the equivalence
of its optimality conditions with the desired DUO departure time/route choice
conditions is demonstrated. The properties of the model are also discussed. In
Section 10.4, we suggest a heuristic algorithm for solving the bilevel program
and then give a numerical example to illustrate that total travel time can be
decreased by choosing appropriate departure times.

10.1 Additional Network Constraints

We consider the following joint departure time and route choice situation: a
given number of vehicles are scheduled to depart from each origin r to each
destination s at an initial time 0. Denote the cumulative number of departing
vehicles from origin r to destination s from time 0 to ¢ as the state variable
F72(t). In this problem, the total number of departing vehicles F"*(T') for each
O-D pair (r,s) is assumed to be given. Also, F;*(t) denotes the cumulative
number of departing vehicles from origin r toward destination s along route p
by time ¢.

In addition, denote the instantaneous departure rate from origin node r
toward destination node s at time t as f*(t), which is a function of time; f*(t)
denotes the departure rate on route p and f;°(t) and f™*(¢) are control variables
to be determined according to the actual travel time between the origin and
the destination. Then, we have an additional state equation for each origin r

dF3e(t) .
flt = fp'(t) Vp,r # s,s. (10.1)
Also, at initial time ¢ = 0,
F,*(0) =0, Vp,r,s. (10.2)

Assume that there are P routes from origin r to destination s (these can
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be generated as needed). Denote the indicator parameters §;; as

5 — 1 iflink a is on route p between O-D pair (r, s)
ap 0 otherwise.

Flow conservation at origin node r relates the departure rates (f"*(t) and
f3°(t)) to the flow entering each link emanating from the origin. These flow
conservation equations for origin r can be expressed as

fre)= 3 Spug() Vp,r, 87 # 8 (10.3)
a€A(r)
DKW =fr0) Vr,s;r # s. (10.4)
p

Denote the cumulative number of vehicles arriving at destination s from
origin r by time ¢ as the state variable E™*(t); E;*(t) denotes the cumulative
number of vehicles arriving at destination s from origin r along route p by time
t. Denote the instantaneous flows arriving at destination node s from origin
node r at time t as e"*(t), which is also a control variable. The control variable
€;’(t) denotes the arrival rate on route p. Thus, we have an additional state
equation for each destination s

dET (¢
;t( ) =e’(t) Vp,r,s # r. (10.5)

At the initial time t = 0,

E(0)=0 Vp,r,s. (10.6)
These variables must be nonnegative at all times:
E’() >0, F,'(t) >0, €’(t)>0, f,°(t)>0, Vp,r,s. (10.7)

Flow conservation at destination node s relates the arriving flow (e™(t)
and e;’(t)) to the flow exiting each link leading to destination s at time t.
Thus, the flow conservation equations for destination s can be expressed as

eft)= D> vt Vp,r,8;5 # r; (10.8)
a€B(s)
Do) =€) Vr,s;s # 1. (10.9)
p

10.2 Formulation of the Bilevel Program

A number of vehicles are ready to depart at the initial time 0, but these drivers
may prefer to delay their departure times in order to reduce their driving time.
Drivers are assumed to make their departure time choices so as to minimize
their individual disutility functions defined on travel time and pre-trip delay.
The criteria for choosing each departure time consist of:
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1. the waiting time before departure;
2. the actual travel time between the origin and destination;
3. a bonus for early arrival or a penalty for late arrival.

Of course, the change of departure flow rates will affect the traffic on the
network so that the travel times for other travelers could change.

In reality, drivers’ choices of departure time and route are interrelated
decisions. Given a desired arrival time, say at the workplace, choice of departure
time depends on the driver’s estimate of en route travel time. Likewise, choice
of route depends on the travel times of alternative routes, which also may vary
by time of day. In the formulation presented here, these choices are represented
as a bilevel optimal control problem, which is equivalent to a dynamic leader-
follower game (Cruz, 1978).

The dynamic route choice problem is formulated as a single optimal
control problem. In the equivalent dynamic game, this formulation corresponds
to a single controller allocating fixed departure flows at each time ¢ to user-
optimal routes, given the departure frequencies. We define this controller to
be the leader of the game.

For each origin-destination (O-D) pair, a departure time coordinator de-
termines the departing flows at each time ¢. These departure coordinators are
defined as the followers of the game, and are represented by n(n — 1) O-D-
specific optimal control problems to which the user-optimal travel time at time
t is exogenous. Since these problems are independent by O-D pair, n(n — 1)
separate problems can be used to represent all O-D pairs. See Figure 10.1.

gpper é;vgl: Allocate given departure flows to routes such
oute Choice that all used routes have equal travel times.
Controller:

where the departure flows are given by:

Lower Level:
Departure Time
Coordinator

for O-D Pairrs:

Allocate departure flows from 7 to s, given O-D
travel times, to minimize a weighted sum of
waiting and travel times and arrival penalty.

Figure 10.1: Bilevel Choice Program Formulation

Our formulation assumes that the route choice controller, who is respon-
sible for allocating all O-D flows to routes, knows the objective of each depar-
ture coordinator. Through this knowledge, the route choice coordinator is able
to achieve a lower value of his/her objective function than if the departure time
objectives were unknown. In contrast, the departure time coordinators know
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only the O-D travel times at time ¢ provided to them. Knowledge of the route
choice objective is not needed for their coordination task.

It is worth noting that the opposite formulation can also be examined
— departure time choice at the upper level, represented by a single controller,
and route choice at the lower level. However, our model which chooses equilib-
rium routes subject to the requirement that departure times be optimal for all
travelers is equally plausible. Furthermore, our bilevel optimal control problem
is much more tractable.

Next, we formulate the lower level problem as n(n — 1) optimal control
problems representing the departure time coordinators. Then, the upper level
optimal control problem representing the route choice controller is defined in
Section 10.2.2. Finally, the bilevel problem is presented. We demonstrate in
Section 10.3 that the solution of our model satisfies the desired departure time
and route choice conditions.

10.2.1 Lower Level Problem: Departure Time Choice

We first consider the lower-level problem of departure time choice. A disutility
function U"*(t) based on departure times is defined for travelers departing from
origin r to destination s at time t. This disutility function represents a weighted
sum of:

1. waiting time at the origin node;
2. driving time during the trip;
3. a bonus for early arrival or a penalty for late arrival.

Denote #"#(t) as the minimal travel time experienced by vehicles departing
from origin r to destination s at time ¢t. That is, 7"*(¢) is a functional of
all link flow variables at time t, i.e., 77(t) = 7"*[u(w), v(w), z(w),w] where
w > t. This functional is neither a state variable nor a control variable, and it
is not fixed; moreover, it is not available in closed form. Nevertheless, it can
be evaluated when u(w), v(w) and z(w) are temporarily fixed.

We define one unit of disutility to equal one unit of in-vehicle driving
time, and one unit of waiting time prior to departure to be equivalent to « units
of disutility (e < 1). Since all travelers are able to depart at time 0, ot is the
disutility due to waiting. Sometimes, & can become negative so that waiting
time at the origin is a utility instead of disutility. In other words, drivers prefer
to stay at home and regard waiting at home as a utility. Furthermore, we
assume there is a desired arrival time interval [t}, — A,,,t}, + A,,] for travelers
at each destination s, where t}, is the center of the required arrival time interval
(e.g. work start time) associated with travelers departing from origin r toward
destination s. A,, represents the arrival time flexibility at destination s for
travelers departing from origin r toward destination s.

We also define the disutility for early or late arrival as follows

Vi T (1) tr,] =
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[t + 77 (t) —tr, + A2 ift+7"(t) <tl, — A, (early arrival)
0 ]t 4770 (8) = t5,| < A%,
Yot 4+ w7 (t) — t, — A2 ift +7"(t) > t5, + AX, (late arrival)

where t is the departure time of travelers and 71,72 are parameters (y; <
0,42 > «). This arrival time disutility function is shown in Figure 10.2. Thus,
the disutility function for the joint departure time and route choice problem is
constructed as

U™ () = at + 17 (t) + V" [t, 7" (2); 22, ] Vr, s, (10.10)

where t is the departure time of travelers. In some situations where arrival
time is more important, the impact of waiting time on the disutility function
is not significant. Thus, the term ot can be dropped for these situations. On
the other hand, when the arrival time is not important, the disutility term
V74(-) (due to early or late arrival) can be dropped. However, the disutility ot
becomes important to determine the departure time and has to be kept in the
disutility function U"*(t).

Arrival Bonus/Penalty
Lt 1) b
A

A

ATS ATS '

» '
[

= ! >
t /'— tx t +7f7t) Timet

A
A\

Figure 10.2: Bonus/Penalty for Early/Late Arrival

The dynamic user-optimal departure time choice conditions can then be
defined as:

ur@)=ur, if f7°(t)>0 vr, s; (10.11)
ur@) >un, if f°(t)=0 vr, s; (10.12)

where U]};, is the minimal rs disutility. Additional boundary conditions are
the following.

F(0)=0 Vr, s. (10.13)
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Also, by definition of f7*(t) (the O-D departure rate) and F*(t) (the cumula-
tive departure rate), it follows that

T
/ fre(t)dt = F™*(T) is given Vr, s; (10.14)
0
or iF
T8 t
dt( ) = fr*(t) Vr, s. (10.15)

In Section 10.2.3, we state the Lower Level Problem whose solution yields
conditions (10.11)-(10.12), given the functionals #™*(t).

10.2.2 Upper Level Problem: Route Choice

Next we discuss the upper-level problem of route choice. The dynamic user-
optimal route choice problem is to find the dynamic trajectories of link states
and inflow and exit flow control variables, given the network, the link travel
time functions and the time-dependent O-D departure rate requirements. The
O-D departure rates are specified by the lower level problem and are therefore
exogenous to the upper level problem. In this joint DUO departure time/route
choice problem, the minimal instantaneous O-D travel time is not a good basis
for adjustment of departure times. Thus, we use the ideal DUO route choice
model developed in Chapter 7 as our upper-level problem. The formulation for
the route choice upper-level problem is summarized in the next bilevel model.

10.2.3 Bilevel Program Formulation

Using optimal control theory, a bilevel optimization program of the dynamic,
user-optimal departure time and route choice problem is formulated as follows.

Upper Level: Ideal DUO Route Choice

T Uuq(t)
va(t)

+ / 92a[Za(t), wldw ¢ dt (10.16)
0

s.t.
Relationships between state and control variables:

TS

z rs .
d:” = gy (t) —vgp(t)  Va,p,1, 55 (10.17)
dE™ (t)
p — TS .
dt - ep (t) Vr, 5, Py (10.18)
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dF”(t) =f'(t) Vrsp (10.19)

Flow conservation constraints:

F@)= Y Gaun®)  Varns (10.20)
a€A(r)

G t)= D Fmvm(t) Vprns (10.21)
a€B(s)

S oupt = Y unt) Viernsi#ns o (10.22)
a€B(j) a€A(j)

Constraints equilibrating actual route travel times:
FPPt)=E"[t+x"(t)] Vrs; (10.23)
Flow propagation constraints:

() = D {epplt + a(t)] — 25p (O} + B[t + ma(t)] - E}* (1)}

bep

Vr,s,p, j;a € B(j);j # 13 (10.24)

Definitional constraints:

S un®) =ua(t), D via(t)=va(t), Va; (10.25)

Zz (1) =z (1), Y zhn(t) = za(t), Zz”(t) = z4(t), Va; (10.26)
Z Ep’(t) = E™(¢), Z F,*(t)=F"(t), Vrs; (10.27)
SN =10, Do) =€),  Vns (10.28)

Nonnegativity conditions:
x;:;(t) >0, u;;(t) >0, v;;(t) >0 Va,p,r,s; (10.29)
e’ () >0, fp°(t)>0, E*(t)>0, F*(1)>0 Vp,r,s; (10.30)
Boundary conditions:
E;*(0) =0, ‘ F;°(0)=0 Vp,rs; :c,',:,(O) =0, Va,p,r,s. (10.31)

where f7*(t) and F"*(t) solve
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Lower Level: DUO Departure Time Choice

.
i, / Z{ / {at + 77 (8) + V" [t, 7™ (2); ”]}dw}dt (10.32)

s.t.
F” t
( ) =fr(t) vr; s (10.33)
F°(0)=0 F™*(T) given Vr, s; (10.34)
() >0, Fre @) >0 Vr,s. (10.35)

In lower-level model (10.32)-(10.35), we only have state equations, boundary
conditions and nonnegativity conditions. The control variables are f™*(t), and
the state variables are F"(t), which represent total departures over all routes.
In upper-level model (10.16)-(10.31), route-specific departure variables
f;*(t) and F;*(t) must be determined. The upper-level objective function
is s1m11ar to the objective function of the well-known static user-optimal (UO)
model. We note that other objective functions can also be used since constraints
(10.23) enforce the ideal DUO route choice. The first three constraints (10.17)-
(10.19) are state equations for each link a and for cumulative effects at origins
and destinations. Equations (10.20)-(10.22) are flow conservation constraints
at each node including origins and destinations. Equation (10.23) is constraint
which equilibrates flows based on actual route travel times. Other constraints
include flow propagation constraints, definitional constraints, nonnegativity,
and boundary conditions.
In summary, in the upper-level program the control variables are ug;(t),
s (t), €5°(t), and f*(t); the state variables are z33(t), E;°(t), and Fy*(t); the
functlonals are m"° (t), which must be determmed in a dlagonahzatlon fashion
as discussed in Chapter 7. Note that the upper-level problem alone is an ideal
DUO route choice model for the case of fixed departure times, because the
route flow constraints guarantee the ideal DUO route choice conditions without
regard to whether the O-D flows f7*(t) are fixed exogenously or decided by a
lower-level departure time choice problem.

10.3 Optimality Conditions and Equivalence
Analysis

10.3.1 Optimality Conditions

We first derive the optimality conditions for the lower-level model (10.32)-
(10.35). The Hamiltonian for the lower-level model is

o
w3 [ et T O e+ SO0

rs
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where *(t) is the Lagrange multiplier associated with each origin-destination
pair’s state equation (10.33). For each rs, the first order necessary conditions
of the lower-level program (10.32)-(10.35) include

a,Hl rs rs rs * rs

—_— = 1 : > ; .

37 (7) at + 77 (t) + V7 [t, =" (t); tr,] + u"*(t) > 0, Vr,s;  (10.36)
oHq
Oof _— .
fre(t) 5 - 0 Vr, s; (10.37)
du™(t) _ oM, )

iy il Vr, s (10.38)
(@) >o, Vr, s. (10.39)

An alternative representation of bilevel program (10.16)-(10.35) can be
given by converting it into a standard optimization model. As suggested by
Cruz (1978) and Bard (1984), this can be achieved by appending the optimality
conditions (10.36)-(10.39) of the departure time choice model (lower problem)
to the constraint set of the route choice model (upper problem). The solution to
the resulting single level model would also be a solution to the original bilevel
departure time/route choice problem. The equivalent single level program is
reformulated as:

Min  (10.16)

s.t. (10.17)-(10.31) (Upper level model constraints)
(10.33)-(10.35) (Lower level model constraints)
(10.36)-(10.39) (Lower level model optimality conditions)

We do this only to analyze the optimality conditions of the bilevel program.
From an algorithmic point of view, the model would still be solved as a bilevel
program.

We can construct the Hamiltonian for this single level program and de-
rive the corresponding first order necessary conditions for each link a, origin
node r and destination node s. For our analysis of optimality, we need only
one part of the constraints of the single level program: constraints (10.36)-
(10.39) and (10.23). Other constraints and first order necessary conditions are
not used for our analysis of the DUO state. We now show that constraints
(10.36)-(10.39) for this single level program are identical to the DUO depar-
ture time choice. Also, we note that constraints (10.23) for this single level
program directly guarantee the ideal DUO route choice conditions.

10.3.2 DUO Equivalence Analysis

Constraints (10.36)-(10.39) for the equivalent single level program are also the
optimality conditions of the lower level departure time choice model. In the
following, we prove that these conditions are equivalent to DUO departure
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time choice conditions so that the equivalent single level program generates
departure flows satisfying the DUO departure time choice conditions.
The costate equation (10.38) can be integrated as

p(t)=A Vr, s; (10.40)

where A is an integral constant. This equation applies to any time t € [0, T7.
Thus, from equations (10.36)-(10.39), we obtain the following equations.

@) {at+a" @)+ V[t 77 (t);tr,] + A} =0, Vr, s; (10.41)
at+ 7" () + V7L, 7" (t); tr,] > —A, Vr, s; (10.42)
fre@t) >0, Vr, s. (10.43)

Note that the left hand side of (10.42) consists of: 1) disutility due to the
waiting time; 2) minimal actual O-D travel time; and 3) a bonus for early arrival
or a penalty for late arrival. The above conditions (10.41)-(10.43) hold for each
O-D pair (r,s) in the network. For any O-D pair (r,s), if there are vehicles
departing at time ¢, then f*(t) will be positive, so the quantities in braces
in equation (10.41) will be zero, i.e., equation (10.42) will hold as an equality.
(Since the total disutility in braces of equation (10.41) is positive by definition,
A is clearly negative.) Thus, travelers departing at time ¢ have disutility equal
to —A. Inequality (10.42) states that at optimality, this rs disutility is less than
or equal to the disutility for departures at any time ¢. Therefore, the disutility
for departures at time ¢ equals the minimal disutility for origin-destination
(r, s) at any time ¢. For any time ¢, if there are no vehicles departing origin r,
then the departure rate f7*(t) equals zero, so that (10.42) may hold as a strict
inequality. Thus, the disutility ot +77*(t) + V™ [t, 77*(t); t},] at any time ¢ will
not be less than the minimal disutility |A|. The above interpretation implies
that the optimality conditions of the lower-level program are consistent with
the DUO departure time choices. :

Since the optimality conditions for the lower level departure time choice
model are one part of the constraints for the equivalent single level program, the
above analysis results also apply to this problem. Thus, the equivalent single
level program (and thus the bilevel optimal control program) will generate O-D
departure flows which satisfy the DUO departure time choice conditions.

Note that constraints (10.23) still apply to the above equivalent single
level program. These constraints guarantee that the bilevel optimal control
program generates traffic flows satisfying the ideal DUO route choice condi-
tions, given any O-D departure flows determined by the revised constraint set
of the single level program.

We have shown that the set of departure flows and link flows that solves
the equivalent single level program satisfy both the DUO departure time choice
conditions and the ideal DUO route choice conditions. Therefore, the solution
to the original bilevel departure time/route choice program satisfies both the
DUO departure time choice conditions and the ideal DUO route choice condi-
tions.
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10.4 Solution Algorithm and An Example

As noted by many researchers, the bilevel nonlinear program is generally non-
convex; therefore, it is very difficult to find its global optimal solution. In the
following, we present a heuristic solution algorithm which solves a discretized
version of our bilevel optimal control problem. A numerical example is also pre-
sented to illustrate that total disutility of travel can be decreased by choosing
appropriate departure times.

To convert our optimal control problem into a nonlinear programming
problem (NLP), time period [0, T] is subdivided into K small time intervals.
Time interval k is denoted as k = [k, k + 1]. (These time intervals are not
necessarily equal.) Then, the optimal control program can be reformulated as
a discrete time NLP.

10.4.1 Solution Algorithm

In the resulting discrete time problem, z,(k) represents vehicles on the link
at the beginning of interval k; uq(k) and vq4(k) represent inflow and exit flow
during interval k. Let 7,(k) denote the travel time for vehicles entering link a
at the beginning of interval k = [k, k+1], and let #7*(k) be the average minimal
r — s travel time for vehicles departing origin » during interval k. Let f*(k)
denote the O-D departure flow during interval k.

We use the diagonalization technique to solve our bilevel NLP. In this
procedure, the actual travel times over each link @, 74(k), are temporarily fixed
and are updated iteratively. At each iteration, since each 74(k) is temporarily
fixed, the minimal O-D travel time functional 7™ (k) can be computed and is
also temporarily fixed.

By discretizing the time period, the upper level route choice model be-
comes a discrete time NLP, and the lower level departure time choice model
becomes a discrete time linear programming problem (LP). In our heuristic al-
gorithm, at each iteration, the lower level departure time choice model is solved
first to obtain the O-D departure flows f7*(k). The upper level route choice
model is solved by the Frank-Wolfe technique (Frank and Wolfe, 1956) with
penalty functions for the nonlinear constraints (10.23). We note that in the
route choice problem, since constraints (10.23) are put in the objective func-
tion as penalty terms, only flow conservation and flow propagation equations
remain so that the Frank-Wolfe technique can be used to solve the modified
program.

After solving the route choice problem for fixed 7,(k), the link travel
times corresponding to the solution obtained for z4(k), us(k) and ve(k) are
compared to the functions 74(k). If the link travel times corresponding to the
solution are different from 7,(k) and the penalty term does not approach zero,
the 74(k) are reset to these travel times and the process is repeated. Given
the robust nature of the diagonalization technique, we expect that the solution
will converge to the DUO solution. The flowchart of the solution procedure is
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shown in Figure 10.3.
The LP departure ttme subproblem is rather simple to solve. The main
difficulty of solving the bilevel program is solving the NLP route choice sub-

problem efficiently.
(Initialize T, (k) )

Solve Departure Time w
Choice Model (LP) <

for f"{k) Jﬁ

v

Solve Route Choice
Model (NLP) for
Link Flows and f ;S(k)

[y

No

Diagonalization
Convergence?

fa(k) ]

No
Convergence?

k) 1

Figure 10.3: Flowchart of the Solution Algorithm

10.4.2 Numerical Example

We illustrate the solution of our bilevel choice model with the 4-link, 4-node test
network shown in Figure 10.4. The assignment time period [0, T is subdivided
into K = 8 small time intervals. The algorithm was coded in FORTRAN and
solved on a IBM 3090-300J. As proposed in Chapter 5, the following link travel
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time functions were used in the computations:
Ta(k) = ca(k) = gla(k) + g2a(k)
gla(k) = ,Bla + ,82a[ua(k)]2 + ,Baa [fca(k)]2
gZa(k) = /B4a + /B5a[va(k)]2 + Bea [l‘a(k)]2
where the time interval k = 1,2,--,8. The same function is used to represent
both the instantaneous and actual link travel time functions in order to simplify

the presentation. The parameters for each link travel time function are given
in Table 10.1.

Figure 10.4: Test Network

In this example, we compare the travel times and disutilities from origin
1 to destination 4 under two different specified departure flow patterns. Since
the network is symmetric, constraints (10.23), which equilibrate the actual
route travel times, are satisfied automatically. Thus, it is not necessary to use
penalty functions to enforce these constraints in this example, although with a
general network it would be. The initial and improved departure flow patterns
are given in Table 10.2; the user optimal link flows and the corresponding link
travel times for the initial departure flow pattern are shown in Table 10.3. The
optimal link flows and optimal link travel times for the improved departure
flow pattern are given in 10.4.

Table 10.1: Parameters of Link Travel Time Functions

link a | Biq B2a B3a | Pia Bsa Bsa
1—2 1. 0.001 0. 0. 0.015 { 0.002
1—3 1. 0.001 0. 0 0.015 | 0.002
2—4 1. 0.001 0. 0 0.015 | 0.002
3—4 1. 0.001 0. 0 0.015 | 0.002

We first discuss the flow propagation in the network, using link 2—4 in
Table 10.4 as an example (see Figure 10.5).
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Table 10.2: Departure Flow Patterns from Origin 1 to Destination 4

Initial Pattern

Interval k& 1 21345678
O-D Flow | 60. [ 0.1 0.({0.]0.]1]0.10.1]0.

Improved Pattern

Interval £ | 1 2 3 4 156|718
O-D Flow | 30.]10.130.]0.[0.]0.{0.]0.

e Interval 2: Vehicles from link 1-2 enter link 2—4 during interval 2: u34(2) =
6.5. Since the travel time on link 2-4, 734(2), is 1.0 interval for the first
vehicles entering at the beginning of interval 2, these vehicles exit link
2-4 during interval 3: v24(3) = 6.5.

e Interval 3: There are u24(3) = 8.5 vehicles entering link 2—4 during inter-
val 3. Since travel time 724(3) is 1.8 intervals for the first vehicles entering
at the beginning of interval 3, only vs4(4) = 7.4 of the 8.5 vehicles exit
during interval 4, and the remaining 1.1 vehicles exit during interval 5.

e Interval 4: The travel time 734(4) is 2.0 intervals for the first vehicles
entering at the beginning of interval 4. There are u34(4) = 6.2 additional
vehicles entering during interval 4. The remaining 1.1 vehicles already
on the link (see the paragraph above) exit during interval 5, allowing 5.5
vehicles also to exit, for a total of 6.6 exiting vehicles; 6.2 — 5.5 = 0.7

vehicles of the 6.2 vehicles entering during interval 4 exit during interval
6.

e Interval 5: u4(5) = 8.8 vehicles enter during interval 5. Those vehicles
begin to exit link 2-4 during interval 6 (6.2 vehicles) and finish exiting
during interval 7 (2.6 vehicles).

We now consider the improvement of travel times and disutilities from
origin 1 to destination 4 as a result of the changed departure flow pattern.
Assume that parameter o for waiting time equals 0.5; there is no arrival penalty
in this example.

With the initial departure flow pattern shown in Table 10.2, the O-D
travel time for the first vehicle departing at the beginning of interval 1 is 3
time intervals. (In Table 10.3, vehicles start to exit links 2-4 and 3-4 during
interval 3; the O-D travel times are rounded integers.) Also, the O-D travel
time for the last vehicle departing at the end of interval 1 is 6 time intervals.
(In Table 10.3, vehicles finish exiting link 2—4 and 3—4 during interval 7). The
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average O-D travel time for these vehicles is (3 + 6)/2 = 4.5 time intervals.
Since the average waiting time is zero for the departure flow pattern shown in
Table 10.2, total disutility averages (a - 0 + 4.5) - 60 = 270 units.

By way of comparison, with the improved departure flow pattern shown
in Table 10.2, the O-D travel time for the first vehicle departing at the beginning
of interval 1 is also 3.0 intervals. (Vehicles start to exit links 2-4 and 3-4
during interval 3; see footnote x in Figure 10.5.) Also the O-D travel time for
the last vehicle departing at the end of interval 1 is 4.0 intervals; see footnote
* in Figure 10.5. The O-D travel time for the first vehicle departing at the
beginning of interval 3 is 3.0 intervals. Also, the O-D travel time for the last
vehicle departing at the end of interval 3 is 7.0 — 3.0 = 4.0 intervals; see
footnote ** in Figure 10.5. The average O-D travel time for vehicles departing
during interval 1 is (3 + 4)/2 = 3.5 time intervals, and the waiting time is
0. The average O-D travel time for vehicles departing during interval 3 is
(3 + 4)/2 = 3.5 intervals, and the waiting time is 2 intervals. Total disutility
averages [(«-0+3.5)-30 4 (- 2+ 3.5)- 30] = 240 units. (Recall that « = 0.5.)
Thus, by delaying some departures, total disutility due to waiting and traveling
is reduced.

10.5 Notes

In contrast to departure time choice, arrival time choice may be more significant
for drivers. One example is the home-to-work trip in which a latest arrival
time needs to be strictly guaranteed. Our model uses desired arrival time to
determine driver departure times. The penalty for late arrival must be very
large. On the other hand, the disutility due to waiting at the origin is not
important. In Chapter 11, we explored how the desired arrival time can be
specified for different groups of travelers in a joint mode/departure time/route
choice problem. In future research, we will also address work-to-home trips
whose arrival time requirements seem to be more elastic since drivers are more
concerned with avoiding congestion. The utility due to waiting at the origin is
important because drivers prefer to stay at workplaces until traffic congestion
decreases. Consequently, the arrival penalty is not significant.

The bilevel program in this chapter is formulated as a hierarchical op-
timal control model. We note that this program can also be regarded as non-
hierarchical so that the analysis of the optimality conditions is simpler. In
other words, the upper-level route choice program and the lower-level depar-
ture time choice program have no leader-follower relationship in this case and
can be solved simultaneously.
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Table 10.3: Optimal Link Flows and Travel Times for Initial O-D Flows

Interval | Link Vehicles | Inflow | Exit Flow | Vehicles | Travel Time
k a za(k+1) | ua(k) va(k) zq(k) | ca(k) & Ta(k)
1 1—2 30.0 30.0 0.0 0.0 1.9
2 1—2 21.7 0.0 8.3 30.0 3.8
3 1—2 21.7 0.0 0.0 21.7 1.9
4 1—2 12.4 0.0 9.2 21.7 3.2
5 1—2 0.0 0.0 12.4 12.4 3.6
1 1—3 30.0 30.0 0.0 0.0 1.9
2 1—3 21.7 0.0 8.3 30.0 3.8
3 1—3 21.7 0.0 0.0 21.7 1.9
4 1—3 12.4 0.0 9.2 21.7 3.2
5 1—3 0.0 0.0 12.4 12.4 3.6
1 2—4 0.0 0.0 0.0 0.0 1.0
2 2—4 8.3 8.3 0.0 0.0 1.1
3 2—4 0.0 0.0 8.3 8.3 2.2
4 2—4 9.2 9.2 0.0 0.0 1.1
5 2—4 13.4 12.4 8.3 9.2 2.4
6 2—4 3.8 0.0 9.6 13.4 2.7
7 2—4 0.0 0.0 3.8 3.8 1.2
1 3—4 0.0 0.0 0.0 0.0 1.0
2 3—4 8.3 8.3 0.0 0.0 1.1
3 3—4 0.0 0.0 8.3 8.3 2.2
4 3—4 9.2 9.2 0.0 0.0 1.1
5 3—4 13.4 12.4 8.3 9.2 2.4
6 3—4 3.8 0.0 9.6 13.4 2.7
7 3—4 0.0 0.0 3.8 3.8 1.2
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Table 10.4: Optimal Link Flows and Travel Times for Improved O-D Flows

Interval | Link Vehicles | Inflow | Exit Flow | Vehicles | Travel Time
k a ca(k+1) | ua(k) va(k) zq(k) | ca(k) & 4(k)
1 1—2 15.0 15.0 0.0 0.0 1.2
2 1—2 8.5 0.0 6.5 15.0 2.1
3 1—2 15.0 15.0 8.5 8.5 2.5
4 1—2 8.8 0.0 6.2 15.0 2.0
5 1—2 0.0 0.0 8.8 8.8 2.3
1 1—3 15.0 15.0 0.0 0.0 1.2
2 1—3 8.5 0.0 6.5 15.0 2.1
3 1—3 15.0 15.0 8.5 8.5 2.5
4 1—3 8.8 0.0 6.2 15.0 2.0
5 1—3 0.0 0.0 8.8 8.8 2.3
1 2—14 0.0 0.0 0.0 0.0 1.0
2 2—4 6.5 6.5 0.0 0.0 1.0
3 2—4 8.5 8.5 6.5 6.5 1.8
4 2—4 7.4 6.2 7.4 8.5 2.0
5 2—4 9.5 8.8 6.6 7.4 1.9
6 2—4 2.6 0.0 6.9 9.5 1.9
7 2—4 0.0 0.0 2.6 2.6 1.1
1 3—4 0.0 0.0 0.0 0.0 1.0
2 3—4 6.5 6.5 0.0 0.0 1.0
3 3—14 8.5 8.5 6.5 6.5 1.8
4 3—4 7.4 6.2 7.4 8.5 2.0
5 3—4 9.5 8.8 6.6 7.4 1.9
6 3—4 2.6 0.0 6.9 9.5 1.9
7 3—4 0.0 0.0 2.6 2.6 | 1.1
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Chapter 11

Combined Departure Time/
Mode/Route Choice Models

We consider the efficient operation of an integrated transportation system
within an IVHS environment. A dynamic route guidance system would im-
prove utilization of the overall capacity of the transportation system so as to
reduce travel times, congestion and incidents. By providing early detection
of incidents and congestion in the transportation network, the route guidance
system would redistribute traffic among the available modes and routes when
there is excess capacity in some parts of the road network or shift the depar-
ture times of travelers to avoid peak-hour congestion when no additional road
capacity is available. Furthermore, the route guidance system would provide
travelers with accurate, current information on both transit and road networks
so that some motorists could make their own time-cost tradeoffs and shift to
transit, if appropriate.

In this chapter, we address the dynamic mode/departure time/route
choice problem with multiple stratifications of users, each with a different
propensity to use transit or high occupancy vehicles. This stratification could
be by income level, automobile ownership, or vehicle occupancy regulation.
As in conventional planning models, socio-economic factors can be considered
in mode choice models in time-dependent circumstances. The advantage of
formally considering multiple classes of users, who value their time and conve-
nience differently, is to model travelers’ mode choices more accurately.

Furthermore, different people have different propensities to use different
travel modes. For example, senior citizens may prefer local streets to freeways;
therefore, freeways may constitute a specific mode for this particular group
of travelers. In principle, by considering groups or classes of travelers with
specified time-cost tradeoffs in each group, it is possible to predict mode choice
deterministically.

A shift of travelers from cars to transit or from low-occupancy cars to
high-occupancy cars may significantly decrease road congestion and increase
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the efficiency of the overall transportation system. Moreover, in the road net-
work, journey-to-work trips have especially important requirements for avoid-
ing congested routes so as to arrive at work on time. Since each departure
time choice is based on prevailing origin-destination travel times, any change
in departure times will alter the traffic flow patterns in the network so that
route choice decisions of other travelers will be modified. Therefore, in order to
achieve this balanced allocation to various departure times and different modes,
an integrated model including all elements (mode, departure time and route
choice) should be constructed.

There have been extensive studies in mode choice analysis. Wilson
(1969) studied the trip distribution, modal split and trip assignment prob-
lem using entropy maximizing methods. Florian and Nguyen (1978) presented
a combined trip distribution, modal split and trip assignment model. Route
choice in their model is based on the user-optimal principle, and the mode
choice is given by a logit model. Boyce (1978) also discussed the equilibrium
solutions for combined location, mode choice and trip assignment models.

Studies into multiple groups of travelers in travel choice models were
begun by Dafermos (1972). She presented traffic assignment models in a
multiclass-user transportation network. Later, LeBlanc and Abdulaal (1982)
presented combined mode split/assignment and distribution/mode split/assign-
ment models with multiple groups of travelers.

In this chapter, we present a dynamic user-optimal (DUO) mode, depar-
ture time and route choice model for a transportation network with multiple
origin-destination pairs. The model developed in this chapter extends the joint
departure time/route choice model in Chapter 10 to the case in which the com-
bined mode, departure time and route choice should be considered with multi-
ple classes of travelers. We model this choice problem by specifying that a given
number of travelers are ready for departure between each origin-destination pair
at the beginning of each of several short time periods. However, motorists may
shift to transit or delay their departure times to reduce their overall travel
costs. The model extends our previous dynamic user-optimal departure time
and route choice model in two important respects: 1) alternative mode choices
are available; and 2) travelers are stratified into different groups according to
travelers’ socio-economic characteristics.

The model is formulated as a two-stage simultaneous (non-hierarchical)
optimization program. The first-stage problem represents dynamic logit-type
modal choice. The second-stage problem represents a hierarchical leader-follow-
er problem which solves the DUO departure time and route choice problem for
motorists.

The problem is described in the next section. The formulation of the
two-stage model is described in Sections 11.2, 11.3, and 11.4. In Section 11.5,
the equivalence of the optimality conditions of the two-stage program with the
DUO mode/departure time/route choice conditions is demonstrated. Finally,
the properties of the model are discussed.
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11.1 Two-Stage Travel Choice Model

A multiple origin-destination transportation network is considered. For sim-
plicity, the transportation network is defined to consist of a transit network and
a road network. Consider a fixed time period [0,7]. The length of the time
period is sufficient to allow all travelers in peak period to complete their trips.
We consider the following mode, departure time, and route choice situation
with (K + 1) points T1,Ty, -+, Tk 41 on the time horizon for the fixed time
period [0, T]. These points divide the time period [0, T] into K intervals, where
Ty = 0 and Tk 41 = T. Any interval k is denoted as [Tk, Tk41), k = 1,2,---, K,
and these intervals may or may not be equal in length. The length of each in-
terval would typically be 15 to 30 minutes for non-peak periods. For the peak
periods, this interval should be set to be consistent with the time headway of
transit operations, such as 5 or 10 minutes. We also assume no departure time
choice option for transit users, implying that headways are uniform over the
time period [0, T7.

For each O-D pair rs, the group of travelers departing during period
k can be further stratified into K smaller sub-groups according to the socio-
economic characteristics of each traveler. There are several approaches to strat-
ify travelers.. The typical one for mode choice problem is to classify travelers
based on income and age (see Table 11.1). There are 9 combinations in this
approach. Other approaches of stratification are discussed in the multi-group
route choice problems in Chapter 12.

Table 11.1: Stratification of Travelers Based on Income and Age

Degree of Change
Income || High | Middle [ Low
Age Old | Middle | Young

For any interval k, travelers in group m are ready to depart by transit or
car at an initial time T;. Thus, based on the total disutilities of using transit
and using car, travelers are split into 2 groups. For each O-D pair rs and each
traveler group m, the total number of travelers departing during interval k is
denoted as R;?(k) and is given exogenously. Similarly, let Q7 (k) and G2 (k)
denote the total numbers of travelers of group m departing by transit and
automobile, respectively, from origin r to destination s during interval k. It
follows that

Gri(k) + Qra (k) = Ry: (k) given Vm,r,s, k. (11.1)

Moreover, motorists may prefer to delay their departure times within period
[Tk, Tk +1] in order to reduce their driving times. Note that motorists departing
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during interval k can only shift their departure times within interval k. In
future studies, the above assumption can be relaxed so that motorists departing
during interval k can shift their departure times within intervals I > k.

Drivers are assumed to make their departure time choices so as to min-
imize their individual disutility functions defined on travel time and pre-trip
delay. The criteria for choosing each departure time consist of:

1. the waiting time before departure;
2. the actual travel time between the origin and destination;
3. a bonus for early arrival or a penalty for late arrival.

Of course, a change of departure flow rate will change the traffic on the road
network so that the actual origin-destination travel times will change.

Travelers’ choices of mode, departure time and route are interrelated
decisions. Given a desired arrival time, say at the workplace, choices of mode
and departure time depend on the traveler’s estimate of en route travel time
on each mode. Thus, choice of mode depends on the travel disutilities of
alternative modes, which also may vary by time of day. Because there is a
partition of the decision variables between two ordered stages: mode choice
and departure time/route choice for motorists, we use a two-stage simultaneous
optimization programming formulation in which mode choices are first-stage
decision variables and departure time/route choices for motorists are second-
stage decision variables. See Figure 11.1.

Furthermore, in the road network, choice of route depends on the travel
times of alternative routes, which also may vary by time of day. In the second-
stage optimization program (Figure 11.1), these choices are represented as a
hierarchical bilevel optimal control program, which is equivalent to a dynamic
leader-follower game (Cruz, 1978). The dynamic route choice problem for mo-
torists is formulated as a single optimal control problem. In the equivalent
dynamic game, this formulation corresponds to a single controller allocating
fixed departure flows at each time ¢ to user-optimal routes, given the departure
frequencies. We define this controller to be the leader of the game.

For each O-D pair, a departure time coordinator for motorists determines
the departing flows at each time ¢. These departure coordinators are defined as
the followers of the game, and are represented by n(n — 1) O-D-specific optimal
control problems to which the user-optimal travel time at time ¢ is exogenous.
Since these problems are independent by O-D pair, n(n — 1) separate problems
for each interval k£ can be used to represent all O-D pairs.

The hierarchical bilevel program for motorists assumes that the route
choice controller, who is responsible for allocating all O-D flows to routes
for each time interval k, knows the objective of each departure coordinator.
Through this knowledge, the route choice coordinator is able to achieve a lower
value of his/her objective function than if the departure time objectives were
unknown. In contrast, the departure time coordinators know only the O-D
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Figure 11.1: Two-Stage Simultaneous Travel Choice Model
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travel times at time ¢ provided to them. Knowledge of the route choice objec-
tive is not needed for their coordination task.

In the following the lower level problem for motorists representing the
departure time coordinators is formulated as n(n—1) optimal control problems.
Then, the upper level optimal control problem for motorists is defined to rep-
resent the route choice controller. Finally, the overall two-stage simultaneous
travel choice program is presented in Figure 11.1.

11.2 First Stage: Mode Choice Problem

We consider the mode-choice problem for travelers in group m during any
interval [Tk, Tk +1). For simplicity, it is assumed that the automobile occupancy
factor is 1; however, an occupancy factor could be used to convert the person
flow to vehicle flow since both automobile and transit flows are expressed in
terms of persons per unit of time. We require the modal share for automobile
and transit be given by a binary logit function for each time interval k:

exp(—bm ph2 (k)

P(auto) = XD (BT () + exp(—Om i (F)) (11.2)
P(transit) = exp(—0mvy; (K)) (11.3)

exp(—0m 5! (k)) + exp(—0m 73 (k)
where pfs(k) and v]?(k) are the minimal total disutilities by auto and by
transit, respectively, for travelers in group m departing during time interval
k from r to s, and 6,, is a positive parameter which needs to be calibrated.
Using the above function, we can calculate G3?(k), which is the total number
of departing motorists in group m during interval k and is also required for the
second-stage departure time/route choice program for motorists.

We formulate the mode choice problem as a discrete-time nonlinear pro-
gramming problem (NLP), which is a dynamic extension of many previous
models in the static environment. Our model is presented in Section 11.4. The
minimal total disutility by car, u(k), will be determined in the second-stage
departure time/route choice problem for motorists.

We first discuss the route choice problem for the transit network. Since
the transit network has fixed fares and travel times, minimal cost routes can be
determined exogenously in order to compute v1?(k), the minimal total disutility
by transit. The transit network is assumed to consist of a set of access links,
transfer links and transit line segments. As stated in Florian and Nguyen
(1978), a transit route is composed of a number of segments. We associate
a time-dependent travel cost with each route of the transit network during
interval k as follows:

1. a walking (or driving time) and a waiting time with access links to/from
stations;

2. a walking time and a waiting time with a transfer link;
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3. an in-vehicle time with a line segment;
4. origin-destination fare.

For any interval k, it is assumed that the link travel cost is independent
of the transit link flows. Thus, the time-dependent travel cost Cp(k) over route
p for travelers departing during interval k can be easily computed. We suppose
that a dynamic user-optimal state occurs on the road network, which will be
discussed in Section 11.3, where we discuss departure time choice and route
choice. Similarly, we suppose that a dynamic user-optimal state occurs on the
transit network. That is

Co(k) = V2 () if Q[2,() > 0 (11.4)
Co(k) > vt () /1m if Qre, (k) = 0 (11.5)

where 7, is the disutility scaling parameter associated with the social-economic
characteristics of group m travelers. Since Cp(k) is fixed, v} (k)/nm is the min-
imal travel cost from r to s for travelers departing during interval k. Thus, the
route choice problem in a transit network is simply a time-dependent minimal
route cost problem for each interval k.

11.3 Second Stage: Departure Time/Route
Choice for Motorists

Next we consider the second-stage problem of departure time/route choice for
the road network. The second-stage problem can be formulated as an opti-
mization program or a variational inequality. In this chapter, we consider how
to formulate a bilevel optimal control program for departure time/route choice.
The variational inequality model is presented in Chapter 14.

11.3.1 Lower-Level: Departure Time Choice for Motorists

A disutility function U[?(¢) based on departure times is defined for group m
drivers departing from origin r to destination s at time ¢. This function rep-
resents a weighted sum of total elapsed time during the journey, including
the waiting time at the origin node, the driving time during the trip, any
bonus/penalty for early/late arrival, and auto operating cost. We focus the
following discussion on the disutility for any group m motorists. We define
one unit of in-vehicle driving time to equal v, units of disutility, and one unit
of waiting time prior to departure to be equivalent to o units of disutility
(am <1).

For each group of travelers departing during interval k, there is a re-
quired arrival time interval [t},(k) — Ar,(k),t;,(k) + Ar, (k)] at each destina-
tion s, where ¢},(k) is the center of the required arrival time interval associated
with travelers departing from origin r during interval k toward destination s.
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A,,(k) represents the arrival time flexibility at destination s for travelers de-
parting from origin r during interval ¥ toward destination s. We also define
the disutility for early or late arrival as follows:

Vi lt, 77 (8); 17, (k)] =
Bult + 77 () — 17, (k) + A7, (B)] ift +77°(t) < ¢;,(k) — A7, (k)
0 i [t 4+ 770 (2) — £, (k)| < A%, ()
182"[t + 7r”(‘t) - t:a(k) - A:a(k)P ift+ 7('”(t) > t:a(k) + A:a(k)
where time ¢ is the departure time of travelers and (;;, 82; are parameters

(B1i <0, B2 > ). This relationship is shown in Figure 11.2. This disutility
of late arrival is continuous and differentiable with respect to ¢ and #"*(t).

Arrival Bonus/Penalty
¥

L, TY0; )]

a

Ardk) Arsl(k)

< Lt Bad I

O R | ’
t tr(k) t+10%t) Timet

Figure 11.2: Arrival Time Disutility

Let C™ denote the auto operating cost from origin r to destination s; for
simplicity, we assume this cost is fixed for each O-D pair. We define one unit of
operating cost to equal &, units of disutility. Even though the operating cost
is not directly associated with the departure time choice of motorists, it is an
important decision element when choosing between transit and car and is used
in the mode choice model. Thus, the disutility function for group m motorists
departing during interval k is constructed as

Upy (8 k) = am(t — T) + ym 7™ (8) + VI [, 77 (2)587, (k)] + €mC™

Vm,r, s, k,t € (T, T+1) (11.6)

where time ¢ is the departure time of travelers of group m departing during
interval k and T} is the starting time of interval k. Note that since travelers of
group m desire to depart at time Ty, am(t — Tk) is the disutility of waiting.
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For O-D pair rs and any time ¢, denote f]?(t) and F*(t) as the departure
rate and the cumulative number of departures of group m motorists, respec-
tively. Then for motorists, we construct the dynamic user-optimal departure
time choice conditions as

Urt(tsk) = pis(k) i fR2() >0 Vm,mskt€ (Th, Tep1);  (11.7)

Uri (k) > pra(k) i fr@®) =0  Vm,r,s,k,t € (Tk,Tiy1); (11.8)

where uJ2 (k) is the minimal rs disutility for group m motorists departing during
interval k. By definition of f]?(t) (the O-D departure rate) and F1’(t) (the
cumulative number of departing vehicles), it follows that

t
/ frrr: (t)d‘t =F;} (t) VYm,r,s,k,t € (Tk,Tk+1); (11.9)
0
* dFTs (1)
—Io = (1) Vm,r, s,k t € Tk, Tes1); (11.10)

where F?(t) and f}?(t) are state and control variables, respectively. Also, we
have corner point or boundary conditions as follows:

k
Fr!(Te) = ) Gr(d) Vm, r, s, k; (11.11)
ji=1
F(Ty) = F(0)=0 Vm,r,s; (11.12)

where the total number of departing group m motorists during interval j (1 <
J < k), Gi(4), is given by the first-stage mode choice program. When solving
the second-stage departure time/route choice program for motorists, the lower-
level departure time choice model decides the instantaneous departure rate
fre(t) for each group m and each O-D pair rs. Then, the departure rates sum

up as follows:
@)= Z fra(t) vr, s

where f7*(t) is the input for the upper-level route choice model for motorists.

11.3.2 Upper-Level: Route Choice for Motorists

In this section, we discuss the upper-level problem of route choice in the hierar-
chical departure time/route choice program for the road network. We assume
that all motorists in all groups choose minimal travel time routes. The strat-
ification of travelers is used for mode and departure time choices. Thus, the
dynamic route choice problem is the same as in Chapter 7. The stratification
of travelers for route choice problem is addressed in Chapters 12-13.

The dynamic route choice problem is to find the dynamic trajectories of
link states and inflow and exit flow control variables, given the road network,
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the link travel time functions and the time-dependent O-D flow requirements.
The O-D requirements are specified by the lower-level departure time choice
problem for motorists and are therefore temporarily fixed in the upper-level
route choice problem for motorists. The formulation of the problem is based
on the underlying choice criterion that each traveler uses the route that min-
imizes his/her actual travel time when departing from the origin to his/her
destination.

As formulated in Chapter 7, the minimal actual O-D travel time 7" (t)
for motorists departing at time ¢ from origin r to destination s can be deter-
mined from the following equation

Fr*(t) = E™[t + 7" (2)] Vr, s (11.13)

where F™(t) is given by the lower-level departure time choice model and E™ [t+
7"*(t)] is computed from flow conservation equations for destinations. This
constraint is also used to guarantee that the motorists departing at the same
time ¢ from origin r to destination s should arrive at the destination s at the
same time [t + 77*(t)]. The detailed analysis is given in Chapter 7. Note that
in the above equation, the actual travel time 77*(t) may be greater than any
interval [Tk, Ty +1]. Thus, we implicitly assume that 7" (¢) is differentiable over
the time period [0, T7.

11.4 Formulation of the Two-Stage Travel
Choice Model

Using optimal control and nonlinear programming theory, a two-stage simul-
taneous optimization program of the dynamic user-optimal mode, departure
time and route choice model is formulated as follows.

FIRST-STAGE: Mode Choice

g LYY {onw [Emene + )]

+ Qn(k) [alnjan,',f(k)+u,',,’(k)]} (11.14)

s.t.
Gri(k)+Qu (k)= Ri*(k) given  Vm,r s, k; (11.15)
Gii(k)>0, Q(k)>0 VYm,r s k; (11.16)

where the minimal disutility 4! (k) for motorists solves

SECOND-STAGE: Departure Time/Route Choice for Motorists




11.4. Formulation of the Two-Stage Travel Choice Model 235

Upper-Level: Route Choice for Motorists

T tq(t)
u,v,z,e IEn,‘lflfl" Freix /0 2“: {A gla[l‘a(t),w]dw
vo(t)
+ / 924[24(t), w]dw ¢ dt (11.17)
0

s.t.
d 1'8
Z9P = uzt(8) — o0 (2) Va, p, , 5; (11.18)
dE”(t) o
g7 » () Vp, 7 5; (11.19)
dF” t
( ) = f'(t) Vp,r,s; (11.20)
f;‘(t) = Y &aun(t) Vp,r,s; (11.21)
a€A(r)
e’ (t) = Y Gamvan(t) Vp, 1, s; (11.22)
a€B(s)
Do) = Y un) Vi, p,r, 85 # 1,8 (11.23)
a€B(j) a€A(j)
Fr(t) = E"*[t + 7™ (¢)] Vr, s; (11.24)
zon(t) = Y _{wiplt + ()] — 2 ()} + {E3°[t + 7a(t)] — E}* (1)}
bep
Vr,s,p,jsa € B(j);5 # r; (11.25)
doupt) =uat), D va(t)=valt), Ve (11.26)
rsp rsp
D oaia(t) =zat), Y 2i(t) =2alt), Ve (11.27)
rsp Ts
S EF)=FE"@), Y Frt)=F"@), Vs (11.28)
p 4
MHO=10), D eglt)y=€"(t), Vs (11.29)
4 4
zap(t) 20,  ugp(t) 20, wvg(t)>0 Va,p,r,s; (11.30)
f(t) >0, fr'(t) >0, EF(t)>0, F(t)>0 Vp,r,s;  (11.31)

E;*(0)=0, F;*°(0)=0 Vp,r,s; z5(0)=0, Va,p,rs (11.32)
where the O-D departure f7*(¢) and F*(t) for motorists solve
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Lower-Level: Departure Time Choice for Motorists

Tk+1 1= @)
Uyl (t k)dw » dt 11.33
ff'l frl Fr: Z/ /0 ( ) ( )

s.t.

rs t

dF ( ) =frm@®)  VYm,r, skt € (Tk, Te1); (11.34)
k
FI} (Tiq1) = Y Gr(5) Vm,r, s, k; (11.35)
j=1

F!()=F;:(0)=0 VYm,r,s; (11.36)
@) = Z o) Vr,s,t € (Tk, Tey1); (11.37)
T(t) >0, FPt)>0 Vm,r skt € (Tk, Tk41); (11.38)

where G72(k) is given by first-stage mode choice program.

The first-stage program (11.14)-(11.16) is a discrete time NLP program.
Two terms in the objective function are conventional entropy functions of trip
flows by transit and by auto, respectively, for each interval k. The only con-
straints are flow conservation (11.15) and nonnegativity (11.16). The decision
variables are G}:(k) and Q2 (k), which represent the total numbers of trav-
elers by car and by transit, respectively. The disutility function py:(k) for
motorists is determined by the second-stage departure time choice program.
The disutility function v%? (k) for transit travelers is calculated exogenously.

The second-stage program (11.17)-(11.38) is a hierarchical bilevel opti-
mal control program for motorists. The upper-level model (11.17)-(11.32) for
motorists is the ideal DUO route choice model presented in Chapter 7. In
this model, the route specific departure variables f;*(t) and F;*(t) must be
found. The two terms of the objective function are similar to the objective
function of the well-known static user-optimal (UO) model. The first three
constraints (11.18)-(11.20) are state equations for each link @ and cumulative
effects at origins and destinations. Equations (11.21)-(11.23) are flow conser-
vation constraints at each node including origins and destinations. Equation
(11.24) equilibrates the actual route travel times. The other constraints in-
clude flow propagation, definitional, nonnegativity, and boundary conditions.
In summary, in the upper-level model the control variables are ug;(t), vg, (1),
ey’ (t), and f*(t); the state variables are 23} (t), E;’(t), and F;*(t); and the
functionals are 77*(t). The inputs for this upper-level model include the in-
stantaneous O-D flow rate f7#(¢), which is a decision variable in the lower-level
departure time choice model.

In the lower-level departure time choice model (11.33)-(11.38) for mo-
torists, we have only state equations (11.34), boundary conditions (11.35)
and (11.36), flow conservation equations (11.37) and nonnegativity conditions
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(11.38). The control variables are f7*(t) and f™*(¢), and the state variables are
F2(t), which represent cumulative group m motorist departures from origin
r to destination s. The inputs for this model include G}?(k) and #™*(¢). The
total number of motorists G} (k) in group m during interval k is determined
by the first-stage mode choice program. The actual O-D travel time function

7% (t) for motorists is determined by the upper-level route choice model for mo-
torists. As shown in the optimality conditions, the minimal disutility 7 (k) for
motorists can be computed after solving this bilevel model. Note that u7? (k)
is an input to the first-stage program.

The relationship of decision variables in the overall two-stage simultane-
ous optimization program is shown in Figure 11.3. The lower-level departure
time choice model provides a set of corner point (boundary) conditions at in-
tervals T1,T3,- -, Tk+1 for the bilevel departure time/route choice program
for motorists. Also, in the two-stage simultaneous optimization program, the
first-stage mode choice program provides boundary conditions for a cluster of
hierarchical departure time/route choice programs for each interval k in the
second-stage program. We prove in the next section that the optimal solution
to the two-stage simultaneous optimization program satisfies the required DUO
mode/departure time/route choice conditions.

11.5 Optimality Conditions

Since the two-stage travel choice programs (11.14)-(11.16) and (11.17)-(11.38)
are solved simultaneously, we discuss the optimality conditions of each program
separately.

11.5.1 Optimality Conditions for First-Stage Program
The Lagrangian for the first-stage mode choice program (11.14)-(11.16) is

Z Z Z {G”(k) [——ma"(k) + p (k)]

bR [—an 1w+ 0]
+ ZZZn ()G (k) + Qi (k) — Ryt (k)]

where 7} (k) is the Lagrange multiplier associated with group m travelers for

each O-D pair rs and interval k. Then if G}f(k) > 0 and Q7! (k) > 0, one part
of the Karush-Kuhn-Tucker conditions are the following:

[lnG”(k)+1]+ urr(k) + (k) =0, Vm,r,s,k, (11.39)

7 [ln Qu(k) + 1]+ vt (k) + (k) =0,  Vm,r,s,k. (11.40)
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l FIRST STAGE: I Decision Variables: G, k), Q'{k)
Mode Choice Input: R {k), b k), 0 [k)
[
rs. .| Simultaneous | ¢ r.
(k) Optimization KK Q,j k) D;ns( k)
A

(_ )
[SECOND STAGE: |HIGHWAY NETWORK

Hierarchical Departure Time/
Route Choice for Motorists

(Upper Level: Route Choice Controller )

Decision Variables: u, (1), v, (1), %, (1), e;s( 1),
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v
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Figure 11.3: Decision Variables in the Two-Stage Travel Choice Program



11.5. Optimality Conditions 239

We single out a particular origin-destination pair rs. Thus, for each group
m travelers during interval k, the O-D flows for each mode are given by the
expression

Gl (k) = exp(—Omnyi (k) — 1) - exp(—Ompira (k)),  Vm,r,s,k,  (11.41)
Q72 (k) = exp(—Omne (k) — 1) - exp(—Omvpy (k)),  VYm,r,s, k. (11.42)
Substituting the above two equations into equation (11.15), we obtain

Rrs(k)
exp(—0m ur2 (k) + exp(—b,v72 (k))’

exp(—Omme (k) — 1) =

Vm,r,s,k. (11.43)

Substituting the above equation into equation (11.41), we obtain the modal
share expression for automobile users

s _ prs exp( 0‘"‘” (k))
Gra(k) = B(k) gy i e oy Ymims b (1144)

Equation (11.44) is the required logit-type mode choice condition for interval
k.

11.5.2 Optimality Conditions for Second-Stage Program

Since the lower-level model (11.33)-(11.38) for motorists is a cluster of OCP
programs for each interval [Tk, Tk+1], k = 1,2, -, K, we first derive the opti-
mality conditions for an arbitrary interval [Tk, Tk+1]. The Hamiltonian of the
lower-level model for each interval k is

I (t)
2553 O BT CDTES $) S0P A0

where ¢74(t) is the Lagrange multiplier associated with group m travelers for
each O-D pair rs. For each rs, the first order necessary conditions of the
lower-level model (11.33)-(11.38) include

a;Hl =UD (k) +6m(#) 20, Vmyrs kt€ [T, Te],  (11.49)
Ofm (t)
T a’}'tl
and Sl )3f"(t) 0 Vm,r,sk,t € [Tk, Tesals (11.46)
dera(t) _ 8Hi -
i = ormm " Ymnektel Tl (11.47)

i) >0, Vm,rsk,t€ [Tk, Tita). (11.48)
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An alternative representation of bilevel program (11.17)-(11.38) for mo-
torists can be given by converting it into a standard optimization program. As
suggested by Cruz (1978) and Bard (1984), this can be achieved by appending
the optimality conditions of the departure time choice model (lower problem)
to the constraint set of the route choice model (upper problem). The solution
to the resulting single level program would also be a solution to the original
bilevel departure time/route choice program. Then the equivalent single level
program for motorists is reformulated as

Min  (11.17)

s.t. (11.18)-(11.32) (Upper level model constraints)
(11.34)-(11.38) (Lower level model constraints)
(11.45)-(11.48) (Lower level model optimality conditions)

This conversion is used only to analyze the optimality conditions of the bilevel
program for motorists. From an algorithmic point of view, the model is still
solved as a bilevel program.

Next, we discuss the optimality conditions of the lower level departure
time choice model. The costate equation (11.47) can be integrated as

S (t) = Ari(k) Vm,r, s, k; (11.49)

where A7?(k) is an integral constant for interval k, and this equation applies
for any time t € [Tk, Tx4+1]- Denote

tm (k) = — A7 (k)
which is an input to the first-stage mode choice model. By definition, we have
Ora(t) = —uri (k) Ym,r, s, k. (11.50)

Substituting equation (11.50) into equations (11.45)-(11.46), we obtain the fol-
lowing equations.

T @) {Ur (k) — pra (B)} = 0, Vm,r, s, k,t € [Tk, Tk +1]; (11.51)

u:: (t; k) > /1:7: (k)3 Vm,r,s,k,t € [Tk’ Tk+1]; (1152)
@) >0,  Vm,r,s, kt€ [Tk, Tepr)- (11.53)

The above conditions (11.51)-(11.53) hold for any group m of travelers
and each O-D pair rs during any interval k. In the following, we discuss the
above equations (11.51)-(11.53) for each specific group m of travelers and each
O-D pair (r, s) during any interval k. For any O-D pair (r, s), if there are group
m vehicles departing at time t € [Tk, Tk +1], then fI?(¢) will be positive, so the
quantities in braces in equation (11.51) will be zero, i.e., equation (11.52) will
hold as an equality. Thus, the drivers which depart at time ¢ € [Ty, Tk +1] have
disutility equal to uJ; (k). Equation (11.52) states that at the optimal solution,
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the rs disutility pl?(k) is less than or equal to the disutility for departures
at any time t € [Tk, Tk41]. Therefore, the disutility for departing at time
t € [Tk, Tx+1] equals the minimal disutility for origin-destination (r, s) at any
time ¢ € [Tk, Tk+1]. For any time t € [Tk, Tk41], if there are no vehicles in
group m departing origin r, then the departure rate f}?(t) equals zero, so that
(11.52) may hold as a strict inequality. Thus, the disutility 4}’ (¢; k) at any
time t € [Tk, Tk+1] will not be less than the minimal disutility u;?(k). The
above interpretation implies that the optimality conditions of the lower-level
model are consistent with the DUO departure time choices for motorists.

Since the optimality conditions for the lower level departure time choice
model are one part of the constraints for the equivalent single level model for
motorists, the above results also apply to this problem. Thus, the equivalent
single level model for motorists will generate O-D departure flows which sat-
isfy the DUO departure time choice conditions. Note that constraints (11.24)
still apply to the above equivalent single level model for motorists. Those two
constraints guarantee that the bilevel optimal control model for motorists gen-
erates traffic flows satisfying the ideal DUO route choice conditions, given any
O-D departure flows determined by the revised constraint set of the single level
model for motorists. ‘

We have shown that the set of departure flows and link flows that solves
the equivalent single level model for motorists satisfy both the DUO departure
time choice conditions and the ideal DUO route choice conditions. Therefore,
the solution to the original second-stage departure time/route choice model
satisfies both the DUO departure time choice conditions and the ideal DUO
route choice conditions.

In summary, the optimality conditions of the two-stage programs (11.14)-
(11.38) state the DUO mode, departure time and route choice properties.

11.6 Notes

We have presented a combined model in which dynamic user-optimal mode,
departure time and route choice occurs. It is recognized that different travelers
perceive the time-cost tradeoff differently, and thus distinct groups of travelers
are included in the model. The advantage over sequential dynamic models is
that the time-dependent interaction among the mode choice, departure time
choice and route choice is inherently recognized.

The most likely application of the model which we outlined is in real-time
ATIS in conjunction with APTS. Since time-dependent road pricing policies can
be easily adopted in our model, an extended combined model incorporating
time-dependent road pricing (especially congestion pricing) will find important
application in an ATMS. The calibration of the mode choice model requires
the determination of the parameter ,, which plays a key role in determining
the modal shares on the road and transit networks. In contrast to the static
mode choice model, the disutilities for both motorists and transit users are
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time-dependent. Thus, the estimation procedure for 6,, is more complicated
and remains a major task in the future.

The model presented in this chapter can be extended to include more
than two modes. In particular, bus lanes and HOV (High Occupancy Vehicle)
lanes can be specified as a special mode in road networks. The modal choice
model discussed in the chapter assumes that no interactions exist between the
transit links and the auto links. However, this assumption is not generally
applicable to bus transit. Buses move with road traffic and experience the
same time-dependent congestion and delays as automobiles. The interaction of
the two interdependent modes can be studied using the multi-group variational
inequality models for route choice problems in Chapters 12 and 13.

Generally, a two-stage programming model is very hard to solve. For
this combined model, since the mode choice program will result in a logit type
mode choice function for transit users and motorists, the main difficulty lies in
how to solve the departure time choice and route choice programs efficiently.



Chapter 12

Variational Inequality Models of
Instantaneous Dynamic User-
Optimal Route Choice Problems

In this chapter, we present several variational inequality (VI) models for in-
stantaneous dynamic user-optimal route choice problems for a network with
multiple origin-destination pairs. In Section 12.1, a route-time-based VI model
is first proposed. The equivalence of the VI model with the route-time-based
instantaneous DUO route choice conditions is demonstrated. In order to gen-
eralize this route-based model, travelers are stratified into several groups and
a multi-group route-cost-based VI model is developed in Section 12.2.

Since explicit route enumeration is needed to solve these route-based
VI models, we also formulate two types of link-based VI models. In Section
12.3, a link-time-based VI model is proposed and the equivalence of the VI
model with the travel-time-based instantaneous DUO route choice conditions
is demonstrated. The multi-group link-cost-based VI model is presented in Sec-
tion 12.4. In Section 12.5, we discuss the relationships between VI models and
optimization models. As an example, we demonstrate that the link-time-based
VI model presented in Section 12.3 can be reduced to an optimal control model
similar to those presented in Chapter 5. Thus, the diagonalization algorithm
and the F-W technique in Chapter 6 can be used to solve this link-time-based
VI model. In the solution, we note that explicit route enumeration is unneces-
sary.
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12.1 A Route-Time-Based VI Model of Instan-
taneous Route Choice

12.1.1 Route-Time-Based Conditions

Recall from Chapter 4 that the instantaneous travel time c,4(t) over link a is
assumed to be dependent on the number of vehicles 24(t), the inflow u4(t) and
the exit flow v4(t) on link @ at time £. This instantaneous link time is the travel
time that would be incurred if traffic conditions on the link remain unchanged
while traversing the link. We assume the instantaneous travel time c4(t) on
link a is the sum of two components: 1) an instantaneous flow-dependent run-
ning time gi4[4(t), uq(t)] over link a; and 2) an instantaneous queuing delay
92a[2a(t), va(?)]. It follows that

ca(t) = g1alza(t), ua(t)] + g24[2a(t), va(t)]- (12.1)

The two components g14[a(t), uq(t)] and gaq[z4(t), v4(t)] of the time-dependent
link travel time function cq[24(t), ug(t), v4(t)] are assumed to be nonnegative
and differentiable with respect to z4(t), uq(t) and z4(t), v4(t), respectively.
Consider the flow which originates at node r at time ¢ and is destined
for node s. There is a set of routes {p} between O-D pair rs. Define the
instantaneous travel time function ¢’ (t) for each route p between rs as

P (t)= Y caltalt), ua(t), va(t)] Vr, s, p; (12.2)

a€rsp

where the summation is over all links @ in route p from origin r to destination
s. Denote f;°(t) as the route inflow from origin r to destination s over route
p at time . We define route p from origin r to destination s as being used
at time ¢ if f7* (t) > 0. Then, we recall the definition of the route-time-based
instantaneous dynamic user-optimal (DUO) state as follows.

Route-Time-Based Instantaneous DUO State: If, for each
O-D pair at each instant of time, the instantaneous travel times
for all routes that are being used equal the minimal instantaneous
route travel time, the dynamic traffic flow over the network is in a
route-time-based instantaneous dynamic user-optimal state.

‘We now write the route-time-based instantaneous DUO route choice con-
ditions which are equivalent to the above definition. Denote o"*(t) as the min-
imal instantaneous route travel time from origin » to destination s at time .
The equivalent instantaneous DUO route choice conditions can be stated as
follows:

¥ () =™ () 20 Vp,r, 55 (12.3)

K70 [ -0 @] =0 Vp,r, s; (12.4)
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ORY Vp,r, s. (12.5)

Equation (12.4) states that if there is a positive route inflow f;"‘(t) > 0,
the instantaneous route travel time z/);"(t) must equal the minimal instanta-
neous route travel time o™*" (t). Otherwise, the instantaneous route travel time
1/);". (t) may be greater than or equal to the minimal instantaneous route travel
time o™ (t).

The above route-time-based definition of an instantaneous DUOQO state
and its corresponding route choice conditions are defined for each O-D pair
only. They are not defined for each decision node-destination pair as in Chapter
5 (which is equivalent to the link-time-based instantaneous DUO route choice
in Section 12.3). Thus, rerouting strategies are not provided for travelers at
intermediate decision nodes or intersections.

12.1.2 Dynamic Network Constraints

The constraint set for the route-time-based VI model is summarized as follows.

Relationship between state and control variables:

d rs
22 = ufp(t) — o) Va,p,r, s (12.6)
dET* (t)
)4 . T8 . .
—5 = ®) Vp,r;s# (12.7)

Flow conservation constraints:

)= ) Y un() Yr, s; (12.8)

a€A(r) p
Y v = D ui) Vi, pyry S 5 E 1y S (12.9)
a€B(j) a€A(j)
D D vt =€) Vr, 855 # 13 (12.10)

a€B(s) P
Flow propagation constraints:
2o (t) = D _{zhplt + 7a(t)] — 25p(1)} + { B}’ [t + 7a(t)] — E}* ()}
bep

Va € B(j);j # ripy1, 5 (12.11)

Definitional constraints:

doubp(®) =ualt), Y vist) =va(t), Ve (12.12)

rsp Tsp
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> zia(t) = za(t), Va; (12.13)
rsp

Nonnegativity conditions:
T(t) >0, up(t)>0, S(t)>0 Va,p,r,s; (12.14)
ey’ (t) >0, E;*(t) >0, Vp,r, s; (12.15)
Boundary conditions:
E;’(0) =0, Vp, r, s; (12.16)
z,°(0)=0, Va,nrs. (12.17)

We note that other constraints, such as FIFO constraints, capacity constraints
and oversaturation constraints, can be added to this VI model. To simplify the
analysis, we ignore them here.

12.1.3 The Route-Time-Based VI Model

The equivalent variational inequality formulation of the route-time-based in-
stantaneous DUO route choice conditions (12.3)-(12.5) may be stated as follows.

Theorem 12.1. The dynamic traffic flow pattern satisfying the net-
work constraint set (12.6)-(12.17) is in a route-time-based instanta-
neous DUO route choice state if and only if it satisfies the variational
inequality problem:

T
/ PIIL A0 [f,?’(t)—f;"(t) dt >0 (12.18)
0 Ts p

Proof of Necessity.

We need to prove that the route-time-based instantaneous DUO route
choice conditions (12.3)-(12.5) imply variational inequality (12.18). For any
route p, a feasible inflow at time ¢ is

T4 (t) > 0. (12.19)

Multiplying instantaneous DUO route choice condition (12.3) by the above
equation, we have

@) Wt () — o™ ()] > 0 Vp,r, s. (12.20)

We subtract equation (12.4) from equation (12.20) and obtain

[f;‘(t) - f;"(t)] [zb,’,"(t) - a"'(t)] >0 Vp,r, s. (12.21)
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Summing equation (12.21) for all routes p and all O-D pairs rs, it follows that
Y [rro-570] [Eo -0 o)

re p

Y [Ho-5T0 o= o Y [Ho-570)]
re rs )

D :f;‘(t) -7 @] ) >0 (12.22)
re

where the flow conversation equation
Y HO=YHT0=10)
P P

holds for each O-D rs at each time ¢. Integrating the above equation from 0
to T, we obtain variational inequality (12.18).

Proof of Suﬁciency.

We need to prove that any solution f;’.(t) to variational inequality
(12.18) satisfies the route-time-based instantaneous DUO route choice condi-
tions (12.3)-(12.5). We know that the first and third instantaneous DUO route
choice conditions (12.3) and (12.5) hold by definition. Thus, we need to prove
that the second instantaneous DUO route choice condition (12.4) also holds.

Assume that the second instantaneous DUO route choice condition (12.4)
does not hold only for a route ¢ for O-D pair kn during time interval [t; —§,¢; +
8] € [0, T, i.e.,

FE () >0 and  gE(t)-o* () >0 Vee[ti— 6t 48] (12.23)

Since the second instantaneous DUO route choice condition (12.4) holds for all
other routes other than route ¢ for O-D pair kn at any time ¢ and for O-D pair
kn at any time t ¢ [t; — 6,t1 + 8], it follows that

T
[ M AOICACEEAOL:
rs p

= / hre FEC () () — o ()] dt >0 (12.24)
é

ty—

We note that all other terms in the above equation vanish because of instanta-
neous DUO route choice condition (12.4).

For each O-D pair rs, we can always find one minimal instantaneous
travel time route ! for vehicles departing origin r at time ¢, where route ! was
evaluated under the optimal route inflow pattern { f;" (t)}. For this route I,
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the first instantaneous DUO route choice condition (12.3) becomes an equality
by definition. It follows that

¥ () — o™ (1) = 0 Vi, r,s. (12.25)

Next, we need to find a set of feasible route inflows f;°(t) so that the following
equations

T [ @) - ()] =0 Vp,r, s (12.26)

always hold. We consider departure flows f*(t) for all O-D pairs at each time
t. For each O-D pair rs at each time ¢, we assign O-D departure flow f™*(¢)
to the minimal travel time route I, which was evaluated under the optimal
route inflow pattern { f;"‘ (t)}. This will generate a set of feasible route inflow
patterns {f;*(t)} which always satisfies equation (12.26) because flows are not
assigned to routes with non-minimal travel times which were evaluated under
the optimal route inflow pattern { f;"'(t)}. Summing equations (12.26) for all
routes p and all O-D pairs rs, it follows that

EZ ‘@ [B -] =0 (12.27)

Integrating the above equation for time period [0, T}, we have

/0 ' DI AL0) [¢;3‘(t) - a"‘(t)] dt =0 (12.28)

We subtract equation (12.24) from equation (12.28) and obtain

[ SXlpo-5w) [5ro-o) @
. P

/0 {ZZ 5@ - 57 0] %@

- Yo Y [me- f;"(t)]} dt

4

T

/0 @ [fre- 570 d <o (12.29)
rs p

where the flow conversation equation

A0 Zf“ = £ (t)

P

holds for each O-D rs at each time ¢ so that the second term of the equation
vanishes. The above equation contradicts variational inequality (12.18). There-
fore, any optimal solution {f;* (¢)} to variational inequality (12.18) satisfies
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the second instantaneous DUO route choice condition (12.4). Since we proved
the necessity and sufficiency of the equivalence of variational inequality (12.18)
to route-time-based instantaneous DUO route choice conditions (12.3)-(12.5),
the proof is complete.

12.2 A Multi-Group Route-Cost-Based VI
Model of Instantaneous Route Choice

In this section, we define an instantaneous dynamic user-optimal (DUO) model
based on travel costs or disutilities instead of travel times. To be consistent
with Chapter 11, we still stratify travelers into M groups for each O-D pair
according to the socio-economic characteristics of each traveler. When M = 1,
the following definition and VI model reduces to a single group model, but
one which is different from the above VI model based on instantaneous travel
times.

For multi-group route choice problems, there are several approaches of
stratifying travelers into groups. The first approach is to classify travelers
based on income and age (see Table 12.2). There are 9 combinations in this
approach. The second approach is to classify travelers based on route diversion
willingness (see Table 12.2). There are 3 combinations in this approach.

The third approach is to classify travelers based on driving behavior
(see Table 12.3), which was proposed by Codelli et al (1993). There are 3
combinations in this approach. The above stratifications can also be combined
into more detailed classifications. We leave the subsequent analysis of those
combinations for empirical studies.

Table 12.1: Stratification of Travelers Based on Income and Age

Degree of Change
Income || High | Middle | Low
Age Old | Middle | Young

Table 12.2: Stratification of Travelers Based on Route Diversion Willingness

| One Route | Few Alternative Routes (2-3) | En Route Diversion |
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Table 12.3: Stratification of Travelers Based on Driving Behavior

l Cautious Driver | Rushed Driver l Ruthless Driver |

12.2.1 Multi-Group Route-Cost-Based Conditions

The instantaneous route disutility function is dependent on the instantaneous
route travel time, fuel consumption enroute, automobile operating cost, etc.
Denote ¢mmq(t) as the instantaneous disutility function for travelers of group m
entering link a at time ¢. It follows that

éma(t) = ma + Pma ca(t) VYm,a (12.30)

where ayq is a fixed instantaneous disutility parameter for group m travelers on
link a and B, is a parameter to transform instantaneous link travel time c, (?)
into the disutility of group m travelers. Denote ¥:,(t) as the instantaneous
route travel disutility for group m travelers from origin r to destination s at
time ¢, and 67! (¢) as the minimal instantaneous route travel disutility for group
m travelers from origin r to destination s at time ¢. The instantaneous route
travel disutility for all allowable routes is computed as follows:

~:7:P(t) = Z é""a(t) Vmap’ L] (1231)
acrsp

where the summation is over all links @ on route p. The minimal instantaneous
route travel disutility for each O-D pair (r, 5) is

&2 (t) = ming, (1) Vm, 7, s (12.32)
14

We then present the definition of the multi-group route-cost-based instanta-
neous DUO state as follows.

Multi- Group Route-Cost-Based Instantaneous DUO State:
If, for each group m and each O-D pair at each instant of time, the
instantaneous travel disutilities for all routes that are being used
equal the mintmal instantaneous route travel disutility, the dynamic
traffic flow over the network is in a multi-group route-cost-based
instantaneous dynamic user-optimal state.

Denote f;,(t) as the route inflow of group m from origin r to destination
s over route p at time ¢. The equivalent route-based multi-group instantaneous
DUO route choice conditions can be summarized as follows:

Frap (1) = 572 (£) 2 0 Vm, p,r, 5 (12.33)
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v @) [ (6) — 530" ()] =0 Vm, p, 1, 5; (12.34)

mp(t) >0 Ym,p,r,s. (12.35)

The above definition of the multi-group instantaneous DUO state and the
corresponding route-based route choice conditions are defined for each origin-
destination pair. They are not defined for each decision node-destination pair
as Chapter 5 (which is similar to the link-based definitions in the next sections).
Thus, this definition does not provide any rerouting strategies for travelers at
any intermediate intersection.

12.2.2 Dynamic Network Constraints

The dynamic network constraints are written for each group of travelers, desig-
nated by index m The constraint set for this problem is summarized as follows.

Relationship between state and control variables:

dzfs

gtmp = Upngp(t) — Vrnap(t) Vm,a,p,r,s; (12.36)
dET? (t
’3:( ) emp(t) Vm, p,r;s # 13 (12.37)

Flow conservation constraints:

@)= D ) u,() Vm,r, s; (12.38)

acA(r) p
D tha®) = D ulia() Vi, m,p, 1,535 # 1,83 (12.39)
a€B(j) a€A(j)
Z Evmaﬂ(t) e:r:(t) Vm,r,s;s;ér; (12.40)

a€B(s) P
Flow propagation constraints:
hn(t) = Y _{applt + ma(®)] — 2 (O} + { B[t + ()] — E;* (1)}
bep )
Ya € B(j);j # r;p, 7, 55 (12.41)

Definitional constraints:

Z map(t) - ua(t)’ Z map(t) = va(t), Va; (12.42)

mrsp mrsp

D aft, () = za(t), Va; (12.43)

mrsp
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Nonnegativity conditions:
Tmap(t) 20, ugde,(t) >0, vl (1) >0 Vm,a,p,r,s; (12.44)

e:’:P(t) Z 0’ E:r:p(t) 2 0’ Vm,p, Ty 85 (1245)

Boundary conditions:
E,(0)=0, VYm,p,r, s; (12.46)

map(o) - 0 Vm, ay P, Ty S. (1247)

12.2.3 The Multi-Group Route-Cost-Based VI Model

Then, the equivalent variational inequality formulation of multi-group route-
cost-based instantaneous DUO route choice conditions (12.33)-(12.35) may be
stated as follows.

Theorem 12.2. The dynamic traffic flow pattern satisfying network
constraint set (12.36)-(12.47) is in a multi-group route-cost-based
instantaneous DUO route choice state if and only if it satisfies the
variational inequality problem:

/ PIP I’ (t)[ o (t) = frp ()] dt >0 (12.48)

rs mp

The proofs of necessity and sufficiency for variational inequality (12.48) follow
in the same manner as in Section 12.1.3 for the single group route-time-based
case.

12.3 A Link-Time-Based VI Model of Instan-
taneous Route Choice

Both VI models presented above are route-based; their solution requires explicit
route enumeration. Although the route-based model is intuitive in terms of
understanding, route enumeration is a great burden if the network is large,
which is termed the curse of dimensionality in optimal control theory. Figure
12.1 shows a 5 x 5 one-way square grid network with N = 25 nodes and L = 36
links. The total number of routes from node 1 to node 25 is 64.

Table 12.4 illustrates the increase of links and routes with the increase of
nodes in such a grid network. Basically, the number of links increases linearly
with the increase of nodes. However, the number of routes increases exponen-
tially with the increase of nodes. For example, when there are only 100 nodes,
the number of routes is well over 20,000. When there are 400 nodes, the number
of routes is over 10°. We note that the routes in these one-way grid networks
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Figure 12.1: Example Grid Network

are efficient routes in the sense of the definition of Dial (1971); i.e., any link
on the route takes the vehicles further away from the origin and closer to the
destination. From Table 12.4, we can conclude that explicit route enumeration
is infeasible for large networks.

Table 12.4: Number of Nodes, Links and Routes

Number of Nodes N || 4| 9 | 16 | 25 | 36 49 64 100 400

=
-
)

Number of Links L 24 | 40 | 60 84 120 180 760

Number of Routes 216 [20]64]202]660][2212]>20,000| >10°

To distinguish the link-based model from the route-based model, we can
focus on the variational inequality instead of their constraints because both
constraints are route-based. If the variational inequality can be formulated
using link-based variables instead of route-based variables, a carefully designed
solution algorithm for such a variational inequality will not require explicit
route enumeration. We will demonstrate this point later. This is also true for
optimization problems. If the objective function of an optimization program
can be formulated using link-based variables instead of route-based variables, a
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carefully designed solution algorithm will not need explicit route enumeration.
Recall that in the mathematical programming formulation for the static user-
optimal route choice model, the objective function can be formulated using
either link-based variables or route-based variables. However, the link-based
objective function is preferred because for such a link-based objective function,
the Frank-Wolfe algorithm does not need explicit route enumeration. This
property is also true for the optimal control models in this book.

Because dynamic traffic flow does not have a constant flow rate during
propagation over links and routes, route-based VI models can not be trans-
formed into link-based VI models. Thus, it is very difficult to develop a solution
algorithm for a route-based VI without explicit route enumeration. This issue
is the most critical constraint for applying route-based VI to realistic trans-
portation networks. Therefore, we propose a link-based VI which overcomes
this problem. In addition to this contribution, we note that our formulation
approach is different from others (Smith, 1993; Friesz et al, 1993).

The set of dynamic network constraints for the link-time-based VI model
is identical to constraint set (12.6)-(12.17) of the route-time-based VI model
in Section 12.1. The basic difference between the two models is that the varia-
tional inequality of the link-time-based VI model is formulated using link-based
flow variables instead of route-based variables as in the route-time-based VI
model.

12.3.1 Link-Time-Based Conditions

In contrast to the previous sections, we now introduce a new set of instanta-
neous DUO route choice conditions based on link and node variables, instead of
route-based variables. In this problem, link a is defined as being used at time ¢
if ug(t) > 0. A route p from decision node 7 to destination s is defined as being
used at time t if u},(¢) > 0 for the first link a € p. In the following, we define
an instantaneous DUO route choice state based on link and node variables.

Link-Time-Based Instantaneous DUO State: If, for any de-
parture flow from each decision node to each destination node at
each instant of time, the instantaneous travel times equal the min-
imal instantaneous route travel time, the dynamic traffic flow over
the network is in a link-time-based instantaneous dynamic user-
optimal state.

The above definition of an instantaneous DUO state is identical to that
in Chapter 5. Note that the route-time-based instantaneous DUO state defined
in Section 12.1 is a subset of the link-time-based instantaneous state because
the decision node includes the origin so that each O-D pair is one decision
node-destination pair.

Define 0**"(t) as the minimal instantaneous travel time for vehicles de-
parting from node 7 to destination s at time ¢, the asterisk denoting that the
travel time is computed using link-time-based instantaneous DUO traffic flows.
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For link a = (4, j), the minimal instantaneous travel time o**" (t) from node i to
destination s should be equal to or less than the minimal instantaneous travel
time o7 ".(t) from node j to destination s plus the instantaneous link travel
time c,(t) at time instant ¢. It follows that

o8 (8) + ¢ (t) > o' () Va = (i, ), s. (12.49)

If any departure flow from node i to destination s enters link a at time %, or
u? (t) > 0, then the link-time-based instantaneous DUO route choice conditions
require that link a is on the minimal instantaneous travel time route. In other
words, the instantaneous minimal travel time o**"(t) for vehicles departing
node i toward destination s at time ¢ should equal the minimal instantaneous
travel time ¢7*"(t) from node j to destination s plus the instantaneous link
travel time ¢ (t) at time instant ¢. It follows that

AW +ei() =0 (1), iful(t)>0 Va=(ij),s. (12.50)
The above eqﬁations are also equivalent to the following:

O+ -t O] =0 Ya=Gins (251

Denote © (t) as the difference between the minimal instantaneous travel time
from node j to destination s and the instantaneous travel time from node 7 to
destination s plus the instantaneous travel time on link a at time ¢. It follows
that

02" (t) = o7 (t) + ci(t) — o™ (1) Va, s;a = (i, j). (12.52)

Thus, the link-time-based instantaneous DUO route choice conditions can be
summarized as follows:

e (1) >0 Va = (i, §), s; (12.53)
ul (1) 05 (1) =0 Va = (i, ), ; (12.54)
ul(t) >0 Va = (4, ), s. (12.55)

Now, we state a lemma concerning the relationship between the link-
time-based and the route-time-based instantaneous DUO route choice condi-
tions.

Lemma 12.1. Link-time-based instantaneous DUO route choice
conditions (12.53)-(12.55) imply route-time-based instantaneous DUO
route choice conditions (12.3)-(12.5).
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Proof.

If we consider node 7 as an origin 7, then link-time-based instantaneous
DUO route choice conditions (12.53)-(12.55) apply to O-D pair rs. Thus,
equations (12.53)-(12.55) can be written as

oI (1) + ch(t) — 0™ (t) > 0 Va = (r,§), 1 (12.56)
() [ ) + ) o™ ()] = 0 Va=(rj)rs  (12.57)
ur’(t) >0 Ya = (r,j),rs (12.58)

Suppose there are P routes from origin r to destination s via link a. Since equa-
tion (12.74) applies to all links a exiting origin r, we can define an instantaneous
travel time on route p as ¥’ (t). If link a is on route p, this instantaneous

route travel time 1,b1',"‘ (t) must be greater than or equal to the minimal instan-
taneous travel time from node j to destination s plus the instantaneous travel
time on link a at time ¢. It follows that

Yoo (t) > 077 () + ci(t) (12.59)
By equation (12.56), we have
Yrr (1) > 0™ () (12.60)

which is identical to equation (12.3). Furthermore, if there is a flow on link a,
i.e., u7®” (t) > 0, then by equations (12.56)-(12.57), we have

() +ci(t)— o™ (1) =0 (12.61)

Specify p as the route via link a and the minimal instantaneous travel time
subroute from node j to destination s. Thus, the flow f;"‘ (t) on route p is
positive at time ¢t and we have

' (1) = o7 (t) + i (1) (12.62)

In other words, we have
f;s- (t) [¢;’.(t) _ o,r,‘(t) =0 (12.63)

For any positive link inflow uf*"(t) > 0, we can generate a corresponding
positive route inflow f;" (t) and the corresponding equation (12.63). Thus,
equation (12.63) applies to any positive route inflow f;* ) (t). We conclude that
it applies to any route between any O-D pair rs. Note that the above equation
applies to any zero route inflow f;’ ) (t) = 0 as well. Therefore, equations
(12.60) and (12.63) imply the route-time-based instantaneous DUO route choice
conditions (12.3)-(12.5). The proof is complete.
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12.3.2 The Link-Time-Based VI Model

The equivalent variational inequality formulation of link-time-based instanta-
neous DUO route choice conditions (12.53)-(12.55) may be stated as follows.

Theorem 12.3. The dynamic traffic flow pattern satisfying network
constraint set (12.6)-(12.17) is in a link-time-based instantaneous
DUO route choice state if and only if it satisfies the variational
inequality problem:

T
/ Y Y ey [uw-urm)] ¢ > o (12.64)
Y 8 a
Proof of Necessity.

We need to prove that link-time-based instantaneous DUO route choice
conditions (12.53)-(12.55) imply variational inequality (12.64). For any link a,
a feasible inflow at time ¢ is

ug(t) > 0. Va = (4, j), s. (12.65)
Multiplying equation (12.65) and equation (12.53) we have
ul(t) 4 (t) >0 Va, s;a = (1, j). (12.66)
We subtract equation (12.54) from equation (12.66) and obtain
[us®) - ue )] 2 (t) >0 Va,s;a = (i, ). (12.67)
Summing equation (12.67) for all links a and all destinations s, it follows that

>y [u;(t) —u (t)] 0!’ (t) >0 where a = (i,5).  (12.68)

Integrating the above equation from 0 to T, we obtain variational inequality
(12.64).

Proof of Sufficiency.

We need to prove that any solution u% (t) to variational inequality
(12.64) satisfies link-time-based instantaneous DUO route choice conditions
(12.53)-(12.55). We know that the first and third instantaneous DUO route
choice conditions (12.53) and (12.55) hold by definition. Thus, we need to
prove that the second instantaneous DUO route choice condition (12.54) also
holds.
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Assume that the second instantaneous DUO route choice condition (12.54)
does not hold only for a link b = (I, m) for a destination n during a time interval

[d—é,d+8]e[0,T],ie.,

P’ (#)>0 and O} (1) >0 te[d—6,d+4 (12.69)
Thus, we have
ul (1) O (1) >0 (12.70)
where
QP (t) =™ (t)+ci(t)— o™ () >0  where b= (I,m). (12.71)

Note that the second instantaneous DUO route choice condition (12.54) holds
for all links other than link b = (I, m) for destination n at time t. Equation
(12.54) also holds for link b = (I,m) for destinations s # n at time ¢ and for
link b = (I, m) for destinations n at time t ¢ [d — &,d + é]. It follows that

d+é
/ ZZO’ uy (t) dt = /H W) OF () dt >0 (12.72)

We note that all other terms in the above equation vanish because of instanta-
neous DUO route choice condition (12.54).

For each O-D pair rs, we can always find one minimal travel time route
p for vehicles departing origin r at time ¢, where route p was evaluated under
optimal flow pattern {u% (¢)}. For each link a on this route p, the first instan-
taneous DUO route choice condition (12.53) becomes an equality by definition.
It follows that

0 )= (t)+ci(t)—c* (t)=0 Va,s;a=(5,j);a€p.  (12.73)

Next, we need to find a set of feasible inflows u}(t) so that the following equa-
tions

ul(t) @5 (1) =0 Va, s;a = (i, ) (12.74)

always hold. We adjust all the departure flows f7*(t) for all O-D pairs at time
t. For each O-D pair rs at each time ¢, we assign O-D departure flow f™*(¢) to
the minimal travel time route p, which was evaluated under the optimal flow
pattern {u’ (t)}. This will generate a set of feasible inflow patterns {u’(t)} =
Y-, ug’(t) which always satisfies equations (12.73) and (12.74) because flows
are not assigned to routes with non-minimal instantaneous travel times which
were evaluated under the optimal flow pattern {u% (t)}. Summing equations
(12.74) for all links a and all destinations s, it follows that

Y)Y uwyes =0 where a = (i, ). (12.75)
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Integrating the above equation (12.75) for interval [0, T}, we have

/ ' D) i) ey t)dt =0 (12.76)

We subtract equation (12.72) from equation (12.76) and obtain

/0 TZZ@.‘,'(t) [u;(t) -~ u;‘(t)] dt <0 (12.77)

The above equation contradicts variational inequality (12.64). Therefore, any
optimal solution {u%"(t)} to variational inequality (12.64) satisfies the second
instantaneous DUO route choice condition (12.54). Since we proved the ne-
cessity and sufficiency of the equivalence of variational inequality (12.64) to
link-time-based instantaneous DUO route choice conditions (12.53)-(12.55), the
proof is complete.

12.4 A Multi-Group Link-Cost-Based VI Model
of Instantaneous Route Choice

In this section, we consider a link-based multi-group VI model for the instanta-
neous dynamic user-optimal problem. The dynamic network constraints have to
be written for each group of travelers designated by index m. The constraint set
for this problem is identical to the constraint set (12.36)-(12.47) for the route-
based multi-group VI model in Section 12.2. As before, the basic difference
between the two models is that the variational inequality of the multi-group
link-cost-based model is formulated using link-based flow variables instead of
route-based variables as in the multi-group route-cost-based VI model.

12.4.1 Multi-Group Link-Cost-Based Conditions

The instantaneous route disutility function is dependent on the instantaneous
route travel time, fuel consumption enroute and automobile operating cost, etc.
Denote émq(t) as the instantaneous disutility function for group m travelers
entering link @ at time ¢. It follows that

6ma(t) = Qma + ,Bma ca(t) Vm,a (1278)

where a4 is a fixed instantaneous disutility parameter for group m travelers on
link a and B, is a parameter to transform instantaneous link travel time cq (?)
into the disutility of group m travelers. Denote ¢ (t) as the instantaneous
route travel disutility for group m travelers from origin r to destination s at
time ¢. The instantaneous route travel disutility for all allowable routes p
between decision node ¢ and destination s is computed as follows:

Piap(t) = Y Emalt) Vm, p,i, s (12.79)
a€isp
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where the summation is over all links a on route p. We then define a multi-
group link-cost-based instantaneous DUOQ state as follows.

Multi-Group Link-Cost-Based Instantaneous DUO State:
If, for any departure flow of group m from each decision node to
each destination node at each instant of time, the instantaneous
travel disutilities equal the minimal instantaneous route travel disu-
tility, the dynamic traffic flow over the network is in a multi-group
link-cost-based instantaneous dynamic user-optimal state.

Define &i(¢) as the minimal instantaneous route travel disutility for
group m travelers from node i to destination s at time ¢. The asterisk denotes
that the travel disutility is computed using multi-group link-cost-based instan-
taneous DUO traffic flows. For group m travelers on link a = (z, §), the minimal
instantaneous travel disutility 2" (¢) from node i to destination s should be
equal to or less than the minimal instantaneous travel disutility 6%¢" (¢) from
node j to destination s plus the instantaneous link travel disutility &}, ,(¢) at
time instant ¢. It follows that

G () + Ea(t) > Gin (2) Vm,a = (i, j), s. (12.80)

If any departure flow of group m from node i to destination s enters link a
at time ¢, or u?,,(t) > 0, then the multi-group link-cost-based instantaneous
DUO route choice conditions require that link a is on the minimal instanta-
neous travel disutility route. In other words, the instantaneous minimal travel
disutility 2" () for vehicles departing node i toward destination s at time
t should equal the minimal instantaneous travel disutility &32" (t) for vehicles
departing node j to destination s plus the instantaneous link travel disutility
&a(t) at time instant ¢. It follows that

GI () + Ena®) =632 (), Hulg(®)>0 Vmya=(i,j),s.  (12.81)
The above equations are also equivalent to the following:

G (1) + Gg () = 555" ()] wina(®) =0 Vmya=(i,j)s.  (1282)

Denote O, (t) as the difference between the minimal instantaneous travel disu-
tility from node j to destination s and the instantaneous travel disutility from
node i to destination s plus the instantaneous travel disutility on link a for
group m at time ¢. It follows that

0%, (1) = G127 (1) + Ea (1) — 5227 (1) Vm,a,s;a = (3,7).  (12.83)

Thus, the multi-group link-cost-based instantaneous DUO route choice condi-
tions can be summarized as follows:

65a(t) 2 0 Vm,a = (i, 5), 5; (12.84)
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u:r:a(t) é:r:a (t) =0 Vm’ a = (Z, J)a 83 (12.85)
Upa(t) >0 Vm,a = (4, j),s. (12.86)

Similar to Lemma 12.1, we can prove that multi-group link-cost-based instan-
taneous DUO route choice conditions (12.84)-(12.86) imply route-based multi-
group instantaneous DUO route choice conditions (12.33)-(12.35).

12.4.2 The Multi-Group Link-Cost-Based VI Model

The equivalent variational inequality formulation of multi-group link-cost-based
instantaneous DUO route choice conditions (12.84)-(12.86) may be stated as
follows.

Theorem 12.4. The dynamic traffic flow pattern satisfying network
constraint set (12.36)-(12.47) is in a multi-group link-cost-based
instantaneous DUO route choice state if and only if it satisfies the
variational inequality problem:

/ TZZé:;,(t) [u80a®) = wia(®)] @t > 0 (12.87)
0

s§ ma

The proofs of necessity and sufficiency follow in the same way as for the single
group case.

12.5 Relationships Between VI Models and
Optimization Models

As illustrated in Chapter 3, VI models can be reformulated as optimization
models under certain symmetry conditions. We show in this section that the
VI model can be reformulated as an optimal control problem which is identical
to the optimal control models with similar constraints presented in Chapter 5.
We will not discuss each VI model in this chapter, but focus our analysis on
the link-time-based VI model for the instantaneous DUO route choice problem
of Section 12.3. Similar analyses can be performed for other VI models for
various instantaneous DUO route choice problems.
Consider the following VI problem from Section 12.3:

/ TZZGZ'U) [UZ(f)—UZ'(t)] dt > 0 (12.88)
Y 8 a

In order to present a partitionable VI, we need to transform the original VI
into a partitionable VI using some new definitions as follows. Recall that the
instantaneous link travel time function can be expressed as

ca(t) = g1a[za(t), ua(t)] + g2a[2a(t), va(t)] Va. (12.89)
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Denote an auxiliary link travel time function A3"(t) as
A2 (1) = gaalza(t), va(t)] + 07 (2) Va,s;a = (i, j). (12.90)

Recall that in Section 12.3, we defined another auxiliary link travel time func-
tion

0% (t) = 7" (t) + ci(t) — o’ () VYa,s;a = (i, j). (12.91)
Substituting equations (12.89)-(12.90) into equation (12.91), we obtain

@;' (t) o-ja‘ (t) + gla[:z:a(t), ua(t)] + 92a[5ca(t), Va (t)] _ o_i,‘ (t)

91a[2a(t), ua()] = 0™ () + 23" () 2 0
Va,s;a = (i, §). (12.92)

Based on equation (12.90), we define a related auxiliary link travel time function
05" (t) = g2alza(t), va(t)] + 07 (#) = XS () =0 Va,s;a = (3,5). (12.93)

Using the above new definitions, link-time-based instantaneous DUO route
choice conditions (12.53)-(12.55) are rewritten as equivalent conditions as fol-
lows.

) (t)>0 Va = (i,7), 8 (12.94)
0’ @t)=0 Va = (i, ), s (12.95)
ul () @27 (t) =0 Va = (i, §), s; (12.96)
v (1)@ (1) =0 Va = (i, ), s; (12.97)
ul(t) >0 Ya = (i,j), s; (12.98)
vi(t) > 0 Va = (4, ), s. | (12.99)

Equation (12.94) is equivalent to equation (12.53), and equation (12.96) is
equivalent to equation (12.54). Then, the link-time-based variational inequality
(12.88) or Theorem 12.3 can be restated as an equivalent VI in the following
theorem.

Theorem 12.5. The dynamic traffic flow pattern satisfying network
constraint set (12.6)-(12.17) is in a link-time-based instantaneous

DUO route choice state if and only if it satisfies the variational
inequality problem:

/OT »D {93‘ (t) [u;(t) —u? (t)]

+ 85 (®) [ -v )]} at >0 (12.100)
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The second term in the above variational inequality equals zero. It is placed
within the VI so that the reformulation of the VI as an optimal control problem
can be performed more easily. Therefore, the above VI is equivalent to the
link-time-based instantaneous DUO route choice conditions (12.53)-(12.55) or
(12.94)-(12.99). The proofs of necessity and sufficiency are straightforward and
not given here.

Substituting definitions (12.92) and (12.93) into equation (12.100), vari-
ational inequality (12.100) is equivalent to

T
/0 33 {[oralza®), ual - o () + 257 @)] [uat) - u"@)]
+ [oalza(t), va(®)] = X () + 07 (1)) [oa(t) o2 )] }
/ U5 {orelza(®) 100 [0 - v300)
+ gaaloalt),va(®)] [nalt) = v2(0)] } at
T i8° s* s s*
[ EE o] [mo-we)

¥ [—,\;’(t)+af"(t)] s - o' @] } @t > 0 (12.101)

+

We now show that a relaxation or diagonalization procedure can be designed
so that the above VI can be formulated as an optimal control model in each
relaxation iteration. In other words, our optimal control model in Chapter 5
is a special case of this VI. Now we assume that the actual link travel time
7a(t) is fixed temporarily in the flow propagation constraints at each relaxation
iteration. Then, the cross-effects of flow variables at different time instants can
be separable at each iteration. In other words, a Jacobian submatrix of the
instantaneous link travel time c¢4(t) with respect to the inflow u,(t) for each
time instant can be written as

991(t) 0 0
61‘1(t) s .
0 _%_)12 0
Vuc;(t) = . 3#2 R .
: Bg1n(t
0 0 Eﬁf)l

where n is the total number of links in the network. Obviously, the above
matrix is symmetric. We note that z,(t) does not enter the Jacobian submatrix
because it is a state variable. Another Jacobian sub-matrix of the instantaneous
link travel time cq(t) with respect to the exiting flow v,4(t) for each time instant
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can be written as

dgn(t) 0 0
Bvl(t)
0 9g22(t)

aw=| , " .
: Ogan(t

which is also symmetric. Then, at each time instant ¢, there is an optimization
problem which is equivalent to the integrand of variational inequality (12.100):

Min Z {/O“a(t) g1a[za(t),w] dw + /”a(t) 92a[Za(t),w] dw}
+ ZE{ us(®) [0 @)+ 25 O] + o) [ O+ @)}

uq(t) va(t)
= E {/0 91a[za(t), w] dw +/ 92a[Ta(t),w] dw}

a

ZZ[«:" () ua(t) + 07" (¢) vi(2)]
+ ZZA' () [us (2) - v(®)] (12.102)

Reorganizing the above equation based on each node j, we have

a

+ LN OO -0 -0 3w

uo(t) ve(t)
Min Z {/0 g1a[ze(t), w]dw +/ gza[za(t),w]dw}

a€A(r)
F YOI wo- Y e
s j#rs a€B(j) a€A(j)
+ Za" ®) Y, vit)
a€B(s)

o(t) va(t)
= E {/0 gla[za(t),w]dw-}-/ gza[xa(t),w]dw}

a

+ EZ/\ Oug @) =L @] =D D 0™ () Y w'(®)

r#s s a€cA(r)
EDIPI AU IEAUER DA
rs j#rs a€B(j) a€A(])

+ Zzaaa (t) Z rs(t)

T s#r a€B(s)
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The above equation is equivalent to the following partial Hamiltonian function
with flow conservation constraints only:

ual(t) va(t)
Z {/0 g1a[Ta(t), w]dw + /0 gga[:ca(t),w]dw}

a

H

+ YT O - )

FEY e Y S
r#s 8 a€A(r) p

DI ID ML DUTHOEIP IR0
rs j#rs P a€B(j) a€A(F)

+ 22O Y Do) - e ()]
T os#r a€B(s) P

where the flow propagation constraint is not included. Thus, we can simply
state the objective function of the optimization program as

Min / Z{ / " elza(t), ] do

+ /0 u(t)gza[:ca(t),w] dw} dt (12.103)

because other terms in the partial Hamiltonian function are associated with link
and node flow conservation equations. Therefore, link-time-based variational
inequality (12.88) can be reformulated as an optimal control problem with
objective function (12.103) and constraints (12.6)-(12.17) at each relaxation
iteration. In other words, we have demonstrated that our original optimal
control model in Chapter 5 is a special relaxation or diagonalization problem
of VI formulation (12.88). We note that the actual link travel time 74(%) is fixed
temporarily in the flow propagation constraints at each relaxation iteration.

The solution procedure in Chapter 6 is in fact the relaxation algorithm
for solving VI model (12.88). Therefore, similar solution procedures can be
developed for solving the link-based multi-group VI model for the instantaneous
DUO route choice problem.

Next, we consider a special case in which the instantaneous link travel
time function depends on the state variable only, namely,

ca(t) = cq[za(2)] Va. (12.104)
Likewise, the actual link travel time function is:
Ta(t) = Ta[za(?)] Va. (12.105)

The same derivation and analysis from (12.90) to (12.101) applies here. How-
ever, it is not necessary to design a relaxation procedure in this case. Because
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link travel time functions depend on the state variable only, the cross-effects of
flow variables at different time instants are separable. In other words, the two
Jacobian submatrices of the instantaneous link travel time c,(t) with respect
to the inflow u4(t) and exit flow v, (t) for each time instant can be written as

VuCy(t) =0

VoCy(t) =0

which are symmetric. Thus, we can obtain the following optimization program:

. T
Min /0 ; Uq(t)cq[eq(t)] dt (12.106)

s.t. constraints (12.6)-(12.17).

The above optimal control problem is equivalent to variational inequality (12.88).
Equation (12.106) is an objective function for a kind of dynamic system-optimal
route choice problem. It is a special case of our general instantaneous DUO
route choice problems when assumptions (12.104)-(12.105) hold.

12.6 Notes

Variational inequality formulation approaches originated with static transporta-
tion network problems. The static user-optimal route choice problem was for-
mulated as an equivalent set of inequalities by Smith (1979). Later, Dafermos
(1980) developed an elastic demand model with disutility functions using the VI
approach. An elastic demand model with demand functions was introduced by
Dafermos and Nagurney (1984b). Fisk and Boyce (1983) also presented alter-
native VI formulations for network equilibrium travel choice problems. Nagur-
ney (1993) summarized the modeling and algorithmic aspects of VI models for
static traffic assignment problems. Recently, Friesz et al (1993) formulated a
VI model for the simultaneous departure time/route choice problem. Smith
(1993) also presented a route-based VI formulation using the packet represen-
tation of vehicle groups. Both dynamic models are route-based, which require
explicit route enumeration for formulation and solution.

As discussed in Sections 12.1-12.4, route-based and link-based definitions
of instantaneous DUOQ are not necessarily equivalent. Route-based definitions
do not provide any routing strategies at intermediate decision nodes and have
less applicability compared to the link-based definitions in ATIS systems. Fur-
thermore, link-based DUO definitions imply route-based DUQO definitions and
are more realistic in terms of users’ route choice behavior. Therefore, in this
book and in studies of dynamic incident management, we focus on models
formulated according to the link-based DUO definitions.



Chapter 13

Variational Inequality Models of
Ideal Dynamic User-Optimal
Route Choice Problems

In this chapter, we present both route-based and link-based variational inequal-
ity models for the ideal dynamic user-optimal route choice problem. In Section
13.1, a route-time-based VI model for ideal DUO route choice is proposed.
This model is the most straight-forward formulation of route-time-based, ideal
DUO route choice conditions. In Section 13.2, a multi-group route-time-based
VI model is developed. In this model, each group of travelers is associated with
a disutility function. Thus, the route-based ideal DUO route choice conditions
are defined for each group of travelers on the basis of travel disutilities instead
of travel times only.

Route-time-based VI models have an intuitive interpretation. However,
they encounter a computational difficulty in terms of explicit route enumera-
tion. A link-time-based VI model is therefore proposed in Section 13.3. We
prove that the link-time-based ideal DUO route choice conditions imply the
route-time-based ideal DUO route choice conditions. In parallel to the route-
based VI models, a multi-group link-based VI model is also presented in Section
13.4.

In Section 13.5, the relationships between VI models and optimization
models are discussed. As an example, the link-time-based VI model is refor-
mulated as optimal control problem. Thus, an algorithm without explicit route
enumeration can be designed to solve this VI.
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13.1 A Route-Time-Based VI Model of Ideal
Route Choice

13.1.1 Route-Time-Based Conditions

Recall from Chapter 4 that the actual link travel time is the travel time over a
link actually experienced by vehicles. The actual travel time 74(t) over link a
for vehicles entering link @ at time ¢ is assumed to be dependent on the number
of vehicles z,4(t), the inflow u4(t) and the exit flow v4(t) on link a at time ¢. It

follows that
Ta(t) = Z Ta[Za(t), ua(t), va(t)] Ya (13.1)
a€Ersp

Suppose we have a set of routes {p} and f;’ (%) is the route inflow from
origin  to destination s at time ¢. Denote 7,°(¢) as the actual travel time from
origin r to destination s over route p at time ¢, and 7"*(t) as the minimal ac-
tual route travel time from origin r to destination s at time ¢. In Chapter 4 we
defined a recursive formula to compute the route travel time n,°* (t) for each al-
lowable route as follows. Assume route p consists of nodes (r,1,2,--,4,-++,s).
Denote 77;‘ (t) as the travel time actually experienced over route p from origin
r to node 7 by vehicles departing origin r at time £. Then, a recursive formula
for route travel time np*(t) is:

i (8) = D) + maft + (@) Vp,rii=1,2,--+, 8

where link a = (i — 1, 7).

If the actual link travel time 74(t) is determined, the minimal actual
O-D travel time 77*(t) can be computed as 7"*(t) = min, np°(t). 7"*(t) is a
functional of all link flow variables at time w: 77*(t) = 7"* [u(w), v(w), z(w)|w >
t]. This functional is neither a state variable nor a control variable, and it is
not fixed. This functional is not available in closed form.

For any route p from origin » to destination s, route p is defined as being
used at time ¢ if f;°(t) > 0. In this chapter, we assume that the time-dependent
origin-destination trip pattern is known e priori. Thus, the departure times of
travelers are given. From Chapter 7, recall the definition of the ideal dynamic
user-optimal (DUO) state as follows.

Travel-Time-Based Ideal DUO State: If, for each O-D pair at
each instant of time, the actual travel times for all routes that are
being used equal the minimal actual route travel time, the dynamic
traffic flow over the network is in a travel-time-based ideal dynamic
user-optimal state.

The route-time-based ideal DUO route choice conditions which are equiv-
alent to the above definition are defined as follows.

(1) — 7" () 2 0 Vp, 1, ; (13.2)
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£ mr @) -1 ()] =0 Vp,r, s (13.3)

@) >0 Vp,r,s. (13.4)

The above definition of an ideal DUO state and its corresponding route choice
conditions are defined for each O-D pair. They are not defined for each decision
node-destination pair as in Chapter 4 (which is equivalent to link-based defini-
tion in Section 13.3). Thus, rerouting strategies are not provided for travelers
at intermediate intersections.

13.1.2 Dynamic Network Constraints

The constraint set for this route-time-based VI model is summarized as follows.

Relationship between state and control variables:

drﬂ
dt

dE;*(t
dt( ) ey’ (t) Vp,r;s # 15 (13.6)

Flow conservation constraints:

= >0 D une vr, s; (13.7)

Ugy (1) — g5 () Va,p,r,s; (13.5)

a€A(r) P
D va®)= D ug() Vi,pyry 85 # 1,8 (13.8)
a€B(j) a€A(j)
3 Yty =€) Vr,s;5 £ 1 (13.9)

a€B(s) p

Flow propagation constraints:

2 (t) = Y _{oiplt + 7a(t)] — 2y (&)} + { B[t + ra(t)] — Ep* (1)}
bep

Va € B(j);j # ripy 7y 85 (13.10)

Definitional constraints:

Souppt) =ua(t), D vis(t) =velt), Ve (13.11)

rap Tasp

D aia(t) = za(t), Va; (13.12)

Tsp
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Nonnegativity conditions:

zop(t) >0,  ugp(t) >0, vy (t)>0 Va,pr,s; (13.13)

e’ (t) >0, EF()>0, Vprs; (13.14)
Boundary conditions:

E;*(0) =0, Vp, 7, s; (13.15)

2ep(0) =0,  Va,p,7,s. (13.16)

13.1.3 The Route-Time-Based VI Model

The equivalent variational inequality formulation of route-time-based ideal
DUO route choice conditions (13.2)-(13.4) may be stated as follows.

Theorem 13.1. The dynamic traffic flow pattern satisfying network
constraint set (13.5)-(13.16) is in a route-time-based ideal DUO
route choice state if and only if it satisfies the variational inequality
problem:

T
/0 Yo [fre-fTw) d o (13.17)
rs p
Proof of Necessity.

We need to prove that the ideal DUO route choice conditions (13.2)-
(13.4) imply variational inequality (13.17). For any route p, a feasible inflow

at time t is
;" (t)>o. (13.18)

Multiplying ideal DUO route choice condition (13.2) by the above equation,
we have

K@) (@) == (@] 2 0 Vp,7,s. (13.19)
We subtract equation (13.3) from equation (13.19) and obtain
[ -5 @] @ -7"®] >0 Vp, 7, s. (13.20)

Summing equation (13.20) for all routes p and all O-D pairs rs, it follows that

Y'Y o-570] [5o- o]
= Y mo-570] wro-Xro X 5o - 570
Y [Ho-5"0] 5w 2o (13.21)
rs p
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where the flow conversation equation

Y=Y 7=

4 4

holds for each O-D rs at each time t. Integrating the above equation (13.21)
from 0 to T, we obtain variational inequality (13.17).

Proof of Sufficiency.

We need to prove that any solution f;"(t) to variational inequality
(13.17) satisfies ideal DUO route choice conditions (13.2)-(13.4). We know
that the first and third ideal DUO route choice conditions (13.2) and (13.4)
hold by definition. Thus, we need to prove that the second ideal DUO route
choice condition (13.3) also holds.

Assume that the second ideal DUO route choice condition (13.3) does not
hold only for a route g for O-D pair kn during time interval [t;—4,t;+6] € [0, T,
ie.,

) >0 and V() -7T(E) >0 Vief[ti-6,ti4+6]  (13.22)

Since the second ideal DUO route choice condition (13.3) holds for all routes
other than route ¢ for O-D pair kn at time ¢, it follows that

T
/O SN () - 2 (1) dt
TS p

= / nre FE () [k @) — 7 ()] dt >0 (13.23)

ti—46

We note that all other terms in the above equation vanish because of ideal
DUO route choice condition (13.3).

For each O-D pair rs, we can always find one minimal actual travel time
route ! for vehicles departing origin r at time ¢, where route ! was evaluated
under the optimal flow pattern { f;" (t)}. For this route I, the first ideal DUO
route choice condition (13.2) becomes an equality by definition. It follows that

() -7 () =0 Vi, 5. (13.24)

Next, we need to find a set of feasible route inflows f;*(t) so that the following
equations

T(t) [ @) -7 @) =0 Vo, s (13.25)

always hold. We consider all the departure flows f7(t) for all O-D pairs at
each time f. For each O-D pair rs at each time ¢, we assign O-D departure
flow f7(t) to the minimal travel time route [, which was evaluated under the
optimal flow pattern {f;* *()}. This will generate a set of feasible route inflow
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patterns {f;*(¢)} which always satisfies equation (13.25) because flows are not
assigned to routes with non-minimal travel times which were evaluated under
the optimal route inflow pattern { f;".(t)}. Summing equations (13.25) for all
routes p and all O-D pairs rs, it follows that

Y s [ -aTo] =0 (13.26)

Integrating the above equation for time period [0,T7], we have

T
/0 ZZf;’(t) [n;’.(t)——w”'(t)] dt =0 (13.27)
rs p

We subtract equation (13.23) from equation (13.27) and obtain
T
| S ro-570] Ho-o)
T ’ .
‘A{szﬁm—ﬁaﬂwm
Z}woiﬂwm—gﬁﬂ}m

T
/0 SRt [Hro-570] d <o (13.28)
rs p
where the flow conservation

S =5 = £

p p

holds for each O-D pair rs at each time ¢ so that the second term vanishes. The
above equation contradicts VI problem (13.17). Therefore, any optimal solution
{5 $"(t)} to variational inequality (13.17) satisfies the second ideal DUO route
choice condition (13.3). Since we proved the necessity and sufficiency of the
equivalence of variational inequality (13.17) to route-time-based ideal DUO
route choice conditions (13.2)-(13.4), the proof is complete.

13.2 A Multi-Group Route-Cost-Based VI
Model of Ideal Route Choice

In this section, we define an ideal dynamic user-optimal (DUQ) model based on
travel costs or disutilities instead of travel times. To be consistent with Chapter
12, we still stratify travelers into M groups for each O-D pair. When M =1,
the following definition and VI model reduces to a single group model, but one
which is different from the above VI model based on actual travel times.
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13.2.1 Multi-Group Route-Cost-Based Conditions

The actual route disutility function depends on the actual route travel time,
fuel consumption enroute and automobile operating cost, etc. Denote 7mq(t)
as the actual disutility function for travelers of group m entering link a at time
t. It follows that

Tma(t) = @ma + Bma Ta(t)  Vm,a (13.29)

where anq is a fixed actual disutility parameter for group m travelers on link a
and B, is a parameter to transform actual link travel time 7,4(t) into the disu-
tility of group- m travelers. Denote ;;,(t) as the actual route travel disutility
for group m travelers from origin 7 to destination s at time ¢, and #7?(¢) as
the minimal actual route travel disutility for group m travelers from origin r to
destination s at time t. We also need to use a recursive formula to compute the
route travel disutility #jj;,(t) for all allowable routes. Assume route p consists
of nodes (r,1,2,--+,4,--+,s). Denote ﬁf,{p(t) as the travel disutility ectually
experienced over route p from origin r to node j by vehicles departing origin r
at time t. Then, a recursive formula for route travel disutility 77;,(t) is:

ﬁ;{p(t) = ﬁ:rgi_l)(t) + ‘T'ma[t + n;(J_l)(t)] V'I’Tl, b, 7 ];] = 1, 2, trey 8

where link @ = (j —1, j) and time [t+17,r,(j _1)(t)] is the arrival time at link a for
group m travelers. We then define a multi-group travel-cost-based ideal DUO
state as follows.

Multi-Group Travel-Cost-Based Ideal DUO State: If, for
each group m and each O-D pair at each instant of time, the actual
travel disutilities for all routes that are being used equal the min-
imal ideal route travel disutility, the dynamic traffic flow over the
network i3 in a multi-group travel-cost-based ideal dynamic user-
optimal state.

Recall that fr,(t) is the route inflow of group m from origin r to destination
s at time t. The equivalent multi-group ideal DUO route choice conditions can
be summarized as follows:

Tirap (£) = T (£) 2 0 Vm, p,r, 5; (13.30)
e () ['725; ®) - ”Zf'(t)] =0 Vm,p,r,s; (13.31)
";:P(t) Z 0 V'I’Tt,p, Ty S. (1332)

13.2.2 Dynamic Network Constraints

The revised constraint set for the multi-group route-cost-based model is sum-
marized as follows.
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Relationship between state and control variables:

da::,:ap
dt map (t) map(t) Vm,a, by 7S (13.33)
4B, (1) _

dt (t) Vma prys 7’4- T (13.34)

Flow conservation constraints:

)= Y ) ult,(t) Vm,r, s; (13.35)

a€A(r) »p

Z map(t) = Z map(t) Vja m,p, T, 8] # Ty 8 (13-36)

a€B(j) a€A(j)
Z Z Umap(t) =en (t) Vm’ 8§ -75 rs (1337)
a€B(s) p

Flow propagation constraints:

2o (t) = D _{eiplt + ra(t)] - 2y (1)} + { B}’ [t + 7a(t)] — E3* (1)}

bep

Va € B(j);j # 1ips7, 85 (13.38)

Definitional constraints:

E map(t) = ua(t)’ z map(t) = Ua(t), ‘vfa; (13.39)

mrsp mrsp

E Trap(t) = Za(t), Va; (13.40)

mrsp

Nonnegativity conditions:

Tiaap(t) 20,  upep,(t) 20,  vpg,(t) >0  VYm,a,p,r,s; (13.41)
emp(t) 2 0, Erp(t) 20, Vm,p,r, s; (13.42)

Boundary conditions:
E':'n’p(o) = 0’ Vm’ DTy 8 (1343)

map(o) =0, Vm,a,p,r,s. (13.44)
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13.2.3 The Multi-Group Route-Cost-Based VI Model

The equivalent variational inequality formulation of multi-group route-cost-
based ideal DUO route choice conditions (13.30)-(13.32) may be stated as fol-
lows.

Theorem 13.2. The dynamic traffic flow pattern satisfying network
constraint set (13.33)-(13.44) is in a multi-group travel-cost-based
ideal DUO route choice state if and only if it satisfies the variational
inequality problem:

/()Tzzﬁ'r"’;(t) [:':P(t)‘ o (t)] dt 2 0 (13.45)

rs mp

The proof of necessity and sufficiency for variational inequality (13.45) follows
in the same manner as in Section 13.1.3 for the single group route-time-based
case. '

13.3 A Link-Time-Based VI Model of Ideal
Route Choice

The set of dynamic network constraints for the link-time-based VI model is
identical to constraint set (13.5)-(13.16) of the route-time-based VI model in
Section 13.1. The basic difference between the two models is that the VI itself
of the link-time-based VI model is formulated using link-based flow variables
instead of route-based variables as in the route-time-based VI model.

13.3.1 Link-Time-Based Conditions

Similar to Chapter 12, we introduce a new set of ideal DUO route choice
conditions based on link and node variables, instead of route-based variables.
As in Section 13.1.1,, the definition of the travel-time-based ideal DUO route
choice state is given as follows.

Travel-Time-Based Ideal DUO State: If, for each O-D pair at
each instant of time, the actual travel times ezperienced by travelers
departing at the same time are equal and minimal, the dynamic
traffic flow over the network is in a travel-time-based ideal dynamic
user-optimal state.

Note also that the link-time-based ideal DUO state is defined in a somewhat
different way than the link-time-based instantaneous DUO state in Section
12.3.1. In the case of an ideal DUO state, the equilibration of route travel
times is stated for each O-D pair instead of each decision node-destination pair



276 Chapter 13. VI Models of Ideal Route Choice

as in the case of instantaneous DUO state because the ideal DUO is focused
on the optimal state of finishing the entire journey.

We now write the equivalent mathematical inequalities for the above
definition using link variables, in contrast to the route-based formulation in
Section 13.1. In this case, for any route from origin r to destination s, link a
is defined as being used at time ¢ if u7*(t) > 0. Define 77" (t) as the minimal
travel time actually experienced by vehicles departing origin r to node i at
time ¢, the asterisk denoting that the travel time is computed using ideal DUO
traffic flows. For link @ = (3, j), the minimal travel time 7" (t) from origin r
to j should be equal to or less than the minimal travel time 7™ (¢) from origin
r to i plus the actual link travel time 7,[t + 77¢(¢)] at time instant [t + 77¢(¢)],
where this time instant is the earliest clock time when the flow departing origin
r at time ¢ can enter link a. It follows that

(@) + Tt + 77 (1)) > 7 (2) Va = (i, ), .

If, for each O-D pair rs, any departure flow from origin r at time ¢ enters
link @ at the earliest clock time [t 4+ 7™ (t)], or w[*[t + 7™ (t)] > 0, then the
ideal DUO route choice conditions require that link a is on the minimal travel
time route. In other words, the minimal travel time 777" (t) from origin r to j
should equal the minimal travel time 7™ (¢) from origin = to i plus the actual
link travel time 7,[t + 7™ (t)] at time instant [t + 7™ (t)]. It follows that

W) =1 O+t @), Hu @) >0 Ya=(5),ns.
The above equation is also equivalent to the following:
[w“"(t) +alt + 77 ()] - r'f'(t)] ult [t+7" ()] = 0 Va = (i,j),r,s.

Thus, the link-time-based ideal DUO route choice conditions can be summa-
rized as follows:

(@) 4t + 7 (@) -7 () > 0 Va = (i, j), r; (13.46)
@] [+l 7 @) -7 @) = 0

Va = (i, 5), 7, s; (13.47)

ul*ft+ 7 (1)) >0 Va = (4, §),r,s. (13.48)

Lemma 13.1: Link-time-based ideal DUO route choice conditions
(13.46)-(13.48) imply route-time-based ideal DUO route choice con-
ditions (13.2)-(13.4).

Proof:

We need to prove for each O-D pair rs that under link-time-based ideal
DUO route choice conditions (13.46)-(13.48) any vehicle flows departing from
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origin 7 at time ¢ must arrive at destination s at the same time by using the
minimal actual travel time routes.

For simplicity, we first consider the case with only two route departure
flows f1*(t) > 0, f3°(t) > 0 for one O-D pair rs at time t. It follows that

T+ () = ) (13.49)

Suppose fi*(t), f3°(t) take routes 1 and 2, respectively. Routes 1 and 2
are minimal-travel-time routes generated under the link-time-based ideal DUO
route choice conditions. For simplicity, assume that route 1 comprises 4 links:
1=(r,h),2=(h,i),--+,4= (j,5); and route 2 comprises 5 links: 5 = (r, k),6 =
(k,1),+-+,9 = (m,s). Note that routes 1 and 2 may have overlapping links. Also
note that this assumption can be generalized to any route with any number of
links. Using link-time-based ideal DUO route choice conditions (13.46)-(13.48),
we have

W) > 0 up 4T O] > 0, uF T B] >0 (13.50)

ul (#) > 0, ufl [t + 7F (£)] > 0, -, ull [t + 7™ (8)] > 0 (13.51)

This is because route 1 and route 2 are generated under link-time-based ideal
DUO route choice conditions (13.46)-(13.48) so that there are inflows into links
1,2,.--,9 over route 1 and route 2. If route 1 and route 2 do not have overlap-
ping links, the inflow on each link over route 1 and 2 is positive at the instant
of time when departure flows arrive at the link. It follows that

Wil (8) > 0, uzslt + 7™ ()] > 0, uift + 77 ()] > 0 (13.52)

ugy (1) > 0, ugslt + 77 (£)] > 0, -+, st + 7™ (8)] > 0 (13.53)

where the second subscripts 1 and 2 represent routes 1 and 2, respectively.
Note that the instants of time when departure flows arrive at the links are
ensured by link-time-based ideal DUO route choice conditions (13.46)-(13.48).
For example, [t + 77""(t)] is the instant of time when departure flow fI*(t)
arrives at link 2. In other words, if departure flows f{*(t) > 0, f3*(t) > 0
satisfy link-time-based ideal DUO route choice conditions (13.46)-(13.48), we
obtain equations (13.52)-(13.53).

If routes 1 and 2 have overlapping links, conditions (13.52)-(13.53) still
hold. For example, if link 2 is identical to link 6 (routes 1 and 2 are overlapping
on link 2 or link 6), [t + 7™ (t)] = [t + 7"*"(¢)] is the instant of time when
departure flows arrive at link 2. Both flows must experience the same link travel
time 5 [t+7"" ()] and exit link 2 at the same time [t+7"*" (¢)]. Then the inflows
on subsequent links over routes 1 and 2 still satisfy equations (13.52)-(13.53).

Denote the arrival flows over routes 1 and 2 as e}*[t + 7"*"(t)] and
e5*[t + 77" (t)], which are associated with departure flows f*(t) and f3*(t),
respectively. Note that routes 1 and 2 are minimal travel time routes. Using
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route-based flow propagation constraints (13.10) for the last links 4 = (j, s)
and 9 = (m, s) over routes 1 and 2, we obtain that

eEPft+7 ()] >0, eft+7 ()] >0 (13.54)
where
AT (8) = 71T (t) + raft + 77 (8)] = 7T (E) + Tolt + 7™ (8)]
Note that
iy @), usilt + 7™ @), -, uillt + 7 (@), et + 77 (2)]
and

ugy (), ugalt + 7™ ()], -+, uGslt + 7™ (1)), €5°[t + 77 (2)]

are the two sets of inflows over routes 1 and 2, respectively. Since these flows
are positive, we conclude that the departure flows fJ*(t) and fJ°(t) arrive at
destination s-at the same time [t + #7*"(t)]. Thus, the link-time-based ideal
DUO route choice conditions guarantee for O-D pair rs that flows departing
at time ¢t have the same arrival time [t + 77" (t)].

If we consider a general case having multiple route departure flows
f;‘(t) > 0 for any O-D pair rs at time ¢, the above analysis still applies to
any positive departure flow over any route p between O-D pair rs. There-
fore, link-time-based ideal DUO route choice conditions (13.46)-(13.48) imply
route-time-based ideal DUO route choice conditions (13.2)-(13.4).

13.3.2 The Link-Time-Based Model

Denote 77" (t) as the difference of the minimal travel time from 7 to j and the
travel time from r to j via minimal travel time route from r to 7 and link a for
vehicles departing from origin at time ¢. It follows that

Qri" () = 77 () + Talt + 77 ()] — 7 (1) Va,ria = (i,j). (13.55)

We then rewrite the link-time-based ideal DUO route choice conditions as:

Qitt) > 0 VYa = (i, ), 73 (13.56)
W T #) =0 VYa=(i,5),rs; (13.57)
ullft+ 7" ()] >0 Va = (i, ), 7, 5. (13.58)

Then, the equivalent variational inequality formulation of link-time-based ideal
DUO route choice conditions (13.56)-(13.58) may be stated as follows.

Theorem 13.3. The dynamic traffic flow pattern satisfying con-
straints (13.5)-(13.16) is in a link-time-based ideal DUO route choice
state if and only if it satisfies the variational inequality problem:
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/TZZQ;f'(t) {u;'[t+7r""(t)] —u;"[t+7r""(t)]} dt > 0 (13.59)
0 rs

Proof of Necessity.

We need to prove that link-time-based ideal DUO route choice conditions
(13.56)-(13.58) imply variational inequality (13.59). For any link a, a feasible
inflow at time [t + 7™ (2)] is

ullft+ 77 (1)] >0 (13.60)
Multiplying equation (13.60) and DUO route choice condition (13.56), we have
ultft + 77 ()] Q7 () > 0 Va,r,s;a = (i, 7). (13.61)

We subtract the second ideal DUO route choice condition (13.57) from equation
(13.61) and obtain

{u;‘[t +2 @) — w4 2 (t)]} Qi) >0 Va,rs;a=(5,75). (13.62)
Summing equation (13.62) for all links a and all O-D pairs rs, it follows that
Z E {u;’ t+2 @) -l [t + 2 (t)]} Q;"(t) >0 (13.63)
TS a

Integrating the above equation from 0 to T, we obtain variational inequality
(13.59).

Proof of Sufficiency.

We need to prove that any solution u}* [t + 7™ (t)] to variational in-
equality (13.59) satisfies link-time-based ideal DUO route choice conditions
(13.56)-(13.58). We know that the first and third ideal DUO route choice con-
ditions (13.56) and (13.58) hold by definition. Thus, we need to prove that the
second ideal DUO route choice condition (13.57) also holds.

Assume that the second ideal DUO route choice condition (13.57) does
not hold only for a link b = (I, m) for O-D pair kn during time interval [t; —
8,t1 + 6] € [0,T], i.e., ‘

"t + 7 (@) >0 and Q™) >0 (13.64)
In other words, we have
ub™ [t + 7F ()] 2F™ (1) > 0 (13.65)

Since the second ideal DUO route choice condition (13.57) holds for all cases
other than link b = (I, m) for O-D pair kn during time interval [t; — 6, + 6],
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it follows that
T iz 3 - iz
/ YD @) [+ (1)) dt
0 Ts a

t1+6
- / [ 7 ()] QE () dt > 0 (13.66)
ti—6

We note that all other terms in the above equation vanish because of ideal
DUO route choice condition (13.57).

For each O-D pair rs, we can always find one minimal travel time route
p for vehicles departing origin r at time ¢, where route p is evaluated under the
optimal flow pattern {u?*"[t + 77" (¢)]}. For this route p, the first ideal DUO
route choice condition (13.56) becomes an equality by definition. It follows
that .

Q7 (t)=0 Va,r,s;a= (i,j);a € p. (13.67)

Next, we need to find a set of feasible inflows u%* [t+7"*" (¢)] so that the following
equations

ulft+ 77 (1)) QU (1) =0 Va,r,s;a = (i, j) (13.68)

always hold. We adjust all the departure flows f7*(¢) for all O-D pairs at time
t. For each O-D pair rs at each time ¢, we assign O-D departure flow f™*(t) to
the minimal travel time route p, which was evaluated under the optimal flow
pattern {u%? [t + 7" (t)]}. This will generate a set of feasible inflow patterns
{ut*[t + 7™ (¢)]} which always satisfies equations (13.67) and (13.68) because
flows are not assigned to routes with non-minimal actual travel times which
were evaluated under the optimal flow pattern {u}* [t + 7" (t)]}. Summing
equations (13.68) for all links a and all O-D pairs rs, it follows that

SN urp+ @) 9 @) =0 where a = (i,j).  (13.69)

Integrating the above equation from 0 to T, we obtain
T
/ SN w4 (@] Q@) dt =0 (13.70)
Y Ts a
We subtract equation (13.66) from equation (13.70) and obtain
T 4 ;" - e
/ SN et {u;’[t ()] — uT [t + (t)]} dt <0 (13.71)
0 Ts a

The above equation contradicts variational inequality (13.59). Therefore, any
optimal solution {u7*"[t + 7" (¢)]} to variational inequality (13.59) satisfies
the second ideal DUO route choice condition (13.57). Since we proved the
necessity and sufficiency of the equivalence of variational inequality (13.59) to
link-time-based ideal DUO route choice conditions (13.56)-(13.58), the proof is
complete.
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13.4 A Multi-Group Link-Cost-Based VI
Model of Ideal Route Choice

In this section, we consider a multi-group ideal dynamic user-optimal (DUO)
model based on travel costs or disutilities instead of travel times. To be con-
sistent with Chapter 12, we stratify travelers into M groups for each O-D pair.
When M = 1, the following definition and VI model reduce to a single group
model, but which is different from the VI model based on actual travel times.
The constraint set for this problem is identical to the constraint set (13.33)-
(13.44) for the multi-group route-time-based VI model in Section 13.2.

13.4.1 Multi-Group Link-Cost-Based Conditions

The disutility function depends on travel time, fuel consumption, operating
cost, etc. Denote Finq(t) as the actual disutility function for group m travelers
entering link a at time ¢. It follows that

Tma(t) = @ma + Bma 7a(t)  Vmya (13.72)

where a,, is a fixed actual disutility parameter for group m travelers on link
a and B, is a parameter to transform actual link travel time 74(t) into the
disutility of group m travelers.

Denote 7},,(t) as the actual route travel disutility for group m travelers
from origin r to destination s at time t. Also denote #]:(t) as the minimal
actual route travel disutility for group m travelers from origin r to destination
s at time ¢, and 77 (¢) as the corresponding actual route travel time for group
m travelers departing origin » to destination s at time t. We also need to use a

recursive formula to compute the route travel disutility #},,(¢) for all allowable
routes. Assume route p consists of nodes (r,1,2,---,4,--+,5). Denote ﬁ,’,{;(t)

as the travel disutility actually experienced over route p from origin r to node
J by vehicles departing origin r at time ¢. Then, a recursive formula for route
travel disutility 7j,;,(t) is:

ﬁ:v{p(t) = ﬁ:rs:)_l)(t) + Tma [t + n;(j—l)(t)] Vm,p, "',j;j =128
where link @ = (j — 1, j) and time [t + n,',(j —1)(t)] is the arrival time instant at
link a for group m travelers. Recall the definition of the multi-group travel-cost-
based ideal DUO state in Section 13.2 which also applies to the link-cost-based
problem.

Multi-Group Travel-Cost-Based Ideal DUO State: If, for
each group and each O-D pair at each instant of time, the actual
travel disutilities for all routes that are being used equal the mini-
mal actual route travel disutility, the dynamic traffic flow over the
network 13 in a multi-group ideal dynamic user-optimal state.
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We now write the equivalent mathematical inequalities for the above definition
using link variables, in contrast to the route-based formulation in Section 13.2.
For group m on link a = (4, j), the minimal travel disutility #7J" (¢) from origin
r to j should be equal or less than the minimal travel disutility 7 ; () from
origin r to i plus the actual link travel disutility Fnq[t + 775 (¢)] at time instant
[t + 775(t)], where this time instant is the earliest clock time when the flow
departing origin r at time ¢ can enter link a over the minimal travel disutility
route. It follows that

A1 (8) + Famalt + T ()] 2 75 (2) vm,a = (i, j),r-

If, for each group m and each O-D pair rs, any departure flow from origin r at
time t enters link a at the earliest clock time [t+77¢ (t)], or ul?, [t+77" (¢)] > 0,
then the multi-group ideal DUO route choice conditions require that link a is on
the mlmmal travel disutility route. In other words, the minimal travel dlsutlhty

#73° (t) from origin r to j should equal to the m1n1mal travel disutility 773 (1)
from origin r to i plus the actual link travel disutility 7na[t + 775 ()] at time
instant [t + #7¢ (¢)]. It follows that

() = 75 () + Fmat+ 705 (1)), i ull[t+75 (8)] >0, VYm,a=(i,j),r,s.

The above equation is also equivalent to the following:
[0 (@) + Fmalt + s (0] = 7 ()] wimalt+ 7o (] =0, Vim,a= (i,), 7.

Thus, the multi-group link-cost-based ideal DUO route choice conditions can
be summarized as follows:

T (8) + Fmalt + 70 (0] - 7L (2) 2 0 Vm,a=(4),r;  (13.73)

A28 1)+ el + 753700 — 7 0] il + 77 )] =
Vm,a = (3, j),7, s; (13.74)
T+ AT (1)) >0 Vm,a = (4,j),r,s. (13.75)

Similar to Lemma 13.1, we can easily prove that the multi-group link-cost-based
ideal DUO route choice conditions imply the multi-group route-cost based ideal
DUO route choice conditions. The detailed proof is omitted here.

13.4.2 The Multi-Group Link-Cost-Based VI Model

For group m travelers, denote 74, (t) as the difference of the minimal travel
disutility from r to j and the travel disutility from r to j via minimal travel
disutility route from » to ¢ and link a for vehicles departing from origin r at
time ¢. It follows that

QUi () = 715 (8) + Fmalt + 75 () — 7 () Vm,a,r;a=(i,4). (13.76)
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We then rewrite the multi-group link-cost-based ideal DUO route choice con-
ditions as follows:

Qi) >0 Vm,a = (4,j), r; (13.77)
[t + & m ()] Q" .(t)=0 VYm,a = (i,j),7,s; (13.78)
Tt AN ()] >0 Vm,a = (4,j),r,s. (13.79)

The equivalent variational inequality formulation of multi-group link-
cost-based ideal DUO route choice conditions (13.77)-(13.79) may be stated as
follows.

Theorem 18.4. The dynamic traffic flow pattern satisfying network
constraint set (13.33)-(13.44) is in a multi-group link-cost-based
ideal DUO route choice state if and only if it satisfies the variational
inequality problem:

/ YN i) { W+ 7 (@] - uls [t + 7 (t)]} dt > 0 (13.80)

rs ma

The proof follows in a manner similar to Section 13.3.2 (single group, link-
time-based) except that the arrival time at each link [t + 77" ()] is determined
by the travel time 775 (¢) over the minimal cost route in stead of the minimal
travel time 775 (t).

13.5 Relationships Between VI Models and
Optimization Models

We now consider the relationship between VI models and optimization models.
As in Chapter 12, we will not discuss each VI model in this chapter. As an
example, we focus our analysis on the link-time-based VI model for the ideal
DUO route choice problem. We show in the following that the VI model can
be reformulated as an optimal control problem which is similar to the optimal
control models presented in Chapter 5. Similar analyses can be performed for
the other VI models for the various ideal DUO route choice problems.
In this section, we discuss the following VI problem:

/TZZQ;f‘(t) {u;‘[t+7r"'(t)] —u;"[t+7r""(t)]} dt > 0 (13.81)
0 rs a

To simplify our analysis, we assume the time period [0,T] is long enough so
that all departure flows can be cleared at final time T. In other words, any
positive departure from origin r at time ¢ will arrive at destination s at time
t+ 7" (t) < T.
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We consider a simplified link travel time function as follows:
Ta(t) = Ta[z4(2), ua(?)] Va. (13.82)

As shown in Chapter 16, some link travel time functions for arterial roads and
freeway segments do not dependent on exit flow explicitly. Thus, the above
assumption is reasonable.

In order to present a partitionable VI, we need to transform the original
VI into a partitionable VI using some new definitions as follows. For link a and
O-D pair rs at time instant [t + 7r""(t)], denote an auxiliary link travel time
function AJ*"[t + 77 (¢)] as

)\;st [t + 7l_ri‘ (t)] _ _ﬂ_rj'(t) Va,r,s;a = (z,]) (1383)

Recall that in Section 13.3, for link a and O-D pair rs at time instant [t +
7™ (t)], we defined an auxiliary link travel time function

QU () = 7" () + Tt + 77 ()] — 777 (2) Va,r;a = (i,5). (13.84)
Substituting equation (13.83) into equation (13.84), we obtain

Q" (1) = 7" () + ralt + 7T (O] + N[+ 7 ()] 2 0

Va,r, s;a = (1, j). (13.85)

For link a and O-D pair rs at time instant [t + 7™ (t)], we define a related
auxiliary link travel time function as

Q;j.(t) — —/\;"‘[t + i (t)] + ij'(t) =0 VYa,r,s;a = (Z,J) (13.86)

Using the above new definitions, link-time-based ideal DUO route choice con-
ditions (13.56)-(13.58) are rewritten as equivalent conditions as follows.

Qitt)>0 Ya = (i,4),r, s; (13.87)

Qi) =0 Va = (3, §), 7, s; (13.88)

ul 4+ 7 ()] QP (1) =0 Ya = (3, ), 7, s; (13.89)
W+ @) (#) =0 Va = (i,5),r,s; (13.90)
ul*ft+ 77 (8)] > 0 Va = (i, ), 7, 5; (13.91)

o[t + 7 ®) >0 Va = (4,j),7,s. (13.92)

We note that equation (13.87) is equivalent to equation (13.56) and equation
(13.89) is equivalent to equation (13.57). Then, the link-time-based variational
inequality (13.81) in Theorem 13.3 can be restated as an equivalent VI in the
following theorem.
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Theorem 13.5. The dynamic traffic flow pattern satisfying network
constraint set (13.5)-(13.16) is in a travel-time-based ideal DUO

route choice state if and only if it satisfies the variational inequality
problem:

T
[ R A ORCA EE O B PR
0 s a
+QE) [l @) - o w"'(t)]]} dt >0 (13.93)
The second term in the above variational inequality equals 0. It is placed within
the VI so that the reformulation of the VI as an optimal control problem can
be performed more easily. Therefore, the above VI is equivalent to link-time-
based ideal DUO route choice conditions (13.56)-(13.58) or (13.87)-(13.92).
The proofs of necessity and sufficiency are straightforward and not given here.

Substituting definitions (13.85) and (13.86) into equation (13.93), vari-
ational inequality (13.93) is equivalent to

T
/0 22 { [“”' (&) + Talt + 7 ()] + N[t + r"‘(t)]]
A RO A 0]

+ [—)\;" [t+ A @®)] + xdi (t)] [v;’ [t+ i )] - A TR (t)]] } dt

/OT SN wlt+ @] [ugle+ 7 @) - i [+ 7 ()] at
R

| X o+

e+ @) - w4 7 @)

+ [N @+ 1)

+

: [v;’ [t -+ ()] — o5t + r""(t)]]} dt > 0 (13.94)

We now show that a double relaxation or diagonalization procedure can
be designed so that the above VI can be formulated as an optimal control
model in each relaxation iteration. At the first-level relaxation, we assume
that the actual link travel time 7,(¢) in the flow propagation constraints and the
resulting minimal actual travel times 7" (¢) in the above variational inequality
are fixed temporarily at each relaxation iteration. Then, the cross-effects of
flow variables at different time instants can be separated at each iteration. We
define a new time variable £, = t + 77" (t) where 7" () is fixed temporarily
at each relaxation iteration. Suppose there are R origins. Then, for each link
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a and origin r at time instant £, we have
ua(€3) = ug(€0) + ul(€D) + -+~ + ug (&) (13.95)
The actual link travel time 7,(£]) at time instant £ can be expressed as
7a(€) = Talug(€5), -+, ug(€0), 2a(€D), -+ -, 25 (€1)] (13.96)

Since the variational inequality for the ideal DUO route choice is different
from the variational inequality for instantaneous DUQ route choice, the cross-
effects of origin-specific link flow variables are asymmetric and can not be
eliminated. Thus, we need to design a second-level relaxation for this VI. Thus,
we can derive a similar optimal control problem as in the instantaneous case.
To this end, we fix temporarily all other link flow variables (%), z4(£5)
(" # r) in equation (13.96) at each second-level relaxation iteration. Denote n
as the total number of links in the network. Then, a Jacobian submatrix of the
actual link travel time 7,(£]) with respect to the inflow u}(£]) for each time
instant €] can be written as

oni(€;) 0 ... 0
IH )
omalgl) ... 0
Vuri(€l) = ouits)
0 0 EMAG)
31’1!(; ' 0
du1(€1)
0 61‘3!&"!
— Aus(€5)
: 61‘,,‘!("!
0 0 Bun(Es)

where the cross-effects of all other link flow variables uq(&}), (&) (v # 7)
can be eliminated. Obviously, the above matrix is symmetric. We note that
z4(£7) does not enter the Jacobian submatrix because it is a state variable.

At each second-level relaxation iteration, another Jacobian sub-matrix
of the actual link travel time 74(£]) with respect to the exiting flow v (£5) for
each time instant £ can be written as

dma(€7) 0 0
v1(£7)
61’3 fr
6 r r
VoTa(és) = ralts
0 0 UL (4

HE)
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Brl Er

v,y E:) 0
0 31’2!5:!
— 3‘02(51) — 0
0 0 . Mn.iﬂ

v (£7)
which is also symmetric. Then, at each time instant €], there is an optimization
problem which is equivalent to variational inequality (13.93), as follows:

ug(€s)
Min ZZL T,,[u,ll(f,:),---,w,---,uf({f,),:c},({;),-'-,zf(ﬁ)] dw
+ 2w [ + T E)

+ T ) [ )] (13.97)

Origin

OB
\ 3 Destination

— O
Origin /
®

2

Figure 13.1: Example Network with Two Origins

We now use the simple network in Figure 13.1 to illustrate the above
analysis. The actual travel time 7,(£%) on link 3 at time instant £} can be
expressed as

m3(€a) = Talug(€3), u3(£3), 23(€3), 23(3)] (13.98)

At each second-level relaxation iteration, link flow variables u3(¢3) and z%(¢3)
associated with origin 2 have to be fixed temporarily in equation (13.98). Then,
we can find an optimization problem which is equivalent to the variational
inequality. In the optimization problem, the first two terms for link 3 at each
time instant &5 are

Min /“é(fé)r v u2(61) ml(el) :c2(£1)] dw
A 3|w, u3(83), £3(83), T3(&3



288 Chapter 13. VI Models of Ideal Route Choice

vs(Es) 1¢1 1p1y 2(¢1
+ A 3[u3(€3), w, 23(£3), 3(€3)] dw (13.99)

Note that in both terms, all flow variables are defined for time £1.
Reorganizing equation (13.97) based on each node j, we have

ug(€2)
Min ZZ/ Ta[“};(fZ)a"‘a Wy (fa), a(fa)’ T éa)]

+ ZZA-’ (Ea)[ue(€5) — vi* (& )]—Zvr” €) > ureEn)
acA(r)
+ SN ATEN Y v - Y uiE)]

s j#rs a€B(j) a€A(j)
+ Y otE) D v
s#r a€B(s)

<€)
= ZZ/ Ta[ua(éa Ty W, --,uf(f;),x;(f;),---,xf(f;)] dw

+ YD A EDE) — vt € - DY o) D we'(€)

rs a r#s 8 acA(r)
+ Y AEN Y e - Y wrE)

rs j#rs a€B(j) a€A(f)
+ YD eE) D v

ros#r a€B(s)

The above equation is equivalent to the following partial Hamiltonian function
with flow conservation constraints only:

(€2)
D 3 B B CA LY

+ ZZAZ (A CAGAETA(A)
+ YT ENE@) — Y u €]

r#s s acA(r)

D IPIPILA PR HCIIPBIAN)
rs jErs p a€B(j) a€A(H)

+ ZZJ“ (ér)[ Z Z (Er __ers(éz)]
ros#r acB(s) P

Note the flow propagation constraint is not included. Thus, we can simply
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state the objective function of the optimization program as

T uz(€2)
Min /0 ZL Ta[“};(f;)a"',wa""uf(sz),
PR+ R (ED)] d dt (13.100)

because other terms in the partial Hamiltonian function are associated with link
and node flow conservation equations. Note that & = ¢+ 7™ (t) where 7™*" ()
is fixed temporarily at each second-level relaxation iteration. Also note that all
flow variables at time instants €] > T are zero. Therefore, link-time-based vari-
ational inequality (13.81) can be reformulated as an optimal control problem
with objective function (13.100) and constraints (13.5)-(13.16) at each double
relaxation iteration. In other words, we have demonstrated that our original
optimal control model in Chapter 5 is a special relaxation or diagonalization
problem of VI formulation (13.81). We note that the actual link travel time
7a(t) is fixed temporarily in the flow propagation constraints at each first-level
relaxation iteration. We also note that the relaxation for the ideal DUO VI
model is different from the instantaneous DUO VI model. The double relax-
ation procedure is summarized in Figure 13.2.

13.6 Notes

If there is only one origin, the cross-effects between origins can be eliminated.
Thus, the second-level relaxation can be dropped and the above optimal con-
trol problem will be identical to the optimal control model in Chapter 5 for
instantaneous DUO route choice. Furthermore, if there is only one destination,
a similar conclusion can be drawn because the VI formulation and the relax-
ation for the above origin-based model applies to the destination-based model
as well. This conclusion has important implications for freeway corridor models
when the CBD is considered as one destination. We speculate that under one
destination, our origin-based model would also lead to the conclusion that both
instantaneous DUO and ideal DUO models yield the same results. However,
this conclusion needs more theoretical study and a numerical demonstration.



290 Chapter 13. VI Models of Ideal Route Choice

‘ Initialization: '

A

N\

First-Level Relaxation:

fix T,(¢) in flow propagation constraints

and fix ®{?) in the objective function. y

Second-Level Relaxation: )

fix u:(Ef) VX, ,(Ef) in the integral for u;Q;’J

\

Convergence Test for No
First-Level Relaxation?

Yes
\

[ Convergence Test for \ No
S

econd-Level Relaxation? J

Yes

Figure 13.2: Flowchart of the Double Relaxation Procedure



Chapter 14

Variational Inequality Models of
Dynamic Departure Time/
Route Choice Problems

In this chapter, we consider an ideal situation where all travelers are equipped
with navigation devices and fully comply with the dynamic user-optimal cri-
terion when choosing routes, departure times and modes. We first present a
dynamic, user-optimal departure time/route choice model for a general net-
work with multiple origin-destination pairs. We model this choice problem by
specifying that a given number of travelers are ready for departure between
each origin-destination pair at time 0. However, their departure times may be
delayed to reduce their overall travel costs. A route-based variational inequal-
ity model for joint departure time/route choice is presented in Section 14.1.
In a parallel fashion, a link-based variational inequality model is proposed in
Section 14.2. The relationship between the variational inequality models and
the optimization models is discussed in Section 14.3.

14.1 A Route-Based VI Model of Departure
Time/Route Choice

A number of vehicles are ready to depart at an initial time 0, but these drivers
may prefer to delay their departure times in order to reduce their driving times.
Drivers are assumed to make their departure time choices so as to minimize
their individual disutility functions defined on travel time and pre-trip delay.
Of course, the change of departure flow rates will change the traffic in the
network so that the travel times for other travelers could change.
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14.1.1 Route-Based Conditions

We first consider the joint departure time/route choice conditions. A disutility
function U,*(t) based on departure times is defined for travelers departing
from origin r to destination s over route p at time ¢. This disutility function
represents a weighted sum of:

1. waiting time at the origin node;
2. driving time during the trip;
3. a bonus for early arrival or a penalty for late arrival.

Consider the flow which originates at node r at time ¢ and is destined for node
s. There is a set of routes {p} between O-D pair rs. Define 7}°(¢) as the travel
time actually experienced over route p by vehicles departing origin r toward
destination s at time t. We use a recursive formula to compute the route
travel time 7;°(t) for each allowable route. Assume route p consists of nodes
(r,1,--+,i—1,4,---,s). Denote n;‘(t) as the travel time actually experienced
over route p from origin r to node 7 by vehicles departing from origin r at time
t. Then, a recursive formula for route travel time 7y’ (t) is:

5 () = D) + raft + m5¢ (1) Vp,ri;i=1,2,--,s;

where link a = (i — 1,1).

We define one unit of disutility to equal one unit of in-vehicle driving
time, and one unit of waiting time prior to departure to be equivalent to «
units of disutility (¢ < 1); @ could be negative since staying at home may
have positive utility. Since all travelers are able to depart at time 0, ot is the
disutility for a departure at time ¢ due to waiting. Furthermore, we assume
there is a desired arrival time interval [t}, — A,,,t}, + A,,] for travelers at each
destination s, where t;, is the center of the required arrival time interval (e.g.
work starting time) associated with travelers departing from origin r toward
destination s. A,, represents the arrival time flexibility at destination s for
travelers departing from origin r toward destination s.

The disutility function for the route-based joint departure time and route
choice problem is constructed as

Uy (t) = at + 03" (t) + V' [t, np (t)5 t7,] Vp,r, s, (14.1)

where t is the departure time of travelers and Vy*[t, n;*(t); t;,] is the disutility
for early or late arrival which is defined as follows

Vo'l mp* (B3 tr,] =
it + 050 (@) —tr, + Ar 12 ift+n)*(t) <tr, — Ay, (early arrival)

0 if |t + n;)’(t) - t:sl < A:s
Yalt +mp° (8) — b7, — A2 ift+mp*(t) > tr, + Ay, (late arrival)
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where t is the departure time of travelers and v; and 7y, are parameters (y2 >
«). 71 is negative because early arrival should be encouraged rather than
discouraged. This arrival time disutility function is shown in Figure 14.1.

Arrival Bonus/Penalty
A

A

AI‘S AI‘S

< » » I
< P e—p I

O | . | o

tre t +Tl;?t) Time t

L

Figure 14.1: Arrival Time Disutility

The dynamic user-optimal departure time/route choice conditions re-
quire that for each O-D pair rs at any time ¢, if there is a positive departure
flow f;" (t) > 0 over route p, the disutility u;"(t) for route p must equal
the minimal rs disutility &%, over time ¢. Furthermore, if the departure flow
f;"'(t) over route p equals 0 at time ¢, the disutility u;“ (t) over route p at

time ¢ must be greater than or equal to the minimal rs disutility 7%,.. The

route-based DUO departure time/route choice conditions can be written as

Up* (8) —Uniin > 0 Vp, 1y 8 (14.2)
f;" (t) [u;"(t) - u:r:i:l] =0 Vp, L (143)
» () >0 Vp,r,s. (14.4)

where the asterisk denotes that the travel disutility is computed using DUO
departure flows and route flows.

14.1.2 Dynamic Network Constraints
In this section, the constraint set for our dynamic user-optimal departure
time/route choice problem is first summarized as follows.

Relationships between state and control variables:

dxz’p rs TS
ek ap(t) — vap(t) Ya,p,r,s; (14.5)
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dE;:(t) e’ (t) Vr, s, p; (14.6)
M = f” @) Vr, s, p; (14.7)

Flow conservatlon constraints:

') = Z Saptap(t) Vp,r, s; (14.8)

a€A(r)
ef(t)= Y, Smvia(t) Vp,r,s; (14.9)
a€B(s)
Yo vty = Y uint) Vi, p,r 85 £ 1,8 (14.10)
aGB(j) aEA(j)

Flow propagation constraints:
zon(t) = D _{ehlt +7a()] - 2550} + {B 't + 7a(t)] - B}* (1)}
bep
Vr,s,p,j;a € B(j); 5 # 1 (14.11)

Definitional constraints:

Sous®) =udlt), Y via(t) =vat), Ve (14.12)

rsp rap
Z Zop(t) = 2a(t), Zx;’(t) = z4(t), Va,r,s; (14.13)
Y Er@)=E"(), Y F't)=F"(t), Vns (14.14)

Z ') =f"(), Z ep’(t) =€ (t), Vrs; (14.15)

Nonnegativity conditions:

x;,",(t) >0, uzl",(t) >0, vg(t)>0 Va,p,r,s; (14.16)
ey’ (1) >0, fp*(t)>0, Ef(t)>0, F°(t)>0 Vp,r,s; (14.17)
@) >0, F*t)>0 Vr,s; (14.18)

Boundary conditions:
F™*(T) given vr, s; (14.19)

E;*(0)=0, F,*(0)=0 Vprs zg,(0)=0, Va,pr,s. (14.20)
The first three constraints (14.5)-(14.7) are state equations for each link

a and for the cumulative effects at origins and destinations. Equations (14.8)-
(14.10) are flow conservation constraints at each node including origins and
destinations. Other constraints include flow propagation constraints, defini-
tional constraints, nonnegativity and boundary conditions. In summary, the

control variables are ug}(t), v55(t), €5’ (t), and f;°(); the state variables are
25 (t), Ep*(t), and F;*(t); the functionals are 77*(2).
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14.1.3 The Route-Based VI Model

The equivalent variational inequality formulation of route-based DUO depar-
ture time/route choice conditions (14.2)-(14.4) may be stated as follows.

Theorem 14.1. The dynamic traffic flow satisfying constraints (14.5)-
(14.20) is in a route-based DUO departure time/route choice state
if and only if it satisfies the variational inequality problem:

[ {Z 2 ) [f:’(t)—f;"w]} d>0  (1421)

Proof of Necessity.

We need to prove that route-based DUO departure time/route choice
conditions (14.2)-(14.4) imply variational inequality (14.21). Multiplying equa-
tions (14.2) and (14.4), we have

e U () - Uiy} > 0 Vp,r, 5. (14.22)

min

We subtract equation (14.3) from equation (14.22) and obtain

U (@) = Unsia) 1550 (1) = 37 ()] 2 0 Vp,r,s. (14.23)

Summing equation (14.23) for all routes p and all O-D pairs rs, it follows that
YD T UL @)~ £ (]2 0 (14.24)
rs p

Integrating the above equation (14.24) from time 0 to T, we have

T
/0 S S () U [0 - £ (] dt > 0 (14.25)

or

T
/0 ) {Z U @) (£ 8) - £ ()]

- Y U5 —f;"(t)]} it >0 (14.26)

TS

By the definition of departure flows, we have

T T .
/0 S £ (t) dt = FT(T) = /0 S £ dt



296 Chapter 14. VI Models for Departure Time/Route Choice

Thus, the second term of equation (14.26) is 0 and equation (14.26) becomes
variational inequality (14.21).

Proof of Sufficiency.

We need to prove that any solutions f;’.(t) to variational inequality
(14.21) satisfy DUO departure time/route choice conditions (14.2)-(14.4). We
know that the first and third DUO departure time/route choice conditions
(14.2) and (14.4) hold by definition. Thus, we only need to prove that the
second DUO departure time/route choice condition (14.3) also holds.

Assume that DUO departure time/route choice condition (14.3) does
not hold only for route ¢ between O-D pair kn during a short time interval
[d—é,d+ 8] € [0,T],i.e.,

@) >0 and  UET() —UER >0 (14.27)
or
f () U™ () —Upa} > 0 (14.28)

Integrating equation (14.28) from (d — §) to (d + &), we have

d+é
@ Uk ) ~ukny dt >0 (14.29)
-6
or
d+68 . . d+é . .
/ U™ (t)dt > / Py usy, dt (14.30)
d-6 d-§

We now need to find a set of feasible departure route inflows f;°(t) which will
contradict variational inequality (14.21).

For routes between O-D pairs rs # kn, we allow the feasible departure
route inflows f;°(t) to equal the optimal departure route inflows f;" () at
each instant of time. For O-D pair kn, we can always find a route ! with the
minimal disutility 4F"" (t) = Uk®, for a short time interval [b—e¢, b+¢] € [0, T).
We note that route ! is evaluated under the optimal departure route inflow
pattern {f;"'(t)}. For other routes p # ¢, between O-D pair kn, we allow the
feasible departure route inflows f{f" (t) to equal the optimal departure route
inflows fl',‘".(t) at each instant of time. For routes g,! between O-D pair kn,
we allow the feasible departure route inflows f;‘"(t), fE™(t) to equal optimal
departure route inflows f;".(t) and fF™"(t) for times outside the time interval
[d—é,d+ 6] and [b— €, b+ €], respectively. Furthermore, we shift all departure
inflows over route ¢ during time interval [d — &, d + 6] to route I over the time
interval [b — €, b+ €], during which disutility Z}""(t) = Uk%" . It follows that

mn’

bte b+e . d+6 .
/ @)t - 7 (t)dt = / FEn (t)dt (14.31)
b d—6

—€ b—e
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Variational inequality (14.21) becomes

T
/0 Yo |50 - 57 w] a

rs p

T
= [ {urolro-1o)
+ U [ - i) }oae (14.32)

The second term of equation (14.32) becomes

T
| (o - o) a

T T
| uro s a- [ w0 o a

T d-é T
/0 U™ (t) fim(t) dt — { /0 + /d H} U () fE7°(t) dt

d+6 - -
- / U™ (8) i (¢) dt (14.33)
d-46

Substituting equation (14.30) into equation (14.33), we have
T ke k kn*
| um oo - i o] a
T . -6 T . .
< / U™ (t) fin(t) dt — / +/ U™ (t) £~ (t) dt
0 0 d+6
d+6 . .
- [ ukm s @) a (14.39)
d-§
The first term of equation (14.32) becomes
T - -
| U [fro-1mo) @

b+e
= [ uwre [ro-amo) @
b—e

b+e€
[ (s - o) @

b—e

usae) [ + [0 - £ ) @ (14.35)
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where UF™" (t) = UKR, (t) for time interval [b — €, b+ €]. Substituting equation

min

(14.31) into equation (14.35), we have

T d+é
[ wto (e -~ o) a=uno [ e ass)
0 d—-é

Summing equations (14.34) and (14.36) and substituting into equation (14.32),
we obtain

T
/0 22U ®) [f;’(t)— f;"(t)] dt
rs P
T d—$6 T
< /0 U™ (t) £ (@) dt—{ /0 + /d +6} UE (1) £E (1) dt (14.37)

Furthermore, since f5"(t) = 0 for time interval [d—6, d+6] and f¥"(t) = f;‘"‘(t)
for time intervals [0,d — 8], and [d + 8, T], we simplify equation (14.37) as

[T wolpo-5o]
re o p

) {/d““/i} WO RO 8- {/“Jf/i} (@) £ 0 d
= { /Od_6+ /;} ukm (1) [ren) - i~ )] at=o0 (14.38)

The above equation contradicts variational inequality (14.21). Therefore, any
optimal solutions { f;" (t)} to variational inequality (14.21) satisfy the second
DUO departure time/route choice condition (14.3). Since we have proved the
necessity and sufficiency of the equivalence of variational inequality (14.21) to
the route-based DUO departure time/route choice conditions (14.2)-(14.4), the
proof is complete.

14.2 A Link-Based VI Model of Departure
Time/Route Choice

Because dynamic traffic flow does not have a constant flow rate during prop-
agation over links and routes, the route-based VI can not be transformed into
a link-based VI. Thus, it is very difficult to develop a solution algorithm for
a route-based VI without explicit route enumeration. In Chapter 13, we pre-
sented a link-based VI model for the ideal DUQO route choice problem so that
route enumeration can be avoided in both the formulation and the solution
procedure. This approach allows the dynamic VI route choice model to be
applied to realistic transportation networks.
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Using a similar approach, we extend the dynamic route choice model
to include departure time choice as well. A link-based ideal dynamic user-
optimal (DUO) departure time/route choice model is presented for a network
with multiple origin-destination pairs in this section. Since this VI model is
link-based, it has computational advantages over route-based models.

The set of dynamic network constraints for the link-based VI model
is identical to constraint set (14.5)-(14.20) of the route-based VI model in
Section 14.1. The basic difference between the two models is that the link-based
VI model is formulated using link-based flow variables instead of route-based
variables.

14.2.1 Link-Based Conditions
Departure Time Choice Conditions

We first consider the departure time choice problem. A disutility function
UT*(t) based on departure times is defined for travelers departing from origin r
to destination s at time ¢. Denote 77*(t) as the minimal travel time experienced
by vehicles departing from origin r to destination s at time . We also define
the disutility for early or late arrival as follows

VoL, AT (t)itn] =

Mt + 7 (t) —t2, + AL ift+7m(t) <tf, — A}, (early arrival)
0 ) if It + ”r.(t) - t:al S A:a
Yot + wTe(t) —tr, — AL)? ift+am(t) > t:, + A, (late arrival)

where ¢ is the departure time of travelers and v; and -, are parameters (y; < 0,
¥2 > a). Thus, the disutility function for the joint departure time and route
choice problem is constructed as

U (t) = at + 7™ (&) + V[t 7 (t); 2, ] Vr, s, (14.39)

where ¢ is the departure time of travelers.

The dynamic user-optimal departure time choice conditions require that
for each O-D pair rs at any time ¢, if there is a positive departure flow f*(t) >
0, the disutility Z/™*(t) must equal the minimal rs disutility U}%,. over time
t. Furthermore, if the departure flow f7°(t) equals 0 at time ¢, the disutility
U™ (t) at time ¢t must be greater than or equal to the minimal rs disutility

re.n- The DUO departure time choice conditions can be written as

U () —urs, >0 Vr, s; (14.40)
U -uy=0 Vr, s; (14.41)
@) >0 Vr, s. (14.42)

where the asterisk denotes that the travel disutility is computed using DUO
departure flows.
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Ideal DUO Route Choice Conditions

We then consider the route choice problem. The actual travel time 74[24(2), uqs(2),
v4(t)], or simply 74(t), over link a is assumed to be dependent on the number
of vehicles z4(t), the inflow u,(¢) and the exit flow v4(t) on link @ at time
t. We assume the travel time 74(t) is the sum of two components: 1) a flow-
dependent cruise time g14[Z4(t), uq(t)] over the uncongested part of link a and
2) a queuing delay g2q[24(t), va(t)] at the end of link a. It follows that

Ta(t) = g1a[2a(t), ua(t)] + g24[2a(t), va(t)]- (14.43)

The two components g14[24(t), uq(t)] and g2q[24(t), v4(t)] of the time-dependent
link travel time function 74[z4(t), ue(t), v4(t)] are assumed to be nonnegative
and differentiable with respect to £4(t), u4(t) and 4(t), ve(t), respectively. Re-
call that the travel-time-based ideal DUO route choice state is defined as:

Travel-Time-Based Ideal DUO State: If, for each O-D pair at
each instant of time, the actual travel times erperienced by travelers
departing at the same time are equal and minimal, the dynamic
traffic flow over the network is in a travel-time-based ideal dynamic
user-optimal state.

For vehicles departing from origin r at time ¢, denote Q77" (¢) as the difference
between the minimal travel time from r to j and the travel time from origin r
to node j via the minimal travel time route from origin r to node ¢ and link a.
It follows that

QW) =7 @)+t + 7 )] -7 () Va,ria=(4,7).  (14.44)

Thus, the link-time-based ideal DUO route choice conditions are:

Qit(t) >0 Va = (i, §), 3 (14.45)
w4+ (@] Q) =0 Va = (i,j),r,8 (14.46)
ult+ 7" ()] >0 Va = (i, §),r, 5. (14.47)

Joint DUO Departure Time/Route Choice Conditions

In order to simplify the presentation, we rewrite the combined link-based DUO
departure time/route choice conditions as follows:

QI (t) >0 Va = (i,),7; (14.48)

w7 (@] Q1) =0 Va = (4, 4), 7, 5; (14.49)
ullft+ 77 (1) >0 Va = (4, j),r,s; (14.50)

U () —ur, >0 vr, s; (14.51)
FrOU (@)~ Uy =0 Vr, s; (14.52)

@) >0 Vr, s. (14.53)

where U3, is the minimal rs disutility over time ¢.
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14.2.2 The Link-Based VI Model

The equivalent variational inequality formulation of link-based DUO departure
time/route choice conditions (14.48)-(14.53) may be stated as follows.

Theorem 14.2. Dynamic traffic flow satisfying constraints (14.5)-
(14.20) is in a DUO departure time/route choice state if and only
if it satisfies the variational inequality problem:

rs

T
J {E Yoo @) {urtle+ 7 @) - i+ 7 0]

+ S u { £ () - f"‘(t)}} dt > 0 (14.54)
Proof of Necessity.

We need to prove that DUO departure time/route choice conditions
(14.48)-(14.53) imply variational inequality (14.54). We first discuss the ideal
DUO route choice conditions (14.48)-(14.50). Multiplying equations (14.48)
and (14.50), we have

ut[t + 7" (1)) Q797 (1) > 0 Va,r, s;a = (i, 7). (14.55)
Subtracting equation (14.49) from equation (14.55), we obtain
{u;" [t+77 ()] — o [t + «""(t)]} Q' (#) > 0 Va,r 80 = (3,5). (14.56)
Summing equation (14.56) for all links a and all O-D pairs rs, it follows that

S {ut A @) - w2 ]} 95 @) 2 0

where a = (i, j). (14.57)

Integrating the above equation (14.57) from time 0 to T', we have
T 3] - I3 i3 3
/ S {urt+ @) - w2 @)} 0 (@) dt 20 (14.58)
0 T8 a

We next discuss DUO departure time choice conditions (14.51)-(14.53).
Multiplying equations (14.51) and (14.53), we have
FOUT O -UZY 20 Vi, (14.59)
We subtract equation (14.52) from equation (14.59) to obtain

U () {7 (1) = 7 (O} = Ui (O = F° (1)} 20 Vr,s. (14.60)
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Summing equation (14.60) for all O-D pairs rs, it follows that
U - FTD) =Y Unin (O - ST @} 20 (14.61)

Integrating the above equation from time 0 to T, we have

T
/0 S urt @) {f) - £ (1)) dt

- / ' Y Ut (@)= ()}t >0 (14.62)
0 rs

T
/0 S U {0 ) - £ @) dt

T
- T [ Ur0-r@yd 20 (14.63)
By the definition of departure flows, we have

T T .
/ F(t) dt = F™*(T) = / £ () dt
0 0

Thus, the second term of equation (14.63) is 0 and equation (14.63) becomes
T . )
/ S U@ @) - @)} dt >0 (14.64)
0 T8

Combining equations (14.58) and (14.64), we obtain variational inequality
(14.54).

Proof of Sufficiency.

We need to prove that any solutions u7*” [t + 77" (t)] and f™*"(t) to vari-
ational inequality (14.54) satisfy DUO departure time/route choice conditions
(14.48)-(14.53). We know that the first and third ideal DUO route choice
conditions (14.48) and (14.50) hold by definition. The fourth and sixth DUO
departure time choice conditions (14.51) and (14.53) also hold by definition.
Thus, we only need to prove that the second ideal DUO route choice condition
(14.49) and the fifth DUO departure time choice condition (14.52) also hold.

In order to prove the above statement, we need to prove that the follow-
ing three cases are not true.

1. The second ideal DUO route choice condition (14.49) does not hold, but
the fifth DUO departure time choice condition (14.52) does hold.
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2. The fifth DUO departure time choice condition (14.52) does not hold,
but the second ideal DUO route choice condition (14.49) does hold.

3. Both the second ideal DUO route choice condition (14.49) and the fifth
DUO departure time choice condition (14.52) do not hold.

Case 1
The proof for Case 1 is similar to that for a pure ideal DUO route choice
problem. Assume that the second ideal DUO route choice condition (14.49)
does not hold only for a link b = (I, m) for O-D pair pg during a short time
interval [d — é,d + 6] where [d — 6,d + 8] € [0, T, i.e.,
B+ (#)] >0  and
G ()= @)+l + @] - (@) >0 (14.65)
Multiplying the above two equations, we have
wP [t + 7 (8)] F™ (1) > 0 (14.66)

The first term in the variational inequality (14.54) becomes

/ ) S0 (1) w4 7 (1)) dt
ars
= / P9 [t 4 7 ()] Qb () dt > 0 (14.67)
d-§

We note that all other terms in the above equation vanish because the ideal
DUO route choice condition (14.49) holds for other links and O-D pairs at each
time instant and for link b = (I, m) for O-D pair pq at time instants which are
not within time interval [d — §,d + §].

For each O-D pair rs, we can always find one minimal travel time route
k for vehicles departing origin r at time ¢, which was evaluated under the
optimal flow pattern {u}*’[t + 7™ (¢)]}. For this route k, the first ideal DUO
route choice condition (14.48) becomes equality by definition. It follows that

Q@) =7 @)+t + (@) -7 () =0

Va,r,s;a = (i,5);a € k. (14.68)

Next, we need to find a set of feasible inflows ul*[t+7"" (¢)] so that the following
equation

ultft+ 7" (@] QT () =0 Va,r,s;a = (i, j) (14.69)

always holds. We choose the feasible departure flows f7*(t) to equal the optimal
departure flows f* (t) for all O-D pairs rs at each instant of time. Thus,
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the second term in (14.54) will vanish. We also need to re-route all feasible
departure flows f7*(t) for all O-D pairs at each instant of time. For each O-D
pair rs, we assign the feasible O-D departure flow f7*(t) to the minimal travel
time route k, which was evaluated under the optimal flow patterns {u}* [t +
7" (¢)]}. This generates a set of feasible inflow patterns {u}*[t+7"¢" (t)]} which
always satisfies equation (14.69) (because either 277" (t) = 0 for links on route
k or ul*[t + 7" (t)] = 0 since no flow is routed onto those links which are not
on route k). Summing equations (14.69) for all links a and all O-D pairs rs, it
follows that

SN i+ @) 9 (t) =0 where a = (i, j). (14.70)
Integrating the above equation, we have
T 3 d Iz
/ DD Q) uitft+ 2 (t)] dt =0 (14.71)
Y TS a
We subtract equation (14.67) from equation (14.71) and obtain
T X3 iz ] - i3
/ YY) {urtle+ e @) - u e+ @]} de <0 (1472)
Y TS a

Note that the second term in (14.54) equals 0. It follows that
T Iz 3 I3 £ d I3 3
/ {ZZQZ’ () {utlt+ 7 (@] - "It + 77 @)}
0 Ts a
+ ) u”'(t){ Fro(t) — f”‘(t)}} dt <0 (14.73)

The above equation contradicts variational inequality (14.54). Therefore, any
optimal solutions {ul*’[t + 77 (¢)]} and {f™* (t)} to variational inequality
(14.54) that satisfy the fifth DUO departure time choice condition (14.52) also
satisfy the second ideal DUO route choice condition (14.49).

Case 2

Assume that the fifth DUO departure time choice condition (14.52) does
not hold only for O-D pair pg during a short time interval [d — &, d + 8] where
[d—6,d+ 8] €[0,T),i.e.,

fPYE)>0  and  UPT (1) —UPL >0 (14.74)

mn

" £90° d) UP (1) — 2%, ) > 0 (14.75)

in
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We now need to find a set of feasible departure flows f*(¢) and link inflows
ul?[t + 7" ()] which will contradict variational inequality (14.54).

For O-D pairs rs # pg, we allow the feasible departure flows f7*(t) to
equal the optimal departure flows f™* (t) at each instant of time. For O-D pair
pg, we shift all departure flows during time interval [d 8,d + 6] to the time
interval [d + 6, T}, during which disutility &?9"(t) = UP%_, (if d+ 6 = T, we
shift all departure flows during time interval [d — é,d + 4] to the time interval
[0,d — 6] and the proof will follow.) Thus, the second term of variational
inequality (14. 54) becomes

/ Z U {F -} d

‘/(; uM‘(t){qu(t)_qu'(t)} dt

{ /OM + /:6} ure () {f""(t) il (t)} dt
" /,:6 wre” () {71) - £ @)} it

= urt, {/Od—6+/:6} {fW(t) - qu'(t)} dt

d+6
- / UPe (1) 79 (1) dt (14.76)
d—§

Note that in the above equation, #P9" (t) = UP3_ for time instants which do not

lie within time interval [d —§, d+ 6]. For any time instant ¢ during time interval
[d — &,d + 6], the adjusted feasible departure flow fP4(t) = 0. By definition of
departure flows, we have

T T
/ FP(t) dt = FPY(T) = / 79 (t) dt
0 0

Substituting into equation (14.76), it follows that

{ / g / ;} (@) -} a

[ {mo-rr@}a- [ {maw- o) @

d+6
— / FPO(2) dt (14.77)
d

-6
Integrating equation (14.75) from (d — §) to (d + §), we have

d+é
/ FPL () {UPT (t) —UPL Y dt > 0 (14.78)
d—6 :
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or
d+6 d+46

FPO () UPT (t) dt > PO () UPS, dt (14.79)
é

Substituting equations (14.77) and (14.79) into equation (14.76), we have

d-é T d+é
Pq Pe(¢) — FPL dt — rq” Pq" (4) di
um.,,{/o +/d+5} {mey-prwya- [ wro @ a
d+é d+é
Pq - _ pqn =
u [ @ an- [ o) a

d+6 d+é
< uﬁ:’i”/d ) fre (t) dt—/d ] u’l;l‘lin fPe (t) di =0 (14.80)

Following the above adjustment of feasible departure flows, the link in-
flows should be adjusted accordingly so as to be feasible. As illustrated in Case
1, for each O-D pair rs, we can always find one minimal travel time route k for
vehicles departing origin r at time ¢, which was evaluated under the optimal
flow pattern {u}* [t + 7™ (t)]}. For this route k, the first ideal DUO route
choice condition (14.48) becomes an equality by definition. It follows that

Q@) =)+ ralt+ 7T @] -2 () =0
Va,r,s;a = (3,j);a € k. (14.81)

Next, we need to find a set of feasible inflows u%*[t+7"*" (t)] so that the following
equation

ullft+ 7 ()] QI () =0 Va,r, s;a = (i, 5) (14.82)

always holds. For each O-D pair rs at each time instant ¢, we assign the feasible
O-D departure flow f7*(¢) to the minimal travel time route k only, which was
evaluated under the optimal flow pattern {u%* [t+ 7" (¢)]}. This will generate
a feasible inflow pattern {u}*[t+7"¢" (¢)]} which always satisfy equation (14.82).
Summing equations (14.82) for all links @ and all O-D pairs rs, it follows that

ZZ ut*[t + £ @)l Q;j‘(t) -0 where a :‘(i, 7)- (14.83)

Subtracting equation (14.49) from equation (14.83) and integrating the result-
ing equation, we have

T
/0 YN e {u;" [t +7" (@) — w2 [t + 77 (t)]} dt=0 (14.84)

Combining equations (14.76), (14.80) and (14.84), it follows that
T > . ® - . *
[ Sar o {wr+ " @ - o b+ 00}
0 T8 a

+ S ur @ {5 - f“'(t)}} dt < 0 (14.85)
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The above equation contradicts variational inequality (14.54). Therefore, any
optimal solutions {u}*’[t + 7™ (¢)]} and {f™*" ()} to variational inequality
(14.54) that satisfy the second ideal DUO route choice condition (14.49) also
satisfy the fifth DUO departure time choice condition (14.52).

Case 3

Case 3 includes the following two sub-cases: 3a) conditions (14.49) and
(14.52) do not hold for different O-D pairs; 3b) conditions (14.49) and (14.52)
do not hold for the same O-D pair.

Case 3a

Assume that the second ideal DUO route choice condition (14.49) does
not hold for O-D pair kn for time interval [d; — 61,d; + 61] and the fifth DUO
departure time choice condition (14.52) does not hold for O-D pair pq for time
interval [dy — 83,d3 + 82]. Note that the two O-D pairs are different, but the
two time intervals may or may not be different. For O-D pair kn, we assume
that the second ideal DUO route choice condition (14.49) does not hold only
for a link b = (I, m) during time interval [d; — &;,d1 + 1], i.e.,

uk™' [t + (@) >0 and
Q™ () = (1) + ralt + O] - @) >0 (14.86)
Following the derivation from (14.65) to (14.73) in Case 1, we can find

a set of feasible inflows uk®[t + 7" (t)] for O-D pair kn so that the following
equation holds:

T
[ 50w (e o= s )

+ u""a‘(t) {re)- f @)}t <o (14.87)

Note that in the derivation of the above equation, we follow the process in Case
1 by assuming there is only one O-D pair kn.

For O-D pair pq, we assume that the fifth DUO departure time choice
condition (14.52) does not hold during time interval [d2 — &2, d2 + 62].

fPU@)>0 and  UPT(t)—UPL >0 (14.88)

msn

Following the derivation from (14.74) to (14.85) in Case 2, we can find a set of
feasible departure flows f4(t) and inflows uk®[t 4 7% (¢)] so that the following
equation holds:

T
/ {Z Q2" (t) {ulelt + 77" (©)] - 2" [t + 7 ()]}
+ uM‘(t){fM(t)—fm‘(t)}} dt<0 (14.89)
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Note that in the derivation of the above equation, we follow the process in Case
2 by assuming there is only one O-D pair pq.

For other O-D pairs rs, we choose the feasible departure flows f7*(t)
to equal the optimal departure flows f™*"(¢) at each instant of time ¢. Thus,
the second terms in (14.54) for those O-D pairs will vanish. We also need to
re-route all feasible departure flows f*(t) for those O-D pairs at each instant of
time. For each O-D pair rs at each instant of time, we assign the feasible O-D
departure flow f7*(t) to the minimal travel time route h, which was evaluated
under the optimal flow pattern {uf* [t 4+ 77" (¢)]}. This will generate a set of
feasible inflow patterns {u]*[t + 7™ ()]} which always allows the first terms in
(14.54) to equal 0 for those O-D pairs rs, as illustrated in Case 1.

Combining equations (14.87) and (14.89) and the above analysis,

T X 3 I - %
I {ZZQ;J 0 {uft+ 7 O] g+ 7 0]}
0 TS a
+ S urm{rw- f“‘(t)}} dt < 0 (14.90)

The above equation contradicts variational inequality (14.54). Therefore, any
optimal solutions {ul*"[t + 7" (¢)]} and {f™ (t)} to variational inequality
(14.54) will satisfy both the second ideal DUO route choice condition (14.49)
and the fifth DUO departure time choice condition (14.52).

Case 3b

Assume that the second ideal DUO route choice condition (14.49) and
the fifth DUO departure time choice condition (14.52) do not hold for the
same O-D pair pg, but for time intervals [d; — é1,d; + 61] and {d2 — é2,d2 +
8,], respectively. Note that the two time intervals can be either identical or
different. Since the fifth DUO departure time choice condition (14.52) does not
hold during time interval {[d; — 83, d2 + 8], it follows that

min

@A) >0 and  UPT () -UPL, >0 (14.91)

Following the derivation from (14.74) to (14.80) in Case 2, we can find a set
of feasible departure flows fP4(t) so that the following equation holds for O-D

pair pg:
T
/ ure (t){ () — 27 (t)} dt <0 (14.92)
0

Note that in the derivation of the above equation, we follow the process in Case
2 by assuming there is only one O-D pair pg.

For O-D pair pq, we also need to adjust the link inflow pattern accord-
ingly so that they will be feasible. We assume that the second ideal DUO route
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choice condition (14.49) does not hold only for a link b = (I, m) during time
interval [dy — 6;,d1 + 61), i.e.,

u{q. [t+7?" ()] >0 and

QP™ () = P (8) + ralt + TP(8)] — P™ () > 0 (14.93)
Following the derivation from equations (14.65) to (14.72) in Case 1, we can

find a set of feasible inflows u24[t+rP*" (t)] so that the following equation always
hold for O-D pair pg:

/T S8 (1) {ultl+ O] -t e+ O} dt < 0 (14.94)
0 a

Note that in the derivation of the above equation, we follow the process in Case
1 by assuming there is only one O-D pair pg.
Combining equations (14.92) and (14.94), we have

T Iz 3 L] - ;.
Pj Pay 4 P — Pt P
/0 {Ea:na (t) {uBtlt + 77" (1)) — b7 [t + 7 ()]}
+ ur @ { o) - (t)}} dt <0 (14.95)

Thus, we found a set of feasible departure flows f?9(t) and inflows ug9[t+77"" (t)]
so that the above equation holds for O-D pair pq.

For other O-D pairs rs, we choose the feasible departure flows f7*(t) to
equal the optimal departure flows f™*"(t) at each instant of time. Thus, the
second terms in (14.54) for those O-D pairs vanish. We also reroute the feasible
departure flows f7(t) for those O-D pairs at each time instant. For each O-D
pair rs, we assign the feasible O-D departure flow f™*(t) to the minimal travel
time route h, which was evaluated under the optimal flow pattern {uf* [t +
a"" (t)]}. This generates a set of feasible inflow patterns {uf*[t+7"" (¢)]} which
always allow the first terms in VI (14.54) for those O-D pairs to equal 0, as
illustrated in Case 1.

Combining equations (14.95) and the above analysis, we have

T - 7] * .
/0 {ZZQIJ (t) {ustlt + 7" @) - w e+ 27 ()]}

+ S ur{re- f“'(t)}} dt <0 (14.96)

The above equation contradicts variational inequality (14.54). Therefore, any
optimal solutions {u}*"[t + 77 (t)]} and {f™* ()} to variational inequality
(14.54) will satisfy both the second ideal DUO route choice condition (14.49)
and the fifth DUO departure time choice condition (14.52). Since we have
proved the necessity and sufficiency of the equivalence of variational inequality
(14.54) to DUO departure time/route choice conditions (14.48)-(14.53), the
proof is complete.
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14.3 VI Models and Optimization Models for
Departure Time/Route Choice

We now consider the relationship between VI models and optimization models.
As in Chapter 13, we do not discuss each VI model in this chapter. As an
example, we focus our analysis on the link-based VI model for DUO departure
time/route choice problem. We show in the following that under relaxation
and some regularity conditions, the VI model can be reformulated as an op-
timal control problem. Similar analysis can be performed for the route-based
VI model for DUO departure time/route choice problem. Therefore, in this
section, we discuss the following VI problem:

T - L%
/ {Z S (1) {utle+ (0] -l 4 7 (0]

+ U {rew- f”'(t)}} dt > 0 (14.97)

To similify our analysis, we assume the time period [0,T] is long enough so
that all departure flows can be cleared by final time T. In other words, any
positive departure from origin r at time ¢ will arrive at destination s at time
t+ 77 (t) < T.

We consider a simplified link travel time function as follows:

Ta(t) = Ta[za(t), ua(?)] Va. (14.98)

Following a similar derivation in Chapter 13 for the ideal DUO route choice
problem, we can design a similar double relaxation or diagonalization proce-
dure so that the above VI can be formulated as an optimal control model in
each relaxation iteration. At the first-level relaxation, we assume that the ac-
tual link travel time 7,(t) in the flow propagation constraints and the resulting
minimal actual travel times 7™ (¢) in the above variational inequality are fixed
temporarily at each relaxation iteration. Furthermore, the resulting minimal
actual travel times 7" (¢) in the disutility function "*(¢) are also fixed tem-
porarily at each relaxation iteration. Then, the cross-effects of flow variables
at different time instants can be separated at each iteration. We define a new
time variable as £7 = ¢ + 7" (t) where 7" (¢) is fixed temporarily at each
relaxation iteration. Suppose there are R origins. Then, for each link a and
origin r at time instant {7, we have

ua(€]) = ub(€5) + ul(€]) + - - + ul(&D) (14.99)
The actual link travel time 74(£) at time instant £7 can be expressed as
Ta(ég) = Ta[utll(gz)’ T uaR(gcrz)’ xalz(ﬁcrz)’ ) xaR(g‘Tl)] (14'100)

Since the cross-effects of origin-specific link flow variables are asymmetric
and cannot be eliminated, we need to design a second-level relaxation for this
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VI. In other Yvords, we need to fix temporarily all other link flow variables
ua(€] ), za(€5 ) (r' # r) in Equation (14.100) at each second-level relaxation
iteration. Thus, we obtain the objective function of the optimization program
as

T wI(€D)
Min/0 ;{/0 Ta[ua(€0), s, -, uf(€0), 23(€0), - -+, 24 (€5)] dw

+3° @) u”(t)} dt (14.101)

Note that £ = t+7"" (t) where 7™ (t) is fixed temporarily at each second-level
relaxation iteration. Also note that all flow variables at time instants £ > T
are 0. Therefore, link-based variational inequality (14.97) can be reformulated
as an optimal control problem with objective function (14.101) and constraints
(14.5)-(14.11) at each double relaxation iteration.

14.4 Notes

Several departure time choice models have been proposed by various researchers
using different approaches on dynamic traffic networks. -Janson (1993) formu-
lated a dynamic user-optimal route choice model in which trips have variable
departure times and scheduled arrival times. Friesz et al (1993) presented a
joint departure time and route choice model using the variational inequality
approach. Ghali and Smith (1993) also considered this problem using a micro-
scopic representation of vehicle streams.

In this chapter, a link-based VI model for DUO departure time/route
choice was presented. The necessity and sufficiency proofs of the VI model
demonstrate that this model is consistent with the link-based DUO departure
time/route choice conditions. Using a link-based VI formulation, explicit route
enumeration can be avoided in computation. This feature allows our model
to be applied to large-scale dynamic transportation networks with general link
travel time functions.

Two major constraints prevent us from applying existing dynamic trans-
portation network models to ATIS systems. The first concerns the accurate
representation of travelers’ choice behavior. In future extensions, utility func-
tions instead of pure travel times should be used in route choice problems.
Different perceptions and compliance with information must be investigated
by stratifying travelers into multiple groups. The second concerns the accurate
representation of traffic dynamics on each street link. Link traffic dynam-
ics may be very complicated; as pointed out by Newell (1990) and Daganzo
(1993), a set of appropriate closed-form link travel time functions might involve
the interactions of neighboring link flows. This feature prevents formulating
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an appropriate optimization model for a realistic departure time/route choice
problem. Thus, the general VI formulation approach was proposed for such
applications. However, VI models require more computational capability than
optimization models.

The proposed link-based VI model for DUO departure time/route choice
can be extended to include arrival time choice, destination choice and mode
choice as well. Our next step is to develop eflicient solution algorithms for the
DUO departure time/route choice VI model. We expect that the Frank-Wolfe
and diagonalization techniques proposed by Boyce et al (1991) and Ran et al
(1993) can be applied to solve this model. Other solution algorithms, such as
the projection algorithm, implemented by Nagurney (1986) for static network
equilibrium VI models, are also extendable to our dynamic VI problem. We
note that the solution algorithm for our DUO departure time/route choice VI
model has to be implemented on an expanded time-space network as proposed
in Boyce et al (1991). Other important problems, such as incident related
dynamic route choice problems and dynamic congestion pricing problems, will
be studied as extensions of this VI model.



Chapter 15

Dynamic System-Optimal Route
Choice and Congestion Pricing

In this chapter, we present several dynamic system-optimal (DSO) route choice
models for a network with multiple origin-destination pairs. The constraint set
for DSO route choice models can be much more comprehensive, including con-
straints such as the capacity and oversaturation spillback constraints. However,
the more constraints we have, the more difficult will be the solution algorithm.
Thus, for large-scale networks, we need to make a trade-off between the reality
of formulations and the difficulty of the solution algorithm. The modeling com-
plexity can be pursued as long as realistic traffic flows can be fully represented
and reasonable computational times can be achieved.

In a DSO route choice problem, various objective functions can be for-
mulated. Each objective function corresponds to a specific requirement for the
overall system. In Section 15.1, we present several typical objective functions
for a DSO route choice model. In Section 15.2, a DSO route choice model
which minimizes total travel time is formulated and a solution algorithm is
presented. In Section 15.3, we discuss a set of DSO route choice models with
elastic departure times. Time-optimal models for evacuation purposes are also
formulated. In Section 15.4, we consider dynamic congestion pricing strategies
which can make a dynamic system-optimal state consistent with a dynamic
user-optimal state.

15.1 Objective Functions for Dynamic System-
Optimal Models

Depending on the objective of the central controller of a Traffic Management
Center (TMC), there are various measures of control effectiveness which can
be considered as objective functions. In the following, we enumerate several
objective functions which are most widely considered in general DSO route
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choice models:
1. minimize total travel time;
2. minimize total travel cost or disutility;

minimize total number of vehicles during time period [0, T};

W

minimize average congestion level during time period [0, TY;
5. minimize the length of the congested time period [0, T].

We first consider the problem of minimizing the total travel time of all
vehicles within a time period [0, T)]. Using optimal control theory, the objective
function for this dynamic system-optimal route choice problem is formulated
as follows:

T
min /0 {Z Uq(t) Ta[za(t),ua(t),va(t)]} dt (15.1)

a

In this objective function, if we replace the link travel time function 7,(t) with
the link travel cost function 7,(t), then we obtain an objective function which
minimizes the total travel cost during time period [0, T):

T
min /0 {Z ua(t)fa[xa(t),ua(t),va(t)]} dt (15.2)

a

Equations (15.1) and (15.2) are different because the link travel cost
function 7,(%) includes other factors, such as automobile operating cost, link
tolls, gasoline consumption, etc. The relationship between equations (15.1) and
(15.2) and congestion pricing is discussed in detail in Section 15.4.

We now consider how to minimize the total number of vehicles traveling
on the network during time period [0,T]. This objective function may be stated
as follows:

T
min /0 D [wa(t) = va(®)ldt = [2a(T) — 24(0)] (15.3)

Since the initial value z,(0) is generally given, the above objective function is
equivalent to

min Y za(T) (15.4)

Thus, we obtain an objective function which minimizes the total number of
vehicles on the network at the final time 7. This objective function is useful
for reducing the average congestion level of peak-hour traffic when the final
time T is set within the peak-hour.
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Next, we consider a quantitative definition of the congestion level for
the network. The congestion level D(t) is defined as an indicator of average
congestion in the network at any time ¢. There are several possible approaches

to defining D(2):
1. the ratio of mean travel time to mean free-flow travel time;
2. the ratio of mean free-flow speed to mean flow speed;
3. mean relative density;

where the calculation of the means is flow weighted. For example, we can use
the mean relative density as a measure of the level of congestion. The relative
density D,(t) for link a is then defined as

Da(t) = 2a)/la Va (15.5)
€am

where [, is the link length and e, is the maximum density of traffic on link
a. Therefore, the congestion level D(t) for the network can be defined as

D(t) = Eaga(i)a(lz)a(t)

where u, is the inflow on link a. Then, the objective function that minimizes
the mean relative density during time period [0, 7] is expressed as

min [ ' {Zalindil g (15.7)

The above objective functions can be applied to situations either with
or without elastic departure times. For problems with elastic departure times,
a special type of DSO route choice problem is to find the minimum time period
[0, T'] if the total number of departure vehicles is known. This objective function
can be stated as follows:

(15.6)

min T (15.8)

This type of DSO route choice problem is discussed in detail in Section 15.3.

15.2 Total Travel Time Minimization

15.2.1 The Model

We first consider the classic problem of minimizing the total travel time of all
vehicles within a time period [0,7]. In this model, the O-D departure flows
fré(t) are given. In order to compare the DSO route choice model with the
DUO route choice model, we use the constraints for the instantaneous DUO
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route choice model as given in Chapter 5. Using optimal control theory, the
direct optimization model of the DSO route choice problem is formulated as
follows.

/ Zua(t) Ta[a(2), ua(2), va(2)] dit (15.9)

u, v z, e JE
s.t.
Relationship between state and control variables:
d 7'8
ugp(t) — vgp(1) VYa,p,r, 3; (15.10)
dE™(1
;t( ). ey (1) Vp, 1,8 # 13 (15.11)
Flow conservation constraints:
Yo D un®) =170 Vr # s;; (15.12)
a€A(r) p
Z vﬂp(t) = Z u;;(t) Vi, Py, 8,5 £ 1,8 (15.13)
a€B(j) a€A(j)
Yo S @ =e0) Vr, 838 # 13 (15.14)
a€B(s) p

Flow propagation constraints:

() = Y _{zpalt + 7a(t)] — 2D} + {Ep*[t + 7a()] — B} (2)}
bEH
Va € B(5);j # r;p,7, 85 (15.15)

Definitional constraints:

Zu (2) = uqa(2), Zv;';(t) = v4(2), Va; (15.16)

T8p r8p
D zia(t) = za(2), 3 2l (t) = za(t), Va; (15.17)
rsp T8

Nonnegativity conditions:
zqp(t) 20, uZ;(t) >0, 'v,';;(t) >0 Va,p,r,8; (15.18)

er’(t) > 0, Er(t) >0, Vp,r, 3; (15.19)

Boundary conditions:

E;*(0) =0, Vp,r,s; (15.20)
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zap(0) =0, Ya,p,r,s. (15.21)
The objective function is analogous to the objective function of the well-known
static system-optimal (SO) model. The flow propagation constraints are based
on the actual link travel time 7,(t) instead of its fixed estimate 7,(¢). In
summary, the control variables are ug5(t), v55(t), and e}°(2); the state variables
are z5(t) and Ep*(2).

The objective function can also be defined using link travel costs instead
of link travel times, as already noted above. A generalized link travel cost
function would include a weighted sum of travel time, atmospheric emissions,
gasoline consumption, physical strain of driving, etc. After such a generalized
link travel cost function is defined in any practical situation, the link travel
time function can be replaced and the above DSO route choice problem directly
applied to our purpose.

We note that we cannot conduct an analysis of optimality conditions
similar to that for the instantaneous DUO route choice model. Since the actual
link travel time 7,(¢) is a functional of flow variables u,(t), v4(t), Z4(%), the
first-order necessary conditions are very complex. The resulting marginal link
cost has several terms which have cross-effects with link flows on downstream
links. This marginal cost is so complex that an analytical expression is not

meaningful.

15.2.2 Solution Algorithm

This DSO route choice model can be solved using the same algorithm pre-
sented in Chapter 6. We need only to revise the link cost functions for the
LP subproblem. We reformulate the DSO route choice model as a discrete-
time nonlinear program (NLP). Then the diagonalization technique and the
Frank-Wolfe algorithm are employed to solve the NLP. In the diagonalization
procedure, the estimated link travel time is updated iteratively. Then we apply
the Frank-Wolfe technique to solve the NLP. An expanded time-space network
is constructed so that each LP subproblem can be decomposed according to
O-D pairs and can be viewed as a set of minimal-cost route problems. The
flow propagation constraints which represent the relationship of link flows and
travel times are satisfied in the modified minimal-cost route search so that only
flow conservation constraints for links and nodes remain.

Discrete DSO Route Choice Model

To convert our DSO route choice problem into an NLP, the assignment time
interval [0, T is subdivided into K small time increments. (The time increments
are not necessarily equal.) In each diagonalization iteration, we modify the
estimated actual link travel times in the flow propagation constraints in the
following way so that each estimated travel time is equal to a multiple of the
time increment.

Fok)=i if i-05<7(k)<i+0.5,
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where ¢ is an integer and 0 < i < K. The optimal control program can then
be reformulated as a discrete time NLP as follows:

Z > ta(k) Talza(k), ua(k), va(k)] (15.22)

k=1 a

u,v,z, E'
s.t.

zop(k +1) = g3 (k) +ugp(k) —viy(k)  Va,p,r,85k=1,---,K; (15.23)

E”(k+1)=E"(k)+ Y Y vi(k) Vris#rk=1,---,K; (15.24)
a€B(s) p

SN unk)=5"(k)  Vr£sk=1,---, K; (15.25)

a€A(r) »

D ovik)— > ul(k)=0 Viprsji#rsk=1,---,K; (15.26)

a€B(j) a€A(j)

zio(k) =Y {zfalk + 7a(k)] — ja(k)} + {EL°[k + 7a (k)] — EJ*(k)}
bEP
VYa € B(j);j #rprsik=1,--- K +1; (15.27)

ups(k) 20, via(k) >0, zpo(k+1)>0, VYa,p,r,s;k=1,---,K; (15.28)

E(k+1) >0, Vp,r,8;k=1,---,K; (15.29)
EF(1)=0 Vp,r, s; (15.30)
Top(1) =0, Va,p,r,s. (15.31)

Diagonalization/Frank-Wolfe Algorithm

Denote the subproblem variables as p, g,y, E, corresponding to the main prob-
lem variables u,v,z, E. Applying the Frank-Wolfe algorithm to the minimiza-
tion of the discretized DSO program requires, at each iteration, a solution of
the following linear program (LP):

min 7 = VuZ(u,v,2,E) pT + Vo Z(u,v,z, E)qT
790,E
+ V2Z(u,v,z,E)yT +vEeZ(u,v,z,E) ET (15.32)
s.t.
Yap(k +1) = yop(k) + pop(k) — qzp(k)  Va,p,r,8;k=1,--- K; (15.33)

Ev(k+1)=E"(k)+ Y > qa(k) Vrs#rk=1,---,K; (15.34)
a€EB(s) p
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Yo D opnk)=F"(k) Vr#sk=1,---,K; (15.35)

a€A(r) P

Z Gop(k) — Z Pap(k) =0  Vj,p,r,85 #r8k=1,---,K; (15.36)
a€B(j) a€A(j)

Yoo (k) = D _{yiplk + 7a(R)] — yip(k)} + {E}°[k + 7a(R)] — E;°(K)}
bep
Va€ B(j);j #r;p,7y8k=1,---, K +1; (15.37)
pap(k) > 0 q (k) 2 0’ y;;)(k + 1) 2 01 VG,P,T,-’;k = 17' ‘ 'aK; (1538)

E;’(k+1) >0, vp,r,83k=1,---,K; (15.39)
Ey(1) =0, Vp,r, 3 (15.40)
Yap(1) =0, Va,p,r,s. (15.41)

Objective function (15.32) is equivalent to:

oz rs
ZZZ[ "(k) ap( )+ ,.,(k)qap( )+myap(k+l)

k=1 r,8 a,p

+ Z Z aEra(k + 1) ”(k + 1) (15‘42)

k=1 r,8,p

The components of the gradient of Z(u,v,z, E) with respect to the control and
state variables u, v, z, F are

t1a(k) = %{jﬂ = 7,(k) + ua(k)g;‘;((’;)) Vask=1,---,K; (15.43)
toa(k) = W uq(k) BT:E:; Vajk=1,---,K;  (15.44)
t3a(k) = —32(;‘2 ”(,:) 2 B) _ i) aT:((:)) Vask=2,---,K;  (15.45)
tsa(K +1) = aazz—(:‘(’l{‘%’—l? =0 Va (15.46)
t;a(k)z?-%%;c”)i)zo Vrsk=2,--, K +1. (15.47)

Therefore, the objective function can be rewritten as

K
=3 % [taa(R)RLo (k) + taa(R)aZ (k) + taa(k + D)yla(k +1)] (15.48)

k=1r,8,a,p
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As before, we define the diagonalization procedure as the outer iteration
and the F-W procedure as the inner iteration in this combined algorithm.
Denote the new solution at inner F-W iteration (n + 1) as

uP () = (k) + oD E) —pOE)] Vask =100, K; (15.49)

oM (k) = oM (k) + aPp((k) - g™ (k)]  Vask=1,---,K; (15.50)
() = 2V (k) + a2V (k) — (k)] Va;k=1,---,K +1; (15.51)

where o(?) is the optimal step size of the one-dimensional search problem in
the F-W algorithm at iteration n. The one-dimensional search problem is to
find step size a{™ that solves

ZZu<n+l>(k> rola{ k), uHO(E), o IR)) (15.52)

0<a(")<1

where u("+1)(k), 'v,(l"H)(k), :l:g"'H)(k) must be substituted using the above
definitional equations. The algorithm for solving our DSO route choice model
can then be stated as follows:

Step 0: Initialization.
Find an initial feasible solution {:z:(l)(k)}, {'u,(al)(k)}, {v,(ll)(k)}, {EM(k)}.

Set the outer iteration counter m = 1.

Step 1: Diagonalization.
Find a new estimate of actual link travel time 7™ (k) and solve the DSO
program. Set the inner iteration counter n = 1.

[Step 1.1}: Update. Calculate t14(k), t24(k) and f3,(k) using equa-
tions (15.43)-(15.46).

[Step 1.2]: Direction Finding. Based on {t1,(k)}, {t2.(k)} and
{tsa(k)} and satisfying flow propagation constraints (15.2.2), search the
minimal-cost route forward from each artificial origin to the super desti-
nation over an expanded time-space network for each O-D pair rs. Per-
form an all-or-nothing assignment, yielding subproblem solutlon {pa(k)},

{2(k)}, {pa(k)}, {E™*(K)}.

[Step 1.3]: Line Search. Find the optimal step size a{™ that solves
the one-dimensional search problem.

[Step 1.4]: Move. Find a new solution by combining {u,(k)}, {va(k)},
{za(k)}, {E™(k)} and {pa(k)}, {g2(k)}, {ya(k)} and {E*(K)}.

[Step 1.5]: Convergence Test for Inner Iterations. If n equals a

prespecified number, go to step 2; otherwise, set n = n+1 and go to step
1.1.
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Step 2: Convergence Test for Outer Iterations.
If 'F,Sm)(k) o~ ‘T‘Em+1)(k), stop. The current solution, {u.(k)}, {v.(k)},
{z.(k)} and {E"*(k)}, is in a near DSO state; otherwise, set m = m + 1
and go to step 1.

In order to speed up convergence, an incremental assignment technique is sug-
gested for finding a good initial solution before applying the diagonalization
procedure. Since the linear subproblem can be decomposed by each artificial
origin-destination pair, this problem is a good candidate for solution with par-
allel computing techniques.

15.3 DSO Route Choice with Elastic Depar-
ture Times

We now consider DSO route choice with elastic departure times, which is sim-
ilar to the DUO departure time/route choice problem in terms of its problem
statement. However, these two problems are different in that the DSO route
choice with elastic departure times secks to achieve the system-optimal objec-
tive by adjusting both departure time and routes. Thus, this problem is also
a simultaneous departure time/route choice problem. The DSO route choice
with elastic departure time is easier to formulate and the resulting optimal
control program is easier to solve.

In these models, the O-D departure flows f™(t) are variables. The cu-
mulative number of departure vehicles from origin r to destination s at time #
is

t
Fr(t) = /0 fré(t) Vr, s;7 # s. (15.53)

We assume that the total number of departures F™*(T) between O-D pair rs in
assignment period [0, T] are given and all vehicles are ready to depart at time
0. In other words, we have

T
/0 fro@) = F*(T) given Vr,8;1 # 3. (15.54)

This type of O-D departure condition is also called an isoperimetric condition
and is shown in Figure 15.1.
The auxiliary state equation for departing vehicles is

dF;:(t) = fr(t) Vr, s (15.55)

where the departure flow rate f"*(¢) is an additional control variable and F™®
is an additional state variable in the optimal control programs. The initial
condition is

F™0)=0 Vr, s. (15.56)
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Cumulative Number of Departures
8

FT) |-———— e

waiting time

<&
<

—p Timet
0 t T

Figure 15.1: Isoperimetric O-D Departure Condition

Since the adjustment of departure times is associated with delays at
origins, we adopt the method for handling spillback constraints in Chapter 4
to treat the delays at origins. We create a dummy link b at each origin » to
accommodate the vehicles waiting at origin r. The state equation for dummy
link b at origin r is as follows

O _frw-vi)  Vbrsders. (15.57)

We assume the number of spillback vehicles at time 0 is zero. It follows that
z;(0) =0 Vb,r, ;b € rs. (15.58)

Thus, the flow conservation equation for origin r should be revised as

D () =vi(2) Vr # s;b € rs. (15.59)
a€A(r)

As a result, the DSO route choice problem with isoperimetric O-D conditions is
transferred into a conventional DSO route choice problem with fixed initial link
states and fixed final auxiliary states. Of course, we also need the flow propa-
gation constraint for dummy link b. Associated with the spillback constraints,
link flow capacity constraints are necessary and placed in the constraint set for
the DSO route choice problem. We assume there is no upper bound for the
queue length z}(t) since an origin always has enough capacity to accommodate
vehicles. The queuing delay at the origin is as follows

7b(t) = To[zs(2), vs(2)] Vbe rs (15.60)
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where

NOEDPEH w(t) =Y _vi(t)

8 8

The total delay at origin r is the waiting time plus possible spillback delay, ie.,
t + m[zs(t), ve(2))-

15.3.1 Fixed Final Time T

We first consider the problem of minimizing the total travel time of all vehi-
cles within a time period [0,T]. Using optimal control theory, the equivalent
optimization model of the dynamic system-optimal route choice problem is
formulated as follows.

T
u,u,:l:l,-.lfi,%‘,e,E /0 {Zua(t) Ta [za(t), ua(t)’va(t)]

+ Z fr(t) {t + Tb[xb(t),'vb(t)]}} dit (15.61)

s.t.
Relationship between state and control variables:
zra .
7:‘1 = ugp(t) — vap(?) Va,p,r,s; (15.62)
dE>(t
;t( ) = e,’(t) Vp,r,8 # 71} (15.63)
Flow conservation and spillback constraints:
dz} _(t
A ) = fp"(t) — vp,(t) Vb,p,r,3;b € rs. (15.64)
dt
D ula(t) =vg,(t) Vp,r # s;b € rs; (15.65)
a€A(r)
D va® =D up) Vi,p,m 835 # 1,85 (15.66)
a€B(j) a€A(j) ’
Z Z Vgp(t) = e™(2) Vr,s;8 # r; (15.67)
a€B(s) »p

Flow propagation constraints for links a, b:

zi() = D _{zhplt + 7a(0)] — 2ip (D} + { Byt + 7a(0)] - Ep*(2)}
dep

Va € B(j);j # r;p,7, 8; (15.68)
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zh,(t) = Y _{=it +n(1)] — 23 (1)} + {E°[t + (1)) - E°(t)}

dep
Vb e rs;p,r,s;
Link Capacity:
zq(t) < lpeam Va;
va(t) € vam Va; vp(t) Svpm VD E 73

Definitional constraints:

Youn®) =ua(t), D vis(t)=va(t), Ve

ra&p rap

Sant) =zalt), Yl =zt), Ve

Zv,‘,’(t) = vp(t), Z zp(t) = zp(t), Vb E rs;
Yo =frw, D=5, v
p 8

Nonnegativity conditions:
Top(t) 20, ugy(t) 20, vg(t) =0 Va,p,r,s;
@) 20, FP() 20, e(t)20, EF(®)20, Vprs
zy,(t) 2 0, vpp(1) 2 0, Vb € rs; p, s;
Boundary conditions:
Fr(T) given Vr, s;
E;B(O) =0, VPa",S;

933;(0) =0, Va,p,r,s; :'l:gp(()) =0, Vb € rs; p, s.

(15.69)

(15.70)

(15.71)

(15.72)

(15.73)

(15.74)

(15.75)

(15.76)

(15.77)

(15.78)

(15.79)

(15.80)

(15.81)

The above model is similar to the DSO route choice model in Section
15.2 except for the addition of link capacity constraints, oversaturation con-
straints and the corresponding delays at origins. This model can be solved
using a similar diagonalization/F-W algorithm. However, the time-space net-
work expansion should include a set of dummy links for the spillback vehicles

and origins.
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15.3.2 Free Final Time T

We next consider the DSO route choice problem with elastic departure time
and free final time T'. We first discuss a model with an objective function which
minimizes the total travel time in the network. This formulation is identical
to equations (15.61)-(15.81) except that T' is now a variable which has to be
determined to minimize the total travel time as shown in Figure 15.2. As shown
in equation (15.61), the total travel time consists of two parts: 1) travel time
in the network; 2) queuing delay at origins. When the time period [0, T is
short (or the vehicles enter the network during a short time period [0, T1]), the
total queuning delay at origins is small, but the total travel time in the network
is high because the network is more congested. On the other hand, when the
time period [0,T] is long, the total queuing delay at origins becomes larger.
Since the departing vehicles are spread out more evenly in a longer time period
[0, T1]), the network is less congested and the total travel time in the network is
smaller. Thus, there exists an optimal final time T by which the total travel
time achieves its minimum.

Objective Function

!

Total Travel Time

Travel Time
in Network

Queuing Delay

>
0 T* Assignment Time T

Figure 15.2: Optimal Assignment Time in DSO Route Choice Problem

We note that the queuing delay at origins becomes important in de-
termining the minimal total travel time and the optimal final time 7™ in the
minimization problem with free optimal time period 7. If the waiting time or
queuing delay at origins is not considered in the objective function, the optimal
time period T becomes infinite so that the departure vehicles are assigned onto
the network over an infinite time horizon. There will be no congestion in the

network and the total congestion delay will approach zero. However, our major
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interest in the free final time period is to identify the minimum T by which
all departing vehicles leave the origins. This problem is now discussed in more
detail.

In some emergency situation, we may wish to evacuate all persons from
one place to other places within a minimal time period. This typical evacuation
problem may have wide applications in emergency situations like hurricanes,
earthquakes and fires. In this problem, the performance index of interest is the
elapsed time to transfer the system from its initial state to a specified state.

The assignment time period [0, T'] is free and is a variable in this problem.
The objective function is

min T
Under this objective function, an extreme requirement is that at the end of the
time period there are no vehicles on the network or at least no vehicles on links
within a certain range of the emergency areas. Thus, the associated additional
boundary constraints for physical links ¢ and dummy links b are

z2,(T)=0 Va, z(T) =0 Vb

To be more practical, we may only require that vehicles be cleared at origins
at final time T'. It follows that

:cb(T) =0 Vb

The equivalent optimal control program of the time-optimal route choice
problem is formulated as follows.

min T (15.82)
s.t.
Relationship between state and control variables:
dz?? e ve
dtp = uap(t) - vap(t) Va, D, Ty 85 (15.83)
dE}*(%) e
=) Vp, 1,8 # 75 (15.84)
Flow conservation and spillback constraints:
de(t) —_— fT‘B t 8 t Vb . b 15 85
dt —Jp ()-—'pr() y Py T3 830 € T8. ( . )
Z ugp(t) = vp,(t) Vp,r # 8;b € rs; (15.86)
a€A(r)
Do v®= D up) Vi, p,7, 835 # 7, 8; (15.87)

a€B(j) a€A(j)
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P OETRI ) Vr,s;8 # 15 (15.88)

a€EB(8) »p

Flow propagation constraints for links a, b:

zop(t) = Y _{z5plt + 7a(D)] = 235(1)} + (Ep’lt + 7a(t)] — E;*(1)}

d€p
Va € B(j);j # r;p, 1 8; (15.89)
zy(t) = dZ{z;:,[t +7(®)] ~ 255()} + (E*[t + () — Ej* ()}
€p
Vb € rs;p,r, 8; (15.90)
Link Capacity:
74(t) < lieam Va; (15.91)
v4(1) < vam Va; vp() < vom Vb € rs; (15.92)

Definitional constraints:

doun(t) =uat), D via() =vat), Ve (15.93)

Yoz =sa(t) Y z()=za(t), Vg (15.94)
vt =wt), D zp(t)==z(t), Vbers (15.95)
Se=f0, Y o=, I (15.96)

Nonnegativity conditions:

zz;(t) >0, u;;’,(t) >0, 'vz;(t) >0 Va,p,r,s; (15.97)

50(2) >0, F,°(t) >0, e(t) 20, Ep*(t) >0, Vp,r,s; (15.98)

z5,(1) 20,  v5,(2) >0, Vbers;p,s; (15.99)
Boundary conditions:

F™(T) given Vr, s; (15.100)

E;*(0) =0, Vp,r,8; (15.101)

2op(0) =0, Va,p,7,8; z3,(0) =0, z;,(T)=0, Vbers;p,s. (15.102)

Compared with other DSO route choice models, the time-optimal model has
a distinct objective function, min 7. At the final time T, vehicles at origins
are cleared as shown in boundary conditions (15.102). Figure 15.3 illustrates
the relationship between the optimal final time T* and cumulative departures
between O-D pair rs. :
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Cumulative Number of Departures
4

F" S(T* ) |[———— e

|
T*  Any fehsible T

>
0 Assignment Time T

Figure 15.3: Optimal Time Period in Time-Optimal Problem

15.4 Dynamic Congestion Pricing

We now consider the dynamic congestion pricing problem in which the dy-
namic system-optimal objective can be achieved while preserving the dynamic
user-optimal route choice properties. Previous research on congestion pricing
has concentrated on policy and practical implementation issues. A summary
of recent changes in policy is given by Small (1992), emphasizing the changing
political acceptance of congestion pricing. The theory of marginal cost pricing
has been explored by many researchers in the context of static transportation
networks; for example, see Beckmann et al (1956), Dafermos (1972) and Smith
(1979). Few theoretical studies on congestion pricing are related to large trans-
portation networks in real time. Recently, some models have been proposed by
de Palma and Lindsey (1992) and Ghali and Smith (1993). Both of them use
simple networks to explore the properties of dynamic tolls.

We first discuss some possible dynamic congestion pricing strategies.
Following a summary of dynamic network constraints, we present two kinds
of dynamic toll strategies. Two dynamic link toll models are then formulated
as two bilevel programs which are based on two different kinds of route choice
assumptions.

15.4.1 Various Dynamic Congestion Pricing Strategies

Information and control have been identified as two major approaches to com-
bat traffic congestion in an ATMIS system. Recently, congestion pricing has
received increasing attention from policy makers as an effective measure of con-
trolling congestion. With advances in ATMIS technology, real-time congestion
pricing is becoming increasingly feasible.
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Dynamic tolls can be collected with the application of automatic vehicle
identification (AVI) technology. In conjunction with a dynamic route guid-
ance system (DRGS) , effective traffic controls and congestion pricing can be
implemented together to influence the routing strategies by either a central
controller or individual drivers so that congestion levels in the transportation
network can be controlled or adjusted.

The Federal Highway Administration (FHWA) has invited applications
from local authorities for demonstration projects on congestion pricing. In
the evaluation of strategic IVHS System Architectures, congestion pricing was
identified as one of the most important control schemes in future IVHS sys-
tems. What seemed impossible only a few years ago seems now possible with
the ATMIS technological achievements and the change of policy, which in turn
motivates the development of dynamic congestion pricing models for large scale
transportation networks. We envision the application of such models as con-
tributing to the evaluation of proposed ATMIS systems. Eventually, such mod-
els may prove useful as well in the operation of such systems. In the short run,
however, our principal objective is to improve understanding of the properties
of dynamic congestion pricing models defined on large, complex road networks.

This section secks to investigate possible dynamic congestion pricing
strategies using dynamic network models. Our focus is on technical aspects
rather than policy issues. Furthermore, in this section we concentrate on the-
oretical models which explore possibilities of congestion pricing in conjunction
with dynamic system-optimal route choice models. Traffic controls, including
both surface street signal control and freeway ramp control, are assumed to be
fixed in the current models. By considering the impact of congestion pricing,
we focus our attention on routing strategies instead of traffic signal controls.

Consider an ideal situation with an AVI system installed and an auto-
matic toll debiting system available. We also assume each vehicle is provided
with perfect traffic information and travelers will comply with the user-optimal
route guidance instructions. As discussed in Section 15.1, system optimal ob-
jectives can be defined in a variety of ways in dynamic transportation network
problems. Thus, there are more toll strategies in dynamic problems than in
their static counterpart. Because of the difficulty of keeping track of each ve-
hicle’s route, we focus our attention on non-route based dynamic tolls. This
class of dynamic congestion tolls can be classified as link toll and area toll, both
defined based on the usage of road capacity. The link toll is charged for vehicles
present on that link and is changing from link to link. The area toll is charged
for vehicles present within a congested area and is uniform across the area. It
applies to any vehicle traveling in the network during the toll time period. In
the following, we mainly discuss different modeling aspects for link tolls. We
evaluate the performance of the congestion toll policy using the reduction of
traffic congestion or total travel time on the network.

Within the link toll category, we consider two types of dynamic con-
gestion pricing strategies under two kinds of route choice behavior assump-
tions, namely instantaneous DUO and ideal DUOQ. Before discussing the pricing
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strategies, we summarize the dynamic network constraints for such models.

15.4.2 Dynamic Network Constraints

In the following bilevel programs, the O-D departure flows f™*(t) are given.
In order to model a more practical situation, spillback constraints are added
in the constraint set. As we discussed in Chapter 4 and the previous section,
we define a dummy link b at each origin r to accommodate the spillback ve-
hicles. The queuing delay at origin r is 74[zs(t),vs(2)]. The dynamic network
constraints for our models are summarized as follows.

Relationship between state and control variables:

r8

z
o = tap(t) —vip(®) Va,p,r,s; (15.103)
dE;°(t) e
—5 =& Vp,r,8 # 1 (15.104)
Flow conservation and spillback constraints:
dzj (1
;’;( . F5°(8) — vip(D) Vb,p,r, ;b € rs. (15.105)
D ul() =viy(t) Vp,r # 5;b € 13; (15.106)
a€A(r)
> va®= Y, uh) Vi, p,my 835 # 7y 83 (15.107)
a€B(j) a€A(j)
Y Y =€) Vr,s;s # r; (15.108)
a€B(8) P

Flow propagation constraints for links a, b:

zio(t) = > {zhlt+ ()] — 255 (1)} + {Ep°[t + 7a(8)] — Ep*()}

dejp
Va € B(3);7 # r;p,7, 8; (15.109)
zpp(t) = Y _{2plt + 1(2)] — 255 (D} + {E;°[t + n(D)] - E;°(2)}
d€p
Vb € rs;p,r, 8; (15.110)
Link Capacities:
z4(t) < lpeam Va; (15.111)

va(t) £ Vam Va; () < vpm Vb€ rs; (15.112)
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Definitional constraints:

Soupt) =uat), Y vis(t) =va(t), Ve (15.113)

rap rsp
Yo =zat), D z(t) =2a(t), Ve (15.114)
rap rs

S vy =wm(t), > zpt)=m(t), Vbers; (15.115)

8

S =, =0, W (15.116)

Nonnegativity conditions:

zho(t) 20,  wgy(t) 20, vg(t) 20  Va,p,r,s; (15.117)
(@) >0, F;*(t) 20, €°(t) =0, E;°(t) >0, VYp,r7,35 (15.118)
zpp(t) 20, v (t) 20, VbeErs;p,s; (15.119)

Boundary conditions:

F(T) given Vr, s; (15.120)
E;?(0) =0, Vp,r,s; (15.121)
z,p(0) =0, Va,p,r,s; z3,(0) =0, Vb € rs;p, s. (15.122)

15.4.3 Tolls Based on Instantaneous DUO Route Choice

Denote the time-dependent toll on link a at time ¢ as 9,(2) in dollars. For
simplicity, the total link travel cost on link a at time t is

éa(t) = aa + Ba calt) + 7a(2) (15.123)

where @, is a term representing the fixed cost (dollars) on link a and B, is a
time-independent parameter transforming travel time (minutes) into travel cost
(dollars). The toll «y4(2) is collected to achieve a system-optimal flow pattern in
the network while preserving DUO route choice properties. Thus, the objective
of our problem is to minimize the total travel time over the entire network
during time period [0,7]. This dynamic toll problem can be easily formulated
as a route-based model. However, a route-based toll is hard to collect in practice
and solving a route-based model requires explicit route enumeration, which is
infeasible for a large network. Thus, we formulate a link-based model which
overcomes these difficulties. We use a leader-follower game to formulate such a
dynamic congestion pricing problem. The objective of the upper-level problem
(or the leader of the game) is to minimize the total travel time; the decision
variable is the dynamic link toll 4,(#). The instantaneous DUO route choice
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model is formulated as the lower-level problem (or the follower of the game), in
which the decision variables are the link flow variables u,(%), v,(t) and z,(%).
The upper level problem is a time-dependent minimization problem, whereas
the lower-level problem is formulated as a variational inequality.

We first briefly describe the variational inequality formulation of the
instantaneous DUO route choice problem for the lower-level problem. The
formulation is a simplified version of the link-based multi-group VI model for
the instantaneous DUO route choice problem in Chapter 12. For simplicity, we
only consider one group in this toll model. Denote ,°(t) as the instantaneous
route travel cost from origin r to destination s at time #. The instantaneous
route travel cost for all allowable routes is computed using the following formula

V()= D &lt) Vp,i,8 (15.124)

a€isp

where the summation is over all links @ on route p.
Recall the definition of the link-cost-based instantaneous DUQ state as
follows.

Link-Cost-Based Instantaneous DUO State: If, for any de-
parture flow from each decision node to each destination node at
each instant of time, the instantaneous travel costs equal the mini-
mal instantaneous route travel cost, the dynamic traffic flow over the
network is in a link-cost-based instantaneous dynamic user-optimal
state.

Define () as the minimal instantaneous route travel cost from node
i to destination s at time t. The asterisk denotes that the travel time is com-
puted using link-cost-based instantaneous DUQ traffic flows. Denote 2" (¢) as
the difference between the minimal instantaneous travel cost from node j to
destination s and the instantaneous travel cost from node ¢ to destination s
plus the instantaneous travel cost on link a at time ¢. It follows that

O (1) = &7 () + &, (t) — " (1) Va, 830 = (i, j). (15.125)

Thus, the link-cost-based instantaneous DUO route choice conditions can be
summarized as follows:

6 () >0 Ya = (i,7),8; (15.126)
ul (t) 027 () =0 Ya = (i, 7), 3; (15.127)
ul(t) >0 Va = (4,5), s. (15.128)

Note that the above conditions also apply to dummy link b created at each
origin r to accomodate spillback flows at origin r. Then, the equivalent varia-
tional inequality formulation of the link-cost-based instantaneous DUO route
choice conditions (15.126)-(15.128) may be stated as follows.
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Theorem 15.1. The dynamic traffic flow pattern satisfying network
constraint set (15.103)-(15.122)is in a link-cost-based instantaneous
DUO route choice state if and only if it satisfies the variational
inequality:

T
/0 PP AC {UZ(t)—uZ'(t)} dt > 0 (15.129)

In the above variational inequality, the summation over link a includes dummy
link b. The proof of the necessity and sufficiency of the above variational
inequality is similar to that in Chapter 12.

Our upper-level problem is a dynamic system-optimal problem which
minimizes the total travel time on the network during period [0,7]. Since
we have spillback constraints, we have a dummy link b at each origin r to
accommodate the spillback vehicles. As before, the queuing delay at origin r
is 75(t)[25(2), vs(2)]. Thus, the bilevel program is formulated as

T
min / {Zua(t) () + > f(t) T,,(t)} di (15.130)
0 a b

where u, v and z solve the following variational inequality:

T
/0 PIOILAC {uZ(t)—UZ'(t)} dt > 0 (15.131)

In the upper-level problem, we minimize the total travel time instead of
total travel cost, because the link toll policy is designed to control the total
congestion level. Since the analysis on optimality conditions of the bilevel
problem is very complicated, it is impossible to obtain a simple analytical
expression for link tolls in terms of link travel times. Thus, a simple toll similar
to the conventional marginal cost in static problems does not exist unless some
relaxation methods are used.

In the bilevel program, the variational inequality has to be solved subject
to the network flow constraint set defined in the previous section. In general,
the above bilevel program is difficult to solve. In Chapter 12, we demonstrated
that under relaxation, the lower level variational inequality can be transformed
into the equivalent optimal control model presented in Chapter 5. An efficient
algorithm including diagonalization and Frank-Wolfe techniques was proposed
in Chapter 6 to solve this variational inequality. Thus, the lower level problem
can be solved exactly. Since the upper level problem is linear, we expect that
an iterative heuristic can be used to solve the bilevel program.

15.4.4 Tolls Based on Ideal DUO Route Choice
After a link toll 4,(t) is imposed, the final link travel cost on link @ at time # is
Ta(t) = aq + Ba 7a(t) + 7a(t) (15.132)
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where ¢, is a term representing the fixed cost (dollars) on link a and g, is
a time-independent parameter to transform travel time (minutes) into travel
cost (dollars). Similar to the previous instantaneous DUO, this problem is
formulated in a bilevel structure. In the upper level problem, the total travel
time is minimized. In the lower level problem, we have a variational inequality
problem which equilibrates the actual route travel costs based on travel times
and link tolls.

We now discuss how we formulate a variational inequality for the lower-
level ideal DUO route choice problem. The formulation is a simplified version
of the link-based multi-group VI model for the ideal DUO route choice problem
in Chapter 13. For simplicity, we only consider one group in this toll model.
Denote 7’ (t) as the actual route travel cost from origin r to destination s
at time t. Also denote #7*(t) as the minimal actual route travel cost from
origin r to destination s at time ¢, and #"°(t) as the corresponding actual
route travel time from origin r to destination s at time ¢. We also need to use
a recursive formula to compute the route travel cost 7j,’ (t) for all allowable
routes. Assume route p consists of nodes (r,1,2,-+,i,---,s). Denote ﬁ;j (t) as
the travel disutility actually experienced over route p from origin » to node j
by vehicles departing origin r at time ¢. Then, a recursive formula for route
travel cost 7’ (t) is:

7 (1) = UV @) + alt + D)) Vp,r,jii = 1,2, 8

where link a = (j — 1, j) and time [t + n;,(j _1)(t)] is the arrival time instant at
link a.
Recall the definition of the travel-cost-based ideal DUO state as follows.

Travel-Cost-Based Ideal DUO State: If, for each group and
each O-D pair at each instant of time, the actual travel costs for all
routes that are being used equal the minimal actual route travel cost,
the dynamic traffic flow over the network is in a travel-cost-based
ideal dynamic user-optimal state.

Denote Q77" (t) as the difference of the minimal travel cost from r to j
and the travel cost from r to j via the minimal travel cost route from r to ¢
and link a for vehicles departing from origin r at time ¢. It follows that

Q) = 7)) + Rt + 7V (@)] -7 () Va,r;a=(i,5).  (15.133)
We then rewrite the link-cost-based ideal DUO route choice conditions:
QiT@t) >0 Va = (i, 4), r; (15.134)
w7 @) QE () =0 Va = (,4), 7y 5; (15.135)
ullt+ 7" (1)) >0 Ya = (i, j), r, 5. (15.136)
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Note that the above conditions also apply to dummy link b created at
each origin r to accomodate spillback flows at origin . The equivalent varia-
tional inequality formulation of link-cost-based ideal DUOQ route choice condi-
tions (15.134)-(15.136) may be stated as follows.

Theorem 15.2. The dynamic traffic low pattern satisfying con-
straints (15.103)-(15.122) is in a link-cost-based ideal DUO route
choice state if and only if it satisfies the variational inequality:

‘ / TZZQ;J"(t) {u;‘[t+7-r""(t)]—u;”‘[t+7-r""(t)]} dt > 0 (15.137)

In the above variational inequality, the summation over link a includes dummy
link b. The proof of the necessity and sufficiency of the variational inequality
is similar to that in Chapter 13.

The dynamic link toll is designed so the total travel time on the network
is minimized for period [0, T]. Thus, the bilevel program is formulated as

T
min / {Zua(t) Ta(t)+ Y (1) T;,(t)} di (15.138)
0 a b

where %, v and z solve the following variational inequality:

/ TZZQ;J"(t) {u;a[t+7-r""(t)]-u;a‘[t+7-r""(t)]} dt > 0 (15.139)

a

Because the optimality conditions for this bilevel program are very com-
plex, no simple analytical link toll can be obtained for even a two-parallel-link
network. Thus, the equivalence of the toll to the difference of marginal and unit
link costs in the static network model does not exist in a dynamic congestion
pricing problem.

15.5 Notes

Merchant and Nemhauser (1978a, 1978b) presented a dynamic system-optimal
(DSO) route choice model for a many-to-one network. Subsequently, Carey
(1987) reformulated the Merchant-Nemhauser problem as a convex nonlinear
program which has analytical and computational advantages over the original
formulation. Ho (1980) solved the same model by successively optimizing a
sequence of linear programs. Later on, Ho (1990) presented a nested decom-
position algorithm for the same problem and implemented this algorithm on a
hypercube computer.

DSO problems have also been studied systematically by Ran (1989). For
DSO problems with minimal travel costs, Ran (1989) suggested several algo-
rithms in addition to the relaxation and Frank-Wolfe algorithm. Among those
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algorithms, the Time Decomposition Algorithm was highly recommended. The
Spatial Decomposition Algorithm and Sequential Gradient Restoration Algo-
rithm were also discussed. Recently, many simulation-based DSO route choice
models were proposed by various researchers, especially for freeway corridor
problems (Mahmassani et al 1993 and Chang et al 1993). Those models pro-
vide another approach to studying DSO route choice problems.

We have formulated two types of congestion pricing models for a dynamic
transportation network. Through the formulation, we find that the conven-
tional marginal cost pricing strategy in static networks is no longer applicable
to dynamic congestion pricing problems. To find appropriate congestion pric-
ing strategies in dynamic networks requires much more computational effort.
Simple analytical results are not available.

We expect that our proposed models can function as tools in the eval-
uation of possible congestion pricing strategies in light of evolving IVHS tech-
nologies. Eventually, they are expected to work together with traffic control
schemes to combat traffic congestion in urban areas and become on-line oper-
ational tools in ATMIS systems.



Chapter 16

Link Travel Time Functions for
Dynamic Network Models

Extensive research has occurred in recent years on dynamic transportation
network models, and especially on dynamic route choice models; these models
have important applications in future ATIS and ATMS systems. However,
most of the existing models lack a basis in traffic engineering. A significant
problem for dynamic route choice is that the traditional BPR (Bureau of Public
Roads, the predecessor of the Federal Highway Administration, U.S. DOT)
volume-delay function is not applicable to a time-dependent traffic network.
Meanwhile, since no proper dynamic link travel time functions exist, current
dynamic route choice models assume various functional forms which are either
too abstract or cannot provide realistic travel time estimates, even for a small
network. Thus, it is becoming increasingly urgent to develop a set of time-
dependent link travel time functions for dynamic route choice problems.

In this chapter, the independent variables necessary to describe the dy-
namic traffic flow and estimate the corresponding time-dependent travel time
over a highway link are discussed. In order to standardize the dynamic route
choice formulation to be used in ATIS and ATMS applications, this chapter
seeks to provide a solid foundation based on the principles of traffic engineering.
For the purpose of short-term travel time forecasting, dynamic link travel time
functions are also necessary to transform traffic flow data from probe vehicles
or roadway detectors into travel times. The application of those functions in
IVHS projects can also be expected.

Link travel time or delay functions have been extensively studied in
traffic flow theory and traffic engineering research. These functions can be
classified based on road types. In general, the following types of roadway links
have different link travel time functions:

1. Arterial Streets

(a) Links with Signalized Intersections
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o Fixed Signal Control
e Actuated Signal Control

(b) Links with Unsignalized Intersections

e Major/Minor Priority Intersections
e All-Way-Stop Intersections

2. Freeways

e Freeway Segment
e Ramps

e Weaving Sections
3. Local Streets

e Stop/Yield Control
e No Control

The objective of this chapter is to review currently available delay mod-
els, identify suitable functions, and develop them into dynamic link travel time
functions which would be applicable to dynamic route choice models. The
focus is on exploring dynamic travel time functions for signalized arterial net-
work links and freeway segments. In Section 16.1, we discuss the classification
of dynamic link travel times for various applications. In Sections 16.2 and
16.3, travel time functions for arterials with long and short time horizons are
discussed separately, and two sets of functions are recommended for dynamic
route choice models. The implications of those functional forms are analyzed
in Section 16.4 and some modifications for dynamic models are suggested. In
Section 16.5, we propose dynamic travel time functions for freeway segments.

16.1 Functions for Various Purposes

For an arterial link, travel time is considered to consist of two main compo-
nents. The first is the travel time (or cruise time) over the uncongested portion
of the link; the second is the congested travel time or queuing delay at the
intersection, plus the travel time through the intersection to the downstream
link. For a freeway segment, link travel time is also considered to consist of
two main components. The first is the uncongested cruise time over the link;
the second is the congested travel time or queuing delay on the link. Never-
theless, we use similar formulae for link travel time functions for both arterial
and freeway segments.

Recall that the instantaneous travel time c,(t) at time ¢ is the travel
time that is experienced by vehicles traversing link @ when prevailing traffic
conditions remain unchanged. It is the sum of two components:
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1. an instantaneous flow-dependent cruise time Dy (t) over the first part of
link a for an arterial segment; for a freeway segment, the uncongested
cruise time over the link;

2. an instantaneous queuing delay Dg(2).

It follows that
ca(t) = Da1(t) + Daa(2). (16.1)

The instantaneous route travel time function t7*(t) for each route p
between O-D pair rs is defined as the sum of the instantaneous link travel
times over all links in route p:

()= ) calt) Vprs. (16.2)

aErsp

Thus, the instantaneous route travel time is that time experienced by a vehicle,
if prevailing traffic conditions do not vary until the vehicle reaches its desti-
nation. This instantaneous route travel time provides a first approximation to
the time-dependent vehicle travel time.

Also recall that 74(t) is the actual travel time over link @ for vehicles
entering link a at time ¢. Similarly, np’ (t) is the actual travel time experienced
over route p by vehicles departing from origin r toward destination s at time
t. Once the actual link travel time 74(t) is determined, the actual route travel
time 7y’ (t) can be computed using the recursive formula discussed in Chapter
4.

Since network traffic conditions change over time, the actual route time
may be significantly different from the instantaneous route travel time, espe-
cially when the route or travel time is long. Otherwise, the instantaneous route
travel time provides a good estimate of the actual route travel time. The in-
stantaneous route travel time is easily obtained or estimated compared to the
actual route travel time since the prevailing traffic flow data can be obtained
in real-time from a probe vehicle or a roadway detector.

The difference between the instantaneous link travel time and the actual
link travel time may be insignificant since the length of links is generally short
(0-1 miles), as is the travel time (several seconds to a few minutes). In con-
clusion, we would like to develop a temporal link travel time function which
is a good representation of both the instantaneous link travel time and the
actual link travel time. In the following, the link travel time function refers
to the actual link travel time function. However, we note that when a link is
extremely congested or oversaturated, these two kinds of link travel times may
be quite different.

For arterials, vehicle delay at the exit from the link comprises both de-
terministic and stochastic components. As the analysis time interval shortens,
the stochastic delay becomes less significant. The stochastic delay also depends
on the exit capacity of a link. On this basis, the application of queuing and
delay models may be divided into two categories. In the first category, flow
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and capacity information is required to predict queues and delays defined on a
longer time-scale (e.g. successive 5 to 30 minute intervals). It is only possible to
predict overall quantities such as the average queue length, or the average delay
per vehicle evaluated over a complete traffic peak. In this case, the stochastic
delay constitutes a significant part of the total delay and cannot be neglected in
any travel time estimation. The travel time function in this category is suitable
for off-line evaluation of ATMS and ATIS systems.

In the second category, the flow and capacity information is required to
estimate queues and delays defined on a short time-scale (e.g. successive 1 to
5 minute intervals). It is possible to determine in detail the time variation of
the average queue length and vehicular delay. The stochastic delay is therefore
negligible, and only deterministic oversaturation delay must be considered in
this case. Travel time functions in this category are suitable for real-time on-line
evaluation of ATMS and ATIS systems. The functions proposed in the chapter
might be calibrated for vehicle-actuated and fixed-time signals separately. We
note that turning flows at an intersection are not considered in this chapter.

For freeway segments, we consider the flow and capacity variation which
is required to estimate queues and delays defined only on a short time-scale
(e.g., less than 5 minutes). Thus, it is possible to determine in detail the time
variation of the average density and vehicular delay. The stochastic delay is
therefore negligible, and only deterministic delay must be considered in this
case. These travel time functions for freeway segments are suitable for real-
time on-line evaluation of ATMS and ATIS systems.

16.2 Functions for Arterials: Longer-Time Hori-
Zons

In this section, we consider the dynamic link travel time functions for an
analysis interval of 5-30 minutes or longer. We seek to apply delay formulae in
the literature to derive corresponding temporal link travel time functions. In
the delay formulae, the input is the average flow rate arriving at the downstream
intersection. In our dynamic route choice model in Chapter 5, we use three
variables (z4(t), uq(t), va(t)) to represent the dynamics of traffic on a link;
however, the arrival flow rate at the downstream intersection of the link does
not correspond to any of these three variables. To overcome this difficulty, we
divide a physical link a = (4, B) into two dummy links: link a; = (4, D) and
az = (D, B) (see Figure 16.1). The location of dummy node D is undetermined
and is movable. We assume that link a; = (4, D) contains an uncongested
vehicle stream and a; = (D, B) contains a traffic queue. Thus, the length of a;
is the length of the physical queue on link a. When there is no queue on link
a, the length of dummy link @ equals zero and dummy link @; has the same
length as link a.
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Figure 16.1: Traffic on an Arterial Road Link

The state equations for the two dummy links are:

d.’l,‘al(t) _ .
ek uq1(t) — vq1(2) Va; € a; (16.3)
d_’ﬁg;_(t_) = Uas(t) — vaz(t) Vas € a. (16.4)

Flow conservation for the two dummy links requires:
va1(t) = uqg2(t) Va,as € a. (16.5)

Now, we use six variables, z41(%),ua1(t),va1(t),Za2(t),uq2(t) and va2(t), to de-
scribe the dynamic traffic on each link a. Since three equations (16.3)—(16.5)
are associated with each physical link a, only three variables are independent.

Next we consider a discrete time problem. Denote Ak = [k, k+ 1] as the
length of the time interval in hours. In this discrete time formulation, x4 (k)
represents vehicles on the link at the beginning of interval k; uq(k) and va(k)
represent inflow and exit flow during interval k. Writing the above equations
in a discrete-time form, it follows that

:L‘al(k + 1) = .’L‘al(k) + ual(k)Ak - val(k)Ak Va, € a, k; (166)
xag(k + 1) = l‘az(k) + uaz(k)Ak - ’vaz(k)Ak Va, € a, k; (16.7)
va1(k) = uq2(k) Vai,a; € a, k. (16.8)

Thus, in general the average link travel time 7,(k) per vehicle during time
interval k can be expressed as the sum of two components: 1) a flow-dependent
cruise time D1 (k) over the first part of the link; and 2) a queuing delay Dq2 (k).
It follows that '

Ta(k) = Da1(k) + Daz(k) Va (16.9)

Next we consider the cruise time D,1(k) (in seconds) over the first part
of link a. Using Greenshields formula (Greenshields, 1933), the average cruise
speed wq1(k) (miles/hour) for inflow entering link a during time interval k is

war(k) = wao [1 — <21 (16.10)

€q
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where wg, is the free flow speed and e, (vehicles/mile) is the maximal density
(jam density) of traffic on link a. Thus, the traffic density eq1(k) for inflow
entering link a during time interval k can be expressed as

a1(k
ea1(k) = €am [1 — M] (16.11)
Wao

Therefore, inflow u41(k) can be expressed as

‘;'" [waz (k)2 (16.12)

ual(k) = eal(k) wal(k) = €am wal(k) -

We then derive the cruise speed wq1(k) for inflow entering link a during time
interval k as

Wao 4ua1(k)
k)y=—K1 l]— ——=
wal( ) 2 + €amWao

(16.13)

In the above derivation, we assume that the cruise traffic is in an uncon-
gested state. Denote I, as the length of link a (miles). The length of the vehicle
queue at the beginning of time interval k is £42(k)/€gm. Thus, the actual length
of the cruise from inflow until reaching the queue is [l; — z42(k)/€am]. There-
fore, the actual cruise time (in seconds) over link a for inflow entering link a
during time interval k is

lo — zaZ(k)/eam
wal(k)

However, we note that for an arterial link, the dependency of cruise speed on
inflow is not very significant (McShane and Roess, 1990). The cruise speed
on an arterial link is mainly associated with the class of the arterial and the
geometry of the link.

Before we analyze the intersection delay, the concept of link capacity
needs to be clarified. In a temporal traffic network, there are different maximal
discharge rates of traffic on a link. Generally, there are three roadway sections
which have individual capacity constraints. The three link elements are: entry,
midblock road section and exit of a link. Therefore, when we use the word
capacity in a temporal traffic network, it is necessary to indicate whether it is
an inflow capacity, a midblock flow capacity or an exit flow capacity. Since
capacities per lane at entry and midblock are usually higher than at the exit
point, we will refer only to the exit capacity when considering the flow capacity
of a link.

It is assumed that the capacity at the exit of a link is a function of time,
ta = pa(k), for each link @ (in vehicles/hour). In practice, it is necessary to
evaluate the exit capacity for each time interval given the exit flow vg2(k) in
the relevant interacting link flows. Capacity calculation methods also depend
on the type of junction; the three main types are traffic signals, major/minor
priority and roundabouts. We only discuss signal capacity in this chapter.

Da1 (k) = 3600 (16.14)
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Mathematical models used to estimate intersection delay are queuing
models. Since we are considering a rather long time interval, the delay at
the exit of the link involves deterministic and stochastic delay. Steady state
queuing theory is widely used but predicts infinite queues and delays when
the demand reaches the capacity available to it. However, when demand is
close to capacity, or when the capacity is exceeded for short periods, the queue
growth lags behind the expectations of steady state theory, and the rate of
variation of demand and capacity cannot be ignored. Deterministic queuing
theory, on the other hand, in which the delay is obtained as a simple integral
of demand minus capacity, can sometimes be used when demand and capacity
vary in time. However, this treatment ignores the random nature of traffic
arrivals and departures within a rather long time interval, and leads to serious
underestimates in the delay unless the capacity is exceeded by a considerable
margin. When demand just reaches capacity, zero delays are predicted by the
deterministic model.

Thus, the most important region for delay estimation is where demand
(inflow) and capacity are approximately equal; this is the region which is in-
adequately represented both by the steady state and deterministic approaches.
Methods are needed which adequately treat the entire range of demand and
capacity, and take proper account of the random nature of traffic and of the
variations in time of demand and capacity.

Here, we deal solely with queues and the corresponding approach delays.
Another type of delay is geometric delay at a yield sign; such delay is suffered in
the absence of queues because of the need for vehicles to slow down, negotiate
the intersection, and accelerate back to normal speed. Such delays are not
treated here, but must be considered in any practical implementation.

The average delay per vehicle, Dq2(k), for vehicles arriving at the down-
stream intersection of link a during time interval k can be expressed as the sum
of two delay terms:

Daz(k) = dal(k) + daz(k) Va (16.15)

where dg1(k) is the non-random delay (delay due to signal cycle effects calcu-
lated assuming non-random arrivals at the average inflow rate), and dg2(k) is
the overflow delay including effects of random arrivals as well as any oversatu-
ration delays experienced by vehicles arriving during the specified flow period.

Denote pq(k) as the degree of saturation at the exit from link a during
time interval k. It follows that

uaz(k)
Ma(k)

Non-random delay at the intersection is estimated by assuming that the num-
ber of vehicles which arrive during each signal cycle is fixed and equivalent to
the average flow (demand) rate per cycle. Different expressions are used for the
non-random delay term according to the arrival characteristics (uniform or pla-
tooned) and the signal characteristics (one or two green periods). The uniform

pa(k) = (16.16)



344  Chapter 16. Link Travel Time Functions for Dynamic Network Models

delay formula which is valid for the case of a single green period with arrivals
at a constant rate throughout the signal cycle is the first term of Webster’s
formula (1958):

0.5¢ [1 — g(k)/c)?
1— pa(k) g(k)/c
where c¢ is the signal cycle time in seconds, and g(k) is the effective green time
in seconds during time interval k. To include the effects of traffic progression
on delays at traffic signals, Fambro et al (1991) and Messer (1990) suggested

converting the above uniform delay formula into a non-uniform arrival term to
account for the progression effects as follows:

0.5¢ [1 — g(k)/c]?> 1— P(k)
1 - pa(k) g(k)/c 1—g(k)/c
0.5¢ [1 — g(k)/cl[1 — P(B)]

1 —pa(k) g(k)/c
where P(k) is the proportion of traffic arriving in the green phase in time
interval k.

Recently, a more general delay formula for this uniform delay term was

proposed by Akcelik and Rouphail (1991):

de1(k) = 0.5[c— g(k)] for pg(k) > 1.0 (16.19)
0.5¢ [1 — g(k)/c)?
1 - pa(k) g(k)/c
Note that the above formulas are not smooth (no continuous first-order deriva-
tives). If we want to combine those functions into our framework, we need to
smooth those functions, since a smooth function is necessary for the solution
of dynamic route choice problems.

Overflow delay estimation has attracted extensive research. Its devel-
opment was initially reported by Kimber and Hollis (1979). Later on, Hurdle
(1984) further discussed the assumptions and limitations of those delay mod-
els. Several countries proposed time-dependent delay formulas in their capacity
guides, including the U.S. (TRB, 1985), Canada (Teply, 1984) and Australia
(Akcelik, 1981).

The 1985 Highway Capacity Manual (HCM) suggested a delay formula
to account for both short-term (random or Poisson) and long-term overflows
of queues to subsequent cycles due to continuous oversaturation. However,
it has been widely criticized in recent years. Akcelik (1988) noted that the
HCM equation predicted higher delays for oversaturated conditions than did
the Australian and Canadian formulas. He recommended a general formula for
the overflow delay as follows:

duak) = 00AK [pa(R))"
{[pa(k) — 1)+ \/[pa(k) 124 m[p‘if()kgg“;(k)]} (16.20)

da1(k)

(16.17)

da1(k)

(16.18)

for pa(k) < 1.0
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where p,,(k) is the degree of saturation below which the overflow delay d,2(k)
is negligible. This can be expressed as

pao(k) = a+ b s(k) g(k)

where s(k) is the saturation flow rate in vehicles per second during time interval
k, (s(k) g(k)) is the capacity per cycle during time interval k, and a,b, m and
n are calibration parameters.

However, Akcelik’s formula is not smooth at the point pso(k). One
alternative is to drop this term in the current development of link time functions
for dynamic modeling purposes. Burrow (1989) proposed a generalized version
of Akcelik’s model for overflow delay. This model is:

dua(k) = 900Ak [pa (k)" -

{[pa(lo “1tat \/[pa(k)— 12 4 %)Z—kﬁl} (16.21)

where a is an additional term used to encompass the more general form above
and 3 is a term related to p, (k) in Akcelik’s model. The above formula can be
considered as an alternative to our suggestion since it is a smooth function.

In the above models, it is assumed that the initial queue z42(k) is zero
when the overflow period Ak begins. However, this initial queue should be
counted in our dynamic delay model and the queuing delay (in seconds) caused
by initial queue z,3(k) can be expressed as (Akcelik and Rouphail, 1991):

xaz(k)
Ha(k)

The above formula is suitable for the case when the approaching flow u,2(k) is
greater than or equal to exiting flow v42(k). For other cases, it may overestimate
the delays caused by the initial queue. Those cases need further study in the
future. In the meantime, we suggest the following overflow delay equation for
the dynamic problem:

3600 (16.22)

_ Za2(k) n
daz(k) = 3600ua—(k)+900Ak [pa (R)]” -

{[p.,(k) 1+ \/ (palk) — 112 + %} (16.23)

In summary, we propose the following dynamic link travel time function
for the case of a long time interval (Ak > 5 minutes):

7a(k) = Da1(k) + da1(k) + daz(k) Va (16.24)

where D,1(k) is given by (16.14), da1 (k) is given by (16.17) and d,2(k) is given
by (16.23).
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16.3 Functions for Arterials: Short-Time Hori-
zZons

Now we consider a rather short time period of 1-5 minutes in length. It is
reasonable to assume that the impact of randomness of traffic arrivals at the
traffic signal is negligible during such a short time. Thus, the stochastic delay
is neglected and only deterministic uniform and oversaturation delays are con-
sidered. There have been some recent studies in this area such as the model
presented by Takaba (1991). Furthermore, if we want to consider a time interval
of less than one minute, it is necessary to know the offset for each intersection
signal and determine the non-random delays.

For a short time interval problem, the delay at the exit from the link is
considered deterministic in contrast with that occurring in a long time interval
problem. Nevertheless, the cruise time formula (16.14) is still applicable since
it is based on the average speed of the inflow. Thus, the average link travel
time per vehicle during time interval k is still expressed as

Ta(k) = Da1(k) + Da2(k) Va.

The main difference between a longer time period and a shorter time
period is the second term Daz(k). As the time interval becomes shorter, the
stochastic delay decreases. Thus, for simplicity, delay term D,3(k) can be
developed in a deterministic manner for a short time period. The average
delay per vehicle, Dy3(k), for vehicles arriving at the exit from link a during
time interval [k, k + 1] can also be expressed as the sum of two delay terms:

Daa(k) = dar(k) + daa(k) Va

where daq(k) is the cyclic delay (delay due to signal cycle effects calculated
assuming non-random arrivals at the average inflow rate in each cycle), and
da2(k) is the delay due to oversaturation experienced by vehicles arriving during
the specified flow period. The first delay term is given by Webster’s formula.
For formula (16.19), smoothing is necessary for our purposes.

We next discuss the second delay term dq2(k). The decision variable
is the queue length on physical link a. As discussed before, link ¢ = (4, B)
is decomposed into two dummy links, a; = (4, D) and a; = (D, B). After
the cruise time Dg;(k), vehicles entering link a during time interval [k, k + 1]
should either reach the queue on link (D, B) or proceed to downstream links.
As before, the location of dummy node D is movable. Thus, the length of link
ag = (D, B) is the length of queuing flow.

The deterministic (initial) queue encountered by the first vehicle arriving
at the beginning of time interval [k, k + 1] is #42(k). The deterministic queue
encountered by the last vehicle arriving at the end of time interval [k, k + 1] is
{[ua2(k) — va2(k)]Ak + z42(k)}. The average queue for vehicles arriving during
time interval [k, k + 1] is {[¢q2(k) — ve2(k)]Ak/2 + z42(k)}. Thus, the aver-
age deterministic queuing discharge time or queuing delay d,2(k) per vehicle
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arriving during time interval [k, k + 1] can be expressed as

[raa(k) — vaa(KAE/2 + zaa(k)
Ha(k)

[uaz(k) - vaz(k)]Ak + 21‘02(,6)
Na(k)

daa(k) = 3600

1800

(16.25)

where dg2(k) is in seconds.
In summary, we propose the following dynamic link travel time function
for a short time interval:

Ta(k) = Da1(k) + da1(k) + da2(k) Ya (16.26)

where Dg1(k) is given by (16.14), da1(k) is given by (16.17) and daz(k) is
given by (16.25). Sometimes, we use the link travel time function for vehicles
entering link a at the beginning of interval [k, k + 1]. We note that most
numerical examples in this book use this kind of link travel time function for
computations. In this situation, the queuing delay dq2(k) (seconds) per vehicle
arriving at the beginning of interval [k, k + 1] should be revised as

xaz(k)
Ha (k)

Then, queuing delay dq2(k) in dynamic link travel time function (16.26) should
be replaced by equation (16.27).

daz(k) = 3600 (16.27)

16.4 Implications of Functions for Arterial Net-
works

16.4.1 Number of Link Flow Variables

The selection of suitable link travel time functions for discrete-time dynamic
route choice largely depends on the length of the analysis time interval. Travel
times for longer time intervals must account for stochastic delays at intersec-
tions. The intersection delays in travel time functions for shorter time intervals
are predominantly deterministic. _

In addition to the models presented in this text, various dynamic route
choice models have been proposed by many researchers. These models use some
variations of time-dependent link travel time functions. A number of models
still use the static BPR volume-delay function for a time-dependent traffic net-
work problem. However, the BPR function is based on an implicit assumption
of steady state traffic flow. This assumption is invalid in a time-dependent and
stochastic traffic network. Furthermore, in using time-dependent delay formu-
lae, traffic engineering practice implies that the BPR function cannot predict
intersection delays properly (HCM, 1985). Therefore, using the BPR function
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as the basis for dynamic route choice models would generate results that are
too approximate to be realistic in a real-time environment.

Some dynamic route choice models use a single flow variable (i.e. the
number of vehicles on a link or average flow rate over a link for each time
interval) to describe the dynamics of traffic flow on a link. From the above
analysis, it is evident that one flow variable for a link is insufficient to capture
the dynamic characteristics of traffic flow on a link and cannot be used to
estimate the time-dependent delays properly at the intersection. Therefore,
the six link flow variables and link state equations suggested in this chapter
are proposed as the basis for dynamic route choice models. Associated with
these proposed dynamic link time functions, we need to modify our dynamic
network models on arterial networks as well.

16.4.2 Notes on Functions for Arterial Links

In the derivation of dynamic link travel time functions, it is basically assumed
that delays are caused by the signal control at the downstream intersection
assuming isolated control. Since these travel time functions are developed to
apply in dynamic network models, the interaction of upstream and downstream
intersections should be taken into account.

There is a critical queue length requirement for each link (Rouphail
and Akcelik, 1991). The critical queue length, N,, is defined as the longest
downstream queue that allows upstream platoons to accelerate to and discharge
at the full saturation flow rate. It follows that

z24(k) < N, Va. (16.28)

The critical queue length is assumed fixed for a given set of platoon speeds and
speed change rates of the cruise inflow. This constraint reflects the reduction
of inflow capacity as a result of downstream queue interaction effects, which
in turn has an impact on delays at downstream intersection. However, the
functional relationship between the critical queue length and the cruise speed
may complicate the formulation of dynamic network models. This difficulty
needs further investigation. In the following, we mainly discuss the factors
affecting the stochastic delay term in the link travel time function for longer
time horizons.

In the case of longer time horizons, the stochastic delay term is derived
by assuming that the downstream intersection is an isolated intersection subject
to Poisson arrivals, independent of the stochastic delay at other intersections.
Newell (1990) noted that under certain conditions, this assumption may grossly
overestimate the stochastic delay on an arterial. This factor is especially impor-
tant in dynamic network models since intersections in a network can no longer
be considered isolated. Newell (1990) further pointed out that the cumulative
stochastic delay on links over an arterial is mainly dependent on the stochastic
delay at the critical intersection.
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Also, van As (1991) noted that the randomness of arrivals in a traffic
network is significantly reduced when the arrivals at upstream intersections
are highly congested. Thus, delay is significantly overestimated in networks if
the proposed formulae do not allow for the narrower distribution of arrivals,
especially if the network is near saturation. The adjustment of dynamic link
travel time functions to account for oversaturation effects in a longer time
horizon case is another important issue in the application of dynamic network
models.

16.5 Functions for Freeway Segments

Dynamic link travel time functions for freeway segments are simpler than those
for arterials. In general, the average link travel time per vehicle 7,(k) during
time interval k can be expressed as the sum of two components: 1) a free-flow
cruise time Dy over the link; and 2) a flow-dependent congestion delay Do (k).
It follows that

Ta(k) = Dq1 + Daz(k) Va (16.29)
The free-flow cruise time (seconds) on link a is
l
Dy = 3600— Va (16.30)
Wao

where [, is the link length (miles) and wgg is the free-flow speed (miles/hour) on
link a. The second delay term is caused by the traffic ahead of a vehicle when it
enters link a. For simplicity, we assume that the average traffic density on link
a determines this congestion delay. We note that a non-uniform distribution
of traffic over link a may bring an error to this delay formula. However, as link
a becomes shorter, the traffic is distributed more uniformly and this formula
becomes more accurate.

The deterministic queue encountered by the first vehicle arriving at the
beginning of time interval [k, k + 1] is z4(k). The deterministic queue en-
countered by the last vehicle arriving at the end of time interval [k, k + 1] is
{[ua(k) — va(k)]Ak+z4(k)}. The average queue encountered by vehicles arriv-
ing during time interval [k, k + 1] is {[ua(k) — va(k)]AKk/2 + z4(k)}. Thus, the
average traffic density (vehicles/mile) encountered by vehicles arriving during
time interval [k, k + 1] is

{[ua(k) — va(k)|AK/2 + za(F)}
la

ea(k) = (16.31)

We assume that the second delay term Dg2(k) (seconds) can be expressed as
Dg3(k) = a [eq (k)™ (16.32)

where « is a real-valued parameter and m is an integer parameter. Both of
them need to be calibrated.
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In summary, we propose the following dynamic link travel time function
for freeway segments.

Ta(k) = Da1 + Dq2(k) Va (16.33)

where Dy is given by equation (16.30) and Dg2(k) by equation (16.32). This
formula is different from the traditional BPR function because the second delay
term depends on the average traffic density encountered by vehicles arriving
during time interval [k, k + 1] instead of average traffic flow on the link. Some-
times, we use the link travel time function for vehicles entering link a at the
beginning of interval [k, k+1]. In this situation, the average traffic density (ve-
hicles/mile) encountered by vehicles arriving at the beginning of time interval
[k, k+ 1] is

za(k)

la

Then, queuing delay Dgz(k) in dynamic link travel time function (16.33) should

be computed using equations (16.32) and (16.34) instead of equations (16.32)
and (16.31).

eq(k) =

(16.34)

16.6 Notes

This chapter has investigated different aspects of time-dependent link travel
time functions for signal-controlled arterial and freeway links. For an arterial
link, the following conclusions are emphasized.

1. Two sets of dynamic link travel time functions are proposed depending on
the analysis time horizon. These functions can be applied to discrete-time
dynamic network models.

2. For each link, six variables (three of which are independent)' are necessary
to describe the dynamics of traffic flow and calculate temporal link travel
time on an arterial link with a signal controlled intersection.

3. Each physical link is decomposed into two dummy links in order to iden-
tify the queue length on the physical link. Thus, the link travel time func-
tions for each physical link depend on the flow variables of two dummy
links so that link interaction enters the dynamic link travel time functions.
This interaction should be considered in dynamic network formulations.

There are many critical assumptions underlying the delay equations for
arterial links. Those assumptions are especially important for the longer time
interval delay model. The generalization of those assumptions will make the
travel time functions more realistic. Among those assumptions, the most crit-
ical factors are the impact of signal coordination and the case when the flow
is not zero after the peak ends. For the short time interval problem, we also
need to investigate more realistic inflow arrival patterns at the exit of a link.
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Validation of the proposed dynamic link travel time functions is a major task
for future research.

A dynamic link travel time function for a freeway segment link is also
proposed. The major delay in the travel time function is dependent on the
average traffic density on the freeway link. However, this function needs to be
calibrated and validated.

The proposed link travel time functions for arterial and freeway segments
are still subject to future challenges and validations from many sources. The
first challenge is from traffic simulation models. Microscopic simulation models
might provide detailed answers to many remaining questions for dynamic link
travel time functions and also serve as validation tools.

The second challenge is from hydrodynamics theory (Newell, 1993) and
its discrete form, the highway cell transmission model (Daganzo, 1993). The
second challenge is more theory-oriented. Hydrodynamics theory and its dis-
crete form may provide a basis for the derivation of dynamic link travel time
functions, especially for freeway segments. We believe that with all these efforts
plus a large amount of realistic data generated from many IVHS operational
tests, we can produce appropriate link travel time functions for both freeway
and arterial links. Consequently, those functions will ensure a good represen-
tation of travel times and traffic propagation on arterial and freeway links.



Chapter 17

Implementation in IVHS

The rapid evolution of IVHS technologies presents more and more specific re-
quirements for dynamic network modeling. Conversely, implementation of dy-
namic models is becoming more and more important for the design and eval-
uation of IVHS. In Section 17.1, several applications of dynamic models to
IVHS components are discussed.- We mainly investigate the technical aspects
of applying these models. Subsequently, we discuss various data requirements
for implementing these dynamic models in Section 17.2.

17.1 Implementation Issues

Dynamic transportation network models describe the basic operating functions
as well as providing evaluation tools for IVHS. To simplify our discussion on
the application of dynamic models, we focus on the following items:

1. traffic prediction;

2. traffic control;

3. incident management;

4. congestion pricing;

5. operations and control for automated highway systems (AHS);
6. transportation planning.

In the following, we investigate various issues for dynamic network models in
serving each of the above applications.

17.1.1 Traffic Prediction

Dynamic transportation network models function as predictive models for many
ATMIS systems. Travelers’ choice behavior determines which dynamic route
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choice model best fits in the predictive module of a realistic ATMIS. In general,
no single-group dynamic route choice model can represent the travel choices
of the entire population. The most plausible model is a reasonable combina-
tion of several dynamic route choice models, including both deterministic and
stochastic models. As discussed in Chapter 12, travelers can be stratified into
different groups based on the following route diversion behavior: 1) prespecified
routes; 2) a few alternative routes; 3) many alternative routes. The popula-
tion and characteristics of each group can be determined with surveys and
updated periodically. For travelers with prespecified routes, the route must be
first generated exogenously. In general, this route includes a freeway segment
and some surface streets. For networks with fewer alternative routes, such as
the San Francisco Bay Area, the population with prespecified routes may be
large. On the other hand, for networks with many alternative routes, such as
the Chicago Area, the population with prespecified routes is relatively small.
Similar arguments apply to travelers with few and many alternative routes.

For recurrent and non-recurrent congestion, both instantaneous and ideal
DUO route choice criteria may apply. Note that in this application, the DUO
state is defined using a general definition of travel disutility including fuel con-
sumption, auto operating cost, etc., in addition to travel time. The population
of travelers using either the instantaneous or ideal DUO route choice criterion
could be determined by survey. Senior citizens or cautious travelers may prefer
to choose routes based on traffic information from their past experience. In
other words, they may choose routes using the ideal DUO criterion. On the
other hand, young or aggressive travelers may prefer to choose routes based on
current traffic information. That is, they may choose routes using the instan-
taneous DUQ criterion.

For a traffic network, the multimodal problem should be handled explic-
itly. Conventional modes include HOV, bus, truck and passenger car. HOV
lanes should be designated as separate links and may be subject to possible
pricing or toll charges during congested periods. These will alter the travel
cost and subsequently change the flow pattern of HOV lanes. Bus constitutes
a special mode which should be handled carefully in the modeling. In general,
buses move slowly and cause additional delays to other vehicles. For a road
link with bus traffic, the travel time function needs to be adjusted for through
traffic in the right lane and right turning traflic, since the impact of bus traffic
is significant. For the left turn lane, buses only affect traffic flow at the time
when making a left turn. Truck traffic flows also need to be transformed into
equivalent passenger car flows. However, possible revisions of the travel time
functions may be necessary, especially for turning movements because trucks
make wide turns and take longer times for turning.

Since bus routes are fixed, there is no route choice for bus traffic itself.
Thus, it belongs to the group with prespecified routes. Truck traffic can be
classified with the group with fewer alternative routes because some roads are
closed to truck traffic. The trip chaining problem is not explicitly considered
in this framework. However, a similar modeling framework is applicable to the
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situation of trip chaining when time-dependent trip information is available.

Concerning the route choice criterion, a more plausible model for dy-
namic traffic prediction may be a combination of instantaneous/ideal DUO/
SDUO route choice models. For travelers without route guidance devices or not
complying with guidance information, instantaneous/ideal SDUO route choice
models can be used to model this group of travelers. The population with
prespecified routes may be quite large so that the dispersion parameter for this
group is small. Table 17.1 presents route choice criteria for these two groups of
travelers. Table 17.2 summarizes the stratification of travelers and their corre-
sponding travel choice criteria. A general VI model for the above multi-group,
multi-criteria route choice problem can be formulated by generalizing the VI
models of Chapters 12 and 13.

Table 17.1: Route Choice Criteria for Different Travelers

Travelers Route Choice Criteria
Guided Travelers Instantaneous DUO Ideal DUO
Travelers with No Guidance || Instantaneous SDUO | Ideal SDUO

Table 17.2: Groups of Travelers and Travel Choice Criteria

Modes Passenger Car | Trucks | HOV | Bus

Groups No Y Y Y Y
by Few Y Y Y N
Diversion Many Y Y N N
Travel Instantaneous DUO Y Y Y N
Choice Ideal DUO Y Y Y N
Criterion | Instantaneous SDUO Y Y Y N
Ideal SDUO Y Y Y N

Y - Yes; N — No.
Furthermore, dynamic traffic prediction problems can be classified into
several types based on time periods and travel purposes. Basically, we have:
- 1. morning home-to-work period (6:30 am - 9:30 am);
2. midday non-commuting period (9:30 am - 3:30 pm);
3. work-to-home period (3:30 pm - 7:30 pm);
4. evening period (7:30 pm - 10:30 pm);
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5. night period (10:30 pm - 6:30 am).

The times indicated are illustrative and need to be determined by survey. For
dynamic traffic prediction during the morning home-to-work period, the major
concern is the travel time and the arrival time. The joint mode/departure
time/route choice program might be revised as a joint mode/arrival time/route
choice program. The arrival times for commuting travelers need to be specified
and a large penalty charged for late arrival. Among the four modes specified
in Table 17.2, the priority of bus and HOV should be guaranteed in terms of
travel time reliability. For dynamic traffic prediction during other periods, the
models should be revised accordingly to reflect characteristics of the period of
interest.

17.1.2 Traffic Control

Dynamic network models can be extended to incorporate traffic control mea-
sures, such as signal control and congestion pricing. Congestion pricing is
discussed in Section 17.1.4. We now investigate how the dynamic models are
used in dynamic traffic control and coordination problems. In general, we can
construct a bilevel program for the combined dynamic traffic prediction and
control problem (Figure 17.1). In the upper level, we have a dynamic traffic
control model, which can be formulated using various objective functions as
follows:

1. minimize total travel time;

2. minimize total travel cost or disutility;

3. minimize total number of vehicles during time period [0, T7;
4. minimize average congestion level during time period [0, T};
5. minimize the length of the congested time period [0, TY;

6. minimize total emissions during time period [0, T7].

In the lower level, we have a dynamic traffic prediction model, which determines
dynamic traffic flows in the network by considering the control strategies pro-
vided by the upper level model. The above bilevel program is solved so that
an optimal control strategy can be found while the traffic flow follows the de-
sired DUO/SDUO route choice criteria. This bilevel program can be either
hierarchical or non-hierarchical, depending on the nature of the problem. The
control strategies can also be classified as centralized or decentralized, which
can generate different versions of the objective function for the upper level
control model.
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Upper Level: ) }
pper* Determine optimal traffic control strategies
Dynamic Traffic . .
] based on the predicted dynamic flows.
Controller:

where the dynamic traffic flows are given by:

Lower Level: . .
Dynamic Traffic Determine DUO/SDUO dynamic traffic flows

Predictor: using the provided dynamic traffic control strategy.

Figure 17.1: A Bilevel Program for Dynamic Traffic Prediction and Control

17.1.3 Incident Management

Incident management is another area in which dynamic network models can
play an important role. Traditional incident management strategy minimizes
incident congestion by clearing incidents as quickly as possible and divert-
ing traffic before vehicles are trapped in the incident queue. However, such
simple incident management plans cannot solve most incident congestion prob-
lems. Instead, a systematic and comprehensive incident management strategy
is needed to tackle the incident congestion problem, as offered by advanced
ATMIS/APTS technologies. Such an incident management strategy could use
travelers’ information on origins, destinations and departure times to develop
a coordinated strategy to advise each person regarding a best mode and route
to their destination on a real time basis. In this way, we can achieve either
user-optimal or system-optimal objectives by appropriately integrating avail-
able information and control measures.

In the context of such an incident management strategy, dynamic trans-
portation network models are necessary for incident-related routing and travel
time prediction. These models are both information and control oriented. The
prediction procedure assumes either of two types of routing of vehicles: normal
conditions and incident conditions. Routing for normal conditions provides
time-dependent traffic flows and travel times under normal traffic conditions.
Routing for incident conditions provides forecasts and suggestions following an
incident. Both instantaneous and ideal DUO/SDUO route choice models can
be used for this procedure. The system-optimal objective can also be applied to
incident rerouting in conjunction with dynamic congestion pricing. Oversatu-
ration and spillback can be serious problems when incidents happen. In the use
of dynamic network models in response to incidents, corresponding constraints
should be formulated to reflect these phenomena.

An incident can occur anywhere on a link. For simplicity, in the models
we can specify that an incident is always located at the exit point of a link
since a link with an incident can always be partitioned into two shorter links
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by placing a dummy node at the location of the incident. Thus, the location
of the incident can be designated at the exit point of some shorter link. The
models require that the start time and duration of an incident be reported by
some source, such as the highway patrol. The duration of incident is defined
as the period from the reported time through the clearance of the incident.

When incidents occur in a highway network, there are several ways for
travelers to avoid congestion. Travelers already en route can shift to less con-
gested routes which are less affected by the incident. If an incident happens in
a central business district, some travelers may choose different parking places
(destinations) and use other modes such as walking or buses to their final
destinations. Travelers who have not yet departed may choose to delay their
departures or shift to rapid transit. Thus, travelers’ choices under incident con-
ditions can be summarized as: route, departure time, mode and destination.
Instead of discussing all these choices, we focus on route choice in the following.

A major difficulty of incident-related dynamic network models is that the
continuity properties of most dynamic network models are destroyed. To over-
come this difficulty, we consider a multi-period dynamic travel choice procedure
in which each incident-related dynamic travel choice is treated separately and
the continuity of traffic flow at the time and location of an incident instant is
preserved. A detailed procedure is now described.

We consider two types of dynamic routing strategies under two route
choice behavioral assumptions. The first type of route choice behavior is based
on current or instantaneous travel time information. The second is based on
projected or actual travel time information.

Instantaneous DUO/SDUO routing strategies pertain to drivers under
incidents based on current traffic conditions. This framework is helpful in han-
dling many unpredictable events that occur in traffic flow, such as accidents
and illegal double parking on streets, etc. In case of such unforeseen events,
optimal control models based on instantaneous travel times can provide im-
proved results when feedback is taken into account and drivers adjust their
routes enroute using updated traffic information.

Ideal DUO/SDUO routing strategies are appropriate for drivers’ diver-
sion under incidents based on projected travel time information. These strate-
gies are useful when some future disturbance (incidents and other future events)
are predictable, such as the increased traffic flow from a baseball stadium after
a game. In general, if the future disturbance is more predictable, we can use
the ideal DUO/SDUO route choice model. If the future disturbance is less
predictable, we may prefer the instantaneous DUO/SDUO route choice model.
Thus, the group stratification discussed in the dynamic traffic prediction mod-
ule should be adjusted to the nature of the incident. An expert system can be
designed to achieve this goal.

Under unpredictable incidents, our strategy is designed as a multi-period
routing procedure. For simplicity, we first discuss the case of one incident
only. We advise motorists of minimal travel cost routes based on current traffic
information. Now, assume that an incident begins on link b at time ¢; and will
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be cleared at time T;. We divide the period [0, 7] into three periods: [0,1,],
[t1, Th] and [T1, T]. At the transition points t; and T, there are sudden capacity
reductions and increases, respectively, resulting in discontinuities of traffic flows
on incident link b. In our routing strategy, we assume that motorists choose
routes based on current traffic information. Thus, for period [0,%;] (before
the incident occurs), motorists’ route choices are based on current travel cost
information generated using an instantaneous DUO/SDUO route choice model
over the whole time span [0, T], as if no incident would occur. It covers the
entire time period [0, T]. During the initial period [0, ¢;], rerouting is provided
by a normal instantaneous DUO/SDUO route choice procedure.

During incident period [¢1, T1], rerouting advice must be rearranged. We
consider the impact of the incident on the reduction of capacity. We assume
that the capacity reduction is uniform during the incident duration in order
to simplify the problem. During incident period [t1, T3], rerouting is provided
from time t; through T, as if the incident would not be cleared until time
T;. This strategy is consistent with the route choice criterion of current traffic
information, because the clearance time of incident is not known at the initial
moment of the incident. This process is called incident-based routing. During
incident conditions, we reroute vehicle flows which are already on the network
and route O-D departures for period [t1,T] at the same time. Regarding the
vehicles already on the network, we consider each link as a dummy origin
from which flows may have different destinations. Thus, those vehicle flows
on each link a at time instant ¢; can be considered as dummy O-D flows. A
routing procedure similar to the initial routing can be implemented for the
same network with a reduced capacity on the incident link for period [t1, 7.

We now consider the last period [T}, T, which can be called the recovery
routing period. During period [T}, T] when the incident is cleared, the capacity
of the incident link is recovered. Routing is provided as normal instantaneous
DUO/SDUO route choice. Still, the vehicle flows which are already on links at
time instant T3 must be considered as dummy O-D flows during the incident
period. The above approach can be generalized to a general situation where
there are multiple incidents occurring in the network during period [0, T7.

17.1.4 Congestion Pricing

Dynamic tolls can be collected with the application of automatic vehicle iden-
tification (AVI) technology. In conjunction with a dynamic route guidance
system, effective traffic controls and congestion pricing can be implemented to-
gether to influence the routing strategies employed by either a central controller
or individual drivers so that congestion levels in the transportation network can
be controlled or adjusted.

It is anticipated that real-time congestion pricing can be evaluated using
dynamic network models. Our focus is on technical aspects instead of policy
issues. Traffic controls, including both surface street signal control and freeway
ramp control, are assumed to be fixed in the current models. Their interaction



360 Chapter 17. Implementation in IVHS

with dynamic congestion pricing will be modeled as future extensions. In con-
sidering the impact of congestion pricing, therefore, we focus our attention on
routing strategies instead of traffic signal controls. Various toll strategies and
their modeling issues are discussed in the following.

Bottleneck Tolls A typical example of a bottleneck toll is a bridge toll. The
relationship between the congestion level and the toll level at the bottleneck
can be represented using a time-dependent function. Thus, dynamic tolls can
be combined with dynamic link travel cost functions, and dynamic prediction
models can be applied to this situation.

Link and Route Tolls As discussed in Chapter 15, a bilevel program can be
constructed to determine dynamic link tolls. We use a leader-follower game
to formulate such a dynamic congestion pricing problem. The objective of
the upper-level problem (or the leader of the game) is to minimize the total
travel time; the decision variable is the dynamic link toll. In the upper-level
problem, we minimize the total travel time instead of total travel cost, because
the link toll policy is designed to control the total congestion level. The DUO
route choice problem (or the follower of the game) is formulated as the lower-
level problem, in which the decision variables are the link flow variables. The
upper level problem is a time-dependent minimization problem, whereas the
lower-level problem is formulated as a variational inequality.

A bilevel program can also be constructed to determine dynamic route
tolls. This program is similar to that for dynamic link tolls. However, solving
this model requires explicit route enumeration. :

Area Congestion Tolls An alternative congestion pricing strategy, area tolls
or congestion zone tolls, may be easier to implement than the link or route
toll policy. This dynamic congestion pricing strategy is designed to control
the congestion level within the central business district (CBD) area, such as
downtown Los Angeles. We charge a uniform toll which may be time-varying
and adjustable depending on the congestion level within the CBD area. In our
continuous time model, we assume that the toll is continuous in time. This toll
applies to any vehicle traveling within the CBD area during peak hour periods.

As with link tolls, this problem can also be formulated as a bilevel model.
The upper level is the congestion control or toll policy decision level and the
lower level is the description of responsive traffic status. The control authority
keeps track of the congestion level in terms of average saturation degree in
the CBD area and charges a congestion toll for each vehicle present in CBD
areas during the toll period. However, such a bilevel model is computationally
difficult for a large network. Thus, we need to formulate a single level model
which endogenously considers the interaction of dynamic congestion toll policy
and travelers’ choice responses. This formulation is similar to that for the
bottleneck toll problem.

Dynamic toll models can function as tools in the evaluation of possi-
ble congestion pricing strategies in light of the advance of IVHS technologies.
Eventually, they are expected to work together with traffic control schemes to
combat traffic congestion in urban areas and become on-line operational tools
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in ATMIS systems.

17.1.5 Operations and Control for AHS

Dynamic transportation network models can be directly used as operations and
control models in advanced IVHS systems. One example is an Automated High-
way System (AHS). Some proposed AHS have only automated lanes. Thus,
lane-changing itself is a matter of route choice which can be controlled by the
central controller. A one-lane segment between two barriers can be considered
as a link as shown in Figure 17.2. Thus, the dynamic prediction models can
be adopted directly in the control of AHS. Furthermore, some proposed AHS
have both automated lanes and non-automated lanes. The routing model for
this case is more complicated than the previous one.

/ barriers \
/ N

a
\ 4

a link

Figure 17.2: A Segregated Automated Highway System

17.1.6 Transportation Planning

Dynamic transportation network models can be generalized for application to
long term planning purposes. Since dynamic models can predict traffic varia-
tions more accurately, they provide a good alternative to traditional planning
models which are based on static equilibrium concepts. Furthermore, dynamic
models can investigate disequilibrium aspects of traffic from day-to-day traffic
variations.

With the rapid evolution of IVHS systems, the concepts and principles
of IVHS are affecting the long-term transportation planning process. Thus,
dynamic transportation network models can be extended as dynamic planning
tools for a metropolitan area with various IVHS field projects. Combining
dynamic location choices into dynamic planning models could become another
area of interest in order to evaluate the long-term impact of IVHS projects on
facility and residential locations.
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17.2 Data Requirements

Inputs and parameter calibration for dynamic network models imply an exten-
sive data collection effort. In general, most data required for dynamic models
does not presently exist. Proposed and ongoing IVHS field tests provide an
excellent opportunity to collect such data. Associated with our dynamic trans-
portation network models, the following data requirements are identified:

1. time-dependent O-D matrices;
2. network geometry and intersection/ramp control data;
3. traffic flow data for calibrating various dynamic link travel time functions;

4. traveler information for stratifying travelers into multi-groups and cali-
brating travel disutility functions.

17.2.1 Time-Dependent O-D Matrices

A time-dependent O-D matrix is considered as given in dynamic route choice
models. For joint departure time/route choice models, the total number of
departures between each O-D pair during a certain period of time has to be
given. However, such a time-dependent O-D matrix does not exist in general.
To overcome this difficulty, a tentative approach is to transform a 24 hour O-D
matrix into an approximate time-dependent O-D matrix by using a prespecified
transformation function.

In estimating a time-dependent O-D matrix, the traditional maximum
likelihood method can be used. Data collected from probe vehicles and traffic
counts will serve this purpose. In addition, a time-dependent O-D matrix has
to be estimated for different modes, such as passenger car, truck, HOV and
bus.

The zone size for the time-dependent O-D matrix must be appropriate to
the scale of the model. In general, it is smaller than the zones defined for static
planning models. The time intervals for time-dependent O-D estimation can
be 5, 10, 15 or 30 minutes, depending on the problem requirements. We note
that zone size also depends on the length of a time interval. If a time interval is
smaller, the zone can be larger and vice versa. During a time interval, the O-D
departure flow rate is assumed to be constant. Since the O-D departure flow
rate does not change substantially, as compared with the traffic flow during a
short time interval, the interval for estimating a time-dependent O-D matrix
can be larger than the interval used in dynamic route choice problems.

17.2.2 Network Geometry and Control Data

Network geometry and control data for dynamic problems must be more de-
tailed than for static problems. For freeways, data are required for freeway
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segments, ramps and weaving areas. In general, network geometry and control
data for freeways include:

1. link length;

2. free flow speed and speed limit on freeway segments and ramps;

3. length of weaving areas;

4. types of ramp control.

If a freeway has HOV lanes, these lanes should be treated as a set of special
links. The length of HOV lanes and charges for single occupancy vehicles are
additional data inputs. If there is main line metering on the freeway, a control
algorithm is needed.

For arterials, the network geometry and control data include:

1. link length;

. length and number of lanes for turning movements;
. number of midblock lanes;

. number of bus stops on each link;

. pedestrian activity;

. number of bus/HOV lanes;

. free flow speed and speed limit;

0 =~ O Ot s W N

. intersection control data.
The intersection controls can be classified more specifically as follows:
1. links with signalized intersections:

(a) fixed signal control;

(b) actuated signal control;
2. links with unsignalized intersections:

(a) major/minor priority intersections;

(b) all-way-stop intersections.
For local streets, the intersection controls can be classified as:
1. stop/yield control;
2. no control.

Intersection control data need to be collected for each of the above control
types. In addition, offset data are necessary for signalized intersections.
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17.2.3 Traffic Flow Data

Traffic flow data are needed to calibrate dynamic link travel time functions.
Ideally, both detector data and probe data are desired. For a freeway segment,
speed/occupancy and travel time data are required. When validating dynamic
link travel time functions under highly congested conditions, information on
queue length is also necessary.

For an arterial link, the following traffic flow data are required:

1. inflow/exit flow rates;
2. queue length;
3. link travel time;
4. intersection control parameter.
These traffic flow data can also be used to validate the FIFO constraints and

oversaturation constraints.

17.2.4 Traveler Information

Since more realistic dynamic network models are based on travel costs or disu-
tilities instead of travel times, it is necessary to stratify travelers into multi-
ple groups according to their socio-economic characteristics. As discussed in
Chapters 11-13 and in the dynamic prediction module in Section 17.1, trav-
eler information should be collected based on: income and age; route diversion
willingness; driving behavior; compliance degree with guidance information;
compliance with current or predicted information.

In the following, we present some parameters which need to be calibrated
and some travel characteristics data which need to be collected: -

1. fixed travel disutilities (fuel consumption, automobile operating costs,
etc.);

2. parameters to transform travel times into disutilities;
3. dispersion parameter for SDUO route choice models;
4. desired arrival time interval;

5. parameter for early arrival bonus;

6. parameter for late arrival penalty;

7. dispersion parameter for mode choice.

The above data must be collected for each group of travelers and parameters
must be calibrated for each group of travelers as well.
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17.3 Notes

The implementation issues discussed in Section 17.1 involve only a portion of
the potential applications of dynamic network models. As the backbone of
ATMS and ATIS, dynamic network models can be applied in different traf-
fic control systems and various user services for travelers. Since IVHS will
definitely change travelers’ behavior and the location of facilities, dynamic net-
work models can be useful in both aspects. Another area is the integration with
telecommunication systems, because transportation and telecommunication are
more and more closely related in IVHS. The data requirements in Section 17.2
are generated based on the present level of development of dynamic network
modeling. Further requirements are possible as the state of the art of dynamic
network modeling evolves.

Successful deployment of dynamic network models in ATMS and ATIS
requires extensive effort in the future. According to Yagar and Santiago (1993)
and Solanki and Rathi (1993), ongoing research on dynamic network models
should address the following issues:

[y

. integration of models of freeways and surface streets;
modeling dynamic route selection;
emulation of adaptive signal systems;

replication of surveillance and communication functions;

AN R A

representation of driver behavior in ATMS/ATIS implementation;
incorporation of safety, energy and environmental impacts;
common databases and interfaces with other models;

interface with data reduction software at a Traffic Control Center;

© ®° =N oo

real time capability;

10. simulation of Automated Vehicle Control Systems and Automated High-
way Systems.
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