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PREFACE

It now is 33 years since the first edition of this book was published in 1967. We have been
humbled by having had both the privilege and the responsibility of introducing so many
students around the world to our field over such a long span of time. With each new edi-
tion, we have worked toward the goal of meeting the changing needs of new generations
of students by helping to define the modern approach to teaching the current status of op-
erations research effectively at the introductory level. Over 33 years, much has changed
in both the field and the pedagogical needs of the students being introduced to the field.
These changes have been reflected in the substantial revisions of successive editions of
this book. We believe that this is true for the current 7th edition as well.

The enthusiastic response to our first six editions has been most gratifying. It was a
particular pleasure to have the 6th edition receive honorable mention for the 1995 IN-
FORMS Lanchester Prize (the prize awarded for the year’s most outstanding English-
language publication of any kind in the field of operations research), including receiving
the following citation. “This is the latest edition of the textbook that has introduced ap-
proximately one-half million students to the methods and models of Operations Research.
While adding material on a variety of new topics, the sixth edition maintains the high
standard of clarity and expositional excellence for which the authors have long been known.
In honoring this work, the prize committee noted the enormous cumulative impact that
the Hillier-Lieberman text has had on the development of our field, not only in the United
States but also around the world through its many foreign-language editions.”

As we enter a new millennium, the particular challenge for this new edition was to
revise a book with deep roots in the 20th century so thoroughly that it would become fully
suited for the 21st century. We made a special effort to meet this challenge, especially in
regard to the software and pedagogy in the book.

A WEALTH OF SOFTWARE OPTIONS

The new CD-ROM that accompanies the book provides an exciting array of software op-
tions that reflect current practice.

One option is to use the increasingly popular spreadsheet approach with Excel and
its Solver. Using spreadsheets as a key medium of instruction clearly is one new wave in
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the teaching of operations research. The new Sec. 3.6 describes and illustrates how to use
Excel and its Solver to formulate and solve linear programming models on a spreadsheet.
Similar discussions and examples also are included in several subsequent chapters for
other kinds of models. In addition, the CD-ROM provides an Excel file for many of the
chapters that displays the spreadsheet formulation and solution for the relevant examples
in the chapter. Several of the Excel files also include a number of Excel templates for
solving the models in the chapter. Another key resource is a collection of Excel add-ins
on the CD-ROM (Premium Solver, TreePlan, Senslt, and RiskSim) that are integrated into
the corresponding chapters. In addition, Sec. 22.6 describes how some simulations can be
performed efficiently on spreadsheets by using another popular Excel add-in (@RISK)
that can be downloaded temporarily from a website.

Practitioners of operations research now usually use a modeling language to formu-
late and manage models of the very large size commonly encountered in practice. A mod-
eling language system also will support one or more sophisticated software packages that
can be called to solve a model once it has been formulated appropriately. The new Sec.
3.7 discusses the application of modeling languages and illustrates it with one modeling
language (MPL) that is relatively amenable to student use. The student version of MPL
is provided on the CD-ROM, along with an extensive MPL tutorial. Accompanying MPL
as its primary solver is the student version of the renowned state-of-the-art software pack-
age, CPLEX. The student version of CONOPT also is provided as the solver for nonlin-
ear programming. We are extremely pleased to be able to provide such powerful and pop-
ular software to students using this book. To further assist students, many of the chapters
include an MPL/CPLEX file (or MPL/CPLEX/CONOPT file in the case of the nonlinear
programming chapter) on the CD-ROM that shows how MPL and CPLEX would formu-
late and solve the relevant examples in the chapter. These files also illustrate how MPL
and CPLEX can be integrated with spreadsheets.

As described in the appendix to Chaps. 3 and 4, a third attractive option is to employ
the student version of the popular and student-friendly software package LINDO and its
modeling language companion LINGO. Both packages can be downloaded free from the
LINDO Systems website. Associated tutorial material is included on the CD-ROM, along
with a LINDO/LINGO file for many of the chapters showing how LINDO and LINGO
would formulate and solve the relevant examples in the chapter. Once again, integration
with spreadsheets also is illustrated.

Complementing all these options on the CD-ROM is an updated version of the tuto-
rial software that many instructors have found so useful for their students with the 5th and
6th editions. A program called OR Tutor provides 16 demonstration examples from the
6th edition, but now with an attractive new design based on JavaScript. These demos
vividly demonstrate the evolution of an algorithm in ways that cannot be duplicated on
the printed page. Most of the interactive routines from the 6th edition also are included
on the CD-ROM, but again with an attractive new design. This design features a spread-
sheet format based on VisualBasic. Each of the interactive routines enables the student to
interactively execute one of the algorithms of operations research, making the needed de-
cision at each step while the computer does the needed arithmetic. By enabling the stu-
dent to focus on concepts rather than mindless number crunching when doing homework
to learn an algorithm, we have found that these interactive routines make the learning
process far more efficient and effective as well as more stimulating. In addition to these
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routines, the CD-ROM includes a few of the automatic routines from the 6th edition (again
redesigned with VisualBasic) for those cases that are not covered by the software options
described above. We were very fortunate to have the services of Michael O’Sullivan, a
talented programmer and an advanced Ph.D. student in operations research at Stanford,
to do all this updating of the software that had been developed by Mark S. Hillier for the
Sth and 6th editions.

Microsoft Project is introduced in Chap. 10 as a useful tool for project management.
This software package also is included on the CD-ROM.

NEW EMPHASES

Today’s students in introductory operations research courses tend to be very interested in
learning more about the relevance of the material being covered, including how it is ac-
tually being used in practice. Therefore, without diluting any of the features of the 6th
edition, the focus of the revision for this edition has been on increasing the motivation
and excitement of the students by making the book considerably more “real world” ori-
ented and accessible. The new emphasis on the kinds of software that practitioners use is
one thrust in this direction. Other major new features are outlined below.

Twenty-five elaborate new cases, embedded in a realistic setting and employing a
stimulating storytelling approach, have been added at the end of the problem sections. All
but one of these cases were developed jointly by two talented case writers, Karl Schmed-
ders (a faculty member at the Kellogg Graduate School of Management at Northwestern
University) and Molly Stephens (recently an operations research consultant with Ander-
sen Consulting). We also have further fleshed out six cases that were in the 6th edition.
The cases generally require relatively challenging and comprehensive analyses with sub-
stantial use of the computer. Therefore, they are suitable for student projects, working ei-
ther individually or in teams, and can then lead to class discussion of the analysis.

A complementary new feature is that many new problems embedded in a realistic set-
ting have been added to the problem section of many chapters. Some of the current prob-
lems also have been fleshed out in a more interesting way.

This edition also places much more emphasis on providing perspective in terms of
what is actually happening in the practice of operations research. What kinds of applica-
tions are occurring? What sizes of problems are being solved? Which models and tech-
niques are being used most widely? What are their shortcomings and what new develop-
ments are beginning to address these shortcomings? These kinds of questions are being
addressed to convey the relevance of the techniques under discussion. Eight new sections
(Secs. 10.7, 12.2, 15.6, 18.5, 19.8, 20.1, 20.10, and 22.2) are fully devoted to discussing
the practice of operations research in such ways, along with briefer mentions elsewhere.

The new emphases described above benefited greatly from our work in developing
our recent new textbook with Mark S. Hillier (Introduction to Management Science: A
Modeling and Case Studies Approach with Spreadsheets, Irwin/McGraw-Hill, 2000). That
book has a very different orientation from this one. It is aimed directly at business stu-
dents rather than students who may be in engineering and the mathematical sciences, and
it provides almost no coverage of the mathematics and algorithms of operations research.
Nevertheless, its applied orientation enabled us to adapt some excellent material devel-
oped for that book to provide a more well-rounded coverage in this edition.
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OTHER FEATURES

In addition to all the new software and new emphases just described, this edition received
a considerable number of other enhancements as well.

The previous section on project planning and control with PERT/CPM has been re-
placed by a complete new chapter (Chap. 10) with an applied orientation. Using the ac-
tivity-on-node (AON) convention, this chapter provides an extensive modern treatment of
the topic in a very accessible way.

Other new topics not yet mentioned include the SOB mnemonic device for deter-
mining the form of constraints in the dual problem (in Sec. 6.4), 100 percent rules for si-
multaneous changes when conducting sensitivity analysis (in Sec. 6.7), sensitivity analy-
sis with Bayes’ decision rule (in Sec. 15.2), a probability tree diagram for calculating
posterior probabilities (in Sec. 15.3), a single-server variation of the nonpreemptive pri-
orities model where the service for different priority classes of customers now have dif-
ferent mean service rates (in Sec. 17.8), a new simpler analysis of a stochastic continu-
ous-review inventory model (Sec. 19.5), the mean absolute deviation as a measure of
performance for forecasting methods (in Sec. 20.7), and the elements of a major simula-
tion study (Sec. 22.5).

We also have added much supplementary text material on the book’s new website,
www.mhhe.com/hillier. Some of these supplements are password protected, but are avail-
able to all instructors who adopt this textbook. For the most part, this material appeared
in previous editions of this book and then was subsequently deleted (for space reasons),
to the disappointment of some instructors. Some also appeared in our Introduction to Math-
ematical Programming textbook. As delineated in the table of contents, this supplemen-
tary material includes a chapter on additional special types of linear programming prob-
lems, a review or primer chapter on probability theory, and a chapter on reliability, along
with supplements to a few chapters in the book.

In addition to providing this supplementary text material, the website will give up-
dates about the book, including an errata, as the need arises.

We made two changes in the order of the chapters. The decision analysis chapter has
been moved forward to Chap. 15 in front of the stochastic chapters. The game theory
chapter has been moved backward to Chap. 14 to place it next to the related decision
analysis chapter. We believe that these changes provide a better transition from topics that
are mainly deterministic to those that are mainly stochastic.

Every chapter has received significant revision and updating, ranging from modest
refining to extensive rewriting. Chapters receiving a particularly major revision and reor-
ganization included Chaps. 15 (Decision Analysis), 19 (Inventory Theory), 20 (Forecast-
ing), and 22 (Simulation). Many sections in the linear programming and mathematical
programming chapters also received major revisions and updating.

The overall thrust of all the revision efforts has been to build upon the strengths of
previous editions while thoroughly updating and clarifying the material in a contempo-
rary setting to fully meet the needs of today’s students.

We think that the net effect has been to make this edition even more of a “student’s
book”—clear, interesting, and well-organized with lots of helpful examples and illustra-
tions, good motivation and perspective, easy-to-find important material, and enjoyable
homework, without too much notation, terminology, and dense mathematics. We believe
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and trust that the numerous instructors who have used previous editions will agree that
this is the best edition yet. This feeling has been reinforced by the generally enthusiastic
reviews of drafts of this edition.

The prerequisites for a course using this book can be relatively modest. As with pre-
vious editions, the mathematics has been kept at a relatively elementary level. Most of
Chaps. 1 to 14 (introduction, linear programming, and mathematical programming) re-
quire no mathematics beyond high school algebra. Calculus is used only in Chaps. 13
(Nonlinear Programming) and in one example in Chap. 11 (Dynamic Programming). Ma-
trix notation is used in Chap. 5 (The Theory of the Simplex Method), Chap. 6 (Duality
Theory and Sensitivity Analysis), Sec. 7.4 (An Interior-Point Algorithm), and Chap. 13,
but the only background needed for this is presented in Appendix 4. For Chaps. 15 to 22
(probabilistic models), a previous introduction to probability theory is assumed, and cal-
culus is used in a few places. In general terms, the mathematical maturity that a student
achieves through taking an elementary calculus course is useful throughout Chaps. 15 to
22 and for the more advanced material in the preceding chapters.

The content of the book is aimed largely at the upper-division undergraduate level
(including well-prepared sophomores) and at first-year (master’s level) graduate students.
Because of the book’s great flexibility, there are many ways to package the material into
a course. Chapters 1 and 2 give an introduction to the subject of operations research. Chap-
ters 3 to 14 (on linear programming and on mathematical programming) may essentially
be covered independently of Chaps. 15 to 22 (on probabilistic models), and vice versa.
Furthermore, the individual chapters among Chaps. 3 to 14 are almost independent, ex-
cept that they all use basic material presented in Chap. 3 and perhaps in Chap. 4. Chap-
ter 6 and Sec. 7.2 also draw upon Chap. 5. Sections 7.1 and 7.2 use parts of Chap. 6. Sec-
tion 9.6 assumes an acquaintance with the problem formulations in Secs. 8.1 and 8.3,
while prior exposure to Secs. 7.3 and 8.2 is helpful (but not essential) in Sec. 9.7. Within
Chaps. 15 to 22, there is considerable flexibility of coverage, although some integration
of the material is available.

An elementary survey course covering linear programming, mathematical program-
ming, and some probabilistic models can be presented in a quarter (40 hours) or semes-
ter by selectively drawing from material throughout the book. For example, a good sur-
vey of the field can be obtained from Chaps. 1, 2, 3, 4, 15, 17, 19, 20, and 22, along with
parts of Chaps. 9, 11, 12, and 13. A more extensive elementary survey course can be com-
pleted in two quarters (60 to 80 hours) by excluding just a few chapters, for example,
Chaps. 7, 14, and 21. Chapters 1 to 8 (and perhaps part of Chap. 9) form an excellent ba-
sis for a (one-quarter) course in linear programming. The material in Chaps. 9 to 14 cov-
ers topics for another (one-quarter) course in other deterministic models. Finally, the ma-
terial in Chaps. 15 to 22 covers the probabilistic (stochastic) models of operations research
suitable for presentation in a (one-quarter) course. In fact, these latter three courses (the
material in the entire text) can be viewed as a basic one-year sequence in the techniques
of operations research, forming the core of a master’s degree program. Each course out-
lined has been presented at either the undergraduate or the graduate level at Stanford Uni-
versity, and this text has been used in the manner suggested.

To assist the instructor who will be covering only a portion of the chapters and who
prefers a slimmer book containing only those chapters, all the material (including the sup-
plementary text material on the book’s website) has been placed in McGraw-Hill’s PRIMIS
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system. This system enables an instructor to pick and choose precisely which material to
include in a self-designed book, and then to order copies for the students at an econom-
ical price. For example, this enables instructors who previously used our Introduction to
Mathematical Programming or Introduction to Stochastic Models in Operations Research
textbooks to obtain updated versions of the same material from the PRIMIS system. For
this reason, we will not be publishing new separate editions of these other books.

Again, as in previous editions, we thank our wives, Ann and Helen, for their en-
couragement and support during the long process of preparing this 7th edition. Our chil-
dren, David, John, and Mark Hillier, Janet Lieberman Argyres, and Joanne, Michael, and
Diana Lieberman, have literally grown up with the book and our periodic hibernations to
prepare a new edition. Now, most of them have used the book as a text in their own col-
lege courses, given considerable advice, and even (in the case of Mark Hillier) become a
software collaborator. It is a joy to see them and (we trust) the book reach maturity to-
gether.

And now I must add a very sad note. My close friend and co-author, Jerry Lieber-
man, passed away on May 18, 1999, while this edition was in preparation, so I am writ-
ing this preface on behalf of both of us. Jerry was one of the great leaders of our field
and he had a profound influence on my life. More than a third of a century ago, we em-
barked on a mission together to attempt to develop a path-breaking book for teaching op-
erations research at the introductory level. Ever since, we have striven to meet and extend
the same high standards for each new edition. Having worked so closely with Jerry for
so many years, I believe I understand well how he would want the book to evolve to meet
the needs of each new generation of students. As the substantially younger co-author, I
am grateful that I am able to carry on our joint mission to continue to update and improve
the book, both with this edition and with future editions as well. It is the least I can do
to honor Jerry.

I welcome your comments, suggestions, and errata to help me improve the book in
the future.

ACKNOWLEDGMENTS

We are indebted to an excellent group of reviewers who provided sage advice throughout
the revision process. This group included Jeffery Cochran, Arizona State University; Yahya
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letters or e-mail messages. In addition, we also thank many dozens of Stanford students
and many students at other universities who gave us helpful written suggestions.

This edition was very much of a team effort. Our case writers, Karl Schmedders and
Molly Stephens (both graduates of our department), made a vital contribution. One of our
department’s current Ph.D. students, Roberto Szechtman, did an excellent job in prepar-
ing the solutions manual. Another Ph.D. student, Michael O’Sullivan, was very skillful in
updating the software that Mark Hillier had developed for the 5th and 6th editions. Mark
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(who was born the same year as the first edition and now is a tenured faculty member in
the Management Science Department at the University of Washington) helped to oversee
this updating and also provided both the spreadsheets and the Excel files (including many
Excel templates) for this edition. Linus Schrage of the University of Chicago and LINDO
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providing tutorial material for the CD-ROM. Another long-time friend, Bjarni Kristjans-
son (who heads Maximal Software), did the same thing for the MPL/CPLEX files and
MPL tutorial material, as well as arranging to provide student versions of MPL, CPLEX,
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ates, Irv Lustig, was the ILOG project manager for providing CPLEX. Linus, Bjarni, and
Irv all were helpful in checking material going into this edition regarding their software.
Ann Hillier devoted numerous long days and nights to sitting with a Macintosh, doing
word processing and constructing many figures and tables, in addition to endless cutting
and pasting, photocopying, and FedExing of material. Helen Lieberman also carried a
heavy burden in supporting Jerry. They all were vital members of the team.

The inside back cover lists the various companies and individuals who have provided
software for the CD-ROM. We greatly appreciate their key contributions.

It was a real pleasure working with McGraw-Hill’s thoroughly professional editorial
and production staff, including Eric Munson (executive editor), Maja Lorkovic (develop-
mental editor), and Christine Vaughan (project manager).

Frederick S. Hillier
Stanford University (fhillier @ Leland.Stanford.edu) January 2000
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Introduction

1.1 THE ORIGINS OF OPERATIONS RESEARCH

Since the advent of the industrial revolution, the world has seen a remarkable growth in
the size and complexity of organizations. The artisans’ small shops of an earlier era have
evolved into the billion-dollar corporations of today. An integral part of this revolution-
ary change has been a tremendous increase in the division of labor and segmentation of
management responsibilities in these organizations. The results have been spectacular.
However, along with its blessings, this increasing specialization has created new prob-
lems, problems that are still occurring in many organizations. One problem is a tendency
for the many components of an organization to grow into relatively autonomous empires
with their own goals and value systems, thereby losing sight of how their activities and
objectives mesh with those of the overall organization. What is best for one component
frequently is detrimental to another, so the components may end up working at cross pur-
poses. A related problem is that as the complexity and specialization in an organization
increase, it becomes more and more difficult to allocate the available resources to the var-
ious activities in a way that is most effective for the organization as a whole. These kinds
of problems and the need to find a better way to solve them provided the environment for
the emergence of operations research (commonly referred to as OR).

The roots of OR can be traced back many decades, when early attempts were made
to use a scientific approach in the management of organizations. However, the beginning
of the activity called operations research has generally been attributed to the military ser-
vices early in World War II. Because of the war effort, there was an urgent need to allo-
cate scarce resources to the various military operations and to the activities within each
operation in an effective manner. Therefore, the British and then the U.S. military man-
agement called upon a large number of scientists to apply a scientific approach to deal-
ing with this and other strategic and tactical problems. In effect, they were asked to do
research on (military) operations. These teams of scientists were the first OR teams. By
developing effective methods of using the new tool of radar, these teams were instrumental
in winning the Air Battle of Britain. Through their research on how to better manage con-
voy and antisubmarine operations, they also played a major role in winning the Battle of
the North Atlantic. Similar efforts assisted the Island Campaign in the Pacific.

When the war ended, the success of OR in the war effort spurred interest in apply-
ing OR outside the military as well. As the industrial boom following the war was run-
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ning its course, the problems caused by the increasing complexity and specialization in
organizations were again coming to the forefront. It was becoming apparent to a growing
number of people, including business consultants who had served on or with the OR teams
during the war, that these were basically the same problems that had been faced by the
military but in a different context. By the early 1950s, these individuals had introduced
the use of OR to a variety of organizations in business, industry, and government. The
rapid spread of OR soon followed.

At least two other factors that played a key role in the rapid growth of OR during
this period can be identified. One was the substantial progress that was made early in im-
proving the techniques of OR. After the war, many of the scientists who had participated
on OR teams or who had heard about this work were motivated to pursue research rele-
vant to the field; important advancements in the state of the art resulted. A prime exam-
ple is the simplex method for solving linear programming problems, developed by George
Dantzig in 1947. Many of the standard tools of OR, such as linear programming, dynamic
programming, queueing theory, and inventory theory, were relatively well developed be-
fore the end of the 1950s.

A second factor that gave great impetus to the growth of the field was the onslaught
of the computer revolution. A large amount of computation is usually required to deal
most effectively with the complex problems typically considered by OR. Doing this by
hand would often be out of the question. Therefore, the development of electronic digital
computers, with their ability to perform arithmetic calculations thousands or even millions
of times faster than a human being can, was a tremendous boon to OR. A further boost
came in the 1980s with the development of increasingly powerful personal computers ac-
companied by good software packages for doing OR. This brought the use of OR within
the easy reach of much larger numbers of people. Today, literally millions of individuals
have ready access to OR software. Consequently, a whole range of computers from main-
frames to laptops now are being routinely used to solve OR problems.

THE NATURE OF OPERATIONS RESEARCH

As its name implies, operations research involves “research on operations.” Thus, opera-
tions research is applied to problems that concern how to conduct and coordinate the op-
erations (i.e., the activities) within an organization. The nature of the organization is es-
sentially immaterial, and, in fact, OR has been applied extensively in such diverse areas
as manufacturing, transportation, construction, telecommunications, financial planning,
health care, the military, and public services, to name just a few. Therefore, the breadth
of application is unusually wide.

The research part of the name means that operations research uses an approach that
resembles the way research is conducted in established scientific fields. To a considerable
extent, the scientific method is used to investigate the problem of concern. (In fact, the
term management science sometimes is used as a synonym for operations research.) In
particular, the process begins by carefully observing and formulating the problem, in-
cluding gathering all relevant data. The next step is to construct a scientific (typically
mathematical) model that attempts to abstract the essence of the real problem. It is then
hypothesized that this model is a sufficiently precise representation of the essential fea-
tures of the situation that the conclusions (solutions) obtained from the model are also
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valid for the real problem. Next, suitable experiments are conducted to test this hypothe-
sis, modify it as needed, and eventually verify some form of the hypothesis. (This step is
frequently referred to as model validation.) Thus, in a certain sense, operations research
involves creative scientific research into the fundamental properties of operations. How-
ever, there is more to it than this. Specifically, OR is also concerned with the practical
management of the organization. Therefore, to be successful, OR must also provide pos-
itive, understandable conclusions to the decision maker(s) when they are needed.

Still another characteristic of OR is its broad viewpoint. As implied in the preceding
section, OR adopts an organizational point of view. Thus, it attempts to resolve the con-
flicts of interest among the components of the organization in a way that is best for the
organization as a whole. This does not imply that the study of each problem must give
explicit consideration to all aspects of the organization; rather, the objectives being sought
must be consistent with those of the overall organization.

An additional characteristic is that OR frequently attempts to find a best solution (re-
ferred to as an optimal solution) for the problem under consideration. (We say a best in-
stead of the best solution because there may be multiple solutions tied as best.) Rather
than simply improving the status quo, the goal is to identify a best possible course of ac-
tion. Although it must be interpreted carefully in terms of the practical needs of manage-
ment, this “search for optimality” is an important theme in OR.

All these characteristics lead quite naturally to still another one. It is evident that no
single individual should be expected to be an expert on all the many aspects of OR work
or the problems typically considered; this would require a group of individuals having di-
verse backgrounds and skills. Therefore, when a full-fledged OR study of a new problem
is undertaken, it is usually necessary to use a feam approach. Such an OR team typically
needs to include individuals who collectively are highly trained in mathematics, statistics
and probability theory, economics, business administration, computer science, engineering
and the physical sciences, the behavioral sciences, and the special techniques of OR. The
team also needs to have the necessary experience and variety of skills to give appropriate
consideration to the many ramifications of the problem throughout the organization.

THE IMPACT OF OPERATIONS RESEARCH

Operations research has had an impressive impact on improving the efficiency of numer-
ous organizations around the world. In the process, OR has made a significant contribu-
tion to increasing the productivity of the economies of various countries. There now are
a few dozen member countries in the International Federation of Operational Research
Societies (IFORS), with each country having a national OR society. Both Europe and Asia
have federations of OR societies to coordinate holding international conferences and pub-
lishing international journals in those continents.

It appears that the impact of OR will continue to grow. For example, according to the
U.S. Bureau of Labor Statistics, OR currently is one of the fastest-growing career areas
for U.S. college graduates.

To give you a better notion of the wide applicability of OR, we list some actual award-
winning applications in Table 1.1. Note the diversity of organizations and applications in
the first two columns. The curious reader can find a complete article describing each ap-
plication in the January—February issue of Interfaces for the year cited in the third col-
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TABLE 1.1 Some applications of operations research

Year of Related Annual
Organization Nature of Application Publication* Chapters? Savings
The Netherlands Develop national water management 1985 2-8,13, 22 $15 million
Rijkswaterstaat policy, including mix of new facilities,
operating procedures, and pricing.
Monsanto Corp. Optimize production operations in 1985 2,12 $2 million
chemical plants to meet production targets
with minimum cost.
United Airlines Schedule shift work at reservation offices 1986 2-9,12,17, $6 million
and airports to meet customer needs with 18, 20
minimum cost.
Citgo Petroleum Optimize refinery operations and the supply, 1987 2-9, 20 $70 million
Corp. distribution, and marketing of products.
San Francisco Optimally schedule and deploy police 1989 2-4,12, 20 $11 million
Police Department patrol officers with a computerized system.
Texaco, Inc. Optimally blend available ingredients into 1989 2,13 $30 million
gasoline products to meet quality and
sales requirements.
IBM Integrate a national network of spare parts 1990 2,19, 22 $20 million
inventories to improve service support. +$250 million
less inventory
Yellow Freight Optimize the design of a national trucking 1992 2,9,13, 20, $17.3 million
System, Inc. network and the routing of shipments. 22
New Haven Health Design an effective needle exchange 1993 2 33% less
Department program to combat the spread of HIV/AIDS. HIV/AIDS
AT&T Develop a PC-based system to guide 1993 17,18, 22 $750 million
business customers in designing their call
centers.
Delta Airlines Maximize the profit from assigning 1994 12 $100 million
airplane types to over 2500 domestic
flights.
Digital Equipment Restructure the global supply chain of 1995 12 $800 million
Corp. suppliers, plants, distribution centers,
potential sites, and market areas.
China Optimally select and schedule massive 1995 12 $425 million
projects for meeting the country’s future
energy needs.
South African Optimally redesign the size and shape of 1997 12 $1.1 billion
defense force the defense force and its weapons systems.
Proctor and Gamble Redesign the North American production 1997 8 $200 million
and distribution system to reduce costs
and improve speed to market.
Taco Bell Optimally schedule employees to provide 1998 12, 20, 22 $13 million
desired customer service at a minimum
cost.
Hewlett-Packard Redesign the sizes and locations of 1998 17,18 $280 million

buffers in a printer production line to meet
production goals.

maore revenue

*Pertains to a January—February issue of Interfaces in which a complete article can be found describing the application.
Refers to chapters in this book that describe the kinds of OR techniques used in the application.
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umn of the table. The fourth column lists the chapters in this book that describe the kinds
of OR techniques that were used in the application. (Note that many of the applications
combine a variety of techniques.) The last column indicates that these applications typi-
cally resulted in annual savings in the millions (or even tens of millions) of dollars. Fur-
thermore, additional benefits not recorded in the table (e.g., improved service to customers
and better managerial control) sometimes were considered to be even more important than
these financial benefits. (You will have an opportunity to investigate these less tangible
benefits further in Probs. 1.3-1 and 1.3-2.)

Although most routine OR studies provide considerably more modest benefits than
these award-winning applications, the figures in the rightmost column of Table 1.1 do ac-
curately reflect the dramatic impact that large, well-designed OR studies occasionally can
have.

We will briefly describe some of these applications in the next chapter, and then we
present two in greater detail as case studies in Sec. 3.5.

ALGORITHMS AND OR COURSEWARE

An important part of this book is the presentation of the major algorithms (systematic
solution procedures) of OR for solving certain types of problems. Some of these algo-
rithms are amazingly efficient and are routinely used on problems involving hundreds or
thousands of variables. You will be introduced to how these algorithms work and what
makes them so efficient. You then will use these algorithms to solve a variety of problems
on a computer. The CD-ROM called OR Courseware that accompanies the book will be
a key tool for doing all this.

One special feature in your OR Courseware is a program called OR Tutor. This pro-
gram is intended to be your personal tutor to help you learn the algorithms. It consists of
many demonstration examples that display and explain the algorithms in action. These
“demos” supplement the examples in the book.

In addition, your OR Courseware includes many interactive routines for executing
the algorithms interactively in a convenient spreadsheet format. The computer does all the
routine calculations while you focus on learning and executing the logic of the algorithm.
You should find these interactive routines a very efficient and enlightening way of doing
many of your homework problems.

In practice, the algorithms normally are executed by commercial software packages.
We feel that it is important to acquaint students with the nature of these packages that
they will be using after graduation. Therefore, your OR Courseware includes a wealth of
material to introduce you to three particularly popular software packages described be-
low. Together, these packages will enable you to solve nearly all the OR models encoun-
tered in this book very efficiently. We have added our own automatic routines to the OR
Courseware only in a few cases where these packages are not applicable.

A very popular approach now is to use today’s premier spreadsheet package, Mi-
crosoft Excel, to formulate small OR models in a spreadsheet format. The Excel Solver
then is used to solve the models. Your OR Courseware includes a separate Excel file for
nearly every chapter in this book. Each time a chapter presents an example that can be
solved using Excel, the complete spreadsheet formulation and solution is given in that
chapter’s Excel file. For many of the models in the book, an Excel template also is pro-
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vided that already includes all the equations necessary to solve the model. Some Excel
add-ins also are included on the CD-ROM.

After many years, LINDO (and its companion modeling language LINGO) contin-
ues to be a dominant OR software package. Student versions of LINDO and LINGO now
can be downloaded free from the Web. As for Excel, each time an example can be solved
with this package, all the details are given in a LINGO/LINDO file for that chapter in
your OR Courseware.

CPLEX is an elite state-of-the-art software package that is widely used for solving
large and challenging OR problems. When dealing with such problems, it is common to
also use a modeling system to efficiently formulate the mathematical model and enter it
into the computer. MPL is a user-friendly modeling system that uses CPLEX as its main
solver. A student version of MPL and CPLEX is available free by downloading it from
the Web. For your convenience, we also have included this student version in your OR
Courseware. Once again, all the examples that can be solved with this package are de-
tailed in MPL/CPLEX files for the corresponding chapters in your OR Courseware.

We will further describe these three software packages and how to use them later (es-
pecially near the end of Chaps. 3 and 4). Appendix 1 also provides documentation for the
OR Courseware, including OR Tutor.

To alert you to relevant material in OR Courseware, the end of each chapter from
Chap. 3 onward has a list entitled Learning Aids for This Chapter in Your OR Course-
ware. As explained at the beginning of the problem section for each of these chapters,
symbols also are placed to the left of each problem number or part where any of this ma-
terial (including demonstration examples and interactive routines) can be helpful.

1.3-1. Select one of the applications of operations research listed  1.3-2. Select three of the applications of operations research listed
in Table 1.1. Read the article describing the application in the in Table 1.1. Read the articles describing the applications in the Jan-
January—February issue of Interfaces for the year indicated in the  uary—February issue of Interfaces for the years indicated in the third
third column. Write a two-page summary of the application and column. For each one, write a one-page summary of the applica-
the benefits (including nonfinancial benefits) it provided. tion and the benefits (including nonfinancial benefits) it provided.
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Overview of the
Operations Research
Modeling Approach

The bulk of this book is devoted to the mathematical methods of operations research (OR).
This is quite appropriate because these quantitative techniques form the main part of what
is known about OR. However, it does not imply that practical OR studies are primarily
mathematical exercises. As a matter of fact, the mathematical analysis often represents only
a relatively small part of the total effort required. The purpose of this chapter is to place
things into better perspective by describing all the major phases of a typical OR study.

One way of summarizing the usual (overlapping) phases of an OR study is the
following:

1. Define the problem of interest and gather relevant data.

2. Formulate a mathematical model to represent the problem.

3. Develop a computer-based procedure for deriving solutions to the problem from the
model.

4. Test the model and refine it as needed.

5. Prepare for the ongoing application of the model as prescribed by management.

6. Implement.

Each of these phases will be discussed in turn in the following sections.

Most of the award-winning OR studies introduced in Table 1.1 provide excellent ex-
amples of how to execute these phases well. We will intersperse snippets from these ex-
amples throughout the chapter, with references to invite your further reading.

DEFINING THE PROBLEM AND GATHERING DATA

In contrast to textbook examples, most practical problems encountered by OR teams are
initially described to them in a vague, imprecise way. Therefore, the first order of busi-
ness is to study the relevant system and develop a well-defined statement of the problem
to be considered. This includes determining such things as the appropriate objectives, con-
straints on what can be done, interrelationships between the area to be studied and other
areas of the organization, possible alternative courses of action, time limits for making a
decision, and so on. This process of problem definition is a crucial one because it greatly
affects how relevant the conclusions of the study will be. It is difficult to extract a “right”
answer from the “wrong” problem!

7
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The first thing to recognize is that an OR team is normally working in an advisory ca-
pacity. The team members are not just given a problem and told to solve it however they
see fit. Instead, they are advising management (often one key decision maker). The team
performs a detailed technical analysis of the problem and then presents recommendations
to management. Frequently, the report to management will identify a number of alterna-
tives that are particularly attractive under different assumptions or over a different range of
values of some policy parameter that can be evaluated only by management (e.g., the trade-
off between cost and benefits). Management evaluates the study and its recommendations,
takes into account a variety of intangible factors, and makes the final decision based on its
best judgment. Consequently, it is vital for the OR team to get on the same wavelength as
management, including identifying the “right” problem from management’s viewpoint, and
to build the support of management for the course that the study is taking.

Ascertaining the appropriate objectives is a very important aspect of problem defini-
tion. To do this, it is necessary first to identify the member (or members) of management
who actually will be making the decisions concerning the system under study and then to
probe into this individual’s thinking regarding the pertinent objectives. (Involving the de-
cision maker from the outset also is essential to build her or his support for the imple-
mentation of the study.)

By its nature, OR is concerned with the welfare of the entire organization rather than
that of only certain of its components. An OR study seeks solutions that are optimal for
the overall organization rather than suboptimal solutions that are best for only one com-
ponent. Therefore, the objectives that are formulated ideally should be those of the entire
organization. However, this is not always convenient. Many problems primarily concern
only a portion of the organization, so the analysis would become unwieldy if the stated ob-
jectives were too general and if explicit consideration were given to all side effects on the
rest of the organization. Instead, the objectives used in the study should be as specific as
they can be while still encompassing the main goals of the decision maker and maintain-
ing a reasonable degree of consistency with the higher-level objectives of the organization.

For profit-making organizations, one possible approach to circumventing the prob-
lem of suboptimization is to use long-run profit maximization (considering the time value
of money) as the sole objective. The adjective long-run indicates that this objective pro-
vides the flexibility to consider activities that do not translate into profits immediately
(e.g., research and development projects) but need to do so eventually in order to be worth-
while. This approach has considerable merit. This objective is specific enough to be used
conveniently, and yet it seems to be broad enough to encompass the basic goal of profit-
making organizations. In fact, some people believe that all other legitimate objectives can
be translated into this one.

However, in actual practice, many profit-making organizations do not use this ap-
proach. A number of studies of U.S. corporations have found that management tends to
adopt the goal of satisfactory profits, combined with other objectives, instead of focusing
on long-run profit maximization. Typically, some of these other objectives might be to
maintain stable profits, increase (or maintain) one’s share of the market, provide for prod-
uct diversification, maintain stable prices, improve worker morale, maintain family con-
trol of the business, and increase company prestige. Fulfilling these objectives might
achieve long-run profit maximization, but the relationship may be sufficiently obscure that
it may not be convenient to incorporate them all into this one objective.
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Furthermore, there are additional considerations involving social responsibilities that
are distinct from the profit motive. The five parties generally affected by a business firm
located in a single country are (1) the owners (stockholders, etc.), who desire profits (div-
idends, stock appreciation, and so on); (2) the employees, who desire steady employment
at reasonable wages; (3) the customers, who desire a reliable product at a reasonable price;
(4) the suppliers, who desire integrity and a reasonable selling price for their goods; and
(5) the government and hence the nation, which desire payment of fair taxes and consid-
eration of the national interest. All five parties make essential contributions to the firm,
and the firm should not be viewed as the exclusive servant of any one party for the ex-
ploitation of others. By the same token, international corporations acquire additional obli-
gations to follow socially responsible practices. Therefore, while granting that manage-
ment’s prime responsibility is to make profits (which ultimately benefits all five parties),
we note that its broader social responsibilities also must be recognized.

OR teams typically spend a surprisingly large amount of time gathering relevant data
about the problem. Much data usually are needed both to gain an accurate understanding
of the problem and to provide the needed input for the mathematical model being formu-
lated in the next phase of study. Frequently, much of the needed data will not be available
when the study begins, either because the information never has been kept or because what
was kept is outdated or in the wrong form. Therefore, it often is necessary to install a new
computer-based management information system to collect the necessary data on an on-
going basis and in the needed form. The OR team normally needs to enlist the assistance
of various other key individuals in the organization to track down all the vital data. Even
with this effort, much of the data may be quite “soft,” i.e., rough estimates based only on
educated guesses. Typically, an OR team will spend considerable time trying to improve
the precision of the data and then will make do with the best that can be obtained.

Examples. An OR study done for the San Francisco Police Department' resulted in
the development of a computerized system for optimally scheduling and deploying police
patrol officers. The new system provided annual savings of $11 million, an annual $3 mil-
lion increase in traffic citation revenues, and a 20 percent improvement in response times.
In assessing the appropriate objectives for this study, three fundamental objectives were
identified:

1. Maintain a high level of citizen safety.
2. Maintain a high level of officer morale.
3. Minimize the cost of operations.

To satisfy the first objective, the police department and city government jointly established
a desired level of protection. The mathematical model then imposed the requirement that
this level of protection be achieved. Similarly, the model imposed the requirement of bal-
ancing the workload equitably among officers in order to work toward the second objec-
tive. Finally, the third objective was incorporated by adopting the long-term goal of min-
imizing the number of officers needed to meet the first two objectives.

'P. E. Taylor and S. J. Huxley, “A Break from Tradition for the San Francisco Police: Patrol Officer Schedul-
ing Using an Optimization-Based Decision Support System,” Interfaces, 19(1): 4-24, Jan.—Feb. 1989. See es-
pecially pp. 4-11.
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The Health Department of New Haven, Connecticut used an OR team' to de-
sign an effective needle exchange program to combat the spread of the virus that causes
AIDS (HIV), and succeeded in reducing the HIV infection rate among program clients
by 33 percent. The key part of this study was an innovative data collection program
to obtain the needed input for mathematical models of HIV transmission. This program
involved complete tracking of each needle (and syringe), including the identity, loca-
tion, and date for each person receiving the needle and each person returning the
needle during an exchange, as well as testing whether the returned needle was HIV-
positive or HIV-negative.

An OR study done for the Citgo Petroleum Corporation® optimized both refinery
operations and the supply, distribution, and marketing of its products, thereby achieving
a profit improvement of approximately $70 million per year. Data collection also played
a key role in this study. The OR team held data requirement meetings with top Citgo man-
agement to ensure the eventual and continual quality of data. A state-of-the-art manage-
ment database system was developed and installed on a mainframe computer. In cases
where needed data did not exist, LOTUS 1-2-3 screens were created to help operations
personnel input the data, and then the data from the personal computers (PCs) were up-
loaded to the mainframe computer. Before data was inputted to the mathematical model,
a preloader program was used to check for data errors and inconsistencies. Initially, the
preloader generated a paper log of error messages 1 inch thick! Eventually, the number
of error and warning messages (indicating bad or questionable numbers) was reduced to
less than 10 for each new run.

We will describe the overall Citgo study in much more detail in Sec. 3.5.

2.2

FORMULATING A MATHEMATICAL MODEL

After the decision maker’s problem is defined, the next phase is to reformulate this prob-
lem in a form that is convenient for analysis. The conventional OR approach for doing
this is to construct a mathematical model that represents the essence of the problem. Be-
fore discussing how to formulate such a model, we first explore the nature of models in
general and of mathematical models in particular.

Models, or idealized representations, are an integral part of everyday life. Common
examples include model airplanes, portraits, globes, and so on. Similarly, models play an
important role in science and business, as illustrated by models of the atom, models of
genetic structure, mathematical equations describing physical laws of motion or chemical
reactions, graphs, organizational charts, and industrial accounting systems. Such models
are invaluable for abstracting the essence of the subject of inquiry, showing interrelation-
ships, and facilitating analysis.

'E. H. Kaplan and E. O’Keefe, “Let the Needles Do the Talking! Evaluating the New Haven Needle Exchange.”
Interfaces, 23(1): 7-26, Jan.—Feb. 1993. See especially pp. 12-14.

p. Klingman, N. Phillips, D. Steiger, R. Wirth, and W. Young, “The Challenges and Success Factors in Im-
plementing an Integrated Products Planning System for Citgo,” Interfaces, 16(3): 1-19, May—June 1986. See
especially pp. 11-14. Also see D. Klingman, N. Phillips, D. Steiger, and W. Young, “The Successful Deploy-
ment of Management Science throughout Citgo Petroleum Corporation,” Interfaces, 17(1): 4-25, Jan.—Feb. 1987.
See especially pp. 13—15. This application will be described further in Sec. 3.5.
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Mathematical models are also idealized representations, but they are expressed in
terms of mathematical symbols and expressions. Such laws of physics as F = ma and
E = mc* are familiar examples. Similarly, the mathematical model of a business problem
is the system of equations and related mathematical expressions that describe the essence
of the problem. Thus, if there are n related quantifiable decisions to be made, they are
represented as decision variables (say, x;, x5, . . ., x,) whose respective values are to be
determined. The appropriate measure of performance (e.g., profit) is then expressed as a
mathematical function of these decision variables (for example, P = 3x; + 2x, + -+ + 5x,,).
This function is called the objective function. Any restrictions on the values that can be
assigned to these decision variables are also expressed mathematically, typically by means
of inequalities or equations (for example, x; + 3x;x, + 2x, = 10). Such mathematical ex-
pressions for the restrictions often are called constraints. The constants (namely, the co-
efficients and right-hand sides) in the constraints and the objective function are called the
parameters of the model. The mathematical model might then say that the problem is to
choose the values of the decision variables so as to maximize the objective function, sub-
ject to the specified constraints. Such a model, and minor variations of it, typifies the mod-
els used in OR.

Determining the appropriate values to assign to the parameters of the model (one
value per parameter) is both a critical and a challenging part of the model-building process.
In contrast to textbook problems where the numbers are given to you, determining param-
eter values for real problems requires gathering relevant data. As discussed in the pre-
ceding section, gathering accurate data frequently is difficult. Therefore, the value assigned
to a parameter often is, of necessity, only a rough estimate. Because of the uncertainty
about the true value of the parameter, it is important to analyze how the solution derived
from the model would change (if at all) if the value assigned to the parameter were changed
to other plausible values. This process is referred to as sensitivity analysis, as discussed
further in the next section (and much of Chap. 6).

Although we refer to “the” mathematical model of a business problem, real problems
normally don’t have just a single “right” model. Section 2.4 will describe how the process
of testing a model typically leads to a succession of models that provide better and bet-
ter representations of the problem. It is even possible that two or more completely dif-
ferent types of models may be developed to help analyze the same problem.

You will see numerous examples of mathematical models throughout the remainder
of this book. One particularly important type that is studied in the next several chapters
is the linear programming model, where the mathematical functions appearing in both
the objective function and the constraints are all linear functions. In the next chapter, spe-
cific linear programming models are constructed to fit such diverse problems as deter-
mining (1) the mix of products that maximizes profit, (2) the design of radiation therapy
that effectively attacks a tumor while minimizing the damage to nearby healthy tissue,
(3) the allocation of acreage to crops that maximizes total net return, and (4) the combi-
nation of pollution abatement methods that achieves air quality standards at minimum cost.

Mathematical models have many advantages over a verbal description of the problem.
One advantage is that a mathematical model describes a problem much more concisely. This
tends to make the overall structure of the problem more comprehensible, and it helps to re-
veal important cause-and-effect relationships. In this way, it indicates more clearly what ad-
ditional data are relevant to the analysis. It also facilitates dealing with the problem in its
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entirety and considering all its interrelationships simultaneously. Finally, a mathematical
model forms a bridge to the use of high-powered mathematical techniques and computers
to analyze the problem. Indeed, packaged software for both personal computers and main-
frame computers has become widely available for solving many mathematical models.

However, there are pitfalls to be avoided when you use mathematical models. Such a
model is necessarily an abstract idealization of the problem, so approximations and sim-
plifying assumptions generally are required if the model is to be tractable (capable of be-
ing solved). Therefore, care must be taken to ensure that the model remains a valid repre-
sentation of the problem. The proper criterion for judging the validity of a model is whether
the model predicts the relative effects of the alternative courses of action with sufficient
accuracy to permit a sound decision. Consequently, it is not necessary to include unim-
portant details or factors that have approximately the same effect for all the alternative
courses of action considered. It is not even necessary that the absolute magnitude of the
measure of performance be approximately correct for the various alternatives, provided that
their relative values (i.e., the differences between their values) are sufficiently precise. Thus,
all that is required is that there be a high correlation between the prediction by the model
and what would actually happen in the real world. To ascertain whether this requirement
is satisfied, it is important to do considerable festing and consequent modifying of the
model, which will be the subject of Sec. 2.4. Although this testing phase is placed later in
the chapter, much of this model validation work actually is conducted during the model-
building phase of the study to help guide the construction of the mathematical model.

In developing the model, a good approach is to begin with a very simple version and
then move in evolutionary fashion toward more elaborate models that more nearly reflect
the complexity of the real problem. This process of model enrichment continues only as
long as the model remains tractable. The basic trade-off under constant consideration is
between the precision and the tractability of the model. (See Selected Reference 6 for a
detailed description of this process.)

A crucial step in formulating an OR model is the construction of the objective function.
This requires developing a quantitative measure of performance relative to each of the deci-
sion maker’s ultimate objectives that were identified while the problem was being defined.
If there are multiple objectives, their respective measures commonly are then transformed
and combined into a composite measure, called the overall measure of performance. This
overall measure might be something tangible (e.g., profit) corresponding to a higher goal of
the organization, or it might be abstract (e.g., utility). In the latter case, the task of develop-
ing this measure tends to be a complex one requiring a careful comparison of the objectives
and their relative importance. After the overall measure of performance is developed, the ob-
jective function is then obtained by expressing this measure as a mathematical function of
the decision variables. Alternatively, there also are methods for explicitly considering multi-
ple objectives simultaneously, and one of these (goal programming) is discussed in Chap. 7.

Examples. An OR study done for Monsanto Corp.' was concerned with optimizing pro-
duction operations in Monsanto’s chemical plants to minimize the cost of meeting the target
for the amount of a certain chemical product (maleic anhydride) to be produced in a given

'R. F. Boykin, “Optimizing Chemical Production at Monsanto,” Interfaces, 15(1): 88-95, Jan—Feb. 1985. See
especially pp. 92-93.
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month. The decisions to be made are the dial setting for each of the catalytic reactors used
to produce this product, where the setting determines both the amount produced and the cost
of operating the reactor. The form of the resulting mathematical model is as follows:

Choose the values of the decision variables R;;
(=12 ....rj=12,...,9
SO as to

r s
Minimize Z Z ciiR;j,

i=1j=1

subject to
r S
PRy =T
i=1j=1
S
R; =1, fori=1,2,...,r
j=1
R;=0or I,
where R.. = 1 if reactor i is operated at setting j
Y 0 otherwise

¢;; = cost for reactor i at setting j
p;; = production of reactor i at setting j
T = production target
r = number of reactors
s = number of settings (including off position)

The objective function for this model is 2 X c¢;R;;. The constraints are given in the three
lines below the objective function. The parameters are c;;, p;, and T. For Monsanto’s ap-
plication, this model has over 1,000 decision variables R; (that is, rs > 1,000). Its use led
to annual savings of approximately $2 million.

The Netherlands government agency responsible for water control and public works,
the Rijkswaterstaat, commissioned a major OR study' to guide the development of a
new national water management policy. The new policy saved hundreds of millions of
dollars in investment expenditures and reduced agricultural damage by about $15 million
per year, while decreasing thermal and algae pollution. Rather than formulating one math-
ematical model, this OR study developed a comprehensive, integrated system of 50 mod-
els! Furthermore, for some of the models, both simple and complex versions were devel-
oped. The simple version was used to gain basic insights, including trade-off analyses.
The complex version then was used in the final rounds of the analysis or whenever greater
accuracy or more detailed outputs were desired. The overall OR study directly involved
over 125 person-years of effort (more than one-third in data gathering), created several
dozen computer programs, and structured an enormous amount of data.

'B. F. Goeller and the PAWN team: “Planning the Netherlands’ Water Resources,” Interfaces, 15(1): 3-33,
Jan.—Feb. 1985. See especially pp. 7-18.
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DERIVING SOLUTIONS FROM THE MODEL

After a mathematical model is formulated for the problem under consideration, the next
phase in an OR study is to develop a procedure (usually a computer-based procedure) for
deriving solutions to the problem from this model. You might think that this must be the
major part of the study, but actually it is not in most cases. Sometimes, in fact, it is a rel-
atively simple step, in which one of the standard algorithms (systematic solution proce-
dures) of OR is applied on a computer by using one of a number of readily available soft-
ware packages. For experienced OR practitioners, finding a solution is the fun part, whereas
the real work comes in the preceding and following steps, including the postoptimality
analysis discussed later in this section.

Since much of this book is devoted to the subject of how to obtain solutions for var-
ious important types of mathematical models, little needs to be said about it here. How-
ever, we do need to discuss the nature of such solutions.

A common theme in OR is the search for an optimal, or best, solution. Indeed, many
procedures have been developed, and are presented in this book, for finding such solu-
tions for certain kinds of problems. However, it needs to be recognized that these solu-
tions are optimal only with respect to the model being used. Since the model necessarily
is an idealized rather than an exact representation of the real problem, there cannot be any
utopian guarantee that the optimal solution for the model will prove to be the best possi-
ble solution that could have been implemented for the real problem. There just are too
many imponderables and uncertainties associated with real problems. However, if the
model is well formulated and tested, the resulting solution should tend to be a good ap-
proximation to an ideal course of action for the real problem. Therefore, rather than be
deluded into demanding the impossible, you should make the test of the practical success
of an OR study hinge on whether it provides a better guide for action than can be ob-
tained by other means.

Eminent management scientist and Nobel Laureate in economics Herbert Simon points
out that satisficing is much more prevalent than optimizing in actual practice. In coining
the term satisficing as a combination of the words satisfactory and optimizing, Simon is
describing the tendency of managers to seek a solution that is “good enough” for the prob-
lem at hand. Rather than trying to develop an overall measure of performance to opti-
mally reconcile conflicts between various desirable objectives (including well-established
criteria for judging the performance of different segments of the organization), a more
pragmatic approach may be used. Goals may be set to establish minimum satisfactory lev-
els of performance in various areas, based perhaps on past levels of performance or on
what the competition is achieving. If a solution is found that enables all these goals to be
met, it is likely to be adopted without further ado. Such is the nature of satisficing.

The distinction between optimizing and satisficing reflects the difference between the-
ory and the realities frequently faced in trying to implement that theory in practice. In the
words of one of England’s OR leaders, Samuel Eilon, “Optimizing is the science of the
ultimate; satisficing is the art of the feasible.’!

OR teams attempt to bring as much of the “science of the ultimate” as possible to the
decision-making process. However, the successful team does so in full recognition of the

IS. Eilon, “Goals and Constraints in Decision-making,” Operational Research Quarterly, 23: 3—15, 1972—ad-
dress given at the 1971 annual conference of the Canadian Operational Research Society.
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overriding need of the decision maker to obtain a satisfactory guide for action in a rea-
sonable period of time. Therefore, the goal of an OR study should be to conduct the study
in an optimal manner, regardless of whether this involves finding an optimal solution for
the model. Thus, in addition to pursuing the science of the ultimate, the team should also
consider the cost of the study and the disadvantages of delaying its completion, and then
attempt to maximize the net benefits resulting from the study. In recognition of this con-
cept, OR teams occasionally use only heuristic procedures (i.e., intuitively designed pro-
cedures that do not guarantee an optimal solution) to find a good suboptimal solution.
This is most often the case when the time or cost required to find an optimal solution for
an adequate model of the problem would be very large. In recent years, great progress has
been made in developing efficient and effective heuristic procedures (including so-called
metaheuristics), so their use is continuing to grow.

The discussion thus far has implied that an OR study seeks to find only one solution,
which may or may not be required to be optimal. In fact, this usually is not the case. An
optimal solution for the original model may be far from ideal for the real problem, so ad-
ditional analysis is needed. Therefore, postoptimality analysis (analysis done after find-
ing an optimal solution) is a very important part of most OR studies. This analysis also
is sometimes referred to as what-if analysis because it involves addressing some ques-
tions about what would happen to the optimal solution if different assumptions are made
about future conditions. These questions often are raised by the managers who will be
making the ultimate decisions rather than by the OR team.

The advent of powerful spreadsheet software now has frequently given spreadsheets
a central role in conducting postoptimality analysis. One of the great strengths of a
spreadsheet is the ease with which it can be used interactively by anyone, including
managers, to see what happens to the optimal solution when changes are made to the
model. This process of experimenting with changes in the model also can be very help-
ful in providing understanding of the behavior of the model and increasing confidence
in its validity.

In part, postoptimality analysis involves conducting sensitivity analysis to determine
which parameters of the model are most critical (the “sensitive parameters”) in deter-
mining the solution. A common definition of sensitive parameter (used throughout this
book) is the following.

For a mathematical model with specified values for all its parameters, the model’s sensi-
tive parameters are the parameters whose value cannot be changed without changing the
optimal solution.

Identifying the sensitive parameters is important, because this identifies the parameters
whose value must be assigned with special care to avoid distorting the output of the model.

The value assigned to a parameter commonly is just an estimate of some quantity
(e.g., unit profit) whose exact value will become known only after the solution has been
implemented. Therefore, after the sensitive parameters are identified, special attention is
given to estimating each one more closely, or at least its range of likely values. One then
seeks a solution that remains a particularly good one for all the various combinations of
likely values of the sensitive parameters.

If the solution is implemented on an ongoing basis, any later change in the value of
a sensitive parameter immediately signals a need to change the solution.
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In some cases, certain parameters of the model represent policy decisions (e.g., re-
source allocations). If so, there frequently is some flexibility in the values assigned to
these parameters. Perhaps some can be increased by decreasing others. Postoptimality
analysis includes the investigation of such trade-offs.

In conjunction with the study phase discussed in the next section (testing the model),
postoptimality analysis also involves obtaining a sequence of solutions that comprises a
series of improving approximations to the ideal course of action. Thus, the apparent weak-
nesses in the initial solution are used to suggest improvements in the model, its input data,
and perhaps the solution procedure. A new solution is then obtained, and the cycle is re-
peated. This process continues until the improvements in the succeeding solutions become
too small to warrant continuation. Even then, a number of alternative solutions (perhaps
solutions that are optimal for one of several plausible versions of the model and its input
data) may be presented to management for the final selection. As suggested in Sec. 2.1,
this presentation of alternative solutions would normally be done whenever the final choice
among these alternatives should be based on considerations that are best left to the judg-
ment of management.

Example. Consider again the Rijkswaterstaat OR study of national water management
policy for the Netherlands, introduced at the end of the preceding section. This study did
not conclude by recommending just a single solution. Instead, a number of attractive al-
ternatives were identified, analyzed, and compared. The final choice was left to the Dutch
political process, culminating with approval by Parliament. Sensitivity analysis played a
major role in this study. For example, certain parameters of the models represented envi-
ronmental standards. Sensitivity analysis included assessing the impact on water man-
agement problems if the values of these parameters were changed from the current envi-
ronmental standards to other reasonable values. Sensitivity analysis also was used to assess
the impact of changing the assumptions of the models, e.g., the assumption on the effect
of future international treaties on the amount of pollution entering the Netherlands. A va-
riety of scenarios (e.g., an extremely dry year and an extremely wet year) also were an-
alyzed, with appropriate probabilities assigned.

24

TESTING THE MODEL

Developing a large mathematical model is analogous in some ways to developing a large
computer program. When the first version of the computer program is completed, it in-
evitably contains many bugs. The program must be thoroughly tested to try to find and
correct as many bugs as possible. Eventually, after a long succession of improved pro-
grams, the programmer (or programming team) concludes that the current program now
is generally giving reasonably valid results. Although some minor bugs undoubtedly re-
main hidden in the program (and may never be detected), the major bugs have been suf-
ficiently eliminated that the program now can be reliably used.

Similarly, the first version of a large mathematical model inevitably contains many
flaws. Some relevant factors or interrelationships undoubtedly have not been incorporated
into the model, and some parameters undoubtedly have not been estimated correctly. This
is inevitable, given the difficulty of communicating and understanding all the aspects and
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subtleties of a complex operational problem as well as the difficulty of collecting reliable
data. Therefore, before you use the model, it must be thoroughly tested to try to identify
and correct as many flaws as possible. Eventually, after a long succession of improved
models, the OR team concludes that the current model now is giving reasonably valid re-
sults. Although some minor flaws undoubtedly remain hidden in the model (and may never
be detected), the major flaws have been sufficiently eliminated that the model now can
be reliably used.

This process of testing and improving a model to increase its validity is commonly
referred to as model validation.

It is difficult to describe how model validation is done, because the process depends
greatly on the nature of the problem being considered and the model being used. How-
ever, we make a few general comments, and then we give some examples. (See Selected
Reference 2 for a detailed discussion.)

Since the OR team may spend months developing all the detailed pieces of the model,
it is easy to “lose the forest for the trees.” Therefore, after the details (“the trees”) of the
initial version of the model are completed, a good way to begin model validation is to
take a fresh look at the overall model (“the forest”) to check for obvious errors or over-
sights. The group doing this review preferably should include at least one individual who
did not participate in the formulation of the model. Reexamining the definition of the
problem and comparing it with the model may help to reveal mistakes. It is also useful
to make sure that all the mathematical expressions are dimensionally consistent in the
units used. Additional insight into the validity of the model can sometimes be obtained
by varying the values of the parameters and/or the decision variables and checking to see
whether the output from the model behaves in a plausible manner. This is often especially
revealing when the parameters or variables are assigned extreme values near their max-
ima or minima.

A more systematic approach to testing the model is to use a retrospective test. When
it is applicable, this test involves using historical data to reconstruct the past and then de-
termining how well the model and the resulting solution would have performed if they
had been used. Comparing the effectiveness of this hypothetical performance with what
actually happened then indicates whether using this model tends to yield a significant im-
provement over current practice. It may also indicate areas where the model has short-
comings and requires modifications. Furthermore, by using alternative solutions from the
model and estimating their hypothetical historical performances, considerable evidence
can be gathered regarding how well the model predicts the relative effects of alternative
courses of actions.

On the other hand, a disadvantage of retrospective testing is that it uses the same data
that guided the formulation of the model. The crucial question is whether the past is truly
representative of the future. If it is not, then the model might perform quite differently in
the future than it would have in the past.

To circumvent this disadvantage of retrospective testing, it is sometimes useful to con-
tinue the status quo temporarily. This provides new data that were not available when the
model was constructed. These data are then used in the same ways as those described here
to evaluate the model.

Documenting the process used for model validation is important. This helps to in-
crease confidence in the model for subsequent users. Furthermore, if concerns arise in the
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future about the model, this documentation will be helpful in diagnosing where problems
may lie.

Examples. Consider once again the Rijkswaterstaat OR study of national water man-
agement policy for the Netherlands, discussed at the end of Secs. 2.2 and 2.3. The process
of model validation in this case had three main parts. First, the OR team checked the gen-
eral behavior of the models by checking whether the results from each model moved in
reasonable ways when changes were made in the values of the model parameters. Sec-
ond, retrospective testing was done. Third, a careful technical review of the models,
methodology, and results was conducted by individuals unaffiliated with the project, in-
cluding Dutch experts. This process led to a number of important new insights and im-
provements in the models.

Many new insights also were gleaned during the model validation phase of the OR
study for the Citgo Petroleum Corp., discussed at the end of Sec. 2.1. In this case, the
model of refinery operations was tested by collecting the actual inputs and outputs of the
refinery for a series of months, using these inputs to fix the model inputs, and then com-
paring the model outputs with the actual refinery outputs. The process of properly cali-
brating and recalibrating the model was a lengthy one, but ultimately led to routine use
of the model to provide critical decision information. As already mentioned in Sec. 2.1,
the validation and correction of input data for the models also played an important role
in this study.

Our next example concerns an OR study done for IBM' to integrate its national net-
work of spare-parts inventories to improve service support for IBM’s customers. This study
resulted in a new inventory system that improved customer service while reducing the
value of IBM’s inventories by over $250 million and saving an additional $20 million per
year through improved operational efficiency. A particularly interesting aspect of the model
validation phase of this study was the way that future users of the inventory system were
incorporated into the testing process. Because these future users (IBM managers in func-
tional areas responsible for implementation of the inventory system) were skeptical about
the system being developed, representatives were appointed to a user team to serve as ad-
visers to the OR team. After a preliminary version of the new system had been developed
(based on a multiechelon inventory model), a preimplementation test of the system was
conducted. Extensive feedback from the user team led to major improvements in the pro-
posed system.

2.5

PREPARING TO APPLY THE MODEL

What happens after the testing phase has been completed and an acceptable model has
been developed? If the model is to be used repeatedly, the next step is to install a well-
documented system for applying the model as prescribed by management. This system
will include the model, solution procedure (including postoptimality analysis), and oper-

'M. Cohen, P. V. Kamesam, P. Kleindorfer, H. Lee, and A. Tekerian, “Optimizer: IBM’s Multi-Echelon Inven-
tory System for Managing Service Logistics,” Interfaces, 20(1): 65-82, Jan.—Feb. 1990. See especially pp. 73-76.
This application will be described further in Sec. 19.8.
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ating procedures for implementation. Then, even as personnel changes, the system can be
called on at regular intervals to provide a specific numerical solution.

This system usually is computer-based. In fact, a considerable number of computer
programs often need to be used and integrated. Databases and management information
systems may provide up-to-date input for the model each time it is used, in which case
interface programs are needed. After a solution procedure (another program) is applied to
the model, additional computer programs may trigger the implementation of the results
automatically. In other cases, an interactive computer-based system called a decision sup-
port system is installed to help managers use data and models to support (rather than re-
place) their decision making as needed. Another program may generate managerial re-
ports (in the language of management) that interpret the output of the model and its
implications for application.

In major OR studies, several months (or longer) may be required to develop, test, and
install this computer system. Part of this effort involves developing and implementing a
process for maintaining the system throughout its future use. As conditions change over
time, this process should modify the computer system (including the model) accordingly.

Examples. The IBM OR study introduced at the end of Sec. 2.4 provides a good ex-
ample of a particularly large computer system for applying a model. The system devel-
oped, called Optimizer, provides optimal control of service levels and spare-parts inven-
tories throughout IBM’s U.S. parts distribution network, which includes two central
automated warehouses, dozens of field distribution centers and parts stations, and many
thousands of outside locations. The parts inventory maintained in this network is valued
in the billions of dollars. Optimizer consists of four major modules. A forecasting system
module contains a few programs for estimating the failure rates of individual types of
parts. A data delivery system module consists of approximately 100 programs that process
over 15 gigabytes of data to provide the input for the model. A decision system module
then solves the model on a weekly basis to optimize control of the inventories. The fourth
module includes six programs that integrate Optimizer into IBM’s Parts Inventory Man-
agement System (PIMS). PIMS is a sophisticated information and control system that con-
tains millions of lines of code.

Our next example also involves a large computer system for applying a model to con-
trol operations over a national network. This system, called SYSNET, was developed as
the result of an OR study done for Yellow Freight System, Inc.' Yellow Freight annu-
ally handles over 15 million shipments by motor carrier over a network of 630 terminals
throughout the United States. SYSNET is used to optimize both the routing of shipments
and the design of the network. Because SYSNET requires extensive information about
freight flows and forecasts, transportation and handling costs, and so on, a major part of
the OR study involved integrating SYSNET into the corporate management information
system. This integration enabled periodic updating of all the input for the model. The im-
plementation of SYSNET resulted in annual savings of approximately $17.3 million as
well as improved service to customers.

3. W. Braklow, W. W. Graham, S. M. Hassler, K. E. Peck, and W. B. Powell, “Interactive Optimization Im-
proves Service and Performance for Yellow Freight System,” Interfaces, 22(1): 147-172, Jan.—Feb. 1992. See
especially p. 163.
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Our next example illustrates a decision support system. A system of this type was de-
veloped for Texaco' to help plan and schedule its blending operations at its various re-
fineries. Called OMEGA (Optimization Method for the Estimation of Gasoline Attributes),
it is an interactive system based on a nonlinear optimization model that is implemented
on both personal computers and larger computers. Input data can be entered either man-
ually or by interfacing with refinery databases. The user has considerable flexibility in
choosing an objective function and constraints to fit the current situation as well as in ask-
ing a series of what-if questions (i.e., questions about what would happen if the assumed
conditions change). OMEGA is maintained centrally by Texaco’s information technology
department, which enables constant updating to reflect new government regulations, other
business changes, and changes in refinery operations. The implementation of OMEGA is
credited with annual savings of more than $30 million as well as improved planning, qual-
ity control, and marketing information.

2.6

IMPLEMENTATION

After a system is developed for applying the model, the last phase of an OR study is to
implement this system as prescribed by management. This phase is a critical one because
it is here, and only here, that the benefits of the study are reaped. Therefore, it is impor-
tant for the OR team to participate in launching this phase, both to make sure that model
solutions are accurately translated to an operating procedure and to rectify any flaws in
the solutions that are then uncovered.

The success of the implementation phase depends a great deal upon the support of
both top management and operating management. The OR team is much more likely to
gain this support if it has kept management well informed and encouraged management’s
active guidance throughout the course of the study. Good communications help to ensure
that the study accomplishes what management wanted and so deserves implementation.
They also give management a greater sense of ownership of the study, which encourages
their support for implementation.

The implementation phase involves several steps. First, the OR team gives operating
management a careful explanation of the new system to be adopted and how it relates to
operating realities. Next, these two parties share the responsibility for developing the pro-
cedures required to put this system into operation. Operating management then sees that
a detailed indoctrination is given to the personnel involved, and the new course of action
is initiated. If successful, the new system may be used for years to come. With this in
mind, the OR team monitors the initial experience with the course of action taken and
seeks to identify any modifications that should be made in the future.

Throughout the entire period during which the new system is being used, it is im-
portant to continue to obtain feedback on how well the system is working and whether
the assumptions of the model continue to be satisfied. When significant deviations from
the original assumptions occur, the model should be revisited to determine if any modi-
fications should be made in the system. The postoptimality analysis done earlier (as de-
scribed in Sec. 2.3) can be helpful in guiding this review process.

Ic.w. DeWitt, L. S. Lasdon, A. D. Waren, D. A. Brenner, and S. A. Melhem, “OMEGA: An Improved Gaso-
line Blending System for Texaco,” Interfaces, 19(1): 85-101, Jan.—Feb. 1989. See especially pp. 93-95.
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Upon culmination of a study, it is appropriate for the OR team to document its method-
ology clearly and accurately enough so that the work is reproducible. Replicability should
be part of the professional ethical code of the operations researcher. This condition is es-
pecially crucial when controversial public policy issues are being studied.

Examples. This last point about documenting an OR study is illustrated by the Rijks-
waterstaat study of national water management policy for the Netherlands discussed at
the end of Secs. 2.2, 2.3, and 2.4. Management wanted unusually thorough and extensive
documentation, both to support the new policy and to use in training new analysts or in
performing new studies. Requiring several years to complete, this documentation aggre-
gated 4000 single-spaced pages and 21 volumes!

Our next example concerns the IBM OR study discussed at the end of Secs. 2.4 and
2.5. Careful planning was required to implement the complex Optimizer system for con-
trolling IBM’s national network of spare-parts inventories. Three factors proved to be es-
pecially important in achieving a successful implementation. As discussed in Sec. 2.4, the
first was the inclusion of a user team (consisting of operational managers) as advisers to
the OR team throughout the study. By the time of the implementation phase, these oper-
ational managers had a strong sense of ownership and so had become ardent supporters
for installing Optimizer in their functional areas. A second success factor was a very ex-
tensive user acceptance test whereby users could identify problem areas that needed rec-
tifying prior to full implementation. The third key was that the new system was phased
in gradually, with careful testing at each phase, so the major bugs could be eliminated be-
fore the system went live nationally.

Our final example concerns Yellow Freight’s SYSNET system for routing shipments
over a national network, as described at the end of the preceding section. In this case, there
were four key elements to the implementation process. The first was selling the concept to
upper management. This was successfully done through validating the accuracy of the cost
model and then holding interactive sessions for upper management that demonstrated the
effectiveness of the system. The second element was the development of an implementation
strategy for gradually phasing in the new system while identifying and eliminating its flaws.
The third involved working closely with operational managers to install the system prop-
erly, provide the needed support tools, train the personnel who will use the system, and con-
vince them of the usefulness of the system. The final key element was the provision of man-
agement incentives and enforcement for the effective implementation of the system.

2.7

CONCLUSIONS

Although the remainder of this book focuses primarily on constructing and solving math-
ematical models, in this chapter we have tried to emphasize that this constitutes only a
portion of the overall process involved in conducting a typical OR study. The other phases
described here also are very important to the success of the study. Try to keep in per-
spective the role of the model and the solution procedure in the overall process as you
move through the subsequent chapters. Then, after gaining a deeper understanding of math-
ematical models, we suggest that you plan to return to review this chapter again in order
to further sharpen this perspective.
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OR is closely intertwined with the use of computers. In the early years, these gener-

ally were mainframe computers, but now personal computers and workstations are being
widely used to solve OR models.

In concluding this discussion of the major phases of an OR study, it should be em-

phasized that there are many exceptions to the “rules” prescribed in this chapter. By its
very nature, OR requires considerable ingenuity and innovation, so it is impossible to write
down any standard procedure that should always be followed by OR teams. Rather, the
preceding description may be viewed as a model that roughly represents how successful
OR studies are conducted.
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2.1-1. Read the article footnoted in Sec. 2.1 that describes an OR
study done for the San Francisco Police Department.

(a) Summarize the background that led to undertaking this study.
(b) Define part of the problem being addressed by identifying the
six directives for the scheduling system to be developed.

(¢) Describe how the needed data were gathered.
(d) List the various tangible and intangible benefits that resulted
from the study.

2.1-2. Read the article footnoted in Sec. 2.1 that describes an OR

study done for the Health Department of New Haven, Connecticut.

(a) Summarize the background that led to undertaking this
study.

(b) Outline the system developed to track and test each needle and
syringe in order to gather the needed data.

(¢) Summarize the initial results from this tracking and testing
system.

(d) Describe the impact and potential impact of this study on pub-
lic policy.

2.2-1. Read the article footnoted in Sec. 2.2 that describes an OR

study done for the Rijkswaterstaat of the Netherlands. (Focus es-

pecially on pp. 3-20 and 30-32.)

(a) Summarize the background that led to undertaking this study.

(b) Summarize the purpose of each of the five mathematical mod-
els described on pp. 10-18.
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(¢) Summarize the “impact measures” (measures of performance)
for comparing policies that are described on pp. 67 of this
article.

(d) List the various tangible and intangible benefits that resulted
from the study.

2.2-2. Read Selected Reference 4.

(a) Identify the author’s example of a model in the natural sci-
ences and of a model in OR.

(b) Describe the author’s viewpoint about how basic precepts of
using models to do research in the natural sciences can also be
used to guide research on operations (OR).

2.3-1. Refer to Selected Reference 4.

(a) Describe the author’s viewpoint about whether the sole goal in
using a model should be to find its optimal solution.

(b) Summarize the author’s viewpoint about the complementary
roles of modeling, evaluating information from the model, and
then applying the decision maker’s judgment when deciding
on a course of action.

2.4-1. Refer to pp. 18-20 of the article footnoted in Sec. 2.2 that
describes an OR study done for the Rijkswaterstaat of the Nether-
lands. Describe an important lesson that was gained from model
validation in this study.

2.4-2. Read Selected Reference 5. Summarize the author’s view-
point about the roles of observation and experimentation in the
model validation process.

2.4-3. Read pp. 603-617 of Selected Reference 2.

(a) What does the author say about whether a model can be com-
pletely validated?

(b) Summarize the distinctions made between model validity, data
validity, logical/mathematical validity, predictive validity, op-
erational validity, and dynamic validity.

(c) Describe the role of sensitivity analysis in testing the opera-
tional validity of a model.

(d) What does the author say about whether there is a validation
methodology that is appropriate for all models?

(e) Cite the page in the article that lists basic validation steps.

2.5-1. Read the article footnoted in Sec. 2.5 that describes an OR

study done for Texaco.

(a) Summarize the background that led to undertaking this study.

(b) Briefly describe the user interface with the decision support
system OMEGA that was developed as a result of this study.

(c) OMEGA is constantly being updated and extended to reflect
changes in the operating environment. Briefly describe the var-
ious kinds of changes involved.

(d) Summarize how OMEGA is used.

(e) List the various tangible and intangible benefits that resulted
from the study.

2.5-2. Refer to the article footnoted in Sec. 2.5 that describes an

OR study done for Yellow Freight System, Inc.

(a) Referring to pp. 147-149 of this article, summarize the back-
ground that led to undertaking this study.

(b) Referring to p. 150, briefly describe the computer system
SYSNET that was developed as a result of this study. Also
summarize the applications of SYSNET.

(¢) Referring to pp. 162—163, describe why the interactive aspects
of SYSNET proved important.

(d) Referring to p. 163, summarize the outputs from SYSNET.

(e) Referring to pp. 168—-172, summarize the various benefits that
have resulted from using SYSNET.

2.6-1. Refer to pp. 163—-167 of the article footnoted in Sec. 2.5

that describes an OR study done for Yellow Freight System, Inc.,

and the resulting computer system SYSNET.

(a) Briefly describe how the OR team gained the support of up-
per management for implementing SYSNET.

(b) Briefly describe the implementation strategy that was developed.

(¢) Briefly describe the field implementation.

(d) Briefly describe how management incentives and enforcement
were used in implementing SYSNET.

2.6-2. Read the article footnoted in Sec. 2.4 that describes an OR

study done for IBM and the resulting computer system Optimizer.

(a) Summarize the background that led to undertaking this study.

(b) List the complicating factors that the OR team members faced
when they started developing a model and a solution algorithm.

(¢) Briefly describe the preimplementation test of Optimizer.

(d) Briefly describe the field implementation test.

(e) Briefly describe national implementation.

(f) List the various tangible and intangible benefits that resulted
from the study.

2.7-1. Read Selected Reference 3. The author describes 13 detailed
phases of any OR study that develops and applies a computer-based
model, whereas this chapter describes six broader phases. For each
of these broader phases, list the detailed phases that fall partially
or primarily within the broader phase.
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Introduction to Linear
Programming

The development of linear programming has been ranked among the most important sci-
entific advances of the mid-20th century, and we must agree with this assessment. Its im-
pact since just 1950 has been extraordinary. Today it is a standard tool that has saved many
thousands or millions of dollars for most companies or businesses of even moderate size
in the various industrialized countries of the world; and its use in other sectors of society
has been spreading rapidly. A major proportion of all scientific computation on comput-
ers is devoted to the use of linear programming. Dozens of textbooks have been written
about linear programming, and published articles describing important applications now
number in the hundreds.

What is the nature of this remarkable tool, and what kinds of problems does it ad-
dress? You will gain insight into this topic as you work through subsequent examples. How-
ever, a verbal summary may help provide perspective. Briefly, the most common type of
application involves the general problem of allocating limited resources among competing
activities in a best possible (i.e., optimal) way. More precisely, this problem involves se-
lecting the level of certain activities that compete for scarce resources that are necessary
to perform those activities. The choice of activity levels then dictates how much of each
resource will be consumed by each activity. The variety of situations to which this de-
scription applies is diverse, indeed, ranging from the allocation of production facilities to
products to the allocation of national resources to domestic needs, from portfolio selection
to the selection of shipping patterns, from agricultural planning to the design of radiation
therapy, and so on. However, the one common ingredient in each of these situations is the
necessity for allocating resources to activities by choosing the levels of those activities.

Linear programming uses a mathematical model to describe the problem of concern.
The adjective linear means that all the mathematical functions in this model are required
to be linear functions. The word programming does not refer here to computer program-
ming; rather, it is essentially a synonym for planning. Thus, linear programming involves
the planning of activities to obtain an optimal result, i.e., a result that reaches the speci-
fied goal best (according to the mathematical model) among all feasible alternatives.

Although allocating resources to activities is the most common type of application,
linear programming has numerous other important applications as well. In fact, any prob-
lem whose mathematical model fits the very general format for the linear programming
model is a linear programming problem. Furthermore, a remarkably efficient solution pro-
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cedure, called the simplex method, is available for solving linear programming problems
of even enormous size. These are some of the reasons for the tremendous impact of lin-
ear programming in recent decades.

Because of its great importance, we devote this and the next six chapters specifically
to linear programming. After this chapter introduces the general features of linear pro-
gramming, Chaps. 4 and 5 focus on the simplex method. Chapter 6 discusses the further
analysis of linear programming problems affer the simplex method has been initially ap-
plied. Chapter 7 presents several widely used extensions of the simplex method and intro-
duces an interior-point algorithm that sometimes can be used to solve even larger linear pro-
gramming problems than the simplex method can handle. Chapters 8 and 9 consider some
special types of linear programming problems whose importance warrants individual study.

You also can look forward to seeing applications of linear programming to other ar-
eas of operations research (OR) in several later chapters.

We begin this chapter by developing a miniature prototype example of a linear pro-
gramming problem. This example is small enough to be solved graphically in a straight-
forward way. The following two sections present the general linear programming model
and its basic assumptions. Sections 3.4 and 3.5 give some additional examples of linear
programming applications, including three case studies. Section 3.6 describes how linear
programming models of modest size can be conveniently displayed and solved on a spread-
sheet. However, some linear programming problems encountered in practice require truly
massive models. Section 3.7 illustrates how a massive model can arise and how it can still
be formulated successfully with the help of a special modeling language such as MPL
(described in this section) or LINGO (described in the appendix to this chapter).

PROTOTYPE EXAMPLE

The WYNDOR GLASS CO. produces high-quality glass products, including windows and
glass doors. It has three plants. Aluminum frames and hardware are made in Plant 1, wood
frames are made in Plant 2, and Plant 3 produces the glass and assembles the products.

Because of declining earnings, top management has decided to revamp the company’s
product line. Unprofitable products are being discontinued, releasing production capacity
to launch two new products having large sales potential:

Product 1: An 8-foot glass door with aluminum framing
Product 2: A 4 X 6 foot double-hung wood-framed window

Product 1 requires some of the production capacity in Plants 1 and 3, but none in Plant
2. Product 2 needs only Plants 2 and 3. The marketing division has concluded that the
company could sell as much of either product as could be produced by these plants. How-
ever, because both products would be competing for the same production capacity in Plant
3, it is not clear which mix of the two products would be most profitable. Therefore, an
OR team has been formed to study this question.

The OR team began by having discussions with upper management to identify man-
agement’s objectives for the study. These discussions led to developing the following def-
inition of the problem:

Determine what the production rates should be for the two products in order to maximize
their total profit, subject to the restrictions imposed by the limited production capacities
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available in the three plants. (Each product will be produced in batches of 20, so the pro-
duction rate is defined as the number of batches produced per week.) Any combination
of production rates that satisfies these restrictions is permitted, including producing none
of one product and as much as possible of the other.

The OR team also identified the data that needed to be gathered:

1. Number of hours of production time available per week in each plant for these new
products. (Most of the time in these plants already is committed to current products,
so the available capacity for the new products is quite limited.)

2. Number of hours of production time used in each plant for each batch produced of
each new product.

3. Profit per batch produced of each new product. (Profit per batch produced was cho-
sen as an appropriate measure after the team concluded that the incremental profit from
each additional batch produced would be roughly constant regardless of the total num-
ber of batches produced. Because no substantial costs will be incurred to initiate the
production and marketing of these new products, the total profit from each one is ap-
proximately this profit per batch produced times the number of batches produced.)

Obtaining reasonable estimates of these quantities required enlisting the help of key
personnel in various units of the company. Staff in the manufacturing division provided
the data in the first category above. Developing estimates for the second category of data
required some analysis by the manufacturing engineers involved in designing the pro-
duction processes for the new products. By analyzing cost data from these same engineers
and the marketing division, along with a pricing decision from the marketing division, the
accounting department developed estimates for the third category.

Table 3.1 summarizes the data gathered.

The OR team immediately recognized that this was a linear programming problem
of the classic product mix type, and the team next undertook the formulation of the cor-
responding mathematical model.

Formulation as a Linear Programming Problem
To formulate the mathematical (linear programming) model for this problem, let

x; = number of batches of product 1 produced per week
X, = number of batches of product 2 produced per week

Z = total profit per week (in thousands of dollars) from producing these two products

Thus, x; and x, are the decision variables for the model. Using the bottom row of Table
3.1, we obtain

Z = 3x; + 5x,.

The objective is to choose the values of x; and x, so as to maximize Z = 3x; + 5x,, sub-
ject to the restrictions imposed on their values by the limited production capacities avail-
able in the three plants. Table 3.1 indicates that each batch of product 1 produced per
week uses 1 hour of production time per week in Plant 1, whereas only 4 hours per week
are available. This restriction is expressed mathematically by the inequality x; = 4. Simi-
larly, Plant 2 imposes the restriction that 2x, = 12. The number of hours of production
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TABLE 3.1 Data for the Wyndor Glass Co. problem

Production Time
per Batch, Hours
Product
Production Time
Plant 1 2 Available per Week, Hours
1 1 0 4
2 0 2 12
3 3 2 18
Profit per batch $3,000 $5,000

time used per week in Plant 3 by choosing x; and x, as the new products’ production rates
would be 3x; + 2x,. Therefore, the mathematical statement of the Plant 3 restriction is
3x; + 2x, = 18. Finally, since production rates cannot be negative, it is necessary to re-
strict the decision variables to be nonnegative: x; = 0 and x, = 0.

To summarize, in the mathematical language of linear programming, the problem is
to choose values of x; and x, so as to

Maximize Z = 3x; + 5x,,
subject to the restrictions

X1
12
18

2)C2
3x; + 2x,

IAIAIA

and
x| = O, Xy = 0.

(Notice how the layout of the coefficients of x; and x, in this linear programming model
essentially duplicates the information summarized in Table 3.1.)

Graphical Solution

This very small problem has only two decision variables and therefore only two dimen-
sions, so a graphical procedure can be used to solve it. This procedure involves con-
structing a two-dimensional graph with x; and x, as the axes. The first step is to identify
the values of (x;, x,) that are permitted by the restrictions. This is done by drawing each
line that borders the range of permissible values for one restriction. To begin, note that
the nonnegativity restrictions x; = 0 and x, = 0 require (x;, x,) to lie on the positive side
of the axes (including actually on either axis), i.e., in the first quadrant. Next, observe that
the restriction x; = 4 means that (x;, x,) cannot lie to the right of the line x; = 4. These
results are shown in Fig. 3.1, where the shaded area contains the only values of (x;, x,)
that are still allowed.

In a similar fashion, the restriction 2x, = 12 (or, equivalently, x, = 6) implies that
the line 2x, = 12 should be added to the boundary of the permissible region. The final
restriction, 3x; + 2x, = 18, requires plotting the points (x;, x,) such that 3x; + 2x, = 18
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FIGURE 3.1

Shaded area shows values of
(x1, x2) allowed by x; =0,
Xo = 0, XK = 4.

(another line) to complete the boundary. (Note that the points such that 3x; + 2x, = 18
are those that lie either underneath or on the line 3x; + 2x, = 18, so this is the limiting
line above which points do not satisfy the inequality.) The resulting region of permissi-
ble values of (x;, x,), called the feasible region, is shown in Fig. 3.2. (The demo called
Graphical Method in your OR Tutor provides a more detailed example of constructing a
feasible region.)

FIGURE 3.2 XA
Shaded area shows the set of
permissible values of (xq, x3),
called the feasible region.
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The final step is to pick out the point in this feasible region that maximizes the
value of Z = 3x; + 5x,. To discover how to perform this step efficiently, begin by trial
and error. Try, for example, Z = 10 = 3x; + 5x, to see if there are in the permissible
region any values of (x, x,) that yield a value of Z as large as 10. By drawing the line
3x; + 5x, = 10 (see Fig. 3.3), you can see that there are many points on this line that
lie within the region. Having gained perspective by trying this arbitrarily chosen value
of Z = 10, you should next try a larger arbitrary value of Z, say, Z = 20 = 3x; + 5x,.
Again, Fig. 3.3 reveals that a segment of the line 3x; + 5x, = 20 lies within the region,
so that the maximum permissible value of Z must be at least 20.

Now notice in Fig. 3.3 that the two lines just constructed are parallel. This is no co-
incidence, since any line constructed in this way has the form Z = 3x; + 5x, for the cho-

sen value of Z, which implies that 5x, = —3x; + Z or, equivalently,
3 1
Xy = —gxl + gZ

This last equation, called the slope-intercept form of the objective function, demonstrates
that the slope of the line is —% (since each unit increase in x; changes x, by —%), whereas
the intercept of the line with the x, axis is éZ (since x, = %Z when x; = 0). The fact that
the slope is fixed at —% means that all lines constructed in this way are parallel.

Again, comparing the 10 = 3x; + 5x, and 20 = 3x; + 5x, lines in Fig. 3.3, we note
that the line giving a larger value of Z (Z = 20) is farther up and away from the origin
than the other line (Z = 10). This fact also is implied by the slope-intercept form of the
objective function, which indicates that the intercept with the x; axis (%Z) increases when
the value chosen for Z is increased.

FIGURE 3.3
The value of (x;, x,) that
maximizes 3x; + 5x, is (2, 6).

X2 A

Z=136= 3x1+5x2

Z=20= 3x; + 5x,

Z=10= 3x1+5x2
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These observations imply that our trial-and-error procedure for constructing lines in Fig.
3.3 involves nothing more than drawing a family of parallel lines containing at least one point
in the feasible region and selecting the line that corresponds to the largest value of Z. Figure
3.3 shows that this line passes through the point (2, 6), indicating that the optimal solution
is x; = 2 and x, = 6. The equation of this line is 3x; + 5x, = 3(2) + 5(6) = 36 = Z, indi-
cating that the optimal value of Z is Z = 36. The point (2, 6) lies at the intersection of the
two lines 2x, = 12 and 3x; + 2x, = 18, shown in Fig. 3.2, so that this point can be calcu-
lated algebraically as the simultaneous solution of these two equations.

Having seen the trial-and-error procedure for finding the optimal point (2, 6), you
now can streamline this approach for other problems. Rather than draw several parallel
lines, it is sufficient to form a single line with a ruler to establish the slope. Then move
the ruler with fixed slope through the feasible region in the direction of improving Z.
(When the objective is to minimize Z, move the ruler in the direction that decreases Z.)
Stop moving the ruler at the last instant that it still passes through a point in this region.
This point is the desired optimal solution.

This procedure often is referred to as the graphical method for linear programming. It
can be used to solve any linear programming problem with two decision variables. With con-
siderable difficulty, it is possible to extend the method to three decision variables but not more
than three. (The next chapter will focus on the simplex method for solving larger problems.)

Conclusions

The OR team used this approach to find that the optimal solution is x; = 2, x, = 6, with
Z = 36. This solution indicates that the Wyndor Glass Co. should produce products 1 and
2 at the rate of 2 batches per week and 6 batches per week, respectively, with a resulting
total profit of $36,000 per week. No other mix of the two products would be so prof-
itable—according to the model.

However, we emphasized in Chap. 2 that well-conducted OR studies do not simply
find one solution for the initial model formulated and then stop. All six phases described
in Chap. 2 are important, including thorough testing of the model (see Sec. 2.4) and postop-
timality analysis (see Sec. 2.3).

In full recognition of these practical realities, the OR team now is ready to evaluate
the validity of the model more critically (to be continued in Sec. 3.3) and to perform sen-
sitivity analysis on the effect of the estimates in Table 3.1 being different because of in-
accurate estimation, changes of circumstances, etc. (to be continued in Sec. 6.7).

Continuing the Learning Process with Your OR Courseware

This is the first of many points in the book where you may find it helpful to use your OR
Courseware in the CD-ROM that accompanies this book. A key part of this courseware
is a program called OR Tutor. This program includes a complete demonstration example
of the graphical method introduced in this section. Like the many other demonstration ex-
amples accompanying other sections of the book, this computer demonstration highlights
concepts that are difficult to convey on the printed page. You may refer to Appendix 1 for
documentation of the software.

When you formulate a linear programming model with more than two decision vari-
ables (so the graphical method cannot be used), the simplex method described in Chap. 4
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enables you to still find an optimal solution immediately. Doing so also is helpful for
model validation, since finding a nonsensical optimal solution signals that you have made
a mistake in formulating the model.

We mentioned in Sec. 1.4 that your OR Courseware introduces you to three particu-
larly popular commercial software packages—the Excel Solver, LINGO/LINDO, and
MPL/CPLEX—for solving a variety of OR models. All three packages include the sim-
plex method for solving linear programming models. Section 3.6 describes how to use
Excel to formulate and solve linear programming models in a spreadsheet format. De-
scriptions of the other packages are provided in Sec. 3.7 (MPL and LINGO), Appendix
3.1 (LINGO), Sec. 4.8 (CPLEX and LINDO), and Appendix 4.1 (LINDO). In addition,
your OR Courseware includes a file for each of the three packages showing how it can
be used to solve each of the examples in this chapter.

THE LINEAR PROGRAMMING MODEL

The Wyndor Glass Co. problem is intended to illustrate a typical linear programming prob-
lem (miniature version). However, linear programming is too versatile to be completely
characterized by a single example. In this section we discuss the general characteristics
of linear programming problems, including the various legitimate forms of the mathe-
matical model for linear programming.

Let us begin with some basic terminology and notation. The first column of Table 3.2
summarizes the components of the Wyndor Glass Co. problem. The second column then
introduces more general terms for these same components that will fit many linear pro-
gramming problems. The key terms are resources and activities, where m denotes the num-
ber of different kinds of resources that can be used and n denotes the number of activi-
ties being considered. Some typical resources are money and particular kinds of machines,
equipment, vehicles, and personnel. Examples of activities include investing in particular
projects, advertising in particular media, and shipping goods from a particular source to
a particular destination. In any application of linear programming, all the activities may
be of one general kind (such as any one of these three examples), and then the individ-
ual activities would be particular alternatives within this general category.

As described in the introduction to this chapter, the most common type of applica-
tion of linear programming involves allocating resources to activities. The amount avail-
able of each resource is limited, so a careful allocation of resources to activities must be
made. Determining this allocation involves choosing the levels of the activities that achieve
the best possible value of the overall measure of performance.

TABLE 3.2 Common terminology for linear programming

Prototype Example General Problem

Production capacities of plants Resources

3 plants m resources

Production of products Activities

2 products n activities

Production rate of product j, x; Level of activity j, x;

Profit Z Overall measure of performance Z
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Certain symbols are commonly used to denote the various components of a linear
programming model. These symbols are listed below, along with their interpretation for
the general problem of allocating resources to activities.

Z = value of overall measure of performance.
= level of activity j (forj =1, 2, ..., n).
¢; = increase in Z that would result from each unit increase in level of activity j.

b; = amount of resource i that is available for allocation to activities (for i =
1,2,...,m).

a;; = amount of resource i consumed by each unit of activity j.

The model poses the problem in terms of making decisions about the levels of the activ-

ities, so xj, Xy, . . . , X, are called the decision variables. As summarized in Table 3.3, the

values of ¢;, b;, and a;; (fori =1,2,...,mandj= 1,2, ..., n) are the input constants

for the model. The c;, b;, and a;; are also referred to as the parameters of the model.
Notice the correspondence between Table 3.3 and Table 3.1.

A Standard Form of the Model

Proceeding as for the Wyndor Glass Co. problem, we can now formulate the mathemati-
cal model for this general problem of allocating resources to activities. In particular, this
model is to select the values for x, x5, . . ., X, SO as to

Maximize Z=c1x; + cxo + 0+ Xy
subject to the restrictions
anx; +apxy + o+ oagx, =b

ax Xy + axppxs + 0 F axx, =bs

Am1Xy + Am2Xo + ot AynXn = bms

TABLE 3.3 Data needed for a linear programming model involving the allocation
of resources to activities

Resource Usage per Unit of Activity
Activity
Amount of
Resource 1 2 ce n Resource Available
1 aqq aqz e aip b]
2 dzq dpo . dzn b2
m am Um2 - Amn b
Contribution to Z per e C . Cn
unit of activity
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and
x; =0, X =0, RN x, = 0.

We call this our standard form' for the linear programming problem. Any situation whose
mathematical formulation fits this model is a linear programming problem.

Notice that the model for the Wyndor Glass Co. problem fits our standard form, with
m=3andn=2.

Common terminology for the linear programming model can now be summarized.
The function being maximized, c¢jx; + cox, + - + ¢,x,, is called the objective func-
tion. The restrictions normally are referred to as constraints. The first m constraints (those
with a function of all the variables a;x; + a»x, + -+ + a;,x, on the left-hand side) are
sometimes called functional constraints (or structural constraints). Similarly, the x; = 0
restrictions are called nonnegativity constraints (or nonnegativity conditions).

Other Forms

We now hasten to add that the preceding model does not actually fit the natural form of
some linear programming problems. The other legitimate forms are the following:

1. Minimizing rather than maximizing the objective function:
Minimize Z=cCX; + Caxy + 0+ X,
2. Some functional constraints with a greater-than-or-equal-to inequality:
ajx; + apx, + -+ + a;,x, = b; for some values of i.
3. Some functional constraints in equation form:
anx; + apx, + 0+ apx, = b; for some values of i.
4. Deleting the nonnegativity constraints for some decision variables:
Xx; unrestricted in sign for some values of j.

Any problem that mixes some of or all these forms with the remaining parts of the pre-
ceding model is still a linear programming problem. Our interpretation of the words al-
locating limited resources among competing activities may no longer apply very well, if
at all; but regardless of the interpretation or context, all that is required is that the math-
ematical statement of the problem fit the allowable forms.

Terminology for Solutions of the Model

You may be used to having the term solution mean the final answer to a problem, but the
convention in linear programming (and its extensions) is quite different. Here, any spec-
ification of values for the decision variables (xq, x5, . . ., x,,) is called a solution, regard-
less of whether it is a desirable or even an allowable choice. Different types of solutions
are then identified by using an appropriate adjective.

IThis is called our standard form rather than the standard form because some textbooks adopt other forms.
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A feasible solution is a solution for which all the constraints are satisfied.
An infeasible solution is a solution for which at least one constraint is violated.

In the example, the points (2, 3) and (4, 1) in Fig. 3.2 are feasible solutions, while the
points (—1, 3) and (4, 4) are infeasible solutions.

The feasible region is the collection of all feasible solutions.

The feasible region in the example is the entire shaded area in Fig. 3.2.

It is possible for a problem to have no feasible solutions. This would have happened
in the example if the new products had been required to return a net profit of at least
$50,000 per week to justify discontinuing part of the current product line. The corre-
sponding constraint, 3x; + 5x, = 50, would eliminate the entire feasible region, so no mix
of new products would be superior to the status quo. This case is illustrated in Fig. 3.4.

Given that there are feasible solutions, the goal of linear programming is to find a
best feasible solution, as measured by the value of the objective function in the model.

An optimal solution is a feasible solution that has the most favorable value of
the objective function.

The most favorable value is the largest value if the objective function is to be maximized,
whereas it is the smallest value if the objective function is to be minimized.

Most problems will have just one optimal solution. However, it is possible to have more
than one. This would occur in the example if the profit per batch produced of product 2 were
changed to $2,000. This changes the objective function to Z = 3x; + 2x,, so that all the points

FIGURE 3.4

The Wyndor Glass Co.
problem would have no
feasible solutions if the
constraint 3x; + 5x, = 50

were added to the problem.

X2 A

Maximize Z = 3x; + 5xp,
subject to X =4
2%y =12

3)C1 + 2.X2 =18

3)61 + SXZ =50

X1 = 0, X2 =0

10

3)61 + SX2 =50

3)(1 + 2)(2 =18

ﬂxlzo




FIGURE 3.5

The Wyndor Glass Co.
problem would have multiple
optimal solutions if the
objective function were
changed to Z = 3x; + 2x,.
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Maximize Z=3x;+ 2x,,
Z=18=3n+ 25 subject to ,\']l =4
2%, = 12
3.\'| + 2.\'2 =18
8 and 0=0, x»=0

Every point on this darker line segment
is optimal, each with Z =18,

- Feasible
region
2 L
L1 1 | | [ -
0 2 4 6 8 10 x

on the line segment connecting (2, 6) and (4, 3) would be optimal. This case is illustrated in
Fig. 3.5. As in this case, any problem having multiple optimal solutions will have an infi-
nite number of them, each with the same optimal value of the objective function.

Another possibility is that a problem has no optimal solutions. This occurs only if
(1) it has no feasible solutions or (2) the constraints do not prevent improving the value
of the objective function (Z) indefinitely in the favorable direction (positive or negative).
The latter case is referred to as having an unbounded Z. To illustrate, this case would re-
sult if the last two functional constraints were mistakenly deleted in the example, as il-
lustrated in Fig. 3.6.

We next introduce a special type of feasible solution that plays the key role when the
simplex method searches for an optimal solution.

A corner-point feasible (CPF) solution is a solution that lies at a corner of the
feasible region.

Figure 3.7 highlights the five CPF solutions for the example.
Sections 4.1 and 5.1 will delve into the various useful properties of CPF solutions for
problems of any size, including the following relationship with optimal solutions.

Relationship between optimal solutions and CPF solutions: Consider any linear pro-
gramming problem with feasible solutions and a bounded feasible region. The problem
must possess CPF solutions and at least one optimal solution. Furthermore, the best CPF
solution must be an optimal solution. Thus, if a problem has exactly one optimal solution,
it must be a CPF solution. If the problem has multiple optimal solutions, at least two must
be CPF solutions.
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(4,0),Z =
(4,10),Z=62
_ Maximize Z = 3x; + 5x,,
4,8),2=32 subject to x1=4
and X1 = 0, X =0
(4.6).Z =42
FIGURE 3.6
The Wyndor Glass Co. (4,4),Z2=32
problem would have no
optimal solutions if the only
functional constraint were
x1 = 4, because x, then 4,2),Z2=22
could be increased
indefinitely in the feasible
region without ever reaching
the maximum value of | | | >
/= 3X1 + 5X2. 6 8 10 X1

3.3

The example has exactly one optimal solution, (x;, x,) = (2, 6), which is a CPF so-
lution. (Think about how the graphical method leads to the one optimal solution being a
CPF solution.) When the example is modified to yield multiple optimal solutions, as shown
in Fig. 3.5, two of these optimal solutions—(2, 6) and (4, 3)—are CPF solutions.

ASSUMPTIONS OF LINEAR PROGRAMMING

All the assumptions of linear programming actually are implicit in the model formulation
given in Sec. 3.2. However, it is good to highlight these assumptions so you can more
easily evaluate how well linear programming applies to any given problem. Furthermore,
we still need to see why the OR team for the Wyndor Glass Co. concluded that a linear
programming formulation provided a satisfactory representation of the problem.

Proportionality

Proportionality is an assumption about both the objective function and the functional con-
straints, as summarized below.

Proportionality assumption: The contribution of each activity to the value of
the objective function Z is proportional to the level of the activity x;, as repre-
sented by the c;x; term in the objective function. Similarly, the contribution of
each activity to the left-hand side of each functional constraint is proportional
to the level of the activity x;, as represented by the a;;x; term in the constraint.
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The five dots are the five CPF
solutions for the Wyndor
Glass Co. problem.
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(0,0) 4,00 x

Consequently, this assumption rules out any exponent other than 1 for any vari-
able in any term of any function (whether the objective function or the function
on the left-hand side of a functional constraint) in a linear programming model.'

To illustrate this assumption, consider the first term (3x;) in the objective function
(Z = 3x; + 5x;) for the Wyndor Glass Co. problem. This term represents the profit gen-
erated per week (in thousands of dollars) by producing product 1 at the rate of x; batches
per week. The proportionality satisfied column of Table 3.4 shows the case that was as-
sumed in Sec. 3.1, namely, that this profit is indeed proportional to x; so that 3x; is the
appropriate term for the objective function. By contrast, the next three columns show dif-
ferent hypothetical cases where the proportionality assumption would be violated.

Refer first to the Case I column in Table 3.4. This case would arise if there were
start-up costs associated with initiating the production of product 1. For example, there

"When the function includes any cross-product terms, proportionality should be interpreted to mean that changes
in the function value are proportional to changes in each variable (x;) individually, given any fixed values for
all the other variables. Therefore, a cross-product term satisfies proportionality as long as each variable in the
term has an exponent of 1. (However, any cross-product term violates the additivity assumption, discussed next.)

TABLE 3.4 Examples of satisfying or violating proportionality

Profit from Product 1 ($000 per Week)
Proportionality Violated
Proportionality
Xq Satisfied Case 1 Case 2 Case 3
0 0 0 0 0
1 3 2 3 3
2 6 5 7 5
3 9 8 12 6
4 12 11 18 6
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might be costs involved with setting up the production facilities. There might also be costs
associated with arranging the distribution of the new product. Because these are one-time
costs, they would need to be amortized on a per-week basis to be commensurable with Z
(profit in thousands of dollars per week). Suppose that this amortization were done and
that the total start-up cost amounted to reducing Z by 1, but that the profit without con-
sidering the start-up cost would be 3x;. This would mean that the contribution from prod-
uct 1 to Z should be 3x; — 1 for x; > 0, whereas the contribution would be 3x; = 0 when
x; = 0 (no start-up cost). This profit function,’ which is given by the solid curve in Fig.
3.8, certainly is not proportional to x;.

At first glance, it might appear that Case 2 in Table 3.4 is quite similar to Case 1.
However, Case 2 actually arises in a very different way. There no longer is a start-up cost,
and the profit from the first unit of product 1 per week is indeed 3, as originally assumed.
However, there now is an increasing marginal return; i.e., the slope of the profit function
for product 1 (see the solid curve in Fig. 3.9) keeps increasing as x; is increased. This vi-
olation of proportionality might occur because of economies of scale that can sometimes
be achieved at higher levels of production, e.g., through the use of more efficient high-
volume machinery, longer production runs, quantity discounts for large purchases of raw
materials, and the learning-curve effect whereby workers become more efficient as they
gain experience with a particular mode of production. As the incremental cost goes down,
the incremental profit will go up (assuming constant marginal revenue).

'f the contribution from product 1 to Z were 3x; — 1 for all x; = 0, including x; = 0, then the fixed constant,
—1, could be deleted from the objective function without changing the optimal solution and proportionality
would be restored. However, this “fix” does not work here because the —1 constant does not apply when
X1 = 0.

FIGURE 3.8

The solid curve violates the
proportionality assumption
because of the start-up cost
that is incurred when x; is
increased from 0. The values
at the dots are given by the
Case 1 column of Table 3.4.
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FIGURE 3.9

The solid curve violates the
proportionality assumption
because its slope (the
marginal return from

product 1) keeps increasing
as x; is increased. The values
at the dots are given by the
Case 2 column of Table 3.4.
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Referring again to Table 3.4, the reverse of Case 2 is Case 3, where there is a decreas-
ing marginal return. In this case, the slope of the profit function for product 1 (given by the
solid curve in Fig. 3.10) keeps decreasing as x; is increased. This violation of proportional-
ity might occur because the marketing costs need to go up more than proportionally to attain
increases in the level of sales. For example, it might be possible to sell product 1 at the rate
of 1 per week (x; = 1) with no advertising, whereas attaining sales to sustain a production
rate of x; = 2 might require a moderate amount of advertising, x; = 3 might necessitate an

extensive advertising campaign, and x; = 4 might require also lowering the price.

All three cases are hypothetical examples of ways in which the proportionality as-
sumption could be violated. What is the actual situation? The actual profit from produc-

FIGURE 3.10

The solid curve violates the
proportionality assumption
because its slope (the
marginal return from

product 1) keeps decreasing
as x; is increased. The values
at the dots are given by the
Case 3 column in Table 3.4.
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ing product 1 (or any other product) is derived from the sales revenue minus various di-
rect and indirect costs. Inevitably, some of these cost components are not strictly propor-
tional to the production rate, perhaps for one of the reasons illustrated above. However,
the real question is whether, after all the components of profit have been accumulated,
proportionality is a reasonable approximation for practical modeling purposes. For the
Wyndor Glass Co. problem, the OR team checked both the objective function and the
functional constraints. The conclusion was that proportionality could indeed be assumed
without serious distortion.

For other problems, what happens when the proportionality assumption does not hold
even as a reasonable approximation? In most cases, this means you must use nonlinear
programming instead (presented in Chap. 13). However, we do point out in Sec. 13.8 that
a certain important kind of nonproportionality can still be handled by linear programming
by reformulating the problem appropriately. Furthermore, if the assumption is violated
only because of start-up costs, there is an extension of linear programming (mixed inte-
ger programming) that can be used, as discussed in Sec. 12.3 (the fixed-charge problem).

Additivity

Although the proportionality assumption rules out exponents other than 1, it does not pro-
hibit cross-product terms (terms involving the product of two or more variables). The ad-
ditivity assumption does rule out this latter possibility, as summarized below.

Additivity assumption: Every function in a linear programming model (whether
the objective function or the function on the left-hand side of a functional con-
straint) is the sum of the individual contributions of the respective activities.

To make this definition more concrete and clarify why we need to worry about this
assumption, let us look at some examples. Table 3.5 shows some possible cases for the ob-
jective function for the Wyndor Glass Co. problem. In each case, the individual contribu-
tions from the products are just as assumed in Sec. 3.1, namely, 3x; for product 1 and 5x,
for product 2. The difference lies in the last row, which gives the function value for Z when
the two products are produced jointly. The additivity satisfied column shows the case where
this function value is obtained simply by adding the first two rows (3 + 5 = 8), so that
Z = 3x; + 5x, as previously assumed. By contrast, the next two columns show hypothet-
ical cases where the additivity assumption would be violated (but not the proportionality
assumption).

TABLE 3.5 Examples of satisfying or violating additivity for the objective function

Value of Z

Additivity Violated

(x1, x2) Additivity Satisfied Case 1 Case 2
1, 0) 3 3 3
©, 1) 5 5 5

a,n 8 9 7
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Referring to the Case I column of Table 3.5, this case corresponds to an objective
function of Z = 3x; + 5x, + x1x5, so0thatZ =3 + 5 + 1 = 9 for (xq, xo) = (1, 1), thereby
violating the additivity assumption that Z = 3 + 5. (The proportionality assumption still
is satisfied since after the value of one variable is fixed, the increment in Z from the other
variable is proportional to the value of that variable.) This case would arise if the two
products were complementary in some way that increases profit. For example, suppose
that a major advertising campaign would be required to market either new product pro-
duced by itself, but that the same single campaign can effectively promote both products
if the decision is made to produce both. Because a major cost is saved for the second
product, their joint profit is somewhat more than the sum of their individual profits when
each is produced by itself.

Case 2 in Table 3.5 also violates the additivity assumption because of the extra term
in the corresponding objective function, Z = 3x; + 5x, — xjxp, sothat Z=3+5—-1=7
for (xy, x5) = (1, 1). As the reverse of the first case, Case 2 would arise if the two prod-
ucts were competitive in some way that decreased their joint profit. For example, suppose
that both products need to use the same machinery and equipment. If either product were
produced by itself, this machinery and equipment would be dedicated to this one use.
However, producing both products would require switching the production processes back
and forth, with substantial time and cost involved in temporarily shutting down the pro-
duction of one product and setting up for the other. Because of this major extra cost, their
joint profit is somewhat less than the sum of their individual profits when each is pro-
duced by itself.

The same kinds of interaction between activities can affect the additivity of the con-
straint functions. For example, consider the third functional constraint of the Wyndor Glass
Co. problem: 3x; + 2x, = 18. (This is the only constraint involving both products.) This
constraint concerns the production capacity of Plant 3, where 18 hours of production time
per week is available for the two new products, and the function on the left-hand side
(3xy + 2x,) represents the number of hours of production time per week that would be
used by these products. The additivity satisfied column of Table 3.6 shows this case as is,
whereas the next two columns display cases where the function has an extra cross-
product term that violates additivity. For all three columns, the individual contributions
from the products toward using the capacity of Plant 3 are just as assumed previously,
namely, 3x; for product 1 and 2x, for product 2, or 3(2) = 6 for x; = 2 and 2(3) = 6 for

TABLE 3.6 Examples of satisfying or violating additivity
for a functional constraint

Amount of Resource Used

Additivity Violated

(x1, X2) Additivity Satisfied Case 3 Case 4
(2, 0) 6 6 6
0, 3) 6 6 6

(2, 3) 12 15 10.8
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x, = 3. As was true for Table 3.5, the difference lies in the last row, which now gives the
total function value for production time used when the two products are produced jointly.

For Case 3 (see Table 3.6), the production time used by the two products is given by
the function 3x; + 2x, + 0.5xx,, so the total function value is 6 + 6 + 3 = 15 when
(x1, x2) = (2, 3), which violates the additivity assumption that the value is just 6 + 6 = 12.
This case can arise in exactly the same way as described for Case 2 in Table 3.5; namely,
extra time is wasted switching the production processes back and forth between the two
products. The extra cross-product term (0.5x;x,) would give the production time wasted
in this way. (Note that wasting time switching between products leads to a positive cross-
product term here, where the total function is measuring production time used, whereas
it led to a negative cross-product term for Case 2 because the total function there mea-
sures profit.)

For Case 4 in Table 3.6, the function for production time used is 3x; + 2x, — 0. 1x3x,,
so the function value for (x;, x,) = (2, 3) is 6 + 6 — 1.2 = 10.8. This case could arise in
the following way. As in Case 3, suppose that the two products require the same type of
machinery and equipment. But suppose now that the time required to switch from one
product to the other would be relatively small. Because each product goes through a se-
quence of production operations, individual production facilities normally dedicated to
that product would incur occasional idle periods. During these otherwise idle periods,
these facilities can be used by the other product. Consequently, the total production time
used (including idle periods) when the two products are produced jointly would be less
than the sum of the production times used by the individual products when each is pro-
duced by itself.

After analyzing the possible kinds of interaction between the two products illustrated
by these four cases, the OR team concluded that none played a major role in the actual
Wyndor Glass Co. problem. Therefore, the additivity assumption was adopted as a rea-
sonable approximation.

For other problems, if additivity is not a reasonable assumption, so that some of or
all the mathematical functions of the model need to be nonlinear (because of the cross-
product terms), you definitely enter the realm of nonlinear programming (Chap. 13).

Divisibility
Our next assumption concerns the values allowed for the decision variables.

Divisibility assumption: Decision variables in a linear programming model are
allowed to have any values, including noninteger values, that satisfy the func-
tional and nonnegativity constraints. Thus, these variables are not restricted to
just integer values. Since each decision variable represents the level of some ac-
tivity, it is being assumed that the activities can be run at fractional levels.

For the Wyndor Glass Co. problem, the decision variables represent production rates
(the number of batches of a product produced per week). Since these production rates can
have any fractional values within the feasible region, the divisibility assumption does hold.

In certain situations, the divisibility assumption does not hold because some of or all
the decision variables must be restricted to integer values. Mathematical models with this
restriction are called integer programming models, and they are discussed in Chap. 12.
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Certainty

Our last assumption concerns the parameters of the model, namely, the coefficients in the
objective function c;, the coefficients in the functional constraints a;;, and the right-hand
sides of the functional constraints b;.

Certainty assumption: The value assigned to each parameter of a linear pro-
gramming model is assumed to be a known constant.

In real applications, the certainty assumption is seldom satisfied precisely. Linear pro-
gramming models usually are formulated to select some future course of action. There-
fore, the parameter values used would be based on a prediction of future conditions, which
inevitably introduces some degree of uncertainty.

For this reason it is usually important to conduct sensitivity analysis after a solution
is found that is optimal under the assumed parameter values. As discussed in Sec. 2.3,
one purpose is to identify the sensitive parameters (those whose value cannot be changed
without changing the optimal solution), since any later change in the value of a sensitive
parameter immediately signals a need to change the solution being used.

Sensitivity analysis plays an important role in the analysis of the Wyndor Glass Co.
problem, as you will see in Sec. 6.7. However, it is necessary to acquire some more back-
ground before we finish that story.

Occasionally, the degree of uncertainty in the parameters is too great to be amenable
to sensitivity analysis. In this case, it is necessary to treat the parameters explicitly as ran-
dom variables. Formulations of this kind have been developed, as discussed in Secs. 23.6
and 23.7 on the book’s web site, www.mhhe.com/hillier.

The Assumptions in Perspective

We emphasized in Sec. 2.2 that a mathematical model is intended to be only an idealized
representation of the real problem. Approximations and simplifying assumptions gener-
ally are required in order for the model to be tractable. Adding too much detail and pre-
cision can make the model too unwieldy for useful analysis of the problem. All that is re-
ally needed is that there be a reasonably high correlation between the prediction of the
model and what would actually happen in the real problem.

This advice certainly is applicable to linear programming. It is very common in real
applications of linear programming that almost none of the four assumptions hold com-
pletely. Except perhaps for the divisibility assumption, minor disparities are to be expected.
This is especially true for the certainty assumption, so sensitivity analysis normally is a
must to compensate for the violation of this assumption.

However, it is important for the OR team to examine the four assumptions for the
problem under study and to analyze just how large the disparities are. If any of the as-
sumptions are violated in a major way, then a number of useful alternative models are
available, as presented in later chapters of the book. A disadvantage of these other mod-
els is that the algorithms available for solving them are not nearly as powerful as those
for linear programming, but this gap has been closing in some cases. For some applica-
tions, the powerful linear programming approach is used for the initial analysis, and then
a more complicated model is used to refine this analysis.
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3.4

FIGURE 3.11

Cross section of Mary’s
tumor (viewed from above),
nearby critical tissues, and
the radiation beams being
used.

Beam 2
Beam 1
1. Bladder and
tumor
2. Rectum, coccyx,
etc.

3. Femur, part of
pelvis, etc.

As you work through the examples in the next section, you will find it good practice
to analyze how well each of the four assumptions of linear programming applies.

ADDITIONAL EXAMPLES

The Wyndor Glass Co. problem is a prototype example of linear programming in several
respects: It involves allocating limited resources among competing activities, its model
fits our standard form, and its context is the traditional one of improved business plan-
ning. However, the applicability of linear programming is much wider. In this section we
begin broadening our horizons. As you study the following examples, note that it is their
underlying mathematical model rather than their context that characterizes them as linear
programming problems. Then give some thought to how the same mathematical model
could arise in many other contexts by merely changing the names of the activities and so
forth.

These examples are scaled-down versions of actual applications (including two that
are included in the case studies presented in the next section).

Design of Radiation Therapy

MARY has just been diagnosed as having a cancer at a fairly advanced stage. Specifi-
cally, she has a large malignant tumor in the bladder area (a “whole bladder lesion”).

Mary is to receive the most advanced medical care available to give her every possi-
ble chance for survival. This care will include extensive radiation therapy.

Radiation therapy involves using an external beam treatment machine to pass ioniz-
ing radiation through the patient’s body, damaging both cancerous and healthy tissues.
Normally, several beams are precisely administered from different angles in a two-
dimensional plane. Due to attenuation, each beam delivers more radiation to the tissue
near the entry point than to the tissue near the exit point. Scatter also causes some deliv-
ery of radiation to tissue outside the direct path of the beam. Because tumor cells are typ-
ically microscopically interspersed among healthy cells, the radiation dosage throughout
the tumor region must be large enough to kill the malignant cells, which are slightly more
radiosensitive, yet small enough to spare the healthy cells. At the same time, the aggre-
gate dose to critical tissues must not exceed established tolerance levels, in order to pre-
vent complications that can be more serious than the disease itself. For the same reason,
the total dose to the entire healthy anatomy must be minimized.

Because of the need to carefully balance all these factors, the design of radiation ther-
apy is a very delicate process. The goal of the design is to select the combination of beams
to be used, and the intensity of each one, to generate the best possible dose distribution.
(The dose strength at any point in the body is measured in units called kilorads.) Once
the treatment design has been developed, it is administered in many installments, spread
over several weeks.

In Mary’s case, the size and location of her tumor make the design of her treatment
an even more delicate process than usual. Figure 3.11 shows a diagram of a cross section
of the tumor viewed from above, as well as nearby critical tissues to avoid. These tissues
include critical organs (e.g., the rectum) as well as bony structures (e.g., the femurs and
pelvis) that will attenuate the radiation. Also shown are the entry point and direction for
the only two beams that can be used with any modicum of safety in this case. (Actually,
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we are simplifying the example at this point, because normally dozens of possible beams
must be considered.)

For any proposed beam of given intensity, the analysis of what the resulting radia-
tion absorption by various parts of the body would be requires a complicated process. In
brief, based on careful anatomical analysis, the energy distribution within the two-
dimensional cross section of the tissue can be plotted on an isodose map, where the con-
tour lines represent the dose strength as a percentage of the dose strength at the entry
point. A fine grid then is placed over the isodose map. By summing the radiation absorbed
in the squares containing each type of tissue, the average dose that is absorbed by the tu-
mor, healthy anatomy, and critical tissues can be calculated. With more than one beam
(administered sequentially), the radiation absorption is additive.

After thorough analysis of this type, the medical team has carefully estimated the data
needed to design Mary’s treatment, as summarized in Table 3.7. The first column lists the
areas of the body that must be considered, and then the next two columns give the frac-
tion of the radiation dose at the entry point for each beam that is absorbed by the re-
spective areas on average. For example, if the dose level at the entry point for beam 1 is
1 kilorad, then an average of 0.4 kilorad will be absorbed by the entire healthy anatomy
in the two-dimensional plane, an average of 0.3 kilorad will be absorbed by nearby crit-
ical tissues, an average of 0.5 kilorad will be absorbed by the various parts of the tumor,
and 0.6 kilorad will be absorbed by the center of the tumor. The last column gives the re-
strictions on the total dosage from both beams that is absorbed on average by the re-
spective areas of the body. In particular, the average dosage absorption for the healthy
anatomy must be as small as possible, the critical tissues must not exceed 2.7 kilorads,
the average over the entire tumor must equal 6 kilorads, and the center of the tumor must
be at least 6 kilorads.

Formulation as a Linear Programming Problem. The two decision variables x;
and x, represent the dose (in kilorads) at the entry point for beam 1 and beam 2, respec-
tively. Because the total dosage reaching the healthy anatomy is to be minimized, let Z
denote this quantity. The data from Table 3.7 can then be used directly to formulate the
following linear programming model.'

! Actually, Table 3.7 simplifies the real situation, so the real model would be somewhat more complicated than
this one and would have dozens of variables and constraints. For details about the general situation, see D. Son-
derman and P. G. Abrahamson, “Radiotherapy Treatment Design Using Mathematical Programming Models,”
Operations Research, 33:705-725, 1985, and its ref. 1.

TABLE 3.7 Data for the design of Mary’s radiation therapy

Fraction of Entry Dose
Absorbed by
Area (Average)

Restriction on Total Average

Area Beam 1 Beam 2 Dosage, Kilorads
Healthy anatomy 0.4 0.5 Minimize
Critical tissues 0.3 0.1 =27
Tumor region 0.5 0.5 =6

Center of tumor 0.6 0.4 =6
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Minimize Z = 0.4x; + 0.5x,,

subject to
O.S.XI + 0.1)(2 = 27
0.5x; +0.5x, =6
0.6.X1 + 0.4)(2 = 6
and

x120, .X220.

Notice the differences between this model and the one in Sec. 3.1 for the Wyndor
Glass Co. problem. The latter model involved maximizing Z, and all the functional con-
straints were in = form. This new model does not fit this same standard form, but it does
incorporate three other legitimate forms described in Sec. 3.2, namely, minimizing Z, func-
tional constraints in = form, and functional constraints in = form.

However, both models have only two variables, so this new problem also can be solved
by the graphical method illustrated in Sec. 3.1. Figure 3.12 shows the graphical solution.
The feasible region consists of just the dark line segment between (6, 6) and (7.5, 4.5),
because the points on this segment are the only ones that simultaneously satisfy all the
constraints. (Note that the equality constraint limits the feasible region to the line con-
taining this line segment, and then the other two functional constraints determine the two
endpoints of the line segment.) The dashed line is the objective function line that passes
through the optimal solution (x;, x,) = (7.5, 4.5) with Z = 5.25. This solution is optimal
rather than the point (6, 6) because decreasing Z (for positive values of Z) pushes the ob-
jective function line toward the origin (where Z = 0). And Z = 5.25 for (7.5, 4.5) is less
than Z = 5.4 for (6, 6).

Thus, the optimal design is to use a total dose at the entry point of 7.5 kilorads for
beam 1 and 4.5 kilorads for beam 2.

Regional Planning

The SOUTHERN CONFEDERATION OF KIBBUTZIM is a group of three kibbutzim
(communal farming communities) in Israel. Overall planning for this group is done in its
Coordinating Technical Office. This office currently is planning agricultural production
for the coming year.

The agricultural output of each kibbutz is limited by both the amount of available ir-
rigable land and the quantity of water allocated for irrigation by the Water Commissioner
(a national government official). These data are given in Table 3.8.

TABLE 3.8 Resource data for the Southern Confederation of Kibbutzim

Kibbutz Usable Land (Acres) Water Allocation (Acre Feet)
1 400 600
2 600 800

3 300 375




FIGURE 3.12

Graphical solution for the
design of Mary’s radiation
therapy.
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0.6)C1 + 0.4.XZ =6

The crops suited for this region include sugar beets, cotton, and sorghum, and these
are the three being considered for the upcoming season. These crops differ primarily in
their expected net return per acre and their consumption of water. In addition, the Min-
istry of Agriculture has set a maximum quota for the total acreage that can be devoted to
each of these crops by the Southern Confederation of Kibbutzim, as shown in Table 3.9.

TABLE 3.9 Crop data for the Southern Confederation of Kibbutzim

Maximum Water Consumption Net Return
Crop Quota (Acres) (Acre Feet/Acre) ($/Acre)
Sugar beets 600 3 1,000
Cotton 500 2 750
Sorghum 325 1 250
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Because of the limited water available for irrigation, the Southern Confederation of
Kibbutzim will not be able to use all its irrigable land for planting crops in the upcoming
season. To ensure equity between the three kibbutzim, it has been agreed that every kib-
butz will plant the same proportion of its available irrigable land. For example, if kibbutz
1 plants 200 of its available 400 acres, then kibbutz 2 must plant 300 of its 600 acres,
while kibbutz 3 plants 150 acres of its 300 acres. However, any combination of the crops
may be grown at any of the kibbutzim. The job facing the Coordinating Technical Office
is to plan how many acres to devote to each crop at the respective kibbutzim while satis-
fying the given restrictions. The objective is to maximize the total net return to the South-
ern Confederation of Kibbutzim as a whole.

Formulation as a Linear Programming Problem. The quantities to be decided
upon are the number of acres to devote to each of the three crops at each of the three kib-
butzim. The decision variables x; (j =1, 2, . . ., 9) represent these nine quantities, as
shown in Table 3.10.

Since the measure of effectiveness Z is the total net return, the resulting linear pro-
gramming model for this problem is

Maximize Z = 1,000(x1 + X2 + )C3) + 750(.X4 + X5 + )C6) + 250(X7 + Xg + XQ),
subject to the following constraints:
1. Usable land for each kibbutz:

xX; + x4 + x7 =400
X2+.X5+)C8§6OO
x3+x6+x95300

2. Water allocation for each kibbutz:

3x; + 2x4 + x7 = 600
3X2 + 2)C5 + Xg = 800
3X3 + 2x6 + X9 = 375

3. Total acreage for each crop:

X1+.X2+)C3§6OO
X4+.X5+)C6SSOO
X7 + xg + x9 = 325

TABLE 3.10 Decision variables for the Southern Confederation
of Kibbutzim problem

Allocation (Acres)

Kibbutz
Crop 1 2 3
Sugar beets X1 X X3
Cotton X4 Xs Xe

Sorghum X7 Xg Xo
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4. Equal proportion of land planted:

x1+x4+x7 _x2+x5+x8

400 600
x2+x5+x82x3+x6+x9
600 300
X3+XG+XQ:)C1+X4+X7
300 400
5. Nonnegativity:
x =0, forj=1,2,...,9.

This completes the model, except that the equality constraints are not yet in an appropri-
ate form for a linear programming model because some of the variables are on the right-
hand side. Hence, their final form' is

3(x1+x4+x7)—2(x2+x5+x8)=0
(X2+XS+X8)_2(X3+X6+X9):O
4(x3+x6+x9)—3(x1+x4+x7)=0

The Coordinating Technical Office formulated this model and then applied the sim-
plex method (developed in the next chapter) to find an optimal solution

(xl, X2, X3, X4, X5, Xg, X7, Xg, XQ) = (133%, ]00, 25, ]00, 250, 150, 0, O, 0),

as shown in Table 3.11. The resulting optimal value of the objective function is
Z = 633,333%, that is, a total net return of $633,333.33.

!Actually, any one of these equations is redundant and can be deleted if desired. Also, because of these equa-
tions, any two of the usable land constraints also could be deleted because they automatically would be satis-
fied when both the remaining usable land constraint and these equations are satisfied. However, no harm is done
(except a little more computational effort) by including unnecessary constraints, so you don’t need to worry
about identifying and deleting them in models you formulate.

TABLE 3.11 Optimal solution for the Southern Confederation
of Kibbutzim problem

Best Allocation (Acres)

Kibbutz
Crop 1 2 3
Sugar beets 133} 100 25
Cotton 100 250 150

Sorghum 0 0 0
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Controlling Air Pollution

The NORI & LEETS CO., one of the major producers of steel in its part of the world, is
located in the city of Steeltown and is the only large employer there. Steeltown has grown
and prospered along with the company, which now employs nearly 50,000 residents. There-
fore, the attitude of the townspeople always has been, “What’s good for Nori & Leets is
good for the town.” However, this attitude is now changing; uncontrolled air pollution
from the company’s furnaces is ruining the appearance of the city and endangering the
health of its residents.

A recent stockholders’ revolt resulted in the election of a new enlightened board of
directors for the company. These directors are determined to follow socially responsible
policies, and they have been discussing with Steeltown city officials and citizens’ groups
what to do about the air pollution problem. Together they have worked out stringent air
quality standards for the Steeltown airshed.

The three main types of pollutants in this airshed are particulate matter, sulfur ox-
ides, and hydrocarbons. The new standards require that the company reduce its annual
emission of these pollutants by the amounts shown in Table 3.12. The board of directors
has instructed management to have the engineering staff determine how to achieve these
reductions in the most economical way.

The steelworks has two primary sources of pollution, namely, the blast furnaces for
making pig iron and the open-hearth furnaces for changing iron into steel. In both cases
the engineers have decided that the most effective types of abatement methods are (1) in-
creasing the height of the smokestacks,' (2) using filter devices (including gas traps) in
the smokestacks, and (3) including cleaner, high-grade materials among the fuels for the
furnaces. Each of these methods has a technological limit on how heavily it can be used
(e.g., a maximum feasible increase in the height of the smokestacks), but there also is
considerable flexibility for using the method at a fraction of its technological limit.

Table 3.13 shows how much emission (in millions of pounds per year) can be elim-
inated from each type of furnace by fully using any abatement method to its technologi-
cal limit. For purposes of analysis, it is assumed that each method also can be used less
fully to achieve any fraction of the emission-rate reductions shown in this table. Further-
more, the fractions can be different for blast furnaces and for open-hearth furnaces. For
either type of furnace, the emission reduction achieved by each method is not substan-
tially affected by whether the other methods also are used.

'Subsequent to this study, this particular abatement method has become a controversial one. Because its effect
is to reduce ground-level pollution by spreading emissions over a greater distance, environmental groups con-
tend that this creates more acid rain by keeping sulfur oxides in the air longer. Consequently, the U.S. Envi-
ronmental Protection Agency adopted new rules in 1985 to remove incentives for using tall smokestacks.

TABLE 3.12 Clean air standards for the Nori & Leets Co.

Required Reduction in Annual Emission Rate

Pollutant (Million Pounds)
Particulates 60
Sulfur oxides 150

Hydrocarbons 125
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TABLE 3.13 Reduction in emission rate (in millions of pounds per year) from the
maximum feasible use of an abatement method for Nori & Leets Co.

Taller Smokestacks Filters Better Fuels

Blast Open-Hearth Blast Open-Hearth Blast Open-Hearth

Pollutant Furnaces Furnaces Furnaces Furnaces Furnaces Furnaces
Particulates 12 9 25 20 17 13
Sulfur oxides 35 42 18 31 56 49
Hydrocarbons 37 53 28 24 29 20

After these data were developed, it became clear that no single method by itself could
achieve all the required reductions. On the other hand, combining all three methods at full
capacity on both types of furnaces (which would be prohibitively expensive if the com-
pany’s products are to remain competitively priced) is much more than adequate. There-
fore, the engineers concluded that they would have to use some combination of the meth-
ods, perhaps with fractional capacities, based upon the relative costs. Furthermore, because
of the differences between the blast and the open-hearth furnaces, the two types probably
should not use the same combination.

An analysis was conducted to estimate the total annual cost that would be incurred
by each abatement method. A method’s annual cost includes increased operating and main-
tenance expenses as well as reduced revenue due to any loss in the efficiency of the pro-
duction process caused by using the method. The other major cost is the start-up cost (the
initial capital outlay) required to install the method. To make this one-time cost com-
mensurable with the ongoing annual costs, the time value of money was used to calcu-
late the annual expenditure (over the expected life of the method) that would be equiva-
lent in value to this start-up cost.

This analysis led to the total annual cost estimates (in millions of dollars) given in
Table 3.14 for using the methods at their full abatement capacities. It also was determined
that the cost of a method being used at a lower level is roughly proportional to the frac-
tion of the abatement capacity given in Table 3.13 that is achieved. Thus, for any given
fraction achieved, the total annual cost would be roughly that fraction of the correspond-
ing quantity in Table 3.14.

The stage now was set to develop the general framework of the company’s plan for
pollution abatement. This plan specifies which types of abatement methods will be used
and at what fractions of their abatement capacities for (1) the blast furnaces and (2) the
open-hearth furnaces. Because of the combinatorial nature of the problem of finding a

TABLE 3.14 Total annual cost from the maximum feasible use of an abatement
method for Nori & Leets Co. ($ millions)

Abatement Method Blast Furnaces Open-Hearth Furnaces
Taller smokestacks 8 10
Filters 7 6

Better fuels 11 9
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plan that satisfies the requirements with the smallest possible cost, an OR team was formed
to solve the problem. The team adopted a linear programming approach, formulating the
model summarized next.

Formulation as a Linear Programming Problem. This problem has six decision
variables x;, j =1, 2, . . ., 6, each representing the use of one of the three abatement
methods for one of the two types of furnaces, expressed as a fraction of the abatement
capacity (so x; cannot exceed 1). The ordering of these variables is shown in Table 3.15.
Because the objective is to minimize total cost while satisfying the emission reduction re-
quirements, the data in Tables 3.12, 3.13, and 3.14 yield the following model:

Minimize Z = 8x; + 10x, + 7x3 + 6x4 + 11x5 + 9xg,
subject to the following constraints:
1. Emission reduction:

12x; + 9x, + 25x5 + 20x4 + 17x5 + 13x = 60
35x; + 42x, + 18x3 + 31x4 + 56x5 + 49x5 = 150
37x; + 53x, + 28x3 + 24x4 + 29x5 + 20x5 = 125

2. Technological limit:

x =1, forj=1,2,...,6
3. Nonnegativity:

x =0, forj=1,2,...,6.
The OR team used this model' to find a minimum-cost plan
(x1, X2, X3, X4, X5, Xg) = (1, 0.623, 0.343, 1, 0.048, 1),

with Z = 32.16 (total annual cost of $32.16 million). Sensitivity analysis then was con-
ducted to explore the effect of making possible adjustments in the air standards given in
Table 3.12, as well as to check on the effect of any inaccuracies in the cost data given in
Table 3.14. (This story is continued in Case 6.1 at the end of Chap. 6.) Next came de-
tailed planning and managerial review. Soon after, this program for controlling air pollu-
tion was fully implemented by the company, and the citizens of Steeltown breathed deep
(cleaner) sighs of relief.

'An equivalent formulation can express each decision variable in natural units for its abatement method; for ex-
ample, x; and x, could represent the number of feet that the heights of the smokestacks are increased.

TABLE 3.15 Decision variables (fraction of the maximum feasible use of an
abatement method) for Nori & Leets Co.

Abatement Method Blast Furnaces Open-Hearth Furnaces
Taller smokestacks X X2
Filters X3 X4

Better fuels Xs Xe
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Reclaiming Solid Wastes

The SAVE-IT COMPANY operates a reclamation center that collects four types of solid
waste materials and treats them so that they can be amalgamated into a salable product.
(Treating and amalgamating are separate processes.) Three different grades of this prod-
uct can be made (see the first column of Table 3.16), depending upon the mix of the ma-
terials used. Although there is some flexibility in the mix for each grade, quality standards
may specify the minimum or maximum amount allowed for the proportion of a material
in the product grade. (This proportion is the weight of the material expressed as a per-
centage of the total weight for the product grade.) For each of the two higher grades, a
fixed percentage is specified for one of the materials. These specifications are given in
Table 3.16 along with the cost of amalgamation and the selling price for each grade.

The reclamation center collects its solid waste materials from regular sources and so
is normally able to maintain a steady rate for treating them. Table 3.17 gives the quanti-
ties available for collection and treatment each week, as well as the cost of treatment, for
each type of material.

The Save-It Co. is solely owned by Green Earth, an organization devoted to dealing
with environmental issues, so Save-It’s profits are used to help support Green Earth’s ac-
tivities. Green Earth has raised contributions and grants, amounting to $30,000 per week,
to be used exclusively to cover the entire treatment cost for the solid waste materials. The
board of directors of Green Earth has instructed the management of Save-It to divide this
money among the materials in such a way that at least half of the amount available of
each material is actually collected and treated. These additional restrictions are listed in
Table 3.17.

Within the restrictions specified in Tables 3.16 and 3.17, management wants to de-
termine the amount of each product grade to produce and the exact mix of materials to
be used for each grade. The objective is to maximize the net weekly profit (total sales in-
come minus total amalgamation cost), exclusive of the fixed treatment cost of $30,000 per
week that is being covered by gifts and grants.

Formulation as a Linear Programming Problem. Before attempting to construct
a linear programming model, we must give careful consideration to the proper definition
of the decision variables. Although this definition is often obvious, it sometimes becomes

TABLE 3.16 Product data for Save-It Co.

Amalgamation Selling Price
Grade Specification Cost per Pound ($) per Pound (3)

Material 1: Not more than 30% of total
Material 2: Not less than 40% of total
A Material 3: Not more than 50% of total 3.00 8.50

Material 4: Exactly 20% of total

Material 1: Not more than 50% of total
B Material 2: Not less than 10% of total 2.50 7.00
Material 4: Exactly 10% of total

C Material 1: Not more than 70% of total 2.00 5.50
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TABLE 3.17 Solid waste materials data for the Save-It Co.

Pounds per Treatment Cost
Material Week Available per Pound (3) Additional Restrictions
1 3,000 3.00 1. For each material, at least half of the
2 2,000 6.00 pounds per week available should be
3 4,000 4.00 collected and treated.
4 1,000 5.00 2. $30,000 per week should be used to
treat these materials.

the crux of the entire formulation. After clearly identifying what information is really de-
sired and the most convenient form for conveying this information by means of decision
variables, we can develop the objective function and the constraints on the values of these
decision variables.

In this particular problem, the decisions to be made are well defined, but the appro-
priate means of conveying this information may require some thought. (Try it and see if
you first obtain the following inappropriate choice of decision variables.)

Because one set of decisions is the amount of each product grade to produce, it would
seem natural to define one set of decision variables accordingly. Proceeding tentatively
along this line, we define

y; = number of pounds of product grade i produced per week (i=A B, C).

The other set of decisions is the mix of materials for each product grade. This mix is iden-
tified by the proportion of each material in the product grade, which would suggest defin-
ing the other set of decision variables as

z;; = proportion of material j in product grade i (i=AB C;j=1,2,3,4).

However, Table 3.17 gives both the treatment cost and the availability of the materials by
quantity (pounds) rather than proportion, so it is this quantity information that needs to
be recorded in some of the constraints. For material j (j = 1, 2, 3, 4),

Number of pounds of material j used per week = z4;y4 + zg;ys + 2¢Vc.

For example, since Table 3.17 indicates that 3,000 pounds of material 1 is available per
week, one constraint in the model would be

zaYa t z1ys T zc1yc = 3,000.

Unfortunately, this is not a legitimate linear programming constraint. The expression on
the left-hand side is not a linear function because it involves products of variables. There-
fore, a linear programming model cannot be constructed with these decision variables.

Fortunately, there is another way of defining the decision variables that will fit the
linear programming format. (Do you see how to do it?) It is accomplished by merely re-
placing each product of the old decision variables by a single variable! In other words,
define

Xij = ZijYi (fori=A B, C;j=1,2,3,4)
= number of pounds of material j allocated to product grade i per week,
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and then we let the x;; be the decision variables. Combining the x;; in different ways yields
the following quantities needed in the model (fori = A, B, C;j =1, 2, 3, 4).

X;1 + xn + x;3 + x;4 = number of pounds of product grade i produced per week.
X4; + xp; + x¢; = number of pounds of material j used per week.

Xij

X1 T Xpp T X3 X

= proportion of material j in product grade i.

The fact that this last expression is a nonlinear function does not cause a complica-
tion. For example, consider the first specification for product grade A in Table 3.16 (the
proportion of material 1 should not exceed 30 percent). This restriction gives the nonlin-
ear constraint

Z¥ =03.

Xa1 T Xap T Xa3 T Xag

However, multiplying through both sides of this inequality by the denominator yields an
equivalent constraint

Xa1 = 0.3(x4; + x40 + Xa3 + Xa4),
SO
0.7)CA1 - O.3XA2 - O.3XA3 - O.3XA4 = O,

which is a legitimate linear programming constraint.

With this adjustment, the three quantities given above lead directly to all the functional
constraints of the model. The objective function is based on management’s objective of max-
imizing net weekly profit (total sales income minus total amalgamation cost) from the three
product grades. Thus, for each product grade, the profit per pound is obtained by subtract-
ing the amalgamation cost given in the third column of Table 3.16 from the selling price in
the fourth column. These differences provide the coefficients for the objective function.

Therefore, the complete linear programming model is

Maximize Z= S'S(XAl + XA2 + XA3 + )CA4) + 4.5(XB1 + XB2 + XB3 + )CB4)
+ 3.5(XC1 + X2 + Xc3 + xC4),

subject to the following constraints:

1. Mixture specifications (second column of Table 3.16):

Xa1 = 0.3(x4; + x40 T X453 + X44) (grade A, material 1)
Xao = 0.4(x 1 + X0 + Xa3 T Xa4) (grade A, material 2)
Xa3 = 0.5(x41 + x40 + X453 + X44) (grade A, material 3)
Xaa = 0.2(x41 + X0 + X453 T Xa4) (grade A, material 4).
xg1 = 0.5(xg; + xpy + xp3 + xpa) (grade B, material 1)
Xgo = 0.1(xg; + X2 + xp3 + Xp4) (grade B, material 2)
Xpa = 0.1(xg; + x> + xp3 + Xp4) (grade B, material 4).

Xe1 = 0.7(xc1 + X0 + X3 + xcs) (grade C, material 1).
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2. Availability of materials (second column of Table 3.17):

Xg1 T Xp1 t X1 = 3,000 (material 1)

Xqno T Xgo + X = 2,000 (material 2)
Xg3 T Xp3 + x5 = 4,000 (material 3)
Xqs4 T Xgy + xcs = 1,000 (material 4).

3. Restrictions on amounts treated (right side of Table 3.17):

Xq1 t xg1 + xcp = 1,500 (material 1)

Xgo T Xpy + X = 1,000 (material 2)
XA3 + XB3 + X3 = 2,000 (material 3)
Xgq T Xps + xcu = 500 (material 4).

4. Restriction on treatment cost (right side of Table 3.17):

3(xa1 + xp1 T Xc1) + 6(xa2 + xpr + x2) + 4(xaz + X3 + xc3)
+ 5(xA4 + XBa + XC4) = 30,000

5. Nonnegativity constraints:
.xA]ZO, xA220, ey )Cc420.

This formulation completes the model, except that the constraints for the mixture
specifications need to be rewritten in the proper form for a linear programming model by
bringing all variables to the left-hand side and combining terms, as follows:

Mixture specifications:

0.7x41 — 0.3x40 — 0.3x43 — 03x44, =0 (grade A, material 1)
—0.4x,;, + 0.6x45 — 0.4x43 — 0.4x44, =0 (grade A, material 2)
—0.5x41 — 0.5x4 + 0.5x43 — 0.5x44 = 0 (grade A, material 3)
—0.2x41 — 0.2x40 — 0.2x43 + 0.8x44 =0 (grade A, material 4).

0.5x5; — 0.5x5, — 0.5x53 — 0.5x5, = 0 (grade B, material 1)
—0.1xp; + 0.9x5, — 0.1xzz — 0.1xp, = 0 (grade B, material 2)
—0.1xg; — 0.1xp>, — 0.1xp3 + 0.9x54 = 0 (grade B, material 4).

0.3xc; — 0.7xc — 0.7xc3 — 0.7xc4 = 0 (grade C, material 1).

An optimal solution for this model is shown in Table 3.18, and then these x;; values
are used to calculate the other quantities of interest given in the table. The resulting op-
timal value of the objective function is Z = 35,108.90 (a total weekly profit of $35,108.90).

The Save-It Co. problem is an example of a blending problem. The objective for
a blending problem is to find the best blend of ingredients into final products to meet
certain specifications. Some of the earliest applications of linear programming were
for gasoline blending, where petroleum ingredients were blended to obtain various
grades of gasoline. The award-winning OR study at Texaco discussed at the end of
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TABLE 3.18 Optimal solution for the Save-It Co. problem

Pounds Used per Week
Material
Number of Pounds
Grade 1 2 3 4 Produced per Week
A 412.3 859.6 447 .4 429.8 2149
(19.2%) (40%) (20.8%) (20%)
B 2587.7 517.5 1552.6 517.5 5175
(50%) (10%) (30%) (10%)
C 0 0 0 0 0
Total 3000 1377 2000 947

Sec. 2.5 dealt with gasoline blending (although Texaco used a nonlinear programming
model). Other blending problems involve such final products as steel, fertilizer, and
animal feed.

Personnel Scheduling

UNION AIRWAYS is adding more flights to and from its hub airport, and so it needs to
hire additional customer service agents. However, it is not clear just how many more
should be hired. Management recognizes the need for cost control while also consistently
providing a satisfactory level of service to customers. Therefore, an OR team is studying
how to schedule the agents to provide satisfactory service with the smallest personnel cost.

Based on the new schedule of flights, an analysis has been made of the minimum
number of customer service agents that need to be on duty at different times of the day
to provide a satisfactory level of service. The rightmost column of Table 3.19 shows the
number of agents needed for the time periods given in the first column. The other entries

TABLE 3.19 Data for the Union Airways personnel scheduling problem

Time Periods Covered
Shift
Minimum Number of

Time Period 1 2 3 4 5 Agents Needed
6:00 A.m. to 8:00 A.m. v 48

8:00 A.m. to 10:00 A.m. v (4 79

10:00 A.m. to noon v v 65

Noon to 2:00 p.m. v (4 (%4 87

2:00 p.m. to 4:00 p.m. (4 v 64

4:00 p.m. to 6:00 p.m. v (%4 73

6:00 p.m. to 8:00 p.m. v v 82

8:00 p.m. to 10:00 p.m. v 43

10:00 p.m. to midnight v v 52
Midnight to 6:00 A.m. v 15

Daily cost per agent $170 $160 $175 $180 $195
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in this table reflect one of the provisions in the company’s current contract with the union
that represents the customer service agents. The provision is that each agent work an
8-hour shift 5 days per week, and the authorized shifts are

Shift 1:  6:00 a.m. to 2:00 p.m.
Shift 2:  8:00 a.m. to 4:00 p.m.
Shift 3: Noon to 8:00 p.m.
Shift 4:  4:00 p.M. to midnight
Shift 5: 10:00 p.m. to 6:00 A.M.

Checkmarks in the main body of Table 3.19 show the hours covered by the respective
shifts. Because some shifts are less desirable than others, the wages specified in the con-
tract differ by shift. For each shift, the daily compensation (including benefits) for each
agent is shown in the bottom row. The problem is to determine how many agents should
be assigned to the respective shifts each day to minimize the fotal personnel cost for agents,
based on this bottom row, while meeting (or surpassing) the service requirements given
in the rightmost column.

Formulation as a Linear Programming Problem. Linear programming problems
always involve finding the best mix of activity levels. The key to formulating this partic-
ular problem is to recognize the nature of the activities.

Activities correspond to shifts, where the level of each activity is the number of agents
assigned to that shift. Thus, this problem involves finding the best mix of shift sizes. Since the
decision variables always are the levels of the activities, the five decision variables here are

x; = number of agents assigned to shift j, forj=1,2,3,4,5.

The main restrictions on the values of these decision variables are that the number of
agents working during each time period must satisfy the minimum requirement given in
the rightmost column of Table 3.19. For example, for 2:00 p.m. to 4:00 p.Mm., the total num-
ber of agents assigned to the shifts that cover this time period (shifts 2 and 3) must be at
least 64, so

X2+X3264

is the functional constraint for this time period.
Because the objective is to minimize the total cost of the agents assigned to the five
shifts, the coefficients in the objective function are given by the last row of Table 3.19.
Therefore, the complete linear programming model is

Minimize Z = 170x; + 160x, + 175x5 + 180x4 + 195xs,

subject to
X =48 (6-8 A.M.)
x; + x =179 (8—10 A.M.)
xX; + x =65 (10 A.M. to noon)
X; + X, + x3 = 87 (Noon-2 pr.m.)
X> + X3 =64 (2—4 P.M.)

X3 T x4 =173 (4—6 P.M.)
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X3 T x4 =82 (6—8 P.M.)
X4 =43 (8-10 r.m.)
x4 + x5 =52 (10 p.M.—midnight)
xs =15 (Midnight-6 A.m.)

and
x; =0, forj=1,2,3,4,5.

With a keen eye, you might have noticed that the third constraint, x; + x, = 65, ac-
tually is not necessary because the second constraint, x; + x, = 79, ensures that x; + x,
will be larger than 65. Thus, x; + x, = 65 is a redundant constraint that can be deleted.
Similarly, the sixth constraint, x3 + x4 = 73, also is a redundant constraint because the
seventh constraint is x3 + x4 = 82. (In fact, three of the nonnegativity constraints—x; = 0,
x4 = 0, x5 = 0—also are redundant constraints because of the first, eighth, and tenth func-
tional constraints: x; = 48, x4 = 43, and x5 = 15. However, no computational advantage
is gained by deleting these three nonnegativity constraints.)

The optimal solution for this model is (x;, X», X3, X4, X5) = (48, 31, 39, 43, 15). This
yields Z = 30,610, that is, a total daily personnel cost of $30,610.

This problem is an example where the divisibility assumption of linear programming
actually is not satisfied. The number of agents assigned to each shift needs to be an inte-
ger. Strictly speaking, the model should have an additional constraint for each decision
variable specifying that the variable must have an integer value. Adding these constraints
would convert the linear programming model to an integer programming model (the topic
of Chap. 12).

Without these constraints, the optimal solution given above turned out to have inte-
ger values anyway, so no harm was done by not including the constraints. (The form of
the functional constraints made this outcome a likely one.) If some of the variables had
turned out to be noninteger, the easiest approach would have been to round up to integer
values. (Rounding up is feasible for this example because all the functional constraints
are in = form with nonnegative coefficients.) Rounding up does not ensure obtaining an
optimal solution for the integer programming model, but the error introduced by round-
ing up such large numbers would be negligible for most practical situations. Alternatively,
integer programming techniques described in Chap. 12 could be used to solve exactly for
an optimal solution with integer values.

Section 3.5 includes a case study of how United Airlines used linear programming to
develop a personnel scheduling system on a vastly larger scale than this example.

Distributing Goods through a Distribution Network

The Problem. The DISTRIBUTION UNLIMITED CO. will be producing the same
new product at two different factories, and then the product must be shipped to two ware-
houses, where either factory can supply either warehouse. The distribution network avail-
able for shipping this product is shown in Fig. 3.13, where F1 and F2 are the two facto-
ries, W1 and W2 are the two warehouses, and DC is a distribution center. The amounts
to be shipped from F1 and F2 are shown to their left, and the amounts to be received at
W1 and W2 are shown to their right. Each arrow represents a feasible shipping lane. Thus,
F1 can ship directly to W1 and has three possible routes (F1 — DC — W2, F1 - F2 —
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DC — W2, and F1 - W1 — W2) for shipping to W2. Factory F2 has just one route to
W2 (F2 - DC — W2) and one to W1 (F2 — DC — W2 — WI1). The cost per unit
shipped through each shipping lane is shown next to the arrow. Also shown next to F1 —
F2 and DC — W2 are the maximum amounts that can be shipped through these lanes.
The other lanes have sufficient shipping capacity to handle everything these factories can
send.

The decision to be made concerns how much to ship through each shipping lane. The
objective is to minimize the total shipping cost.

Formulation as a Linear Programming Problem. With seven shipping lanes, we
need seven decision variables (Xp_p2, XFi1-DCs» XF1-W 1> XF2-DCs> XDC-W2> XW1-Ww2> Xwa-w1) tO
represent the amounts shipped through the respective lanes.

There are several restrictions on the values of these variables. In addition to the usual
nonnegativity constraints, there are two upper-bound constraints, xg;.p» = 10 and
Xpc-w2 = 80, imposed by the limited shipping capacities for the two lanes, F1 — F2 and
DC — W2. All the other restrictions arise from five net flow constraints, one for each of
the five locations. These constraints have the following form.

Net flow constraint for each location:
Amount shipped out — amount shipped in = required amount.

As indicated in Fig. 3.13, these required amounts are 50 for F1, 40 for F2, —30 for W1,
and —60 for W2.

FIGURE 3.13
The distribution network for
Distribution Unlimited Co.

$900/unit 30 units

needed

50 units F1
produced

$200/unit | 10 units max. $200/unit $300/unit

40 units
produced

60 units
needed
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What is the required amount for DC? All the units produced at the factories are ulti-
mately needed at the warehouses, so any units shipped from the factories to the distribu-
tion center should be forwarded to the warehouses. Therefore, the total amount shipped
from the distribution center to the warehouses should equal the total amount shipped from
the factories to the distribution center. In other words, the difference of these two ship-
ping amounts (the required amount for the net flow constraint) should be zero.

Since the objective is to minimize the total shipping cost, the coefficients for the ob-
jective function come directly from the unit shipping costs given in Fig. 3.13. Therefore,
by using money units of hundreds of dollars in this objective function, the complete lin-
ear programming model is

Minimize Z= 2xF17F2 + 4xF]*DC + 9xF17W1 + 3xF2*DC + XpC-w2
+ 3xwiwz T 2xwawis

subject to the following constraints:

1. Net flow constraints:
Xp1-r2 T XFipc 1 Xr1wi = 50 (factory 1)
40 (factory 2)

XF1-F2 + Xp2-pC

— XF1-DC — Xp2-DC + XDC-W2 = 0 (distribution
center)

— XF1-W1 + Xwi-w2 — Xwa2-wi1 — _30 (Warehouse 1)

— XpC-w2 — Xwil-w2 + Xw2-w1 — _60 (Warehouse 2)
2. Upper-bound constraints:

Xp1p2 = 10, Xpc-wz = 80
3. Nonnegativity constraints:
Xp1p2 = 0, Xp1-nc = 0, Xpr-wi = 0, Xp2-pe = 0, Xpce-wz = 0,

Xwi-wz = 0, Xwo-wi = 0.

You will see this problem again in Sec. 9.6, where we focus on linear programming
problems of this type (called the minimum cost flow problem). In Sec. 9.7, we will solve
for its optimal solution:

Xp1p2 = 0, Xr1-pc = 40, Xpi-wi = 10, Xp2-pc = 40, Xpc-wz = 80,
Xwi-wz = 0, Xwo-wi = 20.

The resulting total shipping cost is $49,000.
You also will see a case study involving a much larger problem of this same type at
the end of the next section.

SOME CASE STUDIES

To give you a better perspective about the great impact linear programming can have, we
now present three case studies of real applications. Each of these is a classic application,
initiated in the early 1980s, that has come to be regarded as a standard of excellence for
future applications of linear programming. The first one will bear some strong similari-
ties to the Wyndor Glass Co. problem, but on a realistic scale. Similarly, the second and
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third are realistic versions of the last two examples presented in the preceding section (the
Union Airways and Distribution Unlimited examples).

Choosing the Product Mix at Ponderosa Industrial’

Until its sale in 1988, PONDEROSA INDUSTRIAL was a plywood manufacturer based
in Anhuac, Chihuahua, that supplied 25 percent of the plywood in Mexico. Like any ply-
wood manufacturer, Ponderosa’s many products were differentiated by thickness and by
the quality of the wood. The plywood market in Mexico is competitive, so the market es-
tablishes the prices of the products. The prices can fluctuate considerably from month to
month, and there may be great differences between the products in their price movements
from even one month to the next. As a result, each product’s contribution to Ponderosa’s
total profit was continually varying, and in different ways for different products.

Because of its pronounced effect on profits, a critical issue facing management was
the choice of product mix—how much to produce of each product—on a monthly basis.
This choice was a very complex one, since it had to take into account the current amounts
available of various resources needed to produce the products. The most important re-
sources were logs in four quality categories and production capacities for both the press-
ing operation and the polishing operation.

Beginning in 1980, linear programming was used on a monthly basis to guide the
product-mix decision. The linear programming model had an objective of maximizing the
total profit from all products. The model’s constraints included the various resource con-
straints as well as other relevant restrictions such as the minimum amount of a product
that must be provided to regular customers and the maximum amount that can be sold.
(To aid planning for the procurement of raw materials, the model also considered the im-
pact of the product-mix decision for the upcoming month on production in the following
month.) The model had 90 decision variables and 45 functional constraints.

This model was used each month to find the product mix for the upcoming month
that would be optimal if the estimated values of the various parameters of the model prove
to be accurate. However, since some of the parameter values could change quickly (e.g.,
the unit profits of the products), sensitivity analysis was done to determine the effect if
the estimated values turned out to be inaccurate. The results indicated when adjustments
in the product mix should be made (if time permitted) as unanticipated market changes
occurred that affected the price (and so the unit profit) of certain products.

One key decision each month concerned the number of logs in each of the four qual-
ity categories to purchase. The amounts available for the upcoming month’s production
actually were parameters of the model. Therefore, after the purchase decision was made
and then the corresponding optimal product mix was determined, postoptimality analysis
was conducted to investigate the effect of adjusting the purchase decision. For example,
it is very easy with linear programming to check what the impact on total profit would
be if a quick purchase were to be made of additional logs in a certain quality category to
enable increasing production for the upcoming month.

Ponderosa’s linear programming system was interactive, so management received an
immediate response to its “what-if questions” about the impact of encountering parame-

'A. Roy, E. E. DeFalomir, and L. Lasdon: “An Optimization-Based Decision Support System for a Product Mix
Problem,” Interfaces, 12(2):26-33, April 1982.
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ter values that differ from those in the original model. What if a quick purchase of logs
of a certain kind were made? What if product prices were to fluctuate in a certain way?
A variety of such scenarios can be investigated. Management effectively used this power
to reach better decisions than the “optimal” product mix from the original model.

The impact of linear programming at Ponderosa was reported to be “tremendous.” It
led to a dramatic shift in the types of plywood products emphasized by the company. The
improved product-mix decisions were credited with increasing the overall profitability of
the company by 20 percent. Other contributions of linear programming included better
utilization of raw material, capital equipment, and personnel.

Two factors helped make this application of linear programming so successful. One
factor is that a natural language financial planning system was interfaced with the codes
for finding an optimal solution for the linear programming model. Using natural language
rather than mathematical symbols to display the components of the linear programming
model and its output made the process understandable and meaningful for the managers
making the product-mix decisions. Reporting to management in the language of managers
is necessary for the successful application of linear programming.

The other factor was that the linear programming system used was interactive. As
mentioned earlier, after an optimal solution was obtained for one version of the model,
this feature enabled managers to ask a variety of “what-if” questions and receive imme-
diate responses. Better decisions frequently were reached by exploring other plausible sce-
narios, and this process also gave managers more confidence that their decision would
perform well under most foreseeable circumstances.

In any application, this ability to respond quickly to management’s needs and queries
through postoptimality analysis (whether interactive or not) is a vital part of a linear pro-
gramming study.

Personnel Scheduling at United Airlines’

Despite unprecedented industry competition in 1983 and 1984, UNITED AIRLINES man-
aged to achieve substantial growth with service to 48 new airports. In 1984, it became the
only airline with service to cities in all 50 states. Its 1984 operating profit reached $564
million, with revenues of $6.2 billion, an increase of 6 percent over 1983, while costs
grew by less than 2 percent.

Cost control is essential to competing successfully in the airline industry. In 1982,
upper management of United Airlines initiated an OR study of its personnel scheduling
as part of the cost control measures associated with the airline’s 1983—-1984 expansion.
The goal was to schedule personnel at the airline’s reservations offices and airports so as
to minimize the cost of providing the necessary service to customers.

At the time, United Airlines employed over 4,000 reservations sales representatives
and support personnel at its 11 reservations offices and about 1,000 customer service
agents at its 10 largest airports. Some were part-time, working shifts from 2 to 8 hours;
most were full-time, working 8- or 10-hour-shifts. Shifts start at several different times.
Each reservations office was open (by telephone) 24 hours a day, as was each of the ma-
jor airports. However, the number of employees needed at each location to provide the re-

'T. J. Holloran and J. E. Bryn, “United Airlines Station Manpower Planning System,” Interfaces, 16(1): 39-50,
Jan.—Feb. 1986.
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quired level of service varied greatly during the 24-hour day, and might fluctuate consid-
erably from one half-hour to the next.

Trying to design the work schedules for all the employees at a given location to meet
these service requirements most efficiently is a nightmare of combinatorial considerations.
Once an employee begins working, he or she will be there continuously for the entire shift
(2 to 10 hours, depending on the employee), except for either a meal break or short rest
breaks every 2 hours. Given the minimum number of employees needed on duty for each
half-hour interval over a 24-hour day (where these requirements change from day to day
over a 7-day week), how many employees of each shift length should begin work at what
start time over each 24-hour day of a 7-day week? Fortunately, linear programming thrives
on such combinatorial nightmares.

Actually, several OR techniques described in this book were used in the computerized
planning system developed to attack this problem. Both forecasting (Chap. 20) and queu-
ing theory (Chaps. 17 and 18) were used to determine the minimum number of employees
needed on duty for each half-hour interval. Integer programming (Chap. 12) was used to
determine the times of day at which shifts would be allowed to start. However, the core of
the planning system was linear programming, which did all the actual scheduling to pro-
vide the needed service with the smallest possible labor cost. A complete work schedule
was developed for the first full week of a month, and then it was reused for the remainder
of the month. This process was repeated each month to reflect changing conditions.

Although the details about the linear programming model have not been published,
it is clear that the basic approach used is the one illustrated by the Union Airways exam-
ple of personnel scheduling in Sec. 3.4. The objective function being minimized repre-
sents the total personnel cost for the location being scheduled. The main functional con-
straints require that the number of employees on duty during each time period will not
fall below minimum acceptable levels.

However, the Union Airways example has only five decision variables. By contrast,
the United Airlines model for some locations has over 20,000 decision variables! The dif-
ference is that a real application must consider myriad important details that can be ig-
nored in a textbook example. For example, the United Airlines model takes into account
such things as the meal and break assignment times for each employee scheduled, differ-
ences in shift lengths for different employees, and days off over a weekly schedule, among
other scheduling details.

This application of linear programming was reported to have had “an overwhelming
impact not only on United management and members of the manpower planning group, but
also for many who had never before heard of management science (OR) or mathematical
modeling.” It earned rave reviews from upper management, operating managers, and af-
fected employees alike. For example, one manager described the scheduling system as

Magical, . . . just as the [customer] lines begin to build, someone shows up for work, and
just as you begin to think you’re overstaffed, people start going home.’

In more tangible terms, this application was credited with saving United Airlines more
than $6 million annually in just direct salary and benefit costs. Other benefits included
improved customer service and reduced need for support staff.

"Holloran and Bryn, “United Airlines Station Manpower Planning System,” p. 49.
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After some updating in the early 1990s, the system is providing similar benefits
today.

One factor that helped make this application of linear programming so successful was
“the support of operational managers and their staffs.” This was a lesson learned by ex-
perience, because the OR team initially failed to establish a good line of communication
with the operating managers, who then resisted the team’s initial recommendations. The
team leaders described their mistake as follows:

The cardinal rule for earning the trust and respect of operating managers and support
staffs—getting them involved in the development process”—had been violated.'

The team then worked much more closely with the operating managers—with outstand-
ing results.

Planning Supply, Distribution, and Marketing
at Citgo Petroleum Corporation?

CITGO PETROLEUM CORPORATION specializes in refining and marketing petroleum.
In the mid-1980s, it had annual sales of several billion dollars, ranking it among the 150
largest industrial companies in the United States.

After several years of financial losses, Citgo was acquired in 1983 by Southland Cor-
poration, the owner of the 7-Eleven convenience store chain (whose sales include 2 bil-
lion gallons of quality motor fuels annually). To turn Citgo’s financial losses around, South-
land created a task force composed of Southland personnel, Citgo personnel, and outside
consultants. An eminent OR consultant was appointed director of the task force to report
directly to both the president of Citgo and the chairman of the board of Southland.

During 1984 and 1985, this task force applied various OR techniques (as well as in-
formation systems technologies) throughout the corporation. It was reported that these OR
applications “have changed the way Citgo does business and resulted in approximately
$70 million per year profit improvement.”

The two most important applications were both linear programming systems that pro-
vided management with powerful planning support. One, called the refinery LP system,
led to great improvements in refinery yield, substantial reductions in the cost of labor, and
other important cost savings. This system contributed approximately $50 million to profit
improvement in 1985. (See the end of Sec. 2.4 for discussion of the key role that model
validation played in the development of this system.)

However, we will focus here on the other linear programming system, called the sup-
ply, distribution, and marketing modeling system (or just the SDM system), that Citgo is
continuing to use. The SDM system is particularly interesting because it is based on a
special kind of linear programming model that uses networks, just like the model for the
Distribution Unlimited example presented at the end of Sec. 3.4. The model for the SDM
system provides a representation of Citgo’s entire marketing and distribution network.

At the time the task force conducted its OR study, Citgo owned or leased 36 product
storage terminals which were supplied through five distribution center terminals via a dis-

bid, p. 47.
?See the references cited in footnote 2 on p. 10.

3See p. 4 of the second reference cited in footnote 2 on p. 10.
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tribution network of pipelines, tankers, and barges. Citgo also sold product from over 350
exchange terminals that were shared with other petroleum marketers. To supply its cus-
tomers, product might be acquired by Citgo from its refinery in Lake Charles, LA, or from
spot purchases on one of five major spot markets, product exchanges, and trades with
other industry refiners. These product acquisition decisions were made daily. However,
the time from such a decision until the product reached the intended customers could be
as long as 11 weeks. Therefore, the linear programming model used an 11-week planning
horizon.

The SDM system is used to coordinate the supply, distribution, and marketing of each
of Citgo’s major products (originally four grades of motor fuel and No. 2 fuel oil) through-
out the United States. Management uses the system to make decisions such as where to
sell, what price to charge, where to buy or trade, how much to buy or trade, how much
to hold in inventory, and how much to ship by each mode of transportation. Linear pro-
gramming guides these decisions and when to implement them so as to minimize total
cost or maximize total profit. The SDM system also is used in “what-if” sessions, where
management asks what-if questions about scenarios that differ from those assumed in the
original model.

The linear programming model in the SDM system has the same form as the model
for the Distribution Unlimited example presented at the end of Sec. 3.4. In fact, both mod-
els fit an important special kind of linear programming problem, called the minimum cost
flow problem, that will be discussed in Sec. 9.6. The main functional constraints for such
models are equality constraints, where each one prescribes what the net flow of goods
out of a specific location must be.

The Distribution Unlimited model has just seven decision variables and five equality
constraints. By contrast, the Citgo model for each major product has about 15,000 deci-
sion variables and 3,000 equality constraints!

At the end of Sec. 2.1, we described the important role that data collection and data
verification played in developing the Citgo models. With such huge models, a massive
amount of data must be gathered to determine all the parameter values. A state-of-the-art
management database system was developed for this purpose. Before using the data, a
preloader program was used to check for data errors and inconsistencies. The importance
of doing so was brought forcefully home to the task force when, as mentioned in Sec. 2.1,
the initial run of the preloader program generated a paper log of error messages an inch
thick! It was clear that the data collection process needed to be thoroughly debugged to
help ensure the validity of the models.

The SDM linear programming system has greatly improved the efficiency of Citgo’s
supply, distribution, and marketing operations, enabling a huge reduction in product in-
ventory with no drop in service levels. During its first year, the value of petroleum prod-
ucts held in inventory was reduced by $116.5 million. This huge reduction in capital tied
up in carrying inventory resulted in saving about $14 million annually in interest expenses
for borrowed capital, adding $14 million to Citgo’s annual profits. Improvements in co-
ordination, pricing, and purchasing decisions have been estimated to add at least another
$2.5 million to annual profits. Many indirect benefits also are attributed to this applica-
tion of linear programming, including improved data, better pricing strategies, and elim-
ination of unnecessary product terminals, as well as improved communication and coor-
dination between supply, distribution, marketing, and refinery groups.
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Some of the factors that contributed to the success of this OR study are the same as
for the two preceding case studies. Like Ponderosa Industrial, one factor was developing
output reports in the language of managers to really meet their needs. These output re-
ports are designed to be easy for managers to understand and use, and they address the
issues that are important to management. Also like Ponderosa, another factor was enabling
management to respond quickly to the dynamics of the industry by using the linear pro-
gramming system extensively in “what-if” sessions. As in so many applications of linear
programming, postoptimality analysis proved more important than the initial optimal so-
lution obtained for one version of the model.

Much as in the United Airlines application, another factor was the enthusiastic sup-
port of operational managers during the development and implementation of this linear
programming system.

However, the most important factor was the unlimited support provided to the task
force by top management, ranging right up to the chief executive officer and the chair-
man of the board of Citgo’s parent company, Southland Corporation. As mentioned ear-
lier, the director of the task force (an eminent OR consultant) reported directly to both the
president of Citgo and the chairman of the board of Southland. This backing by top man-
agement included strong organizational and financial support.

The organizational support took a variety of forms. One example was the creation
and staffing of the position of senior vice-president of operations coordination to evalu-
ate and coordinate recommendations based on the models which spanned organizational
boundaries.

When discussing both this linear programming system and other OR applications im-
plemented by the task force, team members described the financial support of top man-
agement as follows:

The total cost of the systems implemented, $20 million to $30 million, was the greatest
obstacle to this project. However, because of the information explosion in the petroleum
industry, top management realized that numerous information systems were essential to
gather, store, and analyze data. The incremental cost of adding management science (OR)
technologies to these computers and systems was small, in fact very small in light of the
enormous benefits they provided.'

DISPLAYING AND SOLVING LINEAR PROGRAMMING MODELS
ON A SPREADSHEET

Spreadsheet software, such as Excel, is a popular tool for analyzing and solving small lin-
ear programming problems. The main features of a linear programming model, including
all its parameters, can be easily entered onto a spreadsheet. However, spreadsheet soft-
ware can do much more than just display data. If we include some additional informa-
tion, the spreadsheet can be used to quickly analyze potential solutions. For example, a
potential solution can be checked to see if it is feasible and what Z value (profit or cost)
it achieves. Much of the power of the spreadsheet lies in its ability to immediately see the
results of any changes made in the solution.

In addition, the Excel Solver can quickly apply the simplex method to find an opti-
mal solution for the model.

bid, p. 21.
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To illustrate this process, we now return to the Wyndor example introduced in
Sec. 3.1.

Displaying the Model on a Spreadsheet

After expressing profits in units of thousands of dollars, Table 3.1 in Sec. 3.1 gives all the
parameters of the model for the Wyndor problem. Figure 3.14 shows the necessary addi-
tions to this table for an Excel spreadsheet. In particular, a row is added (row 9, labeled
“Solution”) to store the values of the decision variables. Next, a column is added (column
E, labeled “Totals”). For each functional constraint, the number in column E is the nu-
merical value of the left-hand side of that constraint. Recall that the left-hand side repre-
sents the actual amount of the resource used, given the values of the decision variables in
row 9. For example, for the Plant 3 constraint in row 7, the amount of this resource used
(in hours of production time per week) is

Production time used in Plant 3 = 3x; + 2x,.
In the language of Excel, the equivalent equation for the number in cell E7 is
E7 = C7*C9 + D7*D9.

Notice that this equation involves the sum of two products. There is a function in Ex-
cel, called SUMPRODUCT, that will sum up the product of each of the individual terms
in two different ranges of cells. For instance, SUMPRODUCT(C7:D7,C9:D9) takes each
of the individual terms in the range C7:D7, multiplies them by the corresponding term in
the range C9:D9, and then sums up these individual products, just as shown in the above
equation. Although optional with such short equations, this function is especially handy
as a shortcut for entering longer linear programming equations.

Next, = signs are entered in cells F5, F6, and F7 to indicate the form of the functional
constraints. (When using a trial-and-error approach, the spreadsheet still will allow you to
enter infeasible trial solutions that violate the = signs, but these signs serve as a reminder
to reject such trial solutions if no changes are made in the numbers in column G.)

FIGURE 3.14

The spreadsheet for the
Wyndor problem before
using the Excel Solver, so the
values of the decision
variables and the objective
function are just entered as
zeros.

A B C | D E F G

1 |Wyndor Glass Co. Product-Mix Problem

2

3 Hours Used per Unit Produced Hours

4 Doors Windows Totals Available

5 Plant 1 1 0 0 = 4

6 Plant 2 0 2 0 = 12

7 Plant 3 3 2 0 =< 18

8 Unit Profit ($thousands) 3 5 (o}

9 Solution 0 0

] E

S |=SUMPRODUCT(CS:DS,C9:D9)
6 =SUMPRODUCT(C6:D6,C9:D9)
7 =SUMPRODUCT(C7:D7,C9:D9)
& =SUMPRODUCT(Cg&:D8,C9:D9)
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Finally, the value of the objective function is entered in cell E8. Much like the other
values in column E, it is the sum of products. The equation for cell E§ is =SUMPROD-
UCT(C8:D8,C9:D9). The lower right-hand side of Fig. 3.14 shows all the formulas that
need to be entered in the “Totals” column (column E) for the Wyndor problem.

Once the model is entered in this spreadsheet format, it is easy to analyze any po-
tential solution. When values for the decision variables are entered in the spreadsheet, the
“Totals” column immediately calculates the total amount of each resource used, as well
as the total profit. Hence, by comparing column E with column G, it can be seen imme-
diately whether the potential solution is feasible. If so, cell E§ shows how much profit it
would generate. One approach to trying to solve a linear programming model would be
trial and error, using the spreadsheet to analyze a variety of solutions. However, you will
see next how Excel also can be used to quickly find an optimal solution.

Using the Excel Solver to Solve the Model

Excel includes a tool called Solver that uses the simplex method to find an optimal solu-
tion. (A more powerful version of Solver, called Premium Solver, also is available in your
OR Courseware.) Before using Solver, all the following components of the model need
to be included on the spreadsheet:

1. Each decision variable
2. The objective function and its value
3. Each functional constraint

The spreadsheet layout shown in Fig. 3.14 includes all these components. The parame-
ters for the functional constraints are in rows 5, 6, and 7, and the coefficients for the ob-
jective function are in row 8. The values of the decision variables are in cells C9 and D9,
and the value of the objective function is in cell E8. Since we don’t know what the val-
ues of the decision variables should be, they are just entered as zeros. The Solver will
then change these to the optimal values after solving the problem.

The Solver can be started by choosing “Solver” in the Tools menu. The Solver dia-
logue box is shown in Fig. 3.15. The “Target Cell” is the cell containing the value of the
objective function, while the “Changing Cells” are the cells containing the values of the
decision variables.

Before the Solver can apply the simplex method, it needs to know exactly where each
component of the model is located on the spreadsheet. You can either type in the cell ad-
dresses or click on them. Since the target cell is cell E8 and the changing cells are in the
range C9:D9, these addresses are entered into the Solver dialogue box as shown in Fig. 3.15.
(Excel then automatically enters the dollar signs shown in the figure to fix these addresses.)
Since the goal is to maximize the objective function, “Max” also has been selected.

Next, the addresses for the functional constraints need to be added. This is done by
clicking on the “Add . . .” button on the Solver dialogue box. This brings up the “Add
Constraint” dialogue box shown in Fig. 3.16. The location of the values of the left-hand
sides and the right-hand sides of the functional constraints are specified in this dialogue
box. The cells E5 through E7 all need to be less than or equal to the corresponding cells
in G5 through G7. There also is a menu to choose between <=, =, or >=, so <= has
been chosen for these constraints. (This choice is needed even though = signs were pre-
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FIGURE 3.15

The Solver dialogue box after
specifying which cells in Fig.
3.14 contain the values of
the objective function and
the decision variables, plus
indicating that the objective
function is to be maximized.

Solver Parameters
Set Target Cell: [$E$8 %
Equal To: @ Max (O Min (O Yalue of; Close

By Changing Cells:
[$c$o:$089

‘Subject to the Constraints:

i

e

Guess

Options

- Add

Change
Reset All
Delete

d
e

viously entered in column F of the spreadsheet because Solver uses only the functional
constraints that are specified with the Add Constraint dialogue box.)

If there were more functional constraints to add, you would click on Add to bring up
a new Add Constraint dialogue box. However, since there are no more in this example,
the next step is to click on OK to go back to the Solver dialogue box.

The Solver dialogue box now summarizes the complete model (see Fig. 3.17) in terms
of the spreadsheet in Fig. 3.14. However, before asking Solver to solve the model, one
more step should be taken. Clicking on the Options . . . button brings up the dialogue
box shown in Fig. 3.18. This box allows you to specify a number of options about how
the problem will be solved. The most important of these are the Assume Linear Model
option and the Assume Non-Negative option. Be sure that both options are checked as
shown in the figure. This tells Solver that the problem is a /inear programming problem
with nonnegativity constraints for all the decision variables, and that the simplex method

FIGURE 3.16

The Add Constraint dialogue
box after specifying that cells
E5, E6, and E7 in Fig. 3.14
are required to be less than
or equal to cells G5, G6, and
G7, respectively.

Add Constraint

Cell Reference: Constraint:

[$E$5.3E47 md | <= :| [=3G$5:4G%7

[ Cancel [

Add |




FIGURE 3.17

The Solver dialogue box after
specifying the entire model
in terms of the spreadsheet.
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Solver Parameters

Set Target Cell:  |$E$S %,
Equal To: @ Max ) Min (O Value of:

By Changing Cells:
[$c$o:$089 [ Guess |

‘Subject to the Constraints:

FEES:$EET <= 36353687

|

Close

Options

Add

Change
Reset All

d
e

Delete

FIGURE 3.18

The Solver Options dialogue
box after checking the
Assume Linear Model and
Assume Non-Negative
options to indicate that we
are dealing with a linear
programming model with
nonnegativity constraints
that needs to be solved by
the simplex method.

Solver Options
Max Tirne: seconds [[ 0K ]]
Iterations: [ Cancel
Precision: [0.000001 | [ Load Model ... ]
Tolerance: 15 | % [ Save Model ...
Convergence: |0.0001 | [ Help

[] Use Autarnatic Scaling
] Show lteration Results

[ dssume Linear Model
Assume Non- Negative

Estimates Derivatives Search
@ Tangent @& Forward @ Newton
() Quadratic {_J Central () Conjugate
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FIGURE 3.19

The Solver Results dialogue
box that indicates that an
optimal solution has been
found.

Solver Results
Solver found a solution. Al constraints and
optimality conditions are satisfied. Reports
Answer -
® Keep Solver Solution Sensitivity [
.. Limits [ |
() Restare Original Yalues -

[ Cancel ] [SaveScenariu...] [ Help ]

should be used to solve the problem.' Regarding the other options, accepting the default
values shown in the figure usually is fine for small problems. Clicking on the OK button
then returns you to the Solver dialogue box.

Now you are ready to click on Solve in the Solver dialogue box, which will cause
the Solver to execute the simplex method in the background. After a few seconds (for a
small problem), Solver will then indicate the results. Typically, it will indicate that it has
found an optimal solution, as specified in the Solver Results dialogue box shown in Fig.
3.19. If the model has no feasible solutions or no optimal solution, the dialogue box will
indicate that instead by stating that “Solver could not find a feasible solution” or that “the
Set Cell values do not converge.” The dialogue box also presents the option of generat-
ing various reports. One of these (the Sensitivity Report) will be discussed in detail in
Sec. 4.7.

After solving the model, the Solver replaces the original value of the decision vari-
ables in the spreadsheet with the optimal values, as shown in Fig. 3.20. The spreadsheet
also indicates the value of the objective function, as well as the amount of each resource
that is being used.

'In older versions of Excel prior to Excel 97, the Assume Non-Negative option is not available, so nonnegativ-
ity constraints have to be added with the Add Constraint dialogue box.

FIGURE 3.20

The spreadsheet obtained
after solving the Wyndor
problem.

A B Cc D E F G
1 |Wyndor Glass Co. Product-Mix Problem
2
3 Hours Used per Unit Produced Hours
4 Doors Windows Totals Available
5 Plant 1 1 0 2 < 4
6 Plant 2 0 2 12 = 12
7 Plant 3 3 2 18 = 18
8 Unit Profit ($thousands) 3 5 36
-9 Solution 2 6
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FORMULATING VERY LARGE LINEAR PROGRAMMING MODELS

Linear programming models come in many different sizes. For the examples in Secs. 3.1
and 3.4, the model sizes range from three functional constraints and two decision vari-
ables (for the Wyndor and radiation therapy problems) up to 17 functional constraints and
12 decision variables (for the Save-It Company problem). The latter case may seem like
a rather large model. After all, it does take a substantial amount of time just to write down
a model of this size. However, by contrast, the models for the classic case studies pre-
sented in Sec. 3.5 are much, much larger. For example, the models in the Citgo case study
typically have about 3,000 functional constraints and 15,000 decision variables.

The Citgo model sizes are not at all unusual. Linear programming models in practice
commonly have hundreds or thousands of functional constraints. In fact, there have been
some recently reported cases of a few hundred thousand constraints. The number of de-
cision variables frequently is even larger than the number of functional constraints, and
occasionally will range into the millions.

Formulating such monstrously large models can be a daunting task. Even a “medium-
sized” model with a thousand functional constraints and a thousand decision variables has
over a million parameters (including the million coefficients in these constraints). It sim-
ply is not practical to write out the algebraic formulation, or even to fill in the parame-
ters on a spreadsheet, for such a model.

So how are these very large models formulated in practice? It requires the use of a
modeling language.

Modeling Languages

A mathematical programming modeling language is software that has been specifically
designed for efficiently formulating large linear programming models (and related mod-
els). Even with thousands of functional constraints, they typically are of a relatively few
types where the constraints of the same type follow the same pattern. Similarly, the deci-
sion variables will fall into a small number of categories. Therefore, using large blocks
of data in databases, a modeling language will simultaneously formulate all the constraints
of the same type by simultaneously dealing with the variables of each type. We will il-
lustrate this process soon.

In addition to efficiently formulating large models, a modeling language will expe-
dite a number of model management tasks, including accessing data, transforming data
into model parameters, modifying the model whenever desired, and analyzing solutions
from the model. It also may produce summary reports in the vernacular of the decision
makers, as well as document the model’s contents.

Several excellent modeling languages have been developed over the last couple of
decades. These include AMPL, MPL, GAMS, and LINGO.

The student version of one of these, MPL (short for mathematical programming lan-
guage), is provided for you on the CD-ROM along with extensive tutorial material. The
latest student version also can be downloaded from the website, maximal-usa.com. MPL
is a product of Maximal Software, Inc. A new feature is extensive support for Excel in
MPL. This includes both importing and exporting Excel ranges from MPL. Full support
also is provided for the Excel VBA macro language through OptiMax 2000. (The student
version of OptiMax 2000 is on the CD-ROM as well.) This product allows the user to
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fully integrate MPL models into Excel and solve with any of the powerful solvers that
MPL supports, including CPLEX (described in Sec. 4.8).

LINGO is a product of LINDO Systems, Inc. The latest student version of LINGO
is available by downloading it from the website, www.lindo.com. LINDO Systems also
provides a completely spreadsheet-oriented optimizer called What’sBest, also available on
this website.

The CD-ROM includes MPL, LINGO, and What’sBest formulations for essentially
every example in this book to which these modeling languages can be applied.

Now let us look at a simplified example that illustrates how a very large linear pro-
gramming model can arise.

An Example of a Problem with a Huge Model

Management of the WORLDWIDE CORPORATION needs to address a product-mix prob-
lem, but one that is vastly more complex than the Wyndor product-mix problem intro-
duced in Sec. 3.1. This corporation has 10 plants in various parts of the world. Each of
these plants produces the same 10 products and then sells them within its region. The de-
mand (sales potential) for each of these products from each plant is known for each of
the next 10 months. Although the amount of a product sold by a plant in a given month
cannot exceed the demand, the amount produced can be larger, where the excess amount
would be stored in inventory (at some unit cost per month) for sale in a later month. Each
unit of each product takes the same amount of space in inventory, and each plant has some
upper limit on the total number of units that can be stored (the inventory capacity).

Each plant has the same 10 production processes (we’ll refer to them as machines),
each of which can be used to produce any of the 10 products. Both the production cost
per unit of a product and the production rate of the product (number of units produced
per day devoted to that product) depend on the combination of plant and machine involved
(but not the month). The number of working days (production days available) varies some-
what from month to month.

Since some plants and machines can produce a particular product either less expen-
sively or at a faster rate than other plants and machines, it is sometimes worthwhile to
ship some units of the product from one plant to another for sale by the latter plant. For
each combination of a plant being shipped from (the fromplant) and a plant being shipped
to (the roplant), there is a certain cost per unit shipped of any product, where this unit
shipping cost is the same for all the products.

Management now needs to determine how much of each product should be produced
by each machine in each plant during each month, as well as how much each plant should
sell of each product in each month and how much each plant should ship of each prod-
uct in each month to each of the other plants. Considering the worldwide price for each
product, the objective is to find the feasible plan that maximizes the total profit (total sales
revenue minus the sum of the total production costs, inventory costs, and shipping costs).

The Structure of the Resulting Model

Because of the inventory costs and the limited inventory capacities, it is necessary to keep
track of the amount of each product kept in inventory in each plant during each month.
Consequently, the linear programming model has four types of decision variables: pro-
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duction quantities, inventory quantities, sales quantities, and shipping quantities. With 10
plants, 10 machines, 10 products, and 10 months, this gives a total of 21,000 decision
variables, as outlined below.

Decision Variables.

10,000 production variables: one for each combination of a plant, machine, product, and
month

1,000 inventory variables: one for each combination of a plant, product, and month

1,000 sales variables: one for each combination of a plant, product, and month

9,000 shipping variables: one for each combination of a product, month, plant (the
fromplant), and another plant (the toplant)

Multiplying each of these decision variables by the corresponding unit cost or unit rev-
enue, and then summing over each type, the following objective function can be calculated:

Obijective Function.
Maximize profit = total sales revenue — total cost,
where
Total cost = total production cost + total inventory cost + total shipping cost.

When maximizing this objective function, the 21,000 decision variables need to sat-
isfy nonnegativity constraints as well as four types of functional constraints—production
capacity constraints, plant balance constraints (equality constraints that provide appropri-
ate values to the inventory variables), maximum inventory constraints, and maximum sales
constraints. As enumerated below, there are a total of 3,100 functional constraints, but all
the constraints of each type follow the same pattern.

Functional Constraints.

1,000 production capacity constraints (one for each combination of a plant, machine, and
month):

Production days used = production days available,

where the left-hand side is the sum of 10 fractions, one for each product, where each
fraction is that product’s production quantity (a decision variable) divided by the prod-
uct’s production rate (a given constant).

1,000 plant balance constraints (one for each combination of a plant, product, and month):

Amount produced + inventory last month + amount shipped in = sales + current
inventory + amount shipped out,

where the amount produced is the sum of the decision variables representing the pro-
duction quantities at the machines, the amount shipped in is the sum of the decision
variables representing the shipping quantities in from the other plants, and the amount
shipped out is the sum of the decision variables representing the shipping quantities
out to the other plants.
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100 maximum inventory constraints (one for each combination of a plant and month):
Total inventory = inventory capacity,

where the left-hand side is the sum of the decision variables representing the inven-
tory quantities for the individual products.
1,000 maximum sales constraints (one for each combination of a plant, product, and month):

Sales = demand.

Now let us see how the MPL modeling language, a product of Maximal Software,
Inc., can formulate this huge model very compactly.

Formulation of the Model in MPL

The modeler begins by assigning a title to the model and listing an index for each of the
entities of the problem, as illustrated below.

TITLE
Production_Planning;

INDEX
product (Al, A2, A3, A4, A5, A6, A7, A8, A9, Al0);
month : = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct);

plant = (pl, p2, pP3, P4, p5, p6, pP7, P8, P9, pl0);
fromplant : =plant;
toplant : = plant;
machine :=(ml, m2, m3, m4, m5, m6, m7, m8, m9, ml0);

Except for the months, the entries on the right-hand side are arbitrary labels for the re-
spective products, plants, and machines, where these same labels are used in the data files.
Note that a colon is placed after the name of each entry and a semicolon is placed at the
end of each statement (but a statement is allowed to extend over more than one line).

A big job with any large model is collecting and organizing the various types of data
into data files. In this case, eight data files are needed to hold the product prices, demands,
production costs, production rates, production days available, inventory costs, inventory
capacities, and shipping costs. Numbering these data files as 1, 2, 3, . . ., 8, the next step
is to give a brief suggestive name to each one and to identify (inside square brackets) the
index or indexes over which the data in the file run, as shown below.

DATA
Price [product] : = DATAFILE 1;
Demand [plant, product, month] : = DATAFILE 2;
ProdCost [plant, machine, product] : = DATAFILE 3;
ProdRate [plant, machine, product] : =DATAFILE 4;
ProdDaysAvail [month] : = DATAFILE 5;
InvtCost [product] : = DATAFILE 6;
InvtCapacity [plant] : = DATAFILE 7;
ShipCost [fromplant, toplant] : = DATAFILE 8;

Next, the modeler gives a short name to each type of decision variable. Following the
name, inside square brackets, is the index or indexes over which the subscripts run.
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VARIABLES
Produce [plant, machine, product, month] — Prod;
Inventory [plant, product, month] — Invt;
Sales [plant, product, month] — Sale;

Ship [product, month, fromplant, toplant]
WHERE (fromplant <> toplant);

In the case of the decision variables with names longer than four letters, the arrows on
the right point to four-letter abbreviations to fit the size limitations of many solvers. The
last line indicates that the fromplant subscript and toplant subscript are not allowed to
have the same value.

There is one more step before writing down the model. To make the model easier to read,
it is useful first to introduce macros to represent the summations in the objective function.

MACROS
Total Revenue = SUM (plant, product, month: Price*Sales);
TotalProdCost : = SUM (plant, machine, product, month:
ProdCost*Produce) ;
TotalInvtCost = SUM (plant, product, month:

InvtCost*Inventory) ;

TotalShipCost = SUM (product, month, fromplant, toplant:
ShipCost*Ship) ;
TotalCost : = TotalProdCost + TotalInvtCost + TotalShipCost;

The first four macros use the MPL keyword SUM to execute the summation involved.
Following each SUM keyword (inside the parentheses) is, first, the index or indexes over
which the summation runs. Next (after the colon) is the vector product of a data vector
(one of the data files) times a variable vector (one of the four types of decision variables).

Now this model with 3,100 functional constraints and 21,000 decision variables can
be written down in the following compact form.

MODEL
MAX Profit = TotalRevenue — TotalCost;

SUBJECT TO
ProdCapacity [plant, machine, month] — PCap;
SUM (product: Produce/ProdRate) = ProdDaysAvail;

PlantBal [plant, product, month] — PBal;
SUM (machine: Produce) + Inventory [month — 1]
+ SUM (fromplant: Ship[fromplant, toplant: =plant])

Sales + Inventory
+ SUM (toplant: Ship[from plant: =plant, toplant]);

MaxInventory [plant, month] — MaxI:
SUM (product: Inventory) = InvtCapacity;

BOUNDS
Sales = Demand;

END

For each of the four types of constraints, the first line gives the name for this type.
There is one constraint of this type for each combination of values for the indexes inside
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the square brackets following the name. To the right of the brackets, the arrow points to
a four-letter abbreviation of the name that a solver can use. Below the first line, the gen-
eral form of constraints of this type is shown by using the SUM operator.

For each production capacity constraint, each term in the summation consists of a de-
cision variable (the production quantity of that product on that machine in that plant dur-
ing that month) divided by the corresponding production rate, which gives the number of
production days being used. Summing over the products then gives the total number of
production days being used on that machine in that plant during that month, so this num-
ber must not exceed the number of production days available.

The purpose of the plant balance constraint for each plant, product, and month is to
give the correct value to the current inventory variable, given the values of all the other
decision variables including the inventory level for the preceding month. Each of the SUM
operators in these constraints involves simply a sum of decision variables rather than a
vector product. This is the case also for the SUM operator in the maximum inventory con-
straints. By contrast, the left-hand side of the maximum sales constraints is just a single
decision variable for each of the 1,000 combinations of a plant, product, and month. (Sep-
arating these upper-bound constraints on individual variables from the regular functional
constraints is advantageous because of the computational efficiencies that can be obtained
by using the upper bound technique described in Sec. 7.3.) No lower-bound constraints
are shown here because MPL automatically assumes that all 21,000 decision variables
have nonnegativity constraints unless nonzero lower bounds are specified. For each of the
3,100 functional constraints, note that the left-hand side is a linear function of the deci-
sion variables and the right-hand side is a constant taken from the appropriate data file.
Since the objective function also is a linear function of the decision variables, this model
is a legitimate linear programming model.

To solve the model, MPL supports various leading solvers (software packages for
solving linear programming models and related models) that can be installed into MPL.
As discussed in Sec. 4.8, CPLEX is a particularly prominent and powerful solver. The
version of MPL in your OR Courseware already has installed the student version of CPLEX,
which uses the simplex method to solve linear programming models. Therefore, to solve
such a model formulated with MPL, all you have to do is choose Solve CPLEX from the
Run menu or press the Run Solve button in the Toolbar. You then can display the solution
file in a view window by pressing the View button at the bottom of the Status Window.

This brief introduction to MPL illustrates the ease with which modelers can use mod-
eling languages to formulate huge linear programming models in a clear, concise way. To
assist you in using MPL, an MPL Tutorial is included on the CD-ROM. This tutorial goes
through all the details of formulating smaller versions of the production planning exam-
ple considered here. You also can see elsewhere on the CD-ROM how all the other linear
programming examples in this chapter and subsequent chapters would be formulated with
MPL and solved by CPLEX.

The LINGO Modeling Language

LINGO is another popular modeling language that is featured in this book. The company
that produces LINGO, LINDO Systems, also produces a widely used solver called LINDO
as well as a spreadsheet solver, What’sBest. All three share a common set of solvers based
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on the simplex method and, in more advanced versions, on the kind of algorithmic tech-
niques introduced in Secs. 4.9 and 7.4 as well. (We will discuss LINDO further in Sec.
4.8 and Appendix 4.1.) As mentioned earlier, the student version of LINGO is available
to you through downloading from the website, www.lindo.com.

Like MPL, LINGO enables a modeler to efficiently formulate a huge linear program-
ming model in a clear, concise way. It also can be used for a wide variety of other models.

LINGO uses sets as its fundamental building block. For example, in the Worldwide
Corp. production planning problem, the sets of interest include the collections of prod-
ucts, plants, machines, and months. Each member of a set may have one or more attrib-
utes associated with it, such as the price of a product, the inventory capacity of a plant,
the production rate of a machine, and the number of production days available in a month.
These attributes provide data for the model. Some set attributes, such as production quan-
tities and shipping quantities, can be decision variables for the model. As with MPL, the
SUM operator is commonly used to write the objective function and each constraint type
in a compact form. After completing the formulation, the model can be solved by se-
lecting the Solve command from the LINGO menu or pressing the Solve button on the
toolbar.

An appendix to this chapter describes LINGO further and illustrates its use on a cou-
ple of small examples. A supplement on the CD-ROM shows how LINGO can be used
to formulate the model for the Worldwide Corp. production planning example. A LINGO
tutorial on the CD-ROM provides the details needed for doing basic modeling with this
modeling language. The LINGO formulations and solutions for the various examples in
both this chapter and many other chapters also are included on the CD-ROM.

CONCLUSIONS

Linear programming is a powerful technique for dealing with the problem of allocating
limited resources among competing activities as well as other problems having a similar
mathematical formulation. It has become a standard tool of great importance for numer-
ous business and industrial organizations. Furthermore, almost any social organization is
concerned with allocating resources in some context, and there is a growing recognition
of the extremely wide applicability of this technique.

However, not all problems of allocating limited resources can be formulated to fit a
linear programming model, even as a reasonable approximation. When one or more of the
assumptions of linear programming is violated seriously, it may then be possible to apply
another mathematical programming model instead, e.g., the models of integer program-
ming (Chap. 12) or nonlinear programming (Chap. 13).

THE LINGO MODELING LANGUAGE

LINGO is a mathematical modeling language designed particularly for formulating and solving a
wide variety of optimization problems, including linear programming, integer programming (Chap.
12), and nonlinear programming (Chap. 13) problems. Extensive details and a downloadable stu-
dent version can be found at www.lindo.com.
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Simple problems are entered into LINGO in a fairly natural fashion. To illustrate, consider the
following linear programming problem.

Maximize Z =20x + 31y,

subject to
2x + 5y =16
4x — 3y =6

FIGURE A3.1
Screen shots showing the LINGO formulation and the LINGO solution report for a
simple linear programming problem.
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x=0, y= 0.

The screen shot in the top half of Fig. A3.1 shows how this problem would be formulated with
LINGO.

The first line of this formulation is just a comment describing the model. Note that the com-
ment is preceded by an exclamation point and ended by a semicolon. This is a requirement for all
comments in a LINGO formulation. The second line gives the objective function (without bothering
to include the Z variable) and indicates that it is to be maximized. Note that each multiplication needs
to be indicated by an asterisk. The objective function is ended by a semicolon, as is each of the func-
tional constraints on the next two lines. The nonnegativity constraints are not shown in this formu-
lation because these constraints are automatically assumed by LINGO. (If some variable x did not
have a nonnegativity constraint, you would need to add @FREE(x); at the end of the formulation.)

Variables can be shown as either lowercase or uppercase, since LINGO is case-insensitive. For
example, a variable x; can be typed in as either x1 or X1. Similarly, words can be either lowercase
or uppercase (or a combination). For clarity, we will use uppercase for all reserved words that have
a predefined meaning in LINGO.

Notice the menu bar at the top of the LINGO window in Fig. A3.1. The ‘File’ and ‘Edit’ menu
items behave in a standard Windows fashion. To solve a model once it has been entered, click on
the ‘bullseye’ icon. (If you are using a platform other than a Windows-based PC, instead type the
GO command at the colon prompt and press the enter key.) Before attempting to solve the model,
LINGO will first check whether your model has any syntax errors and, if so, will indicate where
they occur. Assuming no such errors, a solver will begin solving the problem, during which time a
solver status window will appear on the screen. (For linear programming models, the solver used
is LINDO, which will be described in some detail in the appendix to the next chapter.) When the
solver finishes, a Solution Report will appear on the screen.

The bottom half of Fig. A3.1 shows the solution report for our example. The Value column
gives the optimal values of the decision variables. The first entry in the Slack or Surplus column
shows the corresponding value of the objective function. The next two entries indicate the differ-
ence between the two sides of the respective constraints. The Reduced Cost and Dual Price columns
provide some sensitivity analysis information for the problem. After discussing postoptimality
analysis (including sensitivity analysis) in Sec. 4.7, we will explain what reduced costs and dual
prices are while describing LINDO in Appendix 4.1. These quantities provide only a portion of
the useful sensitivity analysis information. To generate a full sensitivity analysis report (such as
shown in Appendix 4.1 for LINDO), the Range command in the LINGO menu would need to be
chosen next.

Just as was illustrated with MPL in Sec. 3.7, LINGO is designed mainly for efficiently for-
mulating very large models by simultaneously dealing with all constraints or variables of the same
type. We soon will use the following example to illustrate how LINGO does this.

Example. Consider a production-mix problem where we are concerned with what mix of four
products we should produce during the upcoming week. For each product, each unit produced re-
quires a known amount of production time on each of three machines. Each machine has a certain
number of hours of production time available per week. Each product provides a certain profit per
unit produced.

Table A3.1 shows three types of data: machine-related data, product-related data, and data re-
lated to combinations of a machine and product. The objective is to determine how much to pro-
duce of each product so that total profit is maximized while not exceeding the limited production
capacity of each machine.
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TABLE A3.1 Data needed for the product-mix example

Production Time per Unit, Hours
Product
Production Time

Machine PO1 P02 P03 P04 Available per Week, Hours
Roll 1.7 2.1 1.4 2.4 28
Cut 1.1 2.5 1.7 2.6 34
Weld 1.6 1.3 1.6 0.8 21
Profit per unit 26 35 25 37

In standard algebraic form, the structure of the linear programming model for this problem is
to choose the nonnegative production levels (number of units produced during the upcoming week)
for the four products so as to

4
Maximize chxj,
j=1
subject to
4
Dagx;=b,  fori=1,23;
j=i

where

x; = production level for product P0j
¢; = unit profit for product P0j
a;; = production time on machine i per unit of product P0j

b; = production time available per week on machine i.

This model is small enough, with just 4 decision variables and 3 functional constraints, that it
could be written out completely, term by term, but it would be tedious. In some similar applica-
tions, there might instead be hundreds of decision variables and functional constraints, so writing
out a term-by-term version of this model each week would not be practical. LINGO provides a much
more efficient and compact formulation, comparable to the above summary of the model, as we will
see next.

Formulation of the Model in LINGO

This model has a repetitive nature. All the decision variables are of the same type and all the func-
tional constraints are of the same type. LINGO uses sefs to describe this repetitive nature.' The sim-
ple sets of interest in this case are

1. The set of machines, {Roll, Cut, Weld}.
2. The set of products, {PO1, P02, P03, PO4}.

'Order is implied in LINGO sets so, strictly speaking, they are not truly sets in the usual mathematical sense.
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The attributes of interest for the members of these sets are

1. Attribute for each machine: Number of hours of production time available per week.
2. Attributes for each product: Profit per unit produced; Number of units produced per week.

Thus, the first two types of attributes are input data that will become parameters of the model,
whereas the last type (number of units produced per week of the respective products) provides the
decision variables for the model. Let us abbreviate these attributes as follows.

machine: ProdHoursAvail
product: Profit, Produce.

One other key type of information is the number of hours of production time that each unit of
each product would use on each of the machines. This number can be viewed as an attribute for
the members of the set of all combinations of a product and a machine. Since this set is derived
from the two simple sets, it is referred to as a derived set. Let us abbreviate the attribute for mem-
bers of this set as follows.

MaPr (machine, product): ProdHoursUsed
A LINGO formulation typically has three sections.

1. A SETS section that specifies the sets and their attributes. You can think of it as describing the
structure of the data.

2. A DATA section that either provides the data to be used or indicates where it is to be obtained.

3. A section that provides the mathematical model itself.

We begin by showing the first two sections for the example below.

! LINGO3h;

! Product mix example;

! Notice: the SETS section says nothing about the number or names of
the machines or products. That information is determined
completely by supplied data;

SETS:

! The simple sets;

Machine: ProdHoursAvail;

Product: Profit, Produce;

! A derived set;

MaPr (Machine, Product): ProdHoursUsed;
ENDSETS
DATA:

! Get the names of the machines;
Machine = Roll Cut Weld;

! Hours available on each machine;

ProdHoursAvail =28 34 21;

! Get the names of the products;
Product = P01 P02 P03 PO04;

! Profit contribution per unit;
Profit= 26 35 25 37;

! Hours needed per unit of product;
ProdHoursUsed =1.7 2.1 1.4 2.4 ! Roll;

1.1 2.5 1.7 2.6 ! Cut;
1.6 1.3 1.6 0.8; ! wWeld;

ENDDATA
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Before presenting the mathematical model itself, we need to introduce two key set looping
functions that enable applying an operation to all members of a set by using a single statement. One
is the @SUM function, which computes the sum of an expression over all members of a set. The
general form of @SUM is @SUM( set: expression). For every member of the set, the expres-
sion is computed, and then they are all added up. For example,

@SUM( Product(j): Profit(j)*Produce(]j))

sums the expression following the colon—the unit profit of a product times the production rate of
the product—over all members of the set preceding the colon. In particular, since this set is the set
of products {Product(j) for j = 1, 2, 3, 4}, the sum is over the index j. Therefore, this specific
@SUM function provides the objective function,

4
Z CjXjs

Jj=1

given earlier for the model.

The second key set looping function is the @FOR function. This function is used to gener-
ate constraints over members of a set. The general form is @FOR( set: constraint). For
example,

@QFOR (Machine (1) :
@SUM( Product(i): ProdHoursUsed(i, Jj)*Produce (3j))
<= ProdHoursAvail (i, J);

)

says to generate the constraint following the colon for each member of the set preceding the colon.
(The “less than or equal to” symbol, =, is not on the standard keyboard, so LINGO treats the stan-
dard keyboard symbols <= as equivalent to =.) This set is the set of machines {Machine (i) for
i =1, 2, 3}, so this function loops over the index i. For each i, the constraint following the colon
was expressed algebraically earlier as

4
> ayx; = b,

Jj=1

Therefore, after the third section of the LINGO formulation (the mathematical model itself) is
added, we obtain the complete formulation shown below:

! LINGO3h;
! Product mix example;
SETS:
!The simple sets;
Machine: ProdHoursAvail;
Product: Profit, Produce;
'A derived set;
MaPr ( Machine, Product): ProdHoursUsed;
ENDSETS
DATA:
!Get the names of the machines;
Machine = Roll Cut Weld;
! Hours available on each machine;
ProdHoursAvail =28 34 21;
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! Get the names of the products;
Product = P01 P02 P03 PO04;

! Profit contribution per unit;
Profit = 26 35 25 37;

! Hours needed per unit of product;

ProdHoursUsed =1.7 2.1 1.4 2.4 ! Roll;
1.1 2.5 1.7 2.6 ! Cut;
1.6 1.3 1.6 0.8; ! Weld;
ENDDATA

! Maximize total profit contribution;
MAX = @SUM( Product(i): Profit(i) * Produce(i));

! For each machine 1i;
@QFOR( Machine( 1i):
! Hours used must be <= hours available;
@SUM( Product( j): ProdHoursUsed( i, j) * Produce( Jj))
<= ProdHoursAvail;

)

The model is solved by pressing the ‘bullseye’ button on the LINGO command bar. Pressing
the ‘x =’ button on the command bar produces a report that looks in part as follows:

Variable Value Reduced Cost
PRODUCE ( PO01) 0.0000000 3.577921
PRODUCE( P02) 10.00000 0.0000000
PRODUCE( P03) 5.000000 0.0000000
PRODUCE ( P04) 0.0000000 1.441558

Row Slack or Surplus Dual Price

1 475.0000 1.000000
2 0.0000000 15.25974
3 0.5000000 0.0000000
4 0.0000000 2.272727

Thus, we should produce 10 units of product P02 and 5 units of product P03, where Row 1 gives
the resulting total profit of 475. Notice that this solution exactly uses the available capacity on the
first and third machines (since Rows 2 and 4 give a Slack or Surplus of 0) and leaves the second
machine with 0.5 hour of idleness. (We will discuss reduced costs and dual prices in Appendix 4.1
in conjunction with LINDO.)

The rows section of this report is slightly ambiguous in that you need to remember that Row
1 in the model concerns the objective function and the subsequent rows involve the constraints on
machine capacities. This association can be made more clear in the report by giving names to each
constraint in the model. This is done by enclosing the name in [ ], placed just in front of the con-
straint. See the following modified fragment of the model.

[Totprof] MAX = @SUM( Product: Profit * Produce);

! For each machine 1i;
@QFOR( Machine( 1i):
! Hours used must be <= hours available;
[Capc] @SUM( Product( j): ProdHoursUsed( i, j) * Produce( 3J))
<= ProdHoursAvail;
)
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The solution report now contains these row names.

Row Slack or Surplus Dual Price
TOTPROF 475.0000 1.000000
CAPC( ROLL) 0.0000000 15.25974
CAPC( CUT) 0.5000000 0.0000000
CAPC( WELD) 0.0000000 2.272727

An important feature of a LINGO model like this one is that it is completely “scalable” in prod-
ucts and machines. In other words, if you wanted to solve another version of this product-mix prob-
lem with a different number of machines and products, you would only have to enter the new data
in the DATA section. You would not need to change the SETS section or any of the equations. This
conversion could be done by clerical personnel without any understanding of the model equations.

Importing and Exporting Spreadsheet Data with LINGO

The above example was completely self-contained in the sense that all the data were directly in-
corporated into the LINGO formulation. In some other applications, a large body of data will be
stored in some source and will need to be entered into the model from that source. One popular
place for storing data is spreadsheets.

LINGO has a simple function, @OLE (), for retrieving and placing data from and into spread-
sheets. To illustrate, let us suppose the data for our product-mix problem were originally entered
into a spreadsheet as shown in Fig. A3.2. For the moment we are interested only in the shaded cells

FIGURE A3.2

Screen shot showing data for
the product-mix example
entered in a spreadsheet.
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in columns A-B and E-H. The data in these cells completely describe our little product-mix exam-
ple. We want to avoid retyping these data into our LINGO model. Suppose that this spreadsheet is
stored in the file d:\dirfred7\wbest03i.xls. The only part of the LINGO model that needs to be
changed is the DATA section as shown below.

DATA:
! Get the names of the machines;
Machine = @OLE( ‘d:\dirfred7\wbest03i.xls’);
! Hours available on each machine;
ProdHoursAvail = @OLE( ‘d:\dirfred7\wbest03i.xls’);

! Get the names of the products;

Product = @OLE( ‘d:\dirfred7\wbest03i.xls’);
! Profit contribution per unit;

Profit = @OLE( ‘d:\dirfred7\wbest03i.xls’);

! Hours needed per unit of product;
ProdHoursUsed = @OLE( ‘d:\dirfred7\wbest03i.xls’);

! Send the solution values back;
@QOLE( ‘d:\dirfred7\wbest03i.xls’) = Produce;
ENDDATA

The @OLE () function acts as your “plumbing contractor.” It lets the data flow from the spreadsheet
to LINGO and back to the spreadsheet. So-called Object Linking and Embedding (OLE) is a fea-
ture of the Windows operating system. LINGO exploits this feature to make a link between the
LINGO model and a spreadsheet. The first five uses of @QOLE () above illustrate that this function
can be used on the right of an assignment statement to retrieve data from a spreadsheet. The last
use above illustrates that this function can be placed on the left of an assignment statement to place
solution results into the spreadsheet instead. Notice from Fig. A3.2 that the optimal solution has
been placed back into the spreadsheet in cells E6:H6. One simple but hidden step that had to be
done beforehand in the spreadsheet was to define range names for the various collections of cells
containing the data. Range names can be defined in Excel by using the mouse and the Insert, Name,
Define menu item. For example, the set of cells A9:All was given the range name of Machine.
Similarly, the set of cells E4:H4 was given the range name Product.

Importing and Exporting from a Database with LINGO

Another common repository for data in a large firm is in a database. In a manner similar to @OLE (),
LINGO has a connection function, @ODBC (), for transferring data from and to a database. This
function is based around the Open DataBase Connectivity (ODBC) standard for communicating
with SQL (Structured Query Language) databases. Most popular databases, such as Oracle, Para-
dox, DB/2, MS Access, and SQL Server, support the ODBC convention.

Let us illustrate the ODBC connection for our little product-mix example. Suppose that all the
data describing our problem are stored in a database called acces03j. The modification required in
the LINGO model is almost trivial. Only the DATA section needs to be changed, as illustrated in
the following fragment from the LINGO model.

DATA:
! Get the names of the machines and available hours;
Machine, ProdHoursAvail = @ODBC( ‘acces03j’);

! Get the names of the products and profits;
Product, Profit = @ODBC( ‘acces03j’);
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! Hours needed per unit of product;
ProdHoursUsed = @QODBC( ‘acces03j’);

! Send the solution values back;
QODBC( ‘acces03j’) = Produce;
ENDDATA

Notice that, similar to the spreadsheet-based model, the size of the model in terms of the num-
ber of variables and constraints is determined completely by what is found in the database. The
LINGO model automatically adjusts to what is found in the database.

Now let us show what is in the database considered above. It contains three related tables. We
give these tables names to match those in the LINGO model, namely, ‘Machine,” to hold machine-
related data, ‘Product,” to hold product-related data, and ‘MaPr,” to hold data related to combina-
tions of machines and products. Here is what the tables look like on the screen:

Machine
Machine ProdHoursAvail
Roll 28
Cut 34
Weld 21
Product
Product Profit Produce

PO1 26

P02 35

P03 25

P04 37
MaPr
Machine Product ProdHoursUsed
Roll PO1 1.7
Roll P02 2.1
Roll P03 1.4
Roll P04 2.4
Cut PO1 1.1
Cut P02 2.5
Cut P03 1.7
Cut P04 2.6
Weld PO1 1.6
Weld P02 1.3
Weld P03 1.6
Weld P04 0.8
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Notice that the ‘Produce’ column has been left blank in the Product table. Once we solve the
model, the ‘Produce’ amounts get inserted into the database and the Product table looks as follows:

Product

Product Profit Produce
PO1 26 0
P02 35 10
P03 25 5
P04 37 0

There is one complication in using ODBC in Windows 95. The user must “register” the data-
base with the Windows ODBC administrator. One does this by accessing (with mouse clicks) the
My Computer/Control Panel/ODBC32 window. Once there, the user must give a name to the data-
base (which may differ from the actual name of the file in which the data tables reside) and spec-
ify the directory in which the database file resides. It is this registered name that should be used in
the LINGO model. Because the database has been registered, you did not see a directory specifi-
cation in the @ODBC ( ‘acces037 ') in the LINGO model. The ODBC manager knows the loca-
tion of the database just from its name.

More about LINGO

Only some of the capabilities of LINGO have been illustrated in this appendix. More details can be
found in the documentation that accompanies LINGO when it is downloaded. LINGO is available
in a variety of sizes. The smallest version is the demo version that can be downloaded from
www.lindo.com. It is designed for textbook-sized problems (currently a maximum of 150 functional
constraints and 300 decision variables). However, the largest version (called the extended version)
is limited only by the storage space available. Tens of thousands of functional constraints and hun-
dreds of thousands of decision variables are not unusual.

If you would like to see how LINGO can formulate a huge model like the production planning
example introduced in Sec. 3.7, a supplement to this appendix on the book’s website,
www.mhhe.com/hillier, shows the LINGO formulation of this example. By reducing the number of
products, plants, machines, and months, the supplement also introduces actual data into the formu-
lation and then shows the complete solution. The supplement goes on to discuss and illustrate the
debugging and verification of this large model. The supplement also describes further how to re-
trieve data from external files (including spreadsheets) and how to insert results in existing files.

In addition to this supplement, the CD-ROM includes both a LINGO tutorial and
LINGO/LINDO files with numerous examples of LINGO formulations.
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A Demonstration Example in OR Tutor:

Graphical Method

An Excel Add-In:

Premium Solver

“Ch. 3—Intro to LP” Files for Solving the Examples:

Excel File
LINGO/LINDO File
MPL/CPLEX File

Supplement to Appendix 3.1:

More about LINGO (appears on the book’s website, www.mhhe.com/hillier).

See Appendix 1 for documentation of the software.

PROBLEMS

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example listed above may be helpful.

C: Use the computer to solve the problem by applying the sim-
plex method. The available software options for doing this in-
clude the Excel Solver or Premium Solver (Sec. 3.6),
MPL/CPLEX (Sec. 3.7), LINGO (Appendix 3.1), and LINDO
(Appendix 4.1), but follow any instructions given by your in-
structor regarding the option to use.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

D 3.1-1.* For each of the following constraints, draw a separate
graph to show the nonnegative solutions that satisfy this constraint.
@ x; +3x, =6

(b) 4x; +3x, = 12

(¢) 4x; +x, =8

(d) Now combine these constraints into a single graph to show the
feasible region for the entire set of functional constraints plus
nonnegativity constraints.

D 3.1-2. Consider the following objective function for a linear pro-
gramming model:
Maximize Z = 2x; + 3x,

(a) Draw a graph that shows the corresponding objective function
lines for Z=6,Z7Z =12, and Z = 18.

(b) Find the slope-intercept form of the equation for each of these
three objective function lines. Compare the slope for these three
lines. Also compare the intercept with the x, axis.

3.1-3. Consider the following equation of a line:
20x; + 40x, = 400

(a) Find the slope-intercept form of this equation.
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(b) Use this form to identify the slope and the intercept with the
X, axis for this line.
(c) Use the information from part () to draw a graph of this line.

D 3.1-4.* Use the graphical method to solve the problem:

Maximize Z=2x; + x5,
subject to
X2 = 10
2x; + 5x, = 60
X+ x =18

3x; + xp, =44

and

D 3.1-5. Use the graphical method to solve the problem:

Maximize Z = 10x; + 20x,,
subject to
—X + 2)(2 = 15
X1 + X2 =12
Sx; + 3x, =45
and
x; =0, X, =0

3.1-6. The Whitt Window Company is a company with only three
employees which makes two different kinds of hand-crafted win-
dows: a wood-framed and an aluminum-framed window. They earn
$60 profit for each wood-framed window and $30 profit for each
aluminum-framed window. Doug makes the wood frames, and can
make 6 per day. Linda makes the aluminum frames, and can make

4 per day. Bob forms and cuts the glass, and can make 48 square

feet of glass per day. Each wood-framed window uses 6 square feet

of glass and each aluminum-framed window uses 8 square feet of
glass.

The company wishes to determine how many windows of each
type to produce per day to maximize total profit.

(a) Describe the analogy between this problem and the Wyndor
Glass Co. problem discussed in Sec. 3.1. Then construct and
fill in a table like Table 3.1 for this problem, identifying both
the activities and the resources.

(b) Formulate a linear programming model for this problem.

D (¢) Use the graphical model to solve this model.

(d) A new competitor in town has started making wood-framed
windows as well. This may force the company to lower the
price they charge and so lower the profit made for each wood-
framed window. How would the optimal solution change (if at

all) if the profit per wood-framed window decreases from $60
to $40? From $60 to $20?

(e) Doug is considering lowering his working hours, which would
decrease the number of wood frames he makes per day. How
would the optimal solution change if he makes only 5 wood
frames per day?

3.1-7. The Apex Television Company has to decide on the num-
ber of 27- and 20-inch sets to be produced at one of its factories.
Market research indicates that at most 40 of the 27-inch sets and
10 of the 20-inch sets can be sold per month. The maximum num-
ber of work-hours available is 500 per month. A 27-inch set re-
quires 20 work-hours and a 20-inch set requires 10 work-hours.
Each 27-inch set sold produces a profit of $120 and each 20-inch
set produces a profit of $80. A wholesaler has agreed to purchase
all the television sets produced if the numbers do not exceed the
maxima indicated by the market research.

(a) Formulate a linear programming model for this problem.

D (b) Use the graphical method to solve this model.

3.1-8. The WorldLight Company produces two light fixtures (prod-
ucts 1 and 2) that require both metal frame parts and electrical
components. Management wants to determine how many units of
each product to produce so as to maximize profit. For each unit of
product 1, 1 unit of frame parts and 2 units of electrical compo-
nents are required. For each unit of product 2, 3 units of frame
parts and 2 units of electrical components are required. The com-
pany has 200 units of frame parts and 300 units of electrical com-
ponents. Each unit of product 1 gives a profit of $1, and each unit
of product 2, up to 60 units, gives a profit of $2. Any excess over
60 units of product 2 brings no profit, so such an excess has been
ruled out.

(a) Formulate a linear programming model for this problem.

D (b) Use the graphical method to solve this model. What is the

resulting total profit?

3.1-9. The Primo Insurance Company is introducing two new prod-
uct lines: special risk insurance and mortgages. The expected profit
is $5 per unit on special risk insurance and $2 per unit on mort-
gages.

Management wishes to establish sales quotas for the new prod-
uct lines to maximize total expected profit. The work requirements
are as follows:

Work-Hours per Unit
Work-Hours
Department Special Risk Mortgage Available
Underwriting 3 2 2400
Administration 0 1 800
Claims 2 0 1200
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(a) Formulate a linear programming model for this problem.

D (b) Use the graphical method to solve this model.

(c¢) Verify the exact value of your optimal solution from part (b)
by solving algebraically for the simultaneous solution of the
relevant two equations.

3.1-10. Weenies and Buns is a food processing plant which man-
ufactures hot dogs and hot dog buns. They grind their own flour
for the hot dog buns at a maximum rate of 200 pounds per week.
Each hot dog bun requires 0.1 pound of flour. They currently have
a contract with Pigland, Inc., which specifies that a delivery of 800
pounds of pork product is delivered every Monday. Each hot dog
requires ; pound of pork product. All the other ingredients in the
hot dogs and hot dog buns are in plentiful supply. Finally, the la-
bor force at Weenies and Buns consists of 5 employees working
full time (40 hours per week each). Each hot dog requires 3 min-
utes of labor, and each hot dog bun requires 2 minutes of labor.
Each hot dog yields a profit of $0.20, and each bun yields a profit
of $0.10.

Weenies and Buns would like to know how many hot dogs
and how many hot dog buns they should produce each week so as
to achieve the highest possible profit.

(a) Formulate a linear programming model for this problem.
D (b) Use the graphical method to solve this model.

3.1-11.* The Omega Manufacturing Company has discontinued
the production of a certain unprofitable product line. This act cre-
ated considerable excess production capacity. Management is con-
sidering devoting this excess capacity to one or more of three prod-
ucts; call them products 1, 2, and 3. The available capacity on the
machines that might limit output is summarized in the following
table:

Available Time

Machine Type (Machine Hours per Week)

Milling machine 500
Lathe 350
Grinder 150

The number of machine hours required for each unit of the re-
spective products is

Productivity coefficient (in machine hours per unit)

Machine Type Product 1 Product 2 Product 3
Milling machine 9 3 5
Lathe 5 4 0
Grinder 3 0 2

The sales department indicates that the sales potential for
products 1 and 2 exceeds the maximum production rate and that
the sales potential for product 3 is 20 units per week. The unit
profit would be $50, $20, and $25, respectively, on products 1, 2,
and 3. The objective is to determine how much of each product
Omega should produce to maximize profit.

(a) Formulate a linear programming model for this problem.
C (b) Use a computer to solve this model by the simplex method.

D 3.1-12. Consider the following problem, where the value of ¢,

has not yet been ascertained.
Maximize Z=cix; + x,,

subject to

x; =0, X, = 0.

Use graphical analysis to determine the optimal solution(s) for
(x1, xp) for the various possible values of ¢;(—o < ¢ < ®).

D 3.1-13. Consider the following problem, where the value of k
has not yet been ascertained.

Maximize Z=x; t 2x,,
subject to

—x tx =2
X2S3

kxy + x, =2k + 3, where k = 0

and
X = 0, Xy = 0.

The solution currently being used is x; = 2, x, = 3. Use graphical
analysis to determine the values of k such that this solution actu-
ally is optimal.

D 3.1-14. Consider the following problem, where the values of ¢,
and ¢, have not yet been ascertained.

Maximize Z = cix; t coxo,
subject to

26+ x =11

—x; + 2= 2
and

x; =0, x, = 0.

Use graphical analysis to determine the optimal solution(s) for
(x1, x,) for the various possible values of c¢; and c¢,. (Hint: Sepa-
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rate the cases where ¢, = 0, ¢, > 0, and ¢, < 0. For the latter two
cases, focus on the ratio of ¢; to ¢,.)

3.2-1. The following table summarizes the key facts about two
products, A and B, and the resources, Q, R, and S, required to pro-
duce them.

Resource Usage
per Unit Produced

Amount of Resource

Resource Product A Product B Available
Q 2 1 2
R 1 2 2
S 3 3 4
Profit per unit 3 2

All the assumptions of linear programming hold.

(a) Formulate a linear programming model for this problem.

D (b) Solve this model graphically.

(¢) Verify the exact value of your optimal solution from part (b)
by solving algebraically for the simultaneous solution of the
relevant two equations.

3.2-2. The shaded area in the following graph represents the fea-
sible region of a linear programming problem whose objective
function is to be maximized.

Xy 3,3)
(6,3)
0.2)
0,0
6,0) X

Label each of the following statements as True or False, and then

justify your answer based on the graphical method. In each case,

give an example of an objective function that illustrates your an-

SWer.

(a) If (3, 3) produces a larger value of the objective function than
(0, 2) and (6, 3), then (3, 3) must be an optimal solution.

(b) If (3, 3) is an optimal solution and multiple optimal solutions
exist, then either (0, 2) or (6, 3) must also be an optimal so-
lution.

(¢) The point (0, 0) cannot be an optimal solution.

3.2-3.*% This is your lucky day. You have just won a $10,000 prize.
You are setting aside $4,000 for taxes and partying expenses, but
you have decided to invest the other $6,000. Upon hearing this
news, two different friends have offered you an opportunity to be-
come a partner in two different entrepreneurial ventures, one
planned by each friend. In both cases, this investment would in-
volve expending some of your time next summer as well as putting
up cash. Becoming a full partner in the first friend’s venture would
require an investment of $5,000 and 400 hours, and your estimated
profit (ignoring the value of your time) would be $4,500. The cor-
responding figures for the second friend’s venture are $4,000 and
500 hours, with an estimated profit to you of $4,500. However,
both friends are flexible and would allow you to come in at any
fraction of a full partnership you would like. If you choose a frac-
tion of a full partnership, all the above figures given for a full part-
nership (money investment, time investment, and your profit)
would be multiplied by this same fraction.

Because you were looking for an interesting summer job any-
way (maximum of 600 hours), you have decided to participate in
one or both friends’ ventures in whichever combination would max-
imize your total estimated profit. You now need to solve the prob-
lem of finding the best combination.

(a) Describe the analogy between this problem and the Wyndor
Glass Co. problem discussed in Sec. 3.1. Then construct and
fill in a table like Table 3.1 for this problem, identifying both
the activities and the resources.

(b) Formulate a linear programming model for this problem.

D (c) Use the graphical method to solve this model. What is your

total estimated profit?

D 3.2-4. Use the graphical method to find all optimal solutions for
the following model:

Maximize Z = 500x; + 300x,,
subject to

15x; + 5x, = 300
10x; + 6x, = 240
8x; + 12x, = 450

D 3.2-5. Use the graphical method to demonstrate that the fol-
lowing model has no feasible solutions.

Maximize Z = 5x; + Tx,,
subject to

2x1 - X = -1
—X1 + 2.X'2 = -1
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and (a) Design of radiation therapy (Mary).
X =0 5%=0 (b) Regional planning (Southern Confederation of Kibbutzim).

D 3.2-6. Suppose that the following constraints have been pro-
vided for a linear programming model.

— X + 3)(2 = 30
—3x; + x =30

and

x; =0, x, = 0.

(a) Demonstrate that the feasible region is unbounded.

(b) If the objective is to maximize Z = —x; + x,, does the model
have an optimal solution? If so, find it. If not, explain why not.

(c) Repeat part (b) when the objective is to maximize Z = x; — x,.

(d) For objective functions where this model has no optimal solu-
tion, does this mean that there are no good solutions accord-
ing to the model? Explain. What probably went wrong when
formulating the model?

3.3-1. Reconsider Prob. 3.2-3. Indicate why each of the four as-
sumptions of linear programming (Sec. 3.3) appears to be reason-
ably satisfied for this problem. Is one assumption more doubtful
than the others? If so, what should be done to take this into ac-
count?

3.3-2. Consider a problem with two decision variables, x; and x,,
which represent the levels of activities 1 and 2, respectively. For
each variable, the permissible values are 0, 1, and 2, where the fea-
sible combinations of these values for the two variables are deter-
mined from a variety of constraints. The objective is to maximize
a certain measure of performance denoted by Z. The values of Z
for the possibly feasible values of (xy, x,) are estimated to be those
given in the following table:

X2
X1 0 1 2
0 0 4 8
1 3 8 13
2 6 12 18

Based on this information, indicate whether this problem com-
pletely satisfies each of the four assumptions of linear program-
ming. Justify your answers.

3.4-1.* For each of the four assumptions of linear programming dis-
cussed in Sec. 3.3, write a one-paragraph analysis of how well you
feel it applies to each of the following examples given in Sec. 3.4:

(c) Controlling air pollution (Nori & Leets Co.).

3.4-2. For each of the four assumptions of linear programming dis-

cussed in Sec. 3.3, write a one-paragraph analysis of how well it

applies to each of the following examples given in Sec. 3.4.

(a) Reclaiming solid wastes (Save-It Co.).

(b) Personnel scheduling (Union Airways).

(¢) Distributing goods through a distribution network (Distribu-
tion Unlimited Co.).

D 3.4-3. Use the graphical method to solve this problem:
Maximize Z = 15x; + 20x,,
subject to

X1 +2X2 =
2)61 - 3X25 6
=

X+ x

x1 =0,
D 3.4-4. Use the graphical method to solve this problem:
Minimize Z = 3x; + 2x,,

subject to

A

X+ 2x = 12
2x; + 3x, = 12
2x;+ x, = 8

and

D 3.4-5. Consider the following problem, where the value of ¢,
has not yet been ascertained.

Maximize Z = ci1x; + 2x,,
subject to

Ay +x, =12

Xy —x= 2

and
X]EO, XZZO.

Use graphical analysis to determine the optimal solution(s) for
(x1, x») for the various possible values of c;.
D 3.4-6. Consider the following model:

Minimize Z = 40x; + 50x,,
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subject to

2)(1 + 3)C2 = 30
X1 + Xo = 12
2x; + x, =20

and

XIZO, X220.

(a) Use the graphical method to solve this model.

(b) How does the optimal solution change if the objective func-
tion is changed to Z = 40x; + 70x,?

(¢) How does the optimal solution change if the third functional
constraint is changed to 2x; + x, = 15?

3.4-7. Ralph Edmund loves steaks and potatoes. Therefore, he has
decided to go on a steady diet of only these two foods (plus some
liquids and vitamin supplements) for all his meals. Ralph realizes
that this isn’t the healthiest diet, so he wants to make sure that he
eats the right quantities of the two foods to satisfy some key nu-
tritional requirements. He has obtained the following nutritional
and cost information:

Grams of Ingredient
per Serving
Daily Requirement

Ingredient Steak Potatoes (Grams)
Carbohydrates 5 15 = 50
Protein 20 5 = 40
Fat 15 2 =60
Cost per serving $4 $2

Ralph wishes to determine the number of daily servings (may be
fractional) of steak and potatoes that will meet these requirements
at a minimum cost.

(a) Formulate a linear programming model for this problem.

D (b) Use the graphical method to solve this model.

C (¢) Use a computer to solve this model by the simplex method.

3.4-8. Dwight is an elementary school teacher who also raises pigs
for supplemental income. He is trying to decide what to feed his
pigs. He is considering using a combination of pig feeds available
from local suppliers. He would like to feed the pigs at minimum
cost while also making sure each pig receives an adequate supply
of calories and vitamins. The cost, calorie content, and vitamin
content of each feed is given in the table below.

Contents Feed Type A Feed Type B
Calories (per pound) 800 1,000
Vitamins (per pound) 140 units 70 units
Cost (per pound) $0.40 $0.80

Each pig requires at least 8,000 calories per day and at least 700

units of vitamins. A further constraint is that no more than one-third

of the diet (by weight) can consist of Feed Type A, since it contains

an ingredient which is toxic if consumed in too large a quantity.

(a) Formulate a linear programming model for this problem.

D (b) Use the graphical method to solve this model. What is the
resulting daily cost per pig?

3.4-9. Web Mercantile sells many household products through an
on-line catalog. The company needs substantial warehouse space
for storing its goods. Plans now are being made for leasing ware-
house storage space over the next 5 months. Just how much space
will be required in each of these months is known. However, since
these space requirements are quite different, it may be most eco-
nomical to lease only the amount needed each month on a month-
by-month basis. On the other hand, the additional cost for leasing
space for additional months is much less than for the first month,
so it may be less expensive to lease the maximum amount needed
for the entire 5 months. Another option is the intermediate approach
of changing the total amount of space leased (by adding a new lease
and/or having an old lease expire) at least once but not every month.

The space requirement and the leasing costs for the various
leasing periods are as follows:

Required Leasing Period | Cost per Sq. Ft.
Month | Space (Sq. Ft.) (Months) Leased
1 30,000 1 $ 65
2 20,000 2 $100
3 40,000 3 $135
4 10,000 4 $160
5 50,000 5 $190

The objective is to minimize the total leasing cost for meeting the
space requirements.

(a) Formulate a linear programming model for this problem.

c (b) Solve this model by the simplex method.

3.4-10. Larry Edison is the director of the Computer Center for
Buckly College. He now needs to schedule the staffing of the cen-
ter. It is open from 8 a.m. until midnight. Larry has monitored the
usage of the center at various times of the day, and determined that
the following number of computer consultants are required:

Minimum Number of Consultants

Time of Day Required to Be on Duty

8 A.M.—noon 4
Noon—4 p.m. 8
4 p.M.—8 P.M. 10
8 r.m.—midnight 6
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Two types of computer consultants can be hired: full-time and
part-time. The full-time consultants work for 8 consecutive hours
in any of the following shifts: morning (8 a.M.—4 p.M.), afternoon
(noon—8 p.M.), and evening (4 p.M.—midnight). Full-time consultants
are paid $14 per hour.

Part-time consultants can be hired to work any of the four
shifts listed in the above table. Part-time consultants are paid $12
per hour.

An additional requirement is that during every time period,
there must be at least 2 full-time consultants on duty for every part-
time consultant on duty.

Larry would like to determine how many full-time and how
many part-time workers should work each shift to meet the above
requirements at the minimum possible cost.

(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-11.% The Medequip Company produces precision medical di-
agnostic equipment at two factories. Three medical centers have
placed orders for this month’s production output. The table to the
right shows what the cost would be for shipping each unit from
each factory to each of these customers. Also shown are the num-
ber of units that will be produced at each factory and the number
of units ordered by each customer. (Go to the next column.)

40 tons $2,000/t0n
produced 30 tons max.
60 tons $1,100/ton
produced 50 tons max.

Management now wants to determine the most economical
plan for shipping the iron ore from the mines through the distrib-
ution network to the steel plant.

(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

Unit Shipping Cost

To
From Customer 1 Customer 2 Customer 3 | Output
Factory 1 $600 $800 $700 400 units
Factory 2 $400 $900 $600 500 units
Order size | 300 units 200 units 400 units

A decision now needs to be made about the shipping plan for
how many units to ship from each factory to each customer.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-12. The Fagersta Steelworks currently is working two mines
to obtain its iron ore. This iron ore is shipped to either of two stor-
age facilities. When needed, it then is shipped on to the company’s
steel plant. The diagram below depicts this distribution network,
where M1 and M2 are the two mines, S1 and S2 are the two stor-
age facilities, and P is the steel plant. The diagram also shows the
monthly amounts produced at the mines and needed at the plant,
as well as the shipping cost and the maximum amount that can be
shipped per month through each shipping lane. (Go to the left col-
umn below the diagram.)

100 tons
needed

3.4-13.* Al Ferris has $60,000 that he wishes to invest now in or-
der to use the accumulation for purchasing a retirement annuity in
5 years. After consulting with his financial adviser, he has been of-
fered four types of fixed-income investments, which we will label
as investments A, B, C, D.
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Investments A and B are available at the beginning of each of
the next 5 years (call them years 1 to 5). Each dollar invested in
A at the beginning of a year returns $1.40 (a profit of $0.40) 2
years later (in time for immediate reinvestment). Each dollar in-
vested in B at the beginning of a year returns $1.70 three years
later.

Investments C and D will each be available at one time in the
future. Each dollar invested in C at the beginning of year 2 returns
$1.90 at the end of year 5. Each dollar invested in D at the begin-
ning of year 5 returns $1.30 at the end of year 5.

Al wishes to know which investment plan maximizes the amount
of money that can be accumulated by the beginning of year 6.

(a) All the functional constraints for this problem can be expressed
as equality constraints. To do this, let A,, B,, C,, and D, be the
amount invested in investment A, B, C, and D, respectively, at
the beginning of year ¢ for each ¢ where the investment is avail-
able and will mature by the end of year 5. Also let R, be the
number of available dollars nor invested at the beginning of
year t (and so available for investment in a later year). Thus,
the amount invested at the beginning of year ¢ plus R, must
equal the number of dollars available for investment at that
time. Write such an equation in terms of the relevant variables
above for the beginning of each of the 5 years to obtain the
five functional constraints for this problem.

(b) Formulate a complete linear programming model for this
problem.

C (c¢) Solve this model by the simplex model.

3.4-14. The Metalco Company desires to blend a new alloy of 40
percent tin, 35 percent zinc, and 25 percent lead from several avail-
able alloys having the following properties:

Alloy
Property 1 2 3 4 5
Percentage of tin 60 25 45 20 50
Percentage of zinc 10 15 45 50 40
Percentage of lead 30 60 10 30 10
Cost ($/1Ib) 22 20 25 24 27

The objective is to determine the proportions of these alloys that
should be blended to produce the new alloy at a minimum cost.
(a) Formulate a linear programming model for this problem.

C (b) Solve this model by the simplex method.

3.4-15. The Weigelt Corporation has three branch plants with ex-
cess production capacity. Fortunately, the corporation has a new
product ready to begin production, and all three plants have this
capability, so some of the excess capacity can be used in this way.
This product can be made in three sizes—Ilarge, medium, and

small—that yield a net unit profit of $420, $360, and $300, re-
spectively. Plants 1, 2, and 3 have the excess capacity to produce
750, 900, and 450 units per day of this product, respectively, re-
gardless of the size or combination of sizes involved.

The amount of available in-process storage space also imposes
a limitation on the production rates of the new product. Plants 1,
2, and 3 have 13,000, 12,000, and 5,000 square feet, respectively,
of in-process storage space available for a day’s production of this
product. Each unit of the large, medium, and small sizes produced
per day requires 20, 15, and 12 square feet, respectively.

Sales forecasts indicate that if available, 900, 1,200, and 750
units of the large, medium, and small sizes, respectively, would be
sold per day.

At each plant, some employees will need to be laid off unless
most of the plant’s excess production capacity can be used to pro-
duce the new product. To avoid layoffs if possible, management
has decided that the plants should use the same percentage of their
excess capacity to produce the new product.

Management wishes to know how much of each of the sizes
should be produced by each of the plants to maximize profit.
(a) Formulate a linear programming model for this problem.

C (b) Solve this model by the simplex method.

3.4-16* A cargo plane has three compartments for storing cargo:
front, center, and back. These compartments have capacity limits
on both weight and space, as summarized below:

Weight Space

Capacity Capacity
Compartment (Tons) (Cubic Feet)
Front 12 7,000
Center 18 9,000
Back 10 5,000

Furthermore, the weight of the cargo in the respective compart-
ments must be the same proportion of that compartment’s weight
capacity to maintain the balance of the airplane.

The following four cargoes have been offered for shipment
on an upcoming flight as space is available:

Weight Volume Profit
Cargo (Tons) (Cubic Feet/Ton) ($/Ton)
1 20 500 320
2 16 700 400
3 25 600 360
4 13 400 290

Any portion of these cargoes can be accepted. The objective is to
determine how much (if any) of each cargo should be accepted and
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how to distribute each among the compartments to maximize the

total profit for the flight.

(a) Formulate a linear programming model for this problem.

C (b) Solve this model by the simplex method to find one of its
multiple optimal solutions.

3.4-17. Comfortable Hands is a company which features a prod-
uct line of winter gloves for the entire family—men, women, and
children. They are trying to decide what mix of these three types
of gloves to produce.

Comfortable Hands” manufacturing labor force is unionized.
Each full-time employee works a 40-hour week. In addition, by
union contract, the number of full-time employees can never drop
below 20. Nonunion part-time workers can also be hired with the
following union-imposed restrictions: (1) each part-time worker
works 20 hours per week, and (2) there must be at least 2 full-time
employees for each part-time employee.

All three types of gloves are made out of the same 100 per-
cent genuine cowhide leather. Comfortable Hands has a long-term
contract with a supplier of the leather, and receives a 5,000 square
feet shipment of the material each week. The material requirements
and labor requirements, along with the gross profit per glove sold
(not considering labor costs) is given in the following table.

Material Required Labor Required Gross Profit
Glove (Square Feet) (Minutes) (per Pair)
Men'’s 2 30 $8
Women's 1.5 45 $10
Children’s 1 40 $6

Each full-time employee earns $13 per hour, while each part-
time employee earns $10 per hour. Management wishes to know
what mix of each of the three types of gloves to produce per week,
as well as how many full-time and how many part-time workers to
employ. They would like to maximize their net profit—their gross
profit from sales minus their labor costs.

(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-18. Oxbridge University maintains a powerful mainframe
computer for research use by its faculty, Ph.D. students, and re-
search associates. During all working hours, an operator must be
available to operate and maintain the computer, as well as to per-
form some programming services. Beryl Ingram, the director of
the computer facility, oversees the operation.

It is now the beginning of the fall semester, and Beryl is con-
fronted with the problem of assigning different working hours to
her operators. Because all the operators are currently enrolled in
the university, they are available to work only a limited number of
hours each day, as shown in the following table.

Maximum Hours of Availability
Operators Wage Rate | Mon. Tue. Wed. Thurs. Fri.
K. C $10.00/hour 6 0 6 0 6
D.H $10.10/hour 0 6 0 6 0
H. B $ 9.90/hour 4 8 4 0 4
S.C $ 9.80/hour 5 5 5 0 5
K. S $10.80/hour 3 0 3 8 0
N. K $11.30/hour 0 0 0 6 2

There are six operators (four undergraduate students and two
graduate students). They all have different wage rates because of
differences in their experience with computers and in their pro-
gramming ability. The above table shows their wage rates, along
with the maximum number of hours that each can work each day.

Each operator is guaranteed a certain minimum number of
hours per week that will maintain an adequate knowledge of the
operation. This level is set arbitrarily at 8 hours per week for the
undergraduate students (K. C., D. H., H. B., and S. C.) and 7 hours
per week for the graduate students (K. S. and N. K.).

The computer facility is to be open for operation from 8 A.m.
to 10 p.M. Monday through Friday with exactly one operator on
duty during these hours. On Saturdays and Sundays, the computer
is to be operated by other staff.

Because of a tight budget, Beryl has to minimize cost. She
wishes to determine the number of hours she should assign to each
operator on each day.

(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-19. Slim-Down Manufacturing makes a line of nutritionally
complete, weight-reduction beverages. One of their products is a
strawberry shake which is designed to be a complete meal. The
strawberry shake consists of several ingredients. Some information
about each of these ingredients is given below.

Calories | Total |Vitamin
from Fat | Calories | Content | Thickeners | Cost
(per (per (mg/ (mg/ (¢/
Ingredient | thsp) thsp) tbsp) thsp) tbsp)
Strawberry
flavoring 1 50 20 3 10
Cream 75 100 0 8 8
Vitamin
supplement 0 0 50 1 25
Artificial
sweetener 0 120 0 2 15
Thickening
agent 30 80 2 25 6
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The nutritional requirements are as follows. The beverage
must total between 380 and 420 calories (inclusive). No more than
20 percent of the total calories should come from fat. There must
be at least 50 milligrams (mg) of vitamin content. For taste rea-
sons, there must be at least 2 tablespoons (tbsp) of strawberry fla-
voring for each tablespoon of artificial sweetener. Finally, to main-
tain proper thickness, there must be exactly 15 mg of thickeners
in the beverage.

Management would like to select the quantity of each ingre-
dient for the beverage which would minimize cost while meeting
the above requirements.

(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-20. Joyce and Marvin run a day care for preschoolers. They are
trying to decide what to feed the children for lunches. They would
like to keep their costs down, but also need to meet the nutritional
requirements of the children. They have already decided to go with
peanut butter and jelly sandwiches, and some combination of gra-
ham crackers, milk, and orange juice. The nutritional content of
each food choice and its cost are given in the table below.

Calories | Total |Vitamin C|Protein|Cost
Food Item from Fat | Calories (mg) (9) (¢)
Bread (1 slice) 10 70 0 3 5
Peanut butter
(1 tbsp) 75 100 0 4 4
Strawberry jelly
(1 tbsp) 0 50 3 0 7
Graham cracker
(1 cracker) 20 60 0 1 8
Milk (1 cup) 70 150 2 8 15
Juice (1 cup) 0 100 120 1 35

The nutritional requirements are as follows. Each child should
receive between 400 and 600 calories. No more than 30 percent of
the total calories should come from fat. Each child should consume
at least 60 milligrams (mg) of vitamin C and 12 grams (g) of pro-
tein. Furthermore, for practical reasons, each child needs exactly
2 slices of bread (to make the sandwich), at least twice as much
peanut butter as jelly, and at least 1 cup of liquid (milk and/or
juice).

Joyce and Marvin would like to select the food choices for
each child which minimize cost while meeting the above require-
ments.

(a) Formulate a linear programming model for this problem.
c (b) Solve this model by the simplex method.

3.5-1. Read the article footnoted in Sec. 3.5 that describes the first
case study presented in that section: “Choosing the Product Mix
at Ponderosa Industrial.”

(a) Describe the two factors which, according to the article, often
hinder the use of optimization models by managers.

(b) Section 3.5 indicates without elaboration that using linear pro-
gramming at Ponderosa “led to a dramatic shift in the types of
plywood products emphasized by the company.” Identify this
shift.

(¢) With the success of this application, management then was ea-
ger to use optimization for other problems as well. Identify
these other problems.

(d) Photocopy the two pages of appendixes that give the mathe-
matical formulation of the problem and the structure of the lin-
ear programming model.

3.5-2. Read the article footnoted in Sec. 3.5 that describes the sec-
ond case study presented in that section: “Personnel Scheduling at
United Airlines.”

(a) Describe how United Airlines prepared shift schedules at air-
ports and reservations offices prior to this OR study.

(b) When this study began, the problem definition phase defined
five specific project requirements. Identify these project re-
quirements.

(c) At the end of the presentation of the corresponding example
in Sec. 3.4 (personnel scheduling at Union Airways), we
pointed out that the divisibility assumption does not hold for
this kind of application. An integer solution is needed, but lin-
ear programming may provide an optimal solution that is non-
integer. How does United Airlines deal with this problem?

(d) Describe the flexibility built into the scheduling system to sat-
isfy the group culture at each office. Why was this flexibility
needed?

(e) Briefly describe the tangible and intangible benefits that re-
sulted from the study.

3.5-3. Read the 1986 article footnoted in Sec. 2.1 that describes
the third case study presented in Sec. 3.5: “Planning Supply, Dis-
tribution, and Marketing at Citgo Petroleum Corporation.”

(a) What happened during the years preceding this OR study that
made it vastly more important to control the amount of capi-
tal tied up in inventory?

(b) What geographical area is spanned by Citgo’s distribution net-
work of pipelines, tankers, and barges? Where do they market
their products?

(¢) What time periods are included in the model?

(d) Which computer did Citgo use to solve the model? What were
typical run times?

(e) Who are the four types of model users? How does each one
use the model?

(f) List the major types of reports generated by the SDM system.

(g) What were the major implementation challenges for this study?

(h) List the direct and indirect benefits that were realized from this
study.
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3.6-1.*% You are given the following data for a linear programming
problem where the objective is to maximize the profit from allo-
cating three resources to two nonnegative activities.

Resource Usage per

Unit of Each Activity
Amount of Resource

Resource | Activity 1 Activity 2 Available
1 2 1 10
2 3 3 20
3 2 4 20

Contribution $20 $30

per unit

Contribution per unit = profit per unit of the activity.

(a) Formulate a linear programming model for this problem.

D (b) Use the graphical method to solve this model.

(¢) Display the model on an Excel spreadsheet.

(d) Use the spreadsheet to check the following solutions:
(x1, x2) = (2,2), (3, 3), (2,4), (4, 2), (3, 4), (4, 3). Which of
these solutions are feasible? Which of these feasible solutions
has the best value of the objective function?

C (e) Use the Excel Solver to solve the model by the simplex

method.

3.6-2. Ed Butler is the production manager for the Bilco Corpo-
ration, which produces three types of spare parts for automobiles.
The manufacture of each part requires processing on each of two
machines, with the following processing times (in hours):

Part
Machine A B C
1 0.02 0.03 0.05
2 0.05 0.02 0.04

Each machine is available 40 hours per month. Each part manu-
factured will yield a unit profit as follows:

Part
A B C
Profit $50 $40 $30

Ed wants to determine the mix of spare parts to produce in order
to maximize total profit.

(a) Formulate a linear programming model for this problem.

(b) Display the model on an Excel spreadsheet.

(¢) Make three guesses of your own choosing for the optimal so-
lution. Use the spreadsheet to check each one for feasibility
and, if feasible, to find the value of the objective function.
Which feasible guess has the best objective function value?

(d) Use the Excel Solver to solve the model by the simplex method.

3.6-3. You are given the following data for a linear programming
problem where the objective is to minimize the cost of conducting
two nonnegative activities so as to achieve three benefits that do
not fall below their minimum levels.

Benefit Contribution per
Unit of Each Activity Minimum
Acceptable
Benefit Activity 1 Activity 2 Level
1 5 3 60
2 2 2 30
3 7 9 126
Unit cost $60 $50

(a) Formulate a linear programming model for this problem.

D (b) Use the graphical method to solve this model.

(c) Display the model on an Excel spreadsheet.

(d) Use the spreadsheet to check the following solutions:
(x1, x2) = (7,7), (7, 8), (8, 7), (8, 8), (8, 9), (9, 8). Which of
these solutions are feasible? Which of these feasible solutions
has the best value of the objective function?

C (e) Use the Excel Solver to solve this model by the simplex

method.

3.6-4.* Fred Jonasson manages a family-owned farm. To supple-
ment several food products grown on the farm, Fred also raises
pigs for market. He now wishes to determine the quantities of the
available types of feed (corn, tankage, and alfalfa) that should be
given to each pig. Since pigs will eat any mix of these feed types,
the objective is to determine which mix will meet certain nutri-
tional requirements at a minimum cost. The number of units of each
type of basic nutritional ingredient contained within a kilogram of
each feed type is given in the following table, along with the daily
nutritional requirements and feed costs:

Kilogram | Kilogram | Kilogram | Minimum
Nutritional of of of Daily
Ingredient Corn Tankage | Alfalfa | Requirement
Carbohydrates 920 20 40 200
Protein 30 80 60 180
Vitamins 10 20 60 150
Cost (¢) 84 72 60
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(a) Formulate a linear programming model for this problem.

(b) Display the model on an Excel spreadsheet.

(c) Use the spreadsheet to check if (xy, x5, x3) = (1, 2, 2) is a fea-
sible solution and, if so, what the daily cost would be for this
diet. How many units of each nutritional ingredient would this
diet provide daily?

(d) Take a few minutes to use a trial-and-error approach with the
spreadsheet to develop your best guess for the optimal solu-
tion. What is the daily cost for your solution?

C (e) Use the Excel Solver to solve the model by the simplex

method.

3.6-5. Maureen Laird is the chief financial officer for the Alva
Electric Co., a major public utility in the midwest. The company
has scheduled the construction of new hydroelectric plants 5, 10,
and 20 years from now to meet the needs of the growing popu-
lation in the region served by the company. To cover at least the
construction costs, Maureen needs to invest some of the com-
pany’s money now to meet these future cash-flow needs. Mau-
reen may purchase only three kinds of financial assets, each of
which costs $1 million per unit. Fractional units may be pur-
chased. The assets produce income 5, 10, and 20 years from now,
and that income is needed to cover at least minimum cash-flow
requirements in those years. (Any excess income above the min-
imum requirement for each time period will be used to increase
dividend payments to shareholders rather than saving it to help
meet the minimum cash-flow requirement in the next time pe-
riod.) The following table shows both the amount of income gen-
erated by each unit of each asset and the minimum amount of in-
come needed for each of the future time periods when a new
hydroelectric plant will be constructed.

Income per Unit of Asset
Minimum Cash

Year | Asset 1 Asset 2 Asset 3 Flow Required
5 $2 million $1 million $0.5 million $400 million
10 | $0.5 million $0.5 million $1 million $100 million
20 0 $1.5 million $2 million $300 million

Maureen wishes to determine the mix of investments in these as-

sets that will cover the cash-flow requirements while minimizing

the total amount invested.

(a) Formulate a linear programming model for this problem.

(b) Display the model on a spreadsheet.

(¢) Use the spreadsheet to check the possibility of purchasing 100
units of Asset 1, 100 units of Asset 2, and 200 units of Asset
3. How much cash flow would this mix of investments gener-
ate 5, 10, and 20 years from now? What would be the total
amount invested?

(d) Take a few minutes to use a trial-and-error approach with the
spreadsheet to develop your best guess for the optimal solu-
tion. What is the total amount invested for your solution?

C (e) Use the Excel Solver to solve the model by the simplex

method.

3.7-1. The Philbrick Company has two plants on opposite sides of
the United States. Each of these plants produces the same two prod-
ucts and then sells them to wholesalers within its half of the coun-
try. The orders from wholesalers have already been received for
the next 2 months (February and March), where the number of
units requested are shown below. (The company is not obligated
to completely fill these orders but will do so if it can without de-
creasing its profits.)

Plant 1 Plant 2
Product February March February March
1 3,600 6,300 4,900 4,200
2 4,500 5,400 5,100 6,000

Each plant has 20 production days available in February and 23
production days available in March to produce and ship these prod-
ucts. Inventories are depleted at the end of January, but each plant
has enough inventory capacity to hold 1,000 units total of the two
products if an excess amount is produced in February for sale in
March. In either plant, the cost of holding inventory in this way is
$3 per unit of product 1 and $4 per unit of product 2.

Each plant has the same two production processes, each of
which can be used to produce either of the two products. The pro-
duction cost per unit produced of each product is shown below for
each process in each plant.

Plant 1 Plant 2
Product Process 1 Process 2 Process 1 Process 2
1 $62 $59 $61 $65
2 $78 $85 $89 $86

The production rate for each product (number of units produced
per day devoted to that product) also is given below for each process
in each plant.

Plant 1 Plant 2
Product Process 1 Process 2 Process 1 Process 2
1 100 140 130 110
2 120 150 160 130
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The net sales revenue (selling price minus normal shipping
costs) the company receives when a plant sells the products to its
own customers (the wholesalers in its half of the country) is $83
per unit of product 1 and $112 per unit of product 2. However, it
also is possible (and occasionally desirable) for a plant to make a
shipment to the other half of the country to help fill the sales of
the other plant. When this happens, an extra shipping cost of $9
per unit of product 1 and $7 per unit of product 2 is incurred.

Management now needs to determine how much of each prod-
uct should be produced by each production process in each plant
during each month, as well as how much each plant should sell of
each product in each month and how much each plant should ship
of each product in each month to the other plant’s customers. The
objective is to determine which feasible plan would maximize the
total profit (total net sales revenue minus the sum of the produc-
tion costs, inventory costs, and extra shipping costs).

(a) Formulate a complete linear programming model in algebraic
form that shows the individual constraints and decision vari-
ables for this problem.

C (b) Formulate this same model on an Excel spreadsheet instead.

Then use the Excel Solver to solve the model.

C (¢) Use MPL to formulate this model in a compact form. Then

use the MPL solver CPLEX to solve the model.

C (d) Use LINGO to formulate this model in a compact form.

Then use the LINGO solver to solve the model.

Cc 3.7-2. Reconsider Prob. 3.1-11.

(a) Use MPL/CPLEX to formulate and solve the model for this
problem.

(b) Use LINGO to formulate and solve this model.

c 3.7-3. Reconsider Prob. 3.4-11.

(a) Use MPL/CPLEX to formulate and solve the model for this
problem.

(b) Use LINGO to formulate and solve this model.

Cc 3.7-4. Reconsider Prob. 3.4-15.

(a) Use MPL/CPLEX to formulate and solve the model for this
problem.

(b) Use LINGO to formulate and solve this model.

c 3.7-5. Reconsider Prob. 3.4-18.

(a) Use MPL/CPLEX to formulate and solve the model for this
problem.

(b) Use LINGO to formulate and solve this model.

c 3.7-6. Reconsider Prob. 3.6-4.

(a) Use MPL/CPLEX to formulate and solve the model for this
problem.

(b) Use LINGO to formulate and solve this model.

¢ 3.7-7. Reconsider Prob. 3.6-5.

(a) Use MPL/CPLEX to formulate and solve the model for this
problem.

(b) Use LINGO to formulate and solve this model.

3.7-8. A large paper manufacturing company, the Quality Paper
Corporation, has 10 paper mills from which it needs to supply 1,000
customers. It uses three alternative types of machines and four types
of raw materials to make five different types of paper. Therefore,
the company needs to develop a detailed production distribution
plan on a monthly basis, with an objective of minimizing the total
cost of producing and distributing the paper during the month.
Specifically, it is necessary to determine jointly the amount of each
type of paper to be made at each paper mill on each type of ma-
chine and the amount of each type of paper to be shipped from
each paper mill to each customer.

The relevant data can be expressed symbolically as follows:

Dy, = number of units of paper type k demanded by custo-
mer j,

T'um = number of units of raw material m needed to produce
1 unit of paper type k on machine type /,

R;,, = number of units of raw material m available at paper
mill 4,

¢ = number of capacity units of machine type / that will
produce 1 unit of paper type &,

C;; = number of capacity units of machine type / available
at paper mill i,

P, = production cost for each unit of paper type k produced
on machine type / at paper mill i,

T = transportation cost for each unit of paper type k shipped
from paper mill i to customer j.

(a) Using these symbols, formulate a linear programming model
for this problem by hand.

(b) How many functional constraints and decision variables does
this model have?

C (¢) Use MPL to formulate this problem.

C (d) Use LINGO to formulate this problem.
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CASE 3.1 AUTO ASSEMBLY

Automobile Alliance, a large automobile manufacturing company, organizes the vehi-
cles it manufactures into three families: a family of trucks, a family of small cars, and
a family of midsized and luxury cars. One plant outside Detroit, MI, assembles two
models from the family of midsized and luxury cars. The first model, the Family
Thrillseeker, is a four-door sedan with vinyl seats, plastic interior, standard features,
and excellent gas mileage. It is marketed as a smart buy for middle-class families with
tight budgets, and each Family Thrillseeker sold generates a modest profit of $3,600
for the company. The second model, the Classy Cruiser, is a two-door luxury sedan
with leather seats, wooden interior, custom features, and navigational capabilities. It is
marketed as a privilege of affluence for upper-middle-class families, and each Classy
Cruiser sold generates a healthy profit of $5,400 for the company.

Rachel Rosencrantz, the manager of the assembly plant, is currently deciding the
production schedule for the next month. Specifically, she must decide how many Fam-
ily Thrillseekers and how many Classy Cruisers to assemble in the plant to maximize
profit for the company. She knows that the plant possesses a capacity of 48,000 labor-
hours during the month. She also knows that it takes 6 labor-hours to assemble one
Family Thrillseeker and 10.5 labor-hours to assemble one Classy Cruiser.

Because the plant is simply an assembly plant, the parts required to assemble the
two models are not produced at the plant. They are instead shipped from other plants
around the Michigan area to the assembly plant. For example, tires, steering wheels,
windows, seats, and doors all arrive from various supplier plants. For the next month,
Rachel knows that she will be able to obtain only 20,000 doors (10,000 left-hand doors
and 10,000 right-hand doors) from the door supplier. A recent labor strike forced the
shutdown of that particular supplier plant for several days, and that plant will not be
able to meet its production schedule for the next month. Both the Family Thrillseeker
and the Classy Cruiser use the same door part.

In addition, a recent company forecast of the monthly demands for different au-
tomobile models suggests that the demand for the Classy Cruiser is limited to 3,500
cars. There is no limit on the demand for the Family Thrillseeker within the capacity
limits of the assembly plant.

(a) Formulate and solve a linear programming problem to determine the number of Family
Thrillseekers and the number of Classy Cruisers that should be assembled.

Before she makes her final production decisions, Rachel plans to explore the follow-
ing questions independently except where otherwise indicated.

(b) The marketing department knows that it can pursue a targeted $500,000 advertising cam-
paign that will raise the demand for the Classy Cruiser next month by 20 percent. Should
the campaign be undertaken?

(c) Rachel knows that she can increase next month’s plant capacity by using overtime labor. She
can increase the plant’s labor-hour capacity by 25 percent. With the new assembly plant ca-
pacity, how many Family Thrillseekers and how many Classy Cruisers should be assembled?

(d) Rachel knows that overtime labor does not come without an extra cost. What is the maxi-
mum amount she should be willing to pay for all overtime labor beyond the cost of this la-
bor at regular time rates? Express your answer as a lump sum.
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(e) Rachel explores the option of using both the targeted advertising campaign and the overtime
labor-hours. The advertising campaign raises the demand for the Classy Cruiser by 20 per-
cent, and the overtime labor increases the plant’s labor-hour capacity by 25 percent. How
many Family Thrillseekers and how many Classy Cruisers should be assembled using the
advertising campaign and overtime labor-hours if the profit from each Classy Cruiser sold
continues to be 50 percent more than for each Family Thrillseeker sold?

(f) Knowing that the advertising campaign costs $500,000 and the maximum usage of overtime
labor-hours costs $1,600,000 beyond regular time rates, is the solution found in part (e) a
wise decision compared to the solution found in part (a)?

(g) Automobile Alliance has determined that dealerships are actually heavily discounting the
price of the Family Thrillseekers to move them off the lot. Because of a profit-sharing agree-
ment with its dealers, the company is therefore not making a profit of $3,600 on the Fam-
ily Thrillseeker but is instead making a profit of $2,800. Determine the number of Family
Thrillseekers and the number of Classy Cruisers that should be assembled given this new
discounted price.

(h) The company has discovered quality problems with the Family Thrillseeker by randomly
testing Thrillseekers at the end of the assembly line. Inspectors have discovered that in over
60 percent of the cases, two of the four doors on a Thrillseeker do not seal properly. Be-
cause the percentage of defective Thrillseekers determined by the random testing is so high,
the floor supervisor has decided to perform quality control tests on every Thrillseeker at the
end of the line. Because of the added tests, the time it takes to assemble one Family
Thrillseeker has increased from 6 to 7.5 hours. Determine the number of units of each model
that should be assembled given the new assembly time for the Family Thrillseeker.

(1) The board of directors of Automobile Alliance wishes to capture a larger share of the luxury

sedan market and therefore would like to meet the full demand for Classy Cruisers. They ask

Rachel to determine by how much the profit of her assembly plant would decrease as com-

pared to the profit found in part (a). They then ask her to meet the full demand for Classy

Cruisers if the decrease in profit is not more than $2,000,000.

Rachel now makes her final decision by combining all the new considerations described in

parts (f), (g), and (k). What are her final decisions on whether to undertake the advertising

campaign, whether to use overtime labor, the number of Family Thrillseekers to assemble,
and the number of Classy Cruisers to assemble?

G
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CASE 3.2 CUTTING CAFETERIA COSTS

A cafeteria at All-State University has one special dish it serves like clockwork every
Thursday at noon. This supposedly tasty dish is a casserole that contains sautéed onions,
boiled sliced potatoes, green beans, and cream of mushroom soup. Unfortunately, stu-
dents fail to see the special quality of this dish, and they loathingly refer to it as the Killer
Casserole. The students reluctantly eat the casserole, however, because the cafeteria pro-
vides only a limited selection of dishes for Thursday’s lunch (namely, the casserole).
Maria Gonzalez, the cafeteria manager, is looking to cut costs for the coming year,
and she believes that one sure way to cut costs is to buy less expensive and perhaps
lower-quality ingredients. Because the casserole is a weekly staple of the cafeteria
menu, she concludes that if she can cut costs on the ingredients purchased for the casse-
role, she can significantly reduce overall cafeteria operating costs. She therefore de-
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cides to invest time in determining how to minimize the costs of the casserole while
maintaining nutritional and taste requirements.

Maria focuses on reducing the costs of the two main ingredients in the casserole,
the potatoes and green beans. These two ingredients are responsible for the greatest
costs, nutritional content, and taste of the dish.

Maria buys the potatoes and green beans from a wholesaler each week. Potatoes
cost $0.40 per pound, and green beans cost $1.00 per pound.

All-State University has established nutritional requirements that each main dish
of the cafeteria must meet. Specifically, the total amount of the dish prepared for all
the students for one meal must contain 180 grams (g) of protein, 80 milligrams (mg)
of iron, and 1,050 mg of vitamin C. (There are 453.6 g in 1 1b and 1,000 mg in 1 g.)
For simplicity when planning, Maria assumes that only the potatoes and green beans
contribute to the nutritional content of the casserole.

Because Maria works at a cutting-edge technological university, she has been ex-
posed to the numerous resources on the World Wide Web. She decides to surf the Web
to find the nutritional content of potatoes and green beans. Her research yields the fol-
lowing nutritional information about the two ingredients:

Potatoes Green Beans
Protein 1.5 g per 100 g 5.67 g per 10 ounces
Iron 0.3 mg per 100 g 3.402 mg per 10 ounces
Vitamin C 12 mg per 100 g 28.35 mg per 10 ounces

(There are 28.35 g in 1 ounce.)

Edson Branner, the cafeteria cook who is surprisingly concerned about taste, in-
forms Maria that an edible casserole must contain at least a six to five ratio in the
weight of potatoes to green beans.

Given the number of students who eat in the cafeteria, Maria knows that she must
purchase enough potatoes and green beans to prepare a minimum of 10 kilograms (kg)
of casserole each week. (There are 1,000 g in 1 kg.) Again for simplicity in planning,
she assumes that only the potatoes and green beans determine the amount of casserole
that can be prepared. Maria does not establish an upper limit on the amount of casse-
role to prepare, since she knows all leftovers can be served for many days thereafter
or can be used creatively in preparing other dishes.

(a) Determine the amount of potatoes and green beans Maria should purchase each week for
the casserole to minimize the ingredient costs while meeting nutritional, taste, and demand
requirements.

Before she makes her final decision, Maria plans to explore the following questions
independently except where otherwise indicated.

(b) Maria is not very concerned about the taste of the casserole; she is only concerned about
meeting nutritional requirements and cutting costs. She therefore forces Edson to change the
recipe to allow for only at least a one to two ratio in the weight of potatoes to green beans.
Given the new recipe, determine the amount of potatoes and green beans Maria should pur-
chase each week.
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(¢) Maria decides to lower the iron requirement to 65 mg since she determines that the other in-
gredients, such as the onions and cream of mushroom soup, also provide iron. Determine
the amount of potatoes and green beans Maria should purchase each week given this new
iron requirement.

(d) Maria learns that the wholesaler has a surplus of green beans and is therefore selling the

green beans for a lower price of $0.50 per Ib. Using the same iron requirement from part

(c) and the new price of green beans, determine the amount of potatoes and green beans

Maria should purchase each week.

Maria decides that she wants to purchase lima beans instead of green beans since lima beans

are less expensive and provide a greater amount of protein and iron than green beans. Maria

again wields her absolute power and forces Edson to change the recipe to include lima beans
instead of green beans. Maria knows she can purchase lima beans for $0.60 per 1b from the
wholesaler. She also knows that lima beans contain 22.68 g of protein per 10 ounces of lima
beans, 6.804 mg of iron per 10 ounces of lima beans, and no vitamin C. Using the new cost
and nutritional content of lima beans, determine the amount of potatoes and lima beans Maria
should purchase each week to minimize the ingredient costs while meeting nutritional, taste,
and demand requirements. The nutritional requirements include the reduced iron requirement

from part (c).

(f) Will Edson be happy with the solution in part (e)? Why or why not?

(g) An All-State student task force meets during Body Awareness Week and determines that All-
State University’s nutritional requirements for iron are too lax and that those for vitamin C
are too stringent. The task force urges the university to adopt a policy that requires each
serving of an entrée to contain at least 120 mg of iron and at least 500 mg of vitamin C.
Using potatoes and lima beans as the ingredients for the dish and using the new nutritional
requirements, determine the amount of potatoes and lima beans Maria should purchase each
week.

(e

~

CASE 3.3 STAFFING A CALL CENTER'

California Children’s Hospital has been receiving numerous customer complaints be-
cause of its confusing, decentralized appointment and registration process. When cus-
tomers want to make appointments or register child patients, they must contact the
clinic or department they plan to visit. Several problems exist with this current strat-
egy. Parents do not always know the most appropriate clinic or department they must
visit to address their children’s ailments. They therefore spend a significant amount of
time on the phone being transferred from clinic to clinic until they reach the most ap-
propriate clinic for their needs. The hospital also does not publish the phone numbers
of all clinic and departments, and parents must therefore invest a large amount of time
in detective work to track down the correct phone number. Finally, the various clinics
and departments do not communicate with each other. For example, when a doctor
schedules a referral with a colleague located in another department or clinic, that de-
partment or clinic almost never receives word of the referral. The parent must contact
the correct department or clinic and provide the needed referral information.

'This case is based on an actual project completed by a team of master’s students in the Department of En-
gineering-Economic Systems and Operations Research at Stanford University.
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In efforts to reengineer and improve its appointment and registration process, the
children’s hospital has decided to centralize the process by establishing one call cen-
ter devoted exclusively to appointments and registration. The hospital is currently in
the middle of the planning stages for the call center. Lenny Davis, the hospital man-
ager, plans to operate the call center from 7 A.M. to 9 p.m. during the weekdays.

Several months ago, the hospital hired an ambitious management consulting firm,
Creative Chaos Consultants, to forecast the number of calls the call center would re-
ceive each hour of the day. Since all appointment and registration-related calls would
be received by the call center, the consultants decided that they could forecast the calls
at the call center by totaling the number of appointment and registration-related calls
received by all clinics and departments. The team members visited all the clinics and
departments, where they diligently recorded every call relating to appointments and
registration. They then totaled these calls and altered the totals to account for calls
missed during data collection. They also altered totals to account for repeat calls that
occurred when the same parent called the hospital many times because of the confu-
sion surrounding the decentralized process. Creative Chaos Consultants determined the
average number of calls the call center should expect during each hour of a weekday.
The following table provides the forecasts.

Work Shift Average Number of Calls
7 AM.=9 AM. 40 calls per hour
9 AM~11 Am. 85 calls per hour
11 Am.=1 pm. 70 calls per hour
1 P.M.=3 PM. 95 calls per hour
3 P.M.=5 PM. 80 calls per hour
5 PM.—~7 P.M. 35 calls per hour
7 P.M.=9 P.M. 10 calls per hour

After the consultants submitted these forecasts, Lenny became interested in the per-
centage of calls from Spanish speakers since the hospital services many Spanish pa-
tients. Lenny knows that he has to hire some operators who speak Spanish to handle
these calls. The consultants performed further data collection and determined that on
average, 20 percent of the calls were from Spanish speakers.

Given these call forecasts, Lenny must now decide how to staff the call center dur-
ing each 2 hour shift of a weekday. During the forecasting project, Creative Chaos Con-
sultants closely observed the operators working at the individual clinics and depart-
ments and determined the number of calls operators process per hour. The consultants
informed Lenny that an operator is able to process an average of six calls per hour.
Lenny also knows that he has both full-time and part-time workers available to staff
the call center. A full-time employee works 8 hours per day, but because of paperwork
that must also be completed, the employee spends only 4 hours per day on the phone.
To balance the schedule, the employee alternates the 2-hour shifts between answering
phones and completing paperwork. Full-time employees can start their day either by
answering phones or by completing paperwork on the first shift. The full-time em-
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ployees speak either Spanish or English, but none of them are bilingual. Both Span-
ish-speaking and English-speaking employees are paid $10 per hour for work before
5 p.M. and $12 per hour for work after 5 p.m. The full-time employees can begin work
at the beginning of the 7 A.m. to 9 A.M. shift, 9 A.m. to 11 A.m. shift, 11 A.M. to 1 P.M.
shift, or 1 p.m. to 3 p.m. shift. The part-time employees work for 4 hours, only answer
calls, and only speak English. They can start work at the beginning of the 3 p.m. to
5 p.M. shift or the 5 p.m. to 7 p.M. shift, and like the full-time employees, they are paid
$10 per hour for work before 5 p.M. and $12 per hour for work after 5 p.m.

For the following analysis consider only the labor cost for the time employees
spend answering phones. The cost for paperwork time is charged to other cost centers.

(a) How many Spanish-speaking operators and how many English-speaking operators does the
hospital need to staff the call center during each 2-hour shift of the day in order to answer
all calls? Please provide an integer number since half a human operator makes no sense.

(b) Lenny needs to determine how many full-time employees who speak Spanish, full-time em-
ployees who speak English, and part-time employees he should hire to begin on each shift.
Creative Chaos Consultants advise him that linear programming can be used to do this in
such a way as to minimize operating costs while answering all calls. Formulate a linear pro-
gramming model of this problem.

(c) Obtain an optimal solution for the linear programming model formulated in part (b) to guide
Lenny’s decision.

(d) Because many full-time workers do not want to work late into the evening, Lenny can find
only one qualified English-speaking operator willing to begin work at 1 p.m. Given this new
constraint, how many full-time English-speaking operators, full-time Spanish-speaking op-
erators, and part-time operators should Lenny hire for each shift to minimize operating costs
while answering all calls?

(e) Lenny now has decided to investigate the option of hiring bilingual operators instead of
monolingual operators. If all the operators are bilingual, how many operators should be work-
ing during each 2-hour shift to answer all phone calls? As in part (a), please provide an in-
teger answer.

(f) If all employees are bilingual, how many full-time and part-time employees should Lenny
hire to begin on each shift to minimize operating costs while answering all calls? As in part
(b), formulate a linear programming model to guide Lenny’s decision.

(g) What is the maximum percentage increase in the hourly wage rate that Lenny can pay bilin-
gual employees over monolingual employees without increasing the total operating costs?

(h) What other features of the call center should Lenny explore to improve service or minimize
operating costs?
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Solving Linear
Programming Problems:
The Simplex Method

We now are ready to begin studying the simplex method, a general procedure for solving
linear programming problems. Developed by George Dantzig in 1947, it has proved to be
a remarkably efficient method that is used routinely to solve huge problems on today’s
computers. Except for its use on tiny problems, this method is always executed on a com-
puter, and sophisticated software packages are widely available. Extensions and variations
of the simplex method also are used to perform postoptimality analysis (including sensi-
tivity analysis) on the model.

This chapter describes and illustrates the main features of the simplex method. The
first section introduces its general nature, including its geometric interpretation. The fol-
lowing three sections then develop the procedure for solving any linear programming
model that is in our standard form (maximization, all functional constraints in = form,
and nonnegativity constraints on all variables) and has only nonnegative right-hand sides
b; in the functional constraints. Certain details on resolving ties are deferred to Sec. 4.5,
and Sec. 4.6 describes how to adapt the simplex method to other model forms. Next we
discuss postoptimality analysis (Sec. 4.7), and describe the computer implementation of
the simplex method (Sec. 4.8). Section 4.9 then introduces an alternative to the simplex
method (the interior-point approach) for solving large linear programming problems.

THE ESSENCE OF THE SIMPLEX METHOD

The simplex method is an algebraic procedure. However, its underlying concepts are geo-
metric. Understanding these geometric concepts provides a strong intuitive feeling for how
the simplex method operates and what makes it so efficient. Therefore, before delving into
algebraic details, we focus in this section on the big picture from a geometric viewpoint.

To illustrate the general geometric concepts, we shall use the Wyndor Glass Co. ex-
ample presented in Sec. 3.1. (Sections 4.2 and 4.3 use the algebra of the simplex method
to solve this same example.) Section 5.1 will elaborate further on these geometric con-
cepts for larger problems.

To refresh your memory, the model and graph for this example are repeated in Fig.
4.1. The five constraint boundaries and their points of intersection are highlighted in this
figure because they are the keys to the analysis. Here, each constraint boundary is a line
that forms the boundary of what is permitted by the corresponding constraint. The points
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FIGURE 4.1

Constraint boundaries and
corner-point solutions for the
Wyndor Glass Co. problem.

2 Maximize Z = 3x; + 5xp,
x =0 subject to
0.9 i =4
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3)61 + 2)62 =18 3)61 + 2x2 =18
and
X1 = 0, X2 =0
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(0.0) 2=0
4.0 (60 i

of intersection are the corner-point solutions of the problem. The five that lie on the cor-
ners of the feasible region—(0, 0), (0, 6), (2, 6), (4, 3), and (4, 0)—are the corner-point
feasible solutions (CPF solutions). [The other three—(0, 9), (4, 6), and (6, 0)—are called
corner-point infeasible solutions.]

In this example, each corner-point solution lies at the intersection of two constraint
boundaries. (For a linear programming problem with n decision variables, each of its
corner-point solutions lies at the intersection of 7 constraint boundaries.") Certain pairs
of the CPF solutions in Fig. 4.1 share a constraint boundary, and other pairs do not. It
will be important to distinguish between these cases by using the following general
definitions.

For any linear programming problem with n decision variables, two CPF solutions are ad-
jacent to each other if they share n — 1 constraint boundaries. The two adjacent CPF so-
lutions are connected by a line segment that lies on these same shared constraint bound-
aries. Such a line segment is referred to as an edge of the feasible region.

Since n = 2 in the example, two of its CPF solutions are adjacent if they share one
constraint boundary; for example, (0, 0) and (0, 6) are adjacent because they share the
x; = 0 constraint boundary. The feasible region in Fig. 4.1 has five edges, consisting of
the five line segments forming the boundary of this region. Note that two edges emanate
from each CPF solution. Thus, each CPF solution has two adjacent CPF solutions (each
lying at the other end of one of the two edges), as enumerated in Table 4.1. (In each row

! Although a corner-point solution is defined in terms of n constraint boundaries whose intersection gives this
solution, it also is possible that one or more additional constraint boundaries pass through this same point.
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TABLE 4.1 Adjacent CPF solutions for each CPF
solution of the Wyndor Glass Co. problem

CPF Solution Its Adjacent CPF Solutions
(0, 0) (0, 6) and (4, 0)
(0, 6) (2, 6) and (0, 0)
(2, 6) (4, 3) and (0, 6)
4, 3) (4, 0) and (2, 6)
4, 0) (0, 0) and (4, 3)

of this table, the CPF solution in the first column is adjacent to each of the two CPF so-
lutions in the second column, but the two CPF solutions in the second column are not ad-
jacent to each other.)

One reason for our interest in adjacent CPF solutions is the following general prop-
erty about such solutions, which provides a very useful way of checking whether a CPF
solution is an optimal solution.

Optimality test: Consider any linear programming problem that possesses at
least one optimal solution. If a CPF solution has no adjacent CPF solutions that
are better (as measured by Z), then it must be an optimal solution.

Thus, for the example, (2, 6) must be optimal simply because its Z = 36 is larger than
Z = 30 for (0, 6) and Z = 27 for (4, 3). (We will delve further into why this property
holds in Sec. 5.1.) This optimality test is the one used by the simplex method for deter-
mining when an optimal solution has been reached.

Now we are ready to apply the simplex method to the example.

Solving the Example

Here is an outline of what the simplex method does (from a geometric viewpoint) to solve
the Wyndor Glass Co. problem. At each step, first the conclusion is stated and then the
reason is given in parentheses. (Refer to Fig. 4.1 for a visualization.)

Initialization: Choose (0, 0) as the initial CPF solution to examine. (This is a conve-
nient choice because no calculations are required to identify this CPF solution.)

Optimality Test: Conclude that (0, 0) is not an optimal solution. (Adjacent CPF so-
lutions are better.)

Iteration 1: Move to a better adjacent CPF solution, (0, 6), by performing the fol-
lowing three steps.

1. Considering the two edges of the feasible region that emanate from (0, 0), choose to
move along the edge that leads up the x, axis. (With an objective function of
Z = 3x; + 5x,, moving up the x, axis increases Z at a faster rate than moving along
the x; axis.)

2. Stop at the first new constraint boundary: 2x, = 12. [Moving farther in the direction
selected in step 1 leaves the feasible region; e.g., moving to the second new constraint
boundary hit when moving in that direction gives (0, 9), which is a corner-point in-
feasible solution.]
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3. Solve for the intersection of the new set of constraint boundaries: (0, 6). (The equations
for these constraint boundaries, x; = 0 and 2x, = 12, immediately yield this solution.)

Optimality Test: Conclude that (0, 6) is not an optimal solution. (An adjacent CPF
solution is better.)

Iteration 2: Move to a better adjacent CPF solution, (2, 6), by performing the fol-
lowing three steps.

1. Considering the two edges of the feasible region that emanate from (0, 6), choose to
move along the edge that leads to the right. (Moving along this edge increases Z,
whereas backtracking to move back down the x, axis decreases Z.)

2. Stop at the first new constraint boundary encountered when moving in that direction:
3x; + 2x, = 12. (Moving farther in the direction selected in step 1 leaves the feasible
region.)

3. Solve for the intersection of the new set of constraint boundaries: (2, 6). (The equa-
tions for these constraint boundaries, 3x; + 2x, = 18 and 2x, = 12, immediately yield
this solution.)

Optimality Test: Conclude that (2, 6) is an optimal solution, so stop. (None of the ad-
jacent CPF solutions are better.)

This sequence of CPF solutions examined is shown in Fig. 4.2, where each circled num-
ber identifies which iteration obtained that solution.

Now let us look at the six key solution concepts of the simplex method that provide
the rationale behind the above steps. (Keep in mind that these concepts also apply for
solving problems with more than two decision variables where a graph like Fig. 4.2 is not
available to help quickly find an optimal solution.)

The Key Solution Concepts

The first solution concept is based directly on the relationship between optimal solutions
and CPF solutions given at the end of Sec. 3.2.

FIGURE 4.2

This graph shows the
sequence of CPF solutions
(©, @, @) examined by the
simplex method for the
Wyndor Glass Co. problem.
The optimal solution (2, 6) is
found after just three
solutions are examined.

X2
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Solution concept 1: The simplex method focuses solely on CPF solutions. For
any problem with at least one optimal solution, finding one requires only find-
ing a best CPF solution.'

Since the number of feasible solutions generally is infinite, reducing the number of solu-
tions that need to be examined to a small finite number (just three in Fig. 4.2) is a tremen-
dous simplification.

The next solution concept defines the flow of the simplex method.

Solution concept 2: The simplex method is an iterative algorithm (a systematic
solution procedure that keeps repeating a fixed series of steps, called an itera-
tion, until a desired result has been obtained) with the following structure.

— Initialization: Set up to start iterations, including finding an initial
l CPF solution.
Optimality test: Is the current CPF solution optimal?

If no—l If yes — Stop.

— Iteration: Perform an iteration to find a better CPF solution.

When the example was solved, note how this flow diagram was followed through two it-
erations until an optimal solution was found.
We next focus on how to get started.

Solution concept 3: Whenever possible, the initialization of the simplex method
chooses the origin (all decision variables equal to zero) to be the initial CPF so-
lution. When there are too many decision variables to find an initial CPF solu-
tion graphically, this choice eliminates the need to use algebraic procedures to
find and solve for an initial CPF solution.

Choosing the origin commonly is possible when all the decision variables have nonneg-
ativity constraints, because the intersection of these constraint boundaries yields the ori-
gin as a corner-point solution. This solution then is a CPF solution unless it is infeasible
because it violates one or more of the functional constraints. If it is infeasible, special pro-
cedures described in Sec. 4.6 are needed to find the initial CPF solution.

The next solution concept concerns the choice of a better CPF solution at each iteration.

Solution concept 4: Given a CPF solution, it is much quicker computationally
to gather information about its adjacent CPF solutions than about other CPF so-
lutions. Therefore, each time the simplex method performs an iteration to move
from the current CPF solution to a better one, it always chooses a CPF solution
that is adjacent to the current one. No other CPF solutions are considered. Con-
sequently, the entire path followed to eventually reach an optimal solution is along
the edges of the feasible region.

'The only restriction is that the problem must possess CPF solutions. This is ensured if the feasible region is
bounded.



114

4 SOLVING LINEAR PROGRAMMING PROBLEMS: THE SIMPLEX METHOD

4.2

The next focus is on which adjacent CPF solution to choose at each iteration.

Solution concept 5: After the current CPF solution is identified, the simplex
method examines each of the edges of the feasible region that emanate from this
CPF solution. Each of these edges leads to an adjacent CPF solution at the other
end, but the simplex method does not even take the time to solve for the adja-
cent CPF solution. Instead, it simply identifies the rate of improvement in Z that
would be obtained by moving along the edge. Among the edges with a positive
rate of improvement in Z, it then chooses to move along the one with the largest
rate of improvement in Z. The iteration is completed by first solving for the ad-
jacent CPF solution at the other end of this one edge and then relabeling this ad-
jacent CPF solution as the current CPF solution for the optimality test and (if
needed) the next iteration.

At the first iteration of the example, moving from (0, 0) along the edge on the x; axis
would give a rate of improvement in Z of 3 (Z increases by 3 per unit increase in xi),
whereas moving along the edge on the x, axis would give a rate of improvement in Z of
5 (Z increases by 5 per unit increase in x,), so the decision is made to move along the lat-
ter edge. At the second iteration, the only edge emanating from (0, 6) that would yield a
positive rate of improvement in Z is the edge leading to (2, 6), so the decision is made to
move next along this edge.

The final solution concept clarifies how the optimality test is performed efficiently.

Solution concept 6: Solution concept 5 describes how the simplex method ex-
amines each of the edges of the feasible region that emanate from the current
CPF solution. This examination of an edge leads to quickly identifying the rate
of improvement in Z that would be obtained by moving along the edge toward
the adjacent CPF solution at the other end. A positive rate of improvement in Z
implies that the adjacent CPF solution is betfer than the current CPF solution,
whereas a negative rate of improvement in Z implies that the adjacent CPF so-
lution is worse. Therefore, the optimality test consists simply of checking whether
any of the edges give a positive rate of improvement in Z. If none do, then the
current CPF solution is optimal.

In the example, moving along either edge from (2, 6) decreases Z. Since we want to max-
imize Z, this fact immediately gives the conclusion that (2, 6) is optimal.

SETTING UP THE SIMPLEX METHOD

The preceding section stressed the geometric concepts that underlie the simplex method.
However, this algorithm normally is run on a computer, which can follow only algebraic
instructions. Therefore, it is necessary to translate the conceptually geometric procedure
just described into a usable algebraic procedure. In this section, we introduce the algebraic
language of the simplex method and relate it to the concepts of the preceding section.
The algebraic procedure is based on solving systems of equations. Therefore, the first
step in setting up the simplex method is to convert the functional inequality constraints
to equivalent equality constraints. (The nonnegativity constraints are left as inequalities
because they are treated separately.) This conversion is accomplished by introducing slack
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variables. To illustrate, consider the first functional constraint in the Wyndor Glass Co.
example of Sec. 3.1

x; = 4.

The slack variable for this constraint is defined to be
x3 =4 — xy,

which is the amount of slack in the left-hand side of the inequality. Thus,
X, +x3 =4

Given this equation, x; = 4 if and only if 4 — x; = x3 = 0. Therefore, the original con-
straint x; = 4 is entirely equivalent to the pair of constraints

x1+x3=4 and X320.

Upon the introduction of slack variables for the other functional constraints, the original
linear programming model for the example (shown below on the left) can now be replaced
by the equivalent model (called the augmented form of the model) shown below on the right:

Original Form of the Model Augmented Form of the Model’
Maximize Z = 3x; + 5x», Maximize Z = 3x; + 5x,,
subject to subject to

X1 = 4 (1) X1 + X3 = 4
2x, = 12 2) 2x, + x4 =12
3x; + 2x, = 18 3) 3x; + 2x, + x5 = 18
and and
x; =0, X, = 0. x; =0, forj=1,2,3,4,5.

Although both forms of the model represent exactly the same problem, the new form is
much more convenient for algebraic manipulation and for identification of CPF solutions.
We call this the augmented form of the problem because the original form has been aug-
mented by some supplementary variables needed to apply the simplex method.

If a slack variable equals O in the current solution, then this solution lies on the con-
straint boundary for the corresponding functional constraint. A value greater than 0 means
that the solution lies on the feasible side of this constraint boundary, whereas a value less
than 0 means that the solution lies on the infeasible side of this constraint boundary. A
demonstration of these properties is provided by the demonstration example in your OR
Tutor entitled Interpretation of the Slack Variables.

The terminology used in the preceding section (corner-point solutions, etc.) applies
to the original form of the problem. We now introduce the corresponding terminology for
the augmented form.

An augmented solution is a solution for the original variables (the decision vari-
ables) that has been augmented by the corresponding values of the slack variables.

"The slack variables are not shown in the objective function because the coefficients there are 0.
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For example, augmenting the solution (3, 2) in the example yields the augmented solu-
tion (3, 2, 1, 8, 5) because the corresponding values of the slack variables are x3 = 1,
Xq4 = 8, and X5 = 5.

A basic solution is an augmented corner-point solution.

To illustrate, consider the corner-point infeasible solution (4, 6) in Fig. 4.1. Augmenting
it with the resulting values of the slack variables x; = 0, x, = 0, and x5 = —6 yields the
corresponding basic solution (4, 6, 0, 0, —6).

The fact that corner-point solutions (and so basic solutions) can be either feasible or
infeasible implies the following definition:

A basic feasible (BF) solution is an augmented CPF solution.

Thus, the CPF solution (0, 6) in the example is equivalent to the BF solution (0, 6, 4,
0, 6) for the problem in augmented form.

The only difference between basic solutions and corner-point solutions (or between
BF solutions and CPF solutions) is whether the values of the slack variables are included.
For any basic solution, the corresponding corner-point solution is obtained simply by delet-
ing the slack variables. Therefore, the geometric and algebraic relationships between these
two solutions are very close, as described in Sec. 5.1.

Because the terms basic solution and basic feasible solution are very important parts
of the standard vocabulary of linear programming, we now need to clarify their algebraic
properties. For the augmented form of the example, notice that the system of functional
constraints has 5 variables and 3 equations, so

Number of variables — number of equations =5 — 3 = 2.

This fact gives us 2 degrees of freedom in solving the system, since any two variables can be

chosen to be set equal to any arbitrary value in order to solve the three equations in terms of

the remaining three variables." The simplex method uses zero for this arbitrary value. Thus,

two of the variables (called the nonbasic variables) are set equal to zero, and then the si-

multaneous solution of the three equations for the other three variables (called the basic vari-

ables) is a basic solution. These properties are described in the following general definitions.
A basic solution has the following properties:

=

Each variable is designated as either a nonbasic variable or a basic variable.

2. The number of basic variables equals the number of functional constraints (now equa-

tions). Therefore, the number of nonbasic variables equals the total number of vari-

ables minus the number of functional constraints.

The nonbasic variables are set equal to zero.

4. The values of the basic variables are obtained as the simultaneous solution of the sys-
tem of equations (functional constraints in augmented form). (The set of basic vari-
ables is often referred to as the basis.)

5. If the basic variables satisfy the nonnegativity constraints, the basic solution is a BF

solution.

i

!This method of determining the number of degrees of freedom for a system of equations is valid as long as the
system does not include any redundant equations. This condition always holds for the system of equations formed
from the functional constraints in the augmented form of a linear programming model.



4.2 SETTING UP THE SIMPLEX METHOD 117

To illustrate these definitions, consider again the BF solution (0, 6, 4, 0, 6). This so-
lution was obtained before by augmenting the CPF solution (0, 6). However, another way
to obtain this same solution is to choose x; and x4 to be the two nonbasic variables, and
so the two variables are set equal to zero. The three equations then yield, respectively,
x3 =4, x, = 6, and x5 = 6 as the solution for the three basic variables, as shown below
(with the basic variables in bold type):

x; =0and x4, =0 so

(1) X1 + X3 = 4 X3 = 4
(2) 2x2 + Xq =12 Xy = 6
(3) 3)C1 + 2x2 + X5 = 18 X5 = 6

Because all three of these basic variables are nonnegative, this basic solution (0, 6, 4,
0, 6) is indeed a BF solution.

Just as certain pairs of CPF solutions are adjacent, the corresponding pairs of BF so-
lutions also are said to be adjacent. Here is an easy way to tell when two BF solutions
are adjacent.

Two BF solutions are adjacent if all but one of their nonbasic variables are the same.
This implies that all but one of their basic variables also are the same, although perhaps
with different numerical values.

Consequently, moving from the current BF solution to an adjacent one involves switch-
ing one variable from nonbasic to basic and vice versa for one other variable (and then
adjusting the values of the basic variables to continue satisfying the system of equations).

To illustrate adjacent BF solutions, consider one pair of adjacent CPF solutions in
Fig. 4.1: (0, 0) and (0, 6). Their augmented solutions, (0, 0, 4, 12, 18) and (0, 6, 4, 0, 6),
automatically are adjacent BF solutions. However, you do not need to look at Fig. 4.1 to
draw this conclusion. Another signpost is that their nonbasic variables, (x;, x,) and
(x1, x4), are the same with just the one exception—ux, has been replaced by x,. Conse-
quently, moving from (0, 0, 4, 12, 18) to (0, 6, 4, 0, 6) involves switching x, from non-
basic to basic and vice versa for x,.

When we deal with the problem in augmented form, it is convenient to consider and
manipulate the objective function equation at the same time as the new constraint equa-
tions. Therefore, before we start the simplex method, the problem needs to be rewritten
once again in an equivalent way:

Maximize Z,
subject to
0) Z — 3x; — 5x; = 0
(D) X + X3 = 4
(2) 2)C2 + X4 =12
3) 3x; + 2x, + x5 =18
and
x; =0, forj=1,2,...,5.



118

4 SOLVING LINEAR PROGRAMMING PROBLEMS: THE SIMPLEX METHOD

4.3

It is just as if Eq. (0) actually were one of the original constraints; but because it already
is in equality form, no slack variable is needed. While adding one more equation, we also
have added one more unknown (Z) to the system of equations. Therefore, when using
Egs. (1) to (3) to obtain a basic solution as described above, we use Eq. (0) to solve for
Z at the same time.

Somewhat fortuitously, the model for the Wyndor Glass Co. problem fits our stan-
dard form, and all its functional constraints have nonnegative right-hand sides b;. If this
had not been the case, then additional adjustments would have been needed at this point
before the simplex method was applied. These details are deferred to Sec. 4.6, and we
now focus on the simplex method itself.

THE ALGEBRA OF THE SIMPLEX METHOD

We continue to use the prototype example of Sec. 3.1, as rewritten at the end of Sec. 4.2,
for illustrative purposes. To start connecting the geometric and algebraic concepts of the
simplex method, we begin by outlining side by side in Table 4.2 how the simplex method
solves this example from both a geometric and an algebraic viewpoint. The geometric
viewpoint (first presented in Sec. 4.1) is based on the original form of the model (no slack
variables), so again refer to Fig. 4.1 for a visualization when you examine the second col-
umn of the table. Refer to the augmented form of the model presented at the end of Sec.
4.2 when you examine the third column of the table.
We now fill in the details for each step of the third column of Table 4.2.

Initialization

The choice of x; and x, to be the nonbasic variables (the variables set equal to zero) for
the initial BF solution is based on solution concept 3 in Sec. 4.1. This choice eliminates
the work required to solve for the basic variables (xs3, x4, x5) from the following system
of equations (where the basic variables are shown in bold type):

x; =0and x, =0 so

(1) X1 + x5 = 4 X3 = 4
(2) 2.X2 + x4 =12 X4 = 12
(3) 3)61 + 2.X2 + x5 = 18 X5 = 18

Thus, the initial BF solution is (0, 0, 4, 12, 18).

Notice that this solution can be read immediately because each equation has just one
basic variable, which has a coefficient of 1, and this basic variable does not appear in any
other equation. You will soon see that when the set of basic variables changes, the sim-
plex method uses an algebraic procedure (Gaussian elimination) to convert the equations
to this same convenient form for reading every subsequent BF solution as well. This form
is called proper form from Gaussian elimination.

Optimality Test
The objective function is

Z = 3)C] + 5)C2,
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TABLE 4.2 Geometric and algebraic interpretations of how the simplex method

solves the Wyndor Glass Co. problem

Method
Sequence Geometric Interpretation Algebraic Interpretation
Initialization Choose (0, 0) to be the initial CPF Choose x; and x, to be the nonbasic
solution. variables (= 0) for the initial BF
solution: (0, 0, 4, 12, 18).
Optimality ~ Not optimal, because moving along Not optimal, because increasing either
test either edge from (0, 0) increases Z. nonbasic variable (x; or x,) increases Z.
Iteration 1
Step 1 Move up the edge lying on the x, Increase x, while adjusting other
axis. variable values to satisfy the system of
equations.
Step 2 Stop when the first new constraint Stop when the first basic variable (xs,
boundary (2x, = 12) is reached. X4, OF Xs) drops to zero (x4).
Step 3 Find the intersection of the new pair With x, now a basic variable and x4
of constraint boundaries: (0, 6) is the now a nonbasic variable, solve the
new CPF solution. system of equations: (0, 6, 4, 0, 6) is
the new BF solution.
Optimality ~ Not optimal, because moving along the Not optimal, because increasing one
test edge from (0, 6) to the right increases Z. nonbasic variable (x;) increases Z.
Iteration 2
Step 1 Move along this edge to the right. Increase x; while adjusting other
variable values to satisfy the system of
equations.
Step 2 Stop when the first new constraint Stop when the first basic variable (x,,
boundary (3x; + 2x, = 18) is reached. X3, OF Xs) drops to zero (xs).
Step 3 Find the intersection of the new pair With x; now a basic variable and xs
of constraint boundaries: (2, 6) is the now a nonbasic variable, solve the
new CPF solution. system of equations: (2, 6, 2, 0, 0) is
the new BF solution.
Optimality (2, 6) is optimal, because moving (2, 6, 2,0, 0) is optimal, because
test along either edge from (2, 6) decreases Z. increasing either nonbasic variable (x4

or xs) decreases Z.

so Z = 0 for the initial BF solution. Because none of the basic variables (x3, x4, X5) have
a nonzero coefficient in this objective function, the coefficient of each nonbasic variable
(x1, x2) gives the rate of improvement in Z if that variable were to be increased from zero
(while the values of the basic variables are adjusted to continue satisfying the system of
equations).l These rates of improvement (3 and 5) are positive. Therefore, based on so-
lution concept 6 in Sec. 4.1, we conclude that (0, 0, 4, 12, 18) is not optimal.

For each BF solution examined after subsequent iterations, at least one basic variable
has a nonzero coefficient in the objective function. Therefore, the optimality test then will
use the new Eq. (0) to rewrite the objective function in terms of just the nonbasic vari-
ables, as you will see later.

"Note that this interpretation of the coefficients of the x; variables is based on these variables being on the right-
hand side, Z = 3x; + 5x,. When these variables are brought to the left-hand side for Eq. (0), Z — 3x; — 5x, = 0,
the nonzero coefficients change their signs.
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Determining the Direction of Movement (Step 1 of an Iteration)

Increasing one nonbasic variable from zero (while adjusting the values of the basic vari-
ables to continue satisfying the system of equations) corresponds to moving along one
edge emanating from the current CPF solution. Based on solution concepts 4 and 5 in
Sec. 4.1, the choice of which nonbasic variable to increase is made as follows:

Z =3x; + 5x;
Increase x;? Rate of improvement in Z = 3.
Increase x,? Rate of improvement in Z = 5.

5 > 3, so choose x, to increase.
As indicated next, we call x, the entering basic variable for iteration 1.

At any iteration of the simplex method, the purpose of step 1 is to choose one nonbasic
variable to increase from zero (while the values of the basic variables are adjusted to con-
tinue satisfying the system of equations). Increasing this nonbasic variable from zero will
convert it to a basic variable for the next BF solution. Therefore, this variable is called
the entering basic variable for the current iteration (because it is entering the basis).

Determining Where to Stop (Step 2 of an Iteration)

Step 2 addresses the question of how far to increase the entering basic variable x, before
stopping. Increasing x, increases Z, so we want to go as far as possible without leaving
the feasible region. The requirement to satisfy the functional constraints in augmented
form (shown below) means that increasing x, (while keeping the nonbasic variable x; = 0)
changes the values of some of the basic variables as shown on the right.

x; = 0, SO
(D) X + X3 = 4 x3= 4
2) 2x, + x4 =12 Xy =12 — 2x,
3) 3x; + 2x; + x5 =18 Xs = 18 — 2x,.

The other requirement for feasibility is that all the variables be nonnegative. The nonbasic
variables (including the entering basic variable) are nonnegative, but we need to check how
far x, can be increased without violating the nonnegativity constraints for the basic variables.

x3;=4=0 = no upper bound on x;.

x4=12—2x220:x25%=6 < minimum.
_ 18 _

x5—18—2x220:>x2$7—9.

Thus, x, can be increased just to 6, at which point x4 has dropped to 0. Increasing x, be-
yond 6 would cause x4 to become negative, which would violate feasibility.

These calculations are referred to as the minimum ratio test. The objective of this
test is to determine which basic variable drops to zero first as the entering basic variable
is increased. We can immediately rule out the basic variable in any equation where the
coefficient of the entering basic variable is zero or negative, since such a basic variable
would not decrease as the entering basic variable is increased. [This is what happened
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with x3 in Eq. (1) of the example.] However, for each equation where the coefficient of
the entering basic variable is strictly positive (> 0), this test calculates the ratio of the
right-hand side to the coefficient of the entering basic variable. The basic variable in the
equation with the minimum ratio is the one that drops to zero first as the entering basic
variable is increased.

At any iteration of the simplex method, step 2 uses the minimum ratio test to determine
which basic variable drops to zero first as the entering basic variable is increased. De-
creasing this basic variable to zero will convert it to a nonbasic variable for the next BF
solution. Therefore, this variable is called the leaving basic variable for the current iter-
ation (because it is leaving the basis).

Thus, x, is the leaving basic variable for iteration 1 of the example.

Solving for the New BF Solution (Step 3 of an Iteration)

Increasing x, = 0 to x, = 6 moves us from the initial BF solution on the left to the new
BF solution on the right.

Initial BF solution New BF solution
Nonbasic variables: x; =0, x, =0 x1=0, x40=0
Basic variables: x3=4, x4=12, x5=18 X3=17 X=6, x5=7?

The purpose of step 3 is to convert the system of equations to a more convenient form
(proper form from Gaussian elimination) for conducting the optimality test and (if needed)
the next iteration with this new BF solution. In the process, this form also will identify
the values of x5 and xs for the new solution.

Here again is the complete original system of equations, where the new basic vari-
ables are shown in bold type (with Z playing the role of the basic variable in the objec-
tive function equation):

©0) Z—-3x — 5%, =0
(1) X, + X3 = 4
2) 2x, + X =12
3) 3x, + 2x, +xs = 18.

Thus, x, has replaced x4 as the basic variable in Eq. (2). To solve this system of equations
for Z, x,, x5, and x5, we need to perform some elementary algebraic operations to re-
produce the current pattern of coefficients of x4 (0, 0, 1, 0) as the new coefficients of x,.
We can use either of two types of elementary algebraic operations:

1. Multiply (or divide) an equation by a nonzero constant.
2. Add (or subtract) a multiple of one equation to (or from) another equation.

To prepare for performing these operations, note that the coefficients of x, in the above
system of equations are —5, 0, 2, and 3, respectively, whereas we want these coefficients
to become 0, 0, 1, and 0, respectively. To turn the coefficient of 2 in Eq. (2) into 1, we use
the first type of elementary algebraic operation by dividing Eq. (2) by 2 to obtain

@) xa+ %M —6.
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To turn the coefficients of —5 and 3 into zeros, we need to use the second type of elementary
algebraic operation. In particular, we add 5 times this new Eq. (2) to Eq. (0), and subtract 2
times this new Eq. (2) from Eq. (3). The resulting complete new system of equations is

0) Z — 3x; + %x4 =30
(1) X1 + x3 =4
) P %M - 6
3) 3x; — x4 txs= 6.

Since x; = 0 and x4 = 0, the equations in this form immediately yield the new BF solu-
tion, (x1, X, X3, X4, X5) = (0, 6, 4, 0, 6), which yields Z = 30.

This procedure for obtaining the simultaneous solution of a system of linear equa-
tions is called the Gauss-Jordan method of elimination, or Gaussian elimination for
short.! The key concept for this method is the use of elementary algebraic operations to
reduce the original system of equations to proper form from Gaussian elimination, where
each basic variable has been eliminated from all but one equation (its equation) and has
a coefficient of +1 in that equation.

Optimality Test for the New BF Solution
The current Eq. (0) gives the value of the objective function in terms of just the current
nonbasic variables

Z =730+ 3x; — %x4.

Increasing either of these nonbasic variables from zero (while adjusting the values of the
basic variables to continue satisfying the system of equations) would result in moving to-
ward one of the two adjacent BF solutions. Because x; has a positive coefficient, in-
creasing x; would lead to an adjacent BF solution that is better than the current BF solu-
tion, so the current solution is not optimal.

Iteration 2 and the Resulting Optimal Solution

Since Z = 30 + 3x; — 2x4, Z can be increased by increasing x;, but not x,. Therefore, step
1 chooses x; to be the entering basic variable.

For step 2, the current system of equations yields the following conclusions about
how far x; can be increased (with x, = 0):

x3:4_)€120 $X15%24.

x=6=0 = no upper bound on x;.
6 -
xs=6—3x;, =0 = x S§=2 < minimum.
Therefore, the minimum ratio test indicates that xs is the leaving basic variable.

lActually, there are some technical differences between the Gauss-Jordan method of elimination and Gaussian
elimination, but we shall not make this distinction.
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For step 3, with x; replacing x5 as a basic variable, we perform elementary algebraic
operations on the current system of equations to reproduce the current pattern of coeffi-
cients of x5 (0, 0, 0, 1) as the new coefficients of x;. This yields the following new sys-
tem of equations:

(O) VA + %X4 + X5 = 36
1 1

(1) X3 + §X4 - ?)CS = 2
1

(2) X> + x4 = 6
2
1 1

3) X —3at = 2

Therefore, the next BF solution is (xy, x5, X3, X4, X5) = (2, 6, 2, 0, 0), yielding Z = 36. To
apply the optimality test to this new BF solution, we use the current Eq. (0) to express Z
in terms of just the current nonbasic variables,

3
Z:36_EX4_X5.

Increasing either x4 or x5 would decrease Z, so neither adjacent BF solution is as good as
the current one. Therefore, based on solution concept 6 in Sec. 4.1, the current BF solu-
tion must be optimal.

In terms of the original form of the problem (no slack variables), the optimal solu-
tion is x; = 2, x, = 6, which yields Z = 3x; + 5x, = 36.

To see another example of applying the simplex method, we recommend that you now
view the demonstration entitled Simplex Method—Algebraic Form in your OR Tutor. This
vivid demonstration simultaneously displays both the algebra and the geometry of the sim-
plex method as it dynamically evolves step by step. Like the many other demonstration ex-
amples accompanying other sections of the book (including the next section), this com-
puter demonstration highlights concepts that are difficult to convey on the printed page.

To further help you learn the simplex method efficiently, your OR Courseware in-
cludes a procedure entitled Solve Interactively by the Simplex Method. This routine per-
forms nearly all the calculations while you make the decisions step by step, thereby en-
abling you to focus on concepts rather than get bogged down in a lot of number crunching.
Therefore, you probably will want to use this routine for your homework on this section.
The software will help you get started by letting you know whenever you make a mistake
on the first iteration of a problem.

The next section includes a summary of the simplex method for a more convenient
tabular form.

THE SIMPLEX METHOD IN TABULAR FORM

The algebraic form of the simplex method presented in Sec. 4.3 may be the best one for
learning the underlying logic of the algorithm. However, it is not the most convenient form
for performing the required calculations. When you need to solve a problem by hand (or
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interactively with your OR Courseware), we recommend the fabular form described in
this section.’

The tabular form of the simplex method records only the essential information, namely,
(1) the coefficients of the variables, (2) the constants on the right-hand sides of the equa-
tions, and (3) the basic variable appearing in each equation. This saves writing the sym-
bols for the variables in each of the equations, but what is even more important is the fact
that it permits highlighting the numbers involved in arithmetic calculations and recording
the computations compactly.

Table 4.3 compares the initial system of equations for the Wyndor Glass Co. prob-
lem in algebraic form (on the left) and in tabular form (on the right), where the table on
the right is called a simplex tableau. The basic variable for each equation is shown in bold
type on the left and in the first column of the simplex tableau on the right. [Although only
the x; variables are basic or nonbasic, Z plays the role of the basic variable for Eq. (0).]
All variables not listed in this basic variable column (x;, x,) automatically are nonbasic
variables. After we set x; = 0, x, = 0, the right side column gives the resulting solution
for the basic variables, so that the initial BF solution is (x;, x», x3, x4, x5) = (0, 0, 4, 12,
18) which yields Z = 0.

The tabular form of the simplex method uses a simplex tableau to compactly display the
system of equations yielding the current BF solution. For this solution, each variable in
the leftmost column equals the corresponding number in the rightmost column (and vari-
ables not listed equal zero). When the optimality test or an iteration is performed, the only
relevant numbers are those to the right of the Z column. The term row refers to just a row
of numbers to the right of the Z column (including the right side number), where row i
corresponds to Eq. (7).

We summarize the tabular form of the simplex method below and, at the same time,
briefly describe its application to the Wyndor Glass Co. problem. Keep in mind that the
logic is identical to that for the algebraic form presented in the preceding section. Only
the form for displaying both the current system of equations and the subsequent iteration
has changed (plus we shall no longer bother to bring variables to the right-hand side of
an equation before drawing our conclusions in the optimality test or in steps 1 and 2 of
an iteration).

A form more convenient for automatic execution on a computer is presented in Sec. 5.2.

TABLE 4.3 Initial system of equations for the Wyndor Glass Co. problem

(a) Algebraic Form (b) Tabular Form
Coefficient of:

Basic Right

Variable | Eq. | Z | x, X2 X3 Xg Xs Side
0) Z—-3x — 5x; =0 z o(1{-3 -5 0 0 O 0
1) X1 + X3 = 4 X3 Mmoo 1 0 1 0o o 4
2) 2%y + X4 =12 X4 @ |0 0 2 0 1 0 12
3) 3x1 + 2x; +x5=18 Xs 3|0 3 2 0 o0 1 18




4.4 THE SIMPLEX METHOD IN TABULAR FORM 125

Summary of the Simplex Method (and Iteration 1 for the Example)

Initialization. Introduce slack variables. Select the decision variables to be the initial
nonbasic variables (set equal to zero) and the slack variables to be the initial basic vari-
ables. (See Sec. 4.6 for the necessary adjustments if the model is not in our standard
form—maximization, only = functional constraints, and all nonnegativity constraints—
or if any b; values are negative.)

For the Example: This selection yields the initial simplex tableau shown in Table 4.3b,
so the initial BF solution is (0, 0, 4, 12, 18).

Optimality Test. The current BF solution is optimal if and only if every coefficient in
row 0 is nonnegative (= 0). If it is, stop; otherwise, go to an iteration to obtain the next
BF solution, which involves changing one nonbasic variable to a basic variable (step 1)
and vice versa (step 2) and then solving for the new solution (step 3).

For the Example: Just as Z = 3x; + 5x, indicates that increasing either x; or x, will
increase Z, so the current BF solution is not optimal, the same conclusion is drawn from
the equation Z — 3x; — 5x, = 0. These coefficients of —3 and —5 are shown in row 0 of
Table 4.3b.

Iteration. Step I: Determine the entering basic variable by selecting the variable (au-
tomatically a nonbasic variable) with the negative coefficient having the largest absolute
value (i.e., the “most negative” coefficient) in Eq. (0). Put a box around the column be-
low this coefficient, and call this the pivot column.

For the Example: The most negative coefficient is —5 for x, (5 > 3), so x, is to be
changed to a basic variable. (This change is indicated in Table 4.4 by the box around the
X, column below —5.)

Step 2: Determine the leaving basic variable by applying the minimum ratio test.

Minimum Ratio Test

Pick out each coefficient in the pivot column that is strictly positive (> 0).

Divide each of these coefficients into the right side entry for the same row.

Identify the row that has the smallest of these ratios.

The basic variable for that row is the leaving basic variable, so replace that variable
by the entering basic variable in the basic variable column of the next simplex tableau.

o=

TABLE 4.4 Applying the minimum ratio test to determine the first leaving basic
variable for the Wyndor Glass Co. problem

Coefficient of:
Basic Right
Variable Eq. V4 X1 X2 X3 X4 Xs Side Ratio

V4 0) 1 -3 -5 0 0 0 0

X3 (1) 0 1 0 1 0 0 4

X4 2) 0 0 2 0 1 0 12 —>% = 6 < minimum

18
Xs 3) 0 3 2 0 0 1 18 -5 = 9
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Put a box around this row and call it the pivot row. Also call the number that is in both
boxes the pivot number.

For the Example: The calculations for the minimum ratio test are shown to the
right of Table 4.4. Thus, row 2 is the pivot row (see the box around this row in the
first simplex tableau of Table 4.5), and x, is the leaving basic variable. In the next sim-
plex tableau (see the bottom of Table 4.5), x, replaces x4 as the basic variable for
row 2.

Step 3: Solve for the new BF solution by using elementary row operations (multi-
ply or divide a row by a nonzero constant; add or subtract a multiple of one row to an-
other row) to construct a new simplex tableau in proper form from Gaussian elimination
below the current one, and then return to the optimality test. The specific elementary row
operations that need to be performed are listed below.

1. Divide the pivot row by the pivot number. Use this new pivot row in steps 2
and 3.

2. For each other row (including row 0) that has a negative coefficient in the pivot col-
umn, add to this row the product of the absolute value of this coefficient and the new
pivot row.

3. For each other row that has a positive coefficient in the pivot column, subtract from
this row the product of this coefficient and the new pivot row.

For the Example: Since x, is replacing x4 as a basic variable, we need to reproduce
the first tableau’s pattern of coefficients in the column of x4 (0, 0, 1, 0) in the second
tableau’s column of x,. To start, divide the pivot row (row 2) by the pivot number (2),
which gives the new row 2 shown in Table 4.5. Next, we add to row O the product, 5 times
the new row 2. Then we subtract from row 3 the product, 2 times the new row 2 (or equiv-
alently, subtract from row 3 the old row 2). These calculations yield the new tableau shown
in Table 4.6 for iteration 1. Thus, the new BF solution is (0, 6, 4, 0, 6), with Z = 30. We
next return to the optimality test to check if the new BF solution is optimal. Since the new
row O still has a negative coefficient (—3 for x,), the solution is not optimal, and so at
least one more iteration is needed.

TABLE 4.5 Simplex tableaux for the Wyndor Glass Co. problem after the
first pivot row is divided by the first pivot number

Coefficient of:
Basic Right
Iteration Variable Eq. V4 X1 X2 X3 X4 X5 Side
V4 0) 1 - -5 0 0 0 0
0 X3 M 0 1 (0] 1 0 0 4
X4 2) 0 0 2 0 1 0 12
Xs 3) 0 3 12 | 0 0 1 18
V4 0) 1
: x3 M | o :
X5 2) 0 0 1 0 > 0 6
Xs (3) 0
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TABLE 4.6 First two simplex tableaux for the Wyndor Glass Co. problem

Coefficient of:
Basic Right
Iteration Variable Eq. V4 X1 X2 X3 X4 Xs Side
V4 0) 1 -3 -5 0 0 0 0
0 X3 m 0 1 0 1 0 0 4
X4 ) 0 0 2 0 1 0 12
Xs 3) 0 3 12| 0 0 1 18
5
V4 0) 1 -3 0 0 5 0 30
1 X3 m 0 1 0 1 0 0 4
X5 ) 0 0 1 0 15 0 6
Xs 3) 0 3 0 0 -1 1 6

Iteration 2 for the Example and the Resulting Optimal Solution

The second iteration starts anew from the second tableau of Table 4.6 to find the next BF
solution. Following the instructions for steps 1 and 2, we find x; as the entering basic vari-
able and x5 as the leaving basic variable, as shown in Table 4.7.

For step 3, we start by dividing the pivot row (row 3) in Table 4.7 by the pivot num-
ber (3). Next, we add to row O the product, 3 times the new row 3. Then we subtract the
new row 3 from row 1.

We now have the set of tableaux shown in Table 4.8. Therefore, the new BF solution
is (2, 6, 2, 0, 0), with Z = 36. Going to the optimality test, we find that this solution is
optimal because none of the coefficients in row 0 is negative, so the algorithm is finished.
Consequently, the optimal solution for the Wyndor Glass Co. problem (before slack vari-
ables are introduced) is x; = 2, x, = 6.

Now compare Table 4.8 with the work done in Sec. 4.3 to verify that these two forms
of the simplex method really are equivalent. Then note how the algebraic form is supe-
rior for learning the logic behind the simplex method, but the tabular form organizes the

TABLE 4.7 Steps 1 and 2 of iteration 2 for the Wyndor Glass Co. problem

Coefficient of:
Basic Right
Iteration Variable | Eq. | Z | x, X2 X3 X4 X5 Side Ratio
5
V4 0) 1 -3 0 0 5 0 30
— 4
X3 M | o 1 0 1 0 0 4 7= 4
1
X5 @2 |0 0 1 0 17 0 6
X5 3 ol [3 0 o -1 1 6 g — 2 < minimum
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4.5

TABLE 4.8 Complete set of simplex tableaux for the Wyndor Glass Co. problem

Coefficient of:
Basic Right
Iteration Variable Eq. V4 X1 X2 X3 X4 Xs Side
Z 0) 1 - -5 0 0 0 0
0 X3 ) 0 1 0 1 0 0 4
X4 2 0 0 2 0 1 0 12
Xs 3) 0 3 12| 0 0 1 18
5
Z 0) 1 -3 0 0 > 0 30
] X3 M 0 1] 0 1 0 0 4
X5 2 0 0 1 0 % 0 6
Xs 3) 0 3 0 0 -1 1 6
3
Z 0) 1 0 0 0 > 1 36
1 1
X3 ) 0 0 0 1 3 -3 2
2 1
X5 2 0 0 1 0 5 0 6
X (3) 0 1 0 0 1 1 2
! 3 3

work being done in a considerably more convenient and compact form. We generally use
the tabular form from now on.

An additional example of applying the simplex method in tabular form is available
to you in the OR Tutor. See the demonstration entitled Simplex Method—Tabular Form.

TIE BREAKING IN THE SIMPLEX METHOD

You may have noticed in the preceding two sections that we never said what to do if the
various choice rules of the simplex method do not lead to a clear-cut decision, because of
either ties or other similar ambiguities. We discuss these details now.

Tie for the Entering Basic Variable

Step 1 of each iteration chooses the nonbasic variable having the negative coefficient with
the largest absolute value in the current Eq. (0) as the entering basic variable. Now sup-
pose that two or more nonbasic variables are tied for having the largest negative coeffi-
cient (in absolute terms). For example, this would occur in the first iteration for the Wyn-
dor Glass Co. problem if its objective function were changed to Z = 3x;+ 3x,, so that the
initial Eq. (0) became Z — 3x; — 3x, = 0. How should this tie be broken?

The answer is that the selection between these contenders may be made arbitrarily.
The optimal solution will be reached eventually, regardless of the tied variable chosen,
and there is no convenient method for predicting in advance which choice will lead there
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sooner. In this example, the simplex method happens to reach the optimal solution (2, 6)
in three iterations with x; as the initial entering basic variable, versus two iterations if x,
is chosen.

Tie for the Leaving Basic Variable—Degeneracy

Now suppose that two or more basic variables tie for being the leaving basic variable in
step 2 of an iteration. Does it matter which one is chosen? Theoretically it does, and in a
very critical way, because of the following sequence of events that could occur. First, all
the tied basic variables reach zero simultaneously as the entering basic variable is in-
creased. Therefore, the one or ones not chosen to be the leaving basic variable also will
have a value of zero in the new BF solution. (Note that basic variables with a value of
zero are called degenerate, and the same term is applied to the corresponding BF solu-
tion.) Second, if one of these degenerate basic variables retains its value of zero until it
is chosen at a subsequent iteration to be a leaving basic variable, the corresponding en-
tering basic variable also must remain zero (since it cannot be increased without making
the leaving basic variable negative), so the value of Z must remain unchanged. Third, if
Z may remain the same rather than increase at each iteration, the simplex method may
then go around in a loop, repeating the same sequence of solutions periodically rather
than eventually increasing Z toward an optimal solution. In fact, examples have been ar-
tificially constructed so that they do become entrapped in just such a perpetual loop.

Fortunately, although a perpetual loop is theoretically possible, it has rarely been
known to occur in practical problems. If a loop were to occur, one could always get out
of it by changing the choice of the leaving basic variable. Furthermore, special rules' have
been constructed for breaking ties so that such loops are always avoided. However, these
rules frequently are ignored in actual application, and they will not be repeated here. For
your purposes, just break this kind of tie arbitrarily and proceed without worrying about
the degenerate basic variables that result.

No Leaving Basic Variable—Unbounded Z

In step 2 of an iteration, there is one other possible outcome that we have not yet dis-
cussed, namely, that no variable qualifies to be the leaving basic variable.? This outcome
would occur if the entering basic variable could be increased indefinitely without giving
negative values to any of the current basic variables. In tabular form, this means that every
coefficient in the pivot column (excluding row 0) is either negative or zero.

As illustrated in Table 4.9, this situation arises in the example displayed in Fig. 3.6
on p. 36. In this example, the last two functional constraints of the Wyndor Glass Co.
problem have been overlooked and so are not included in the model. Note in Fig. 3.6 how
X, can be increased indefinitely (thereby increasing Z indefinitely) without ever leaving
the feasible region. Then note in Table 4.9 that x, is the entering basic variable but the

!See R. Bland, “New Finite Pivoting Rules for the Simplex Method,” Mathematics of Operations Research, 2:
103-107, 1977.

2Note that the analogous case (no entering basic variable) cannot occur in step 1 of an iteration, because the
optimality test would stop the algorithm first by indicating that an optimal solution had been reached.
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TABLE 4.9 Initial simplex tableau for the Wyndor Glass Co. problem without the
last two functional constraints

Coefficient of:
Basic Right

Variable Eq. z Xq X2 X3 Side Ratio

V4 0) -3 -5 0 0 With x; = 0 and x, increasing,
X3 M | o 1 [0] 1 4 None  x3=4—1x; — Ox, = 4 > 0.

_

only coefficient in the pivot column is zero. Because the minimum ratio test uses only co-
efficients that are greater than zero, there is no ratio to provide a leaving basic variable.

The interpretation of a tableau like the one shown in Table 4.9 is that the constraints
do not prevent the value of the objective function Z increasing indefinitely, so the sim-
plex method would stop with the message that Z is unbounded. Because even linear pro-
gramming has not discovered a way of making infinite profits, the real message for prac-
tical problems is that a mistake has been made! The model probably has been
misformulated, either by omitting relevant constraints or by stating them incorrectly. Al-
ternatively, a computational mistake may have occurred.

Multiple Optimal Solutions

We mentioned in Sec. 3.2 (under the definition of optimal solution) that a problem can
have more than one optimal solution. This fact was illustrated in Fig. 3.5 by changing the
objective function in the Wyndor Glass Co. problem to Z = 3x; + 2x,, so that every point
on the line segment between (2, 6) and (4, 3) is optimal. Thus, all optimal solutions are
a weighted average of these two optimal CPF solutions

(x1, x2) = wi(2, 6) + wy(4, 3),

where the weights w; and w, are numbers that satisfy the relationships
wp+twy,=1 and wy, =0, wy = 0.

For example, w; = 5 and w, = 3 give

-1 2 _(2,8 6,6\ _(10
=300+ 3= (3+3 $+3)=(F 4)

as one optimal solution.

In general, any weighted average of two or more solutions (vectors) where the weights
are nonnegative and sum to 1 is called a convex combination of these solutions. Thus,
every optimal solution in the example is a convex combination of (2, 6) and (4, 3).

This example is typical of problems with multiple optimal solutions.

As indicated at the end of Sec. 3.2, any linear programming problem with multiple opti-
mal solutions (and a bounded feasible region) has at least two CPF solutions that are op-
timal. Every optimal solution is a convex combination of these optimal CPF solutions.
Consequently, in augmented form, every optimal solution is a convex combination of the
optimal BF solutions.

(Problems 4.5-5 and 4.5-6 guide you through the reasoning behind this conclusion.)
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The simplex method automatically stops after one optimal BF solution is found. How-
ever, for many applications of linear programming, there are intangible factors not incor-
porated into the model that can be used to make meaningful choices between alternative
optimal solutions. In such cases, these other optimal solutions should be identified as well.
As indicated above, this requires finding all the other optimal BF solutions, and then every
optimal solution is a convex combination of the optimal BF solutions.

After the simplex method finds one optimal BF solution, you can detect if there are
any others and, if so, find them as follows:

Whenever a problem has more than one optimal BF solution, at least one of the nonba-
sic variables has a coefficient of zero in the final row 0, so increasing any such variable
will not change the value of Z. Therefore, these other optimal BF solutions can be iden-
tified (if desired) by performing additional iterations of the simplex method, each time
choosing a nonbasic variable with a zero coefficient as the entering basic variable.'

To illustrate, consider again the case just mentioned, where the objective function in
the Wyndor Glass Co. problem is changed to Z = 3x; + 2x,. The simplex method obtains
the first three tableaux shown in Table 4.10 and stops with an optimal BF solution. How-

'If such an iteration has no leaving basic variable, this indicates that the feasible region is unbounded and the
entering basic variable can be increased indefinitely without changing the value of Z.

TABLE 4.10 Complete set of simplex tableaux to obtain all optimal BF solutions
for the Wyndor Glass Co. problem with ¢, = 2

Coefficient of:
Basic Right  Solution
Iteration Variable Eq. V4 Xq X2 X3 X4 X5 Side Optimal?
V4 0) 1 -3 -2 0 0 0 0 No
0 X3 M | o 1 0 1 0 0 4|
X4 2) 0 0 2 0 1 0 12
Xs ?3) 0 3] 2 0 0 1 18
V4 0) 1 0 -2 3 0 0 12 No
1 X1 1) 0 1 0 1 0 0 4
X4 ) 0 0 2 0 1 0 12
Xs ?3) 0 [o 2 -3 0 1 6 |
V4 0) 1 0 0 0 1 18 Yes
2 Xq m 0 1 0 1 0 0 4
X4 ) 0 [o 0 3 1 -1 6 |
3 1
X5 ?3) 0 0 1 -5 0 > 3
V4 0) 1 0 0 0 o 1 18 Yes
1 1
Xq m 0 1 0 0 -3 3 2
Extra ] 1
X3 ) 0 0 0 1 3 -3 2
X5 ?3) 0 0 1 0 % 0 6
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4.6

ever, because a nonbasic variable (x3) then has a zero coefficient in row 0, we perform
one more iteration in Table 4.10 to identify the other optimal BF solution. Thus, the two
optimal BF solutions are (4, 3, 0, 6, 0) and (2, 6, 2, 0, 0), each yielding Z = 18. Notice
that the last tableau also has a nonbasic variable (x,) with a zero coefficient in row 0. This
situation is inevitable because the extra iteration does not change row 0, so this leaving
basic variable necessarily retains its zero coefficient. Making x, an entering basic variable
now would only lead back to the third tableau. (Check this.) Therefore, these two are the
only BF solutions that are optimal, and all other optimal solutions are a convex combi-
nation of these two.

(xb X2, X3, X4, xS) = W1(2, 69 27 O’ 0) + W2(47 33 0, 69 O),
wy + wy =1, w; =0, wy = 0.

ADAPTING TO OTHER MODEL FORMS

Thus far we have presented the details of the simplex method under the assumptions that
the problem is in our standard form (maximize Z subject to functional constraints in = form
and nonnegativity constraints on all variables) and that b; =0 foralli=1,2,...,m. In
this section we point out how to make the adjustments required for other legitimate forms
of the linear programming model. You will see that all these adjustments can be made dur-
ing the initialization, so the rest of the simplex method can then be applied just as you have
learned it already.

The only serious problem introduced by the other forms for functional constraints
(the = or = forms, or having a negative right-hand side) lies in identifying an initial BF
solution. Before, this initial solution was found very conveniently by letting the slack vari-
ables be the initial basic variables, so that each one just equals the nonnegative right-hand
side of its equation. Now, something else must be done. The standard approach that is
used for all these cases is the artificial-variable technique. This technique constructs a
more convenient artificial problem by introducing a dummy variable (called an artificial
variable) into each constraint that needs one. This new variable is introduced just for the
purpose of being the initial basic variable for that equation. The usual nonnegativity con-
straints are placed on these variables, and the objective function also is modified to im-
pose an exorbitant penalty on their having values larger than zero. The iterations of the
simplex method then automatically force the artificial variables to disappear (become zero),
one at a time, until they are all gone, after which the real problem is solved.

To illustrate the artificial-variable technique, first we consider the case where the only
nonstandard form in the problem is the presence of one or more equality constraints.

Equality Constraints
Any equality constraint
anx; + apx, + o + a;,x, = b;
actually is equivalent to a pair of inequality constraints:

a;1 Xy + AinXo + -+ ain Xy, = bi
apx, + apx, + -+ + a,x, = b,
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However, rather than making this substitution and thereby increasing the number of con-
straints, it is more convenient to use the artificial-variable technique. We shall illustrate
this technique with the following example.

Example. Suppose that the Wyndor Glass Co. problem in Sec. 3.1 is modified to re-
quire that Plant 3 be used at full capacity. The only resulting change in the linear pro-
gramming model is that the third constraint, 3x; + 2x, = 18, instead becomes an equal-
ity constraint

3X1 + 2.X2 = 18,

so that the complete model becomes the one shown in the upper right-hand corner of Fig.
4.3. This figure also shows in darker ink the feasible region which now consists of just
the line segment connecting (2, 6) and (4, 3).

After the slack variables still needed for the inequality constraints are introduced, the
system of equations for the augmented form of the problem becomes

0) Z — 3x; — 5x; =0
(D) X + X3 = 4
) 2x, + x4 =12
3) 3x; + 2x, = 18.

Unfortunately, these equations do not have an obvious initial BF solution because there
is no longer a slack variable to use as the initial basic variable for Eq. (3). It is necessary
to find an initial BF solution to start the simplex method.

This difficulty can be circumvented in the following way.

FIGURE 4.3

When the third functional
constraint becomes an
equality constraint, the
feasible region for the
Wyndor Glass Co. problem
becomes the line segment
between (2, 6) and (4, 3).

X A
10 —
Maximize Z = 3x; + 5xp,
subject to X1 =
2y = 12
8 3x; + 2xy =18
and X1 = 0, X =0
6
4 —
2 —
L
0 8 X
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Obtaining an Initial BF Solution. The procedure is to construct an artificial prob-
lem that has the same optimal solution as the real problem by making two modifications
of the real problem.

1. Apply the artificial-variable technique by introducing a nonnegative artificial vari-
able (call it J_c_g)l into Eq. (3), just as if it were a slack variable

3) 3x; + 2x, + x5 = 18.

2. Assign an overwhelming penalty to having x5 > 0 by changing the objective function
Z=3x; + 5x, to

Z = 3)C1 + SX2 - M)_Cs,

where M symbolically represents a huge positive number. (This method of forcing x5
to be x5 = 0 in the optimal solution is called the Big M method.)

Now find the optimal solution for the real problem by applying the simplex method to the
artificial problem, starting with the following initial BF solution:

Initial BF Solution
Nonbasic variables: x; =0, X, =0
Basic variables: x3 =4, xq = 12, xs = 18.

Because x5 plays the role of the slack variable for the third constraint in the artificial
problem, this constraint is equivalent to 3x; + 2x, = 18 (just as for the original Wyndor
Glass Co. problem in Sec. 3.1). We show below the resulting artificial problem (before
augmenting) next to the real problem.

The Real Problem The Artificial Problem
Define x5 = 18 — 3x; — 2x,.
Maximize Z = 3x; + 5x,, Maximize Z = 3x, + 5x, — Mxs,
subject to subject to
Xy = 4 X = 4
2%, = 12 2%, =12
3x; +2x, =18 3x; + 2x; =18
and (so 3x; + 2x, + x5 = 18)
x; =0, x, = 0. and
x; =0, X, =0, x5 = 0.

Therefore, just as in Sec. 3.1, the feasible region for (x;, x,) for the artificial problem is
the one shown in Fig. 4.4. The only portion of this feasible region that coincides with the
feasible region for the real problem is where x5 = 0 (so 3x; + 2x, = 18).

Figure 4.4 also shows the order in which the simplex method examines the CPF so-
lutions (or BF solutions after augmenting), where each circled number identifies which it-
eration obtained that solution. Note that the simplex method moves counterclockwise here

"'We shall always label the artificial variables by putting a bar over them.
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This graph shows the feasible

region and the sequence of
CPF solutions (©, @), @, ®)
examined by the simplex
method for the artificial
problem that corresponds to
the real problem of Fig. 4.3.
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X2

Define XS =18 — 3)61 - 2)62.
Maximize Z = 3x; + 5x, — MXxs,
subject to X1 = 4
2%y =12
3x1 + 2X2 =18
and x =0, x,=0, x5=0

(0,6)

0,0

whereas it moved clockwise for the original Wyndor Glass Co. problem (see Fig. 4.2). The
reason for this difference is the extra term —MXs in the objective function for the artificial

problem.
Before applying the simplex method and demonstrating that it follows the path shown
in Fig. 4.4, the following preparatory step is needed.

Converting Equation (0) to Proper Form. The system of equations after the arti-
ficial problem is augmented is

©)  Z—-3x — 55 + Mis= 0
(1) X + x5 = 4
2) 2%, +x, - 12
3) 3x, + 2x, + ¥s=18

where the initial basic variables (x3, x4, X5) are shown in bold type. However, this system
is not yet in proper form from Gaussian elimination because a basic variable x5 has a
nonzero coefficient in Eq. (0). Recall that all basic variables must be algebraically elim-
inated from Eq. (0) before the simplex method can either apply the optimality test or find
the entering basic variable. This elimination is necessary so that the negative of the coef-
ficient of each nonbasic variable will give the rate at which Z would increase if that non-
basic variable were to be increased from O while adjusting the values of the basic
variables accordingly.
To algebraically eliminate x5 from Eq. (0), we need to subtract from Eq. (0) the prod-
uct, M times Eq. (3).
Z—3x; —5x+Mxs= 0
—MQ@Bx; +2x, + x5 =18)
New (0) Z—(3M + 3)x; — M + 5)x, = —18M.
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Application of the Simplex Method. This new Eq. (0) gives Z in terms of just the
nonbasic variables (x;, x,),

Z=—18M + (3M + 3)x; + @M + 5)x,.

Since 3M + 3 > 2M + 5 (remember that M represents a huge number), increasing x; in-
creases Z at a faster rate than increasing x, does, so x; is chosen as the entering basic vari-
able. This leads to the move from (0, 0) to (4, 0) at iteration 1, shown in Fig. 4.4, thereby
increasing Z by 4(3M + 3).

The quantities involving M never appear in the system of equations except for Eq.
(0), so they need to be taken into account only in the optimality test and when an enter-
ing basic variable is determined. One way of dealing with these quantities is to assign
some particular (huge) numerical value to M and use the resulting coefficients in Eq. (0)
in the usual way. However, this approach may result in significant rounding errors that in-
validate the optimality test. Therefore, it is better to do what we have just shown, namely,
to express each coefficient in Eq. (0) as a linear function aM + b of the symbolic quan-
tity M by separately recording and updating the current numerical value of (1) the multi-
plicative factor a and (2) the additive term b. Because M is assumed to be so large that b
always is negligible compared with M when a # 0, the decisions in the optimality test
and the choice of the entering basic variable are made by using just the multiplicative fac-
tors in the usual way, except for breaking ties with the additive factors.

Using this approach on the example yields the simplex tableaux shown in Table 4.11.
Note that the artificial variable x5 is a basic variable (x5 > 0) in the first two tableaux
and a nonbasic variable (x5 = 0) in the last two. Therefore, the first two BF solutions for
this artificial problem are infeasible for the real problem whereas the last two also are BF
solutions for the real problem.

This example involved only one equality constraint. If a linear programming model
has more than one, each is handled in just the same way. (If the right-hand side is nega-
tive, multiply through both sides by —1 first.)

Negative Right-Hand Sides

The technique mentioned in the preceding sentence for dealing with an equality constraint
with a negative right-hand side (namely, multiply through both sides by —1) also works
for any inequality constraint with a negative right-hand side. Multiplying through both
sides of an inequality by —1 also reverses the direction of the inequality; i.e., = changes
to = or vice versa. For example, doing this to the constraint

X]— X = -1 (that iS, X] =X, — 1)
gives the equivalent constraint
—x; tx= 1 (that iS, Xy — 1= xl)

but now the right-hand side is positive. Having nonnegative right-hand sides for all the
functional constraints enables the simplex method to begin, because (after augmenting)
these right-hand sides become the respective values of the initial basic variables, which
must satisfy nonnegativity constraints.
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TABLE 4.11 Complete set of simplex tableaux for the problem shown in Fig. 4.4

Coefficient of:

Basic Right
Iteration Variable | Eq. | Z X1 X2 X3 X4 Xs Side
V4 o (1| -3M-3 -2M-35 0 0 0 —18M
0 X3 Mo 1 0 1 0 0 4
X4 @2 |0 0 2 0 1 0 12
Xs 3|0 13 2 0 0 1 18
V4 ) |1 0 -2M-5 3M+3 0 0 —6M + 12
1 Xq Mo 1 0 1 0 0 4
X4 @2 |0 0 2 0 1 0 12
Xs 3|0 0 2 -3 0 1 6
9 5
V4 ) |1 0 0 -5 0 M+ 5 27
2 Xq Mo 1 0 1 0 0 4
X4 @2 |0 0 0 3 1 -1 6
3 1
X5 3|0 0 1 -5 0 7 3
3
V4 ©) |1 0 0 0 > M+1 36
Hlo| 1 0 o -+ 1 2
X1 ( ) 3 3
Extra 1 1
X3 @2 |0 0 0 1 3 -3 2
X5 3|0 0 1 0 15 0 6

We next focus on how to augment = constraints, such as —x; + x, = 1, with the help
of the artificial-variable technique.

Functional Constraints in = Form

To illustrate how the artificial-variable technique deals with functional constraints in =
form, we will use the model for designing Mary’s radiation therapy, as presented in Sec.
3.4. For your convenience, this model is repeated below, where we have placed a box
around the constraint of special interest here.

Radiation Therapy Example

Minimize

subject to

and

Z = 0.4x; + 0.5x5,

0.3x; + 0.1x, = 2.7
0.5x; + 0.5x, =6

0.6x; + 0.4x, = 6

x1 =0, X, = 0.
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FIGURE 4.5

Graphical display of the
radiation therapy example
and its corner-point
solutions.

p%) I
27

=

15
Dots = corner-point solutions
B Dark line segment = feasible region
Optimal solution = (7.5, 4.5)
0.6x; + 0.4x, =6
10—
5 —
| 0.5x; + 05x, =6
0.3x; +0.1xy, = 2.7
® |
0 5 10 1

The graphical solution for this example (originally presented in Fig. 3.12) is repeated
here in a slightly different form in Fig. 4.5. The three lines in the figure, along with the
two axes, constitute the five constraint boundaries of the problem. The dots lying at the
intersection of a pair of constraint boundaries are the corner-point solutions. The only two
corner-point feasible solutions are (6, 6) and (7.5, 4.5), and the feasible region is the line
segment connecting these two points. The optimal solution is (x;, x,) = (7.5, 4.5), with
Z =5.25.

We soon will show how the simplex method solves this problem by directly solving
the corresponding artificial problem. However, first we must describe how to deal with
the third constraint.
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Our approach involves introducing both a surplus variable x5 (defined as x5 =
0.6x; + 0.4x, — 6) and an artificial variable xs, as shown next.

0.6x; + 0.4x, =6
— 0.6x; + 0.4x, — x5 =6 (x5 =0)
—> 0.6x1 + 0.4.X'2 — X5 + }6 =6 (x5 = 0, )_CG = 0)

Here x5 is called a surplus variable because it subtracts the surplus of the left-hand side
over the right-hand side to convert the inequality constraint to an equivalent equality con-
straint. Once this conversion is accomplished, the artificial variable is introduced just as
for any equality constraint.

After a slack variable x5 is introduced into the first constraint, an artificial variable
X4 is introduced into the second constraint, and the Big M method is applied, so the com-
plete artificial problem (in augmented form) is

Minimize Z= 0.4)Cl + O.5X2 + M)_C4 + ME&

subject to 0.3x; + 0.1x5 + x3 =27
0.5x1 + O.S.XZ + .}4 =6
0.6x1 + 0.4.XZ — X5 + E(, =6
and x; =0, X, =0, x3 =0, X =0, x5 =0, X = 0.

Note that the coefficients of the artificial variables in the objective function are +M, in-
stead of —M, because we now are minimizing Z. Thus, even though x4 > 0 and/or x5 > 0
is possible for a feasible solution for the artificial problem, the huge unit penalty of +M
prevents this from occurring in an optimal solution.

As usual, introducing artificial variables enlarges the feasible region. Compare below
the original constraints for the real problem with the corresponding constraints on (x;, x,)
for the artificial problem.

Constraints on (xy, X) Constraints on (x, X)

for the Real Problem for the Artificial Problem
0.3X1 + 0.1XZ = 27 0.3x1 + 0.1)C2 = 27
0.5x; + 0.5x, = 6 0.5x; + 0.5x, = 6 (= holds when x; = 0)
0.6x; + 0.4x, =6 No such constraint (except when xg = 0)
x120, )C220 x120, x220

Introducing the artificial variable x4 to play the role of a slack variable in the second con-
straint allows values of (x;, x,) below the 0.5x; + 0.5x, = 6 line in Fig. 4.5. Introducing
x5 and X4 into the third constraint of the real problem (and moving these variables to the
right-hand side) yields the equation

0.6X1 + 0.4.X2 =6+ X5 — }6'

Because both x5 and xg are constrained only to be nonnegative, their difference x5 — X
can be any positive or negative number. Therefore, 0.6x; + 0.4x, can have any value,
which has the effect of eliminating the third constraint from the artificial problem and al-
lowing points on either side of the 0.6x; + 0.4x, = 6 line in Fig. 4.5. (We keep the third
constraint in the system of equations only because it will become relevant again later, af-
ter the Big M method forces xg to be zero.) Consequently, the feasible region for the ar-



140

4 SOLVING LINEAR PROGRAMMING PROBLEMS: THE SIMPLEX METHOD

tificial problem is the entire polyhedron in Fig. 4.5 whose vertices are (0, 0), (9, 0),
(7.5, 4.5), and (0, 12).

Since the origin now is feasible for the artificial problem, the simplex method starts
with (0, 0) as the initial CPF solution, i.e., with (xy, x5, x3, X4, X5, X¢) = (0, 0, 2.7, 6, 0,
6) as the initial BF solution. (Making the origin feasible as a convenient starting point for
the simplex method is the whole point of creating the artificial problem.) We soon will
trace the entire path followed by the simplex method from the origin to the optimal so-
lution for both the artificial and real problems. But, first, how does the simplex method
handle minimization?

Minimization

One straightforward way of minimizing Z with the simplex method is to exchange the
roles of the positive and negative coefficients in row 0 for both the optimality test and
step 1 of an iteration. However, rather than changing our instructions for the simplex

method for this case, we present the following simple way of converting any minimiza-
tion problem to an equivalent maximization problem:

n
Minimizing Z = Z CiXj
j=1
is equivalent to
n
maximizing —7Z= Z(—cj)xj;
j=1

i.e., the two formulations yield the same optimal solution(s).

The two formulations are equivalent because the smaller Z is, the larger —Z is, so the
solution that gives the smallest value of Z in the entire feasible region must also give the
largest value of —Z in this region.

Therefore, in the radiation therapy example, we make the following change in the
formulation:

Minimize Z= 04x; + 0.5x,
— Maximize —7Z = —0.4x; — 0.5x,.

After artificial variables x, and X are introduced and then the Big M method is applied,
the corresponding conversion is

Minimize Z= 04x; +0.5x, + Mx, + MXxgq
— Maximize —Z=—04x; — 0.5x, — MXx, — MXg.

Solving the Radiation Therapy Example

We now are nearly ready to apply the simplex method to the radiation therapy example.
By using the maximization form just obtained, the entire system of equations is now

©) —Z+04x, + 055,  +ME,  + Mg =0
(1) 0.3)61 + 0.1X2 + x5 =27
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2) 0.5x; + 0.5x, + % -6
3) 0.6x; + 0.4x, — x5+ X¢=6.

The basic variables (x3, X4, x¢) for the initial BF solution (for this artificial problem) are
shown in bold type.

Note that this system of equations is not yet in proper form from Gaussian elimina-
tion, as required by the simplex method, since the basic variables X, and X still need to
be algebraically eliminated from Eq. (0). Because x4 and xg both have a coefficient of M,
Eq. (0) needs to have subtracted from it both M times Eq. (2) and M times Eq. (3). The
calculations for all the coefficients (and the right-hand sides) are summarized below, where
the vectors are the relevant rows of the simplex tableau corresponding to the above sys-
tem of equations.

Row 0:
[0.4, 05, 0, M, 0, M, 0]
—M][0.5, 0.5, O, 1, 0, 0, 6]
—M][0.6, 04, O, 0, -1, 1, 6]
New row 0 = [—1.1M + 0.4, -09M + 0.5, O, 0, M, 0, —12M]

The resulting initial simplex tableau, ready to begin the simplex method, is shown at
the top of Table 4.12. Applying the simplex method in just the usual way then yields the
sequence of simplex tableaux shown in the rest of Table 4.12. For the optimality test and
the selection of the entering basic variable at each iteration, the quantities involving M
are treated just as discussed in connection with Table 4.11. Specifically, whenever M is
present, only its multiplicative factor is used, unless there is a tie, in which case the tie is
broken by using the corresponding additive terms. Just such a tie occurs in the last se-
lection of an entering basic variable (see the next-to-last tableau), where the coefficients
of x5 and xs in row 0 both have the same multiplicative factor of —3. Comparing the ad-
ditive terms, 2+ < 2 leads to choosing xs as the entering basic variable.

Note in Table 4.12 the progression of values of the artificial variables x, and x4 and
of Z. We start with large values, x, = 6 and x¢ = 6, with Z = 12M (—Z = —12M). The
first iteration greatly reduces these values. The Big M method succeeds in driving X¢ to
zero (as a new nonbasic variable) at the second iteration and then in doing the same to x4
at the next iteration. With both x; = 0 and xs = 0, the basic solution given in the last
tableau is guaranteed to be feasible for the real problem. Since it passes the optimality
test, it also is optimal.

Now see what the Big M method has done graphically in Fig. 4.6. The feasible re-
gion for the artificial problem initially has four CPF solutions—(0, 0), (9, 0), (0, 12), and
(7.5, 4.5)—and then replaces the first three with two new CPF solutions—(8, 3), (6, 6)—
after x4 decreases to xg = 0 so that 0.6x; + 0.4x, = 6 becomes an additional constraint.
(Note that the three replaced CPF solutions—(0, 0), (9, 0), and (0, 12)—actually were
corner-point infeasible solutions for the real problem shown in Fig. 4.5.) Starting with the
origin as the convenient initial CPF solution for the artificial problem, we move around
the boundary to three other CPF solutions—(9, 0), (8, 3), and (7.5, 4.5). The last of these
is the first one that also is feasible for the real problem. Fortuitously, this first feasible so-
lution also is optimal, so no additional iterations are needed.



142

4 SOLVING LINEAR PROGRAMMING PROBLEMS: THE SIMPLEX METHOD

TABLE 4.12 The Big M method for the radiation therapy example

Coefficient of:
Basic Right
Iteration Variable | Eq. | Z X1 X2 X3 X4 X5 X6 Side
7 ©|-1|-11M+04 -09M+0.5 0 0 M 0 —12M
0 X3 m 0 0.3 0.1 1 0 0 0 2.7 |
X4 2) 0 0.5 0.5 0 1 0 0 6
Xe 3) 0 0.6 0.4 0 0 -1 1 6
16 11 11 4
Z ©) | -1 0 7%M+ﬁ ?Mfg 0 M 0 -21M - 3.6
1 10
1 X1 m 0 1 3 3 0 0 0 9
_ 1 5
X4 2) 0 0 3 -3 1 0 0 1.5
Xe 3) 0 0 0.2 -2 0 -1 1 0.6
5 7 5 11 8 11
7 ©) | -1 0 0 7§M + 3 0 ng + & ?M -5 -0.5M — 4.7
20 5 5
, X1 m 0 1 0 3 0 3 -3 8
_ 5 5 5
X4 (2) 0 0 0 ? 1 ? —? 0.5
X, 3) 0 0 1 -10 0 -5 5 3
V4 ©) | -1 0 0 0.5 M-=1.1 0 M -5.25
3 X1 m 0 1 0 5 -1 0 0 7.5
Xs 2) 0 0 0 1 0.6 1 -1 0.3
X, 3) 0 0 1 -5 3 0 0 4.5

For other problems with artificial variables, it may be necessary to perform additional
iterations to reach an optimal solution after the first feasible solution is obtained for the
real problem. (This was the case for the example solved in Table 4.11.) Thus, the Big M
method can be thought of as having two phases. In the first phase, all the artificial vari-
ables are driven to zero (because of the penalty of M per unit for being greater than zero)
in order to reach an initial BF solution for the real problem. In the second phase, all the
artificial variables are kept at zero (because of this same penalty) while the simplex method
generates a sequence of BF solutions for the real problem that leads to an optimal solu-
tion. The two-phase method described next is a streamlined procedure for performing these
two phases directly, without even introducing M explicitly.

The Two-Phase Method

For the radiation therapy example just solved in Table 4.12, recall its real objective
function

Real problem: Minimize Z = 0.4x; + 0.5x,.



FIGURE 4.6

This graph shows the feasible
region and the sequence of
CPF solutions (©, @), @, ®)
examined by the simplex
method (with the Big M
method) for the artificial
problem that corresponds to
the real problem of Fig. 4.5.
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=6+ 12M Constraints for the artificial problem:

©.12) 0.3x) + 0.1xy, = 2.7
0.5x; + 0.5x, = 6 (= holds when %4 = 0)
(0.6x; + 0.4x, = 6 when % = 0)

XIZO, X220 (.)_6420, .f620)

This dark line segment is the feasible
(6, 6) region for the real problem
/ ()?4 = 0, .fé = 0)

(7.5, 4.5) optimal
(3,3)

(2)\~Z =47 +05M

Z=36+21M
(DA
0.0 i

However, the Big M method uses the following objective function (or its equivalent in
maximization form) throughout the entire procedure:

Big M method: Minimize Z=0.4x, + 0.5x, + MXx, + Mxe.

Since the first two coefficients are negligible compared to M, the two-phase method is
able to drop M by using the following two objective functions with completely different
definitions of Z in turn.

Two-phase method:

Phase 1: Minimize Z = x4+ X¢ (until x4, = 0, x¢ = 0).
Phase 2: Minimize Z=0.4x, + 0.5x, (with x4, = 0, x¢ = 0).

The phase 1 objective function is obtained by dividing the Big M method objective func-
tion by M and then dropping the negligible terms. Since phase 1 concludes by obtaining
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a BF solution for the real problem (one where x4, = 0 and x4 = 0), this solution is then
used as the initial BF solution for applying the simplex method to the real problem (with
its real objective function) in phase 2.

Before solving the example in this way, we summarize the general method.

Summary of the Two-Phase Method. Initialization: Revise the constraints of the
original problem by introducing artificial variables as needed to obtain an obvious initial
BF solution for the artificial problem.

Phase 1: The objective for this phase is to find a BF solution for the real problem.
To do this,

Minimize Z = 3, artificial variables, subject to revised constraints.

The optimal solution obtained for this problem (with Z = 0) will be a BF solution for the
real problem.

Phase 2: The objective for this phase is to find an optimal solution for the real prob-
lem. Since the artificial variables are not part of the real problem, these variables can now
be dropped (they are all zero now anyway)." Starting from the BF solution obtained at the
end of phase 1, use the simplex method to solve the real problem.

For the example, the problems to be solved by the simplex method in the respective
phases are summarized below.

Phase 1 Problem (Radiation Therapy Example):

Minimize Z = X4 + Xe,

subject to
0.3x; + 0.1x, + x3 =27
O.S.Xfl + O.S.X2 + E4 =6
0.6X1 + 0.4.X2 — X5 + )_C6 =6
and
=0, x=0, x=0, x=0, x=0, x=0.

Phase 2 Problem (Radiation Therapy Example):
Minimize Z = 0.4x; + 0.5x,,

subject to
0.3x; + 0.1x, + x3 =27
0.5x; + 0.5x, =6
0.6x; + 0.4x, —X5=06
and
x120, x220, X320, .X520.

'We are skipping over three other possibilities here: (1) artificial variables > 0 (discussed in the next subsec-
tion), (2) artificial variables that are degenerate basic variables, and (3) retaining the artificial variables as non-
basic variables in phase 2 (and not allowing them to become basic) as an aid to subsequent postoptimality analy-
sis. Your OR Courseware allows you to explore these possibilities.
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The only differences between these two problems are in the objective function and in the
inclusion (phase 1) or exclusion (phase 2) of the artificial variables x, and xs. Without the
artificial variables, the phase 2 problem does not have an obvious initial BF solution. The
sole purpose of solving the phase 1 problem is to obtain a BF solution with x, = 0 and
X¢ = 0 so that this solution (without the artificial variables) can be used as the initial BF
solution for phase 2.

Table 4.13 shows the result of applying the simplex method to this phase 1 problem.
[Row O in the initial tableau is obtained by converting Minimize Z = x4 + X, to Maxi-
mize (—Z) = —x; — Xg and then using elementary row operations to eliminate the basic
variables x; and xg from —Z + x; + x¢ = 0.] In the next-to-last tableau, there is a tie for
the entering basic variable between x5 and x5, which is broken arbitrarily in favor of x;.
The solution obtained at the end of phase 1, then, is (xy, x5, X3, X4, X5, Xg) = (6, 6, 0.3, 0,
0, 0) or, after x4 and X, are dropped, (x;, x, x3, x5) = (6, 6, 0.3, 0).

As claimed in the summary, this solution from phase 1 is indeed a BF solution for
the real problem (the phase 2 problem) because it is the solution (after you set x5 = 0) to
the system of equations consisting of the three functional constraints for the phase 2 prob-
lem. In fact, after deleting the x, and xs columns as well as row 0 for each iteration, Table

TABLE 4.13 Phase 1 of the two-phase method for the radiation therapy example

Coefficient of:
Basic Right
Iteration Variable Eq. z Xq X2 X3 X4 X5 X6 Side
V4 (0) -1 -1.1 -0.9 0 0 1 0 -12
0 X3 1) 0 0.3 0.1 1 0 0 0 2.7
X4 ) 0 0.5 0.5 0 1 0 0 6
X 3) 0 0.6 0.4 0 0 -1 1 6
16 11
V4 (0) -1 0 30 3 0 1 0 -2.1
1 10
: X1 (1 ) 0 1 ? ? 0 0 0 9
X @ ol o sy 0 0 15
4 3 3 )
X 3) 0 0 0.2 -2 0 -1 1 0.6
5 5 8
V4 (0) -1 0 0 -3 0 -3 3 -0.5
20 5 5
5 X1 (1 ) 0 1 0 ? 0 ? *g 8
_ 5 5 5
X4 ) 0 0 0 3 1 3 -3 0.5
X2 3) 0 0 1 -10 0 -5 5 3
V4 (0) -1 0 0 0 1 0 1 0
3 X m 1 0 0 -4 -5 5 6
X3 ) 0 0 0 1 % 1 -1 0.3
X2 ?3) 0 0 1 0 6 5 -5 6
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4.13 shows one way of using Gaussian elimination to solve this system of equations by
reducing the system to the form displayed in the final tableau.

Table 4.14 shows the preparations for beginning phase 2 after phase 1 is completed.
Starting from the final tableau in Table 4.13, we drop the artificial variables (x4 and xg),
substitute the phase 2 objective function (—Z = —0.4x; — 0.5x, in maximization form)
into row 0, and then restore the proper form from Gaussian elimination (by algebraically
eliminating the basic variables x; and x, from row 0). Thus, row 0 in the last tableau is
obtained by performing the following elementary row operations in the next-to-last
tableau: from row 0O subtract both the product, 0.4 times row 1, and the product, 0.5 times
row 3. Except for the deletion of the two columns, note that rows 1 to 3 never change.
The only adjustments occur in row 0 in order to replace the phase 1 objective function by
the phase 2 objective function.

The last tableau in Table 4.14 is the initial tableau for applying the simplex method
to the phase 2 problem, as shown at the top of Table 4.15. Just one iteration then leads to
the optimal solution shown in the second tableau: (x;, x,, x3, x5) = (7.5, 4.5, 0, 0.3). This
solution is the desired optimal solution for the real problem of interest rather than the ar-
tificial problem constructed for phase 1.

Now we see what the two-phase method has done graphically in Fig. 4.7. Starting at
the origin, phase 1 examines a total of four CPF solutions for the artificial problem. The
first three actually were corner-point infeasible solutions for the real problem shown in
Fig. 4.5. The fourth CPF solution, at (6, 6), is the first one that also is feasible for the real

TABLE 4.14 Preparing to begin phase 2 for the radiation therapy example

Coefficient of:

Basic Right
Variable | Eq. V4 X1 X2 X3 Xa Xs X6 Side

V4 © | -11(0 0 0 1 0 1 0

Final Phase 1 X M 011 0 0 -4 -5 5 6
tableau X5 @| olo o 1 % 1T -1| o3

X2 3) 0|0 1 0 6 5 =5 6

V4 © | -110 0 0 0 0

X1 ©) 1 0 0 -5 6

Drop %4 and Xs

X3 ) 0|0 1 1 0.3

X2 3) 0|0 1 5 6

z © | -1/04 05 O 0 0

Substitute phase 2 X1 m 0|1 0 0 -5 6
objective function X3 2) (V0] 0 1 1 0.3

X2 3) (U] 1 0 6
z © | -11]0 0 0 -0.5 -54

Restore proper form X 1) 0|1 0 0 -5 6
from Gaussian elimination X3 2) 0|0 0 1 1 0.3

X2 3) (U] 1 0 5 6
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TABLE 4.15 Phase 2 of the two-phase method for the radiation therapy example

Coefficient of:
Basic Right
Iteration Variable Eq. V4 Xq X2 X3 X5 Side
V4 0) -1 0 0 0 -0.5 —-5.4
0 X ) 0 1 0 0 -5 6
X ) 0 0 0 1 1 0.3
X2 ?3) 0 0 1 0 5 6
V4 0) -1 0 0 0.5 0 -5.25
1 X ©) 0 1 0 5 0 7.5
Xs %) 0 0 0 1 1 0.3
X2 ?3) 0 0 1 -5 0 4.5

FIGURE 4.7 X2
This graph shows the 0, 12)
sequence of CPF solutions for ’
phase 1 (@, @, @, @) and

then for phase 2 ([0], [1])

when the two-phase method

is applied to the radiation

therapy example.

This dark line segment is the
feasible region for the real problem

0,0

9,0 i
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problem, so it becomes the initial CPF solution for phase 2. One iteration in phase 2 leads
to the optimal CPF solution at (7.5, 4.5).

If the tie for the entering basic variable in the next-to-last tableau of Table 4.13 had
been broken in the other way, then phase 1 would have gone directly from (8, 3) to (7.5,
4.5). After (7.5, 4.5) was used to set up the initial simplex tableau for phase 2, the opti-
mality test would have revealed that this solution was optimal, so no iterations would be
done.

It is interesting to compare the Big M and two-phase methods. Begin with their ob-
jective functions.

Big M Method:
Minimize Z=0.4x, + 0.5x, + Mx, + Mxg.
Two-Phase Method:

Phase 1: Minimize Z = x4 t Xg.
Phase 2: Minimize Z = 0.4x; + 0.5x,.

Because the Mx, and Mx, terms dominate the 0.4x; and 0.5x, terms in the objective func-
tion for the Big M method, this objective function is essentially equivalent to the phase 1
objective function as long as x, and/or xg is greater than zero. Then, when both x, = 0
and xg = 0, the objective function for the Big M method becomes completely equivalent
to the phase 2 objective function.

Because of these virtual equivalencies in objective functions, the Big M and two-
phase methods generally have the same sequence of BF solutions. The one possible ex-
ception occurs when there is a tie for the entering basic variable in phase 1 of the two-
phase method, as happened in the third tableau of Table 4.13. Notice that the first three
tableaux of Tables 4.12 and 4.13 are almost identical, with the only difference being
that the multiplicative factors of M in Table 4.12 become the sole quantities in the cor-
responding spots in Table 4.13. Consequently, the additive terms that broke the tie for
the entering basic variable in the third tableau of Table 4.12 were not present to break
this same tie in Table 4.13. The result for this example was an extra iteration for the
two-phase method. Generally, however, the advantage of having the additive factors is
minimal.

The two-phase method streamlines the Big M method by using only the multiplica-
tive factors in phase 1 and by dropping the artificial variables in phase 2. (The Big M
method could combine the multiplicative and additive factors by assigning an actual huge
number to M, but this might create numerical instability problems.) For these reasons, the
two-phase method is commonly used in computer codes.

No Feasible Solutions

So far in this section we have been concerned primarily with the fundamental problem
of identifying an initial BF solution when an obvious one is not available. You have seen
how the artificial-variable technique can be used to construct an artificial problem and
obtain an initial BF solution for this artificial problem instead. Use of either the Big M
method or the two-phase method then enables the simplex method to begin its pilgrim-
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age toward the BF solutions, and ultimately toward the optimal solution, for the real
problem.

However, you should be wary of a certain pitfall with this approach. There may be
no obvious choice for the initial BF solution for the very good reason that there are no
feasible solutions at all! Nevertheless, by constructing an artificial feasible solution, there
is nothing to prevent the simplex method from proceeding as usual and ultimately re-
porting a supposedly optimal solution.

Fortunately, the artificial-variable technique provides the following signpost to indi-
cate when this has happened:

If the original problem has no feasible solutions, then either the Big M method or phase
1 of the two-phase method yields a final solution that has at least one artificial variable
greater than zero. Otherwise, they all equal zero.

To illustrate, let us change the first constraint in the radiation therapy example (see
Fig. 4.5) as follows:

0.3x; + 0.1x, = 2.7 — 0.3x; + 0.1x, = 1.8,

so that the problem no longer has any feasible solutions. Applying the Big M method just
as before (see Table 4.12) yields the tableaux shown in Table 4.16. (Phase 1 of the two-
phase method yields the same tableaux except that each expression involving M is re-
placed by just the multiplicative factor.) Hence, the Big M method normally would be in-
dicating that the optimal solution is (3, 9, 0, 0, 0, 0.6). However, since an artificial variable
Xe¢ = 0.6 > 0, the real message here is that the problem has no feasible solutions.

TABLE 4.16 The Big M method for the revision of the radiation therapy example that has no feasible solutions

Coefficient of:
Basic Right
Iteration Variable Eq. z X1 X2 X3 X4 X5 X6 Side
Z ©0) -1 -1.IM+04  —09M+0.5 0 0 M 0 —12M
0 X3 O 0 0.3 0.1 1 0 0 0 1.8
X4 2) 0 0.5 0.5 0 1 0 0 6
Xe 3) 0 0.6 0.4 0 0 -1 1 6
16 11 11 4
Z ©0) -1 0 “30M*30 3IM-3 0 M 0 —5.4M — 2.4
1 10
1 X [©) 0 1 3 3 0 0 0 6
_ 1 5
X4 2) 0 0 3 -3 1 0 0 3
Xe 3) 0 0.2 -2 0 -1 1 2.4
7 0) -1 0 0 M+ 0.5 1.6M— 1.1 M 0 -0.6M — 5.7
5 X O 0 1 0 5 -1 0 0 3
X5 2) 0 0 1 -5 3 0 0 9
Xe 3) 0 0 0 -1 -0.6 -1 1 0.6
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Variables Allowed to Be Negative

In most practical problems, negative values for the decision variables would have no
physical meaning, so it is necessary to include nonnegativity constraints in the formula-
tions of their linear programming models. However, this is not always the case. To il-
lustrate, suppose that the Wyndor Glass Co. problem is changed so that product 1 al-
ready is in production, and the first decision variable x; represents the increase in its
production rate. Therefore, a negative value of x; would indicate that product 1 is to be
cut back by that amount. Such reductions might be desirable to allow a larger produc-
tion rate for the new, more profitable product 2, so negative values should be allowed
for x; in the model.

Since the procedure for determining the leaving basic variable requires that all the
variables have nonnegativity constraints, any problem containing variables allowed to be
negative must be converted to an equivalent problem involving only nonnegative variables
before the simplex method is applied. Fortunately, this conversion can be done. The mod-
ification required for each variable depends upon whether it has a (negative) lower bound
on the values allowed. Each of these two cases is now discussed.

Variables with a Bound on the Negative Values Allowed. Consider any decision
variable x; that is allowed to have negative values which satisfy a constraint of the form

Xj = LJ,
where L; is some negative constant. This constraint can be converted to a nonnegativity
constraint by making the change of variables

xj=x;— L, so  x;=0.

Thus, x; + L; would be substituted for x; throughout the model, so that the redefined de-
cision variable x; cannot be negative. (This same technique can be used when L; is posi-
tive to convert a functional constraint x; = L, to a nonnegativity constraint x; = 0.)

To illustrate, suppose that the current production rate for product 1 in the Wyndor
Glass Co. problem is 10. With the definition of x; just given, the complete model at this
point is the same as that given in Sec. 3.1 except that the nonnegativity constraint x; = 0
is replaced by

x| = —10.

To obtain the equivalent model needed for the simplex method, this decision variable
would be redefined as the tofal production rate of product 1

xj=x; + 10,

which yields the changes in the objective function and constraints as shown:

Z =3x; + 5x, Z=3(x; — 10) + 5x, Z = =30+ 3x; + 5x,
Xy = 4 x; — 10 = 4 X1 =14
2, = 12 — 20 = 12 — 20 = 12
3x; + 2x, = 18 3(x; — 10) + 2x, = 18 3x] + 2x, = 48
x; = —10, xn=0 x; — 10 = —10, =0 x1 =0, xn =0
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Variables with No Bound on the Negative Values Allowed. In the case where
x; does not have a lower-bound constraint in the model formulated, another approach is
required: x; is replaced throughout the model by the difference of two new nonnegative
variables

=x/ —x;, wherex; =0,x; =0.

X=X
Since x; and x; can have any nonnegative values, this difference x;” — x; can have any
value (positive or negative), so it is a legitimate substitute for x; in the model. But after
such substitutions, the simplex method can proceed with just nonnegative variables.

The new variables x; and x; have a simple interpretation. As explained in the next
paragraph, each BF solution for the new form of the model necessarily has the property
that either x;7 = 0 or x; = 0 (or both). Therefore, at the optimal solution obtained by the

simplex method (a BF solution),

x_". _ X if .Xj = O,
J 0 otherwise;

= |Xj | if Xj S.O,
J 0 otherwise;

so that x;” represents the positive part of the decision variable x; and x; its negative part
(as suggested by the superscripts).

For example, if x; = 10, the above expressions give x; = 10 and x; = 0. This same
value of x; = x;” — x; = 10 also would occur with larger values of x; and x; such that
x; = x; + 10. Plotting these values of x;” and x; on a two-dimensional graph gives a line
with an endpoint at x;” = 10, x; = 0 to avoid violating the nonnegativity constraints. This
endpoint is the only corner-point solution on the line. Therefore, only this endpoint can
be part of an overall CPF solution or BF solution involving all the variables of the model.
This illustrates why each BF solution necessarily has either x;” = 0 or x; = 0 (or both).

To illustrate the use of the x; and x; , let us return to the example on the preceding
page where x; is redefined as the increase over the current production rate of 10 for prod-
uct 1 in the Wyndor Glass Co. problem.

However, now suppose that the x; = —10 constraint was not included in the original
model because it clearly would not change the optimal solution. (In some problems, cer-
tain variables do not need explicit lower-bound constraints because the functional con-
straints already prevent lower values.) Therefore, before the simplex method is applied,
x1 would be replaced by the difference

Xy =xf —x7, where x;7 =0, x7 =0,
as shown:
Maximize Z = 3x; + 5x,, Maximize Z=73x] — 3x; + 5x,
subject to X = 4 subject to X=X = 4
2m=12 | — 26 = 12
3x; + 2x, = 18 3x; —3x; +2x =18
x> = 0 (only) X =0, x; =0, X =0
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4.7

From a computational viewpoint, this approach has the disadvantage that the new
equivalent model to be used has more variables than the original model. In fact, if all the
original variables lack lower-bound constraints, the new model will have twice as many
variables. Fortunately, the approach can be modified slightly so that the number of vari-
ables is increased by only one, regardless of how many original variables need to be re-
placed. This modification is done by replacing each such variable x; by

p— ! " ! "
X =x; — X', where x/ = 0, x" = 0,

instead, where x” is the same variable for all relevant j. The interpretation of x” in this
case is that —x” is the current value of the largest (in absolute terms) negative original
variable, so that x/ is the amount by which x; exceeds this value. Thus, the simplex method
now can make some of the x; variables larger than zero even when x” > 0.

POSTOPTIMALITY ANALYSIS

We stressed in Secs. 2.3, 2.4, and 2.5 that postoptimality analysis—the analysis done af-
ter an optimal solution is obtained for the initial version of the model—constitutes a very
major and very important part of most operations research studies. The fact that postop-
timality analysis is very important is particularly true for typical linear programming ap-
plications. In this section, we focus on the role of the simplex method in performing this
analysis.

Table 4.17 summarizes the typical steps in postoptimality analysis for linear pro-
gramming studies. The rightmost column identifies some algorithmic techniques that in-
volve the simplex method. These techniques are introduced briefly here with the techni-
cal details deferred to later chapters.

Reoptimization

As discussed in Sec. 3.7, linear programming models that arise in practice commonly are
very large, with hundreds or thousands of functional constraints and decision variables.
In such cases, many variations of the basic model may be of interest for considering dif-
ferent scenarios. Therefore, after having found an optimal solution for one version of a
linear programming model, we frequently must solve again (often many times) for the so-

TABLE 4.17 Postoptimality analysis for linear programming

Task Purpose Technique
Model debugging Find errors and weaknesses in model Reoptimization
Model validation Demonstrate validity of final model See Sec. 2.4
Final managerial Make appropriate division of organizational Shadow prices
decisions on resource resources between activities under study
allocations (the b; values) and other important activities
Evaluate estimates of Determine crucial estimates that may affect Sensitivity analysis
model parameters optimal solution for further study
Evaluate trade-offs Determine best trade-off Parametric linear
between model programming
parameters
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lution of a slightly different version of the model. We nearly always have to solve again
several times during the model debugging stage (described in Secs. 2.3 and 2.4), and we
usually have to do so a large number of times during the later stages of postoptimality
analysis as well.

One approach is simply to reapply the simplex method from scratch for each new
version of the model, even though each run may require hundreds or even thousands of
iterations for large problems. However, a much more efficient approach is to reoptimize.
Reoptimization involves deducing how changes in the model get carried along to the fi-
nal simplex tableau (as described in Secs. 5.3 and 6.6). This revised tableau and the op-
timal solution for the prior model are then used as the initial tableau and the initial ba-
sic solution for solving the new model. If this solution is feasible for the new model, then
the simplex method is applied in the usual way, starting from this initial BF solution. If
the solution is not feasible, a related algorithm called the dual simplex method (described
in Sec. 7.1) probably can be applied to find the new optimal solution,' starting from this
initial basic solution.

The big advantage of this reoptimization technique over re-solving from scratch is
that an optimal solution for the revised model probably is going to be much closer to the
prior optimal solution than to an initial BF solution constructed in the usual way for the
simplex method. Therefore, assuming that the model revisions were modest, only a few
iterations should be required to reoptimize instead of the hundreds or thousands that may
be required when you start from scratch. In fact, the optimal solutions for the prior and
revised models are frequently the same, in which case the reoptimization technique re-
quires only one application of the optimality test and no iterations.

Shadow Prices

Recall that linear programming problems often can be interpreted as allocating resources
to activities. In particular, when the functional constraints are in = form, we interpreted
the b; (the right-hand sides) as the amounts of the respective resources being made avail-
able for the activities under consideration. In many cases, there may be some latitude in
the amounts that will be made available. If so, the b; values used in the initial (validated)
model actually may represent management’s fentative initial decision on how much of the
organization’s resources will be provided to the activities considered in the model instead
of to other important activities under the purview of management. From this broader per-
spective, some of the b; values can be increased in a revised model, but only if a suffi-
ciently strong case can be made to management that this revision would be beneficial.

Consequently, information on the economic contribution of the resources to the mea-
sure of performance (Z) for the current study often would be extremely useful. The sim-
plex method provides this information in the form of shadow prices for the respective
resources.

The shadow price for resource i (denoted by y¥) measures the marginal value of this re-
source, i.e., the rate at which Z could be increased by (slightly) increasing the amount of

!The one requirement for using the dual simplex method here is that the optimality test is still passed when ap-
plied to row O of the revised final tableau. If not, then still another algorithm called the primal-dual method can
be used instead.
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this resource (b;) being made available.'* The simplex method identifies this shadow price
by y;* = coefficient of the ith slack variable in row O of the final simplex tableau.

To illustrate, for the Wyndor Glass Co. problem,
Resource i = production capacity of Plant i (i = 1, 2, 3) being made available to the
two new products under consideration,
b; = hours of production time per week being made available in Plant i for

these new products.

Providing a substantial amount of production time for the new products would require ad-
justing production times for the current products, so choosing the b; value is a difficult
managerial decision. The tentative initial decision has been

by=4, by=12, b= 18,

as reflected in the basic model considered in Sec. 3.1 and in this chapter. However, man-
agement now wishes to evaluate the effect of changing any of the b; values.

The shadow prices for these three resources provide just the information that man-
agement needs. The final tableau in Table 4.8 (see p. 128) yields

y¥ = 0 = shadow price for resource 1,
&
2

= % = shadow price for resource 2,
-

¥5 = 1 = shadow price for resource 3.

y

With just two decision variables, these numbers can be verified by checking graphically
that individually increasing any b; by 1 indeed would increase the optimal value of Z by
y¥. For example, Fig. 4.8 demonstrates this increase for resource 2 by reapplying the graph-
ical method presented in Sec. 3.1. The optimal solution, (2, 6) with Z = 36, changes to
(%, ]73) with Z = 37% when b, is increased by 1 (from 12 to 13), so that
v | _ 3

yz—AZ—372 36 = >

Since Z is expressed in thousands of dollars of profit per week, y5 =  indicates that
adding 1 more hour of production time per week in Plant 2 for these two new products
would increase their total profit by $1,500 per week. Should this actually be done? It de-
pends on the marginal profitability of other products currently using this production time.
If there is a current product that contributes less than $1,500 of weekly profit per hour of
weekly production time in Plant 2, then some shift of production time to the new prod-
ucts would be worthwhile.

We shall continue this story in Sec. 6.7, where the Wyndor OR team uses shadow
prices as part of its sensitivity analysis of the model.

'The increase in b; must be sufficiently small that the current set of basic variables remains optimal since this
rate (marginal value) changes if the set of basic variables changes.

%In the case of a functional constraint in = or = form, its shadow price is again defined as the rate at which Z
could be increased by (slightly) increasing the value of b;, although the interpretation of b; now would normally
be something other than the amount of a resource being made available.
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This graph shows that the
shadow price is y3 = 3 for
resource 2 for the Wyndor
Glass Co. problem. The two
dots are the optimal
solutions for b, =12 or

b, = 13, and plugging these
solutions into the objective
function reveals that
increasing b, by 1 increases
Zbyys =3
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X2 A

3x1 + 2x, = 18

Z=3x; + 5x,

2= 13>2=3(3) +5(5)=373 | \,_ 3oy
2y = 12->Z = 3(2) + 5(6) = 36 2

x1=4

Figure 4.8 demonstrates that y5 = 3 is the rate at which Z could be increased by in-
creasing b, slightly. However, it also demonstrates the common phenomenon that this in-
terpretation holds only for a small increase in b,. Once b, is increased beyond 18, the op-
timal solution stays at (0, 9) with no further increase in Z. (At that point, the set of basic
variables in the optimal solution has changed, so a new final simplex tableau will be ob-
tained with new shadow prices, including y% = 0.)

Now note in Fig. 4.8 why y¥ = 0. Because the constraint on resource 1, x; =< 4, is
not binding on the optimal solution (2, 6), there is a surplus of this resource. Therefore,
increasing b, beyond 4 cannot yield a new optimal solution with a larger value of Z.

By contrast, the constraints on resources 2 and 3, 2x, = 12 and 3x; + 2x, = 18, are
binding constraints (constraints that hold with equality at the optimal solution). Because
the limited supply of these resources (b, = 12, b3 = 18) binds Z from being increased fur-
ther, they have positive shadow prices. Economists refer to such resources as scarce goods,
whereas resources available in surplus (such as resource 1) are free goods (resources with
a zero shadow price).

The kind of information provided by shadow prices clearly is valuable to manage-
ment when it considers reallocations of resources within the organization. It also is very
helpful when an increase in b; can be achieved only by going outside the organization to
purchase more of the resource in the marketplace. For example, suppose that Z represents
profit and that the unit profits of the activities (the c; values) include the costs (at regular
prices) of all the resources consumed. Then a positive shadow price of yf for resource i
means that the total profit Z can be increased by y¥ by purchasing 1 more unit of this re-
source at its regular price. Alternatively, if a premium price must be paid for the resource
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in the marketplace, then y¥* represents the maximum premium (excess over the regular
price) that would be worth paying.'

The theoretical foundation for shadow prices is provided by the duality theory de-
scribed in Chap. 6.

Sensitivity Analysis

When discussing the certainty assumption for linear programming at the end of Sec. 3.3,
we pointed out that the values used for the model parameters (the a;;, b;, and c; identified
in Table 3.3) generally are just estimates of quantities whose true values will not become
known until the linear programming study is implemented at some time in the future. A
main purpose of sensitivity analysis is to identify the sensitive parameters (i.e., those
that cannot be changed without changing the optimal solution). The sensitive parameters
are the parameters that need to be estimated with special care to minimize the risk of ob-
taining an erroneous optimal solution. They also will need to be monitored particularly
closely as the study is implemented. If it is discovered that the true value of a sensitive
parameter differs from its estimated value in the model, this immediately signals a need
to change the solution.

How are the sensitive parameters identified? In the case of the b;, you have just seen
that this information is given by the shadow prices provided by the simplex method. In
particular, if y7 > 0, then the optimal solution changes if b; is changed, so b; is a sensi-
tive parameter. However, y; = 0 implies that the optimal solution is not sensitive to at
least small changes in b;. Consequently, if the value used for b; is an estimate of the amount
of the resource that will be available (rather than a managerial decision), then the b, val-
ues that need to be monitored more closely are those with positive shadow prices—espe-
cially those with large shadow prices.

When there are just two variables, the sensitivity of the various parameters can be
analyzed graphically. For example, in Fig. 4.9, ¢; = 3 can be changed to any other value
from O to 7.5 without the optimal solution changing from (2, 6). (The reason is that any
value of ¢; within this range keeps the slope of Z = c;x; + 5x, between the slopes of the
lines 2x, = 12 and 3x; + 2x, = 18.) Similarly, if ¢, = 5 is the only parameter changed,
it can have any value greater than 2 without affecting the optimal solution. Hence, nei-
ther ¢ nor ¢, is a sensitive parameter.

The easiest way to analyze the sensitivity of each of the a;; parameters graphically is
to check whether the corresponding constraint is binding at the optimal solution. Because
X1 = 4 is not a binding constraint, any sufficiently small change in its coefficients
(a1, = 1, a;, = 0) is not going to change the optimal solution, so these are not sensitive
parameters. On the other hand, both 2x, = 12 and 3x; + 2x, = 18 are binding constraints,
so changing any one of their coefficients (a>; = 0, a, = 2, az; = 3, a3, = 2) is going to
change the optimal solution, and therefore these are sensitive parameters.

Typically, greater attention is given to performing sensitivity analysis on the b; and
¢; parameters than on the a;; parameters. On real problems with hundreds or thousands of
constraints and variables, the effect of changing one a;; value is usually negligible, but

'If the unit profits do not include the costs of the resources consumed, then vE represents the maximum total
unit price that would be worth paying to increase b;.



FIGURE 4.9

This graph demonstrates the
sensitivity analysis of ¢; and
¢, for the Wyndor Glass Co.
problem. Starting with the
original objective function
line [where ¢; =3, ¢, =5,
and the optimal solution is
(2, 6)], the other two lines
show the extremes of how
much the slope of the
objective function line can
change and still retain (2, 6)

as an optimal solution. Thus,

with ¢, = 5, the allowable
range for ¢; is 0 = ¢ = 7.5.
With ¢; = 3, the allowable
range for ¢, is ¢; = 2.
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7=36=3x + 5, (orZ =18 = 3x; + 2xyp)

(2, 6) optimal

Z=30=0x; + 5x

changing one b; or ¢; value can have real impact. Furthermore, in many cases, the g;; val-
ues are determined by the technology being used (the a; values are sometimes called tech-
nological coefficients), so there may be relatively little (or no) uncertainty about their fi-
nal values. This is fortunate, because there are far more a; parameters than b; and c;
parameters for large problems.

For problems with more than two (or possibly three) decision variables, you cannot
analyze the sensitivity of the parameters graphically as was just done for the Wyndor Glass
Co. problem. However, you can extract the same kind of information from the simplex
method. Getting this information requires using the fundamental insight described in Sec.
5.3 to deduce the changes that get carried along to the final simplex tableau as a result of
changing the value of a parameter in the original model. The rest of the procedure is de-
scribed and illustrated in Secs. 6.6 and 6.7.

Using Excel to Generate Sensitivity Analysis Information

Sensitivity analysis normally is incorporated into software packages based on the simplex
method. For example, the Excel Solver will generate sensitivity analysis information upon
request. As was shown in Fig. 3.19 (see page 72), when the Solver gives the message that
it has found a solution, it also gives on the right a list of three reports that can be pro-
vided. By selecting the second one (labeled “Sensitivity”) after solving the Wyndor Glass
Co. problem, you will obtain the sensitivity report shown in Fig. 4.10. The upper table in
this report provides sensitivity analysis information about the decision variables and their
coefficients in the objective function. The lower table does the same for the functional
constraints and their right-hand sides.
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FIGURE 4.10

The sensitivity report
provided by the Excel Solver
for the Wyndor Glass Co.
problem.

Adjustable Cells

Final Reduced Objective Allowable Allowable

Cell Name Value Cost Coefficient Increase Decrease
$C$9 Solution Doors 2 0 3 45 3
$D%$9 Solution Windows 6 4] 5 1E+30 3

Constraints

Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease
$E$S Plant 1 Totals 2 0 4 1E+30 2
$E$6 Plant 2 Totals 12 1.5 12 (¢} B
$E$T Plant 3 Totals 18 1 18 6 6

Look first at the upper table in this figure. The “Final Value” column indicates the
optimal solution. The next column gives the reduced costs. (We will not discuss these re-
duced costs now because the information they provide can also be gleaned from the rest
of the upper table.) The next three columns provide the information needed to identify the
allowable range to stay optimal for each coefficient c; in the objective function.

For any c;, its allowable range to stay optimal is the range of values for this coefficient
over which the current optimal solution remains optimal, assuming no change in the other
coefficients.

The “Objective Coefficient” column gives the current value of each coefficient, and then
the next two columns give the allowable increase and the allowable decrease from this
value to remain within the allowable range. Therefore,

3_350153+4.5, SO 050157.5

is the allowable range for ¢; over which the current optimal solution will stay optimal (as-
suming ¢, = 5), just as was found graphically in Fig. 4.9. Similarly, since Excel uses
1E + 30 (10°°) to represent infinity,

5=3=c¢ =5+ o, N 2=c

is the allowable range to stay optimal for c;.

The fact that both the allowable increase and the allowable decrease are greater than
zero for the coefficient of both decision variables provides another useful piece of infor-
mation, as described below.

When the upper table in the sensitivity report generated by the Excel Solver indi-
cates that both the allowable increase and the allowable decrease are greater than zero for
every objective coefficient, this is a signpost that the optimal solution in the “Final Value”
column is the only optimal solution. Conversely, having any allowable increase or allow-
able decrease equal to zero is a signpost that there are multiple optimal solutions. Chang-
ing the corresponding coefficient a tiny amount beyond the zero allowed and re-solving
provides another optimal CPF solution for the original model.
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Now consider the lower table in Fig. 4.10 that focuses on sensitivity analysis for the
three functional constraints. The “Final Value” column gives the value of each constraint’s
left-hand side for the optimal solution. The next two columns give the shadow price and
the current value of the right-hand side (b;) for each constraint. When just one b; value is
then changed, the last two columns give the allowable increase or allowable decrease in
order to remain within its allowable range to stay feasible.

For any b,, its allowable range to stay feasible is the range of values for this right-hand
side over which the current optimal BF solution (with adjusted values' for the basic vari-
ables) remains feasible, assuming no change in the other right-hand sides.

Thus, using the lower table in Fig. 4.10, combining the last two columns with the current
values of the right-hand sides gives the following allowable ranges to stay feasible:

2 =b
6=0b,=18
12 = by = 24.

This sensitivity report generated by the Excel Solver is typical of the sensitivity analy-
sis information provided by linear programming software packages. You will see in Ap-
pendix 4.1 that LINDO provides essentially the same report. MPL/CPLEX does also when
it is requested with the Solution File dialogue box. Once again, this information obtained
algebraically also can be derived from graphical analysis for this two-variable problem.
(See Prob. 4.7-1.) For example, when b, is increased from 12 in Fig. 4.8, the originally
optimal CPF solution at the intersection of two constraint boundaries 2x, = b, and
3x; + 2x, = 18 will remain feasible (including x; = 0) only for b, = 18.

The latter part of Chap. 6 will delve into this type of analysis more deeply.

Parametric Linear Programming

Sensitivity analysis involves changing one parameter at a time in the original model to check
its effect on the optimal solution. By contrast, parametric linear programming (or para-
metric programming for short) involves the systematic study of how the optimal solution
changes as many of the parameters change simultaneously over some range. This study can
provide a very useful extension of sensitivity analysis, e.g., to check the effect of “corre-
lated” parameters that change together due to exogenous factors such as the state of the
economy. However, a more important application is the investigation of trade-offs in param-
eter values. For example, if the ¢; values represent the unit profits of the respective activi-
ties, it may be possible to increase some of the ¢; values at the expense of decreasing oth-
ers by an appropriate shifting of personnel and equipment among activities. Similarly, if the
b; values represent the amounts of the respective resources being made available, it may be
possible to increase some of the b; values by agreeing to accept decreases in some of the
others. The analysis of such possibilities is discussed and illustrated at the end of Sec. 6.7.

'Since the values of the basic variables are obtained as the simultaneous solution of a system of equations (the
functional constraints in augmented form), at least some of these values change if one of the right-hand sides
changes. However, the adjusted values of the current set of basic variables still will satisfy the nonnegativity
constraints, and so still will be feasible, as long as the new value of this right-hand side remains within its al-
lowable range to stay feasible. If the adjusted basic solution is still feasible, it also will still be optimal. We shall
elaborate further in Sec. 6.7.
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4.8

In some applications, the main purpose of the study is to determine the most appro-
priate trade-off between two basic factors, such as costs and benefits. The usual approach
is to express one of these factors in the objective function (e.g., minimize total cost) and
incorporate the other into the constraints (e.g., benefits = minimum acceptable level), as
was done for the Nori & Leets Co. air pollution problem in Sec. 3.4. Parametric linear
programming then enables systematic investigation of what happens when the initial ten-
tative decision on the trade-off (e.g., the minimum acceptable level for the benefits) is
changed by improving one factor at the expense of the other.

The algorithmic technique for parametric linear programming is a natural extension
of that for sensitivity analysis, so it, too, is based on the simplex method. The procedure
is described in Sec. 7.2.

COMPUTER IMPLEMENTATION

If the electronic computer had never been invented, undoubtedly you would have never
heard of linear programming and the simplex method. Even though it is possible to ap-
ply the simplex method by hand to solve tiny linear programming problems, the calcula-
tions involved are just too tedious to do this on a routine basis. However, the simplex
method is ideally suited for execution on a computer. It is the computer revolution that
has made possible the widespread application of linear programming in recent decades.

Implementation of the Simplex Method

Computer codes for the simplex method now are widely available for essentially all mod-
ern computer systems. These codes commonly are part of a sophisticated software pack-
age for mathematical programming that includes many of the procedures described in sub-
sequent chapters (including those used for postoptimality analysis).

These production computer codes do not closely follow either the algebraic form or
the tabular form of the simplex method presented in Secs. 4.3 and 4.4. These forms can
be streamlined considerably for computer implementation. Therefore, the codes use in-
stead a matrix form (usually called the revised simplex method) that is especially well
suited for the computer. This form accomplishes exactly the same things as the algebraic
or tabular form, but it does this while computing and storing only the numbers that are
actually needed for the current iteration; and then it carries along the essential data in a
more compact form. The revised simplex method is described in Sec. 5.2.

The simplex method is used routinely to solve surprisingly large linear programming
problems. For example, powerful desktop computers (especially workstations) commonly
are used to solve problems with many thousand functional constraints and a larger num-
ber of decision variables. We now are beginning to hear reports of successfully solved
problems ranging into the hundreds of thousands of functional constraints and millions of
decision variables.' For certain special types of linear programming problems (such as the

'Do not try this at home. Attacking such a massive problem requires an especially sophisticated linear pro-
gramming system that uses the latest techniques for exploiting sparcity in the coefficient matrix as well as other
special techniques (e.g., crashing techniques for quickly finding an advanced initial BF solution). When prob-
lems are re-solved periodically after minor updating of the data, much time often is saved by using (or modi-
fying) the last optimal solution to provide the initial BF solution for the new run.
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transportation, assignment, and minimum cost flow problems to be described later in the
book), even larger problems now can be solved by specialized versions of the simplex
method.

Several factors affect how long it will take to solve a linear programming problem
by the general simplex method. The most important one is the number of ordinary func-
tional constraints. In fact, computation time tends to be roughly proportional to the cube
of this number, so that doubling this number may multiply the computation time by a fac-
tor of approximately 8. By contrast, the number of variables is a relatively minor factor.'
Thus, doubling the number of variables probably will not even double the computation
time. A third factor of some importance is the density of the table of constraint coeffi-
cients (i.e., the proportion of the coefficients that are not zero), because this affects the
computation time per iteration. (For large problems encountered in practice, it is com-
mon for the density to be under 5 percent, or even under 1 percent, and this much “sparcity”
tends to greatly accelerate the simplex method.) One common rule of thumb for the num-
ber of iterations is that it tends to be roughly twice the number of functional constraints.

With large linear programming problems, it is inevitable that some mistakes and faulty
decisions will be made initially in formulating the model and inputting it into the com-
puter. Therefore, as discussed in Sec. 2.4, a thorough process of testing and refining the
model (model validation) is needed. The usual end product is not a single static model
that is solved once by the simplex method. Instead, the OR team and management typi-
cally consider a long series of variations on a basic model (sometimes even thousands of
variations) to examine different scenarios as part of postoptimality analysis. This entire
process is greatly accelerated when it can be carried out interactively on a desktop com-
puter. And, with the help of both mathematical programming modeling languages and im-
proving computer technology, this now is becoming common practice.

Until the mid-1980s, linear programming problems were solved almost exclusively
on mainframe computers. Since then, there has been an explosion in the capability of do-
ing linear programming on desktop computers, including personal computers as well as
workstations. Workstations, including some with parallel processing capabilities, now are
commonly used instead of mainframe computers to solve massive linear programming
models. The fastest personal computers are not lagging far behind, although solving huge
models usually requires additional memory.

Linear Programming Software Featured in This Book

A considerable number of excellent software packages for linear programming and its ex-
tensions now are available to fill a variety of needs. One that is widely regarded to be a
particularly powerful package for solving massive problems is CPLEX, a product of ILOG,
Inc., located in Silicon Valley. For more than a decade, CPLEX has helped to lead the
way in solving larger and larger linear programming problems. An extensive research and
development effort has enabled a series of upgrades with dramatic increases in efficiency.
CPLEX 6.5 released in March 1999 provided another order-of-magnitude improvement.
This software package has successfully solved real linear programming problems arising
in industry with as many as 2 million functional constraints and a comparable number of

"This statement assumes that the revised simplex method described in Sec. 5.2 is being used.
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decision variables! CPLEX 6.5 often uses the simplex method and its variants (such as
the dual simplex method presented in Sec. 7.1) to solve these massive problems. In addi-
tion to the simplex method, CPLEX 6.5 also features some other powerful weapons for
attacking linear programming problems. One is a lightning-fast algorithm that uses the in-
terior-point approach introduced in the next section. This algorithm can solve some huge
general linear programming problems that the simplex method cannot (and vice versa).
Another feature is the network simplex method (described in Sec. 9.7) that can solve even
larger special types of linear programming problems. CPLEX 6.5 also extends beyond lin-
ear programming by including state-of-the-art algorithms for integer programming
(Chap. 12) and quadratic programming (Sec. 13.7).

Because it often is used to solve really large problems, CPLEX normally is used in
conjunction with a mathematical programming modeling language. As described in Sec.
3.7, modeling languages are designed for efficiently formulating large linear programming
models (and related models) in a compact way, after which a solver is called upon to solve
the model. Several of the prominent modeling languages support CPLEX as a solver. ILOG
also has recently introduced its own modeling language, called OPL Studio, that can be
used with CPLEX. (A trial version of OPL Studio is available at ILOG’s website,
www.ilog.com.)

As we mentioned in Sec. 3.7, the student version of CPLEX is included in your
OR Courseware as the solver for the MPL modeling language. This version features the
simplex method for solving linear programming problems.

LINDO (short for Linear, INteractive, and Discrete Optimizer) is another prominent
software package for linear programming and its extensions. A product of LINDO Sys-
tems based in Chicago, LINDO has an even longer history than CPLEX. Although not as
powerful as CPLEX, the largest version of LINDO has solved problems with tens of thou-
sands of functional constraints and hundreds of thousands of decision variables. Its long-
time popularity is partially due to its ease of use. For relatively small (textbook-sized)
problems, the model can be entered and solved in an intuitive straightforward manner, so
LINDO provides a convenient tool for students to use. However, LINDO lacks some of
the capabilities of modeling languages for dealing with large linear programming prob-
lems. For such problems, it may be more efficient to use the LINGO modeling language
to formulate the model and then to call the solver it shares with LINDO to solve the model.

You can download the student version of LINDO from the website, www.lindo.com.
Appendix 4.1 provides an introduction to how to use LINDO. The CD-ROM also includes
a LINDO tutorial, as well as LINDO formulations for all the examples in this book to
which it can be applied.

Spreadsheet-based solvers are becoming increasingly popular for linear programming
and its extensions. Leading the way are the solvers produced by Frontline Systems for
Microsoft Excel, Lotus 1-2-3, and Corel Quattro Pro. In addition to the basic solver shipped
with these packages, two more powerful upgrades—Premium Solver and Premium Solver
Plus—also are available. Because of the widespread use of spreadsheet packages such as
Microsoft Excel today, these solvers are introducing large numbers of people to the po-
tential of linear programming for the first time. For textbook-sized linear programming
problems (and considerably larger problems as well), spreadsheets provide a convenient
way to formulate and solve the model, as described in Sec. 3.6. The more powerful spread-
sheet solvers can solve fairly large models with many thousand decision variables. How-
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ever, when the spreadsheet grows to an unwieldy size, a good modeling language and its
solver may provide a more efficient approach to formulating and solving the model.
Spreadsheets provide an excellent communication tool, especially when dealing with
typical managers who are very comfortable with this format but not with the algebraic
formulations of OR models. Therefore, optimization software packages and modeling lan-
guages now can commonly import and export data and results in a spreadsheet format.
For example, the MPL modeling language now includes an enhancement (called the Op-
tiMax 2000 Component Library) that enables the modeler to create the feel of a spread-
sheet model for the user of the model while still using MPL to formulate the model very
efficiently. (The student version of OptiMax 2000 is included in your OR Courseware.)
Premium Solver is one of the Excel add-ins included on the CD-ROM. You can in-
stall this add-in to obtain a much better performance than with the standard Excel Solver.
Consequently, all the software, tutorials, and examples packed on the CD-ROM are
providing you with several attractive software options for linear programming.

Available Software Options for Linear Programming.

1. Demonstration examples (in OR Tutor) and interactive routines for efficiently learning
the simplex method.

2. Excel and its Premium Solver for formulating and solving linear programming mod-
els in a spreadsheet format.

3. MPL/CPLEX for efficiently formulating and solving large linear programming models.

4. LINGO and its solver (shared with LINDO) for an alternative way of efficiently for-
mulating and solving large linear programming models.

5. LINDO for formulating and solving linear programming models in a straightforward way.

Your instructor may specify which software to use. Whatever the choice, you will be gain-
ing experience with the kind of state-of-the-art software that is used by OR professionals.

THE INTERIOR-POINT APPROACH TO
SOLVING LINEAR PROGRAMMING PROBLEMS

The most dramatic new development in operations research during the 1980s was the dis-
covery of the interior-point approach to solving linear programming problems. This dis-
covery was made in 1984 by a young mathematician at AT&T Bell Laboratories, Naren-
dra Karmarkar, when he successfully developed a new algorithm for linear programming
with this kind of approach. Although this particular algorithm experienced only mixed
success in competing with the simplex method, the key solution concept described below
appeared to have great potential for solving huge linear programming problems beyond
the reach of the simplex method. Many top researchers subsequently worked on modify-
ing Karmarkar’s algorithm to fully tap this potential. Much progress has been made (and
continues to be made), and a number of powerful algorithms using the interior-point ap-
proach have been developed. Today, the more powerful software packages that are de-
signed for solving really large linear programming problems (such as CPLEX) include at
least one algorithm using the interior-point approach along with the simplex method. As
research continues on these algorithms, their computer implementations continue to im-
prove. This has spurred renewed research on the simplex method, and its computer im-
plementations continue to improve as well (recall the dramatic advance by CPLEX 6.5
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cited in the preceding section). The competition between the two approaches for supremacy
in solving huge problems is continuing.

Now let us look at the key idea behind Karmarkar’s algorithm and its subsequent vari-
ants that use the interior-point approach.

The Key Solution Concept

Although radically different from the simplex method, Karmarkar’s algorithm does share
a few of the same characteristics. It is an iterative algorithm. It gets started by identify-
ing a feasible trial solution. At each iteration, it moves from the current trial solution to
a better trial solution in the feasible region. It then continues this process until it reaches
a trial solution that is (essentially) optimal.

The big difference lies in the nature of these trial solutions. For the simplex method,
the trial solutions are CPF solutions (or BF solutions after augmenting), so all movement
is along edges on the boundary of the feasible region. For Karmarkar’s algorithm, the trial
solutions are interior points, i.e., points inside the boundary of the feasible region. For this
reason, Karmarkar’s algorithm and its variants are referred to as interior-point algorithms.

To illustrate, Fig. 4.11 shows the path followed by the interior-point algorithm in your
OR Courseware when it is applied to the Wyndor Glass Co. problem, starting from the

FIGURE 4.11

The curve from (1, 2) to

(2, 6) shows a typical path
followed by an interior-point
algorithm, right through the
interior of the feasible region
for the Wyndor Glass Co.
problem.

X2

(2, 6) optimal

X1
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TABLE 4.18 Output of interior-point algorithm in OR Courseware
for Wyndor Glass Co. problem

Iteration Xq X2 V4
0 1 2 13
1 1.27298 4 23.8189
2 1.37744 5 29.1323
3 1.56291 5.5 32.1887
4 1.80268 5.71816 33.9989
5 1.92134 5.82908 34.9094
6 1.96639 5.90595 35.429
7 1.98385 5.95199 35.7115
8 1.99197 5.97594 35.8556
9 1.99599 5.98796 35.9278
10 1.99799 5.99398 35.9639
11 1.999 5.99699 35.9819
12 1.9995 5.9985 35.991
13 1.99975 5.99925 35.9955
14 1.99987 5.99962 35.9977
15 1.99994 5.99981 35.9989

initial trial solution (1, 2). Note how all the trial solutions (dots) shown on this path are
inside the boundary of the feasible region as the path approaches the optimal solution
(2, 6). (All the subsequent trial solutions not shown also are inside the boundary of the
feasible region.) Contrast this path with the path followed by the simplex method around
the boundary of the feasible region from (0, 0) to (0, 6) to (2, 6).

Table 4.18 shows the actual output from your OR Courseware for this problem.' (Try
it yourself.) Note how the successive trial solutions keep getting closer and closer to the
optimal solution, but never literally get there. However, the deviation becomes so infini-
tesimally small that the final trial solution can be taken to be the optimal solution for all
practical purposes.

Section 7.4 presents the details of the specific interior-point algorithm that is imple-
mented in your OR Courseware.

Comparison with the Simplex Method

One meaningful way of comparing interior-point algorithms with the simplex method is
to examine their theoretical properties regarding computational complexity. Karmarkar
has proved that the original version of his algorithm is a polynomial time algorithm; i.e.,
the time required to solve any linear programming problem can be bounded above by a
polynomial function of the size of the problem. Pathological counterexamples have been
constructed to demonstrate that the simplex method does not possess this property, so it
is an exponential time algorithm (i.e., the required time can be bounded above only by
an exponential function of the problem size). This difference in worst-case performance

"The routine is called Solve Automatically by the Interior-Point Algorithm. The option menu provides two choices
for a certain parameter of the algorithm o (defined in Sec. 7.4). The choice used here is the default value of
a=0.5.
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is noteworthy. However, it tells us nothing about their comparison in average performance
on real problems, which is the more crucial issue.

The two basic factors that determine the performance of an algorithm on a real prob-
lem are the average computer time per iteration and the number of iterations. Our next
comparisons concern these factors.

Interior-point algorithms are far more complicated than the simplex method. Con-
siderably more extensive computations are required for each iteration to find the next trial
solution. Therefore, the computer time per iteration for an interior-point algorithm is many
times longer than that for the simplex method.

For fairly small problems, the numbers of iterations needed by an interior-point al-
gorithm and by the simplex method tend to be somewhat comparable. For example, on a
problem with 10 functional constraints, roughly 20 iterations would be typical for either
kind of algorithm. Consequently, on problems of similar size, the total computer time for
an interior-point algorithm will tend to be many times longer than that for the simplex
method.

On the other hand, a key advantage of interior-point algorithms is that large problems
do not require many more iterations than small problems. For example, a problem with
10,000 functional constraints probably will require well under 100 iterations. Even con-
sidering the very substantial computer time per iteration needed for a problem of this size,
such a small number of iterations makes the problem quite tractable. By contrast, the sim-
plex method might need 20,000 iterations and so might not finish within a reasonable
amount of computer time. Therefore, interior-point algorithms often are faster than the
simplex method for such huge problems.

The reason for this very large difference in the number of iterations on huge prob-
lems is the difference in the paths followed. At each iteration, the simplex method moves
from the current CPF solution to an adjacent CPF solution along an edge on the bound-
ary of the feasible region. Huge problems have an astronomical number of CPF solutions.
The path from the initial CPF solution to an optimal solution may be a very circuitous
one around the boundary, taking only a small step each time to the next adjacent CPF so-
lution, so a huge number of steps may be required to reach an optimal solution. By con-
trast, an interior-point algorithm bypasses all this by shooting through the interior of the
feasible region toward an optimal solution. Adding more functional constraints adds more
constraint boundaries to the feasible region, but has little effect on the number of trial so-
lutions needed on this path through the interior. This makes it possible for interior-point
algorithms to solve problems with a huge number of functional constraints.

A final key comparison concerns the ability to perform the various kinds of postop-
timality analysis described in Sec. 4.7. The simplex method and its extensions are very
well suited to and are widely used for this kind of analysis. Unfortunately, the interior-
point approach currently has limited capability in this area.' Given the great importance
of postoptimality analysis, this is a crucial drawback of interior-point algorithms. How-
ever, we point out next how the simplex method can be combined with the interior-point
approach to overcome this drawback.

"However, research aimed at increasing this capability continues to make progress. For example, see H. J. Green-
berg, “Matrix Sensitivity Analysis from an Interior Solution of a Linear Program,” INFORMS Journal on Com-
puting, 11: 316-327, 1999, and its references.
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The Complementary Roles of the Simplex Method
and the Interior-Point Approach

Ongoing research is continuing to provide substantial improvements in computer imple-
mentations of both the simplex method (including its variants) and interior-point algo-
rithms. Therefore, any predictions about their future roles are risky. However, we do sum-
marize below our current assessment of their complementary roles.

The simplex method (and its variants) continues to be the standard algorithm for the
routine use of linear programming. It continues to be the most efficient algorithm for prob-
lems with less than a few hundred functional constraints. It also is the most efficient for
some (but not all) problems with up to several thousand functional constraints and nearly
an unlimited number of decision variables, so most users are continuing to use the sim-
plex method for such problems. However, as the number of functional constraints increases
even further, it becomes increasingly likely that an interior-point approach will be the most
efficient, so it often is now used instead. As the size grows into the tens of thousands of
functional constraints, the interior-point approach may be the only one capable of solv-
ing the problem. However, this certainly is not always the case. As mentioned in the pre-
ceding section, the latest state-of-the-art software (CPLEX 6.5) is successfully using the
simplex method and its variants to solve some truly massive problems with hundreds of
thousands, or even millions of functional constraints and decision variables.

These generalizations about how the interior-point approach and the simplex method
should compare for various problem sizes will not hold across the board. The specific
software packages and computer equipment being used have a major impact. The com-
parison also is affected considerably by the specific type of linear programming problem
being solved. As time goes on, we should learn much more about how to identify specific
types which are better suited for one kind of algorithm.

One of the by-products of the emergence of the interior-point approach has been a
major renewal of efforts to improve the efficiency of computer implementations of the
simplex method. As we indicated, impressive progress has been made in recent years, and
more lies ahead. At the same time, ongoing research and development of the interior-point
approach will further increase its power, and perhaps at a faster rate than for the simplex
method.

Improving computer technology, such as massive parallel processing (a huge number
of computer units operating in parallel on different parts of the same problem), also will
substantially increase the size of problem that either kind of algorithm can solve. How-
ever, it now appears that the interior-point approach has much greater potential to take ad-
vantage of parallel processing than the simplex method does.

As discussed earlier, a key disadvantage of the interior-point approach is its limited
capability for performing postoptimality analysis. To overcome this drawback, researchers
have been developing procedures for switching over to the simplex method after an inte-
rior-point algorithm has finished. Recall that the trial solutions obtained by an interior-point
algorithm keep getting closer and closer to an optimal solution (the best CPF solution), but
never quite get there. Therefore, a switching procedure requires identifying a CPF solution
(or BF solution after augmenting) that is very close to the final trial solution.

For example, by looking at Fig. 4.11, it is easy to see that the final trial solution in
Table 4.18 is very near the CPF solution (2, 6). Unfortunately, on problems with thou-



168

4 SOLVING LINEAR PROGRAMMING PROBLEMS: THE SIMPLEX METHOD

4.10

sands of decision variables (so no graph is available), identifying a nearby CPF (or BF)
solution is a very challenging and time-consuming task. However, good progress has been
made in developing procedures to do this.

Once this nearby BF solution has been found, the optimality test for the simplex
method is applied to check whether this actually is the optimal BF solution. If it is not
optimal, some iterations of the simplex method are conducted to move from this BF so-
lution to an optimal solution. Generally, only a very few iterations (perhaps one) are needed
because the interior-point algorithm has brought us so close to an optimal solution. There-
fore, these iterations should be done quite quickly, even on problems that are too huge to
be solved from scratch. After an optimal solution is actually reached, the simplex method
and its variants are applied to help perform postoptimality analysis.

Because of the difficulties involved in applying a switching procedure (including the
extra computer time), some practitioners prefer to just use the simplex method from the
outset. This makes good sense when you only occasionally encounter problems that are
large enough for an interior-point algorithm to be modestly faster (before switching) than
the simplex method. This modest speed-up would not justify both the extra computer time
for a switching procedure and the high cost of acquiring (and learning to use) a software
package based on the interior-point approach. However, for organizations which frequently
must deal with extremely large linear programming problems, acquiring a state-of-the-art
software package of this kind (including a switching procedure) probably is worthwhile.
For sufficiently huge problems, the only available way of solving them may be with such
a package.

Applications of huge linear programming models sometimes lead to savings of mil-
lions of dollars. Just one such application can pay many times over for a state-of-the-art
software package based on the interior-point approach plus switching over to the simplex
method at the end.

CONCLUSIONS

The simplex method is an efficient and reliable algorithm for solving linear programming
problems. It also provides the basis for performing the various parts of postoptimality
analysis very efficiently.

Although it has a useful geometric interpretation, the simplex method is an algebraic
procedure. At each iteration, it moves from the current BF solution to a better, adjacent
BF solution by choosing both an entering basic variable and a leaving basic variable and
then using Gaussian elimination to solve a system of linear equations. When the current
solution has no adjacent BF solution that is better, the current solution is optimal and the
algorithm stops.

We presented the full algebraic form of the simplex method to convey its logic, and
then we streamlined the method to a more convenient tabular form. To set up for starting
the simplex method, it is sometimes necessary to use artificial variables to obtain an ini-
tial BF solution for an artificial problem. If so, either the Big M method or the two-phase
method is used to ensure that the simplex method obtains an optimal solution for the real
problem.

Computer implementations of the simplex method and its variants have become so
powerful that they now are frequently used to solve linear programming problems with
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many thousand functional constraints and decision variables, and occasionally vastly larger
problems. Interior-point algorithms also provide a powerful tool for solving very large
problems.

AN INTRODUCTION TO USING LINDO

The LINDO software is designed to be easy to learn and to use, especially for small problems of
the size you will encounter in this book. In addition to linear programming, it also can be used to
solve both integer programming problems (Chap. 12) and quadratic programming problems (Sec.
13.7). Our focus in this appendix is on its use for linear programming.

LINDO allows you to enter a model in a straightforward algebraic way. For example, here is
a nice way of entering the LINDO model for the Wyndor Glass Co. example introduced in Sec. 3.1.

! Wyndor Glass Co. Problem. LINDO model
! X1 = batches of product 1 per week
! X2 = batches of product 2 per week

! Profit, in 1000 of dollars
MAX Profit) 3 X1 + 5 X2
Subject to

! Production time

Plantl) X1 <=4

Plant2) 2 X2 <= 12

Plant3) 3 X1 +2 X2 <= 18
END

In addition to the basic model, this formulation includes several clarifying comments, where
each comment is indicated by starting with an exclamation point. Thus, the first three lines give the
title and the definitions of the decision variables. The decision variables can be either lowercase or
uppercase, but uppercase usually is used so the variables won’t be dwarfed by the following “sub-
scripts.” Another option is to use a suggestive word (or abbreviation of a word), such as the name
of the product being produced, to represent the decision variable throughout the model, provided
the word does not exceed eight letters.

The fifth line of the LINDO formulation indicates that the objective of the model is to maxi-
mize the objective function, 3x; + 5x,. The word Profit followed by a parenthesis clarifies that this
quantity being maximized is profit. The comment on the fourth line further clarifies that the objec-
tive function is expressed in units of thousands of dollars. The number 1000 in this comment does
not have the usual comma in front of the last three digits because LINDO does not accept commas.
(It also does not accept parentheses in algebraic expressions.)

The comment on the seventh line points out that the following constraints are on the produc-
tion times being used. The next three lines start by giving a name (followed by a parenthesis) for
each of the functional constraints. These constraints are written in the usual way except for the in-
equality signs. Because many keyboards do not include = and = signs, LINDO interprets either
< or <= as = and either > or >= as =. (On systems that include = and = signs, LINDO will
not recognize them.)

The end of the constraints is signified by the word END. No nonnegativity constraints are stated
because LINDO automatically assumes that all the variables have these constraints. If, say, x; had
not had a nonnegativity constraint, this would have to be indicated by typing FREE X1 on the next
line below END.
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To solve this model in the Windows version of LINDO, either select the Solve command from
the Solve menu or press the Solve button on the toolbar. On a platform other than Windows, sim-
ply type GO followed by a return at the colon prompt. Figure A4.1 shows the resulting solution re-
port delivered by LINDO.

Both the top line and bottom line in this figure indicate that an optimal solution was found at
iteration 2 of the simplex method. Next comes the value of the objective function for this solution.
Below this, we have the values of x; and x, for the optimal solution.

The column to the right of these values gives the reduced costs. We have not discussed re-
duced costs in this chapter because the information they provide can also be gleaned from the al-
lowable range to stay optimal for the coefficients in the objective function, and these allowable
ranges also are readily available (as you will see in the next figure). When the variable is a basic
variable in the optimal solution (as for both variables in the Wyndor problem), its reduced cost au-
tomatically is 0. When the variable is a nonbasic variable, its reduced cost provides some interest-
ing information. This variable is 0 because its coefficient in the objective function is too small (when
maximizing the objective function) or too large (when minimizing) to justify undertaking the ac-
tivity represented by the variable. The reduced cost indicates how much this coefficient can be in-
creased (when maximizing) or decreased (when minimizing) before the optimal solution would
change and this variable would become a basic variable. However, recall that this same informa-
tion already is available from the allowable range to stay optimal for the coefficient of this variable
in the objective function. The reduced cost (for a nonbasic variable) is just the allowable increase
(when maximizing) from the current value of this coefficient to remain within its allowable range
to stay optimal or the allowable decrease (when minimizing).

Below the variable values and reduced costs in Fig. A4.1, we next have information about the
three functional constraints. The Slack or Surplus column gives the difference between the two sides
of each constraint. The Dual Prices column gives, by another name, the shadow prices discussed
in Sec. 4.7 for these constraints.' (This alternate name comes from the fact found in Sec. 6.1 that
these shadow prices are just the optimal values of the dual variables introduced in Chap. 6.)

When LINDO provides you with this solution report, it also asks you whether you want to
do range (sensitivity) analysis. Answering yes (by pressing the Y key) provides you with the ad-
ditional range report shown in Fig. A4.2. This report is identical to the last three columns of the

"However, beware that LINDO uses a different sign convention from the common one adopted here (see the
second footnote for the definition of shadow price in Sec. 4.7), so that for minimization problems, its shadow
prices (dual prices) are the negative of ours.

FIGURE A4.1

The solution report provided
by LINDO for the Wyndor
Glass Co. problem.

LP OPTIMUM FOUND AT STEP 2
OBJECTIVE FUNCTION VALUE

Profit) 36.00000

VARIABLE VALUE REDUCED COST
X1 2.000000 .000000
X2 6.000000 .000000
ROW SLACK OR SURPLUS DUAL PRICES
Plantl) 2.000000 .000000
Plant2) .000000 1.500000
Plant3) .000000 1.000000

NO. ITERATIONS= 2



FIGURE A4.2

The range report provided
by LINDO for the Wyndor
Glass Co. problem.
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RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES

VARIABLE CURRENT ALLOWABLE ALLOWABLE

COEF INCREASE DECREASE

X1 3.000000 4.500000 3.000000

X2 5.000000 INFINITY 3.000000

RIGHTHAND SIDE RANGES

ROW CURRENT ALLOWABLE ALLOWABLE
RHS INCREASE DECREASE
Plantl 4.000000 INFINITY 2.000000
Plant2 12.000000 6.000000 6.000000
Plant3 18.000000 6.000000 6.000000

tables in the sensitivity report generated by the Excel Solver, as shown earlier in Fig. 4.10. Thus,
as already discussed in Sec. 4.7, the first two rows of this range report indicate that the allowable
range to stay optimal for each coefficient in the objective function (assuming no other change in
the model) is

OSC|S7.5
ZSCZ

Similarly, the last three rows indicate that the allowable range to stay feasible for each right-hand
side (assuming no other change in the model) is

2= b,
6=b,=18
12 < by =24

To print your results with the Windows version of LINDO, you simply need to use the Print
command to send the contents of the active window to the printer. If you are running LINDO on a
platform other than Windows, you can use the DIVERT command (followed by the file name) to
send screen output to a file, which can then print from either the operating system or a word pro-
cessing package.

These are the basics for getting started with LINDO. The LINDO tutorial on the CD-ROM
also provides some additional details. The LINGO/LINDO files on the CD-ROM for various chap-
ters show the LINDO formulations for numerous examples. In addition, LINDO includes a Help
menu to provide guidance. These resources should enable you to apply LINDO to any linear pro-
gramming problem you will encounter in this book. (We will discuss applications to other problem
types in Chaps. 12 and 13.) For more advanced applications, the LINDO User’s Manual (Selected
Reference 4 for this chapter) might be needed.
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LEARNING AIDS FOR THIS CHAPTER IN YOUR OR COURSEWARE

Demonstration Examples in OR Tutor:

Interpretation of the Slack Variables
Simplex Method—Algebraic Form
Simplex Method—Tabular Form

Interactive Routines:

Enter or Revise a General Linear Programming Model
Set Up for the Simplex Method—Interactive Only
Solve Interactively by the Simplex Method

An Automatic Routine:

Solve Automatically by the Interior-Point Algorithm

An Excel Add-In:

Premium Solver

Files (Chapter 3) for Solving the Wyndor and
Radiation Therapy Examples:

Excel File
LINGO/LINDO File
MPL/CPLEX File

See Appendix 1 for documentation of the software.

PROBLEMS

The symbols to the left of some of the problems (or their parts) 4.1-1. Consider the following problem.

have the following meaning:

D: The corresponding demonstration example listed above may be
helpful. subject to

I: We suggest that you use the corresponding interactive routine

listed above (the printout records your work).

C: Use the computer with any of the software options available to
you (or as instructed by your instructor) to solve the problem
automatically. (See Sec. 4.8 for a listing of the options featured  and
in this book and on the CD-ROM.)

An asterisk on the problem number indicates that at least a partial

answer is given in the back of the book. (a) Plot the feasible region and circle all the CPF solutions.

Maximize Z=x; + 2x,,

X1 =2
XZSZ
X txn=3

XIZO, XQEO.



CHAPTER 4 PROBLEMS

173

(b) For each CPF solution, identify the pair of constraint bound-
ary equations that it satisfies.

(¢) For each CPF solution, use this pair of constraint boundary
equations to solve algebraically for the values of x; and x, at
the corner point.

(d) For each CPF solution, identify its adjacent CPF solutions.

(e) For each pair of adjacent CPF solutions, identify the constraint
boundary they share by giving its equation.

4.1-2. Consider the following problem.

Maximize Z = 3x; + 2x,,

subject to

2x;+ x, =6
X1+ZXQS6

and

x120, X220.

(a) Use the graphical method to solve this problem. Circle all the
corner points on the graph.

(b) For each CPF solution, identify the pair of constraint bound-
ary equations it satisfies.

(¢) For each CPF solution, identify its adjacent CPF solutions.

(d) Calculate Z for each CPF solution. Use this information to
identify an optimal solution.

(e) Describe graphically what the simplex method does step by
step to solve the problem.

4.1-3. A certain linear programming model involving two activi-
ties has the feasible region shown below.

Level of Activity 2

0 2 4 6 8
Level of Activity 1

The objective is to maximize the total profit from the two activi-

ties. The unit profit for activity 1 is $1,000 and the unit profit for

activity 2 is $2,000.

(a) Calculate the total profit for each CPF solution. Use this in-
formation to find an optimal solution.

(b) Use the solution concepts of the simplex method given in Sec.
4.1 to identify the sequence of CPF solutions that would be
examined by the simplex method to reach an optimal solution.

4.1-4.* Consider the linear programming model (given in the back

of the book) that was formulated for Prob. 3.2-3.

(a) Use graphical analysis to identify all the corner-point solutions
for this model. Label each as either feasible or infeasible.

(b) Calculate the value of the objective function for each of the
CPF solutions. Use this information to identify an optimal so-
lution.

(¢) Use the solution concepts of the simplex method given in Sec.
4.1 to identify which sequence of CPF solutions might be ex-
amined by the simplex method to reach an optimal solution.
(Hint: There are two alternative sequences to be identified for
this particular model.)

4.1-5. Repeat Prob. 4.1-4 for the following problem.
Maximize Z=x; + 2x,,
subject to

X+ 3x, =8
X+ xnp=4
and
x; =0, X, = 0.
4.1-6. Repeat Prob. 4.1-4 for the following problem.
Maximize Z = 3x; t 2xy,
subject to

X1 4
x; +3x, =15
le + X2 =10

=
=

and

x120, X220.

4.1-7. Describe graphically what the simplex method does step by
step to solve the following problem.

Maximize Z = 2x; + 3x,,
subject to

—3x1 + = 1
4x1 + 2XZ =20
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dx; — x, =10
—x; +2x% = 5

and
x; =0, X, =0

4.1-8. Describe graphically what the simplex method does step by
step to solve the following problem.

Minimize Z = 5x; + Tx,,

subject to

2)(,'1 + 3XZ = 42
3x; + 4x, = 60
X+ x, =18

4.1-9. Label each of the following statements about linear pro-

gramming problems as true or false, and then justify your answer.

(a) For minimization problems, if the objective function evaluated
at a CPF solution is no larger than its value at every adjacent
CPF solution, then that solution is optimal.

(b) Only CPF solutions can be optimal, so the number of optimal
solutions cannot exceed the number of CPF solutions.

(¢) If multiple optimal solutions exist, then an optimal CPF solu-
tion may have an adjacent CPF solution that also is optimal
(the same value of Z).

4.1-10. The following statements give inaccurate paraphrases of
the six solution concepts presented in Sec. 4.1. In each case, ex-
plain what is wrong with the statement.

(a) The best CPF solution always is an optimal solution.

(b) An iteration of the simplex method checks whether the current
CPF solution is optimal and, if not, moves to a new CPF
solution.

(c) Although any CPF solution can be chosen to be the initial CPF
solution, the simplex method always chooses the origin.

(d) When the simplex method is ready to choose a new CPF so-
lution to move to from the current CPF solution, it only con-
siders adjacent CPF solutions because one of them is likely to
be an optimal solution.

(e) To choose the new CPF solution to move to from the current
CPF solution, the simplex method identifies all the adjacent
CPF solutions and determines which one gives the largest rate
of improvement in the value of the objective function.

4.2-1. Reconsider the model in Prob. 4.1-4.
(a) Introduce slack variables in order to write the functional con-
straints in augmented form.

(b) For each CPF solution, identify the corresponding BF solution
by calculating the values of the slack variables. For each BF
solution, use the values of the variables to identify the nonba-
sic variables and the basic variables.

(¢) For each BF solution, demonstrate (by plugging in the solu-
tion) that, after the nonbasic variables are set equal to zero,
this BF solution also is the simultaneous solution of the sys-
tem of equations obtained in part (a).

4.2-2. Reconsider the model in Prob. 4.1-5. Follow the instructions

of Prob. 4.2-1 for parts (a), (b), and (¢).

(d) Repeat part (b) for the corner-point infeasible solutions and the
corresponding basic infeasible solutions.

(e) Repeat part (c) for the basic infeasible solutions.

4.2-3. Follow the instructions of Prob. 4.2-1 for the model in Prob.
4.1-6.

DI 4.3-1. Work through the simplex method (in algebraic form)
step by step to solve the model in Prob. 4.1-4.

4.3-2. Reconsider the model in Prob. 4.1-5.
(a) Work through the simplex method (in algebraic form) by hand
to solve this model.
DI (b) Repeat part (a) with the corresponding interactive routine
in your OR Tutor.
C (c) Verify the optimal solution you obtained by using a software
package based on the simplex method.

4.3-3. Follow the instructions of Prob. 4.3-2 for the model in Prob.
4.1-6.

DI 4.3-4.* Work through the simplex method (in algebraic form)
step by step to solve the following problem.

Maximize Z =4x; + 3x, + 6x3,
subject to

3.X1 + Xo + 3X3 = 30
2x; + 2x, + 3x3 = 40

and

DI 4.3-5. Work through the simplex method (in algebraic form)
step by step to solve the following problem.

Maximize Z = x; + 2x, + 4x3,
subject to
3.X1 + X2 + SX3 =10
X +do,+ x3= 8
2x, +2x03= 7
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and

x; =0, X, =0, x3=0.

D,I 4.3-6. Work through the simplex method (in algebraic form)
step by step to solve the following problem.

Maximize Z=x; + 2x, + 2x3,
subject to
5)(1 + 2X2 + 3X3 =15
x; +4x, + 2x3 = 12
2x; + x3= 8
and
x; =0, X, =0, x3=0.

4.3-7. Consider the following problem.

Maximize Z = 5x; + 3x, + 4xs,

subject to

2X1+X2+ X3S20
3x; + x + 2x3 = 30

and

X]ZO, x220, X3ZO.

You are given the information that the nonzero variables in the op-

timal solution are x, and x;.

(a) Describe how you can use this information to adapt the sim-
plex method to solve this problem in the minimum possible
number of iterations (when you start from the usual initial BF
solution). Do not actually perform any iterations.

(b) Use the procedure developed in part (@) to solve this problem
by hand. (Do not use your OR Courseware.)

4.3-8. Consider the following problem.

Maximize Z = 2x; + 4x, + 3x3,

subject to

x; + 3x, + 2x3 = 30
xXpt xpt+ x3 =24
3x; + 5x, + 3x3 = 60

and

XIEO, XQEO, X320.

You are given the information that x; > 0, x, = 0, and x3 > 0 in

the optimal solution.

(a) Describe how you can use this information to adapt the sim-
plex method to solve this problem in the minimum possible
number of iterations (when you start from the usual initial BF
solution). Do not actually perform any iterations.

(b) Use the procedure developed in part (a) to solve this problem
by hand. (Do not use your OR Courseware.)

4.3-9. Label each of the following statements as true or false, and
then justify your answer by referring to specific statements (with
page citations) in the chapter.

(a) The simplex method’s rule for choosing the entering basic vari-
able is used because it always leads to the best adjacent BF
solution (largest Z).

(b) The simplex method’s minimum ratio rule for choosing the
leaving basic variable is used because making another choice
with a larger ratio would yield a basic solution that is not fea-
sible.

(¢) When the simplex method solves for the next BF solution, el-
ementary algebraic operations are used to eliminate each non-
basic variable from all but one equation (its equation) and to
give it a coefficient of +1 in that one equation.

DI 4.4-1. Repeat Prob. 4.3-1, using the tabular form of the sim-
plex method.

D,LC 4.4-2. Repeat Prob. 4.3-2, using the tabular form of the sim-
plex method.

D,LC 4.4-3. Repeat Prob. 4.3-3, using the tabular form of the sim-
plex method.

4.4-4. Consider the following problem.

Maximize Z =2x; + x5,

subject to

x1+x= 40
dx; + x, = 100

and

XIEO, XZEO.

(a) Solve this problem graphically in a freehand manner. Also
identify all the CPF solutions.
(b) Now repeat part (a) when using a ruler to draw the graph
carefully.
D (c) Use hand calculations to solve this problem by the simplex
method in algebraic form.
DI (d) Now use your OR Courseware to solve this problem in-
teractively by the simplex method in algebraic form.
D (e) Use hand calculations to solve this problem by the simplex
method in tabular form.
DI (f) Now use your OR Courseware to solve this problem inter-
actively by the simplex method in tabular form.
C (g) Use a software package based on the simplex method to
solve the problem.
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4.4-5. Repeat Prob. 4.4-4 for the following problem.

Maximize Z = 2x; + 3x,,

subject to

x; + 2x, =30
x1+ xZSZO

and

XIEO, XQEO.

4.4-6. Consider the following problem.

Maximize Z = 2x; + 4x, + 3xz,

subject to

3x; + 4x, + 2x3 = 60
2x; + xp, + 2x3 =40
X1 + 3X2 + 2)(3 = 80

and

X]EO, XZEO, X320.

DI (a) Work through the simplex method step by step in algebraic
form.
D,I (b) Work through the simplex method step by step in tabular
form.
C (¢) Use a software package based on the simplex method to
solve the problem.

4.4-7. Consider the following problem.

Maximize Z =3x; + 5x, + 6x3,

subject to

2x1+ x+ x3=4
X+ 20+ x3=4
xXpt x+2x3=4
Xt xpt+ x3=3

and

leO, XQZO, X320.

DI (a) Work through the simplex method step by step in algebraic
form.
DI (b) Work through the simplex method in tabular form.
C (c¢) Use a computer package based on the simplex method to
solve the problem.

4.4-8. Consider the following problem.

Maximize Z=2x; — x, + x3,
subject to
X1 — X2 + 3X3 = 4
2)(,'1 + X2 = 10
X1 — X2 — X3 =7

and

x; =0, X, =0, x3=0.

D,I (a) Work through the simplex method step by step in algebraic
form to solve this problem.
D,I (b) Work through the simplex method step by step in tabular
form to solve the problem.
C (¢) Use a computer package based on the simplex method to
solve the problem.

DI 4.4-9. Work through the simplex method step by step (in tab-
ular form) to solve the following problem.

Maximize Z=12x; — xp + x3,
subject to
3 +txt+ x3=6
Xp— X+ 2x3 =1
Xyt — x3=2
and
x120, XQEO, X320.

DI 4.4-10. Work through the simplex method step by step to solve
the following problem.

Maximize Z=—x; + x5+ 2x3,

subject to

X+ 20 — x3 =20
—2x; + 4x, + 2x3 = 60
2x; +3x, + x3 =50

4.5-1. Consider the following statements about linear program-
ming and the simplex method. Label each statement as true or false,
and then justify your answer.

(a) In a particular iteration of the simplex method, if there is a tie
for which variable should be the leaving basic variable, then
the next BF solution must have at least one basic variable equal
to zero.

(b) If there is no leaving basic variable at some iteration, then the
problem has no feasible solutions.

(¢) If at least one of the basic variables has a coefficient of zero
in row O of the final tableau, then the problem has multiple op-
timal solutions.

(d) If the problem has multiple optimal solutions, then the prob-
lem must have a bounded feasible region.
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4.5-2. Suppose that the following constraints have been provided
for a linear programming model with decision variables x; and x,.

—x; + 3x, = 30
—3x; + x =30
and
x; =0, X, = 0.

(a) Demonstrate graphically that the feasible region is unbounded.
(b) If the objective is to maximize Z = —x; + x,, does the model
have an optimal solution? If so, find it. If not, explain why not.

(c) Repeat part (b) when the objective is to maximize Z = x; — x,.

(d) For objective functions where this model has no optimal solu-

tion, does this mean that there are no good solutions accord-
ing to the model? Explain. What probably went wrong when
formulating the model?

DI (e) Select an objective function for which this model has no
optimal solution. Then work through the simplex method
step by step to demonstrate that Z is unbounded.

C (f) For the objective function selected in part (e), use a software

package based on the simplex method to determine that Z is
unbounded.

4.5-3. Follow the instructions of Prob. 4.5-2 when the constraints
are the following:

2x1 - X = 20
X — 2x, =20
and
X1 = 0, X2 =0.

D,I 4.5-4. Consider the following problem.

Maximize Z = 5x; + x5 + 3x3 + 4xy,

subject to

X1 — 2)(2 + 4X3 + 3)C4 =20
—4x; + 6xy + Sx3 — 4xy = 40
2X] - 3XZ + 3X3 + 8)C4 =50

and

x; =0, X, =0, x3 =0, x4 = 0.

Work through the simplex method step by step to demonstrate that
Z is unbounded.

4.5-5. A basic property of any linear programming problem with
a bounded feasible region is that every feasible solution can be ex-
pressed as a convex combination of the CPF solutions (perhaps in
more than one way). Similarly, for the augmented form of the prob-
lem, every feasible solution can be expressed as a convex combi-
nation of the BF solutions.

(a) Show that any convex combination of any set of feasible so-
lutions must be a feasible solution (so that any convex combi-
nation of CPF solutions must be feasible).

(b) Use the result quoted in part (@) to show that any convex com-
bination of BF solutions must be a feasible solution.

4.5-6. Using the facts given in Prob. 4.5-5, show that the follow-

ing statements must be true for any linear programming problem

that has a bounded feasible region and multiple optimal solutions:

(a) Every convex combination of the optimal BF solutions must
be optimal.

(b) No other feasible solution can be optimal.

4.5-7. Consider a two-variable linear programming problem whose
CPF solutions are (0, 0), (6, 0), (6, 3), (3, 3), and (0, 2). (See Prob.
3.2-2 for a graph of the feasible region.)

(a) Use the graph of the feasible region to identify all the con-
straints for the model.

(b) For each pair of adjacent CPF solutions, give an example of
an objective function such that all the points on the line seg-
ment between these two corner points are multiple optimal so-
lutions.

(¢) Now suppose that the objective functionis Z = —x; + 2x,. Use
the graphical method to find all the optimal solutions.

DI (d) For the objective function in part (c¢), work through the sim-
plex method step by step to find all the optimal BF solu-
tions. Then write an algebraic expression that identifies all
the optimal solutions.

D,I 4.5-8. Consider the following problem.
Maximize Z=2x txp + X3+ x4,
subject to

X txn=3

X3+X4S2
and

% =0,

forj=1,2,3,4.

Work through the simplex method step by step to find all the op-
timal BF solutions.

4.6-1.* Consider the following problem.

Maximize Z = 2x; + 3x,,
subject to

Xt 2 =4

Xt x=3
and

x; =0, X, =0
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(a) Solve this problem graphically.

(b) Using the Big M method, construct the complete first simplex
tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

I (¢) Continue from part (b) to work through the simplex method

step by step to solve the problem.

4.6-2. Consider the following problem.

Maximize Z =4x; + 2x, + 3x3 + Sxy,

subject to

2x; + 3x, + 4x3 + 2x4 = 300
le + X2 + X3 + S.X4 = 300

and

ijO,

forj=1,2,3,4.

(a) Using the Big M method, construct the complete first simplex
tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

1 (b) Work through the simplex method step by step to solve the

problem.

(¢) Using the two-phase method, construct the complete first sim-
plex tableau for phase 1 and identify the corresponding initial
(artificial) BF solution. Also identify the initial entering basic
variable and the leaving basic variable.

1 (d) Work through phase 1 step by step.

(e) Construct the complete first simplex tableau for phase 2.

1 (f) Work through phase 2 step by step to solve the problem.

(g) Compare the sequence of BF solutions obtained in part (b) with
that in parts (d) and (f). Which of these solutions are feasible
only for the artificial problem obtained by introducing artificial
variables and which are actually feasible for the real problem?

C (h) Use a software package based on the simplex method to

solve the problem.

4.6-3. Consider the following problem.

Minimize Z = 3x; + 2x,,
subject to
2x; + x, =10
=3x; +2x0, = 6
X+ =6
and
x| = 0, Xy = 0.

(a) Solve this problem graphically.
(b) Using the Big M method, construct the complete first simplex
tableau for the simplex method and identify the corresponding

initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.
I (¢) Work through the simplex method step by step to solve the
problem.

4.6-4.* Consider the following problem.
Minimize Z = 2x; + 3x, + x3,
subject to

Xt 4x, +2x3=8

3x; + 2x, =6
and
x|20, XQEO, )C320.

(a) Reformulate this problem to fit our standard form for a linear
programming model presented in Sec. 3.2.

1 (b) Using the Big M method, work through the simplex method

step by step to solve the problem.

I (¢) Using the two-phase method, work through the simplex

method step by step to solve the problem.

(d) Compare the sequence of BF solutions obtained in parts (b)
and (c). Which of these solutions are feasible only for the ar-
tificial problem obtained by introducing artificial variables and
which are actually feasible for the real problem?

C (e) Use a software package based on the simplex method to

solve the problem.

4.6-5. For the Big M method, explain why the simplex method
never would choose an artificial variable to be an entering basic
variable once all the artificial variables are nonbasic.

4.6-6. Consider the following problem.

Maximize Z = 90x; + 70x,,

subject to

22X +x =2
xl—x222

and

x; =0, x, = 0.

(a) Demonstrate graphically that this problem has no feasible so-

lutions.

C (b) Use a computer package based on the simplex method to

determine that the problem has no feasible solutions.

I (¢) Using the Big M method, work through the simplex method
step by step to demonstrate that the problem has no feasible
solutions.

1 (d) Repeat part (c) when using phase 1 of the two-phase method.
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4.6-7. Follow the instructions of Prob. 4.6-6 for the following
problem.

Minimize Z = 5,000x; + 7,000x,,

subject to

Xy = 0.
4.6-8. Consider the following problem.

Maximize Z =2x; + 5x, + 3x3,

subject to

XI_ZXZJFX:;EZO
2x; + 4x, + x3 = 50

and

leO, x220, X320.

(a) Using the Big M method, construct the complete first simplex
tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

1 (b) Work through the simplex method step by step to solve the

problem.

1 (¢) Using the two-phase method, construct the complete first
simplex tableau for phase 1 and identify the corresponding
initial (artificial) BF solution. Also identity the initial enter-
ing basic variable and the leaving basic variable.

I (d) Work through phase 1 step by step.

(e) Construct the complete first simplex tableau for phase 2.

1 (f) Work through phase 2 step by step to solve the problem.

(g) Compare the sequence of BF solutions obtained in part (b) with
that in parts () and (f). Which of these solutions are feasible
only for the artificial problem obtained by introducing artificial
variables and which are actually feasible for the real problem?

C (h) Use a software package based on the simplex method to

solve the problem.

4.6-9. Consider the following problem.
Minimize Z =2x; + xo + 3x3,
subject to

5)51 + 2)C2 + 7)(3 = 420
3x1 + 2)C2 + SX3 = 280

and

I (a) Using the two-phase method, work through phase 1 step by
step.
¢ (b) Use a software package based on the simplex method to for-
mulate and solve the phase 1 problem.
I (¢) Work through phase 2 step by step to solve the original
problem.
C (d) Use a computer code based on the simplex method to solve
the original problem.

4.6-10.* Consider the following problem.

Minimize Z =3x; + 2x5 + 4x;3,

subject to

2x; + xp + 3x3 = 60
3x; + 3x, + 5x3 = 120

and

_XIEO, _XZZO, )C320.

I (a) Using the Big M method, work through the simplex method

step by step to solve the problem.

1 (b) Using the two-phase method, work through the simplex

method step by step to solve the problem.

(¢) Compare the sequence of BF solutions obtained in parts (a)
and (b). Which of these solutions are feasible only for the ar-
tificial problem obtained by introducing artificial variables and
which are actually feasible for the real problem?

C (d) Use a software package based on the simplex method to

solve the problem.

4.6-11. Follow the instructions of Prob. 4.6-10 for the following
problem.

Minimize Z = 3x; + 2x, + Tx3,
subject to

—x; + X =10

2x1 —x tx3= 10
and

x; =0, X, =0, x3 = 0.

4.6-12. Follow the instructions of Prob. 4.6-10 for the following
problem.

Minimize Z =3x; + 2xp, + x3,
subject to
X+ xo 7

3x; +x +x3 =10
and

x =0,
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4.6-13. Label each of the following statements as true or false, and

then justify your answer.

(a) When a linear programming model has an equality constraint,
an artificial variable is introduced into this constraint in order
to start the simplex method with an obvious initial basic solu-
tion that is feasible for the original model.

(b) When an artificial problem is created by introducing artificial
variables and using the Big M method, if all artificial variables
in an optimal solution for the artificial problem are equal to
zero, then the real problem has no feasible solutions.

(¢) The two-phase method is commonly used in practice because
it usually requires fewer iterations to reach an optimal solution
than the Big M method does.

4.6-14. Consider the following problem.

Maximize Z = x; + 4x, + 2x3,

subject to
dx; —x + 3=
—X; — Xy +2x3 =10
and
X, =0, x3=0
(no nonnegativity constraint for x;).
(a) Reformulate this problem so all variables have nonnegativity
constraints.
DI (b) Work through the simplex method step by step to solve the
problem.
C (c) Use a software package based on the simplex method to
solve the problem.

4.6-15.% Consider the following problem.

Maximize Z = —x; + 4x,,
subject to
=31+ = 6
x;+2x0np= 4
X, = —3

(no lower bound constraint for x;).
(a) Solve this problem graphically.
(b) Reformulate this problem so that it has only two functional
constraints and all variables have nonnegativity constraints.
DI (¢) Work through the simplex method step by step to solve the
problem.

4.6-16. Consider the following problem.

Maximize Z=—x; + 2x, + x3,
subject to
3x, + x3 = 120
Xp— X, —4dx3 = 80
=3x; + x, +2x3 = 100

(no nonnegativity constraints).

(a) Reformulate this problem so that all variables have nonnega-
tivity constraints.
DI (b) Work through the simplex method step by step to solve the
problem.
C (¢) Use a computer package based on the simplex method to
solve the problem.

4.6-17. This chapter has described the simplex method as applied
to linear programming problems where the objective function is to
be maximized. Section 4.6 then described how to convert a mini-
mization problem to an equivalent maximization problem for ap-
plying the simplex method. Another option with minimization
problems is to make a few modifications in the instructions for the
simplex method given in the chapter in order to apply the algo-
rithm directly.

(a) Describe what these modifications would need to be.

(b) Using the Big M method, apply the modified algorithm devel-
oped in part (a) to solve the following problem directly by
hand. (Do not use your OR Courseware.)

Minimize Z = 3x; + 8x, + 5x3,
subject to

3.X2 + 4)C3 =170
3)(:1 + SX2 + 2)(3 =170

and

4.6-18. Consider the following problem.
Maximize Z = —2x; + x5 — 4x3 + 3x4,
subject to

Xp+ xp+3x3+ 24y =
X3+ xg=—1
=

X1 -

2x; + xp

x1+2x2+ )C3+2.X4: 2
and

XZZO, X3ZO, X420

(no nonnegativity constraint for xy).

(a) Reformulate this problem to fit our standard form for a linear
programming model presented in Sec. 3.2.

(b) Using the Big M method, construct the complete first simplex
tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

(¢) Using the two-phase method, construct row O of the first sim-
plex tableau for phase 1.

C (d) Use a computer package based on the simplex method to

solve the problem.
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I 4.6-19. Consider the following problem.

Maximize Z =4x; + 5x, + 3x3,

subject to

xX; + xp + 2x3 =20
15x; + 6x, — 5x3 =50
x; + 3x, + 5x3 =30

and

X]ZO, x220, X320.

Work through the simplex method step by step to demonstrate that
this problem does not possess any feasible solutions.

4.7-1. Refer to Fig. 4.10 and the resulting allowable range to stay
feasible for the respective right-hand sides of the Wyndor Glass
Co. problem given in Sec. 3.1. Use graphical analysis to demon-
strate that each given allowable range is correct.

4.7-2. Reconsider the model in Prob. 4.1-5. Interpret the right-hand
side of the respective functional constraints as the amount avail-
able of the respective resources.

(a) Use graphical analysis as in Fig. 4.8 to determine the shadow
prices for the respective resources.

(b) Use graphical analysis to perform sensitivity analysis on this
model. In particular, check each parameter of the model to
determine whether it is a sensitive parameter (a parameter
whose value cannot be changed without changing the opti-
mal solution) by examining the graph that identifies the op-
timal solution.

(c) Use graphical analysis as in Fig. 4.9 to determine the allow-
able range for each ¢; value (coefficient of x; in the objective
function) over which the current optimal solution will remain
optimal.

(d) Changing just one b; value (the right-hand side of functional
constraint i) will shift the corresponding constraint boundary.
If the current optimal CPF solution lies on this constraint
boundary, this CPF solution also will shift. Use graphical
analysis to determine the allowable range for each b; value over
which this CPF solution will remain feasible.

C (e) Verify your answers in parts (a), (c), and (d) by using a com-

puter package based on the simplex method to solve the prob-
lem and then to generate sensitivity analysis information.

4.7-3. Repeat Prob. 4.7-2 for the model in Prob. 4.1-6.

4.7-4. You are given the following linear programming problem.

Maximize Z = 4x; + 2x,,
subject to
2x, =16 (resource 1)
x; + 3x, =17 (resource 2)
X, = 5 (resource 3)

and

x; =0, X, = 0.

(a) Solve this problem graphically.

(b) Use graphical analysis to find the shadow prices for the re-
sources.

(¢) Determine how many additional units of resource 1 would be
needed to increase the optimal value of Z by 15.

4.7-5. Consider the following problem.
Maximize Z=x1 — Tx> + 3x3,
subject to

2+ xp—x3=4
4X]_3.X2 =2
=3x; +2x +tx3=3

(resource 1)
(resource 2)
(resource 3)

and

x =0, X, =0, x3=0.

D,I (a) Work through the simplex method step by step to solve the

problem.

(b) Identify the shadow prices for the three resources and describe

their significance.

C (¢) Use a software package based on the simplex method to
solve the problem and then to generate sensitivity informa-
tion. Use this information to identify the shadow price for
each resource, the allowable range to stay optimal for each
objective function coefficient, and the allowable range to
stay feasible for each right-hand side.

4.7-6.* Consider the following problem.

Maximize Z = 2x; — 2x, + 3x3,
subject to
—x;tx,+ x3= 4 (resource 1)
2% —xp t x3 = 2 (resource 2)
Xt +3xn =12 (resource 3)
and
x120, XzZO, X320.

DI (a) Work through the simplex method step by step to solve the

problem.

(b) Identify the shadow prices for the three resources and describe

their significance.

C (¢) Use a software package based on the simplex method to
solve the problem and then to generate sensitivity informa-
tion. Use this information to identify the shadow price for
each resource, the allowable range to stay optimal for each
objective function coefficient and the allowable range to stay
feasible for each right-hand side.
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4.7-7. Consider the following problem.
Maximize Z =2x; + 4x, — x3,
subject to

3X2 - X3 =30
2x; — x + x3 =10
4x) + 2x — 2x3 = 40

(resource 1)
(resource 2)
(resource 3)

and

XIEO, XZEO, X320.

DI (a) Work through the simplex method step by step to solve the

problem.

(b) Identify the shadow prices for the three resources and describe

their significance.

C (c¢) Use a software package based on the simplex method to
solve the problem and then to generate sensitivity informa-
tion. Use this information to identify the shadow price for
each resource, the allowable range to stay optimal for each
objective function coefficient, and the allowable range to
stay feasible for each right-hand side.

4.7-8. Consider the following problem.
Maximize Z = 5x; + 4x, — x3 + 3xy,
subject to

3x;+2x, —3x3+ x4 =24
3x; + 3x, + x3 + 3x4 = 36

(resource 1)
(resource 2)

and

x; =0, X, =0, x3 =0, x4 = 0.

D,I (a) Work through the simplex method step by step to solve the

problem.

(b) Identify the shadow prices for the two resources and describe

their significance.

C (¢) Use a software package based on the simplex method to
solve the problem and then to generate sensitivity informa-
tion. Use this information to identify the shadow price for
each resource, the allowable range to stay optimal for each
objective function coefficient, and the allowable range to
stay feasible for each right-hand side.

4.9.1. Use the interior-point algorithm in your OR Courseware to
solve the model in Prob. 4.1-4. Choose a = 0.5 from the Option
menu, use (x;, x,) = (0.1, 0.4) as the initial trial solution, and run
15 iterations. Draw a graph of the feasible region, and then plot
the trajectory of the trial solutions through this feasible region.

4.9-2. Repeat Prob. 4.9-1 for the model in Prob. 4.1-5.

4.9-3. Repeat Prob. 4.9-1 for the model in Prob. 4.1-6.

CASE 4.1 FABRICS AND FALL FASHIONS

From the tenth floor of her office building, Katherine Rally watches the swarms of
New Yorkers fight their way through the streets infested with yellow cabs and the side-
walks littered with hot dog stands. On this sweltering July day, she pays particular at-
tention to the fashions worn by the various women and wonders what they will choose
to wear in the fall. Her thoughts are not simply random musings; they are critical to
her work since she owns and manages TrendLines, an elite women’s clothing company.

Today is an especially important day because she must meet with Ted Lawson, the
production manager, to decide upon next month’s production plan for the fall line.
Specifically, she must determine the quantity of each clothing item she should produce
given the plant’s production capacity, limited resources, and demand forecasts. Accu-
rate planning for next month’s production is critical to fall sales since the items pro-
duced next month will appear in stores during September, and women generally buy
the majority of the fall fashions when they first appear in September.

She turns back to her sprawling glass desk and looks at the numerous papers cov-
ering it. Her eyes roam across the clothing patterns designed almost six months ago,
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the lists of materials requirements for each pattern, and the lists of demand forecasts
for each pattern determined by customer surveys at fashion shows. She remembers the
hectic and sometimes nightmarish days of designing the fall line and presenting it at
fashion shows in New York, Milan, and Paris. Ultimately, she paid her team of six de-
signers a total of $860,000 for their work on her fall line. With the cost of hiring run-
way models, hair stylists, and makeup artists, sewing and fitting clothes, building the
set, choreographing and rehearsing the show, and renting the conference hall, each of
the three fashion shows cost her an additional $2,700,000.

She studies the clothing patterns and material requirements. Her fall line consists
of both professional and casual fashions. She determined the prices for each clothing
item by taking into account the quality and cost of material, the cost of labor and ma-
chining, the demand for the item, and the prestige of the TrendLines brand name.

The fall professional fashions include:

Labor and

Clothing Item Materials Requirements Price Machine Cost
Tailored wool slacks 3 yards of wool $300 $160

2 yards of acetate for lining
Cashmere sweater 1.5 yards of cashmere $450 $150
Silk blouse 1.5 yards of silk $180 $100
Silk camisole 0.5 yard of silk $120 $ 60
Tailored skirt 2 yards of rayon $270 $120

1.5 yards of acetate for lining
Wool blazer 2.5 yards of wool $320 $140

1.5 yards of acetate for lining
The fall casual fashions include:

Labor and

Clothing Item Materials Requirements Price Machine Cost
Velvet pants 3 yards of velvet $350 $175

2 yards of acetate for lining
Cotton sweater 1.5 yards of cotton $130 $ 60
Cotton miniskirt 0.5 yard of cotton $ 75 $ 40
Velvet shirt 1.5 yards of velvet $200 $160
Button-down blouse 1.5 yards of rayon $120 $ 90

She knows that for the next month, she has ordered 45,000 yards of wool, 28,000

yards of acetate, 9,000 yards of cashmere, 18,000 yards of silk, 30,000 yards of rayon,
20,000 yards of velvet, and 30,000 yards of cotton for production. The prices of the
materials are listed on the next page.
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Material Price per yard
Wool $ 9.00
Acetate $ 1.50
Cashmere $60.00
Silk $13.00
Rayon $ 225
Velvet $12.00
Cotton $ 2.50

Any material that is not used in production can be sent back to the textile wholesaler
for a full refund, although scrap material cannot be sent back to the wholesaler.

She knows that the production of both the silk blouse and cotton sweater leaves
leftover scraps of material. Specifically, for the production of one silk blouse or one
cotton sweater, 2 yards of silk and cotton, respectively, are needed. From these 2 yards,
1.5 yards are used for the silk blouse or the cotton sweater and 0.5 yard is left as scrap
material. She does not want to waste the material, so she plans to use the rectangular
scrap of silk or cotton to produce a silk camisole or cotton miniskirt, respectively.
Therefore, whenever a silk blouse is produced, a silk camisole is also produced. Like-
wise, whenever a cotton sweater is produced, a cotton miniskirt is also produced. Note
that it is possible to produce a silk camisole without producing a silk blouse and a cot-
ton miniskirt without producing a cotton sweater.

The demand forecasts indicate that some items have limited demand. Specifically,
because the velvet pants and velvet shirts are fashion fads, TrendLines has forecasted
that it can sell only 5,500 pairs of velvet pants and 6,000 velvet shirts. TrendLines
does not want to produce more than the forecasted demand because once the pants
and shirts go out of style, the company cannot sell them. TrendLines can produce less
than the forecasted demand, however, since the company is not required to meet the
demand. The cashmere sweater also has limited demand because it is quite expensive,
and TrendLines knows it can sell at most 4,000 cashmere sweaters. The silk blouses
and camisoles have limited demand because many women think silk is too hard to
care for, and TrendLines projects that it can sell at most 12,000 silk blouses and 15,000
silk camisoles.

The demand forecasts also indicate that the wool slacks, tailored skirts, and wool
blazers have a great demand because they are basic items needed in every professional
wardrobe. Specifically, the demand for wool slacks is 7,000 pairs of slacks, and the
demand for wool blazers is 5,000 blazers. Katherine wants to meet at least 60 percent
of the demand for these two items in order to maintain her loyal customer base and
not lose business in the future. Although the demand for tailored skirts could not be
estimated, Katherine feels she should make at least 2,800 of them.

(a) Ted is trying to convince Katherine not to produce any velvet shirts since the demand for
this fashion fad is quite low. He argues that this fashion fad alone accounts for $500,000
of the fixed design and other costs. The net contribution (price of clothing item — mate-
rials cost — labor cost) from selling the fashion fad should cover these fixed costs. Each
velvet shirt generates a net contribution of $22. He argues that given the net contribution,
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even satisfying the maximum demand will not yield a profit. What do you think of Ted’s
argument?

(b) Formulate and solve a linear programming problem to maximize profit given the produc-
tion, resource, and demand constraints.

Before she makes her final decision, Katherine plans to explore the following ques-
tions independently except where otherwise indicated.

(c) The textile wholesaler informs Katherine that the velvet cannot be sent back because the de-
mand forecasts show that the demand for velvet will decrease in the future. Katherine can
therefore get no refund for the velvet. How does this fact change the production plan?

(d) What is an intuitive economic explanation for the difference between the solutions found in
parts (b) and (c)?

(e) The sewing staff encounters difficulties sewing the arms and lining into the wool blazers
since the blazer pattern has an awkward shape and the heavy wool material is difficult to cut
and sew. The increased labor time to sew a wool blazer increases the labor and machine cost
for each blazer by $80. Given this new cost, how many of each clothing item should Trend-
Lines produce to maximize profit?

(f) The textile wholesaler informs Katherine that since another textile customer canceled his or-
der, she can obtain an extra 10,000 yards of acetate. How many of each clothing item should
TrendLines now produce to maximize profit?

(g) TrendLines assumes that it can sell every item that was not sold during September and Oc-
tober in a big sale in November at 60 percent of the original price. Therefore, it can sell all
items in unlimited quantity during the November sale. (The previously mentioned upper lim-
its on demand concern only the sales during September and October.) What should the new
production plan be to maximize profit?

CASE 4.2 NEW FRONTIERS

Rob Richman, president of AmeriBank, takes off his glasses, rubs his eyes in exhaus-
tion, and squints at the clock in his study. It reads 3 a.M. For the last several hours,
Rob has been poring over AmeriBank’s financial statements from the last three quar-
ters of operation. AmeriBank, a medium-sized bank with branches throughout the
United States, is headed for dire economic straits. The bank, which provides transac-
tion, savings, and investment and loan services, has been experiencing a steady decline
in its net income over the past year, and trends show that the decline will continue.
The bank is simply losing customers to nonbank and foreign bank competitors.

AmeriBank is not alone in its struggle to stay out of the red. From his daily in-
dustry readings, Rob knows that many American banks have been suffering significant
losses because of increasing competition from nonbank and foreign bank competitors
offering services typically in the domain of American banks. Because the nonbank and
foreign bank competitors specialize in particular services, they are able to better cap-
ture the market for those services by offering less expensive, more efficient, more con-
venient services. For example, large corporations now turn to foreign banks and com-
mercial paper offerings for loans, and affluent Americans now turn to money-market
funds for investment. Banks face the daunting challenge of distinguishing themselves
from nonbank and foreign bank competitors.



186

4 SOLVING LINEAR PROGRAMMING PROBLEMS: THE SIMPLEX METHOD

Rob has concluded that one strategy for distinguishing AmeriBank from its com-
petitors is to improve services that nonbank and foreign bank competitors do not read-
ily provide: transaction services. He has decided that a more convenient transaction
method must logically succeed the automatic teller machine, and he believes that elec-
tronic banking over the Internet allows this convenient transaction method. Over the
Internet, customers are able to perform transactions on their desktop computers either
at home or at work. The explosion of the Internet means that many potential customers
understand and use the World Wide Web. He therefore feels that if AmeriBank offers
Web banking (as the practice of Internet banking is commonly called), the bank will
attract many new customers.

Before Rob undertakes the project to make Web banking possible, however, he
needs to understand the market for Web banking and the services AmeriBank should
provide over the Internet. For example, should the bank only allow customers to ac-
cess account balances and historical transaction information over the Internet, or should
the bank develop a strategy to allow customers to make deposits and withdrawals over
the Internet? Should the bank try to recapture a portion of the investment market by
continuously running stock prices and allowing customers to make stock transactions
over the Internet for a minimal fee?

Because AmeriBank is not in the business of performing surveys, Rob has decided
to outsource the survey project to a professional survey company. He has opened the
project up for bidding by several survey companies and will award the project to the
company which is willing to perform the survey for the least cost.

Sophisticated Surveys is one of three survey companies competing for the project.
Rob provided each survey company with a list of survey requirements to ensure that
AmeriBank receives the needed information for planning the Web banking project.

Because different age groups require different services, AmeriBank is interested
in surveying four different age groups. The first group encompasses customers who are
18 to 25 years old. The bank assumes that this age group has limited yearly income
and performs minimal transactions. The second group encompasses customers who are
26 to 40 years old. This age group has significant sources of income, performs many
transactions, requires numerous loans for new houses and cars, and invests in various
securities. The third group encompasses customers who are 41 to 50 years old. These
customers typically have the same level of income and perform the same number of
transactions as the second age group, but the bank assumes that these customers are
less likely to use Web banking since they have not become as comfortable with the ex-
plosion of computers or the Internet. Finally, the fourth group encompasses customers
who are 51 years of age and over. These customers commonly crave security and re-
quire continuous information on retirement funds. The banks believes that it is highly
unlikely that customers in this age group will use Web banking, but the bank desires
to learn the needs of this age group for the future. AmeriBank wants to interview 2,000
customers with at least 20 percent from the first age group, at least 27.5 percent from
the second age group, at least 15 percent from the third age group, and at least 15 per-
cent from the fourth age group.

Rob understands that the Internet is a recent phenomenon and that some customers
may not have heard of the World Wide Web. He therefore wants to ensure that the sur-
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vey includes a mix of customers who know the Internet well and those that have less
exposure to the Internet. To ensure that AmeriBank obtains the correct mix, he wants
to interview at least 15 percent of customers from the Silicon Valley where Internet use
is high, at least 35 percent of customers from big cities where Internet use is medium,
and at least 20 percent of customers from small towns where Internet use is low.

Sophisticated Surveys has performed an initial analysis of these survey require-

ments to determine the cost of surveying different populations. The costs per person
surveyed are listed in the following table:

Age Group
Region 18 to 25 26 to 40 41 to 50 51 and over
Silicon Valley $4.75 $6.50 $6.50 $5.00
Big cities $5.25 $5.75 $6.25 $6.25
Small towns $6.50 $7.50 $7.50 $7.25

Sophisticated Surveys explores the following options cumulatively.

(a)
(b)
(©)

d

=

(e)

Formulate a linear programming model to minimize costs while meeting all survey con-
straints imposed by AmeriBank.

If the profit margin for Sophisticated Surveys is 15 percent of cost, what bid will they
submit?

After submitting its bid, Sophisticated Surveys is informed that it has the lowest cost but
that AmeriBank does not like the solution. Specifically, Rob feels that the selected survey
population is not representative enough of the banking customer population. Rob wants at
least 50 people of each age group surveyed in each region. What is the new bid made by
Sophisticated Surveys?

Rob feels that Sophisticated Survey oversampled the 18- to 25-year-old population and the
Silicon Valley population. He imposes a new constraint that no more than 600 individuals
can be surveyed from the 18- to 25-year-old population and no more than 650 individuals
can be surveyed from the Silicon Valley population. What is the new bid?

When Sophisticated Surveys calculated the cost of reaching and surveying particular indi-
viduals, the company thought that reaching individuals in young populations would be eas-
iest. In a recently completed survey, however, Sophisticated Surveys learned that this as-
sumption was wrong. The new costs for surveying the 18- to 25-year-old population are listed
below.

Region survey cost per person

Silicon Valley $6.50
Big cities $6.75
Small towns $7.00

Given the new costs, what is the new bid?
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(f) To ensure the desired sampling of individuals, Rob imposes even stricter requirements. He
fixes the exact percentage of people that should be surveyed from each population. The re-

quirements are listed below:

Population percentage of
people surveyed

18 to 25
26 to 40
41 to 50
51 and over

Silicon Valley
Big cities
Small towns

25%
35%
20%
20%

20%
50%
30%

By how much would these new requirements increase the cost of surveying for Sophisticated
Surveys? Given the 15 percent profit margin, what would Sophisticated Surveys bid?

CASE 4.3 ASSIGNING STUDENTS TO SCHOOLS

The Springfield school board has made the decision to close one of its middle schools
(sixth, seventh, and eighth grades) at the end of this school year and reassign all of
next year’s middle school students to the three remaining middle schools. The school
district provides bussing for all middle school students who must travel more than ap-
proximately a mile, so the school board wants a plan for reassigning the students that
will minimize the total bussing cost. The annual cost per student of bussing from each
of the six residential areas of the city to each of the schools is shown in the following
table (along with other basic data for next year), where 0 indicates that bussing is not
needed and a dash indicates an infeasible assignment.

Percentage | Percentage | Percentage | Bussing Cost per Student
No. of in 6th in 7th in 8th
Area | Students Grade Grade Grade School 1 | School 2 | School 3
1 450 32 38 30 $300 0 $700
2 600 37 28 35 — $400 $500
3 550 30 32 38 $600 $300 $200
4 350 28 40 32 $200 $500 —
5 500 39 34 27 0 — $400
6 450 34 28 38 $500 $300 0
School capacity: 900 1,100 1,000

The school board also has imposed the restriction that each grade must constitute
between 30 and 36 percent of each school’s population. The above table shows the per-
centage of each area’s middle school population for next year that falls into each of
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the three grades. The school attendance zone boundaries can be drawn so as to split
any given area among more than one school, but assume that the percentages shown
in the table will continue to hold for any partial assignment of an area to a school.

You have been hired as an operations research consultant to assist the school board
in determining how many students in each area should be assigned to each school.

(a) Formulate a linear programming model for this problem.
(b) Solve the model.
(c) What is your resulting recommendation to the school board?

After seeing your recommendation, the school board expresses concern about all
the splitting of residential areas among multiple schools. They indicate that they “would
like to keep each neighborhood together.”

(d) Adjust your recommendation as well as you can to enable each area to be assigned to just
one school. (Adding this restriction may force you to fudge on some other constraints.) How
much does this increase the total bussing cost? (This line of analysis will be pursued more
rigorously in Case 12.4.)

The school board is considering eliminating some bussing to reduce costs. Option
1 is to eliminate bussing only for students traveling 1 to 1.5 miles, where the cost per
student is given in the table as $200. Option 2 is to also eliminate bussing for students
traveling 1.5 to 2 miles, where the estimated cost per student is $300.

(e) Revise the model from part (@) to fit Option 1, and solve. Compare these results with those
from part (¢), including the reduction in total bussing cost.
(f) Repeat part (e) for Option 2.

The school board now needs to choose among the three alternative bussing plans
(the current one or Option 1 or Option 2). One important factor is bussing costs. How-
ever, the school board also wants to place equal weight on a second factor: the incon-
venience and safety problems caused by forcing students to travel by foot or bicycle a
substantial distance (more than a mile, and especially more than 1.5 miles). Therefore,
they want to choose a plan that provides the best trade-off between these two factors.

(g) Use your results from parts (¢), (e), and (f) to summarize the key information related to
these two factors that the school board needs to make this decision.
(h) Which decision do you think should be made? Why?

Note: This case will be continued in later chapters (Cases 6.3 and 12.4), so we
suggest that you save your analysis, including your basic model.
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5.1

5

The Theory of the
Simplex Method

Chapter 4 introduced the basic mechanics of the simplex method. Now we shall delve a
little more deeply into this algorithm by examining some of its underlying theory. The
first section further develops the general geometric and algebraic properties that form the
foundation of the simplex method. We then describe the matrix form of the simplex method
(called the revised simplex method), which streamlines the procedure considerably for
computer implementation. Next we present a fundamental insight about a property of the
simplex method that enables us to deduce how changes that are made in the original model
get carried along to the final simplex tableau. This insight will provide the key to the im-
portant topics of Chap. 6 (duality theory and sensitivity analysis).

FOUNDATIONS OF THE SIMPLEX METHOD

Section 4.1 introduced corner-point feasible (CPF) solutions and the key role they play
in the simplex method. These geometric concepts were related to the algebra of the sim-
plex method in Secs. 4.2 and 4.3. However, all this was done in the context of the Wyn-
dor Glass Co. problem, which has only two decision variables and so has a straightfor-
ward geometric interpretation. How do these concepts generalize to higher dimensions
when we deal with larger problems? We address this question in this section.

We begin by introducing some basic terminology for any linear programming prob-
lem with n decision variables. While we are doing this, you may find it helpful to refer to
Fig. 5.1 (which repeats Fig. 4.1) to interpret these definitions in two dimensions (n = 2).

Terminology

It may seem intuitively clear that optimal solutions for any linear programming problem
must lie on the boundary of the feasible region, and in fact this is a general property. Be-
cause boundary is a geometric concept, our initial definitions clarify how the boundary of
the feasible region is identified algebraically.

The constraint boundary equation for any constraint is obtained by replacing its =, =,
or = sign by an = sign.

Consequently, the form of a constraint boundary equation is a;x; + a;2x, + -+ +
a;,x, = b; for functional constraints and x; = 0 for nonnegativity constraints. Each such



FIGURE 5.1

Constraint boundaries,
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Maximize Z = 3x; + 5x,,
x =0 subject to

X1 4
(09 9) 2.x2 12
2x) + 3x, =18

IAIA

and
X1 = O, X2 = 0
(0, 6) 12
(0, 0) X =0

4,0) (6, 0)

equation defines a “flat” geometric shape (called a hyperplane) in n-dimensional space,
analogous to the line in two-dimensional space and the plane in three-dimensional space.
This hyperplane forms the constraint boundary for the corresponding constraint. When
the constraint has either a = or a = sign, this constraint boundary separates the points
that satisfy the constraint (all the points on one side up to and including the constraint
boundary) from the points that violate the constraint (all those on the other side of the
constraint boundary). When the constraint has an = sign, only the points on the constraint
boundary satisfy the constraint.

For example, the Wyndor Glass Co. problem has five constraints (three functional
constraints and two nonnegativity constraints), so it has the five constraint boundary equa-
tions shown in Fig. 5.1. Because n = 2, the hyperplanes defined by these constraint bound-
ary equations are simply lines. Therefore, the constraint boundaries for the five constraints
are the five lines shown in Fig. 5.1.

The boundary of the feasible region contains just those feasible solutions that satisfy one
or more of the constraint boundary equations.

Geometrically, any point on the boundary of the feasible region lies on one or more
of the hyperplanes defined by the respective constraint boundary equations. Thus, in Fig.
5.1, the boundary consists of the five darker line segments.

Next, we give a general definition of CPF solution in n-dimensional space.

A corner-point feasible (CPF) solution is a feasible solution that does not lie on any
line segment' connecting two other feasible solutions.

! An algebraic expression for a line segment is given in Appendix 2.
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As this definition implies, a feasible solution that does lie on a line segment connecting
two other feasible solutions is not a CPF solution. To illustrate when n = 2, consider Fig.
5.1. The point (2, 3) is not a CPF solution, because it lies on various such line segments,
e.g., the line segment connecting (0, 3) and (4, 3). Similarly, (0, 3) is not a CPF solution,
because it lies on the line segment connecting (0, 0) and (0, 6). However, (0, 0) is a CPF
solution, because it is impossible to find two other feasible solutions that lie on com-
pletely opposite sides of (0, 0). (Try it.)

When the number of decision variables n is greater than 2 or 3, this definition for
CPF solution is not a very convenient one for identifying such solutions. Therefore, it will
prove most helpful to interpret these solutions algebraically. For the Wyndor Glass Co.
example, each CPF solution in Fig. 5.1 lies at the intersection of two (n = 2) constraint
lines; i.e., it is the simultaneous solution of a system of two constraint boundary equa-
tions. This situation is summarized in Table 5.1, where defining equations refer to the
constraint boundary equations that yield (define) the indicated CPF solution.

For any linear programming problem with n decision variables, each CPF solution lies at
the intersection of n constraint boundaries; i.e., it is the simultaneous solution of a sys-
tem of n constraint boundary equations.

However, this is not to say that every set of n constraint boundary equations chosen
from the n + m constraints (n nonnegativity and m functional constraints) yields a CPF
solution. In particular, the simultaneous solution of such a system of equations might vi-
olate one or more of the other m constraints not chosen, in which case it is a corner-point
infeasible solution. The example has three such solutions, as summarized in Table 5.2.
(Check to see why they are infeasible.)

Furthermore, a system of n constraint boundary equations might have no solution at
all. This occurs twice in the example, with the pairs of equations (1) x; = 0 and x; = 4
and (2) x, = 0 and 2x, = 12. Such systems are of no interest to us.

The final possibility (which never occurs in the example) is that a system of n constraint
boundary equations has multiple solutions because of redundant equations. You need not be
concerned with this case either, because the simplex method circumvents its difficulties.

TABLE 5.1 Defining equations for each
CPF solution for the
Wyndor Glass Co. problem

CPF Solution Defining Equations
(0/ 0) X1 = 0
X2 = 0
(0, 6) x3= 0
2%, =12
2, 6) 2x;=12
3% +2x, =18
4, 3) 3x1 +2x, =18
X1 = 4
(4, 0) xn = 4
X2 = 0
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TABLE 5.2 Defining equations for each
corner-point infeasible
solution for the Wyndor
Glass Co. problem

Corner-Point Defining
Infeasible Solution Equations

©,9) xn=0

3x; + 2x, =18

(4/ 6) ZXZ =12

X1 = 4

(6, 0) 3x; + 2x, =18

Xy = 0

To summarize for the example, with five constraints and two variables, there are 10
pairs of constraint boundary equations. Five of these pairs became defining equations for
CPF solutions (Table 5.1), three became defining equations for corner-point infeasible so-
lutions (Table 5.2), and each of the final two pairs had no solution.

Adjacent CPF Solutions

Section 4.1 introduced adjacent CPF solutions and their role in solving linear program-
ming problems. We now elaborate.

Recall from Chap. 4 that (when we ignore slack, surplus, and artificial variables) each
iteration of the simplex method moves from the current CPF solution to an adjacent one.
What is the path followed in this process? What really is meant by adjacent CPF solu-
tion? First we address these questions from a geometric viewpoint, and then we turn to
algebraic interpretations.

These questions are easy to answer when n = 2. In this case, the boundary of the fea-
sible region consists of several connected line segments forming a polygon, as shown in
Fig. 5.1 by the five darker line segments. These line segments are the edges of the feasi-
ble region. Emanating from each CPF solution are two such edges leading to an adjacent
CPF solution at the other end. (Note in Fig. 5.1 how each CPF solution has two adjacent
ones.) The path followed in an iteration is to move along one of these edges from one end
to the other. In Fig. 5.1, the first iteration involves moving along the edge from (0, 0) to
(0, 6), and then the next iteration moves along the edge from (0, 6) to (2, 6). As Table 5.1
illustrates, each of these moves to an adjacent CPF solution involves just one change in
the set of defining equations (constraint boundaries on which the solution lies).

When n = 3, the answers are slightly more complicated. To help you visualize what is
going on, Fig. 5.2 shows a three-dimensional drawing of a typical feasible region when n =
3, where the dots are the CPF solutions. This feasible region is a polyhedron rather than the
polygon we had with n = 2 (Fig. 5.1), because the constraint boundaries now are planes rather
than lines. The faces of the polyhedron form the boundary of the feasible region, where each
face is the portion of a constraint boundary that satisfies the other constraints as well. Note
that each CPF solution lies at the intersection of three constraint boundaries (sometimes in-
cluding some of the x; = 0, x, = 0, and x3 = 0 constraint boundaries for the nonnegativity
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FIGURE 5.2

Feasible region and CPF
solutions for a three-variable
linear programming
problem.
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constraints), and the solution also satisfies the other constraints. Such intersections that do not
satisfy one or more of the other constraints yield corner-point infeasible solutions instead.

The darker line segment in Fig. 5.2 depicts the path of the simplex method on a typ-
ical iteration. The point (2, 4, 3) is the current CPF solution to begin the iteration, and
the point (4, 2, 4) will be the new CPF solution at the end of the iteration. The point
(2, 4, 3) lies at the intersection of the x, = 4, x; + x, = 6, and —x; + 2x3 = 4 constraint
boundaries, so these three equations are the defining equations for this CPF solution. If
the x, = 4 defining equation were removed, the intersection of the other two constraint
boundaries (planes) would form a line. One segment of this line, shown as the dark line
segment from (2, 4, 3) to (4, 2, 4) in Fig. 5.2, lies on the boundary of the feasible region,
whereas the rest of the line is infeasible. This line segment is an edge of the feasible re-
gion, and its endpoints (2, 4, 3) and (4, 2, 4) are adjacent CPF solutions.

For n = 3, all the edges of the feasible region are formed in this way as the feasible
segment of the line lying at the intersection of two constraint boundaries, and the two end-
points of an edge are adjacent CPF solutions. In Fig. 5.2 there are 15 edges of the feasi-
ble region, and so there are 15 pairs of adjacent CPF solutions. For the current CPF so-
lution (2, 4, 3), there are three ways to remove one of its three defining equations to obtain
an intersection of the other two constraint boundaries, so there are three edges emanating
from (2, 4, 3). These edges lead to (4, 2, 4), (0, 4, 2), and (2, 4, 0), so these are the CPF
solutions that are adjacent to (2, 4, 3).

For the next iteration, the simplex method chooses one of these three edges, say, the
darker line segment in Fig. 5.2, and then moves along this edge away from (2, 4, 3) un-
til it reaches the first new constraint boundary, x; = 4, at its other endpoint. [We cannot
continue farther along this line to the next constraint boundary, x, = 0, because this leads
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to a corner-point infeasible solution—(6, 0, 5).] The intersection of this first new con-
straint boundary with the two constraint boundaries forming the edge yields the new CPF
solution (4, 2, 4).

When n > 3, these same concepts generalize to higher dimensions, except the con-
straint boundaries now are hyperplanes instead of planes. Let us summarize.

Consider any linear programming problem with n decision variables and a bounded fea-
sible region. A CPF solution lies at the intersection of n constraint boundaries (and satis-
fies the other constraints as well). An edge of the feasible region is a feasible line seg-
ment that lies at the intersection of n — 1 constraint boundaries, where each endpoint lies
on one additional constraint boundary (so that these endpoints are CPF solutions). Two
CPF solutions are adjacent if the line segment connecting them is an edge of the feasi-
ble region. Emanating from each CPF solution are n such edges, each one leading to one
of the n adjacent CPF solutions. Each iteration of the simplex method moves from the
current CPF solution to an adjacent one by moving along one of these n edges.

When you shift from a geometric viewpoint to an algebraic one, intersection of con-
straint boundaries changes to simultaneous solution of constraint boundary equations.
The n constraint boundary equations yielding (defining) a CPF solution are its defining
equations, where deleting one of these equations yields a line whose feasible segment is
an edge of the feasible region.

We next analyze some key properties of CPF solutions and then describe the implica-
tions of all these concepts for interpreting the simplex method. However, while the above
summary is fresh in your mind, let us give you a preview of its implications. When the sim-
plex method chooses an entering basic variable, the geometric interpretation is that it is
choosing one of the edges emanating from the current CPF solution to move along. In-
creasing this variable from zero (and simultaneously changing the values of the other basic
variables accordingly) corresponds to moving along this edge. Having one of the basic vari-
ables (the leaving basic variable) decrease so far that it reaches zero corresponds to reach-
ing the first new constraint boundary at the other end of this edge of the feasible region.

Properties of CPF Solutions

We now focus on three key properties of CPF solutions that hold for any linear pro-
gramming problem that has feasible solutions and a bounded feasible region.

Property 1: (a) If there is exactly one optimal solution, then it must be a CPF
solution. () If there are multiple optimal solutions (and a bounded feasible re-
gion), then at least two must be adjacent CPF solutions.

Property 1 is a rather intuitive one from a geometric viewpoint. First consider Case
(a), which is illustrated by the Wyndor Glass Co. problem (see Fig. 5.1) where the one
optimal solution (2, 6) is indeed a CPF solution. Note that there is nothing special about
this example that led to this result. For any problem having just one optimal solution, it
always is possible to keep raising the objective function line (hyperplane) until it just
touches one point (the optimal solution) at a corner of the feasible region.

We now give an algebraic proof for this case.

Proof of Case (a) of Property 1: We set up a proof by contradiction by assum-
ing that there is exactly one optimal solution and that it is not a CPF solution.
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We then show below that this assumption leads to a contradiction and so cannot
be true. (The solution assumed to be optimal will be denoted by x*, and its ob-
jective function value by Z*.)

Recall the definition of CPF solution (a feasible solution that does not lie
on any line segment connecting two other feasible solutions). Since we have as-
sumed that the optimal solution x* is not a CPF solution, this implies that there
must be two other feasible solutions such that the line segment connecting them
contains the optimal solution. Let the vectors x’ and x'" denote these two other
feasible solutions, and let Z; and Z, denote their respective objective function
values. Like each other point on the line segment connecting x" and x'’,

x* = ax"" + (1 — a)x’
for some value of « such that 0 < « < 1. Thus,

Since the weights « and 1 — « add to 1, the only possibilities for how Z*, Z;,
and Z, compare are (1) Z* = Z; = Z,, (2Q) Z, < Z* < Z,,and (3) Z, > Z* > Z,.
The first possibility implies that x" and x'" also are optimal, which contradicts
the assumption that there is exactly one optimal solution. Both the latter possi-
bilities contradict the assumption that x* (not a CPF solution) is optimal. The re-
sulting conclusion is that it is impossible to have a single optimal solution that
is not a CPF solution.

Now consider Case (b), which was demonstrated in Sec. 3.2 under the definition of
optimal solution by changing the objective function in the example to Z = 3x; + 2x;, (see
Fig. 3.5 on page 35). What then happens when you are solving graphically is that the ob-
jective function line keeps getting raised until it contains the line segment connecting the
two CPF solutions (2, 6) and (4, 3). The same thing would happen in higher dimensions
except that an objective function hyperplane would keep getting raised until it contained
the line segment(s) connecting two (or more) adjacent CPF solutions. As a consequence,
all optimal solutions can be obtained as weighted averages of optimal CPF solutions. (This
situation is described further in Probs. 4.5-5 and 4.5-6.)

The real significance of Property 1 is that it greatly simplifies the search for an op-
timal solution because now only CPF solutions need to be considered. The magnitude of
this simplification is emphasized in Property 2.

Property 2: There are only a finite number of CPF solutions.

This property certainly holds in Figs. 5.1 and 5.2, where there are just 5 and 10 CPF
solutions, respectively. To see why the number is finite in general, recall that each CPF so-
lution is the simultaneous solution of a system of n out of the m + n constraint boundary
equations. The number of different combinations of m + n equations taken n at a time is

(m-l—n): (m + n)!

s

n m!n!

which is a finite number. This number, in turn, in an upper bound on the number of CPF
solutions. In Fig. 5.1, m = 3 and n = 2, so there are 10 different systems of two equa-
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tions, but only half of them yield CPF solutions. In Fig. 5.2, m = 4 and n = 3, which
gives 35 different systems of three equations, but only 10 yield CPF solutions.

Property 2 suggests that, in principle, an optimal solution can be obtained by exhaus-
tive enumeration; i.e., find and compare all the finite number of CPF solutions. Unfortu-
nately, there are finite numbers, and then there are finite numbers that (for all practical pur-
poses) might as well be infinite. For example, a rather small linear programming problem
with only m = 50 and n = 50 would have 100!/(50!)* = 10*° systems of equations to be
solved! By contrast, the simplex method would need to examine only approximately 100
CPF solutions for a problem of this size. This tremendous savings can be obtained because
of the optimality test given in Sec. 4.1 and restated here as Property 3.

Property 3: If a CPF solution has no adjacent CPF solutions that are better (as
measured by Z), then there are no better CPF solutions anywhere. Therefore,
such a CPF solution is guaranteed to be an optimal solution (by Property 1), as-
suming only that the problem possesses at least one optimal solution (guaranteed
if the problem possesses feasible solutions and a bounded feasible region).

To illustrate Property 3, consider Fig. 5.1 for the Wyndor Glass Co. example. For the
CPF solution (2, 6), its adjacent CPF solutions are (0, 6) and (4, 3), and neither has a bet-
ter value of Z than (2, 6) does. This outcome implies that none of the other CPF solu-
tions—(0, 0) and (4, 0)—can be better than (2, 6), so (2, 6) must be optimal.

By contrast, Fig. 5.3 shows a feasible region that can never occur for a linear pro-
gramming problem but that does violate Property 3. The problem shown is identical to
the Wyndor Glass Co. example (including the same objective function) except for the en-

FIGURE 5.3

Modification of the Wyndor
Glass Co. problem that
violates both linear
programming and Property 3
for CPF solutions in linear
programming.
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Z=36=3x +5x,
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largement of the feasible region to the right of (_%, 5). Consequently, the adjacent CPF so-
lutions for (2, 6) now are (0, 6) and (_%, 5), and again neither is better than (2, 6). How-
ever, another CPF solution (4, 5) now is better than (2, 6), thereby violating Property 3.
The reason is that the boundary of the feasible region goes down from (2, 6) to (2—, 5) and
then “bends outward” to (4, 5), beyond the objective function line passing through (2, 6).

The key point is that the kind of situation illustrated in Fig. 5.3 can never occur in
linear programming. The feasible region in Fig. 5.3 implies that the 2x, = 12 and 3x; +
2x, = 18 constraints apply for 0 = x; = % However, under the condition that % =x =4,
the 3x; + 2x, = 18 constraint is dropped and replaced by x, = 5. Such “conditional con-
straints” just are not allowed in linear programming.

The basic reason that Property 3 holds for any linear programming problem is that
the feasible region always has the property of being a convex set, as defined in Appendix
2 and illustrated in several figures there. For two-variable linear programming problems,
this convex property means that the angle inside the feasible region at every CPF solu-
tion is less than 180°. This property is illustrated in Fig. 5.1, where the angles at (0, 0),
(0, 6), and (4, 0) are 90° and those at (2, 6) and (4, 3) are between 90° and 180°. By con-
trast, the feasible region in Fig. 5.3 is not a convex set, because the angle at (2—, 5) is more
than 180°. This is the kind of “bending outward” at an angle greater than 180° that can
never occur in linear programming. In higher dimensions, the same intuitive notion of
“never bending outward” continues to apply.

To clarify the significance of a convex feasible region, consider the objective func-
tion hyperplane that passes through a CPF solution that has no adjacent CPF solutions
that are better. [In the original Wyndor Glass Co. example, this hyperplane is the objec-
tive function line passing through (2, 6).] All these adjacent solutions [(0, 6) and (4, 3) in
the example] must lie either on the hyperplane or on the unfavorable side (as measured
by Z) of the hyperplane. The feasible region being convex means that its boundary can-
not “bend outward” beyond an adjacent CPF solution to give another CPF solution that
lies on the favorable side of the hyperplane. So Property 3 holds.

Extensions to the Augmented Form of the Problem

For any linear programming problem in our standard form (including functional constraints
in = form), the appearance of the functional constraints after slack variables are intro-
duced is as follows:

(D) anxy + apxa + 0+ aX, + X4 = b
(2) ayixy + axpx; + o+ oaxx, + X4 = b,
(m) A1 X1 + X2 + + AynXn + Xn+m bms
where X,,4 1, X,42, - - - » X+, are the slack variables. For other linear programming prob-

lems, Sec. 4.6 described how essentially this same appearance (proper form from Gauss-
ian elimination) can be obtained by introducing artificial variables, etc. Thus, the origi-
nal solutions (xy, x, . . . , x,,) now are augmented by the corresponding values of the
slack or artificial variables (x,+1, X, 42, - - . » X,+,,) and perhaps some surplus variables
as well. This augmentation led in Sec. 4.2 to defining basic solutions as augmented cor-
ner-point solutions and basic feasible solutions (BF solutions) as augmented CPF so-
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lutions. Consequently, the preceding three properties of CPF solutions also hold for BF
solutions.

Now let us clarify the algebraic relationships between basic solutions and corner-point
solutions. Recall that each corner-point solution is the simultaneous solution of a system
of n constraint boundary equations, which we called its defining equations. The key ques-
tion is: How do we tell whether a particular constraint boundary equation is one of the
defining equations when the problem is in augmented form? The answer, fortunately, is
a simple one. Each constraint has an indicating variable that completely indicates (by
whether its value is zero) whether that constraint’s boundary equation is satisfied by the
current solution. A summary appears in Table 5.3. For the type of constraint in each row
of the table, note that the corresponding constraint boundary equation (fourth column) is
satisfied if and only if this constraint’s indicating variable (fifth column) equals zero. In
the last row (functional constraint in = form), the indicating variable X,,;; — x,, actually
is the difference between the artificial variable x,,;; and the surplus variable x;,.

Thus, whenever a constraint boundary equation is one of the defining equations for
a corner-point solution, its indicating variable has a value of zero in the augmented form
of the problem. Each such indicating variable is called a nonbasic variable for the corre-
sponding basic solution. The resulting conclusions and terminology (already introduced
in Sec. 4.2) are summarized next.

Each basic solution has m basic variables, and the rest of the variables are nonbasic vari-
ables set equal to zero. (The number of nonbasic variables equals n plus the number of
surplus variables.) The values of the basic variables are given by the simultaneous solu-
tion of the system of m equations for the problem in augmented form (after the nonbasic
variables are set to zero). This basic solution is the augmented corner-point solution whose
n defining equations are those indicated by the nonbasic variables. In particular, whenever
an indicating variable in the fifth column of Table 5.3 is a nonbasic variable, the constraint
boundary equation in the fourth column is a defining equation for the corner-point solu-
tion. (For functional constraints in = form, at least one of the two supplementary variables
X,+; and x,, always is a nonbasic variable, but the constraint boundary equation becomes a
defining equation only if both of these variables are nonbasic variables.)

TABLE 5.3 Indicating variables for constraint boundary equations*

Constraint
Type of Form of Constraint in Boundary Indicating
Constraint Constraint Augmented Form Equation Variable
Nonnegativity x=0 x=0 X =0 X
n n n
Functional (=) >ax=b; >+ Xori= by > ap=b; Xt i
j=1 j=1 j=1
n n n
Functional (=) > ap=b; > ap; + Xori= b > a=b; K i
= = =
n n n
Functional (=) Z agx; = b; z AjXj + Xnti — X5, = bj Z agx; = b; Xnti — Xs,
j=1 j=1 j=1

*Indicating variable = 0 = constraint boundary equation satisfied;
indicating variable # 0 = constraint boundary equation violated.
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Now consider the basic feasible solutions. Note that the only requirements for a so-
lution to be feasible in the augmented form of the problem are that it satisfy the system
of equations and that all the variables be nonnegative.

A BF solution is a basic solution where all m basic variables are nonnegative (= 0). A
BF solution is said to be degenerate if any of these m variables equals zero.

Thus, it is possible for a variable to be zero and still not be a nonbasic variable for the
current BF solution. (This case corresponds to a CPF solution that satisfies another con-
straint boundary equation in addition to its n defining equations.) Therefore, it is neces-
sary to keep track of which is the current set of nonbasic variables (or the current set of
basic variables) rather than to rely upon their zero values.

We noted earlier that not every system of n constraint boundary equations yields a
corner-point solution, because either the system has no solution or it has multiple solu-
tions. For analogous reasons, not every set of n nonbasic variables yields a basic solution.
However, these cases are avoided by the simplex method.

To illustrate these definitions, consider the Wyndor Glass Co. example once more. Its
constraint boundary equations and indicating variables are shown in Table 5.4.

Augmenting each of the CPF solutions (see Table 5.1) yields the BF solutions listed
in Table 5.5. This table places adjacent BF solutions next to each other, except for the pair
consisting of the first and last solutions listed. Notice that in each case the nonbasic vari-
ables necessarily are the indicating variables for the defining equations. Thus, adjacent
BF solutions differ by having just one different nonbasic variable. Also notice that each
BF solution is the simultaneous solution of the system of equations for the problem in
augmented form (see Table 5.4) when the nonbasic variables are set equal to zero.

Similarly, the three corner-point infeasible solutions (see Table 5.2) yield the three
basic infeasible solutions shown in Table 5.6.

The other two sets of nonbasic variables, (1) x; and x5 and (2) x, and x4, do not yield
a basic solution, because setting either pair of variables equal to zero leads to having no
solution for the system of Egs. (1) to (3) given in Table 5.4. This conclusion parallels the
observation we made early in this section that the corresponding sets of constraint bound-
ary equations do not yield a solution.

TABLE 5.4 Indicating variables for the constraint boundary equations of the
Wyndor Glass Co. problem*

Constraint in Constraint Boundary Indicating
Constraint Augmented Form Equation Variable
x =0 x=0 x =0 X
X, =0 X, =0 X =0 X2
=4 1)y x; + X3 = 4 X =4 X3
2x, =12 2) 2%+ x4 =12 2x, =12 X4
3 + X, =18 (3) 3x; + 2x, + x5 =18 3x7 +2x, =18 X5

*Indicating variable = 0 = constraint boundary equation satisfied;
indicating variable # 0 = constraint boundary equation violated.
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TABLE 5.5 BF solutions for the Wyndor Glass Co. problem

Defining Nonbasic

CPF Solution Equations BF Solution Variables
0, 0) x= 0 0,0,4,12,18) X1
X2 = 0 X2
(0, 6) =0 0, 6,4,0,6) Xy
2x; =12 X4
(2, 6) 2x, =12 (2,6,2,0,0) X4
3x; +2x, =18 X5
4, 3) 3x1 +2x, =18 (4,3,0,6,0) X5
X1 = 4 X3
(4/ 0) X1 = 4 (4/ 0/ 0/ 12/ 6) X3
X2 = 0 X2

The simplex method starts at a BF solution and then iteratively moves to a better ad-
jacent BF solution until an optimal solution is reached. At each iteration, how is the ad-
jacent BF solution reached?

For the original form of the problem, recall that an adjacent CPF solution is reached
from the current one by (1) deleting one constraint boundary (defining equation) from the
set of n constraint boundaries defining the current solution, (2) moving away from the
current solution in the feasible direction along the intersection of the remaining n — 1
constraint boundaries (an edge of the feasible region), and (3) stopping when the first new
constraint boundary (defining equation) is reached.

Equivalently, in our new terminology, the simplex method reaches an adjacent BF so-
lution from the current one by (1) deleting one variable (the entering basic variable) from
the set of n nonbasic variables defining the current solution, (2) moving away from the
current solution by increasing this one variable from zero (and adjusting the other basic
variables to still satisfy the system of equations) while keeping the remaining n — 1 non-
basic variables at zero, and (3) stopping when the first of the basic variables (the leaving
basic variable) reaches a value of zero (its constraint boundary). With either interpreta-
tion, the choice among the n alternatives in step 1 is made by selecting the one that would
give the best rate of improvement in Z (per unit increase in the entering basic variable)
during step 2.

TABLE 5.6 Basic infeasible solutions for the Wyndor Glass Co. problem

Corner-Point Defining Basic Infeasible Nonbasic
Infeasible Solution Equations Solution Variables

(0, 9) X1 = 0 (OI 9/ 4/ 76/ o) X1

3x; + 2x, =18 X5

(4, 6) 2x; =12 (4,6,0,0, —6) Xa

X1 = 4 X3

(6, 0) 3x; +2x, =18 (6,0,-2,12,0) Xs

x= 0 X2
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5.2

TABLE 5.7 Sequence of solutions obtained by the simplex method for the
Wyndor Glass Co. problem

CPF Defining Nonbasic | Functional Constraints
Iteration | Solution Equations BF Solution Variables | in Augmented Form

0 0, 0) x1= 01](0,0,4,12,18) x1 =0 X1 +x3= 4

x= 0 X, =0 2Xx; + x4 =12

3x; + 2x, + x5 =18

1 (0, 6) x1= 01(0,6, 4,0, 6) x1=0 X1 +x3= 4

2x, =12 X4=0 2%, + x4 =12

3x7 +2x, + x5 =18

2 2, 6) 2x,=12|(2,6,2,0,0) X3 =0 X +x3= 4

3x7 +2x, =18 x5 =0 2%, + x4 =12

3X; + 2%, + x5 =18

Table 5.7 illustrates the close correspondence between these geometric and algebraic
interpretations of the simplex method. Using the results already presented in Secs. 4.3 and
4.4, the fourth column summarizes the sequence of BF solutions found for the Wyndor
Glass Co. problem, and the second column shows the corresponding CPF solutions. In the
third column, note how each iteration results in deleting one constraint boundary (defining
equation) and substituting a new one to obtain the new CPF solution. Similarly, note in the
fifth column how each iteration results in deleting one nonbasic variable and substituting
anew one to obtain the new BF solution. Furthermore, the nonbasic variables being deleted
and added are the indicating variables for the defining equations being deleted and added
in the third column. The last column displays the initial system of equations [excluding
Eq. (0)] for the augmented form of the problem, with the current basic variables shown in
bold type. In each case, note how setting the nonbasic variables equal to zero and then
solving this system of equations for the basic variables must yield the same solution for
(x1, x2) as the corresponding pair of defining equations in the third column.

THE REVISED SIMPLEX METHOD

The simplex method as described in Chap. 4 (hereafter called the original simplex method)
is a straightforward algebraic procedure. However, this way of executing the algorithm
(in either algebraic or tabular form) is not the most efficient computational procedure for
computers because it computes and stores many numbers that are not needed at the cur-
rent iteration and that may not even become relevant for decision making at subsequent
iterations. The only pieces of information relevant at each iteration are the coefficients of
the nonbasic variables in Eq. (0), the coefficients of the entering basic variable in the other
equations, and the right-hand sides of the equations. It would be very useful to have a
procedure that could obtain this information efficiently without computing and storing all
the other coefficients.

As mentioned in Sec. 4.8, these considerations motivated the development of the re-
vised simplex method. This method was designed to accomplish exactly the same things
as the original simplex method, but in a way that is more efficient for execution on a com-
puter. Thus, it is a streamlined version of the original procedure. It computes and stores
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only the information that is currently needed, and it carries along the essential data in a
more compact form.

The revised simplex method explicitly uses matrix manipulations, so it is necessary
to describe the problem in matrix notation. (See Appendix 4 for a review of matrices.) To
help you distinguish between matrices, vectors, and scalars, we consistently use BOLD-
FACE CAPITAL Iletters to represent matrices, boldface lowercase letters to represent
vectors, and italicized letters in ordinary print to represent scalars. We also use a boldface
zero (0) to denote a null vector (a vector whose elements all are zero) in either column
or row form (which one should be clear from the context), whereas a zero in ordinary
print (0) continues to represent the number zero.

Using matrices, our standard form for the general linear programming model given
in Sec. 3.2 becomes

Maximize Z = cx,

subject to

Ax=b and x =0,

where c is the row vector
Cc= [C], Coy v v vy Cn]a

x, b, and 0 are the column vectors such that

X1 bl 0
X = x_2, b= lf2, 0= (.)’
Xn b, 0

app  dpz Ain
A = dazy Az Qaop
A1 Ay ... [

To obtain the augmented form of the problem, introduce the column vector of slack
variables

Xn+1

Xn+2
x,=|""

Xn+m

so that the constraints become
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where I is the m X m identity matrix, and the null vector 0 now has n + m elements. (We
comment at the end of the section about how to deal with problems that are not in our
standard form.)

Solving for a Basic Feasible Solution

Recall that the general approach of the simplex method is to obtain a sequence of im-
proving BF solutions until an optimal solution is reached. One of the key features of the
revised simplex method involves the way in which it solves for each new BF solution af-
ter identifying its basic and nonbasic variables. Given these variables, the resulting basic
solution is the solution of the m equations

in which the n nonbasic variables from the n + m elements of

N

are set equal to zero. Eliminating these n variables by equating them to zero leaves a
set of m equations in m unknowns (the basic variables). This set of equations can be de-
noted by

BXB = b,
where the vector of basic variables
XB1
X
xz = | “B2
XBm

is obtained by eliminating the nonbasic variables from

and the basis matrix

By Bix ... By
B= 321 322 BZm
B.,i B, ... B.m

is obtained by eliminating the columns corresponding to coefficients of nonbasic variables
from [A, I]. (In addition, the elements of xz and, therefore, the columns of B may be
placed in a different order when the simplex method is executed.)

The simplex method introduces only basic variables such that B is nonsingular, so
that B™! always will exist. Therefore, to solve Bxz = b, both sides are premultiplied
by B~

B 'Bxz; =B 'b.
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Since B™'B = I, the desired solution for the basic variables is

Xp = Bilb.

Let ¢ be the vector whose elements are the objective function coefficients (including ze-
ros for slack variables) for the corresponding elements of xz. The value of the objective
function for this basic solution is then

Z= CpXp = CBBilb.

Example. To illustrate this method of solving for a BF solution, consider again the
Wyndor Glass Co. problem presented in Sec. 3.1 and solved by the original simplex method
in Table 4.8. In this case,

10100 4 X3
¢c=[3.5. [AI=]0 20 1 0|, b=]|12], x:[’“} X = | x|
3200 1 18 = Xs

Referring to Table 4.8, we see that the sequence of BF solutions obtained by the simplex
method (original or revised) is the following:

Iteration 0

X3 1 0 0 X3 1 0 0| 4 4
Xg=|%|, B=|0 1 0/=B7', so |x|=[0 1 0ol[12|=]12]
Xs 0 0 1 Xs 0 0 11|18 18
4
¢;=100,0,0], so Z=[0,0,0]]12|=0.
18
Iteration 1
X3 1 0 0 1 0 0
xs=|x|, B=|0 2 0|, B'=[0 1 0},
Xs 0o 2 1 0 -1 1
SO
X3 1 0 0 4 4
n|=|0 1 of|l12]=|6],
Xs 0 -1 1][18 6
4

¢z = [0, 5, 0], SO Z=10,5,0]| 6 | = 30.
6
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Iteration 2
X3 1 0 1 1 3
xz=|x|, B=|[0 2 0|, B'=|0 1 0|
x| 0o 2 3 0 — 1
SO
X3 1 5 -4 4 2
n|=]0 3 ofl12]=]6],
X 0 —5 18 2
2
¢;=100,53], so Z=10,573]6]=36.
2

Matrix Form of the Current Set of Equations

The last preliminary before we summarize the revised simplex method is to show the ma-
trix form of the set of equations appearing in the simplex tableau for any iteration of the
original simplex method.

For the original set of equations, the matrix form is

This set of equations also is exhibited in the first simplex tableau of Table 5.8.
The algebraic operations performed by the simplex method (multiply an equation by
a constant and add a multiple of one equation to another equation) are expressed in ma-

TABLE 5.8 Initial and later simplex tableaux in matrix form

Coefficient of:
Basic Right
Iteration | Variable Eq. Z | Original Variables | Slack Variables | Side
0 z 0) 1 -c 0 0
Xg a2 ...,m |0 A I b
Any Z 0) 1 B 'A - ¢ B’ B 'b
Xz a2 ...m |0 B'A B’ B 'b
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trix form by premultiplying both sides of the original set of equations by the appropriate
matrix. This matrix would have the same elements as the identity matrix, except that each
multiple for an algebraic operation would go into the spot needed to have the matrix mul-
tiplication perform this operation. Even after a series of algebraic operations over several
iterations, we still can deduce what this matrix must be (symbolically) for the entire se-
ries by using what we already know about the right-hand sides of the new set of equa-
tions. In particular, after any iteration, Xz = B~ 'band Z = czB™ b, so the right-hand sides
of the new set of equations have become

Z1 1 ¢B7'[0] _[esB™'b
oo L)
Because we perform the same series of algebraic operations on both sides of the orig-

inal set of operations, we use this same matrix that premultiplies the original right-hand
side to premultiply the original left-hand side. Consequently, since

1 ¢sB7'[1 —c 0] [1 ¢B'A—c ¢zB!
[0 B! }[0 A 1] [0 B~'A B! }

the desired matrix form of the set of equations after any iteration is

_ z
1 csB'A—c ¢zB! _[esB7'b
[0 B 'A B! ] - [ B~'b }

S

The second simplex tableau of Table 5.8 also exhibits this same set of equations.

Example. To illustrate this matrix form for the current set of equations, we will show
how it yields the final set of equations resulting from iteration 2 for the Wyndor Glass
Co. problem. Using the B~ and ¢ given for iteration 2 at the end of the preceding sub-
section, we have

13 |t o0 0 0
B'A=|0 5 o0}|l0 2|=|0 1|,
0 - 3|3 2 10
SRR,
;B =10,53]|0 5 0[=[0,3 1],
10— 3]
0 0
c¢zB7'A —¢c=10,5,3]0 1| -13,5]=1[0,0].
1 0
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Also, by using the values of x; = B~ 'b and Z = ¢;B~'b calculated at the end of the pre-
ceding subsection, these results give the following set of equations:

o

1o o] o 3 1]x| [36

0|0 o0 1 5 —5llxl |2

010 1[0 % o0llx| |6

0] 1 0] 0 =5 3llx 2
_xs_

as shown in the final simplex tableau in Table 4.8.

The Overall Procedure

There are two key implications from the matrix form of the current set of equations shown
at the bottom of Table 5.8. The first is that only B~ ' needs to be derived to be able to cal-
culate all the numbers in the simplex tableau from the original parameters (A, b, ¢z) of
the problem. (This implication is the essence of the fundamental insight described in the
next section.) The second is that any one of these numbers can be obtained individually,
usually by performing only a vector multiplication (one row times one column) instead
of a complete matrix multiplication. Therefore, the required numbers to perform an iter-
ation of the simplex method can be obtained as needed without expending the computa-
tional effort to obtain all the numbers. These two key implications are incorporated into
the following summary of the overall procedure.

Summary of the Revised Simplex Method.

1. Initialization: Same as for the original simplex method.
2. Iteration:

Step 1 Determine the entering basic variable: Same as for the original simplex
method.

Step 2 Determine the leaving basic variable: Same as for the original simplex
method, except calculate only the numbers required to do this [the coefficients of the
entering basic variable in every equation but Eq. (0), and then, for each strictly posi-
tive coefficient, the right-hand side of that equation]."

Step 3 Determine the new BF solution: Derive B! and set x; = B~ 'b.

3. Optimality test: Same as for the original simplex method, except calculate only the
numbers required to do this test, i.e., the coefficients of the nonbasic variables in
Eq. (0).

In step 3 of an iteration, B~' could be derived each time by using a standard computer
routine for inverting a matrix. However, since B (and therefore B~ D) changes so little from
one iteration to the next, it is much more efficient to derive the new B~! (denote it by B;elw)
from the B™! at the preceding iteration (denote it by Bglfj). (For the initial BF solution,

"Because the value of Xy is the entire vector of right-hand sides except for Eq. (0), the relevant right-hand sides
need not be calculated here if xz was calculated in step 3 of the preceding iteration.
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B =1 =B"".) One method for doing this derivation is based directly upon the interpreta-
tion of the elements of B! [the coefficients of the slack variables in the current Egs. (1),
(2), ..., (m)] presented in the next section, as well as upon the procedure used by the orig-
inal simplex method to obtain the new set of equations from the preceding set.

To describe this method formally, let

X, = entering basic variable,

aj, = coefficient of x; in current Eq. (i), fori = 1, 2, . . ., m (calculated in step 2 of
an iteration),

r = number of equation containing the leaving basic variable.

Recall that the new set of equations [excluding Eq. (0)] can be obtained from the pre-
ceding set by subtracting aj;/a,; times Eq. (r) from Eq. (i), foralli = 1,2, ..., m ex-
cept i = r, and then dividing Eq. (r) by a,,. Therefore, the element in row i and column
j of Boa, is
-1 _ a_,'k —1 [P

(Bowa);j a/k(Bold)rj ifi #r,

(B;e{x/)ij = I "
Cl_;-k(BOld)rj ifi=r.

These formulas are expressed in matrix notation as

Boow = B,
where matrix E is an identity matrix except that its rth column is replaced by the vector

T Qi

o ifi #r,
n= 