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tion. He had been Professor Emeritus of Operations Research and Statistics at Stanford Uni-
versity, where he was the founding chair of the Department of Operations Research. He was
both an engineer (having received an undergraduate degree in mechanical engineering from
Cooper Union) and an operations research statistician (with an A.M. from Columbia Uni-
versity in mathematical statistics, and a Ph.D. from Stanford University in statistics).

Dr. Lieberman was one of Stanford’s most eminent leaders in recent decades. After
chairing the Department of Operations Research, he served as Associate Dean of the School
of Humanities and Sciences, Vice Provost and Dean of Research, Vice Provost and Dean
of Graduate Studies, Chair of the Faculty Senate, member of the University Advisory
Board, and Chair of the Centennial Celebration Committee. He also served as Provost or
Acting Provost under three different Stanford presidents.

Throughout these years of university leadership, he also remained active profession-
ally. His research was in the stochastic areas of operations research, often at the interface
of applied probability and statistics. He published extensively in the areas of reliability
and quality control, and in the modeling of complex systems, including their optimal de-
sign, when resources are limited.

Highly respected as a senior statesman of the field of operations research, Dr. Lieberman
served in numerous leadership roles, including as the elected President of The Institute of
Management Sciences. His professional honors included being elected to the National Acad-
emy of Engineering, receiving the Shewhart Medal of the American Society for Quality Con-
trol, receiving the Cuthbertson Award for exceptional service to Stanford University, and serv-
ing as a fellow at the Center for Advanced Study in the Behavioral Sciences. In addition, the
Institute of Operations Research and the Management Sciences (INFORMS) awarded him
and Dr. Hillier the honorable mention award for the 1995 Lanchester Prize for the 6th edi-
tion of this book. In 1996, INFORMS also awarded him the prestigious Kimball Medal for
his exceptional contributions to the field of operations research and management science.

In addition to Introduction to Operations Research and the two companion volumes,
Introduction to Mathematical Programming and Introduction to Stochastic Models in Op-
erations Research, his books are Handbook of Industrial Statistics (Prentice-Hall, 1955,
co-authored by A. H. Bowker), Tables of the Non-Central t-Distribution (Stanford Uni-
versity Press, 1957, co-authored by G. J. Resnikoff), Tables of the Hypergeometric Prob-
ability Distribution (Stanford University Press, 1961, co-authored by D. Owen), Engi-
neering Statistics, Second Edition (Prentice-Hall, 1972, co-authored by A. H. Bowker),
and Introduction to Management Science: A Modeling and Case Studies Approach with
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Decision Sciences at the Kellogg Graduate School of Management (Northwestern Uni-
versity), where he teaches quantitative methods for managerial decision making. His re-
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and law. She graduated from Stanford University with a B.S. in Industrial Engineering
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lege, and president of the Stanford Debating Society, Ms. Stephens taught public speak-
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PREFACE

It now is 33 years since the first edition of this book was published in 1967. We have been
humbled by having had both the privilege and the responsibility of introducing so many
students around the world to our field over such a long span of time. With each new edi-
tion, we have worked toward the goal of meeting the changing needs of new generations
of students by helping to define the modern approach to teaching the current status of op-
erations research effectively at the introductory level. Over 33 years, much has changed
in both the field and the pedagogical needs of the students being introduced to the field.
These changes have been reflected in the substantial revisions of successive editions of
this book. We believe that this is true for the current 7th edition as well.

The enthusiastic response to our first six editions has been most gratifying. It was a
particular pleasure to have the 6th edition receive honorable mention for the 1995 IN-
FORMS Lanchester Prize (the prize awarded for the year’s most outstanding English-
language publication of any kind in the field of operations research), including receiving
the following citation. “This is the latest edition of the textbook that has introduced ap-
proximately one-half million students to the methods and models of Operations Research.
While adding material on a variety of new topics, the sixth edition maintains the high
standard of clarity and expositional excellence for which the authors have long been known.
In honoring this work, the prize committee noted the enormous cumulative impact that
the Hillier-Lieberman text has had on the development of our field, not only in the United
States but also around the world through its many foreign-language editions.”

As we enter a new millennium, the particular challenge for this new edition was to
revise a book with deep roots in the 20th century so thoroughly that it would become fully
suited for the 21st century. We made a special effort to meet this challenge, especially in
regard to the software and pedagogy in the book.

The new CD-ROM that accompanies the book provides an exciting array of software op-
tions that reflect current practice.

One option is to use the increasingly popular spreadsheet approach with Excel and
its Solver. Using spreadsheets as a key medium of instruction clearly is one new wave in
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the teaching of operations research. The new Sec. 3.6 describes and illustrates how to use
Excel and its Solver to formulate and solve linear programming models on a spreadsheet.
Similar discussions and examples also are included in several subsequent chapters for
other kinds of models. In addition, the CD-ROM provides an Excel file for many of the
chapters that displays the spreadsheet formulation and solution for the relevant examples
in the chapter. Several of the Excel files also include a number of Excel templates for
solving the models in the chapter. Another key resource is a collection of Excel add-ins
on the CD-ROM (Premium Solver, TreePlan, SensIt, and RiskSim) that are integrated into
the corresponding chapters. In addition, Sec. 22.6 describes how some simulations can be
performed efficiently on spreadsheets by using another popular Excel add-in (@RISK)
that can be downloaded temporarily from a website.

Practitioners of operations research now usually use a modeling language to formu-
late and manage models of the very large size commonly encountered in practice. A mod-
eling language system also will support one or more sophisticated software packages that
can be called to solve a model once it has been formulated appropriately. The new Sec.
3.7 discusses the application of modeling languages and illustrates it with one modeling
language (MPL) that is relatively amenable to student use. The student version of MPL
is provided on the CD-ROM, along with an extensive MPL tutorial. Accompanying MPL
as its primary solver is the student version of the renowned state-of-the-art software pack-
age, CPLEX. The student version of CONOPT also is provided as the solver for nonlin-
ear programming. We are extremely pleased to be able to provide such powerful and pop-
ular software to students using this book. To further assist students, many of the chapters
include an MPL/CPLEX file (or MPL/CPLEX/CONOPT file in the case of the nonlinear
programming chapter) on the CD-ROM that shows how MPL and CPLEX would formu-
late and solve the relevant examples in the chapter. These files also illustrate how MPL
and CPLEX can be integrated with spreadsheets.

As described in the appendix to Chaps. 3 and 4, a third attractive option is to employ
the student version of the popular and student-friendly software package LINDO and its
modeling language companion LINGO. Both packages can be downloaded free from the
LINDO Systems website. Associated tutorial material is included on the CD-ROM, along
with a LINDO/LINGO file for many of the chapters showing how LINDO and LINGO
would formulate and solve the relevant examples in the chapter. Once again, integration
with spreadsheets also is illustrated.

Complementing all these options on the CD-ROM is an updated version of the tuto-
rial software that many instructors have found so useful for their students with the 5th and
6th editions. A program called OR Tutor provides 16 demonstration examples from the
6th edition, but now with an attractive new design based on JavaScript. These demos
vividly demonstrate the evolution of an algorithm in ways that cannot be duplicated on
the printed page. Most of the interactive routines from the 6th edition also are included
on the CD-ROM, but again with an attractive new design. This design features a spread-
sheet format based on VisualBasic. Each of the interactive routines enables the student to
interactively execute one of the algorithms of operations research, making the needed de-
cision at each step while the computer does the needed arithmetic. By enabling the stu-
dent to focus on concepts rather than mindless number crunching when doing homework
to learn an algorithm, we have found that these interactive routines make the learning
process far more efficient and effective as well as more stimulating. In addition to these
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routines, the CD-ROM includes a few of the automatic routines from the 6th edition (again
redesigned with VisualBasic) for those cases that are not covered by the software options
described above. We were very fortunate to have the services of Michael O’Sullivan, a
talented programmer and an advanced Ph.D. student in operations research at Stanford,
to do all this updating of the software that had been developed by Mark S. Hillier for the
5th and 6th editions.

Microsoft Project is introduced in Chap. 10 as a useful tool for project management.
This software package also is included on the CD-ROM.

PREFACE xxv

Today’s students in introductory operations research courses tend to be very interested in
learning more about the relevance of the material being covered, including how it is ac-
tually being used in practice. Therefore, without diluting any of the features of the 6th
edition, the focus of the revision for this edition has been on increasing the motivation
and excitement of the students by making the book considerably more “real world” ori-
ented and accessible. The new emphasis on the kinds of software that practitioners use is
one thrust in this direction. Other major new features are outlined below.

Twenty-five elaborate new cases, embedded in a realistic setting and employing a
stimulating storytelling approach, have been added at the end of the problem sections. All
but one of these cases were developed jointly by two talented case writers, Karl Schmed-
ders (a faculty member at the Kellogg Graduate School of Management at Northwestern
University) and Molly Stephens (recently an operations research consultant with Ander-
sen Consulting). We also have further fleshed out six cases that were in the 6th edition.
The cases generally require relatively challenging and comprehensive analyses with sub-
stantial use of the computer. Therefore, they are suitable for student projects, working ei-
ther individually or in teams, and can then lead to class discussion of the analysis.

A complementary new feature is that many new problems embedded in a realistic set-
ting have been added to the problem section of many chapters. Some of the current prob-
lems also have been fleshed out in a more interesting way.

This edition also places much more emphasis on providing perspective in terms of
what is actually happening in the practice of operations research. What kinds of applica-
tions are occurring? What sizes of problems are being solved? Which models and tech-
niques are being used most widely? What are their shortcomings and what new develop-
ments are beginning to address these shortcomings? These kinds of questions are being
addressed to convey the relevance of the techniques under discussion. Eight new sections
(Secs. 10.7, 12.2, 15.6, 18.5, 19.8, 20.1, 20.10, and 22.2) are fully devoted to discussing
the practice of operations research in such ways, along with briefer mentions elsewhere.

The new emphases described above benefited greatly from our work in developing
our recent new textbook with Mark S. Hillier (Introduction to Management Science: A
Modeling and Case Studies Approach with Spreadsheets, Irwin/McGraw-Hill, 2000). That
book has a very different orientation from this one. It is aimed directly at business stu-
dents rather than students who may be in engineering and the mathematical sciences, and
it provides almost no coverage of the mathematics and algorithms of operations research.
Nevertheless, its applied orientation enabled us to adapt some excellent material devel-
oped for that book to provide a more well-rounded coverage in this edition.

NEW EMPHASES
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In addition to all the new software and new emphases just described, this edition received
a considerable number of other enhancements as well.

The previous section on project planning and control with PERT/CPM has been re-
placed by a complete new chapter (Chap. 10) with an applied orientation. Using the ac-
tivity-on-node (AON) convention, this chapter provides an extensive modern treatment of
the topic in a very accessible way.

Other new topics not yet mentioned include the SOB mnemonic device for deter-
mining the form of constraints in the dual problem (in Sec. 6.4), 100 percent rules for si-
multaneous changes when conducting sensitivity analysis (in Sec. 6.7), sensitivity analy-
sis with Bayes’ decision rule (in Sec. 15.2), a probability tree diagram for calculating
posterior probabilities (in Sec. 15.3), a single-server variation of the nonpreemptive pri-
orities model where the service for different priority classes of customers now have dif-
ferent mean service rates (in Sec. 17.8), a new simpler analysis of a stochastic continu-
ous-review inventory model (Sec. 19.5), the mean absolute deviation as a measure of
performance for forecasting methods (in Sec. 20.7), and the elements of a major simula-
tion study (Sec. 22.5).

We also have added much supplementary text material on the book’s new website,
www.mhhe.com/hillier. Some of these supplements are password protected, but are avail-
able to all instructors who adopt this textbook. For the most part, this material appeared
in previous editions of this book and then was subsequently deleted (for space reasons),
to the disappointment of some instructors. Some also appeared in our Introduction to Math-
ematical Programming textbook. As delineated in the table of contents, this supplemen-
tary material includes a chapter on additional special types of linear programming prob-
lems, a review or primer chapter on probability theory, and a chapter on reliability, along
with supplements to a few chapters in the book.

In addition to providing this supplementary text material, the website will give up-
dates about the book, including an errata, as the need arises.

We made two changes in the order of the chapters. The decision analysis chapter has
been moved forward to Chap. 15 in front of the stochastic chapters. The game theory
chapter has been moved backward to Chap. 14 to place it next to the related decision
analysis chapter. We believe that these changes provide a better transition from topics that
are mainly deterministic to those that are mainly stochastic.

Every chapter has received significant revision and updating, ranging from modest
refining to extensive rewriting. Chapters receiving a particularly major revision and reor-
ganization included Chaps. 15 (Decision Analysis), 19 (Inventory Theory), 20 (Forecast-
ing), and 22 (Simulation). Many sections in the linear programming and mathematical
programming chapters also received major revisions and updating.

The overall thrust of all the revision efforts has been to build upon the strengths of
previous editions while thoroughly updating and clarifying the material in a contempo-
rary setting to fully meet the needs of today’s students.

We think that the net effect has been to make this edition even more of a “student’s
book”—clear, interesting, and well-organized with lots of helpful examples and illustra-
tions, good motivation and perspective, easy-to-find important material, and enjoyable
homework, without too much notation, terminology, and dense mathematics. We believe
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and trust that the numerous instructors who have used previous editions will agree that
this is the best edition yet. This feeling has been reinforced by the generally enthusiastic
reviews of drafts of this edition.

The prerequisites for a course using this book can be relatively modest. As with pre-
vious editions, the mathematics has been kept at a relatively elementary level. Most of
Chaps. 1 to 14 (introduction, linear programming, and mathematical programming) re-
quire no mathematics beyond high school algebra. Calculus is used only in Chaps. 13
(Nonlinear Programming) and in one example in Chap. 11 (Dynamic Programming). Ma-
trix notation is used in Chap. 5 (The Theory of the Simplex Method), Chap. 6 (Duality
Theory and Sensitivity Analysis), Sec. 7.4 (An Interior-Point Algorithm), and Chap. 13,
but the only background needed for this is presented in Appendix 4. For Chaps. 15 to 22
(probabilistic models), a previous introduction to probability theory is assumed, and cal-
culus is used in a few places. In general terms, the mathematical maturity that a student
achieves through taking an elementary calculus course is useful throughout Chaps. 15 to
22 and for the more advanced material in the preceding chapters.

The content of the book is aimed largely at the upper-division undergraduate level
(including well-prepared sophomores) and at first-year (master’s level) graduate students.
Because of the book’s great flexibility, there are many ways to package the material into
a course. Chapters 1 and 2 give an introduction to the subject of operations research. Chap-
ters 3 to 14 (on linear programming and on mathematical programming) may essentially
be covered independently of Chaps. 15 to 22 (on probabilistic models), and vice versa.
Furthermore, the individual chapters among Chaps. 3 to 14 are almost independent, ex-
cept that they all use basic material presented in Chap. 3 and perhaps in Chap. 4. Chap-
ter 6 and Sec. 7.2 also draw upon Chap. 5. Sections 7.1 and 7.2 use parts of Chap. 6. Sec-
tion 9.6 assumes an acquaintance with the problem formulations in Secs. 8.1 and 8.3,
while prior exposure to Secs. 7.3 and 8.2 is helpful (but not essential) in Sec. 9.7. Within
Chaps. 15 to 22, there is considerable flexibility of coverage, although some integration
of the material is available.

An elementary survey course covering linear programming, mathematical program-
ming, and some probabilistic models can be presented in a quarter (40 hours) or semes-
ter by selectively drawing from material throughout the book. For example, a good sur-
vey of the field can be obtained from Chaps. 1, 2, 3, 4, 15, 17, 19, 20, and 22, along with
parts of Chaps. 9, 11, 12, and 13. A more extensive elementary survey course can be com-
pleted in two quarters (60 to 80 hours) by excluding just a few chapters, for example,
Chaps. 7, 14, and 21. Chapters 1 to 8 (and perhaps part of Chap. 9) form an excellent ba-
sis for a (one-quarter) course in linear programming. The material in Chaps. 9 to 14 cov-
ers topics for another (one-quarter) course in other deterministic models. Finally, the ma-
terial in Chaps. 15 to 22 covers the probabilistic (stochastic) models of operations research
suitable for presentation in a (one-quarter) course. In fact, these latter three courses (the
material in the entire text) can be viewed as a basic one-year sequence in the techniques
of operations research, forming the core of a master’s degree program. Each course out-
lined has been presented at either the undergraduate or the graduate level at Stanford Uni-
versity, and this text has been used in the manner suggested.

To assist the instructor who will be covering only a portion of the chapters and who
prefers a slimmer book containing only those chapters, all the material (including the sup-
plementary text material on the book’s website) has been placed in McGraw-Hill’s PRIMIS
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system. This system enables an instructor to pick and choose precisely which material to
include in a self-designed book, and then to order copies for the students at an econom-
ical price. For example, this enables instructors who previously used our Introduction to
Mathematical Programming or Introduction to Stochastic Models in Operations Research
textbooks to obtain updated versions of the same material from the PRIMIS system. For
this reason, we will not be publishing new separate editions of these other books.

Again, as in previous editions, we thank our wives, Ann and Helen, for their en-
couragement and support during the long process of preparing this 7th edition. Our chil-
dren, David, John, and Mark Hillier, Janet Lieberman Argyres, and Joanne, Michael, and
Diana Lieberman, have literally grown up with the book and our periodic hibernations to
prepare a new edition. Now, most of them have used the book as a text in their own col-
lege courses, given considerable advice, and even (in the case of Mark Hillier) become a
software collaborator. It is a joy to see them and (we trust) the book reach maturity to-
gether.

And now I must add a very sad note. My close friend and co-author, Jerry Lieber-
man, passed away on May 18, 1999, while this edition was in preparation, so I am writ-
ing this preface on behalf of both of us. Jerry was one of the great leaders of our field
and he had a profound influence on my life. More than a third of a century ago, we em-
barked on a mission together to attempt to develop a path-breaking book for teaching op-
erations research at the introductory level. Ever since, we have striven to meet and extend
the same high standards for each new edition. Having worked so closely with Jerry for
so many years, I believe I understand well how he would want the book to evolve to meet
the needs of each new generation of students. As the substantially younger co-author, I
am grateful that I am able to carry on our joint mission to continue to update and improve
the book, both with this edition and with future editions as well. It is the least I can do
to honor Jerry.

I welcome your comments, suggestions, and errata to help me improve the book in
the future.

xxviii PREFACE

We are indebted to an excellent group of reviewers who provided sage advice throughout
the revision process. This group included Jeffery Cochran, Arizona State University; Yahya
Fathi, North Carolina State University; Yasser Hosni and Charles Reilly, University of
Central Florida; Cerry Klein, University of Missouri—Columbia; Robert Lipset, Ohio Uni-
versity; Mark Parker, United States Air Force Academy; Christopher Rump, State Uni-
versity of New York at Buffalo; and Ahmad Seifoddini, California Polytechnic State Uni-
versity—San Luis Obispo. We also received helpful advice from Judith Liebman, Siegfried
Schaible, David Sloan, and Arthur F. Veinott, Jr., as well as many instructors who sent us
letters or e-mail messages. In addition, we also thank many dozens of Stanford students
and many students at other universities who gave us helpful written suggestions.

This edition was very much of a team effort. Our case writers, Karl Schmedders and
Molly Stephens (both graduates of our department), made a vital contribution. One of our
department’s current Ph.D. students, Roberto Szechtman, did an excellent job in prepar-
ing the solutions manual. Another Ph.D. student, Michael O’Sullivan, was very skillful in
updating the software that Mark Hillier had developed for the 5th and 6th editions. Mark
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(who was born the same year as the first edition and now is a tenured faculty member in
the Management Science Department at the University of Washington) helped to oversee
this updating and also provided both the spreadsheets and the Excel files (including many
Excel templates) for this edition. Linus Schrage of the University of Chicago and LINDO
Systems (and who took an introductory operations research course from me 37 years ago)
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1
Introduction

Since the advent of the industrial revolution, the world has seen a remarkable growth in
the size and complexity of organizations. The artisans’ small shops of an earlier era have
evolved into the billion-dollar corporations of today. An integral part of this revolution-
ary change has been a tremendous increase in the division of labor and segmentation of
management responsibilities in these organizations. The results have been spectacular.
However, along with its blessings, this increasing specialization has created new prob-
lems, problems that are still occurring in many organizations. One problem is a tendency
for the many components of an organization to grow into relatively autonomous empires
with their own goals and value systems, thereby losing sight of how their activities and
objectives mesh with those of the overall organization. What is best for one component
frequently is detrimental to another, so the components may end up working at cross pur-
poses. A related problem is that as the complexity and specialization in an organization
increase, it becomes more and more difficult to allocate the available resources to the var-
ious activities in a way that is most effective for the organization as a whole. These kinds
of problems and the need to find a better way to solve them provided the environment for
the emergence of operations research (commonly referred to as OR).

The roots of OR can be traced back many decades, when early attempts were made
to use a scientific approach in the management of organizations. However, the beginning
of the activity called operations research has generally been attributed to the military ser-
vices early in World War II. Because of the war effort, there was an urgent need to allo-
cate scarce resources to the various military operations and to the activities within each
operation in an effective manner. Therefore, the British and then the U.S. military man-
agement called upon a large number of scientists to apply a scientific approach to deal-
ing with this and other strategic and tactical problems. In effect, they were asked to do
research on (military) operations. These teams of scientists were the first OR teams. By
developing effective methods of using the new tool of radar, these teams were instrumental
in winning the Air Battle of Britain. Through their research on how to better manage con-
voy and antisubmarine operations, they also played a major role in winning the Battle of
the North Atlantic. Similar efforts assisted the Island Campaign in the Pacific.

When the war ended, the success of OR in the war effort spurred interest in apply-
ing OR outside the military as well. As the industrial boom following the war was run-
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ning its course, the problems caused by the increasing complexity and specialization in
organizations were again coming to the forefront. It was becoming apparent to a growing
number of people, including business consultants who had served on or with the OR teams
during the war, that these were basically the same problems that had been faced by the
military but in a different context. By the early 1950s, these individuals had introduced
the use of OR to a variety of organizations in business, industry, and government. The
rapid spread of OR soon followed.

At least two other factors that played a key role in the rapid growth of OR during
this period can be identified. One was the substantial progress that was made early in im-
proving the techniques of OR. After the war, many of the scientists who had participated
on OR teams or who had heard about this work were motivated to pursue research rele-
vant to the field; important advancements in the state of the art resulted. A prime exam-
ple is the simplex method for solving linear programming problems, developed by George
Dantzig in 1947. Many of the standard tools of OR, such as linear programming, dynamic
programming, queueing theory, and inventory theory, were relatively well developed be-
fore the end of the 1950s.

A second factor that gave great impetus to the growth of the field was the onslaught
of the computer revolution. A large amount of computation is usually required to deal
most effectively with the complex problems typically considered by OR. Doing this by
hand would often be out of the question. Therefore, the development of electronic digital
computers, with their ability to perform arithmetic calculations thousands or even millions
of times faster than a human being can, was a tremendous boon to OR. A further boost
came in the 1980s with the development of increasingly powerful personal computers ac-
companied by good software packages for doing OR. This brought the use of OR within
the easy reach of much larger numbers of people. Today, literally millions of individuals
have ready access to OR software. Consequently, a whole range of computers from main-
frames to laptops now are being routinely used to solve OR problems.

2 1 INTRODUCTION

1.2 THE NATURE OF OPERATIONS RESEARCH

As its name implies, operations research involves “research on operations.” Thus, opera-
tions research is applied to problems that concern how to conduct and coordinate the op-
erations (i.e., the activities) within an organization. The nature of the organization is es-
sentially immaterial, and, in fact, OR has been applied extensively in such diverse areas
as manufacturing, transportation, construction, telecommunications, financial planning,
health care, the military, and public services, to name just a few. Therefore, the breadth
of application is unusually wide.

The research part of the name means that operations research uses an approach that
resembles the way research is conducted in established scientific fields. To a considerable
extent, the scientific method is used to investigate the problem of concern. (In fact, the
term management science sometimes is used as a synonym for operations research.) In
particular, the process begins by carefully observing and formulating the problem, in-
cluding gathering all relevant data. The next step is to construct a scientific (typically
mathematical) model that attempts to abstract the essence of the real problem. It is then
hypothesized that this model is a sufficiently precise representation of the essential fea-
tures of the situation that the conclusions (solutions) obtained from the model are also



valid for the real problem. Next, suitable experiments are conducted to test this hypothe-
sis, modify it as needed, and eventually verify some form of the hypothesis. (This step is
frequently referred to as model validation.) Thus, in a certain sense, operations research
involves creative scientific research into the fundamental properties of operations. How-
ever, there is more to it than this. Specifically, OR is also concerned with the practical
management of the organization. Therefore, to be successful, OR must also provide pos-
itive, understandable conclusions to the decision maker(s) when they are needed.

Still another characteristic of OR is its broad viewpoint. As implied in the preceding
section, OR adopts an organizational point of view. Thus, it attempts to resolve the con-
flicts of interest among the components of the organization in a way that is best for the
organization as a whole. This does not imply that the study of each problem must give
explicit consideration to all aspects of the organization; rather, the objectives being sought
must be consistent with those of the overall organization.

An additional characteristic is that OR frequently attempts to find a best solution (re-
ferred to as an optimal solution) for the problem under consideration. (We say a best in-
stead of the best solution because there may be multiple solutions tied as best.) Rather
than simply improving the status quo, the goal is to identify a best possible course of ac-
tion. Although it must be interpreted carefully in terms of the practical needs of manage-
ment, this “search for optimality” is an important theme in OR.

All these characteristics lead quite naturally to still another one. It is evident that no
single individual should be expected to be an expert on all the many aspects of OR work
or the problems typically considered; this would require a group of individuals having di-
verse backgrounds and skills. Therefore, when a full-fledged OR study of a new problem
is undertaken, it is usually necessary to use a team approach. Such an OR team typically
needs to include individuals who collectively are highly trained in mathematics, statistics
and probability theory, economics, business administration, computer science, engineering
and the physical sciences, the behavioral sciences, and the special techniques of OR. The
team also needs to have the necessary experience and variety of skills to give appropriate
consideration to the many ramifications of the problem throughout the organization.
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1.3 THE IMPACT OF OPERATIONS RESEARCH

Operations research has had an impressive impact on improving the efficiency of numer-
ous organizations around the world. In the process, OR has made a significant contribu-
tion to increasing the productivity of the economies of various countries. There now are
a few dozen member countries in the International Federation of Operational Research
Societies (IFORS), with each country having a national OR society. Both Europe and Asia
have federations of OR societies to coordinate holding international conferences and pub-
lishing international journals in those continents.

It appears that the impact of OR will continue to grow. For example, according to the
U.S. Bureau of Labor Statistics, OR currently is one of the fastest-growing career areas
for U.S. college graduates.

To give you a better notion of the wide applicability of OR, we list some actual award-
winning applications in Table 1.1. Note the diversity of organizations and applications in
the first two columns. The curious reader can find a complete article describing each ap-
plication in the January–February issue of Interfaces for the year cited in the third col-



TABLE 1.1 Some applications of operations research

Year of Related Annual
Organization Nature of Application Publication* Chapters† Savings

The Netherlands Develop national water management 1985 2–8, 13, 22 $15 million
Rijkswaterstaat policy, including mix of new facilities,

operating procedures, and pricing.
Monsanto Corp. Optimize production operations in 1985 2, 12 $2 million

chemical plants to meet production targets
with minimum cost.

United Airlines Schedule shift work at reservation offices 1986 2–9, 12, 17, $6 million
and airports to meet customer needs with 18, 20
minimum cost.

Citgo Petroleum Optimize refinery operations and the supply, 1987 2–9, 20 $70 million
Corp. distribution, and marketing of products.

San Francisco Optimally schedule and deploy police 1989 2–4, 12, 20 $11 million
Police Department patrol officers with a computerized system.

Texaco, Inc. Optimally blend available ingredients into 1989 2, 13 $30 million
gasoline products to meet quality and
sales requirements.

IBM Integrate a national network of spare parts 1990 2, 19, 22 $20 million
inventories to improve service support. �$250 million

less inventory
Yellow Freight Optimize the design of a national trucking 1992 2, 9, 13, 20, $17.3 million
System, Inc. network and the routing of shipments. 22

New Haven Health Design an effective needle exchange 1993 2 33% less
Department program to combat the spread of HIV/AIDS. HIV/AIDS

AT&T Develop a PC-based system to guide 1993 17, 18, 22 $750 million
business customers in designing their call
centers.

Delta Airlines Maximize the profit from assigning 1994 12 $100 million
airplane types to over 2500 domestic
flights.

Digital Equipment Restructure the global supply chain of 1995 12 $800 million
Corp. suppliers, plants, distribution centers,

potential sites, and market areas.
China Optimally select and schedule massive 1995 12 $425 million

projects for meeting the country’s future
energy needs.

South African Optimally redesign the size and shape of 1997 12 $1.1 billion
defense force the defense force and its weapons systems.

Proctor and Gamble Redesign the North American production 1997 8 $200 million
and distribution system to reduce costs
and improve speed to market.

Taco Bell Optimally schedule employees to provide 1998 12, 20, 22 $13 million
desired customer service at a minimum
cost.

Hewlett-Packard Redesign the sizes and locations of 1998 17, 18 $280 million
buffers in a printer production line to meet more revenue
production goals.

*Pertains to a January–February issue of Interfaces in which a complete article can be found describing the application.
†Refers to chapters in this book that describe the kinds of OR techniques used in the application.
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umn of the table. The fourth column lists the chapters in this book that describe the kinds
of OR techniques that were used in the application. (Note that many of the applications
combine a variety of techniques.) The last column indicates that these applications typi-
cally resulted in annual savings in the millions (or even tens of millions) of dollars. Fur-
thermore, additional benefits not recorded in the table (e.g., improved service to customers
and better managerial control) sometimes were considered to be even more important than
these financial benefits. (You will have an opportunity to investigate these less tangible
benefits further in Probs. 1.3-1 and 1.3-2.)

Although most routine OR studies provide considerably more modest benefits than
these award-winning applications, the figures in the rightmost column of Table 1.1 do ac-
curately reflect the dramatic impact that large, well-designed OR studies occasionally can
have.

We will briefly describe some of these applications in the next chapter, and then we
present two in greater detail as case studies in Sec. 3.5.

1.4 ALGORITHMS AND OR COURSEWARE

An important part of this book is the presentation of the major algorithms (systematic
solution procedures) of OR for solving certain types of problems. Some of these algo-
rithms are amazingly efficient and are routinely used on problems involving hundreds or
thousands of variables. You will be introduced to how these algorithms work and what
makes them so efficient. You then will use these algorithms to solve a variety of problems
on a computer. The CD-ROM called OR Courseware that accompanies the book will be
a key tool for doing all this.

One special feature in your OR Courseware is a program called OR Tutor. This pro-
gram is intended to be your personal tutor to help you learn the algorithms. It consists of
many demonstration examples that display and explain the algorithms in action. These
“demos” supplement the examples in the book.

In addition, your OR Courseware includes many interactive routines for executing
the algorithms interactively in a convenient spreadsheet format. The computer does all the
routine calculations while you focus on learning and executing the logic of the algorithm.
You should find these interactive routines a very efficient and enlightening way of doing
many of your homework problems.

In practice, the algorithms normally are executed by commercial software packages.
We feel that it is important to acquaint students with the nature of these packages that
they will be using after graduation. Therefore, your OR Courseware includes a wealth of
material to introduce you to three particularly popular software packages described be-
low. Together, these packages will enable you to solve nearly all the OR models encoun-
tered in this book very efficiently. We have added our own automatic routines to the OR
Courseware only in a few cases where these packages are not applicable.

A very popular approach now is to use today’s premier spreadsheet package, Mi-
crosoft Excel, to formulate small OR models in a spreadsheet format. The Excel Solver
then is used to solve the models. Your OR Courseware includes a separate Excel file for
nearly every chapter in this book. Each time a chapter presents an example that can be
solved using Excel, the complete spreadsheet formulation and solution is given in that
chapter’s Excel file. For many of the models in the book, an Excel template also is pro-



vided that already includes all the equations necessary to solve the model. Some Excel
add-ins also are included on the CD-ROM.

After many years, LINDO (and its companion modeling language LINGO) contin-
ues to be a dominant OR software package. Student versions of LINDO and LINGO now
can be downloaded free from the Web. As for Excel, each time an example can be solved
with this package, all the details are given in a LINGO/LINDO file for that chapter in
your OR Courseware.

CPLEX is an elite state-of-the-art software package that is widely used for solving
large and challenging OR problems. When dealing with such problems, it is common to
also use a modeling system to efficiently formulate the mathematical model and enter it
into the computer. MPL is a user-friendly modeling system that uses CPLEX as its main
solver. A student version of MPL and CPLEX is available free by downloading it from
the Web. For your convenience, we also have included this student version in your OR
Courseware. Once again, all the examples that can be solved with this package are de-
tailed in MPL/CPLEX files for the corresponding chapters in your OR Courseware.

We will further describe these three software packages and how to use them later (es-
pecially near the end of Chaps. 3 and 4). Appendix 1 also provides documentation for the
OR Courseware, including OR Tutor.

To alert you to relevant material in OR Courseware, the end of each chapter from
Chap. 3 onward has a list entitled Learning Aids for This Chapter in Your OR Course-
ware. As explained at the beginning of the problem section for each of these chapters,
symbols also are placed to the left of each problem number or part where any of this ma-
terial (including demonstration examples and interactive routines) can be helpful.

6 1 INTRODUCTION

PROBLEMS

1.3-1. Select one of the applications of operations research listed
in Table 1.1. Read the article describing the application in the 
January–February issue of Interfaces for the year indicated in the
third column. Write a two-page summary of the application and
the benefits (including nonfinancial benefits) it provided.

1.3-2. Select three of the applications of operations research listed
in Table 1.1. Read the articles describing the applications in the Jan-
uary–February issue of Interfaces for the years indicated in the third
column. For each one, write a one-page summary of the applica-
tion and the benefits (including nonfinancial benefits) it provided.



7

2
Overview of the 
Operations Research 
Modeling Approach
The bulk of this book is devoted to the mathematical methods of operations research (OR).
This is quite appropriate because these quantitative techniques form the main part of what
is known about OR. However, it does not imply that practical OR studies are primarily
mathematical exercises. As a matter of fact, the mathematical analysis often represents only
a relatively small part of the total effort required. The purpose of this chapter is to place
things into better perspective by describing all the major phases of a typical OR study.

One way of summarizing the usual (overlapping) phases of an OR study is the 
following:

1. Define the problem of interest and gather relevant data.
2. Formulate a mathematical model to represent the problem.
3. Develop a computer-based procedure for deriving solutions to the problem from the

model.
4. Test the model and refine it as needed.
5. Prepare for the ongoing application of the model as prescribed by management.
6. Implement.

Each of these phases will be discussed in turn in the following sections.
Most of the award-winning OR studies introduced in Table 1.1 provide excellent ex-

amples of how to execute these phases well. We will intersperse snippets from these ex-
amples throughout the chapter, with references to invite your further reading.

2.1 DEFINING THE PROBLEM AND GATHERING DATA

In contrast to textbook examples, most practical problems encountered by OR teams are
initially described to them in a vague, imprecise way. Therefore, the first order of busi-
ness is to study the relevant system and develop a well-defined statement of the problem
to be considered. This includes determining such things as the appropriate objectives, con-
straints on what can be done, interrelationships between the area to be studied and other
areas of the organization, possible alternative courses of action, time limits for making a
decision, and so on. This process of problem definition is a crucial one because it greatly
affects how relevant the conclusions of the study will be. It is difficult to extract a “right”
answer from the “wrong” problem!



The first thing to recognize is that an OR team is normally working in an advisory ca-
pacity. The team members are not just given a problem and told to solve it however they
see fit. Instead, they are advising management (often one key decision maker). The team
performs a detailed technical analysis of the problem and then presents recommendations
to management. Frequently, the report to management will identify a number of alterna-
tives that are particularly attractive under different assumptions or over a different range of
values of some policy parameter that can be evaluated only by management (e.g., the trade-
off between cost and benefits). Management evaluates the study and its recommendations,
takes into account a variety of intangible factors, and makes the final decision based on its
best judgment. Consequently, it is vital for the OR team to get on the same wavelength as
management, including identifying the “right” problem from management’s viewpoint, and
to build the support of management for the course that the study is taking.

Ascertaining the appropriate objectives is a very important aspect of problem defini-
tion. To do this, it is necessary first to identify the member (or members) of management
who actually will be making the decisions concerning the system under study and then to
probe into this individual’s thinking regarding the pertinent objectives. (Involving the de-
cision maker from the outset also is essential to build her or his support for the imple-
mentation of the study.)

By its nature, OR is concerned with the welfare of the entire organization rather than
that of only certain of its components. An OR study seeks solutions that are optimal for
the overall organization rather than suboptimal solutions that are best for only one com-
ponent. Therefore, the objectives that are formulated ideally should be those of the entire
organization. However, this is not always convenient. Many problems primarily concern
only a portion of the organization, so the analysis would become unwieldy if the stated ob-
jectives were too general and if explicit consideration were given to all side effects on the
rest of the organization. Instead, the objectives used in the study should be as specific as
they can be while still encompassing the main goals of the decision maker and maintain-
ing a reasonable degree of consistency with the higher-level objectives of the organization.

For profit-making organizations, one possible approach to circumventing the prob-
lem of suboptimization is to use long-run profit maximization (considering the time value
of money) as the sole objective. The adjective long-run indicates that this objective pro-
vides the flexibility to consider activities that do not translate into profits immediately
(e.g., research and development projects) but need to do so eventually in order to be worth-
while. This approach has considerable merit. This objective is specific enough to be used
conveniently, and yet it seems to be broad enough to encompass the basic goal of profit-
making organizations. In fact, some people believe that all other legitimate objectives can
be translated into this one.

However, in actual practice, many profit-making organizations do not use this ap-
proach. A number of studies of U.S. corporations have found that management tends to
adopt the goal of satisfactory profits, combined with other objectives, instead of focusing
on long-run profit maximization. Typically, some of these other objectives might be to
maintain stable profits, increase (or maintain) one’s share of the market, provide for prod-
uct diversification, maintain stable prices, improve worker morale, maintain family con-
trol of the business, and increase company prestige. Fulfilling these objectives might
achieve long-run profit maximization, but the relationship may be sufficiently obscure that
it may not be convenient to incorporate them all into this one objective.
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Furthermore, there are additional considerations involving social responsibilities that
are distinct from the profit motive. The five parties generally affected by a business firm
located in a single country are (1) the owners (stockholders, etc.), who desire profits (div-
idends, stock appreciation, and so on); (2) the employees, who desire steady employment
at reasonable wages; (3) the customers, who desire a reliable product at a reasonable price;
(4) the suppliers, who desire integrity and a reasonable selling price for their goods; and
(5) the government and hence the nation, which desire payment of fair taxes and consid-
eration of the national interest. All five parties make essential contributions to the firm,
and the firm should not be viewed as the exclusive servant of any one party for the ex-
ploitation of others. By the same token, international corporations acquire additional obli-
gations to follow socially responsible practices. Therefore, while granting that manage-
ment’s prime responsibility is to make profits (which ultimately benefits all five parties),
we note that its broader social responsibilities also must be recognized.

OR teams typically spend a surprisingly large amount of time gathering relevant data
about the problem. Much data usually are needed both to gain an accurate understanding
of the problem and to provide the needed input for the mathematical model being formu-
lated in the next phase of study. Frequently, much of the needed data will not be available
when the study begins, either because the information never has been kept or because what
was kept is outdated or in the wrong form. Therefore, it often is necessary to install a new
computer-based management information system to collect the necessary data on an on-
going basis and in the needed form. The OR team normally needs to enlist the assistance
of various other key individuals in the organization to track down all the vital data. Even
with this effort, much of the data may be quite “soft,” i.e., rough estimates based only on
educated guesses. Typically, an OR team will spend considerable time trying to improve
the precision of the data and then will make do with the best that can be obtained.

Examples. An OR study done for the San Francisco Police Department1 resulted in
the development of a computerized system for optimally scheduling and deploying police
patrol officers. The new system provided annual savings of $11 million, an annual $3 mil-
lion increase in traffic citation revenues, and a 20 percent improvement in response times.
In assessing the appropriate objectives for this study, three fundamental objectives were
identified:

1. Maintain a high level of citizen safety.
2. Maintain a high level of officer morale.
3. Minimize the cost of operations.

To satisfy the first objective, the police department and city government jointly established
a desired level of protection. The mathematical model then imposed the requirement that
this level of protection be achieved. Similarly, the model imposed the requirement of bal-
ancing the workload equitably among officers in order to work toward the second objec-
tive. Finally, the third objective was incorporated by adopting the long-term goal of min-
imizing the number of officers needed to meet the first two objectives.
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The Health Department of New Haven, Connecticut used an OR team1 to de-
sign an effective needle exchange program to combat the spread of the virus that causes
AIDS (HIV), and succeeded in reducing the HIV infection rate among program clients
by 33 percent. The key part of this study was an innovative data collection program
to obtain the needed input for mathematical models of HIV transmission. This program
involved complete tracking of each needle (and syringe), including the identity, loca-
tion, and date for each person receiving the needle and each person returning the 
needle during an exchange, as well as testing whether the returned needle was HIV-
positive or HIV-negative.

An OR study done for the Citgo Petroleum Corporation2 optimized both refinery
operations and the supply, distribution, and marketing of its products, thereby achieving
a profit improvement of approximately $70 million per year. Data collection also played
a key role in this study. The OR team held data requirement meetings with top Citgo man-
agement to ensure the eventual and continual quality of data. A state-of-the-art manage-
ment database system was developed and installed on a mainframe computer. In cases
where needed data did not exist, LOTUS 1-2-3 screens were created to help operations
personnel input the data, and then the data from the personal computers (PCs) were up-
loaded to the mainframe computer. Before data was inputted to the mathematical model,
a preloader program was used to check for data errors and inconsistencies. Initially, the
preloader generated a paper log of error messages 1 inch thick! Eventually, the number
of error and warning messages (indicating bad or questionable numbers) was reduced to
less than 10 for each new run.

We will describe the overall Citgo study in much more detail in Sec. 3.5.
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2.2 FORMULATING A MATHEMATICAL MODEL

After the decision maker’s problem is defined, the next phase is to reformulate this prob-
lem in a form that is convenient for analysis. The conventional OR approach for doing
this is to construct a mathematical model that represents the essence of the problem. Be-
fore discussing how to formulate such a model, we first explore the nature of models in
general and of mathematical models in particular.

Models, or idealized representations, are an integral part of everyday life. Common
examples include model airplanes, portraits, globes, and so on. Similarly, models play an
important role in science and business, as illustrated by models of the atom, models of
genetic structure, mathematical equations describing physical laws of motion or chemical
reactions, graphs, organizational charts, and industrial accounting systems. Such models
are invaluable for abstracting the essence of the subject of inquiry, showing interrelation-
ships, and facilitating analysis.

1E. H. Kaplan and E. O’Keefe, “Let the Needles Do the Talking! Evaluating the New Haven Needle Exchange,”
Interfaces, 23(1): 7–26, Jan.–Feb. 1993. See especially pp. 12–14.
2D. Klingman, N. Phillips, D. Steiger, R. Wirth, and W. Young, “The Challenges and Success Factors in Im-
plementing an Integrated Products Planning System for Citgo,” Interfaces, 16(3): 1–19, May–June 1986. See
especially pp. 11–14. Also see D. Klingman, N. Phillips, D. Steiger, and W. Young, “The Successful Deploy-
ment of Management Science throughout Citgo Petroleum Corporation,” Interfaces, 17(1): 4–25, Jan.–Feb. 1987.
See especially pp. 13–15. This application will be described further in Sec. 3.5.



Mathematical models are also idealized representations, but they are expressed in
terms of mathematical symbols and expressions. Such laws of physics as F � ma and 
E � mc2 are familiar examples. Similarly, the mathematical model of a business problem
is the system of equations and related mathematical expressions that describe the essence
of the problem. Thus, if there are n related quantifiable decisions to be made, they are
represented as decision variables (say, x1, x2, . . . , xn) whose respective values are to be
determined. The appropriate measure of performance (e.g., profit) is then expressed as a
mathematical function of these decision variables (for example, P � 3x1 � 2x2 + ��� � 5xn).
This function is called the objective function. Any restrictions on the values that can be
assigned to these decision variables are also expressed mathematically, typically by means
of inequalities or equations (for example, x1 � 3x1x2 � 2x2 � 10). Such mathematical ex-
pressions for the restrictions often are called constraints. The constants (namely, the co-
efficients and right-hand sides) in the constraints and the objective function are called the
parameters of the model. The mathematical model might then say that the problem is to
choose the values of the decision variables so as to maximize the objective function, sub-
ject to the specified constraints. Such a model, and minor variations of it, typifies the mod-
els used in OR.

Determining the appropriate values to assign to the parameters of the model (one
value per parameter) is both a critical and a challenging part of the model-building process.
In contrast to textbook problems where the numbers are given to you, determining param-
eter values for real problems requires gathering relevant data. As discussed in the pre-
ceding section, gathering accurate data frequently is difficult. Therefore, the value assigned
to a parameter often is, of necessity, only a rough estimate. Because of the uncertainty
about the true value of the parameter, it is important to analyze how the solution derived
from the model would change (if at all) if the value assigned to the parameter were changed
to other plausible values. This process is referred to as sensitivity analysis, as discussed
further in the next section (and much of Chap. 6).

Although we refer to “the” mathematical model of a business problem, real problems
normally don’t have just a single “right” model. Section 2.4 will describe how the process
of testing a model typically leads to a succession of models that provide better and bet-
ter representations of the problem. It is even possible that two or more completely dif-
ferent types of models may be developed to help analyze the same problem.

You will see numerous examples of mathematical models throughout the remainder
of this book. One particularly important type that is studied in the next several chapters
is the linear programming model, where the mathematical functions appearing in both
the objective function and the constraints are all linear functions. In the next chapter, spe-
cific linear programming models are constructed to fit such diverse problems as deter-
mining (1) the mix of products that maximizes profit, (2) the design of radiation therapy
that effectively attacks a tumor while minimizing the damage to nearby healthy tissue,
(3) the allocation of acreage to crops that maximizes total net return, and (4) the combi-
nation of pollution abatement methods that achieves air quality standards at minimum cost.

Mathematical models have many advantages over a verbal description of the problem.
One advantage is that a mathematical model describes a problem much more concisely. This
tends to make the overall structure of the problem more comprehensible, and it helps to re-
veal important cause-and-effect relationships. In this way, it indicates more clearly what ad-
ditional data are relevant to the analysis. It also facilitates dealing with the problem in its
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entirety and considering all its interrelationships simultaneously. Finally, a mathematical
model forms a bridge to the use of high-powered mathematical techniques and computers
to analyze the problem. Indeed, packaged software for both personal computers and main-
frame computers has become widely available for solving many mathematical models.

However, there are pitfalls to be avoided when you use mathematical models. Such a
model is necessarily an abstract idealization of the problem, so approximations and sim-
plifying assumptions generally are required if the model is to be tractable (capable of be-
ing solved). Therefore, care must be taken to ensure that the model remains a valid repre-
sentation of the problem. The proper criterion for judging the validity of a model is whether
the model predicts the relative effects of the alternative courses of action with sufficient
accuracy to permit a sound decision. Consequently, it is not necessary to include unim-
portant details or factors that have approximately the same effect for all the alternative
courses of action considered. It is not even necessary that the absolute magnitude of the
measure of performance be approximately correct for the various alternatives, provided that
their relative values (i.e., the differences between their values) are sufficiently precise. Thus,
all that is required is that there be a high correlation between the prediction by the model
and what would actually happen in the real world. To ascertain whether this requirement
is satisfied, it is important to do considerable testing and consequent modifying of the
model, which will be the subject of Sec. 2.4. Although this testing phase is placed later in
the chapter, much of this model validation work actually is conducted during the model-
building phase of the study to help guide the construction of the mathematical model.

In developing the model, a good approach is to begin with a very simple version and
then move in evolutionary fashion toward more elaborate models that more nearly reflect
the complexity of the real problem. This process of model enrichment continues only as
long as the model remains tractable. The basic trade-off under constant consideration is
between the precision and the tractability of the model. (See Selected Reference 6 for a
detailed description of this process.)

A crucial step in formulating an OR model is the construction of the objective function.
This requires developing a quantitative measure of performance relative to each of the deci-
sion maker’s ultimate objectives that were identified while the problem was being defined.
If there are multiple objectives, their respective measures commonly are then transformed
and combined into a composite measure, called the overall measure of performance. This
overall measure might be something tangible (e.g., profit) corresponding to a higher goal of
the organization, or it might be abstract (e.g., utility). In the latter case, the task of develop-
ing this measure tends to be a complex one requiring a careful comparison of the objectives
and their relative importance. After the overall measure of performance is developed, the ob-
jective function is then obtained by expressing this measure as a mathematical function of
the decision variables. Alternatively, there also are methods for explicitly considering multi-
ple objectives simultaneously, and one of these (goal programming) is discussed in Chap. 7.

Examples. An OR study done for Monsanto Corp.1 was concerned with optimizing pro-
duction operations in Monsanto’s chemical plants to minimize the cost of meeting the target
for the amount of a certain chemical product (maleic anhydride) to be produced in a given
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month. The decisions to be made are the dial setting for each of the catalytic reactors used
to produce this product, where the setting determines both the amount produced and the cost
of operating the reactor. The form of the resulting mathematical model is as follows:

Choose the values of the decision variables Rij

(i � 1, 2, . . . , r ; j � 1, 2, . . . , s)
so as to

Minimize �
r

i�1
�

s

j�1
cijRij,

subject to

�
r

i�1
�

s

j�1
pijRij � T

�
s

j�1
Rij � 1, for i � 1, 2, . . . , r

Rij � 0 or 1,

where Rij � � 1 if reactor i is operated at setting j
0 otherwise

cij � cost for reactor i at setting j
pij � production of reactor i at setting j
T � production target
r � number of reactors
s � number of settings (including off position)

The objective function for this model is � � cijRij. The constraints are given in the three
lines below the objective function. The parameters are cij, pij, and T. For Monsanto’s ap-
plication, this model has over 1,000 decision variables Rij (that is, rs � 1,000). Its use led
to annual savings of approximately $2 million.

The Netherlands government agency responsible for water control and public works,
the Rijkswaterstaat, commissioned a major OR study1 to guide the development of a
new national water management policy. The new policy saved hundreds of millions of
dollars in investment expenditures and reduced agricultural damage by about $15 million
per year, while decreasing thermal and algae pollution. Rather than formulating one math-
ematical model, this OR study developed a comprehensive, integrated system of 50 mod-
els! Furthermore, for some of the models, both simple and complex versions were devel-
oped. The simple version was used to gain basic insights, including trade-off analyses.
The complex version then was used in the final rounds of the analysis or whenever greater
accuracy or more detailed outputs were desired. The overall OR study directly involved
over 125 person-years of effort (more than one-third in data gathering), created several
dozen computer programs, and structured an enormous amount of data.
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2.3 DERIVING SOLUTIONS FROM THE MODEL

After a mathematical model is formulated for the problem under consideration, the next
phase in an OR study is to develop a procedure (usually a computer-based procedure) for
deriving solutions to the problem from this model. You might think that this must be the
major part of the study, but actually it is not in most cases. Sometimes, in fact, it is a rel-
atively simple step, in which one of the standard algorithms (systematic solution proce-
dures) of OR is applied on a computer by using one of a number of readily available soft-
ware packages. For experienced OR practitioners, finding a solution is the fun part, whereas
the real work comes in the preceding and following steps, including the postoptimality
analysis discussed later in this section.

Since much of this book is devoted to the subject of how to obtain solutions for var-
ious important types of mathematical models, little needs to be said about it here. How-
ever, we do need to discuss the nature of such solutions.

A common theme in OR is the search for an optimal, or best, solution. Indeed, many
procedures have been developed, and are presented in this book, for finding such solu-
tions for certain kinds of problems. However, it needs to be recognized that these solu-
tions are optimal only with respect to the model being used. Since the model necessarily
is an idealized rather than an exact representation of the real problem, there cannot be any
utopian guarantee that the optimal solution for the model will prove to be the best possi-
ble solution that could have been implemented for the real problem. There just are too
many imponderables and uncertainties associated with real problems. However, if the
model is well formulated and tested, the resulting solution should tend to be a good ap-
proximation to an ideal course of action for the real problem. Therefore, rather than be
deluded into demanding the impossible, you should make the test of the practical success
of an OR study hinge on whether it provides a better guide for action than can be ob-
tained by other means.

Eminent management scientist and Nobel Laureate in economics Herbert Simon points
out that satisficing is much more prevalent than optimizing in actual practice. In coining
the term satisficing as a combination of the words satisfactory and optimizing, Simon is
describing the tendency of managers to seek a solution that is “good enough” for the prob-
lem at hand. Rather than trying to develop an overall measure of performance to opti-
mally reconcile conflicts between various desirable objectives (including well-established
criteria for judging the performance of different segments of the organization), a more
pragmatic approach may be used. Goals may be set to establish minimum satisfactory lev-
els of performance in various areas, based perhaps on past levels of performance or on
what the competition is achieving. If a solution is found that enables all these goals to be
met, it is likely to be adopted without further ado. Such is the nature of satisficing.

The distinction between optimizing and satisficing reflects the difference between the-
ory and the realities frequently faced in trying to implement that theory in practice. In the
words of one of England’s OR leaders, Samuel Eilon, “Optimizing is the science of the
ultimate; satisficing is the art of the feasible.”1

OR teams attempt to bring as much of the “science of the ultimate” as possible to the
decision-making process. However, the successful team does so in full recognition of the

1S. Eilon, “Goals and Constraints in Decision-making,” Operational Research Quarterly, 23: 3–15, 1972—ad-
dress given at the 1971 annual conference of the Canadian Operational Research Society.



overriding need of the decision maker to obtain a satisfactory guide for action in a rea-
sonable period of time. Therefore, the goal of an OR study should be to conduct the study
in an optimal manner, regardless of whether this involves finding an optimal solution for
the model. Thus, in addition to pursuing the science of the ultimate, the team should also
consider the cost of the study and the disadvantages of delaying its completion, and then
attempt to maximize the net benefits resulting from the study. In recognition of this con-
cept, OR teams occasionally use only heuristic procedures (i.e., intuitively designed pro-
cedures that do not guarantee an optimal solution) to find a good suboptimal solution.
This is most often the case when the time or cost required to find an optimal solution for
an adequate model of the problem would be very large. In recent years, great progress has
been made in developing efficient and effective heuristic procedures (including so-called
metaheuristics), so their use is continuing to grow.

The discussion thus far has implied that an OR study seeks to find only one solution,
which may or may not be required to be optimal. In fact, this usually is not the case. An
optimal solution for the original model may be far from ideal for the real problem, so ad-
ditional analysis is needed. Therefore, postoptimality analysis (analysis done after find-
ing an optimal solution) is a very important part of most OR studies. This analysis also
is sometimes referred to as what-if analysis because it involves addressing some ques-
tions about what would happen to the optimal solution if different assumptions are made
about future conditions. These questions often are raised by the managers who will be
making the ultimate decisions rather than by the OR team.

The advent of powerful spreadsheet software now has frequently given spreadsheets
a central role in conducting postoptimality analysis. One of the great strengths of a
spreadsheet is the ease with which it can be used interactively by anyone, including
managers, to see what happens to the optimal solution when changes are made to the
model. This process of experimenting with changes in the model also can be very help-
ful in providing understanding of the behavior of the model and increasing confidence
in its validity.

In part, postoptimality analysis involves conducting sensitivity analysis to determine
which parameters of the model are most critical (the “sensitive parameters”) in deter-
mining the solution. A common definition of sensitive parameter (used throughout this
book) is the following.

For a mathematical model with specified values for all its parameters, the model’s sensi-
tive parameters are the parameters whose value cannot be changed without changing the
optimal solution.

Identifying the sensitive parameters is important, because this identifies the parameters
whose value must be assigned with special care to avoid distorting the output of the model.

The value assigned to a parameter commonly is just an estimate of some quantity
(e.g., unit profit) whose exact value will become known only after the solution has been
implemented. Therefore, after the sensitive parameters are identified, special attention is
given to estimating each one more closely, or at least its range of likely values. One then
seeks a solution that remains a particularly good one for all the various combinations of
likely values of the sensitive parameters.

If the solution is implemented on an ongoing basis, any later change in the value of
a sensitive parameter immediately signals a need to change the solution.
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In some cases, certain parameters of the model represent policy decisions (e.g., re-
source allocations). If so, there frequently is some flexibility in the values assigned to
these parameters. Perhaps some can be increased by decreasing others. Postoptimality
analysis includes the investigation of such trade-offs.

In conjunction with the study phase discussed in the next section (testing the model),
postoptimality analysis also involves obtaining a sequence of solutions that comprises a
series of improving approximations to the ideal course of action. Thus, the apparent weak-
nesses in the initial solution are used to suggest improvements in the model, its input data,
and perhaps the solution procedure. A new solution is then obtained, and the cycle is re-
peated. This process continues until the improvements in the succeeding solutions become
too small to warrant continuation. Even then, a number of alternative solutions (perhaps
solutions that are optimal for one of several plausible versions of the model and its input
data) may be presented to management for the final selection. As suggested in Sec. 2.1,
this presentation of alternative solutions would normally be done whenever the final choice
among these alternatives should be based on considerations that are best left to the judg-
ment of management.

Example. Consider again the Rijkswaterstaat OR study of national water management
policy for the Netherlands, introduced at the end of the preceding section. This study did
not conclude by recommending just a single solution. Instead, a number of attractive al-
ternatives were identified, analyzed, and compared. The final choice was left to the Dutch
political process, culminating with approval by Parliament. Sensitivity analysis played a
major role in this study. For example, certain parameters of the models represented envi-
ronmental standards. Sensitivity analysis included assessing the impact on water man-
agement problems if the values of these parameters were changed from the current envi-
ronmental standards to other reasonable values. Sensitivity analysis also was used to assess
the impact of changing the assumptions of the models, e.g., the assumption on the effect
of future international treaties on the amount of pollution entering the Netherlands. A va-
riety of scenarios (e.g., an extremely dry year and an extremely wet year) also were an-
alyzed, with appropriate probabilities assigned.
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2.4 TESTING THE MODEL

Developing a large mathematical model is analogous in some ways to developing a large
computer program. When the first version of the computer program is completed, it in-
evitably contains many bugs. The program must be thoroughly tested to try to find and
correct as many bugs as possible. Eventually, after a long succession of improved pro-
grams, the programmer (or programming team) concludes that the current program now
is generally giving reasonably valid results. Although some minor bugs undoubtedly re-
main hidden in the program (and may never be detected), the major bugs have been suf-
ficiently eliminated that the program now can be reliably used.

Similarly, the first version of a large mathematical model inevitably contains many
flaws. Some relevant factors or interrelationships undoubtedly have not been incorporated
into the model, and some parameters undoubtedly have not been estimated correctly. This
is inevitable, given the difficulty of communicating and understanding all the aspects and



subtleties of a complex operational problem as well as the difficulty of collecting reliable
data. Therefore, before you use the model, it must be thoroughly tested to try to identify
and correct as many flaws as possible. Eventually, after a long succession of improved
models, the OR team concludes that the current model now is giving reasonably valid re-
sults. Although some minor flaws undoubtedly remain hidden in the model (and may never
be detected), the major flaws have been sufficiently eliminated that the model now can
be reliably used.

This process of testing and improving a model to increase its validity is commonly
referred to as model validation.

It is difficult to describe how model validation is done, because the process depends
greatly on the nature of the problem being considered and the model being used. How-
ever, we make a few general comments, and then we give some examples. (See Selected
Reference 2 for a detailed discussion.)

Since the OR team may spend months developing all the detailed pieces of the model,
it is easy to “lose the forest for the trees.” Therefore, after the details (“the trees”) of the
initial version of the model are completed, a good way to begin model validation is to
take a fresh look at the overall model (“the forest”) to check for obvious errors or over-
sights. The group doing this review preferably should include at least one individual who
did not participate in the formulation of the model. Reexamining the definition of the
problem and comparing it with the model may help to reveal mistakes. It is also useful
to make sure that all the mathematical expressions are dimensionally consistent in the
units used. Additional insight into the validity of the model can sometimes be obtained
by varying the values of the parameters and/or the decision variables and checking to see
whether the output from the model behaves in a plausible manner. This is often especially
revealing when the parameters or variables are assigned extreme values near their max-
ima or minima.

A more systematic approach to testing the model is to use a retrospective test. When
it is applicable, this test involves using historical data to reconstruct the past and then de-
termining how well the model and the resulting solution would have performed if they
had been used. Comparing the effectiveness of this hypothetical performance with what
actually happened then indicates whether using this model tends to yield a significant im-
provement over current practice. It may also indicate areas where the model has short-
comings and requires modifications. Furthermore, by using alternative solutions from the
model and estimating their hypothetical historical performances, considerable evidence
can be gathered regarding how well the model predicts the relative effects of alternative
courses of actions.

On the other hand, a disadvantage of retrospective testing is that it uses the same data
that guided the formulation of the model. The crucial question is whether the past is truly
representative of the future. If it is not, then the model might perform quite differently in
the future than it would have in the past.

To circumvent this disadvantage of retrospective testing, it is sometimes useful to con-
tinue the status quo temporarily. This provides new data that were not available when the
model was constructed. These data are then used in the same ways as those described here
to evaluate the model.

Documenting the process used for model validation is important. This helps to in-
crease confidence in the model for subsequent users. Furthermore, if concerns arise in the
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future about the model, this documentation will be helpful in diagnosing where problems
may lie.

Examples. Consider once again the Rijkswaterstaat OR study of national water man-
agement policy for the Netherlands, discussed at the end of Secs. 2.2 and 2.3. The process
of model validation in this case had three main parts. First, the OR team checked the gen-
eral behavior of the models by checking whether the results from each model moved in
reasonable ways when changes were made in the values of the model parameters. Sec-
ond, retrospective testing was done. Third, a careful technical review of the models,
methodology, and results was conducted by individuals unaffiliated with the project, in-
cluding Dutch experts. This process led to a number of important new insights and im-
provements in the models.

Many new insights also were gleaned during the model validation phase of the OR
study for the Citgo Petroleum Corp., discussed at the end of Sec. 2.1. In this case, the
model of refinery operations was tested by collecting the actual inputs and outputs of the
refinery for a series of months, using these inputs to fix the model inputs, and then com-
paring the model outputs with the actual refinery outputs. The process of properly cali-
brating and recalibrating the model was a lengthy one, but ultimately led to routine use
of the model to provide critical decision information. As already mentioned in Sec. 2.1,
the validation and correction of input data for the models also played an important role
in this study.

Our next example concerns an OR study done for IBM1 to integrate its national net-
work of spare-parts inventories to improve service support for IBM’s customers. This study
resulted in a new inventory system that improved customer service while reducing the
value of IBM’s inventories by over $250 million and saving an additional $20 million per
year through improved operational efficiency. A particularly interesting aspect of the model
validation phase of this study was the way that future users of the inventory system were
incorporated into the testing process. Because these future users (IBM managers in func-
tional areas responsible for implementation of the inventory system) were skeptical about
the system being developed, representatives were appointed to a user team to serve as ad-
visers to the OR team. After a preliminary version of the new system had been developed
(based on a multiechelon inventory model), a preimplementation test of the system was
conducted. Extensive feedback from the user team led to major improvements in the pro-
posed system.
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1M. Cohen, P. V. Kamesam, P. Kleindorfer, H. Lee, and A. Tekerian, “Optimizer: IBM’s Multi-Echelon Inven-
tory System for Managing Service Logistics,” Interfaces, 20(1): 65–82, Jan.–Feb. 1990. See especially pp. 73–76.
This application will be described further in Sec. 19.8.

2.5 PREPARING TO APPLY THE MODEL

What happens after the testing phase has been completed and an acceptable model has
been developed? If the model is to be used repeatedly, the next step is to install a well-
documented system for applying the model as prescribed by management. This system
will include the model, solution procedure (including postoptimality analysis), and oper-



ating procedures for implementation. Then, even as personnel changes, the system can be
called on at regular intervals to provide a specific numerical solution.

This system usually is computer-based. In fact, a considerable number of computer
programs often need to be used and integrated. Databases and management information
systems may provide up-to-date input for the model each time it is used, in which case
interface programs are needed. After a solution procedure (another program) is applied to
the model, additional computer programs may trigger the implementation of the results
automatically. In other cases, an interactive computer-based system called a decision sup-
port system is installed to help managers use data and models to support (rather than re-
place) their decision making as needed. Another program may generate managerial re-
ports (in the language of management) that interpret the output of the model and its
implications for application.

In major OR studies, several months (or longer) may be required to develop, test, and
install this computer system. Part of this effort involves developing and implementing a
process for maintaining the system throughout its future use. As conditions change over
time, this process should modify the computer system (including the model) accordingly.

Examples. The IBM OR study introduced at the end of Sec. 2.4 provides a good ex-
ample of a particularly large computer system for applying a model. The system devel-
oped, called Optimizer, provides optimal control of service levels and spare-parts inven-
tories throughout IBM’s U.S. parts distribution network, which includes two central
automated warehouses, dozens of field distribution centers and parts stations, and many
thousands of outside locations. The parts inventory maintained in this network is valued
in the billions of dollars. Optimizer consists of four major modules. A forecasting system
module contains a few programs for estimating the failure rates of individual types of
parts. A data delivery system module consists of approximately 100 programs that process
over 15 gigabytes of data to provide the input for the model. A decision system module
then solves the model on a weekly basis to optimize control of the inventories. The fourth
module includes six programs that integrate Optimizer into IBM’s Parts Inventory Man-
agement System (PIMS). PIMS is a sophisticated information and control system that con-
tains millions of lines of code.

Our next example also involves a large computer system for applying a model to con-
trol operations over a national network. This system, called SYSNET, was developed as
the result of an OR study done for Yellow Freight System, Inc.1 Yellow Freight annu-
ally handles over 15 million shipments by motor carrier over a network of 630 terminals
throughout the United States. SYSNET is used to optimize both the routing of shipments
and the design of the network. Because SYSNET requires extensive information about
freight flows and forecasts, transportation and handling costs, and so on, a major part of
the OR study involved integrating SYSNET into the corporate management information
system. This integration enabled periodic updating of all the input for the model. The im-
plementation of SYSNET resulted in annual savings of approximately $17.3 million as
well as improved service to customers.
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Our next example illustrates a decision support system. A system of this type was de-
veloped for Texaco1 to help plan and schedule its blending operations at its various re-
fineries. Called OMEGA (Optimization Method for the Estimation of Gasoline Attributes),
it is an interactive system based on a nonlinear optimization model that is implemented
on both personal computers and larger computers. Input data can be entered either man-
ually or by interfacing with refinery databases. The user has considerable flexibility in
choosing an objective function and constraints to fit the current situation as well as in ask-
ing a series of what-if questions (i.e., questions about what would happen if the assumed
conditions change). OMEGA is maintained centrally by Texaco’s information technology
department, which enables constant updating to reflect new government regulations, other
business changes, and changes in refinery operations. The implementation of OMEGA is
credited with annual savings of more than $30 million as well as improved planning, qual-
ity control, and marketing information.
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2.6 IMPLEMENTATION

After a system is developed for applying the model, the last phase of an OR study is to
implement this system as prescribed by management. This phase is a critical one because
it is here, and only here, that the benefits of the study are reaped. Therefore, it is impor-
tant for the OR team to participate in launching this phase, both to make sure that model
solutions are accurately translated to an operating procedure and to rectify any flaws in
the solutions that are then uncovered.

The success of the implementation phase depends a great deal upon the support of
both top management and operating management. The OR team is much more likely to
gain this support if it has kept management well informed and encouraged management’s
active guidance throughout the course of the study. Good communications help to ensure
that the study accomplishes what management wanted and so deserves implementation.
They also give management a greater sense of ownership of the study, which encourages
their support for implementation.

The implementation phase involves several steps. First, the OR team gives operating
management a careful explanation of the new system to be adopted and how it relates to
operating realities. Next, these two parties share the responsibility for developing the pro-
cedures required to put this system into operation. Operating management then sees that
a detailed indoctrination is given to the personnel involved, and the new course of action
is initiated. If successful, the new system may be used for years to come. With this in
mind, the OR team monitors the initial experience with the course of action taken and
seeks to identify any modifications that should be made in the future.

Throughout the entire period during which the new system is being used, it is im-
portant to continue to obtain feedback on how well the system is working and whether
the assumptions of the model continue to be satisfied. When significant deviations from
the original assumptions occur, the model should be revisited to determine if any modi-
fications should be made in the system. The postoptimality analysis done earlier (as de-
scribed in Sec. 2.3) can be helpful in guiding this review process.



Upon culmination of a study, it is appropriate for the OR team to document its method-
ology clearly and accurately enough so that the work is reproducible. Replicability should
be part of the professional ethical code of the operations researcher. This condition is es-
pecially crucial when controversial public policy issues are being studied.

Examples. This last point about documenting an OR study is illustrated by the Rijks-
waterstaat study of national water management policy for the Netherlands discussed at
the end of Secs. 2.2, 2.3, and 2.4. Management wanted unusually thorough and extensive
documentation, both to support the new policy and to use in training new analysts or in
performing new studies. Requiring several years to complete, this documentation aggre-
gated 4000 single-spaced pages and 21 volumes!

Our next example concerns the IBM OR study discussed at the end of Secs. 2.4 and
2.5. Careful planning was required to implement the complex Optimizer system for con-
trolling IBM’s national network of spare-parts inventories. Three factors proved to be es-
pecially important in achieving a successful implementation. As discussed in Sec. 2.4, the
first was the inclusion of a user team (consisting of operational managers) as advisers to
the OR team throughout the study. By the time of the implementation phase, these oper-
ational managers had a strong sense of ownership and so had become ardent supporters
for installing Optimizer in their functional areas. A second success factor was a very ex-
tensive user acceptance test whereby users could identify problem areas that needed rec-
tifying prior to full implementation. The third key was that the new system was phased
in gradually, with careful testing at each phase, so the major bugs could be eliminated be-
fore the system went live nationally.

Our final example concerns Yellow Freight’s SYSNET system for routing shipments
over a national network, as described at the end of the preceding section. In this case, there
were four key elements to the implementation process. The first was selling the concept to
upper management. This was successfully done through validating the accuracy of the cost
model and then holding interactive sessions for upper management that demonstrated the
effectiveness of the system. The second element was the development of an implementation
strategy for gradually phasing in the new system while identifying and eliminating its flaws.
The third involved working closely with operational managers to install the system prop-
erly, provide the needed support tools, train the personnel who will use the system, and con-
vince them of the usefulness of the system. The final key element was the provision of man-
agement incentives and enforcement for the effective implementation of the system.
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Although the remainder of this book focuses primarily on constructing and solving math-
ematical models, in this chapter we have tried to emphasize that this constitutes only a
portion of the overall process involved in conducting a typical OR study. The other phases
described here also are very important to the success of the study. Try to keep in per-
spective the role of the model and the solution procedure in the overall process as you
move through the subsequent chapters. Then, after gaining a deeper understanding of math-
ematical models, we suggest that you plan to return to review this chapter again in order
to further sharpen this perspective.

2.7 CONCLUSIONS



OR is closely intertwined with the use of computers. In the early years, these gener-
ally were mainframe computers, but now personal computers and workstations are being
widely used to solve OR models.

In concluding this discussion of the major phases of an OR study, it should be em-
phasized that there are many exceptions to the “rules” prescribed in this chapter. By its
very nature, OR requires considerable ingenuity and innovation, so it is impossible to write
down any standard procedure that should always be followed by OR teams. Rather, the
preceding description may be viewed as a model that roughly represents how successful
OR studies are conducted.
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PROBLEMS

2.1-1. Read the article footnoted in Sec. 2.1 that describes an OR
study done for the San Francisco Police Department.
(a) Summarize the background that led to undertaking this study.
(b) Define part of the problem being addressed by identifying the

six directives for the scheduling system to be developed.
(c) Describe how the needed data were gathered.
(d) List the various tangible and intangible benefits that resulted

from the study.

2.1-2. Read the article footnoted in Sec. 2.1 that describes an OR
study done for the Health Department of New Haven, Connecticut.
(a) Summarize the background that led to undertaking this 

study.

(b) Outline the system developed to track and test each needle and
syringe in order to gather the needed data.

(c) Summarize the initial results from this tracking and testing 
system.

(d) Describe the impact and potential impact of this study on pub-
lic policy.

2.2-1. Read the article footnoted in Sec. 2.2 that describes an OR
study done for the Rijkswaterstaat of the Netherlands. (Focus es-
pecially on pp. 3–20 and 30–32.)
(a) Summarize the background that led to undertaking this study.
(b) Summarize the purpose of each of the five mathematical mod-

els described on pp. 10–18.



(c) Summarize the “impact measures” (measures of performance)
for comparing policies that are described on pp. 6–7 of this 
article.

(d) List the various tangible and intangible benefits that resulted
from the study.

2.2-2. Read Selected Reference 4.
(a) Identify the author’s example of a model in the natural sci-

ences and of a model in OR.
(b) Describe the author’s viewpoint about how basic precepts of

using models to do research in the natural sciences can also be
used to guide research on operations (OR).

2.3-1. Refer to Selected Reference 4.
(a) Describe the author’s viewpoint about whether the sole goal in

using a model should be to find its optimal solution.
(b) Summarize the author’s viewpoint about the complementary

roles of modeling, evaluating information from the model, and
then applying the decision maker’s judgment when deciding
on a course of action.

2.4-1. Refer to pp. 18–20 of the article footnoted in Sec. 2.2 that
describes an OR study done for the Rijkswaterstaat of the Nether-
lands. Describe an important lesson that was gained from model
validation in this study.

2.4-2. Read Selected Reference 5. Summarize the author’s view-
point about the roles of observation and experimentation in the
model validation process.

2.4-3. Read pp. 603–617 of Selected Reference 2.
(a) What does the author say about whether a model can be com-

pletely validated?
(b) Summarize the distinctions made between model validity, data

validity, logical/mathematical validity, predictive validity, op-
erational validity, and dynamic validity.

(c) Describe the role of sensitivity analysis in testing the opera-
tional validity of a model.

(d) What does the author say about whether there is a validation
methodology that is appropriate for all models?

(e) Cite the page in the article that lists basic validation steps.

2.5-1. Read the article footnoted in Sec. 2.5 that describes an OR
study done for Texaco.
(a) Summarize the background that led to undertaking this study.
(b) Briefly describe the user interface with the decision support

system OMEGA that was developed as a result of this study.
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(c) OMEGA is constantly being updated and extended to reflect
changes in the operating environment. Briefly describe the var-
ious kinds of changes involved.

(d) Summarize how OMEGA is used.
(e) List the various tangible and intangible benefits that resulted

from the study.

2.5-2. Refer to the article footnoted in Sec. 2.5 that describes an
OR study done for Yellow Freight System, Inc.
(a) Referring to pp. 147–149 of this article, summarize the back-

ground that led to undertaking this study.
(b) Referring to p. 150, briefly describe the computer system

SYSNET that was developed as a result of this study. Also
summarize the applications of SYSNET.

(c) Referring to pp. 162–163, describe why the interactive aspects
of SYSNET proved important.

(d) Referring to p. 163, summarize the outputs from SYSNET.
(e) Referring to pp. 168–172, summarize the various benefits that

have resulted from using SYSNET.

2.6-1. Refer to pp. 163–167 of the article footnoted in Sec. 2.5
that describes an OR study done for Yellow Freight System, Inc.,
and the resulting computer system SYSNET.
(a) Briefly describe how the OR team gained the support of up-

per management for implementing SYSNET.
(b) Briefly describe the implementation strategy that was developed.
(c) Briefly describe the field implementation.
(d) Briefly describe how management incentives and enforcement

were used in implementing SYSNET.

2.6-2. Read the article footnoted in Sec. 2.4 that describes an OR
study done for IBM and the resulting computer system Optimizer.
(a) Summarize the background that led to undertaking this study.
(b) List the complicating factors that the OR team members faced

when they started developing a model and a solution algorithm.
(c) Briefly describe the preimplementation test of Optimizer.
(d) Briefly describe the field implementation test.
(e) Briefly describe national implementation.
(f) List the various tangible and intangible benefits that resulted

from the study.

2.7-1. Read Selected Reference 3. The author describes 13 detailed
phases of any OR study that develops and applies a computer-based
model, whereas this chapter describes six broader phases. For each
of these broader phases, list the detailed phases that fall partially
or primarily within the broader phase.
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3
Introduction to Linear
Programming

The development of linear programming has been ranked among the most important sci-
entific advances of the mid-20th century, and we must agree with this assessment. Its im-
pact since just 1950 has been extraordinary. Today it is a standard tool that has saved many
thousands or millions of dollars for most companies or businesses of even moderate size
in the various industrialized countries of the world; and its use in other sectors of society
has been spreading rapidly. A major proportion of all scientific computation on comput-
ers is devoted to the use of linear programming. Dozens of textbooks have been written
about linear programming, and published articles describing important applications now
number in the hundreds.

What is the nature of this remarkable tool, and what kinds of problems does it ad-
dress? You will gain insight into this topic as you work through subsequent examples. How-
ever, a verbal summary may help provide perspective. Briefly, the most common type of
application involves the general problem of allocating limited resources among competing
activities in a best possible (i.e., optimal) way. More precisely, this problem involves se-
lecting the level of certain activities that compete for scarce resources that are necessary
to perform those activities. The choice of activity levels then dictates how much of each
resource will be consumed by each activity. The variety of situations to which this de-
scription applies is diverse, indeed, ranging from the allocation of production facilities to
products to the allocation of national resources to domestic needs, from portfolio selection
to the selection of shipping patterns, from agricultural planning to the design of radiation
therapy, and so on. However, the one common ingredient in each of these situations is the
necessity for allocating resources to activities by choosing the levels of those activities.

Linear programming uses a mathematical model to describe the problem of concern.
The adjective linear means that all the mathematical functions in this model are required
to be linear functions. The word programming does not refer here to computer program-
ming; rather, it is essentially a synonym for planning. Thus, linear programming involves
the planning of activities to obtain an optimal result, i.e., a result that reaches the speci-
fied goal best (according to the mathematical model) among all feasible alternatives.

Although allocating resources to activities is the most common type of application,
linear programming has numerous other important applications as well. In fact, any prob-
lem whose mathematical model fits the very general format for the linear programming
model is a linear programming problem. Furthermore, a remarkably efficient solution pro-



cedure, called the simplex method, is available for solving linear programming problems
of even enormous size. These are some of the reasons for the tremendous impact of lin-
ear programming in recent decades.

Because of its great importance, we devote this and the next six chapters specifically
to linear programming. After this chapter introduces the general features of linear pro-
gramming, Chaps. 4 and 5 focus on the simplex method. Chapter 6 discusses the further
analysis of linear programming problems after the simplex method has been initially ap-
plied. Chapter 7 presents several widely used extensions of the simplex method and intro-
duces an interior-point algorithm that sometimes can be used to solve even larger linear pro-
gramming problems than the simplex method can handle. Chapters 8 and 9 consider some
special types of linear programming problems whose importance warrants individual study.

You also can look forward to seeing applications of linear programming to other ar-
eas of operations research (OR) in several later chapters.

We begin this chapter by developing a miniature prototype example of a linear pro-
gramming problem. This example is small enough to be solved graphically in a straight-
forward way. The following two sections present the general linear programming model
and its basic assumptions. Sections 3.4 and 3.5 give some additional examples of linear
programming applications, including three case studies. Section 3.6 describes how linear
programming models of modest size can be conveniently displayed and solved on a spread-
sheet. However, some linear programming problems encountered in practice require truly
massive models. Section 3.7 illustrates how a massive model can arise and how it can still
be formulated successfully with the help of a special modeling language such as MPL
(described in this section) or LINGO (described in the appendix to this chapter).
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The WYNDOR GLASS CO. produces high-quality glass products, including windows and
glass doors. It has three plants. Aluminum frames and hardware are made in Plant 1, wood
frames are made in Plant 2, and Plant 3 produces the glass and assembles the products.

Because of declining earnings, top management has decided to revamp the company’s
product line. Unprofitable products are being discontinued, releasing production capacity
to launch two new products having large sales potential:

Product 1: An 8-foot glass door with aluminum framing
Product 2: A 4 � 6 foot double-hung wood-framed window

Product 1 requires some of the production capacity in Plants 1 and 3, but none in Plant
2. Product 2 needs only Plants 2 and 3. The marketing division has concluded that the
company could sell as much of either product as could be produced by these plants. How-
ever, because both products would be competing for the same production capacity in Plant
3, it is not clear which mix of the two products would be most profitable. Therefore, an
OR team has been formed to study this question.

The OR team began by having discussions with upper management to identify man-
agement’s objectives for the study. These discussions led to developing the following def-
inition of the problem:

Determine what the production rates should be for the two products in order to maximize
their total profit, subject to the restrictions imposed by the limited production capacities

3.1 PROTOTYPE EXAMPLE



available in the three plants. (Each product will be produced in batches of 20, so the pro-
duction rate is defined as the number of batches produced per week.) Any combination
of production rates that satisfies these restrictions is permitted, including producing none
of one product and as much as possible of the other.

The OR team also identified the data that needed to be gathered:

1. Number of hours of production time available per week in each plant for these new
products. (Most of the time in these plants already is committed to current products,
so the available capacity for the new products is quite limited.)

2. Number of hours of production time used in each plant for each batch produced of
each new product.

3. Profit per batch produced of each new product. (Profit per batch produced was cho-
sen as an appropriate measure after the team concluded that the incremental profit from
each additional batch produced would be roughly constant regardless of the total num-
ber of batches produced. Because no substantial costs will be incurred to initiate the
production and marketing of these new products, the total profit from each one is ap-
proximately this profit per batch produced times the number of batches produced.)

Obtaining reasonable estimates of these quantities required enlisting the help of key
personnel in various units of the company. Staff in the manufacturing division provided
the data in the first category above. Developing estimates for the second category of data
required some analysis by the manufacturing engineers involved in designing the pro-
duction processes for the new products. By analyzing cost data from these same engineers
and the marketing division, along with a pricing decision from the marketing division, the
accounting department developed estimates for the third category.

Table 3.1 summarizes the data gathered.
The OR team immediately recognized that this was a linear programming problem

of the classic product mix type, and the team next undertook the formulation of the cor-
responding mathematical model.

Formulation as a Linear Programming Problem

To formulate the mathematical (linear programming) model for this problem, let

x1 � number of batches of product 1 produced per week

x2 � number of batches of product 2 produced per week

Z � total profit per week (in thousands of dollars) from producing these two products

Thus, x1 and x2 are the decision variables for the model. Using the bottom row of Table
3.1, we obtain

Z � 3x1 � 5x2.

The objective is to choose the values of x1 and x2 so as to maximize Z � 3x1 � 5x2, sub-
ject to the restrictions imposed on their values by the limited production capacities avail-
able in the three plants. Table 3.1 indicates that each batch of product 1 produced per
week uses 1 hour of production time per week in Plant 1, whereas only 4 hours per week
are available. This restriction is expressed mathematically by the inequality x1 � 4. Simi-
larly, Plant 2 imposes the restriction that 2x2 � 12. The number of hours of production
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time used per week in Plant 3 by choosing x1 and x2 as the new products’ production rates
would be 3x1 � 2x2. Therefore, the mathematical statement of the Plant 3 restriction is
3x1 � 2x2 � 18. Finally, since production rates cannot be negative, it is necessary to re-
strict the decision variables to be nonnegative: x1 � 0 and x2 � 0.

To summarize, in the mathematical language of linear programming, the problem is
to choose values of x1 and x2 so as to

Maximize Z � 3x1 � 5x2,

subject to the restrictions

3x1 � 2x2 � 4
3x1 � 2x2 � 12
3x1 � 2x2 � 18

and

x1 � 0, x2 � 0.

(Notice how the layout of the coefficients of x1 and x2 in this linear programming model
essentially duplicates the information summarized in Table 3.1.)

Graphical Solution

This very small problem has only two decision variables and therefore only two dimen-
sions, so a graphical procedure can be used to solve it. This procedure involves con-
structing a two-dimensional graph with x1 and x2 as the axes. The first step is to identify
the values of (x1, x2) that are permitted by the restrictions. This is done by drawing each
line that borders the range of permissible values for one restriction. To begin, note that
the nonnegativity restrictions x1 � 0 and x2 � 0 require (x1, x2) to lie on the positive side
of the axes (including actually on either axis), i.e., in the first quadrant. Next, observe that
the restriction x1 � 4 means that (x1, x2) cannot lie to the right of the line x1 � 4. These
results are shown in Fig. 3.1, where the shaded area contains the only values of (x1, x2)
that are still allowed.

In a similar fashion, the restriction 2x2 � 12 (or, equivalently, x2 � 6) implies that
the line 2x2 � 12 should be added to the boundary of the permissible region. The final
restriction, 3x1 � 2x2 � 18, requires plotting the points (x1, x2) such that 3x1 � 2x2 � 18
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TABLE 3.1 Data for the Wyndor Glass Co. problem

Production Time
per Batch, Hours

Product
Production Time

Plant 1 2 Available per Week, Hours

1 1 0 4
2 0 2 12
3 3 2 18

Profit per batch $3,000 $5,000



(another line) to complete the boundary. (Note that the points such that 3x1 � 2x2 � 18
are those that lie either underneath or on the line 3x1 � 2x2 � 18, so this is the limiting
line above which points do not satisfy the inequality.) The resulting region of permissi-
ble values of (x1, x2), called the feasible region, is shown in Fig. 3.2. (The demo called
Graphical Method in your OR Tutor provides a more detailed example of constructing a
feasible region.)
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The final step is to pick out the point in this feasible region that maximizes the
value of Z � 3x1 � 5x2. To discover how to perform this step efficiently, begin by trial
and error. Try, for example, Z � 10 � 3x1 � 5x2 to see if there are in the permissible
region any values of (x1, x2) that yield a value of Z as large as 10. By drawing the line
3x1 � 5x2 � 10 (see Fig. 3.3), you can see that there are many points on this line that
lie within the region. Having gained perspective by trying this arbitrarily chosen value
of Z � 10, you should next try a larger arbitrary value of Z, say, Z � 20 � 3x1 � 5x2.
Again, Fig. 3.3 reveals that a segment of the line 3x1 � 5x2 � 20 lies within the region,
so that the maximum permissible value of Z must be at least 20.

Now notice in Fig. 3.3 that the two lines just constructed are parallel. This is no co-
incidence, since any line constructed in this way has the form Z � 3x1 � 5x2 for the cho-
sen value of Z, which implies that 5x2 � �3x1 � Z or, equivalently,

x2 � ��
3
5

� x1 � �
1
5

� Z

This last equation, called the slope-intercept form of the objective function, demonstrates
that the slope of the line is ��

3
5

� (since each unit increase in x1 changes x2 by ��
3
5

�), whereas
the intercept of the line with the x2 axis is �

1
5

� Z (since x2 � �
1
5

� Z when x1 � 0). The fact that
the slope is fixed at ��

3
5

� means that all lines constructed in this way are parallel.
Again, comparing the 10 � 3x1 � 5x2 and 20 � 3x1 � 5x2 lines in Fig. 3.3, we note

that the line giving a larger value of Z (Z � 20) is farther up and away from the origin
than the other line (Z � 10). This fact also is implied by the slope-intercept form of the
objective function, which indicates that the intercept with the x1 axis ( �

1
5

� Z) increases when
the value chosen for Z is increased.
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FIGURE 3.3
The value of (x1, x2) that 
maximizes 3x1 � 5x2 is (2, 6).
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These observations imply that our trial-and-error procedure for constructing lines in Fig.
3.3 involves nothing more than drawing a family of parallel lines containing at least one point
in the feasible region and selecting the line that corresponds to the largest value of Z. Figure
3.3 shows that this line passes through the point (2, 6), indicating that the optimal solution
is x1 � 2 and x2 � 6. The equation of this line is 3x1 � 5x2 � 3(2) � 5(6) � 36 � Z, indi-
cating that the optimal value of Z is Z � 36. The point (2, 6) lies at the intersection of the
two lines 2x2 � 12 and 3x1 � 2x2 � 18, shown in Fig. 3.2, so that this point can be calcu-
lated algebraically as the simultaneous solution of these two equations.

Having seen the trial-and-error procedure for finding the optimal point (2, 6), you
now can streamline this approach for other problems. Rather than draw several parallel
lines, it is sufficient to form a single line with a ruler to establish the slope. Then move
the ruler with fixed slope through the feasible region in the direction of improving Z.
(When the objective is to minimize Z, move the ruler in the direction that decreases Z.)
Stop moving the ruler at the last instant that it still passes through a point in this region.
This point is the desired optimal solution.

This procedure often is referred to as the graphical method for linear programming. It
can be used to solve any linear programming problem with two decision variables. With con-
siderable difficulty, it is possible to extend the method to three decision variables but not more
than three. (The next chapter will focus on the simplex method for solving larger problems.)

Conclusions

The OR team used this approach to find that the optimal solution is x1 � 2, x2 � 6, with
Z � 36. This solution indicates that the Wyndor Glass Co. should produce products 1 and
2 at the rate of 2 batches per week and 6 batches per week, respectively, with a resulting
total profit of $36,000 per week. No other mix of the two products would be so prof-
itable—according to the model.

However, we emphasized in Chap. 2 that well-conducted OR studies do not simply
find one solution for the initial model formulated and then stop. All six phases described
in Chap. 2 are important, including thorough testing of the model (see Sec. 2.4) and postop-
timality analysis (see Sec. 2.3).

In full recognition of these practical realities, the OR team now is ready to evaluate
the validity of the model more critically (to be continued in Sec. 3.3) and to perform sen-
sitivity analysis on the effect of the estimates in Table 3.1 being different because of in-
accurate estimation, changes of circumstances, etc. (to be continued in Sec. 6.7).

Continuing the Learning Process with Your OR Courseware

This is the first of many points in the book where you may find it helpful to use your OR
Courseware in the CD-ROM that accompanies this book. A key part of this courseware
is a program called OR Tutor. This program includes a complete demonstration example
of the graphical method introduced in this section. Like the many other demonstration ex-
amples accompanying other sections of the book, this computer demonstration highlights
concepts that are difficult to convey on the printed page. You may refer to Appendix 1 for
documentation of the software.

When you formulate a linear programming model with more than two decision vari-
ables (so the graphical method cannot be used), the simplex method described in Chap. 4
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enables you to still find an optimal solution immediately. Doing so also is helpful for
model validation, since finding a nonsensical optimal solution signals that you have made
a mistake in formulating the model.

We mentioned in Sec. 1.4 that your OR Courseware introduces you to three particu-
larly popular commercial software packages—the Excel Solver, LINGO/LINDO, and
MPL/CPLEX—for solving a variety of OR models. All three packages include the sim-
plex method for solving linear programming models. Section 3.6 describes how to use
Excel to formulate and solve linear programming models in a spreadsheet format. De-
scriptions of the other packages are provided in Sec. 3.7 (MPL and LINGO), Appendix
3.1 (LINGO), Sec. 4.8 (CPLEX and LINDO), and Appendix 4.1 (LINDO). In addition,
your OR Courseware includes a file for each of the three packages showing how it can
be used to solve each of the examples in this chapter.
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The Wyndor Glass Co. problem is intended to illustrate a typical linear programming prob-
lem (miniature version). However, linear programming is too versatile to be completely
characterized by a single example. In this section we discuss the general characteristics
of linear programming problems, including the various legitimate forms of the mathe-
matical model for linear programming.

Let us begin with some basic terminology and notation. The first column of Table 3.2
summarizes the components of the Wyndor Glass Co. problem. The second column then
introduces more general terms for these same components that will fit many linear pro-
gramming problems. The key terms are resources and activities, where m denotes the num-
ber of different kinds of resources that can be used and n denotes the number of activi-
ties being considered. Some typical resources are money and particular kinds of machines,
equipment, vehicles, and personnel. Examples of activities include investing in particular
projects, advertising in particular media, and shipping goods from a particular source to
a particular destination. In any application of linear programming, all the activities may
be of one general kind (such as any one of these three examples), and then the individ-
ual activities would be particular alternatives within this general category.

As described in the introduction to this chapter, the most common type of applica-
tion of linear programming involves allocating resources to activities. The amount avail-
able of each resource is limited, so a careful allocation of resources to activities must be
made. Determining this allocation involves choosing the levels of the activities that achieve
the best possible value of the overall measure of performance.

3.2 THE LINEAR PROGRAMMING MODEL

TABLE 3.2 Common terminology for linear programming

Prototype Example General Problem

Production capacities of plants Resources
3 plants m resources

Production of products Activities
2 products n activities
Production rate of product j, xj Level of activity j, xj

Profit Z Overall measure of performance Z



Certain symbols are commonly used to denote the various components of a linear
programming model. These symbols are listed below, along with their interpretation for
the general problem of allocating resources to activities.

Z � value of overall measure of performance.

xj � level of activity j (for j � 1, 2, . . . , n).

cj � increase in Z that would result from each unit increase in level of activity j.

bi � amount of resource i that is available for allocation to activities (for i �
1, 2, . . . , m).

aij � amount of resource i consumed by each unit of activity j.

The model poses the problem in terms of making decisions about the levels of the activ-
ities, so x1, x2, . . . , xn are called the decision variables. As summarized in Table 3.3, the
values of cj, bi, and aij (for i � 1, 2, . . . , m and j � 1, 2, . . . , n) are the input constants
for the model. The cj, bi, and aij are also referred to as the parameters of the model.

Notice the correspondence between Table 3.3 and Table 3.1.

A Standard Form of the Model

Proceeding as for the Wyndor Glass Co. problem, we can now formulate the mathemati-
cal model for this general problem of allocating resources to activities. In particular, this
model is to select the values for x1, x2, . . . , xn so as to

Maximize Z � c1x1 � c2x2 � 			 � cnxn,

subject to the restrictions

a11x1 � a12x2 � 			 � a1nxn � b1

a21x1 � a22x2 � 			 � a2nxn � b2

�
am1x1 � am2x2 � 			 � amnxn � bm,
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TABLE 3.3 Data needed for a linear programming model involving the allocation
of resources to activities

Resource Usage per Unit of Activity

Activity
Amount of

Resource 1 2 . . . n Resource Available

1 a11 a12 . . . a1n b1

2 a21 a22 . . . a2n b2

. .

. . . . . . . . . . . . . .

. .
m am1 am2 . . . amn bm

Contribution to Z per c1 c2 . . . cn

unit of activity



and

x1 � 0, x2 � 0, . . . , xn � 0. 

We call this our standard form1 for the linear programming problem. Any situation whose
mathematical formulation fits this model is a linear programming problem.

Notice that the model for the Wyndor Glass Co. problem fits our standard form, with
m � 3 and n � 2. 

Common terminology for the linear programming model can now be summarized.
The function being maximized, c1x1 � c2x2 � 			 � cnxn, is called the objective func-
tion. The restrictions normally are referred to as constraints. The first m constraints (those
with a function of all the variables ai1x1 � ai2x2 � 			 � ainxn on the left-hand side) are
sometimes called functional constraints (or structural constraints). Similarly, the xj � 0
restrictions are called nonnegativity constraints (or nonnegativity conditions).

Other Forms

We now hasten to add that the preceding model does not actually fit the natural form of
some linear programming problems. The other legitimate forms are the following:

1. Minimizing rather than maximizing the objective function:

Minimize Z � c1x1 � c2x2 � 			 � cnxn.

2. Some functional constraints with a greater-than-or-equal-to inequality:

ai1x1 � ai2x2 � 			 � ainxn � bi for some values of i.

3. Some functional constraints in equation form:

ai1x1 � ai2x2 � 			 � ainxn � bi for some values of i.

4. Deleting the nonnegativity constraints for some decision variables:

xj unrestricted in sign for some values of j.

Any problem that mixes some of or all these forms with the remaining parts of the pre-
ceding model is still a linear programming problem. Our interpretation of the words al-
locating limited resources among competing activities may no longer apply very well, if
at all; but regardless of the interpretation or context, all that is required is that the math-
ematical statement of the problem fit the allowable forms.

Terminology for Solutions of the Model

You may be used to having the term solution mean the final answer to a problem, but the
convention in linear programming (and its extensions) is quite different. Here, any spec-
ification of values for the decision variables (x1, x2, . . . , xn) is called a solution, regard-
less of whether it is a desirable or even an allowable choice. Different types of solutions
are then identified by using an appropriate adjective.
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1This is called our standard form rather than the standard form because some textbooks adopt other forms.



A feasible solution is a solution for which all the constraints are satisfied.
An infeasible solution is a solution for which at least one constraint is violated.

In the example, the points (2, 3) and (4, 1) in Fig. 3.2 are feasible solutions, while the
points (�1, 3) and (4, 4) are infeasible solutions.

The feasible region is the collection of all feasible solutions.

The feasible region in the example is the entire shaded area in Fig. 3.2.
It is possible for a problem to have no feasible solutions. This would have happened

in the example if the new products had been required to return a net profit of at least
$50,000 per week to justify discontinuing part of the current product line. The corre-
sponding constraint, 3x1 � 5x2 � 50, would eliminate the entire feasible region, so no mix
of new products would be superior to the status quo. This case is illustrated in Fig. 3.4.

Given that there are feasible solutions, the goal of linear programming is to find a
best feasible solution, as measured by the value of the objective function in the model.

An optimal solution is a feasible solution that has the most favorable value of
the objective function.

The most favorable value is the largest value if the objective function is to be maximized,
whereas it is the smallest value if the objective function is to be minimized.

Most problems will have just one optimal solution. However, it is possible to have more
than one. This would occur in the example if the profit per batch produced of product 2 were
changed to $2,000. This changes the objective function to Z � 3x1 � 2x2, so that all the points
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on the line segment connecting (2, 6) and (4, 3) would be optimal. This case is illustrated in
Fig. 3.5. As in this case, any problem having multiple optimal solutions will have an infi-
nite number of them, each with the same optimal value of the objective function.

Another possibility is that a problem has no optimal solutions. This occurs only if
(1) it has no feasible solutions or (2) the constraints do not prevent improving the value
of the objective function (Z) indefinitely in the favorable direction (positive or negative).
The latter case is referred to as having an unbounded Z. To illustrate, this case would re-
sult if the last two functional constraints were mistakenly deleted in the example, as il-
lustrated in Fig. 3.6.

We next introduce a special type of feasible solution that plays the key role when the
simplex method searches for an optimal solution.

A corner-point feasible (CPF) solution is a solution that lies at a corner of the
feasible region.

Figure 3.7 highlights the five CPF solutions for the example.
Sections 4.1 and 5.1 will delve into the various useful properties of CPF solutions for

problems of any size, including the following relationship with optimal solutions.

Relationship between optimal solutions and CPF solutions: Consider any linear pro-
gramming problem with feasible solutions and a bounded feasible region. The problem
must possess CPF solutions and at least one optimal solution. Furthermore, the best CPF
solution must be an optimal solution. Thus, if a problem has exactly one optimal solution,
it must be a CPF solution. If the problem has multiple optimal solutions, at least two must
be CPF solutions.
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FIGURE 3.5
The Wyndor Glass Co.
problem would have multiple
optimal solutions if the
objective function were
changed to Z � 3x1 � 2x2.
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FIGURE 3.6
The Wyndor Glass Co.
problem would have no
optimal solutions if the only
functional constraint were 
x1 � 4, because x2 then
could be increased
indefinitely in the feasible
region without ever reaching
the maximum value of 
Z � 3x1 � 5x2.

All the assumptions of linear programming actually are implicit in the model formulation
given in Sec. 3.2. However, it is good to highlight these assumptions so you can more
easily evaluate how well linear programming applies to any given problem. Furthermore,
we still need to see why the OR team for the Wyndor Glass Co. concluded that a linear
programming formulation provided a satisfactory representation of the problem.

Proportionality

Proportionality is an assumption about both the objective function and the functional con-
straints, as summarized below.

Proportionality assumption: The contribution of each activity to the value of
the objective function Z is proportional to the level of the activity xj, as repre-
sented by the cjxj term in the objective function. Similarly, the contribution of
each activity to the left-hand side of each functional constraint is proportional
to the level of the activity xj, as represented by the aijxj term in the constraint.

3.3 ASSUMPTIONS OF LINEAR PROGRAMMING

The example has exactly one optimal solution, (x1, x2) � (2, 6), which is a CPF so-
lution. (Think about how the graphical method leads to the one optimal solution being a
CPF solution.) When the example is modified to yield multiple optimal solutions, as shown
in Fig. 3.5, two of these optimal solutions—(2, 6) and (4, 3)—are CPF solutions.
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FIGURE 3.7
The five dots are the five CPF
solutions for the Wyndor
Glass Co. problem.

1When the function includes any cross-product terms, proportionality should be interpreted to mean that changes
in the function value are proportional to changes in each variable (xj) individually, given any fixed values for
all the other variables. Therefore, a cross-product term satisfies proportionality as long as each variable in the
term has an exponent of 1. (However, any cross-product term violates the additivity assumption, discussed next.)

TABLE 3.4 Examples of satisfying or violating proportionality

Profit from Product 1 ($000 per Week)

Proportionality Violated
Proportionality

x1 Satisfied Case 1 Case 2 Case 3

0 0 0 0 0
1 3 2 3 3
2 6 5 7 5
3 9 8 12 6
4 12 11 18 6

Consequently, this assumption rules out any exponent other than 1 for any vari-
able in any term of any function (whether the objective function or the function
on the left-hand side of a functional constraint) in a linear programming model.1

To illustrate this assumption, consider the first term (3x1) in the objective function 
(Z � 3x1 � 5x2) for the Wyndor Glass Co. problem. This term represents the profit gen-
erated per week (in thousands of dollars) by producing product 1 at the rate of x1 batches
per week. The proportionality satisfied column of Table 3.4 shows the case that was as-
sumed in Sec. 3.1, namely, that this profit is indeed proportional to x1 so that 3x1 is the
appropriate term for the objective function. By contrast, the next three columns show dif-
ferent hypothetical cases where the proportionality assumption would be violated.

Refer first to the Case 1 column in Table 3.4. This case would arise if there were
start-up costs associated with initiating the production of product 1. For example, there



might be costs involved with setting up the production facilities. There might also be costs
associated with arranging the distribution of the new product. Because these are one-time
costs, they would need to be amortized on a per-week basis to be commensurable with Z
(profit in thousands of dollars per week). Suppose that this amortization were done and
that the total start-up cost amounted to reducing Z by 1, but that the profit without con-
sidering the start-up cost would be 3x1. This would mean that the contribution from prod-
uct 1 to Z should be 3x1 � 1 for x1 � 0, whereas the contribution would be 3x1 � 0 when
x1 � 0 (no start-up cost). This profit function,1 which is given by the solid curve in Fig.
3.8, certainly is not proportional to x1.

At first glance, it might appear that Case 2 in Table 3.4 is quite similar to Case 1.
However, Case 2 actually arises in a very different way. There no longer is a start-up cost,
and the profit from the first unit of product 1 per week is indeed 3, as originally assumed.
However, there now is an increasing marginal return; i.e., the slope of the profit function
for product 1 (see the solid curve in Fig. 3.9) keeps increasing as x1 is increased. This vi-
olation of proportionality might occur because of economies of scale that can sometimes
be achieved at higher levels of production, e.g., through the use of more efficient high-
volume machinery, longer production runs, quantity discounts for large purchases of raw
materials, and the learning-curve effect whereby workers become more efficient as they
gain experience with a particular mode of production. As the incremental cost goes down,
the incremental profit will go up (assuming constant marginal revenue).
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FIGURE 3.8
The solid curve violates the
proportionality assumption
because of the start-up cost
that is incurred when x1 is
increased from 0. The values
at the dots are given by the
Case 1 column of Table 3.4.

1If the contribution from product 1 to Z were 3x1 � 1 for all x1 � 0, including x1 � 0, then the fixed constant,
�1, could be deleted from the objective function without changing the optimal solution and proportionality
would be restored. However, this “fix” does not work here because the �1 constant does not apply when 
x1 � 0.



Referring again to Table 3.4, the reverse of Case 2 is Case 3, where there is a decreas-
ing marginal return. In this case, the slope of the profit function for product 1 (given by the
solid curve in Fig. 3.10) keeps decreasing as x1 is increased. This violation of proportional-
ity might occur because the marketing costs need to go up more than proportionally to attain
increases in the level of sales. For example, it might be possible to sell product 1 at the rate
of 1 per week (x1 � 1) with no advertising, whereas attaining sales to sustain a production
rate of x1 � 2 might require a moderate amount of advertising, x1 � 3 might necessitate an
extensive advertising campaign, and x1 � 4 might require also lowering the price.

All three cases are hypothetical examples of ways in which the proportionality as-
sumption could be violated. What is the actual situation? The actual profit from produc-
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ing product 1 (or any other product) is derived from the sales revenue minus various di-
rect and indirect costs. Inevitably, some of these cost components are not strictly propor-
tional to the production rate, perhaps for one of the reasons illustrated above. However,
the real question is whether, after all the components of profit have been accumulated,
proportionality is a reasonable approximation for practical modeling purposes. For the
Wyndor Glass Co. problem, the OR team checked both the objective function and the
functional constraints. The conclusion was that proportionality could indeed be assumed
without serious distortion.

For other problems, what happens when the proportionality assumption does not hold
even as a reasonable approximation? In most cases, this means you must use nonlinear
programming instead (presented in Chap. 13). However, we do point out in Sec. 13.8 that
a certain important kind of nonproportionality can still be handled by linear programming
by reformulating the problem appropriately. Furthermore, if the assumption is violated
only because of start-up costs, there is an extension of linear programming (mixed inte-
ger programming) that can be used, as discussed in Sec. 12.3 (the fixed-charge problem).

Additivity

Although the proportionality assumption rules out exponents other than 1, it does not pro-
hibit cross-product terms (terms involving the product of two or more variables). The ad-
ditivity assumption does rule out this latter possibility, as summarized below.

Additivity assumption: Every function in a linear programming model (whether
the objective function or the function on the left-hand side of a functional con-
straint) is the sum of the individual contributions of the respective activities.

To make this definition more concrete and clarify why we need to worry about this
assumption, let us look at some examples. Table 3.5 shows some possible cases for the ob-
jective function for the Wyndor Glass Co. problem. In each case, the individual contribu-
tions from the products are just as assumed in Sec. 3.1, namely, 3x1 for product 1 and 5x2

for product 2. The difference lies in the last row, which gives the function value for Z when
the two products are produced jointly. The additivity satisfied column shows the case where
this function value is obtained simply by adding the first two rows (3 � 5 � 8), so that 
Z � 3x1 � 5x2 as previously assumed. By contrast, the next two columns show hypothet-
ical cases where the additivity assumption would be violated (but not the proportionality
assumption).
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TABLE 3.5 Examples of satisfying or violating additivity for the objective function

Value of Z

Additivity Violated

(x1, x2) Additivity Satisfied Case 1 Case 2

(1, 0) 3 3 3
(0, 1) 5 5 5

(1, 1) 8 9 7



Referring to the Case 1 column of Table 3.5, this case corresponds to an objective
function of Z � 3x1 � 5x2 � x1x2, so that Z � 3 � 5 � 1 � 9 for (x1, x2) � (1, 1), thereby
violating the additivity assumption that Z � 3 � 5. (The proportionality assumption still
is satisfied since after the value of one variable is fixed, the increment in Z from the other
variable is proportional to the value of that variable.) This case would arise if the two
products were complementary in some way that increases profit. For example, suppose
that a major advertising campaign would be required to market either new product pro-
duced by itself, but that the same single campaign can effectively promote both products
if the decision is made to produce both. Because a major cost is saved for the second
product, their joint profit is somewhat more than the sum of their individual profits when
each is produced by itself.

Case 2 in Table 3.5 also violates the additivity assumption because of the extra term
in the corresponding objective function, Z � 3x1 � 5x2 � x1x2, so that Z � 3 � 5 � 1 � 7
for (x1, x2) � (1, 1). As the reverse of the first case, Case 2 would arise if the two prod-
ucts were competitive in some way that decreased their joint profit. For example, suppose
that both products need to use the same machinery and equipment. If either product were
produced by itself, this machinery and equipment would be dedicated to this one use.
However, producing both products would require switching the production processes back
and forth, with substantial time and cost involved in temporarily shutting down the pro-
duction of one product and setting up for the other. Because of this major extra cost, their
joint profit is somewhat less than the sum of their individual profits when each is pro-
duced by itself.

The same kinds of interaction between activities can affect the additivity of the con-
straint functions. For example, consider the third functional constraint of the Wyndor Glass
Co. problem: 3x1 � 2x2 � 18. (This is the only constraint involving both products.) This
constraint concerns the production capacity of Plant 3, where 18 hours of production time
per week is available for the two new products, and the function on the left-hand side 
(3x1 � 2x2) represents the number of hours of production time per week that would be
used by these products. The additivity satisfied column of Table 3.6 shows this case as is,
whereas the next two columns display cases where the function has an extra cross-
product term that violates additivity. For all three columns, the individual contributions
from the products toward using the capacity of Plant 3 are just as assumed previously,
namely, 3x1 for product 1 and 2x2 for product 2, or 3(2) � 6 for x1 � 2 and 2(3) � 6 for
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TABLE 3.6 Examples of satisfying or violating additivity 
for a functional constraint

Amount of Resource Used

Additivity Violated

(x1, x2) Additivity Satisfied Case 3 Case 4

(2, 0) 6 6 6
(0, 3) 6 6 6

(2, 3) 12 15 10.8



x2 � 3. As was true for Table 3.5, the difference lies in the last row, which now gives the
total function value for production time used when the two products are produced jointly.

For Case 3 (see Table 3.6), the production time used by the two products is given by
the function 3x1 � 2x2 � 0.5x1x2, so the total function value is 6 � 6 � 3 � 15 when 
(x1, x2) � (2, 3), which violates the additivity assumption that the value is just 6 � 6 � 12.
This case can arise in exactly the same way as described for Case 2 in Table 3.5; namely,
extra time is wasted switching the production processes back and forth between the two
products. The extra cross-product term (0.5x1x2) would give the production time wasted
in this way. (Note that wasting time switching between products leads to a positive cross-
product term here, where the total function is measuring production time used, whereas
it led to a negative cross-product term for Case 2 because the total function there mea-
sures profit.)

For Case 4 in Table 3.6, the function for production time used is 3x1 � 2x2 � 0.1x1
2x2,

so the function value for (x1, x2) � (2, 3) is 6 � 6 � 1.2 � 10.8. This case could arise in
the following way. As in Case 3, suppose that the two products require the same type of
machinery and equipment. But suppose now that the time required to switch from one
product to the other would be relatively small. Because each product goes through a se-
quence of production operations, individual production facilities normally dedicated to
that product would incur occasional idle periods. During these otherwise idle periods,
these facilities can be used by the other product. Consequently, the total production time
used (including idle periods) when the two products are produced jointly would be less
than the sum of the production times used by the individual products when each is pro-
duced by itself.

After analyzing the possible kinds of interaction between the two products illustrated
by these four cases, the OR team concluded that none played a major role in the actual
Wyndor Glass Co. problem. Therefore, the additivity assumption was adopted as a rea-
sonable approximation.

For other problems, if additivity is not a reasonable assumption, so that some of or
all the mathematical functions of the model need to be nonlinear (because of the cross-
product terms), you definitely enter the realm of nonlinear programming (Chap. 13).

Divisibility

Our next assumption concerns the values allowed for the decision variables.

Divisibility assumption: Decision variables in a linear programming model are
allowed to have any values, including noninteger values, that satisfy the func-
tional and nonnegativity constraints. Thus, these variables are not restricted to
just integer values. Since each decision variable represents the level of some ac-
tivity, it is being assumed that the activities can be run at fractional levels.

For the Wyndor Glass Co. problem, the decision variables represent production rates
(the number of batches of a product produced per week). Since these production rates can
have any fractional values within the feasible region, the divisibility assumption does hold.

In certain situations, the divisibility assumption does not hold because some of or all
the decision variables must be restricted to integer values. Mathematical models with this
restriction are called integer programming models, and they are discussed in Chap. 12.
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Certainty

Our last assumption concerns the parameters of the model, namely, the coefficients in the
objective function cj, the coefficients in the functional constraints aij, and the right-hand
sides of the functional constraints bi.

Certainty assumption: The value assigned to each parameter of a linear pro-
gramming model is assumed to be a known constant.

In real applications, the certainty assumption is seldom satisfied precisely. Linear pro-
gramming models usually are formulated to select some future course of action. There-
fore, the parameter values used would be based on a prediction of future conditions, which
inevitably introduces some degree of uncertainty.

For this reason it is usually important to conduct sensitivity analysis after a solution
is found that is optimal under the assumed parameter values. As discussed in Sec. 2.3,
one purpose is to identify the sensitive parameters (those whose value cannot be changed
without changing the optimal solution), since any later change in the value of a sensitive
parameter immediately signals a need to change the solution being used.

Sensitivity analysis plays an important role in the analysis of the Wyndor Glass Co.
problem, as you will see in Sec. 6.7. However, it is necessary to acquire some more back-
ground before we finish that story.

Occasionally, the degree of uncertainty in the parameters is too great to be amenable
to sensitivity analysis. In this case, it is necessary to treat the parameters explicitly as ran-
dom variables. Formulations of this kind have been developed, as discussed in Secs. 23.6
and 23.7 on the book’s web site, wwww.mhhe.com/hillier.

The Assumptions in Perspective

We emphasized in Sec. 2.2 that a mathematical model is intended to be only an idealized
representation of the real problem. Approximations and simplifying assumptions gener-
ally are required in order for the model to be tractable. Adding too much detail and pre-
cision can make the model too unwieldy for useful analysis of the problem. All that is re-
ally needed is that there be a reasonably high correlation between the prediction of the
model and what would actually happen in the real problem.

This advice certainly is applicable to linear programming. It is very common in real
applications of linear programming that almost none of the four assumptions hold com-
pletely. Except perhaps for the divisibility assumption, minor disparities are to be expected.
This is especially true for the certainty assumption, so sensitivity analysis normally is a
must to compensate for the violation of this assumption.

However, it is important for the OR team to examine the four assumptions for the
problem under study and to analyze just how large the disparities are. If any of the as-
sumptions are violated in a major way, then a number of useful alternative models are
available, as presented in later chapters of the book. A disadvantage of these other mod-
els is that the algorithms available for solving them are not nearly as powerful as those
for linear programming, but this gap has been closing in some cases. For some applica-
tions, the powerful linear programming approach is used for the initial analysis, and then
a more complicated model is used to refine this analysis.
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As you work through the examples in the next section, you will find it good practice
to analyze how well each of the four assumptions of linear programming applies.
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The Wyndor Glass Co. problem is a prototype example of linear programming in several
respects: It involves allocating limited resources among competing activities, its model
fits our standard form, and its context is the traditional one of improved business plan-
ning. However, the applicability of linear programming is much wider. In this section we
begin broadening our horizons. As you study the following examples, note that it is their
underlying mathematical model rather than their context that characterizes them as linear
programming problems. Then give some thought to how the same mathematical model
could arise in many other contexts by merely changing the names of the activities and so
forth.

These examples are scaled-down versions of actual applications (including two that
are included in the case studies presented in the next section).

Design of Radiation Therapy

MARY has just been diagnosed as having a cancer at a fairly advanced stage. Specifi-
cally, she has a large malignant tumor in the bladder area (a “whole bladder lesion”).

Mary is to receive the most advanced medical care available to give her every possi-
ble chance for survival. This care will include extensive radiation therapy.

Radiation therapy involves using an external beam treatment machine to pass ioniz-
ing radiation through the patient’s body, damaging both cancerous and healthy tissues.
Normally, several beams are precisely administered from different angles in a two-
dimensional plane. Due to attenuation, each beam delivers more radiation to the tissue
near the entry point than to the tissue near the exit point. Scatter also causes some deliv-
ery of radiation to tissue outside the direct path of the beam. Because tumor cells are typ-
ically microscopically interspersed among healthy cells, the radiation dosage throughout
the tumor region must be large enough to kill the malignant cells, which are slightly more
radiosensitive, yet small enough to spare the healthy cells. At the same time, the aggre-
gate dose to critical tissues must not exceed established tolerance levels, in order to pre-
vent complications that can be more serious than the disease itself. For the same reason,
the total dose to the entire healthy anatomy must be minimized.

Because of the need to carefully balance all these factors, the design of radiation ther-
apy is a very delicate process. The goal of the design is to select the combination of beams
to be used, and the intensity of each one, to generate the best possible dose distribution.
(The dose strength at any point in the body is measured in units called kilorads.) Once
the treatment design has been developed, it is administered in many installments, spread
over several weeks.

In Mary’s case, the size and location of her tumor make the design of her treatment
an even more delicate process than usual. Figure 3.11 shows a diagram of a cross section
of the tumor viewed from above, as well as nearby critical tissues to avoid. These tissues
include critical organs (e.g., the rectum) as well as bony structures (e.g., the femurs and
pelvis) that will attenuate the radiation. Also shown are the entry point and direction for
the only two beams that can be used with any modicum of safety in this case. (Actually,
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we are simplifying the example at this point, because normally dozens of possible beams
must be considered.)

For any proposed beam of given intensity, the analysis of what the resulting radia-
tion absorption by various parts of the body would be requires a complicated process. In
brief, based on careful anatomical analysis, the energy distribution within the two-
dimensional cross section of the tissue can be plotted on an isodose map, where the con-
tour lines represent the dose strength as a percentage of the dose strength at the entry
point. A fine grid then is placed over the isodose map. By summing the radiation absorbed
in the squares containing each type of tissue, the average dose that is absorbed by the tu-
mor, healthy anatomy, and critical tissues can be calculated. With more than one beam
(administered sequentially), the radiation absorption is additive.

After thorough analysis of this type, the medical team has carefully estimated the data
needed to design Mary’s treatment, as summarized in Table 3.7. The first column lists the
areas of the body that must be considered, and then the next two columns give the frac-
tion of the radiation dose at the entry point for each beam that is absorbed by the re-
spective areas on average. For example, if the dose level at the entry point for beam 1 is
1 kilorad, then an average of 0.4 kilorad will be absorbed by the entire healthy anatomy
in the two-dimensional plane, an average of 0.3 kilorad will be absorbed by nearby crit-
ical tissues, an average of 0.5 kilorad will be absorbed by the various parts of the tumor,
and 0.6 kilorad will be absorbed by the center of the tumor. The last column gives the re-
strictions on the total dosage from both beams that is absorbed on average by the re-
spective areas of the body. In particular, the average dosage absorption for the healthy
anatomy must be as small as possible, the critical tissues must not exceed 2.7 kilorads,
the average over the entire tumor must equal 6 kilorads, and the center of the tumor must
be at least 6 kilorads.

Formulation as a Linear Programming Problem. The two decision variables x1

and x2 represent the dose (in kilorads) at the entry point for beam 1 and beam 2, respec-
tively. Because the total dosage reaching the healthy anatomy is to be minimized, let Z
denote this quantity. The data from Table 3.7 can then be used directly to formulate the
following linear programming model.1
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TABLE 3.7 Data for the design of Mary’s radiation therapy

Fraction of Entry Dose
Absorbed by

Area (Average)
Restriction on Total Average

Area Beam 1 Beam 2 Dosage, Kilorads

Healthy anatomy 0.4 0.5 Minimize
Critical tissues 0.3 0.1 � 2.7
Tumor region 0.5 0.5 � 6
Center of tumor 0.6 0.4 � 6

1Actually, Table 3.7 simplifies the real situation, so the real model would be somewhat more complicated than
this one and would have dozens of variables and constraints. For details about the general situation, see D. Son-
derman and P. G. Abrahamson, “Radiotherapy Treatment Design Using Mathematical Programming Models,”
Operations Research, 33:705–725, 1985, and its ref. 1.



Minimize Z � 0.4x1 � 0.5x2,

subject to

0.3x1 � 0.1x2 � 2.7
0.5x1 � 0.5x2 � 6
0.6x1 � 0.4x2 � 6

and

x1 � 0, x2 � 0.

Notice the differences between this model and the one in Sec. 3.1 for the Wyndor
Glass Co. problem. The latter model involved maximizing Z, and all the functional con-
straints were in � form. This new model does not fit this same standard form, but it does
incorporate three other legitimate forms described in Sec. 3.2, namely, minimizing Z, func-
tional constraints in � form, and functional constraints in � form.

However, both models have only two variables, so this new problem also can be solved
by the graphical method illustrated in Sec. 3.1. Figure 3.12 shows the graphical solution.
The feasible region consists of just the dark line segment between (6, 6) and (7.5, 4.5),
because the points on this segment are the only ones that simultaneously satisfy all the
constraints. (Note that the equality constraint limits the feasible region to the line con-
taining this line segment, and then the other two functional constraints determine the two
endpoints of the line segment.) The dashed line is the objective function line that passes
through the optimal solution (x1, x2) � (7.5, 4.5) with Z � 5.25. This solution is optimal
rather than the point (6, 6) because decreasing Z (for positive values of Z) pushes the ob-
jective function line toward the origin (where Z � 0). And Z � 5.25 for (7.5, 4.5) is less
than Z � 5.4 for (6, 6).

Thus, the optimal design is to use a total dose at the entry point of 7.5 kilorads for
beam 1 and 4.5 kilorads for beam 2.

Regional Planning

The SOUTHERN CONFEDERATION OF KIBBUTZIM is a group of three kibbutzim
(communal farming communities) in Israel. Overall planning for this group is done in its
Coordinating Technical Office. This office currently is planning agricultural production
for the coming year.

The agricultural output of each kibbutz is limited by both the amount of available ir-
rigable land and the quantity of water allocated for irrigation by the Water Commissioner
(a national government official). These data are given in Table 3.8.
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TABLE 3.8 Resource data for the Southern Confederation of Kibbutzim

Kibbutz Usable Land (Acres) Water Allocation (Acre Feet)

1 400 600
2 600 800
3 300 375



The crops suited for this region include sugar beets, cotton, and sorghum, and these
are the three being considered for the upcoming season. These crops differ primarily in
their expected net return per acre and their consumption of water. In addition, the Min-
istry of Agriculture has set a maximum quota for the total acreage that can be devoted to
each of these crops by the Southern Confederation of Kibbutzim, as shown in Table 3.9.
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TABLE 3.9 Crop data for the Southern Confederation of Kibbutzim

Maximum Water Consumption Net Return
Crop Quota (Acres) (Acre Feet/Acre) ($/Acre)

Sugar beets 600 3 1,000
Cotton 500 2 750
Sorghum 325 1 250



Because of the limited water available for irrigation, the Southern Confederation of
Kibbutzim will not be able to use all its irrigable land for planting crops in the upcoming
season. To ensure equity between the three kibbutzim, it has been agreed that every kib-
butz will plant the same proportion of its available irrigable land. For example, if kibbutz
1 plants 200 of its available 400 acres, then kibbutz 2 must plant 300 of its 600 acres,
while kibbutz 3 plants 150 acres of its 300 acres. However, any combination of the crops
may be grown at any of the kibbutzim. The job facing the Coordinating Technical Office
is to plan how many acres to devote to each crop at the respective kibbutzim while satis-
fying the given restrictions. The objective is to maximize the total net return to the South-
ern Confederation of Kibbutzim as a whole.

Formulation as a Linear Programming Problem. The quantities to be decided
upon are the number of acres to devote to each of the three crops at each of the three kib-
butzim. The decision variables xj ( j � 1, 2, . . . , 9) represent these nine quantities, as
shown in Table 3.10.

Since the measure of effectiveness Z is the total net return, the resulting linear pro-
gramming model for this problem is

Maximize Z � 1,000(x1 � x2 � x3) � 750(x4 � x5 � x6) � 250(x7 � x8 � x9),

subject to the following constraints:

1. Usable land for each kibbutz:

x1 � x4 � x7 � 400
x2 � x5 � x8 � 600
x3 � x6 � x9 � 300

2. Water allocation for each kibbutz:

3x1 � 2x4 � x7 � 600
3x2 � 2x5 � x8 � 800
3x3 � 2x6 � x9 � 375

3. Total acreage for each crop:

x1 � x2 � x3 � 600
x4 � x5 � x6 � 500
x7 � x8 � x9 � 325
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TABLE 3.10 Decision variables for the Southern Confederation 
of Kibbutzim problem

Allocation (Acres)

Kibbutz

Crop 1 2 3

Sugar beets x1 x2 x3

Cotton x4 x5 x6

Sorghum x7 x8 x9



4. Equal proportion of land planted:

�
x1 �

4
x
0
4

0
� x7� � �

x2 �
6
x
0
5

0
� x8�

�
x2 �

6
x
0
5

0
� x8� � �

x3 �
3
x
0
6

0
� x9�

�
x3 �

3
x
0
6

0
� x9� � �

x1 �
4
x
0
4

0
� x7�

5. Nonnegativity:

xj � 0, for j � 1, 2, . . . , 9.

This completes the model, except that the equality constraints are not yet in an appropri-
ate form for a linear programming model because some of the variables are on the right-
hand side. Hence, their final form1 is

3(x1 � x4 � x7) � 2(x2 � x5 � x8) � 0
(x2 � x5 � x8) � 2(x3 � x6 � x9) � 0

4(x3 � x6 � x9) � 3(x1 � x4 � x7) � 0

The Coordinating Technical Office formulated this model and then applied the sim-
plex method (developed in the next chapter) to find an optimal solution

(x1, x2, x3, x4, x5, x6, x7, x8, x9) � �133�
1
3

�, 100, 25, 100, 250, 150, 0, 0, 0�,

as shown in Table 3.11. The resulting optimal value of the objective function is 
Z � 633,333�

1
3

�, that is, a total net return of $633,333.33.
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TABLE 3.11 Optimal solution for the Southern Confederation 
of Kibbutzim problem

Best Allocation (Acres)

Kibbutz

Crop 1 2 3

Sugar beets 133�
1
3

� 100 25
Cotton 100 250 150
Sorghum 0 0 0

1Actually, any one of these equations is redundant and can be deleted if desired. Also, because of these equa-
tions, any two of the usable land constraints also could be deleted because they automatically would be satis-
fied when both the remaining usable land constraint and these equations are satisfied. However, no harm is done
(except a little more computational effort) by including unnecessary constraints, so you don’t need to worry
about identifying and deleting them in models you formulate.



Controlling Air Pollution

The NORI & LEETS CO., one of the major producers of steel in its part of the world, is
located in the city of Steeltown and is the only large employer there. Steeltown has grown
and prospered along with the company, which now employs nearly 50,000 residents. There-
fore, the attitude of the townspeople always has been, “What’s good for Nori & Leets is
good for the town.” However, this attitude is now changing; uncontrolled air pollution
from the company’s furnaces is ruining the appearance of the city and endangering the
health of its residents.

A recent stockholders’ revolt resulted in the election of a new enlightened board of
directors for the company. These directors are determined to follow socially responsible
policies, and they have been discussing with Steeltown city officials and citizens’ groups
what to do about the air pollution problem. Together they have worked out stringent air
quality standards for the Steeltown airshed.

The three main types of pollutants in this airshed are particulate matter, sulfur ox-
ides, and hydrocarbons. The new standards require that the company reduce its annual
emission of these pollutants by the amounts shown in Table 3.12. The board of directors
has instructed management to have the engineering staff determine how to achieve these
reductions in the most economical way.

The steelworks has two primary sources of pollution, namely, the blast furnaces for
making pig iron and the open-hearth furnaces for changing iron into steel. In both cases
the engineers have decided that the most effective types of abatement methods are (1) in-
creasing the height of the smokestacks,1 (2) using filter devices (including gas traps) in
the smokestacks, and (3) including cleaner, high-grade materials among the fuels for the
furnaces. Each of these methods has a technological limit on how heavily it can be used
(e.g., a maximum feasible increase in the height of the smokestacks), but there also is
considerable flexibility for using the method at a fraction of its technological limit.

Table 3.13 shows how much emission (in millions of pounds per year) can be elim-
inated from each type of furnace by fully using any abatement method to its technologi-
cal limit. For purposes of analysis, it is assumed that each method also can be used less
fully to achieve any fraction of the emission-rate reductions shown in this table. Further-
more, the fractions can be different for blast furnaces and for open-hearth furnaces. For
either type of furnace, the emission reduction achieved by each method is not substan-
tially affected by whether the other methods also are used.
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1Subsequent to this study, this particular abatement method has become a controversial one. Because its effect
is to reduce ground-level pollution by spreading emissions over a greater distance, environmental groups con-
tend that this creates more acid rain by keeping sulfur oxides in the air longer. Consequently, the U.S. Envi-
ronmental Protection Agency adopted new rules in 1985 to remove incentives for using tall smokestacks.

TABLE 3.12 Clean air standards for the Nori & Leets Co.

Required Reduction in Annual Emission Rate
Pollutant (Million Pounds)

Particulates 60
Sulfur oxides 150
Hydrocarbons 125



After these data were developed, it became clear that no single method by itself could
achieve all the required reductions. On the other hand, combining all three methods at full
capacity on both types of furnaces (which would be prohibitively expensive if the com-
pany’s products are to remain competitively priced) is much more than adequate. There-
fore, the engineers concluded that they would have to use some combination of the meth-
ods, perhaps with fractional capacities, based upon the relative costs. Furthermore, because
of the differences between the blast and the open-hearth furnaces, the two types probably
should not use the same combination.

An analysis was conducted to estimate the total annual cost that would be incurred
by each abatement method. A method’s annual cost includes increased operating and main-
tenance expenses as well as reduced revenue due to any loss in the efficiency of the pro-
duction process caused by using the method. The other major cost is the start-up cost (the
initial capital outlay) required to install the method. To make this one-time cost com-
mensurable with the ongoing annual costs, the time value of money was used to calcu-
late the annual expenditure (over the expected life of the method) that would be equiva-
lent in value to this start-up cost.

This analysis led to the total annual cost estimates (in millions of dollars) given in
Table 3.14 for using the methods at their full abatement capacities. It also was determined
that the cost of a method being used at a lower level is roughly proportional to the frac-
tion of the abatement capacity given in Table 3.13 that is achieved. Thus, for any given
fraction achieved, the total annual cost would be roughly that fraction of the correspond-
ing quantity in Table 3.14.

The stage now was set to develop the general framework of the company’s plan for
pollution abatement. This plan specifies which types of abatement methods will be used
and at what fractions of their abatement capacities for (1) the blast furnaces and (2) the
open-hearth furnaces. Because of the combinatorial nature of the problem of finding a
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TABLE 3.13 Reduction in emission rate (in millions of pounds per year) from the
maximum feasible use of an abatement method for Nori & Leets Co.

Taller Smokestacks Filters Better Fuels

Blast Open-Hearth Blast Open-Hearth Blast Open-Hearth
Pollutant Furnaces Furnaces Furnaces Furnaces Furnaces Furnaces

Particulates 12 9 25 20 17 13
Sulfur oxides 35 42 18 31 56 49
Hydrocarbons 37 53 28 24 29 20

TABLE 3.14 Total annual cost from the maximum feasible use of an abatement
method for Nori & Leets Co. ($ millions)

Abatement Method Blast Furnaces Open-Hearth Furnaces

Taller smokestacks 8 10
Filters 7 6
Better fuels 11 9



plan that satisfies the requirements with the smallest possible cost, an OR team was formed
to solve the problem. The team adopted a linear programming approach, formulating the
model summarized next.

Formulation as a Linear Programming Problem. This problem has six decision
variables xj, j � 1, 2, . . . , 6, each representing the use of one of the three abatement
methods for one of the two types of furnaces, expressed as a fraction of the abatement
capacity (so xj cannot exceed 1). The ordering of these variables is shown in Table 3.15.
Because the objective is to minimize total cost while satisfying the emission reduction re-
quirements, the data in Tables 3.12, 3.13, and 3.14 yield the following model:

Minimize Z � 8x1 � 10x2 � 7x3 � 6x4 � 11x5 � 9x6,

subject to the following constraints:

1. Emission reduction:

12x1 � 9x2 � 25x3 � 20x4 � 17x5 � 13x6 � 60
35x1 � 42x2 � 18x3 � 31x4 � 56x5 � 49x6 � 150
37x1 � 53x2 � 28x3 � 24x4 � 29x5 � 20x6 � 125

2. Technological limit:

xj � 1, for j � 1, 2, . . . , 6

3. Nonnegativity:

xj � 0, for j � 1, 2, . . . , 6.

The OR team used this model1 to find a minimum-cost plan

(x1, x2, x3, x4, x5, x6) � (1, 0.623, 0.343, 1, 0.048, 1),

with Z � 32.16 (total annual cost of $32.16 million). Sensitivity analysis then was con-
ducted to explore the effect of making possible adjustments in the air standards given in
Table 3.12, as well as to check on the effect of any inaccuracies in the cost data given in
Table 3.14. (This story is continued in Case 6.1 at the end of Chap. 6.) Next came de-
tailed planning and managerial review. Soon after, this program for controlling air pollu-
tion was fully implemented by the company, and the citizens of Steeltown breathed deep
(cleaner) sighs of relief.
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1An equivalent formulation can express each decision variable in natural units for its abatement method; for ex-
ample, x1 and x2 could represent the number of feet that the heights of the smokestacks are increased.

TABLE 3.15 Decision variables (fraction of the maximum feasible use of an
abatement method) for Nori & Leets Co.

Abatement Method Blast Furnaces Open-Hearth Furnaces

Taller smokestacks x1 x2

Filters x3 x4

Better fuels x5 x6



Reclaiming Solid Wastes

The SAVE-IT COMPANY operates a reclamation center that collects four types of solid
waste materials and treats them so that they can be amalgamated into a salable product.
(Treating and amalgamating are separate processes.) Three different grades of this prod-
uct can be made (see the first column of Table 3.16), depending upon the mix of the ma-
terials used. Although there is some flexibility in the mix for each grade, quality standards
may specify the minimum or maximum amount allowed for the proportion of a material
in the product grade. (This proportion is the weight of the material expressed as a per-
centage of the total weight for the product grade.) For each of the two higher grades, a
fixed percentage is specified for one of the materials. These specifications are given in
Table 3.16 along with the cost of amalgamation and the selling price for each grade.

The reclamation center collects its solid waste materials from regular sources and so
is normally able to maintain a steady rate for treating them. Table 3.17 gives the quanti-
ties available for collection and treatment each week, as well as the cost of treatment, for
each type of material.

The Save-It Co. is solely owned by Green Earth, an organization devoted to dealing
with environmental issues, so Save-It’s profits are used to help support Green Earth’s ac-
tivities. Green Earth has raised contributions and grants, amounting to $30,000 per week,
to be used exclusively to cover the entire treatment cost for the solid waste materials. The
board of directors of Green Earth has instructed the management of Save-It to divide this
money among the materials in such a way that at least half of the amount available of
each material is actually collected and treated. These additional restrictions are listed in
Table 3.17.

Within the restrictions specified in Tables 3.16 and 3.17, management wants to de-
termine the amount of each product grade to produce and the exact mix of materials to
be used for each grade. The objective is to maximize the net weekly profit (total sales in-
come minus total amalgamation cost), exclusive of the fixed treatment cost of $30,000 per
week that is being covered by gifts and grants.

Formulation as a Linear Programming Problem. Before attempting to construct
a linear programming model, we must give careful consideration to the proper definition
of the decision variables. Although this definition is often obvious, it sometimes becomes
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TABLE 3.16 Product data for Save-It Co.

Amalgamation Selling Price
Grade Specification Cost per Pound ($) per Pound ($)

Material 1: Not more than 30% of total
Material 2: Not less than 40% of total

A 3.00 8.50
Material 3: Not more than 50% of total
Material 4: Exactly 20% of total

Material 1: Not more than 50% of total
B Material 2: Not less than 10% of total 2.50 7.00

Material 4: Exactly 10% of total

C Material 1: Not more than 70% of total 2.00 5.50



the crux of the entire formulation. After clearly identifying what information is really de-
sired and the most convenient form for conveying this information by means of decision
variables, we can develop the objective function and the constraints on the values of these
decision variables.

In this particular problem, the decisions to be made are well defined, but the appro-
priate means of conveying this information may require some thought. (Try it and see if
you first obtain the following inappropriate choice of decision variables.)

Because one set of decisions is the amount of each product grade to produce, it would
seem natural to define one set of decision variables accordingly. Proceeding tentatively
along this line, we define

yi � number of pounds of product grade i produced per week (i � A, B, C).

The other set of decisions is the mix of materials for each product grade. This mix is iden-
tified by the proportion of each material in the product grade, which would suggest defin-
ing the other set of decision variables as

zij � proportion of material j in product grade i (i � A, B, C; j � 1, 2, 3, 4). 

However, Table 3.17 gives both the treatment cost and the availability of the materials by
quantity (pounds) rather than proportion, so it is this quantity information that needs to
be recorded in some of the constraints. For material j ( j � 1, 2, 3, 4),

Number of pounds of material j used per week � zAjyA � zBjyB � zCjyC.

For example, since Table 3.17 indicates that 3,000 pounds of material 1 is available per
week, one constraint in the model would be

zA1yA � zB1yB � zC1yC � 3,000. 

Unfortunately, this is not a legitimate linear programming constraint. The expression on
the left-hand side is not a linear function because it involves products of variables. There-
fore, a linear programming model cannot be constructed with these decision variables.

Fortunately, there is another way of defining the decision variables that will fit the
linear programming format. (Do you see how to do it?) It is accomplished by merely re-
placing each product of the old decision variables by a single variable! In other words,
define

xij � zijyi (for i � A, B, C; j � 1, 2, 3, 4) 
xij � number of pounds of material j allocated to product grade i per week,
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TABLE 3.17 Solid waste materials data for the Save-It Co.

Pounds per Treatment Cost
Material Week Available per Pound ($) Additional Restrictions

1 3,000 3.00 1. For each material, at least half of the
2 2,000 6.00 pounds per week available should be
3 4,000 4.00 collected and treated.
4 1,000 5.00 2. $30,000 per week should be used to

treat these materials.



and then we let the xij be the decision variables. Combining the xij in different ways yields
the following quantities needed in the model (for i � A, B, C; j � 1, 2, 3, 4).

xi1 � xi2 � xi3 � xi4 � number of pounds of product grade i produced per week.
xAj � xBj � xCj � number of pounds of material j used per week.

� proportion of material j in product grade i.

The fact that this last expression is a nonlinear function does not cause a complica-
tion. For example, consider the first specification for product grade A in Table 3.16 (the
proportion of material 1 should not exceed 30 percent). This restriction gives the nonlin-
ear constraint

� 0.3.

However, multiplying through both sides of this inequality by the denominator yields an
equivalent constraint

xA1 � 0.3(xA1 � xA2 � xA3 � xA4),

so

0.7xA1 � 0.3xA2 � 0.3xA3 � 0.3xA4 � 0,

which is a legitimate linear programming constraint.
With this adjustment, the three quantities given above lead directly to all the functional

constraints of the model. The objective function is based on management’s objective of max-
imizing net weekly profit (total sales income minus total amalgamation cost) from the three
product grades. Thus, for each product grade, the profit per pound is obtained by subtract-
ing the amalgamation cost given in the third column of Table 3.16 from the selling price in
the fourth column. These differences provide the coefficients for the objective function.

Therefore, the complete linear programming model is

Maximize Z � 5.5(xA1 � xA2 � xA3 � xA4) � 4.5(xB1 � xB2 � xB3 � xB4)
� 3.5(xC1 � xC2 � xC3 � xC4),

subject to the following constraints:

1. Mixture specifications (second column of Table 3.16):

xA1 � 0.3(xA1 � xA2 � xA3 � xA4) (grade A, material 1)

xA2 � 0.4(xA1 � xA2 � xA3 � xA4) (grade A, material 2)

xA3 � 0.5(xA1 � xA2 � xA3 � xA4) (grade A, material 3)

xA4 � 0.2(xA1 � xA2 � xA3 � xA4) (grade A, material 4).

xB1 � 0.5(xB1 � xB2 � xB3 � xB4) (grade B, material 1)

xB2 � 0.1(xB1 � xB2 � xB3 � xB4) (grade B, material 2)

xB4 � 0.1(xB1 � xB2 � xB3 � xB4) (grade B, material 4).

xC1 � 0.7(xC1 � xC2 � xC3 � xC4) (grade C, material 1).

xA1���
xA1 � xA2 � xA3 � xA4

xij
���
xi1 � xi2 � xi3 � xi4
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2. Availability of materials (second column of Table 3.17):

xA1 � xB1 � xC1 � 3,000 (material 1)

xA2 � xB2 � xC2 � 2,000 (material 2)

xA3 � xB3 � xC3 � 4,000 (material 3)

xA4 � xB4 � xC4 � 1,000 (material 4).

3. Restrictions on amounts treated (right side of Table 3.17):

xA1 � xB1 � xC1 � 1,500 (material 1)

xA2 � xB2 � xC2 � 1,000 (material 2)

xA3 � xB3 � xC3 � 2,000 (material 3)

xA4 � xB4 � xC4 � 500 (material 4).

4. Restriction on treatment cost (right side of Table 3.17):

3(xA1 � xB1 � xC1) � 6(xA2 � xB2 � xC2) � 4(xA3 � xB3 � xC3)

� 5(xA4 � xB4 � xC4) � 30,000. 

5. Nonnegativity constraints:

xA1 � 0, xA2 � 0, . . . , xC4 � 0.

This formulation completes the model, except that the constraints for the mixture
specifications need to be rewritten in the proper form for a linear programming model by
bringing all variables to the left-hand side and combining terms, as follows:

Mixture specifications:

0.7xA1 � 0.3xA2 � 0.3xA3 � 0.3xA4 � 0 (grade A, material 1)

�0.4xA1 � 0.6xA2 � 0.4xA3 � 0.4xA4 � 0 (grade A, material 2)

�0.5xA1 � 0.5xA2 � 0.5xA3 � 0.5xA4 � 0 (grade A, material 3)

�0.2xA1 � 0.2xA2 � 0.2xA3 � 0.8xA4 � 0 (grade A, material 4).

0.5xB1 � 0.5xB2 � 0.5xB3 � 0.5xB4 � 0 (grade B, material 1)

�0.1xB1 � 0.9xB2 � 0.1xB3 � 0.1xB4 � 0 (grade B, material 2)

�0.1xB1 � 0.1xB2 � 0.1xB3 � 0.9xB4 � 0 (grade B, material 4).

0.3xC1 � 0.7xC2 � 0.7xC3 � 0.7xC4 � 0 (grade C, material 1).

An optimal solution for this model is shown in Table 3.18, and then these xij values
are used to calculate the other quantities of interest given in the table. The resulting op-
timal value of the objective function is Z � 35,108.90 (a total weekly profit of $35,108.90).

The Save-It Co. problem is an example of a blending problem. The objective for
a blending problem is to find the best blend of ingredients into final products to meet
certain specifications. Some of the earliest applications of linear programming were
for gasoline blending, where petroleum ingredients were blended to obtain various
grades of gasoline. The award-winning OR study at Texaco discussed at the end of
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Sec. 2.5 dealt with gasoline blending (although Texaco used a nonlinear programming
model). Other blending problems involve such final products as steel, fertilizer, and
animal feed.

Personnel Scheduling

UNION AIRWAYS is adding more flights to and from its hub airport, and so it needs to
hire additional customer service agents. However, it is not clear just how many more
should be hired. Management recognizes the need for cost control while also consistently
providing a satisfactory level of service to customers. Therefore, an OR team is studying
how to schedule the agents to provide satisfactory service with the smallest personnel cost.

Based on the new schedule of flights, an analysis has been made of the minimum
number of customer service agents that need to be on duty at different times of the day
to provide a satisfactory level of service. The rightmost column of Table 3.19 shows the
number of agents needed for the time periods given in the first column. The other entries
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TABLE 3.18 Optimal solution for the Save-It Co. problem

Pounds Used per Week

Material
Number of Pounds

Grade 1 2 3 4 Produced per Week

A 412.3 859.6 447.4 429.8 2149
(19.2%) (40%) (20.8%) (20%)

B 2587.7 517.5 1552.6 517.5 5175
(50%) (10%) (30%) (10%)

C 0 0 0 0 0

Total 3000 1377 2000 947

TABLE 3.19 Data for the Union Airways personnel scheduling problem

Time Periods Covered

Shift
Minimum Number of

Time Period 1 2 3 4 5 Agents Needed

6:00 A.M. to 8:00 A.M. ✔ 48
8:00 A.M. to 10:00 A.M. ✔ ✔ 79
10:00 A.M. to noon ✔ ✔ 65
Noon to 2:00 P.M. ✔ ✔ ✔ 87
2:00 P.M. to 4:00 P.M. ✔ ✔ 64
4:00 P.M. to 6:00 P.M. ✔ ✔ 73
6:00 P.M. to 8:00 P.M. ✔ ✔ 82
8:00 P.M. to 10:00 P.M. ✔ 43
10:00 P.M. to midnight ✔ ✔ 52
Midnight to 6:00 A.M. ✔ 15

Daily cost per agent $170 $160 $175 $180 $195



in this table reflect one of the provisions in the company’s current contract with the union
that represents the customer service agents. The provision is that each agent work an 
8-hour shift 5 days per week, and the authorized shifts are

Shift 1: 6:00 A.M. to 2:00 P.M.
Shift 2: 8:00 A.M. to 4:00 P.M.
Shift 3: Noon to 8:00 P.M.
Shift 4: 4:00 P.M. to midnight
Shift 5: 10:00 P.M. to 6:00 A.M.

Checkmarks in the main body of Table 3.19 show the hours covered by the respective
shifts. Because some shifts are less desirable than others, the wages specified in the con-
tract differ by shift. For each shift, the daily compensation (including benefits) for each
agent is shown in the bottom row. The problem is to determine how many agents should
be assigned to the respective shifts each day to minimize the total personnel cost for agents,
based on this bottom row, while meeting (or surpassing) the service requirements given
in the rightmost column.

Formulation as a Linear Programming Problem. Linear programming problems
always involve finding the best mix of activity levels. The key to formulating this partic-
ular problem is to recognize the nature of the activities.

Activities correspond to shifts, where the level of each activity is the number of agents
assigned to that shift. Thus, this problem involves finding the best mix of shift sizes. Since the
decision variables always are the levels of the activities, the five decision variables here are

xj � number of agents assigned to shift j, for j � 1, 2, 3, 4, 5.

The main restrictions on the values of these decision variables are that the number of
agents working during each time period must satisfy the minimum requirement given in
the rightmost column of Table 3.19. For example, for 2:00 P.M. to 4:00 P.M., the total num-
ber of agents assigned to the shifts that cover this time period (shifts 2 and 3) must be at
least 64, so

x2 � x3 � 64

is the functional constraint for this time period.
Because the objective is to minimize the total cost of the agents assigned to the five

shifts, the coefficients in the objective function are given by the last row of Table 3.19.
Therefore, the complete linear programming model is

Minimize Z � 170x1 � 160x2 � 175x3 � 180x4 � 195x5,

subject to

x1 � 48 (6–8 A.M.)
x1 � x2 � 79 (8–10 A.M.)
x1 � x2 � 65 (10 A.M. to noon)
x1 � x2 � x3 � 87 (Noon–2 P.M.)

x2 � x3 � 64 (2–4 P.M.)
x3 � x4 � 73 (4–6 P.M.)
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x3 � x4 � 82 (6–8 P.M.)
x4 � 43 (8–10 P.M.)
x4 � x5 � 52 (10 P.M.–midnight)

x5 � 15 (Midnight–6 A.M.)

and

xj � 0, for j � 1, 2, 3, 4, 5.

With a keen eye, you might have noticed that the third constraint, x1 � x2 � 65, ac-
tually is not necessary because the second constraint, x1 � x2 � 79, ensures that x1 � x2

will be larger than 65. Thus, x1 � x2 � 65 is a redundant constraint that can be deleted.
Similarly, the sixth constraint, x3 � x4 � 73, also is a redundant constraint because the
seventh constraint is x3 � x4 � 82. (In fact, three of the nonnegativity constraints—x1 � 0,
x4 � 0, x5 � 0—also are redundant constraints because of the first, eighth, and tenth func-
tional constraints: x1 � 48, x4 � 43, and x5 � 15. However, no computational advantage
is gained by deleting these three nonnegativity constraints.)

The optimal solution for this model is (x1, x2, x3, x4, x5) � (48, 31, 39, 43, 15). This
yields Z � 30,610, that is, a total daily personnel cost of $30,610.

This problem is an example where the divisibility assumption of linear programming
actually is not satisfied. The number of agents assigned to each shift needs to be an inte-
ger. Strictly speaking, the model should have an additional constraint for each decision
variable specifying that the variable must have an integer value. Adding these constraints
would convert the linear programming model to an integer programming model (the topic
of Chap. 12).

Without these constraints, the optimal solution given above turned out to have inte-
ger values anyway, so no harm was done by not including the constraints. (The form of
the functional constraints made this outcome a likely one.) If some of the variables had
turned out to be noninteger, the easiest approach would have been to round up to integer
values. (Rounding up is feasible for this example because all the functional constraints
are in � form with nonnegative coefficients.) Rounding up does not ensure obtaining an
optimal solution for the integer programming model, but the error introduced by round-
ing up such large numbers would be negligible for most practical situations. Alternatively,
integer programming techniques described in Chap. 12 could be used to solve exactly for
an optimal solution with integer values.

Section 3.5 includes a case study of how United Airlines used linear programming to
develop a personnel scheduling system on a vastly larger scale than this example.

Distributing Goods through a Distribution Network

The Problem. The DISTRIBUTION UNLIMITED CO. will be producing the same
new product at two different factories, and then the product must be shipped to two ware-
houses, where either factory can supply either warehouse. The distribution network avail-
able for shipping this product is shown in Fig. 3.13, where F1 and F2 are the two facto-
ries, W1 and W2 are the two warehouses, and DC is a distribution center. The amounts
to be shipped from F1 and F2 are shown to their left, and the amounts to be received at
W1 and W2 are shown to their right. Each arrow represents a feasible shipping lane. Thus,
F1 can ship directly to W1 and has three possible routes (F1 � DC � W2, F1 � F2 �
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DC � W2, and F1 � W1 � W2) for shipping to W2. Factory F2 has just one route to
W2 (F2 � DC � W2) and one to W1 (F2 � DC � W2 � W1). The cost per unit
shipped through each shipping lane is shown next to the arrow. Also shown next to F1 �
F2 and DC � W2 are the maximum amounts that can be shipped through these lanes.
The other lanes have sufficient shipping capacity to handle everything these factories can
send.

The decision to be made concerns how much to ship through each shipping lane. The
objective is to minimize the total shipping cost.

Formulation as a Linear Programming Problem. With seven shipping lanes, we
need seven decision variables (xF1-F2, xF1-DC, xF1-W1, xF2-DC, xDC-W2, xW1-W2, xW2-W1) to
represent the amounts shipped through the respective lanes.

There are several restrictions on the values of these variables. In addition to the usual
nonnegativity constraints, there are two upper-bound constraints, xF1-F2 � 10 and 
xDC-W2 � 80, imposed by the limited shipping capacities for the two lanes, F1 � F2 and
DC � W2. All the other restrictions arise from five net flow constraints, one for each of
the five locations. These constraints have the following form.

Net flow constraint for each location:

Amount shipped out � amount shipped in � required amount.

As indicated in Fig. 3.13, these required amounts are 50 for F1, 40 for F2, �30 for W1,
and �60 for W2.
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The distribution network for
Distribution Unlimited Co.



What is the required amount for DC? All the units produced at the factories are ulti-
mately needed at the warehouses, so any units shipped from the factories to the distribu-
tion center should be forwarded to the warehouses. Therefore, the total amount shipped
from the distribution center to the warehouses should equal the total amount shipped from
the factories to the distribution center. In other words, the difference of these two ship-
ping amounts (the required amount for the net flow constraint) should be zero.

Since the objective is to minimize the total shipping cost, the coefficients for the ob-
jective function come directly from the unit shipping costs given in Fig. 3.13. Therefore,
by using money units of hundreds of dollars in this objective function, the complete lin-
ear programming model is

Minimize Z � 2xF1-F2 � 4xF1-DC � 9xF1-W1 � 3xF2-DC � xDC-W2

� 3xW1-W2 � 2xW2-W1,

subject to the following constraints:

1. Net flow constraints:
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To give you a better perspective about the great impact linear programming can have, we
now present three case studies of real applications. Each of these is a classic application,
initiated in the early 1980s, that has come to be regarded as a standard of excellence for
future applications of linear programming. The first one will bear some strong similari-
ties to the Wyndor Glass Co. problem, but on a realistic scale. Similarly, the second and
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�xF1-F2 � xF1-DC � xF1-W1 � 50 (factory 1)
�xF1-F2 � xF2-DC � 40 (factory 2)

� xF1-DC � xF2-DC � xDC-W2 � 0 (distribution 
center)

� xF1-W1 � xW1-W2 � xW2-W1 � �30 (warehouse 1)
� xDC-W2 � xW1-W2 � xW2-W1 � �60 (warehouse 2)

2. Upper-bound constraints:

xF1-F2 � 10, xDC-W2 � 80

3. Nonnegativity constraints:

xF1-F2 � 0, xF1-DC � 0, xF1-W1 � 0, xF2-DC � 0, xDC-W2 � 0,
xW1-W2 � 0, xW2-W1 � 0.

You will see this problem again in Sec. 9.6, where we focus on linear programming
problems of this type (called the minimum cost flow problem). In Sec. 9.7, we will solve
for its optimal solution:

xF1-F2 � 0, xF1-DC � 40, xF1-W1 � 10, xF2-DC � 40, xDC-W2 � 80,
xW1-W2 � 0, xW2-W1 � 20.

The resulting total shipping cost is $49,000.
You also will see a case study involving a much larger problem of this same type at

the end of the next section.



third are realistic versions of the last two examples presented in the preceding section (the
Union Airways and Distribution Unlimited examples).

Choosing the Product Mix at Ponderosa Industrial1

Until its sale in 1988, PONDEROSA INDUSTRIAL was a plywood manufacturer based
in Anhuac, Chihuahua, that supplied 25 percent of the plywood in Mexico. Like any ply-
wood manufacturer, Ponderosa’s many products were differentiated by thickness and by
the quality of the wood. The plywood market in Mexico is competitive, so the market es-
tablishes the prices of the products. The prices can fluctuate considerably from month to
month, and there may be great differences between the products in their price movements
from even one month to the next. As a result, each product’s contribution to Ponderosa’s
total profit was continually varying, and in different ways for different products.

Because of its pronounced effect on profits, a critical issue facing management was
the choice of product mix—how much to produce of each product—on a monthly basis.
This choice was a very complex one, since it had to take into account the current amounts
available of various resources needed to produce the products. The most important re-
sources were logs in four quality categories and production capacities for both the press-
ing operation and the polishing operation.

Beginning in 1980, linear programming was used on a monthly basis to guide the
product-mix decision. The linear programming model had an objective of maximizing the
total profit from all products. The model’s constraints included the various resource con-
straints as well as other relevant restrictions such as the minimum amount of a product
that must be provided to regular customers and the maximum amount that can be sold.
(To aid planning for the procurement of raw materials, the model also considered the im-
pact of the product-mix decision for the upcoming month on production in the following
month.) The model had 90 decision variables and 45 functional constraints.

This model was used each month to find the product mix for the upcoming month
that would be optimal if the estimated values of the various parameters of the model prove
to be accurate. However, since some of the parameter values could change quickly (e.g.,
the unit profits of the products), sensitivity analysis was done to determine the effect if
the estimated values turned out to be inaccurate. The results indicated when adjustments
in the product mix should be made (if time permitted) as unanticipated market changes
occurred that affected the price (and so the unit profit) of certain products.

One key decision each month concerned the number of logs in each of the four qual-
ity categories to purchase. The amounts available for the upcoming month’s production
actually were parameters of the model. Therefore, after the purchase decision was made
and then the corresponding optimal product mix was determined, postoptimality analysis
was conducted to investigate the effect of adjusting the purchase decision. For example,
it is very easy with linear programming to check what the impact on total profit would
be if a quick purchase were to be made of additional logs in a certain quality category to
enable increasing production for the upcoming month.

Ponderosa’s linear programming system was interactive, so management received an
immediate response to its “what-if questions” about the impact of encountering parame-
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ter values that differ from those in the original model. What if a quick purchase of logs
of a certain kind were made? What if product prices were to fluctuate in a certain way?
A variety of such scenarios can be investigated. Management effectively used this power
to reach better decisions than the “optimal” product mix from the original model.

The impact of linear programming at Ponderosa was reported to be “tremendous.” It
led to a dramatic shift in the types of plywood products emphasized by the company. The
improved product-mix decisions were credited with increasing the overall profitability of
the company by 20 percent. Other contributions of linear programming included better
utilization of raw material, capital equipment, and personnel.

Two factors helped make this application of linear programming so successful. One
factor is that a natural language financial planning system was interfaced with the codes
for finding an optimal solution for the linear programming model. Using natural language
rather than mathematical symbols to display the components of the linear programming
model and its output made the process understandable and meaningful for the managers
making the product-mix decisions. Reporting to management in the language of managers
is necessary for the successful application of linear programming.

The other factor was that the linear programming system used was interactive. As
mentioned earlier, after an optimal solution was obtained for one version of the model,
this feature enabled managers to ask a variety of “what-if” questions and receive imme-
diate responses. Better decisions frequently were reached by exploring other plausible sce-
narios, and this process also gave managers more confidence that their decision would
perform well under most foreseeable circumstances.

In any application, this ability to respond quickly to management’s needs and queries
through postoptimality analysis (whether interactive or not) is a vital part of a linear pro-
gramming study.

Personnel Scheduling at United Airlines1

Despite unprecedented industry competition in 1983 and 1984, UNITED AIRLINES man-
aged to achieve substantial growth with service to 48 new airports. In 1984, it became the
only airline with service to cities in all 50 states. Its 1984 operating profit reached $564
million, with revenues of $6.2 billion, an increase of 6 percent over 1983, while costs
grew by less than 2 percent.

Cost control is essential to competing successfully in the airline industry. In 1982,
upper management of United Airlines initiated an OR study of its personnel scheduling
as part of the cost control measures associated with the airline’s 1983–1984 expansion.
The goal was to schedule personnel at the airline’s reservations offices and airports so as
to minimize the cost of providing the necessary service to customers.

At the time, United Airlines employed over 4,000 reservations sales representatives
and support personnel at its 11 reservations offices and about 1,000 customer service
agents at its 10 largest airports. Some were part-time, working shifts from 2 to 8 hours;
most were full-time, working 8- or 10-hour-shifts. Shifts start at several different times.
Each reservations office was open (by telephone) 24 hours a day, as was each of the ma-
jor airports. However, the number of employees needed at each location to provide the re-
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quired level of service varied greatly during the 24-hour day, and might fluctuate consid-
erably from one half-hour to the next.

Trying to design the work schedules for all the employees at a given location to meet
these service requirements most efficiently is a nightmare of combinatorial considerations.
Once an employee begins working, he or she will be there continuously for the entire shift
(2 to 10 hours, depending on the employee), except for either a meal break or short rest
breaks every 2 hours. Given the minimum number of employees needed on duty for each
half-hour interval over a 24-hour day (where these requirements change from day to day
over a 7-day week), how many employees of each shift length should begin work at what
start time over each 24-hour day of a 7-day week? Fortunately, linear programming thrives
on such combinatorial nightmares.

Actually, several OR techniques described in this book were used in the computerized
planning system developed to attack this problem. Both forecasting (Chap. 20) and queu-
ing theory (Chaps. 17 and 18) were used to determine the minimum number of employees
needed on duty for each half-hour interval. Integer programming (Chap. 12) was used to
determine the times of day at which shifts would be allowed to start. However, the core of
the planning system was linear programming, which did all the actual scheduling to pro-
vide the needed service with the smallest possible labor cost. A complete work schedule
was developed for the first full week of a month, and then it was reused for the remainder
of the month. This process was repeated each month to reflect changing conditions.

Although the details about the linear programming model have not been published,
it is clear that the basic approach used is the one illustrated by the Union Airways exam-
ple of personnel scheduling in Sec. 3.4. The objective function being minimized repre-
sents the total personnel cost for the location being scheduled. The main functional con-
straints require that the number of employees on duty during each time period will not
fall below minimum acceptable levels.

However, the Union Airways example has only five decision variables. By contrast,
the United Airlines model for some locations has over 20,000 decision variables! The dif-
ference is that a real application must consider myriad important details that can be ig-
nored in a textbook example. For example, the United Airlines model takes into account
such things as the meal and break assignment times for each employee scheduled, differ-
ences in shift lengths for different employees, and days off over a weekly schedule, among
other scheduling details.

This application of linear programming was reported to have had “an overwhelming
impact not only on United management and members of the manpower planning group, but
also for many who had never before heard of management science (OR) or mathematical
modeling.” It earned rave reviews from upper management, operating managers, and af-
fected employees alike. For example, one manager described the scheduling system as

Magical, . . . just as the [customer] lines begin to build, someone shows up for work, and
just as you begin to think you’re overstaffed, people start going home.1

In more tangible terms, this application was credited with saving United Airlines more
than $6 million annually in just direct salary and benefit costs. Other benefits included
improved customer service and reduced need for support staff.
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After some updating in the early 1990s, the system is providing similar benefits
today.

One factor that helped make this application of linear programming so successful was
“the support of operational managers and their staffs.” This was a lesson learned by ex-
perience, because the OR team initially failed to establish a good line of communication
with the operating managers, who then resisted the team’s initial recommendations. The
team leaders described their mistake as follows:

The cardinal rule for earning the trust and respect of operating managers and support
staffs—”getting them involved in the development process”—had been violated.1

The team then worked much more closely with the operating managers—with outstand-
ing results.

Planning Supply, Distribution, and Marketing 
at Citgo Petroleum Corporation2

CITGO PETROLEUM CORPORATION specializes in refining and marketing petroleum.
In the mid-1980s, it had annual sales of several billion dollars, ranking it among the 150
largest industrial companies in the United States.

After several years of financial losses, Citgo was acquired in 1983 by Southland Cor-
poration, the owner of the 7-Eleven convenience store chain (whose sales include 2 bil-
lion gallons of quality motor fuels annually). To turn Citgo’s financial losses around, South-
land created a task force composed of Southland personnel, Citgo personnel, and outside
consultants. An eminent OR consultant was appointed director of the task force to report
directly to both the president of Citgo and the chairman of the board of Southland.

During 1984 and 1985, this task force applied various OR techniques (as well as in-
formation systems technologies) throughout the corporation. It was reported that these OR
applications “have changed the way Citgo does business and resulted in approximately
$70 million per year profit improvement.”3

The two most important applications were both linear programming systems that pro-
vided management with powerful planning support. One, called the refinery LP system,
led to great improvements in refinery yield, substantial reductions in the cost of labor, and
other important cost savings. This system contributed approximately $50 million to profit
improvement in 1985. (See the end of Sec. 2.4 for discussion of the key role that model
validation played in the development of this system.)

However, we will focus here on the other linear programming system, called the sup-
ply, distribution, and marketing modeling system (or just the SDM system), that Citgo is
continuing to use. The SDM system is particularly interesting because it is based on a
special kind of linear programming model that uses networks, just like the model for the
Distribution Unlimited example presented at the end of Sec. 3.4. The model for the SDM
system provides a representation of Citgo’s entire marketing and distribution network.

At the time the task force conducted its OR study, Citgo owned or leased 36 product
storage terminals which were supplied through five distribution center terminals via a dis-
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tribution network of pipelines, tankers, and barges. Citgo also sold product from over 350
exchange terminals that were shared with other petroleum marketers. To supply its cus-
tomers, product might be acquired by Citgo from its refinery in Lake Charles, LA, or from
spot purchases on one of five major spot markets, product exchanges, and trades with
other industry refiners. These product acquisition decisions were made daily. However,
the time from such a decision until the product reached the intended customers could be
as long as 11 weeks. Therefore, the linear programming model used an 11-week planning
horizon.

The SDM system is used to coordinate the supply, distribution, and marketing of each
of Citgo’s major products (originally four grades of motor fuel and No. 2 fuel oil) through-
out the United States. Management uses the system to make decisions such as where to
sell, what price to charge, where to buy or trade, how much to buy or trade, how much
to hold in inventory, and how much to ship by each mode of transportation. Linear pro-
gramming guides these decisions and when to implement them so as to minimize total
cost or maximize total profit. The SDM system also is used in “what-if” sessions, where
management asks what-if questions about scenarios that differ from those assumed in the
original model.

The linear programming model in the SDM system has the same form as the model
for the Distribution Unlimited example presented at the end of Sec. 3.4. In fact, both mod-
els fit an important special kind of linear programming problem, called the minimum cost
flow problem, that will be discussed in Sec. 9.6. The main functional constraints for such
models are equality constraints, where each one prescribes what the net flow of goods
out of a specific location must be.

The Distribution Unlimited model has just seven decision variables and five equality
constraints. By contrast, the Citgo model for each major product has about 15,000 deci-
sion variables and 3,000 equality constraints!

At the end of Sec. 2.1, we described the important role that data collection and data
verification played in developing the Citgo models. With such huge models, a massive
amount of data must be gathered to determine all the parameter values. A state-of-the-art
management database system was developed for this purpose. Before using the data, a
preloader program was used to check for data errors and inconsistencies. The importance
of doing so was brought forcefully home to the task force when, as mentioned in Sec. 2.1,
the initial run of the preloader program generated a paper log of error messages an inch
thick! It was clear that the data collection process needed to be thoroughly debugged to
help ensure the validity of the models.

The SDM linear programming system has greatly improved the efficiency of Citgo’s
supply, distribution, and marketing operations, enabling a huge reduction in product in-
ventory with no drop in service levels. During its first year, the value of petroleum prod-
ucts held in inventory was reduced by $116.5 million. This huge reduction in capital tied
up in carrying inventory resulted in saving about $14 million annually in interest expenses
for borrowed capital, adding $14 million to Citgo’s annual profits. Improvements in co-
ordination, pricing, and purchasing decisions have been estimated to add at least another
$2.5 million to annual profits. Many indirect benefits also are attributed to this applica-
tion of linear programming, including improved data, better pricing strategies, and elim-
ination of unnecessary product terminals, as well as improved communication and coor-
dination between supply, distribution, marketing, and refinery groups.
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Some of the factors that contributed to the success of this OR study are the same as
for the two preceding case studies. Like Ponderosa Industrial, one factor was developing
output reports in the language of managers to really meet their needs. These output re-
ports are designed to be easy for managers to understand and use, and they address the
issues that are important to management. Also like Ponderosa, another factor was enabling
management to respond quickly to the dynamics of the industry by using the linear pro-
gramming system extensively in “what-if” sessions. As in so many applications of linear
programming, postoptimality analysis proved more important than the initial optimal so-
lution obtained for one version of the model.

Much as in the United Airlines application, another factor was the enthusiastic sup-
port of operational managers during the development and implementation of this linear
programming system.

However, the most important factor was the unlimited support provided to the task
force by top management, ranging right up to the chief executive officer and the chair-
man of the board of Citgo’s parent company, Southland Corporation. As mentioned ear-
lier, the director of the task force (an eminent OR consultant) reported directly to both the
president of Citgo and the chairman of the board of Southland. This backing by top man-
agement included strong organizational and financial support.

The organizational support took a variety of forms. One example was the creation
and staffing of the position of senior vice-president of operations coordination to evalu-
ate and coordinate recommendations based on the models which spanned organizational
boundaries.

When discussing both this linear programming system and other OR applications im-
plemented by the task force, team members described the financial support of top man-
agement as follows:

The total cost of the systems implemented, $20 million to $30 million, was the greatest
obstacle to this project. However, because of the information explosion in the petroleum
industry, top management realized that numerous information systems were essential to
gather, store, and analyze data. The incremental cost of adding management science (OR)
technologies to these computers and systems was small, in fact very small in light of the
enormous benefits they provided.1
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Spreadsheet software, such as Excel, is a popular tool for analyzing and solving small lin-
ear programming problems. The main features of a linear programming model, including
all its parameters, can be easily entered onto a spreadsheet. However, spreadsheet soft-
ware can do much more than just display data. If we include some additional informa-
tion, the spreadsheet can be used to quickly analyze potential solutions. For example, a
potential solution can be checked to see if it is feasible and what Z value (profit or cost)
it achieves. Much of the power of the spreadsheet lies in its ability to immediately see the
results of any changes made in the solution.

In addition, the Excel Solver can quickly apply the simplex method to find an opti-
mal solution for the model.
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To illustrate this process, we now return to the Wyndor example introduced in 
Sec. 3.1.

Displaying the Model on a Spreadsheet

After expressing profits in units of thousands of dollars, Table 3.1 in Sec. 3.1 gives all the
parameters of the model for the Wyndor problem. Figure 3.14 shows the necessary addi-
tions to this table for an Excel spreadsheet. In particular, a row is added (row 9, labeled
“Solution”) to store the values of the decision variables. Next, a column is added (column
E, labeled “Totals”). For each functional constraint, the number in column E is the nu-
merical value of the left-hand side of that constraint. Recall that the left-hand side repre-
sents the actual amount of the resource used, given the values of the decision variables in
row 9. For example, for the Plant 3 constraint in row 7, the amount of this resource used
(in hours of production time per week) is

Production time used in Plant 3 � 3x1 � 2x2.

In the language of Excel, the equivalent equation for the number in cell E7 is

E7 � C7*C9 � D7*D9.

Notice that this equation involves the sum of two products. There is a function in Ex-
cel, called SUMPRODUCT, that will sum up the product of each of the individual terms
in two different ranges of cells. For instance, SUMPRODUCT(C7:D7,C9:D9) takes each
of the individual terms in the range C7:D7, multiplies them by the corresponding term in
the range C9:D9, and then sums up these individual products, just as shown in the above
equation. Although optional with such short equations, this function is especially handy
as a shortcut for entering longer linear programming equations.

Next, � signs are entered in cells F5, F6, and F7 to indicate the form of the functional
constraints. (When using a trial-and-error approach, the spreadsheet still will allow you to
enter infeasible trial solutions that violate the � signs, but these signs serve as a reminder
to reject such trial solutions if no changes are made in the numbers in column G.)

68 3 INTRODUCTION TO LINEAR PROGRAMMING

FIGURE 3.14
The spreadsheet for the
Wyndor problem before
using the Excel Solver, so the
values of the decision
variables and the objective
function are just entered as
zeros.



Finally, the value of the objective function is entered in cell E8. Much like the other
values in column E, it is the sum of products. The equation for cell E8 is �SUMPROD-
UCT(C8:D8,C9:D9). The lower right-hand side of Fig. 3.14 shows all the formulas that
need to be entered in the “Totals” column (column E) for the Wyndor problem.

Once the model is entered in this spreadsheet format, it is easy to analyze any po-
tential solution. When values for the decision variables are entered in the spreadsheet, the
“Totals” column immediately calculates the total amount of each resource used, as well
as the total profit. Hence, by comparing column E with column G, it can be seen imme-
diately whether the potential solution is feasible. If so, cell E8 shows how much profit it
would generate. One approach to trying to solve a linear programming model would be
trial and error, using the spreadsheet to analyze a variety of solutions. However, you will
see next how Excel also can be used to quickly find an optimal solution.

Using the Excel Solver to Solve the Model

Excel includes a tool called Solver that uses the simplex method to find an optimal solu-
tion. (A more powerful version of Solver, called Premium Solver, also is available in your
OR Courseware.) Before using Solver, all the following components of the model need
to be included on the spreadsheet:

1. Each decision variable
2. The objective function and its value
3. Each functional constraint

The spreadsheet layout shown in Fig. 3.14 includes all these components. The parame-
ters for the functional constraints are in rows 5, 6, and 7, and the coefficients for the ob-
jective function are in row 8. The values of the decision variables are in cells C9 and D9,
and the value of the objective function is in cell E8. Since we don’t know what the val-
ues of the decision variables should be, they are just entered as zeros. The Solver will
then change these to the optimal values after solving the problem.

The Solver can be started by choosing “Solver” in the Tools menu. The Solver dia-
logue box is shown in Fig. 3.15. The “Target Cell” is the cell containing the value of the
objective function, while the “Changing Cells” are the cells containing the values of the
decision variables.

Before the Solver can apply the simplex method, it needs to know exactly where each
component of the model is located on the spreadsheet. You can either type in the cell ad-
dresses or click on them. Since the target cell is cell E8 and the changing cells are in the
range C9:D9, these addresses are entered into the Solver dialogue box as shown in Fig. 3.15.
(Excel then automatically enters the dollar signs shown in the figure to fix these addresses.)
Since the goal is to maximize the objective function, “Max” also has been selected.

Next, the addresses for the functional constraints need to be added. This is done by
clicking on the “Add . . .” button on the Solver dialogue box. This brings up the “Add
Constraint” dialogue box shown in Fig. 3.16. The location of the values of the left-hand
sides and the right-hand sides of the functional constraints are specified in this dialogue
box. The cells E5 through E7 all need to be less than or equal to the corresponding cells
in G5 through G7. There also is a menu to choose between ��, �, or ��, so �� has
been chosen for these constraints. (This choice is needed even though � signs were pre-
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viously entered in column F of the spreadsheet because Solver uses only the functional
constraints that are specified with the Add Constraint dialogue box.)

If there were more functional constraints to add, you would click on Add to bring up
a new Add Constraint dialogue box. However, since there are no more in this example,
the next step is to click on OK to go back to the Solver dialogue box.

The Solver dialogue box now summarizes the complete model (see Fig. 3.17) in terms
of the spreadsheet in Fig. 3.14. However, before asking Solver to solve the model, one
more step should be taken. Clicking on the Options . . . button brings up the dialogue 
box shown in Fig. 3.18. This box allows you to specify a number of options about how
the problem will be solved. The most important of these are the Assume Linear Model
option and the Assume Non-Negative option. Be sure that both options are checked as
shown in the figure. This tells Solver that the problem is a linear programming problem
with nonnegativity constraints for all the decision variables, and that the simplex method
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FIGURE 3.16
The Add Constraint dialogue
box after specifying that cells
E5, E6, and E7 in Fig. 3.14
are required to be less than
or equal to cells G5, G6, and
G7, respectively.

FIGURE 3.15
The Solver dialogue box after
specifying which cells in Fig.
3.14 contain the values of
the objective function and
the decision variables, plus
indicating that the objective
function is to be maximized.
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FIGURE 3.18
The Solver Options dialogue
box after checking the
Assume Linear Model and
Assume Non-Negative
options to indicate that we
are dealing with a linear
programming model with
nonnegativity constraints
that needs to be solved by
the simplex method.

FIGURE 3.17
The Solver dialogue box after
specifying the entire model
in terms of the spreadsheet.



should be used to solve the problem.1 Regarding the other options, accepting the default
values shown in the figure usually is fine for small problems. Clicking on the OK button
then returns you to the Solver dialogue box.

Now you are ready to click on Solve in the Solver dialogue box, which will cause
the Solver to execute the simplex method in the background. After a few seconds (for a
small problem), Solver will then indicate the results. Typically, it will indicate that it has
found an optimal solution, as specified in the Solver Results dialogue box shown in Fig.
3.19. If the model has no feasible solutions or no optimal solution, the dialogue box will
indicate that instead by stating that “Solver could not find a feasible solution” or that “the
Set Cell values do not converge.” The dialogue box also presents the option of generat-
ing various reports. One of these (the Sensitivity Report) will be discussed in detail in
Sec. 4.7.

After solving the model, the Solver replaces the original value of the decision vari-
ables in the spreadsheet with the optimal values, as shown in Fig. 3.20. The spreadsheet
also indicates the value of the objective function, as well as the amount of each resource
that is being used.
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FIGURE 3.20
The spreadsheet obtained
after solving the Wyndor
problem.

FIGURE 3.19
The Solver Results dialogue
box that indicates that an
optimal solution has been
found.
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Linear programming models come in many different sizes. For the examples in Secs. 3.1
and 3.4, the model sizes range from three functional constraints and two decision vari-
ables (for the Wyndor and radiation therapy problems) up to 17 functional constraints and
12 decision variables (for the Save-It Company problem). The latter case may seem like
a rather large model. After all, it does take a substantial amount of time just to write down
a model of this size. However, by contrast, the models for the classic case studies pre-
sented in Sec. 3.5 are much, much larger. For example, the models in the Citgo case study
typically have about 3,000 functional constraints and 15,000 decision variables.

The Citgo model sizes are not at all unusual. Linear programming models in practice
commonly have hundreds or thousands of functional constraints. In fact, there have been
some recently reported cases of a few hundred thousand constraints. The number of de-
cision variables frequently is even larger than the number of functional constraints, and
occasionally will range into the millions.

Formulating such monstrously large models can be a daunting task. Even a “medium-
sized” model with a thousand functional constraints and a thousand decision variables has
over a million parameters (including the million coefficients in these constraints). It sim-
ply is not practical to write out the algebraic formulation, or even to fill in the parame-
ters on a spreadsheet, for such a model.

So how are these very large models formulated in practice? It requires the use of a
modeling language.

Modeling Languages

A mathematical programming modeling language is software that has been specifically
designed for efficiently formulating large linear programming models (and related mod-
els). Even with thousands of functional constraints, they typically are of a relatively few
types where the constraints of the same type follow the same pattern. Similarly, the deci-
sion variables will fall into a small number of categories. Therefore, using large blocks
of data in databases, a modeling language will simultaneously formulate all the constraints
of the same type by simultaneously dealing with the variables of each type. We will il-
lustrate this process soon.

In addition to efficiently formulating large models, a modeling language will expe-
dite a number of model management tasks, including accessing data, transforming data
into model parameters, modifying the model whenever desired, and analyzing solutions
from the model. It also may produce summary reports in the vernacular of the decision
makers, as well as document the model’s contents.

Several excellent modeling languages have been developed over the last couple of
decades. These include AMPL, MPL, GAMS, and LINGO.

The student version of one of these, MPL (short for mathematical programming lan-
guage), is provided for you on the CD-ROM along with extensive tutorial material. The
latest student version also can be downloaded from the website, maximal-usa.com. MPL
is a product of Maximal Software, Inc. A new feature is extensive support for Excel in
MPL. This includes both importing and exporting Excel ranges from MPL. Full support
also is provided for the Excel VBA macro language through OptiMax 2000. (The student
version of OptiMax 2000 is on the CD-ROM as well.) This product allows the user to
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fully integrate MPL models into Excel and solve with any of the powerful solvers that
MPL supports, including CPLEX (described in Sec. 4.8).

LINGO is a product of LINDO Systems, Inc. The latest student version of LINGO
is available by downloading it from the website, www.lindo.com. LINDO Systems also
provides a completely spreadsheet-oriented optimizer called What’sBest, also available on
this website.

The CD-ROM includes MPL, LINGO, and What’sBest formulations for essentially
every example in this book to which these modeling languages can be applied.

Now let us look at a simplified example that illustrates how a very large linear pro-
gramming model can arise.

An Example of a Problem with a Huge Model

Management of the WORLDWIDE CORPORATION needs to address a product-mix prob-
lem, but one that is vastly more complex than the Wyndor product-mix problem intro-
duced in Sec. 3.1. This corporation has 10 plants in various parts of the world. Each of
these plants produces the same 10 products and then sells them within its region. The de-
mand (sales potential) for each of these products from each plant is known for each of
the next 10 months. Although the amount of a product sold by a plant in a given month
cannot exceed the demand, the amount produced can be larger, where the excess amount
would be stored in inventory (at some unit cost per month) for sale in a later month. Each
unit of each product takes the same amount of space in inventory, and each plant has some
upper limit on the total number of units that can be stored (the inventory capacity).

Each plant has the same 10 production processes (we’ll refer to them as machines),
each of which can be used to produce any of the 10 products. Both the production cost
per unit of a product and the production rate of the product (number of units produced
per day devoted to that product) depend on the combination of plant and machine involved
(but not the month). The number of working days (production days available) varies some-
what from month to month.

Since some plants and machines can produce a particular product either less expen-
sively or at a faster rate than other plants and machines, it is sometimes worthwhile to
ship some units of the product from one plant to another for sale by the latter plant. For
each combination of a plant being shipped from (the fromplant) and a plant being shipped
to (the toplant), there is a certain cost per unit shipped of any product, where this unit
shipping cost is the same for all the products.

Management now needs to determine how much of each product should be produced
by each machine in each plant during each month, as well as how much each plant should
sell of each product in each month and how much each plant should ship of each prod-
uct in each month to each of the other plants. Considering the worldwide price for each
product, the objective is to find the feasible plan that maximizes the total profit (total sales
revenue minus the sum of the total production costs, inventory costs, and shipping costs).

The Structure of the Resulting Model

Because of the inventory costs and the limited inventory capacities, it is necessary to keep
track of the amount of each product kept in inventory in each plant during each month.
Consequently, the linear programming model has four types of decision variables: pro-
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duction quantities, inventory quantities, sales quantities, and shipping quantities. With 10
plants, 10 machines, 10 products, and 10 months, this gives a total of 21,000 decision
variables, as outlined below.

Decision Variables.

10,000 production variables: one for each combination of a plant, machine, product, and
month

1,000 inventory variables: one for each combination of a plant, product, and month
1,000 sales variables: one for each combination of a plant, product, and month
9,000 shipping variables: one for each combination of a product, month, plant (the

fromplant), and another plant (the toplant)

Multiplying each of these decision variables by the corresponding unit cost or unit rev-
enue, and then summing over each type, the following objective function can be calculated:

Objective Function.

Maximize profit � total sales revenue � total cost,

where

Total cost � total production cost � total inventory cost � total shipping cost.

When maximizing this objective function, the 21,000 decision variables need to sat-
isfy nonnegativity constraints as well as four types of functional constraints—production
capacity constraints, plant balance constraints (equality constraints that provide appropri-
ate values to the inventory variables), maximum inventory constraints, and maximum sales
constraints. As enumerated below, there are a total of 3,100 functional constraints, but all
the constraints of each type follow the same pattern.

Functional Constraints.

1,000 production capacity constraints (one for each combination of a plant, machine, and
month):

Production days used � production days available,

where the left-hand side is the sum of 10 fractions, one for each product, where each
fraction is that product’s production quantity (a decision variable) divided by the prod-
uct’s production rate (a given constant).

1,000 plant balance constraints (one for each combination of a plant, product, and month):

Amount produced � inventory last month � amount shipped in � sales � current
inventory � amount shipped out,

where the amount produced is the sum of the decision variables representing the pro-
duction quantities at the machines, the amount shipped in is the sum of the decision
variables representing the shipping quantities in from the other plants, and the amount
shipped out is the sum of the decision variables representing the shipping quantities
out to the other plants.
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100 maximum inventory constraints (one for each combination of a plant and month):

Total inventory � inventory capacity,

where the left-hand side is the sum of the decision variables representing the inven-
tory quantities for the individual products.

1,000 maximum sales constraints (one for each combination of a plant, product, and month):

Sales � demand.

Now let us see how the MPL modeling language, a product of Maximal Software,
Inc., can formulate this huge model very compactly.

Formulation of the Model in MPL

The modeler begins by assigning a title to the model and listing an index for each of the
entities of the problem, as illustrated below.

TITLE
Production_Planning;

INDEX
product : � (A1, A2, A3, A4, A5, A6, A7, A8, A9, A10);
month : � (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct);
plant : � (p1, p2, p3, p4, p5, p6, p7, p8, p9, p10);
fromplant : � plant;
toplant : � plant;
machine : � (m1, m2, m3, m4, m5, m6, m7, m8, m9, m10);

Except for the months, the entries on the right-hand side are arbitrary labels for the re-
spective products, plants, and machines, where these same labels are used in the data files.
Note that a colon is placed after the name of each entry and a semicolon is placed at the
end of each statement (but a statement is allowed to extend over more than one line).

A big job with any large model is collecting and organizing the various types of data
into data files. In this case, eight data files are needed to hold the product prices, demands,
production costs, production rates, production days available, inventory costs, inventory
capacities, and shipping costs. Numbering these data files as 1, 2, 3, . . . , 8, the next step
is to give a brief suggestive name to each one and to identify (inside square brackets) the
index or indexes over which the data in the file run, as shown below.

DATA
Price [product] : � DATAFILE 1;
Demand [plant, product, month] : � DATAFILE 2;
ProdCost [plant, machine, product] : � DATAFILE 3;
ProdRate [plant, machine, product] : � DATAFILE 4;
ProdDaysAvail [month] : � DATAFILE 5;
InvtCost [product] : � DATAFILE 6;
InvtCapacity [plant] : � DATAFILE 7;
ShipCost [fromplant, toplant] : � DATAFILE 8;

Next, the modeler gives a short name to each type of decision variable. Following the
name, inside square brackets, is the index or indexes over which the subscripts run.
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VARIABLES
Produce [plant, machine, product, month] � Prod;
Inventory [plant, product, month] � Invt;
Sales [plant, product, month] � Sale;
Ship [product, month, fromplant, toplant]

WHERE (fromplant �� toplant);

In the case of the decision variables with names longer than four letters, the arrows on
the right point to four-letter abbreviations to fit the size limitations of many solvers. The
last line indicates that the fromplant subscript and toplant subscript are not allowed to
have the same value.

There is one more step before writing down the model. To make the model easier to read,
it is useful first to introduce macros to represent the summations in the objective function.

MACROS
Total Revenue : � SUM (plant, product, month: Price*Sales);
TotalProdCost : � SUM (plant, machine, product, month: 

ProdCost*Produce);
TotalInvtCost : � SUM (plant, product, month: 

InvtCost*Inventory);
TotalShipCost : � SUM (product, month, fromplant, toplant: 

ShipCost*Ship);
TotalCost : � TotalProdCost � TotalInvtCost � TotalShipCost;

The first four macros use the MPL keyword SUM to execute the summation involved.
Following each SUM keyword (inside the parentheses) is, first, the index or indexes over
which the summation runs. Next (after the colon) is the vector product of a data vector
(one of the data files) times a variable vector (one of the four types of decision variables).

Now this model with 3,100 functional constraints and 21,000 decision variables can
be written down in the following compact form.

MODEL

MAX Profit � TotalRevenue � TotalCost;

SUBJECT TO
ProdCapacity [plant, machine, month] � PCap;

SUM (product: Produce/ProdRate) � ProdDaysAvail;

PlantBal [plant, product, month] � PBal;
� SUM (machine: Produce) � Inventory [month � 1]
� SUM (fromplant: Ship[fromplant, toplant: � plant])

�

� Sales � Inventory
� SUM (toplant: Ship[from plant: � plant, toplant]);

MaxInventory [plant, month] � MaxI:
SUM (product: Inventory) � InvtCapacity;

BOUNDS
Sales � Demand;

END

For each of the four types of constraints, the first line gives the name for this type.
There is one constraint of this type for each combination of values for the indexes inside
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the square brackets following the name. To the right of the brackets, the arrow points to
a four-letter abbreviation of the name that a solver can use. Below the first line, the gen-
eral form of constraints of this type is shown by using the SUM operator.

For each production capacity constraint, each term in the summation consists of a de-
cision variable (the production quantity of that product on that machine in that plant dur-
ing that month) divided by the corresponding production rate, which gives the number of
production days being used. Summing over the products then gives the total number of
production days being used on that machine in that plant during that month, so this num-
ber must not exceed the number of production days available.

The purpose of the plant balance constraint for each plant, product, and month is to
give the correct value to the current inventory variable, given the values of all the other
decision variables including the inventory level for the preceding month. Each of the SUM
operators in these constraints involves simply a sum of decision variables rather than a
vector product. This is the case also for the SUM operator in the maximum inventory con-
straints. By contrast, the left-hand side of the maximum sales constraints is just a single
decision variable for each of the 1,000 combinations of a plant, product, and month. (Sep-
arating these upper-bound constraints on individual variables from the regular functional
constraints is advantageous because of the computational efficiencies that can be obtained
by using the upper bound technique described in Sec. 7.3.) No lower-bound constraints
are shown here because MPL automatically assumes that all 21,000 decision variables
have nonnegativity constraints unless nonzero lower bounds are specified. For each of the
3,100 functional constraints, note that the left-hand side is a linear function of the deci-
sion variables and the right-hand side is a constant taken from the appropriate data file.
Since the objective function also is a linear function of the decision variables, this model
is a legitimate linear programming model.

To solve the model, MPL supports various leading solvers (software packages for
solving linear programming models and related models) that can be installed into MPL.
As discussed in Sec. 4.8, CPLEX is a particularly prominent and powerful solver. The
version of MPL in your OR Courseware already has installed the student version of CPLEX,
which uses the simplex method to solve linear programming models. Therefore, to solve
such a model formulated with MPL, all you have to do is choose Solve CPLEX from the
Run menu or press the Run Solve button in the Toolbar. You then can display the solution
file in a view window by pressing the View button at the bottom of the Status Window.

This brief introduction to MPL illustrates the ease with which modelers can use mod-
eling languages to formulate huge linear programming models in a clear, concise way. To
assist you in using MPL, an MPL Tutorial is included on the CD-ROM. This tutorial goes
through all the details of formulating smaller versions of the production planning exam-
ple considered here. You also can see elsewhere on the CD-ROM how all the other linear
programming examples in this chapter and subsequent chapters would be formulated with
MPL and solved by CPLEX.

The LINGO Modeling Language

LINGO is another popular modeling language that is featured in this book. The company
that produces LINGO, LINDO Systems, also produces a widely used solver called LINDO
as well as a spreadsheet solver, What’sBest. All three share a common set of solvers based
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on the simplex method and, in more advanced versions, on the kind of algorithmic tech-
niques introduced in Secs. 4.9 and 7.4 as well. (We will discuss LINDO further in Sec.
4.8 and Appendix 4.1.) As mentioned earlier, the student version of LINGO is available
to you through downloading from the website, www.lindo.com.

Like MPL, LINGO enables a modeler to efficiently formulate a huge linear program-
ming model in a clear, concise way. It also can be used for a wide variety of other models.

LINGO uses sets as its fundamental building block. For example, in the Worldwide
Corp. production planning problem, the sets of interest include the collections of prod-
ucts, plants, machines, and months. Each member of a set may have one or more attrib-
utes associated with it, such as the price of a product, the inventory capacity of a plant,
the production rate of a machine, and the number of production days available in a month.
These attributes provide data for the model. Some set attributes, such as production quan-
tities and shipping quantities, can be decision variables for the model. As with MPL, the
SUM operator is commonly used to write the objective function and each constraint type
in a compact form. After completing the formulation, the model can be solved by se-
lecting the Solve command from the LINGO menu or pressing the Solve button on the
toolbar.

An appendix to this chapter describes LINGO further and illustrates its use on a cou-
ple of small examples. A supplement on the CD-ROM shows how LINGO can be used
to formulate the model for the Worldwide Corp. production planning example. A LINGO
tutorial on the CD-ROM provides the details needed for doing basic modeling with this
modeling language. The LINGO formulations and solutions for the various examples in
both this chapter and many other chapters also are included on the CD-ROM.
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Linear programming is a powerful technique for dealing with the problem of allocating
limited resources among competing activities as well as other problems having a similar
mathematical formulation. It has become a standard tool of great importance for numer-
ous business and industrial organizations. Furthermore, almost any social organization is
concerned with allocating resources in some context, and there is a growing recognition
of the extremely wide applicability of this technique.

However, not all problems of allocating limited resources can be formulated to fit a
linear programming model, even as a reasonable approximation. When one or more of the
assumptions of linear programming is violated seriously, it may then be possible to apply
another mathematical programming model instead, e.g., the models of integer program-
ming (Chap. 12) or nonlinear programming (Chap. 13).

3.8 CONCLUSIONS

LINGO is a mathematical modeling language designed particularly for formulating and solving a
wide variety of optimization problems, including linear programming, integer programming (Chap.
12), and nonlinear programming (Chap. 13) problems. Extensive details and a downloadable stu-
dent version can be found at www.lindo.com.
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Simple problems are entered into LINGO in a fairly natural fashion. To illustrate, consider the
following linear programming problem.

Maximize Z � 20x � 31y,

subject to

2x � 5y � 16
4x � 3y � 6
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FIGURE A3.1
Screen shots showing the LINGO formulation and the LINGO solution report for a
simple linear programming problem.



and

x � 0, y� 0.

The screen shot in the top half of Fig. A3.1 shows how this problem would be formulated with
LINGO.

The first line of this formulation is just a comment describing the model. Note that the com-
ment is preceded by an exclamation point and ended by a semicolon. This is a requirement for all
comments in a LINGO formulation. The second line gives the objective function (without bothering
to include the Z variable) and indicates that it is to be maximized. Note that each multiplication needs
to be indicated by an asterisk. The objective function is ended by a semicolon, as is each of the func-
tional constraints on the next two lines. The nonnegativity constraints are not shown in this formu-
lation because these constraints are automatically assumed by LINGO. (If some variable x did not
have a nonnegativity constraint, you would need to add @FREE(x); at the end of the formulation.)

Variables can be shown as either lowercase or uppercase, since LINGO is case-insensitive. For
example, a variable x1 can be typed in as either x1 or X1. Similarly, words can be either lowercase
or uppercase (or a combination). For clarity, we will use uppercase for all reserved words that have
a predefined meaning in LINGO.

Notice the menu bar at the top of the LINGO window in Fig. A3.1. The ‘File’ and ‘Edit’ menu
items behave in a standard Windows fashion. To solve a model once it has been entered, click on
the ‘bullseye’ icon. (If you are using a platform other than a Windows-based PC, instead type the
GO command at the colon prompt and press the enter key.) Before attempting to solve the model,
LINGO will first check whether your model has any syntax errors and, if so, will indicate where
they occur. Assuming no such errors, a solver will begin solving the problem, during which time a
solver status window will appear on the screen. (For linear programming models, the solver used
is LINDO, which will be described in some detail in the appendix to the next chapter.) When the
solver finishes, a Solution Report will appear on the screen.

The bottom half of Fig. A3.1 shows the solution report for our example. The Value column
gives the optimal values of the decision variables. The first entry in the Slack or Surplus column
shows the corresponding value of the objective function. The next two entries indicate the differ-
ence between the two sides of the respective constraints. The Reduced Cost and Dual Price columns
provide some sensitivity analysis information for the problem. After discussing postoptimality
analysis (including sensitivity analysis) in Sec. 4.7, we will explain what reduced costs and dual
prices are while describing LINDO in Appendix 4.1. These quantities provide only a portion of
the useful sensitivity analysis information. To generate a full sensitivity analysis report (such as
shown in Appendix 4.1 for LINDO), the Range command in the LINGO menu would need to be
chosen next.

Just as was illustrated with MPL in Sec. 3.7, LINGO is designed mainly for efficiently for-
mulating very large models by simultaneously dealing with all constraints or variables of the same
type. We soon will use the following example to illustrate how LINGO does this.

Example. Consider a production-mix problem where we are concerned with what mix of four
products we should produce during the upcoming week. For each product, each unit produced re-
quires a known amount of production time on each of three machines. Each machine has a certain
number of hours of production time available per week. Each product provides a certain profit per
unit produced.

Table A3.1 shows three types of data: machine-related data, product-related data, and data re-
lated to combinations of a machine and product. The objective is to determine how much to pro-
duce of each product so that total profit is maximized while not exceeding the limited production
capacity of each machine.
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In standard algebraic form, the structure of the linear programming model for this problem is
to choose the nonnegative production levels (number of units produced during the upcoming week)
for the four products so as to

Maximize �
4

j�1
cjxj,

subject to

�
4

j�1
aijxj � bj for i � 1, 2, 3;

where

xj � production level for product P0j

cj � unit profit for product P0j

aij � production time on machine i per unit of product P0j

bi � production time available per week on machine i.

This model is small enough, with just 4 decision variables and 3 functional constraints, that it
could be written out completely, term by term, but it would be tedious. In some similar applica-
tions, there might instead be hundreds of decision variables and functional constraints, so writing
out a term-by-term version of this model each week would not be practical. LINGO provides a much
more efficient and compact formulation, comparable to the above summary of the model, as we will
see next.

Formulation of the Model in LINGO

This model has a repetitive nature. All the decision variables are of the same type and all the func-
tional constraints are of the same type. LINGO uses sets to describe this repetitive nature.1 The sim-
ple sets of interest in this case are

1. The set of machines, {Roll, Cut, Weld}.
2. The set of products, {P01, P02, P03, P04}.
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TABLE A3.1 Data needed for the product-mix example

Production Time per Unit, Hours

Product
Production Time

Machine P01 P02 P03 P04 Available per Week, Hours

Roll 1.7 2.1 1.4 2.4 28
Cut 1.1 2.5 1.7 2.6 34
Weld 1.6 1.3 1.6 0.8 21

Profit per unit 26 35 25 37

1Order is implied in LINGO sets so, strictly speaking, they are not truly sets in the usual mathematical sense.



The attributes of interest for the members of these sets are

1. Attribute for each machine: Number of hours of production time available per week.
2. Attributes for each product: Profit per unit produced; Number of units produced per week.

Thus, the first two types of attributes are input data that will become parameters of the model,
whereas the last type (number of units produced per week of the respective products) provides the
decision variables for the model. Let us abbreviate these attributes as follows.

machine: ProdHoursAvail
product: Profit, Produce.

One other key type of information is the number of hours of production time that each unit of
each product would use on each of the machines. This number can be viewed as an attribute for
the members of the set of all combinations of a product and a machine. Since this set is derived
from the two simple sets, it is referred to as a derived set. Let us abbreviate the attribute for mem-
bers of this set as follows.

MaPr (machine, product): ProdHoursUsed

A LINGO formulation typically has three sections.

1. A SETS section that specifies the sets and their attributes. You can think of it as describing the
structure of the data.

2. A DATA section that either provides the data to be used or indicates where it is to be obtained.
3. A section that provides the mathematical model itself.

We begin by showing the first two sections for the example below.

! LINGO3h;
! Product mix example;
! Notice: the SETS section says nothing about the number or names of

the machines or products. That information is determined 
completely by supplied data;

SETS:
! The simple sets;
Machine: ProdHoursAvail;
Product: Profit, Produce;
! A derived set;
MaPr (Machine, Product): ProdHoursUsed;
ENDSETS
DATA:
! Get the names of the machines;

Machine � Roll Cut Weld;
! Hours available on each machine;
ProdHoursAvail � 28 34 21;

! Get the names of the products;
Product � P01 P02 P03 P04;

! Profit contribution per unit;
Profit � 26 35 25 37;

! Hours needed per unit of product;
ProdHoursUsed � 1.7 2.1 1.4 2.4 ! Roll;

1.1 2.5 1.7 2.6 ! Cut;
1.6 1.3 1.6 0.8; ! Weld;

ENDDATA
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Before presenting the mathematical model itself, we need to introduce two key set looping
functions that enable applying an operation to all members of a set by using a single statement. One
is the @SUM function, which computes the sum of an expression over all members of a set. The
general form of @SUM is @SUM( set: expression). For every member of the set, the expres-
sion is computed, and then they are all added up. For example,

@SUM( Product(j): Profit(j)*Produce(j))

sums the expression following the colon—the unit profit of a product times the production rate of
the product—over all members of the set preceding the colon. In particular, since this set is the set
of products {Product( j) for j � 1, 2, 3, 4}, the sum is over the index j. Therefore, this specific
@SUM function provides the objective function,

�
4

j�1
cjxj,

given earlier for the model.
The second key set looping function is the @FOR function. This function is used to gener-

ate constraints over members of a set. The general form is @FOR( set: constraint). For 
example,

@FOR(Machine(i):
@SUM( Product(i): ProdHoursUsed(i, j)*Produce (j))

�� ProdHoursAvail (i, j);
);

says to generate the constraint following the colon for each member of the set preceding the colon.
(The “less than or equal to” symbol, �, is not on the standard keyboard, so LINGO treats the stan-
dard keyboard symbols �� as equivalent to �.) This set is the set of machines {Machine (i) for 
i � 1, 2, 3}, so this function loops over the index i. For each i, the constraint following the colon
was expressed algebraically earlier as

�
4

j�1
aijxj � bj.

Therefore, after the third section of the LINGO formulation (the mathematical model itself) is
added, we obtain the complete formulation shown below:

! LINGO3h;
! Product mix example;
SETS:
!The simple sets;

Machine: ProdHoursAvail;
Product: Profit, Produce;

!A derived set;
MaPr( Machine, Product): ProdHoursUsed;

ENDSETS
DATA:
!Get the names of the machines;

Machine � Roll Cut Weld;
! Hours available on each machine;
ProdHoursAvail � 28 34 21;
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! Get the names of the products;
Product � P01 P02 P03 P04;

! Profit contribution per unit;
Profit � 26 35 25 37;

! Hours needed per unit of product;
ProdHoursUsed � 1.7 2.1 1.4 2.4 ! Roll;

1.1 2.5 1.7 2.6 ! Cut;
1.6 1.3 1.6 0.8; ! Weld;

ENDDATA
! Maximize total profit contribution;
MAX � @SUM( Product(i): Profit(i) * Produce(i));

! For each machine i;
@FOR( Machine( i):

! Hours used must be �� hours available;
@SUM( Product( j): ProdHoursUsed( i, j) * Produce( j))

�� ProdHoursAvail;
);

The model is solved by pressing the ‘bullseye’ button on the LINGO command bar. Pressing
the ‘x �’ button on the command bar produces a report that looks in part as follows:

Variable Value Reduced Cost
PRODUCE( P01) 0.0000000 3.577921
PRODUCE( P02) 10.00000 0.0000000
PRODUCE( P03) 5.000000 0.0000000
PRODUCE( P04) 0.0000000 1.441558

Row Slack or Surplus Dual Price
1 475.0000 1.000000
2 0.0000000 15.25974
3 0.5000000 0.0000000
4 0.0000000 2.272727

Thus, we should produce 10 units of product P02 and 5 units of product P03, where Row 1 gives
the resulting total profit of 475. Notice that this solution exactly uses the available capacity on the
first and third machines (since Rows 2 and 4 give a Slack or Surplus of 0) and leaves the second
machine with 0.5 hour of idleness. (We will discuss reduced costs and dual prices in Appendix 4.1
in conjunction with LINDO.)

The rows section of this report is slightly ambiguous in that you need to remember that Row
1 in the model concerns the objective function and the subsequent rows involve the constraints on
machine capacities. This association can be made more clear in the report by giving names to each
constraint in the model. This is done by enclosing the name in [ ], placed just in front of the con-
straint. See the following modified fragment of the model.

[Totprof] MAX � @SUM( Product: Profit * Produce);

! For each machine i;
@FOR( Machine( i):

! Hours used must be �� hours available;
[Capc] @SUM( Product( j): ProdHoursUsed( i, j) * Produce( j))

�� ProdHoursAvail;
);
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The solution report now contains these row names.

Row Slack or Surplus Dual Price
TOTPROF 475.0000 1.000000

CAPC( ROLL) 0.0000000 15.25974
CAPC( CUT) 0.5000000 0.0000000
CAPC( WELD) 0.0000000 2.272727

An important feature of a LINGO model like this one is that it is completely “scalable” in prod-
ucts and machines. In other words, if you wanted to solve another version of this product-mix prob-
lem with a different number of machines and products, you would only have to enter the new data
in the DATA section. You would not need to change the SETS section or any of the equations. This
conversion could be done by clerical personnel without any understanding of the model equations.

Importing and Exporting Spreadsheet Data with LINGO

The above example was completely self-contained in the sense that all the data were directly in-
corporated into the LINGO formulation. In some other applications, a large body of data will be
stored in some source and will need to be entered into the model from that source. One popular
place for storing data is spreadsheets.

LINGO has a simple function, @OLE(), for retrieving and placing data from and into spread-
sheets. To illustrate, let us suppose the data for our product-mix problem were originally entered
into a spreadsheet as shown in Fig. A3.2. For the moment we are interested only in the shaded cells
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FIGURE A3.2
Screen shot showing data for
the product-mix example
entered in a spreadsheet.



in columns A-B and E-H. The data in these cells completely describe our little product-mix exam-
ple. We want to avoid retyping these data into our LINGO model. Suppose that this spreadsheet is
stored in the file d:\dirfred7\wbest03i.xls. The only part of the LINGO model that needs to be
changed is the DATA section as shown below.

DATA:
! Get the names of the machines;

Machine � @OLE( ‘d:\dirfred7\wbest03i.xls’);
! Hours available on each machine;

ProdHoursAvail � @OLE( ‘d:\dirfred7\wbest03i.xls’);

! Get the names of the products;
Product � @OLE( ‘d:\dirfred7\wbest03i.xls’);

! Profit contribution per unit;
Profit � @OLE( ‘d:\dirfred7\wbest03i.xls’);

! Hours needed per unit of product;
ProdHoursUsed � @OLE( ‘d:\dirfred7\wbest03i.xls’);

! Send the solution values back;
@OLE( ‘d:\dirfred7\wbest03i.xls’) � Produce;

ENDDATA

The @OLE() function acts as your “plumbing contractor.” It lets the data flow from the spreadsheet
to LINGO and back to the spreadsheet. So-called Object Linking and Embedding (OLE) is a fea-
ture of the Windows operating system. LINGO exploits this feature to make a link between the
LINGO model and a spreadsheet. The first five uses of @OLE() above illustrate that this function
can be used on the right of an assignment statement to retrieve data from a spreadsheet. The last
use above illustrates that this function can be placed on the left of an assignment statement to place
solution results into the spreadsheet instead. Notice from Fig. A3.2 that the optimal solution has
been placed back into the spreadsheet in cells E6:H6. One simple but hidden step that had to be
done beforehand in the spreadsheet was to define range names for the various collections of cells
containing the data. Range names can be defined in Excel by using the mouse and the Insert, Name,
Define menu item. For example, the set of cells A9:A11 was given the range name of Machine.
Similarly, the set of cells E4:H4 was given the range name Product.

Importing and Exporting from a Database with LINGO

Another common repository for data in a large firm is in a database. In a manner similar to @OLE(),
LINGO has a connection function, @ODBC(), for transferring data from and to a database. This
function is based around the Open DataBase Connectivity (ODBC) standard for communicating
with SQL (Structured Query Language) databases. Most popular databases, such as Oracle, Para-
dox, DB/2, MS Access, and SQL Server, support the ODBC convention.

Let us illustrate the ODBC connection for our little product-mix example. Suppose that all the
data describing our problem are stored in a database called acces03j. The modification required in
the LINGO model is almost trivial. Only the DATA section needs to be changed, as illustrated in
the following fragment from the LINGO model.

DATA:
! Get the names of the machines and available hours;

Machine, ProdHoursAvail � @ODBC( ‘acces03j’);

! Get the names of the products and profits;
Product, Profit � @ODBC( ‘acces03j’);
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! Hours needed per unit of product;
ProdHoursUsed � @ODBC( ‘acces03j’);

! Send the solution values back;
@ODBC( ‘acces03j’) � Produce;

ENDDATA

Notice that, similar to the spreadsheet-based model, the size of the model in terms of the num-
ber of variables and constraints is determined completely by what is found in the database. The
LINGO model automatically adjusts to what is found in the database.

Now let us show what is in the database considered above. It contains three related tables. We
give these tables names to match those in the LINGO model, namely, ‘Machine,’ to hold machine-
related data, ‘Product,’ to hold product-related data, and ‘MaPr,’ to hold data related to combina-
tions of machines and products. Here is what the tables look like on the screen:
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Product

Product Profit Produce

P01 26
P02 35
P03 25
P04 37

Machine

Machine ProdHoursAvail

Roll 28
Cut 34
Weld 21

MaPr

Machine Product ProdHoursUsed

Roll P01 1.7
Roll P02 2.1
Roll P03 1.4
Roll P04 2.4
Cut P01 1.1
Cut P02 2.5
Cut P03 1.7
Cut P04 2.6
Weld P01 1.6
Weld P02 1.3
Weld P03 1.6
Weld P04 0.8



Notice that the ‘Produce’ column has been left blank in the Product table. Once we solve the
model, the ‘Produce’ amounts get inserted into the database and the Product table looks as follows:
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There is one complication in using ODBC in Windows 95. The user must “register” the data-
base with the Windows ODBC administrator. One does this by accessing (with mouse clicks) the
My Computer/Control Panel/ODBC32 window. Once there, the user must give a name to the data-
base (which may differ from the actual name of the file in which the data tables reside) and spec-
ify the directory in which the database file resides. It is this registered name that should be used in
the LINGO model. Because the database has been registered, you did not see a directory specifi-
cation in the @ODBC( ‘acces03j’) in the LINGO model. The ODBC manager knows the loca-
tion of the database just from its name.

More about LINGO

Only some of the capabilities of LINGO have been illustrated in this appendix. More details can be
found in the documentation that accompanies LINGO when it is downloaded. LINGO is available
in a variety of sizes. The smallest version is the demo version that can be downloaded from
www.lindo.com. It is designed for textbook-sized problems (currently a maximum of 150 functional
constraints and 300 decision variables). However, the largest version (called the extended version)
is limited only by the storage space available. Tens of thousands of functional constraints and hun-
dreds of thousands of decision variables are not unusual.

If you would like to see how LINGO can formulate a huge model like the production planning
example introduced in Sec. 3.7, a supplement to this appendix on the book’s website,
www.mhhe.com/hillier, shows the LINGO formulation of this example. By reducing the number of
products, plants, machines, and months, the supplement also introduces actual data into the formu-
lation and then shows the complete solution. The supplement goes on to discuss and illustrate the
debugging and verification of this large model. The supplement also describes further how to re-
trieve data from external files (including spreadsheets) and how to insert results in existing files.

In addition to this supplement, the CD-ROM includes both a LINGO tutorial and
LINGO/LINDO files with numerous examples of LINGO formulations.

Product

Product Profit Produce

P01 26 0
P02 35 10
P03 25 5
P04 37 0

1. Anderson, D. R., D. J. Sweeney, and T. A. Williams: An Introduction to Management Science,
9th ed., West, St. Paul, MN, 2000, chaps. 2, 4.

2. Gass, S.: An Illustrated Guide to Linear Programming, Dover Publications, New York, 1990.
3. Hillier, F. S., M. S. Hillier, and G. J. Lieberman: Introduction to Management Science: A Mod-

eling and Case Studies Approach with Spreadsheets, Irwin/McGraw-Hill, Burr Ridge, IL, 2000,
chaps. 2, 3.
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info@maximal-usa.com, 1998.
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The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example listed above may be helpful.
C: Use the computer to solve the problem by applying the sim-

plex method. The available software options for doing this in-
clude the Excel Solver or Premium Solver (Sec. 3.6),
MPL/CPLEX (Sec. 3.7), LINGO (Appendix 3.1), and LINDO
(Appendix 4.1), but follow any instructions given by your in-
structor regarding the option to use.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

D 3.1-1.* For each of the following constraints, draw a separate
graph to show the nonnegative solutions that satisfy this constraint.
(a) x1 � 3x2 � 6
(b) 4x1 � 3x2 � 12
(c) 4x1 � x2 � 8

PROBLEMS

(d) Now combine these constraints into a single graph to show the
feasible region for the entire set of functional constraints plus
nonnegativity constraints.

D 3.1-2. Consider the following objective function for a linear pro-
gramming model:

Maximize Z � 2x1 � 3x2

(a) Draw a graph that shows the corresponding objective function
lines for Z � 6, Z � 12, and Z � 18.

(b) Find the slope-intercept form of the equation for each of these
three objective function lines. Compare the slope for these three
lines. Also compare the intercept with the x2 axis.

3.1-3. Consider the following equation of a line:

20x1 � 40x2 � 400

(a) Find the slope-intercept form of this equation.

A Demonstration Example in OR Tutor:

Graphical Method

An Excel Add-In:

Premium Solver

“Ch. 3—Intro to LP” Files for Solving the Examples:

Excel File
LINGO/LINDO File
MPL/CPLEX File

Supplement to Appendix 3.1:

More about LINGO (appears on the book’s website, www.mhhe.com/hillier).

See Appendix 1 for documentation of the software.

LEARNING AIDS FOR THIS CHAPTER IN YOUR OR COURSEWARE



all) if the profit per wood-framed window decreases from $60
to $40? From $60 to $20?

(e) Doug is considering lowering his working hours, which would
decrease the number of wood frames he makes per day. How
would the optimal solution change if he makes only 5 wood
frames per day?

3.1-7. The Apex Television Company has to decide on the num-
ber of 27- and 20-inch sets to be produced at one of its factories.
Market research indicates that at most 40 of the 27-inch sets and
10 of the 20-inch sets can be sold per month. The maximum num-
ber of work-hours available is 500 per month. A 27-inch set re-
quires 20 work-hours and a 20-inch set requires 10 work-hours.
Each 27-inch set sold produces a profit of $120 and each 20-inch
set produces a profit of $80. A wholesaler has agreed to purchase
all the television sets produced if the numbers do not exceed the
maxima indicated by the market research.
(a) Formulate a linear programming model for this problem.
D (b) Use the graphical method to solve this model.

3.1-8. The WorldLight Company produces two light fixtures (prod-
ucts 1 and 2) that require both metal frame parts and electrical
components. Management wants to determine how many units of
each product to produce so as to maximize profit. For each unit of
product 1, 1 unit of frame parts and 2 units of electrical compo-
nents are required. For each unit of product 2, 3 units of frame
parts and 2 units of electrical components are required. The com-
pany has 200 units of frame parts and 300 units of electrical com-
ponents. Each unit of product 1 gives a profit of $1, and each unit
of product 2, up to 60 units, gives a profit of $2. Any excess over
60 units of product 2 brings no profit, so such an excess has been
ruled out.
(a) Formulate a linear programming model for this problem.
D (b) Use the graphical method to solve this model. What is the

resulting total profit?

3.1-9. The Primo Insurance Company is introducing two new prod-
uct lines: special risk insurance and mortgages. The expected profit
is $5 per unit on special risk insurance and $2 per unit on mort-
gages.

Management wishes to establish sales quotas for the new prod-
uct lines to maximize total expected profit. The work requirements
are as follows:

(b) Use this form to identify the slope and the intercept with the
x2 axis for this line.

(c) Use the information from part (b) to draw a graph of this line.

D 3.1-4.* Use the graphical method to solve the problem:

Maximize Z � 2x1 � x2,

subject to

x2 � 10
2x1 � 5x2 � 60
x1 � x2 � 18

3x1 � x2 � 44

and

x1 � 0, x2 � 0.

D 3.1-5. Use the graphical method to solve the problem:

Maximize Z � 10x1 � 20x2,

subject to

�x1 � 2x2 � 15
x1 � x2 � 12

5x1 � 3x2 � 45

and

x1 � 0, x2 � 0.

3.1-6. The Whitt Window Company is a company with only three
employees which makes two different kinds of hand-crafted win-
dows: a wood-framed and an aluminum-framed window. They earn
$60 profit for each wood-framed window and $30 profit for each
aluminum-framed window. Doug makes the wood frames, and can
make 6 per day. Linda makes the aluminum frames, and can make
4 per day. Bob forms and cuts the glass, and can make 48 square
feet of glass per day. Each wood-framed window uses 6 square feet
of glass and each aluminum-framed window uses 8 square feet of
glass.

The company wishes to determine how many windows of each
type to produce per day to maximize total profit.
(a) Describe the analogy between this problem and the Wyndor

Glass Co. problem discussed in Sec. 3.1. Then construct and
fill in a table like Table 3.1 for this problem, identifying both
the activities and the resources.

(b) Formulate a linear programming model for this problem.
D (c) Use the graphical model to solve this model.
(d) A new competitor in town has started making wood-framed

windows as well. This may force the company to lower the
price they charge and so lower the profit made for each wood-
framed window. How would the optimal solution change (if at
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Work-Hours per Unit
Work-Hours

Department Special Risk Mortgage Available

Underwriting 3 2 2400
Administration 0 1 800
Claims 2 0 1200



The sales department indicates that the sales potential for
products 1 and 2 exceeds the maximum production rate and that
the sales potential for product 3 is 20 units per week. The unit
profit would be $50, $20, and $25, respectively, on products 1, 2,
and 3. The objective is to determine how much of each product
Omega should produce to maximize profit.
(a) Formulate a linear programming model for this problem.
C (b) Use a computer to solve this model by the simplex method.

D 3.1-12. Consider the following problem, where the value of c1

has not yet been ascertained.

Maximize Z � c1x1 � x2,

subject to

x1 � x2 � 6
x1 � 2x2 � 10

and

x1 � 0, x2 � 0.

Use graphical analysis to determine the optimal solution(s) for 
(x1, x2) for the various possible values of c1(�� � c1 � �).

D 3.1-13. Consider the following problem, where the value of k
has not yet been ascertained.

Maximize Z � x1 � 2x2,

subject to

�x1 � x2 � 2
x2 � 3

kx1 � x2 � 2k � 3, where k � 0

and

x1 � 0, x2 � 0.

The solution currently being used is x1 � 2, x2 � 3. Use graphical
analysis to determine the values of k such that this solution actu-
ally is optimal.

D 3.1-14. Consider the following problem, where the values of c1

and c2 have not yet been ascertained.

Maximize Z � c1x1 � c2x2,

subject to

2x1 � x2 � 11
�x1 � 2x2 � 2

and

x1 � 0, x2 � 0.

Use graphical analysis to determine the optimal solution(s) for 
(x1, x2) for the various possible values of c1 and c2. (Hint: Sepa-

(a) Formulate a linear programming model for this problem.
D (b) Use the graphical method to solve this model.
(c) Verify the exact value of your optimal solution from part (b)

by solving algebraically for the simultaneous solution of the
relevant two equations.

3.1-10. Weenies and Buns is a food processing plant which man-
ufactures hot dogs and hot dog buns. They grind their own flour
for the hot dog buns at a maximum rate of 200 pounds per week.
Each hot dog bun requires 0.1 pound of flour. They currently have
a contract with Pigland, Inc., which specifies that a delivery of 800
pounds of pork product is delivered every Monday. Each hot dog
requires �

1
4

� pound of pork product. All the other ingredients in the
hot dogs and hot dog buns are in plentiful supply. Finally, the la-
bor force at Weenies and Buns consists of 5 employees working
full time (40 hours per week each). Each hot dog requires 3 min-
utes of labor, and each hot dog bun requires 2 minutes of labor.
Each hot dog yields a profit of $0.20, and each bun yields a profit
of $0.10.

Weenies and Buns would like to know how many hot dogs
and how many hot dog buns they should produce each week so as
to achieve the highest possible profit.
(a) Formulate a linear programming model for this problem.
D (b) Use the graphical method to solve this model.

3.1-11.* The Omega Manufacturing Company has discontinued
the production of a certain unprofitable product line. This act cre-
ated considerable excess production capacity. Management is con-
sidering devoting this excess capacity to one or more of three prod-
ucts; call them products 1, 2, and 3. The available capacity on the
machines that might limit output is summarized in the following
table:
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Available Time
Machine Type (Machine Hours per Week)

Milling machine 500
Lathe 350
Grinder 150

The number of machine hours required for each unit of the re-
spective products is

Productivity coefficient (in machine hours per unit)

Machine Type Product 1 Product 2 Product 3

Milling machine 9 3 5
Lathe 5 4 0
Grinder 3 0 2



3.2-3.* This is your lucky day. You have just won a $10,000 prize.
You are setting aside $4,000 for taxes and partying expenses, but
you have decided to invest the other $6,000. Upon hearing this
news, two different friends have offered you an opportunity to be-
come a partner in two different entrepreneurial ventures, one
planned by each friend. In both cases, this investment would in-
volve expending some of your time next summer as well as putting
up cash. Becoming a full partner in the first friend’s venture would
require an investment of $5,000 and 400 hours, and your estimated
profit (ignoring the value of your time) would be $4,500. The cor-
responding figures for the second friend’s venture are $4,000 and
500 hours, with an estimated profit to you of $4,500. However,
both friends are flexible and would allow you to come in at any
fraction of a full partnership you would like. If you choose a frac-
tion of a full partnership, all the above figures given for a full part-
nership (money investment, time investment, and your profit)
would be multiplied by this same fraction.

Because you were looking for an interesting summer job any-
way (maximum of 600 hours), you have decided to participate in
one or both friends’ventures in whichever combination would max-
imize your total estimated profit. You now need to solve the prob-
lem of finding the best combination.
(a) Describe the analogy between this problem and the Wyndor

Glass Co. problem discussed in Sec. 3.1. Then construct and
fill in a table like Table 3.1 for this problem, identifying both
the activities and the resources.

(b) Formulate a linear programming model for this problem.
D (c) Use the graphical method to solve this model. What is your

total estimated profit?

D 3.2-4. Use the graphical method to find all optimal solutions for
the following model:

Maximize Z � 500x1 � 300x2,

subject to

15x1 � 5x2 � 300
10x1 � 6x2 � 240
8x1 � 12x2 � 450

and

x1 � 0, x2 � 0.

D 3.2-5. Use the graphical method to demonstrate that the fol-
lowing model has no feasible solutions.

Maximize Z � 5x1 � 7x2,

subject to

2x1 � x2 � �1
�x1 � 2x2 � �1

rate the cases where c2 � 0, c2 � 0, and c2 � 0. For the latter two
cases, focus on the ratio of c1 to c2.)

3.2-1. The following table summarizes the key facts about two
products, A and B, and the resources, Q, R, and S, required to pro-
duce them.
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All the assumptions of linear programming hold.
(a) Formulate a linear programming model for this problem.
D (b) Solve this model graphically.
(c) Verify the exact value of your optimal solution from part (b)

by solving algebraically for the simultaneous solution of the
relevant two equations.

3.2-2. The shaded area in the following graph represents the fea-
sible region of a linear programming problem whose objective
function is to be maximized.

Resource Usage
per Unit Produced

Amount of Resource
Resource Product A Product B Available

Q 2 1 2
R 1 2 2
S 3 3 4

Profit per unit 3 2

(6, 0) x1

(0, 2)

(0, 0)

x2
(6, 3)

(3, 3)

Label each of the following statements as True or False, and then
justify your answer based on the graphical method. In each case,
give an example of an objective function that illustrates your an-
swer.
(a) If (3, 3) produces a larger value of the objective function than

(0, 2) and (6, 3), then (3, 3) must be an optimal solution.
(b) If (3, 3) is an optimal solution and multiple optimal solutions

exist, then either (0, 2) or (6, 3) must also be an optimal so-
lution.

(c) The point (0, 0) cannot be an optimal solution.



(a) Design of radiation therapy (Mary).
(b) Regional planning (Southern Confederation of Kibbutzim).
(c) Controlling air pollution (Nori & Leets Co.).

3.4-2. For each of the four assumptions of linear programming dis-
cussed in Sec. 3.3, write a one-paragraph analysis of how well it
applies to each of the following examples given in Sec. 3.4.
(a) Reclaiming solid wastes (Save-It Co.).
(b) Personnel scheduling (Union Airways).
(c) Distributing goods through a distribution network (Distribu-

tion Unlimited Co.).

D 3.4-3. Use the graphical method to solve this problem:

Maximize Z � 15x1 � 20x2,

subject to

x1 � 2x2 � 10
2x1 � 3x2 � 6
x1 � x2 � 6

and

x1 � 0, x2 � 0.

D 3.4-4. Use the graphical method to solve this problem:

Minimize Z � 3x1 � 2x2,

subject to

x1 � 2x2 � 12
2x1 � 3x2 � 12
2x1 � x2 � 8

and

x1 � 0, x2 � 0.

D 3.4-5. Consider the following problem, where the value of c1

has not yet been ascertained.

Maximize Z � c1x1 � 2x2,

subject to

4x1 � x2 � 12
x1 � x2 � 2

and

x1 � 0, x2 � 0.

Use graphical analysis to determine the optimal solution(s) for 
(x1, x2) for the various possible values of c1.

D 3.4-6. Consider the following model:

Minimize Z � 40x1 � 50x2,

and

x1 � 0, x2 � 0.

D 3.2-6. Suppose that the following constraints have been pro-
vided for a linear programming model.

�x1 � 3x2 � 30
�3x1 � x2 � 30

and

x1 � 0, x2 � 0.

(a) Demonstrate that the feasible region is unbounded.
(b) If the objective is to maximize Z � �x1 � x2, does the model

have an optimal solution? If so, find it. If not, explain why not.
(c) Repeat part (b) when the objective is to maximize Z � x1 � x2.
(d) For objective functions where this model has no optimal solu-

tion, does this mean that there are no good solutions accord-
ing to the model? Explain. What probably went wrong when
formulating the model?

3.3-1. Reconsider Prob. 3.2-3. Indicate why each of the four as-
sumptions of linear programming (Sec. 3.3) appears to be reason-
ably satisfied for this problem. Is one assumption more doubtful
than the others? If so, what should be done to take this into ac-
count?

3.3-2. Consider a problem with two decision variables, x1 and x2,
which represent the levels of activities 1 and 2, respectively. For
each variable, the permissible values are 0, 1, and 2, where the fea-
sible combinations of these values for the two variables are deter-
mined from a variety of constraints. The objective is to maximize
a certain measure of performance denoted by Z. The values of Z
for the possibly feasible values of (x1, x2) are estimated to be those
given in the following table:
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x2

x1 0 1 2

0 0 4 8
1 3 8 13
2 6 12 18

Based on this information, indicate whether this problem com-
pletely satisfies each of the four assumptions of linear program-
ming. Justify your answers.

3.4-1.* For each of the four assumptions of linear programming dis-
cussed in Sec. 3.3, write a one-paragraph analysis of how well you
feel it applies to each of the following examples given in Sec. 3.4:



Each pig requires at least 8,000 calories per day and at least 700
units of vitamins. A further constraint is that no more than one-third
of the diet (by weight) can consist of Feed Type A, since it contains
an ingredient which is toxic if consumed in too large a quantity.
(a) Formulate a linear programming model for this problem.
D (b) Use the graphical method to solve this model. What is the

resulting daily cost per pig?

3.4-9. Web Mercantile sells many household products through an
on-line catalog. The company needs substantial warehouse space
for storing its goods. Plans now are being made for leasing ware-
house storage space over the next 5 months. Just how much space
will be required in each of these months is known. However, since
these space requirements are quite different, it may be most eco-
nomical to lease only the amount needed each month on a month-
by-month basis. On the other hand, the additional cost for leasing
space for additional months is much less than for the first month,
so it may be less expensive to lease the maximum amount needed
for the entire 5 months. Another option is the intermediate approach
of changing the total amount of space leased (by adding a new lease
and/or having an old lease expire) at least once but not every month.

The space requirement and the leasing costs for the various
leasing periods are as follows:

subject to

2x1 � 3x2 � 30
x1 � x2 � 12

2x1 � x2 � 20

and

x1 � 0, x2 � 0.

(a) Use the graphical method to solve this model.
(b) How does the optimal solution change if the objective func-

tion is changed to Z � 40x1 � 70x2?
(c) How does the optimal solution change if the third functional

constraint is changed to 2x1 � x2 � 15?

3.4-7. Ralph Edmund loves steaks and potatoes. Therefore, he has
decided to go on a steady diet of only these two foods (plus some
liquids and vitamin supplements) for all his meals. Ralph realizes
that this isn’t the healthiest diet, so he wants to make sure that he
eats the right quantities of the two foods to satisfy some key nu-
tritional requirements. He has obtained the following nutritional
and cost information:
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Ralph wishes to determine the number of daily servings (may be
fractional) of steak and potatoes that will meet these requirements
at a minimum cost.
(a) Formulate a linear programming model for this problem.
D (b) Use the graphical method to solve this model.
C (c) Use a computer to solve this model by the simplex method.

3.4-8. Dwight is an elementary school teacher who also raises pigs
for supplemental income. He is trying to decide what to feed his
pigs. He is considering using a combination of pig feeds available
from local suppliers. He would like to feed the pigs at minimum
cost while also making sure each pig receives an adequate supply
of calories and vitamins. The cost, calorie content, and vitamin
content of each feed is given in the table below.

Grams of Ingredient
per Serving

Daily Requirement
Ingredient Steak Potatoes (Grams)

Carbohydrates 5 15 � 50
Protein 20 5 � 40
Fat 15 2 � 60

Cost per serving $4 $2

Contents Feed Type A Feed Type B

Calories (per pound) 800 1,000
Vitamins (per pound) 140 units 70 units
Cost (per pound) $0.40 $0.80

The objective is to minimize the total leasing cost for meeting the
space requirements.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-10. Larry Edison is the director of the Computer Center for
Buckly College. He now needs to schedule the staffing of the cen-
ter. It is open from 8 A.M. until midnight. Larry has monitored the
usage of the center at various times of the day, and determined that
the following number of computer consultants are required:

Required Leasing Period Cost per Sq. Ft.
Month Space (Sq. Ft.) (Months) Leased

1 30,000 1 $ 65
2 20,000 2 $100
3 40,000 3 $135
4 10,000 4 $160
5 50,000 5 $190

Minimum Number of Consultants
Time of Day Required to Be on Duty

8 A.M.–noon 4
Noon–4 P.M. 8
4 P.M.–8 P.M. 10
8 P.M.–midnight 6



Management now wants to determine the most economical
plan for shipping the iron ore from the mines through the distrib-
ution network to the steel plant.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

Two types of computer consultants can be hired: full-time and
part-time. The full-time consultants work for 8 consecutive hours
in any of the following shifts: morning (8 A.M.–4 P.M.), afternoon
(noon–8 P.M.), and evening (4 P.M.–midnight). Full-time consultants
are paid $14 per hour.

Part-time consultants can be hired to work any of the four
shifts listed in the above table. Part-time consultants are paid $12
per hour.

An additional requirement is that during every time period,
there must be at least 2 full-time consultants on duty for every part-
time consultant on duty.

Larry would like to determine how many full-time and how
many part-time workers should work each shift to meet the above
requirements at the minimum possible cost.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-11.* The Medequip Company produces precision medical di-
agnostic equipment at two factories. Three medical centers have
placed orders for this month’s production output. The table to the
right shows what the cost would be for shipping each unit from
each factory to each of these customers. Also shown are the num-
ber of units that will be produced at each factory and the number
of units ordered by each customer. (Go to the next column.)
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A decision now needs to be made about the shipping plan for
how many units to ship from each factory to each customer.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-12. The Fagersta Steelworks currently is working two mines
to obtain its iron ore. This iron ore is shipped to either of two stor-
age facilities. When needed, it then is shipped on to the company’s
steel plant. The diagram below depicts this distribution network,
where M1 and M2 are the two mines, S1 and S2 are the two stor-
age facilities, and P is the steel plant. The diagram also shows the
monthly amounts produced at the mines and needed at the plant,
as well as the shipping cost and the maximum amount that can be
shipped per month through each shipping lane. (Go to the left col-
umn below the diagram.)

Unit Shipping Cost
To

From Customer 1 Customer 2 Customer 3 Output

Factory 1 $600 $800 $700 400 units
Factory 2 $400 $900 $600 500 units

Order size 300 units 200 units 400 units

M1 S1

M2 S2

P

40 tons
produced

60 tons
produced

$800/ton

70 tons m
ax.

$400/ton70 tons max.

$1
,60

0/t
on

50
 to

ns
 m

ax
.

$1,100/ton

50 tons max.

$2,000/ton

30 tons max.

$1,700/ton

30 tons max.

100 tons
needed

3.4-13.* Al Ferris has $60,000 that he wishes to invest now in or-
der to use the accumulation for purchasing a retirement annuity in
5 years. After consulting with his financial adviser, he has been of-
fered four types of fixed-income investments, which we will label
as investments A, B, C, D.



small—that yield a net unit profit of $420, $360, and $300, re-
spectively. Plants 1, 2, and 3 have the excess capacity to produce
750, 900, and 450 units per day of this product, respectively, re-
gardless of the size or combination of sizes involved.

The amount of available in-process storage space also imposes
a limitation on the production rates of the new product. Plants 1,
2, and 3 have 13,000, 12,000, and 5,000 square feet, respectively,
of in-process storage space available for a day’s production of this
product. Each unit of the large, medium, and small sizes produced
per day requires 20, 15, and 12 square feet, respectively.

Sales forecasts indicate that if available, 900, 1,200, and 750
units of the large, medium, and small sizes, respectively, would be
sold per day.

At each plant, some employees will need to be laid off unless
most of the plant’s excess production capacity can be used to pro-
duce the new product. To avoid layoffs if possible, management
has decided that the plants should use the same percentage of their
excess capacity to produce the new product.

Management wishes to know how much of each of the sizes
should be produced by each of the plants to maximize profit.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-16* A cargo plane has three compartments for storing cargo:
front, center, and back. These compartments have capacity limits
on both weight and space, as summarized below:

Investments A and B are available at the beginning of each of
the next 5 years (call them years 1 to 5). Each dollar invested in
A at the beginning of a year returns $1.40 (a profit of $0.40) 2
years later (in time for immediate reinvestment). Each dollar in-
vested in B at the beginning of a year returns $1.70 three years
later.

Investments C and D will each be available at one time in the
future. Each dollar invested in C at the beginning of year 2 returns
$1.90 at the end of year 5. Each dollar invested in D at the begin-
ning of year 5 returns $1.30 at the end of year 5.

Al wishes to know which investment plan maximizes the amount
of money that can be accumulated by the beginning of year 6.
(a) All the functional constraints for this problem can be expressed

as equality constraints. To do this, let At, Bt, Ct, and Dt be the
amount invested in investment A, B, C, and D, respectively, at
the beginning of year t for each t where the investment is avail-
able and will mature by the end of year 5. Also let Rt be the
number of available dollars not invested at the beginning of
year t (and so available for investment in a later year). Thus,
the amount invested at the beginning of year t plus Rt must
equal the number of dollars available for investment at that
time. Write such an equation in terms of the relevant variables
above for the beginning of each of the 5 years to obtain the
five functional constraints for this problem.

(b) Formulate a complete linear programming model for this
problem.

C (c) Solve this model by the simplex model.

3.4-14. The Metalco Company desires to blend a new alloy of 40
percent tin, 35 percent zinc, and 25 percent lead from several avail-
able alloys having the following properties:
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The objective is to determine the proportions of these alloys that
should be blended to produce the new alloy at a minimum cost.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-15. The Weigelt Corporation has three branch plants with ex-
cess production capacity. Fortunately, the corporation has a new
product ready to begin production, and all three plants have this
capability, so some of the excess capacity can be used in this way.
This product can be made in three sizes—large, medium, and

Alloy

Property 1 2 3 4 5

Percentage of tin 60 25 45 20 50
Percentage of zinc 10 15 45 50 40
Percentage of lead 30 60 10 30 10

Cost ($/lb) 22 20 25 24 27

Weight Space
Capacity Capacity

Compartment (Tons) (Cubic Feet)

Front 12 7,000
Center 18 9,000
Back 10 5,000

Furthermore, the weight of the cargo in the respective compart-
ments must be the same proportion of that compartment’s weight
capacity to maintain the balance of the airplane.

The following four cargoes have been offered for shipment
on an upcoming flight as space is available:

Weight Volume Profit
Cargo (Tons) (Cubic Feet/Ton) ($/Ton)

1 20 500 320
2 16 700 400
3 25 600 360
4 13 400 290

Any portion of these cargoes can be accepted. The objective is to
determine how much (if any) of each cargo should be accepted and



how to distribute each among the compartments to maximize the
total profit for the flight.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method to find one of its

multiple optimal solutions.

3.4-17. Comfortable Hands is a company which features a prod-
uct line of winter gloves for the entire family—men, women, and
children. They are trying to decide what mix of these three types
of gloves to produce.

Comfortable Hands’ manufacturing labor force is unionized.
Each full-time employee works a 40-hour week. In addition, by
union contract, the number of full-time employees can never drop
below 20. Nonunion part-time workers can also be hired with the
following union-imposed restrictions: (1) each part-time worker
works 20 hours per week, and (2) there must be at least 2 full-time
employees for each part-time employee.

All three types of gloves are made out of the same 100 per-
cent genuine cowhide leather. Comfortable Hands has a long-term
contract with a supplier of the leather, and receives a 5,000 square
feet shipment of the material each week. The material requirements
and labor requirements, along with the gross profit per glove sold
(not considering labor costs) is given in the following table.
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Material Required Labor Required Gross Profit
Glove (Square Feet) (Minutes) (per Pair)

Men’s 2 30 $8
Women’s 1.5 45 $10
Children’s 1 40 $6

Maximum Hours of Availability

Operators Wage Rate Mon. Tue. Wed. Thurs. Fri.

K. C. $10.00/hour 6 0 6 0 6
D. H. $10.10/hour 0 6 0 6 0
H. B. $ 9.90/hour 4 8 4 0 4
S. C. $ 9.80/hour 5 5 5 0 5
K. S. $10.80/hour 3 0 3 8 0
N. K. $11.30/hour 0 0 0 6 2

Each full-time employee earns $13 per hour, while each part-
time employee earns $10 per hour. Management wishes to know
what mix of each of the three types of gloves to produce per week,
as well as how many full-time and how many part-time workers to
employ. They would like to maximize their net profit—their gross
profit from sales minus their labor costs.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-18. Oxbridge University maintains a powerful mainframe
computer for research use by its faculty, Ph.D. students, and re-
search associates. During all working hours, an operator must be
available to operate and maintain the computer, as well as to per-
form some programming services. Beryl Ingram, the director of
the computer facility, oversees the operation.

It is now the beginning of the fall semester, and Beryl is con-
fronted with the problem of assigning different working hours to
her operators. Because all the operators are currently enrolled in
the university, they are available to work only a limited number of
hours each day, as shown in the following table.

There are six operators (four undergraduate students and two
graduate students). They all have different wage rates because of
differences in their experience with computers and in their pro-
gramming ability. The above table shows their wage rates, along
with the maximum number of hours that each can work each day.

Each operator is guaranteed a certain minimum number of
hours per week that will maintain an adequate knowledge of the
operation. This level is set arbitrarily at 8 hours per week for the
undergraduate students (K. C., D. H., H. B., and S. C.) and 7 hours
per week for the graduate students (K. S. and N. K.).

The computer facility is to be open for operation from 8 A.M.
to 10 P.M. Monday through Friday with exactly one operator on
duty during these hours. On Saturdays and Sundays, the computer
is to be operated by other staff.

Because of a tight budget, Beryl has to minimize cost. She
wishes to determine the number of hours she should assign to each
operator on each day.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-19. Slim-Down Manufacturing makes a line of nutritionally
complete, weight-reduction beverages. One of their products is a
strawberry shake which is designed to be a complete meal. The
strawberry shake consists of several ingredients. Some information
about each of these ingredients is given below.

Calories Total Vitamin
from Fat Calories Content Thickeners Cost

(per (per (mg/ (mg/ (¢/
Ingredient tbsp) tbsp) tbsp) tbsp) tbsp)

Strawberry 
flavoring 1 50 20 3 10

Cream 75 100 0 8 8
Vitamin 
supplement 0 0 50 1 25

Artificial 
sweetener 0 120 0 2 15

Thickening 
agent 30 80 2 25 6



(a) Describe the two factors which, according to the article, often
hinder the use of optimization models by managers.

(b) Section 3.5 indicates without elaboration that using linear pro-
gramming at Ponderosa “led to a dramatic shift in the types of
plywood products emphasized by the company.” Identify this
shift.

(c) With the success of this application, management then was ea-
ger to use optimization for other problems as well. Identify
these other problems.

(d) Photocopy the two pages of appendixes that give the mathe-
matical formulation of the problem and the structure of the lin-
ear programming model.

3.5-2. Read the article footnoted in Sec. 3.5 that describes the sec-
ond case study presented in that section: “Personnel Scheduling at
United Airlines.”
(a) Describe how United Airlines prepared shift schedules at air-

ports and reservations offices prior to this OR study.
(b) When this study began, the problem definition phase defined

five specific project requirements. Identify these project re-
quirements.

(c) At the end of the presentation of the corresponding example
in Sec. 3.4 (personnel scheduling at Union Airways), we
pointed out that the divisibility assumption does not hold for
this kind of application. An integer solution is needed, but lin-
ear programming may provide an optimal solution that is non-
integer. How does United Airlines deal with this problem?

(d) Describe the flexibility built into the scheduling system to sat-
isfy the group culture at each office. Why was this flexibility
needed?

(e) Briefly describe the tangible and intangible benefits that re-
sulted from the study.

3.5-3. Read the 1986 article footnoted in Sec. 2.1 that describes
the third case study presented in Sec. 3.5: “Planning Supply, Dis-
tribution, and Marketing at Citgo Petroleum Corporation.”
(a) What happened during the years preceding this OR study that

made it vastly more important to control the amount of capi-
tal tied up in inventory?

(b) What geographical area is spanned by Citgo’s distribution net-
work of pipelines, tankers, and barges? Where do they market
their products?

(c) What time periods are included in the model?
(d) Which computer did Citgo use to solve the model? What were

typical run times?
(e) Who are the four types of model users? How does each one

use the model?
(f) List the major types of reports generated by the SDM system.
(g) What were the major implementation challenges for this study?
(h) List the direct and indirect benefits that were realized from this

study.

The nutritional requirements are as follows. The beverage
must total between 380 and 420 calories (inclusive). No more than
20 percent of the total calories should come from fat. There must
be at least 50 milligrams (mg) of vitamin content. For taste rea-
sons, there must be at least 2 tablespoons (tbsp) of strawberry fla-
voring for each tablespoon of artificial sweetener. Finally, to main-
tain proper thickness, there must be exactly 15 mg of thickeners
in the beverage.

Management would like to select the quantity of each ingre-
dient for the beverage which would minimize cost while meeting
the above requirements.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-20. Joyce and Marvin run a day care for preschoolers. They are
trying to decide what to feed the children for lunches. They would
like to keep their costs down, but also need to meet the nutritional
requirements of the children. They have already decided to go with
peanut butter and jelly sandwiches, and some combination of gra-
ham crackers, milk, and orange juice. The nutritional content of
each food choice and its cost are given in the table below.
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The nutritional requirements are as follows. Each child should
receive between 400 and 600 calories. No more than 30 percent of
the total calories should come from fat. Each child should consume
at least 60 milligrams (mg) of vitamin C and 12 grams (g) of pro-
tein. Furthermore, for practical reasons, each child needs exactly
2 slices of bread (to make the sandwich), at least twice as much
peanut butter as jelly, and at least 1 cup of liquid (milk and/or
juice).

Joyce and Marvin would like to select the food choices for
each child which minimize cost while meeting the above require-
ments.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.5-1. Read the article footnoted in Sec. 3.5 that describes the first
case study presented in that section: “Choosing the Product Mix
at Ponderosa Industrial.”

Calories Total Vitamin C Protein Cost
Food Item from Fat Calories (mg) (g) (¢)

Bread (1 slice) 10 70 0 3 5
Peanut butter 
(1 tbsp) 75 100 0 4 4

Strawberry jelly 
(1 tbsp) 0 50 3 0 7

Graham cracker 
(1 cracker) 20 60 0 1 8

Milk (1 cup) 70 150 2 8 15
Juice (1 cup) 0 100 120 1 35



(c) Make three guesses of your own choosing for the optimal so-
lution. Use the spreadsheet to check each one for feasibility
and, if feasible, to find the value of the objective function.
Which feasible guess has the best objective function value?

(d) Use the Excel Solver to solve the model by the simplex method.

3.6-3. You are given the following data for a linear programming
problem where the objective is to minimize the cost of conducting
two nonnegative activities so as to achieve three benefits that do
not fall below their minimum levels.

3.6-1.* You are given the following data for a linear programming
problem where the objective is to maximize the profit from allo-
cating three resources to two nonnegative activities.
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(a) Formulate a linear programming model for this problem.
D (b) Use the graphical method to solve this model.
(c) Display the model on an Excel spreadsheet.
(d) Use the spreadsheet to check the following solutions:

(x1, x2) � (2, 2), (3, 3), (2, 4), (4, 2), (3, 4), (4, 3). Which of
these solutions are feasible? Which of these feasible solutions
has the best value of the objective function?

C (e) Use the Excel Solver to solve the model by the simplex
method.

3.6-2. Ed Butler is the production manager for the Bilco Corpo-
ration, which produces three types of spare parts for automobiles.
The manufacture of each part requires processing on each of two
machines, with the following processing times (in hours):

Each machine is available 40 hours per month. Each part manu-
factured will yield a unit profit as follows:

Part

Machine A B C

1 0.02 0.03 0.05
2 0.05 0.02 0.04

Part

A B C

Profit $50 $40 $30

Benefit Contribution per
Unit of Each Activity Minimum

Acceptable
Benefit Activity 1 Activity 2 Level

1 5 3 60
2 2 2 30
3 7 9 126

Unit cost $60 $50

Kilogram Kilogram Kilogram Minimum
Nutritional of of of Daily
Ingredient Corn Tankage Alfalfa Requirement

Carbohydrates 90 20 40 200
Protein 30 80 60 180
Vitamins 10 20 60 150

Cost (¢) 84 72 60

(a) Formulate a linear programming model for this problem.
D (b) Use the graphical method to solve this model.
(c) Display the model on an Excel spreadsheet.
(d) Use the spreadsheet to check the following solutions:

(x1, x2) � (7, 7), (7, 8), (8, 7), (8, 8), (8, 9), (9, 8). Which of
these solutions are feasible? Which of these feasible solutions
has the best value of the objective function?

C (e) Use the Excel Solver to solve this model by the simplex
method.

3.6-4.* Fred Jonasson manages a family-owned farm. To supple-
ment several food products grown on the farm, Fred also raises
pigs for market. He now wishes to determine the quantities of the
available types of feed (corn, tankage, and alfalfa) that should be
given to each pig. Since pigs will eat any mix of these feed types,
the objective is to determine which mix will meet certain nutri-
tional requirements at a minimum cost. The number of units of each
type of basic nutritional ingredient contained within a kilogram of
each feed type is given in the following table, along with the daily
nutritional requirements and feed costs:

Resource Usage per
Unit of Each Activity

Amount of Resource
Resource Activity 1 Activity 2 Available

1 2 1 10
2 3 3 20
3 2 4 20

Contribution $20 $30
per unit

Contribution per unit � profit per unit of the activity.

Ed wants to determine the mix of spare parts to produce in order
to maximize total profit.
(a) Formulate a linear programming model for this problem.
(b) Display the model on an Excel spreadsheet.



(d) Take a few minutes to use a trial-and-error approach with the
spreadsheet to develop your best guess for the optimal solu-
tion. What is the total amount invested for your solution?

C (e) Use the Excel Solver to solve the model by the simplex
method.

3.7-1. The Philbrick Company has two plants on opposite sides of
the United States. Each of these plants produces the same two prod-
ucts and then sells them to wholesalers within its half of the coun-
try. The orders from wholesalers have already been received for
the next 2 months (February and March), where the number of
units requested are shown below. (The company is not obligated
to completely fill these orders but will do so if it can without de-
creasing its profits.)

(a) Formulate a linear programming model for this problem.
(b) Display the model on an Excel spreadsheet.
(c) Use the spreadsheet to check if (x1, x2, x3) � (1, 2, 2) is a fea-

sible solution and, if so, what the daily cost would be for this
diet. How many units of each nutritional ingredient would this
diet provide daily?

(d) Take a few minutes to use a trial-and-error approach with the
spreadsheet to develop your best guess for the optimal solu-
tion. What is the daily cost for your solution?

C (e) Use the Excel Solver to solve the model by the simplex
method.

3.6-5. Maureen Laird is the chief financial officer for the Alva
Electric Co., a major public utility in the midwest. The company
has scheduled the construction of new hydroelectric plants 5, 10,
and 20 years from now to meet the needs of the growing popu-
lation in the region served by the company. To cover at least the
construction costs, Maureen needs to invest some of the com-
pany’s money now to meet these future cash-flow needs. Mau-
reen may purchase only three kinds of financial assets, each of
which costs $1 million per unit. Fractional units may be pur-
chased. The assets produce income 5, 10, and 20 years from now,
and that income is needed to cover at least minimum cash-flow
requirements in those years. (Any excess income above the min-
imum requirement for each time period will be used to increase
dividend payments to shareholders rather than saving it to help
meet the minimum cash-flow requirement in the next time pe-
riod.) The following table shows both the amount of income gen-
erated by each unit of each asset and the minimum amount of in-
come needed for each of the future time periods when a new
hydroelectric plant will be constructed.
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Maureen wishes to determine the mix of investments in these as-
sets that will cover the cash-flow requirements while minimizing
the total amount invested.
(a) Formulate a linear programming model for this problem.
(b) Display the model on a spreadsheet.
(c) Use the spreadsheet to check the possibility of purchasing 100

units of Asset 1, 100 units of Asset 2, and 200 units of Asset
3. How much cash flow would this mix of investments gener-
ate 5, 10, and 20 years from now? What would be the total
amount invested?

Income per Unit of Asset
Minimum Cash

Year Asset 1 Asset 2 Asset 3 Flow Required

5 $2 million $1 million $0.5 million $400 million
10 $0.5 million $0.5 million $1 million $100 million
20 0 $1.5 million $2 million $300 million

Each plant has 20 production days available in February and 23
production days available in March to produce and ship these prod-
ucts. Inventories are depleted at the end of January, but each plant
has enough inventory capacity to hold 1,000 units total of the two
products if an excess amount is produced in February for sale in
March. In either plant, the cost of holding inventory in this way is
$3 per unit of product 1 and $4 per unit of product 2.

Each plant has the same two production processes, each of
which can be used to produce either of the two products. The pro-
duction cost per unit produced of each product is shown below for
each process in each plant.

The production rate for each product (number of units produced
per day devoted to that product) also is given below for each process
in each plant.

Plant 1 Plant 2

Product February March February March

1 3,600 6,300 4,900 4,200
2 4,500 5,400 5,100 6,000

Plant 1 Plant 2

Product Process 1 Process 2 Process 1 Process 2

1 $62 $59 $61 $65
2 $78 $85 $89 $86

Plant 1 Plant 2

Product Process 1 Process 2 Process 1 Process 2

1 100 140 130 110
2 120 150 160 130



C 3.7-6. Reconsider Prob. 3.6-4.
(a) Use MPL/CPLEX to formulate and solve the model for this

problem.
(b) Use LINGO to formulate and solve this model.

C 3.7-7. Reconsider Prob. 3.6-5.
(a) Use MPL/CPLEX to formulate and solve the model for this

problem.
(b) Use LINGO to formulate and solve this model.

3.7-8. A large paper manufacturing company, the Quality Paper
Corporation, has 10 paper mills from which it needs to supply 1,000
customers. It uses three alternative types of machines and four types
of raw materials to make five different types of paper. Therefore,
the company needs to develop a detailed production distribution
plan on a monthly basis, with an objective of minimizing the total
cost of producing and distributing the paper during the month.
Specifically, it is necessary to determine jointly the amount of each
type of paper to be made at each paper mill on each type of ma-
chine and the amount of each type of paper to be shipped from
each paper mill to each customer.

The relevant data can be expressed symbolically as follows:

Djk � number of units of paper type k demanded by custo-
mer j,

rklm � number of units of raw material m needed to produce
1 unit of paper type k on machine type l,

Rim � number of units of raw material m available at paper
mill i,

ckl � number of capacity units of machine type l that will
produce 1 unit of paper type k,

Cil � number of capacity units of machine type l available
at paper mill i,

Pikl � production cost for each unit of paper type k produced
on machine type l at paper mill i,

Tijk � transportation cost for each unit of paper type k shipped
from paper mill i to customer j.

(a) Using these symbols, formulate a linear programming model
for this problem by hand.

(b) How many functional constraints and decision variables does
this model have?

C (c) Use MPL to formulate this problem.
C (d) Use LINGO to formulate this problem.

The net sales revenue (selling price minus normal shipping
costs) the company receives when a plant sells the products to its
own customers (the wholesalers in its half of the country) is $83
per unit of product 1 and $112 per unit of product 2. However, it
also is possible (and occasionally desirable) for a plant to make a
shipment to the other half of the country to help fill the sales of
the other plant. When this happens, an extra shipping cost of $9
per unit of product 1 and $7 per unit of product 2 is incurred.

Management now needs to determine how much of each prod-
uct should be produced by each production process in each plant
during each month, as well as how much each plant should sell of
each product in each month and how much each plant should ship
of each product in each month to the other plant’s customers. The
objective is to determine which feasible plan would maximize the
total profit (total net sales revenue minus the sum of the produc-
tion costs, inventory costs, and extra shipping costs).
(a) Formulate a complete linear programming model in algebraic

form that shows the individual constraints and decision vari-
ables for this problem.

C (b) Formulate this same model on an Excel spreadsheet instead.
Then use the Excel Solver to solve the model.

C (c) Use MPL to formulate this model in a compact form. Then
use the MPL solver CPLEX to solve the model.

C (d) Use LINGO to formulate this model in a compact form.
Then use the LINGO solver to solve the model.

C 3.7-2. Reconsider Prob. 3.1-11.
(a) Use MPL/CPLEX to formulate and solve the model for this

problem.
(b) Use LINGO to formulate and solve this model.

C 3.7-3. Reconsider Prob. 3.4-11.
(a) Use MPL/CPLEX to formulate and solve the model for this

problem.
(b) Use LINGO to formulate and solve this model.

C 3.7-4. Reconsider Prob. 3.4-15.
(a) Use MPL/CPLEX to formulate and solve the model for this

problem.
(b) Use LINGO to formulate and solve this model.

C 3.7-5. Reconsider Prob. 3.4-18.
(a) Use MPL/CPLEX to formulate and solve the model for this

problem.
(b) Use LINGO to formulate and solve this model.
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Automobile Alliance, a large automobile manufacturing company, organizes the vehi-
cles it manufactures into three families: a family of trucks, a family of small cars, and
a family of midsized and luxury cars. One plant outside Detroit, MI, assembles two
models from the family of midsized and luxury cars. The first model, the Family
Thrillseeker, is a four-door sedan with vinyl seats, plastic interior, standard features,
and excellent gas mileage. It is marketed as a smart buy for middle-class families with
tight budgets, and each Family Thrillseeker sold generates a modest profit of $3,600
for the company. The second model, the Classy Cruiser, is a two-door luxury sedan
with leather seats, wooden interior, custom features, and navigational capabilities. It is
marketed as a privilege of affluence for upper-middle-class families, and each Classy
Cruiser sold generates a healthy profit of $5,400 for the company.

Rachel Rosencrantz, the manager of the assembly plant, is currently deciding the
production schedule for the next month. Specifically, she must decide how many Fam-
ily Thrillseekers and how many Classy Cruisers to assemble in the plant to maximize
profit for the company. She knows that the plant possesses a capacity of 48,000 labor-
hours during the month. She also knows that it takes 6 labor-hours to assemble one
Family Thrillseeker and 10.5 labor-hours to assemble one Classy Cruiser.

Because the plant is simply an assembly plant, the parts required to assemble the
two models are not produced at the plant. They are instead shipped from other plants
around the Michigan area to the assembly plant. For example, tires, steering wheels,
windows, seats, and doors all arrive from various supplier plants. For the next month,
Rachel knows that she will be able to obtain only 20,000 doors (10,000 left-hand doors
and 10,000 right-hand doors) from the door supplier. A recent labor strike forced the
shutdown of that particular supplier plant for several days, and that plant will not be
able to meet its production schedule for the next month. Both the Family Thrillseeker
and the Classy Cruiser use the same door part.

In addition, a recent company forecast of the monthly demands for different au-
tomobile models suggests that the demand for the Classy Cruiser is limited to 3,500
cars. There is no limit on the demand for the Family Thrillseeker within the capacity
limits of the assembly plant.

(a) Formulate and solve a linear programming problem to determine the number of Family
Thrillseekers and the number of Classy Cruisers that should be assembled.

Before she makes her final production decisions, Rachel plans to explore the follow-
ing questions independently except where otherwise indicated.

(b) The marketing department knows that it can pursue a targeted $500,000 advertising cam-
paign that will raise the demand for the Classy Cruiser next month by 20 percent. Should
the campaign be undertaken?

(c) Rachel knows that she can increase next month’s plant capacity by using overtime labor. She
can increase the plant’s labor-hour capacity by 25 percent. With the new assembly plant ca-
pacity, how many Family Thrillseekers and how many Classy Cruisers should be assembled?

(d) Rachel knows that overtime labor does not come without an extra cost. What is the maxi-
mum amount she should be willing to pay for all overtime labor beyond the cost of this la-
bor at regular time rates? Express your answer as a lump sum.
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(e) Rachel explores the option of using both the targeted advertising campaign and the overtime
labor-hours. The advertising campaign raises the demand for the Classy Cruiser by 20 per-
cent, and the overtime labor increases the plant’s labor-hour capacity by 25 percent. How
many Family Thrillseekers and how many Classy Cruisers should be assembled using the
advertising campaign and overtime labor-hours if the profit from each Classy Cruiser sold
continues to be 50 percent more than for each Family Thrillseeker sold?

(f) Knowing that the advertising campaign costs $500,000 and the maximum usage of overtime
labor-hours costs $1,600,000 beyond regular time rates, is the solution found in part (e) a
wise decision compared to the solution found in part (a)?

(g) Automobile Alliance has determined that dealerships are actually heavily discounting the
price of the Family Thrillseekers to move them off the lot. Because of a profit-sharing agree-
ment with its dealers, the company is therefore not making a profit of $3,600 on the Fam-
ily Thrillseeker but is instead making a profit of $2,800. Determine the number of Family
Thrillseekers and the number of Classy Cruisers that should be assembled given this new
discounted price.

(h) The company has discovered quality problems with the Family Thrillseeker by randomly
testing Thrillseekers at the end of the assembly line. Inspectors have discovered that in over
60 percent of the cases, two of the four doors on a Thrillseeker do not seal properly. Be-
cause the percentage of defective Thrillseekers determined by the random testing is so high,
the floor supervisor has decided to perform quality control tests on every Thrillseeker at the
end of the line. Because of the added tests, the time it takes to assemble one Family
Thrillseeker has increased from 6 to 7.5 hours. Determine the number of units of each model
that should be assembled given the new assembly time for the Family Thrillseeker.

(i) The board of directors of Automobile Alliance wishes to capture a larger share of the luxury
sedan market and therefore would like to meet the full demand for Classy Cruisers. They ask
Rachel to determine by how much the profit of her assembly plant would decrease as com-
pared to the profit found in part (a). They then ask her to meet the full demand for Classy
Cruisers if the decrease in profit is not more than $2,000,000.

( j) Rachel now makes her final decision by combining all the new considerations described in
parts ( f ), (g), and (h). What are her final decisions on whether to undertake the advertising
campaign, whether to use overtime labor, the number of Family Thrillseekers to assemble,
and the number of Classy Cruisers to assemble?
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A cafeteria at All-State University has one special dish it serves like clockwork every
Thursday at noon. This supposedly tasty dish is a casserole that contains sautéed onions,
boiled sliced potatoes, green beans, and cream of mushroom soup. Unfortunately, stu-
dents fail to see the special quality of this dish, and they loathingly refer to it as the Killer
Casserole. The students reluctantly eat the casserole, however, because the cafeteria pro-
vides only a limited selection of dishes for Thursday’s lunch (namely, the casserole).

Maria Gonzalez, the cafeteria manager, is looking to cut costs for the coming year,
and she believes that one sure way to cut costs is to buy less expensive and perhaps
lower-quality ingredients. Because the casserole is a weekly staple of the cafeteria
menu, she concludes that if she can cut costs on the ingredients purchased for the casse-
role, she can significantly reduce overall cafeteria operating costs. She therefore de-
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cides to invest time in determining how to minimize the costs of the casserole while
maintaining nutritional and taste requirements.

Maria focuses on reducing the costs of the two main ingredients in the casserole,
the potatoes and green beans. These two ingredients are responsible for the greatest
costs, nutritional content, and taste of the dish.

Maria buys the potatoes and green beans from a wholesaler each week. Potatoes
cost $0.40 per pound, and green beans cost $1.00 per pound.

All-State University has established nutritional requirements that each main dish
of the cafeteria must meet. Specifically, the total amount of the dish prepared for all
the students for one meal must contain 180 grams (g) of protein, 80 milligrams (mg)
of iron, and 1,050 mg of vitamin C. (There are 453.6 g in 1 lb and 1,000 mg in 1 g.)
For simplicity when planning, Maria assumes that only the potatoes and green beans
contribute to the nutritional content of the casserole.

Because Maria works at a cutting-edge technological university, she has been ex-
posed to the numerous resources on the World Wide Web. She decides to surf the Web
to find the nutritional content of potatoes and green beans. Her research yields the fol-
lowing nutritional information about the two ingredients:
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Edson Branner, the cafeteria cook who is surprisingly concerned about taste, in-
forms Maria that an edible casserole must contain at least a six to five ratio in the
weight of potatoes to green beans.

Given the number of students who eat in the cafeteria, Maria knows that she must
purchase enough potatoes and green beans to prepare a minimum of 10 kilograms (kg)
of casserole each week. (There are 1,000 g in 1 kg.) Again for simplicity in planning,
she assumes that only the potatoes and green beans determine the amount of casserole
that can be prepared. Maria does not establish an upper limit on the amount of casse-
role to prepare, since she knows all leftovers can be served for many days thereafter
or can be used creatively in preparing other dishes.

(a) Determine the amount of potatoes and green beans Maria should purchase each week for
the casserole to minimize the ingredient costs while meeting nutritional, taste, and demand
requirements.

Before she makes her final decision, Maria plans to explore the following questions
independently except where otherwise indicated.

(b) Maria is not very concerned about the taste of the casserole; she is only concerned about
meeting nutritional requirements and cutting costs. She therefore forces Edson to change the
recipe to allow for only at least a one to two ratio in the weight of potatoes to green beans.
Given the new recipe, determine the amount of potatoes and green beans Maria should pur-
chase each week.

Potatoes Green Beans

Protein 1.5 g per 100 g 5.67 g per 10 ounces
Iron 0.3 mg per 100 g 3.402 mg per 10 ounces
Vitamin C 12 mg per 100 g 28.35 mg per 10 ounces

(There are 28.35 g in 1 ounce.)



(c) Maria decides to lower the iron requirement to 65 mg since she determines that the other in-
gredients, such as the onions and cream of mushroom soup, also provide iron. Determine
the amount of potatoes and green beans Maria should purchase each week given this new
iron requirement.

(d) Maria learns that the wholesaler has a surplus of green beans and is therefore selling the
green beans for a lower price of $0.50 per lb. Using the same iron requirement from part
(c) and the new price of green beans, determine the amount of potatoes and green beans
Maria should purchase each week.

(e) Maria decides that she wants to purchase lima beans instead of green beans since lima beans
are less expensive and provide a greater amount of protein and iron than green beans. Maria
again wields her absolute power and forces Edson to change the recipe to include lima beans
instead of green beans. Maria knows she can purchase lima beans for $0.60 per lb from the
wholesaler. She also knows that lima beans contain 22.68 g of protein per 10 ounces of lima
beans, 6.804 mg of iron per 10 ounces of lima beans, and no vitamin C. Using the new cost
and nutritional content of lima beans, determine the amount of potatoes and lima beans Maria
should purchase each week to minimize the ingredient costs while meeting nutritional, taste,
and demand requirements. The nutritional requirements include the reduced iron requirement
from part (c).

(f ) Will Edson be happy with the solution in part (e)? Why or why not?
(g) An All-State student task force meets during Body Awareness Week and determines that All-

State University’s nutritional requirements for iron are too lax and that those for vitamin C
are too stringent. The task force urges the university to adopt a policy that requires each
serving of an entrée to contain at least 120 mg of iron and at least 500 mg of vitamin C.
Using potatoes and lima beans as the ingredients for the dish and using the new nutritional
requirements, determine the amount of potatoes and lima beans Maria should purchase each
week.
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California Children’s Hospital has been receiving numerous customer complaints be-
cause of its confusing, decentralized appointment and registration process. When cus-
tomers want to make appointments or register child patients, they must contact the
clinic or department they plan to visit. Several problems exist with this current strat-
egy. Parents do not always know the most appropriate clinic or department they must
visit to address their children’s ailments. They therefore spend a significant amount of
time on the phone being transferred from clinic to clinic until they reach the most ap-
propriate clinic for their needs. The hospital also does not publish the phone numbers
of all clinic and departments, and parents must therefore invest a large amount of time
in detective work to track down the correct phone number. Finally, the various clinics
and departments do not communicate with each other. For example, when a doctor
schedules a referral with a colleague located in another department or clinic, that de-
partment or clinic almost never receives word of the referral. The parent must contact
the correct department or clinic and provide the needed referral information.

CASE 3.3 STAFFING A CALL CENTER1

1This case is based on an actual project completed by a team of master’s students in the Department of En-
gineering-Economic Systems and Operations Research at Stanford University.



In efforts to reengineer and improve its appointment and registration process, the
children’s hospital has decided to centralize the process by establishing one call cen-
ter devoted exclusively to appointments and registration. The hospital is currently in
the middle of the planning stages for the call center. Lenny Davis, the hospital man-
ager, plans to operate the call center from 7 A.M. to 9 P.M. during the weekdays.

Several months ago, the hospital hired an ambitious management consulting firm,
Creative Chaos Consultants, to forecast the number of calls the call center would re-
ceive each hour of the day. Since all appointment and registration-related calls would
be received by the call center, the consultants decided that they could forecast the calls
at the call center by totaling the number of appointment and registration-related calls
received by all clinics and departments. The team members visited all the clinics and
departments, where they diligently recorded every call relating to appointments and
registration. They then totaled these calls and altered the totals to account for calls
missed during data collection. They also altered totals to account for repeat calls that
occurred when the same parent called the hospital many times because of the confu-
sion surrounding the decentralized process. Creative Chaos Consultants determined the
average number of calls the call center should expect during each hour of a weekday.
The following table provides the forecasts.
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After the consultants submitted these forecasts, Lenny became interested in the per-
centage of calls from Spanish speakers since the hospital services many Spanish pa-
tients. Lenny knows that he has to hire some operators who speak Spanish to handle
these calls. The consultants performed further data collection and determined that on
average, 20 percent of the calls were from Spanish speakers.

Given these call forecasts, Lenny must now decide how to staff the call center dur-
ing each 2 hour shift of a weekday. During the forecasting project, Creative Chaos Con-
sultants closely observed the operators working at the individual clinics and depart-
ments and determined the number of calls operators process per hour. The consultants
informed Lenny that an operator is able to process an average of six calls per hour.
Lenny also knows that he has both full-time and part-time workers available to staff
the call center. A full-time employee works 8 hours per day, but because of paperwork
that must also be completed, the employee spends only 4 hours per day on the phone.
To balance the schedule, the employee alternates the 2-hour shifts between answering
phones and completing paperwork. Full-time employees can start their day either by
answering phones or by completing paperwork on the first shift. The full-time em-

Work Shift Average Number of Calls

7 A.M.–9 A.M. 40 calls per hour
9 A.M.–11 A.M. 85 calls per hour

11 A.M.–1 P.M. 70 calls per hour
1 P.M.–3 P.M. 95 calls per hour
3 P.M.–5 P.M. 80 calls per hour
5 P.M.–7 P.M. 35 calls per hour
7 P.M.–9 P.M. 10 calls per hour



ployees speak either Spanish or English, but none of them are bilingual. Both Span-
ish-speaking and English-speaking employees are paid $10 per hour for work before
5 P.M. and $12 per hour for work after 5 P.M. The full-time employees can begin work
at the beginning of the 7 A.M. to 9 A.M. shift, 9 A.M. to 11 A.M. shift, 11 A.M. to 1 P.M.
shift, or 1 P.M. to 3 P.M. shift. The part-time employees work for 4 hours, only answer
calls, and only speak English. They can start work at the beginning of the 3 P.M. to
5 P.M. shift or the 5 P.M. to 7 P.M. shift, and like the full-time employees, they are paid
$10 per hour for work before 5 P.M. and $12 per hour for work after 5 P.M.

For the following analysis consider only the labor cost for the time employees
spend answering phones. The cost for paperwork time is charged to other cost centers.

(a) How many Spanish-speaking operators and how many English-speaking operators does the
hospital need to staff the call center during each 2-hour shift of the day in order to answer
all calls? Please provide an integer number since half a human operator makes no sense.

(b) Lenny needs to determine how many full-time employees who speak Spanish, full-time em-
ployees who speak English, and part-time employees he should hire to begin on each shift.
Creative Chaos Consultants advise him that linear programming can be used to do this in
such a way as to minimize operating costs while answering all calls. Formulate a linear pro-
gramming model of this problem.

(c) Obtain an optimal solution for the linear programming model formulated in part (b) to guide
Lenny’s decision.

(d) Because many full-time workers do not want to work late into the evening, Lenny can find
only one qualified English-speaking operator willing to begin work at 1 P.M. Given this new
constraint, how many full-time English-speaking operators, full-time Spanish-speaking op-
erators, and part-time operators should Lenny hire for each shift to minimize operating costs
while answering all calls?

(e) Lenny now has decided to investigate the option of hiring bilingual operators instead of
monolingual operators. If all the operators are bilingual, how many operators should be work-
ing during each 2-hour shift to answer all phone calls? As in part (a), please provide an in-
teger answer.

(f) If all employees are bilingual, how many full-time and part-time employees should Lenny
hire to begin on each shift to minimize operating costs while answering all calls? As in part
(b), formulate a linear programming model to guide Lenny’s decision.

(g) What is the maximum percentage increase in the hourly wage rate that Lenny can pay bilin-
gual employees over monolingual employees without increasing the total operating costs?

(h) What other features of the call center should Lenny explore to improve service or minimize
operating costs?
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4
Solving Linear 
Programming Problems: 
The Simplex Method
We now are ready to begin studying the simplex method, a general procedure for solving
linear programming problems. Developed by George Dantzig in 1947, it has proved to be
a remarkably efficient method that is used routinely to solve huge problems on today’s
computers. Except for its use on tiny problems, this method is always executed on a com-
puter, and sophisticated software packages are widely available. Extensions and variations
of the simplex method also are used to perform postoptimality analysis (including sensi-
tivity analysis) on the model.

This chapter describes and illustrates the main features of the simplex method. The
first section introduces its general nature, including its geometric interpretation. The fol-
lowing three sections then develop the procedure for solving any linear programming
model that is in our standard form (maximization, all functional constraints in � form,
and nonnegativity constraints on all variables) and has only nonnegative right-hand sides
bi in the functional constraints. Certain details on resolving ties are deferred to Sec. 4.5,
and Sec. 4.6 describes how to adapt the simplex method to other model forms. Next we
discuss postoptimality analysis (Sec. 4.7), and describe the computer implementation of
the simplex method (Sec. 4.8). Section 4.9 then introduces an alternative to the simplex
method (the interior-point approach) for solving large linear programming problems.

The simplex method is an algebraic procedure. However, its underlying concepts are geo-
metric. Understanding these geometric concepts provides a strong intuitive feeling for how
the simplex method operates and what makes it so efficient. Therefore, before delving into
algebraic details, we focus in this section on the big picture from a geometric viewpoint.

To illustrate the general geometric concepts, we shall use the Wyndor Glass Co. ex-
ample presented in Sec. 3.1. (Sections 4.2 and 4.3 use the algebra of the simplex method
to solve this same example.) Section 5.1 will elaborate further on these geometric con-
cepts for larger problems.

To refresh your memory, the model and graph for this example are repeated in Fig.
4.1. The five constraint boundaries and their points of intersection are highlighted in this
figure because they are the keys to the analysis. Here, each constraint boundary is a line
that forms the boundary of what is permitted by the corresponding constraint. The points
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of intersection are the corner-point solutions of the problem. The five that lie on the cor-
ners of the feasible region—(0, 0), (0, 6), (2, 6), (4, 3), and (4, 0)—are the corner-point
feasible solutions (CPF solutions). [The other three—(0, 9), (4, 6), and (6, 0)—are called
corner-point infeasible solutions.]

In this example, each corner-point solution lies at the intersection of two constraint
boundaries. (For a linear programming problem with n decision variables, each of its
corner-point solutions lies at the intersection of n constraint boundaries.1) Certain pairs
of the CPF solutions in Fig. 4.1 share a constraint boundary, and other pairs do not. It
will be important to distinguish between these cases by using the following general 
definitions.

For any linear programming problem with n decision variables, two CPF solutions are ad-
jacent to each other if they share n � 1 constraint boundaries. The two adjacent CPF so-
lutions are connected by a line segment that lies on these same shared constraint bound-
aries. Such a line segment is referred to as an edge of the feasible region.

Since n � 2 in the example, two of its CPF solutions are adjacent if they share one
constraint boundary; for example, (0, 0) and (0, 6) are adjacent because they share the 
x1 � 0 constraint boundary. The feasible region in Fig. 4.1 has five edges, consisting of
the five line segments forming the boundary of this region. Note that two edges emanate
from each CPF solution. Thus, each CPF solution has two adjacent CPF solutions (each
lying at the other end of one of the two edges), as enumerated in Table 4.1. (In each row
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FIGURE 4.1
Constraint boundaries and
corner-point solutions for the
Wyndor Glass Co. problem.

1Although a corner-point solution is defined in terms of n constraint boundaries whose intersection gives this
solution, it also is possible that one or more additional constraint boundaries pass through this same point.



of this table, the CPF solution in the first column is adjacent to each of the two CPF so-
lutions in the second column, but the two CPF solutions in the second column are not ad-
jacent to each other.)

One reason for our interest in adjacent CPF solutions is the following general prop-
erty about such solutions, which provides a very useful way of checking whether a CPF
solution is an optimal solution.

Optimality test: Consider any linear programming problem that possesses at
least one optimal solution. If a CPF solution has no adjacent CPF solutions that
are better (as measured by Z), then it must be an optimal solution.

Thus, for the example, (2, 6) must be optimal simply because its Z � 36 is larger than 
Z � 30 for (0, 6) and Z � 27 for (4, 3). (We will delve further into why this property
holds in Sec. 5.1.) This optimality test is the one used by the simplex method for deter-
mining when an optimal solution has been reached.

Now we are ready to apply the simplex method to the example.

Solving the Example

Here is an outline of what the simplex method does (from a geometric viewpoint) to solve
the Wyndor Glass Co. problem. At each step, first the conclusion is stated and then the
reason is given in parentheses. (Refer to Fig. 4.1 for a visualization.)

Initialization: Choose (0, 0) as the initial CPF solution to examine. (This is a conve-
nient choice because no calculations are required to identify this CPF solution.)

Optimality Test: Conclude that (0, 0) is not an optimal solution. (Adjacent CPF so-
lutions are better.)

Iteration 1: Move to a better adjacent CPF solution, (0, 6), by performing the fol-
lowing three steps.

1. Considering the two edges of the feasible region that emanate from (0, 0), choose to
move along the edge that leads up the x2 axis. (With an objective function of 
Z � 3x1 � 5x2, moving up the x2 axis increases Z at a faster rate than moving along
the x1 axis.)

2. Stop at the first new constraint boundary: 2x2 � 12. [Moving farther in the direction
selected in step 1 leaves the feasible region; e.g., moving to the second new constraint
boundary hit when moving in that direction gives (0, 9), which is a corner-point in-
feasible solution.]
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TABLE 4.1 Adjacent CPF solutions for each CPF 
solution of the Wyndor Glass Co. problem

CPF Solution Its Adjacent CPF Solutions

(0, 0) (0, 6) and (4, 0)
(0, 6) (2, 6) and (0, 0)
(2, 6) (4, 3) and (0, 6)
(4, 3) (4, 0) and (2, 6)
(4, 0) (0, 0) and (4, 3)



3. Solve for the intersection of the new set of constraint boundaries: (0, 6). (The equations
for these constraint boundaries, x1 � 0 and 2x2 � 12, immediately yield this solution.)

Optimality Test: Conclude that (0, 6) is not an optimal solution. (An adjacent CPF
solution is better.)

Iteration 2: Move to a better adjacent CPF solution, (2, 6), by performing the fol-
lowing three steps.

1. Considering the two edges of the feasible region that emanate from (0, 6), choose to
move along the edge that leads to the right. (Moving along this edge increases Z,
whereas backtracking to move back down the x2 axis decreases Z.)

2. Stop at the first new constraint boundary encountered when moving in that direction:
3x1 � 2x2 � 12. (Moving farther in the direction selected in step 1 leaves the feasible
region.)

3. Solve for the intersection of the new set of constraint boundaries: (2, 6). (The equa-
tions for these constraint boundaries, 3x1 � 2x2 � 18 and 2x2 � 12, immediately yield
this solution.)

Optimality Test: Conclude that (2, 6) is an optimal solution, so stop. (None of the ad-
jacent CPF solutions are better.)

This sequence of CPF solutions examined is shown in Fig. 4.2, where each circled num-
ber identifies which iteration obtained that solution.

Now let us look at the six key solution concepts of the simplex method that provide
the rationale behind the above steps. (Keep in mind that these concepts also apply for
solving problems with more than two decision variables where a graph like Fig. 4.2 is not
available to help quickly find an optimal solution.)

The Key Solution Concepts

The first solution concept is based directly on the relationship between optimal solutions
and CPF solutions given at the end of Sec. 3.2.
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FIGURE 4.2
This graph shows the
sequence of CPF solutions
(�, �, �) examined by the
simplex method for the
Wyndor Glass Co. problem.
The optimal solution (2, 6) is
found after just three
solutions are examined.



Solution concept 1: The simplex method focuses solely on CPF solutions. For
any problem with at least one optimal solution, finding one requires only find-
ing a best CPF solution.1

Since the number of feasible solutions generally is infinite, reducing the number of solu-
tions that need to be examined to a small finite number ( just three in Fig. 4.2) is a tremen-
dous simplification.

The next solution concept defines the flow of the simplex method.

Solution concept 2: The simplex method is an iterative algorithm (a systematic
solution procedure that keeps repeating a fixed series of steps, called an itera-
tion, until a desired result has been obtained) with the following structure.

Initialization: Set up to start iterations, including finding an initial
CPF solution.

Optimality test: Is the current CPF solution optimal?

If no If yes → Stop.

Iteration: Perform an iteration to find a better CPF solution.

When the example was solved, note how this flow diagram was followed through two it-
erations until an optimal solution was found.

We next focus on how to get started.

Solution concept 3: Whenever possible, the initialization of the simplex method
chooses the origin (all decision variables equal to zero) to be the initial CPF so-
lution. When there are too many decision variables to find an initial CPF solu-
tion graphically, this choice eliminates the need to use algebraic procedures to
find and solve for an initial CPF solution.

Choosing the origin commonly is possible when all the decision variables have nonneg-
ativity constraints, because the intersection of these constraint boundaries yields the ori-
gin as a corner-point solution. This solution then is a CPF solution unless it is infeasible
because it violates one or more of the functional constraints. If it is infeasible, special pro-
cedures described in Sec. 4.6 are needed to find the initial CPF solution.

The next solution concept concerns the choice of a better CPF solution at each iteration.

Solution concept 4: Given a CPF solution, it is much quicker computationally
to gather information about its adjacent CPF solutions than about other CPF so-
lutions. Therefore, each time the simplex method performs an iteration to move
from the current CPF solution to a better one, it always chooses a CPF solution
that is adjacent to the current one. No other CPF solutions are considered. Con-
sequently, the entire path followed to eventually reach an optimal solution is along
the edges of the feasible region.
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1The only restriction is that the problem must possess CPF solutions. This is ensured if the feasible region is
bounded.
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The next focus is on which adjacent CPF solution to choose at each iteration.

Solution concept 5: After the current CPF solution is identified, the simplex
method examines each of the edges of the feasible region that emanate from this
CPF solution. Each of these edges leads to an adjacent CPF solution at the other
end, but the simplex method does not even take the time to solve for the adja-
cent CPF solution. Instead, it simply identifies the rate of improvement in Z that
would be obtained by moving along the edge. Among the edges with a positive
rate of improvement in Z, it then chooses to move along the one with the largest
rate of improvement in Z. The iteration is completed by first solving for the ad-
jacent CPF solution at the other end of this one edge and then relabeling this ad-
jacent CPF solution as the current CPF solution for the optimality test and (if
needed) the next iteration.

At the first iteration of the example, moving from (0, 0) along the edge on the x1 axis
would give a rate of improvement in Z of 3 (Z increases by 3 per unit increase in x1),
whereas moving along the edge on the x2 axis would give a rate of improvement in Z of
5 (Z increases by 5 per unit increase in x2), so the decision is made to move along the lat-
ter edge. At the second iteration, the only edge emanating from (0, 6) that would yield a
positive rate of improvement in Z is the edge leading to (2, 6), so the decision is made to
move next along this edge.

The final solution concept clarifies how the optimality test is performed efficiently.

Solution concept 6: Solution concept 5 describes how the simplex method ex-
amines each of the edges of the feasible region that emanate from the current
CPF solution. This examination of an edge leads to quickly identifying the rate
of improvement in Z that would be obtained by moving along the edge toward
the adjacent CPF solution at the other end. A positive rate of improvement in Z
implies that the adjacent CPF solution is better than the current CPF solution,
whereas a negative rate of improvement in Z implies that the adjacent CPF so-
lution is worse. Therefore, the optimality test consists simply of checking whether
any of the edges give a positive rate of improvement in Z. If none do, then the
current CPF solution is optimal.

In the example, moving along either edge from (2, 6) decreases Z. Since we want to max-
imize Z, this fact immediately gives the conclusion that (2, 6) is optimal.
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The preceding section stressed the geometric concepts that underlie the simplex method.
However, this algorithm normally is run on a computer, which can follow only algebraic
instructions. Therefore, it is necessary to translate the conceptually geometric procedure
just described into a usable algebraic procedure. In this section, we introduce the algebraic
language of the simplex method and relate it to the concepts of the preceding section.

The algebraic procedure is based on solving systems of equations. Therefore, the first
step in setting up the simplex method is to convert the functional inequality constraints
to equivalent equality constraints. (The nonnegativity constraints are left as inequalities
because they are treated separately.) This conversion is accomplished by introducing slack
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variables. To illustrate, consider the first functional constraint in the Wyndor Glass Co.
example of Sec. 3.1

x1 � 4.

The slack variable for this constraint is defined to be

x3 � 4 � x1,

which is the amount of slack in the left-hand side of the inequality. Thus,

x1 � x3 � 4.

Given this equation, x1 � 4 if and only if 4 � x1 � x3 � 0. Therefore, the original con-
straint x1 � 4 is entirely equivalent to the pair of constraints

x1 � x3 � 4 and x3 � 0.

Upon the introduction of slack variables for the other functional constraints, the original
linear programming model for the example (shown below on the left) can now be replaced
by the equivalent model (called the augmented form of the model) shown below on the right:

Original Form of the Model Augmented Form of the Model1
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Maximize Z � 3x1 � 5x2,

subject to

x1 � 2x2 � 4

3x1 � 2x2 � 12

3x1 � 2x2 � 18

and

x1 � 0, x2 � 0.

Maximize Z � 3x1 � 5x2,

subject to

(1) x1 � x3 � 4

(2) 2x2 � x4 � 12

(3) 3x1 � 2x2 � x5 � 18

and

xj � 0, for j � 1, 2, 3, 4, 5.

Although both forms of the model represent exactly the same problem, the new form is
much more convenient for algebraic manipulation and for identification of CPF solutions.
We call this the augmented form of the problem because the original form has been aug-
mented by some supplementary variables needed to apply the simplex method.

If a slack variable equals 0 in the current solution, then this solution lies on the con-
straint boundary for the corresponding functional constraint. A value greater than 0 means
that the solution lies on the feasible side of this constraint boundary, whereas a value less
than 0 means that the solution lies on the infeasible side of this constraint boundary. A
demonstration of these properties is provided by the demonstration example in your OR
Tutor entitled Interpretation of the Slack Variables.

The terminology used in the preceding section (corner-point solutions, etc.) applies
to the original form of the problem. We now introduce the corresponding terminology for
the augmented form.

An augmented solution is a solution for the original variables (the decision vari-
ables) that has been augmented by the corresponding values of the slack variables.

1The slack variables are not shown in the objective function because the coefficients there are 0.



For example, augmenting the solution (3, 2) in the example yields the augmented solu-
tion (3, 2, 1, 8, 5) because the corresponding values of the slack variables are x3 � 1,
x4 � 8, and x5 � 5.

A basic solution is an augmented corner-point solution.

To illustrate, consider the corner-point infeasible solution (4, 6) in Fig. 4.1. Augmenting
it with the resulting values of the slack variables x3 � 0, x4 � 0, and x5 � �6 yields the
corresponding basic solution (4, 6, 0, 0, �6).

The fact that corner-point solutions (and so basic solutions) can be either feasible or
infeasible implies the following definition:

A basic feasible (BF) solution is an augmented CPF solution.

Thus, the CPF solution (0, 6) in the example is equivalent to the BF solution (0, 6, 4,
0, 6) for the problem in augmented form.

The only difference between basic solutions and corner-point solutions (or between
BF solutions and CPF solutions) is whether the values of the slack variables are included.
For any basic solution, the corresponding corner-point solution is obtained simply by delet-
ing the slack variables. Therefore, the geometric and algebraic relationships between these
two solutions are very close, as described in Sec. 5.1.

Because the terms basic solution and basic feasible solution are very important parts
of the standard vocabulary of linear programming, we now need to clarify their algebraic
properties. For the augmented form of the example, notice that the system of functional
constraints has 5 variables and 3 equations, so

Number of variables � number of equations � 5 � 3 � 2.

This fact gives us 2 degrees of freedom in solving the system, since any two variables can be
chosen to be set equal to any arbitrary value in order to solve the three equations in terms of
the remaining three variables.1 The simplex method uses zero for this arbitrary value. Thus,
two of the variables (called the nonbasic variables) are set equal to zero, and then the si-
multaneous solution of the three equations for the other three variables (called the basic vari-
ables) is a basic solution. These properties are described in the following general definitions.

A basic solution has the following properties:

1. Each variable is designated as either a nonbasic variable or a basic variable.
2. The number of basic variables equals the number of functional constraints (now equa-

tions). Therefore, the number of nonbasic variables equals the total number of vari-
ables minus the number of functional constraints.

3. The nonbasic variables are set equal to zero.
4. The values of the basic variables are obtained as the simultaneous solution of the sys-

tem of equations (functional constraints in augmented form). (The set of basic vari-
ables is often referred to as the basis.)

5. If the basic variables satisfy the nonnegativity constraints, the basic solution is a BF
solution.
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1This method of determining the number of degrees of freedom for a system of equations is valid as long as the
system does not include any redundant equations. This condition always holds for the system of equations formed
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To illustrate these definitions, consider again the BF solution (0, 6, 4, 0, 6). This so-
lution was obtained before by augmenting the CPF solution (0, 6). However, another way
to obtain this same solution is to choose x1 and x4 to be the two nonbasic variables, and
so the two variables are set equal to zero. The three equations then yield, respectively,
x3 � 4, x2 � 6, and x5 � 6 as the solution for the three basic variables, as shown below
(with the basic variables in bold type):

x1 � 0 and x4 � 0 so
(1) x1 � x3 � 4 x3 � 4
(2) 2x2 � x4 � 12 x2 � 6
(3) 3x1 � 2x2 � x5 � 18 x5 � 6

Because all three of these basic variables are nonnegative, this basic solution (0, 6, 4,
0, 6) is indeed a BF solution.

Just as certain pairs of CPF solutions are adjacent, the corresponding pairs of BF so-
lutions also are said to be adjacent. Here is an easy way to tell when two BF solutions
are adjacent.

Two BF solutions are adjacent if all but one of their nonbasic variables are the same.
This implies that all but one of their basic variables also are the same, although perhaps
with different numerical values.

Consequently, moving from the current BF solution to an adjacent one involves switch-
ing one variable from nonbasic to basic and vice versa for one other variable (and then
adjusting the values of the basic variables to continue satisfying the system of equations).

To illustrate adjacent BF solutions, consider one pair of adjacent CPF solutions in
Fig. 4.1: (0, 0) and (0, 6). Their augmented solutions, (0, 0, 4, 12, 18) and (0, 6, 4, 0, 6),
automatically are adjacent BF solutions. However, you do not need to look at Fig. 4.1 to
draw this conclusion. Another signpost is that their nonbasic variables, (x1, x2) and 
(x1, x4), are the same with just the one exception—x2 has been replaced by x4. Conse-
quently, moving from (0, 0, 4, 12, 18) to (0, 6, 4, 0, 6) involves switching x2 from non-
basic to basic and vice versa for x4.

When we deal with the problem in augmented form, it is convenient to consider and
manipulate the objective function equation at the same time as the new constraint equa-
tions. Therefore, before we start the simplex method, the problem needs to be rewritten
once again in an equivalent way:

Maximize Z,

subject to

(0) Z � 3x1 � 5x2 � 0
(1) x1 � x3 � 4
(2) 2x2 � x4 � 12
(3) 3x1 � 2x2 � x5 � 18

and

xj � 0, for j � 1, 2, . . . , 5.
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It is just as if Eq. (0) actually were one of the original constraints; but because it already
is in equality form, no slack variable is needed. While adding one more equation, we also
have added one more unknown (Z) to the system of equations. Therefore, when using
Eqs. (1) to (3) to obtain a basic solution as described above, we use Eq. (0) to solve for
Z at the same time.

Somewhat fortuitously, the model for the Wyndor Glass Co. problem fits our stan-
dard form, and all its functional constraints have nonnegative right-hand sides bi. If this
had not been the case, then additional adjustments would have been needed at this point
before the simplex method was applied. These details are deferred to Sec. 4.6, and we
now focus on the simplex method itself.
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We continue to use the prototype example of Sec. 3.1, as rewritten at the end of Sec. 4.2,
for illustrative purposes. To start connecting the geometric and algebraic concepts of the
simplex method, we begin by outlining side by side in Table 4.2 how the simplex method
solves this example from both a geometric and an algebraic viewpoint. The geometric
viewpoint (first presented in Sec. 4.1) is based on the original form of the model (no slack
variables), so again refer to Fig. 4.1 for a visualization when you examine the second col-
umn of the table. Refer to the augmented form of the model presented at the end of Sec.
4.2 when you examine the third column of the table.

We now fill in the details for each step of the third column of Table 4.2.

Initialization

The choice of x1 and x2 to be the nonbasic variables (the variables set equal to zero) for
the initial BF solution is based on solution concept 3 in Sec. 4.1. This choice eliminates
the work required to solve for the basic variables (x3, x4, x5) from the following system
of equations (where the basic variables are shown in bold type):

x1 � 0 and x2 � 0 so
(1) x1 � x3 � 4 x3 � 4
(2) 2x2 � x4 � 12 x4 � 12
(3) 3x1 � 2x2 � x5 � 18 x5 � 18

Thus, the initial BF solution is (0, 0, 4, 12, 18).
Notice that this solution can be read immediately because each equation has just one

basic variable, which has a coefficient of 1, and this basic variable does not appear in any
other equation. You will soon see that when the set of basic variables changes, the sim-
plex method uses an algebraic procedure (Gaussian elimination) to convert the equations
to this same convenient form for reading every subsequent BF solution as well. This form
is called proper form from Gaussian elimination.

Optimality Test

The objective function is

Z � 3x1 � 5x2,
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so Z � 0 for the initial BF solution. Because none of the basic variables (x3, x4, x5) have
a nonzero coefficient in this objective function, the coefficient of each nonbasic variable
(x1, x2) gives the rate of improvement in Z if that variable were to be increased from zero
(while the values of the basic variables are adjusted to continue satisfying the system of
equations).1 These rates of improvement (3 and 5) are positive. Therefore, based on so-
lution concept 6 in Sec. 4.1, we conclude that (0, 0, 4, 12, 18) is not optimal.

For each BF solution examined after subsequent iterations, at least one basic variable
has a nonzero coefficient in the objective function. Therefore, the optimality test then will
use the new Eq. (0) to rewrite the objective function in terms of just the nonbasic vari-
ables, as you will see later.
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TABLE 4.2 Geometric and algebraic interpretations of how the simplex method
solves the Wyndor Glass Co. problem

Method
Sequence Geometric Interpretation Algebraic Interpretation

Initialization Choose (0, 0) to be the initial CPF Choose x1 and x2 to be the nonbasic 
solution. variables (� 0) for the initial BF 

solution: (0, 0, 4, 12, 18).
Optimality Not optimal, because moving along Not optimal, because increasing either 
test either edge from (0, 0) increases Z. nonbasic variable (x1 or x2) increases Z.

Iteration 1
Step 1 Move up the edge lying on the x2 Increase x2 while adjusting other 

axis. variable values to satisfy the system of 
equations.

Step 2 Stop when the first new constraint Stop when the first basic variable (x3, 
boundary (2x2 � 12) is reached. x4, or x5) drops to zero (x4).

Step 3 Find the intersection of the new pair With x2 now a basic variable and x4

of constraint boundaries: (0, 6) is the now a nonbasic variable, solve the 
new CPF solution. system of equations: (0, 6, 4, 0, 6) is 

the new BF solution.
Optimality Not optimal, because moving along the Not optimal, because increasing one 
test edge from (0, 6) to the right increases Z. nonbasic variable (x1) increases Z.

Iteration 2
Step 1 Move along this edge to the right. Increase x1 while adjusting other 

variable values to satisfy the system of 
equations.

Step 2 Stop when the first new constraint Stop when the first basic variable (x2, 
boundary (3x1 � 2x2 � 18) is reached. x3, or x5) drops to zero (x5).

Step 3 Find the intersection of the new pair With x1 now a basic variable and x5

of constraint boundaries: (2, 6) is the now a nonbasic variable, solve the 
new CPF solution. system of equations: (2, 6, 2, 0, 0) is 

the new BF solution.
Optimality (2, 6) is optimal, because moving (2, 6, 2, 0, 0) is optimal, because 
test along either edge from (2, 6) decreases Z. increasing either nonbasic variable (x4

or x5) decreases Z.

1Note that this interpretation of the coefficients of the xj variables is based on these variables being on the right-
hand side, Z � 3x1 � 5x2. When these variables are brought to the left-hand side for Eq. (0), Z � 3x1 � 5x2 � 0,
the nonzero coefficients change their signs.



Determining the Direction of Movement (Step 1 of an Iteration)

Increasing one nonbasic variable from zero (while adjusting the values of the basic vari-
ables to continue satisfying the system of equations) corresponds to moving along one
edge emanating from the current CPF solution. Based on solution concepts 4 and 5 in
Sec. 4.1, the choice of which nonbasic variable to increase is made as follows:

Z � 3x1 � 5x2

Increase x1? Rate of improvement in Z � 3.
Increase x2? Rate of improvement in Z � 5.
5 � 3, so choose x2 to increase.

As indicated next, we call x2 the entering basic variable for iteration 1.

At any iteration of the simplex method, the purpose of step 1 is to choose one nonbasic
variable to increase from zero (while the values of the basic variables are adjusted to con-
tinue satisfying the system of equations). Increasing this nonbasic variable from zero will
convert it to a basic variable for the next BF solution. Therefore, this variable is called
the entering basic variable for the current iteration (because it is entering the basis).

Determining Where to Stop (Step 2 of an Iteration)

Step 2 addresses the question of how far to increase the entering basic variable x2 before
stopping. Increasing x2 increases Z, so we want to go as far as possible without leaving
the feasible region. The requirement to satisfy the functional constraints in augmented
form (shown below) means that increasing x2 (while keeping the nonbasic variable x1 � 0)
changes the values of some of the basic variables as shown on the right.

x1 � 0, so
(1) x1 � x3 � 4 x3 � 4
(2) 2x2 � x4 � 12 x4 � 12 � 2x2

(3) 3x1 � 2x2 � x5 � 18 x5 � 18 � 2x2.

The other requirement for feasibility is that all the variables be nonnegative. The nonbasic
variables (including the entering basic variable) are nonnegative, but we need to check how
far x2 can be increased without violating the nonnegativity constraints for the basic variables.

x3 � 4 � 0 ⇒ no upper bound on x2.

x4 � 12 � 2x2 � 0 ⇒ x2 � �
1
2
2
� � 6 � minimum.

x5 � 18 � 2x2 � 0 ⇒ x2 � �
1
2
8
� � 9.

Thus, x2 can be increased just to 6, at which point x4 has dropped to 0. Increasing x2 be-
yond 6 would cause x4 to become negative, which would violate feasibility.

These calculations are referred to as the minimum ratio test. The objective of this
test is to determine which basic variable drops to zero first as the entering basic variable
is increased. We can immediately rule out the basic variable in any equation where the
coefficient of the entering basic variable is zero or negative, since such a basic variable
would not decrease as the entering basic variable is increased. [This is what happened
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with x3 in Eq. (1) of the example.] However, for each equation where the coefficient of
the entering basic variable is strictly positive (� 0), this test calculates the ratio of the
right-hand side to the coefficient of the entering basic variable. The basic variable in the
equation with the minimum ratio is the one that drops to zero first as the entering basic
variable is increased.

At any iteration of the simplex method, step 2 uses the minimum ratio test to determine
which basic variable drops to zero first as the entering basic variable is increased. De-
creasing this basic variable to zero will convert it to a nonbasic variable for the next BF
solution. Therefore, this variable is called the leaving basic variable for the current iter-
ation (because it is leaving the basis).

Thus, x4 is the leaving basic variable for iteration 1 of the example.

Solving for the New BF Solution (Step 3 of an Iteration)

Increasing x2 � 0 to x2 � 6 moves us from the initial BF solution on the left to the new
BF solution on the right.

Initial BF solution New BF solution
Nonbasic variables: x1 � 0, x2 � 0 x1 � 0, x4 � 0
Basic variables: x3 � 4, x4 � 12, x5 � 18 x3 � ?, x2 � 6, x5 � ?

The purpose of step 3 is to convert the system of equations to a more convenient form
(proper form from Gaussian elimination) for conducting the optimality test and (if needed)
the next iteration with this new BF solution. In the process, this form also will identify
the values of x3 and x5 for the new solution.

Here again is the complete original system of equations, where the new basic vari-
ables are shown in bold type (with Z playing the role of the basic variable in the objec-
tive function equation):

(0) Z � 3x1 � 5x2 � 0.
(1) x1 � x3 � 4.
(2) 2x2 � x4 � 12.
(3) 3x1 � 2x2 � x5 � 18.

Thus, x2 has replaced x4 as the basic variable in Eq. (2). To solve this system of equations
for Z, x2, x3, and x5, we need to perform some elementary algebraic operations to re-
produce the current pattern of coefficients of x4 (0, 0, 1, 0) as the new coefficients of x2.
We can use either of two types of elementary algebraic operations:

1. Multiply (or divide) an equation by a nonzero constant.
2. Add (or subtract) a multiple of one equation to (or from) another equation.

To prepare for performing these operations, note that the coefficients of x2 in the above
system of equations are �5, 0, 2, and 3, respectively, whereas we want these coefficients
to become 0, 0, 1, and 0, respectively. To turn the coefficient of 2 in Eq. (2) into 1, we use
the first type of elementary algebraic operation by dividing Eq. (2) by 2 to obtain

(2) x2 � �
1
2

�x4 � 6.
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To turn the coefficients of �5 and 3 into zeros, we need to use the second type of elementary
algebraic operation. In particular, we add 5 times this new Eq. (2) to Eq. (0), and subtract 2
times this new Eq. (2) from Eq. (3). The resulting complete new system of equations is

(0) Z � 3x1 � �
5
2

�x4 � 30

(1) x1 � x3 � 4

(2) x2 � �
1
2

�x4 � 6

(3) 3x1 � x4 � x5 � 6.

Since x1 � 0 and x4 � 0, the equations in this form immediately yield the new BF solu-
tion, (x1, x2, x3, x4, x5) � (0, 6, 4, 0, 6), which yields Z � 30.

This procedure for obtaining the simultaneous solution of a system of linear equa-
tions is called the Gauss-Jordan method of elimination, or Gaussian elimination for
short.1 The key concept for this method is the use of elementary algebraic operations to
reduce the original system of equations to proper form from Gaussian elimination, where
each basic variable has been eliminated from all but one equation (its equation) and has
a coefficient of �1 in that equation.

Optimality Test for the New BF Solution

The current Eq. (0) gives the value of the objective function in terms of just the current
nonbasic variables

Z � 30 � 3x1 � �
5
2

�x4.

Increasing either of these nonbasic variables from zero (while adjusting the values of the
basic variables to continue satisfying the system of equations) would result in moving to-
ward one of the two adjacent BF solutions. Because x1 has a positive coefficient, in-
creasing x1 would lead to an adjacent BF solution that is better than the current BF solu-
tion, so the current solution is not optimal.

Iteration 2 and the Resulting Optimal Solution

Since Z � 30 � 3x1 � �
5
2

�x4, Z can be increased by increasing x1, but not x4. Therefore, step
1 chooses x1 to be the entering basic variable.

For step 2, the current system of equations yields the following conclusions about
how far x1 can be increased (with x4 � 0):

x3 � 4 � x1 � 0 ⇒ x1 � �
4
1

� � 4.

x2 � 6 � 0 ⇒ no upper bound on x1.

x5 � 6 � 3x1 � 0 ⇒ x1 � �
6
3

� � 2 � minimum.

Therefore, the minimum ratio test indicates that x5 is the leaving basic variable.
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1Actually, there are some technical differences between the Gauss-Jordan method of elimination and Gaussian
elimination, but we shall not make this distinction.



For step 3, with x1 replacing x5 as a basic variable, we perform elementary algebraic
operations on the current system of equations to reproduce the current pattern of coeffi-
cients of x5 (0, 0, 0, 1) as the new coefficients of x1. This yields the following new sys-
tem of equations:

(0) Z � �
3
2

�x4 � x5 � 36

(1) x3 � �
1
3

�x4 � �
1
3

�x5 � 2

(2) x2 � �
1
2

�x4 � 6

(3) x1 � �
1
3

�x4 � �
1
3

�x5 � 2.

Therefore, the next BF solution is (x1, x2, x3, x4, x5) � (2, 6, 2, 0, 0), yielding Z � 36. To
apply the optimality test to this new BF solution, we use the current Eq. (0) to express Z
in terms of just the current nonbasic variables,

Z � 36 � �
3
2

�x4 � x5.

Increasing either x4 or x5 would decrease Z, so neither adjacent BF solution is as good as
the current one. Therefore, based on solution concept 6 in Sec. 4.1, the current BF solu-
tion must be optimal.

In terms of the original form of the problem (no slack variables), the optimal solu-
tion is x1 � 2, x2 � 6, which yields Z � 3x1 � 5x2 � 36.

To see another example of applying the simplex method, we recommend that you now
view the demonstration entitled Simplex Method—Algebraic Form in your OR Tutor. This
vivid demonstration simultaneously displays both the algebra and the geometry of the sim-
plex method as it dynamically evolves step by step. Like the many other demonstration ex-
amples accompanying other sections of the book (including the next section), this com-
puter demonstration highlights concepts that are difficult to convey on the printed page.

To further help you learn the simplex method efficiently, your OR Courseware in-
cludes a procedure entitled Solve Interactively by the Simplex Method. This routine per-
forms nearly all the calculations while you make the decisions step by step, thereby en-
abling you to focus on concepts rather than get bogged down in a lot of number crunching.
Therefore, you probably will want to use this routine for your homework on this section.
The software will help you get started by letting you know whenever you make a mistake
on the first iteration of a problem.

The next section includes a summary of the simplex method for a more convenient
tabular form.
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The algebraic form of the simplex method presented in Sec. 4.3 may be the best one for
learning the underlying logic of the algorithm. However, it is not the most convenient form
for performing the required calculations. When you need to solve a problem by hand (or
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interactively with your OR Courseware), we recommend the tabular form described in
this section.1

The tabular form of the simplex method records only the essential information, namely,
(1) the coefficients of the variables, (2) the constants on the right-hand sides of the equa-
tions, and (3) the basic variable appearing in each equation. This saves writing the sym-
bols for the variables in each of the equations, but what is even more important is the fact
that it permits highlighting the numbers involved in arithmetic calculations and recording
the computations compactly.

Table 4.3 compares the initial system of equations for the Wyndor Glass Co. prob-
lem in algebraic form (on the left) and in tabular form (on the right), where the table on
the right is called a simplex tableau. The basic variable for each equation is shown in bold
type on the left and in the first column of the simplex tableau on the right. [Although only
the xj variables are basic or nonbasic, Z plays the role of the basic variable for Eq. (0).]
All variables not listed in this basic variable column (x1, x2) automatically are nonbasic
variables. After we set x1 � 0, x2 � 0, the right side column gives the resulting solution
for the basic variables, so that the initial BF solution is (x1, x2, x3, x4, x5) � (0, 0, 4, 12,
18) which yields Z � 0.

The tabular form of the simplex method uses a simplex tableau to compactly display the
system of equations yielding the current BF solution. For this solution, each variable in
the leftmost column equals the corresponding number in the rightmost column (and vari-
ables not listed equal zero). When the optimality test or an iteration is performed, the only
relevant numbers are those to the right of the Z column. The term row refers to just a row
of numbers to the right of the Z column (including the right side number), where row i
corresponds to Eq. (i).

We summarize the tabular form of the simplex method below and, at the same time,
briefly describe its application to the Wyndor Glass Co. problem. Keep in mind that the
logic is identical to that for the algebraic form presented in the preceding section. Only
the form for displaying both the current system of equations and the subsequent iteration
has changed (plus we shall no longer bother to bring variables to the right-hand side of
an equation before drawing our conclusions in the optimality test or in steps 1 and 2 of
an iteration).
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TABLE 4.3 Initial system of equations for the Wyndor Glass Co. problem

(a) Algebraic Form (b) Tabular Form

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

(0) Z � 3x1 � 5x2 � x3 � x4 � x5 � 0 Z (0) 1 �3 �5 0 0 0 0
(1) Z � 3x1 � 5x2 � x3 � x4 � x5 � 4 x3 (1) 0 �1 �0 1 0 0 4
(2) Z � 3x1 � 2x2 � x3 � x4 � x5 � 12 x4 (2) 0 �0 �2 0 1 0 12
(3) Z � 3x1 � 2x2 � x3 � x4 � x5 � 18 x5 (3) 0 �3 �2 0 0 1 18

1A form more convenient for automatic execution on a computer is presented in Sec. 5.2.



Summary of the Simplex Method (and Iteration 1 for the Example)

Initialization. Introduce slack variables. Select the decision variables to be the initial
nonbasic variables (set equal to zero) and the slack variables to be the initial basic vari-
ables. (See Sec. 4.6 for the necessary adjustments if the model is not in our standard
form—maximization, only � functional constraints, and all nonnegativity constraints—
or if any bi values are negative.)

For the Example: This selection yields the initial simplex tableau shown in Table 4.3b,
so the initial BF solution is (0, 0, 4, 12, 18).

Optimality Test. The current BF solution is optimal if and only if every coefficient in
row 0 is nonnegative (� 0). If it is, stop; otherwise, go to an iteration to obtain the next
BF solution, which involves changing one nonbasic variable to a basic variable (step 1)
and vice versa (step 2) and then solving for the new solution (step 3).

For the Example: Just as Z � 3x1 � 5x2 indicates that increasing either x1 or x2 will
increase Z, so the current BF solution is not optimal, the same conclusion is drawn from
the equation Z � 3x1 � 5x2 � 0. These coefficients of �3 and �5 are shown in row 0 of
Table 4.3b.

Iteration. Step 1: Determine the entering basic variable by selecting the variable (au-
tomatically a nonbasic variable) with the negative coefficient having the largest absolute
value (i.e., the “most negative” coefficient) in Eq. (0). Put a box around the column be-
low this coefficient, and call this the pivot column.

For the Example: The most negative coefficient is �5 for x2 (5 � 3), so x2 is to be
changed to a basic variable. (This change is indicated in Table 4.4 by the box around the
x2 column below �5.)

Step 2: Determine the leaving basic variable by applying the minimum ratio test.
Minimum Ratio Test

1. Pick out each coefficient in the pivot column that is strictly positive (� 0).
2. Divide each of these coefficients into the right side entry for the same row.
3. Identify the row that has the smallest of these ratios.
4. The basic variable for that row is the leaving basic variable, so replace that variable

by the entering basic variable in the basic variable column of the next simplex tableau.
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TABLE 4.4 Applying the minimum ratio test to determine the first leaving basic
variable for the Wyndor Glass Co. problem

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side Ratio

Z (0) 1 �3 �5 0 0 0 0
x3 (1) 0 �1 �0 1 0 0 4

x4 (2) 0 �0 �2 0 1 0 12 � � 6 � minimum

x5 (3) 0 �3 �2 0 0 1 18 � � 9
18
�
2

12
�
2



Put a box around this row and call it the pivot row. Also call the number that is in both
boxes the pivot number.

For the Example: The calculations for the minimum ratio test are shown to the
right of Table 4.4. Thus, row 2 is the pivot row (see the box around this row in the
first simplex tableau of Table 4.5), and x4 is the leaving basic variable. In the next sim-
plex tableau (see the bottom of Table 4.5), x2 replaces x4 as the basic variable for 
row 2.

Step 3: Solve for the new BF solution by using elementary row operations (multi-
ply or divide a row by a nonzero constant; add or subtract a multiple of one row to an-
other row) to construct a new simplex tableau in proper form from Gaussian elimination
below the current one, and then return to the optimality test. The specific elementary row
operations that need to be performed are listed below.

1. Divide the pivot row by the pivot number. Use this new pivot row in steps 2 
and 3.

2. For each other row (including row 0) that has a negative coefficient in the pivot col-
umn, add to this row the product of the absolute value of this coefficient and the new
pivot row.

3. For each other row that has a positive coefficient in the pivot column, subtract from
this row the product of this coefficient and the new pivot row.

For the Example: Since x2 is replacing x4 as a basic variable, we need to reproduce
the first tableau’s pattern of coefficients in the column of x4 (0, 0, 1, 0) in the second
tableau’s column of x2. To start, divide the pivot row (row 2) by the pivot number (2),
which gives the new row 2 shown in Table 4.5. Next, we add to row 0 the product, 5 times
the new row 2. Then we subtract from row 3 the product, 2 times the new row 2 (or equiv-
alently, subtract from row 3 the old row 2). These calculations yield the new tableau shown
in Table 4.6 for iteration 1. Thus, the new BF solution is (0, 6, 4, 0, 6), with Z � 30. We
next return to the optimality test to check if the new BF solution is optimal. Since the new
row 0 still has a negative coefficient (�3 for x1), the solution is not optimal, and so at
least one more iteration is needed.
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TABLE 4.5 Simplex tableaux for the Wyndor Glass Co. problem after the 
first pivot row is divided by the first pivot number

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �3 �5 0 0 0 0
x3 (1) 0 �1 �0 1 0 0 4

0
x4 (2) 0 �0 �2 0 1 0 12
x5 (3) 0 �3 �2 0 0 1 18

Z (0) 1
x3 (1) 0

1
x2 (2) 0 �0 �1 0 �

1
2

� 0 6
x5 (3) 0



Iteration 2 for the Example and the Resulting Optimal Solution

The second iteration starts anew from the second tableau of Table 4.6 to find the next BF
solution. Following the instructions for steps 1 and 2, we find x1 as the entering basic vari-
able and x5 as the leaving basic variable, as shown in Table 4.7.

For step 3, we start by dividing the pivot row (row 3) in Table 4.7 by the pivot num-
ber (3). Next, we add to row 0 the product, 3 times the new row 3. Then we subtract the
new row 3 from row 1.

We now have the set of tableaux shown in Table 4.8. Therefore, the new BF solution
is (2, 6, 2, 0, 0), with Z � 36. Going to the optimality test, we find that this solution is
optimal because none of the coefficients in row 0 is negative, so the algorithm is finished.
Consequently, the optimal solution for the Wyndor Glass Co. problem (before slack vari-
ables are introduced) is x1 � 2, x2 � 6.

Now compare Table 4.8 with the work done in Sec. 4.3 to verify that these two forms
of the simplex method really are equivalent. Then note how the algebraic form is supe-
rior for learning the logic behind the simplex method, but the tabular form organizes the
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TABLE 4.6 First two simplex tableaux for the Wyndor Glass Co. problem

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �3 �5 0 �0 0 0
x3 (1) 0 �1 �0 1 �0 0 4

0
x4 (2) 0 �0 �2 0 �1 0 12
x5 (3) 0 �3 �2 0 �0 1 18

Z (0) 1 �3 �0 0 ��
5
2

� 0 30

x3 (1) 0 �1 �0 1 �0 0 4
1

x2 (2) 0 �0 �1 0 ��
1
2

� 0 6

x5 (3) 0 �3 �0 0 �1 1 6

TABLE 4.7 Steps 1 and 2 of iteration 2 for the Wyndor Glass Co. problem

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x5 Side Ratio

Z (0) 1 �3 0 0 ��
5
2

� 0 30

x3 (1) 0 �1 0 1 �0 0 4 �
4
1

� � 4
1

x2 (2) 0 �0 1 0 ��
1
2

� 0 6

x5 (3) 0 �3 0 0 �1 1 6 �
6
3

� � 2 � minimum



work being done in a considerably more convenient and compact form. We generally use
the tabular form from now on.

An additional example of applying the simplex method in tabular form is available
to you in the OR Tutor. See the demonstration entitled Simplex Method—Tabular Form.
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TABLE 4.8 Complete set of simplex tableaux for the Wyndor Glass Co. problem

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �3 �5 0 �0 �0 0
x3 (1) 0 �1 �0 1 �0 �0 4

0
x4 (2) 0 �0 �2 0 �1 �0 12
x5 (3) 0 �3 �2 0 �0 �1 18

Z (0) 1 �3 �0 0 ��
5
2

� �0 30

x3 (1) 0 �1 �0 1 �0 �0 4
1

x2 (2) 0 �0 �1 0 ��
1
2

� �0 6

x5 (3) 0 �3 �0 0 �1 �1 6

Z (0) 1 �0 �0 0 ��
3
2

� �1 36

x3 (1) 0 �0 �0 1 ��
1
3

� ��
1
3

� 2
2

x2 (2) 0 �0 �1 0 ��
1
2

� �0 6

x1 (3) 0 �1 �0 0 ��
1
3

� ��
1
3

� 2

You may have noticed in the preceding two sections that we never said what to do if the
various choice rules of the simplex method do not lead to a clear-cut decision, because of
either ties or other similar ambiguities. We discuss these details now.

Tie for the Entering Basic Variable

Step 1 of each iteration chooses the nonbasic variable having the negative coefficient with
the largest absolute value in the current Eq. (0) as the entering basic variable. Now sup-
pose that two or more nonbasic variables are tied for having the largest negative coeffi-
cient (in absolute terms). For example, this would occur in the first iteration for the Wyn-
dor Glass Co. problem if its objective function were changed to Z � 3x1� 3x2, so that the
initial Eq. (0) became Z � 3x1 � 3x2 � 0. How should this tie be broken?

The answer is that the selection between these contenders may be made arbitrarily.
The optimal solution will be reached eventually, regardless of the tied variable chosen,
and there is no convenient method for predicting in advance which choice will lead there
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sooner. In this example, the simplex method happens to reach the optimal solution (2, 6)
in three iterations with x1 as the initial entering basic variable, versus two iterations if x2

is chosen.

Tie for the Leaving Basic Variable—Degeneracy

Now suppose that two or more basic variables tie for being the leaving basic variable in
step 2 of an iteration. Does it matter which one is chosen? Theoretically it does, and in a
very critical way, because of the following sequence of events that could occur. First, all
the tied basic variables reach zero simultaneously as the entering basic variable is in-
creased. Therefore, the one or ones not chosen to be the leaving basic variable also will
have a value of zero in the new BF solution. (Note that basic variables with a value of
zero are called degenerate, and the same term is applied to the corresponding BF solu-
tion.) Second, if one of these degenerate basic variables retains its value of zero until it
is chosen at a subsequent iteration to be a leaving basic variable, the corresponding en-
tering basic variable also must remain zero (since it cannot be increased without making
the leaving basic variable negative), so the value of Z must remain unchanged. Third, if
Z may remain the same rather than increase at each iteration, the simplex method may
then go around in a loop, repeating the same sequence of solutions periodically rather
than eventually increasing Z toward an optimal solution. In fact, examples have been ar-
tificially constructed so that they do become entrapped in just such a perpetual loop.

Fortunately, although a perpetual loop is theoretically possible, it has rarely been
known to occur in practical problems. If a loop were to occur, one could always get out
of it by changing the choice of the leaving basic variable. Furthermore, special rules1 have
been constructed for breaking ties so that such loops are always avoided. However, these
rules frequently are ignored in actual application, and they will not be repeated here. For
your purposes, just break this kind of tie arbitrarily and proceed without worrying about
the degenerate basic variables that result.

No Leaving Basic Variable—Unbounded Z

In step 2 of an iteration, there is one other possible outcome that we have not yet dis-
cussed, namely, that no variable qualifies to be the leaving basic variable.2 This outcome
would occur if the entering basic variable could be increased indefinitely without giving
negative values to any of the current basic variables. In tabular form, this means that every
coefficient in the pivot column (excluding row 0) is either negative or zero.

As illustrated in Table 4.9, this situation arises in the example displayed in Fig. 3.6
on p. 36. In this example, the last two functional constraints of the Wyndor Glass Co.
problem have been overlooked and so are not included in the model. Note in Fig. 3.6 how
x2 can be increased indefinitely (thereby increasing Z indefinitely) without ever leaving
the feasible region. Then note in Table 4.9 that x2 is the entering basic variable but the
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1See R. Bland, “New Finite Pivoting Rules for the Simplex Method,” Mathematics of Operations Research, 2:
103–107, 1977.
2Note that the analogous case (no entering basic variable) cannot occur in step 1 of an iteration, because the
optimality test would stop the algorithm first by indicating that an optimal solution had been reached.



only coefficient in the pivot column is zero. Because the minimum ratio test uses only co-
efficients that are greater than zero, there is no ratio to provide a leaving basic variable.

The interpretation of a tableau like the one shown in Table 4.9 is that the constraints
do not prevent the value of the objective function Z increasing indefinitely, so the sim-
plex method would stop with the message that Z is unbounded. Because even linear pro-
gramming has not discovered a way of making infinite profits, the real message for prac-
tical problems is that a mistake has been made! The model probably has been
misformulated, either by omitting relevant constraints or by stating them incorrectly. Al-
ternatively, a computational mistake may have occurred.

Multiple Optimal Solutions

We mentioned in Sec. 3.2 (under the definition of optimal solution) that a problem can
have more than one optimal solution. This fact was illustrated in Fig. 3.5 by changing the
objective function in the Wyndor Glass Co. problem to Z � 3x1 � 2x2, so that every point
on the line segment between (2, 6) and (4, 3) is optimal. Thus, all optimal solutions are
a weighted average of these two optimal CPF solutions

(x1, x2) � w1(2, 6) � w2(4, 3),

where the weights w1 and w2 are numbers that satisfy the relationships

w1 � w2 � 1 and w1 � 0, w2 � 0.

For example, w1 � �
1
3

� and w2 � �
2
3

� give

(x1, x2) � �
1
3

�(2, 6) � �
2
3

�(4, 3) � ��
2
3

� � �
8
3

�, �
6
3

� � �
6
3

�� � ��
1
3
0
�, 4�

as one optimal solution.
In general, any weighted average of two or more solutions (vectors) where the weights

are nonnegative and sum to 1 is called a convex combination of these solutions. Thus,
every optimal solution in the example is a convex combination of (2, 6) and (4, 3).

This example is typical of problems with multiple optimal solutions.

As indicated at the end of Sec. 3.2, any linear programming problem with multiple opti-
mal solutions (and a bounded feasible region) has at least two CPF solutions that are op-
timal. Every optimal solution is a convex combination of these optimal CPF solutions.
Consequently, in augmented form, every optimal solution is a convex combination of the
optimal BF solutions.

(Problems 4.5-5 and 4.5-6 guide you through the reasoning behind this conclusion.)
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TABLE 4.9 Initial simplex tableau for the Wyndor Glass Co. problem without the
last two functional constraints

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 Side Ratio

Z (0) 1 �3 �5 0 0 With x1 � 0 and x2 increasing,
x3 (1) 0 �1 �0 1 4 None x3 � 4 � 1x1 � 0x2 � 4 � 0.



The simplex method automatically stops after one optimal BF solution is found. How-
ever, for many applications of linear programming, there are intangible factors not incor-
porated into the model that can be used to make meaningful choices between alternative
optimal solutions. In such cases, these other optimal solutions should be identified as well.
As indicated above, this requires finding all the other optimal BF solutions, and then every
optimal solution is a convex combination of the optimal BF solutions.

After the simplex method finds one optimal BF solution, you can detect if there are
any others and, if so, find them as follows:

Whenever a problem has more than one optimal BF solution, at least one of the nonba-
sic variables has a coefficient of zero in the final row 0, so increasing any such variable
will not change the value of Z. Therefore, these other optimal BF solutions can be iden-
tified (if desired) by performing additional iterations of the simplex method, each time
choosing a nonbasic variable with a zero coefficient as the entering basic variable.1

To illustrate, consider again the case just mentioned, where the objective function in
the Wyndor Glass Co. problem is changed to Z � 3x1 � 2x2. The simplex method obtains
the first three tableaux shown in Table 4.10 and stops with an optimal BF solution. How-
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TABLE 4.10 Complete set of simplex tableaux to obtain all optimal BF solutions
for the Wyndor Glass Co. problem with c2 � 2

Coefficient of:
Basic Right Solution

Iteration Variable Eq. Z x1 x2 x3 x4 x5 Side Optimal?

Z (0) 1 �3 �2 �0 �0 �0 0 No
x3 (1) 0 �1 �0 �1 �0 �0 4

0
x4 (2) 0 �0 �2 �0 �1 �0 12
x5 (3) 0 �3 �2 �0 �0 �1 18

Z (0) 1 �0 �2 �3 �0 �0 12 No
x1 (1) 0 �1 �0 �1 �0 �0 4

1
x4 (2) 0 �0 �2 �0 �1 �0 12
x5 (3) 0 �0 �2 �3 �0 �1 6

Z (0) 1 �0 �0 �0 �0 �1 18 Yes
x1 (1) 0 �1 �0 �1 �0 �0 4

2
x4 (2) 0 �0 �0 �3 �1 �1 6

x2 (3) 0 �0 �1 ��
3
2

� �0 ��
1
2

� 3

Z (0) 1 �0 �0 �0 �0 �1 18 Yes

x1 (1) 0 �1 �0 �0 ��
1
3

� ��
1
3

� 2
Extra

x3 (2) 0 �0 �0 �1 ��
1
3

� ��
1
3

� 2

x2 (3) 0 �0 �1 �0 ��
1
2

� �0 6

1If such an iteration has no leaving basic variable, this indicates that the feasible region is unbounded and the
entering basic variable can be increased indefinitely without changing the value of Z.



ever, because a nonbasic variable (x3) then has a zero coefficient in row 0, we perform
one more iteration in Table 4.10 to identify the other optimal BF solution. Thus, the two
optimal BF solutions are (4, 3, 0, 6, 0) and (2, 6, 2, 0, 0), each yielding Z � 18. Notice
that the last tableau also has a nonbasic variable (x4) with a zero coefficient in row 0. This
situation is inevitable because the extra iteration does not change row 0, so this leaving
basic variable necessarily retains its zero coefficient. Making x4 an entering basic variable
now would only lead back to the third tableau. (Check this.) Therefore, these two are the
only BF solutions that are optimal, and all other optimal solutions are a convex combi-
nation of these two.

(x1, x2, x3, x4, x5) � w1(2, 6, 2, 0, 0) � w2(4, 3, 0, 6, 0),
w1 � w2 � 1, w1 � 0, w2 � 0.
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Thus far we have presented the details of the simplex method under the assumptions that
the problem is in our standard form (maximize Z subject to functional constraints in � form
and nonnegativity constraints on all variables) and that bi � 0 for all i � 1, 2, . . . , m. In
this section we point out how to make the adjustments required for other legitimate forms
of the linear programming model. You will see that all these adjustments can be made dur-
ing the initialization, so the rest of the simplex method can then be applied just as you have
learned it already.

The only serious problem introduced by the other forms for functional constraints
(the � or � forms, or having a negative right-hand side) lies in identifying an initial BF
solution. Before, this initial solution was found very conveniently by letting the slack vari-
ables be the initial basic variables, so that each one just equals the nonnegative right-hand
side of its equation. Now, something else must be done. The standard approach that is
used for all these cases is the artificial-variable technique. This technique constructs a
more convenient artificial problem by introducing a dummy variable (called an artificial
variable) into each constraint that needs one. This new variable is introduced just for the
purpose of being the initial basic variable for that equation. The usual nonnegativity con-
straints are placed on these variables, and the objective function also is modified to im-
pose an exorbitant penalty on their having values larger than zero. The iterations of the
simplex method then automatically force the artificial variables to disappear (become zero),
one at a time, until they are all gone, after which the real problem is solved.

To illustrate the artificial-variable technique, first we consider the case where the only
nonstandard form in the problem is the presence of one or more equality constraints.

Equality Constraints

Any equality constraint

ai1x1 � ai2x2 � 			 � ainxn � bi

actually is equivalent to a pair of inequality constraints:

ai1x1 � ai2x2 � 			 � ainxn � bi

ai1x1 � ai2x2 � 			 � ainxn � bi.
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However, rather than making this substitution and thereby increasing the number of con-
straints, it is more convenient to use the artificial-variable technique. We shall illustrate
this technique with the following example.
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Example. Suppose that the Wyndor Glass Co. problem in Sec. 3.1 is modified to re-
quire that Plant 3 be used at full capacity. The only resulting change in the linear pro-
gramming model is that the third constraint, 3x1 � 2x2 � 18, instead becomes an equal-
ity constraint

3x1 � 2x2 � 18,

so that the complete model becomes the one shown in the upper right-hand corner of Fig.
4.3. This figure also shows in darker ink the feasible region which now consists of just
the line segment connecting (2, 6) and (4, 3).

After the slack variables still needed for the inequality constraints are introduced, the
system of equations for the augmented form of the problem becomes

(0) Z � 3x1 � 5x2 � 0.
(1) x1 � x3 � 4.
(2) 2x2 � x4 � 12.
(3) 3x1 � 2x2 � 18.

Unfortunately, these equations do not have an obvious initial BF solution because there
is no longer a slack variable to use as the initial basic variable for Eq. (3). It is necessary
to find an initial BF solution to start the simplex method.

This difficulty can be circumvented in the following way.

(2, 6)

(4, 3)

x2

x1

Maximize     Z � 3x1 � 5x2,
subject to x1 �   4

� 12
� 18

2x2
2x23x1 �

x1 � 0, x2 � 0 and

0 2 4 6 8

2

4

6

8

10

FIGURE 4.3
When the third functional
constraint becomes an
equality constraint, the
feasible region for the
Wyndor Glass Co. problem
becomes the line segment
between (2, 6) and (4, 3).



Obtaining an Initial BF Solution. The procedure is to construct an artificial prob-
lem that has the same optimal solution as the real problem by making two modifications
of the real problem.

1. Apply the artificial-variable technique by introducing a nonnegative artificial vari-
able (call it xx�5)1 into Eq. (3), just as if it were a slack variable

(3) 3x1 � 2x2 � x�5 � 18.

2. Assign an overwhelming penalty to having xx�5 � 0 by changing the objective function
Z � 3x1 � 5x2 to

Z � 3x1 � 5x2 � Mx�5,

where M symbolically represents a huge positive number. (This method of forcing xx�5

to be xx�5 � 0 in the optimal solution is called the Big M method.)

Now find the optimal solution for the real problem by applying the simplex method to the
artificial problem, starting with the following initial BF solution:

Initial BF Solution
Nonbasic variables: x1 � 0, x2 � 0
Basic variables: x3 � 4, x4 � 12, xx�5 � 18.

Because xx�5 plays the role of the slack variable for the third constraint in the artificial
problem, this constraint is equivalent to 3x1 � 2x2 � 18 ( just as for the original Wyndor
Glass Co. problem in Sec. 3.1). We show below the resulting artificial problem (before
augmenting) next to the real problem.

The Real Problem The Artificial Problem
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Maximize Z � 3x1 � 5x2,

subject to

x1 � 2x2 � 4

3x1 � 2x2 � 12

3x1 � 2x2 � 18

and

x1 � 0, x2 � 0.

Define xx�5 � 18 � 3x1 � 2x2.

Maximize Z � 3x1 � 5x2 � Mxx�5,

subject to

(so 3x1 � 2x2 � x�5 � 4

(so 3x1 � 2x2 � x�5 � 12

(so 3x1 � 2x2 � x�5 � 18

(so 3x1 � 2x2 � x�5 � 18)

and

x1 � 0, x2 � 0, xx�5 � 0.

Therefore, just as in Sec. 3.1, the feasible region for (x1, x2) for the artificial problem is
the one shown in Fig. 4.4. The only portion of this feasible region that coincides with the
feasible region for the real problem is where x�5 � 0 (so 3x1 � 2x2 � 18).

Figure 4.4 also shows the order in which the simplex method examines the CPF so-
lutions (or BF solutions after augmenting), where each circled number identifies which it-
eration obtained that solution. Note that the simplex method moves counterclockwise here

1We shall always label the artificial variables by putting a bar over them.



whereas it moved clockwise for the original Wyndor Glass Co. problem (see Fig. 4.2). The
reason for this difference is the extra term �Mxx�5 in the objective function for the artificial
problem.

Before applying the simplex method and demonstrating that it follows the path shown
in Fig. 4.4, the following preparatory step is needed.

Converting Equation (0) to Proper Form. The system of equations after the arti-
ficial problem is augmented is

(0) Z � 3x1 � 5x2 � Mx�5 � 0
(1) x1 � x3 � 4
(2) 2x2 � x4 � 12
(3) 3x1 � 2x2 � x�5 � 18

where the initial basic variables (x3, x4, x�5) are shown in bold type. However, this system
is not yet in proper form from Gaussian elimination because a basic variable x�5 has a
nonzero coefficient in Eq. (0). Recall that all basic variables must be algebraically elim-
inated from Eq. (0) before the simplex method can either apply the optimality test or find
the entering basic variable. This elimination is necessary so that the negative of the coef-
ficient of each nonbasic variable will give the rate at which Z would increase if that non-
basic variable were to be increased from 0 while adjusting the values of the basic 
variables accordingly.

To algebraically eliminate x�5 from Eq. (0), we need to subtract from Eq. (0) the prod-
uct, M times Eq. (3).

New (0)

Z � 3x1 � 5x2 � Mx�5 � 0
�M(3x1 � 2x2 � Mxx�5 � 18)

����������������
Z � (3M � 3)x1 � (2M � 5)x2 � �18M.
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Maximize Z � 3x1 � 5x2 � Mx5,
subject to x1 �   4
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x5 � 18 � 3x1 � 2x2.

x5 � 0 

FIGURE 4.4
This graph shows the feasible
region and the sequence of
CPF solutions (�, �, �, �)
examined by the simplex
method for the artificial
problem that corresponds to
the real problem of Fig. 4.3.



Application of the Simplex Method. This new Eq. (0) gives Z in terms of just the
nonbasic variables (x1, x2),

Z � �18M � (3M � 3)x1 � (2M � 5)x2.

Since 3M � 3 � 2M � 5 (remember that M represents a huge number), increasing x1 in-
creases Z at a faster rate than increasing x2 does, so x1 is chosen as the entering basic vari-
able. This leads to the move from (0, 0) to (4, 0) at iteration 1, shown in Fig. 4.4, thereby
increasing Z by 4(3M � 3).

The quantities involving M never appear in the system of equations except for Eq.
(0), so they need to be taken into account only in the optimality test and when an enter-
ing basic variable is determined. One way of dealing with these quantities is to assign
some particular (huge) numerical value to M and use the resulting coefficients in Eq. (0)
in the usual way. However, this approach may result in significant rounding errors that in-
validate the optimality test. Therefore, it is better to do what we have just shown, namely,
to express each coefficient in Eq. (0) as a linear function aM � b of the symbolic quan-
tity M by separately recording and updating the current numerical value of (1) the multi-
plicative factor a and (2) the additive term b. Because M is assumed to be so large that b
always is negligible compared with M when a 
 0, the decisions in the optimality test
and the choice of the entering basic variable are made by using just the multiplicative fac-
tors in the usual way, except for breaking ties with the additive factors.

Using this approach on the example yields the simplex tableaux shown in Table 4.11.
Note that the artificial variable x�5 is a basic variable (xx�5 � 0) in the first two tableaux
and a nonbasic variable (xx�5 � 0) in the last two. Therefore, the first two BF solutions for
this artificial problem are infeasible for the real problem whereas the last two also are BF
solutions for the real problem.

This example involved only one equality constraint. If a linear programming model
has more than one, each is handled in just the same way. (If the right-hand side is nega-
tive, multiply through both sides by �1 first.)

Negative Right-Hand Sides

The technique mentioned in the preceding sentence for dealing with an equality constraint
with a negative right-hand side (namely, multiply through both sides by �1) also works
for any inequality constraint with a negative right-hand side. Multiplying through both
sides of an inequality by �1 also reverses the direction of the inequality; i.e., � changes
to � or vice versa. For example, doing this to the constraint

x1 � x2 � �1 (that is, x1 � x2 � 1)

gives the equivalent constraint

�x1 � x2 � 1 (that is, x2 � 1 � x1)

but now the right-hand side is positive. Having nonnegative right-hand sides for all the
functional constraints enables the simplex method to begin, because (after augmenting)
these right-hand sides become the respective values of the initial basic variables, which
must satisfy nonnegativity constraints.
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We next focus on how to augment � constraints, such as �x1 � x2 � 1, with the help
of the artificial-variable technique.

Functional Constraints in � Form

To illustrate how the artificial-variable technique deals with functional constraints in �
form, we will use the model for designing Mary’s radiation therapy, as presented in Sec.
3.4. For your convenience, this model is repeated below, where we have placed a box
around the constraint of special interest here.

Radiation Therapy Example
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TABLE 4.11 Complete set of simplex tableaux for the problem shown in Fig. 4.4

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x�5 Side

Z (0) 1 �3M � 3 �2M � 5 �0 0 �0 �18M
x3 (1) 0 1 0 �1 0 �0 4

0
x4 (2) 0 0 2 �0 1 �0 12
x�5 (3) 0 3 2 �0 0 �1 18

Z (0) 1 0 �2M � 5 3M � 3 0 �0 �6M � 12
x1 (1) 0 1 0 �1 0 �0 4

1
x4 (2) 0 0 2 �0 1 �0 12
x�5 (3) 0 0 2 �3 0 �1 6

Z (0) 1 0 0 � 0 M � 27

x1 (1) 0 1 0 �1 0 �0 4
2

x4 (2) 0 0 0 �3 1 �1 6

x2 (3) 0 0 1 � 0 � 3

Z (0) 1 0 0 �0 ��
3
2

� M � 1 36

x1 (1) 0 1 0 �0 � � 2
Extra

x3 (2) 0 0 0 �1 � � 2

x2 (3) 0 0 1 �0 � �0 6
1
�
2

1
�
3

1
�
3

1
�
3

1
�
3

1
�
2

3
�
2

5
�
2

9
�
2

Minimize Z � 0.4x1 � 0.5x2,

subject to

0.3x1 � 0.1x2 � 2.7

0.5x1 � 0.5x2 � 6

0.6x1 � 0.4x2 � 6

and

x1 � 0, x2 � 0.



The graphical solution for this example (originally presented in Fig. 3.12) is repeated
here in a slightly different form in Fig. 4.5. The three lines in the figure, along with the
two axes, constitute the five constraint boundaries of the problem. The dots lying at the
intersection of a pair of constraint boundaries are the corner-point solutions. The only two
corner-point feasible solutions are (6, 6) and (7.5, 4.5), and the feasible region is the line
segment connecting these two points. The optimal solution is (x1, x2) � (7.5, 4.5), with 
Z � 5.25.

We soon will show how the simplex method solves this problem by directly solving
the corresponding artificial problem. However, first we must describe how to deal with
the third constraint.
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FIGURE 4.5
Graphical display of the
radiation therapy example
and its corner-point
solutions.



Our approach involves introducing both a surplus variable x5 (defined as x5 �
0.6x1 � 0.4x2 � 6) and an artificial variable x�6, as shown next.

0.6x1 � 0.4x2 � 6
� 0.6x1 � 0.4x2 � x5 � 6 (x5 � 0)
� 0.6x1 � 0.4x2 � x5 � x�6 � 6 (x5 � 0, xx�6 � 0).

Here x5 is called a surplus variable because it subtracts the surplus of the left-hand side
over the right-hand side to convert the inequality constraint to an equivalent equality con-
straint. Once this conversion is accomplished, the artificial variable is introduced just as
for any equality constraint.

After a slack variable x3 is introduced into the first constraint, an artificial variable
x�4 is introduced into the second constraint, and the Big M method is applied, so the com-
plete artificial problem (in augmented form) is

Minimize Z � 0.4x1 � 0.5x2 � Mxx�4 � Mxx�6,

subject to 0.3x1 � 0.1x2 � x3 � 2.7
0.5x1 � 0.5x2 � x�4 � 6
0.6x1 � 0.4x2 � xxx5 � x�6 � 6

and x1 � 0, x2 � 0, x3 � 0, x�4 � 0, x5 � 0, x�6 � 0.

Note that the coefficients of the artificial variables in the objective function are �M, in-
stead of �M, because we now are minimizing Z. Thus, even though xx�4 � 0 and/or x�6 � 0
is possible for a feasible solution for the artificial problem, the huge unit penalty of �M
prevents this from occurring in an optimal solution.

As usual, introducing artificial variables enlarges the feasible region. Compare below
the original constraints for the real problem with the corresponding constraints on (x1, x2)
for the artificial problem.

Constraints on (x1, x2) Constraints on (x1, x2)
for the Real Problem for the Artificial Problem

0.3x1 � 0.1x2 � 2.7 0.3x1 � 0.1x2 � 2.7
0.5x1 � 0.5x2 � 6 0.5x1 � 0.5x2 � 6 (� holds when xx�4 � 0)
0.6x1 � 0.4x2 � 6 No such constraint (except when xx�6 � 0)

x1 � 0, x2 � 0 x1 � 0, x2 � 0

Introducing the artificial variable xx�4 to play the role of a slack variable in the second con-
straint allows values of (x1, x2) below the 0.5x1 � 0.5x2 � 6 line in Fig. 4.5. Introducing
x5 and xx�6 into the third constraint of the real problem (and moving these variables to the
right-hand side) yields the equation

0.6x1 � 0.4x2 � 6 � x5 � xx�6.

Because both x5 and xx�6 are constrained only to be nonnegative, their difference x5 � xx�6

can be any positive or negative number. Therefore, 0.6x1 � 0.4x2 can have any value,
which has the effect of eliminating the third constraint from the artificial problem and al-
lowing points on either side of the 0.6x1 � 0.4x2 � 6 line in Fig. 4.5. (We keep the third
constraint in the system of equations only because it will become relevant again later, af-
ter the Big M method forces x�6 to be zero.) Consequently, the feasible region for the ar-
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tificial problem is the entire polyhedron in Fig. 4.5 whose vertices are (0, 0), (9, 0),
(7.5, 4.5), and (0, 12).

Since the origin now is feasible for the artificial problem, the simplex method starts
with (0, 0) as the initial CPF solution, i.e., with (x1, x2, x3, xx�4, x5, x�6) � (0, 0, 2.7, 6, 0,
6) as the initial BF solution. (Making the origin feasible as a convenient starting point for
the simplex method is the whole point of creating the artificial problem.) We soon will
trace the entire path followed by the simplex method from the origin to the optimal so-
lution for both the artificial and real problems. But, first, how does the simplex method
handle minimization?

Minimization

One straightforward way of minimizing Z with the simplex method is to exchange the
roles of the positive and negative coefficients in row 0 for both the optimality test and
step 1 of an iteration. However, rather than changing our instructions for the simplex
method for this case, we present the following simple way of converting any minimiza-
tion problem to an equivalent maximization problem:

Minimizing Z � �
n

j�1
cjxj

is equivalent to

maximizing �Z � �
n

j�1
(�cj)xj;

i.e., the two formulations yield the same optimal solution(s).
The two formulations are equivalent because the smaller Z is, the larger �Z is, so the

solution that gives the smallest value of Z in the entire feasible region must also give the
largest value of �Z in this region.

Therefore, in the radiation therapy example, we make the following change in the
formulation:

� Minimize �Z � �0.4x1 � 0.5x2

� Maximize �Z � �0.4x1 � 0.5x2.

After artificial variables xx�4 and xx�6 are introduced and then the Big M method is applied,
the corresponding conversion is

� Minimize �Z � �0.4x1 � 0.5x2 � Mxx�4 � Mxxx�6

� Maximize �Z � �0.4x1 � 0.5x2 � Mxx�4 � Mxxx�6.

Solving the Radiation Therapy Example

We now are nearly ready to apply the simplex method to the radiation therapy example.
By using the maximization form just obtained, the entire system of equations is now

(0) �Z � 0.4x1 � 0.5x2 � Mx�4 � Mx�6 � 0
(1) 0.3x1 � 0.1x2 � x3 � 2.7
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(2) 0.5x1 � 0.5x2 � x�4 � 6
(3) 0.6x1 � 0.4x2 � x5 � x�6 � 6.

The basic variables (x3, x�4, x�6) for the initial BF solution (for this artificial problem) are
shown in bold type.

Note that this system of equations is not yet in proper form from Gaussian elimina-
tion, as required by the simplex method, since the basic variables x�4 and x�6 still need to
be algebraically eliminated from Eq. (0). Because x�4 and x�6 both have a coefficient of M,
Eq. (0) needs to have subtracted from it both M times Eq. (2) and M times Eq. (3). The
calculations for all the coefficients (and the right-hand sides) are summarized below, where
the vectors are the relevant rows of the simplex tableau corresponding to the above sys-
tem of equations.

Row 0:
�M[0.4, 0.5, 0, M, 0, M, 0]
�M[0.5, 0.5, 0, 1, 0, 0, 6]
�M[0.6, 0.4, 0, 0, �1, 1, 6]

New row 0 � [�1.1M � 0.4, �0.9M � 0.5, 0, 0, M, 0, �12M]

The resulting initial simplex tableau, ready to begin the simplex method, is shown at
the top of Table 4.12. Applying the simplex method in just the usual way then yields the
sequence of simplex tableaux shown in the rest of Table 4.12. For the optimality test and
the selection of the entering basic variable at each iteration, the quantities involving M
are treated just as discussed in connection with Table 4.11. Specifically, whenever M is
present, only its multiplicative factor is used, unless there is a tie, in which case the tie is
broken by using the corresponding additive terms. Just such a tie occurs in the last se-
lection of an entering basic variable (see the next-to-last tableau), where the coefficients
of x3 and x5 in row 0 both have the same multiplicative factor of ��

5
3

�. Comparing the ad-
ditive terms, �

1
6
1
� � �

7
3

� leads to choosing x5 as the entering basic variable.
Note in Table 4.12 the progression of values of the artificial variables x�4 and x�6 and

of Z. We start with large values, x�4 � 6 and x�6 � 6, with Z � 12M (�Z � �12M). The
first iteration greatly reduces these values. The Big M method succeeds in driving x�6 to
zero (as a new nonbasic variable) at the second iteration and then in doing the same to xx�4

at the next iteration. With both x�4 � 0 and x�6 � 0, the basic solution given in the last
tableau is guaranteed to be feasible for the real problem. Since it passes the optimality
test, it also is optimal.

Now see what the Big M method has done graphically in Fig. 4.6. The feasible re-
gion for the artificial problem initially has four CPF solutions—(0, 0), (9, 0), (0, 12), and
(7.5, 4.5)—and then replaces the first three with two new CPF solutions—(8, 3), (6, 6)—
after x�6 decreases to x�6 � 0 so that 0.6x1 � 0.4x2 � 6 becomes an additional constraint.
(Note that the three replaced CPF solutions—(0, 0), (9, 0), and (0, 12)—actually were
corner-point infeasible solutions for the real problem shown in Fig. 4.5.) Starting with the
origin as the convenient initial CPF solution for the artificial problem, we move around
the boundary to three other CPF solutions—(9, 0), (8, 3), and (7.5, 4.5). The last of these
is the first one that also is feasible for the real problem. Fortuitously, this first feasible so-
lution also is optimal, so no additional iterations are needed.
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For other problems with artificial variables, it may be necessary to perform additional
iterations to reach an optimal solution after the first feasible solution is obtained for the
real problem. (This was the case for the example solved in Table 4.11.) Thus, the Big M
method can be thought of as having two phases. In the first phase, all the artificial vari-
ables are driven to zero (because of the penalty of M per unit for being greater than zero)
in order to reach an initial BF solution for the real problem. In the second phase, all the
artificial variables are kept at zero (because of this same penalty) while the simplex method
generates a sequence of BF solutions for the real problem that leads to an optimal solu-
tion. The two-phase method described next is a streamlined procedure for performing these
two phases directly, without even introducing M explicitly.

The Two-Phase Method

For the radiation therapy example just solved in Table 4.12, recall its real objective 
function

Real problem: Minimize Z � 0.4x1 � 0.5x2.
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TABLE 4.12 The Big M method for the radiation therapy example

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x�4 x5 x�6 Side

Z (0) �1 �1.1M � 0.4 �0.9M � 0.5 �0.0 �0.0 M �0 �12M1
x3 (1) �0 0.3 0.1 �1.0 �0.0 �0 �0 �2.7

0
x�4 (2) �0 0.5 0.5 �0.0 �1.0 �0 �0 �6.0
x�6 (3) �0 0.6 0.4 �0.0 �0.0 �1 �1 �6.0

Z (0) �1 0.0 ��
1
3
6
0
�M � �

1
3

1
0
� �

1
3
1
�M � �

4
3

� �0.0 M �0 �2.1M � 3.6

x1 (1) �0 1.0 �
1
3

� ��
1
3
0
� �0.0 �0 �0 �9.0

1
x�4 (2) �0 0.0 �

1
3

� ��
5
3

� �1.0 �0 �0 �1.5

x�6 (3) �0 0.0 0.2 �2 �0.0 �1 �1 �0.6

Z (0) �1 0.0 0.0 ��
5
3

�M � �
7
3

� �0.0 ��
5
3

�M � �
1
6
1
� �

8
3

�M � �
1
6
1
� �0.5M � 4.7

x1 (1) �0 1.0 0.0 ��
2
3
0
� �0.0 ��

5
3

� ��
5
3

� �8.0
2

x�4 (2) �0 0.0 0.0 ��
5
3

� �1.0 ��
5
3

� ��
5
3

� �0.5

x2 (3) �0 0.0 1.0 �10.0 �0.0 �5 �5 �3.0

Z (0) �1 0.0 0.0 � 0.5 M � 1.1 �0 M �5.25
x1 (1) �0 1.0 0.0 � 5.0 �1.0 �0 �0 �7.51

3
x5 (2) �0 0.0 0.0 � 1.0 1 0.6 �1 �1 �0.31
x2 (3) �0 0.0 1.0 �5.0 �3.0 �0 �0 �4.51



However, the Big M method uses the following objective function (or its equivalent in
maximization form) throughout the entire procedure:

Big M method: Minimize Z � 0.4x1 � 0.5x2 � Mx�4 � Mx�6.

Since the first two coefficients are negligible compared to M, the two-phase method is
able to drop M by using the following two objective functions with completely different
definitions of Z in turn.

Two-phase method:

Phase 1: Minimize Z � x�4 � xx�6 (until x�4 � 0, x�6 � 0).
Phase 2: Minimize Z � 0.4x1 � 0.5x2 (with x�4 � 0, x�6 � 0).

The phase 1 objective function is obtained by dividing the Big M method objective func-
tion by M and then dropping the negligible terms. Since phase 1 concludes by obtaining
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examined by the simplex
method (with the Big M
method) for the artificial
problem that corresponds to
the real problem of Fig. 4.5.



a BF solution for the real problem (one where x�4 � 0 and x�6 � 0), this solution is then
used as the initial BF solution for applying the simplex method to the real problem (with
its real objective function) in phase 2.

Before solving the example in this way, we summarize the general method.

Summary of the Two-Phase Method. Initialization: Revise the constraints of the
original problem by introducing artificial variables as needed to obtain an obvious initial
BF solution for the artificial problem.

Phase 1: The objective for this phase is to find a BF solution for the real problem.
To do this,

Minimize Z � � artificial variables, subject to revised constraints.

The optimal solution obtained for this problem (with Z � 0) will be a BF solution for the
real problem.

Phase 2: The objective for this phase is to find an optimal solution for the real prob-
lem. Since the artificial variables are not part of the real problem, these variables can now
be dropped (they are all zero now anyway).1 Starting from the BF solution obtained at the
end of phase 1, use the simplex method to solve the real problem.

For the example, the problems to be solved by the simplex method in the respective
phases are summarized below.

Phase 1 Problem (Radiation Therapy Example):

Minimize Z � x�4 � x�6,

subject to

0.3x1 � 0.1x2 � x3 � 2.7
0.5x1 � 0.5x2 � x�4 � 6
0.6x1 � 0.4x2 � xx5 � xx�6 � 6

and

x1 � 0, x2 � 0, x3 � 0, xx�4 � 0, x5 � 0, xx�6 � 0. 

Phase 2 Problem (Radiation Therapy Example):

Minimize Z � 0.4x1 � 0.5x2,

subject to

0.3x1 � 0.1x2 � x3 � 2.7
0.5x1 � 0.5x2 � 6
0.6x1 � 0.4x2 � x5 � 6

and

x1 � 0, x2 � 0, x3 � 0, x5 � 0.
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1We are skipping over three other possibilities here: (1) artificial variables � 0 (discussed in the next subsec-
tion), (2) artificial variables that are degenerate basic variables, and (3) retaining the artificial variables as non-
basic variables in phase 2 (and not allowing them to become basic) as an aid to subsequent postoptimality analy-
sis. Your OR Courseware allows you to explore these possibilities.



The only differences between these two problems are in the objective function and in the
inclusion (phase 1) or exclusion (phase 2) of the artificial variables x�4 and x�6. Without the
artificial variables, the phase 2 problem does not have an obvious initial BF solution. The
sole purpose of solving the phase 1 problem is to obtain a BF solution with xx�4 � 0 and
x�6 � 0 so that this solution (without the artificial variables) can be used as the initial BF
solution for phase 2.

Table 4.13 shows the result of applying the simplex method to this phase 1 problem.
[Row 0 in the initial tableau is obtained by converting Minimize Z � x�4 � xx�6 to Maxi-
mize (�Z) � �x�4 � x�6 and then using elementary row operations to eliminate the basic
variables x�4 and x�6 from �Z � x�4 � x�6 � 0.] In the next-to-last tableau, there is a tie for
the entering basic variable between x3 and x5, which is broken arbitrarily in favor of x3.
The solution obtained at the end of phase 1, then, is (x1, x2, x3, x�4, x5, x�6) � (6, 6, 0.3, 0,
0, 0) or, after x�4 and x�6 are dropped, (x1, x2, x3, x5) � (6, 6, 0.3, 0).

As claimed in the summary, this solution from phase 1 is indeed a BF solution for
the real problem (the phase 2 problem) because it is the solution (after you set x5 � 0) to
the system of equations consisting of the three functional constraints for the phase 2 prob-
lem. In fact, after deleting the x�4 and xx�6 columns as well as row 0 for each iteration, Table
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TABLE 4.13 Phase 1 of the two-phase method for the radiation therapy example

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x�4 x5 x�6 Side

Z (0) �1 �1.1 �0.9 �00 �0 �1 �0 �12
x3 (1) �0 �0.3 �0.1 �01 �0 �0 �0 �2.7

0
x�4 (2) �0 �0.5 �0.5 �00 �1 �0 �0 �6.0
x�6 (3) �0 �0.6 �0.4 �00 �0 �1 �1 �6.0

Z (0) �1 �0.0 ��
1
3

6
0
� ��

1
3
1
� �0 �1 �0 �2.1

x1 (1) �0 �1.0 ��
1
3

� ��
1
3
0
� �0 �0 �0 �9.0

1
x�4 (2) �0 �0.0 ��

1
3

� ��
5
3

� �1 �0 �0 �1.5

x�6 (3) �0 �0.0 �0.2 �2 �0 �1 �1 �0.6

Z (0) �1 �0.0 �0.0 ��
5
3

� �0 ��
5
3

� ��
8
3

� �0.5

x1 (1) �0 �1.0 �0.0 ��
2
3
0
� �0 ��

5
3

� ��
5
3

� �8.0
2

x�4 (2) �0 �0.0 �0.0 ��
5
3

� �1 ��
5
3

� ��
5
3

� �0.5

x2 (3) �0 �0.0 �1.0 �10 �0 �5 �5 �3.0

Z (0) �1 �0.0 �0.0 �00 �1 �0 �1 �0.0
x1 (1) �0 �1.0 �0.0 �00 �4 �5 �5 �6.0

3
x3 (2) �0 �0.0 �0.0 �01 ��

3
5

� �1 �1 �0.3

x2 (3) �0 �0.0 �1.0 �00 �6 �5 �5 �6.0



4.13 shows one way of using Gaussian elimination to solve this system of equations by
reducing the system to the form displayed in the final tableau.

Table 4.14 shows the preparations for beginning phase 2 after phase 1 is completed.
Starting from the final tableau in Table 4.13, we drop the artificial variables (x�4 and xx�6),
substitute the phase 2 objective function (�Z � �0.4x1 � 0.5x2 in maximization form)
into row 0, and then restore the proper form from Gaussian elimination (by algebraically
eliminating the basic variables x1 and x2 from row 0). Thus, row 0 in the last tableau is
obtained by performing the following elementary row operations in the next-to-last
tableau: from row 0 subtract both the product, 0.4 times row 1, and the product, 0.5 times
row 3. Except for the deletion of the two columns, note that rows 1 to 3 never change.
The only adjustments occur in row 0 in order to replace the phase 1 objective function by
the phase 2 objective function.

The last tableau in Table 4.14 is the initial tableau for applying the simplex method
to the phase 2 problem, as shown at the top of Table 4.15. Just one iteration then leads to
the optimal solution shown in the second tableau: (x1, x2, x3, x5) � (7.5, 4.5, 0, 0.3). This
solution is the desired optimal solution for the real problem of interest rather than the ar-
tificial problem constructed for phase 1.

Now we see what the two-phase method has done graphically in Fig. 4.7. Starting at
the origin, phase 1 examines a total of four CPF solutions for the artificial problem. The
first three actually were corner-point infeasible solutions for the real problem shown in
Fig. 4.5. The fourth CPF solution, at (6, 6), is the first one that also is feasible for the real
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TABLE 4.14 Preparing to begin phase 2 for the radiation therapy example

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x�4 x5 x�6 Side

Z (0) �1 00. 0.0 0 �1 �0.0 �1 �0.0

Final Phase 1 x1 (1) �0 10. 0.0 0 �4 �5.0 �5 �6.0

tableau x3 (2) �0 00. 0.0 1 ��
3
5

� �1.0 �1 �0.3

x2 (3) �0 00. 1.0 0 �6 �5.0 �5 �6.0

Z (0) �1 00. 0.0 0 �0.0 �0.0
x1 (1) �0 10. 0.0 0 �5.0 �6.0

Drop x�4 and xx�6

x3 (2) �0 00. 0.0 1 �1.0 �0.3
x2 (3) �0 00. 1.0 0 �5.0 �6.0

Z (0) �1 0.4 0.5 0 �0.0 �0.0
Substitute phase 2 x1 (1) �0 10. 0.0 0 �5.0 �6.0
objective function x3 (2) �0 00. 0.0 1 �1.0 �0.3

x2 (3) �0 00. 1.0 0 �5.0 �6.0

Z (0) �1 00. 0.0 0 �0.5 �5.4
Restore proper form x1 (1) �0 10. 0.0 0 �5.0 �6.0
from Gaussian elimination x3 (2) �0 00. 0.0 1 �1.0 �0.3

x2 (3) �0 00. 1.0 0 �5.0 �6.0
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TABLE 4.15 Phase 2 of the two-phase method for the radiation therapy example

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x5 Side

Z (0) �1 0 0 �0.0 �0.5 �5.40
x1 (1) �0 1 0 �0.0 �5.0 �6.00

0
x3 (2) �0 0 0 �1.0 �1.0 �0.30
x2 (3) �0 0 1 �0.0 �5.0 �6.00

Z (0) �1 0 0 �0.5 �0.0 �5.25
x1 (1) �0 1 0 �5.0 �0.0 �7.50

1
x5 (2) �0 0 0 �1.0 �1.0 �0.30
x2 (3) �0 0 1 �5.0 �0.0 �4.50

x2

(0, 0)
(9, 0) x1

(6, 6)

(7.5, 4.5) optimal

(8, 3)

(0, 12)

Feasible region
for the artificial
problem (phase 1)

This dark line segment is the
feasible region for the real problem
(phase 2).

10

2

3
0

1

FIGURE 4.7
This graph shows the
sequence of CPF solutions for
phase 1 (�, �, �, �) and
then for phase 2 ( , )
when the two-phase method
is applied to the radiation
therapy example.

10



problem, so it becomes the initial CPF solution for phase 2. One iteration in phase 2 leads
to the optimal CPF solution at (7.5, 4.5).

If the tie for the entering basic variable in the next-to-last tableau of Table 4.13 had
been broken in the other way, then phase 1 would have gone directly from (8, 3) to (7.5,
4.5). After (7.5, 4.5) was used to set up the initial simplex tableau for phase 2, the opti-
mality test would have revealed that this solution was optimal, so no iterations would be
done.

It is interesting to compare the Big M and two-phase methods. Begin with their ob-
jective functions.

Big M Method:

Minimize Z � 0.4x1 � 0.5x2 � Mx�4 � Mxx�6.

Two-Phase Method:

Phase 1: Minimize Z � xx�4 � x�6.
Phase 2: Minimize Z � 0.4x1 � 0.5x2.

Because the Mx�4 and Mx�6 terms dominate the 0.4x1 and 0.5x2 terms in the objective func-
tion for the Big M method, this objective function is essentially equivalent to the phase 1
objective function as long as x�4 and/or xx�6 is greater than zero. Then, when both x�4 � 0
and x�6 � 0, the objective function for the Big M method becomes completely equivalent
to the phase 2 objective function.

Because of these virtual equivalencies in objective functions, the Big M and two-
phase methods generally have the same sequence of BF solutions. The one possible ex-
ception occurs when there is a tie for the entering basic variable in phase 1 of the two-
phase method, as happened in the third tableau of Table 4.13. Notice that the first three
tableaux of Tables 4.12 and 4.13 are almost identical, with the only difference being
that the multiplicative factors of M in Table 4.12 become the sole quantities in the cor-
responding spots in Table 4.13. Consequently, the additive terms that broke the tie for
the entering basic variable in the third tableau of Table 4.12 were not present to break
this same tie in Table 4.13. The result for this example was an extra iteration for the
two-phase method. Generally, however, the advantage of having the additive factors is
minimal.

The two-phase method streamlines the Big M method by using only the multiplica-
tive factors in phase 1 and by dropping the artificial variables in phase 2. (The Big M
method could combine the multiplicative and additive factors by assigning an actual huge
number to M, but this might create numerical instability problems.) For these reasons, the
two-phase method is commonly used in computer codes.

No Feasible Solutions

So far in this section we have been concerned primarily with the fundamental problem
of identifying an initial BF solution when an obvious one is not available. You have seen
how the artificial-variable technique can be used to construct an artificial problem and
obtain an initial BF solution for this artificial problem instead. Use of either the Big M
method or the two-phase method then enables the simplex method to begin its pilgrim-
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age toward the BF solutions, and ultimately toward the optimal solution, for the real
problem.

However, you should be wary of a certain pitfall with this approach. There may be
no obvious choice for the initial BF solution for the very good reason that there are no
feasible solutions at all! Nevertheless, by constructing an artificial feasible solution, there
is nothing to prevent the simplex method from proceeding as usual and ultimately re-
porting a supposedly optimal solution.

Fortunately, the artificial-variable technique provides the following signpost to indi-
cate when this has happened:

If the original problem has no feasible solutions, then either the Big M method or phase
1 of the two-phase method yields a final solution that has at least one artificial variable
greater than zero. Otherwise, they all equal zero.

To illustrate, let us change the first constraint in the radiation therapy example (see
Fig. 4.5) as follows:

0.3x1 � 0.1x2 � 2.7 � 0.3x1 � 0.1x2 � 1.8,

so that the problem no longer has any feasible solutions. Applying the Big M method just
as before (see Table 4.12) yields the tableaux shown in Table 4.16. (Phase 1 of the two-
phase method yields the same tableaux except that each expression involving M is re-
placed by just the multiplicative factor.) Hence, the Big M method normally would be in-
dicating that the optimal solution is (3, 9, 0, 0, 0, 0.6). However, since an artificial variable
x�6 � 0.6 � 0, the real message here is that the problem has no feasible solutions.
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TABLE 4.16 The Big M method for the revision of the radiation therapy example that has no feasible solutions

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x�4 x5 x�6 Side

Z (0) �1 �1.1M � 0.4 �0.9M � 0.5 �0 �0.0 M 0 �12M
x3 (1) �0 0.3 0.1 �1 �0.0 �0 0 1.8

0
x�4 (2) �0 0.5 0.5 �0 �1.0 �0 0 6.0
x�6 (3) �0 0.6 0.4 �0 �0.0 �1 1 6.0

Z (0) �1 0.0 ��
1
3

6
0
�M � �

1
3

1
0
� �

1
3
1
�M � �

4
3

� �0.0 M 0 �5.4M � 2.4

x1 (1) �0 1.0 �
1
3

� ��
1
3
0
� �0.0 �0 0 6.0

1
x�4 (2) �0 0.0 �

1
3

� ��
5
3

� �1.0 �0 0 3.0

x�6 (3) �0 0.0 0.2 �2 �0.0 �1 1 2.4

Z (0) �1 0.0 0.0 M � 0.5 1.6M � 1.1 M 0 �0.6M � 5.7
x1 (1) �0 1.0 0.0 �5 �1.0 �0 0 3.0

2
x2 (2) �0 0.0 1.0 �5 �3.0 �0 0 9.0
x�6 (3) �0 0.0 0.0 �1 �0.6 �1 1 0.6



Variables Allowed to Be Negative

In most practical problems, negative values for the decision variables would have no
physical meaning, so it is necessary to include nonnegativity constraints in the formula-
tions of their linear programming models. However, this is not always the case. To il-
lustrate, suppose that the Wyndor Glass Co. problem is changed so that product 1 al-
ready is in production, and the first decision variable x1 represents the increase in its
production rate. Therefore, a negative value of x1 would indicate that product 1 is to be
cut back by that amount. Such reductions might be desirable to allow a larger produc-
tion rate for the new, more profitable product 2, so negative values should be allowed
for x1 in the model.

Since the procedure for determining the leaving basic variable requires that all the
variables have nonnegativity constraints, any problem containing variables allowed to be
negative must be converted to an equivalent problem involving only nonnegative variables
before the simplex method is applied. Fortunately, this conversion can be done. The mod-
ification required for each variable depends upon whether it has a (negative) lower bound
on the values allowed. Each of these two cases is now discussed.

Variables with a Bound on the Negative Values Allowed. Consider any decision
variable xj that is allowed to have negative values which satisfy a constraint of the form

xj � Lj,

where Lj is some negative constant. This constraint can be converted to a nonnegativity
constraint by making the change of variables

x
j � xj � Lj, so x
j � 0.

Thus, x
j � Lj would be substituted for xj throughout the model, so that the redefined de-
cision variable x
j cannot be negative. (This same technique can be used when Lj is posi-
tive to convert a functional constraint xj � Lj to a nonnegativity constraint x
j � 0.)

To illustrate, suppose that the current production rate for product 1 in the Wyndor
Glass Co. problem is 10. With the definition of x1 just given, the complete model at this
point is the same as that given in Sec. 3.1 except that the nonnegativity constraint x1 � 0
is replaced by

x1 � �10.

To obtain the equivalent model needed for the simplex method, this decision variable
would be redefined as the total production rate of product 1

x
j � x1 � 10,

which yields the changes in the objective function and constraints as shown:

� �

Z � �30 � 3x
1 � 5x2

2x
1 � 2x2 � 14
3x
1 � 2x2 � 12
3x
1 � 2x2 � 48
x
1 � 0, x2 � 0

Z � 3(x
1 � 10) � 5x2

3(x
1 � 10) � 2x2 � 4
3(x
1 � 10) � 2x2 � 12
3(x
1 � 10) � 2x2 � 18
x
1 � 10 � �10, x2 � 0

Z � 3x1 � 5x2

3x1 � 2x2 � 4
3x1 � 2x2 � 12
3x1 � 2x2 � 18
x1 � �10, x2 � 0
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Variables with No Bound on the Negative Values Allowed. In the case where
xj does not have a lower-bound constraint in the model formulated, another approach is
required: xj is replaced throughout the model by the difference of two new nonnegative
variables

xj � xj
� � xj

�, where xj
� � 0, xj

� � 0.

Since xj
� and xj

� can have any nonnegative values, this difference xj
� � xj

� can have any
value (positive or negative), so it is a legitimate substitute for xj in the model. But after
such substitutions, the simplex method can proceed with just nonnegative variables.

The new variables xj
� and xj

� have a simple interpretation. As explained in the next
paragraph, each BF solution for the new form of the model necessarily has the property
that either xj

� � 0 or xj
� � 0 (or both). Therefore, at the optimal solution obtained by the

simplex method (a BF solution),

xj
� � �

xj
� � �

so that xj
� represents the positive part of the decision variable xj and xj

� its negative part
(as suggested by the superscripts).

For example, if xj � 10, the above expressions give xj
� � 10 and xj

� � 0. This same
value of xj � xj

� � xj
� � 10 also would occur with larger values of xj

� and xj
� such that

xj
� � xj

� � 10. Plotting these values of xj
� and xj

� on a two-dimensional graph gives a line
with an endpoint at xj

� � 10, xj
� � 0 to avoid violating the nonnegativity constraints. This

endpoint is the only corner-point solution on the line. Therefore, only this endpoint can
be part of an overall CPF solution or BF solution involving all the variables of the model.
This illustrates why each BF solution necessarily has either xj

� � 0 or xj
� � 0 (or both).

To illustrate the use of the xj
� and xj

�, let us return to the example on the preceding
page where x1 is redefined as the increase over the current production rate of 10 for prod-
uct 1 in the Wyndor Glass Co. problem.

However, now suppose that the x1 � �10 constraint was not included in the original
model because it clearly would not change the optimal solution. (In some problems, cer-
tain variables do not need explicit lower-bound constraints because the functional con-
straints already prevent lower values.) Therefore, before the simplex method is applied,
x1 would be replaced by the difference

x1 � x1
� � x1

�, where x1
� � 0, x1

� � 0,

as shown:

�

Maximize Z � 3x1
� � 3x1

� � 5x2,
subject to Z � 3x1

� � 3x1
� � 5x2 � 4

2x2 � 12
3x1

� � 3x1
� � 2x2 � 18

x1
� � 0, x1

� � 0, x2 � 0

Maximize Z � 3x1 � 5x2,
subject to Z � 3x1 � 5x2 � 4

2x2 � 12
3x1 � 2x2 � 18

x2 � 0 (only)

if xj � 0,
otherwise;

xj
0

if xj � 0,
otherwise;

xj

0
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From a computational viewpoint, this approach has the disadvantage that the new
equivalent model to be used has more variables than the original model. In fact, if all the
original variables lack lower-bound constraints, the new model will have twice as many
variables. Fortunately, the approach can be modified slightly so that the number of vari-
ables is increased by only one, regardless of how many original variables need to be re-
placed. This modification is done by replacing each such variable xj by

xj � x
j � x�, where x
j � 0, x� � 0,

instead, where x� is the same variable for all relevant j. The interpretation of x� in this
case is that �x� is the current value of the largest (in absolute terms) negative original
variable, so that x
j is the amount by which xj exceeds this value. Thus, the simplex method
now can make some of the x
j variables larger than zero even when x� � 0.

152 4 SOLVING LINEAR PROGRAMMING PROBLEMS: THE SIMPLEX METHOD

We stressed in Secs. 2.3, 2.4, and 2.5 that postoptimality analysis—the analysis done af-
ter an optimal solution is obtained for the initial version of the model—constitutes a very
major and very important part of most operations research studies. The fact that postop-
timality analysis is very important is particularly true for typical linear programming ap-
plications. In this section, we focus on the role of the simplex method in performing this
analysis.

Table 4.17 summarizes the typical steps in postoptimality analysis for linear pro-
gramming studies. The rightmost column identifies some algorithmic techniques that in-
volve the simplex method. These techniques are introduced briefly here with the techni-
cal details deferred to later chapters.

Reoptimization

As discussed in Sec. 3.7, linear programming models that arise in practice commonly are
very large, with hundreds or thousands of functional constraints and decision variables.
In such cases, many variations of the basic model may be of interest for considering dif-
ferent scenarios. Therefore, after having found an optimal solution for one version of a
linear programming model, we frequently must solve again (often many times) for the so-

4.7 POSTOPTIMALITY ANALYSIS

TABLE 4.17 Postoptimality analysis for linear programming

Task Purpose Technique

Model debugging Find errors and weaknesses in model Reoptimization
Model validation Demonstrate validity of final model See Sec. 2.4
Final managerial Make appropriate division of organizational Shadow prices
decisions on resource resources between activities under study
allocations (the bi values) and other important activities

Evaluate estimates of Determine crucial estimates that may affect Sensitivity analysis
model parameters optimal solution for further study

Evaluate trade-offs Determine best trade-off Parametric linear
between model programming
parameters



lution of a slightly different version of the model. We nearly always have to solve again
several times during the model debugging stage (described in Secs. 2.3 and 2.4), and we
usually have to do so a large number of times during the later stages of postoptimality
analysis as well.

One approach is simply to reapply the simplex method from scratch for each new
version of the model, even though each run may require hundreds or even thousands of
iterations for large problems. However, a much more efficient approach is to reoptimize.
Reoptimization involves deducing how changes in the model get carried along to the fi-
nal simplex tableau (as described in Secs. 5.3 and 6.6). This revised tableau and the op-
timal solution for the prior model are then used as the initial tableau and the initial ba-
sic solution for solving the new model. If this solution is feasible for the new model, then
the simplex method is applied in the usual way, starting from this initial BF solution. If
the solution is not feasible, a related algorithm called the dual simplex method (described
in Sec. 7.1) probably can be applied to find the new optimal solution,1 starting from this
initial basic solution.

The big advantage of this reoptimization technique over re-solving from scratch is
that an optimal solution for the revised model probably is going to be much closer to the
prior optimal solution than to an initial BF solution constructed in the usual way for the
simplex method. Therefore, assuming that the model revisions were modest, only a few
iterations should be required to reoptimize instead of the hundreds or thousands that may
be required when you start from scratch. In fact, the optimal solutions for the prior and
revised models are frequently the same, in which case the reoptimization technique re-
quires only one application of the optimality test and no iterations.

Shadow Prices

Recall that linear programming problems often can be interpreted as allocating resources
to activities. In particular, when the functional constraints are in � form, we interpreted
the bi (the right-hand sides) as the amounts of the respective resources being made avail-
able for the activities under consideration. In many cases, there may be some latitude in
the amounts that will be made available. If so, the bi values used in the initial (validated)
model actually may represent management’s tentative initial decision on how much of the
organization’s resources will be provided to the activities considered in the model instead
of to other important activities under the purview of management. From this broader per-
spective, some of the bi values can be increased in a revised model, but only if a suffi-
ciently strong case can be made to management that this revision would be beneficial.

Consequently, information on the economic contribution of the resources to the mea-
sure of performance (Z ) for the current study often would be extremely useful. The sim-
plex method provides this information in the form of shadow prices for the respective
resources.

The shadow price for resource i (denoted by yi*) measures the marginal value of this re-
source, i.e., the rate at which Z could be increased by (slightly) increasing the amount of
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plied to row 0 of the revised final tableau. If not, then still another algorithm called the primal-dual method can
be used instead.



this resource (bi) being made available.1,2 The simplex method identifies this shadow price
by yi* � coefficient of the ith slack variable in row 0 of the final simplex tableau.

To illustrate, for the Wyndor Glass Co. problem,

Resource i � production capacity of Plant i (i � 1, 2, 3) being made available to the
two new products under consideration,

bi � hours of production time per week being made available in Plant i for
these new products.

Providing a substantial amount of production time for the new products would require ad-
justing production times for the current products, so choosing the bi value is a difficult
managerial decision. The tentative initial decision has been

b1 � 4, b2 � 12, b3 � 18,

as reflected in the basic model considered in Sec. 3.1 and in this chapter. However, man-
agement now wishes to evaluate the effect of changing any of the bi values.

The shadow prices for these three resources provide just the information that man-
agement needs. The final tableau in Table 4.8 (see p. 128) yields

y1* � 0 � shadow price for resource 1,

y2* � � shadow price for resource 2,

y3* � 1 � shadow price for resource 3.

With just two decision variables, these numbers can be verified by checking graphically
that individually increasing any bi by 1 indeed would increase the optimal value of Z by
yi*. For example, Fig. 4.8 demonstrates this increase for resource 2 by reapplying the graph-
ical method presented in Sec. 3.1. The optimal solution, (2, 6) with Z � 36, changes to
(�

5
3

�, �
1
2
3
�) with Z � 37�

1
2

� when b2 is increased by 1 (from 12 to 13), so that

y2* � �Z � 37�
1
2

� � 36 � �
3
2

�.

Since Z is expressed in thousands of dollars of profit per week, y2* � �
3
2

� indicates that
adding 1 more hour of production time per week in Plant 2 for these two new products
would increase their total profit by $1,500 per week. Should this actually be done? It de-
pends on the marginal profitability of other products currently using this production time.
If there is a current product that contributes less than $1,500 of weekly profit per hour of
weekly production time in Plant 2, then some shift of production time to the new prod-
ucts would be worthwhile.

We shall continue this story in Sec. 6.7, where the Wyndor OR team uses shadow
prices as part of its sensitivity analysis of the model.

3
�
2
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1The increase in bi must be sufficiently small that the current set of basic variables remains optimal since this
rate (marginal value) changes if the set of basic variables changes.
2In the case of a functional constraint in � or � form, its shadow price is again defined as the rate at which Z
could be increased by (slightly) increasing the value of bi, although the interpretation of bi now would normally
be something other than the amount of a resource being made available.



Figure 4.8 demonstrates that y2* � �
3
2

� is the rate at which Z could be increased by in-
creasing b2 slightly. However, it also demonstrates the common phenomenon that this in-
terpretation holds only for a small increase in b2. Once b2 is increased beyond 18, the op-
timal solution stays at (0, 9) with no further increase in Z. (At that point, the set of basic
variables in the optimal solution has changed, so a new final simplex tableau will be ob-
tained with new shadow prices, including y2* � 0.)

Now note in Fig. 4.8 why y1* � 0. Because the constraint on resource 1, x1 � 4, is
not binding on the optimal solution (2, 6), there is a surplus of this resource. Therefore,
increasing b1 beyond 4 cannot yield a new optimal solution with a larger value of Z.

By contrast, the constraints on resources 2 and 3, 2x2 � 12 and 3x1 � 2x2 � 18, are
binding constraints (constraints that hold with equality at the optimal solution). Because
the limited supply of these resources (b2 � 12, b3 � 18) binds Z from being increased fur-
ther, they have positive shadow prices. Economists refer to such resources as scarce goods,
whereas resources available in surplus (such as resource 1) are free goods (resources with
a zero shadow price).

The kind of information provided by shadow prices clearly is valuable to manage-
ment when it considers reallocations of resources within the organization. It also is very
helpful when an increase in bi can be achieved only by going outside the organization to
purchase more of the resource in the marketplace. For example, suppose that Z represents
profit and that the unit profits of the activities (the cj values) include the costs (at regular
prices) of all the resources consumed. Then a positive shadow price of yi* for resource i
means that the total profit Z can be increased by yi* by purchasing 1 more unit of this re-
source at its regular price. Alternatively, if a premium price must be paid for the resource
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in the marketplace, then yi* represents the maximum premium (excess over the regular
price) that would be worth paying.1

The theoretical foundation for shadow prices is provided by the duality theory de-
scribed in Chap. 6.

Sensitivity Analysis

When discussing the certainty assumption for linear programming at the end of Sec. 3.3,
we pointed out that the values used for the model parameters (the ai j, bi, and cj identified
in Table 3.3) generally are just estimates of quantities whose true values will not become
known until the linear programming study is implemented at some time in the future. A
main purpose of sensitivity analysis is to identify the sensitive parameters (i.e., those
that cannot be changed without changing the optimal solution). The sensitive parameters
are the parameters that need to be estimated with special care to minimize the risk of ob-
taining an erroneous optimal solution. They also will need to be monitored particularly
closely as the study is implemented. If it is discovered that the true value of a sensitive
parameter differs from its estimated value in the model, this immediately signals a need
to change the solution.

How are the sensitive parameters identified? In the case of the bi, you have just seen
that this information is given by the shadow prices provided by the simplex method. In
particular, if yi* � 0, then the optimal solution changes if bi is changed, so bi is a sensi-
tive parameter. However, yi* � 0 implies that the optimal solution is not sensitive to at
least small changes in bi. Consequently, if the value used for bi is an estimate of the amount
of the resource that will be available (rather than a managerial decision), then the bi val-
ues that need to be monitored more closely are those with positive shadow prices—espe-
cially those with large shadow prices.

When there are just two variables, the sensitivity of the various parameters can be
analyzed graphically. For example, in Fig. 4.9, c1 � 3 can be changed to any other value
from 0 to 7.5 without the optimal solution changing from (2, 6). (The reason is that any
value of c1 within this range keeps the slope of Z � c1x1 � 5x2 between the slopes of the
lines 2x2 � 12 and 3x1 � 2x2 � 18.) Similarly, if c2 � 5 is the only parameter changed,
it can have any value greater than 2 without affecting the optimal solution. Hence, nei-
ther c1 nor c2 is a sensitive parameter.

The easiest way to analyze the sensitivity of each of the aij parameters graphically is
to check whether the corresponding constraint is binding at the optimal solution. Because
x1 � 4 is not a binding constraint, any sufficiently small change in its coefficients 
(a11 � 1, a12 � 0) is not going to change the optimal solution, so these are not sensitive
parameters. On the other hand, both 2x2 � 12 and 3x1 � 2x2 � 18 are binding constraints,
so changing any one of their coefficients (a21 � 0, a22 � 2, a31 � 3, a32 � 2) is going to
change the optimal solution, and therefore these are sensitive parameters.

Typically, greater attention is given to performing sensitivity analysis on the bi and
cj parameters than on the aij parameters. On real problems with hundreds or thousands of
constraints and variables, the effect of changing one aij value is usually negligible, but
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1If the unit profits do not include the costs of the resources consumed, then yi* represents the maximum total
unit price that would be worth paying to increase bi.



changing one bi or cj value can have real impact. Furthermore, in many cases, the ai j val-
ues are determined by the technology being used (the aij values are sometimes called tech-
nological coefficients), so there may be relatively little (or no) uncertainty about their fi-
nal values. This is fortunate, because there are far more aij parameters than bi and cj

parameters for large problems.
For problems with more than two (or possibly three) decision variables, you cannot

analyze the sensitivity of the parameters graphically as was just done for the Wyndor Glass
Co. problem. However, you can extract the same kind of information from the simplex
method. Getting this information requires using the fundamental insight described in Sec.
5.3 to deduce the changes that get carried along to the final simplex tableau as a result of
changing the value of a parameter in the original model. The rest of the procedure is de-
scribed and illustrated in Secs. 6.6 and 6.7.

Using Excel to Generate Sensitivity Analysis Information

Sensitivity analysis normally is incorporated into software packages based on the simplex
method. For example, the Excel Solver will generate sensitivity analysis information upon
request. As was shown in Fig. 3.19 (see page 72), when the Solver gives the message that
it has found a solution, it also gives on the right a list of three reports that can be pro-
vided. By selecting the second one (labeled “Sensitivity”) after solving the Wyndor Glass
Co. problem, you will obtain the sensitivity report shown in Fig. 4.10. The upper table in
this report provides sensitivity analysis information about the decision variables and their
coefficients in the objective function. The lower table does the same for the functional
constraints and their right-hand sides.
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Look first at the upper table in this figure. The “Final Value” column indicates the
optimal solution. The next column gives the reduced costs. (We will not discuss these re-
duced costs now because the information they provide can also be gleaned from the rest
of the upper table.) The next three columns provide the information needed to identify the
allowable range to stay optimal for each coefficient cj in the objective function.

For any cj, its allowable range to stay optimal is the range of values for this coefficient
over which the current optimal solution remains optimal, assuming no change in the other
coefficients.

The “Objective Coefficient” column gives the current value of each coefficient, and then
the next two columns give the allowable increase and the allowable decrease from this
value to remain within the allowable range. Therefore,

3 � 3 � c1 � 3 � 4.5, so 0 � c1 � 7.5

is the allowable range for c1 over which the current optimal solution will stay optimal (as-
suming c2 � 5), just as was found graphically in Fig. 4.9. Similarly, since Excel uses 
1E � 30 (1030) to represent infinity,

5 � 3 � c2 � 5 � �, so 2 � c2

is the allowable range to stay optimal for c2.
The fact that both the allowable increase and the allowable decrease are greater than

zero for the coefficient of both decision variables provides another useful piece of infor-
mation, as described below.

When the upper table in the sensitivity report generated by the Excel Solver indi-
cates that both the allowable increase and the allowable decrease are greater than zero for
every objective coefficient, this is a signpost that the optimal solution in the “Final Value”
column is the only optimal solution. Conversely, having any allowable increase or allow-
able decrease equal to zero is a signpost that there are multiple optimal solutions. Chang-
ing the corresponding coefficient a tiny amount beyond the zero allowed and re-solving
provides another optimal CPF solution for the original model.
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FIGURE 4.10
The sensitivity report
provided by the Excel Solver
for the Wyndor Glass Co.
problem.



Now consider the lower table in Fig. 4.10 that focuses on sensitivity analysis for the
three functional constraints. The “Final Value” column gives the value of each constraint’s
left-hand side for the optimal solution. The next two columns give the shadow price and
the current value of the right-hand side (bi) for each constraint. When just one bi value is
then changed, the last two columns give the allowable increase or allowable decrease in
order to remain within its allowable range to stay feasible.

For any bi, its allowable range to stay feasible is the range of values for this right-hand
side over which the current optimal BF solution (with adjusted values1 for the basic vari-
ables) remains feasible, assuming no change in the other right-hand sides.

Thus, using the lower table in Fig. 4.10, combining the last two columns with the current
values of the right-hand sides gives the following allowable ranges to stay feasible:

2 � b1

6 � b2 � 18
12 � b3 � 24.

This sensitivity report generated by the Excel Solver is typical of the sensitivity analy-
sis information provided by linear programming software packages. You will see in Ap-
pendix 4.1 that LINDO provides essentially the same report. MPL/CPLEX does also when
it is requested with the Solution File dialogue box. Once again, this information obtained
algebraically also can be derived from graphical analysis for this two-variable problem.
(See Prob. 4.7-1.) For example, when b2 is increased from 12 in Fig. 4.8, the originally
optimal CPF solution at the intersection of two constraint boundaries 2x2 � b2 and 
3x1 � 2x2 � 18 will remain feasible (including x1 � 0) only for b2 � 18.

The latter part of Chap. 6 will delve into this type of analysis more deeply.

Parametric Linear Programming

Sensitivity analysis involves changing one parameter at a time in the original model to check
its effect on the optimal solution. By contrast, parametric linear programming (or para-
metric programming for short) involves the systematic study of how the optimal solution
changes as many of the parameters change simultaneously over some range. This study can
provide a very useful extension of sensitivity analysis, e.g., to check the effect of “corre-
lated” parameters that change together due to exogenous factors such as the state of the
economy. However, a more important application is the investigation of trade-offs in param-
eter values. For example, if the cj values represent the unit profits of the respective activi-
ties, it may be possible to increase some of the cj values at the expense of decreasing oth-
ers by an appropriate shifting of personnel and equipment among activities. Similarly, if the
bi values represent the amounts of the respective resources being made available, it may be
possible to increase some of the bi values by agreeing to accept decreases in some of the
others. The analysis of such possibilities is discussed and illustrated at the end of Sec. 6.7.
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1Since the values of the basic variables are obtained as the simultaneous solution of a system of equations (the
functional constraints in augmented form), at least some of these values change if one of the right-hand sides
changes. However, the adjusted values of the current set of basic variables still will satisfy the nonnegativity
constraints, and so still will be feasible, as long as the new value of this right-hand side remains within its al-
lowable range to stay feasible. If the adjusted basic solution is still feasible, it also will still be optimal. We shall
elaborate further in Sec. 6.7.



In some applications, the main purpose of the study is to determine the most appro-
priate trade-off between two basic factors, such as costs and benefits. The usual approach
is to express one of these factors in the objective function (e.g., minimize total cost) and
incorporate the other into the constraints (e.g., benefits � minimum acceptable level), as
was done for the Nori & Leets Co. air pollution problem in Sec. 3.4. Parametric linear
programming then enables systematic investigation of what happens when the initial ten-
tative decision on the trade-off (e.g., the minimum acceptable level for the benefits) is
changed by improving one factor at the expense of the other.

The algorithmic technique for parametric linear programming is a natural extension
of that for sensitivity analysis, so it, too, is based on the simplex method. The procedure
is described in Sec. 7.2.

160 4 SOLVING LINEAR PROGRAMMING PROBLEMS: THE SIMPLEX METHOD

If the electronic computer had never been invented, undoubtedly you would have never
heard of linear programming and the simplex method. Even though it is possible to ap-
ply the simplex method by hand to solve tiny linear programming problems, the calcula-
tions involved are just too tedious to do this on a routine basis. However, the simplex
method is ideally suited for execution on a computer. It is the computer revolution that
has made possible the widespread application of linear programming in recent decades.

Implementation of the Simplex Method

Computer codes for the simplex method now are widely available for essentially all mod-
ern computer systems. These codes commonly are part of a sophisticated software pack-
age for mathematical programming that includes many of the procedures described in sub-
sequent chapters (including those used for postoptimality analysis).

These production computer codes do not closely follow either the algebraic form or
the tabular form of the simplex method presented in Secs. 4.3 and 4.4. These forms can
be streamlined considerably for computer implementation. Therefore, the codes use in-
stead a matrix form (usually called the revised simplex method ) that is especially well
suited for the computer. This form accomplishes exactly the same things as the algebraic
or tabular form, but it does this while computing and storing only the numbers that are
actually needed for the current iteration; and then it carries along the essential data in a
more compact form. The revised simplex method is described in Sec. 5.2.

The simplex method is used routinely to solve surprisingly large linear programming
problems. For example, powerful desktop computers (especially workstations) commonly
are used to solve problems with many thousand functional constraints and a larger num-
ber of decision variables. We now are beginning to hear reports of successfully solved
problems ranging into the hundreds of thousands of functional constraints and millions of
decision variables.1 For certain special types of linear programming problems (such as the
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1Do not try this at home. Attacking such a massive problem requires an especially sophisticated linear pro-
gramming system that uses the latest techniques for exploiting sparcity in the coefficient matrix as well as other
special techniques (e.g., crashing techniques for quickly finding an advanced initial BF solution). When prob-
lems are re-solved periodically after minor updating of the data, much time often is saved by using (or modi-
fying) the last optimal solution to provide the initial BF solution for the new run.



transportation, assignment, and minimum cost flow problems to be described later in the
book), even larger problems now can be solved by specialized versions of the simplex
method.

Several factors affect how long it will take to solve a linear programming problem
by the general simplex method. The most important one is the number of ordinary func-
tional constraints. In fact, computation time tends to be roughly proportional to the cube
of this number, so that doubling this number may multiply the computation time by a fac-
tor of approximately 8. By contrast, the number of variables is a relatively minor factor.1

Thus, doubling the number of variables probably will not even double the computation
time. A third factor of some importance is the density of the table of constraint coeffi-
cients (i.e., the proportion of the coefficients that are not zero), because this affects the
computation time per iteration. (For large problems encountered in practice, it is com-
mon for the density to be under 5 percent, or even under 1 percent, and this much “sparcity”
tends to greatly accelerate the simplex method.) One common rule of thumb for the num-
ber of iterations is that it tends to be roughly twice the number of functional constraints.

With large linear programming problems, it is inevitable that some mistakes and faulty
decisions will be made initially in formulating the model and inputting it into the com-
puter. Therefore, as discussed in Sec. 2.4, a thorough process of testing and refining the
model (model validation) is needed. The usual end product is not a single static model
that is solved once by the simplex method. Instead, the OR team and management typi-
cally consider a long series of variations on a basic model (sometimes even thousands of
variations) to examine different scenarios as part of postoptimality analysis. This entire
process is greatly accelerated when it can be carried out interactively on a desktop com-
puter. And, with the help of both mathematical programming modeling languages and im-
proving computer technology, this now is becoming common practice.

Until the mid-1980s, linear programming problems were solved almost exclusively
on mainframe computers. Since then, there has been an explosion in the capability of do-
ing linear programming on desktop computers, including personal computers as well as
workstations. Workstations, including some with parallel processing capabilities, now are
commonly used instead of mainframe computers to solve massive linear programming
models. The fastest personal computers are not lagging far behind, although solving huge
models usually requires additional memory.

Linear Programming Software Featured in This Book

A considerable number of excellent software packages for linear programming and its ex-
tensions now are available to fill a variety of needs. One that is widely regarded to be a
particularly powerful package for solving massive problems is CPLEX, a product of ILOG,
Inc., located in Silicon Valley. For more than a decade, CPLEX has helped to lead the
way in solving larger and larger linear programming problems. An extensive research and
development effort has enabled a series of upgrades with dramatic increases in efficiency.
CPLEX 6.5 released in March 1999 provided another order-of-magnitude improvement.
This software package has successfully solved real linear programming problems arising
in industry with as many as 2 million functional constraints and a comparable number of
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decision variables! CPLEX 6.5 often uses the simplex method and its variants (such as
the dual simplex method presented in Sec. 7.1) to solve these massive problems. In addi-
tion to the simplex method, CPLEX 6.5 also features some other powerful weapons for
attacking linear programming problems. One is a lightning-fast algorithm that uses the in-
terior-point approach introduced in the next section. This algorithm can solve some huge
general linear programming problems that the simplex method cannot (and vice versa).
Another feature is the network simplex method (described in Sec. 9.7) that can solve even
larger special types of linear programming problems. CPLEX 6.5 also extends beyond lin-
ear programming by including state-of-the-art algorithms for integer programming
(Chap. 12) and quadratic programming (Sec. 13.7).

Because it often is used to solve really large problems, CPLEX normally is used in
conjunction with a mathematical programming modeling language. As described in Sec.
3.7, modeling languages are designed for efficiently formulating large linear programming
models (and related models) in a compact way, after which a solver is called upon to solve
the model. Several of the prominent modeling languages support CPLEX as a solver. ILOG
also has recently introduced its own modeling language, called OPL Studio, that can be
used with CPLEX. (A trial version of OPL Studio is available at ILOG’s website,
www.ilog.com.)

As we mentioned in Sec. 3.7, the student version of CPLEX is included in your
OR Courseware as the solver for the MPL modeling language. This version features the
simplex method for solving linear programming problems.

LINDO (short for Linear, INteractive, and Discrete Optimizer) is another prominent
software package for linear programming and its extensions. A product of LINDO Sys-
tems based in Chicago, LINDO has an even longer history than CPLEX. Although not as
powerful as CPLEX, the largest version of LINDO has solved problems with tens of thou-
sands of functional constraints and hundreds of thousands of decision variables. Its long-
time popularity is partially due to its ease of use. For relatively small (textbook-sized)
problems, the model can be entered and solved in an intuitive straightforward manner, so
LINDO provides a convenient tool for students to use. However, LINDO lacks some of
the capabilities of modeling languages for dealing with large linear programming prob-
lems. For such problems, it may be more efficient to use the LINGO modeling language
to formulate the model and then to call the solver it shares with LINDO to solve the model.

You can download the student version of LINDO from the website, www.lindo.com.
Appendix 4.1 provides an introduction to how to use LINDO. The CD-ROM also includes
a LINDO tutorial, as well as LINDO formulations for all the examples in this book to
which it can be applied.

Spreadsheet-based solvers are becoming increasingly popular for linear programming
and its extensions. Leading the way are the solvers produced by Frontline Systems for
Microsoft Excel, Lotus 1-2-3, and Corel Quattro Pro. In addition to the basic solver shipped
with these packages, two more powerful upgrades—Premium Solver and Premium Solver
Plus—also are available. Because of the widespread use of spreadsheet packages such as
Microsoft Excel today, these solvers are introducing large numbers of people to the po-
tential of linear programming for the first time. For textbook-sized linear programming
problems (and considerably larger problems as well), spreadsheets provide a convenient
way to formulate and solve the model, as described in Sec. 3.6. The more powerful spread-
sheet solvers can solve fairly large models with many thousand decision variables. How-
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ever, when the spreadsheet grows to an unwieldy size, a good modeling language and its
solver may provide a more efficient approach to formulating and solving the model.

Spreadsheets provide an excellent communication tool, especially when dealing with
typical managers who are very comfortable with this format but not with the algebraic
formulations of OR models. Therefore, optimization software packages and modeling lan-
guages now can commonly import and export data and results in a spreadsheet format.
For example, the MPL modeling language now includes an enhancement (called the Op-
tiMax 2000 Component Library) that enables the modeler to create the feel of a spread-
sheet model for the user of the model while still using MPL to formulate the model very
efficiently. (The student version of OptiMax 2000 is included in your OR Courseware.)

Premium Solver is one of the Excel add-ins included on the CD-ROM. You can in-
stall this add-in to obtain a much better performance than with the standard Excel Solver.

Consequently, all the software, tutorials, and examples packed on the CD-ROM are
providing you with several attractive software options for linear programming.

Available Software Options for Linear Programming.

1. Demonstration examples (in OR Tutor) and interactive routines for efficiently learning
the simplex method.

2. Excel and its Premium Solver for formulating and solving linear programming mod-
els in a spreadsheet format.

3. MPL/CPLEX for efficiently formulating and solving large linear programming models.
4. LINGO and its solver (shared with LINDO) for an alternative way of efficiently for-

mulating and solving large linear programming models.
5. LINDO for formulating and solving linear programming models in a straightforward way.

Your instructor may specify which software to use. Whatever the choice, you will be gain-
ing experience with the kind of state-of-the-art software that is used by OR professionals.
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The most dramatic new development in operations research during the 1980s was the dis-
covery of the interior-point approach to solving linear programming problems. This dis-
covery was made in 1984 by a young mathematician at AT&T Bell Laboratories, Naren-
dra Karmarkar, when he successfully developed a new algorithm for linear programming
with this kind of approach. Although this particular algorithm experienced only mixed
success in competing with the simplex method, the key solution concept described below
appeared to have great potential for solving huge linear programming problems beyond
the reach of the simplex method. Many top researchers subsequently worked on modify-
ing Karmarkar’s algorithm to fully tap this potential. Much progress has been made (and
continues to be made), and a number of powerful algorithms using the interior-point ap-
proach have been developed. Today, the more powerful software packages that are de-
signed for solving really large linear programming problems (such as CPLEX) include at
least one algorithm using the interior-point approach along with the simplex method. As
research continues on these algorithms, their computer implementations continue to im-
prove. This has spurred renewed research on the simplex method, and its computer im-
plementations continue to improve as well (recall the dramatic advance by CPLEX 6.5
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cited in the preceding section). The competition between the two approaches for supremacy
in solving huge problems is continuing.

Now let us look at the key idea behind Karmarkar’s algorithm and its subsequent vari-
ants that use the interior-point approach.

The Key Solution Concept

Although radically different from the simplex method, Karmarkar’s algorithm does share
a few of the same characteristics. It is an iterative algorithm. It gets started by identify-
ing a feasible trial solution. At each iteration, it moves from the current trial solution to
a better trial solution in the feasible region. It then continues this process until it reaches
a trial solution that is (essentially) optimal.

The big difference lies in the nature of these trial solutions. For the simplex method,
the trial solutions are CPF solutions (or BF solutions after augmenting), so all movement
is along edges on the boundary of the feasible region. For Karmarkar’s algorithm, the trial
solutions are interior points, i.e., points inside the boundary of the feasible region. For this
reason, Karmarkar’s algorithm and its variants are referred to as interior-point algorithms.

To illustrate, Fig. 4.11 shows the path followed by the interior-point algorithm in your
OR Courseware when it is applied to the Wyndor Glass Co. problem, starting from the
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initial trial solution (1, 2). Note how all the trial solutions (dots) shown on this path are
inside the boundary of the feasible region as the path approaches the optimal solution 
(2, 6). (All the subsequent trial solutions not shown also are inside the boundary of the
feasible region.) Contrast this path with the path followed by the simplex method around
the boundary of the feasible region from (0, 0) to (0, 6) to (2, 6).

Table 4.18 shows the actual output from your OR Courseware for this problem.1 (Try
it yourself.) Note how the successive trial solutions keep getting closer and closer to the
optimal solution, but never literally get there. However, the deviation becomes so infini-
tesimally small that the final trial solution can be taken to be the optimal solution for all
practical purposes.

Section 7.4 presents the details of the specific interior-point algorithm that is imple-
mented in your OR Courseware.

Comparison with the Simplex Method

One meaningful way of comparing interior-point algorithms with the simplex method is
to examine their theoretical properties regarding computational complexity. Karmarkar
has proved that the original version of his algorithm is a polynomial time algorithm; i.e.,
the time required to solve any linear programming problem can be bounded above by a
polynomial function of the size of the problem. Pathological counterexamples have been
constructed to demonstrate that the simplex method does not possess this property, so it
is an exponential time algorithm (i.e., the required time can be bounded above only by
an exponential function of the problem size). This difference in worst-case performance
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1The routine is called Solve Automatically by the Interior-Point Algorithm. The option menu provides two choices
for a certain parameter of the algorithm � (defined in Sec. 7.4). The choice used here is the default value of 
� � 0.5.

TABLE 4.18 Output of interior-point algorithm in OR Courseware 
for Wyndor Glass Co. problem

Iteration x1 x2 Z

0 1 2 13
1 1.27298 4 23.8189
2 1.37744 5 29.1323
3 1.56291 5.5 32.1887
4 1.80268 5.71816 33.9989
5 1.92134 5.82908 34.9094
6 1.96639 5.90595 35.429
7 1.98385 5.95199 35.7115
8 1.99197 5.97594 35.8556
9 1.99599 5.98796 35.9278

10 1.99799 5.99398 35.9639
11 1.999 5.99699 35.9819
12 1.9995 5.9985 35.991
13 1.99975 5.99925 35.9955
14 1.99987 5.99962 35.9977
15 1.99994 5.99981 35.9989



is noteworthy. However, it tells us nothing about their comparison in average performance
on real problems, which is the more crucial issue.

The two basic factors that determine the performance of an algorithm on a real prob-
lem are the average computer time per iteration and the number of iterations. Our next
comparisons concern these factors.

Interior-point algorithms are far more complicated than the simplex method. Con-
siderably more extensive computations are required for each iteration to find the next trial
solution. Therefore, the computer time per iteration for an interior-point algorithm is many
times longer than that for the simplex method.

For fairly small problems, the numbers of iterations needed by an interior-point al-
gorithm and by the simplex method tend to be somewhat comparable. For example, on a
problem with 10 functional constraints, roughly 20 iterations would be typical for either
kind of algorithm. Consequently, on problems of similar size, the total computer time for
an interior-point algorithm will tend to be many times longer than that for the simplex
method.

On the other hand, a key advantage of interior-point algorithms is that large problems
do not require many more iterations than small problems. For example, a problem with
10,000 functional constraints probably will require well under 100 iterations. Even con-
sidering the very substantial computer time per iteration needed for a problem of this size,
such a small number of iterations makes the problem quite tractable. By contrast, the sim-
plex method might need 20,000 iterations and so might not finish within a reasonable
amount of computer time. Therefore, interior-point algorithms often are faster than the
simplex method for such huge problems.

The reason for this very large difference in the number of iterations on huge prob-
lems is the difference in the paths followed. At each iteration, the simplex method moves
from the current CPF solution to an adjacent CPF solution along an edge on the bound-
ary of the feasible region. Huge problems have an astronomical number of CPF solutions.
The path from the initial CPF solution to an optimal solution may be a very circuitous
one around the boundary, taking only a small step each time to the next adjacent CPF so-
lution, so a huge number of steps may be required to reach an optimal solution. By con-
trast, an interior-point algorithm bypasses all this by shooting through the interior of the
feasible region toward an optimal solution. Adding more functional constraints adds more
constraint boundaries to the feasible region, but has little effect on the number of trial so-
lutions needed on this path through the interior. This makes it possible for interior-point
algorithms to solve problems with a huge number of functional constraints.

A final key comparison concerns the ability to perform the various kinds of postop-
timality analysis described in Sec. 4.7. The simplex method and its extensions are very
well suited to and are widely used for this kind of analysis. Unfortunately, the interior-
point approach currently has limited capability in this area.1 Given the great importance
of postoptimality analysis, this is a crucial drawback of interior-point algorithms. How-
ever, we point out next how the simplex method can be combined with the interior-point
approach to overcome this drawback.
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1However, research aimed at increasing this capability continues to make progress. For example, see H. J. Green-
berg, “Matrix Sensitivity Analysis from an Interior Solution of a Linear Program,” INFORMS Journal on Com-
puting, 11: 316–327, 1999, and its references.



The Complementary Roles of the Simplex Method 
and the Interior-Point Approach

Ongoing research is continuing to provide substantial improvements in computer imple-
mentations of both the simplex method (including its variants) and interior-point algo-
rithms. Therefore, any predictions about their future roles are risky. However, we do sum-
marize below our current assessment of their complementary roles.

The simplex method (and its variants) continues to be the standard algorithm for the
routine use of linear programming. It continues to be the most efficient algorithm for prob-
lems with less than a few hundred functional constraints. It also is the most efficient for
some (but not all) problems with up to several thousand functional constraints and nearly
an unlimited number of decision variables, so most users are continuing to use the sim-
plex method for such problems. However, as the number of functional constraints increases
even further, it becomes increasingly likely that an interior-point approach will be the most
efficient, so it often is now used instead. As the size grows into the tens of thousands of
functional constraints, the interior-point approach may be the only one capable of solv-
ing the problem. However, this certainly is not always the case. As mentioned in the pre-
ceding section, the latest state-of-the-art software (CPLEX 6.5) is successfully using the
simplex method and its variants to solve some truly massive problems with hundreds of
thousands, or even millions of functional constraints and decision variables.

These generalizations about how the interior-point approach and the simplex method
should compare for various problem sizes will not hold across the board. The specific
software packages and computer equipment being used have a major impact. The com-
parison also is affected considerably by the specific type of linear programming problem
being solved. As time goes on, we should learn much more about how to identify specific
types which are better suited for one kind of algorithm.

One of the by-products of the emergence of the interior-point approach has been a
major renewal of efforts to improve the efficiency of computer implementations of the
simplex method. As we indicated, impressive progress has been made in recent years, and
more lies ahead. At the same time, ongoing research and development of the interior-point
approach will further increase its power, and perhaps at a faster rate than for the simplex
method.

Improving computer technology, such as massive parallel processing (a huge number
of computer units operating in parallel on different parts of the same problem), also will
substantially increase the size of problem that either kind of algorithm can solve. How-
ever, it now appears that the interior-point approach has much greater potential to take ad-
vantage of parallel processing than the simplex method does.

As discussed earlier, a key disadvantage of the interior-point approach is its limited
capability for performing postoptimality analysis. To overcome this drawback, researchers
have been developing procedures for switching over to the simplex method after an inte-
rior-point algorithm has finished. Recall that the trial solutions obtained by an interior-point
algorithm keep getting closer and closer to an optimal solution (the best CPF solution), but
never quite get there. Therefore, a switching procedure requires identifying a CPF solution
(or BF solution after augmenting) that is very close to the final trial solution.

For example, by looking at Fig. 4.11, it is easy to see that the final trial solution in
Table 4.18 is very near the CPF solution (2, 6). Unfortunately, on problems with thou-

4.9 THE INTERIOR POINT APPROACH TO SOLVING LINEAR PROGRAMMING PROBLEMS 167



sands of decision variables (so no graph is available), identifying a nearby CPF (or BF)
solution is a very challenging and time-consuming task. However, good progress has been
made in developing procedures to do this.

Once this nearby BF solution has been found, the optimality test for the simplex
method is applied to check whether this actually is the optimal BF solution. If it is not
optimal, some iterations of the simplex method are conducted to move from this BF so-
lution to an optimal solution. Generally, only a very few iterations (perhaps one) are needed
because the interior-point algorithm has brought us so close to an optimal solution. There-
fore, these iterations should be done quite quickly, even on problems that are too huge to
be solved from scratch. After an optimal solution is actually reached, the simplex method
and its variants are applied to help perform postoptimality analysis.

Because of the difficulties involved in applying a switching procedure (including the
extra computer time), some practitioners prefer to just use the simplex method from the
outset. This makes good sense when you only occasionally encounter problems that are
large enough for an interior-point algorithm to be modestly faster (before switching) than
the simplex method. This modest speed-up would not justify both the extra computer time
for a switching procedure and the high cost of acquiring (and learning to use) a software
package based on the interior-point approach. However, for organizations which frequently
must deal with extremely large linear programming problems, acquiring a state-of-the-art
software package of this kind (including a switching procedure) probably is worthwhile.
For sufficiently huge problems, the only available way of solving them may be with such
a package.

Applications of huge linear programming models sometimes lead to savings of mil-
lions of dollars. Just one such application can pay many times over for a state-of-the-art
software package based on the interior-point approach plus switching over to the simplex
method at the end.
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The simplex method is an efficient and reliable algorithm for solving linear programming
problems. It also provides the basis for performing the various parts of postoptimality
analysis very efficiently.

Although it has a useful geometric interpretation, the simplex method is an algebraic
procedure. At each iteration, it moves from the current BF solution to a better, adjacent
BF solution by choosing both an entering basic variable and a leaving basic variable and
then using Gaussian elimination to solve a system of linear equations. When the current
solution has no adjacent BF solution that is better, the current solution is optimal and the
algorithm stops.

We presented the full algebraic form of the simplex method to convey its logic, and
then we streamlined the method to a more convenient tabular form. To set up for starting
the simplex method, it is sometimes necessary to use artificial variables to obtain an ini-
tial BF solution for an artificial problem. If so, either the Big M method or the two-phase
method is used to ensure that the simplex method obtains an optimal solution for the real
problem.

Computer implementations of the simplex method and its variants have become so
powerful that they now are frequently used to solve linear programming problems with
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many thousand functional constraints and decision variables, and occasionally vastly larger
problems. Interior-point algorithms also provide a powerful tool for solving very large
problems.
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The LINDO software is designed to be easy to learn and to use, especially for small problems of
the size you will encounter in this book. In addition to linear programming, it also can be used to
solve both integer programming problems (Chap. 12) and quadratic programming problems (Sec.
13.7). Our focus in this appendix is on its use for linear programming.

LINDO allows you to enter a model in a straightforward algebraic way. For example, here is
a nice way of entering the LINDO model for the Wyndor Glass Co. example introduced in Sec. 3.1.

! Wyndor Glass Co. Problem. LINDO model
! X1 � batches of product 1 per week
! X2 � batches of product 2 per week

! Profit, in 1000 of dollars

MAX Profit) 3 X1 � 5 X2

Subject to

! Production time
Plant1) X1 �� 4
Plant2) 2 X2 �� 12
Plant3) 3 X1 � 2 X2 �� 18
END

In addition to the basic model, this formulation includes several clarifying comments, where
each comment is indicated by starting with an exclamation point. Thus, the first three lines give the
title and the definitions of the decision variables. The decision variables can be either lowercase or
uppercase, but uppercase usually is used so the variables won’t be dwarfed by the following “sub-
scripts.” Another option is to use a suggestive word (or abbreviation of a word), such as the name
of the product being produced, to represent the decision variable throughout the model, provided
the word does not exceed eight letters.

The fifth line of the LINDO formulation indicates that the objective of the model is to maxi-
mize the objective function, 3x1 � 5x2. The word Profit followed by a parenthesis clarifies that this
quantity being maximized is profit. The comment on the fourth line further clarifies that the objec-
tive function is expressed in units of thousands of dollars. The number 1000 in this comment does
not have the usual comma in front of the last three digits because LINDO does not accept commas.
(It also does not accept parentheses in algebraic expressions.)

The comment on the seventh line points out that the following constraints are on the produc-
tion times being used. The next three lines start by giving a name (followed by a parenthesis) for
each of the functional constraints. These constraints are written in the usual way except for the in-
equality signs. Because many keyboards do not include � and � signs, LINDO interprets either
� or �� as � and either � or �� as �. (On systems that include � and � signs, LINDO will
not recognize them.)

The end of the constraints is signified by the word END. No nonnegativity constraints are stated
because LINDO automatically assumes that all the variables have these constraints. If, say, x1 had
not had a nonnegativity constraint, this would have to be indicated by typing FREE X1 on the next
line below END.

APPENDIX 4.1 AN INTRODUCTION TO USING LINDO



To solve this model in the Windows version of LINDO, either select the Solve command from
the Solve menu or press the Solve button on the toolbar. On a platform other than Windows, sim-
ply type GO followed by a return at the colon prompt. Figure A4.1 shows the resulting solution re-
port delivered by LINDO.

Both the top line and bottom line in this figure indicate that an optimal solution was found at
iteration 2 of the simplex method. Next comes the value of the objective function for this solution.
Below this, we have the values of x1 and x2 for the optimal solution.

The column to the right of these values gives the reduced costs. We have not discussed re-
duced costs in this chapter because the information they provide can also be gleaned from the al-
lowable range to stay optimal for the coefficients in the objective function, and these allowable
ranges also are readily available (as you will see in the next figure). When the variable is a basic
variable in the optimal solution (as for both variables in the Wyndor problem), its reduced cost au-
tomatically is 0. When the variable is a nonbasic variable, its reduced cost provides some interest-
ing information. This variable is 0 because its coefficient in the objective function is too small (when
maximizing the objective function) or too large (when minimizing) to justify undertaking the ac-
tivity represented by the variable. The reduced cost indicates how much this coefficient can be in-
creased (when maximizing) or decreased (when minimizing) before the optimal solution would
change and this variable would become a basic variable. However, recall that this same informa-
tion already is available from the allowable range to stay optimal for the coefficient of this variable
in the objective function. The reduced cost (for a nonbasic variable) is just the allowable increase
(when maximizing) from the current value of this coefficient to remain within its allowable range
to stay optimal or the allowable decrease (when minimizing).

Below the variable values and reduced costs in Fig. A4.1, we next have information about the
three functional constraints. The Slack or Surplus column gives the difference between the two sides
of each constraint. The Dual Prices column gives, by another name, the shadow prices discussed
in Sec. 4.7 for these constraints.1 (This alternate name comes from the fact found in Sec. 6.1 that
these shadow prices are just the optimal values of the dual variables introduced in Chap. 6.)

When LINDO provides you with this solution report, it also asks you whether you want to
do range (sensitivity) analysis. Answering yes (by pressing the Y key) provides you with the ad-
ditional range report shown in Fig. A4.2. This report is identical to the last three columns of the
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LP OPTIMUM FOUND AT STEP 2

OBJECTIVE FUNCTION VALUE

Profit) 36.00000

VARIABLE VALUE REDUCED COST
X1 2.000000 .000000
X2 6.000000 .000000

ROW SLACK OR SURPLUS DUAL PRICES
Plant1) 2.000000 .000000
Plant2) .000000 1.500000
Plant3) .000000 1.000000

NO. ITERATIONS= 2

FIGURE A4.1
The solution report provided
by LINDO for the Wyndor
Glass Co. problem.

1However, beware that LINDO uses a different sign convention from the common one adopted here (see the
second footnote for the definition of shadow price in Sec. 4.7), so that for minimization problems, its shadow
prices (dual prices) are the negative of ours.



tables in the sensitivity report generated by the Excel Solver, as shown earlier in Fig. 4.10. Thus,
as already discussed in Sec. 4.7, the first two rows of this range report indicate that the allowable
range to stay optimal for each coefficient in the objective function (assuming no other change in
the model) is

0 � c1 � 7.5
2 � c2

Similarly, the last three rows indicate that the allowable range to stay feasible for each right-hand
side (assuming no other change in the model) is

2 � b1

6 � b2 � 18
12 � b3 � 24

To print your results with the Windows version of LINDO, you simply need to use the Print
command to send the contents of the active window to the printer. If you are running LINDO on a
platform other than Windows, you can use the DIVERT command (followed by the file name) to
send screen output to a file, which can then print from either the operating system or a word pro-
cessing package.

These are the basics for getting started with LINDO. The LINDO tutorial on the CD-ROM
also provides some additional details. The LINGO/LINDO files on the CD-ROM for various chap-
ters show the LINDO formulations for numerous examples. In addition, LINDO includes a Help
menu to provide guidance. These resources should enable you to apply LINDO to any linear pro-
gramming problem you will encounter in this book. (We will discuss applications to other problem
types in Chaps. 12 and 13.) For more advanced applications, the LINDO User’s Manual (Selected
Reference 4 for this chapter) might be needed.
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FIGURE A4.2
The range report provided
by LINDO for the Wyndor
Glass Co. problem.

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES
VARIABLE CURRENT ALLOWABLE ALLOWABLE

COEF INCREASE DECREASE
X1 3.000000 4.500000 3.000000
X2 5.000000 INFINITY 3.000000

RIGHTHAND SIDE RANGES
ROW CURRENT ALLOWABLE ALLOWABLE

RHS INCREASE DECREASE
Plant1 4.000000 INFINITY 2.000000
Plant2 12.000000 6.000000 6.000000
Plant3 18.000000 6.000000 6.000000
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Demonstration Examples in OR Tutor:

Interpretation of the Slack Variables
Simplex Method—Algebraic Form
Simplex Method—Tabular Form

Interactive Routines:

Enter or Revise a General Linear Programming Model
Set Up for the Simplex Method—Interactive Only
Solve Interactively by the Simplex Method

An Automatic Routine:

Solve Automatically by the Interior-Point Algorithm

An Excel Add-In:

Premium Solver

Files (Chapter 3) for Solving the Wyndor and 
Radiation Therapy Examples:

Excel File
LINGO/LINDO File
MPL/CPLEX File

See Appendix 1 for documentation of the software.

LEARNING AIDS FOR THIS CHAPTER IN YOUR OR COURSEWARE

The symbols to the left of some of the problems (or their parts)
have the following meaning:
D: The corresponding demonstration example listed above may be

helpful.
I: We suggest that you use the corresponding interactive routine

listed above (the printout records your work).
C: Use the computer with any of the software options available to

you (or as instructed by your instructor) to solve the problem
automatically. (See Sec. 4.8 for a listing of the options featured
in this book and on the CD-ROM.)

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

4.1-1. Consider the following problem.

Maximize Z � x1 � 2x2,

subject to

x1 � 2
x2 � 2

x1 � x2 � 3

and

x1 � 0, x2 � 0.

(a) Plot the feasible region and circle all the CPF solutions.

PROBLEMS



The objective is to maximize the total profit from the two activi-
ties. The unit profit for activity 1 is $1,000 and the unit profit for
activity 2 is $2,000.
(a) Calculate the total profit for each CPF solution. Use this in-

formation to find an optimal solution.
(b) Use the solution concepts of the simplex method given in Sec.

4.1 to identify the sequence of CPF solutions that would be
examined by the simplex method to reach an optimal solution.

4.1-4.* Consider the linear programming model (given in the back
of the book) that was formulated for Prob. 3.2-3.
(a) Use graphical analysis to identify all the corner-point solutions

for this model. Label each as either feasible or infeasible.
(b) Calculate the value of the objective function for each of the

CPF solutions. Use this information to identify an optimal so-
lution.

(c) Use the solution concepts of the simplex method given in Sec.
4.1 to identify which sequence of CPF solutions might be ex-
amined by the simplex method to reach an optimal solution.
(Hint: There are two alternative sequences to be identified for
this particular model.)

4.1-5. Repeat Prob. 4.1-4 for the following problem.

Maximize Z � x1 � 2x2,

subject to

x1 � 3x2 � 8
x1 � x2 � 4

and

x1 � 0, x2 � 0.

4.1-6. Repeat Prob. 4.1-4 for the following problem.

Maximize Z � 3x1 � 2x2,

subject to

x1 � 3x2 � 4
x1 � 3x2 � 15

2x1 � x2 � 10

and

x1 � 0, x2 � 0.

4.1-7. Describe graphically what the simplex method does step by
step to solve the following problem.

Maximize Z � 2x1 � 3x2,

subject to

�3x1 � x2 � 1
�4x1 � 2x2 � 20

(b) For each CPF solution, identify the pair of constraint bound-
ary equations that it satisfies.

(c) For each CPF solution, use this pair of constraint boundary
equations to solve algebraically for the values of x1 and x2 at
the corner point.

(d) For each CPF solution, identify its adjacent CPF solutions.
(e) For each pair of adjacent CPF solutions, identify the constraint

boundary they share by giving its equation.

4.1-2. Consider the following problem.

Maximize Z � 3x1 � 2x2,

subject to

2x1 � x2 � 6
x1 � 2x2 � 6

and

x1 � 0, x2 � 0.

(a) Use the graphical method to solve this problem. Circle all the
corner points on the graph.

(b) For each CPF solution, identify the pair of constraint bound-
ary equations it satisfies.

(c) For each CPF solution, identify its adjacent CPF solutions.
(d) Calculate Z for each CPF solution. Use this information to

identify an optimal solution.
(e) Describe graphically what the simplex method does step by

step to solve the problem.

4.1-3. A certain linear programming model involving two activi-
ties has the feasible region shown below.
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(b) For each CPF solution, identify the corresponding BF solution
by calculating the values of the slack variables. For each BF
solution, use the values of the variables to identify the nonba-
sic variables and the basic variables.

(c) For each BF solution, demonstrate (by plugging in the solu-
tion) that, after the nonbasic variables are set equal to zero,
this BF solution also is the simultaneous solution of the sys-
tem of equations obtained in part (a).

4.2-2. Reconsider the model in Prob. 4.1-5. Follow the instructions
of Prob. 4.2-1 for parts (a), (b), and (c).
(d) Repeat part (b) for the corner-point infeasible solutions and the

corresponding basic infeasible solutions.
(e) Repeat part (c) for the basic infeasible solutions.

4.2-3. Follow the instructions of Prob. 4.2-1 for the model in Prob.
4.1-6.

D,I 4.3-1. Work through the simplex method (in algebraic form)
step by step to solve the model in Prob. 4.1-4.

4.3-2. Reconsider the model in Prob. 4.1-5.
(a) Work through the simplex method (in algebraic form) by hand

to solve this model.
D,I (b) Repeat part (a) with the corresponding interactive routine

in your OR Tutor.
C (c) Verify the optimal solution you obtained by using a software

package based on the simplex method.

4.3-3. Follow the instructions of Prob. 4.3-2 for the model in Prob.
4.1-6.

D,I 4.3-4.* Work through the simplex method (in algebraic form)
step by step to solve the following problem.

Maximize Z � 4x1 � 3x2 � 6x3,

subject to

3x1 � x2 � 3x3 � 30
2x1 � 2x2 � 3x3 � 40

and

x1 � 0, x2 � 0, x3 � 0.

D,I 4.3-5. Work through the simplex method (in algebraic form)
step by step to solve the following problem.

Maximize Z � x1 � 2x2 � 4x3,

subject to

3x1 � x2 � 5x3 � 10
x1 � 4x2 � x3 � 8

2x1 � 4x2 � 2x3 � 7

�4x1 � x2 � 10
�x1 � 2x2 � 5

and

x1 � 0, x2 � 0.

4.1-8. Describe graphically what the simplex method does step by
step to solve the following problem.

Minimize Z � 5x1 � 7x2,

subject to

2x1 � 3x2 � 42
3x1 � 4x2 � 60
x1 � x2 � 18

and

x1 � 0, x2 � 0.

4.1-9. Label each of the following statements about linear pro-
gramming problems as true or false, and then justify your answer.
(a) For minimization problems, if the objective function evaluated

at a CPF solution is no larger than its value at every adjacent
CPF solution, then that solution is optimal.

(b) Only CPF solutions can be optimal, so the number of optimal
solutions cannot exceed the number of CPF solutions.

(c) If multiple optimal solutions exist, then an optimal CPF solu-
tion may have an adjacent CPF solution that also is optimal
(the same value of Z ).

4.1-10. The following statements give inaccurate paraphrases of
the six solution concepts presented in Sec. 4.1. In each case, ex-
plain what is wrong with the statement.
(a) The best CPF solution always is an optimal solution.
(b) An iteration of the simplex method checks whether the current

CPF solution is optimal and, if not, moves to a new CPF 
solution.

(c) Although any CPF solution can be chosen to be the initial CPF
solution, the simplex method always chooses the origin.

(d) When the simplex method is ready to choose a new CPF so-
lution to move to from the current CPF solution, it only con-
siders adjacent CPF solutions because one of them is likely to
be an optimal solution.

(e) To choose the new CPF solution to move to from the current
CPF solution, the simplex method identifies all the adjacent
CPF solutions and determines which one gives the largest rate
of improvement in the value of the objective function.

4.2-1. Reconsider the model in Prob. 4.1-4.
(a) Introduce slack variables in order to write the functional con-

straints in augmented form.
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(b) Use the procedure developed in part (a) to solve this problem
by hand. (Do not use your OR Courseware.)

4.3-9. Label each of the following statements as true or false, and
then justify your answer by referring to specific statements (with
page citations) in the chapter.
(a) The simplex method’s rule for choosing the entering basic vari-

able is used because it always leads to the best adjacent BF
solution (largest Z).

(b) The simplex method’s minimum ratio rule for choosing the
leaving basic variable is used because making another choice
with a larger ratio would yield a basic solution that is not fea-
sible.

(c) When the simplex method solves for the next BF solution, el-
ementary algebraic operations are used to eliminate each non-
basic variable from all but one equation (its equation) and to
give it a coefficient of �1 in that one equation.

D,I 4.4-1. Repeat Prob. 4.3-1, using the tabular form of the sim-
plex method.

D,I,C 4.4-2. Repeat Prob. 4.3-2, using the tabular form of the sim-
plex method.

D,I,C 4.4-3. Repeat Prob. 4.3-3, using the tabular form of the sim-
plex method.

4.4-4. Consider the following problem.

Maximize Z � 2x1 � x2,

subject to

x1 � x2 � 40
4x1 � x2 � 100

and

x1 � 0, x2 � 0.

(a) Solve this problem graphically in a freehand manner. Also
identify all the CPF solutions.

(b) Now repeat part (a) when using a ruler to draw the graph 
carefully.

D (c) Use hand calculations to solve this problem by the simplex
method in algebraic form.

D,I (d) Now use your OR Courseware to solve this problem in-
teractively by the simplex method in algebraic form.

D (e) Use hand calculations to solve this problem by the simplex
method in tabular form.

D,I (f) Now use your OR Courseware to solve this problem inter-
actively by the simplex method in tabular form.

C (g) Use a software package based on the simplex method to
solve the problem.

and

x1 � 0, x2 � 0, x3 � 0.

D,I 4.3-6. Work through the simplex method (in algebraic form)
step by step to solve the following problem.

Maximize Z � x1 � 2x2 � 2x3,

subject to

5x1 � 2x2 � 3x3 � 15
x1 � 4x2 � 2x3 � 12

2x1 � 4x2 � x3 � 8

and

x1 � 0, x2 � 0, x3 � 0.

4.3-7. Consider the following problem.

Maximize Z � 5x1 � 3x2 � 4x3,

subject to

2x1 � x2 � x3 � 20
3x1 � x2 � 2x3 � 30

and

x1 � 0, x2 � 0, x3 � 0.

You are given the information that the nonzero variables in the op-
timal solution are x2 and x3.
(a) Describe how you can use this information to adapt the sim-

plex method to solve this problem in the minimum possible
number of iterations (when you start from the usual initial BF
solution). Do not actually perform any iterations.

(b) Use the procedure developed in part (a) to solve this problem
by hand. (Do not use your OR Courseware.)

4.3-8. Consider the following problem.

Maximize Z � 2x1 � 4x2 � 3x3,

subject to

x1 � 3x2 � 2x3 � 30
x1 � x2 � x3 � 24

3x1 � 5x2 � 3x3 � 60

and

x1 � 0, x2 � 0, x3 � 0.

You are given the information that x1 � 0, x2 � 0, and x3 � 0 in
the optimal solution.
(a) Describe how you can use this information to adapt the sim-

plex method to solve this problem in the minimum possible
number of iterations (when you start from the usual initial BF
solution). Do not actually perform any iterations.
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and

x1 � 0, x2 � 0, x3 � 0.

D,I (a) Work through the simplex method step by step in algebraic
form to solve this problem.

D,I (b) Work through the simplex method step by step in tabular
form to solve the problem.

C (c) Use a computer package based on the simplex method to
solve the problem.

D,I 4.4-9. Work through the simplex method step by step (in tab-
ular form) to solve the following problem.

Maximize Z � 2x1 � x2 � x3,

subject to

3x1 � x2 � x3 � 6
x1 � x2 � 2x3 � 1
x1 � x2 � x3 � 2

and

x1 � 0, x2 � 0, x3 � 0.

D,I 4.4-10. Work through the simplex method step by step to solve
the following problem.

Maximize Z � �x1 � x2 � 2x3,

subject to

� x1 � 2x2 � x3 � 20
�2x1 � 4x2 � 2x3 � 60
�2x1 � 3x2 � x3 � 50

and

x1 � 0, x2 � 0, x3 � 0.

4.5-1. Consider the following statements about linear program-
ming and the simplex method. Label each statement as true or false,
and then justify your answer.
(a) In a particular iteration of the simplex method, if there is a tie

for which variable should be the leaving basic variable, then
the next BF solution must have at least one basic variable equal
to zero.

(b) If there is no leaving basic variable at some iteration, then the
problem has no feasible solutions.

(c) If at least one of the basic variables has a coefficient of zero
in row 0 of the final tableau, then the problem has multiple op-
timal solutions.

(d) If the problem has multiple optimal solutions, then the prob-
lem must have a bounded feasible region.

4.4-5. Repeat Prob. 4.4-4 for the following problem.

Maximize Z � 2x1 � 3x2,

subject to

x1 � 2x2 � 30
x1 � x2 � 20

and

x1 � 0, x2 � 0.

4.4-6. Consider the following problem.

Maximize Z � 2x1 � 4x2 � 3x3,

subject to

3x1 � 4x2 � 2x3 � 60
2x1 � x2 � 2x3 � 40
x1 � 3x2 � 2x3 � 80

and

x1 � 0, x2 � 0, x3 � 0.

D,I (a) Work through the simplex method step by step in algebraic
form.

D,I (b) Work through the simplex method step by step in tabular
form.

C (c) Use a software package based on the simplex method to
solve the problem.

4.4-7. Consider the following problem.

Maximize Z � 3x1 � 5x2 � 6x3,

subject to

2x1 � x2 � x3 � 4
x1 � 2x2 � x3 � 4
x1 � x2 � 2x3 � 4
x1 � x2 � x3 � 3

and

x1 � 0, x2 � 0, x3 � 0.

D,I (a) Work through the simplex method step by step in algebraic
form.

D,I (b) Work through the simplex method in tabular form.
C (c) Use a computer package based on the simplex method to

solve the problem.

4.4-8. Consider the following problem.

Maximize Z � 2x1 � x2 � x3,

subject to

x1 � x2 � 3x3 � 4
2x1 � x2 � 3x3 � 10
x1 � x2 � x3 � 7
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(a) Show that any convex combination of any set of feasible so-
lutions must be a feasible solution (so that any convex combi-
nation of CPF solutions must be feasible).

(b) Use the result quoted in part (a) to show that any convex com-
bination of BF solutions must be a feasible solution.

4.5-6. Using the facts given in Prob. 4.5-5, show that the follow-
ing statements must be true for any linear programming problem
that has a bounded feasible region and multiple optimal solutions:
(a) Every convex combination of the optimal BF solutions must

be optimal.
(b) No other feasible solution can be optimal.

4.5-7. Consider a two-variable linear programming problem whose
CPF solutions are (0, 0), (6, 0), (6, 3), (3, 3), and (0, 2). (See Prob.
3.2-2 for a graph of the feasible region.)
(a) Use the graph of the feasible region to identify all the con-

straints for the model.
(b) For each pair of adjacent CPF solutions, give an example of

an objective function such that all the points on the line seg-
ment between these two corner points are multiple optimal so-
lutions.

(c) Now suppose that the objective function is Z � �x1 � 2x2. Use
the graphical method to find all the optimal solutions.

D,I (d) For the objective function in part (c), work through the sim-
plex method step by step to find all the optimal BF solu-
tions. Then write an algebraic expression that identifies all
the optimal solutions.

D,I 4.5-8. Consider the following problem.

Maximize Z � x1 � x2 � x3 � x4,

subject to

x1 � x2 � 3
x3 � x4 � 2

and

xj � 0, for j � 1, 2, 3, 4.

Work through the simplex method step by step to find all the op-
timal BF solutions.

4.6-1.* Consider the following problem.

Maximize Z � 2x1 � 3x2,

subject to

x1 � 2x2 � 4
x1 � x2 � 3

and

x1 � 0, x2 � 0.

4.5-2. Suppose that the following constraints have been provided
for a linear programming model with decision variables x1 and x2.

�x1 � 3x2 � 30
�3x1 � x2 � 30

and

x1 � 0, x2 � 0.

(a) Demonstrate graphically that the feasible region is unbounded.
(b) If the objective is to maximize Z � �x1 � x2, does the model

have an optimal solution? If so, find it. If not, explain why not.
(c) Repeat part (b) when the objective is to maximize Z � x1 � x2.
(d) For objective functions where this model has no optimal solu-

tion, does this mean that there are no good solutions accord-
ing to the model? Explain. What probably went wrong when
formulating the model?

D,I (e) Select an objective function for which this model has no
optimal solution. Then work through the simplex method
step by step to demonstrate that Z is unbounded.

C (f) For the objective function selected in part (e), use a software
package based on the simplex method to determine that Z is
unbounded.

4.5-3. Follow the instructions of Prob. 4.5-2 when the constraints
are the following:

2x1 � x2 � 20
x1 � 2x2 � 20

and

x1 � 0, x2 � 0.

D,I 4.5-4. Consider the following problem.

Maximize Z � 5x1 � x2 � 3x3 � 4x4,

subject to

� x1 � 2x2 � 4x3 � 3x4 � 20
�4x1 � 6x2 � 5x3 � 4x4 � 40
�2x1 � 3x2 � 3x3 � 8x4 � 50

and

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

Work through the simplex method step by step to demonstrate that
Z is unbounded.

4.5-5. A basic property of any linear programming problem with
a bounded feasible region is that every feasible solution can be ex-
pressed as a convex combination of the CPF solutions (perhaps in
more than one way). Similarly, for the augmented form of the prob-
lem, every feasible solution can be expressed as a convex combi-
nation of the BF solutions.
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initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

I (c) Work through the simplex method step by step to solve the
problem.

4.6-4.* Consider the following problem.

Minimize Z � 2x1 � 3x2 � x3,

subject to

x1 � 4x2 � 2x3 � 8
3x1 � 2x2 � 2x3 � 6

and

x1 � 0, x2 � 0, x3 � 0.

(a) Reformulate this problem to fit our standard form for a linear
programming model presented in Sec. 3.2.

I (b) Using the Big M method, work through the simplex method
step by step to solve the problem.

I (c) Using the two-phase method, work through the simplex
method step by step to solve the problem.

(d) Compare the sequence of BF solutions obtained in parts (b)
and (c). Which of these solutions are feasible only for the ar-
tificial problem obtained by introducing artificial variables and
which are actually feasible for the real problem?

C (e) Use a software package based on the simplex method to
solve the problem.

4.6-5. For the Big M method, explain why the simplex method
never would choose an artificial variable to be an entering basic
variable once all the artificial variables are nonbasic.

4.6-6. Consider the following problem.

Maximize Z � 90x1 � 70x2,

subject to

2x1 � x2 � 2
x1 � x2 � 2

and

x1 � 0, x2 � 0.

(a) Demonstrate graphically that this problem has no feasible so-
lutions.

C (b) Use a computer package based on the simplex method to
determine that the problem has no feasible solutions.

I (c) Using the Big M method, work through the simplex method
step by step to demonstrate that the problem has no feasible
solutions.

I (d) Repeat part (c) when using phase 1 of the two-phase method.

(a) Solve this problem graphically.
(b) Using the Big M method, construct the complete first simplex

tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

I (c) Continue from part (b) to work through the simplex method
step by step to solve the problem.

4.6-2. Consider the following problem.

Maximize Z � 4x1 � 2x2 � 3x3 � 5x4,

subject to

2x1 � 3x2 � 4x3 � 2x4 � 300
8x1 � x2 � x3 � 5x4 � 300

and

xj � 0, for j � 1, 2, 3, 4.

(a) Using the Big M method, construct the complete first simplex
tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

I (b) Work through the simplex method step by step to solve the
problem.

(c) Using the two-phase method, construct the complete first sim-
plex tableau for phase 1 and identify the corresponding initial
(artificial) BF solution. Also identify the initial entering basic
variable and the leaving basic variable.

I (d) Work through phase 1 step by step.
(e) Construct the complete first simplex tableau for phase 2.
I (f) Work through phase 2 step by step to solve the problem.
(g) Compare the sequence of BF solutions obtained in part (b) with

that in parts (d) and ( f ). Which of these solutions are feasible
only for the artificial problem obtained by introducing artificial
variables and which are actually feasible for the real problem?

C (h) Use a software package based on the simplex method to
solve the problem.

4.6-3. Consider the following problem.

Minimize Z � 3x1 � 2x2,

subject to

�2x1 � x2 � 10
�3x1 � 2x2 � 6
� x1 � x2 � 6

and

x1 � 0, x2 � 0.

(a) Solve this problem graphically.
(b) Using the Big M method, construct the complete first simplex

tableau for the simplex method and identify the corresponding

178 4 SOLVING LINEAR PROGRAMMING PROBLEMS: THE SIMPLEX METHOD



I (a) Using the two-phase method, work through phase 1 step by
step.

C (b) Use a software package based on the simplex method to for-
mulate and solve the phase 1 problem.

I (c) Work through phase 2 step by step to solve the original 
problem.

C (d) Use a computer code based on the simplex method to solve
the original problem.

4.6-10.* Consider the following problem.

Minimize Z � 3x1 � 2x2 � 4x3,

subject to

2x1 � x2 � 3x3 � 60
3x1 � 3x2 � 5x3 � 120

and

x1 � 0, x2 � 0, x3 � 0.

I (a) Using the Big M method, work through the simplex method
step by step to solve the problem.

I (b) Using the two-phase method, work through the simplex
method step by step to solve the problem.

(c) Compare the sequence of BF solutions obtained in parts (a)
and (b). Which of these solutions are feasible only for the ar-
tificial problem obtained by introducing artificial variables and
which are actually feasible for the real problem?

C (d) Use a software package based on the simplex method to
solve the problem.

4.6-11. Follow the instructions of Prob. 4.6-10 for the following
problem.

Minimize Z � 3x1 � 2x2 � 7x3,

subject to

�x1 � x2 � x3 � 10
2x1 � x2 � x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

4.6-12. Follow the instructions of Prob. 4.6-10 for the following
problem.

Minimize Z � 3x1 � 2x2 � x3,

subject to

x1 � x2 � x3 � 7
3x1 � x2 � x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

4.6-7. Follow the instructions of Prob. 4.6-6 for the following 
problem.

Minimize Z � 5,000x1 � 7,000x2,

subject to

�2x1 � x2 � 1
� x1 � 2x2 � 1

and

x1 � 0, x2 � 0.

4.6-8. Consider the following problem.

Maximize Z � 2x1 � 5x2 � 3x3,

subject to

x1 � 2x2 � x3 � 20
2x1 � 4x2 � x3 � 50

and

x1 � 0, x2 � 0, x3 � 0.

(a) Using the Big M method, construct the complete first simplex
tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

I (b) Work through the simplex method step by step to solve the
problem.

I (c) Using the two-phase method, construct the complete first
simplex tableau for phase 1 and identify the corresponding
initial (artificial) BF solution. Also identify the initial enter-
ing basic variable and the leaving basic variable.

I (d) Work through phase 1 step by step.
(e) Construct the complete first simplex tableau for phase 2.
I (f) Work through phase 2 step by step to solve the problem.
(g) Compare the sequence of BF solutions obtained in part (b) with

that in parts (d) and ( f ). Which of these solutions are feasible
only for the artificial problem obtained by introducing artificial
variables and which are actually feasible for the real problem?

C (h) Use a software package based on the simplex method to
solve the problem.

4.6-9. Consider the following problem.

Minimize Z � 2x1 � x2 � 3x3,

subject to

5x1 � 2x2 � 7x3 � 420
3x1 � 2x2 � 5x3 � 280

and

x1 � 0, x2 � 0, x3 � 0.
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(a) Reformulate this problem so that all variables have nonnega-
tivity constraints.

D,I (b) Work through the simplex method step by step to solve the
problem.

C (c) Use a computer package based on the simplex method to
solve the problem.

4.6-17. This chapter has described the simplex method as applied
to linear programming problems where the objective function is to
be maximized. Section 4.6 then described how to convert a mini-
mization problem to an equivalent maximization problem for ap-
plying the simplex method. Another option with minimization
problems is to make a few modifications in the instructions for the
simplex method given in the chapter in order to apply the algo-
rithm directly.
(a) Describe what these modifications would need to be.
(b) Using the Big M method, apply the modified algorithm devel-

oped in part (a) to solve the following problem directly by
hand. (Do not use your OR Courseware.)

Minimize Z � 3x1 � 8x2 � 5x3,

subject to

3x1 � 3x2 � 4x3 � 70
3x1 � 5x2 � 2x3 � 70

and

x1 � 0, x2 � 0, x3 � 0.

4.6-18. Consider the following problem.

Maximize Z � �2x1 � x2 � 4x3 � 3x4,

subject to

x1 � x2 � 3x3 � 2x4 � �4
x1 � x2 � x3 � x4 � �1

2x1 � x2 � x3 � x4 � �2
x1 � 2x2 � x3 � 2x4 � �2

and

x2 � 0, x3 � 0, x4 � 0

(no nonnegativity constraint for x1).
(a) Reformulate this problem to fit our standard form for a linear

programming model presented in Sec. 3.2.
(b) Using the Big M method, construct the complete first simplex

tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

(c) Using the two-phase method, construct row 0 of the first sim-
plex tableau for phase 1.

C (d) Use a computer package based on the simplex method to
solve the problem.

4.6-13. Label each of the following statements as true or false, and
then justify your answer.
(a) When a linear programming model has an equality constraint,

an artificial variable is introduced into this constraint in order
to start the simplex method with an obvious initial basic solu-
tion that is feasible for the original model.

(b) When an artificial problem is created by introducing artificial
variables and using the Big M method, if all artificial variables
in an optimal solution for the artificial problem are equal to
zero, then the real problem has no feasible solutions.

(c) The two-phase method is commonly used in practice because
it usually requires fewer iterations to reach an optimal solution
than the Big M method does.

4.6-14. Consider the following problem.

Maximize Z � x1 � 4x2 � 2x3,

subject to

4x1 � x2 � x3 � 5
�x1 � x2 � 2x3 � 10

and

x2 � 0, x3 � 0

(no nonnegativity constraint for x1).
(a) Reformulate this problem so all variables have nonnegativity

constraints.
D,I (b) Work through the simplex method step by step to solve the

problem.
C (c) Use a software package based on the simplex method to

solve the problem.

4.6-15.* Consider the following problem.

Maximize Z � �x1 � 4x2,

subject to

�3x1 � x2 � �6
� x1 � 2x2 � �4
� x1 � 2x2 � �3

(no lower bound constraint for x1).
(a) Solve this problem graphically.
(b) Reformulate this problem so that it has only two functional

constraints and all variables have nonnegativity constraints.
D,I (c) Work through the simplex method step by step to solve the

problem.

4.6-16. Consider the following problem.

Maximize Z � �x1 � 2x2 � x3,

subject to

3x2 � x3 � 120
x1 � x2 � 4x3 � 80

�3x1 � x2 � 2x3 � 100

(no nonnegativity constraints).
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and

x1 � 0, x2 � 0.

(a) Solve this problem graphically.
(b) Use graphical analysis to find the shadow prices for the re-

sources.
(c) Determine how many additional units of resource 1 would be

needed to increase the optimal value of Z by 15.

4.7-5. Consider the following problem.

Maximize Z � x1 � 7x2 � 3x3,

subject to

�2x1 � x2 � x3 � 4 (resource 1)
�4x1 � 3x2 � x3 � 2 (resource 2)
�3x1 � 2x2 � x3 � 3 (resource 3)

and

x1 � 0, x2 � 0, x3 � 0.

D,I (a) Work through the simplex method step by step to solve the
problem.

(b) Identify the shadow prices for the three resources and describe
their significance.

C (c) Use a software package based on the simplex method to
solve the problem and then to generate sensitivity informa-
tion. Use this information to identify the shadow price for
each resource, the allowable range to stay optimal for each
objective function coefficient, and the allowable range to
stay feasible for each right-hand side.

4.7-6.* Consider the following problem.

Maximize Z � 2x1 � 2x2 � 3x3,

subject to

�x1 � x2 � x3 � 4 (resource 1)
2x1 � x2 � x3 � 2 (resource 2)

x1 � x2 � 3x3 � 12 (resource 3)

and

x1 � 0, x2 � 0, x3 � 0.

D,I (a) Work through the simplex method step by step to solve the
problem.

(b) Identify the shadow prices for the three resources and describe
their significance.

C (c) Use a software package based on the simplex method to
solve the problem and then to generate sensitivity informa-
tion. Use this information to identify the shadow price for
each resource, the allowable range to stay optimal for each
objective function coefficient and the allowable range to stay
feasible for each right-hand side.

I 4.6-19. Consider the following problem.

Maximize Z � 4x1 � 5x2 � 3x3,

subject to

x1 � x2 � 2x3 � 20
15x1 � 6x2 � 5x3 � 50

x1 � 3x2 � 5x3 � 30

and

x1 � 0, x2 � 0, x3 � 0.

Work through the simplex method step by step to demonstrate that
this problem does not possess any feasible solutions.

4.7-1. Refer to Fig. 4.10 and the resulting allowable range to stay
feasible for the respective right-hand sides of the Wyndor Glass
Co. problem given in Sec. 3.1. Use graphical analysis to demon-
strate that each given allowable range is correct.

4.7-2. Reconsider the model in Prob. 4.1-5. Interpret the right-hand
side of the respective functional constraints as the amount avail-
able of the respective resources.
(a) Use graphical analysis as in Fig. 4.8 to determine the shadow

prices for the respective resources.
(b) Use graphical analysis to perform sensitivity analysis on this

model. In particular, check each parameter of the model to
determine whether it is a sensitive parameter (a parameter
whose value cannot be changed without changing the opti-
mal solution) by examining the graph that identifies the op-
timal solution.

(c) Use graphical analysis as in Fig. 4.9 to determine the allow-
able range for each cj value (coefficient of xj in the objective
function) over which the current optimal solution will remain
optimal.

(d) Changing just one bi value (the right-hand side of functional
constraint i) will shift the corresponding constraint boundary.
If the current optimal CPF solution lies on this constraint
boundary, this CPF solution also will shift. Use graphical
analysis to determine the allowable range for each bi value over
which this CPF solution will remain feasible.

C (e) Verify your answers in parts (a), (c), and (d) by using a com-
puter package based on the simplex method to solve the prob-
lem and then to generate sensitivity analysis information.

4.7-3. Repeat Prob. 4.7-2 for the model in Prob. 4.1-6.

4.7-4. You are given the following linear programming problem.

Maximize Z � 4x1 � 2x2,

subject to

2x1 � 3x2 � 16 (resource 1)
x1 � 3x2 � 17 (resource 2)
x1 � 3x2 � 5 (resource 3)
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and

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

D,I (a) Work through the simplex method step by step to solve the
problem.

(b) Identify the shadow prices for the two resources and describe
their significance.

C (c) Use a software package based on the simplex method to
solve the problem and then to generate sensitivity informa-
tion. Use this information to identify the shadow price for
each resource, the allowable range to stay optimal for each
objective function coefficient, and the allowable range to
stay feasible for each right-hand side.

4.9.1. Use the interior-point algorithm in your OR Courseware to
solve the model in Prob. 4.1-4. Choose � � 0.5 from the Option
menu, use (x1, x2) � (0.1, 0.4) as the initial trial solution, and run
15 iterations. Draw a graph of the feasible region, and then plot
the trajectory of the trial solutions through this feasible region.

4.9-2. Repeat Prob. 4.9-1 for the model in Prob. 4.1-5.

4.9-3. Repeat Prob. 4.9-1 for the model in Prob. 4.1-6.

4.7-7. Consider the following problem.

Maximize Z � 2x1 � 4x2 � x3,

subject to

2x1 � 3x2 � x3 � 30 (resource 1)
2x1 � x2 � x3 � 10 (resource 2)
4x1 � 2x2 � 2x3 � 40 (resource 3)

and

x1 � 0, x2 � 0, x3 � 0.

D,I (a) Work through the simplex method step by step to solve the
problem.

(b) Identify the shadow prices for the three resources and describe
their significance.

C (c) Use a software package based on the simplex method to
solve the problem and then to generate sensitivity informa-
tion. Use this information to identify the shadow price for
each resource, the allowable range to stay optimal for each
objective function coefficient, and the allowable range to
stay feasible for each right-hand side.

4.7-8. Consider the following problem.

Maximize Z � 5x1 � 4x2 � x3 � 3x4,

subject to

3x1 � 2x2 � 3x3 � x4 � 24 (resource 1)
3x1 � 3x2 � x3 � 3x4 � 36 (resource 2)
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From the tenth floor of her office building, Katherine Rally watches the swarms of
New Yorkers fight their way through the streets infested with yellow cabs and the side-
walks littered with hot dog stands. On this sweltering July day, she pays particular at-
tention to the fashions worn by the various women and wonders what they will choose
to wear in the fall. Her thoughts are not simply random musings; they are critical to
her work since she owns and manages TrendLines, an elite women’s clothing company.

Today is an especially important day because she must meet with Ted Lawson, the
production manager, to decide upon next month’s production plan for the fall line.
Specifically, she must determine the quantity of each clothing item she should produce
given the plant’s production capacity, limited resources, and demand forecasts. Accu-
rate planning for next month’s production is critical to fall sales since the items pro-
duced next month will appear in stores during September, and women generally buy
the majority of the fall fashions when they first appear in September.

She turns back to her sprawling glass desk and looks at the numerous papers cov-
ering it. Her eyes roam across the clothing patterns designed almost six months ago,
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the lists of materials requirements for each pattern, and the lists of demand forecasts
for each pattern determined by customer surveys at fashion shows. She remembers the
hectic and sometimes nightmarish days of designing the fall line and presenting it at
fashion shows in New York, Milan, and Paris. Ultimately, she paid her team of six de-
signers a total of $860,000 for their work on her fall line. With the cost of hiring run-
way models, hair stylists, and makeup artists, sewing and fitting clothes, building the
set, choreographing and rehearsing the show, and renting the conference hall, each of
the three fashion shows cost her an additional $2,700,000.

She studies the clothing patterns and material requirements. Her fall line consists
of both professional and casual fashions. She determined the prices for each clothing
item by taking into account the quality and cost of material, the cost of labor and ma-
chining, the demand for the item, and the prestige of the TrendLines brand name.

The fall professional fashions include:
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The fall casual fashions include:

Labor and
Clothing Item Materials Requirements Price Machine Cost

Tailored wool slacks 3 yards of wool $300 $160
2 yards of acetate for lining

Cashmere sweater 1.5 yards of cashmere $450 $150
Silk blouse 1.5 yards of silk $180 $100
Silk camisole 0.5 yard of silk $120 $ 60
Tailored skirt 2 yards of rayon $270 $120

1.5 yards of acetate for lining
Wool blazer 2.5 yards of wool $320 $140

1.5 yards of acetate for lining

Labor and
Clothing Item Materials Requirements Price Machine Cost

Velvet pants 3 yards of velvet $350 $175
2 yards of acetate for lining

Cotton sweater 1.5 yards of cotton $130 $ 60
Cotton miniskirt 0.5 yard of cotton $ 75 $ 40
Velvet shirt 1.5 yards of velvet $200 $160
Button-down blouse 1.5 yards of rayon $120 $ 90

She knows that for the next month, she has ordered 45,000 yards of wool, 28,000
yards of acetate, 9,000 yards of cashmere, 18,000 yards of silk, 30,000 yards of rayon,
20,000 yards of velvet, and 30,000 yards of cotton for production. The prices of the
materials are listed on the next page.



Any material that is not used in production can be sent back to the textile wholesaler
for a full refund, although scrap material cannot be sent back to the wholesaler.

She knows that the production of both the silk blouse and cotton sweater leaves
leftover scraps of material. Specifically, for the production of one silk blouse or one
cotton sweater, 2 yards of silk and cotton, respectively, are needed. From these 2 yards,
1.5 yards are used for the silk blouse or the cotton sweater and 0.5 yard is left as scrap
material. She does not want to waste the material, so she plans to use the rectangular
scrap of silk or cotton to produce a silk camisole or cotton miniskirt, respectively.
Therefore, whenever a silk blouse is produced, a silk camisole is also produced. Like-
wise, whenever a cotton sweater is produced, a cotton miniskirt is also produced. Note
that it is possible to produce a silk camisole without producing a silk blouse and a cot-
ton miniskirt without producing a cotton sweater.

The demand forecasts indicate that some items have limited demand. Specifically,
because the velvet pants and velvet shirts are fashion fads, TrendLines has forecasted
that it can sell only 5,500 pairs of velvet pants and 6,000 velvet shirts. TrendLines
does not want to produce more than the forecasted demand because once the pants
and shirts go out of style, the company cannot sell them. TrendLines can produce less
than the forecasted demand, however, since the company is not required to meet the
demand. The cashmere sweater also has limited demand because it is quite expensive,
and TrendLines knows it can sell at most 4,000 cashmere sweaters. The silk blouses
and camisoles have limited demand because many women think silk is too hard to
care for, and TrendLines projects that it can sell at most 12,000 silk blouses and 15,000
silk camisoles.

The demand forecasts also indicate that the wool slacks, tailored skirts, and wool
blazers have a great demand because they are basic items needed in every professional
wardrobe. Specifically, the demand for wool slacks is 7,000 pairs of slacks, and the
demand for wool blazers is 5,000 blazers. Katherine wants to meet at least 60 percent
of the demand for these two items in order to maintain her loyal customer base and
not lose business in the future. Although the demand for tailored skirts could not be
estimated, Katherine feels she should make at least 2,800 of them.

(a) Ted is trying to convince Katherine not to produce any velvet shirts since the demand for
this fashion fad is quite low. He argues that this fashion fad alone accounts for $500,000
of the fixed design and other costs. The net contribution (price of clothing item � mate-
rials cost � labor cost) from selling the fashion fad should cover these fixed costs. Each
velvet shirt generates a net contribution of $22. He argues that given the net contribution,
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Material Price per yard

Wool $ 9.00
Acetate $ 1.50
Cashmere $60.00
Silk $13.00
Rayon $ 2.25
Velvet $12.00
Cotton $ 2.50



even satisfying the maximum demand will not yield a profit. What do you think of Ted’s
argument?

(b) Formulate and solve a linear programming problem to maximize profit given the produc-
tion, resource, and demand constraints.

Before she makes her final decision, Katherine plans to explore the following ques-
tions independently except where otherwise indicated.

(c) The textile wholesaler informs Katherine that the velvet cannot be sent back because the de-
mand forecasts show that the demand for velvet will decrease in the future. Katherine can
therefore get no refund for the velvet. How does this fact change the production plan?

(d) What is an intuitive economic explanation for the difference between the solutions found in
parts (b) and (c)?

(e) The sewing staff encounters difficulties sewing the arms and lining into the wool blazers
since the blazer pattern has an awkward shape and the heavy wool material is difficult to cut
and sew. The increased labor time to sew a wool blazer increases the labor and machine cost
for each blazer by $80. Given this new cost, how many of each clothing item should Trend-
Lines produce to maximize profit?

(f) The textile wholesaler informs Katherine that since another textile customer canceled his or-
der, she can obtain an extra 10,000 yards of acetate. How many of each clothing item should
TrendLines now produce to maximize profit?

(g) TrendLines assumes that it can sell every item that was not sold during September and Oc-
tober in a big sale in November at 60 percent of the original price. Therefore, it can sell all
items in unlimited quantity during the November sale. (The previously mentioned upper lim-
its on demand concern only the sales during September and October.) What should the new
production plan be to maximize profit?
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Rob Richman, president of AmeriBank, takes off his glasses, rubs his eyes in exhaus-
tion, and squints at the clock in his study. It reads 3 A.M. For the last several hours,
Rob has been poring over AmeriBank’s financial statements from the last three quar-
ters of operation. AmeriBank, a medium-sized bank with branches throughout the
United States, is headed for dire economic straits. The bank, which provides transac-
tion, savings, and investment and loan services, has been experiencing a steady decline
in its net income over the past year, and trends show that the decline will continue.
The bank is simply losing customers to nonbank and foreign bank competitors.

AmeriBank is not alone in its struggle to stay out of the red. From his daily in-
dustry readings, Rob knows that many American banks have been suffering significant
losses because of increasing competition from nonbank and foreign bank competitors
offering services typically in the domain of American banks. Because the nonbank and
foreign bank competitors specialize in particular services, they are able to better cap-
ture the market for those services by offering less expensive, more efficient, more con-
venient services. For example, large corporations now turn to foreign banks and com-
mercial paper offerings for loans, and affluent Americans now turn to money-market
funds for investment. Banks face the daunting challenge of distinguishing themselves
from nonbank and foreign bank competitors.
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Rob has concluded that one strategy for distinguishing AmeriBank from its com-
petitors is to improve services that nonbank and foreign bank competitors do not read-
ily provide: transaction services. He has decided that a more convenient transaction
method must logically succeed the automatic teller machine, and he believes that elec-
tronic banking over the Internet allows this convenient transaction method. Over the
Internet, customers are able to perform transactions on their desktop computers either
at home or at work. The explosion of the Internet means that many potential customers
understand and use the World Wide Web. He therefore feels that if AmeriBank offers
Web banking (as the practice of Internet banking is commonly called), the bank will
attract many new customers.

Before Rob undertakes the project to make Web banking possible, however, he
needs to understand the market for Web banking and the services AmeriBank should
provide over the Internet. For example, should the bank only allow customers to ac-
cess account balances and historical transaction information over the Internet, or should
the bank develop a strategy to allow customers to make deposits and withdrawals over
the Internet? Should the bank try to recapture a portion of the investment market by
continuously running stock prices and allowing customers to make stock transactions
over the Internet for a minimal fee?

Because AmeriBank is not in the business of performing surveys, Rob has decided
to outsource the survey project to a professional survey company. He has opened the
project up for bidding by several survey companies and will award the project to the
company which is willing to perform the survey for the least cost.

Sophisticated Surveys is one of three survey companies competing for the project.
Rob provided each survey company with a list of survey requirements to ensure that
AmeriBank receives the needed information for planning the Web banking project.

Because different age groups require different services, AmeriBank is interested
in surveying four different age groups. The first group encompasses customers who are
18 to 25 years old. The bank assumes that this age group has limited yearly income
and performs minimal transactions. The second group encompasses customers who are
26 to 40 years old. This age group has significant sources of income, performs many
transactions, requires numerous loans for new houses and cars, and invests in various
securities. The third group encompasses customers who are 41 to 50 years old. These
customers typically have the same level of income and perform the same number of
transactions as the second age group, but the bank assumes that these customers are
less likely to use Web banking since they have not become as comfortable with the ex-
plosion of computers or the Internet. Finally, the fourth group encompasses customers
who are 51 years of age and over. These customers commonly crave security and re-
quire continuous information on retirement funds. The banks believes that it is highly
unlikely that customers in this age group will use Web banking, but the bank desires
to learn the needs of this age group for the future. AmeriBank wants to interview 2,000
customers with at least 20 percent from the first age group, at least 27.5 percent from
the second age group, at least 15 percent from the third age group, and at least 15 per-
cent from the fourth age group.

Rob understands that the Internet is a recent phenomenon and that some customers
may not have heard of the World Wide Web. He therefore wants to ensure that the sur-
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vey includes a mix of customers who know the Internet well and those that have less
exposure to the Internet. To ensure that AmeriBank obtains the correct mix, he wants
to interview at least 15 percent of customers from the Silicon Valley where Internet use
is high, at least 35 percent of customers from big cities where Internet use is medium,
and at least 20 percent of customers from small towns where Internet use is low.

Sophisticated Surveys has performed an initial analysis of these survey require-
ments to determine the cost of surveying different populations. The costs per person
surveyed are listed in the following table:
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Sophisticated Surveys explores the following options cumulatively.

(a) Formulate a linear programming model to minimize costs while meeting all survey con-
straints imposed by AmeriBank.

(b) If the profit margin for Sophisticated Surveys is 15 percent of cost, what bid will they 
submit?

(c) After submitting its bid, Sophisticated Surveys is informed that it has the lowest cost but
that AmeriBank does not like the solution. Specifically, Rob feels that the selected survey
population is not representative enough of the banking customer population. Rob wants at
least 50 people of each age group surveyed in each region. What is the new bid made by
Sophisticated Surveys?

(d) Rob feels that Sophisticated Survey oversampled the 18- to 25-year-old population and the
Silicon Valley population. He imposes a new constraint that no more than 600 individuals
can be surveyed from the 18- to 25-year-old population and no more than 650 individuals
can be surveyed from the Silicon Valley population. What is the new bid?

(e) When Sophisticated Surveys calculated the cost of reaching and surveying particular indi-
viduals, the company thought that reaching individuals in young populations would be eas-
iest. In a recently completed survey, however, Sophisticated Surveys learned that this as-
sumption was wrong. The new costs for surveying the 18- to 25-year-old population are listed
below.

Age Group

Region 18 to 25 26 to 40 41 to 50 51 and over

Silicon Valley $4.75 $6.50 $6.50 $5.00
Big cities $5.25 $5.75 $6.25 $6.25
Small towns $6.50 $7.50 $7.50 $7.25

Region survey cost per person

Silicon Valley $6.50
Big cities $6.75
Small towns $7.00

Given the new costs, what is the new bid?



(f) To ensure the desired sampling of individuals, Rob imposes even stricter requirements. He
fixes the exact percentage of people that should be surveyed from each population. The re-
quirements are listed below:
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Population percentage of 
people surveyed

18 to 25 25%
26 to 40 35%
41 to 50 20%
51 and over 20%

Silicon Valley 20%
Big cities 50%
Small towns 30%

By how much would these new requirements increase the cost of surveying for Sophisticated
Surveys? Given the 15 percent profit margin, what would Sophisticated Surveys bid?

The Springfield school board has made the decision to close one of its middle schools
(sixth, seventh, and eighth grades) at the end of this school year and reassign all of
next year’s middle school students to the three remaining middle schools. The school
district provides bussing for all middle school students who must travel more than ap-
proximately a mile, so the school board wants a plan for reassigning the students that
will minimize the total bussing cost. The annual cost per student of bussing from each
of the six residential areas of the city to each of the schools is shown in the following
table (along with other basic data for next year), where 0 indicates that bussing is not
needed and a dash indicates an infeasible assignment.

CASE 4.3 ASSIGNING STUDENTS TO SCHOOLS

Percentage Percentage Percentage
No. of in 6th in 7th in 8th

Bussing Cost per Student

Area Students Grade Grade Grade School 1 School 2 School 3

1 450 32 38 30 $300 0 $700
2 600 37 28 35 — $400 $500
3 550 30 32 38 $600 $300 $200
4 350 28 40 32 $200 $500 —
5 500 39 34 27 0 — $400
6 450 34 28 38 $500 $300 0

School capacity: 900 1,100 1,000

The school board also has imposed the restriction that each grade must constitute
between 30 and 36 percent of each school’s population. The above table shows the per-
centage of each area’s middle school population for next year that falls into each of



the three grades. The school attendance zone boundaries can be drawn so as to split
any given area among more than one school, but assume that the percentages shown
in the table will continue to hold for any partial assignment of an area to a school.

You have been hired as an operations research consultant to assist the school board
in determining how many students in each area should be assigned to each school.

(a) Formulate a linear programming model for this problem.
(b) Solve the model.
(c) What is your resulting recommendation to the school board?

After seeing your recommendation, the school board expresses concern about all
the splitting of residential areas among multiple schools. They indicate that they “would
like to keep each neighborhood together.”

(d) Adjust your recommendation as well as you can to enable each area to be assigned to just
one school. (Adding this restriction may force you to fudge on some other constraints.) How
much does this increase the total bussing cost? (This line of analysis will be pursued more
rigorously in Case 12.4.)

The school board is considering eliminating some bussing to reduce costs. Option
1 is to eliminate bussing only for students traveling 1 to 1.5 miles, where the cost per
student is given in the table as $200. Option 2 is to also eliminate bussing for students
traveling 1.5 to 2 miles, where the estimated cost per student is $300.

(e) Revise the model from part (a) to fit Option 1, and solve. Compare these results with those
from part (c), including the reduction in total bussing cost.

(f ) Repeat part (e) for Option 2.

The school board now needs to choose among the three alternative bussing plans
(the current one or Option 1 or Option 2). One important factor is bussing costs. How-
ever, the school board also wants to place equal weight on a second factor: the incon-
venience and safety problems caused by forcing students to travel by foot or bicycle a
substantial distance (more than a mile, and especially more than 1.5 miles). Therefore,
they want to choose a plan that provides the best trade-off between these two factors.

(g) Use your results from parts (c), (e), and ( f ) to summarize the key information related to
these two factors that the school board needs to make this decision.

(h) Which decision do you think should be made? Why?

Note: This case will be continued in later chapters (Cases 6.3 and 12.4), so we
suggest that you save your analysis, including your basic model.
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5
The Theory of the 
Simplex Method

Chapter 4 introduced the basic mechanics of the simplex method. Now we shall delve a
little more deeply into this algorithm by examining some of its underlying theory. The
first section further develops the general geometric and algebraic properties that form the
foundation of the simplex method. We then describe the matrix form of the simplex method
(called the revised simplex method ), which streamlines the procedure considerably for
computer implementation. Next we present a fundamental insight about a property of the
simplex method that enables us to deduce how changes that are made in the original model
get carried along to the final simplex tableau. This insight will provide the key to the im-
portant topics of Chap. 6 (duality theory and sensitivity analysis).

Section 4.1 introduced corner-point feasible (CPF) solutions and the key role they play
in the simplex method. These geometric concepts were related to the algebra of the sim-
plex method in Secs. 4.2 and 4.3. However, all this was done in the context of the Wyn-
dor Glass Co. problem, which has only two decision variables and so has a straightfor-
ward geometric interpretation. How do these concepts generalize to higher dimensions
when we deal with larger problems? We address this question in this section.

We begin by introducing some basic terminology for any linear programming prob-
lem with n decision variables. While we are doing this, you may find it helpful to refer to
Fig. 5.1 (which repeats Fig. 4.1) to interpret these definitions in two dimensions (n � 2).

Terminology

It may seem intuitively clear that optimal solutions for any linear programming problem
must lie on the boundary of the feasible region, and in fact this is a general property. Be-
cause boundary is a geometric concept, our initial definitions clarify how the boundary of
the feasible region is identified algebraically.

The constraint boundary equation for any constraint is obtained by replacing its �, �,
or � sign by an � sign.

Consequently, the form of a constraint boundary equation is ai1x1 � ai2x2 � ��� �
ainxn � bi for functional constraints and xj � 0 for nonnegativity constraints. Each such
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equation defines a “flat” geometric shape (called a hyperplane) in n-dimensional space,
analogous to the line in two-dimensional space and the plane in three-dimensional space.
This hyperplane forms the constraint boundary for the corresponding constraint. When
the constraint has either a � or a � sign, this constraint boundary separates the points
that satisfy the constraint (all the points on one side up to and including the constraint
boundary) from the points that violate the constraint (all those on the other side of the
constraint boundary). When the constraint has an � sign, only the points on the constraint
boundary satisfy the constraint.

For example, the Wyndor Glass Co. problem has five constraints (three functional
constraints and two nonnegativity constraints), so it has the five constraint boundary equa-
tions shown in Fig. 5.1. Because n � 2, the hyperplanes defined by these constraint bound-
ary equations are simply lines. Therefore, the constraint boundaries for the five constraints
are the five lines shown in Fig. 5.1.

The boundary of the feasible region contains just those feasible solutions that satisfy one
or more of the constraint boundary equations.

Geometrically, any point on the boundary of the feasible region lies on one or more
of the hyperplanes defined by the respective constraint boundary equations. Thus, in Fig.
5.1, the boundary consists of the five darker line segments.

Next, we give a general definition of CPF solution in n-dimensional space.

A corner-point feasible (CPF) solution is a feasible solution that does not lie on any
line segment1 connecting two other feasible solutions.

5.1 FOUNDATIONS OF THE SIMPLEX METHOD 191

(6, 0)(4, 0)

(0, 6)

(0, 9)

(2, 6)

(4, 3)

(0, 0)

Feasible
region

x1 � 0

3x1 � 2x2 � 18

x2 � 0

x1 � 4

2x2 � 12

Maximize Z � 3x1 � 5x2,
subject to

x1 �   4
� 12
� 18

2x2
3x22x1 �

x1 � 0, 0    x2      �
and

(4, 6)

FIGURE 5.1
Constraint boundaries,
constraint boundary
equations, and corner-point
solutions for the Wyndor
Glass Co. problem.

1An algebraic expression for a line segment is given in Appendix 2. 



As this definition implies, a feasible solution that does lie on a line segment connecting
two other feasible solutions is not a CPF solution. To illustrate when n � 2, consider Fig.
5.1. The point (2, 3) is not a CPF solution, because it lies on various such line segments,
e.g., the line segment connecting (0, 3) and (4, 3). Similarly, (0, 3) is not a CPF solution,
because it lies on the line segment connecting (0, 0) and (0, 6). However, (0, 0) is a CPF
solution, because it is impossible to find two other feasible solutions that lie on com-
pletely opposite sides of (0, 0). (Try it.)

When the number of decision variables n is greater than 2 or 3, this definition for
CPF solution is not a very convenient one for identifying such solutions. Therefore, it will
prove most helpful to interpret these solutions algebraically. For the Wyndor Glass Co.
example, each CPF solution in Fig. 5.1 lies at the intersection of two (n � 2) constraint
lines; i.e., it is the simultaneous solution of a system of two constraint boundary equa-
tions. This situation is summarized in Table 5.1, where defining equations refer to the
constraint boundary equations that yield (define) the indicated CPF solution.

For any linear programming problem with n decision variables, each CPF solution lies at
the intersection of n constraint boundaries; i.e., it is the simultaneous solution of a sys-
tem of n constraint boundary equations.

However, this is not to say that every set of n constraint boundary equations chosen
from the n � m constraints (n nonnegativity and m functional constraints) yields a CPF
solution. In particular, the simultaneous solution of such a system of equations might vi-
olate one or more of the other m constraints not chosen, in which case it is a corner-point
infeasible solution. The example has three such solutions, as summarized in Table 5.2.
(Check to see why they are infeasible.)

Furthermore, a system of n constraint boundary equations might have no solution at
all. This occurs twice in the example, with the pairs of equations (1) x1 � 0 and x1 � 4
and (2) x2 � 0 and 2x2 � 12. Such systems are of no interest to us.

The final possibility (which never occurs in the example) is that a system of n constraint
boundary equations has multiple solutions because of redundant equations. You need not be
concerned with this case either, because the simplex method circumvents its difficulties.
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TABLE 5.1 Defining equations for each 
CPF solution for the 
Wyndor Glass Co. problem

CPF Solution Defining Equations

(0, 0) x1 � 0
x2 � 0

(0, 6) x1 � 0
2x2 � 12

(2, 6) 2x2 � 12
3x1 � 2x2 � 18

(4, 3) 3x1 � 2x2 � 18
x1 � 4

(4, 0) x1 � 4
x2 � 0



To summarize for the example, with five constraints and two variables, there are 10
pairs of constraint boundary equations. Five of these pairs became defining equations for
CPF solutions (Table 5.1), three became defining equations for corner-point infeasible so-
lutions (Table 5.2), and each of the final two pairs had no solution.

Adjacent CPF Solutions

Section 4.1 introduced adjacent CPF solutions and their role in solving linear program-
ming problems. We now elaborate.

Recall from Chap. 4 that (when we ignore slack, surplus, and artificial variables) each
iteration of the simplex method moves from the current CPF solution to an adjacent one.
What is the path followed in this process? What really is meant by adjacent CPF solu-
tion? First we address these questions from a geometric viewpoint, and then we turn to
algebraic interpretations.

These questions are easy to answer when n � 2. In this case, the boundary of the fea-
sible region consists of several connected line segments forming a polygon, as shown in
Fig. 5.1 by the five darker line segments. These line segments are the edges of the feasi-
ble region. Emanating from each CPF solution are two such edges leading to an adjacent
CPF solution at the other end. (Note in Fig. 5.1 how each CPF solution has two adjacent
ones.) The path followed in an iteration is to move along one of these edges from one end
to the other. In Fig. 5.1, the first iteration involves moving along the edge from (0, 0) to
(0, 6), and then the next iteration moves along the edge from (0, 6) to (2, 6). As Table 5.1
illustrates, each of these moves to an adjacent CPF solution involves just one change in
the set of defining equations (constraint boundaries on which the solution lies).

When n � 3, the answers are slightly more complicated. To help you visualize what is
going on, Fig. 5.2 shows a three-dimensional drawing of a typical feasible region when n �
3, where the dots are the CPF solutions. This feasible region is a polyhedron rather than the
polygon we had with n � 2 (Fig. 5.1), because the constraint boundaries now are planes rather
than lines. The faces of the polyhedron form the boundary of the feasible region, where each
face is the portion of a constraint boundary that satisfies the other constraints as well. Note
that each CPF solution lies at the intersection of three constraint boundaries (sometimes in-
cluding some of the x1 � 0, x2 � 0, and x3 � 0 constraint boundaries for the nonnegativity
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TABLE 5.2 Defining equations for each 
corner-point infeasible 
solution for the Wyndor 
Glass Co. problem

Corner-Point Defining
Infeasible Solution Equations

(0, 9) x1 � 0
3x1 � 2x2 � 18

(4, 6) 2x2 � 12
x1 � 4

(6, 0) 3x1 � 2x2 � 18
x2 � 0



constraints), and the solution also satisfies the other constraints. Such intersections that do not
satisfy one or more of the other constraints yield corner-point infeasible solutions instead.

The darker line segment in Fig. 5.2 depicts the path of the simplex method on a typ-
ical iteration. The point (2, 4, 3) is the current CPF solution to begin the iteration, and
the point (4, 2, 4) will be the new CPF solution at the end of the iteration. The point 
(2, 4, 3) lies at the intersection of the x2 � 4, x1 � x2 � 6, and �x1 � 2x3 � 4 constraint
boundaries, so these three equations are the defining equations for this CPF solution. If
the x2 � 4 defining equation were removed, the intersection of the other two constraint
boundaries (planes) would form a line. One segment of this line, shown as the dark line
segment from (2, 4, 3) to (4, 2, 4) in Fig. 5.2, lies on the boundary of the feasible region,
whereas the rest of the line is infeasible. This line segment is an edge of the feasible re-
gion, and its endpoints (2, 4, 3) and (4, 2, 4) are adjacent CPF solutions.

For n � 3, all the edges of the feasible region are formed in this way as the feasible
segment of the line lying at the intersection of two constraint boundaries, and the two end-
points of an edge are adjacent CPF solutions. In Fig. 5.2 there are 15 edges of the feasi-
ble region, and so there are 15 pairs of adjacent CPF solutions. For the current CPF so-
lution (2, 4, 3), there are three ways to remove one of its three defining equations to obtain
an intersection of the other two constraint boundaries, so there are three edges emanating
from (2, 4, 3). These edges lead to (4, 2, 4), (0, 4, 2), and (2, 4, 0), so these are the CPF
solutions that are adjacent to (2, 4, 3).

For the next iteration, the simplex method chooses one of these three edges, say, the
darker line segment in Fig. 5.2, and then moves along this edge away from (2, 4, 3) un-
til it reaches the first new constraint boundary, x1 � 4, at its other endpoint. [We cannot
continue farther along this line to the next constraint boundary, x2 � 0, because this leads
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to a corner-point infeasible solution—(6, 0, 5).] The intersection of this first new con-
straint boundary with the two constraint boundaries forming the edge yields the new CPF
solution (4, 2, 4).

When n � 3, these same concepts generalize to higher dimensions, except the con-
straint boundaries now are hyperplanes instead of planes. Let us summarize.

Consider any linear programming problem with n decision variables and a bounded fea-
sible region. A CPF solution lies at the intersection of n constraint boundaries (and satis-
fies the other constraints as well). An edge of the feasible region is a feasible line seg-
ment that lies at the intersection of n � 1 constraint boundaries, where each endpoint lies
on one additional constraint boundary (so that these endpoints are CPF solutions). Two
CPF solutions are adjacent if the line segment connecting them is an edge of the feasi-
ble region. Emanating from each CPF solution are n such edges, each one leading to one
of the n adjacent CPF solutions. Each iteration of the simplex method moves from the
current CPF solution to an adjacent one by moving along one of these n edges.

When you shift from a geometric viewpoint to an algebraic one, intersection of con-
straint boundaries changes to simultaneous solution of constraint boundary equations.
The n constraint boundary equations yielding (defining) a CPF solution are its defining
equations, where deleting one of these equations yields a line whose feasible segment is
an edge of the feasible region.

We next analyze some key properties of CPF solutions and then describe the implica-
tions of all these concepts for interpreting the simplex method. However, while the above
summary is fresh in your mind, let us give you a preview of its implications. When the sim-
plex method chooses an entering basic variable, the geometric interpretation is that it is
choosing one of the edges emanating from the current CPF solution to move along. In-
creasing this variable from zero (and simultaneously changing the values of the other basic
variables accordingly) corresponds to moving along this edge. Having one of the basic vari-
ables (the leaving basic variable) decrease so far that it reaches zero corresponds to reach-
ing the first new constraint boundary at the other end of this edge of the feasible region.

Properties of CPF Solutions

We now focus on three key properties of CPF solutions that hold for any linear pro-
gramming problem that has feasible solutions and a bounded feasible region.

Property 1: (a) If there is exactly one optimal solution, then it must be a CPF
solution. (b) If there are multiple optimal solutions (and a bounded feasible re-
gion), then at least two must be adjacent CPF solutions.

Property 1 is a rather intuitive one from a geometric viewpoint. First consider Case
(a), which is illustrated by the Wyndor Glass Co. problem (see Fig. 5.1) where the one
optimal solution (2, 6) is indeed a CPF solution. Note that there is nothing special about
this example that led to this result. For any problem having just one optimal solution, it
always is possible to keep raising the objective function line (hyperplane) until it just
touches one point (the optimal solution) at a corner of the feasible region.

We now give an algebraic proof for this case.

Proof of Case (a) of Property 1: We set up a proof by contradiction by assum-
ing that there is exactly one optimal solution and that it is not a CPF solution.
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We then show below that this assumption leads to a contradiction and so cannot
be true. (The solution assumed to be optimal will be denoted by x*, and its ob-
jective function value by Z*.)

Recall the definition of CPF solution (a feasible solution that does not lie
on any line segment connecting two other feasible solutions). Since we have as-
sumed that the optimal solution x* is not a CPF solution, this implies that there
must be two other feasible solutions such that the line segment connecting them
contains the optimal solution. Let the vectors x	 and x		 denote these two other
feasible solutions, and let Z1 and Z2 denote their respective objective function
values. Like each other point on the line segment connecting x	 and x		,

x* � 
x		 � (1 � 
)x	

for some value of 
 such that 0 � 
 � 1. Thus,

Z* � 
Z2 � (1 � 
)Z1.

Since the weights 
 and 1 � 
 add to 1, the only possibilities for how Z*, Z1,
and Z2 compare are (1) Z* � Z1 � Z2, (2) Z1 � Z* � Z2, and (3) Z1 � Z* � Z2.
The first possibility implies that x	 and x		 also are optimal, which contradicts
the assumption that there is exactly one optimal solution. Both the latter possi-
bilities contradict the assumption that x* (not a CPF solution) is optimal. The re-
sulting conclusion is that it is impossible to have a single optimal solution that
is not a CPF solution.

Now consider Case (b), which was demonstrated in Sec. 3.2 under the definition of
optimal solution by changing the objective function in the example to Z � 3x1 � 2x2 (see
Fig. 3.5 on page 35). What then happens when you are solving graphically is that the ob-
jective function line keeps getting raised until it contains the line segment connecting the
two CPF solutions (2, 6) and (4, 3). The same thing would happen in higher dimensions
except that an objective function hyperplane would keep getting raised until it contained
the line segment(s) connecting two (or more) adjacent CPF solutions. As a consequence,
all optimal solutions can be obtained as weighted averages of optimal CPF solutions. (This
situation is described further in Probs. 4.5-5 and 4.5-6.)

The real significance of Property 1 is that it greatly simplifies the search for an op-
timal solution because now only CPF solutions need to be considered. The magnitude of
this simplification is emphasized in Property 2.

Property 2: There are only a finite number of CPF solutions.

This property certainly holds in Figs. 5.1 and 5.2, where there are just 5 and 10 CPF
solutions, respectively. To see why the number is finite in general, recall that each CPF so-
lution is the simultaneous solution of a system of n out of the m � n constraint boundary
equations. The number of different combinations of m � n equations taken n at a time is

� � � ,

which is a finite number. This number, in turn, in an upper bound on the number of CPF
solutions. In Fig. 5.1, m � 3 and n � 2, so there are 10 different systems of two equa-

(m � n)!
�

m!n!
m � n
�

n
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tions, but only half of them yield CPF solutions. In Fig. 5.2, m � 4 and n � 3, which
gives 35 different systems of three equations, but only 10 yield CPF solutions.

Property 2 suggests that, in principle, an optimal solution can be obtained by exhaus-
tive enumeration; i.e., find and compare all the finite number of CPF solutions. Unfortu-
nately, there are finite numbers, and then there are finite numbers that (for all practical pur-
poses) might as well be infinite. For example, a rather small linear programming problem
with only m � 50 and n � 50 would have 100!/(50!)2 � 1029 systems of equations to be
solved! By contrast, the simplex method would need to examine only approximately 100
CPF solutions for a problem of this size. This tremendous savings can be obtained because
of the optimality test given in Sec. 4.1 and restated here as Property 3.

Property 3: If a CPF solution has no adjacent CPF solutions that are better (as
measured by Z), then there are no better CPF solutions anywhere. Therefore,
such a CPF solution is guaranteed to be an optimal solution (by Property 1), as-
suming only that the problem possesses at least one optimal solution (guaranteed
if the problem possesses feasible solutions and a bounded feasible region).

To illustrate Property 3, consider Fig. 5.1 for the Wyndor Glass Co. example. For the
CPF solution (2, 6), its adjacent CPF solutions are (0, 6) and (4, 3), and neither has a bet-
ter value of Z than (2, 6) does. This outcome implies that none of the other CPF solu-
tions—(0, 0) and (4, 0)—can be better than (2, 6), so (2, 6) must be optimal.

By contrast, Fig. 5.3 shows a feasible region that can never occur for a linear pro-
gramming problem but that does violate Property 3. The problem shown is identical to
the Wyndor Glass Co. example (including the same objective function) except for the en-
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FIGURE 5.3
Modification of the Wyndor
Glass Co. problem that
violates both linear
programming and Property 3
for CPF solutions in linear
programming.



largement of the feasible region to the right of (�
8
3

�, 5). Consequently, the adjacent CPF so-
lutions for (2, 6) now are (0, 6) and (�

8
3

�, 5), and again neither is better than (2, 6). How-
ever, another CPF solution (4, 5) now is better than (2, 6), thereby violating Property 3.
The reason is that the boundary of the feasible region goes down from (2, 6) to ( �

8
3

�, 5) and
then “bends outward” to (4, 5), beyond the objective function line passing through (2, 6).

The key point is that the kind of situation illustrated in Fig. 5.3 can never occur in
linear programming. The feasible region in Fig. 5.3 implies that the 2x2 � 12 and 3x1 �
2x2 � 18 constraints apply for 0 � x1 � �

8
3

�. However, under the condition that �
8
3

� � x1 � 4,
the 3x1 � 2x2 � 18 constraint is dropped and replaced by x2 � 5. Such “conditional con-
straints” just are not allowed in linear programming.

The basic reason that Property 3 holds for any linear programming problem is that
the feasible region always has the property of being a convex set, as defined in Appendix
2 and illustrated in several figures there. For two-variable linear programming problems,
this convex property means that the angle inside the feasible region at every CPF solu-
tion is less than 180°. This property is illustrated in Fig. 5.1, where the angles at (0, 0),
(0, 6), and (4, 0) are 90° and those at (2, 6) and (4, 3) are between 90° and 180°. By con-
trast, the feasible region in Fig. 5.3 is not a convex set, because the angle at ( �

8
3

�, 5) is more
than 180°. This is the kind of “bending outward” at an angle greater than 180° that can
never occur in linear programming. In higher dimensions, the same intuitive notion of
“never bending outward” continues to apply.

To clarify the significance of a convex feasible region, consider the objective func-
tion hyperplane that passes through a CPF solution that has no adjacent CPF solutions
that are better. [In the original Wyndor Glass Co. example, this hyperplane is the objec-
tive function line passing through (2, 6).] All these adjacent solutions [(0, 6) and (4, 3) in
the example] must lie either on the hyperplane or on the unfavorable side (as measured
by Z) of the hyperplane. The feasible region being convex means that its boundary can-
not “bend outward” beyond an adjacent CPF solution to give another CPF solution that
lies on the favorable side of the hyperplane. So Property 3 holds.

Extensions to the Augmented Form of the Problem

For any linear programming problem in our standard form (including functional constraints
in � form), the appearance of the functional constraints after slack variables are intro-
duced is as follows:

(1) a11x1 � a12x2 � ��� � a1nxn � xn�1 � b1

(2) a21x1 � a22x2 � ��� � a2nxn � xn�2 � b2

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(m) am1x1 � am2x2 � ��� � amnxn � xn�m � bm,

where xn�1, xn�2, . . . , xn�m are the slack variables. For other linear programming prob-
lems, Sec. 4.6 described how essentially this same appearance (proper form from Gauss-
ian elimination) can be obtained by introducing artificial variables, etc. Thus, the origi-
nal solutions (x1, x2, . . . , xn) now are augmented by the corresponding values of the
slack or artificial variables (xn�1, xn�2, . . . , xn�m) and perhaps some surplus variables
as well. This augmentation led in Sec. 4.2 to defining basic solutions as augmented cor-
ner-point solutions and basic feasible solutions (BF solutions) as augmented CPF so-
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lutions. Consequently, the preceding three properties of CPF solutions also hold for BF
solutions.

Now let us clarify the algebraic relationships between basic solutions and corner-point
solutions. Recall that each corner-point solution is the simultaneous solution of a system
of n constraint boundary equations, which we called its defining equations. The key ques-
tion is: How do we tell whether a particular constraint boundary equation is one of the
defining equations when the problem is in augmented form? The answer, fortunately, is
a simple one. Each constraint has an indicating variable that completely indicates (by
whether its value is zero) whether that constraint’s boundary equation is satisfied by the
current solution. A summary appears in Table 5.3. For the type of constraint in each row
of the table, note that the corresponding constraint boundary equation (fourth column) is
satisfied if and only if this constraint’s indicating variable (fifth column) equals zero. In
the last row (functional constraint in � form), the indicating variable x�n�i � xsi

actually
is the difference between the artificial variable x�n�i and the surplus variable xsi

.
Thus, whenever a constraint boundary equation is one of the defining equations for

a corner-point solution, its indicating variable has a value of zero in the augmented form
of the problem. Each such indicating variable is called a nonbasic variable for the corre-
sponding basic solution. The resulting conclusions and terminology (already introduced
in Sec. 4.2) are summarized next.

Each basic solution has m basic variables, and the rest of the variables are nonbasic vari-
ables set equal to zero. (The number of nonbasic variables equals n plus the number of
surplus variables.) The values of the basic variables are given by the simultaneous solu-
tion of the system of m equations for the problem in augmented form (after the nonbasic
variables are set to zero). This basic solution is the augmented corner-point solution whose
n defining equations are those indicated by the nonbasic variables. In particular, whenever
an indicating variable in the fifth column of Table 5.3 is a nonbasic variable, the constraint
boundary equation in the fourth column is a defining equation for the corner-point solu-
tion. (For functional constraints in � form, at least one of the two supplementary variables
x�n�i and xsi

always is a nonbasic variable, but the constraint boundary equation becomes a
defining equation only if both of these variables are nonbasic variables.)
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TABLE 5.3 Indicating variables for constraint boundary equations*

Constraint
Type of Form of Constraint in Boundary Indicating
Constraint Constraint Augmented Form Equation Variable

Nonnegativity xj � 0 xj � 0 xj � 0 xj

Functional (�) �
n

j�1
aijxj � bi �

n

j�1
aijxj � xn�i � bi �

n

j�1
aijxj � bi xn�i

Functional (�) �
n

j�1
aijxj � bi �

n

j�1
aijxj � x�n�i � bi �

n

j�1
aijxj � bi x�n�i

Functional (�) �
n

j�1
aijxj � bi �

n

j�1
aijxj � x�n�i � xsi

� bi �
n

j�1
aijxj � bi x�n�i � xsi

*Indicating variable � 0 ⇒ constraint boundary equation satisfied; 
indicating variable 
 0 ⇒ constraint boundary equation violated.



Now consider the basic feasible solutions. Note that the only requirements for a so-
lution to be feasible in the augmented form of the problem are that it satisfy the system
of equations and that all the variables be nonnegative.

A BF solution is a basic solution where all m basic variables are nonnegative (� 0). A
BF solution is said to be degenerate if any of these m variables equals zero.

Thus, it is possible for a variable to be zero and still not be a nonbasic variable for the
current BF solution. (This case corresponds to a CPF solution that satisfies another con-
straint boundary equation in addition to its n defining equations.) Therefore, it is neces-
sary to keep track of which is the current set of nonbasic variables (or the current set of
basic variables) rather than to rely upon their zero values.

We noted earlier that not every system of n constraint boundary equations yields a
corner-point solution, because either the system has no solution or it has multiple solu-
tions. For analogous reasons, not every set of n nonbasic variables yields a basic solution.
However, these cases are avoided by the simplex method.

To illustrate these definitions, consider the Wyndor Glass Co. example once more. Its
constraint boundary equations and indicating variables are shown in Table 5.4.

Augmenting each of the CPF solutions (see Table 5.1) yields the BF solutions listed
in Table 5.5. This table places adjacent BF solutions next to each other, except for the pair
consisting of the first and last solutions listed. Notice that in each case the nonbasic vari-
ables necessarily are the indicating variables for the defining equations. Thus, adjacent
BF solutions differ by having just one different nonbasic variable. Also notice that each
BF solution is the simultaneous solution of the system of equations for the problem in
augmented form (see Table 5.4) when the nonbasic variables are set equal to zero.

Similarly, the three corner-point infeasible solutions (see Table 5.2) yield the three
basic infeasible solutions shown in Table 5.6.

The other two sets of nonbasic variables, (1) x1 and x3 and (2) x2 and x4, do not yield
a basic solution, because setting either pair of variables equal to zero leads to having no
solution for the system of Eqs. (1) to (3) given in Table 5.4. This conclusion parallels the
observation we made early in this section that the corresponding sets of constraint bound-
ary equations do not yield a solution.
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TABLE 5.4 Indicating variables for the constraint boundary equations of the
Wyndor Glass Co. problem*

Constraint in Constraint Boundary Indicating
Constraint Augmented Form Equation Variable

x1 � 0 x1 � 0 x1 � 0 x1

x2 � 0 x2 � 0 x2 � 0 x2

x1 � 4 (1) 2x1 � 2x2 � x3x3x3 � 24 x1 � 4 x3

2x2 � 12 (2) 3x1 � 2x2 � x3x4x3 � 12 2x2 � 12 x4

3x1 � x2 � 18 (3) 3x1 � 2x2 � x3x3x5 � 18 3x1 � 2x2 � 18 x5

*Indicating variable � 0 ⇒ constraint boundary equation satisfied; 
indicating variable 
 0 ⇒ constraint boundary equation violated.



The simplex method starts at a BF solution and then iteratively moves to a better ad-
jacent BF solution until an optimal solution is reached. At each iteration, how is the ad-
jacent BF solution reached?

For the original form of the problem, recall that an adjacent CPF solution is reached
from the current one by (1) deleting one constraint boundary (defining equation) from the
set of n constraint boundaries defining the current solution, (2) moving away from the
current solution in the feasible direction along the intersection of the remaining n � 1
constraint boundaries (an edge of the feasible region), and (3) stopping when the first new
constraint boundary (defining equation) is reached.

Equivalently, in our new terminology, the simplex method reaches an adjacent BF so-
lution from the current one by (1) deleting one variable (the entering basic variable) from
the set of n nonbasic variables defining the current solution, (2) moving away from the
current solution by increasing this one variable from zero (and adjusting the other basic
variables to still satisfy the system of equations) while keeping the remaining n � 1 non-
basic variables at zero, and (3) stopping when the first of the basic variables (the leaving
basic variable) reaches a value of zero (its constraint boundary). With either interpreta-
tion, the choice among the n alternatives in step 1 is made by selecting the one that would
give the best rate of improvement in Z (per unit increase in the entering basic variable)
during step 2.
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TABLE 5.5 BF solutions for the Wyndor Glass Co. problem

Defining Nonbasic
CPF Solution Equations BF Solution Variables

(0, 0) x1 � 0 (0, 0, 4, 12, 18) x1

x2 � 0 x2

(0, 6) x1 � 0 (0, 6, 4, 0, 6) x1

2x2 � 12 x4

(2, 6) 2x2 � 12 (2, 6, 2, 0, 0) x4

3x1 � 2x2 � 18 x5

(4, 3) 3x1 � 2x2 � 18 (4, 3, 0, 6, 0) x5

x1 � 4 x3

(4, 0) x1 � 4 (4, 0, 0, 12, 6) x3

x2 � 0 x2

TABLE 5.6 Basic infeasible solutions for the Wyndor Glass Co. problem

Corner-Point Defining Basic Infeasible Nonbasic
Infeasible Solution Equations Solution Variables

(0, 9) x1 � 0 (0, 9, 4, �6, 0) x1

3x1 � 2x2 � 18 x5

(4, 6) 2x2 � 12 (4, 6, 0, 0, �6) x4

x1 � 4 x3

(6, 0) 3x1 � 2x2 � 18 (6, 0, �2, 12, 0) x5

x2 � 0 x2



Table 5.7 illustrates the close correspondence between these geometric and algebraic
interpretations of the simplex method. Using the results already presented in Secs. 4.3 and
4.4, the fourth column summarizes the sequence of BF solutions found for the Wyndor
Glass Co. problem, and the second column shows the corresponding CPF solutions. In the
third column, note how each iteration results in deleting one constraint boundary (defining
equation) and substituting a new one to obtain the new CPF solution. Similarly, note in the
fifth column how each iteration results in deleting one nonbasic variable and substituting
a new one to obtain the new BF solution. Furthermore, the nonbasic variables being deleted
and added are the indicating variables for the defining equations being deleted and added
in the third column. The last column displays the initial system of equations [excluding
Eq. (0)] for the augmented form of the problem, with the current basic variables shown in
bold type. In each case, note how setting the nonbasic variables equal to zero and then
solving this system of equations for the basic variables must yield the same solution for
(x1, x2) as the corresponding pair of defining equations in the third column.
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TABLE 5.7 Sequence of solutions obtained by the simplex method for the 
Wyndor Glass Co. problem

CPF Defining Nonbasic Functional Constraints
Iteration Solution Equations BF Solution Variables in Augmented Form

0 (0, 0) x1 � 0 (0, 0, 4, 12, 18) x1 � 0 x1 � 2x2 � x3 � 4
x2 � 0 x2 � 0 2x2 � x4 � 12

3x1 � 2x2 � x5 � 18

1 (0, 6) x1 � 0 (0, 6, 4, 0, 6) x1 � 0 x1 � 2x2 � x3 � 4
2x2 � 12 x4 � 0 2x2 � x4 � 12

3x1 � 2x2 � x5 � 18

2 (2, 6) 2x2 � 12 (2, 6, 2, 0, 0) x4 � 0 x1 � 2x2 � x3 � 4
3x1 � 2x2 � 18 x5 � 0 2x2 � x4 � 12

3x1 � 2x2 � x5 � 18

The simplex method as described in Chap. 4 (hereafter called the original simplex method )
is a straightforward algebraic procedure. However, this way of executing the algorithm
(in either algebraic or tabular form) is not the most efficient computational procedure for
computers because it computes and stores many numbers that are not needed at the cur-
rent iteration and that may not even become relevant for decision making at subsequent
iterations. The only pieces of information relevant at each iteration are the coefficients of
the nonbasic variables in Eq. (0), the coefficients of the entering basic variable in the other
equations, and the right-hand sides of the equations. It would be very useful to have a
procedure that could obtain this information efficiently without computing and storing all
the other coefficients.

As mentioned in Sec. 4.8, these considerations motivated the development of the re-
vised simplex method. This method was designed to accomplish exactly the same things
as the original simplex method, but in a way that is more efficient for execution on a com-
puter. Thus, it is a streamlined version of the original procedure. It computes and stores
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only the information that is currently needed, and it carries along the essential data in a
more compact form.

The revised simplex method explicitly uses matrix manipulations, so it is necessary
to describe the problem in matrix notation. (See Appendix 4 for a review of matrices.) To
help you distinguish between matrices, vectors, and scalars, we consistently use BOLD-
FACE CAPITAL letters to represent matrices, boldface lowercase letters to represent
vectors, and italicized letters in ordinary print to represent scalars. We also use a boldface
zero (0) to denote a null vector (a vector whose elements all are zero) in either column
or row form (which one should be clear from the context), whereas a zero in ordinary
print (0) continues to represent the number zero.

Using matrices, our standard form for the general linear programming model given
in Sec. 3.2 becomes

where c is the row vector

c � [c1, c2, . . . , cn],

x, b, and 0 are the column vectors such that

x � , b � , 0 � ,

and A is the matrix

A � .

To obtain the augmented form of the problem, introduce the column vector of slack 
variables

xs �

so that the constraints become

[A, I] � � � b and � � � 0,
x
xs

x
xs








xn�1

xn�2

�

xn�m















a1n

a2n

amn

…
…

…

a12

a22

am2

a11

a21

am1















0

0

�

0















b1

b2

�

bm















x1

x2

�

xn








Maximize Z � cx,

subject to

Ax � b and x � 0,
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where I is the m � m identity matrix, and the null vector 0 now has n � m elements. (We
comment at the end of the section about how to deal with problems that are not in our
standard form.)

Solving for a Basic Feasible Solution

Recall that the general approach of the simplex method is to obtain a sequence of im-
proving BF solutions until an optimal solution is reached. One of the key features of the
revised simplex method involves the way in which it solves for each new BF solution af-
ter identifying its basic and nonbasic variables. Given these variables, the resulting basic
solution is the solution of the m equations

[A, I] � � � b,

in which the n nonbasic variables from the n � m elements of

� �
are set equal to zero. Eliminating these n variables by equating them to zero leaves a 
set of m equations in m unknowns (the basic variables). This set of equations can be de-
noted by

BxB � b,

where the vector of basic variables

xB �

is obtained by eliminating the nonbasic variables from

� �,

and the basis matrix

B �

is obtained by eliminating the columns corresponding to coefficients of nonbasic variables
from [A, I]. (In addition, the elements of xB and, therefore, the columns of B may be
placed in a different order when the simplex method is executed.)

The simplex method introduces only basic variables such that B is nonsingular, so
that B�1 always will exist. Therefore, to solve BxB � b, both sides are premultiplied 
by B�1:

B�1BxB � B�1b.








B1m

B2m

Bmm

…
…

…

B12

B22

Bm2

B11

B21

Bm1








x
xs








xB1

xB2

�

xBm








x
xs

x
xs
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Since B�1B � I, the desired solution for the basic variables is

Let cB be the vector whose elements are the objective function coefficients (including ze-
ros for slack variables) for the corresponding elements of xB. The value of the objective
function for this basic solution is then

Example. To illustrate this method of solving for a BF solution, consider again the
Wyndor Glass Co. problem presented in Sec. 3.1 and solved by the original simplex method
in Table 4.8. In this case,

c � [3, 5], [A, I] � , b � , x � � �, xs � .

Referring to Table 4.8, we see that the sequence of BF solutions obtained by the simplex
method (original or revised) is the following:

Iteration 0

xB � , B � � B�1, so � � ,

cB � [0, 0, 0], so Z � [0, 0, 0] � 0.

Iteration 1

xB � , B � , B�1 � ,

so

� � ,

cB � [0, 5, 0], so Z � [0, 5, 0] � 30.
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Iteration 2

xB � , B � , B�1 � ,

so

� � ,

cB � [0, 5, 3], so Z � [0, 5, 3] � 36.

Matrix Form of the Current Set of Equations

The last preliminary before we summarize the revised simplex method is to show the ma-
trix form of the set of equations appearing in the simplex tableau for any iteration of the
original simplex method.

For the original set of equations, the matrix form is

� � � � �.

This set of equations also is exhibited in the first simplex tableau of Table 5.8.
The algebraic operations performed by the simplex method (multiply an equation by

a constant and add a multiple of one equation to another equation) are expressed in ma-
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TABLE 5.8 Initial and later simplex tableaux in matrix form

Coefficient of:
Basic Right

Iteration Variable Eq. Z Original Variables Slack Variables Side

0 Z (0) 1 �c 0 0
xB (1, 2, . . . , m) 0 A I b

Any Z (0) 1 cBB
�1A � c cBB

�1 cBB
�1b

xB (1, 2, . . .  m) 0 B�1 A B�1 B�1b



trix form by premultiplying both sides of the original set of equations by the appropriate
matrix. This matrix would have the same elements as the identity matrix, except that each
multiple for an algebraic operation would go into the spot needed to have the matrix mul-
tiplication perform this operation. Even after a series of algebraic operations over several
iterations, we still can deduce what this matrix must be (symbolically) for the entire se-
ries by using what we already know about the right-hand sides of the new set of equa-
tions. In particular, after any iteration, xB � B�1b and Z � cBB�1b, so the right-hand sides
of the new set of equations have become

� � � � �� � � � �.

Because we perform the same series of algebraic operations on both sides of the orig-
inal set of operations, we use this same matrix that premultiplies the original right-hand
side to premultiply the original left-hand side. Consequently, since

� �� � � � �,

the desired matrix form of the set of equations after any iteration is

� � � � �.

The second simplex tableau of Table 5.8 also exhibits this same set of equations.

Example. To illustrate this matrix form for the current set of equations, we will show
how it yields the final set of equations resulting from iteration 2 for the Wyndor Glass
Co. problem. Using the B�1 and cB given for iteration 2 at the end of the preceding sub-
section, we have

B�1A � � ,

cBB�1 � [0, 5, 3] � [0, �
3
2

�, 1],

cBB�1A � c � [0, 5, 3] � [3, 5] � [0, 0].
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Also, by using the values of xB � B�1b and Z � cBB�1b calculated at the end of the pre-
ceding subsection, these results give the following set of equations:

� ,

as shown in the final simplex tableau in Table 4.8.

The Overall Procedure

There are two key implications from the matrix form of the current set of equations shown
at the bottom of Table 5.8. The first is that only B�1 needs to be derived to be able to cal-
culate all the numbers in the simplex tableau from the original parameters (A, b, cB) of
the problem. (This implication is the essence of the fundamental insight described in the
next section.) The second is that any one of these numbers can be obtained individually,
usually by performing only a vector multiplication (one row times one column) instead
of a complete matrix multiplication. Therefore, the required numbers to perform an iter-
ation of the simplex method can be obtained as needed without expending the computa-
tional effort to obtain all the numbers. These two key implications are incorporated into
the following summary of the overall procedure.

Summary of the Revised Simplex Method.

1. Initialization: Same as for the original simplex method.
2. Iteration:

Step 1 Determine the entering basic variable: Same as for the original simplex
method.

Step 2 Determine the leaving basic variable: Same as for the original simplex
method, except calculate only the numbers required to do this [the coefficients of the
entering basic variable in every equation but Eq. (0), and then, for each strictly posi-
tive coefficient, the right-hand side of that equation].1

Step 3 Determine the new BF solution: Derive B�1 and set xB � B�1b. 
3. Optimality test: Same as for the original simplex method, except calculate only the

numbers required to do this test, i.e., the coefficients of the nonbasic variables in 
Eq. (0).

In step 3 of an iteration, B�1 could be derived each time by using a standard computer
routine for inverting a matrix. However, since B (and therefore B�1) changes so little from
one iteration to the next, it is much more efficient to derive the new B�1 (denote it by B�1

new)
from the B�1 at the preceding iteration (denote it by B�1

old). (For the initial BF solution,
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1Because the value of xB is the entire vector of right-hand sides except for Eq. (0), the relevant right-hand sides
need not be calculated here if xB was calculated in step 3 of the preceding iteration.



B � I � B�1.) One method for doing this derivation is based directly upon the interpreta-
tion of the elements of B�1 [the coefficients of the slack variables in the current Eqs. (1),
(2), . . . , (m)] presented in the next section, as well as upon the procedure used by the orig-
inal simplex method to obtain the new set of equations from the preceding set.

To describe this method formally, let

xk � entering basic variable,

a	ik � coefficient of xk in current Eq. (i), for i � 1, 2, . . . , m (calculated in step 2 of
an iteration),

r � number of equation containing the leaving basic variable.

Recall that the new set of equations [excluding Eq. (0)] can be obtained from the pre-
ceding set by subtracting a	ik /a	rk times Eq. (r) from Eq. (i), for all i � 1, 2, . . . , m ex-
cept i � r, and then dividing Eq. (r) by a	rk. Therefore, the element in row i and column
j of B�1

new is

(B�1
old)ij � �

a
a
	r

	ik
k

�(B�1
old)rj if i 
 r,

(B�1
new)ij �

�
a
1
	rk
�(B�1

old)rj if i � r.

These formulas are expressed in matrix notation as

B�1
new � EB�1

old,

where matrix E is an identity matrix except that its rth column is replaced by the vector

��
a
a
	r

	ik
k

� if i 
 r,
� � , where �i �

�
a
1
	rk
� if i � r.

Thus, E � [U1, U2, . . . , Ur�1, �, Ur�1, . . . , Um], where the m elements of each of the
Ui column vectors are 0 except for a 1 in the ith position.

Example. We shall illustrate the revised simplex method by applying it to the Wyndor
Glass Co. problem. The initial basic variables are the slack variables

xB � .

Iteration 1
Because the initial B�1 � I, no calculations are needed to obtain the numbers required to
identify the entering basic variable x2 (�c2 � �5 � �3 � �c1) and the leaving basic vari-
able x4 (a12 � 0, b2/a22 � �

1
2
2
� � �

1
2
8
� � b3/a32, so r � 2). Thus, the new set of basic variables is

xB � .
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To obtain the new B�1,

� � � ,

so

B�1 � � ,

so that

xB � � .

To test whether this solution is optimal, we calculate the coefficients of the nonbasic
variables (x1 and x4) in Eq. (0). Performing only the relevant parts of the matrix multi-
plications, we obtain

cBB�1A � c � [0, 5, 0] � [3, —] � [�3, —],

cBB�1 � [0, 5, 0] � [—, �
5
2

�, —],

so the coefficients of x1 and x4 are �3 and �
5
2

�, respectively. Since x1 has a negative coeffi-
cient, this solution is not optimal.

Iteration 2
Using these coefficients of the nonbasic variables in Eq. (0), since only x1 has a negative
coefficient, we begin the next iteration by identifying x1 as the entering basic variable. To
determine the leaving basic variable, we must calculate the other coefficients of x1:

B�1A � � .
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By using the right side column for the current BF solution (the value of xB) just given for
iteration 1, the ratios 4/1 � 6/3 indicate that x5 is the leaving basic variable, so the new
set of basic variables is

xB � with � � � .

Therefore, the new B�1 is

B�1 � � ,

so that

xB � � .

Applying the optimality test, we find that the coefficients of the nonbasic variables 
(x4 and x5) in Eq. (0) are

cBB�1 � [0, 5, 3] � [—, �
3
2

�, 1].

Because both coefficients ( �
3
2

� and 1) are nonnegative, the current solution (x1 � 2, x2 � 6,
x3 � 2, x4 � 0, x5 � 0) is optimal and the procedure terminates.

General Observations

The preceding discussion was limited to the case of linear programming problems fitting
our standard form given in Sec. 3.2. However, the modifications for other forms are rel-
atively straightforward. The initialization would be conducted just as it would for the orig-
inal simplex method (see Sec. 4.6). When this step involves introducing artificial variables
to obtain an initial BF solution (and thereby to obtain an identity matrix as the initial ba-
sis matrix), these variables are included among the m elements of xs.

Let us summarize the advantages of the revised simplex method over the original sim-
plex method. One advantage is that the number of arithmetic computations may be re-
duced. This is especially true when the A matrix contains a large number of zero elements
(which is usually the case for the large problems arising in practice). The amount of in-
formation that must be stored at each iteration is less, sometimes considerably so. The re-
vised simplex method also permits the control of the rounding errors inevitably generated







��
1
3

�

0
�
1
3

�

�
1
3

�

�
1
2

�

��
1
3

�

—

—

—













2

6

2













4

12

18













��
1
3

�

0
�
1
3

�

�
1
3

�

�
1
2

�

��
1
3

�

1

0

0













��
1
3

�

0
�
1
3

�

�
1
3

�

�
1
2

�

��
1
3

�

1

0

0













0

0

1

0
�
1
2

�

�1

1

0

0













��
1
3

�

0
�
1
3

�

0

1

0

1

0

0









��
1
3

�

0

�
1
3

�













��
a
a
	
	
1

3

1

1
�

��
a
a
	
	
2

3

1

1
�

�
a
1
	31
�

















x3

x2

x1







5.2 THE REVISED SIMPLEX METHOD 211



by computers. This control can be exercised by periodically obtaining the current B�1 by
directly inverting B. Furthermore, some of the postoptimality analysis problems discussed
in Sec. 4.7 can be handled more conveniently with the revised simplex method. For all
these reasons, the revised simplex method is usually preferable to the original simplex
method for computer execution.

212 5 THE THEORY OF THE SIMPLEX METHOD

We shall now focus on a property of the simplex method (in any form) that has been re-
vealed by the revised simplex method in the preceding section.1 This fundamental insight
provides the key to both duality theory and sensitivity analysis (Chap. 6), two very im-
portant parts of linear programming.

The insight involves the coefficients of the slack variables and the information they
give. It is a direct result of the initialization, where the ith slack variable xn�i is given a
coefficient of �1 in Eq. (i) and a coefficient of 0 in every other equation [including Eq.
(0)] for i � 1, 2, . . . , m, as shown by the null vector 0 and the identity matrix I in the
slack variables column for iteration 0 in Table 5.8. (For most of this section, we are as-
suming that the problem is in our standard form, with bi � 0 for all i � 1, 2, . . . , m, so
that no additional adjustments are needed in the initialization.) The other key factor is that
subsequent iterations change the initial equations only by

1. Multiplying (or dividing) an entire equation by a nonzero constant
2. Adding (or subtracting) a multiple of one entire equation to another entire equation

As already described in the preceding section, a sequence of these kinds of elemen-
tary algebraic operations is equivalent to premultiplying the initial simplex tableau by
some matrix. (See Appendix 4 for a review of matrices.) The consequence can be sum-
marized as follows.

Verbal description of fundamental insight: After any iteration, the coefficients
of the slack variables in each equation immediately reveal how that equation has
been obtained from the initial equations.

As one example of the importance of this insight, recall from Table 5.8 that the ma-
trix formula for the optimal solution obtained by the simplex method is

xB � B�1b,

where xB is the vector of basic variables, B�1 is the matrix of coefficients of slack vari-
ables for rows 1 to m of the final tableau, and b is the vector of original right-hand sides
(resource availabilities). (We soon will denote this particular B�1 by S*.) Postoptimality
analysis normally includes an investigation of possible changes in b. By using this for-
mula, you can see exactly how the optimal BF solution changes (or whether it becomes
infeasible because of negative variables) as a function of b. You do not have to reapply
the simplex method over and over for each new b, because the coefficients of the slack

5.3 A FUNDAMENTAL INSIGHT

1However, since some instructors do not cover the preceding section, we have written this section in a way that
can be understood without first reading Sec. 5.2. It is helpful to take a brief look at the matrix notation intro-
duced at the beginning of Sec. 5.2, including the resulting key equation, xB � B�1b.



variables tell all! In a similar fashion, this fundamental insight provides a tremendous
computational saving for the rest of sensitivity analysis as well.

To spell out the how and the why of this insight, let us look again at the Wyndor
Glass Co. example. (The OR Tutor also includes another demonstration example.)

Example. Table 5.9 shows the relevant portion of the simplex tableau for demonstrat-
ing this fundamental insight. Light lines have been drawn around the coefficients of the
slack variables in all the tableaux in this table because these are the crucial coefficients
for applying the insight. To avoid clutter, we then identify the pivot row and pivot column
by a single box around the pivot number only.

Iteration 1
To demonstrate the fundamental insight, our focus is on the algebraic operations performed
by the simplex method while using Gaussian elimination to obtain the new BF solution.
If we do all the algebraic operations with the old row 2 (the pivot row) rather than the
new one, then the algebraic operations spelled out in Chap. 4 for iteration 1 are

New row 0 � old row 0 � ( �
5
2

�)(old row 2),

New row 1 � old row 1 � (0)(old row 2),

New row 2 � ( �
1
2

�)(old row 2),

New row 3 � old row 3 � (�1)(old row 2).
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TABLE 5.9 Simplex tableaux without leftmost columns for the 
Wyndor Glass Co. problem

Coefficient of:

Iteration x1 x2 x3 x4 x5 Right Side

�3 �5 0 0 0 0
1 0 1 0 0 4

0
0 2 0 1 0 12
3 2 0 0 1 18

�3 0 0 �
5
2

� 0 30

1 0 1 0 0 4
1

0 1 0 �
1
2

� 0 6

3 0 0 �1 1 6

0 0 0 �
3
2

� 1 36

0 0 1 �
1
3

� ��
1
3

� 2
2

0 1 0 �
1
2

� 0 6

1 0 0 ��
1
3

� �
1
3

� 2



Ignoring row 0 for the moment, we see that these algebraic operations amount to pre-
multiplying rows 1 to 3 of the initial tableau by the matrix

.

Rows 1 to 3 of the initial tableau are

Old rows 1–3 � ,

where the third, fourth, and fifth columns (the coefficients of the slack variables) form an
identity matrix. Therefore,

New rows 1–3 �

� .

Note how the first matrix is reproduced exactly in the box below it as the coefficients of
the slack variables in rows 1 to 3 of the new tableau, because the coefficients of the slack
variables in rows 1 to 3 of the initial tableau form an identity matrix. Thus, just as stated
in the verbal description of the fundamental insight, the coefficients of the slack variables
in the new tableau do indeed provide a record of the algebraic operations performed.

This insight is not much to get excited about after just one iteration, since you can
readily see from the initial tableau what the algebraic operations had to be, but it becomes
invaluable after all the iterations are completed.

For row 0, the algebraic operation performed amounts to the following matrix calcu-
lations, where now our focus is on the vector [0, �

5
2

�, 0] that premultiplies rows 1 to 3 of
the initial tableau.

New row 0 � [�3, �5 0, 0, 0 0] � [0, �
5
2

�, 0]

� [�3, 0, 0, �
5
2

�, 0, 30].

Note how this vector is reproduced exactly in the box below it as the coefficients of the
slack variables in row 0 of the new tableau, just as was claimed in the statement of the
fundamental insight. (Once again, the reason is the identity matrix for the coefficients of
the slack variables in rows 1 to 3 of the initial tableau, along with the zeros for these co-
efficients in row 0 of the initial tableau.)







4

12

18

0

0

1

0

1

0

1

0

0

0

2

2

1

0

3













4

6

6

0

0

1

0
�
1
2

�

�1

1

0

0

0

1

0

1 

0

3













4

12

18

0

0

1

0

1

0

1

0

0

0

2

2

1

0

3













0

0

1

0
�
1
2

�

�1

1

0

0













4

12

18

0

0

1

0

1

0

1

0

0

0

2

2

1

0

3













0

0

1

0
�
1
2

�

�1

1

0

0







214 5 THE THEORY OF THE SIMPLEX METHOD



Iteration 2
The algebraic operations performed on the second tableau of Table 5.9 for iteration 2 are

New row 0 � old row 0 � (1)(old row 3),

New row 1 � old row 1 � (��
1
3

�)(old row 3),

New row 2 � old row 2 � (0)(old row 3),

New row 3 � (�
1
3

�)(old row 3).

Ignoring row 0 for the moment, we see that these operations amount to premultiplying
rows 1 to 3 of this tableau by the matrix

.

Writing this second tableau as the matrix product shown for iteration 1 (namely, the cor-
responding matrix times rows 1 to 3 of the initial tableau) then yields

Final rows 1–3 �

�

� .

The first two matrices shown on the first line of these calculations summarize the alge-
braic operations of the second and first iterations, respectively. Their product, shown as
the first matrix on the second line, then combines the algebraic operations of the two it-
erations. Note how this matrix is reproduced exactly in the box below it as the coefficients
of the slack variables in rows 1 to 3 of the new (final) tableau shown on the third line.
What this portion of the tableau reveals is how the entire final tableau (except row 0) has
been obtained from the initial tableau, namely,

Final row 1 � (1)(initial row 1) � (�
1
3

�)(initial row 2) � (��
1
3

�)(initial row 3),

Final row 2 � (0)(initial row 1) � (�
1
2

�)(initial row 2) � (0)(initial row 3),

Final row 3 � (0)(initial row 1) � (��
1
3

�)(initial row 2) � (�
1
3

�)(initial row 3).

To see why these multipliers of the initial rows are correct, you would have to trace
through all the algebraic operations of both iterations. For example, why does final row
1 include (�

1
3

�)(initial row 2), even though a multiple of row 2 has never been added directly
to row 1? The reason is that initial row 2 was subtracted from initial row 3 in iteration 1,
and then (�

1
3

�)(old row 3) was subtracted from old row 1 in iteration 2.
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However, there is no need for you to trace through. Even when the simplex method
has gone through hundreds or thousands of iterations, the coefficients of the slack vari-
ables in the final tableau will reveal how this tableau has been obtained from the initial
tableau. Furthermore, the same algebraic operations would give these same coefficients
even if the values of some of the parameters in the original model (initial tableau) were
changed, so these coefficients also reveal how the rest of the final tableau changes with
changes in the initial tableau.

To complete this story for row 0, the fundamental insight reveals that the entire final
row 0 can be calculated from the initial tableau by using just the coefficients of the slack
variables in the final row 0—[0, �

3
2

�, 1]. This calculation is shown below, where the first
vector is row 0 of the initial tableau and the matrix is rows 1 to 3 of the initial tableau.

Final row 0 � [�3, �5 0, 0, 0 0] � [0, �
3
2

�, 1]

� [0, 0, 0, �
3
2

�, 1, 36].

Note again how the vector premultiplying rows 1 to 3 of the initial tableau is reproduced
exactly as the coefficients of the slack variables in the final row 0. These quantities must
be identical because of the coefficients of the slack variables in the initial tableau (an
identity matrix below a null vector). This conclusion is the row 0 part of the fundamen-
tal insight.

Mathematical Summary

Because its primary applications involve the final tableau, we shall now give a general
mathematical expression for the fundamental insight just in terms of this tableau, using
matrix notation. If you have not read Sec. 5.2, you now need to know that the parame-
ters of the model are given by the matrix A � �aij� and the vectors b � �bi� and c � �cj�,
as displayed at the beginning of that section.

The only other notation needed is summarized and illustrated in Table 5.10. Notice
how vector t (representing row 0) and matrix T (representing the other rows) together cor-
respond to the rows of the initial tableau in Table 5.9, whereas vector t* and matrix T*
together correspond to the rows of the final tableau in Table 5.9. This table also shows
these vectors and matrices partitioned into three parts: the coefficients of the original vari-
ables, the coefficients of the slack variables (our focus), and the right-hand side. Once
again, the notation distinguishes between parts of the initial tableau and the final tableau
by using an asterisk only in the latter case.

For the coefficients of the slack variables (the middle part) in the initial tableau of
Table 5.10, notice the null vector 0 in row 0 and the identity matrix I below, which pro-
vide the keys for the fundamental insight. The vector and matrix in the same location of
the final tableau, y* and S*, then play a prominent role in the equations for the funda-
mental insight. A and b in the initial tableau turn into A* and b* in the final tableau. For
row 0 of the final tableau, the coefficients of the decision variables are z* � c (so the vec-
tor z* is what has been added to the vector of initial coefficients, �c), and the right-hand
side Z* denotes the optimal value of Z.
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It is helpful at this point to look back at Table 5.8 in Sec. 5.2 and compare it with
Table 5.10. (If you haven’t previously studied Sec. 5.2, you will need to read the defini-
tion of the basis matrix B and the vectors xB and cB given early in that section before
looking at Table 5.8.) The notation for the components of the initial simplex tableau is
the same in the two tables. The lower part of Table 5.8 shows any later simplex tableau
in matrix form, whereas the lower part of Table 5.10 gives the final tableau in matrix form.
Note that the matrix B�1 in Table 5.8 is in the same location as S* in Table 5.10. Thus,

S* � B�1

when B is the basis matrix for the optimal solution found by the simplex method.
Referring to Table 5.10 again, suppose now that you are given the initial tableau, t and

T, and just y* and S* from the final tableau. How can this information alone be used to cal-
culate the rest of the final tableau? The answer is provided by Table 5.8. This table includes
some information that is not directly relevant to our current discussion, namely, how y* and
S* themselves can be calculated (y* � cBB�1 and S* � B�1) by knowing the set of basic
variables and so the basis matrix B for the optimal solution found by the simplex method.
However, the lower part of this table also shows how the rest of the final tableau can be ob-
tained from the coefficients of the slack variables, which is summarized as follows.

Fundamental Insight

(1) t* � t � y*T � [y*A � c y* y*b].
(2) T* � S*T � [S*A S* S*b].
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TABLE 5.10 General notation for initial and final
simplex tableaux in matrix form,
illustrated by the Wyndor Glass 
Co. problem

Initial Tableau

Row 0: t � [�3, �5 0, 0, 0 0] � [�c 0 0].

Other rows: T � � [A I b].

Combined: � � � � �.

Final Tableau

Row 0: t* � [0, 0 0, �
3
2

�, 1 36] � [z* � c y* Z*].

Other rows: T* � � [A* S* b*].

Combined: � � � � �.Z*

b*

y*

S*
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Thus, by knowing the parameters of the model in the initial tableau (c, A, and b) and only
the coefficients of the slack variables in the final tableau (y* and S*), these equations en-
able calculating all the other numbers in the final tableau.

We already used these two equations when dealing with iteration 2 for the Wyndor
Glass Co. problem in the preceding subsection. In particular, the right-hand side of the
expression for final row 0 for iteration 2 is just t � y*T, and the second line of the ex-
pression for final rows 1 to 3 is just S*T.

Now let us summarize the mathematical logic behind the two equations for the fun-
damental insight. To derive Eq. (2), recall that the entire sequence of algebraic operations
performed by the simplex method (excluding those involving row 0) is equivalent to pre-
multiplying T by some matrix, call it M. Therefore,

T* � MT,

but now we need to identify M. By writing out the component parts of T and T*, this
equation becomes

[A* S* b*] � M [A I b]
� [MA M Mb].

Because the middle (or any other) component of these equal matrices must be the same,
it follows that M � S*, so Eq. (2) is a valid equation.

Equation (1) is derived in a similar fashion by noting that the entire sequence of al-
gebraic operations involving row 0 amounts to adding some linear combination of the
rows in T to t, which is equivalent to adding to t some vector times T. Denoting this vec-
tor by v, we thereby have

t* � t � vT,

but v still needs to be identified. Writing out the component parts of t and t* yields

[z* � c y* Z*] � [�c 0 0] � v [A I b]
� [�c � vA v vb].

Equating the middle component of these equal vectors gives v � y*, which validates
Eq. (1).

Adapting to Other Model Forms

Thus far, the fundamental insight has been described under the assumption that the origi-
nal model is in our standard form, described in Sec. 3.2. However, the above mathemati-
cal logic now reveals just what adjustments are needed for other forms of the original model.
The key is the identity matrix I in the initial tableau, which turns into S* in the final tableau.
If some artificial variables must be introduced into the initial tableau to serve as initial ba-
sic variables, then it is the set of columns (appropriately ordered) for all the initial basic
variables (both slack and artificial) that forms I in this tableau. (The columns for any sur-
plus variables are extraneous.) The same columns in the final tableau provide S* for the
T* � S*T equation and y* for the t* � t � y*T equation. If M’s were introduced into the
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preliminary row 0 as coefficients for artificial variables, then the t for the t* � t � y*T
equation is the row 0 for the initial tableau after these nonzero coefficients for basic vari-
ables are algebraically eliminated. (Alternatively, the preliminary row 0 can be used for t,
but then these M’s must be subtracted from the final row 0 to give y*.) (See Prob. 5.3-11.)

Applications

The fundamental insight has a variety of important applications in linear programming.
One of these applications involves the revised simplex method. As described in the pre-
ceding section (see Table 5.8), this method used B�1 and the initial tableau to calculate
all the relevant numbers in the current tableau for every iteration. It goes even further than
the fundamental insight by using B�1 to calculate y* itself as y* � cBB�1.

Another application involves the interpretation of the shadow prices
( y1*, y2*, . . . , y*m) described in Sec. 4.7. The fundamental insight reveals that Z* (the value
of Z for the optimal solution) is

Z* � y*b � �
m

i�1
yi*bi,

so, e.g.,

Z* � 0b1 � �
3
2

�b2 � b3

for the Wyndor Glass Co. problem. This equation immediately yields the interpretation
for the yi* values given in Sec. 4.7.

Another group of extremely important applications involves various postoptimality
tasks (reoptimization technique, sensitivity analysis, parametric linear programming—
described in Sec. 4.7) that investigate the effect of making one or more changes in the
original model. In particular, suppose that the simplex method already has been applied
to obtain an optimal solution (as well as y* and S*) for the original model, and then these
changes are made. If exactly the same sequence of algebraic operations were to be ap-
plied to the revised initial tableau, what would be the resulting changes in the final tableau?
Because y* and S* don’t change, the fundamental insight reveals the answer immediately.

For example, consider the change from b2 � 12 to b2 � 13 as illustrated in Fig. 4.8
for the Wyndor Glass Co. problem. It is not necessary to solve for the new optimal solu-
tion (x1, x2) � (�

5
3

�, �
1
2
3
�) because the values of the basic variables in the final tableau (b*) are

immediately revealed by the fundamental insight:

� b* � S*b � � .

There is an even easier way to make this calculation. Since the only change is in the sec-
ond component of b (�b2 � 1), which gets premultiplied by only the second column of
S*, the change in b* can be calculated as simply

�b* � �b2 � ,
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so the original values of the basic variables in the final tableau (x3 � 2, x2 � 6, x1 � 2)
now become

� � � .

(If any of these new values were negative, and thus infeasible, then the reoptimization
technique described in Sec. 4.7 would be applied, starting from this revised final tableau.)
Applying incremental analysis to the preceding equation for Z* also immediately yields

�Z* � �
3
2

��b2 � �
3
2

�.

The fundamental insight can be applied to investigating other kinds of changes in the
original model in a very similar fashion; it is the crux of the sensitivity analysis proce-
dure described in the latter part of Chap. 6.

You also will see in the next chapter that the fundamental insight plays a key role in
the very useful duality theory for linear programming.
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Although the simplex method is an algebraic procedure, it is based on some fairly sim-
ple geometric concepts. These concepts enable one to use the algorithm to examine only
a relatively small number of BF solutions before reaching and identifying an optimal 
solution.

Chapter 4 describes how elementary algebraic operations are used to execute the al-
gebraic form of the simplex method, and then how the tableau form of the simplex method
uses the equivalent elementary row operations in the same way. Studying the simplex
method in these forms is a good way of getting started in learning its basic concepts. How-
ever, these forms of the simplex method do not provide the most efficient form for exe-
cution on a computer. Matrix operations are a faster way of combining and executing el-
ementary algebraic operations or row operations. Therefore, by using the matrix form of
the simplex method, the revised simplex method provides an effective way of adapting
the simplex method for computer implementation.

The final simplex tableau includes complete information on how it can be algebraically
reconstructed directly from the initial simplex tableau. This fundamental insight has some
very important applications, especially for postoptimality analysis.

5.4 CONCLUSIONS

1. Bazaraa, M. S., J. J. Jarvis, and H. D. Sherali: Linear Programming and Network Flows, 2d ed.,
Wiley, New York, 1990.

2. Dantzig, G. B., and M. N. Thapa: Linear Programming 1: Introduction, Springer, New York, 1997.
3. Schriver, A: Theory of Linear and Integer Programming, Wiley, New York, 1986.
4. Vanderbei, R. J.: Linear Programming: Foundations and Extensions, Kluwer Academic Pub-

lishers, Boston, MA, 1996.

SELECTED REFERENCES



CHAPTER 5 PROBLEMS 221

A Demonstration Example in OR Tutor:

Fundamental Insight

Interactive Routines:

Enter or Revise a General Linear Programming Model
Set Up for the Simplex Method—Interactive Only
Solve Interactively by the Simplex Method

Files (Chapter 3) for Solving the Wyndor Example:

Excel File
LINGO/LINDO File
MPL/CPLEX File

See Appendix 1 for documentation of the software.

LEARNING AIDS FOR THIS CHAPTER IN YOUR OR COURSEWARE

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example listed above may be helpful.
I: You can check some of your work by using the interactive rou-

tines listed above for the original simplex method.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

5.1-1.* Consider the following problem.

Maximize Z � 3x1 � 2x2,

subject to

2x1 � x2 � 6
x1 � 2x2 � 6

and

x1 � 0, x2 � 0.

(a) Solve this problem graphically. Identify the CPF solutions by
circling them on the graph.

(b) Identify all the sets of two defining equations for this problem.
For each set, solve (if a solution exists) for the corresponding
corner-point solution, and classify it as a CPF solution or cor-
ner-point infeasible solution.

(c) Introduce slack variables in order to write the functional con-
straints in augmented form. Use these slack variables to iden-
tify the basic solution that corresponds to each corner-point so-
lution found in part (b).

PROBLEMS

(d) Do the following for each set of two defining equations from
part (b): Identify the indicating variable for each defining equa-
tion. Display the set of equations from part (c) after deleting
these two indicating (nonbasic) variables. Then use the latter
set of equations to solve for the two remaining variables (the
basic variables). Compare the resulting basic solution to the
corresponding basic solution obtained in part (c).

(e) Without executing the simplex method, use its geometric inter-
pretation (and the objective function) to identify the path (se-
quence of CPF solutions) it would follow to reach the optimal
solution. For each of these CPF solutions in turn, identify the
following decisions being made for the next iteration: (i) which
defining equation is being deleted and which is being added; 
(ii) which indicating variable is being deleted (the entering basic
variable) and which is being added (the leaving basic variable).

5.1-2. Repeat Prob. 5.1-1 for the model in Prob. 3.1-5.

5.1-3. Consider the following problem.

Maximize Z � 2x1 � 3x2,

subject to

�3x1 � x2 � 1
�4x1 � 2x2 � 20
�4x1 � x2 � 10
�x1 � 2x2 � 5

and

x1 � 0, x2 � 0.



(a) Identify the 10 sets of defining equations for this problem. For
each one, solve (if a solution exists) for the corresponding cor-
ner-point solution, and classify it as a CPF solution or corner-
point infeasible solution.

(b) For each corner-point solution, give the corresponding basic
solution and its set of nonbasic variables. (Compare with 
Table 6.9.)

5.1-7. Consider the following problem.

Minimize Z � x1 � 2x2,

subject to

�x1 � x2 � 15
�2x1 � x2 � 90
�2x1 � x2 � 30

and

x1 � 0, x2 � 0.

(a) Solve this problem graphically.
(b) Develop a table giving each of the CPF solutions and the corre-

sponding defining equations, BF solution, and nonbasic variables.

5.1-8. Reconsider the model in Problem 4.6-3.
(a) Identify the 10 sets of defining equations for this problem. For

each one, solve (if a solution exists) for the corresponding cor-
ner-point solution, and classify it as a CPF solution or a cor-
ner-point infeasible solution.

(b) For each corner-point solution, give the corresponding basic
solution and its set of nonbasic variables.

5.1-9. Reconsider the model in Prob. 3.1-4.
(a) Identify the 15 sets of defining equations for this problem. For

each one, solve (if a solution exists) for the corresponding cor-
ner-point solution, and classify it as a CPF solution or a cor-
ner-point infeasible solution.

(b) For each corner-point solution, give the corresponding basic
solution and its set of nonbasic variables.

5.1-10. Each of the following statements is true under most cir-
cumstances, but not always. In each case, indicate when the state-
ment will not be true and why.
(a) The best CPF solution is an optimal solution.
(b) An optimal solution is a CPF solution.
(c) A CPF solution is the only optimal solution if none of its ad-

jacent CPF solutions are better (as measured by the value of
the objective function).

5.1-11. Consider the original form (before augmenting) of a lin-
ear programming problem with n decision variables (each with a
nonnegativity constraint) and m functional constraints. Label each
of the following statements as true or false, and then justify your

(a) Solve this problem graphically. Identify the CPF solutions by
circling them on the graph.

(b) Develop a table giving each of the CPF solutions and the cor-
responding defining equations, BF solution, and nonbasic vari-
ables. Calculate Z for each of these solutions, and use just this
information to identify the optimal solution.

(c) Develop the corresponding table for the corner-point infeasi-
ble solutions, etc. Also identify the sets of defining equations
and nonbasic variables that do not yield a solution.

5.1-4. Consider the following problem.

Maximize Z � 2x1 � x2 � x3,

subject to

3x1 � x2 � x3 � 60
x1 � x2 � 2x3 � 10
x1 � x2 � x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

After slack variables are introduced and then one complete itera-
tion of the simplex method is performed, the following simplex
tableau is obtained.
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(a) Identify the CPF solution obtained at iteration 1.
(b) Identify the constraint boundary equations that define this CPF

solution.

5.1-5. Consider the three-variable linear programming problem
shown in Fig. 5.2.
(a) Construct a table like Table 5.1, giving the set of defining equa-

tions for each CPF solution.
(b) What are the defining equations for the corner-point infeasi-

ble solution (6, 0, 5)?
(c) Identify one of the systems of three constraint boundary equa-

tions that yields neither a CPF solution nor a corner-point in-
feasible solution. Explain why this occurs for this system.

5.1-6. Consider the linear programming problem given in Table
6.1 as the dual problem for the Wyndor Glass Co. example.

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 0 �1 �3 0 �2 0 20
x4 (1) 0 0 �4 �5 1 �3 0 30

1
x1 (2) 0 1 �1 �2 0 �1 0 10
x6 (3) 0 0 �2 �3 0 �1 1 10



5.1-17. Consider the following problem.

Maximize Z � 2x1 � 2x2 � 3x3,

subject to

2x1 � x2 � 2x3 � 4
x1 � x2 � x3 � 3

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 and x5 be the slack variables for the respective functional
constraints. Starting with these two variables as the basic variables
for the initial BF solution, you now are given the information that
the simplex method proceeds as follows to obtain the optimal so-
lution in two iterations: (1) In iteration 1, the entering basic vari-
able is x3 and the leaving basic variable is x4; (2) in iteration 2, the
entering basic variable is x2 and the leaving basic variable is x5.
(a) Develop a three-dimensional drawing of the feasible region for

this problem, and show the path followed by the simplex
method.

(b) Give a geometric interpretation of why the simplex method fol-
lowed this path.

(c) For each of the two edges of the feasible region traversed by
the simplex method, give the equation of each of the two con-
straint boundaries on which it lies, and then give the equation
of the additional constraint boundary at each endpoint.

(d) Identify the set of defining equations for each of the three CPF
solutions (including the initial one) obtained by the simplex
method. Use the defining equations to solve for these solu-
tions.

(e) For each CPF solution obtained in part (d ), give the corre-
sponding BF solution and its set of nonbasic variables. Explain
how these nonbasic variables identify the defining equations
obtained in part (d ).

5.1-18. Consider the following problem.

Maximize Z � 3x1 � 4x2 � 2x3,

subject to

x1 � x2 � x3 � 20
x1 � 2x2 � x3 � 30

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 and x5 be the slack variables for the respective functional
constraints. Starting with these two variables as the basic variables
for the initial BF solution, you now are given the information that
the simplex method proceeds as follows to obtain the optimal so-
lution in two iterations: (1) In iteration 1, the entering basic vari-

answer with specific references (including page citations) to ma-
terial in the chapter.
(a) If a feasible solution is optimal, it must be a CPF solution.
(b) The number of CPF solutions is at least

�
(m

m
�
!n

n
!
)!

�.

(c) If a CPF solution has adjacent CPF solutions that are better (as
measured by Z ), then one of these adjacent CPF solutions must
be an optimal solution.

5.1-12. Label each of the following statements about linear pro-
gramming problems as true or false, and then justify your answer.
(a) If a feasible solution is optimal but not a CPF solution, then

infinitely many optimal solutions exist.
(b) If the value of the objective function is equal at two different

feasible points x* and x**, then all points on the line segment
connecting x* and x** are feasible and Z has the same value
at all those points.

(c) If the problem has n variables (before augmenting), then the
simultaneous solution of any set of n constraint boundary equa-
tions is a CPF solution.

5.1-13. Consider the augmented form of linear programming prob-
lems that have feasible solutions and a bounded feasible region.
Label each of the following statements as true or false, and then
justify your answer by referring to specific statements (with page
citations) in the chapter.
(a) There must be at least one optimal solution.
(b) An optimal solution must be a BF solution.
(c) The number of BF solutions is finite.

5.1-14.* Reconsider the model in Prob. 4.6-10. Now you are given
the information that the basic variables in the optimal solution are
x2 and x3. Use this information to identify a system of three con-
straint boundary equations whose simultaneous solution must be
this optimal solution. Then solve this system of equations to ob-
tain this solution.

5.1-15. Reconsider Prob. 4.3-7. Now use the given information
and the theory of the simplex method to identify a system of three
constraint boundary equations (in x1, x2, x3) whose simultaneous
solution must be the optimal solution, without applying the sim-
plex method. Solve this system of equations to find the optimal
solution.

5.1-16. Reconsider Prob. 4.3-8. Using the given information and
the theory of the simplex method, analyze the constraints of the
problem in order to identify a system of three constraint boundary
equations whose simultaneous solution must be the optimal solu-
tion (not augmented). Then solve this system of equations to ob-
tain this solution.
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method as it goes through one iteration in moving from (2, 4, 3)
to (4, 2, 4). (You are given the information that it is moving along
this line segment.)
(a) What is the entering basic variable?
(b) What is the leaving basic variable?
(c) What is the new BF solution?

5.1-24. Consider a two-variable mathematical programming prob-
lem that has the feasible region shown on the graph, where the six
dots correspond to CPF solutions. The problem has a linear ob-
jective function, and the two dashed lines are objective function
lines passing through the optimal solution (4, 5) and the second-
best CPF solution (2, 5). Note that the nonoptimal solution (2, 5)
is better than both of its adjacent CPF solutions, which violates
Property 3 in Sec. 5.1 for CPF solutions in linear programming.
Demonstrate that this problem cannot be a linear programming
problem by constructing the feasible region that would result if the
six line segments on the boundary were constraint boundaries for
linear programming constraints.

able is x2 and the leaving basic variable is x5; (2) in iteration 2, the
entering basic variable is x1 and the leaving basic variable is x4.

Follow the instructions of Prob. 5.1-17 for this situation.

5.1-19. By inspecting Fig. 5.2, explain why Property 1b for CPF
solutions holds for this problem if it has the following objective
function.
(a) Maximize Z � x3.
(b) Maximize Z � �x1 � 2x3.

5.1-20. Consider the three-variable linear programming problem
shown in Fig. 5.2.
(a) Explain in geometric terms why the set of solutions satisfying

any individual constraint is a convex set, as defined in Ap-
pendix 2.

(b) Use the conclusion in part (a) to explain why the entire feasi-
ble region (the set of solutions that simultaneously satisfies
every constraint) is a convex set.

5.1-21. Suppose that the three-variable linear programming prob-
lem given in Fig. 5.2 has the objective function

Maximize Z � 3x1 � 4x2 � 3x3.

Without using the algebra of the simplex method, apply just its
geometric reasoning (including choosing the edge giving the max-
imum rate of increase of Z ) to determine and explain the path it
would follow in Fig. 5.2 from the origin to the optimal solution.

5.1-22. Consider the three-variable linear programming problem
shown in Fig. 5.2.
(a) Construct a table like Table 5.4, giving the indicating variable

for each constraint boundary equation and original constraint.
(b) For the CPF solution (2, 4, 3) and its three adjacent CPF so-

lutions (4, 2, 4), (0, 4, 2), and (2, 4, 0), construct a table like
Table 5.5, showing the corresponding defining equations, BF
solution, and nonbasic variables.

(c) Use the sets of defining equations from part (b) to demonstrate
that (4, 2, 4), (0, 4, 2), and (2, 4, 0) are indeed adjacent to 
(2, 4, 3), but that none of these three CPF solutions are adja-
cent to each other. Then use the sets of nonbasic variables from
part (b) to demonstrate the same thing.

5.1-23. The formula for the line passing through (2, 4, 3) and 
(4, 2, 4) in Fig. 5.2 can be written as

(2, 4, 3) � 
[(4, 2, 4) � (2, 4, 3)] � (2, 4, 3) � 
(2, �2, 1),

where 0 � 
 � 1 for just the line segment between these points.
After augmenting with the slack variables x4, x5, x6, x7 for the re-
spective functional constraints, this formula becomes

(2, 4, 3, 2, 0, 0, 0) � 
(2, �2, 1, �2, 2, 0, 0).

Use this formula directly to answer each of the following ques-
tions, and thereby relate the algebra and geometry of the simplex
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x1

1

0 1 2 3 4

2

3

4

5
(2, 5) (4, 5)

x2

5.2-1. Consider the following problem.

Maximize Z � 8x1 � 4x2 � 6x3 � 3x4 � 9x5,

subject to

x1 � 2x2 � 3x3 � 3x4 � x5 � 180 (resource 1)
4x1 � 3x2 � 2x3 � x4 � x5 � 270 (resource 2)
x1 � 3x2 � 2x3 � x4 � 3x5 � 180 (resource 3)



and

x1 � 0, x2 � 0, x3 � 0.

Let x4, x5, and x6 denote the slack variables for the respective con-
straints. After you apply the simplex method, a portion of the fi-
nal simplex tableau is as follows:

and

xj � 0, j � 1, . . . , 5.

You are given the facts that the basic variables in the optimal so-
lution are x3, x1, and x5 and that

�1

� �
2
1
7
� .

(a) Use the given information to identify the optimal solution.
(b) Use the given information to identify the shadow prices for the

three resources.

I 5.2-2.* Work through the revised simplex method step by step
to solve the following problem.

Maximize Z � 5x1 � 8x2 � 7x3 � 4x4 � 6x5,

subject to

2x1 � 3x2 � 3x3 � 2x4 � 2x5 � 20
3x1 � 5x2 � 4x3 � 2x4 � 4x5 � 30

and

xj � 0, j � 1, 2, 3, 4, 5.

I 5.2-3. Work through the revised simplex method step by step to
solve the model given in Prob. 4.3-4.

5.2-4. Reconsider Prob. 5.1-1. For the sequence of CPF solutions
identified in part (e), construct the basis matrix B for each of the
corresponding BF solutions. For each one, invert B manually, use
this B�1 to calculate the current solution, and then perform the next
iteration (or demonstrate that the current solution is optimal).

I 5.2-5. Work through the revised simplex method step by step to
solve the model given in Prob. 4.1-5.

I 5.2-6. Work through the revised simplex method step by step to
solve the model given in Prob. 4.7-6.

I 5.2-7. Work through the revised simplex method step by step to
solve each of the following models:
(a) Model given in Prob. 3.1-5.
(b) Model given in Prob. 4.7-8.

D 5.3-1.* Consider the following problem.

Maximize Z � x1 � x2 � 2x3,

subject to

2x1 � 2x2 � 3x3 � 5
x1 � x2 � x3 � 3
x1 � x2 � x3 � 2



1

�3

10

�3

9

�3

11

�6

2





0

1

3

1

4

1

3

2

0



CHAPTER 5 PROBLEMS 225

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 1 1 0

x2 (1) 0 1 3 0
x6 (2) 0 0 1 1
x3 (3) 0 1 2 0

(a) Use the fundamental insight presented in Sec. 5.3 to identify
the missing numbers in the final simplex tableau. Show your
calculations.

(b) Identify the defining equations of the CPF solution corre-
sponding to the optimal BF solution in the final simplex
tableau.

D 5.3-2. Consider the following problem.

Maximize Z � 4x1 � 3x2 � x3 � 2x4,

subject to

4x1 � 2x2 � x3 � x4 � 5
3x1 � x2 � 2x3 � x4 � 4

and

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

Let x5 and x6 denote the slack variables for the respective con-
straints. After you apply the simplex method, a portion of the fi-
nal simplex tableau is as follows:

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 �1 �1

x2 (1) 0 �1 �1
x4 (2) 0 �1 �2

(a) Use the fundamental insight presented in Sec. 5.3 to identify
the missing numbers in the final simplex tableau. Show your
calculations.

(b) Identify the defining equations of the CPF solution corre-
sponding to the optimal BF solution in the final simplex
tableau.



(a) Use the fundamental insight presented in Sec. 5.3 to identify
the missing numbers in the final simplex tableau. Show your
calculations.

(b) Identify the defining equations of the CPF solution corre-
sponding to the optimal BF solution in the final simplex
tableau.

D 5.3-5. Consider the following problem.

Maximize Z � 20x1 � 6x2 � 8x3,

subject to

8x1 � 2x2 � 3x3 � 200
4x1 � 3x2 � 3x3 � 100
2x1 � 3x2 � x3 � 50
2x1 � 3x2 � x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

Let x4, x5, x6, and x7 denote the slack variables for the first through
fourth constraints, respectively. Suppose that after some number of
iterations of the simplex method, a portion of the current simplex
tableau is as follows:

D 5.3-3. Consider the following problem.

Maximize Z � 6x1 � x2 � 2x3,

subject to

�2x1 � 2x2 � �
1
2

�x3 � 2

�4x1 � 2x2 � �
3
2

�x3 � 3

�2x1 � 2x2 � �
1
2

�x3 � 1

and

x1 � 0, x2 � 0, x3 � 0.

Let x4, x5, and x6 denote the slack variables for the respective con-
straints. After you apply the simplex method, a portion of the fi-
nal simplex tableau is as follows:
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Use the fundamental insight presented in Sec. 5.3 to identify the
missing numbers in the final simplex tableau. Show your calcula-
tions.

D 5.3-4. Consider the following problem.

Maximize Z � x1 � x2 � 2x3,

subject to

x1 � x2 � 3x3 � 15
2x1 � x2 � x3 � 2

�x1 � x2 � x3 � 4

and

x1 � 0, x2 � 0, x3 � 0.

Let x4, x5, and x6 denote the slack variables for the respective con-
straints. After the simplex method is applied, a portion of the final
simplex tableau is as follows:

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 �2 0 �2

x5 (1) 0 �1 1 �2
x3 (2) 0 �2 0 �4
x1 (3) 0 �1 0 �1

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 0 ��
3
2

� ��
1
2

�

x4 (1) 0 1 �1 �2

x3 (2) 0 0 ��
1
2

� ��
1
2

�

x2 (3) 0 0 ��
1
2

� ��
1
2

�

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 x7 Side

Z (0) 1 ��
9
4

� ��
1
2

� 0 0

x1 (1) 0 ��
1
3
6
� ��

1
8

� 0 0

x2 (2) 0 ��
1
4

� ��
1
2

� 0 0

x6 (3) 0 ��
3
8

� ��
1
4

� 1 0

x7 (4) 0 �0 �0 0 1



Now suppose that your boss has inserted her best estimate of
the values of c1, c2, c3, and b without informing you and then has
run the simplex method. You are given the resulting final simplex
tableau below (where x4 and x5 are the slack variables for the re-
spective functional constraints), but you are unable to read the value
of Z*.

(a) Use the fundamental insight presented in Sec. 5.3 to identify
the missing numbers in the current simplex tableau. Show your
calculations.

(b) Indicate which of these missing numbers would be generated
by the revised simplex method in order to perform the next it-
eration.

(c) Identify the defining equations of the CPF solution corre-
sponding to the BF solution in the current simplex tableau.

D 5.3-6. You are using the simplex method to solve the following
linear programming problem.

Maximize Z � 6x1 � 5x2 � x3 � 4x4,

subject to

3x1 � 2x2 � 3x3 � x4 � 120
3x1 � 3x2 � x3 � 3x4 � 180

and

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

You have obtained the following final simplex tableau where x5

and x6 are the slack variables for the respective constraints.

CHAPTER 5 PROBLEMS 227

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 0 �
1
4

� 0 �
1
2

� �
3
4

� �
5
4

� Z*

x1 (1) 0 1 �
1
1
1
2
� 0 �

5
6

� �
1
1
2
� �

1
4

� b*1

x3 (2) 0 0 �
1
4

� 1 �
1
2

� ��
1
4

� �
1
4

� b*2

Use the fundamental insight presented in Sec. 5.3 to identify Z*,
b*1, and b*2. Show your calculations.

D 5.3-7. Consider the following problem.

Maximize Z � c1x1 � c2x2 � c3x3,

subject to

x1 � 2x2 � x3 � b
2x1 � x2 � 3x3 � 2b

and

x1 � 0, x2 � 0, x3 � 0.

Note that values have not been assigned to the coefficients in the
objective function (c1, c2, c3), and that the only specification for
the right-hand side of the functional constraints is that the second
one (2b) be twice as large as the first (b).

(a) Use the fundamental insight presented in Sec. 5.3 to identify
the value of (c1, c2, c3) that was used.

(b) Use the fundamental insight presented in Sec. 5.3 to identify
the value of b that was used.

(c) Calculate the value of Z* in two ways, where one way uses
your results from part (a) and the other way uses your result
from part (b). Show your two methods for finding Z*.

5.3-8. For iteration 2 of the example in Sec. 5.3, the following ex-
pression was shown:

Final row 0 � [�3, �5 0, 0, 0 0]

� [0, �
3
2

�, 1] .

Derive this expression by combining the algebraic operations (in
matrix form) for iterations 1 and 2 that affect row 0.

5.3-9. Most of the description of the fundamental insight presented
in Sec. 5.3 assumes that the problem is in our standard form. Now
consider each of the following other forms, where the additional
adjustments in the initialization step are those presented in Sec.
4.6, including the use of artificial variables and the Big M method
where appropriate. Describe the resulting adjustments in the fun-
damental insight.
(a) Equality constraints
(b) Functional constraints in � form
(c) Negative right-hand sides
(d) Variables allowed to be negative (with no lower bound)

5.3-10. Reconsider the model in Prob. 4.6-6. Use artificial vari-
ables and the Big M method to construct the complete first sim-



4

12

18

0

0

1

0

1

0

1

0

0

0

2

2

1

0

3



Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �
1
7
0
� 0 0 ��

3
5

� ��
4
5

� Z*

x2 (1) 0 �
1
5

� 1 0 ��
3
5

� ��
1
5

� 1

x3 (2) 0 �
3
5

� 0 1 ��
1
5

� ��
2
5

� 3



(c) When you apply the t* � t � vT equation, another option is
to use t � [2, 3, 2, 0, M, 0, M, 0], which is the preliminary
row 0 before the algebraic elimination of the nonzero coeffi-
cients of the initial basic variables x�5 and x�7. Repeat part (b)
for this equation with this new t. After you derive the new v,
show that this equation yields the same final row 0 for this
problem as the equation derived in part (b).

(d) Identify the defining equations of the CPF solution corre-
sponding to the optimal BF solution in the final simplex
tableau.

5.3-12. Consider the following problem.

Maximize Z � 2x1 � 4x2 � 3x3,

subject to

x1 � 3x2 � 2x3 � 20
x1 � 5x2 � 2x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

Let x�4 be the artificial variable for the first constraint. Let x5 and
x�6 be the surplus variable and artificial variable, respectively, for
the second constraint.

You are now given the information that a portion of the final
simplex tableau is as follows:

plex tableau for the simplex method, and then identify the columns
that will contains S* for applying the fundamental insight in the
final tableau. Explain why these are the appropriate columns.

5.3-11. Consider the following problem.

Minimize Z � 2x1 � 3x2 � 2x3,

subject to

x1 � 4x2 � 2x3 � 8
3x1 � 2x2 � 2x3 � 6

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 and x6 be the surplus variables for the first and second con-
straints, respectively. Let x�5 and x�7 be the corresponding artificial
variables. After you make the adjustments described in Sec. 4.6 for
this model form when using the Big M method, the initial simplex
tableau ready to apply the simplex method is as follows:
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After you apply the simplex method, a portion of the final simplex
tableau is as follows:

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x�4 x5 x�6 Side

Z (0) 1 M � 2 0 M

x1 (1) 0 1 0 �0
x5 (2) 0 1 1 �1

(a) Based on the above tableaux, use the fundamental insight pre-
sented in Sec. 5.3 to identify the missing numbers in the final
simplex tableau. Show your calculations.

(b) Examine the mathematical logic presented in Sec. 5.3 to vali-
date the fundamental insight (see the T* � MT and t* �
t � vT equations and the subsequent derivations of M and v).
This logic assumes that the original model fits our standard
form, whereas the current problem does not fit this form. Show
how, with minor adjustments, this same logic applies to the
current problem when t is row 0 and T is rows 1 and 2 in the
initial simplex tableau given above. Derive M and v for this
problem.

(a) Extend the fundamental insight presented in Sec. 5.3 to iden-
tify the missing numbers in the final simplex tableau. Show
your calculations.

(b) Identify the defining equations of the CPF solution corre-
sponding to the optimal solution in the final simplex tableau.

5.3-13. Consider the following problem.

Maximize Z � 3x1 � 7x2 � 2x3,

subject to

�2x1 � 2x2 � x3 � 10
�3x1 � x2 � x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x�5 x6 x�7 Side

Z (0) �1 �4M � 2 �6M � 3 �2M � 2 M 0 M 0 �14M

x�5 (1) �0 1 4 2 �1 1 �0 0 8
x�7 (2) �0 3 2 0 �0 0 �1 1 6

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x�5 x6 x�7 Side

Z (0) �1 M � 0.5 M � 0.5

x2 (1) �0 � 0.3 �0.1
x1 (2) �0 �0.2 �0.4



(d) Construct the basis matrix B for the optimal BF solution, in-
vert B manually, and then use this B�1 to solve for the opti-
mal solution and the shadow prices y*. Then apply the opti-
mality test for the revised simplex method to verify that this
solution is optimal.

(e) Given B�1 and y* from part (d ), use the fundamental insight
presented in Sec. 5.3 to construct the complete final simplex
tableau.

You are given the fact that the basic variables in the optimal solu-
tion are x1 and x3.
(a) Introduce slack variables, and then use the given information

to find the optimal solution directly by Gaussian elimination.
(b) Extend the work in part (a) to find the shadow prices.
(c) Use the given information to identify the defining equations of

the optimal CPF solution, and then solve these equations to
obtain the optimal solution.
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6
Duality Theory and 
Sensitivity Analysis

One of the most important discoveries in the early development of linear programming
was the concept of duality and its many important ramifications. This discovery revealed
that every linear programming problem has associated with it another linear programming
problem called the dual. The relationships between the dual problem and the original
problem (called the primal) prove to be extremely useful in a variety of ways. For ex-
ample, you soon will see that the shadow prices described in Sec. 4.7 actually are pro-
vided by the optimal solution for the dual problem. We shall describe many other valu-
able applications of duality theory in this chapter as well.

One of the key uses of duality theory lies in the interpretation and implementation of
sensitivity analysis. As we already mentioned in Secs. 2.3, 3.3, and 4.7, sensitivity analy-
sis is a very important part of almost every linear programming study. Because most of
the parameter values used in the original model are just estimates of future conditions,
the effect on the optimal solution if other conditions prevail instead needs to be investi-
gated. Furthermore, certain parameter values (such as resource amounts) may represent
managerial decisions, in which case the choice of the parameter values may be the main
issue to be studied, which can be done through sensitivity analysis.

For greater clarity, the first three sections discuss duality theory under the assump-
tion that the primal linear programming problem is in our standard form (but with no re-
striction that the bi values need to be positive). Other forms are then discussed in Sec. 6.4.
We begin the chapter by introducing the essence of duality theory and its applications.
We then describe the economic interpretation of the dual problem (Sec. 6.2) and delve
deeper into the relationships between the primal and dual problems (Sec. 6.3). Section 6.5
focuses on the role of duality theory in sensitivity analysis. The basic procedure for sen-
sitivity analysis (which is based on the fundamental insight of Sec. 5.3) is summarized in
Sec. 6.6 and illustrated in Sec. 6.7.



Thus, the dual problem uses exactly the same parameters as the primal problem, but in dif-
ferent locations. To highlight the comparison, now look at these same two problems in ma-
trix notation (as introduced at the beginning of Sec. 5.2), where c and y � [y1, y2, . . . , ym]
are row vectors but b and x are column vectors.

Primal Problem Dual Problem
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Given our standard form for the primal problem at the left (perhaps after conversion from
another form), its dual problem has the form shown to the right.

Primal Problem Dual Problem

6.1 THE ESSENCE OF DUALITY THEORY

Maximize Z � �
n

j�1
cjxj,

subject to

�
n

j�1
aijxj � bi, for i � 1, 2, . . . , m

and

xj � 0, for j � 1, 2, . . . , n.

Minimize W � �
m

i�1
biyi,

subject to

�
m

i�1
aijyi � cj, for j � 1, 2, . . . , n

and

yi � 0, for i � 1, 2, . . . , m.

Maximize Z � cx,

subject to

Ax � b

and

x � 0.

Minimize W � yb,

subject to

yA � c

and

y � 0.

To illustrate, the primal and dual problems for the Wyndor Glass Co. example of Sec. 3.1
are shown in Table 6.1 in both algebraic and matrix form.

The primal-dual table for linear programming (Table 6.2) also helps to highlight the
correspondence between the two problems. It shows all the linear programming parame-
ters (the aij, bi, and cj) and how they are used to construct the two problems. All the head-
ings for the primal problem are horizontal, whereas the headings for the dual problem are
read by turning the book sideways. For the primal problem, each column (except the Right
Side column) gives the coefficients of a single variable in the respective constraints and
then in the objective function, whereas each row (except the bottom one) gives the param-
eters for a single contraint. For the dual problem, each row (except the Right Side row)
gives the coefficients of a single variable in the respective constraints and then in the ob-
jective function, whereas each column (except the rightmost one) gives the parameters for
a single constraint. In addition, the Right Side column gives the right-hand sides for the
primal problem and the objective function coefficients for the dual problem, whereas the
bottom row gives the objective function coefficients for the primal problem and the right-
hand sides for the dual problem.



TABLE 6.1 Primal and dual problems for the Wyndor Glass Co. example
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Maximize Z � 3x1 � 5x2,

subject to

3x1 � 2x2 � 4

3x1 � 2x2 � 12

3x1 � 2x2 � 18

and x1 � 0, x2 � 0.

Minimize W � 4y1 � 12y2 � 18y3,

subject to

y12y2 � 3y3 � 3

2y2 � 2y3 � 5

and

y1 � 0, y2 � 0, y3 � 0.

Maximize Z � [3, 5]� �,
subject to

� � �

and

� � � � �.0

0

x1

x2






4

12

18






x1

x2






0

2

2

1

0

3






x1

x2 Minimize W � [y1,y2,y3]

subject to

[y1, y2, y3] � [3, 5]

and

[y1, y2, y3] � [0, 0, 0].






0

2

2

1

0

3











4

12

18






Consequently, (1) the parameters for a constraint in either problem are the coeffi-
cients of a variable in the other problem and (2) the coefficients for the objective func-
tion of either problem are the right sides for the other problem. Thus, there is a direct cor-
respondence between these entities in the two problems, as summarized in Table 6.3. These
correspondences are a key to some of the applications of duality theory, including sensi-
tivity analysis.

Origin of the Dual Problem

Duality theory is based directly on the fundamental insight (particularly with regard to
row 0) presented in Sec. 5.3. To see why, we continue to use the notation introduced in
Table 5.10 for row 0 of the final tableau, except for replacing Z* by W* and dropping the
asterisks from z* and y* when referring to any tableau. Thus, at any given iteration of the
simplex method for the primal problem, the current numbers in row 0 are denoted as
shown in the (partial) tableau given in Table 6.4. For the coefficients of x1, x2, . . . , xn,
recall that z � (z1, z2, . . . , zn) denotes the vector that the simplex method added to the
vector of initial coefficients, �c, in the process of reaching the current tableau. (Do not
confuse z with the value of the objective function Z.) Similarly, since the initial coeffi-
cients of xn�1, xn�2, . . . , xn�m in row 0 all are 0, y � (y1, y2, . . . , ym) denotes the vec-
tor that the simplex method has added to these coefficients. Also recall [see Eq. (1) in the

Primal Problem Dual Problem
in Algebraic Form in Algebraic Form

Primal Problem Dual Problem
in Matrix Form in Matrix Form



“Mathematical Summary” subsection of Sec. 5.3] that the fundamental insight led to the
following relationships between these quantities and the parameters of the original model:

W � yb � �
m

i�1
biyi ,

z � yA, so zj � �
m

i�1
aijyi , for j � 1, 2, . . . , n.

To illustrate these relationships with the Wyndor example, the first equation gives 
W � 4y1 � 12y2 � 18y3, which is just the objective function for the dual problem shown
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TABLE 6.2 Primal-dual table for linear programming, illustrated by the Wyndor
Glass Co. example

(a) General Case

Primal Problem

Coefficient of:
Right

x1 x2
… xn Side

y1 a11 a12
… a1n � b1

y2 a21 a22
… a2n � b2

� �
ym am1 am2

… amn � bm

VI VI … VI
c1 c2

… cn

TABLE 6.3 Correspondence between 
entities in primal and 
dual problems

One Problem Other Problem

Constraint i ←→ Variable i
Objective function ←→ Right sides
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Coefficients for 
Objective Function 

(Maximize)

………………………………

(b) Wyndor Glass Co. Example

x1 x2

y1 1 0 � 4
y2 0 2 � 12
y3 3 2 � 18

VI VI
3 5



in the upper right-hand box of Table 6.1. The second set of equations give z1 � y1 � 3y3

and z2 � 2y2 � 2y3, which are the left-hand sides of the functional constraints for this
dual problem. Thus, by subtracting the right-hand sides of these � constraints (c1 � 3 and 
c2 � 5), (z1 � c1) and (z2 � c2) can be interpreted as being the surplus variables for these
functional constraints.

The remaining key is to express what the simplex method tries to accomplish (ac-
cording to the optimality test) in terms of these symbols. Specifically, it seeks a set of ba-
sic variables, and the corresponding BF solution, such that all coefficients in row 0 are
nonnegative. It then stops with this optimal solution. Using the notation in Table 6.4, this
goal is expressed symbolically as follows:

Condition for Optimality:
zj � cj � 0 for j � 1, 2, . . . , n,

yi � 0 for i � 1, 2, . . . , m.

After we substitute the preceding expression for zj, the condition for optimality says that
the simplex method can be interpreted as seeking values for y1, y2, . . . , ym such that
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TABLE 6.4 Notation for entries in row 0 of a simplex tableau

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2
… xn xn�1 xn�2

… xn�m Side

Any Z (0) 1 z1 � c1 z2 � c2
… zn � cn y1 y2

… ym W

W � �
m

i�1
biyi,

subject to

�
m

i�1
aijyi � cj, for j � 1, 2, . . . , n

and

yi � 0, for i � 1, 2, . . . , m.

But, except for lacking an objective for W, this problem is precisely the dual problem! To
complete the formulation, let us now explore what the missing objective should be.

Since W is just the current value of Z, and since the objective for the primal problem
is to maximize Z, a natural first reaction is that W should be maximized also. However,
this is not correct for the following rather subtle reason: The only feasible solutions for this
new problem are those that satisfy the condition for optimality for the primal problem.
Therefore, it is only the optimal solution for the primal problem that corresponds to a fea-
sible solution for this new problem. As a consequence, the optimal value of Z in the pri-
mal problem is the minimum feasible value of W in the new problem, so W should be min-
imized. (The full justification for this conclusion is provided by the relationships we develop
in Sec. 6.3.) Adding this objective of minimizing W gives the complete dual problem.



Consequently, the dual problem may be viewed as a restatement in linear program-
ming terms of the goal of the simplex method, namely, to reach a solution for the primal
problem that satisfies the optimality test. Before this goal has been reached, the corre-
sponding y in row 0 (coefficients of slack variables) of the current tableau must be in-
feasible for the dual problem. However, after the goal is reached, the corresponding y
must be an optimal solution (labeled y*) for the dual problem, because it is a feasible so-
lution that attains the minimum feasible value of W. This optimal solution (y1*, y2*, . . . ,
ym*) provides for the primal problem the shadow prices that were described in Sec. 4.7.
Furthermore, this optimal W is just the optimal value of Z, so the optimal objective func-
tion values are equal for the two problems. This fact also implies that cx � yb for any x
and y that are feasible for the primal and dual problems, respectively.

To illustrate, the left-hand side of Table 6.5 shows row 0 for the respective iterations
when the simplex method is applied to the Wyndor Glass Co. example. In each case, row
0 is partitioned into three parts: the coefficients of the decision variables (x1, x2), the co-
efficients of the slack variables (x3, x4, x5), and the right-hand side (value of Z). Since the
coefficients of the slack variables give the corresponding values of the dual variables 
(y1, y2, y3), each row 0 identifies a corresponding solution for the dual problem, as shown
in the y1, y2, and y3 columns of Table 6.5. To interpret the next two columns, recall that
(z1 � c1) and (z2 � c2) are the surplus variables for the functional constraints in the dual
problem, so the full dual problem after augmenting with these surplus variables is

Minimize W � 4y1 � 12y2 � 18y3,

subject to

y1 � 3y3 � (z1 � c1) � 3
2y2 � 2y3 � (z2 � c2) � 5

and

y1 � 0, y2 � 0, y3 � 0.

Therefore, by using the numbers in the y1, y2, and y3 columns, the values of these surplus
variables can be calculated as

z1 � c1 � y1 � 3y3 � 3,
z2 � c2 � 2y2 � 2y3 � 5.
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TABLE 6.5 Row 0 and corresponding dual solution for each iteration for the
Wyndor Glass Co. example

Primal Problem Dual Problem

Iteration Row 0 y1 y2 y3 z1 � c1 z2 � c2 W

0 [�3, �5 0, 0, 0 0] 0 0 0 �3 �5 0

1 [�3, �0 0, �
5
2

�, 0 30] 0 �
5
2

� 0 �3 �0 30

2 [�0, �0 0, �
3
2

�, 1 36] 0 �
3
2

� 1 �0 �0 36



Thus, a negative value for either surplus variable indicates that the corresponding con-
straint is violated. Also included in the rightmost column of the table is the calculated
value of the dual objective function W � 4y1 � 12y2 � 18y3.

As displayed in Table 6.4, all these quantities to the right of row 0 in Table 6.5 al-
ready are identified by row 0 without requiring any new calculations. In particular, note
in Table 6.5 how each number obtained for the dual problem already appears in row 0 in
the spot indicated by Table 6.4.

For the initial row 0, Table 6.5 shows that the corresponding dual solution 
(y1, y2, y3) � (0, 0, 0) is infeasible because both surplus variables are negative. The first
iteration succeeds in eliminating one of these negative values, but not the other. After two
iterations, the optimality test is satisfied for the primal problem because all the dual vari-
ables and surplus variables are nonnegative. This dual solution (y1*, y2*, y3*) � (0, �

3
2

�, 1) is
optimal (as could be verified by applying the simplex method directly to the dual prob-
lem), so the optimal value of Z and W is Z* � 36 � W*.

Summary of Primal-Dual Relationships

Now let us summarize the newly discovered key relationships between the primal and dual
problems.

Weak duality property: If x is a feasible solution for the primal problem and y
is a feasible solution for the dual problem, then

cx � yb.

For example, for the Wyndor Glass Co. problem, one feasible solution is x1 � 3, x2 � 3,
which yields Z � cx � 24, and one feasible solution for the dual problem is y1 � 1,
y2 � 1, y3 � 2, which yields a larger objective function value W � yb � 52. These are just
sample feasible solutions for the two problems. For any such pair of feasible solutions, this
inequality must hold because the maximum feasible value of Z � cx (36) equals the min-
imum feasible value of the dual objective function W � yb, which is our next property.

Strong duality property: If x* is an optimal solution for the primal problem
and y* is an optimal solution for the dual problem, then

cx* � y*b.

Thus, these two properties imply that cx � yb for feasible solutions if one or both of them
are not optimal for their respective problems, whereas equality holds when both are optimal.

The weak duality property describes the relationship between any pair of solutions
for the primal and dual problems where both solutions are feasible for their respective
problems. At each iteration, the simplex method finds a specific pair of solutions for the
two problems, where the primal solution is feasible but the dual solution is not feasible
(except at the final iteration). Our next property describes this situation and the relation-
ship between this pair of solutions.

Complementary solutions property: At each iteration, the simplex method si-
multaneously identifies a CPF solution x for the primal problem and a comple-
mentary solution y for the dual problem (found in row 0, the coefficients of the
slack variables), where

cx � yb.
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If x is not optimal for the primal problem, then y is not feasible for the dual 
problem.

To illustrate, after one iteration for the Wyndor Glass Co. problem, x1 � 0, x2 � 6, and 
y1 � 0, y2 � �

5
2

�, y3 � 0, with cx � 30 � yb. This x is feasible for the primal problem, but
this y is not feasible for the dual problem (since it violates the constraint, y1 � 3y3 � 3).

The complementary solutions property also holds at the final iteration of the simplex
method, where an optimal solution is found for the primal problem. However, more can
be said about the complementary solution y in this case, as presented in the next property.

Complementary optimal solutions property: At the final iteration, the simplex
method simultaneously identifies an optimal solution x* for the primal problem
and a complementary optimal solution y* for the dual problem (found in row
0, the coefficients of the slack variables), where

cx* � y*b.

The yi* are the shadow prices for the primal problem.

For the example, the final iteration yields x1* � 2, x2* � 6, and y1* � 0, y2* � �
3
2

�, y3* � 1,
with cx* � 36 � y*b.

We shall take a closer look at some of these properties in Sec. 6.3. There you will
see that the complementary solutions property can be extended considerably further. In
particular, after slack and surplus variables are introduced to augment the respective prob-
lems, every basic solution in the primal problem has a complementary basic solution in
the dual problem. We already have noted that the simplex method identifies the values of
the surplus variables for the dual problem as zj � cj in Table 6.4. This result then leads to
an additional complementary slackness property that relates the basic variables in one
problem to the nonbasic variables in the other (Tables 6.7 and 6.8), but more about that
later.

In Sec. 6.4, after describing how to construct the dual problem when the primal prob-
lem is not in our standard form, we discuss another very useful property, which is sum-
marized as follows:

Symmetry property: For any primal problem and its dual problem, all rela-
tionships between them must be symmetric because the dual of this dual prob-
lem is this primal problem.

Therefore, all the preceding properties hold regardless of which of the two problems is
labeled as the primal problem. (The direction of the inequality for the weak duality prop-
erty does require that the primal problem be expressed or reexpressed in maximization
form and the dual problem in minimization form.) Consequently, the simplex method can
be applied to either problem, and it simultaneously will identify complementary solutions
(ultimately a complementary optimal solution) for the other problem.

So far, we have focused on the relationships between feasible or optimal solutions in
the primal problem and corresponding solutions in the dual problem. However, it is pos-
sible that the primal (or dual) problem either has no feasible solutions or has feasible so-
lutions but no optimal solution (because the objective function is unbounded). Our final
property summarizes the primal-dual relationships under all these possibilities.
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Duality theorem: The following are the only possible relationships between the
primal and dual problems.

1. If one problem has feasible solutions and a bounded objective function (and
so has an optimal solution), then so does the other problem, so both the weak
and strong duality properties are applicable.

2. If one problem has feasible solutions and an unbounded objective function
(and so no optimal solution), then the other problem has no feasible solutions.

3. If one problem has no feasible solutions, then the other problem has either no
feasible solutions or an unbounded objective function.

Applications

As we have just implied, one important application of duality theory is that the dual prob-
lem can be solved directly by the simplex method in order to identify an optimal solution
for the primal problem. We discussed in Sec. 4.8 that the number of functional constraints
affects the computational effort of the simplex method far more than the number of vari-
ables does. If m 	 n, so that the dual problem has fewer functional constraints (n) than
the primal problem (m), then applying the simplex method directly to the dual problem
instead of the primal problem probably will achieve a substantial reduction in computa-
tional effort.

The weak and strong duality properties describe key relationships between the pri-
mal and dual problems. One useful application is for evaluating a proposed solution for
the primal problem. For example, suppose that x is a feasible solution that has been pro-
posed for implementation and that a feasible solution y has been found by inspection for
the dual problem such that cx � yb. In this case, x must be optimal without the simplex
method even being applied! Even if cx � yb, then yb still provides an upper bound on
the optimal value of Z, so if yb � cx is small, intangible factors favoring x may lead to
its selection without further ado.

One of the key applications of the complementary solutions property is its use in the
dual simplex method presented in Sec. 7.1. This algorithm operates on the primal prob-
lem exactly as if the simplex method were being applied simultaneously to the dual prob-
lem, which can be done because of this property. Because the roles of row 0 and the right
side in the simplex tableau have been reversed, the dual simplex method requires that row
0 begin and remain nonnegative while the right side begins with some negative values
(subsequent iterations strive to reach a nonnegative right side). Consequently, this algo-
rithm occasionally is used because it is more convenient to set up the initial tableau in
this form than in the form required by the simplex method. Furthermore, it frequently is
used for reoptimization (discussed in Sec. 4.7), because changes in the original model lead
to the revised final tableau fitting this form. This situation is common for certain types of
sensitivity analysis, as you will see later in the chapter.

In general terms, duality theory plays a central role in sensitivity analysis. This role
is the topic of Sec. 6.5.

Another important application is its use in the economic interpretation of the dual prob-
lem and the resulting insights for analyzing the primal problem. You already have seen one
example when we discussed shadow prices in Sec. 4.7. The next section describes how this
interpretation extends to the entire dual problem and then to the simplex method.
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TABLE 6.6 Economic interpretation of the primal problem

Quantity Interpretation

xj Level of activity j ( j � 1, 2, . . . , n)
cj Unit profit from activity j
Z Total profit from all activities
bi Amount of resource i available (i � 1, 2, . . . , m)
aij Amount of resource i consumed by each unit of activity j

The economic interpretation of duality is based directly upon the typical interpretation for
the primal problem (linear programming problem in our standard form) presented in Sec.
3.2. To refresh your memory, we have summarized this interpretation of the primal prob-
lem in Table 6.6.

Interpretation of the Dual Problem

To see how this interpretation of the primal problem leads to an economic interpretation
for the dual problem,1 note in Table 6.4 that W is the value of Z (total profit) at the cur-
rent iteration. Because

W � b1y1 � b2y2 � … � bmym,

each biyi can thereby be interpreted as the current contribution to profit by having bi units
of resource i available for the primal problem. Thus,

The dual variable yi is interpreted as the contribution to profit per unit of resource i
(i � 1, 2, . . . , m), when the current set of basic variables is used to obtain the primal 
solution.

In other words, the yi values (or yi* values in the optimal solution) are just the shadow
prices discussed in Sec. 4.7.

For example, when iteration 2 of the simplex method finds the optimal solution for
the Wyndor problem, it also finds the optimal values of the dual variables (as shown in
the bottom row of Table 6.5) to be y1* � 0, y2* � �

3
2

�, and y3* � 1. These are precisely the
shadow prices found in Sec. 4.7 for this problem through graphical analysis. Recall that
the resources for the Wyndor problem are the production capacities of the three plants be-
ing made available to the two new products under consideration, so that bi is the number
of hours of production time per week being made available in Plant i for these new prod-
ucts, where i � 1, 2, 3. As discussed in Sec. 4.7, the shadow prices indicate that individ-
ually increasing any bi by 1 would increase the optimal value of the objective function
(total weekly profit in units of thousands of dollars) by yi*. Thus, yi* can be interpreted as
the contribution to profit per unit of resource i when using the optimal solution.

6.2 ECONOMIC INTERPRETATION OF DUALITY

1Actually, several slightly different interpretations have been proposed. The one presented here seems to us to
be the most useful because it also directly interprets what the simplex method does in the primal problem.



This interpretation of the dual variables leads to our interpretation of the overall dual
problem. Specifically, since each unit of activity j in the primal problem consumes aij

units of resource i,


m
i�1 ai jyi is interpreted as the current contribution to profit of the mix of resources that

would be consumed if 1 unit of activity j were used ( j � 1, 2, . . . , n).

For the Wyndor problem, 1 unit of activity j corresponds to producing 1 batch of product j
per week, where j � 1, 2. The mix of resources consumed by producing 1 batch of product
1 is 1 hour of production time in Plant 1 and 3 hours in Plant 3. The corresponding mix per
batch of product 2 is 2 hours each in Plants 2 and 3. Thus, y1 � 3y3 and 2y2 � 2y3 are in-
terpreted as the current contributions to profit (in thousands of dollars per week) of these
respective mixes of resources per batch produced per week of the respective products.

For each activity j, this same mix of resources (and more) probably can be used in
other ways as well, but no alternative use should be considered if it is less profitable than
1 unit of activity j. Since cj is interpreted as the unit profit from activity j, each functional
constraint in the dual problem is interpreted as follows:


m
i�1 aijyi � cj says that the actual contribution to profit of the above mix of resources

must be at least as much as if they were used by 1 unit of activity j; otherwise, we would
not be making the best possible use of these resources.

For the Wyndor problem, the unit profits (in thousands of dollars per week) are c1 � 3
and c2 � 5, so the dual functional constraints with this interpretation are y1 � y3 � 3 
and 2y2 � 2y3 � 5. Similarly, the interpretation of the nonnegativity constraints is the 
following:

yi � 0 says that the contribution to profit of resource i (i � 1, 2, . . . , m) must be non-
negative: otherwise, it would be better not to use this resource at all.

The objective

Minimize W � �
m

i�1
biyi

can be viewed as minimizing the total implicit value of the resources consumed by the
activities. For the Wyndor problem, the total implicit value (in thousands of dollars per
week) of the resources consumed by the two products is W � 4y1 � 12y2 � 18y3.

This interpretation can be sharpened somewhat by differentiating between basic and
nonbasic variables in the primal problem for any given BF solution (x1, x2, . . . , xn�m).
Recall that the basic variables (the only variables whose values can be nonzero) always
have a coefficient of zero in row 0. Therefore, referring again to Table 6.4 and the ac-
companying equation for zj, we see that

�
m

i�1
aijyi � cj, if xj 	 0 ( j � 1, 2, . . . , n),

yi � 0, if xn�i 	 0 (i � 1, 2, . . . , m).

(This is one version of the complementary slackness property discussed in the next sec-
tion.) The economic interpretation of the first statement is that whenever an activity j op-
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erates at a strictly positive level (xj 	 0), the marginal value of the resources it consumes
must equal (as opposed to exceeding) the unit profit from this activity. The second state-
ment implies that the marginal value of resource i is zero (yi � 0) whenever the supply
of this resource is not exhausted by the activities (xn�i 	 0). In economic terminology,
such a resource is a “free good”; the price of goods that are oversupplied must drop to
zero by the law of supply and demand. This fact is what justifies interpreting the objec-
tive for the dual problem as minimizing the total implicit value of the resources consumed,
rather than the resources allocated.

To illustrate these two statements, consider the optimal BF solution (2, 6, 2, 0, 0) for
the Wyndor problem. The basic variables are x1, x2, and x3, so their coefficients in row 0
are zero, as shown in the bottom row of Table 6.5. This bottom row also gives the corre-
sponding dual solution: y1* � 0, y2* � �

3
2

�, y3* � 1, with surplus variables (z1* � c1) � 0 and
(z2* � c2) � 0. Since x1 	 0 and x2 	 0, both these surplus variables and direct calcula-
tions indicate that y1* � 3y3* � c1 � 3 and 2y2* � 2y3* � c2 � 5. Therefore, the value of
the resources consumed per batch of the respective products produced does indeed equal
the respective unit profits. The slack variable for the constraint on the amount of Plant 1
capacity used is x3 	 0, so the marginal value of adding any Plant 1 capacity would be
zero (y1* � 0).

Interpretation of the Simplex Method

The interpretation of the dual problem also provides an economic interpretation of what
the simplex method does in the primal problem. The goal of the simplex method is to find
how to use the available resources in the most profitable feasible way. To attain this goal,
we must reach a BF solution that satisfies all the requirements on profitable use of the re-
sources (the constraints of the dual problem). These requirements comprise the condition
for optimality for the algorithm. For any given BF solution, the requirements (dual con-
straints) associated with the basic variables are automatically satisfied (with equality).
However, those associated with nonbasic variables may or may not be satisfied.

In particular, if an original variable xj is nonbasic so that activity j is not used, then
the current contribution to profit of the resources that would be required to undertake each
unit of activity j

�
m

i�1
aijyi

may be smaller than, larger than, or equal to the unit profit cj obtainable from the activ-
ity. If it is smaller, so that zj � cj � 0 in row 0 of the simplex tableau, then these resources
can be used more profitably by initiating this activity. If it is larger (zj � cj 	 0), then
these resources already are being assigned elsewhere in a more profitable way, so they
should not be diverted to activity j. If zj � cj � 0, there would be no change in profitability
by initiating activity j.

Similarly, if a slack variable xn�i is nonbasic so that the total allocation bi of resource
i is being used, then yi is the current contribution to profit of this resource on a marginal
basis. Hence, if yi � 0, profit can be increased by cutting back on the use of this resource
(i.e., increasing xn�i). If yi 	 0, it is worthwhile to continue fully using this resource,
whereas this decision does not affect profitability if yi � 0.
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Therefore, what the simplex method does is to examine all the nonbasic variables in
the current BF solution to see which ones can provide a more profitable use of the re-
sources by being increased. If none can, so that no feasible shifts or reductions in the cur-
rent proposed use of the resources can increase profit, then the current solution must be
optimal. If one or more can, the simplex method selects the variable that, if increased by
1, would improve the profitability of the use of the resources the most. It then actually in-
creases this variable (the entering basic variable) as much as it can until the marginal val-
ues of the resources change. This increase results in a new BF solution with a new row 0
(dual solution), and the whole process is repeated.

The economic interpretation of the dual problem considerably expands our ability to
analyze the primal problem. However, you already have seen in Sec. 6.1 that this inter-
pretation is just one ramification of the relationships between the two problems. In the
next section, we delve into these relationships more deeply.
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Because the dual problem is a linear programming problem, it also has corner-point so-
lutions. Furthermore, by using the augmented form of the problem, we can express these
corner-point solutions as basic solutions. Because the functional constraints have the
� form, this augmented form is obtained by subtracting the surplus (rather than adding
the slack) from the left-hand side of each constraint j ( j � 1, 2, . . . , n).1 This surplus is

zj � cj � �
m

i�1
aijyi � cj , for j � 1, 2, . . . , n.

Thus, zj�cj plays the role of the surplus variable for constraint j (or its slack variable if
the constraint is multiplied through by �1). Therefore, augmenting each corner-point so-
lution (y1, y2, . . . , ym) yields a basic solution (y1, y2, . . . , ym, z1 � c1, z2 � c2, . . . ,
zn � cn) by using this expression for zj � cj. Since the augmented form of the dual prob-
lem has n functional constraints and n � m variables, each basic solution has n basic vari-
ables and m nonbasic variables. (Note how m and n reverse their previous roles here be-
cause, as Table 6.3 indicates, dual constraints correspond to primal variables and dual
variables correspond to primal constraints.)

Complementary Basic Solutions

One of the important relationships between the primal and dual problems is a direct cor-
respondence between their basic solutions. The key to this correspondence is row 0 of the
simplex tableau for the primal basic solution, such as shown in Table 6.4 or 6.5. Such a
row 0 can be obtained for any primal basic solution, feasible or not, by using the formu-
las given in the bottom part of Table 5.8.

Note again in Tables 6.4 and 6.5 how a complete solution for the dual problem (includ-
ing the surplus variables) can be read directly from row 0. Thus, because of its coefficient in
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1You might wonder why we do not also introduce artificial variables into these constraints as discussed in Sec.
4.6. The reason is that these variables have no purpose other than to change the feasible region temporarily as
a convenience in starting the simplex method. We are not interested now in applying the simplex method to the
dual problem, and we do not want to change its feasible region.



row 0, each variable in the primal problem has an associated variable in the dual problem,
as summarized in Table 6.7, first for any problem and then for the Wyndor problem.

A key insight here is that the dual solution read from row 0 must also be a basic so-
lution! The reason is that the m basic variables for the primal problem are required to have
a coefficient of zero in row 0, which thereby requires the m associated dual variables to
be zero, i.e., nonbasic variables for the dual problem. The values of the remaining n (ba-
sic) variables then will be the simultaneous solution to the system of equations given at
the beginning of this section. In matrix form, this system of equations is z � c � yA � c,
and the fundamental insight of Sec. 5.3 actually identifies its solution for z � c and y as
being the corresponding entries in row 0.

Because of the symmetry property quoted in Sec. 6.1 (and the direct association be-
tween variables shown in Table 6.7), the correspondence between basic solutions in the
primal and dual problems is a symmetric one. Furthermore, a pair of complementary ba-
sic solutions has the same objective function value, shown as W in Table 6.4.

Let us now summarize our conclusions about the correspondence between primal and
dual basic solutions, where the first property extends the complementary solutions prop-
erty of Sec. 6.1 to the augmented forms of the two problems and then to any basic solu-
tion (feasible or not) in the primal problem.

Complementary basic solutions property: Each basic solution in the primal
problem has a complementary basic solution in the dual problem, where their
respective objective function values (Z and W) are equal. Given row 0 of the sim-
plex tableau for the primal basic solution, the complementary dual basic solution
(y, z � c) is found as shown in Table 6.4.

The next property shows how to identify the basic and nonbasic variables in this com-
plementary basic solution.

Complementary slackness property: Given the association between variables
in Table 6.7, the variables in the primal basic solution and the complementary
dual basic solution satisfy the complementary slackness relationship shown in
Table 6.8. Furthermore, this relationship is a symmetric one, so that these two
basic solutions are complementary to each other.

The reason for using the name complementary slackness for this latter property is that
it says (in part) that for each pair of associated variables, if one of them has slack in its
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TABLE 6.7 Association between variables in primal and dual problems

Primal Variable Associated Dual Variable

Any problem
(Decision variable) xj zj � cj (surplus variable) j � 1, 2, . . . , n
(Slack variable) xn�i yi (decision variable) i � 1, 2, . . . , m

Decision variables: x1 z1 � c1 (surplus variables)
Decision variables: x2 z2 � c2

Wyndor problem Slack variables:    x3 y1 (decision variables)
Decision variables: x4 y2

Decision variables: x5 y3



nonnegativity constraint (a basic variable 	 0), then the other one must have no slack (a
nonbasic variable � 0). We mentioned in Sec. 6.2 that this property has a useful economic
interpretation for linear programming problems.

Example. To illustrate these two properties, again consider the Wyndor Glass Co. prob-
lem of Sec. 3.1. All eight of its basic solutions (five feasible and three infeasible) are
shown in Table 6.9. Thus, its dual problem (see Table 6.1) also must have eight basic so-
lutions, each complementary to one of these primal solutions, as shown in Table 6.9.

The three BF solutions obtained by the simplex method for the primal problem are
the first, fifth, and sixth primal solutions shown in Table 6.9. You already saw in Table
6.5 how the complementary basic solutions for the dual problem can be read directly from
row 0, starting with the coefficients of the slack variables and then the original variables.
The other dual basic solutions also could be identified in this way by constructing row 0
for each of the other primal basic solutions, using the formulas given in the bottom part
of Table 5.8.

Alternatively, for each primal basic solution, the complementary slackness property
can be used to identify the basic and nonbasic variables for the complementary dual ba-
sic solution, so that the system of equations given at the beginning of the section can be
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TABLE 6.8 Complementary slackness 
relationship for complementary 
basic solutions

Primal Associated
Variable Dual Variable

Basic Nonbasic (m variables)
Nonbasic Basic (n variables)

TABLE 6.9 Complementary basic solutions for the Wyndor Glass Co. example

Primal Problem Dual Problem

No. Basic Solution Feasible? Z � W Feasible? Basic Solution

1 (0, 0, 4, 12, 18) Yes 0 No (0, 0, 0, �3, �5)
2 (4, 0, 0, 12, 6) Yes 12 No (3, 0, 0, 0, �5)
3 (6, 0, �2, 12, 0) No 18 No (0, 0, 1, 0, �3)

4 (4, 3, 0, 6, 0) Yes 27 No ���
9
2

�, 0, �
5
2

�, 0, 0�
5 (0, 6, 4, 0, 6) Yes 30 No �0, �

5
2

�, 0, �3, 0�
6 (2, 6, 2, 0, 0) Yes 36 Yes �0, �

3
2

�, 1, 0, 0�
7 (4, 6, 0, 0, �6) No 42 Yes �3, �

5
2

�, 0, 0, 0�
8 (0, 9, 4, �6, 0) No 45 Yes �0, 0, �

5
2

�, �
9
2

�, 0�



solved directly to obtain this complementary solution. For example, consider the next-to-
last primal basic solution in Table 6.9, (4, 6, 0, 0, �6). Note that x1, x2, and x5 are basic
variables, since these variables are not equal to 0. Table 6.7 indicates that the associated
dual variables are (z1 � c1), (z2 � c2), and y3. Table 6.8 specifies that these associated dual
variables are nonbasic variables in the complementary basic solution, so

z1 � c1 � 0, z2 � c2 � 0, y3 � 0.

Consequently, the augmented form of the functional constraints in the dual problem,

y1 � 3y3 � (z1 � c1) � 3
2y2 � 2y3 � (z2 � c2) � 5,

reduce to

y1 � 0 � 0 � 3
2y2 � 0 � 0 � 5,

so that y1 � 3 and y2 � �
5
2

�. Combining these values with the values of 0 for the nonbasic
variables gives the basic solution (3, �

5
2

�, 0, 0, 0), shown in the rightmost column and next-
to-last row of Table 6.9. Note that this dual solution is feasible for the dual problem be-
cause all five variables satisfy the nonnegativity constraints.

Finally, notice that Table 6.9 demonstrates that (0, �
3
2

�, 1, 0, 0) is the optimal solution
for the dual problem, because it is the basic feasible solution with minimal W (36).

Relationships between Complementary Basic Solutions

We now turn our attention to the relationships between complementary basic solutions,
beginning with their feasibility relationships. The middle columns in Table 6.9 provide
some valuable clues. For the pairs of complementary solutions, notice how the yes or no
answers on feasibility also satisfy a complementary relationship in most cases. In partic-
ular, with one exception, whenever one solution is feasible, the other is not. (It also is
possible for neither solution to be feasible, as happened with the third pair.) The one ex-
ception is the sixth pair, where the primal solution is known to be optimal. The explana-
tion is suggested by the Z � W column. Because the sixth dual solution also is optimal
(by the complementary optimal solutions property), with W � 36, the first five dual so-
lutions cannot be feasible because W � 36 (remember that the dual problem objective is
to minimize W). By the same token, the last two primal solutions cannot be feasible be-
cause Z 	 36.

This explanation is further supported by the strong duality property that optimal pri-
mal and dual solutions have Z � W.

Next, let us state the extension of the complementary optimal solutions property of
Sec. 6.1 for the augmented forms of the two problems.

Complementary optimal basic solutions property: Each optimal basic solution
in the primal problem has a complementary optimal basic solution in the dual
problem, where their respective objective function values (Z and W) are equal.
Given row 0 of the simplex tableau for the optimal primal solution, the comple-
mentary optimal dual solution (y*, z* � c) is found as shown in Table 6.4.
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To review the reasoning behind this property, note that the dual solution (y*, z* � c)
must be feasible for the dual problem because the condition for optimality for the primal
problem requires that all these dual variables (including surplus variables) be nonnegative.
Since this solution is feasible, it must be optimal for the dual problem by the weak dual-
ity property (since W � Z, so y*b � cx* where x* is optimal for the primal problem).

Basic solutions can be classified according to whether they satisfy each of two con-
ditions. One is the condition for feasibility, namely, whether all the variables (including
slack variables) in the augmented solution are nonnegative. The other is the condition for
optimality, namely, whether all the coefficients in row 0 (i.e., all the variables in the com-
plementary basic solution) are nonnegative. Our names for the different types of basic so-
lutions are summarized in Table 6.10. For example, in Table 6.9, primal basic solutions
1, 2, 4, and 5 are suboptimal, 6 is optimal, 7 and 8 are superoptimal, and 3 is neither fea-
sible nor superoptimal.

Given these definitions, the general relationships between complementary basic solu-
tions are summarized in Table 6.11. The resulting range of possible (common) values for
the objective functions (Z � W) for the first three pairs given in Table 6.11 (the last pair can
have any value) is shown in Fig. 6.1. Thus, while the simplex method is dealing directly
with suboptimal basic solutions and working toward optimality in the primal problem, it is
simultaneously dealing indirectly with complementary superoptimal solutions and working
toward feasibility in the dual problem. Conversely, it sometimes is more convenient (or nec-
essary) to work directly with superoptimal basic solutions and to move toward feasibility in
the primal problem, which is the purpose of the dual simplex method described in Sec. 7.1.

The third and fourth columns of Table 6.11 introduce two other common terms that
are used to describe a pair of complementary basic solutions. The two solutions are said
to be primal feasible if the primal basic solution is feasible, whereas they are called dual
feasible if the complementary dual basic solution is feasible for the dual problem. Using
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TABLE 6.10 Classification of basic solutions

Satisfies Condition 
for Optimality?

Yes No

Yes Optimal Suboptimal
Feasible?

No Superoptimal Neither feasible nor superoptimal

TABLE 6.11 Relationships between complementary basic solutions

Both Basic Solutions
Primal Basic Complementary
Solution Dual Basic Solution Primal Feasible? Dual Feasible?

Suboptimal Superoptimal Yes No
Optimal Optimal Yes Yes
Superoptimal Suboptimal No Yes
Neither feasible Neither feasible No No
nor superoptimal nor superoptimal



this terminology, the simplex method deals with primal feasible solutions and strives to-
ward achieving dual feasibility as well. When this is achieved, the two complementary
basic solutions are optimal for their respective problems.

These relationships prove very useful, particularly in sensitivity analysis, as you will
see later in the chapter.
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Thus far it has been assumed that the model for the primal problem is in our standard
form. However, we indicated at the beginning of the chapter that any linear programming
problem, whether in our standard form or not, possesses a dual problem. Therefore, this
section focuses on how the dual problem changes for other primal forms.

Each nonstandard form was discussed in Sec. 4.6, and we pointed out how it is pos-
sible to convert each one to an equivalent standard form if so desired. These conversions
are summarized in Table 6.12. Hence, you always have the option of converting any model
to our standard form and then constructing its dual problem in the usual way. To illus-
trate, we do this for our standard dual problem (it must have a dual also) in Table 6.13.
Note that what we end up with is just our standard primal problem! Since any pair of pri-
mal and dual problems can be converted to these forms, this fact implies that the dual of
the dual problem always is the primal problem. Therefore, for any primal problem and its
dual problem, all relationships between them must be symmetric. This is just the sym-
metry property already stated in Sec. 6.1 (without proof), but now Table 6.13 demon-
strates why it holds.

6.4 ADAPTING TO OTHER PRIMAL FORMS

Primal problem Dual problem

n

�
j�1

cjxj � Z
m

�
i �1

bi yi W � 

Superoptimal Suboptimal

Suboptimal Superoptimal

(optimal) Z* (optimal) W*

FIGURE 6.1
Range of possible values of 
Z � W for certain types of
complementary basic
solutions.



One consequence of the symmetry property is that all the statements made earlier in
the chapter about the relationships of the dual problem to the primal problem also hold
in reverse.

Another consequence is that it is immaterial which problem is called the primal and
which is called the dual. In practice, you might see a linear programming problem fitting
our standard form being referred to as the dual problem. The convention is that the model
formulated to fit the actual problem is called the primal problem, regardless of its form.

Our illustration of how to construct the dual problem for a nonstandard primal problem
did not involve either equality constraints or variables unconstrained in sign. Actually, for
these two forms, a shortcut is available. It is possible to show (see Probs. 6.4-7 and 6.4-2a)
that an equality constraint in the primal problem should be treated just like a � constraint in
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TABLE 6.13 Constructing the dual of the 
dual problem

Minimize W � yb,

subject to

yA � c

and

y � 0.

Maximize (�W) � �yb,

subject to

�yA � �c

and

y � 0.

Dual Problem Converted to Standard Form

Maximize Z � cx,

subject to

Ax � b

and

x � 0.

Minimize (�Z) � �cx,

subject to

�Ax � �b

and

x � 0.

Converted to 
Standard Form Its Dual Problem

→

→


→

TABLE 6.12 Conversions to standard form for linear programming 
models

Nonstandard Form Equivalent Standard Form

Minimize Z Maximize (�Z)

�
n

j�1
aijxj � bi ��

n

j�1
aijxj � �bi

�
n

j�1
aijxj � bi �

n

j�1
aijxj � bi and ��

n

j�1
aijxj � �bi

xj unconstrained in sign xj
� � xj

�, xj
� � 0, xj

� � 0



constructing the dual problem except that the nonnegativity constraint for the corresponding
dual variable should be deleted (i.e., this variable is unconstrained in sign). By the symme-
try property, deleting a nonnegativity constraint in the primal problem affects the dual prob-
lem only by changing the corresponding inequality constraint to an equality constraint.

Another shortcut involves functional constraints in � form for a maximization prob-
lem. The straightforward (but longer) approach would begin by converting each such con-
straint to � form

�
n

j�1
aijxj � bi → � �

n

j�1
aijxj � �bi.

Constructing the dual problem in the usual way then gives �aij as the coefficient of yi in
functional constraint j (which has � form) and a coefficient of �bi in the objective func-
tion (which is to be minimized), where yi also has a nonnegativity constraint yi � 0. Now
suppose we define a new variable yi� � �yi. The changes caused by expressing the dual
problem in terms of yi� instead of yi are that (1) the coefficients of the variable become ai j

for functional constraint j and bi for the objective function and (2) the constraint on the
variable becomes yi� � 0 (a nonpositivity constraint). The shortcut is to use yi� instead of
yi as a dual variable so that the parameters in the original constraint (aij and bi) immedi-
ately become the coefficients of this variable in the dual problem.

Here is a useful mnemonic device for remembering what the forms of dual constraints
should be. With a maximization problem, it might seem sensible for a functional con-
straint to be in � form, slightly odd to be in � form, and somewhat bizarre to be in
� form. Similarly, for a minimization problem, it might seem sensible to be in � form,
slightly odd to be in � form, and somewhat bizarre to be in � form. For the constraint
on an individual variable in either kind of problem, it might seem sensible to have a non-
negativity constraint, somewhat odd to have no constraint (so the variable is unconstrained
in sign), and quite bizarre for the variable to be restricted to be less than or equal to zero.
Now recall the correspondence between entities in the primal and dual problems indicated
in Table 6.3; namely, functional constraint i in one problem corresponds to variable i in
the other problem, and vice versa. The sensible-odd-bizarre method, or SOB method for
short, says that the form of a functional constraint or the constraint on a variable in the
dual problem should be sensible, odd, or bizarre, depending on whether the form for 
the corresponding entity in the primal problem is sensible, odd, or bizarre. Here is a 
summary.

The SOB Method for Determining the Form of Constraints in the Dual.1

1. Formulate the primal problem in either maximization form or minimization form, and
then the dual problem automatically will be in the other form.

2. Label the different forms of functional constraints and of constraints on individual vari-
ables in the primal problem as being sensible, odd, or bizarre according to Table 6.14.
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1This particular mnemonic device (and a related one) for remembering what the forms of dual constraints should
be has been suggested by Arthur T. Benjamin, a mathematics professor at Harvey Mudd College. An interest-
ing and wonderfully bizarre fact about Professor Benjamin himself is that he is one of the world’s great human
calculators who can perform such feats as quickly multiplying six-digit numbers in his head.



The labeling of the functional constraints depends on whether the problem is a maxi-
mization problem (use the second column) or a minimization problem (use the third
column).

3. For each constraint on an individual variable in the dual problem, use the form that
has the same label as for the functional constraint in the primal problem that corre-
sponds to this dual variable (as indicated by Table 6.3).

4. For each functional constraint in the dual problem, use the form that has the same la-
bel as for the constraint on the corresponding individual variable in the primal prob-
lem (as indicated by Table 6.3).

The arrows between the second and third columns of Table 6.14 spell out the corre-
spondence between the forms of constraints in the primal and dual. Note that the corre-
spondence always is between a functional constraint in one problem and a constraint on
an individual variable in the other problem. Since the primal problem can be either a max-
imization or minimization problem, where the dual then will be of the opposite type, the
second column of the table gives the form for whichever is the maximization problem and
the third column gives the form for the other problem (a minimization problem).

To illustrate, consider the radiation therapy example presented in Sec. 3.4. (Its model
is shown on p. 46.) To show the conversion in both directions in Table 6.14, we begin
with the maximization form of this model as the primal problem, before using the (orig-
inal) minimization form.

The primal problem in maximization form is shown on the left side of Table 6.15.
By using the second column of Table 6.14 to represent this problem, the arrows in this
table indicate the form of the dual problem in the third column. These same arrows are
used in Table 6.15 to show the resulting dual problem. (Because of these arrows, we
have placed the functional constraints last in the dual problem rather than in their usual
top position.) Beside each constraint in both problems, we have inserted (in parenthe-
ses) an S, O, or B to label the form as sensible, odd, or bizarre. As prescribed by the
SOB method, the label for each dual constraint always is the same as for the corre-
sponding primal constraint.
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TABLE 6.14 Corresponding primal-dual forms

Primal Problem Dual Problem
Label (or Dual Problem) (or Primal Problem)

Maximize Z (or W) Minimize W (or Z)

Constraint i: Variable yi (or xi):
Sensible � form yi � 0
Odd � form Unconstrained
Bizarre � form yi� � 0

Variable xj (or yj): Constraint j:
Sensible xj � 0 � form
Odd Unconstrained � form
Bizarre xj� � 0 � form

←→
←→
←→

←→
←→
←→



However, there was no need (other than for illustrative purposes) to convert the pri-
mal problem to maximization form. Using the original minimization form, the equivalent
primal problem is shown on the left side of Table 6.16. Now we use the third column of
Table 6.14 to represent this primal problem, where the arrows indicate the form of the
dual problem in the second column. These same arrows in Table 6.16 show the resulting
dual problem on the right side. Again, the labels on the constraints show the application
of the SOB method.

Just as the primal problems in Tables 6.15 and 6.16 are equivalent, the two dual prob-
lems also are completely equivalent. The key to recognizing this equivalency lies in the
fact that the variables in each version of the dual problem are the negative of those in the
other version (y1� � �y1, y2� � �y2, y3 � �y3�). Therefore, for each version, if the vari-
ables in the other version are used instead, and if both the objective function and the con-
straints are multiplied through by �1, then the other version is obtained. (Problem 6.4-5
asks you to verify this.)

If the simplex method is to be applied to either a primal or a dual problem that has
any variables constrained to be nonpositive (for example, y3� � 0 in the dual problem of
Table 6.15), this variable may be replaced by its nonnegative counterpart (for example,
y3 � �y3�).
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TABLE 6.15 One primal-dual form for the radiation therapy example

Maximize �Z � �0.4x1 � 0.5x2,

subject to

(S) 0.3x1 � 0.1x2 � 2.7
(O) 0.5x1 � 0.5x2 � 6
(B) 0.6x1 � 0.4x2 � 6

and

(S) x1 � 0
(S) x2 � 0

Minimize W � 2.7y1 � 6y2 � 6y3�,

subject to

y1 � 0 (S)
y2 unconstrained in sign (O)
y3� � 0 (B)

and

0.3y1 � 0.5y2 � 0.6y3� � �0.4 (S)
0.1y1 � 0.5y2 � 0.4y3� � �0.5 (S)

Primal Problem Dual Problem

←→
←→
←→

←→
←→

TABLE 6.16 The other primal-dual form for the radiation therapy example

Minimize Z � 0.4x1 � 0.5x2,

subject to

(B) 0.3x1 � 0.1x2 � 2.7
(O) 0.5x1 � 0.5x2 � 6
(S) 0.6x1 � 0.4x2 � 6

and

(S) x1 � 0
(S) x2 � 0

Maximize W � 2.7y1� � 6y2� � 6y3,

subject to

y1� � 0 (B)
y2� unconstrained in sign (O)
y3 � 0 (S)

and

0.3y1� � 0.5y2� � 0.6y3 � 0.4 (S)
0.1y1� � 0.5y2� � 0.4y3 � 0.6 (S)

Primal Problem Dual Problem

←→
←→
←→

←→
←→



When artificial variables are used to help the simplex method solve a primal prob-
lem, the duality interpretation of row 0 of the simplex tableau is the following: Since ar-
tificial variables play the role of slack variables, their coefficients in row 0 now provide
the values of the corresponding dual variables in the complementary basic solution for the
dual problem. Since artificial variables are used to replace the real problem with a more
convenient artificial problem, this dual problem actually is the dual of the artificial prob-
lem. However, after all the artificial variables become nonbasic, we are back to the real
primal and dual problems. With the two-phase method, the artificial variables would need
to be retained in phase 2 in order to read off the complete dual solution from row 0. With
the Big M method, since M has been added initially to the coefficient of each artificial
variable in row 0, the current value of each corresponding dual variable is the current co-
efficient of this artificial variable minus M.

For example, look at row 0 in the final simplex tableau for the radiation therapy
example, given at the bottom of Table 4.12 on p. 142. After M is subtracted from the
coefficients of the artificial variables x�4 and x�6, the optimal solution for the corresponding
dual problem given in Table 6.15 is read from the coefficients of x3, x�4, and x�6 as (y1,
y2, y3�) � (0.5, �1.1, 0). As usual, the surplus variables for the two functional constraints
are read from the coefficients of x1 and x2 as z1 � c1 � 0 and z2 � c2 � 0.
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As described further in the next two sections, sensitivity analysis basically involves in-
vestigating the effect on the optimal solution of making changes in the values of the
model parameters aij, bi, and cj. However, changing parameter values in the primal prob-
lem also changes the corresponding values in the dual problem. Therefore, you have your
choice of which problem to use to investigate each change. Because of the primal-dual
relationships presented in Secs. 6.1 and 6.3 (especially the complementary basic solu-
tions property), it is easy to move back and forth between the two problems as desired.
In some cases, it is more convenient to analyze the dual problem directly in order to de-
termine the complementary effect on the primal problem. We begin by considering two
such cases.

Changes in the Coefficients of a Nonbasic Variable

Suppose that the changes made in the original model occur in the coefficients of a vari-
able that was nonbasic in the original optimal solution. What is the effect of these changes
on this solution? Is it still feasible? Is it still optimal?

Because the variable involved is nonbasic (value of zero), changing its coefficients
cannot affect the feasibility of the solution. Therefore, the open question in this case is
whether it is still optimal. As Tables 6.10 and 6.11 indicate, an equivalent question is
whether the complementary basic solution for the dual problem is still feasible after these
changes are made. Since these changes affect the dual problem by changing only one con-
straint, this question can be answered simply by checking whether this complementary
basic solution still satisfies this revised constraint.

We shall illustrate this case in the corresponding subsection of Sec. 6.7 after devel-
oping a relevant example.

6.5 THE ROLE OF DUALITY THEORY IN SENSITIVITY ANALYSIS



Introduction of a New Variable

As indicated in Table 6.6, the decision variables in the model typically represent the lev-
els of the various activities under consideration. In some situations, these activities were
selected from a larger group of possible activities, where the remaining activities were not
included in the original model because they seemed less attractive. Or perhaps these other
activities did not come to light until after the original model was formulated and solved.
Either way, the key question is whether any of these previously unconsidered activities
are sufficiently worthwhile to warrant initiation. In other words, would adding any of these
activities to the model change the original optimal solution?

Adding another activity amounts to introducing a new variable, with the appropriate
coefficients in the functional constraints and objective function, into the model. The only
resulting change in the dual problem is to add a new constraint (see Table 6.3).

After these changes are made, would the original optimal solution, along with the
new variable equal to zero (nonbasic), still be optimal for the primal problem? As for the
preceding case, an equivalent question is whether the complementary basic solution for
the dual problem is still feasible. And, as before, this question can be answered simply
by checking whether this complementary basic solution satisfies one constraint, which in
this case is the new constraint for the dual problem.

To illustrate, suppose for the Wyndor Glass Co. problem of Sec. 3.1 that a possible
third new product now is being considered for inclusion in the product line. Letting xnew

represent the production rate for this product, we show the resulting revised model as 
follows:

Maximize Z � 3x1 � 5x2 � 4xnew,

subject to

x1 � 2x2 � 2xnew � 4
3x1 � 2x2 � 3xnew � 12
3x1 � 2x2 � xnew � 18

and

x1 � 0, x2 � 0, xnew � 0.

After we introduced slack variables, the original optimal solution for this problem with-
out xnew (given by Table 4.8) was (x1, x2, x3, x4, x5) � (2, 6, 2, 0, 0). Is this solution, along
with xnew � 0, still optimal?

To answer this question, we need to check the complementary basic solution for the
dual problem. As indicated by the complementary optimal basic solutions property in Sec.
6.3, this solution is given in row 0 of the final simplex tableau for the primal problem,
using the locations shown in Table 6.4 and illustrated in Table 6.5. Therefore, as given in
both the bottom row of Table 6.5 and the sixth row of Table 6.9, the solution is 

(y1, y2, y3, z1 � c1, z2 � c2) � �0, �
3
2

�, 1, 0, 0�.

(Alternatively, this complementary basic solution can be derived in the way that was illus-
trated in Sec. 6.3 for the complementary basic solution in the next-to-last row of Table 6.9.)
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Since this solution was optimal for the original dual problem, it certainly satisfies the
original dual constraints shown in Table 6.1. But does it satisfy this new dual constraint?

2y1 � 3y2 � y3 � 4

Plugging in this solution, we see that

2(0) � 3��
3
2

�� � (1) � 4

is satisfied, so this dual solution is still feasible (and thus still optimal). Consequently, the
original primal solution (2, 6, 2, 0, 0), along with xnew � 0, is still optimal, so this third
possible new product should not be added to the product line.

This approach also makes it very easy to conduct sensitivity analysis on the coefficients
of the new variable added to the primal problem. By simply checking the new dual constraint,
you can immediately see how far any of these parameter values can be changed before they
affect the feasibility of the dual solution and so the optimality of the primal solution.

Other Applications

Already we have discussed two other key applications of duality theory to sensitivity analy-
sis, namely, shadow prices and the dual simplex method. As described in Secs. 4.7 and 6.2,
the optimal dual solution (y1*, y2*, . . . , ym*) provides the shadow prices for the respective
resources that indicate how Z would change if (small) changes were made in the bi (the re-
source amounts). The resulting analysis will be illustrated in some detail in Sec. 6.7.

In more general terms, the economic interpretation of the dual problem and of the sim-
plex method presented in Sec. 6.2 provides some useful insights for sensitivity analysis.

When we investigate the effect of changing the bi or the aij values (for basic vari-
ables), the original optimal solution may become a superoptimal basic solution (as de-
fined in Table 6.10) instead. If we then want to reoptimize to identify the new optimal so-
lution, the dual simplex method (discussed at the end of Secs. 6.1 and 6.3) should be
applied, starting from this basic solution.

We mentioned in Sec. 6.1 that sometimes it is more efficient to solve the dual prob-
lem directly by the simplex method in order to identify an optimal solution for the pri-
mal problem. When the solution has been found in this way, sensitivity analysis for the
primal problem then is conducted by applying the procedure described in the next two
sections directly to the dual problem and then inferring the complementary effects on the
primal problem (e.g., see Table 6.11). This approach to sensitivity analysis is relatively
straightforward because of the close primal-dual relationships described in Secs. 6.1 and
6.3. (See Prob. 6.6-3.)
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The work of the operations research team usually is not even nearly done when the sim-
plex method has been successfully applied to identify an optimal solution for the model.
As we pointed out at the end of Sec. 3.3, one assumption of linear programming is that
all the parameters of the model (aij, bi, and cj) are known constants. Actually, the param-
eter values used in the model normally are just estimates based on a prediction of future
conditions. The data obtained to develop these estimates often are rather crude or non-
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existent, so that the parameters in the original formulation may represent little more than
quick rules of thumb provided by harassed line personnel. The data may even represent
deliberate overestimates or underestimates to protect the interests of the estimators.

Thus, the successful manager and operations research staff will maintain a healthy
skepticism about the original numbers coming out of the computer and will view them in
many cases as only a starting point for further analysis of the problem. An “optimal” so-
lution is optimal only with respect to the specific model being used to represent the real
problem, and such a solution becomes a reliable guide for action only after it has been ver-
ified as performing well for other reasonable representations of the problem. Furthermore,
the model parameters (particularly bi) sometimes are set as a result of managerial policy
decisions (e.g., the amount of certain resources to be made available to the activities), and
these decisions should be reviewed after their potential consequences are recognized.

For these reasons it is important to perform sensitivity analysis to investigate the ef-
fect on the optimal solution provided by the simplex method if the parameters take on
other possible values. Usually there will be some parameters that can be assigned any rea-
sonable value without the optimality of this solution being affected. However, there may
also be parameters with likely alternative values that would yield a new optimal solution.
This situation is particularly serious if the original solution would then have a substan-
tially inferior value of the objective function, or perhaps even be infeasible!

Therefore, one main purpose of sensitivity analysis is to identify the sensitive param-
eters (i.e., the parameters whose values cannot be changed without changing the optimal
solution). For certain parameters that are not categorized as sensitive, it is also very help-
ful to determine the range of values of the parameter over which the optimal solution will
remain unchanged. (We call this range of values the allowable range to stay optimal.) In
some cases, changing a parameter value can affect the feasibility of the optimal BF solu-
tion. For such parameters, it is useful to determine the range of values over which the op-
timal BF solution (with adjusted values for the basic variables) will remain feasible. (We
call this range of values the allowable range to stay feasible.) In the next section, we will
describe the specific procedures for obtaining this kind of information.

Such information is invaluable in two ways. First, it identifies the more important pa-
rameters, so that special care can be taken to estimate them closely and to select a solu-
tion that performs well for most of their likely values. Second, it identifies the parame-
ters that will need to be monitored particularly closely as the study is implemented. If it
is discovered that the true value of a parameter lies outside its allowable range, this im-
mediately signals a need to change the solution.

For small problems, it would be straightforward to check the effect of a variety of
changes in parameter values simply by reapplying the simplex method each time to see
if the optimal solution changes. This is particularly convenient when using a spreadsheet
formulation. Once the Solver has been set up to obtain an optimal solution, all you have
to do is make any desired change on the spreadsheet and then click on the Solve button
again.

However, for larger problems of the size typically encountered in practice, sensitiv-
ity analysis would require an exorbitant computational effort if it were necessary to reap-
ply the simplex method from the beginning to investigate each new change in a parame-
ter value. Fortunately, the fundamental insight discussed in Sec. 5.3 virtually eliminates
computational effort. The basic idea is that the fundamental insight immediately reveals
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just how any changes in the original model would change the numbers in the final sim-
plex tableau (assuming that the same sequence of algebraic operations originally per-
formed by the simplex method were to be duplicated ). Therefore, after making a few sim-
ple calculations to revise this tableau, we can check easily whether the original optimal
BF solution is now nonoptimal (or infeasible). If so, this solution would be used as the
initial basic solution to restart the simplex method (or dual simplex method) to find the
new optimal solution, if desired. If the changes in the model are not major, only a very
few iterations should be required to reach the new optimal solution from this “advanced”
initial basic solution.

To describe this procedure more specifically, consider the following situation. The
simplex method already has been used to obtain an optimal solution for a linear pro-
gramming model with specified values for the bi, cj, and aij parameters. To initiate sen-
sitivity analysis, at least one of the parameters is changed. After the changes are made,
let b�i, c�j, and a�ij denote the values of the various parameters. Thus, in matrix notation,

b � b�, c � c�, A � A�,

for the revised model.
The first step is to revise the final simplex tableau to reflect these changes. Continu-

ing to use the notation presented in Table 5.10, as well as the accompanying formulas for
the fundamental insight [(1) t* � t � y*T and (2) T* � S*T], we see that the revised fi-
nal tableau is calculated from y* and S* (which have not changed) and the new initial
tableau, as shown in Table 6.17.

Example (Variation 1 of the Wyndor Model). To illustrate, suppose that the first
revision in the model for the Wyndor Glass Co. problem of Sec. 3.1 is the one shown in
Table 6.18.

Thus, the changes from the original model are c1 � 3 � 4, a31 � 3 � 2, and b2 �
12 � 24. Figure 6.2 shows the graphical effect of these changes. For the original model,
the simplex method already has identified the optimal CPF solution as (2, 6), lying at the
intersection of the two constraint boundaries, shown as dashed lines 2x2 � 12 and 
3x1 � 2x2 � 18. Now the revision of the model has shifted both of these constraint bound-
aries as shown by the dark lines 2x2 � 24 and 2x1 � 2x2 � 18. Consequently, the previous
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TABLE 6.17 Revised final simplex tableau resulting from changes in original model

Coefficient of:

Eq. Z Original Variables Slack Variables Right Side

(0) 1 �c� 0 0
New initial tableau

(1, 2, . . . , m) 0 A� I b�

(0) 1 z* � c� � y*A� � c� y* Z* � y*b�
Revised final tableau

(1, 2, . . . , m) 0 A* � S*A� S* b* � S*b�
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TABLE 6.18 The original model and the first revised model (variation 1) for
conducting sensitivity analysis on the Wyndor Glass Co. model

Maximize Z � [3, 5] � �,
subject to

� � �

and

x � 0.


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18






x1

x2






0

2

2

1

0

3






x1

x2
Maximize Z � [4, 5] � �,
subject to
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(�3, 12)

3x1 � 2x2 � 18

2x1 � 2x2 � 18

2x2 � 12

x1 � 4

2x2 � 24

x2 � 0

(2, 6)

(0, 9) optimal 

FIGURE 6.2
Shift of the final corner-point
solution from (2, 6) to 
(�3, 12) for Variation 1 of
the Wyndor Glass Co. model
where c1 � 3 � 4, 
a31 � 3 � 2, and 
b2 � 12 � 24.



CPF solution (2, 6) now shifts to the new intersection (�3, 12), which is a corner-point in-
feasible solution for the revised model. The procedure described in the preceding para-
graphs finds this shift algebraically (in augmented form). Furthermore, it does so in a man-
ner that is very efficient even for huge problems where graphical analysis is impossible.

To carry out this procedure, we begin by displaying the parameters of the revised
model in matrix form:

c� � [4, 5], A� � , b� � .

The resulting new initial simplex tableau is shown at the top of Table 6.19. Below this
tableau is the original final tableau (as first given in Table 4.8). We have drawn dark boxes
around the portions of this final tableau that the changes in the model definitely do not
change, namely, the coefficients of the slack variables in both row 0 (y*) and the rest of
the rows (S*). Thus,

y* � [0, �
3
2

�, 1], S* � .
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TABLE 6.19 Obtaining the revised final simplex tableau for Variation 1 of the
Wyndor Glass Co. model

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �4 �5 0 0 0 0

New initial tableau
x3 (1) 0 1 0 1 0 0 4
x4 (2) 0 0 2 0 1 0 24
x5 (3) 0 2 2 0 0 1 18

Z (0) 1 0 0 0 �
3
2

� 1 36

Final tableau for
x3 (1) 0 0 0 1 �

1
3

� ��
1
3

� 2

original model
x2 (2) 0 0 1 0 �

1
2

� 0 6

x1 (3) 0 1 0 0 ��
1
3

� �
1
3

� 2

Z (0) 1 �2 0 0 �
3
2

� 1 54

x3 (1) 0 �
1
3

� 0 1 �
1
3

� ��
1
3

� 6
Revised final tableau

x2 (2) 0 0 1 0 �
1
2

� 0 12

x1 (3) 0 �
2
3

� 0 0 ��
1
3

� �
1
3

� �2



These coefficients of the slack variables necessarily are unchanged with the same alge-
braic operations originally performed by the simplex method because the coefficients of
these same variables in the initial tableau are unchanged.

However, because other portions of the initial tableau have changed, there will be
changes in the rest of the final tableau as well. Using the formulas in Table 6.17, we cal-
culate the revised numbers in the rest of the final tableau as follows:

z* � c� � [0, �
3
2

�, 1] � [4, 5] � [�2, 0], Z* � [0, �
3
2

�, 1] � 54,

A* � � ,

b* � � .

The resulting revised final tableau is shown at the bottom of Table 6.19.
Actually, we can substantially streamline these calculations for obtaining the revised

final tableau. Because none of the coefficients of x2 changed in the original model (tableau),
none of them can change in the final tableau, so we can delete their calculation. Several
other original parameters (a11, a21, b1, b3) also were not changed, so another shortcut is
to calculate only the incremental changes in the final tableau in terms of the incremental
changes in the initial tableau, ignoring those terms in the vector or matrix multiplication
that involve zero change in the initial tableau. In particular, the only incremental changes
in the initial tableau are �c1 � 1, �a31 � �1, and �b2 � 12, so these are the only terms
that need be considered. This streamlined approach is shown below, where a zero or dash
appears in each spot where no calculation is needed.

�(z* � c) � y* �A � �c � [0, �
3
2

�, 1] � [1, —] � [�2, —].

�Z* � y* �b � [0, �
3
2

�, 1] � 18.

�A* � S* �A � � .

�b* � S* �b � � .

Adding these increments to the original quantities in the final tableau (middle of Table
6.19) then yields the revised final tableau (bottom of Table 6.19).
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This incremental analysis also provides a useful general insight, namely, that changes
in the final tableau must be proportional to each change in the initial tableau. We illus-
trate in the next section how this property enables us to use linear interpolation or ex-
trapolation to determine the range of values for a given parameter over which the final
basic solution remains both feasible and optimal.

After obtaining the revised final simplex tableau, we next convert the tableau to proper
form from Gaussian elimination (as needed). In particular, the basic variable for row i
must have a coefficient of 1 in that row and a coefficient of 0 in every other row (in-
cluding row 0) for the tableau to be in the proper form for identifying and evaluating the
current basic solution. Therefore, if the changes have violated this requirement (which can
occur only if the original constraint coefficients of a basic variable have been changed),
further changes must be made to restore this form. This restoration is done by using Gauss-
ian elimination, i.e., by successively applying step 3 of an iteration for the simplex method
(see Chap. 4) as if each violating basic variable were an entering basic variable. Note that
these algebraic operations may also cause further changes in the right side column, so
that the current basic solution can be read from this column only when the proper form
from Gaussian elimination has been fully restored.

For the example, the revised final simplex tableau shown in the top half of Table
6.20 is not in proper form from Gaussian elimination because of the column for the ba-
sic variable x1. Specifically, the coefficient of x1 in its row (row 3) is �

2
3

� instead of 1, and
it has nonzero coefficients (�2 and �

1
3

�) in rows 0 and 1. To restore proper form, row 3 is
multiplied by �

3
2

�; then 2 times this new row 3 is added to row 0 and �
1
3

� times new row 3 is
subtracted from row 1. This yields the proper form from Gaussian elimination shown in
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TABLE 6.20 Converting the revised final simplex tableau to proper form from
Gaussian elimination for Variation 1 of the Wyndor Glass Co. model

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �2 0 0 �
3
2

� 1 54

Revised final
x3 (1) 0 �

1
3

� 0 1 �
1
3

� ��
1
3

� 6

tableau
x2 (2) 0 0 1 0 �

1
2

� 0 12

x1 (3) 0 �
2
3

� 0 0 ��
1
3

� �
1
3

� �2

Z (0) 1 0 0 0 �
1
2

� 2 48

Converted to proper
x3 (1) 0 0 0 1 �

1
2

� ��
1
2

� 7

form
x2 (2) 0 0 1 0 �

1
2

� 0 12

x1 (3) 0 1 0 0 ��
1
2

� �
1
2

� �3



the bottom half of Table 6.20, which now can be used to identify the new values for the
current (previously optimal) basic solution:

(x1, x2, x3, x4, x5) � (�3, 12, 7, 0, 0).

Because x1 is negative, this basic solution no longer is feasible. However, it is superop-
timal (as defined in Table 6.10), and so dual feasible, because all the coefficients in row 0 still
are nonnegative. Therefore, the dual simplex method can be used to reoptimize (if desired),
by starting from this basic solution. (The sensitivity analysis routine in the OR Courseware
includes this option.) Referring to Fig. 6.2 (and ignoring slack variables), the dual simplex
method uses just one iteration to move from the corner-point solution (�3, 12) to the optimal
CPF solution (0, 9). (It is often useful in sensitivity analysis to identify the solutions that are
optimal for some set of likely values of the model parameters and then to determine which of
these solutions most consistently performs well for the various likely parameter values.)

If the basic solution (�3, 12, 7, 0, 0) had been neither primal feasible nor dual fea-
sible (i.e., if the tableau had negative entries in both the right side column and row 0), ar-
tificial variables could have been introduced to convert the tableau to the proper form for
an initial simplex tableau.1

The General Procedure. When one is testing to see how sensitive the original opti-
mal solution is to the various parameters of the model, the common approach is to check
each parameter (or at least cj and bi) individually. In addition to finding allowable ranges
as described in the next section, this check might include changing the value of the pa-
rameter from its initial estimate to other possibilities in the range of likely values (in-
cluding the endpoints of this range). Then some combinations of simultaneous changes
of parameter values (such as changing an entire functional constraint) may be investigated.
Each time one (or more) of the parameters is changed, the procedure described and il-
lustrated here would be applied. Let us now summarize this procedure.

Summary of Procedure for Sensitivity Analysis

1. Revision of model: Make the desired change or changes in the model to be investigated
next.

2. Revision of final tableau: Use the fundamental insight (as summarized by the formu-
las on the bottom of Table 6.17) to determine the resulting changes in the final sim-
plex tableau. (See Table 6.19 for an illustration.)

3. Conversion to proper form from Gaussian elimination: Convert this tableau to the
proper form for identifying and evaluating the current basic solution by applying (as
necessary) Gaussian elimination. (See Table 6.20 for an illustration.)

4. Feasibility test: Test this solution for feasibility by checking whether all its basic vari-
able values in the right-side column of the tableau still are nonnegative.

5. Optimality test: Test this solution for optimality (if feasible) by checking whether all
its nonbasic variable coefficients in row 0 of the tableau still are nonnegative.

6. Reoptimization: If this solution fails either test, the new optimal solution can be ob-
tained (if desired) by using the current tableau as the initial simplex tableau (and mak-
ing any necessary conversions) for the simplex method or dual simplex method.
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1There also exists a primal-dual algorithm that can be directly applied to such a simplex tableau without any
conversion.



The interactive routine entitled sensitivity analysis in the OR Courseware will enable
you to efficiently practice applying this procedure. In addition, a demonstration in OR Tu-
tor (also entitled sensitivity analysis) provides you with another example.

In the next section, we shall discuss and illustrate the application of this procedure
to each of the major categories of revisions in the original model. This discussion will in-
volve, in part, expanding upon the example introduced in this section for investigating
changes in the Wyndor Glass Co. model. In fact, we shall begin by individually checking
each of the preceding changes. At the same time, we shall integrate some of the applica-
tions of duality theory to sensitivity analysis discussed in Sec. 6.5.
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Sensitivity analysis often begins with the investigation of changes in the values of bi, the
amount of resource i (i � 1, 2, . . . , m) being made available for the activities under con-
sideration. The reason is that there generally is more flexibility in setting and adjusting
these values than there is for the other parameters of the model. As already discussed in
Secs. 4.7 and 6.2, the economic interpretation of the dual variables (the yi) as shadow
prices is extremely useful for deciding which changes should be considered.

Case 1—Changes in bi

Suppose that the only changes in the current model are that one or more of the bi param-
eters (i � 1, 2, . . . , m) has been changed. In this case, the only resulting changes in the
final simplex tableau are in the right-side column. Consequently, the tableau still will be
in proper form from Gaussian elimination and all the nonbasic variable coefficients in row
0 still will be nonnegative. Therefore, both the conversion to proper form from Gaussian
elimination and the optimality test steps of the general procedure can be skipped. After
revising the right-side column of the tableau, the only question will be whether all the ba-
sic variable values in this column still are nonnegative (the feasibility test).

As shown in Table 6.17, when the vector of the bi values is changed from b to b�, the
formulas for calculating the new right-side column in the final tableau are

Right side of final row 0: Z* � y*b�,
Right side of final rows 1, 2, . . . , m: b* � S*b�.

(See the bottom of Table 6.17 for the location of the unchanged vector y* and matrix S*
in the final tableau.)

Example (Variation 2 of the Wyndor Model). Sensitivity analysis is begun for
the original Wyndor Glass Co. problem of Sec. 3.1 by examining the optimal values of
the yi dual variables ( y1* � 0, y2* � �

3
2

�, y3* � 1). These shadow prices give the marginal
value of each resource i for the activities (two new products) under consideration, where
marginal value is expressed in the units of Z (thousands of dollars of profit per week). As
discussed in Sec. 4.7 (see Fig. 4.8), the total profit from these activities can be increased
$1,500 per week ( y2* times $1,000 per week) for each additional unit of resource 2 (hour
of production time per week in Plant 2) that is made available. This increase in profit
holds for relatively small changes that do not affect the feasibility of the current basic so-
lution (and so do not affect the yi* values).
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Consequently, the OR team has investigated the marginal profitability from the other
current uses of this resource to determine if any are less than $1,500 per week. This in-
vestigation reveals that one old product is far less profitable. The production rate for this
product already has been reduced to the minimum amount that would justify its market-
ing expenses. However, it can be discontinued altogether, which would provide an addi-
tional 12 units of resource 2 for the new products. Thus, the next step is to determine the
profit that could be obtained from the new products if this shift were made. This shift
changes b2 from 12 to 24 in the linear programming model. Figure 6.3 shows the graph-
ical effect of this change, including the shift in the final corner-point solution from (2, 6)
to (�2, 12). (Note that this figure differs from Fig. 6.2, which depicts Variation 1 of the
Wyndor model, because the constraint 3x1 � 2x2 � 18 has not been changed here.)

Thus, for Variation 2 of the Wyndor model, the only revision in the original model is
the following change in the vector of the bi values:

b � → b� � .

so only b2 has a new value.
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FIGURE 6.3
Feasible region for Variation
2 of the Wyndor Glass Co.
model where b2 � 12 → 24.



Analysis of Variation 2. When the fundamental insight (Table 6.17) is applied, the
effect of this change in b2 on the original final simplex tableau (middle of Table 6.19) is
that the entries in the right-side column change to the following values:

Z* � y*b� � [0, �
3
2

�, 1] � 54,

b* � S*b� � � , so � .

Equivalently, because the only change in the original model is �b2 � 24 � 12 � 12,
incremental analysis can be used to calculate these same values more quickly. Incremen-
tal analysis involves calculating just the increments in the tableau values caused by the
change (or changes) in the original model, and then adding these increments to the orig-
inal values. In this case, the increments in Z* and b* are

�Z* � y*�b � y* � y* ,

�b* � S* �b � S* � S* .

Therefore, using the second component of y* and the second column of S*, the only cal-
culations needed are

�Z* � �
3
2

�(12) � 18, so Z* � 36 � 18 � 54,

�b1* � �
1
3

�(12) � 4, so b1* � 2 � 4 � 6,

�b2* � �
1
2

�(12) � 6, so b2* � 6 � 6 � 12,

�b3* � ��
1
3

�(12) � �4, so b3* � 2 � 4 � �2,

where the original values of these quantities are obtained from the right-side column in
the original final tableau (middle of Table 6.19). The resulting revised final tableau cor-
responds completely to this original final tableau except for replacing the right-side col-
umn with these new values.

Therefore, the current (previously optimal) basic solution has become

(x1, x2, x3, x4, x5) � (�2, 12, 6, 0, 0),

which fails the feasibility test because of the negative value. The dual simplex method
now can be applied, starting with this revised simplex tableau, to find the new optimal so-
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lution. This method leads in just one iteration to the new final simplex tableau shown in
Table 6.21. (Alternatively, the simplex method could be applied from the beginning, which
also would lead to this final tableau in just one iteration in this case.) This tableau indi-
cates that the new optimal solution is

(x1, x2, x3, x4, x5) � (0, 9, 4, 6, 0),

with Z � 45, thereby providing an increase in profit from the new products of 9 units
($9,000 per week) over the previous Z � 36. The fact that x4 � 6 indicates that 6 of the
12 additional units of resource 2 are unused by this solution.

Based on the results with b2 � 24, the relatively unprofitable old product will be
discontinued and the unused 6 units of resource 2 will be saved for some future use.
Since y3* still is positive, a similar study is made of the possibility of changing the al-
location of resource 3, but the resulting decision is to retain the current allocation. There-
fore, the current linear programming model at this point (Variation 2) has the parame-
ter values and optimal solution shown in Table 6.21. This model will be used as the
starting point for investigating other types of changes in the model later in this section.
However, before turning to these other cases, let us take a broader look at the current
case.

The Allowable Range to Stay Feasible. Although �b2 � 12 proved to be too
large an increase in b2 to retain feasibility (and so optimality) with the basic solution
where x1, x2, and x3 are the basic variables (middle of Table 6.19), the above incre-
mental analysis shows immediately just how large an increase is feasible. In particu-
lar, note that

b1* � 2 � �
1
3

� �b2,

b2* � 6 � �
1
2

� �b2,

b3* � 2 � �
1
3

� �b2,
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TABLE 6.21 Data for Variation 2 of the Wyndor Glass Co. model

Final Simplex Tableau after Reoptimization

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �
9
2

� 0 0 0 �
5
2

� 45

x3 (1) 0 1 0 1 0 0 4

x2 (2) 0 �
3
2

� 1 0 0 �
1
2

� 9

x4 (3) 0 �3 0 0 1 �1 6

c1 � 3, c2 � 5 (n � 2)
a11 � 1, a12 � 0, b1 � 4
a21 � 0, a22 � 2, b2 � 24
a31 � 3, a32 � 2, b3 � 18

Model Parameters



where these three quantities are the values of x3, x2, and x1, respectively, for this basic so-
lution. The solution remains feasible, and so optimal, as long as all three quantities re-
main nonnegative.

2 � �
1
3

� �b2 � 0 ⇒ �
1
3

� �b2 � �2 ⇒ �b2 � �6,

6 � �
1
2

� �b2 � 0 ⇒ �
1
2

� �b2 � �6 ⇒ �b2 � �12,

2 � �
1
3

� �b2 � 0 ⇒ 2 � �
1
3

� �b2 ⇒ �b2 � 6.

Therefore, since b2 � 12 � �b2, the solution remains feasible only if

�6 � �b2 � 6, that is, 6 � b2 � 18.

(Verify this graphically in Fig. 6.3.) As introduced in Sec. 4.7, this range of values for b2

is referred to as its allowable range to stay feasible.

For any bi, recall from Sec. 4.7 that its allowable range to stay feasible is the
range of values over which the current optimal BF solution1 (with adjusted val-
ues for the basic variables) remains feasible. Thus, the shadow price for bi re-
mains valid for evaluating the effect on Z of changing bi only as long as bi re-
mains within this allowable range. (It is assumed that the change in this one bi

value is the only change in the model.) The adjusted values for the basic vari-
ables are obtained from the formula b* � S*b�. The calculation of the allowable
range to stay feasible then is based on finding the range of values of bi such that
b* � 0.

Many linear programming software packages use this same technique for automati-
cally generating the allowable range to stay feasible for each bi. (A similar technique, dis-
cussed under Cases 2a and 3, also is used to generate an allowable range to stay optimal
for each cj.) In Chap. 4, we showed the corresponding output for the Excel Solver and
LINDO in Figs. 4.10 and 4.13, respectively. Table 6.22 summarizes this same output with
respect to the bi for the original Wyndor Glass Co. model. For example, both the allow-
able increase and allowable decrease for b2 are 6, that is, �6 � �b2 � 6. The above
analysis shows how these quantities were calculated.
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1When there is more than one optimal BF solution for the current model (before changing bi), we are referring
here to the one obtained by the simplex method.

TABLE 6.22 Typical software output for sensitivity analysis of the right-hand sides
for the original Wyndor Glass Co. model

Constraint Shadow Price Current RHS Allowable Increase Allowable Decrease

Plant 1 0.0 4 
 2
Plant 2 1.5 12 6 6
Plant 3 1.0 18 6 6



Analyzing Simultaneous Changes in Right-Hand Sides. When multiple bi values
are changed simultaneously, the formula b* � S*b� can again be used to see how the right-
hand sides change in the final tableau. If all these right-hand sides still are nonnegative, the
feasibility test will indicate that the revised solution provided by this tableau still is feasi-
ble. Since row 0 has not changed, being feasible implies that this solution also is optimal.

Although this approach works fine for checking the effect of a specific set of changes in
the bi, it does not give much insight into how far the bi can be simultaneously changed from
their original values before the revised solution will no longer be feasible. As part of postop-
timality analysis, the management of an organization often is interested in investigating the
effect of various changes in policy decisions (e.g., the amounts of resources being made avail-
able to the activities under consideration) that determine the right-hand sides. Rather than
considering just one specific set of changes, management may want to explore directions of
changes where some right-hand sides increase while others decrease. Shadow prices are in-
valuable for this kind of exploration. However, shadow prices remain valid for evaluating the
effect of such changes on Z only within certain ranges of changes. For each bi, the allowable
range to stay feasible gives this range if none of the other bi are changing at the same time.
What do these allowable ranges become when some of the bi are changing simultaneously?

A partial answer to this question is provided by the following 100 percent rule, which
combines the allowable changes (increase or decrease) for the individual bi that are given
by the last two columns of a table like Table 6.22.

The 100 Percent Rule for Simultaneous Changes in Right-Hand Sides: The
shadow prices remain valid for predicting the effect of simultaneously changing
the right-hand sides of some of the functional constraints as long as the changes
are not too large. To check whether the changes are small enough, calculate for
each change the percentage of the allowable change (increase or decrease) for that
right-hand side to remain within its allowable range to stay feasible. If the sum of
the percentage changes does not exceed 100 percent, the shadow prices definitely
will still be valid. (If the sum does exceed 100 percent, then we cannot be sure.)

Example (Variation 3 of the Wyndor Model). To illustrate this rule, consider Vari-
ation 3 of the Wyndor Glass Co. model, which revises the original model by changing the
right-hand side vector as follows:

b � � b� � .

The calculations for the 100 percent rule in this case are

b2: 12 � 15. Percentage of allowable increase � 100 ��15 �
6

12
�� � 50%

b3: 18 � 15. Percentage of allowable decrease � 100��18 �
6

15
�� � 50%

Sum � 100%

Since the sum of 100 percent barely does not exceed 100 percent, the shadow prices
definitely are valid for predicting the effect of these changes on Z. In particular, since
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the shadow prices of b2 and b3 are 1.5 and 1, respectively, the resulting change in Z
would be

�Z � 1.5(3) � 1(�3) � 1.5,

so Z* would increase from 36 to 37.5.
Figure 6.4 shows the feasible region for this revised model. (The dashed lines show

the original locations of the revised constraint boundary lines.) The optimal solution now
is the CPF solution (0, 7.5), which gives

Z � 3x1 � 5x2 � 0 � 5(7.5) � 37.5,

just as predicted by the shadow prices. However, note what would happen if either b2 were
further increased above 15 or b3 were further decreased below 15, so that the sum of the
percentages of allowable changes would exceed 100 percent. This would cause the pre-
viously optimal corner-point solution to slide to the left of the x2 axis (x1 � 0), so this in-
feasible solution would no longer be optimal. Consequently, the old shadow prices would
no longer be valid for predicting the new value of Z*.
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Case 2a—Changes in the Coefficients of a Nonbasic Variable

Consider a particular variable xj (fixed j) that is a nonbasic variable in the optimal solu-
tion shown by the final simplex tableau. In Case 2a, the only change in the current model
is that one or more of the coefficients of this variable—cj, a1j , a2j , . . . , amj —have been
changed. Thus, letting c�j and a�ij denote the new values of these parameters, with A�j (col-
umn j of matrix A�) as the vector containing the a�ij, we have

cj → c�j, Aj → A�j

for the revised model.
As described at the beginning of Sec. 6.5, duality theory provides a very convenient

way of checking these changes. In particular, if the complementary basic solution y* in
the dual problem still satisfies the single dual constraint that has changed, then the orig-
inal optimal solution in the primal problem remains optimal as is. Conversely, if y* vio-
lates this dual constraint, then this primal solution is no longer optimal.

If the optimal solution has changed and you wish to find the new one, you can do so
rather easily. Simply apply the fundamental insight to revise the xj column (the only one
that has changed) in the final simplex tableau. Specifically, the formulas in Table 6.17 re-
duce to the following:

Coefficient of xj in final row 0: zj* � c�j � y*A�j � c�j,
Coefficient of xj in final rows 1 to m: Aj* � S*A�j.

With the current basic solution no longer optimal, the new value of zj* � cj now will be
the one negative coefficient in row 0, so restart the simplex method with xj as the initial
entering basic variable.

Note that this procedure is a streamlined version of the general procedure summa-
rized at the end of Sec. 6.6. Steps 3 and 4 (conversion to proper form from Gaussian elim-
ination and the feasibility test) have been deleted as irrelevant, because the only column
being changed in the revision of the final tableau (before reoptimization) is for the non-
basic variable xj. Step 5 (optimality test) has been replaced by a quicker test of optimal-
ity to be performed right after step 1 (revision of model). It is only if this test reveals that
the optimal solution has changed, and you wish to find the new one, that steps 2 and 6
(revision of final tableau and reoptimization) are needed.

Example (Variation 4 of the Wyndor Model). Since x1 is nonbasic in the current
optimal solution (see Table 6.21) for Variation 2 of the Wyndor Glass Co. model, the next
step in its sensitivity analysis is to check whether any reasonable changes in the estimates
of the coefficients of x1 could still make it advisable to introduce product 1. The set of
changes that goes as far as realistically possible to make product 1 more attractive would
be to reset c1 � 4 and a31 � 2. Rather than exploring each of these changes independently
(as is often done in sensitivity analysis), we will consider them together. Thus, the changes
under consideration are

c1 � 3 → c�1 � 4, A1 � → A�1 � .
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These two changes in Variation 2 give us Variation 4 of the Wyndor model. Variation
4 actually is equivalent to Variation 1 considered in Sec. 6.6 and depicted in Fig. 6.2, since
Variation 1 combined these two changes with the change in the original Wyndor model
(b2 � 12 � 24) that gave Variation 2. However, the key difference from the treatment of
Variation 1 in Sec. 6.6 is that the analysis of Variation 4 treats Variation 2 as being the
original model, so our starting point is the final simplex tableau given in Table 6.21 where
x1 now is a nonbasic variable.

The change in a31 revises the feasible region from that shown in Fig. 6.3 to the 
corresponding region in Fig. 6.5. The change in c1 revises the objective function from 
Z � 3x1 � 5x2 to Z � 4x1 � 5x2. Figure 6.5 shows that the optimal objective function
line Z � 45 � 4x1 � 5x2 still passes through the current optimal solution (0, 9), so this
solution remains optimal after these changes in a31 and c1.

To use duality theory to draw this same conclusion, observe that the changes in c1

and a31 lead to a single revised constraint for the dual problem, namely, the constraint
that a11y1 � a21y2 � a31y3 � c1. Both this revised constraint and the current y* (coeffi-
cients of the slack variables in row 0 of Table 6.21) are shown below.

y1* � 0, y2* � 0, y3* � �
5
2

�,

y1 � 3y3 � 3 → y1 � 2y3 � 4,

0 � 2��
5
2

�� � 4.

Since y* still satisfies the revised constraint, the current primal solution (Table 6.21) is
still optimal.

Because this solution is still optimal, there is no need to revise the xj column in the
final tableau (step 2). Nevertheless, we do so below for illustrative purposes.

z1* � c�1 � y*A�1 � c1 � [0, 0, �
5
2

�] � 4 � 1.

A1* � S*A�1 � � .

The fact that z1* � c�1 � 0 again confirms the optimality of the current solution. Since 
z1* � c1 is the surplus variable for the revised constraint in the dual problem, this way of
testing for optimality is equivalent to the one used above.

This completes the analysis of the effect of changing the current model (Variation 2)
to Variation 4. Because any larger changes in the original estimates of the coefficients of
x1 would be unrealistic, the OR team concludes that these coefficients are insensitive pa-
rameters in the current model. Therefore, they will be kept fixed at their best estimates
shown in Table 6.21—c1 � 3 and a31 � 3—for the remainder of the sensitivity analysis.

The Allowable Range to Stay Optimal. We have just described and illustrated how
to analyze simultaneous changes in the coefficients of a nonbasic variable xj. It is com-
mon practice in sensitivity analysis to also focus on the effect of changing just one param-
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eter, cj. As introduced in Sec. 4.7, this involves streamlining the above approach to find
the allowable range to stay optimal for cj.

For any cj, recall from Sec. 4.7 that its allowable range to stay optimal is the range
of values over which the current optimal solution (as obtained by the simplex method
for the current model before cj is changed) remains optimal. (It is assumed that the
change in this one cj is the only change in the current model.) When xj is a nonba-
sic variable for this solution, the solution remains optimal as long as zj* � cj � 0,
where zj* � y*Aj is a constant unaffected by any change in the value of cj. There-
fore, the allowable range to stay optimal for cj can be calculated as cj � y*Aj.

For example, consider the current model (Variation 2) for the Wyndor Glass Co. prob-
lem summarized on the left side of Table 6.21, where the current optimal solution (with
c1 � 3) is given on the right side. When considering only the decision variables, x1 and
x2, this optimal solution is (x1, x2) = (0, 9), as displayed in Fig. 6.3. When just c1 is
changed, this solution remains optimal as long as

c1 � y*A1 � [0, 0, �
5
2

�] � 7�
1
2

�,

so c1 � 7�
1
2

� is the allowable range to stay optimal.
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FIGURE 6.5
Feasible region for Variation
4 of the Wyndor model
where Variation 2 (Fig. 6.3)
has been revised so 
a31 � 3 � 2 and 
c1 � 3 � 4.



An alternative to performing this vector multiplication is to note in Table 6.21 that
z1* � c1 � �

9
2

� (the coefficient of x1 in row 0) when c1 � 3, so z1* � 3 � �
9
2

� � 7�
1
2

�. Since 
z1* � y*A1, this immediately yields the same allowable range.

Figure 6.3 provides graphical insight into why c1 � 7�
1
2

� is the allowable range. At 
c1 � 7�

1
2

�, the objective function becomes Z � 7.5x1 � 5x2 � 2.5(3x1 � 2x2), so the opti-
mal objective line will lie on top of the constraint boundary line 3x1 � 2x2 � 18 shown
in the figure. Thus, at this endpoint of the allowable range, we have multiple optimal so-
lutions consisting of the line segment between (0, 9) and (4, 3). If c1 were to be increased
any further (c1 	 7�

1
2

� ), only (4, 3) would be optimal. Consequently, we need c1 � 7�
1
2

� for
(0, 9) to remain optimal.

For any nonbasic decision variable xj, the value of zj* � cj sometimes is referred to
as the reduced cost for xj, because it is the minimum amount by which the unit cost of
activity j would have to be reduced to make it worthwhile to undertake activity j (increase
xj from zero). Interpreting cj as the unit profit of activity j (so reducing the unit cost in-
creases cj by the same amount), the value of zj* � cj thereby is the maximum allowable
increase in cj to keep the current BF solution optimal.

The sensitivity analysis information generated by linear programming software pack-
ages normally includes both the reduced cost and the allowable range to stay optimal for
each coefficient in the objective function (along with the types of information displayed
in Table 6.22). This was illustrated in Figs. 4.10, 4.12, and 4.13 for the Excel Solver and
LINDO. Table 6.23 displays this information in a typical form for our current model (Vari-
ation 2 of the Wyndor Glass Co. model). The last three columns are used to calculate the
allowable range to stay optimal for each coefficient, so these allowable ranges are

c1 � 3 � 4.5 � 7.5,
c2 � 5 � 3 � 2.

As was discussed in Sec. 4.7, if any of the allowable increases or decreases had turned
out to be zero, this would have been a signpost that the optimal solution given in the table
is only one of multiple optimal solutions. In this case, changing the corresponding coef-
ficient a tiny amount beyond the zero allowed and re-solving would provide another op-
timal CPF solution for the original model.

Thus far, we have described how to calculate the type of information in Table 6.23
for only nonbasic variables. For a basic variable like x2, the reduced cost automatically is
0. We will discuss how to obtain the allowable range to stay optimal for cj when xj is a
basic variable under Case 3.

272 6 DUALITY THEORY AND SENSITIVITY ANALYSIS

TABLE 6.23 Typical software output for sensitivity analysis of the objective
function coefficients for Variation 2 of the Wyndor Glass Co. model

Reduced Current Allowable Allowable
Variable Value Cost Coefficient Increase Decrease

x1 0 4.5 3 4.5 


x2 9 0.0 5 
 3



Analyzing Simultaneous Changes in Objective Function Coefficients. Regard-
less of whether xj is a basic or nonbasic variable, the allowable range to stay optimal for
cj is valid only if this objective function coefficient is the only one being changed. How-
ever, when simultaneous changes are made in the coefficients of the objective function, a
100 percent rule is available for checking whether the original solution must still be opti-
mal. Much like the 100 percent rule for simultaneous changes in right-hand sides, this 100
percent rule combines the allowable changes (increase or decrease) for the individual cj

that are given by the last two columns of a table like Table 6.23, as described below.

The 100 Percent Rule for Simultaneous Changes in Objective Function Co-
efficients: If simultaneous changes are made in the coefficients of the objective
function, calculate for each change the percentage of the allowable change (in-
crease or decrease) for that coefficient to remain within its allowable range to
stay optimal. If the sum of the percentage changes does not exceed 100 percent,
the original optimal solution definitely will still be optimal. (If the sum does ex-
ceed 100 percent, then we cannot be sure.)

Using Table 6.23 (and referring to Fig. 6.3 for visualization), this 100 percent rule
says that (0, 9) will remain optimal for Variation 2 of the Wyndor Glass Co. model even
if we simultaneously increase c1 from 3 and decrease c2 from 5 as long as these changes
are not too large. For example, if c1 is increased by 1.5 (33�

1
3

� percent of the allowable
change), then c2 can be decreased by as much as 2 (66�

2
3

� percent of the allowable change).
Similarly, if c1 is increased by 3 (66�

2
3

� percent of the allowable change), then c2 can only
be decreased by as much as 1 (33�

1
3

� percent of the allowable change). These maximum
changes revise the objective function to either Z � 4.5x1 � 3x2 or Z � 6x1 � 4x2, which
causes the optimal objective function line in Fig. 6.3 to rotate clockwise until it coincides
with the constraint boundary equation 3x1 � 2x2 � 18.

In general, when objective function coefficients change in the same direction, it is
possible for the percentages of allowable changes to sum to more than 100 percent with-
out changing the optimal solution. We will give an example at the end of the discussion
of Case 3.

Case 2b—Introduction of a New Variable

After solving for the optimal solution, we may discover that the linear programming for-
mulation did not consider all the attractive alternative activities. Considering a new ac-
tivity requires introducing a new variable with the appropriate coefficients into the ob-
jective function and constraints of the current model—which is Case 2b.

The convenient way to deal with this case is to treat it just as if it were Case 2a! This
is done by pretending that the new variable xj actually was in the original model with all
its coefficients equal to zero (so that they still are zero in the final simplex tableau) and
that xj is a nonbasic variable in the current BF solution. Therefore, if we change these
zero coefficients to their actual values for the new variable, the procedure (including any
reoptimization) does indeed become identical to that for Case 2a.

In particular, all you have to do to check whether the current solution still is op-
timal is to check whether the complementary basic solution y* satisfies the one new
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dual constraint that corresponds to the new variable in the primal problem. We already
have described this approach and then illustrated it for the Wyndor Glass Co. problem
in Sec. 6.5.

Case 3—Changes in the Coefficients of a Basic Variable

Now suppose that the variable xj (fixed j) under consideration is a basic variable in the
optimal solution shown by the final simplex tableau. Case 3 assumes that the only changes
in the current model are made to the coefficients of this variable.

Case 3 differs from Case 2a because of the requirement that a simplex tableau be in
proper form from Gaussian elimination. This requirement allows the column for a non-
basic variable to be anything, so it does not affect Case 2a. However, for Case 3, the ba-
sic variable xj must have a coefficient of 1 in its row of the simplex tableau and a coeffi-
cient of 0 in every other row (including row 0). Therefore, after the changes in the xj

column of the final simplex tableau have been calculated,1 it probably will be necessary
to apply Gaussian elimination to restore this form, as illustrated in Table 6.20. In turn,
this step probably will change the value of the current basic solution and may make it ei-
ther infeasible or nonoptimal (so reoptimization may be needed). Consequently, all the
steps of the overall procedure summarized at the end of Sec. 6.6 are required for Case 3.

Before Gaussian elimination is applied, the formulas for revising the xj column are
the same as for Case 2a, as summarized below.

Coefficient of xj in final row 0: zj* � c�j � y*A�j � c�j.
Coefficient of xj in final rows 1 to m: Aj* � S*A�j.

Example (Variation 5 of the Wyndor Model). Because x2 is a basic variable in Table
6.21 for Variation 2 of the Wyndor Glass Co. model, sensitivity analysis of its coefficients fits
Case 3. Given the current optimal solution (x1 � 0, x2 � 9), product 2 is the only new prod-
uct that should be introduced, and its production rate should be relatively large. Therefore,
the key question now is whether the initial estimates that led to the coefficients of x2 in the
current model (Variation 2) could have overestimated the attractiveness of product 2 so much
as to invalidate this conclusion. This question can be tested by checking the most pessimistic
set of reasonable estimates for these coefficients, which turns out to be c2 � 3, a22 � 3, and
a32 � 4. Consequently, the changes to be investigated (Variation 5 of the Wyndor model) are

c2 � 5 → c�2 � 3, A2 � → A�2 � .

The graphical effect of these changes is that the feasible region changes from the one
shown in Fig. 6.3 to the one in Fig. 6.6. The optimal solution in Fig. 6.3 is (x1, x2) �
(0, 9), which is the corner-point solution lying at the intersection of the x1 � 0 and 
3x1 � 2x2 � 18 constraint boundaries. With the revision of the constraints, the corre-
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1For the relatively sophisticated reader, we should point out a possible pitfall for Case 3 that would be discov-
ered at this point. Specifically, the changes in the initial tableau can destroy the linear independence of the
columns of coefficients of basic variables. This event occurs only if the unit coefficient of the basic variable xj

in the final tableau has been changed to zero at this point, in which case more extensive simplex method cal-
culations must be used for Case 3.



sponding corner-point solution in Fig. 6.6 is (0, �
9
2

� ). However, this solution no longer is op-
timal, because the revised objective function of Z � 3x1 � 3x2 now yields a new optimal
solution of (x1, x2) � (4, �

3
2

� ).

Analysis of Variation 5. Now let us see how we draw these same conclusions alge-
braically. Because the only changes in the model are in the coefficients of x2, the only re-
sulting changes in the final simplex tableau (Table 6.21) are in the x2 column. Therefore,
the above formulas are used to recompute just this column.

z2 � c�2 � y*A�2 � c�2 � [0, 0, �
5
2

�] � 3 � 7.

A2* � S*A�2 � � .
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FIGURE 6.6
Feasible region for Variation
5 of the Wyndor model
where Variation 2 (Fig. 6.3)
has been revised so 
c2 � 5 � 3, a22 � 2 � 3,
and a32 � 2 � 4.



(Equivalently, incremental analysis with �c2 � �2, �a22 � 1, and �a32 � 2 can be used
in the same way to obtain this column.)

The resulting revised final tableau is shown at the top of Table 6.24. Note that the
new coefficients of the basic variable x2 do not have the required values, so the conver-
sion to proper form from Gaussian elimination must be applied next. This step involves
dividing row 2 by 2, subtracting 7 times the new row 2 from row 0, and adding the new
row 2 to row 3.

The resulting second tableau in Table 6.24 gives the new value of the current basic
solution, namely, x3 � 4, x2 � �

9
2

�, x4 � �
2
2
1
� (x1 � 0, x5 � 0). Since all these variables are non-

negative, the solution is still feasible. However, because of the negative coefficient of x1

in row 0, we know that it is no longer optimal. Therefore, the simplex method would be
applied to this tableau, with this solution as the initial BF solution, to find the new opti-
mal solution. The initial entering basic variable is x1, with x3 as the leaving basic vari-
able. Just one iteration is needed in this case to reach the new optimal solution x1 � 4,
x2 � �

3
2

�, x4 � �
3
2
9
� (x3 � 0, x5 � 0), as shown in the last tableau of Table 6.24.

All this analysis suggests that c2, a22, and a32 are relatively sensitive parameters. How-
ever, additional data for estimating them more closely can be obtained only by conduct-
ing a pilot run. Therefore, the OR team recommends that production of product 2 be ini-
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New final tableau
after reoptimization
(only one iteration of
the simplex method
needed in this case)

TABLE 6.24 Sensitivity analysis procedure applied to Variation 5 of the 
Wyndor Glass Co. model

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �
9
2

� 7 0 0 �
5
2

� 45

Revised final tableau
x3 (1) 0 1 0 1 0 0 4

x2 (2) 0 �
3
2

� 2 0 0 �
1
2

� 9

x4 (3) 0 �3 �1 0 1 �1 6

Z (0) 1 ��
3
4

� 0 0 0 �
3
4

� �
2
2
7
�

Converted to proper form
x3 (1) 0 1 0 1 0 0 4

x2 (2) 0 �
3
4

� 1 0 0 �
1
4

� �
9
2

�

x4 (3) 0 ��
9
4

� 0 0 1 ��
3
4

� �
2
2
1
�

Z (0) 1 0 0 �
3
4

� 0 �
3
4

� �
3
2
3
�

x1 (1) 0 1 0 1 0 0 4

x2 (2) 0 0 1 ��
3
4

� 0 �
1
4

� �
3
2

�

x4 (3) 0 0 0 �
9
4

� 1 ��
3
4

� �
3
2
9
�



tiated immediately on a small scale (x2 � �
3
2

�) and that this experience be used to guide the
decision on whether the remaining production capacity should be allocated to product 2
or product 1.

The Allowable Range to Stay Optimal. For Case 2a, we described how to find the
allowable range to stay optimal for any cj such that xj is a nonbasic variable for the cur-
rent optimal solution (before cj is changed). When xj is a basic variable instead, the pro-
cedure is somewhat more involved because of the need to convert to proper form from
Gaussian elimination before testing for optimality.

To illustrate the procedure, consider Variation 5 of the Wyndor Glass Co. model (with
c2 � 3, a22 � 3, a23 � 4) that is graphed in Fig. 6.6 and solved in Table 6.24. Since x2 is
a basic variable for the optimal solution (with c2 � 3) given at the bottom of this table,
the steps needed to find the allowable range to stay optimal for c2 are the following:

1. Since x2 is a basic variable, note that its coefficient in the new final row 0 (see the bot-
tom tableau in Table 6.24) is automatically z2* � c2 � 0 before c2 is changed from its
current value of 3.

2. Now increment c2 � 3 by �c2 (so c2 � 3 � �c2). This changes the coefficient noted
in step 1 to z2* � c2 � ��c2, which changes row 0 to

Row 0 � �0, ��c2, �
3
4

�, 0, �
3
4

� �
3
2
3
��.

3. With this coefficient now not zero, we must perform elementary row operations to re-
store proper form from Gaussian elimination. In particular, add to row 0 the product,
�c2 times row 2, to obtain the new row 0, as shown below.

�0, ��c2, ��
3
4

�,�c2 0, �
3
4

��c2 �
3
2
3
��

� �0, ��c2, ��
3
4

��c2, 0, �
1
4

��c2 �
3
2

��c2�
New row 0 � �0, 0, �

3
4

� � �
3
4

��c2, 0, �
3
4

� � �
1
4

��c2 �
3
2
3
� � �

3
2

��c2�
4. Using this new row 0, solve for the range of values of �c2 that keeps the coefficients

of the nonbasic variables (x3 and x5) nonnegative.

�
3
4

� � �
3
4

� �c2 � 0 ⇒ �
3
4

� � �
3
4

� �c2 ⇒ �c2 � 1.

�
3
4

� � �
1
4

� �c2 � 0 ⇒ �
1
4

� �c2 � ��
3
4

� ⇒ �c2 � �3.

Thus, the range of values is �3 � �c2 � 1.
5. Since c2 � 3 � �c2, add 3 to this range of values, which yields

0 � c2 � 4

as the allowable range to stay optimal for c2.
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With just two decision variables, this allowable range can be verified graphically by us-
ing Fig. 6.6 with an objective function of Z � 3x1 � c2x2. With the current value of 
c2 � 3, the optimal solution is (4, �

3
2

�). When c2 is increased, this solution remains optimal only
for c2 � 4. For c2 � 4, (0, �

9
2

�) becomes optimal (with a tie at c2 � 4), because of the constraint
boundary 3x1 � 4x2 � 18. When c2 is decreased instead, (4, �

3
2

�) remains optimal only for 
c2 � 0. For c2 � 0, (4, 0) becomes optimal because of the constraint boundary x1 � 4.

In a similar manner, the allowable range to stay optimal for c1 (with c2 fixed at 3)
can be derived either algebraically or graphically to be c1 � �

9
4

�. (Problem 6.7-13 asks you
to verify this both ways.)

Thus, the allowable decrease for c1 from its current value of 3 is only �
3
4

�. However, it
is possible to decrease c1 by a larger amount without changing the optimal solution if c2

also decreases sufficiently. For example, suppose that both c1 and c2 are decreased by 1
from their current value of 3, so that the objective function changes from Z � 3x1 � 3x2

to Z � 2x1 � 2x2. According to the 100 percent rule for simultaneous changes in objec-
tive function coefficients, the percentages of allowable changes are 133�

1
3

� percent and 33�
1
3

�

percent, respectively, which sum to far over 100 percent. However, the slope of the ob-
jective function line has not changed at all, so (4, �

3
2

�) still is optimal.

Case 4—Introduction of a New Constraint

In this case, a new constraint must be introduced to the model after it has already been
solved. This case may occur because the constraint was overlooked initially or because
new considerations have arisen since the model was formulated. Another possibility is that
the constraint was deleted purposely to decrease computational effort because it appeared
to be less restrictive than other constraints already in the model, but now this impression
needs to be checked with the optimal solution actually obtained.

To see if the current optimal solution would be affected by a new constraint, all you
have to do is to check directly whether the optimal solution satisfies the constraint. If it
does, then it would still be the best feasible solution (i.e., the optimal solution), even if
the constraint were added to the model. The reason is that a new constraint can only elim-
inate some previously feasible solutions without adding any new ones.

If the new constraint does eliminate the current optimal solution, and if you want to
find the new solution, then introduce this constraint into the final simplex tableau (as an
additional row) just as if this were the initial tableau, where the usual additional variable
(slack variable or artificial variable) is designated to be the basic variable for this new
row. Because the new row probably will have nonzero coefficients for some of the other
basic variables, the conversion to proper form from Gaussian elimination is applied next,
and then the reoptimization step is applied in the usual way.

Just as for some of the preceding cases, this procedure for Case 4 is a streamlined ver-
sion of the general procedure summarized at the end of Sec. 6.6. The only question to be
addressed for this case is whether the previously optimal solution still is feasible, so step
5 (optimality test) has been deleted. Step 4 (feasibility test) has been replaced by a much
quicker test of feasibility (does the previously optimal solution satisfy the new constraint?)
to be performed right after step 1 (revision of model). It is only if this test provides a neg-
ative answer, and you wish to reoptimize, that steps 2, 3, and 6 are used (revision of final
tableau, conversion to proper form from Gaussian elimination, and reoptimization).
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Example (Variation 6 of the Wyndor Model). To illustrate this case, we consider
Variation 6 of the Wyndor Glass Co. model, which simply introduces the new constraint

2x1 � 3x2 � 24

into the Variation 2 model given in Table 6.21. The graphical effect is shown in Fig. 6.7.
The previous optimal solution (0, 9) violates the new constraint, so the optimal solution
changes to (0, 8).

To analyze this example algebraically, note that (0, 9) yields 2x1 � 3x2 � 27 	 24,
so this previous optimal solution is no longer feasible. To find the new optimal solution,
add the new constraint to the current final simplex tableau as just described, with the slack
variable x6 as its initial basic variable. This step yields the first tableau shown in Table
6.25. The conversion to proper form from Gaussian elimination then requires subtracting
from the new row the product, 3 times row 2, which identifies the current basic solution
x3 � 4, x2 � 9, x4 � 6, x6 � �3 (x1 � 0, x5 � 0), as shown in the second tableau. Ap-
plying the dual simplex method (described in Sec. 7.1) to this tableau then leads in just
one iteration (more are sometimes needed) to the new optimal solution in the last tableau
of Table 6.25.
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Systematic Sensitivity Analysis—Parametric Programming

So far we have described how to test specific changes in the model parameters. Another
common approach to sensitivity analysis is to vary one or more parameters continuously
over some interval(s) to see when the optimal solution changes.

For example, with Variation 2 of the Wyndor Glass Co. model, rather than beginning
by testing the specific change from b2 � 12 to b�2 � 24, we might instead set

b�2 � 12 � �

and then vary � continuously from 0 to 12 (the maximum value of interest). The geo-
metric interpretation in Fig. 6.3 is that the 2x2 � 12 constraint line is being shifted up-
ward to 2x2 � 12 � �, with � being increased from 0 to 12. The result is that the origi-
nal optimal CPF solution (2, 6) shifts up the 3x1 � 2x2 � 18 constraint line toward 
(�2, 12). This corner-point solution remains optimal as long as it is still feasible (x1 � 0),
after which (0, 9) becomes the optimal solution.

The algebraic calculations of the effect of having �b2 � � are directly analogous to
those for the Case 1 example where �b2 � 12. In particular, we use the expressions for
Z* and b* given for Case 1,
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TABLE 6.25 Sensitivity analysis procedure applied to Variation 6 of the 
Wyndor Glass Co. model

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 �
9
2

� 0 0 0 �
5
2

� 0 45

x3 (1) 0 1 0 1 0 0 0 4

Revised final tableau x2 (2) 0 �
3
2

� 1 0 0 �
1
2

� 0 9

x4 (3) 0 �3 0 0 1 �1 0 6
x6 New 0 2 3 0 0 0 1 24

Z (0) 1 �
9
2

� 0 0 0 �
5
2

� 0 45

x3 (1) 0 1 0 1 0 0 0 4

Converted to proper form x2 (2) 0 �
3
2

� 1 0 0 �
1
2

� 0 9

x4 (3) 0 �3 0 0 1 �1 0 6

x6 New 0 ��
5
2

� 0 0 0 ��
3
2

� 1 �3

Z (0) 1 �
1
3

� 0 0 0 0 �
5
3

� 40

x3 (1) 0 1 0 1 0 0 0 4

x2 (2) 0 �
2
3

� 1 0 0 0 �
1
3

� 8

x4 (3) 0 ��
4
3

� 0 0 1 0 ��
2
3

� 8

x5 New 0 �
5
3

� 0 0 0 1 ��
2
3

� 2

New final tableau
after reoptimization
(only one iteration of
dual simplex method
needed in this case)



Z* � y*b�
b* � S*b�

where b� now is

b� �

and where y* and S* are given in the boxes in the middle tableau in Table 6.19. These
equations indicate that the optimal solution is

Z* � 36 � �
3
2

��

x3 � 2 � �
1
3

��

x2 � 6 � �
1
2

��

(x4 � 0, x5 � 0)

x1 � 2 � �
1
3

��

for � small enough that this solution still is feasible, i.e., for � � 6. For � 	 6, the dual
simplex method (described in Sec. 7.1) yields the tableau shown in Table 6.21 except for
the value of x4. Thus, Z � 45, x3 � 4, x2 � 9 (along with x1 � 0, x5 � 0), and the ex-
pression for b* yields

x4 � b3* � 0(4) � 1(12 � �) � 1(18) � �6 � �.

This information can then be used (along with other data not incorporated into the model
on the effect of increasing b2) to decide whether to retain the original optimal solution
and, if not, how much to increase b2.

In a similar way, we can investigate the effect on the optimal solution of varying sev-
eral parameters simultaneously. When we vary just the bi parameters, we express the new
value bi in terms of the original value bi as follows:

b�i � bi � �i�, for i � 1, 2, . . . , m,

where the �i values are input constants specifying the desired rate of increase (positive or
negative) of the corresponding right-hand side as � is increased.

For example, suppose that it is possible to shift some of the production of a current
Wyndor Glass Co. product from Plant 2 to Plant 3, thereby increasing b2 by decreasing
b3. Also suppose that b3 decreases twice as fast as b2 increases. Then

b�2 � 12 � �
b�3 � 18 � 2�,

where the (nonnegative) value of � measures the amount of production shifted. (Thus,
�1 � 0, �2 � 1, and �3 � �2 in this case.) In Fig. 6.3, the geometric interpretation is that
as � is increased from 0, the 2x2 � 12 constraint line is being pushed up to 2x2 � 12 � �
(ignore the 2x2 � 24 line) and simultaneously the 3x1 � 2x2 � 18 constraint line is being







4

12��

18






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pushed down to 3x1 � 2x2 � 18 � 2�. The original optimal CPF solution (2, 6) lies at the
intersection of the 2x2 � 12 and 3x1 � 2x2 � 18 lines, so shifting these lines causes this
corner-point solution to shift. However, with the objective function of Z � 3x1 � 5x2, this
corner-point solution will remain optimal as long as it is still feasible (x1 � 0).

An algebraic investigation of simultaneously changing b2 and b3 in this way again
involves using the formulas for Case 1 (treating � as representing an unknown number)
to calculate the resulting changes in the final tableau (middle of Table 6.19), namely,

Z* � y*b� � [0, �
3
2

�, 1] � 36 � �
1
2

��,

b* � S*b� � � .

Therefore, the optimal solution becomes

Z* � 36 � �
1
2

��

x3 � 2 � �
(x4 � 0, x5 � 0)

x2 � 6 � �
1
2

��

x1 � 2 � �

for � small enough that this solution still is feasible, i.e., for � � 2. (Check this conclu-
sion in Fig. 6.3.) However, the fact that Z decreases as � increases from 0 indicates that
the best choice for � is � � 0, so none of the possible shifting of production should be
done.

The approach to varying several cj parameters simultaneously is similar. In this case,
we express the new value c�j in terms of the original value of cj as

c�j � cj � �j�, for j � 1, 2, . . . , n,

where the �j are input constants specifying the desired rate of increase (positive or neg-
ative) of cj as � is increased.

To illustrate this case, reconsider the sensitivity analysis of c1 and c2 for the Wyndor
Glass Co. problem that was performed earlier in this section. Starting with Variation 2 of
the Wyndor model presented in Table 6.21 and Fig. 6.3, we separately considered the ef-
fect of changing c1 from 3 to 4 (its most optimistic estimate) and c2 from 5 to 3 (its most
pessimistic estimate). Now we can simultaneously consider both changes, as well as var-
ious intermediate cases with smaller changes, by setting

c�1 � 3 � � and c�2 � 5 � 2�,

where the value of � measures the fraction of the maximum possible change that is made.
The result is to replace the original objective function Z � 3x1 � 5x2 by a function of �

Z(�) � (3 � �)x1 � (5 � 2�)x2,







2 � �

6 � �
1
2

��

2 � �













4

12 � �

18 � 2�













��
1
3

�

0
�
1
3

�

�
1
3

�

�
1
2

�

��
1
3

�

1

0

0













4

12 � �

18 � 2�







282 6 DUALITY THEORY AND SENSITIVITY ANALYSIS



so the optimization now can be performed for any desired (fixed) value of � between 0
and 1. By checking the effect as � increases from 0 to 1, we can determine just when and
how the optimal solution changes as the error in the original estimates of these parame-
ters increases.

Considering these changes simultaneously is especially appropriate if there are fac-
tors that cause the parameters to change together. Are the two products competitive in
some sense, so that a larger-than-expected unit profit for one implies a smaller-than-
expected unit profit for the other? Are they both affected by some exogenous factor, such
as the advertising emphasis of a competitor? Is it possible to simultaneously change both
unit profits through appropriate shifting of personnel and equipment?

In the feasible region shown in Fig. 6.3, the geometric interpretation of changing the
objective function from Z � 3x1 � 5x2 to Z(�) � (3 � �)x1 � (5 � 2�)x2 is that we are
changing the slope of the original objective function line (Z � 45 � 3x1 � 5x2) that passes
through the optimal solution (0, 9). If � is increased enough, this slope will change suf-
ficiently that the optimal solution will switch from (0, 9) to another CPF solution (4, 3).
(Check graphically whether this occurs for � � 1.)

The algebraic procedure for dealing simultaneously with these two changes (�c1 � �
and �c2 � �2�) is shown in Table 6.26. Although the changes now are expressed in terms
of � rather than specific numerical amounts, � is treated just as an unknown number. The
table displays just the relevant rows of the tableaux involved (row 0 and the row for the
basic variable x2). The first tableau shown is just the final tableau for the current version
of the model (before c1 and c2 are changed) as given in Table 6.21. Refer to the formu-
las in Table 6.17. The only changes in the revised final tableau shown next are that �c1

and �c2 are subtracted from the row 0 coefficients of x1 and x2, respectively. To convert
this tableau to proper form from Gaussian elimination, we subtract 2� times row 2 from
row 0, which yields the last tableau shown. The expressions in terms of � for the coeffi-
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TABLE 6.26 Dealing with �c1 � � and �c2 � �2� for Variation 2 of the 
Wyndor model as given in Table 6.21

Coefficient of:

Basic Right
Variable Eq. Z x1 x2 x3 x4 x5 Side

Final tableau
Z (0) 1 �

9
2

� 0 0 0 �
5
2

� 45

x2 (2) 0 �
3
2

� 1 0 0 �
1
2

� 9

Revised final tableau when
Z(�) (0) 1 �

9
2

� � � 2� 0 0 �
5
2

� 45

�c1 � � and �c2 � �2�
x2 (2) 0 �

3
2

� 1 0 0 �
1
2

� 9

Converted to proper form
Z(�) (0) 1 �

9
2

� � 4� 0 0 0 �
5
2

� � � 45 � 18�

x2 (2) 0 �
3
2

� 1 0 0 �
1
2

� 9



cients of nonbasic variables x1 and x5 in row 0 of this tableau show that the current BF
solution remains optimal for � � �

9
8

�. Because � � 1 is the maximum realistic value of �,
this indicates that c1 and c2 together are insensitive parameters with respect to the Varia-
tion 2 model in Table 6.21. There is no need to try to estimate these parameters more
closely unless other parameters change (as occurred for Variation 5 of the Wyndor model).

As we discussed in Sec. 4.7, this way of continuously varying several parameters
simultaneously is referred to as parametric linear programming. Section 7.2 presents
the complete parametric linear programming procedure (including identifying new op-
timal solutions for larger values of �) when just the cj parameters are being varied and
then when just the bi parameters are being varied. Some linear programming software
packages also include routines for varying just the coefficients of a single variable or
just the parameters of a single constraint. In addition to the other applications discussed
in Sec. 4.7, these procedures provide a convenient way of conducting sensitivity analy-
sis systematically.
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Every linear programming problem has associated with it a dual linear programming prob-
lem. There are a number of very useful relationships between the original (primal) prob-
lem and its dual problem that enhance our ability to analyze the primal problem. For ex-
ample, the economic interpretation of the dual problem gives shadow prices that measure
the marginal value of the resources in the primal problem and provides an interpretation
of the simplex method. Because the simplex method can be applied directly to either prob-
lem in order to solve both of them simultaneously, considerable computational effort some-
times can be saved by dealing directly with the dual problem. Duality theory, including
the dual simplex method for working with superoptimal basic solutions, also plays a ma-
jor role in sensitivity analysis.

The values used for the parameters of a linear programming model generally are just
estimates. Therefore, sensitivity analysis needs to be performed to investigate what hap-
pens if these estimates are wrong. The fundamental insight of Sec. 5.3 provides the key
to performing this investigation efficiently. The general objectives are to identify the sen-
sitive parameters that affect the optimal solution, to try to estimate these sensitive param-
eters more closely, and then to select a solution that remains good over the range of likely
values of the sensitive parameters. This analysis is a very important part of most linear
programming studies.

6.8 CONCLUSIONS
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A Demonstration Example in OR Tutor:

Sensitivity Analysis

Interactive Routines:

Enter or Revise a General Linear Programming Model
Solve Interactively by the Simplex Method
Sensitivity Analysis

An Excel Add-In:

Premium Solver

Files (Chapter 3) for Solving the Wyndor Example:

Excel File
LINGO/LINDO File
MPL/CPLEX File

See Appendix 1 for documentation of the software.

LEARNING AIDS FOR THIS CHAPTER IN YOUR OR COURSEWARE

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example listed above may be helpful.
I: We suggest that you use the corresponding interactive routine

listed above (the printout records your work).
C: Use the computer with any of the software options available to

you (or as instructed by your instructor) to solve the problem
automatically.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

6.1-1. Construct the primal-dual table and the dual problem for
each of the following linear programming models fitting our stan-
dard form.
(a) Model in Prob. 4.1-6
(b) Model in Prob. 4.7-8

6.1-2.* Construct the dual problem for each of the following lin-
ear programming models fitting our standard form.
(a) Model in Prob. 3.1-5
(b) Model in Prob. 4.7-6

PROBLEMS

6.1-3. Consider the linear programming model in Prob. 4.5-4.
(a) Construct the primal-dual table and the dual problem for this

model.
(b) What does the fact that Z is unbounded for this model imply

about its dual problem?

6.1-4. For each of the following linear programming models, give
your recommendation on which is the more efficient way (proba-
bly) to obtain an optimal solution: by applying the simplex method
directly to this primal problem or by applying the simplex method
directly to the dual problem instead. Explain.
(a) Maximize Z � 10x1 � 4x2 � 7x3,

subject to

3x1 � x2 � 2x3 � 25
x1 � 2x2 � 3x3 � 25

5x1 � x2 � 2x3 � 40
x1 � x2 � x3 � 90

2x1 � x2 � x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.



6.1-8. Consider the following problem.

Maximize Z � x1 � 2x2,

subject to

�x1 � x2 � �2
4x1 � x2 � �4

and

x1 � 0, x2 � 0.

(a) Demonstrate graphically that this problem has no feasible so-
lutions.

(b) Construct the dual problem.
(c) Demonstrate graphically that the dual problem has an un-

bounded objective function.

6.1-9. Construct and graph a primal problem with two decision
variables and two functional constraints that has feasible solutions
and an unbounded objective function. Then construct the dual prob-
lem and demonstrate graphically that it has no feasible solutions.

6.1-10. Construct a pair of primal and dual problems, each with
two decision variables and two functional constraints, such that
both problems have no feasible solutions. Demonstrate this prop-
erty graphically.

6.1-11. Construct a pair of primal and dual problems, each with
two decision variables and two functional constraints, such that the
primal problem has no feasible solutions and the dual problem has
an unbounded objective function.

6.1-12. Use the weak duality property to prove that if both the pri-
mal and the dual problem have feasible solutions, then both must
have an optimal solution.

6.1-13. Consider the primal and dual problems in our standard
form presented in matrix notation at the beginning of Sec. 6.1. Use
only this definition of the dual problem for a primal problem in
this form to prove each of the following results.
(a) The weak duality property presented in Sec. 6.1.
(b) If the primal problem has an unbounded feasible region that

permits increasing Z indefinitely, then the dual problem has no
feasible solutions.

6.1-14. Consider the primal and dual problems in our standard
form presented in matrix notation at the beginning of Sec. 6.1. Let
y* denote the optimal solution for this dual problem. Suppose that
b is then replaced by b�. Let x� denote the optimal solution for the
new primal problem. Prove that

cx� � y*b�.

(b) Maximize Z � 2x1 � 5x2 � 3x3 � 4x4 � x5,

subject to

x1 � 3x2 � 2x3 � 3x4 � x5 � 6
4x1 � 6x2 � 5x3 � 7x4 � x5 � 15

and

xj � 0, for j � 1, 2, 3, 4, 5.

6.1-5. Consider the following problem.

Maximize Z � �x1 � 2x2 � x3,

subject to

x1 � x2 � 2x3 � 12
x1 � x2 � x3 � 1

and

x1 � 0, x2 � 0, x3 � 0.

(a) Construct the dual problem.
(b) Use duality theory to show that the optimal solution for the

primal problem has Z � 0.

6.1-6. Consider the following problem.

Maximize Z � 2x1 � 6x2 � 9x3,

subject to

x1x1 � x3 � 3 (resource 1)
x1x2 � 2x3 � 5 (resource 2)

and

x1 � 0, x2 � 0, x3 � 0.

(a) Construct the dual problem for this primal problem.
(b) Solve the dual problem graphically. Use this solution to identify

the shadow prices for the resources in the primal problem.
C (c) Confirm your results from part (b) by solving the primal

problem automatically by the simplex method and then iden-
tifying the shadow prices.

6.1-7. Follow the instructions of Prob. 6.1-6 for the following 
problem.

Maximize Z � x1 � 3x2 � 2x3,

subject to

2x1 � 2x2 � 2x3 � 6 (resource 1)
2x1 �x2 � 2x3 � 4 (resource 2)

and

x1 � 0, x2 � 0, x3 � 0.
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6.3-3. Consider the primal and dual problems for the Wyndor Glass
Co. example given in Table 6.1. Using Tables 5.5, 5.6, 6.8, and 6.9,
construct a new table showing the eight sets of nonbasic variables
for the primal problem in column 1, the corresponding sets of as-
sociated variables for the dual problem in column 2, and the set of
nonbasic variables for each complementary basic solution in the
dual problem in column 3. Explain why this table demonstrates the
complementary slackness property for this example.

6.3-4. Suppose that a primal problem has a degenerate BF solu-
tion (one or more basic variables equal to zero) as its optimal so-
lution. What does this degeneracy imply about the dual problem?
Why? Is the converse also true?

6.3-5. Consider the following problem.

Maximize Z � 2x1 � 4x2,

subject to

x1 � x2 � 1

and

x1 � 0, x2 � 0.

(a) Construct the dual problem, and then find its optimal solution
by inspection.

(b) Use the complementary slackness property and the optimal so-
lution for the dual problem to find the optimal solution for the
primal problem.

(c) Suppose that c1, the coefficient of x1 in the primal objective
function, actually can have any value in the model. For what
values of c1 does the dual problem have no feasible solutions?
For these values, what does duality theory then imply about
the primal problem?

6.3-6. Consider the following problem.

Maximize Z � 2x1 � 7x2 � 4x3,

subject to

x1 � 2x2 � x3 � 10
3x1 � 3x2 � 2x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

(a) Construct the dual problem for this primal problem.
(b) Use the dual problem to demonstrate that the optimal value of

Z for the primal problem cannot exceed 25.
(c) It has been conjectured that x2 and x3 should be the basic vari-

ables for the optimal solution of the primal problem. Directly
derive this basic solution (and Z) by using Gaussian elimina-
tion. Simultaneously derive and identify the complementary ba-

6.1-15. For any linear programming problem in our standard form
and its dual problem, label each of the following statements as true
or false and then justify your answer.
(a) The sum of the number of functional constraints and the num-

ber of variables (before augmenting) is the same for both the
primal and the dual problems.

(b) At each iteration, the simplex method simultaneously identi-
fies a CPF solution for the primal problem and a CPF solution
for the dual problem such that their objective function values
are the same.

(c) If the primal problem has an unbounded objective function,
then the optimal value of the objective function for the dual
problem must be zero.

6.2-1. Consider the simplex tableaux for the Wyndor Glass Co.
problem given in Table 4.8. For each tableau, give the economic
interpretation of the following items:
(a) Each of the coefficients of the slack variables (x3, x4, x5) in

row 0
(b) Each of the coefficients of the decision variables (x1, x2) in 

row 0
(c) The resulting choice for the entering basic variable (or the de-

cision to stop after the final tableau)

6.3-1.* Consider the following problem.

Maximize Z � 6x1 � 8x2,

subject to

5x1 � 2x2 � 20
x1 � 2x2 � 10

and

x1 � 0, x2 � 0.

(a) Construct the dual problem for this primal problem.
(b) Solve both the primal problem and the dual problem graphi-

cally. Identify the CPF solutions and corner-point infeasible
solutions for both problems. Calculate the objective function
values for all these solutions.

(c) Use the information obtained in part (b) to construct a table
listing the complementary basic solutions for these problems.
(Use the same column headings as for Table 6.9.)

I (d) Work through the simplex method step by step to solve the
primal problem. After each iteration (including iteration 0),
identify the BF solution for this problem and the comple-
mentary basic solution for the dual problem. Also identify
the corresponding corner-point solutions.

6.3-2. Consider the model with two functional constraints and two
variables given in Prob. 4.1-5. Follow the instructions of Prob. 
6.3-1 for this model.

CHAPTER 6 PROBLEMS 287



(a) How would you identify the optimal solution for the dual 
problem?

(b) After obtaining the BF solution at each iteration, how would you
identify the complementary basic solution in the dual problem?

6.4-1. Consider the following problem.

Maximize Z � x1 � x2,

subject to

x1 � 2x2 � 10
2x1 � x2 � 2

and

x2 � 0 (x1 unconstrained in sign).

(a) Use the SOB method to construct the dual problem.
(b) Use Table 6.12 to convert the primal problem to our standard

form given at the beginning of Sec. 6.1, and construct the cor-
responding dual problem. Then show that this dual problem is
equivalent to the one obtained in part (a).

6.4-2. Consider the primal and dual problems in our standard form
presented in matrix notation at the beginning of Sec. 6.1. Use only
this definition of the dual problem for a primal problem in this
form to prove each of the following results.
(a) If the functional constraints for the primal problem Ax � b

are changed to Ax � b, the only resulting change in the dual
problem is to delete the nonnegativity constraints, y � 0. (Hint:
The constraints Ax � b are equivalent to the set of constraints
Ax � b and Ax � b.)

(b) If the functional constraints for the primal problem Ax � b
are changed to Ax � b, the only resulting change in the dual
problem is that the nonnegativity constraints y � 0 are re-
placed by nonpositivity constraints y � 0, where the current
dual variables are interpreted as the negative of the original
dual variables. (Hint: The constraints Ax � b are equivalent
to �Ax � �b.)

(c) If the nonnegativity constraints for the primal problem x � 0
are deleted, the only resulting change in the dual problem is
to replace the functional constraints yA � c by yA � c. (Hint:
A variable unconstrained in sign can be replaced by the dif-
ference of two nonnegative variables.)

6.4-3.* Construct the dual problem for the linear programming
problem given in Prob. 4.6-4.

6.4-4. Consider the following problem.

Minimize Z � x1 � 2x2,

subject to

�2x1 � x2 � 1
�2x1 � 2x2 � 1

sic solution for the dual problem by using Eq. (0) for the pri-
mal problem. Then draw your conclusions about whether these
two basic solutions are optimal for their respective problems.

I (d) Solve the dual problem graphically. Use this solution to iden-
tify the basic variables and the nonbasic variables for the op-
timal solution of the primal problem. Directly derive this so-
lution, using Gaussian elimination.

6.3-7.* Reconsider the model of Prob. 6.1-4b.
(a) Construct its dual problem.
(b) Solve this dual problem graphically.
(c) Use the result from part (b) to identify the nonbasic variables

and basic variables for the optimal BF solution for the primal
problem.

(d) Use the results from part (c) to obtain the optimal solution for
the primal problem directly by using Gaussian elimination to
solve for its basic variables, starting from the initial system of
equations [excluding Eq. (0)] constructed for the simplex
method and setting the nonbasic variables to zero.

(e) Use the results from part (c) to identify the defining equations
(see Sec. 5.1) for the optimal CPF solution for the primal prob-
lem, and then use these equations to find this solution.

6.3-8. Consider the model given in Prob. 5.3-13.
(a) Construct the dual problem.
(b) Use the given information about the basic variables in the op-

timal primal solution to identify the nonbasic variables and ba-
sic variables for the optimal dual solution.

(c) Use the results from part (b) to identify the defining equations
(see Sec. 5.1) for the optimal CPF solution for the dual prob-
lem, and then use these equations to find this solution.

(d) Solve the dual problem graphically to verify your results from
part (c).

6.3-9. Consider the model given in Prob. 3.1-4.
(a) Construct the dual problem for this model.
(b) Use the fact that (x1, x2) � (13, 5) is optimal for the primal

problem to identify the nonbasic variables and basic variables
for the optimal BF solution for the dual problem.

(c) Identify this optimal solution for the dual problem by directly
deriving Eq. (0) corresponding to the optimal primal solution
identified in part (b). Derive this equation by using Gaussian
elimination.

(d) Use the results from part (b) to identify the defining equations
(see Sec. 5.1) for the optimal CPF solution for the dual prob-
lem. Verify your optimal dual solution from part (c) by check-
ing to see that it satisfies this system of equations.

6.3-10. Suppose that you also want information about the dual
problem when you apply the revised simplex method (see Sec. 5.2)
to the primal problem in our standard form.
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and

x1 � 0, x2 � 0.

(a) Demonstrate graphically that this problem has an unbounded
objective function.

(b) Construct the dual problem.
(c) Demonstrate graphically that the dual problem has no feasible

solutions.

6.5-1. Consider the model of Prob. 6.7-1. Use duality theory di-
rectly to determine whether the current basic solution remains op-
timal after each of the following independent changes.
(a) The change in part (e) of Prob. 6.7-1
(b) The change in part (g) of Prob. 6.7-1

6.5-2. Consider the model of Prob. 6.7-3. Use duality theory di-
rectly to determine whether the current basic solution remains op-
timal after each of the following independent changes.
(a) The change in part (c) of Prob. 6.7-3
(b) The change in part ( f ) of Prob. 6.7-3

6.5-3. Consider the model of Prob. 6.7-4. Use duality theory di-
rectly to determine whether the current basic solution remains op-
timal after each of the following independent changes.
(a) The change in part (b) of Prob. 6.7-4
(b) The change in part (d ) of Prob. 6.7-4

6.5-4. Reconsider part (d) of Prob. 6.7-6. Use duality theory directly
to determine whether the original optimal solution is still optimal.

6.6-1.* Consider the following problem.

Maximize Z � 3x1 � x2 � 4x3,

subject to

6x1 � 3x2 � 5x3 � 25
3x1 � 4x2 � 5x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

The corresponding final set of equations yielding the optimal so-
lution is

(0) Z � 2x2 � �
1
5

�x4 � �
3
5

�x5 � 17

(1) x1 � �
1
3

�x2 � �
1
3

�x4 � �
1
3

�x5 � �
5
3

�

(2) x2 � x3 � �
1
5

�x4 � �
2
5

�x5 � 3.

(a) Identify the optimal solution from this set of equations.
(b) Construct the dual problem.

and

x1 � 0, x2 � 0.

(a) Construct the dual problem.
(b) Use graphical analysis of the dual problem to determine

whether the primal problem has feasible solutions and, if so,
whether its objective function is bounded.

6.4-5. Consider the two versions of the dual problem for the radi-
ation therapy example that are given in Tables 6.15 and 6.16. Re-
view in Sec. 6.4 the general discussion of why these two versions
are completely equivalent. Then fill in the details to verify this equiv-
alency by proceeding step by step to convert the version in Table
6.15 to equivalent forms until the version in Table 6.16 is obtained.

6.4-6. For each of the following linear programming models, use
the SOB method to construct its dual problem.
(a) Model in Prob. 4.6-3
(b) Model in Prob. 4.6-8
(c) Model in Prob. 4.6-18

6.4-7. Consider the model with equality constraints given in Prob.
4.6-2.
(a) Construct its dual problem.
(b) Demonstrate that the answer in part (a) is correct (i.e., equality

constraints yield dual variables without nonnegativity constraints)
by first converting the primal problem to our standard form (see
Table 6.12), then constructing its dual problem, and next con-
verting this dual problem to the form obtained in part (a).

6.4-8.* Consider the model without nonnegativity constraints
given in Prob. 4.6-16.
(a) Construct its dual problem.
(b) Demonstrate that the answer in part (a) is correct (i.e., vari-

ables without nonnegativity constraints yield equality con-
straints in the dual problem) by first converting the primal prob-
lem to our standard form (see Table 6.12), then constructing
its dual problem, and finally converting this dual problem to
the form obtained in part (a).

6.4-9. Consider the dual problem for the Wyndor Glass Co. ex-
ample given in Table 6.1. Demonstrate that its dual problem is the
primal problem given in Table 6.1 by going through the conver-
sion steps given in Table 6.13.

6.4-10. Consider the following problem.

Minimize Z � �x1 � 3x2,

subject to

�x1 � 2x2 � 2
�x1 � x2 � 4
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D,I 6.6-3. Consider the following problem.

Minimize W � 5y1 � 4y2,

subject to

4y1 � 3y2 � 4
2y1 � y2 � 3
y1 � 2y2 � 1
y1 � y2 � 2

and

y1 � 0, y2 � 0.

Because this primal problem has more functional constraints than
variables, suppose that the simplex method has been applied di-
rectly to its dual problem. If we let x5 and x6 denote the slack vari-
ables for this dual problem, the resulting final simplex tableau is

(c) Identify the optimal solution for the dual problem from the fi-
nal set of equations. Verify this solution by solving the dual
problem graphically.

(d) Suppose that the original problem is changed to

Maximize Z � 3x1 � 3x2 � 4x3,

subject to

6x1 � 2x2 � 5x3 � 25
3x1 � 3x2 � 5x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

Use duality theory to determine whether the previous optimal
solution is still optimal.

(e) Use the fundamental insight presented in Sec. 5.3 to identify
the new coefficients of x2 in the final set of equations after it
has been adjusted for the changes in the original problem given
in part (d ).

(f) Now suppose that the only change in the original problem is
that a new variable xnew has been introduced into the model as
follows:

Maximize Z � 3x1 � x2 � 4x3 � 2xnew,

subject to

6x1 � 3x2 � 5x3 � 3xnew � 25
3x1 � 4x2 � 5x3 � 2xnew � 20

and

x1 � 0, x2 � 0, x3 � 0, xnew � 0.

Use duality theory to determine whether the previous optimal
solution, along with xnew � 0, is still optimal.

(g) Use the fundamental insight presented in Sec. 5.3 to identify
the coefficients of xnew as a nonbasic variable in the final set
of equations resulting from the introduction of xnew into the
original model as shown in part ( f ).

D,I 6.6-2. Reconsider the model of Prob. 6.6-1. You are now to
conduct sensitivity analysis by independently investigating each of
the following six changes in the original model. For each change,
use the sensitivity analysis procedure to revise the given final set
of equations (in tableau form) and convert it to proper form from
Gaussian elimination. Then test this solution for feasibility and for
optimality. (Do not reoptimize.)
(a) Change the right-hand side of constraint 1 to b1 � 15.
(b) Change the right-hand side of constraint 2 to b2 � 5.
(c) Change the coefficient of x2 in the objective function to c2 � 4.
(d) Change the coefficient of x3 in the objective function to c3 � 3.
(e) Change the coefficient of x2 in constraint 2 to a22 � 1.
(f) Change the coefficient of x1 in constraint 1 to a11 � 10.
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For each of the following independent changes in the original pri-
mal model, you now are to conduct sensitivity analysis by directly
investigating the effect on the dual problem and then inferring the
complementary effect on the primal problem. For each change, ap-
ply the procedure for sensitivity analysis summarized at the end of
Sec. 6.6 to the dual problem (do not reoptimize), and then give
your conclusions as to whether the current basic solution for the
primal problem still is feasible and whether it still is optimal. Then
check your conclusions by a direct graphical analysis of the pri-
mal problem.
(a) Change the objective function to W � 3y1 � 5y2.
(b) Change the right-hand sides of the functional constraints to 3,

5, 2, and 3, respectively.
(c) Change the first constraint to 2y1 � 4y2 � 7.
(d) Change the second constraint to 5y1 � 2y2 � 10.

D,I 6.7-1.* Consider the following problem.

Maximize Z � �5x1 � 5x2 � 13x3,

subject to

�x1 � x2 � 3x3 � 20
12x1 � 4x2 � 10x3 � 90

and

xj � 0 ( j � 1, 2, 3).

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 3 0 2 0 1 1 9
x2 (1) 0 1 1 �1 0 1 �1 1
x4 (2) 0 2 0 3 1 �1 2 3



6.7-2.* Reconsider the model of Prob. 6.7-1. Suppose that we now
want to apply parametric linear programming analysis to this prob-
lem. Specifically, the right-hand sides of the functional constraints
are changed to

20 � 2� (for constraint 1)

and

90 � � (for constraint 2),

where � can be assigned any positive or negative values.
Express the basic solution (and Z) corresponding to the orig-

inal optimal solution as a function of �. Determine the lower and
upper bounds on � before this solution would become infeasible.

D,I 6.7-3. Consider the following problem.

Maximize Z � 2x1 � x2 � x3,

subject to

3x1 � x2 � x3 � 60
x1 � x2 � 2x3 � 10
x1 � x2 � x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

Let x4, x5, and x6 denote the slack variables for the respective con-
straints. After we apply the simplex method, the final simplex
tableau is

If we let x4 and x5 be the slack variables for the respective con-
straints, the simplex method yields the following final set of equa-
tions:

(0) Z � 2x3 � 5x4 � 100.
(1) �x1 � x2 � 3x3 � x4 � 20.
(2) 16x1 � 2x3 � 4x4 � x5 = 10.

Now you are to conduct sensitivity analysis by independently in-
vestigating each of the following nine changes in the original
model. For each change, use the sensitivity analysis procedure to
revise this set of equations (in tableau form) and convert it to proper
form from Gaussian elimination for identifying and evaluating the
current basic solution. Then test this solution for feasibility and for
optimality. (Do not reoptimize.)
(a) Change the right-hand side of constraint 1 to

b1 � 30.

(b) Change the right-hand side of constraint 2 to

b2 � 70.

(c) Change the right-hand sides to

� � � � �.

(d) Change the coefficient of x3 in the objective function to

c3 � 8.

(e) Change the coefficients of x1 to

� .

(f) Change the coefficients of x2 to

� .

(g) Introduce a new variable x6 with coefficients

� .

(h) Introduce a new constraint 2x1 � 3x2 � 5x3 � 50. (Denote its
slack variable by x6.)

(i) Change constraint 2 to

10x1 � 5x2 � 10x3 � 100.






10

3

5











c6

a16

a26











6

2

5











c2

a12

a22











�2

0

5











c1

a11

a21






10

100

b1

b2
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Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 0 0 �
3
2

� 0 �
3
2

� �
1
2

� 25

x4 (1) 0 0 0 1 1 �1 �2 10

x1 (2) 0 1 0 �
1
2

� 0 �
1
2

� �
1
2

� 15

x2 (3) 0 0 1 ��
3
2

� 0 ��
1
2

� �
1
2

� 5

Now you are to conduct sensitivity analysis by independently in-
vestigating each of the following six changes in the original model.
For each change, use the sensitivity analysis procedure to revise
this final tableau and convert it to proper form from Gaussian elim-
ination for identifying and evaluating the current basic solution.
Then test this solution for feasibility and for optimality. If either
test fails, reoptimize to find a new optimal solution.



form from Gaussian elimination for identifying and evaluating the
current basic solution. Then test this solution for feasibility and for
optimality. If either test fails, reoptimize to find a new optimal so-
lution.
(a) Change the right-hand sides to

� � � � �.

(b) Change the coefficients of x3 to

� .

(c) Change the coefficients of x1 to

� .

(d) Introduce a new variable x6 with coefficients

� .

(e) Change the objective function to Z � x1 � 5x2 � 2x3.
(f) Introduce a new constraint 3x1 � 2x2 � 3x3 � 25.
(g) Change constraint 2 to x1 � 2x2 � 2x3 � 35.

6.7-5. Reconsider the model of Prob. 6.7-4. Suppose that we now
want to apply parametric linear programming analysis to this prob-
lem. Specifically, the right-hand sides of the functional constraints
are changed to

30 � 3� (for constraint 1)

and

10 � � (for constraint 2),

where � can be assigned any positive or negative values.
Express the basic solution (and Z) corresponding to the orig-

inal optimal solution as a function of �. Determine the lower and
upper bounds on � before this solution would become infeasible.

D,I 6.7-6. Consider the following problem.

Maximize Z � 2x1 � x2 � x3,

subject to

3x1 � 2x2 � 2x3 � 15
�x1 � x2 � x3 � 3

x1 � x2 � x3 � 4






�3

1

2











c6

a16

a26











4

3

2











c1

a11

a21











�2

3

�2











c3

a13

a23






20

30

b1

b2

(a) Change the right-hand sides

from � to � .

(b) Change the coefficients of x1

from � to � .

(c) Change the coefficients of x3

from � to � .

(d) Change the objective function to Z � 3x1 � 2x2 � 3x3.
(e) Introduce a new constraint 3x1 � 2x2 � x3 � 30. (Denote its

slack variable by x7.)
(f) Introduce a new variable x8 with coefficients

� .

D,I 6.7-4. Consider the following problem.

Maximize Z � 2x1 � 7x2 � 3x3,

subject to

x1 � 3x2 � 4x3 � 30
x1 � 4x2 � x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

By letting x4 and x5 be the slack variables for the respective con-
straints, the simplex method yields the following final set of equa-
tions:

(0) Z � x2 � x3 � 2x5 � 20,
(1) � x2 � 5x3 � x4 � x5 � 20,
(2) x1 � 4x2 � x3 � x5 � 10.

Now you are to conduct sensitivity analysis by independently in-
vestigating each of the following seven changes in the original
model. For each change, use the sensitivity analysis procedure to
revise this set of equations (in tableau form) and convert it to proper







�1

�2

1

2













c8

a18

a28

a38













2

3

1

�2













c3

a13

a23

a33













1

1

2

�1













c3

a13

a23

a33













1

2

2

0













c1

a11

a21

a31













2

3

1

1













c1

a11

a21

a31












70

20

10











b1

b2

b3











60

10

20











b1

b2

b3





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of type A, but the vendor providing these subassemblies would only
be able to increase its supply rate from the current 2,000 per day
to a maximum of 3,000 per day. Each toy requires only one sub-
assembly of type B, but the vendor providing these subassemblies
would be unable to increase its supply rate above the current level
of 1,000 per day.

Because no other vendors currently are available to provide
these subassemblies, management is considering initiating a new
production process internally that would simultaneously produce
an equal number of subassemblies of the two types to supplement
the supply from the two vendors. It is estimated that the company’s
cost for producing one subassembly of each type would be $2.50
more than the cost of purchasing these subassemblies from the two
vendors. Management wants to determine both the production rate
of the toy and the production rate of each pair of subassemblies
(one A and one B) that would maximize the total profit.

The following table summarizes the data for the problem.

and

x1 � 0, x2 � 0, x3 � 0.

If we let x4, x5, and x6 be the slack variables for the respective con-
straints, the simplex method yields the following final set of equa-
tions:

(0) Z � 2x3 � x4 � x5 � 18,
(1) x2 � 5x3 � x4 � 3x5 � 24,
(2) 2x3 � x5 � x6 � 7,
(3) x1 � 4x3 � x4 � 2x5 � 21.

Now you are to conduct sensitivity analysis by independently in-
vestigating each of the following eight changes in the original
model. For each change, use the sensitivity analysis procedure to
revise this set of equations (in tableau form) and convert it to proper
form from Gaussian elimination for identifying and evaluating the
current basic solution. Then test this solution for feasibility and for
optimality. If either test fails, reoptimize to find a new optimal so-
lution.
(a) Change the right-hand sides to

� .

(b) Change the coefficient of x3 in the objective function to c3 � 2.
(c) Change the coefficient of x1 in the objective function to c1 � 3.
(d) Change the coefficients of x3 to

� .

(e) Change the coefficients of x1 and x2 to

� and � ,

respectively.
(f) Change the objective function to Z � 5x1 � x2 � 3x3.
(g) Change constraint 1 to 2x1 � x2 � 4x3 � 12.
(h) Introduce a new constraint 2x1 � x2 � 3x3 � 60.

6.7-7. One of the products of the G. A. Tanner Company is a spe-
cial kind of toy that provides an estimated unit profit of $3. Be-
cause of a large demand for this toy, management would like to
increase its production rate from the current level of 1,000 per day.
However, a limited supply of two subassemblies (A and B) from
vendors makes this difficult. Each toy requires two subassemblies







�2

�2

3

2













c2

a12

a22

a32













1

1

�2

3













c1

a11

a21

a31













4

3

2

1













c3

a13

a23

a33












10

4

2











b1

b2

b3






CHAPTER 6 PROBLEMS 293

(a) Formulate a linear programming model for this problem and
use the graphical method to obtain its optimal solution.

C (b) Use a software package based on the simplex method to
solve for an optimal solution.

C (c) Since the stated unit profits for the two activities are only
estimates, management wants to know how much each of
these estimates can be off before the optimal solution would
change. Begin exploring this question for the first activity
(producing toys) by using the same software package to re-
solve for an optimal solution and total profit as the unit profit
for this activity increases in 50-cent increments from $2.00
to $4.00. What conclusion can be drawn about how much
the estimate of this unit profit can differ in each direction
from its original value of $3.00 before the optimal solution
would change?

C (d) Repeat part (c) for the second activity (producing sub-
assemblies) by re-solving as the unit profit for this activity
increases in 50-cent increments from �$3.50 to �$1.50
(with the unit profit for the first activity fixed at $3).

C (e) Use the same software package to generate the usual output
(as in Table 6.23) for sensitivity analysis of the unit profits.

Resource Usage per 
Unit of Each Activity

Produce Produce Amount of Resource
Resource Toys Subassemblies Available

Subassembly A $2 .00$�1 3,000
Subassembly B $1 .00$�1 1,000

Unit profit $3 �$2.50



C (g) Use the same software package to generate the usual output
(as in Table 6.23) for sensitivity analysis of the supplies be-
ing made available of the subassemblies. Use this output to
obtain the allowable range to stay feasible for each sub-
assembly supply.

(h) Use graphical analysis to verify the allowable ranges obtained
in part (g).

(i) For each of the four combinations where the maximum sup-
ply of subassembly A is either 3,500 or 4,000 and the maxi-
mum supply of subassembly B is either 1,500 or 2,000, use
the 100 percent rule for simultaneous changes in right-hand
sides to determine whether the original shadow prices defi-
nitely will still be valid.

(j) For each of the combinations considered in part (i) where it
was found that the original shadow prices are not guaranteed
to still be valid, use graphical analysis to determine whether
these shadow prices actually are still valid for predicting the
effect of changing the right-hand sides.

C 6.7-9 Consider the Distribution Unlimited Co. problem pre-
sented in Sec. 3.4 and summarized in Fig. 3.13.

Although Fig. 3.13 gives estimated unit costs for shipping
through the various shipping lanes, there actually is some uncer-
tainty about what these unit costs will turn out to be. Therefore,
before adopting the optimal solution given at the end of Sec. 3.4,
management wants additional information about the effect of in-
accuracies in estimating these unit costs.

Use a computer package based on the simplex method to gen-
erate sensitivity analysis information preparatory to addressing the
following questions.
(a) Which of the unit shipping costs given in Fig. 3.13 has the

smallest margin for error without invalidating the optimal so-
lution given in Sec. 3.4? Where should the greatest effort be
placed in estimating the unit shipping costs?

(b) What is the allowable range to stay optimal for each of the unit
shipping costs?

(c) How should these allowable ranges be interpreted to manage-
ment?

(d) If the estimates change for more than one of the unit shipping
costs, how can you use the generated sensitivity analysis in-
formation to determine whether the optimal solution might
change?

C 6.7-10. Consider the Union Airways problem presented in Sec.
3.4, including the data given in Table 3.19.

Management is about to begin negotiations on a new contract
with the union that represents the company’s customer service
agents. This might result in some small changes in the daily costs
per agent given in Table 3.19 for the various shifts. Several possi-
ble changes listed below are being considered separately. In each
case, management would like to know whether the change might

Use this output to obtain the allowable range to stay opti-
mal for each unit profit.

(f) Use graphical analysis to verify the allowable ranges obtained
in part (e).

(g) For each of the 16 combinations of unit profits considered in
parts (c) and (d ) where both unit profits differ from their orig-
inal estimates, use the 100 percent rule for simultaneous
changes in objective function coefficients to determine if the
original optimal solution must still be optimal.

(h) For each of the combinations of unit profits considered in part
(g) where it was found that the original optimal solution is not
guaranteed to still be optimal, use graphical analysis to deter-
mine whether this solution is still optimal.

6.7-8. Reconsider Prob. 6.7-7. After further negotiations with each
vendor, management of the G. A. Tanner Co. has learned that ei-
ther of them would be willing to consider increasing their supply
of their respective subassemblies over the previously stated max-
ima (3,000 subassemblies of type A per day and 1,000 of type B
per day) if the company would pay a small premium over the reg-
ular price for the extra subassemblies. The size of the premium for
each type of subassembly remains to be negotiated. The demand
for the toy being produced is sufficiently high that 2,500 per day
could be sold if the supply of subassemblies could be increased
enough to support this production rate. Assume that the original
estimates of unit profits given in Prob. 6.7-7 are accurate.
(a) Formulate a linear programming model for this problem with

the original maximum supply levels and the additional con-
straint that no more than 2,500 toys should be produced per
day. Then use the graphical method to obtain its optimal so-
lution.

C (b) Use a software package based on the simplex method to
solve for an optimal solution.

C (c) Without considering the premium, use the same software
package to determine the shadow price for the subassembly
A constraint by solving the model again after increasing the
maximum supply by 1. Use this shadow price to determine
the maximum premium that the company should be willing
to pay for each subassembly of this type.

C (d) Repeat part (c) for the subassembly B constraint.
C (e) Estimate how much the maximum supply of subassemblies

of type A could be increased before the shadow price (and
the corresponding premium) found in part (c) would no
longer be valid by using the same software package to re-
solve for an optimal solution and the total profit (excluding
the premium) as the maximum supply increases in incre-
ments of 100 from 3,000 to 4,000.

C (f) Repeat part (e) for subassemblies of type B by re-solving as
the maximum supply increases in increments of 100 from
1,000 to 2,000.
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6.7-13. Consider Variation 5 of the Wyndor Glass Co. model (see
Fig. 6.6 and Table 6.24), where the changes in the parameter val-
ues given in Table 6.21 are c�2 � 3, a�22 � 3, and a�32 � 4. Verify
both algebraically and graphically that the allowable range to stay
optimal for c1 is c1 � �

9
4

�.

6.7-14. Consider the following problem.

Maximize Z � 3x1 � x2 � 2x3,

subject to

x1 � x2 � 2x3 � 20
2x1 � x2 � x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 and x5 denote the slack variables for the respective func-
tional constraints. After we apply the simplex method, the final
simplex tableau is

result in the original optimal solution (given in Sec. 3.4) no longer
being optimal. Answer this question in parts (a) to (e) by using a
software package based on the simplex method to generate sensi-
tivity analysis information. If the optimal solution might change,
use the software package to re-solve for the optimal solution.
(a) The daily cost per agent for Shift 2 changes from $160 to $165.
(b) The daily cost per agent for Shift 4 changes from $180 to $170.
(c) The changes in parts (a) and (b) both occur.
(d) The daily cost per agent increases by $4 for shifts 2, 4, and 5,

but decreases by $4 for shifts 1 and 3.
(e) The daily cost per agent increases by 2 percent for each shift.

6.7-11. Consider the following problem.

Maximize Z � c1x1 � c2x2,

subject to

2x1 � x2 � b1

x1 � x2 � b2

and

x1 � 0, x2 � 0.

Let x3 and x4 denote the slack variables for the respective func-
tional constraints. When c1 � 3, c2 � �2, b1 � 30, and b2 � 10,
the simplex method yields the following final simplex tableau.
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(a) Use graphical analysis to determine the allowable range to stay
optimal for c1 and c2.

(b) Use algebraic analysis to derive and verify your answers in
part (a).

(c) Use graphical analysis to determine the allowable range to stay
feasible for b1 and b2.

(d) Use algebraic analysis to derive and verify your answers in
part (c)

C (e) Use a software package based on the simplex method to find
these allowable ranges.

6.7-12. Consider Variation 5 of the Wyndor Glass Co. model (see
Fig. 6.6 and Table 6.24), where the changes in the parameter val-
ues given in Table 6.21 are c�2 � 3, a�22 � 3, and a�32 � 4. Use the
formula b* � S*b� to find the allowable range to stay feasible for
each bi. Then interpret each allowable range graphically.

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 Side

Z (0) 1 0 0 1 1 40
x2 (1) 0 0 1 1 �2 10
x1 (2) 0 1 0 1 �1 20

(a) Perform sensitivity analysis to determine which of the 11 pa-
rameters of the model are sensitive parameters in the sense that
any change in just that parameter’s value will change the op-
timal solution.

(b) Use algebraic analysis to find the allowable range to stay op-
timal for each cj.

(c) Use algebraic analysis to find the allowable range to stay fea-
sible for each bi.

C (d) Use a software package based on the simplex method to find
these allowable ranges.

6.7-15. For the problem given in Table 6.21, find the allowable
range to stay optimal for c2. Show your work algebraically, using
the tableau given in Table 6.21. Then justify your answer from a
geometric viewpoint, referring to Fig. 6.3.

6.7-16.* For the original Wyndor Glass Co. problem, use the last
tableau in Table 4.8 to do the following.
(a) Find the allowable range to stay feasible for each bi.
(b) Find the allowable range to stay optimal for c1 and c2.
C (c) Use a software package based on the simplex method to find

these allowable ranges.

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 8 0 0 3 4 100
x3 (1) 0 3 0 1 1 1 30
x2 (2) 0 5 1 0 1 2 40



gallons of cream left in its inventory. The linear programming for-
mulation for this problem is shown below in algebraic form.

Let C � gallons of chocolate ice cream produced,
V � gallons of vanilla ice cream produced,
B � gallons of banana ice cream produced.

Maximize profit � 1.00 C � 0.90 V � 0.95 B,

subject to

Milk: 0.45 C � 0.50 V � 0.40 B � 200 gallons
Sugar: 0.50 C � 0.40 V � 0.40 B � 150 pounds
Cream: 0.10 C � 0.15 V � 0.20 B � 60 gallons

and

C � 0, V � 0, B � 0.

This problem was solved using the Excel Solver. The spread-
sheet (already solved) and the sensitivity report are shown below.
[Note: The numbers in the sensitivity report for the milk constraint
are missing on purpose, since you will be asked to fill in these
numbers in part ( f ).]

6.7-17. For Variation 6 of the Wyndor Glass Co. model presented
in Sec. 6.7, use the last tableau in Table 6.25 to do the following.
(a) Find the allowable range to stay feasible for each bi.
(b) Find the allowable range to stay optimal for c1 and c2.
C (c) Use a software package based on the simplex method to find

these allowable ranges.

6.7-18. Ken and Larry, Inc., supplies its ice cream parlors with
three flavors of ice cream: chocolate, vanilla, and banana. Be-
cause of extremely hot weather and a high demand for its prod-
ucts, the company has run short of its supply of ingredients: milk,
sugar, and cream. Hence, they will not be able to fill all the or-
ders received from their retail outlets, the ice cream parlors. 
Owing to these circumstances, the company has decided to
choose the amount of each flavor to produce that will maximize
total profit, given the constraints on supply of the basic 
ingredients.

The chocolate, vanilla, and banana flavors generate, respec-
tively, $1.00, $0.90, and $0.95 of profit per gallon sold. The com-
pany has only 200 gallons of milk, 150 pounds of sugar, and 60
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(a) Formulate a linear programming model for this problem.
(b) Use the graphical method to solve the model.
C (c) Use a software package based on the simplex method to

solve the model.
C (d) Use this same software package to generate sensitivity

analysis information.
(e) Use this sensitivity analysis information to determine whether

the optimal solution must remain optimal if the estimate of the
unit profit for grandfather clocks is changed from $300 to $375
(with no other changes in the model).

(f) Repeat part (e) if, in addition to this change in the unit profit
for grandfather clocks, the estimated unit profit for wall clocks
also changes from $200 to $175.

(g) Use graphical analysis to verify your answers in parts (e) 
and ( f ).

(h) To increase the total profit, the three partners have agreed that
one of them will slightly increase the maximum number of
hours available to work per week. The choice of which one
will be based on which one would increase the total profit the
most. Use the sensitivity analysis information to make this
choice. (Assume no change in the original estimates of the unit
profits.)

(i) Explain why one of the shadow prices is equal to zero.
(j) Can the shadow prices given in the sensitivity analysis infor-

mation be validly used to determine the effect if Lydia were
to change her maximum number of hours available to work
per week from 20 to 25? If so, what would be the increase in
the total profit?

(k) Repeat part ( j) if, in addition to the change for Lydia, David
also were to change his maximum number of hours available
to work per week from 40 to 35.

(l) Use graphical analysis to verify your answer in part (k).

C 6.7-20. Consider the Union Airways problem presented in Sec.
3.4, including the data given in Table 3.19.

Management now is considering increasing the level of ser-
vice provided to customers by increasing one or more of the num-
bers in the rightmost column of Table 3.19 for the minimum num-
ber of agents needed in the various time periods. To guide them in
making this decision, they would like to know what impact this
change would have on total cost.

Use a software package based on the simplex method to gen-
erate sensitivity analysis information in preparation for addressing
the following questions.
(a) Which of the numbers in the rightmost column of Table 3.19

can be increased without increasing total cost? In each case,
indicate how much it can be increased (if it is the only one be-
ing changed) without increasing total cost.

(b) For each of the other numbers, how much would the total cost
increase per increase of 1 in the number? For each answer, in-

For each of the following parts, answer the question as specif-
ically and completely as is possible without solving the problem
again on the Excel Solver. Note: Each part is independent (i.e., any
change made to the model in one part does not apply to any other
parts).
(a) What is the optimal solution and total profit?
(b) Suppose the profit per gallon of banana changes to $1.00. Will

the optimal solution change, and what can be said about the
effect on total profit?

(c) Suppose the profit per gallon of banana changes to 92 cents.
Will the optimal solution change, and what can be said about
the effect on total profit?

(d) Suppose the company discovers that 3 gallons of cream have
gone sour and so must be thrown out. Will the optimal solu-
tion change, and what can be said about the effect on total
profit?

(e) Suppose the company has the opportunity to buy an additional
15 pounds of sugar at a total cost of $15. Should they? Ex-
plain.

(f) Fill in all the sensitivity report information for the milk con-
straint, given just the optimal solution for the problem. Explain
how you were able to deduce each number.

6.7-19. David, LaDeana, and Lydia are the sole partners and work-
ers in a company which produces fine clocks. David and LaDeana
each are available to work a maximum of 40 hours per week at the
company, while Lydia is available to work a maximum of 20 hours
per week.

The company makes two different types of clocks: a grand-
father clock and a wall clock. To make a clock, David (a mechan-
ical engineer) assembles the inside mechanical parts of the clock
while LaDeana (a woodworker) produces the hand-carved wood
casings. Lydia is responsible for taking orders and shipping the
clocks. The amount of time required for each of these tasks is
shown below.
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Each grandfather clock built and shipped yields a profit of $300,
while each wall clock yields a profit of $200.

The three partners now want to determine how many clocks
of each type should be produced per week to maximize the total
profit.

Time Required

Task Grandfather Clock Wall Clock

Assemble clock mechanism 6 hours 4 hours
Carve wood casing 8 hours 4 hours
Shipping 3 hours 3 hours



(b) Now perform this sensitivity analysis as described and illus-
trated in Sec. 6.7 for b1 and c1.

(c) Repeat part (b) for b2.
(d) Repeat part (b) for c2.

6.7-22. Reconsider Prob. 6.7-21. Now use a software package
based on the simplex method to generate sensitivity analysis in-
formation preparatory to doing parts (a) and (c) below.
C (a) Suppose that the estimates for c1 and c2 are correct but the

estimates for both b1 and b2 are incorrect. Consider the fol-
lowing four cases where the true values of b1 and b2 differ
from their estimates by the same percentage: (1) both b1 and
b2 are smaller than their estimates, (2) both b1 and b2 are
larger than their estimates, (3) b1 is smaller and b2 is larger
than their estimates, and (4) b1 is larger and b2 is smaller
than their estimates. For each of these cases, use the 100
percent rule for simultaneous changes in right-hand sides to
determine how large the percentage error can be while guar-
anteeing that the original shadow prices still will be valid.

(b) For each of the four cases considered in part (a), start with the
final simplex tableau given in Prob. 6.7-21 and use algebraic
analysis based on the fundamental insight presented in Sec. 5.3
to determine how large the percentage error can be without in-
validating the original shadow prices.

C (c) Suppose that the estimates for b1 and b2 are correct but the
estimates for both c1 and c2 are incorrect. Consider the fol-
lowing four cases where the true values of c1 and c2 differ
from their estimates by the same percentage: (1) both c1 and
c2 are smaller than their estimates, (2) both c1 and c2 are larger
than their estimates, (3) c1 is smaller and c2 is larger than their
estimates, and (4) c1 is larger and c2 is smaller than their es-
timates. For each of these cases, use the 100 percent rule for
simultaneous changes in objective function coefficients to de-
termine how large the percentage error can be while guaran-
teeing that the original optimal solution must still be optimal.

(d) For each of the four cases considered in part (c), start with the
final simplex tableau given in Prob. 6.7-21 and use algebraic
analysis based on the fundamental insight presented in Sec. 5.3
to determine how large the percentage error can be without in-
validating the original optimal solution.

6.7-23. Consider the following problem.

Maximize Z � 3x1 � 4x2 � 8x3,

subject to

2x1 � 3x2 � 5x3 � 9
x1 � 2x2 � 3x3 � 5

and

x1 � 0, x2 � 0, x3 � 0.

dicate how much the number can be increased (if it is the only
one being changed) before the answer is no longer valid.

(c) Do your answers in part (b) definitely remain valid if all the
numbers considered in part (b) are simultaneously increased
by 1?

(d) Do your answers in part (b) definitely remain valid if all 10
numbers are simultaneously increased by 1?

(e) How far can all 10 numbers be simultaneously increased by
the same amount before your answers in part (b) may no longer
be valid?

6.7-21. Consider the following problem.

Maximize Z � 2x1 � 5x2,

subject to

x1 � 2x2 � 10
x1 � 3x2 � 12

and

x1 � 0, x2 � 0.

Let x3 and x4 denote the slack variables for the respective func-
tional constraints. After we apply the simplex method, the final
simplex tableau is
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While doing postoptimality analysis, you learn that all four bi and
cj values used in the original model just given are accurate only to
within �50 percent. In other words, their ranges of likely values
are 5 � b1 � 15, 6 � b2 � 18, 1 � c1 � 3, and 2.5 � c2 � 7.5.
Your job now is to perform sensitivity analysis to determine for
each parameter individually (assuming the other three parameters
equal their values in the original model) whether this uncertainty
might affect either the feasibility or the optimality of the above ba-
sic solution (perhaps with new values for the basic variables).
Specifically, determine the allowable range to stay feasible for each
bi and the allowable range to stay optimal for each cj. Then, for
each parameter and its range of likely values, indicate which part
of this range lies within the allowable range and which parts cor-
respond to values for which the current basic solution will no longer
be both feasible and optimal.
(a) Perform this sensitivity analysis graphically on the original

model.

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 Side

Z (0) 1 0 0 1 1 22
x1 (1) 0 1 0 3 �2 6
x2 (2) 0 0 1 �1 1 2



Construct a table like Table 6.26 to perform parametric linear
programming analysis on this problem. Determine the upper bound
on � before the original optimal solution would become nonopti-
mal. Then determine the best choice of � over this range.

6.7-26. Consider the following parametric linear programming
problem.

Maximize Z(�) � (10 � 4�)x1 � (4 � �)x2 � (7 � �)x3,

subject to

3x1 � x2 � 2x3 � 7 (resource 1),
2x1 � x2 � 3x3 � 5 (resource 2),

and

x1 � 0, x2 � 0, x3 � 0,

where � can be assigned any positive or negative values. Let x4 and
x5 be the slack variables for the respective constraints. After we
apply the simplex method with � � 0, the final simplex tableau is

Let x4 and x5 denote the slack variables for the respective func-
tional constraints. After we apply the simplex method, the final
simplex tableau is
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While doing postoptimality analysis, you learn that some of the pa-
rameter values used in the original model just given are just rough
estimates, where the range of likely values in each case is within
�50 percent of the value used here. For each of these following pa-
rameters, perform sensitivity analysis to determine whether this un-
certainty might affect either the feasibility or the optimality of the
above basic solution. Specifically, for each parameter, determine the
allowable range of values for which the current basic solution (per-
haps with new values for the basic variables) will remain both fea-
sible and optimal. Then, for each parameter and its range of likely
values, indicate which part of this range lies within the allowable
range and which parts correspond to values for which the current
basic solution will no longer be both feasible and optimal.
(a) Parameter b2

(b) Parameter c2

(c) Parameter a22

(d) Parameter c3

(e) Parameter a12

(f) Parameter b1

6.7-24. Consider Variation 5 of the Wyndor Glass Co. model pre-
sented in Sec. 6.7, where c�2 � 3, a�22 � 3, a�32 � 4, and where the
other parameters are given in Table 6.21. Starting from the resulting
final tableau given at the bottom of Table 6.24, construct a table like
Table 6.26 to perform parametric linear programming analysis, where

c1 � 3 � � and c2 � 3 � 2�.

How far can � be increased above 0 before the current basic solu-
tion is no longer optimal?

6.7-25. Reconsider the model of Prob. 6.7-6. Suppose that you now
have the option of making trade-offs in the profitability of the first
two activities, whereby the objective function coefficient of x1 can
be increased by any amount by simultaneously decreasing the ob-
jective function coefficient of x2 by the same amount. Thus, the al-
ternative choices of the objective function are

Z(�) � (2 � �)x1 � (1 � �)x2 � x3,

where any nonnegative value of � can be chosen.

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 0 1 0 1 1 14
x1 (1) 0 1 �1 0 3 �5 2
x3 (2) 0 0 1 1 �1 2 1

(a) Determine the range of values of � over which the above BF
solution will remain optimal. Then find the best choice of �
within this range.

(b) Given that � is within the range of values found in part (a),
find the allowable range to stay feasible for b1 (the available
amount of resource 1). Then do the same for b2 (the available
amount of resource 2).

(c) Given that � is within the range of values found in part (a),
identify the shadow prices (as a function of �) for the two re-
sources. Use this information to determine how the optimal
value of the objective function would change (as a function of
�) if the available amount of resource 1 were decreased by 1
and the available amount of resource 2 simultaneously were
increased by 1.

(d) Construct the dual of this parametric linear programming prob-
lem. Set � � 0 and solve this dual problem graphically to find
the corresponding shadow prices for the two resources of the
primal problem. Then find these shadow prices as a function
of � [within the range of values found in part (a)] by alge-
braically solving for this same optimal CPF solution for the
dual problem as a function of �.

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 0 0 3 2 2 24
x1 (1) 0 1 0 �1 1 �1 2
x2 (2) 0 0 1 5 �2 3 1



(a) Use the fundamental insight (Sec. 5.3) to revise this tableau to
reflect the inclusion of the parameter � in the original model.
Show the complete tableau needed to apply the feasibility test
and the optimality test for any value of �. Express the corre-
sponding basic solution (and Z) as a function of �.

(b) Determine the range of nonnegative values of � over which
this basic solution is feasible.

(c) Determine the range of nonnegative values of � over which
this basic solution is both feasible and optimal. Determine the
best choice of � over this range.

6.7-29. Consider the following problem.

Maximize Z � 10x1 � 4x2,

subject to

3x1 � x2 � 30
2x1 � x2 � 25

and

x1 � 0, x2 � 0.

Let x3 and x4 denote the slack variables for the respective func-
tional constraints. After we apply the simplex method, the final
simplex tableau is

6.7-27. Consider the following parametric linear programming
problem.

Maximize Z(�) � 2x1 � 4x2 � 5x3,

subject to

x1 � 3x2 � 2x3 � 5 � �
x1 � 2x2 � 3x3 � 6 � 2�

and

x1 � 0, x2 � 0, x3 � 0,

where � can be assigned any positive or negative values. Let x4 and
x5 be the slack variables for the respective functional constraints.
After we apply the simplex method with � � 0, the final simplex
tableau is
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(a) Express the BF solution (and Z ) given in this tableau as a func-
tion of �. Determine the lower and upper bounds on � before
this optimal solution would become infeasible. Then determine
the best choice of � between these bounds.

(b) Given that � is between the bounds found in part (a), deter-
mine the allowable range to stay optimal for c1 (the coefficient
of x1 in the objective function).

6.7-28. Consider the following parametric linear programming
problem, where the parameter � must be nonnegative:

Maximize Z(�) � (5 � 2�)x1 � (2 � �)x2 � (3 � �)x3,

subject to

4x1 � x2 � 2x3 � 5 � 5�
3x1 � x2 � 2x3 � 10 � 10�

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 be the surplus variable for the first functional constraint, and
let x�5 and x�6 be the artificial variables for the respective functional
constraints. After we apply the simplex method with the Big M
method and with � � 0, the final simplex tableau is

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x�5 x�6 Side

Z (0) 1 1 0 1 0 M M � 2 20
x2 (1) 0 3 1 2 0 0 1 10
x4 (2) 0 �1 0 2 1 �1 1 5

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 Side

Z (0) 1 0 0 2 2 110
x2 (1) 0 0 1 �2 3 15
x1 (2) 0 1 0 1 �1 5

Now suppose that both of the following changes are made si-
multaneously in the original model:

1. The first constraint is changed to 4x1 � x2 � 40.
2. Parametric programming is introduced to change the objective

function to the alternative choices of

Z(�) � (10 � 2�)x1 � (4 � �)x2,

where any nonnegative value of � can be chosen.

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 0 0 1 0 1 1 11
x1 (1) 1 1 5 0 3 �2 3
x3 (2) 2 0 �1 1 �1 1 1



nology, so 0 � � � 1. Given �, the coefficients of x1 in the
model become

� .

Construct the resulting revised final tableau (as a function of
�), and convert this tableau to proper form from Gaussian elim-
ination. Use this tableau to identify the current basic solution
as a function of �. Over the allowable values of 0 � � � 1,
give the range of values of � for which this solution is both fea-
sible and optimal. What is the best choice of � within this range?

6.7-31. Consider the following problem.

Maximize Z � 3x1 � 5x2 � 2x3,

subject to

�2x1 � 2x2 � x3 � 5
�3x1 � x2 � x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 and x5 be the slack variables for the respective functional
constraints. After we apply the simplex method, the final simplex
tableau is






9 � 9�

2 � �

5 � �











c1

a11

a21






(a) Construct the resulting revised final tableau (as a function of
�), and then convert this tableau to proper form from Gauss-
ian elimination. Use this tableau to identify the new optimal
solution that applies for either � � 0 or sufficiently small val-
ues of �.

(b) What is the upper bound on � before this optimal solution
would become nonoptimal?

(c) Over the range of � from zero to this upper bound, which choice
of � gives the largest value of the objective function?

6.7-30. Consider the following problem.

Maximize Z � 9x1 � 8x2 � 5x3,

subject to

2x1 � 3x2 � x3 � 4
5x1 � 4x2 � 3x3 � 11

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 and x5 denote the slack variables for the respective func-
tional constraints. After we apply the simplex method, the final
simplex tableau is
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D,I (a) Suppose that a new technology has become available for
conducting the first activity considered in this problem. If
the new technology were adopted to replace the existing
one, the coefficients of x1 in the model would change

from � to � .

Use the sensitivity analysis procedure to investigate the
potential effect and desirability of adopting the new tech-
nology. Specifically, assuming it were adopted, construct
the resulting revised final tableau, convert this tableau to
proper form from Gaussian elimination, and then reopti-
mize (if necessary) to find the new optimal solution.

(b) Now suppose that you have the option of mixing the old and
new technologies for conducting the first activity. Let � denote
the fraction of the technology used that is from the new tech-






18

3

6











c1

a11

a21











9

2

5











c1

a11

a21






Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 0 2 0 2 1 19
x1 (1) 0 1 5 0 3 �1 1
x3 (2) 0 0 �7 1 �5 2 2

Parametric linear programming analysis now is to be applied si-
multaneously to the objective function and right-hand sides, where
the model in terms of the new parameter is the following:

Maximize Z(�) � (3 � 2�)x1 � (5 � �)x2 � (2 � �)x3,

subject to

�2x1 � 2x2 � x3 � 5 � 6�
�3x1 � x2 � x3 � 10 � 8�

and

x1 � 0, x2 � 0, x3 � 0.

Construct the resulting revised final tableau (as a function of �),
and convert this tableau to proper form from Gaussian elimination.

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 0 20 0 9 7 115
x1 (1) 0 1 3 0 1 1 15
x3 (2) 0 0 8 1 3 2 35



(d) If the unit profit is below this breakeven point, how much can
the old product’s production rate be decreased (assuming its
previous rate was larger than this decrease) before the final BF
solution would become infeasible?

6.7-33. Consider the following problem.

Maximize Z � 2x1 � x2 � 3x3,

subject to

x1 � x2 � x3 � 3
x1 � 2x2 � x3 � 1
x1 � 2x2 � x3 � 2

and

x1 � 0, x2 � 0, x3 � 0.

Suppose that the Big M method (see Sec. 4.6) is used to obtain the
initial (artificial) BF solution. Let x�4 be the artificial slack variable
for the first constraint, x5 the surplus variable for the second con-
straint, x�6 the artificial variable for the second constraint, and x7

the slack variable for the third constraint. The corresponding final
set of equations yielding the optimal solution is

(0) Z � 5x2 � (M � 2)x�4 � Mx�6 � x7 � 8,
(1) x1 � x2 � x�4 � x7 � 1,
(2) 2x2 � x3 � x7 � 2,
(3) 3x2 � x�4 � x5 � x�6 � 2.

Suppose that the original objective function is changed to 
Z � 2x1 � 3x2 � 4x3 and that the original third constraint is
changed to 2x2 � x3 � 1. Use the sensitivity analysis procedure to
revise the final set of equations (in tableau form) and convert it to
proper form from Gaussian elimination for identifying and evalu-
ating the current basic solution. Then test this solution for feasi-
bility and for optimality. (Do not reoptimize.)

Use this tableau to identify the current basic solution as a function
of �. For � � 0, give the range of values of � for which this solu-
tion is both feasible and optimal. What is the best choice of � within
this range?

6.7-32. Consider the Wyndor Glass Co. problem described in Sec.
3.1. Suppose that, in addition to considering the introduction of
two new products, management now is considering changing the
production rate of a certain old product that is still profitable. Re-
fer to Table 3.1. The number of production hours per week used
per unit production rate of this old product is 1, 4, and 3 for Plants
1, 2, and 3, respectively. Therefore, if we let � denote the change
(positive or negative) in the production rate of this old product, the
right-hand sides of the three functional constraints in Sec. 3.1 be-
come 4 � �, 12 � 4�, and 18 � 3�, respectively. Thus, choosing
a negative value of � would free additional capacity for producing
more of the two new products, whereas a positive value would have
the opposite effect.
(a) Use a parametric linear programming formulation to determine

the effect of different choices of � on the optimal solution for
the product mix of the two new products given in the final
tableau of Table 4.8. In particular, use the fundamental insight
of Sec. 5.3 to obtain expressions for Z and the basic variables
x3, x2, and x1 in terms of �, assuming that � is sufficiently close
to zero that this “final” basic solution still is feasible and thus
optimal for the given value of �.

(b) Now consider the broader question of the choice of � along
with the product mix for the two new products. What is the
breakeven unit profit for the old product (in comparison with
the two new products) below which its production rate should
be decreased (� � 0) in favor of the new products and above
which its production rate should be increased (� 	 0)?

(c) If the unit profit is above this breakeven point, how much can
the old product’s production rate be increased before the final
BF solution would become infeasible?
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Refer to Sec. 3.4 (subsection entitled “Controlling Air Pollution”) for the Nori & Leets
Co. problem. After the OR team obtained an optimal solution, we mentioned that the
team then conducted sensitivity analysis. We now continue this story by having you
retrace the steps taken by the OR team, after we provide some additional background.

The values of the various parameters in the original formulation of the model are
given in Tables 3.12, 3.13, and 3.14. Since the company does not have much prior ex-
perience with the pollution abatement methods under consideration, the cost estimates
given in Table 3.14 are fairly rough, and each one could easily be off by as much as
10 percent in either direction. There also is some uncertainty about the parameter val-
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ues given in Table 3.13, but less so than for Table 3.14. By contrast, the values in Table
3.12 are policy standards, and so are prescribed constants.

However, there still is considerable debate about where to set these policy standards
on the required reductions in the emission rates of the various pollutants. The numbers
in Table 3.12 actually are preliminary values tentatively agreed upon before learning
what the total cost would be to meet these standards. Both the city and company offi-
cials agree that the final decision on these policy standards should be based on the trade-
off between costs and benefits. With this in mind, the city has concluded that each 10
percent increase in the policy standards over the current values (all the numbers in Table
3.12) would be worth $3.5 million to the city. Therefore, the city has agreed to reduce
the company’s tax payments to the city by $3.5 million for each 10 percent reduction
in the policy standards (up to 50 percent) that is accepted by the company.

Finally, there has been some debate about the relative values of the policy stan-
dards for the three pollutants. As indicated in Table 3.12, the required reduction for
particulates now is less than half of that for either sulfur oxides or hydrocarbons. Some
have argued for decreasing this disparity. Others contend that an even greater dispar-
ity is justified because sulfur oxides and hydrocarbons cause considerably more dam-
age than particulates. Agreement has been reached that this issue will be reexamined
after information is obtained about which trade-offs in policy standards (increasing one
while decreasing another) are available without increasing the total cost.

(a) Use any available linear programming software to solve the model for this problem as for-
mulated in Sec. 3.4. In addition to the optimal solution, obtain the additional output pro-
vided for performing postoptimality analysis (e.g., the Sensitivity Report when using Excel).
This output provides the basis for the following steps.

(b) Ignoring the constraints with no uncertainty about their parameter values (namely, xj � 1
for j � 1, 2, . . . , 6), identify the parameters of the model that should be classified as sen-
sitive parameters. (Hint: See the subsection “Sensitivity Analysis” in Sec. 4.7.) Make a re-
sulting recommendation about which parameters should be estimated more closely, if 
possible.

(c) Analyze the effect of an inaccuracy in estimating each cost parameter given in Table 3.14.
If the true value is 10 percent less than the estimated value, would this alter the optimal so-
lution? Would it change if the true value were 10 percent more than the estimated value?
Make a resulting recommendation about where to focus further work in estimating the cost
parameters more closely.

(d) Consider the case where your model has been converted to maximization form before apply-
ing the simplex method. Use Table 6.14 to construct the corresponding dual problem, and use
the output from applying the simplex method to the primal problem to identify an optimal so-
lution for this dual problem. If the primal problem had been left in minimization form, how
would this affect the form of the dual problem and the sign of the optimal dual variables?

(e) For each pollutant, use your results from part (d ) to specify the rate at which the total cost
of an optimal solution would change with any small change in the required reduction in the
annual emission rate of the pollutant. Also specify how much this required reduction can be
changed (up or down) without affecting the rate of change in the total cost.

(f) For each unit change in the policy standard for particulates given in Table 3.12, determine
the change in the opposite direction for sulfur oxides that would keep the total cost of an
optimal solution unchanged. Repeat this for hydrocarbons instead of sulfur oxides. Then do
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it for a simultaneous and equal change for both sulfur oxides and hydrocarbons in the op-
posite direction from particulates.

(g) Letting � denote the percentage increase in all the policy standards given in Table 3.12, for-
mulate the problem of analyzing the effect of simultaneous proportional increases in these
standards as a parametric linear programming problem. Then use your results from part (e)
to determine the rate at which the total cost of an optimal solution would increase with a
small increase in � from zero.

(h) Use the simplex method to find an optimal solution for the parametric linear programming
problem formulated in part (g) for each � � 10, 20, 30, 40, 50. Considering the tax incen-
tive offered by the city, use these results to determine which value of � (including the op-
tion of � � 0) should be chosen to minimize the company’s total cost of both pollution abate-
ment and taxes.

(i) For the value of � chosen in part (h), repeat parts (e) and ( f ) so that the decision makers can
make a final decision on the relative values of the policy standards for the three pollutants.
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The Ploughman family owns and operates a 640-acre farm that has been in the family
for several generations. The Ploughmans always have had to work hard to make a de-
cent living from the farm and have had to endure some occasional difficult years. Sto-
ries about earlier generations overcoming hardships due to droughts, floods, etc., are
an important part of the family history. However, the Ploughmans enjoy their self-
reliant lifestyle and gain considerable satisfaction from continuing the family tradition
of successfully living off the land during an era when many family farms are being
abandoned or taken over by large agricultural corporations.

John Ploughman is the current manager of the farm while his wife Eunice runs
the house and manages the farm’s finances. John’s father, Grandpa Ploughman, lives
with them and still puts in many hours working on the farm. John and Eunice’s older
children, Frank, Phyllis, and Carl, also are given heavy chores before and after school.

The entire famiy can produce a total of 4,000 person-hours worth of labor during
the winter and spring months and 4,500 person-hours during the summer and fall. If
any of these person-hours are not needed, Frank, Phyllis, and Carl will use them to
work on a neighboring farm for $5 per hour during the winter and spring months and
$5.50 per hour during the summer and fall.

The farm supports two types of livestock: dairy cows and laying hens, as well as
three crops: soybeans, corn, and wheat. (All three are cash crops, but the corn also is
a feed crop for the cows and the wheat also is used for chicken feed.) The crops are
harvested during the late summer and fall. During the winter months, John, Eunice,
and Grandpa make a decision about the mix of livestock and crops for the coming year.

Currently, the family has just completed a particularly successful harvest which
has provided an investment fund of $20,000 that can be used to purchase more live-
stock. (Other money is available for ongoing expenses, including the next planting of
crops.) The family currently has 30 cows valued at $35,000 and 2,000 hens valued at
$5,000. They wish to keep all this livestock and perhaps purchase more. Each new cow
would cost $1,500, and each new hen would cost $3.
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Over a year’s time, the value of a herd of cows will decrease by about 10 percent
and the value of a flock of hens will decrease by about 25 percent due to aging.

Each cow will require 2 acres of land for grazing and 10 person-hours of work per
month, while producing a net annual cash income of $850 for the family. The corre-
sponding figures for each hen are: no significant acreage, 0.05 person-hour per month,
and an annual net cash income of $4.25. The chicken house can accommodate a max-
imum of 5,000 hens, and the size of the barn limits the herd to a maximum of 42 cows.

For each acre planted in each of the three crops, the following table gives the num-
ber of person-hours of work that will be required during the first and second halves of
the year, as well as a rough estimate of the crop’s net value (in either income or sav-
ings in purchasing feed for the livestock).
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Data per acre planted

Soybeans Corn Wheat

Winter and spring, person-hours 1.0 0.9 0.6
Summer and fall, person-hours 1.4 1.2 0.7
Net value $70 $60 $40

To provide much of the feed for the livestock, John wants to plant at least 1 acre
of corn for each cow in the coming year’s herd and at least 0.05 acre of wheat for each
hen in the coming year’s flock.

John, Eunice, and Grandpa now are discussing how much acreage should be planted
in each of the crops and how many cows and hens to have for the coming year. Their
objective is to maximize the family’s monetary worth at the end of the coming year
(the sum of the net income from the livestock for the coming year plus the net value
of the crops for the coming year plus what remains from the investment fund plus the
value of the livestock at the end of the coming year plus any income from working on
a neighboring farm, minus living expenses of $40,000 for the year).

(a) Identify verbally the components of a linear programming model for this problem.
(b) Formulate this model. (Either an algebraic or a spreadsheet formulation is acceptable.)
(c) Obtain an optimal solution and generate the additional output provided for performing postop-

timality analysis (e.g., the Sensitivity Report when using Excel). What does the model pre-
dict regarding the family’s monetary worth at the end of the coming year?

(d) Find the allowable range to stay optimal for the net value per acre planted for each of the
three crops.

The above estimates of the net value per acre planted in each of the three crops
assumes good weather conditions. Adverse weather conditions would harm the crops
and greatly reduce the resulting value. The scenarios particularly feared by the family
are a drought, a flood, an early frost, both a drought and an early frost, and both a
flood and an early frost. The estimated net values for the year under these scenarios
are shown on the next page.



(e) Find an optimal solution under each scenario after making the necessary adjustments to the
linear programming model formulated in part (b). In each case, what is the prediction re-
garding the family’s monetary worth at the end of the year?

(f) For the optimal solution obtained under each of the six scenarios [including the good weather
scenario considered in parts (a) to (d )], calculate what the family’s monetary worth would
be at the end of the year if each of the other five scenarios occur instead. In your judgment,
which solution provides the best balance between yielding a large monetary worth under
good weather conditions and avoiding an overly small monetary worth under adverse weather
conditions.

Grandpa has researched what the weather conditions were in past years as far back
as weather records have been kept, and obtained the following data.
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With these data, the family has decided to use the following approach to making
its planting and livestock decisions. Rather than the optimistic approach of assuming
that good weather conditions will prevail [as done in parts (a) to (d )], the average net
value under all weather conditions will be used for each crop (weighting the net val-
ues under the various scenarios by the frequencies in the above table).

(g) Modify the linear programming model formulated in part (b) to fit this new approach.
(h) Repeat part (c) for this modified model.
(i) Use a shadow price obtained in part (h) to analyze whether it would be worthwhile for the

family to obtain a bank loan with a 10 percent interest rate to purchase more livestock now
beyond what can be obtained with the $20,000 from the investment fund.

(j) For each of the three crops, use the postoptimality analysis information obtained in part (h)
to identify how much latitude for error is available in estimating the net value per acre planted
for that crop without changing the optimal solution. Which two net values need to be esti-
mated most carefully? If both estimates are incorrect simultaneously, how close do the esti-
mates need to be to guarantee that the optimal solution will not change?

Scenario Frequency

Good weather 40%
Drought 20%
Flood 10%
Early frost 15%
Drought and early frost 10%
Flood and early frost 5%

Net Value per Acre Planted

Scenario Soybeans Corn Wheat

Drought �$10 �$15 0
Flood $15 $20 $10
Early frost $50 $40 $30
Drought and early frost �$15 �$20 �$10
Flood and early frost $10 $10 $ 5



This problem illustrates a kind of situation that is frequently faced by various kinds
of organizations. To describe the situation in general terms, an organization faces an
uncertain future where any one of a number of scenarios may unfold. Which one will
occur depends on conditions that are outside the control of the organization. The or-
ganization needs to choose the levels of various activities, but the unit contribution of
each activity to the overall measure of performance is greatly affected by which sce-
nario unfolds. Under these circumstances, what is the best mix of activities?

(k) Think about specific situations outside of farm management that fit this description. De-
scribe one.
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Reconsider Case 4.3.
The Springfield School Board still has the policy of providing bussing for all mid-

dle school students who must travel more than approximately 1 mile. Another current
policy is to allow splitting residential areas among multiple schools if this will reduce
the total bussing cost. (This latter policy will be reversed in Case 12.4.) However, be-
fore adopting a bussing plan based on parts (a) and (b) of Case 4.3, the school board
now wants to conduct some postoptimality analysis.

(a) If you have not already done so for parts (a) and (b) of Case 4.3, formulate and solve a lin-
ear programming model for this problem. (Either an algebraic or a spreadsheet formulation
is acceptable.)

(b) Generate a sensitivity analysis report with the same software package as used in part (a).

One concern of the school board is the ongoing road construction in area 6. These
construction projects have been delaying traffic considerably and are likely to affect the
cost of bussing students from area 6, perhaps increasing them as much as 10 percent.

(c) Use the report from part (b) to check how much the bussing cost from area 6 to school 1
can increase (assuming no change in the costs for the other schools) before the current op-
timal solution would no longer be optimal. If the allowable increase is less than 10 percent,
re-solve to find the new optimal solution with a 10 percent increase.

(d) Repeat part (c) for school 2 (assuming no change in the costs for the other schools).
(e) Now assume that the bussing cost from area 6 would increase by the same percentage for

all the schools. Use the report from part (b) to determine how large this percentage can be
before the current optimal solution might no longer be optimal. If the allowable increase is
less than 10 percent, re-solve to find the new optimal solution with a 10 percent increase.

The school board has the option of adding portable classrooms to increase the ca-
pacity of one or more of the middle schools for a few years. However, this is a costly
move that the board would consider only if it would significantly decrease bussing
costs. Each portable classroom holds 20 students and has a leasing cost of $2,500 per
year. To analyze this option, the school board decides to assume that the road con-
struction in area 6 will wind down without significantly increasing the bussing costs
from that area.
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(f) For each school, use the corresponding shadow price from the report obtained in part (b) to
determine whether it would be worthwhile to add any portable classrooms.

(g) For each school where it is worthwhile to add any portable classrooms, use the report from
part (b) to determine how many could be added before the shadow price would no longer
be valid (assuming this is the only school receiving portable classrooms).

(h) If it would be worthwhile to add portable classrooms to more than one school, use the re-
port from part (b) to determine the combinations of the number to add for which the shadow
prices definitely would still be valid. Then use the shadow prices to determine which of these
combinations is best in terms of minimizing the total cost of bussing students and leasing
portable classrooms. Re-solve to find the corresponding optimal solution for assigning stu-
dents to schools.

(i) If part (h) was applicable, modify the best combination of portable classrooms found there
by adding one more to the school with the most favorable shadow price. Find the corre-
sponding optimal solution for assigning students to schools and generate the corresponding
sensitivity analysis report. Use this information to assess whether the plan developed in part
(h) is the best one available for minimizing the total cost of bussing students and leasing
portable classrooms. If not, find the best plan.
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7
Other Algorithms for 
Linear Programming

The key to the extremely widespread use of linear programming is the availability of an
exceptionally efficient algorithm—the simplex method—that will routinely solve the large-
size problems that typically arise in practice. However, the simplex method is only part
of the arsenal of algorithms regularly used by linear programming practitioners. We now
turn to these other algorithms.

This chapter focuses first on three particularly important algorithms that are, in fact, vari-
ants of the simplex method. In particular, the next three sections present the dual simplex
method (a modification particularly useful for sensitivity analysis), parametric linear pro-
gramming (an extension for systematic sensitivity analysis), and the upper bound technique
(a streamlined version of the simplex method for dealing with variables having upper bounds).

Section 4.9 introduced another algorithmic approach to linear programming—a type
of algorithm that moves through the interior of the feasible region. We describe this inte-
rior-point approach further in Sec. 7.4.

We next introduce linear goal programming where, rather than having a single ob-
jective (maximize or minimize Z) as for linear programming, the problem instead has sev-
eral goals toward which we must strive simultaneously. Certain formulation techniques
enable converting a linear goal programming problem back into a linear programming
problem so that solution procedures based on the simplex method can still be used. Sec-
tion 7.5 describes these techniques and procedures.

The dual simplex method is based on the duality theory presented in the first part of Chap.
6. To describe the basic idea behind this method, it is helpful to use some terminology in-
troduced in Tables 6.10 and 6.11 of Sec. 6.3 for describing any pair of complementary ba-
sic solutions in the primal and dual problems. In particular, recall that both solutions are
said to be primal feasible if the primal basic solution is feasible, whereas they are called
dual feasible if the complementary dual basic solution is feasible for the dual problem.
Also recall (as indicated on the right side of Table 6.11) that each complementary basic
solution is optimal for its problem only if it is both primal feasible and dual feasible.

The dual simplex method can be thought of as the mirror image of the simplex method.
The simplex method deals directly with basic solutions in the primal problem that are pri-
mal feasible but not dual feasible. It then moves toward an optimal solution by striving
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to achieve dual feasibility as well (the optimality test for the simplex method). By con-
trast, the dual simplex method deals with basic solutions in the primal problem that are
dual feasible but not primal feasible. It then moves toward an optimal solution by striv-
ing to achieve primal feasibility as well.

Furthermore, the dual simplex method deals with a problem as if the simplex method
were being applied simultaneously to its dual problem. If we make their initial basic so-
lutions complementary, the two methods move in complete sequence, obtaining comple-
mentary basic solutions with each iteration.

The dual simplex method is very useful in certain special types of situations. Ordi-
narily it is easier to find an initial basic solution that is feasible than one that is dual fea-
sible. However, it is occasionally necessary to introduce many artificial variables to con-
struct an initial BF solution artificially. In such cases it may be easier to begin with a dual
feasible basic solution and use the dual simplex method. Furthermore, fewer iterations may
be required when it is not necessary to drive many artificial variables to zero.

As we mentioned several times in Chap. 6 as well as in Sec. 4.7, another important
primary application of the dual simplex method is its use in conjunction with sensitivity
analysis. Suppose that an optimal solution has been obtained by the simplex method but
that it becomes necessary (or of interest for sensitivity analysis) to make minor changes
in the model. If the formerly optimal basic solution is no longer primal feasible (but still
satisfies the optimality test), you can immediately apply the dual simplex method by start-
ing with this dual feasible basic solution. Applying the dual simplex method in this way
usually leads to the new optimal solution much more quickly than would solving the new
problem from the beginning with the simplex method.

The dual simplex method also can be useful in solving huge linear programming prob-
lems from scratch because it is such an efficient algorithm. Recent computational expe-
rience with the latest versions of CPLEX indicates that the dual simplex method often is
more efficient than the simplex method for solving particularly massive problems en-
countered in practice.

The rules for the dual simplex method are very similar to those for the simplex method.
In fact, once the methods are started, the only difference between them is in the criteria
used for selecting the entering and leaving basic variables and for stopping the algorithm.

To start the dual simplex method (for a maximization problem), we must have all the
coefficients in Eq. (0) nonnegative (so that the basic solution is dual feasible). The basic
solutions will be infeasible (except for the last one) only because some of the variables
are negative. The method continues to decrease the value of the objective function, always
retaining nonnegative coefficients in Eq. (0), until all the variables are nonnegative. Such
a basic solution is feasible (it satisfies all the equations) and is, therefore, optimal by the
simplex method criterion of nonnegative coefficients in Eq. (0).

The details of the dual simplex method are summarized next.

Summary of the Dual Simplex Method.

1. Initialization: After converting any functional constraints in � form to � form (by
multiplying through both sides by �1), introduce slack variables as needed to con-
struct a set of equations describing the problem. Find a basic solution such that the co-
efficients in Eq. (0) are zero for basic variables and nonnegative for nonbasic variables
(so the solution is optimal if it is feasible). Go to the feasibility test.
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2. Feasibility test: Check to see whether all the basic variables are nonnegative. If they are,
then this solution is feasible, and therefore optimal, so stop. Otherwise, go to an iteration.

3. Iteration:
Step 1 Determine the leaving basic variable: Select the negative basic variable

that has the largest absolute value.
Step 2 Determine the entering basic variable: Select the nonbasic variable whose

coefficient in Eq. (0) reaches zero first as an increasing multiple of the equation con-
taining the leaving basic variable is added to Eq. (0). This selection is made by check-
ing the nonbasic variables with negative coefficients in that equation (the one contain-
ing the leaving basic variable) and selecting the one with the smallest absolute value
of the ratio of the Eq. (0) coefficient to the coefficient in that equation.

Step 3 Determine the new basic solution: Starting from the current set of equa-
tions, solve for the basic variables in terms of the nonbasic variables by Gaussian elim-
ination. When we set the nonbasic variables equal to zero, each basic variable (and Z)
equals the new right-hand side of the one equation in which it appears (with a coeffi-
cient of �1). Return to the feasibility test.

To fully understand the dual simplex method, you must realize that the method pro-
ceeds just as if the simplex method were being applied to the complementary basic solu-
tions in the dual problem. (In fact, this interpretation was the motivation for constructing
the method as it is.) Step 1 of an iteration, determining the leaving basic variable, is equiv-
alent to determining the entering basic variable in the dual problem. The negative vari-
able with the largest absolute value corresponds to the negative coefficient with the largest
absolute value in Eq. (0) of the dual problem (see Table 6.3). Step 2, determining the en-
tering basic variable, is equivalent to determining the leaving basic variable in the dual
problem. The coefficient in Eq. (0) that reaches zero first corresponds to the variable in
the dual problem that reaches zero first. The two criteria for stopping the algorithm are
also complementary.

We shall now illustrate the dual simplex method by applying it to the dual problem
for the Wyndor Glass Co. (see Table 6.1). Normally this method is applied directly to the
problem of concern (a primal problem). However, we have chosen this problem because
you have already seen the simplex method applied to its dual problem (namely, the primal
problem1) in Table 4.8 so you can compare the two. To facilitate the comparison, we shall
continue to denote the decision variables in the problem being solved by yi rather than xj.

In maximization form, the problem to be solved is

Maximize Z � �4y1 � 12y2 � 18y3,

subject to

y1 � 3y3 � 3
2y2 � 2y3 � 5

and

y1 � 0, y2 � 0, y3 � 0.
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1Recall that the symmetry property in Sec. 6.1 points out that the dual of a dual problem is the original primal
problem.



Since negative right-hand sides are now allowed, we do not need to introduce artificial
variables to be the initial basic variables. Instead, we simply convert the functional con-
straints to � form and introduce slack variables to play this role. The resulting initial set
of equations is that shown for iteration 0 in Table 7.1. Notice that all the coefficients in
Eq. (0) are nonnegative, so the solution is optimal if it is feasible.

The initial basic solution is y1 � 0, y2 � 0, y3 � 0, y4 � �3, y5 � �5, with Z � 0,
which is not feasible because of the negative values. The leaving basic variable is y5 (5 � 3),
and the entering basic variable is y2 (12/2 � 18/2), which leads to the second set of equa-
tions, labeled as iteration 1 in Table 7.1. The corresponding basic solution is y1 � 0,
y2 � 	

5
2

	, y3 � 0, y4 � �3, y5 � 0, with Z � �30, which is not feasible.
The next leaving basic variable is y4, and the entering basic variable is y3 (6/3 � 4/1),

which leads to the final set of equations in Table 7.1. The corresponding basic solution is
y1 � 0, y2 � 	

3
2

	, y3 � 1, y4 � 0, y5 � 0, with Z � �36, which is feasible and therefore 
optimal.

Notice that the optimal solution for the dual of this problem1 is x*1 � 2, x*2 � 6,
x*3 � 2, x*4 � 0, x*5 � 0, as was obtained in Table 4.8 by the simplex method. We suggest
that you now trace through Tables 7.1 and 4.8 simultaneously and compare the comple-
mentary steps for the two mirror-image methods.
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TABLE 7.1 Dual simplex method applied to the Wyndor Glass Co. dual problem

Coefficient of:
Basic Right

Iteration Variable Eq. Z y1 y2 y3 y4 y5 Side

Z (0) 1 4 12 18 0 0 0
0 y4 (1) 0 �1 0 �3 1 0 �3

y5 (2) 0 0 �2 �2 0 1 �5

Z (0) 1 4 0 6 0 6 �30
1 y4 (1) 0 �1 0 �3 1 0 �3

y2 (2) 0 0 1 1 0 �	
1
2

	 	
5
2

	

Z (0) 1 2 0 0 2 6 �36

2 y3 (1) 0 	
1
3

	 0 1 �	
1
3

	 0 1

y2 (2) 0 �	
1
3

	 1 0 	
1
3

	 �	
1
2

	 	
3
2

	

At the end of Sec. 6.7 we described parametric linear programming and its use for con-
ducting sensitivity analysis systematically by gradually changing various model parame-
ters simultaneously. We shall now present the algorithmic procedure, first for the case
where the cj parameters are being changed and then where the bi parameters are varied.

7.2 PARAMETRIC LINEAR PROGRAMMING

1The complementary optimal basic solutions property presented in Sec. 6.3 indicates how to read the optimal so-
lution for the dual problem from row 0 of the final simplex tableau for the primal problem. This same conclu-
sion holds regardless of whether the simplex method or the dual simplex method is used to obtain the final tableau.



Systematic Changes in the cj Parameters

For the case where the cj parameters are being changed, the objective function of the or-
dinary linear programming model

Z � �
n

j�1
cjxj

is replaced by

Z(
) � �
n

j�1
(cj��j
)xj,

where the �j are given input constants representing the relative rates at which the coeffi-
cients are to be changed. Therefore, gradually increasing 
 from zero changes the coeffi-
cients at these relative rates.

The values assigned to the �j may represent interesting simultaneous changes of the
cj for systematic sensitivity analysis of the effect of increasing the magnitude of these
changes. They may also be based on how the coefficients (e.g., unit profits) would change
together with respect to some factor measured by 
. This factor might be uncontrollable,
e.g., the state of the economy. However, it may also be under the control of the decision
maker, e.g., the amount of personnel and equipment to shift from some of the activities
to others.

For any given value of 
, the optimal solution of the corresponding linear program-
ming problem can be obtained by the simplex method. This solution may have been ob-
tained already for the original problem where 
 � 0. However, the objective is to find the
optimal solution of the modified linear programming problem [maximize Z(
) subject to
the original constraints] as a function of 
. Therefore, in the solution procedure you need
to be able to determine when and how the optimal solution changes (if it does) as 
 in-
creases from zero to any specified positive number.

Figure 7.1 illustrates how Z*(
), the objective function value for the optimal solution
(given 
), changes as 
 increases. In fact, Z*(
) always has this piecewise linear and con-
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FIGURE 7.1
The objective function value
for an optimal solution as a
function of 
 for parametric
linear programming with
systematic changes in the 
cj parameters.



vex1 form (see Prob. 7.2-7). The corresponding optimal solution changes (as 
 increases)
just at the values of 
 where the slope of the Z*(
) function changes. Thus, Fig. 7.1 de-
picts a problem where three different solutions are optimal for different values of 
, the
first for 0 � 
 � 
1, the second for 
1 � 
 � 
2, and the third for 
 � 
2. Because the
value of each xj remains the same within each of these intervals for 
, the value of Z*(
)
varies with 
 only because the coefficients of the xj are changing as a linear function of

. The solution procedure is based directly upon the sensitivity analysis procedure for in-
vestigating changes in the cj parameters (Cases 2a and 3, Sec. 6.7). As described in the
last subsection of Sec. 6.7, the only basic difference with parametric linear programming
is that the changes now are expressed in terms of 
 rather than as specific numbers.

To illustrate, suppose that �1 � 2 and �2 � �1 for the original Wyndor Glass Co.
problem presented in Sec. 3.1, so that

Z(
) � (3 � 2
)x1 � (5 � 
)x2.

Beginning with the final simplex tableau for 
 � 0 (Table 4.8), we see that its Eq. (0)

(0) Z � 	
3
2

	x4 � x5 � 36

would first have these changes from the original (
 � 0) coefficients added into it on the
left-hand side:

(0) Z � 2
x1 � 
x2 � 	
3
2

	x4 � x5 � 36.

Because both x1 and x2 are basic variables [appearing in Eqs. (3) and (2), respectively],
they both need to be eliminated algebraically from Eq. (0):

Z � 2
x1 � 
x2 � 	
3
2

	x4 � x5 � 36

� 2
 times Eq. (3)
� 
 times Eq. (2)

(0) Z � �	
3
2

	 � 	
7
6

	
�x4 � �1 � 	
2
3

	
�x5 � 36 � 2
.

The optimality test says that the current BF solution will remain optimal as long as
these coefficients of the nonbasic variables remain nonnegative:

	
3
2

	 � 	
7
6

	
 � 0, for 0 � 
 � 	
9
7

	,

1 � 	
2
3

	
 � 0, for all 
 � 0.

Therefore, after 
 is increased past 
 � 	
9
7

	, x4 would need to be the entering basic variable
for another iteration of the simplex method to find the new optimal solution. Then 
 would
be increased further until another coefficient goes negative, and so on until 
 has been in-
creased as far as desired.

This entire procedure is now summarized, and the example is completed in Table 7.2.
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Summary of the Parametric Linear Programming Procedure for 
Systematic Changes in the cj Parameters.

1. Solve the problem with 
 � 0 by the simplex method.
2. Use the sensitivity analysis procedure (Cases 2a and 3, Sec. 6.7) to introduce the

�cj � �j
 changes into Eq. (0).
3. Increase 
 until one of the nonbasic variables has its coefficient in Eq. (0) go negative

(or until 
 has been increased as far as desired).
4. Use this variable as the entering basic variable for an iteration of the simplex method

to find the new optimal solution. Return to step 3.

Systematic Changes in the bi Parameters

For the case where the bi parameters change systematically, the one modification made
in the original linear programming model is that bi is replaced by bi � �i
, for i � 1,
2, . . . , m, where the �i are given input constants. Thus, the problem becomes

Maximize Z(
) � �
n

j�1
cjxj,
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TABLE 7.2 The cj parametric linear programming procedure applied to the 
Wyndor Glass Co. example

Coefficient of:
Range Basic Right Optimal
of � Variable Eq. Z x1 x2 x3 x4 x5 Side Solution

Z(
) (0) 1 0 0 �0 	
9 �

6
7


	 	
3 �

3
2


	 36 � 2
 x4 � 0

x5 � 0

0 � 
 � 	
9
7

	 x3 (1) 0 0 0 �1 �	
1
3

	 �	
1
3

	 2 x3 � 2

x2 (2) 0 0 1 �0 �	
1
2

	 �0 6 x2 � 6

x1 (3) 0 1 0 �0 �	
1
3

	 �	
1
3

	 2 x1 � 2

Z(
) (0) 1 0 0 	
�9

2
� 7

	 0 	

5 �
2



	 27 � 5
 x3 � 0

x5 � 0

	
9
7

	 � 
 � 5 x4 (1) 0 0 0 �3 1 �1 6 x4 � 6

x2 (2) 0 0 1 �	
3
2

	 0 �	
1
2

	 3 x2 � 3

x1 (3) 0 1 0 �1 0 �0 4 x1 � 4

Z(
) (0) 1 0 �5 � 
 3 � 2
 0 �0 12 � 8
 x2 � 0
x3 � 0


 � 5 x4 (1) 0 0 2 �0 1 �0 12 x4 � 12
x5 (2) 0 0 2 �3 0 �1 6 x5 � 6
x1 (3) 0 1 0 �1 0 �0 4 x1 � 4



subject to

�
n

j�1
aijxj � bi � �i
 for i � 1, 2, . . . , m

and

xj � 0 for j � 1, 2, . . . , n.

The goal is to identify the optimal solution as a function of 
.
With this formulation, the corresponding objective function value Z*(
) always has

the piecewise linear and concave1 form shown in Fig. 7.2. (See Prob. 7.2-8.) The set of
basic variables in the optimal solution still changes (as 
 increases) only where the slope
of Z*(
) changes. However, in contrast to the preceding case, the values of these variables
now change as a (linear) function of 
 between the slope changes. The reason is that in-
creasing 
 changes the right-hand sides in the initial set of equations, which then causes
changes in the right-hand sides in the final set of equations, i.e., in the values of the final
set of basic variables. Figure 7.2 depicts a problem with three sets of basic variables that
are optimal for different values of 
, the first for 0 � 
 � 
1, the second for 
1 � 
 � 
2,
and the third for 
 � 
2. Within each of these intervals of 
, the value of Z*(
) varies with

 despite the fixed coefficients cj because the xj values are changing.

The following solution procedure summary is very similar to that just presented for
systematic changes in the cj parameters. The reason is that changing the bi values is equiv-
alent to changing the coefficients in the objective function of the dual model. Therefore,
the procedure for the primal problem is exactly complementary to applying simultane-
ously the procedure for systematic changes in the cj parameters to the dual problem. Con-
sequently, the dual simplex method (see Sec. 7.1) now would be used to obtain each new
optimal solution, and the applicable sensitivity analysis case (see Sec. 6.7) now is Case
1, but these differences are the only major differences.
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FIGURE 7.2
The objective function value
for an optimal solution as a
function of 
 for parametric
linear programming with
systematic changes in the 
bi parameters.



Summary of the Parametric Linear Programming Procedure for 
Systematic Changes in the bi Parameters.

1. Solve the problem with 
 � 0 by the simplex method.
2. Use the sensitivity analysis procedure (Case 1, Sec. 6.7) to introduce the �bi � �i


changes to the right side column.
3. Increase 
 until one of the basic variables has its value in the right side column go

negative (or until 
 has been increased as far as desired).
4. Use this variable as the leaving basic variable for an iteration of the dual simplex

method to find the new optimal solution. Return to step 3.

To illustrate this procedure in a way that demonstrates its duality relationship with
the procedure for systematic changes in the cj parameters, we now apply it to the dual
problem for the Wyndor Glass Co. (see Table 6.1). In particular, suppose that �1 � 2 and
�2 � �1 so that the functional constraints become

y1 � 3y3 � 3 � 2
 or �y1 � 3y3 � �3 � 2

2y2 � 2y3 � 5 � 
 or �2y2 � 2y3 � �5 � 
.

Thus, the dual of this problem is just the example considered in Table 7.2.
This problem with 
 � 0 has already been solved in Table 7.1, so we begin with the

final simplex tableau given there. Using the sensitivity analysis procedure for Case 1, Sec.
6.7, we find that the entries in the right side column of the tableau change to the values
given below.

Z* � y*b� � [2, 6] � � � �36 � 2
,

b* � S*b� � � � � .

Therefore, the two basic variables in this tableau

y3 � 	
3 �

3
2


	 and y2 � 	
9 �

6
7


	

remain nonnegative for 0 � 
 � 	
9
7

	. Increasing 
 past 
 � 	
9
7

	 requires making y2 a leaving
basic variable for another iteration of the dual simplex method, and so on, as summarized
in Table 7.3.

We suggest that you now trace through Tables 7.2 and 7.3 simultaneously to note the
duality relationship between the two procedures.








1 � 	
2
3


	

	
3
2

	 � 	
7
6


	








�3 � 2


�5 � 









0

�	
1
2

	

�	
1
3

	

	
1
3

	








�3 � 2


�5 � 
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It is fairly common in linear programming problems for some of or all the individual xj

variables to have upper bound constraints

xj � uj,

where uj is a positive constant representing the maximum feasible value of xj. We pointed
out in Sec. 4.8 that the most important determinant of computation time for the simplex
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method is the number of functional constraints, whereas the number of nonnegativity
constraints is relatively unimportant. Therefore, having a large number of upper bound
constraints among the functional constraints greatly increases the computational effort 
required.

The upper bound technique avoids this increased effort by removing the upper bound
constraints from the functional constraints and treating them separately, essentially like
nonnegativity constraints. Removing the upper bound constraints in this way causes no
problems as long as none of the variables gets increased over its upper bound. The only
time the simplex method increases some of the variables is when the entering basic vari-
able is increased to obtain a new BF solution. Therefore, the upper bound technique sim-
ply applies the simplex method in the usual way to the remainder of the problem (i.e.,
without the upper bound constraints) but with the one additional restriction that each new
BF solution must satisfy the upper bound constraints in addition to the usual lower bound
(nonnegativity) constraints.

To implement this idea, note that a decision variable xj with an upper bound con-
straint xj � uj can always be replaced by

xj � uj � yj,

where yj would then be the decision variable. In other words, you have a choice be-
tween letting the decision variable be the amount above zero (xj) or the amount below 
uj (yj � uj � xj). (We shall refer to xj and yj as complementary decision variables.) 
Because

0 � xj � uj
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TABLE 7.3 The bi parametric linear programming procedure applied to the dual of
the Wyndor Glass Co. example

Coefficient of:
Range Basic Right Optimal
of � Variable Eq. Z y1 y2 y3 y4 y5 Side Solution

Z(
) (0) 1 2 0 0 2 6 �36 � 2
 y1 � y4 � y5 � 0

0 � 
 � 	
9
7

	 y3 (1) 0 	
1
3

	 0 1 �	
1
3

	 0 	
3 �

3
2


	 y3 � 	
3 �

3
2


	

y2 (2) 0 �	
1
3

	 1 0 	
1
3

	 �	
1
2

	 	
9 �

6
7


	 y2 � 	
9 �

6
7


	

Z(
) (0) 1 0 6 0 4 3 �27 � 5
 y2 � y4 � y5 � 0

	
9
7

	 � 
 � 5 y3 (1) 0 0 1 1 0 �	
1
2

	 	
5 �

2



	 y3 � 	
5 �

2



	

y1 (2) 0 1 �3 0 �1 	
3
2

	 	
�9

2
� 7

	 y1 � 	

�9
2
� 7

	

Z(
) (0) 1 0 12 6 4 0 �12 � 8
 y2 � y3 � y4 � 0


 � 5 y5 (1) 0 0 �2 �2 0 1 �5 � 
 y5 � �5 � 

y1 (2) 0 1 0 3 �1 0 3 � 2
 y1 � 3 � 2




it also follows that

0 � yj � uj.

Thus, at any point during the simplex method, you can either

1. Use xj, where 0 � xj � uj,
or 2. Replace xj by uj � yj, where 0 � yj � uj.

The upper bound technique uses the following rule to make this choice:

Rule: Begin with choice 1.
Whenever xj � 0, use choice 1, so xj is nonbasic.
Whenever xj � uj, use choice 2, so yj � 0 is nonbasic.
Switch choices only when the other extreme value of xj is reached.

Therefore, whenever a basic variable reaches its upper bound, you should switch choices
and use its complementary decision variable as the new nonbasic variable (the leaving ba-
sic variable) for identifying the new BF solution. Thus, the one substantive modification
being made in the simplex method is in the rule for selecting the leaving basic variable.

Recall that the simplex method selects as the leaving basic variable the one that would
be the first to become infeasible by going negative as the entering basic variable is in-
creased. The modification now made is to select instead the variable that would be the
first to become infeasible in any way, either by going negative or by going over the up-
per bound, as the entering basic variable is increased. (Notice that one possibility is that
the entering basic variable may become infeasible first by going over its upper bound, so
that its complementary decision variable becomes the leaving basic variable.) If the leav-
ing basic variable reaches zero, then proceed as usual with the simplex method. However,
if it reaches its upper bound instead, then switch choices and make its complementary de-
cision variable the leaving basic variable.

To illustrate, consider this problem:

Maximize Z � 2x1 � x2 � 2x3,

subject to

4x1 � x2 � 12
�2x1 � x3 � 4

and

0 � x1 � 4, 0 � x2 � 15, 0 � x3 � 6.

Thus, all three variables have upper bound constraints (u1 � 4, u2 � 15, u3 � 6).
The two equality constraints are already in proper form from Gaussian elimination for

identifying the initial BF solution (x1 � 0, x2 � 12, x3 � 4), and none of the variables in
this solution exceeds its upper bound, so x2 and x3 can be used as the initial basic variables
without artificial variables being introduced. However, these variables then need to be elim-
inated algebraically from the objective function to obtain the initial Eq. (0), as follows:

Z � 2(� (2x1 � x2 � 2x3 � 0
Z � 2(� (4x1 � x2 � 2x3 � 12)
Z � 2(� (2x1 � x2 � x3 � 4)

(0) Z � 2(� (2x1 � x2 � 2x3 � 20.
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To start the first iteration, this initial Eq. (0) indicates that the initial entering basic
variable is x1. Since the upper bound constraints are not to be included, the entire initial
set of equations and the corresponding calculations for selecting the leaving basic vari-
ables are those shown in Table 7.4. The second column shows how much the entering ba-
sic variable x1 can be increased from zero before some basic variable (including x1) be-
comes infeasible. The maximum value given next to Eq. (0) is just the upper bound
constraint for x1. For Eq. (1), since the coefficient of x1 is positive, increasing x1 to 3 de-
creases the basic variable in this equation (x2) from 12 to its lower bound of zero. For Eq.
(2), since the coefficient of x1 is negative, increasing x1 to 1 increases the basic variable
in this equation (x3) from 4 to its upper bound of 6.

Because Eq. (2) has the smallest maximum feasible value of x1 in Table 7.4, the ba-
sic variable in this equation (x3) provides the leaving basic variable. However, because x3

reached its upper bound, replace x3 by 6 � y3, so that y3 � 0 becomes the new nonbasic
variable for the next BF solution and x1 becomes the new basic variable in Eq. (2). This
replacement leads to the following changes in this equation:

(2) � 2x1 � x3 � 4
→ � 2x1 � 6 � y3 � 4
→ � 2x1 � y3 � �2

→ x1 � y3 � 1

Therefore, after we eliminate x1 algebraically from the other equations, the second com-
plete set of equations becomes

(0) Zx2x2 � y3 � 22
(1) Zx2x2 � 2y3 � 8

(2) Zx1x2 � 	
1
2

	y3 � 1.

The resulting BF solution is x1 � 1, x2 � 8, y3 � 0. By the optimality test, it also is an
optimal solution, so x1 � 1, x2 � 8, x3 � 6 � y3 � 6 is the desired solution for the orig-
inal problem.

1
	
2
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TABLE 7.4 Equations and calculations for the initial leaving basic variable in the
example for the upper bound technique

Initial Set of Equations Maximum Feasible Value of x1

(0) Z � 2x1 � x2 � x3 � 20 x1 � 4 (since u1 � 4)

(1) Z � 4x1 � x2 � x3 � 12 x1 � 	
1
4
2
	 � 3

(2) Z � 2x1 � x2 � x3 � 4 x1 � 	
6 �

2
4

	 � 1 � minimum (because u3 � 6)

In Sec. 4.9 we discussed a dramatic development in linear programming that occurred in
1984, the invention by Narendra Karmarkar of AT&T Bell Laboratories of a powerful al-
gorithm for solving huge linear programming problems with an approach very different

7.4 AN INTERIOR-POINT ALGORITHM



from the simplex method. We now introduce the nature of Karmarkar’s approach by de-
scribing a relatively elementary variant (the “affine” or “affine-scaling” variant) of his al-
gorithm.1 (Your OR Courseware also includes this variant under the title, Solve Automat-
ically by the Interior-Point Algorithm.)

Throughout this section we shall focus on Karmarkar’s main ideas on an intuitive
level while avoiding mathematical details. In particular, we shall bypass certain details
that are needed for the full implementation of the algorithm (e.g., how to find an initial
feasible trial solution) but are not central to a basic conceptual understanding. The ideas
to be described can be summarized as follows:

Concept 1: Shoot through the interior of the feasible region toward an optimal solution.
Concept 2: Move in a direction that improves the objective function value at the fastest

possible rate.
Concept 3: Transform the feasible region to place the current trial solution near its cen-

ter, thereby enabling a large improvement when concept 2 is implemented.

To illustrate these ideas throughout the section, we shall use the following example:

Maximize Z � x1 � 2x2,

subject to

x1 � x2 � 8

and

x1 � 0, x2 � 0.

This problem is depicted graphically in Fig. 7.3, where the optimal solution is seen to be
(x1, x2) � (0, 8) with Z � 16.

The Relevance of the Gradient for Concepts 1 and 2

The algorithm begins with an initial trial solution that (like all subsequent trial solutions)
lies in the interior of the feasible region, i.e., inside the boundary of the feasible region.
Thus, for the example, the solution must not lie on any of the three lines (x1 � 0, x2 � 0,
x1 � x2 � 8) that form the boundary of this region in Fig. 7.3. (A trial solution that lies
on the boundary cannot be used because this would lead to the undefined mathematical
operation of division by zero at one point in the algorithm.) We have arbitrarily chosen
(x1, x2) � (2, 2) to be the initial trial solution.

To begin implementing concepts 1 and 2, note in Fig. 7.3 that the direction of move-
ment from (2, 2) that increases Z at the fastest possible rate is perpendicular to (and to-
ward) the objective function line Z � 16 � x1 � 2x2. We have shown this direction by the
arrow from (2, 2) to (3, 4). Using vector addition, we have

(3, 4) � (2, 2) � (1, 2),
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1The basic approach for this variant actually was proposed in 1967 by a Russian mathematician I. I. Dikin and
then rediscovered soon after the appearance of Karmarkar’s work by a number of researchers, including E. R.
Barnes, T. M. Cavalier, and A. L. Soyster. Also see R. J. Vanderbei, M. S. Meketon, and B. A. Freedman, “A
Modification of Karmarkar’s Linear Programming Algorithm,” Algorithmica, 1(4) (Special Issue on New Ap-
proaches to Linear Programming): 395–407, 1986.



where the vector (1, 2) is the gradient of the objective function. (We will discuss gradi-
ents further in Sec. 13.5 in the broader context of nonlinear programming, where algo-
rithms similar to Karmarkar’s have long been used.) The components of (1, 2) are just the
coefficients in the objective function. Thus, with one subsequent modification, the gradi-
ent (1, 2) defines the ideal direction to which to move, where the question of the distance
to move will be considered later.

The algorithm actually operates on linear programming problems after they have been
rewritten in augmented form. Letting x3 be the slack variable for the functional constraint
of the example, we see that this form is

Maximize Z � x1 � 2x2,

subject to

x1 � x2 � x3 � 8

and

x1 � 0, x2 � 0, x3 � 0.

In matrix notation (slightly different from Chap. 5 because the slack variable now is in-
corporated into the notation), the augmented form can be written in general as

Maximize Z � cTx,

subject to

Ax � b
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and

x � 0,

where

c � , x � , A � [1, 1, 1], b � [8], 0 �

for the example. Note that cT � [1, 2, 0] now is the gradient of the objective function.
The augmented form of the example is depicted graphically in Fig. 7.4. The feasible

region now consists of the triangle with vertices (8, 0, 0), (0, 8, 0), and (0, 0, 8). Points
in the interior of this feasible region are those where x1 � 0, x2 � 0, and x3 � 0. Each of
these three xj � 0 conditions has the effect of forcing (x1, x2) away from one of the three
lines forming the boundary of the feasible region in Fig. 7.3.

Using the Projected Gradient to Implement Concepts 1 and 2

In augmented form, the initial trial solution for the example is (x1, x2, x3) � (2, 2, 4).
Adding the gradient (1, 2, 0) leads to

(3, 4, 4) � (2, 2, 4) � (1, 2, 0).

However, now there is a complication. The algorithm cannot move from (2, 2, 4) toward
(3, 4, 4), because (3, 4, 4) is infeasible! When x1 � 3 and x2 � 4, then x3 � 8 � x1 �
x2 � 1 instead of 4. The point (3, 4, 4) lies on the near side as you look down on the fea-
sible triangle in Fig. 7.4. Therefore, to remain feasible, the algorithm (indirectly) projects
the point (3, 4, 4) down onto the feasible triangle by dropping a line that is perpendicu-
lar to this triangle. A vector from (0, 0, 0) to (1, 1, 1) is perpendicular to this triangle, so
the perpendicular line through (3, 4, 4) is given by the equation

(x1, x2, x3) � (3, 4, 4) � 
(1, 1, 1),

where 
 is a scalar. Since the triangle satisfies the equation x1 � x2 � x3 � 8, this per-
pendicular line intersects the triangle at (2, 3, 3). Because

(2, 3, 3) � (2, 2, 4) � (0, 1, �1),

the projected gradient of the objective function (the gradient projected onto the feasible
region) is (0, 1, �1). It is this projected gradient that defines the direction of movement
for the algorithm, as shown by the arrow in Fig. 7.4.

A formula is available for computing the projected gradient directly. By defining the
projection matrix P as

P � I � AT(AAT)�1A,

the projected gradient (in column form) is

cp � Pc.
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Thus, for the example,
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so

cp � � .

Moving from (2, 2, 4) in the direction of the projected gradient (0, 1, �1) involves
increasing � from zero in the formula

x � � 4�cp � � 4� ,

where the coefficient 4 is used simply to give an upper bound of 1 for � to maintain fea-
sibility (all xj � 0). Note that increasing � to � � 1 would cause x3 to decrease to 
x3 � 4 � 4(1)(�1) � 0, where � � 1 yields x3 � 0. Thus, � measures the fraction used
of the distance that could be moved before the feasible region is left.

How large should � be made for moving to the next trial solution? Because the in-
crease in Z is proportional to �, a value close to the upper bound of 1 is good for giv-
ing a relatively large step toward optimality on the current iteration. However, the prob-
lem with a value too close to 1 is that the next trial solution then is jammed against a
constraint boundary, thereby making it difficult to take large improving steps during sub-
sequent iterations. Therefore, it is very helpful for trial solutions to be near the center of
the feasible region (or at least near the center of the portion of the feasible region in the
vicinity of an optimal solution), and not too close to any constraint boundary. With this
in mind, Karmarkar has stated for his algorithm that a value as large as � � 0.25 should
be “safe.” In practice, much larger values (for example, � � 0.9) sometimes are used.
For the purposes of this example (and the problems at the end of the chapter), we have
chosen � � 0.5. (Your OR Courseware uses � � 0.5 as the default value, but also has
� � 0.9 available.)

A Centering Scheme for Implementing Concept 3

We now have just one more step to complete the description of the algorithm, namely, a
special scheme for transforming the feasible region to place the current trial solution near
its center. We have just described the benefit of having the trial solution near the center,
but another important benefit of this centering scheme is that it keeps turning the direc-
tion of the projected gradient to point more nearly toward an optimal solution as the al-
gorithm converges toward this solution.

The basic idea of the centering scheme is straightforward—simply change the scale
(units) for each of the variables so that the trial solution becomes equidistant from the
constraint boundaries in the new coordinate system. (Karmarkar’s original algorithm uses
a more sophisticated centering scheme.)

For the example, there are three constraint boundaries in Fig. 7.3, each one corre-
sponding to a zero value for one of the three variables of the problem in augmented form,
namely, x1 � 0, x2 � 0, and x3 � 0. In Fig. 7.4, see how these three constraint boundaries
intersect the Ax � b (x1 � x2 � x3 � 8) plane to form the boundary of the feasible re-
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gion. The initial trial solution is (x1, x2, x3) � (2, 2, 4), so this solution is 2 units away
from the x1 � 0 and x2 � 0 constraint boundaries and 4 units away from the x3 � 0 con-
straint boundary, when the units of the respective variables are used. However, whatever
these units are in each case, they are quite arbitrary and can be changed as desired with-
out changing the problem. Therefore, let us rescale the variables as follows:

x~1 � 	
x
2
1	, x~2 � 	

x
2
2	, x~3 � 	

x
4
3	

in order to make the current trial solution of (x1, x2, x3) � (2, 2, 4) become

(x~1, xx~2, xx~3) � (1, 1, 1).

In these new coordinates (substituting 2x~1 for x1, 2x~2 for x2, and 4x~3 for x3), the problem
becomes

Maximize Z � 2x~1 � 4x~2,

subject to

2x~1 � 2xx~2 � 4x~3 � 8

and

x~1 � 0, x~2 � 0, x~3 � 0,

as depicted graphically in Fig. 7.5.
Note that the trial solution (1, 1, 1) in Fig. 7.5 is equidistant from the three constraint

boundaries xx~1 � 0, x~2 � 0, x~3 � 0. For each subsequent iteration as well, the problem is
rescaled again to achieve this same property, so that the current trial solution always is
(1, 1, 1) in the current coordinates.
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Summary and Illustration of the Algorithm

Now let us summarize and illustrate the algorithm by going through the first iteration for
the example, then giving a summary of the general procedure, and finally applying this
summary to a second iteration.

Iteration 1. Given the initial trial solution (x1, x2, x3) � (2, 2, 4), let D be the corre-
sponding diagonal matrix such that x � Dx~, so that

D � .

The rescaled variables then are the components of

x~ � D�1x � � .

In these new coordinates, A and c have become

Ã � AD � [1 1 1] � [2 2 4],

c~ � Dc � � .

Therefore, the projection matrix is

P � I � ÃT(ÃÃT)�1Ã

P � � �[2 2 4] �
�1

[2 2 4]

P � � 	
2
1
4
	 � ,

so that the projected gradient is

cp � Pc~ � � .

Define v as the absolute value of the negative component of cp having the largest absolute
value, so that v � �2 � 2 in this case. Consequently, in the current coordinates, the
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algorithm now moves from the current trial solution (x~1, x~2, x~3) � (1, 1, 1) to the next
trial solution

x~ � � 	
�
v

	cp � � 	
0
2
.5
	 � ,

as shown in Fig. 7.5. (The definition of v has been chosen to make the smallest compo-
nent of x~ equal to zero when � � 1 in this equation for the next trial solution.) In the orig-
inal coordinates, this solution is

� Dx~ � � .

This completes the iteration, and this new solution will be used to start the next iteration.
These steps can be summarized as follows for any iteration.

Summary of the Interior-Point Algorithm.
1. Given the current trial solution (x1, x2, . . . , xn), set

D �

2. Calculate Ã � AD and c~ � Dc.
3. Calculate P � I � ÃT(ÃÃT)�1Ã and cp � Pc~.
4. Identify the negative component of cp having the largest absolute value, and set v equal

to this absolute value. Then calculate

x~ � � 	
�
v

	cp,

where � is a selected constant between 0 and 1 (for example, � � 0.5).
5. Calculate x � Dx~ as the trial solution for the next iteration (step 1). (If this trial solu-

tion is virtually unchanged from the preceding one, then the algorithm has virtually
converged to an optimal solution, so stop.)

Now let us apply this summary to iteration 2 for the example.

Iteration 2.
Step 1:
Given the current trial solution (x1, x2, x3) � (	

5
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	, 	
7
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	, 2), set
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(Note that the rescaled variables are

� D�1x � � ,

so that the BF solutions in these new coordinates are

x~ � D�1 � , x~ � D�1 � ,

and

x~ � D�1 � ,

as depicted in Fig. 7.6.)

Step 2:

Ã � AD � [	
5
2
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	, 2] and c~ � Dc � .
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Step 3:

P � and cp � .

Step 4:

�	
4
1
1
5
	 � �	

1
1
1
2
	, so v � 	

4
1
1
5
	 and

x~ � � � � .

Step 5:

x � Dx~ � �

is the trial solution for iteration 3.
Since there is little to be learned by repeating these calculations for additional itera-

tions, we shall stop here. However, we do show in Fig. 7.7 the reconfigured feasible re-
gion after rescaling based on the trial solution just obtained for iteration 3. As always, the
rescaling has placed the trial solution at (x~1, x~2, x~3) � (1, 1, 1), equidistant from the x~1 �
0, x~2 � 0, and x~3 � 0 constraint boundaries. Note in Figs. 7.5, 7.6, and 7.7 how the se-
quence of iterations and rescaling have the effect of “sliding” the optimal solution toward
(1, 1, 1) while the other BF solutions tend to slide away. Eventually, after enough itera-
tions, the optimal solution will lie very near (x~1, x~2, x~3) � (0, 1, 0) after rescaling, while
the other two BF solutions will be very far from the origin on the x~1 and x~3 axes. Step 5
of that iteration then will yield a solution in the original coordinates very near the opti-
mal solution of (x1, x2, x3) � (0, 8, 0).

Figure 7.8 shows the progress of the algorithm in the original x1 � x2 coordinate sys-
tem before the problem is augmented. The three points—(x1, x2) � (2, 2), (2.5, 3.5), and
(2.08, 4.92)—are the trial solutions for initiating iterations 1, 2, and 3, respectively. We
then have drawn a smooth curve through and beyond these points to show the trajectory
of the algorithm in subsequent iterations as it approaches (x1, x2) � (0, 8).

The functional constraint for this particular example happened to be an inequality
constraint. However, equality constraints cause no difficulty for the algorithm, since it
deals with the constraints only after any necessary augmenting has been done to convert
them to equality form (Ax � b) anyway. To illustrate, suppose that the only change in the
example is that the constraint x1 � x2 � 8 is changed to x1 � x2 � 8. Thus, the feasible
region in Fig. 7.3 changes to just the line segment between (8, 0) and (0, 8). Given an ini-
tial feasible trial solution in the interior (x1 � 0 and x2 � 0) of this line segment—say,
(x1, x2) � (4, 4)—the algorithm can proceed just as presented in the five-step summary
with just the two variables and A � [1, 1]. For each iteration, the projected gradient points
along this line segment in the direction of (0, 8). With � � 	

1
2
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





2.08

4.92

1.00













	
1
6
3
5
6
6
5

	

	
3
6
2
5
2
6
7

	

1













0.83

1.40

0.50













	
2
3
7
2
3
8

	

	
4
3
6
2
1
8

	

	
1
2

	













�	
1
1
1
2
	

	
1
6
3
0
3

	

�	
4
1
1
5
	







0.5
	

	
4
1
1
5
	







1

1

1













�	
1
1
1
2
	

	
1
6
3
0
3

	

�	
4
1
1
5
	













�	
2
9

	

�	
1
4
4
5
	

	
3
4
7
5
	

�	
1
7
8
	

	
4
9
1
0
	

�	
1
4
4
5
	

	
1
1
3
8
	

�	
1
7
8
	

�	
2
9

	







330 7 OTHER ALGORITHMS FOR LINEAR PROGRAMMING



to (2, 6), iteration 2 leads from (2, 6) to (1, 7), etc. (Problem 7.4-3 asks you to verify these
results.)

Although either version of the example has only one functional constraint, having
more than one leads to just one change in the procedure as already illustrated (other than
more extensive calculations). Having a single functional constraint in the example meant
that A had only a single row, so the (ÃÃT)�1 term in step 3 only involved taking the re-
ciprocal of the number obtained from the vector product ÃÃT. Multiple functional con-
straints mean that A has multiple rows, so then the (ÃÃT)�1 term involves finding the in-
verse of the matrix obtained from the matrix product ÃÃT.

To conclude, we need to add a comment to place the algorithm into better perspec-
tive. For our extremely small example, the algorithm requires relatively extensive calcu-
lations and then, after many iterations, obtains only an approximation of the optimal so-
lution. By contrast, the graphical procedure of Sec. 3.1 finds the optimal solution in Fig.
7.3 immediately, and the simplex method requires only one quick iteration. However, do
not let this contrast fool you into downgrading the efficiency of the interior-point algo-
rithm. This algorithm is designed for dealing with big problems having many hundreds
or thousands of functional constraints. The simplex method typically requires thousands
of iterations on such problems. By “shooting” through the interior of the feasible region,
the interior-point algorithm tends to require a substantially smaller number of iterations
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(although with considerably more work per iteration). Therefore, interior-point algorithms
similar to the one presented here should play an important role in the future of linear 
programming.

See Sec. 4.9 for a further discussion of this role and a comparison of the interior-
point approach with the simplex method.

332 7 OTHER ALGORITHMS FOR LINEAR PROGRAMMING

(0, 8) optimal

0 2 4 6 8

2

4

6

8

x2

x1

(2, 2)

(2.5, 3.5)

(2.08, 4.92)

FIGURE 7.8
Trajectory of the interior-
point algorithm for the
example in the original 
x1-x2 coordinate system.

We have assumed throughout the preceding chapters that the objectives of the organiza-
tion conducting the linear programming study can be encompassed within a single over-
riding objective, such as maximizing total profit or minimizing total cost. However, this
assumption is not always realistic. In fact, as we discussed in Sec. 2.1, studies have found
that the management of U.S. corporations frequently focuses on a variety of other objec-
tives, e.g., to maintain stable profits, increase (or maintain) market share, diversify prod-
ucts, maintain stable prices, improve worker morale, maintain family control of the busi-
ness, and increase company prestige. Goal programming provides a way of striving toward
several such objectives simultaneously.

The basic approach of goal programming is to establish a specific numeric goal for
each of the objectives, formulate an objective function for each objective, and then seek
a solution that minimizes the (weighted) sum of deviations of these objective functions
from their respective goals. There are three possible types of goals:

1. A lower, one-sided goal sets a lower limit that we do not want to fall under (but ex-
ceeding the limit is fine).
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2. An upper, one-sided goal sets an upper limit that we do not want to exceed (but falling
under the limit is fine).

3. A two-sided goal sets a specific target that we do not want to miss on either side.

Goal programming problems can be categorized according to the type of mathemat-
ical programming model (linear programming, integer programming, nonlinear program-
ming, etc.) that it fits except for having multiple goals instead of a single objective. In
this book, we only consider linear goal programming—those goal programming problems
that fit linear programming otherwise (each objective function is linear, etc.) and so we
will drop the adjective linear from now on.

Another categorization is according to how the goals compare in importance. In one
case, called nonpreemptive goal programming, all the goals are of roughly comparable
importance. In another case, called preemptive goal programming, there is a hierarchy
of priority levels for the goals, so that the goals of primary importance receive first-
priority attention, those of secondary importance receive second-priority attention, and so
forth (if there are more than two priority levels).

We begin with an example that illustrates the basic features of nonpreemptive goal
programming and then discuss the preemptive case.

Prototype Example for Nonpreemptive Goal Programming

The DEWRIGHT COMPANY is considering three new products to replace current mod-
els that are being discontinued, so their OR department has been assigned the task of de-
termining which mix of these products should be produced. Management wants primary
consideration given to three factors: long-run profit, stability in the workforce, and the
level of capital investment that would be required now for new equipment. In particular,
management has established the goals of (1) achieving a long-run profit (net present value)
of at least $125 million from these products, (2) maintaining the current employment level
of 4,000 employees, and (3) holding the capital investment to less than $55 million. How-
ever, management realizes that it probably will not be possible to attain all these goals si-
multaneously, so it has discussed priorities with the OR department. This discussion has
led to setting penalty weights of 5 for missing the profit goal (per $1 million under), 2 for
going over the employment goal (per 100 employees), 4 for going under this same goal,
and 3 for exceeding the capital investment goal (per $1 million over). Each new product’s
contribution to profit, employment level, and capital investment level is proportional to
the rate of production. These contributions per unit rate of production are shown in Table
7.5, along with the goals and penalty weights.

Formulation. The Dewright Company problem includes all three possible types of goals:
a lower, one-sided goal (long-run profit); a two-sided goal (employment level); and an up-
per, one-sided goal (capital investment). Letting the decision variables x1, x2, x3 be the pro-
duction rates of products 1, 2, and 3, respectively, we see that these goals can be stated as

12x1 � 9x2 � 15x3 � 125 profit goal
5x1 � 3x2 � 4x3 � 40 employment goal
5x1 � 7x2 � 8x3 � 55 investment goal.
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More precisely, given the penalty weights in the rightmost column of Table 7.5, let
Z be the number of penalty points incurred by missing these goals. The overall objective
then is to choose the values of x1, x2, and x3 so as to

Minimize Z � 5(amount under the long-run profit goal)
� 2(amount over the employment level goal)
� 4(amount under the employment level goal)
� 3(amount over the capital investment goal),

where no penalty points are incurred for being over the long-run profit goal or for being
under the capital investment goal. To express this overall objective mathematically, we in-
troduce some auxiliary variables (extra variables that are helpful for formulating the
model) y1, y2, and y3, defined as follows:

y1 � 12x1 � 9x2 � 15x3 � 125 (long-run profit minus the target).
y2 � 5x1 � 3x2 � 4x3 � 40 (employment level minus the target).
y3 � 5x1 � 7x2 � 8x3 � 55 (capital investment minus the target).

Since each yi can be either positive or negative, we next use the technique described at
the end of Sec. 4.6 for dealing with such variables; namely, we replace each one by the
difference of two nonnegative variables:

y1 � y1
� � y1

�, where y1
� � 0, y1

� � 0,
y2 � y2

� � y2
�, where y2

� � 0, y2
� � 0,

y3 � y3
� � y3

�, where y3
� � 0, y3

� � 0.

As discussed in Sec. 4.6, for any BF solution, these new auxiliary variables have the in-
terpretation

yj if yj � 0,
yj

� � 	0 otherwise;

yj if yj � 0,
yj

� � 	0 otherwise;

so that yj
� represents the positive part of the variable yj and yj

� its negative part (as sug-
gested by the superscripts).

Given these new auxiliary variables, the overall objective can be expressed mathe-
matically as

Minimize Z � 5y1
� � 2y2

� � 4y2
� � 3y3

�,
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TABLE 7.5 Data for the Dewright Co. nonpreemptive goal programming problem

Unit Contribution

Product:
Penalty

Factor 1 2 3 Goal (Units) Weight

Long-run profit 12 9 15 � 125 (millions of dollars) 5
Employment level 5 3 4 � 40 (hundreds of employees) 2(�), 4(�)
Capital investment 5 7 8 � 55 (millions of dollars) 3



which now is a legitimate objective function for a linear programming model. (Because
there is no penalty for exceeding the profit goal of 125 or being under the investment goal
of 55, neither y1

� nor y3
� should appear in this objective function representing the total

penalty for deviations from the goals.)
To complete the conversion of this goal programming problem to a linear program-

ming model, we must incorporate the above definitions of the yj
� and yj

� directly into the
model. (It is not enough to simply record the definitions, as we just did, because the sim-
plex method considers only the objective function and constraints that constitute the
model.) For example, since y1

� � y1
� � y1, the above expression for y1 gives

12x1 � 9x2 � 15x3 � 125 � y1
� � y1

�.

After we move the variables (y1
� � y1

�) to the left-hand side and the constant (125) to the
right-hand side,

12x1 � 9x2 � 15x3 � (y1
� � y1

�) � 125

becomes a legitimate equality constraint for a linear programming model. Furthermore,
this constraint forces the auxiliary variables (y1

� � y1
�) to satisfy their definition in terms

of the decision variables (x1, x2, x3).
Proceeding in the same way for y2

� � y2
� and y3

� � y3
�, we obtain the following lin-

ear programming formulation of this goal programming problem:

Minimize Z � 5y1
� � 2y2

� � 4y2
� � 3y3

�,

subject to

12x1 � 9x2 � 15x3 � (y1
� � y1

�) � 125
5x1 � 3x2 � 4x3 � (y2

� � y2
�) � 40

5x1 � 7x2 � 8x3 � (y3
� � y3

�) � 55

and

xj � 0, yk
� � 0, yk

� � 0 ( j � 1, 2, 3; k � 1, 2, 3).

(If the original problem had any actual linear programming constraints, such as constraints
on fixed amounts of certain resources being available, these would be included in the
model.)

Applying the simplex method to this formulation yields an optimal solution x1 � 	
2
3
5
	,

x2 � 0, x3 � 	
5
3

	, with y1
� � 0, y1

� � 0, y2
� � 	

2
3
5
	, y2

� � 0, y3
� � 0, and y3

� � 0. Therefore,
y1 � 0, y2 � 	

2
3
5
	, and y3 � 0, so the first and third goals are fully satisfied, but the em-

ployment level goal of 40 is exceeded by 8	
1
3

	 (833 employees). The resulting penalty for
deviating from the goals is Z � 16	

2
3

	.
As usual, you can see how Excel, LINGO/LINDO, and MPL/CPLEX are used to set

up and solve this example by referring to their files for this chapter in your OR Courseware.

Preemptive Goal Programming

In the preceding example we assume that all the goals are of roughly comparable impor-
tance. Now consider the case of preemptive goal programming, where there is a hierar-
chy of priority levels for the goals. Such a case arises when one or more of the goals
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clearly are far more important than the others. Thus, the initial focus should be on achiev-
ing as closely as possible these first-priority goals. The other goals also might naturally
divide further into second-priority goals, third-priority goals, and so on. After we find an
optimal solution with respect to the first-priority goals, we can break any ties for the op-
timal solution by considering the second-priority goals. Any ties that remain after this re-
optimization can be broken by considering the third-priority goals, and so on.

When we deal with goals on the same priority level, our approach is just like the one
described for nonpreemptive goal programming. Any of the same three types of goals
(lower one-sided, two-sided, upper one-sided) can arise. Different penalty weights for de-
viations from different goals still can be included, if desired. The same formulation tech-
nique of introducing auxiliary variables again is used to reformulate this portion of the
problem to fit the linear programming format.

There are two basic methods based on linear programming for solving preemptive
goal programming problems. One is called the sequential procedure, and the other is the
streamlined procedure. We shall illustrate these procedures in turn by solving the follow-
ing example.

Example. Faced with the unpleasant recommendation to increase the company’s work-
force by more than 20 percent, the management of the Dewright Company has reconsid-
ered the original formulation of the problem that was summarized in Table 7.5. This in-
crease in workforce probably would be a rather temporary one, so the very high cost of
training 833 new employees would be largely wasted, and the large (undoubtedly well-
publicized) layoffs would make it more difficult for the company to attract high-quality
employees in the future. Consequently, management has concluded that a very high pri-
ority should be placed on avoiding an increase in the workforce. Furthermore, manage-
ment has learned that raising more than $55 million for capital investment for the new
products would be extremely difficult, so a very high priority also should be placed on
avoiding capital investment above this level.

Based on these considerations, management has concluded that a preemptive goal
programming approach now should be used, where the two goals just discussed should
be the first-priority goals, and the other two original goals (exceeding $125 million in
long-run profit and avoiding a decrease in the employment level) should be the second-
priority goals. Within the two priority levels, management feels that the relative penalty
weights still should be the same as those given in the rightmost column of Table 7.5. This
reformulation is summarized in Table 7.6, where a factor of M (representing a huge pos-
itive number) has been included in the penalty weights for the first-priority goals to em-
phasize that these goals preempt the second-priority goals. (The portions of Table 7.5 that
are not included in Table 7.6 are unchanged.)

The Sequential Procedure for Preemptive Goal Programming

The sequential procedure solves a preemptive goal programming problem by solving a
sequence of linear programming models.

At the first stage of the sequential procedure, the only goals included in the linear
programming model are the first-priority goals, and the simplex method is applied in the
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usual way. If the resulting optimal solution is unique, we adopt it immediately without
considering any additional goals.

However, if there are multiple optimal solutions with the same optimal value of Z
(call it Z*), we prepare to break the tie among these solutions by moving to the second
stage and adding the second-priority goals to the model. If Z* � 0, all the auxiliary vari-
ables representing the deviations from first-priority goals must equal zero (full achieve-
ment of these goals) for the solutions remaining under consideration. Thus, in this case,
all these auxiliary variables now can be completely deleted from the model, where the
equality constraints that contain these variables are replaced by the mathematical expres-
sions (inequalities or equations) for these first-priority goals, to ensure that they continue
to be fully achieved. On the other hand, if Z* � 0, the second-stage model simply adds
the second-priority goals to the first-stage model (as if these additional goals actually were
first-priority goals), but then it also adds the constraint that the first-stage objective func-
tion equals Z* (which enables us again to delete the terms involving first-priority goals
from the second-stage objective function). After we apply the simplex method again, if
there still are multiple optimal solutions, we repeat the same process for any lower-
priority goals.

Example. We now illustrate this procedure by applying it to the example summarized
in Table 7.6.

At the first stage, only the two first-priority goals are included in the linear pro-
gramming model. Therefore, we can drop the common factor M for their penalty weights,
shown in Table 7.6. By proceeding just as for the nonpreemptive model if these were the
only goals, the resulting linear programming model is

Minimize Z � 2y2
� � 3y3

�,

subject to

5x1 � 3x2 � 4x3 � (y2
� � y2

�) � 40
5x1 � 7x2 � 8x3 � (y3

� � y3
�) � 55

and

xj � 0, yk
� � 0, yk

� � 0 ( j � 1, 2, 3; k � 2, 3).

(For ease of comparison with the nonpreemptive model with all four goals, we have kept
the same subscripts on the auxiliary variables.)
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TABLE 7.6 Revised formulation for the Dewright Co. preemptive goal
programming problem

Priority Level Factor Goal Penalty Weight

Employment level �40 2M
First priority

Capital investment �55 3M

Long-run profit �125 5M
Second priority

Employment level �40 4M



By using the simplex method (or inspection), an optimal solution for this linear pro-
gramming model has y2

� � 0 and y3
� � 0, with Z � 0 (so Z* � 0), because there are in-

numerable solutions for (x1, x2, x3) that satisfy the relationships

5x1 � 3x2 � 4x3 � 40
5x1 � 7x2 � 8x3 � 55

as well as the nonnegativity constraints. Therefore, these two first-priority goals should
be used as constraints hereafter. Using them as constraints will force y2

� and y3
� to remain

zero and thereby disappear from the model automatically.
If we drop y2

� and y3
� but add the second-priority goals, the second-stage linear pro-

gramming model becomes

Minimize Z � 5y1
� � 4y2

�,

subject to

12x1 � 9x2 � 15x3 � (y1
� � y1

�) � 125
5x1 � 3x2 � 4x3 � y2

� � 40
5x1 � 7x2 � 8x3 � y3

� � 55

and

xj � 0, y1
� � 0, yk

� � 0 ( j � 1, 2, 3; k � 1, 2, 3).

Applying the simplex method to this model yields the unique optimal solution x1 � 5,
x2 � 0, x3 � 3	

3
4

	, y1
� � 0, y1

� � 8	
3
4

	, y2
� � 0, and y3

� � 0, with Z � 43	
3
4

	.
Because this solution is unique (or because there are no more priority levels), the pro-

cedure can now stop, with (x1, x2, x3) � (5, 0, 3	
3
4

	) as the optimal solution for the overall
problem. This solution fully achieves both first-priority goals as well as one of the 
second-priority goals (no decrease in employment level), and it falls short of the other
second-priority goal (long-run profit � 125) by just 8	

3
4

	.

The Streamlined Procedure for Preemptive Goal Programming

Instead of solving a sequence of linear programming models, like the sequential proce-
dure, the streamlined procedure finds an optimal solution for a preemptive goal pro-
gramming problem by solving just one linear programming model. Thus, the streamlined
procedure is able to duplicate the work of the sequential procedure with just one run of
the simplex method. This one run simultaneously finds optimal solutions based just on
first-priority goals and breaks ties among these solutions by considering lower-priority
goals. However, this does require a slight modification of the simplex method.

If there are just two priority levels, the modification of the simplex method is one you
already have seen, namely, the form of the Big M method illustrated throughout Sec. 4.6.
In this form, instead of replacing M throughout the model by some huge positive number
before running the simplex method, we retain the symbolic quantity M in the sequence of
simplex tableaux. Each coefficient in row 0 (for each iteration) is some linear function
aM � b, where a is the current multiplicative factor and b is the current additive term.
The usual decisions based on these coefficients (entering basic variable and optimality
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test) now are based solely on the multiplicative factors, except that any ties would be bro-
ken by using the additive terms. This is how the OR Courseware operates when solving
interactively by the simplex method (and choosing the Big M method).

The linear programming formulation for the streamlined procedure with two priority
levels would include all the goals in the model in the usual manner, but with basic penalty
weights of M and 1 assigned to deviations from first-priority and second-priority goals,
respectively. If different penalty weights are desired within the same priority level, these
basic penalty weights then are multiplied by the individual penalty weights assigned within
the level. This approach is illustrated by the following example.

Example. For the Dewright Co. preemptive goal programming problem summarized in
Table 7.6, note that (1) different penalty weights are assigned within each of the two pri-
ority levels and (2) the individual penalty weights (2 and 3) for the first-priority goals
have been multiplied by M. These penalty weights yield the following single linear pro-
gramming model that incorporates all the goals.

Minimize Z � 5y1
� � 2My2

� � 4y2
� � 3My3

�,

subject to

12x1 � 9x2 � 15x3 � (y1
� � y1

�) � 125
5x1 � 3x2 � 4x3 � (y2

� � y2
�) � 40

5x1 � 7x2 � 8x3 � (y3
� � y3

�) � 55

and

xj � 0, yk
� � 0, yk

� � 0 ( j � 1, 2, 3; k � 1, 2, 3).

Because this model uses M to symbolize a huge positive number, the simplex method can
be applied as described and illustrated throughout Sec. 4.6. Alternatively, a very large pos-
itive number can be substituted for M in the model and then any software package based
on the simplex method can be applied. Doing either naturally yields the same unique op-
timal solution obtained by the sequential procedure.

More than Two Priority Levels. When there are more than two priority levels (say,
p of them), the streamlined procedure generalizes in a straightforward way. The basic
penalty weights for the respective levels now are M1, M2, . . . , Mp�1, 1, where M1 repre-
sents a number that is vastly larger than M2, M2 is vastly larger than M3, . . . , and Mp�1

is vastly larger than 1. Each coefficient in row 0 of each simplex tableau is now a linear
function of all of these quantities, where the multiplicative factor of M1 is used to make
the necessary decisions, with tie breakers beginning with the multiplicative factor of M2

and ending with the additive term.
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The dual simplex method and parametric linear programming are especially valuable for
postoptimality analysis, although they also can be very useful in other contexts.

The upper bound technique provides a way of streamlining the simplex method for
the common situation in which many or all of the variables have explicit upper bounds.
It can greatly reduce the computational effort for large problems.
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Mathematical-programming computer packages usually include all three of these pro-
cedures, and they are widely used. Because their basic structure is based largely upon the
simplex method as presented in Chap. 4, they retain the exceptional computational effi-
ciency to handle very large problems of the sizes described in Sec. 4.8.

Various other special-purpose algorithms also have been developed to exploit the spe-
cial structure of particular types of linear programming problems (such as those to be dis-
cussed in Chaps. 8 and 9). Much research is currently being done in this area.

Karmarkar’s interior-point algorithm has been an exciting development in linear pro-
gramming. Variants of this algorithm now provide a powerful approach for efficiently solv-
ing some very large problems.

Linear goal programming and its solution procedures provide an effective way of
dealing with problems where management wishes to strive toward several goals simulta-
neously. The key is a formulation technique of introducing auxiliary variables that enable
converting the problem into a linear programming format.
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An Excel Add-In:

Premium Solver

“Ch. 7—Other Algorithms for LP” Files for Solving the Examples:

Excel File
LINGO/LINDO File
MPL/CPLEX File

See Appendix 1 for documentation of the software.
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The symbols to the left of some of the problems (or their parts)
have the following meaning:

I: We suggest that you use the above interactive routines (the print-
out records your work). For parametric linear programming,
this only applies to 
 � 0, after which you should proceed 
manually.

C: Use the computer to solve the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

7.1-1. Consider the following problem.

Maximize Z � �x1 � x2,

subject to

x1 � x2 � 8
x2 � 3

�x1 � x2 � 2

and

x1 � 0, x2 � 0.

(a) Solve this problem graphically.
(b) Use the dual simplex method manually to solve this problem.
(c) Trace graphically the path taken by the dual simplex method.

7.1-2.* Use the dual simplex method manually to solve the fol-
lowing problem.

Minimize Z � 5x1 � 2x2 � 4x3,

subject to

3x1 � x2 � 2x3 � 4
6x1 � 3x2 � 5x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

7.1-3. Use the dual simplex method manually to solve the following
problem.

Minimize Z � 7x1 � 2x2 � 5x3 � 4x4,

subject to

2x1 � 4x2 � 7x3 � x4 � 5
8x1 � 4x2 � 6x3 � 4x4 � 8
3x1 � 8x2 � x3 � 4x4 � 4

and

xj � 0, for j � 1, 2, 3, 4.

7.1-4. Consider the following problem.

Maximize Z � 3x1 � 2x2,

subject to

3x1 � x2 � 12
x1 � x2 � 6

5x1 � 3x2 � 27

and

x1 � 0, x2 � 0.

I (a) Solve by the original simplex method (in tabular form). Iden-
tify the complementary basic solution for the dual problem
obtained at each iteration.

(b) Solve the dual of this problem manually by the dual simplex
method. Compare the resulting sequence of basic solutions
with the complementary basic solutions obtained in part (a).

7.1-5. Consider the example for case 1 of sensitivity analysis given
in Sec. 6.7, where the initial simplex tableau of Table 4.8 is mod-
ified by changing b2 from 12 to 24, thereby changing the respec-
tive entries in the right-side column of the final simplex tableau to
54, 6, 12, and �2. Starting from this revised final simplex tableau,
use the dual simplex method to obtain the new optimal solution
shown in Table 6.21. Show your work.
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7.2-3. Consider the following problem.

Maximize Z(
) � (10 � 
)x1 � (12 � 
)x2 � (7 � 2
)x3,

subject to

x1 � 2x2 � 2x3 � 30
x1 � x2 � x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

I (a) Use parametric linear programming to find an optimal so-
lution for this problem as a function of 
, for 
 � 0.

(b) Construct the dual model for this problem. Then find an opti-
mal solution for this dual problem as a function of 
, for 
 �
0, by the method described in the latter part of Sec. 7.2. Indi-
cate graphically what this algebraic procedure is doing. Com-
pare the basic solutions obtained with the complementary ba-
sic solutions obtained in part (a).

I 7.2-4.* Use the parametric linear programming procedure for
making systematic changes in the bi parameters to find an opti-
mal solution for the following problem as a function of 
, for 
0 � 
 � 25.

Maximize Z(
) � 2x1 � x2,

subject to

x1 � 10 � 2

x1 � x2 � 25 � 


x2 � 10 � 2


and

x1 � 0, x2 � 0.

Indicate graphically what this algebraic procedure is doing.

I 7.2-5. Use parametric linear programming to find an optimal so-
lution for the following problem as a function of 
, for 0 � 
 � 30.

Maximize Z(
) � 5x1 � 6x2 � 4x3 � 7x4,

subject to

3x1 � 2x2 � x3 � 3x4 � 135 � 2

2x1 � 4x2 � x3 � 2x4 � 78 � 

x1 � 2x2 � x3 � 2x4 � 30 � 


and

xj � 0, for j � 1, 2, 3, 4.

Then identify the value of 
 that gives the largest optimal value 
of Z(
).

7.1-6.* Consider parts (a) and (b) of Prob. 6.7-1. Use the dual sim-
plex method manually to reoptimize for each of these two cases,
starting from the revised final tableau.

7.2-1.* Consider the following problem.

Maximize Z � 8x1 � 24x2,

subject to

x1 � 2x2 � 10
2x1 � x2 � 10

and

x1 � 0, x2 � 0.

Suppose that Z represents profit and that it is possible to modify
the objective function somewhat by an appropriate shifting of key
personnel between the two activities. In particular, suppose that
the unit profit of activity 1 can be increased above 8 (to a maxi-
mum of 18) at the expense of decreasing the unit profit of activ-
ity 2 below 24 by twice the amount. Thus, Z can actually be rep-
resented as

Z(
) � (8 � 
)x1 � (24 � 2
)x2,

where 
 is also a decision variable such that 0 � 
 � 10.
(a) Solve the original form of this problem graphically. Then ex-

tend this graphical procedure to solve the parametric extension
of the problem; i.e., find the optimal solution and the optimal
value of Z(
) as a function of 
, for 0 � 
 � 10.

I (b) Find an optimal solution for the original form of the prob-
lem by the simplex method. Then use parametric linear pro-
gramming to find an optimal solution and the optimal value
of Z(
) as a function of 
, for 0 � 
 � 10. Plot Z(
).

(c) Determine the optimal value of 
. Then indicate how this op-
timal value could have been identified directly by solving only
two ordinary linear programming problems. (Hint: A convex
function achieves its maximum at an endpoint.)

I 7.2-2. Use parametric linear programming to find the optimal so-
lution for the following problem as a function of 
, for 0 � 
 � 20.

Maximize Z(
) � (20 � 4
)x1 � (30 � 3
)x2 � 5x3,

subject to

3x1 � 3x2 � x3 � 30
8x1 � 6x2 � 4x3 � 75
6x1 � x2 � x3 � 45

and

x1 � 0, x2 � 0, x3 � 0.
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7.3-1. Use the upper bound technique manually to solve the Wyn-
dor Glass Co. problem presented in Sec. 3.1.

7.3-2. Consider the following problem.

Maximize Z � 2x1 � x2,

subject to

x1 � x2 � 5
x1 � 10

x2 � 10

and

x1 � 0, x2 � 0.

(a) Solve this problem graphically.
(b) Use the upper bound technique manually to solve this 

problem.
(c) Trace graphically the path taken by the upper bound technique.

7.3-3.* Use the upper bound technique manually to solve the fol-
lowing problem.

Maximize Z � x1 � 3x2 � 2x3,

subject to

x2 � 2x3 � 1
2x1 � x2 � 2x3 � 8
x1 � 1

x2 � 3
x3 � 2

and

x1 � 0, x2 � 0, x3 � 0.

7.3-4. Use the upper bound technique manually to solve the fol-
lowing problem.

Maximize Z � 2x1 � 3x2 � 2x3 � 5x4,

subject to

2x1 � 2x2 � x3 � 2x4 � 5
x1 � 2x2 � 3x3 � 4x4 � 5

and

0 � xj � 1, for j � 1, 2, 3, 4.

7.3-5. Use the upper bound technique manually to solve the fol-
lowing problem.

Maximize Z � 2x1 � 5x2 � 3x3 � 4x4 � x5,

7.2-6. Consider Prob. 6.7-2. Use parametric linear programming
to find an optimal solution as a function of 
 over the following
ranges of 
.
(a) 0 � 
 � 20.
(b) �20 � 
 � 0. (Hint: Substitute �
� for 
, and then increase


� from zero.)

7.2-7. Consider the Z*(
) function shown in Fig. 7.1 for para-
metric linear programming with systematic changes in the cj pa-
rameters.
(a) Explain why this function is piecewise linear.
(b) Show that this function must be convex.

7.2-8. Consider the Z*(
) function shown in Fig. 7.2 for para-
metric linear programming with systematic changes in the bi pa-
rameters.
(a) Explain why this function is piecewise linear.
(b) Show that this function must be concave.

7.2-9. Let

Z* � max 	�
n

j�1
cjxj
,

subject to

�
n

j�1
aijxj � bi, for i � 1, 2, . . . , m,

and

xj � 0, for j � 1, 2, . . . , n

(where the aij, bi, and cj are fixed constants), and let (y1*, y2*, . . . ,
y*m) be the corresponding optimal dual solution. Then let

Z** � max 	�
n

j�1
cjxj
,

subject to

�
n

j�1
aijxj � bi � ki, for i � 1, 2, . . . , m,

and

xj � 0, for j � 1, 2, . . . , n,

where k1, k2, . . . , km are given constants. Show that

Z** � Z* � �
m

i�1
kiyi*.
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C (a) Near the end of Sec. 7.4, there is a discussion of what the
interior-point algorithm does on this problem when starting
from the initial feasible trial solution (x1, x2) � (4, 4). Ver-
ify the results presented there by performing two iterations
manually. Then use the automatic routine in your OR
Courseware to check your work.

(b) Use these results to predict what subsequent trial solutions
would be if additional iterations were to be performed.

(c) Suppose that the stopping rule adopted for the algorithm in this
application is that the algorithm stops when two successive
trial solutions differ by no more than 0.01 in any component.
Use your predictions from part (b) to predict the final trial so-
lution and the total number of iterations required to get there.
How close would this solution be to the optimal solution 
(x1, x2) � (0, 8)?

7.4-4. Consider the following problem.

Maximize Z � x1 � x2,

subject to

x1 � 2x2 � 9
2x1 � x2 � 9

and

x1 � 0, x2 � 0.

(a) Solve the problem graphically.
(b) Find the gradient of the objective function in the original 

x1-x2 coordinate system. If you move from the origin in the di-
rection of the gradient until you reach the boundary of the fea-
sible region, where does it lead relative to the optimal solution?

C (c) Starting from the initial trial solution (x1, x2) � (1, 1), use
your OR Courseware to perform 10 iterations of the inte-
rior-point algorithm presented in Sec. 7.4.

C (d) Repeat part (c) with � � 0.9.

7.4-5. Consider the following problem.

Maximize Z � 2x1 � 5x2 � 7x3,

subject to

x1 � 2x2 � 3x3 � 6

and

x1 � 0, x2 � 0, x3 � 0.

(a) Graph the feasible region.
(b) Find the gradient of the objective function, and then find the

projected gradient onto the feasible region.
(c) Starting from the initial trial solution (x1, x2, x3) � (1, 1, 1),

perform two iterations of the interior-point algorithm presented
in Sec. 7.4 manually.

subject to

x1 � 3x2 � 2x3 � 3x4 � x5 � 6
4x1 � 6x2 � 5x3 � 7x4 � x5 � 15

and

0 � xj � 1, for j � 1, 2, 3, 4, 5.

7.3-6. Simultaneously use the upper bound technique and the dual
simplex method manually to solve the following problem.

Minimize Z � 3x1 � 4x2 � 2x3,

subject to

x1 � x2 � x3 � 15
x2 � x3 � 10

and

0 � x1 � 25, 0 � x2 � 5, 0 � x3 � 15.

C 7.4-1. Reconsider the example used to illustrate the interior-
point algorithm in Sec. 7.4. Suppose that (x1, x2) � (1, 3) were
used instead as the initial feasible trial solution. Perform two iter-
ations manually, starting from this solution. Then use the automatic
routine in your OR Courseware to check your work.

7.4-2. Consider the following problem.

Maximize Z � 3x1 � x2,

subject to

x1 � x2 � 4

and

x1 � 0, x2 � 0.

(a) Solve this problem graphically. Also identify all CPF solutions.
C (b) Starting from the initial trial solution (x1, x2) � (1, 1), per-

form four iterations of the interior-point algorithm presented
in Sec. 7.4 manually. Then use the automatic routine in your
OR Courseware to check your work.

(c) Draw figures corresponding to Figs. 7.4, 7.5, 7.6, 7.7, and 7.8
for this problem. In each case, identify the basic (or corner-
point) feasible solutions in the current coordinate system. (Trial
solutions can be used to determine projected gradients.)

7.4-3. Consider the following problem.

Maximize Z � x1 � 2x2,

subject to

x1 � x2 � 8

and

x1 � 0, x2 � 0.
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7.5-3. The Research and Development Division of the Emax Cor-
poration has developed three new products. A decision now needs
to be made on which mix of these products should be produced.
Management wants primary consideration given to three factors:
total profit, stability in the workforce, and achieving an increase in
the company’s earnings next year from the $75 million achieved
this year. In particular, using the units given in the following table,
they want to

Maximize Z � P � 6C � 3D,

where P � total (discounted) profit over the life of the new prod-
ucts,

C � change (in either direction) in the current level of em-
ployment,

D � decrease (if any) in next year’s earnings from the cur-
rent year’s level.

The amount of any increase in earnings does not enter into Z, be-
cause management is concerned primarily with just achieving some
increase to keep the stockholders happy. (It has mixed feelings
about a large increase that then would be difficult to surpass in sub-
sequent years.)

The impact of each of the new products (per unit rate of pro-
duction) on each of these factors is shown in the following table:

C (d) Starting from this same initial trial solution, use your OR
Courseware to perform 10 iterations of this algorithm.

C 7.4-6. Starting from the initial trial solution (x1, x2) � (2, 2),
use your OR Courseware to apply 15 iterations of the interior-point
algorithm presented in Sec. 7.4 to the Wyndor Glass Co. problem
presented in Sec. 3.1. Also draw a figure like Fig. 7.8 to show the
trajectory of the algorithm in the original x1-x2 coordinate system.

7.5-1. One of management’s goals in a goal programming prob-
lem is expressed algebraically as

3x1 � 4x2 � 2x3 � 60,

where 60 is the specific numeric goal and the left-hand side gives
the level achieved toward meeting this goal.
(a) Letting y� be the amount by which the level achieved exceeds

this goal (if any) and y� the amount under the goal (if any),
show how this goal would be expressed as an equality con-
straint when reformulating the problem as a linear program-
ming model.

(b) If each unit over the goal is considered twice as serious as each
unit under the goal, what is the relationship between the coef-
ficients of y� and y� in the objective function being minimized
in this linear programming model.

7.5-2. Management of the Albert Franko Co. has established goals
for the market share it wants each of the company’s two new prod-
ucts to capture in their respective markets. Specifically, manage-
ment wants Product 1 to capture at least 15 percent of its market
and Product 2 to capture at least 10 percent of its market. Three
advertising campaigns are being planned to try to achieve these
market shares. One is targeted directly on the first product. The
second targets the second product. The third is intended to en-
hance the general reputation of the company and its products. Let-
ting x1, x2, and x3 be the amount of money allocated (in millions
of dollars) to these respective campaigns, the resulting market
share (expressed as a percentage) for the two products are esti-
mated to be

Market share for Product 1 � 0.5x1 � 0.2x3,
Market share for Product 2 � 0.3x2 � 0.2x3.

A total of $55 million is available for the three advertising cam-
paigns, but management wants at least $10 million devoted to the
third campaign. If both market share goals cannot be achieved,
management considers each 1 percent decrease in the market share
from the goal to be equally serious for the two products. In this
light, management wants to know how to most effectively allocate
the available money to the three campaigns.
(a) Formulate a goal programming model for this problem.
(b) Reformulate this model as a linear programming model.
C (c) Use the simplex method to solve this model.
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(a) Define y1
� and y1

�, respectively, as the amount over (if any)
and the amount under (if any) the employment level goal. De-
fine y2

� and y2
� in the same way for the goal regarding earn-

ings next year. Define x1, x2, and x3 as the production rates of
Products 1, 2, and 3, respectively. With these definitions, use
the goal programming technique to express y1

�, y1
�, y2

�, and y2
�

algebraically in terms of x1, x2, and x3. Also express P in terms
of x1, x2, and x3.

(b) Express management’s objective function in terms of x1, x2,
x3, y1

�, y1
�, y2

�, and y2
�.

(c) Formulate a linear programming model for this problem.
C (d) Use the simplex method to solve this model.

Unit
Contribution

Product:

Factor 1 2 3 Goal Units

Total profit 20 15 25 Maximize Millions of dollars
Employment Hundreds of 
level 6 4 5 � 50 employees

Earnings next 
year 8 7 5 � 75 Millions of dollars



first-priority goal is citizens fed � 1,750,000, the second-
priority goal is foreign capital � $70,000,000, and the third-
priority goal is citizens employed � 200,000. Use the goal pro-
gramming technique to formulate one complete linear pro-
gramming model for this problem.

(e) Use the streamlined procedure to solve the problem as formu-
lated in part (d ).

C (f) Use the sequential procedure to solve the problem as pre-
sented in part (d ).

7.5-6.* Consider a preemptive goal programming problem with
three priority levels, just one goal for each priority level, and just
two activities to contribute toward these goals, as summarized in
the following table:

7.5-4. Reconsider the original version of the Dewright Co. prob-
lem presented in Sec. 7.5 and summarized in Table 7.5. After fur-
ther reflection about the solution obtained by the simplex method,
management now is asking some what-if questions.
(a) Management wonders what would happen if the penalty

weights in the rightmost column of Table 7.5 were to be
changed to 7, 4, 1, and 3, respectively. Would you expect the
optimal solution to change? Why?

C (b) Management is wondering what would happen if the total
profit goal were to be increased to wanting at least $140
million (without any change in the original penalty weights).
Solve the revised model with this change.

C (c) Solve the revised model if both changes are made.

7.5-5. Montega is a developing country which has 15,000,000
acres of publicly controlled agricultural land in active use. Its gov-
ernment currently is planning a way to divide this land among three
basic crops (labeled 1, 2, and 3) next year. A certain percentage of
each of these crops is exported to obtain badly needed foreign cap-
ital (dollars), and the rest of each of these crops is used to feed the
populace. Raising these crops also provides employment for a sig-
nificant proportion of the population. Therefore, the main factors
to be considered in allocating the land to these crops are (1) the
amount of foreign capital generated, (2) the number of citizens fed,
and (3) the number of citizens employed in raising these crops.
The following table shows how much each 1,000 acres of each
crop contributes toward these factors, and the last column gives the
goal established by the government for each of these factors.
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In evaluating the relative seriousness of not achieving these
goals, the government has concluded that the following deviations
from the goals should be considered equally undesirable: (1) each
$100 under the foreign-capital goal, (2) each person under the cit-
izens-fed goal, and (3) each deviation of one (in either direction)
from the citizens-employed goal. 
(a) Formulate a goal programming model for this problem.
(b) Reformulate this model as a linear programming model.
C (c) Use the simplex method to solve this model.
(d) Now suppose that the government concludes that the impor-

tance of the various goals differs greatly so that a preemptive
goal programming approach should be used. In particular, the

Contribution per 
1,000 Acres

Crop:

Factor 1 2 3 Goal

Foreign capital $3,000 $5,000 $4,000 � $70,000,000
Citizens fed 150 75 100 � 1,750,000
Citizens employed 10 15 12 � 200,000

(a) Use the goal programming technique to formulate one com-
plete linear programming model for this problem.

(b) Construct the initial simplex tableau for applying the stream-
lined procedure. Identify the initial BF solution and the initial
entering basic variable, but do not proceed further.

(c) Starting from (b), use the streamlined procedure to solve the
problem.

(d) Use the logic of preemptive goal programming to solve the
problem graphically by focusing on just the two decision vari-
ables. Explain the logic used.

(e) Use the sequential procedure to solve this problem. After us-
ing the goal programming technique to formulate the linear
programming model (including auxiliary variables) at each
stage, solve the model graphically by focusing on just the two
decision variables. Identify all optimal solutions obtained for
each stage.

7.5-7. Redo Prob. 7.5-6 with the following revised table:

Unit Contribution

Activity:

Priority Level 1 2 Goal

First priority 1 2 � 20
Second priority 1 1 � 15
Third priority 2 1 � 40

Unit Contribution

Activity:

Priority Level 1 2 Goal

First priority 1 1 �20
Second priority 1 1 �30
Third priority 1 2 �50



Minimize the sum of the absolute deviations of the data from
the line; that is,

Minimize �
n

i�1
yi � (a � bxi).

(Hint: Note that this problem can be viewed as a nonpreemptive
goal programming problem where each data point represents a
“goal” for the regression line.)

7.5-8. One of the most important problems in the field of statis-
tics is the linear regression problem. Roughly speaking, this prob-
lem involves fitting a straight line to statistical data represented by
points—(x1, y1), (x2, y2), . . . , (xn, yn)—on a graph. If we denote
the line by y � a � bx, the objective is to choose the constants a
and b to provide the “best” fit according to some criterion. The cri-
terion usually used is the method of least squares, but there are
other interesting criteria where linear programming can be used to
solve for the optimal values of a and b.

Formulate a linear programming model for this problem un-
der the following criterion:
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Fulgencio Batista led Cuba with a cold heart and iron fist—greedily stealing from poor
citizens, capriciously ruling the Cuban population that looked to him for guidance, and
violently murdering the innocent critics of his politics. In 1958, tired of watching his
fellow Cubans suffer from corruption and tyranny, Fidel Castro led a guerilla attack
against the Batista regime and wrested power from Batista in January 1959. Cubans,
along with members of the international community, believed that political and eco-
nomic freedom had finally triumphed on the island. The next two years showed, how-
ever, that Castro was leading a Communist dictatorship—killing his political opponents
and nationalizing all privately held assets. The United States responded to Castro’s
leadership in 1961 by invoking a trade embargo against Cuba. The embargo forbade
any country from selling Cuban products in the United States and forbade businesses
from selling American products to Cuba. Cubans did not feel the true impact of the
embargo until 1989 when the Soviet economy collapsed. Prior to the disintegration of
the Soviet Union, Cuba had received an average of $5 billion in annual economic as-
sistance from the Soviet Union. With the disappearance of the economy that Cuba had
almost exclusively depended upon for trade, Cubans had few avenues from which to
purchase food, clothes, and medicine. The avenues narrowed even further when the
United States passed the Torricelli Act in 1992 that forbade American subsidiaries in
third countries from doing business with Cuba that had been worth a total of $700 mil-
lion annually.

Since 1989, the Cuban economy has certainly felt the impact from decades of
frozen trade. Today poverty ravages the island of Cuba. Families do not have money
to purchase bare necessities, such as food, milk, and clothing. Children die from
malnutrition or exposure. Disease infects the island because medicine is unavail-
able. Optical neuritis, tuberculosis, pneumonia, and influenza run rampant among
the population.

Few Americans hold sympathy for Cuba, but Robert Baker, director of Helping
Hand, leads a handful of tender souls on Capitol Hill who cannot bear to see politics
destroy so many human lives. His organization distributes humanitarian aid annually
to needy countries around the world. Mr. Baker recognizes the dire situation in Cuba,
and he wants to allocate aid to Cuba for the coming year.

CASE 7.1 A CURE FOR CUBA



Mr. Baker wants to send numerous aid packages to Cuban citizens. Three differ-
ent types of packages are available. The basic package contains only food, such as grain
and powdered milk. Each basic package costs $300, weighs 120 pounds, and aids 30
people. The advanced package contains food and clothing, such as blankets and fab-
rics. Each advanced package costs $350, weighs 180 pounds, and aids 35 people. The
supreme package contains food, clothing, and medicine. Each supreme package costs
$720, weighs 220 pounds, and aids 54 people.

Mr. Baker has several goals he wants to achieve when deciding upon the number
and types of aid packages to allocate to Cuba. First, he wants to aid at least 20 percent
of Cuba’s 11 million citizens. Second, because disease runs rampant among the Cuban
population, he wants at least 3,000 of the aid packages sent to Cuba to be the supreme
packages. Third, because he knows many other nations also require humanitarian aid,
he wants to keep the cost of aiding Cuba below $20 million.

Mr. Baker places different levels of importance on his three goals. He believes the
most important goal is keeping costs down since low costs mean that his organization
is able to aid a larger number of needy nations. He decides to penalize his plan by 1
point for every $1 million above his $20 million goal. He believes the second most im-
portant goal is ensuring that at least 3,000 of the aid packages sent to Cuba are supreme
packages, since he does not want to see an epidemic develop and completely destroy
the Cuban population. He decides to penalize his plan by 1 point for every 1,000 pack-
ages below his goal of 3,000 packages. Finally, he believes the least important goal is
reaching at least 20 percent of the population, since he would rather give a smaller
number of individuals all they need to thrive instead of a larger number of individuals
only some of what they need to thrive. He therefore decides to penalize his plan by 7
points for every 100,000 people below his 20 percent goal.

Mr. Baker realizes that he has certain limitations on the aid packages that he de-
livers to Cuba. Each type of package is approximately the same size, and because only
a limited number of cargo flights from the United States are allowed into Cuba, he is
only able to send a maximum of 40,000 packages. Along with a size limitation, he also
encounters a weight restriction. He cannot ship more that 6 million pounds of cargo.
Finally, he has a safety restriction. When sending medicine, he needs to ensure that the
Cubans know how to use the medicine properly. Therefore, for every 100 supreme
packages, Mr. Baker must send one doctor to Cuba at a cost of $33,000 per doctor.

(a) Identify one of the techniques described in this chapter that is applicable to Mr. Baker’s
problem.

(b) How many basic, advanced, and supreme packages should Mr. Baker send to Cuba?
(c) Mr. Baker reevaluates the levels of importance he places on each of the three goals. To sell

his efforts to potential donors, he must show that his program is effective. Donors gener-
ally judge the effectiveness of a program on the number of people reached by aid pack-
ages. Mr. Baker therefore decides that he must put more importance on the goal of reach-
ing at least 20 percent of the population. He decides to penalize his plan by 10 points for
every half a percentage point below his 20 percent goal. The penalties for his other two
goals remain the same. Under this scenario, how many basic, advanced, and supreme pack-
ages should Mr. Baker send to Cuba? How sensitive is the plan to changes in the penalty
weights?
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(d) Mr. Baker realizes that sending more doctors along with the supreme packages will im-
prove the proper use and distribution of the packages’ contents, which in turn will increase
the effectiveness of the program. He therefore decides to send one doctor with every 75
supreme packages. The penalties for the goals remain the same as in part (c). Under this
scenario, how many basic, advanced, and supreme packages should Mr. Baker send to Cuba?

(e) The aid budget is cut, and Mr. Baker learns that he definitely cannot allocate more than
$20 million in aid to Cuba. Due to the budget cut, Mr. Baker decides to stay with his orig-
inal policy of sending one doctor with every 100 supreme packages. How many basic, ad-
vanced, and supreme packages should Mr. Baker send to Cuba assuming that the penalties
for not meeting the other two goals remain the same as in part (b)?
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8
The Transportation and
Assignment Problems

Chapter 3 emphasized the wide applicability of linear programming. We continue to
broaden our horizons in this chapter by discussing two particularly important (and related)
types of linear programming problems. One type, called the transportation problem, re-
ceived this name because many of its applications involve determining how to optimally
transport goods. However, some of its important applications (e.g., production schedul-
ing) actually have nothing to do with transportation.

The second type, called the assignment problem, involves such applications as as-
signing people to tasks. Although its applications appear to be quite different from those
for the transportation problem, we shall see that the assignment problem can be viewed
as a special type of transportation problem.

The next chapter will introduce additional special types of linear programming prob-
lems involving networks, including the minimum cost flow problem (Sec. 9.6). There we
shall see that both the transportation and assignment problems actually are special cases
of the minimum cost flow problem. We introduce the network representation of the trans-
portation and assignment problems in this chapter.

Applications of the transportation and assignment problems tend to require a very
large number of constraints and variables, so a straightforward computer application of
the simplex method may require an exorbitant computational effort. Fortunately, a key
characteristic of these problems is that most of the aij coefficients in the constraints are
zeros, and the relatively few nonzero coefficients appear in a distinctive pattern. As a re-
sult, it has been possible to develop special streamlined algorithms that achieve dramatic
computational savings by exploiting this special structure of the problem. Therefore, it is
important to become sufficiently familiar with these special types of problems that you
can recognize them when they arise and apply the proper computational procedure.

To describe special structures, we shall introduce the table (matrix) of constraint co-
efficients shown in Table 8.1, where aij is the coefficient of the jth variable in the ith func-
tional constraint. Later, portions of the table containing only coefficients equal to zero will
be indicated by leaving them blank, whereas blocks containing nonzero coefficients will
be shaded.

After presenting a prototype example for the transportation problem, we describe the
special structure in its model and give additional examples of its applications. Section 8.2
presents the transportation simplex method, a special streamlined version of the simplex



method for efficiently solving transportation problems. (You will see in Sec. 9.7 that this
algorithm is related to the network simplex method, another streamlined version of the sim-
plex method for efficiently solving any minimum cost flow problem, including both trans-
portation and assignment problems.) Section 8.3 then focuses on the assignment problem.
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Prototype Example

One of the main products of the P & T COMPANY is canned peas. The peas are prepared
at three canneries (near Bellingham, Washington; Eugene, Oregon; and Albert Lea, Min-
nesota) and then shipped by truck to four distributing warehouses in the western United
States (Sacramento, California; Salt Lake City, Utah; Rapid City, South Dakota; and Al-
buquerque, New Mexico), as shown in Fig. 8.1. Because the shipping costs are a major
expense, management is initiating a study to reduce them as much as possible. For the
upcoming season, an estimate has been made of the output from each cannery, and each
warehouse has been allocated a certain amount from the total supply of peas. This infor-
mation (in units of truckloads), along with the shipping cost per truckload for each can-
nery-warehouse combination, is given in Table 8.2. Thus, there are a total of 300 truck-
loads to be shipped. The problem now is to determine which plan for assigning these
shipments to the various cannery-warehouse combinations would minimize the total ship-
ping cost.

By ignoring the geographical layout of the canneries and warehouses, we can provide
a network representation of this problem in a simple way by lining up all the canneries in
one column on the left and all the warehouses in one column on the right. This represen-
tation is shown in Fig. 8.2. The arrows show the possible routes for the truckloads, where
the number next to each arrow is the shipping cost per truckload for that route. A square
bracket next to each location gives the number of truckloads to be shipped out of that lo-
cation (so that the allocation into each warehouse is given as a negative number).

The problem depicted in Fig. 8.2 is actually a linear programming problem of the
transportation problem type. To formulate the model, let Z denote total shipping cost, and
let xij (i � 1, 2, 3; j � 1, 2, 3, 4) be the number of truckloads to be shipped from cannery
i to warehouse j. Thus, the objective is to choose the values of these 12 decision variables
(the xij) so as to

Minimize Z � 464x11 � 513x12 � 654x13 � 867x14 � 352x21 � 416x22

� 690x23 � 791x24 � 995x31 � 682x32 � 388x33 � 685x34,
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TABLE 8.1 Table of
constraint coefficients
for linear
programming
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CANNERY 1
Bellingham

CANNERY 2
Eugene CANNERY 3

Albert Lea 

WAREHOUSE 4
Albuquerque

WAREHOUSE 3
Rapid City

WAREHOUSE 2
Salt Lake City

WAREHOUSE 1
Sacramento

FIGURE 8.1
Location of canneries and warehouses for the P & T Co. problem.

TABLE 8.2 Shipping data for P & T Co.

Shipping Cost ($) per Truckload

Warehouse

1 2 3 4 Output

1 464 513 654 867 75
Cannery 2 352 416 690 791 125

3 995 682 388 685 100

Allocation 80 65 70 85



subject to the constraints

x11 � x12 � x13 � x14 � x21 � x21 � x21 � x21 � x21 � x21 � x21 � x21 � 75
� x21 � x21 � x21 � x21x21 � x22 � x23 � x24 � x21 � x21 � x21 � x21 � 125
� x21 � x21 � x21 � x21 � x21 � x21 � x21 � x21x31 � x32 � x33 � x34 � 100
x11 � x21 � x21 � x21 � x21 � x21 � x21 � x21 � x31 � x21 � x21 � x21 � 80
x11 � x12 � x21 � x21 � x21 � x22 � x21 � x21 �x21 � x32 � x21 � x21 � 65
x11 � x12 � x13 � x21 � x21 � x21 � x23 � x21 � x21 � x21 � x33 � x21 � 70
x11 � x12 � x13 � x14 � x21 � x21 � x21 � x24 � x21 � x21 � x21 � x34 � 85

and

xij � 0 (i � 1, 2, 3; j � 1, 2, 3, 4).

Table 8.3 shows the constraint coefficients. As you will see later in this section, it is the
special structure in the pattern of these coefficients that distinguishes this problem as a
transportation problem, not its context.
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FIGURE 8.2
Network representation of
the P & T Co. problem.
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TABLE 8.3 Constraint coefficients for P & T Co.

Coefficient of:

x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34

1 1 1 1
Cannery

1 1 1 1
constraints

1 1 1 1

A � 1 1 1
1 1 1 Warehouse

1 1 1 constraints
1 1 1



However, before examining the special structure of the transportation problem model,
let us pause to look at an actual application that resembles the P&T Co. problem but on
a vastly larger scale.

An Award Winning Application of a Transportation Problem

Except for its small size, the P & T Co. problem is typical of the problems faced by many
corporations which must ship goods from their manufacturing plants to their customers.

For example, consider an award winning OR study conducted at Proctor & Gamble
(as described in the January–February 1997 issue of Interfaces). Prior to the study, the
company’s supply chain consisted of hundreds of suppliers, over 50 product categories,
over 60 plants, 15 distribution centers, and over 1,000 customer zones. However, as the
company moved toward global brands, management realized that it needed to consolidate
plants to reduce manufacturing expenses, improve speed to market, and reduce capital in-
vestment. Therefore, the study focused on redesigning the company’s production and dis-
tribution system for its North American operations. The result was a reduction in the num-
ber of North American plants by almost 20 percent, saving over $200 million in pretax
costs per year.

A major part of the study revolved around formulating and solving transportation
problems for individual product categories. For each option regarding the plants to keep
open, etc., solving the corresponding transportation problem for a product category shows
what the distribution cost would be for shipping the product category from those plants
to the distribution centers and customer zones. Numerous such transportation problems
were solved in the process of identifying the best new production and distribution system.

The Transportation Problem Model

To describe the general model for the transportation problem, we need to use terms that
are considerably less specific than those for the components of the prototype example. In
particular, the general transportation problem is concerned (literally or figuratively) with
distributing any commodity from any group of supply centers, called sources, to any group
of receiving centers, called destinations, in such a way as to minimize the total distribu-
tion cost. The correspondence in terminology between the prototype example and the gen-
eral problem is summarized in Table 8.4.

As indicated by the fourth and fifth rows of the table, each source has a certain sup-
ply of units to distribute to the destinations, and each destination has a certain demand
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TABLE 8.4 Terminology for the transportation problem

Prototype Example General Problem

Truckloads of canned peas Units of a commodity
Three canneries m sources
Four warehouses n destinations
Output from cannery i Supply si from source i
Allocation to warehouse j Demand dj at destination j
Shipping cost per truckload from cannery i to Cost cij per unit distributed from source i to
warehouse j destination j



for units to be received from the sources. The model for a transportation problem makes
the following assumption about these supplies and demands.

The requirements assumption: Each source has a fixed supply of units, where
this entire supply must be distributed to the destinations. (We let si denote the
number of units being supplied by source i, for i � 1, 2, . . . , m.) Similarly, each
destination has a fixed demand for units, where this entire demand must be re-
ceived from the sources. (We let dj denote the number of units being received by
destination j, for j � 1, 2, . . . , n.)

This assumption that there is no leeway in the amounts to be sent or received means
that there needs to be a balance between the total supply from all sources and the total
demand at all destinations.

The feasible solutions property: A transportation problem will have feasible so-
lutions if and only if

�
m

i�1
si � �

n

j�1
dj.

Fortunately, these sums are equal for the P & T Co. since Table 8.2 indicates that the sup-
plies (outputs) sum to 300 truckloads and so do the demands (allocations).

In some real problems, the supplies actually represent maximum amounts (rather than
fixed amounts) to be distributed. Similarly, in other cases, the demands represent maxi-
mum amounts (rather than fixed amounts) to be received. Such problems do not quite fit
the model for a transportation problem because they violate the requirements assumption.
However, it is possible to reformulate the problem so that they then fit this model by in-
troducing a dummy destination or a dummy source to take up the slack between the ac-
tual amounts and maximum amounts being distributed. We will illustrate how this is done
with two examples at the end of this section.

The last row of Table 8.4 refers to a cost per unit distributed. This reference to a unit
cost implies the following basic assumption for any transportation problem.

The cost assumption: The cost of distributing units from any particular source
to any particular destination is directly proportional to the number of units dis-
tributed. Therefore, this cost is just the unit cost of distribution times the num-
ber of units distributed. (We let cij denote this unit cost for source i and desti-
nation j.)

The only data needed for a transportation problem model are the supplies, demands,
and unit costs. These are the parameters of the model. All these parameters can be sum-
marized conveniently in a single parameter table as shown in Table 8.5.

The model: Any problem (whether involving transportation or not) fits the model
for a transportation problem if it can be described completely in terms of a pa-
rameter table like Table 8.5 and it satisfies both the requirements assumption
and the cost assumption. The objective is to minimize the total cost of distrib-
uting the units. All the parameters of the model are included in this parameter
table.
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Therefore, formulating a problem as a transportation problem only requires filling out
a parameter table in the format of Table 8.5. Alternatively, the same information can be
provided by using the network representation of the problem shown in Fig. 8.3. It is not
necessary to write out a formal mathematical model.

However, we will go ahead and show you this model once for the general trans-
portation problem just to emphasize that it is indeed a special type of linear programming
problem.

Letting Z be the total distribution cost and xij (i � 1, 2, . . . , m; j � 1, 2, . . . , n) be
the number of units to be distributed from source i to destination j, the linear program-
ming formulation of this problem is

Minimize Z � �
m

i�1
�
n

j�1
cijxij,

subject to

�
n

j�1
xij � si for i � 1, 2, . . . , m,

�
m

i�1
xij � dj for j � 1, 2, . . . , n,

and

xij � 0, for all i and j.

Note that the resulting table of constraint coefficients has the special structure shown in
Table 8.6. Any linear programming problem that fits this special formulation is of the
transportation problem type, regardless of its physical context. In fact, there have been
numerous applications unrelated to transportation that have been fitted to this special struc-
ture, as we shall illustrate in the next example later in this section. (The assignment prob-
lem described in Sec. 8.3 is an additional example.) This is one of the reasons why the
transportation problem is considered such an important special type of linear program-
ming problem.
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TABLE 8.5 Parameter table for the transportation problem

Cost per Unit Distributed

Destination

1 2 … n Supply

1 c11 c12
… c1n s1

2 c21 c22
… c2n s2Source

� �

m cm1 cm2
… cmn sm

Demand d1 d2
… dn

…………………………………………………………………



For many applications, the supply and demand quantities in the model (the si and di)
have integer values, and implementation will require that the distribution quantities (the
xij) also have integer values. Fortunately, because of the special structure shown in Table
8.6, all such problems have the following property.

Integer solutions property: For transportation problems where every si and dj

have an integer value, all the basic variables (allocations) in every basic feasible
(BF) solution (including an optimal one) also have integer values.

The solution procedure described in Sec. 8.2 deals only with BF solutions, so it auto-
matically will obtain an integer optimal solution for this case. (You will be able to see why
this solution procedure actually gives a proof of the integer solutions property after you
learn the procedure; Prob. 8.2-22 guides you through the reasoning involved.) Therefore,
it is unnecessary to add a constraint to the model that the xij must have integer values.

As with other linear programming problems, the usual software options (Excel,
LINGO/LINDO, MPL/CPLEX) are available to you for setting up and solving trans-
portation problems (and assignment problems), as demonstrated in the files for this chap-
ter in your OR Courseware. However, because the Excel approach now is somewhat dif-
ferent from what you have seen previously, we next describe this approach.

8.1 THE TRANSPORTATION PROBLEM 357

D1 S1 [s1] [�d1]

S2 D2 [s2] [�d2]

Sm Dn [sm] [�dn]

c11

c22

c m1 

c m2 

cmn 

c
2n

c12

c
1n

c21

FIGURE 8.3
Network representation of
the transportation problem.



Using Excel to Formulate and Solve Transportation Problems

To formulate and solve a transportation problem using Excel, two separate tables need to
be entered on a spreadsheet. The first one is the parameter table. The second is a solution
table, containing the quantities to distribute from each source to each destination. Figure
8.4 shows these two tables in rows 3–9 and 12–18 for the P&T Co. problem.

The two types of functional constraints need to be included in the spreadsheet. For
the supply constraints, the total amount shipped from each source is calculated in column
H of the solution table in Fig. 8.4. It is the sum of all the decision variable cells in the
corresponding row. For example, the equation in cell H15 is “�D15�E15�F15�G15”
or “�SUM(D15:G15).” The supply at each source is included in column J. Hence, the
cells in column H must equal the corresponding cells in column J.

For the demand constraints, the total amount shipped to each destination is calculated
in row 18 of the spreadsheet. For example, the equation in cell D18 is “�SUM(D15:D17).”
The demand at each destination is then included in row 20.

The total cost is calculated in cell H18. This cost is the sum of the products of the
corresponding cells in the main bodies of the parameter table and the solution table. Hence,
the equation contained in cell H18 is “�SUMPRODUCT(D6:G8,D15:G17).”

Now let us look at the entries in the Solver dialogue box shown at the bottom of Fig.
8.4. These entries indicate that we are minimizing the total cost (calculated in cell H18)
by changing the shipment quantities (in cells D15 through G17), subject to the constraints
that the total amount shipped to each destination equals its demand (D18:G18�D20:G20)
and that the total amount shipped from each source equals its supply (H15:H17�J15:J17).
One of the selected Solver options (Assume Non-Negative) specifies that all shipment
quantities must be nonnegative. The other one (Assume Linear Model) indicates that this
transportation problem is a linear programming problem.

The values of the xij decision variables (the shipment quantities) are contained in the
changing cells (D15:G17). To begin, any value (such as 0) can be entered in each of these
cells. After clicking on the Solve button, the Solver will use the simplex method to solve
the problem. The optimal solution obtained in this way is shown in the changing cells in
Fig. 8.4, along with the resulting total cost in cell H18.

Note that the Solver simply uses the general simplex method to solve a transporta-
tion problem rather than a streamlined version that is specially designed for solving trans-
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TABLE 8.6 Constraint coefficients for the transportation problem

Coefficient of:
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portation problems very efficiently, such as the transportation simplex method presented
in the next section. Therefore, a software package that includes such a streamlined ver-
sion should solve a large transportation problem much faster than the Excel Solver.

We mentioned earlier that some problems do not quite fit the model for a transportation
problem because they violate the requirements assumption, but that it is possible to re-
formulate such a problem to fit this model by introducing a dummy destination or a dummy
source. When using the Excel Solver, it is not necessary to do this reformulation since the
simplex method can solve the original model where the supply constraints are in � form
or the demand constraints are in � form. However, the larger the problem, the more worth-
while it becomes to do the reformulation and use the transportation simplex method (or
equivalent) instead with another software package.

The next two examples illustrate how to do this kind of reformulation.

An Example with a Dummy Destination

The NORTHERN AIRPLANE COMPANY builds commercial airplanes for various air-
line companies around the world. The last stage in the production process is to produce
the jet engines and then to install them (a very fast operation) in the completed airplane
frame. The company has been working under some contracts to deliver a considerable
number of airplanes in the near future, and the production of the jet engines for these
planes must now be scheduled for the next 4 months.
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FIGURE 8.4
A spreadsheet formulation of
the P & T Co. problem as a
transportation problem,
where rows 3 to 9 show the
parameter table and rows 12
to 18 display the solution
table after using the Excel
Solver to obtain an optimal
shipping plan. Both the
formulas for the output cells
and the specifications
needed to set up the Solver
are given at the bottom.



To meet the contracted dates for delivery, the company must supply engines for in-
stallation in the quantities indicated in the second column of Table 8.7. Thus, the cumu-
lative number of engines produced by the end of months 1, 2, 3, and 4 must be at least
10, 25, 50, and 70, respectively.

The facilities that will be available for producing the engines vary according to other
production, maintenance, and renovation work scheduled during this period. The result-
ing monthly differences in the maximum number that can be produced and the cost (in
millions of dollars) of producing each one are given in the third and fourth columns of
Table 8.7.

Because of the variations in production costs, it may well be worthwhile to produce
some of the engines a month or more before they are scheduled for installation, and this
possibility is being considered. The drawback is that such engines must be stored until
the scheduled installation (the airplane frames will not be ready early) at a storage cost
of $15,000 per month (including interest on expended capital) for each engine,1 as shown
in the rightmost column of Table 8.7.

The production manager wants a schedule developed for the number of engines to be
produced in each of the 4 months so that the total of the production and storage costs will
be minimized.

Formulation. One way to formulate a mathematical model for this problem is to let xj

be the number of jet engines to be produced in month j, for j � 1, 2, 3, 4. By using only
these four decision variables, the problem can be formulated as a linear programming
problem that does not fit the transportation problem type. (See Prob. 8.2-20.)

On the other hand, by adopting a different viewpoint, we can instead formulate the
problem as a transportation problem that requires much less effort to solve. This view-
point will describe the problem in terms of sources and destinations and then identify the
corresponding xij, cij, si, and dj. (See if you can do this before reading further.)

Because the units being distributed are jet engines, each of which is to be scheduled
for production in a particular month and then installed in a particular (perhaps different)
month,

Source i � production of jet engines in month i (i � 1, 2, 3, 4)

Destination j � installation of jet engines in month j ( j � 1, 2, 3, 4)
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TABLE 8.7 Production scheduling data for Northern Airplane Co.

Scheduled Maximum Unit Cost* Unit Cost*
Month Installations Production of Production of Storage

1 10 25 1.08 0.015
2 15 35 1.11 0.015
3 25 30 1.10 0.015
4 20 10 1.13

*Cost is expressed in millions of dollars.

1For modeling purposes, assume that this storage cost is incurred at the end of the month for just those engines
that are being held over into the next month. Thus, engines that are produced in a given month for installation
in the same month are assumed to incur no storage cost.



xij � number of engines produced in month i for installation in month j

cij � cost associated with each unit of xij

� �
si � ?

dj � number of scheduled installations in month j.

The corresponding (incomplete) parameter table is given in Table 8.8. Thus, it remains to
identify the missing costs and the supplies.

Since it is impossible to produce engines in one month for installation in an earlier
month, xij must be zero if i � j. Therefore, there is no real cost that can be associated with
such xij. Nevertheless, in order to have a well-defined transportation problem to which the
solution procedure of Sec. 8.2 can be applied, it is necessary to assign some value for the
unidentified costs. Fortunately, we can use the Big M method introduced in Sec. 4.6 to as-
sign this value. Thus, we assign a very large number (denoted by M for convenience) to
the unidentified cost entries in Table 8.8 to force the corresponding values of xij to be zero
in the final solution.

The numbers that need to be inserted into the supply column of Table 8.8 are not ob-
vious because the “supplies,” the amounts produced in the respective months, are not fixed
quantities. In fact, the objective is to solve for the most desirable values of these produc-
tion quantities. Nevertheless, it is necessary to assign some fixed number to every entry
in the table, including those in the supply column, to have a transportation problem. A
clue is provided by the fact that although the supply constraints are not present in the
usual form, these constraints do exist in the form of upper bounds on the amount that can
be supplied, namely,

x11 � x12 � x13 � x14 � 25,

x21 � x22 � x23 � x24 � 35,

x31 � x32 � x33 � x34 � 30,

x41 � x42 � x43 � x44 � 10.

The only change from the standard model for the transportation problem is that these con-
straints are in the form of inequalities instead of equalities.

if i � j
if i � j

cost per unit for production and any storage
?
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TABLE 8.8 Incomplete parameter table for Northern Airplane Co.

Cost per Unit Distributed

Destination

1 2 3 4 Supply

1 1.080 1.095 1.110 1.125 ?
2 ? 1.110 1.125 1.140 ?

Source
3 ? ? 1.100 1.115 ?
4 ? ? ? 1.130 ?

Demand 10 15 25 20



To convert these inequalities to equations in order to fit the transportation problem
model, we use the familiar device of slack variables, introduced in Sec. 4.2. In this con-
text, the slack variables are allocations to a single dummy destination that represent the
unused production capacity in the respective months. This change permits the supply in
the transportation problem formulation to be the total production capacity in the given
month. Furthermore, because the demand for the dummy destination is the total unused
capacity, this demand is

(25 � 35 � 30 � 10) � (10 � 15 � 25 � 20) � 30.

With this demand included, the sum of the supplies now equals the sum of the demands,
which is the condition given by the feasible solutions property for having feasible solutions.

The cost entries associated with the dummy destination should be zero because there
is no cost incurred by a fictional allocation. (Cost entries of M would be inappropriate
for this column because we do not want to force the corresponding values of xij to be
zero. In fact, these values need to sum to 30.)

The resulting final parameter table is given in Table 8.9, with the dummy destination
labeled as destination 5(D). By using this formulation, it is quite easy to find the optimal
production schedule by the solution procedure described in Sec. 8.2. (See Prob. 8.2-11
and its answer in the back of the book.)

An Example with a Dummy Source

METRO WATER DISTRICT is an agency that administers water distribution in a large
geographic region. The region is fairly arid, so the district must purchase and bring in wa-
ter from outside the region. The sources of this imported water are the Colombo, Sacron,
and Calorie rivers. The district then resells the water to users in the region. Its main cus-
tomers are the water departments of the cities of Berdoo, Los Devils, San Go, and Hol-
lyglass.

It is possible to supply any of these cities with water brought in from any of the three
rivers, with the exception that no provision has been made to supply Hollyglass with Calo-
rie River water. However, because of the geographic layouts of the aqueducts and the cities
in the region, the cost to the district of supplying water depends upon both the source of
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TABLE 8.9 Complete parameter table for Northern Airplane Co.

Cost per Unit Distributed

Destination

1 2 3 4 5(D) Supply

1 1.080 1.095 1.110 1.125 0 25
2 M 1.110 1.125 1.140 0 35

Source
3 M M 1.100 1.115 0 30
4 M M M 1.130 0 10

Demand 10 15 25 20 30



the water and the city being supplied. The variable cost per acre foot of water (in tens of
dollars) for each combination of river and city is given in Table 8.10. Despite these vari-
ations, the price per acre foot charged by the district is independent of the source of the
water and is the same for all cities.

The management of the district is now faced with the problem of how to allocate the
available water during the upcoming summer season. In units of 1 million acre feet, the
amounts available from the three rivers are given in the rightmost column of Table 8.10.
The district is committed to providing a certain minimum amount to meet the essential
needs of each city (with the exception of San Go, which has an independent source of
water), as shown in the minimum needed row of the table. The requested row indicates
that Los Devils desires no more than the minimum amount, but that Berdoo would like
to buy as much as 20 more, San Go would buy up to 30 more, and Hollyglass will take
as much as it can get.

Management wishes to allocate all the available water from the three rivers to the
four cities in such a way as to at least meet the essential needs of each city while mini-
mizing the total cost to the district.

Formulation. Table 8.10 already is close to the proper form for a parameter table, with
the rivers being the sources and the cities being the destinations. However, the one basic
difficulty is that it is not clear what the demands at the destinations should be. The amount
to be received at each destination (except Los Devils) actually is a decision variable, with
both a lower bound and an upper bound. This upper bound is the amount requested un-
less the request exceeds the total supply remaining after the minimum needs of the other
cities are met, in which case this remaining supply becomes the upper bound. Thus, in-
satiably thirsty Hollyglass has an upper bound of

(50 � 60 � 50) � (30 � 70 � 0) � 60.

Unfortunately, just like the other numbers in the parameter table of a transportation
problem, the demand quantities must be constants, not bounded decision variables. To be-
gin resolving this difficulty, temporarily suppose that it is not necessary to satisfy the min-
imum needs, so that the upper bounds are the only constraints on amounts to be allocated
to the cities. In this circumstance, can the requested allocations be viewed as the demand
quantities for a transportation problem formulation? After one adjustment, yes! (Do you
see already what the needed adjustment is?)
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TABLE 8.10 Water resources data for Metro Water District

Cost (Tens of Dollars) per Acre Foot

Berdoo Los Devils San Go Hollyglass Supply

Colombo River 16 13 22 17 50
Sacron River 14 13 19 15 60
Calorie River 19 20 23 — 50

Minimum needed 30 70 0 10 (in units of 1
Requested 50 70 30 � million acre feet)



The situation is analogous to Northern Airplane Co.’s production scheduling prob-
lem, where there was excess supply capacity. Now there is excess demand capacity. Con-
sequently, rather than introducing a dummy destination to “receive” the unused supply ca-
pacity, the adjustment needed here is to introduce a dummy source to “send” the unused
demand capacity. The imaginary supply quantity for this dummy source would be the
amount by which the sum of the demands exceeds the sum of the real supplies:

(50 � 70 � 30 � 60) � (50 � 60 � 50) � 50.

This formulation yields the parameter table shown in Table 8.11, which uses units of
million acre feet and tens of millions of dollars. The cost entries in the dummy row are
zero because there is no cost incurred by the fictional allocations from this dummy source.
On the other hand, a huge unit cost of M is assigned to the Calorie River–Hollyglass spot.
The reason is that Calorie River water cannot be used to supply Hollyglass, and assign-
ing a cost of M will prevent any such allocation.

Now let us see how we can take each city’s minimum needs into account in this kind
of formulation. Because San Go has no minimum need, it is all set. Similarly, the for-
mulation for Hollyglass does not require any adjustments because its demand (60) ex-
ceeds the dummy source’s supply (50) by 10, so the amount supplied to Hollyglass from
the real sources will be at least 10 in any feasible solution. Consequently, its minimum
need of 10 from the rivers is guaranteed. (If this coincidence had not occurred, Hollyglass
would need the same adjustments that we shall have to make for Berdoo.)

Los Devils’ minimum need equals its requested allocation, so its entire demand of 70
must be filled from the real sources rather than the dummy source. This requirement calls
for the Big M method! Assigning a huge unit cost of M to the allocation from the dummy
source to Los Devils ensures that this allocation will be zero in an optimal solution.

Finally, consider Berdoo. In contrast to Hollyglass, the dummy source has an ade-
quate (fictional) supply to “provide” at least some of Berdoo’s minimum need in addition
to its extra requested amount. Therefore, since Berdoo’s minimum need is 30, adjustments
must be made to prevent the dummy source from contributing more than 20 to Berdoo’s
total demand of 50. This adjustment is accomplished by splitting Berdoo into two desti-
nations, one having a demand of 30 with a unit cost of M for any allocation from the
dummy source and the other having a demand of 20 with a unit cost of zero for the dummy
source allocation. This formulation gives the final parameter table shown in Table 8.12.

364 8 THE TRANSPORTATION AND ASSIGNMENT PROBLEMS

TABLE 8.11 Parameter table without minimum needs for Metro Water District

Cost (Tens of Millions of Dollars) per Unit Distributed

Destination

Berdoo Los Devils San Go Hollyglass Supply

Colombo River 16 13 22 17 50
Sacron River 14 13 19 15 60

Source
Calorie River 19 20 23 M 50
Dummy 0 0 0 0 50

Demand 50 70 30 60



This problem will be solved in the next section to illustrate the solution procedure
presented there.
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Because the transportation problem is just a special type of linear programming problem,
it can be solved by applying the simplex method as described in Chap. 4. However, you
will see in this section that some tremendous computational shortcuts can be taken in this
method by exploiting the special structure shown in Table 8.6. We shall refer to this stream-
lined procedure as the transportation simplex method.

As you read on, note particularly how the special structure is exploited to achieve
great computational savings. This will illustrate an important OR technique—streamlin-
ing an algorithm to exploit the special structure in the problem at hand.

Setting Up the Transportation Simplex Method

To highlight the streamlining achieved by the transportation simplex method, let us first
review how the general (unstreamlined) simplex method would set up a transportation prob-
lem in tabular form. After constructing the table of constraint coefficients (see Table 8.6),
converting the objective function to maximization form, and using the Big M method to
introduce artificial variables z1, z2, . . . , zm�n into the m � n respective equality constraints
(see Sec. 4.6), typical columns of the simplex tableau would have the form shown in Table
8.13, where all entries not shown in these columns are zeros. [The one remaining adjust-
ment to be made before the first iteration of the simplex method is to algebraically elimi-
nate the nonzero coefficients of the initial (artificial) basic variables in row 0.]

After any subsequent iteration, row 0 then would have the form shown in Table 8.14.
Because of the pattern of 0s and 1s for the coefficients in Table 8.13, by the fundamen-
tal insight presented in Sec. 5.3, ui and vj would have the following interpretation:

ui � multiple of original row i that has been subtracted (directly or indirectly) from
original row 0 by the simplex method during all iterations leading to the cur-
rent simplex tableau.

8.2 A STREAMLINED SIMPLEX METHOD FOR THE 
TRANSPORTATION PROBLEM

TABLE 8.12 Parameter table for Metro Water District

Cost (Tens of Millions of Dollars) per Unit Distributed

Destination

Berdoo (min.) Berdoo (extra) Los Devils San Go Hollyglass
1 2 3 4 5 Supply

Source Colombo River 1(D) 16 16 13 22 17 50
Source

Sacron River 2(D) 14 14 13 19 15 60
Source

Calorie River 3(D) 19 19 20 23 M 50
Source Dummy 4(D) M 0 M 0 0 50

Demand 30 20 70 30 60



vj � multiple of original row m � j that has been subtracted (directly or indirectly)
from original row 0 by the simplex method during all iterations leading to the
current simplex tableau.

Using the duality theory introduced in Chap. 6, another property of the ui and vj is that
they are the dual variables.1 If xij is a nonbasic variable, cij � ui � vj is interpreted as the
rate at which Z will change as xij is increased.

To lay the groundwork for simplifying this setup, recall what information is needed
by the simplex method. In the initialization, an initial BF solution must be obtained, which
is done artificially by introducing artificial variables as the initial basic variables and set-
ting them equal to si and dj. The optimality test and step 1 of an iteration (selecting an
entering basic variable) require knowing the current row 0, which is obtained by sub-
tracting a certain multiple of another row from the preceding row 0. Step 2 (determining
the leaving basic variable) must identify the basic variable that reaches zero first as the
entering basic variable is increased, which is done by comparing the current coefficients
of the entering basic variable and the corresponding right side. Step 3 must determine the
new BF solution, which is found by subtracting certain multiples of one row from the
other rows in the current simplex tableau.

Now, how does the transportation simplex method obtain the same information in
much simpler ways? This story will unfold fully in the coming pages, but here are some
preliminary answers.

First, no artificial variables are needed, because a simple and convenient procedure
(with several variations) is available for constructing an initial BF solution.

Second, the current row 0 can be obtained without using any other row simply by cal-
culating the current values of ui and vj directly. Since each basic variable must have a co-
efficient of zero in row 0, the current ui and vj are obtained by solving the set of equations

cij � ui � vj � 0 for each i and j such that xij is a basic variable.
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TABLE 8.13 Original simplex tableau before simplex method is applied to
transportation problem

Coefficient of:
Basic Right

Variable Eq. Z … xij
… zi

… zm�j
… side

Z (0) �1 cij M M 0
(1)
�

zi (i) �0 1 1 si

�

zm�j (m � j) �0 1 1 dj

�

(m � n)

1It would be easier to recognize these variables as dual variables by relabeling all these variables as yi and then
changing all the signs in row 0 of Table 8.14 by converting the objective function back to its original mini-
mization form.



(We will illustrate this straightforward procedure later when discussing the optimality test
for the transportation simplex method.) The special structure in Table 8.13 makes this con-
venient way of obtaining row 0 possible by yielding cij � ui � vj as the coefficient of xij

in Table 8.14.
Third, the leaving basic variable can be identified in a simple way without (explic-

itly) using the coefficients of the entering basic variable. The reason is that the special
structure of the problem makes it easy to see how the solution must change as the enter-
ing basic variable is increased. As a result, the new BF solution also can be identified im-
mediately without any algebraic manipulations on the rows of the simplex tableau. (You
will see the details when we describe how the transportation simplex method performs an
iteration.)

The grand conclusion is that almost the entire simplex tableau (and the work of main-
taining it) can be eliminated! Besides the input data (the cij, si, and dj values), the only
information needed by the transportation simplex method is the current BF solution,1 the
current values of ui and vj, and the resulting values of cij � ui � vj for nonbasic variables
xij. When you solve a problem by hand, it is convenient to record this information for
each iteration in a transportation simplex tableau, such as shown in Table 8.15. (Note
carefully that the values of xij and cij � ui � vj are distinguished in these tableaux by cir-
cling the former but not the latter.)

You can gain a fuller appreciation for the great difference in efficiency and conve-
nience between the simplex and the transportation simplex methods by applying both to
the same small problem (see Prob. 8.2-19). However, the difference becomes even more
pronounced for large problems that must be solved on a computer. This pronounced dif-
ference is suggested somewhat by comparing the sizes of the simplex and the transporta-
tion simplex tableaux. Thus, for a transportation problem having m sources and n desti-
nations, the simplex tableau would have m � n � 1 rows and (m � 1)(n � 1) columns
(excluding those to the left of the xij columns), and the transportation simplex tableau
would have m rows and n columns (excluding the two extra informational rows and
columns). Now try plugging in various values for m and n (for example, m � 10 and 
n � 100 would be a rather typical medium-size transportation problem), and note how the
ratio of the number of cells in the simplex tableau to the number in the transportation sim-
plex tableau increases as m and n increase.
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TABLE 8.14 Row 0 of simplex tableau when simplex method is applied to
transportation problem

Coefficient of:
Basic Right

Variable Eq. Z … xij
… zi

… zm�j
… Side

Z (0) �1 cij � ui � vj M � ui M � vj ��
m

i�1
siui � �

n

j�1
djvj

1Since nonbasic variables are automatically zero, the current BF solution is fully identified by recording just the
values of the basic variables. We shall use this convention from now on.



Initialization

Recall that the objective of the initialization is to obtain an initial BF solution. Because
all the functional constraints in the transportation problem are equality constraints, the
simplex method would obtain this solution by introducing artificial variables and using
them as the initial basic variables, as described in Sec. 4.6. The resulting basic solution
actually is feasible only for a revised version of the problem, so a number of iterations
are needed to drive these artificial variables to zero in order to reach the real BF solu-
tions. The transportation simplex method bypasses all this by instead using a simpler pro-
cedure to directly construct a real BF solution on a transportation simplex tableau.

Before outlining this procedure, we need to point out that the number of basic vari-
ables in any basic solution of a transportation problem is one fewer than you might ex-
pect. Ordinarily, there is one basic variable for each functional constraint in a linear pro-
gramming problem. For transportation problems with m sources and n destinations, the
number of functional constraints is m � n. However,

Number of basic variables � m � n � 1.

The reason is that the functional constraints are equality constraints, and this set of
m � n equations has one extra (or redundant) equation that can be deleted without chang-
ing the feasible region; i.e., any one of the constraints is automatically satisfied whenever
the other m � n � 1 constraints are satisfied. (This fact can be verified by showing that
any supply constraint exactly equals the sum of the demand constraints minus the sum of
the other supply constraints, and that any demand equation also can be reproduced by
summing the supply equations and subtracting the other demand equations. See Prob. 
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TABLE 8.15 Format of a transportation simplex tableau

Destination

1 2 ��� n Supply ui

1 ��� s1

2 ��� s2
Source

� ��� ��� ��� ��� �

m ��� sm

Demand d1 d2 ��� dn Z �

vj

Additional information to be added to each cell:
If xij is a If xij is a

basic variable nonbasic variable

c11

c21

cm1

c12

c22

cm2

c1n

c2n

cmn

xij cij � ui � vj

cij cij



8.2-21.) Therefore, any BF solution appears on a transportation simplex tableau with ex-
actly m � n � 1 circled nonnegative allocations, where the sum of the allocations for each
row or column equals its supply or demand.1

The procedure for constructing an initial BF solution selects the m � n � 1 basic vari-
ables one at a time. After each selection, a value that will satisfy one additional constraint
(thereby eliminating that constraint’s row or column from further consideration for pro-
viding allocations) is assigned to that variable. Thus, after m � n � 1 selections, an en-
tire basic solution has been constructed in such a way as to satisfy all the constraints. A
number of different criteria have been proposed for selecting the basic variables. We pre-
sent and illustrate three of these criteria here, after outlining the general procedure.

General Procedure2 for Constructing an Initial BF Solution. To begin, all source
rows and destination columns of the transportation simplex tableau are initially under con-
sideration for providing a basic variable (allocation).

1. From the rows and columns still under consideration, select the next basic variable (al-
location) according to some criterion.

2. Make that allocation large enough to exactly use up the remaining supply in its row or
the remaining demand in its column (whichever is smaller).

3. Eliminate that row or column (whichever had the smaller remaining supply or demand)
from further consideration. (If the row and column have the same remaining supply
and demand, then arbitrarily select the row as the one to be eliminated. The column
will be used later to provide a degenerate basic variable, i.e., a circled allocation of
zero.)

4. If only one row or only one column remains under consideration, then the procedure
is completed by selecting every remaining variable (i.e., those variables that were nei-
ther previously selected to be basic nor eliminated from consideration by eliminating
their row or column) associated with that row or column to be basic with the only fea-
sible allocation. Otherwise, return to step 1.

Alternative Criteria for Step 1

1. Northwest corner rule: Begin by selecting x11 (that is, start in the northwest corner of
the transportation simplex tableau). Thereafter, if xij was the last basic variable selected,
then next select xi,j�1 (that is, move one column to the right) if source i has any sup-
ply remaining. Otherwise, next select xi�1,j (that is, move one row down).

Example. To make this description more concrete, we now illustrate the general pro-
cedure on the Metro Water District problem (see Table 8.12) with the northwest corner
rule being used in step 1. Because m � 4 and n � 5 in this case, the procedure would find
an initial BF solution having m � n � 1 � 8 basic variables.
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1However, note that any feasible solution with m � n � 1 nonzero variables is not necessarily a basic solution
because it might be the weighted average of two or more degenerate BF solutions (i.e., BF solutions having
some basic variables equal to zero). We need not be concerned about mislabeling such solutions as being basic,
however, because the transportation simplex method constructs only legitimate BF solutions.
2In Sec. 4.1 we pointed out that the simplex method is an example of the algorithms (systematic solution pro-
cedures) so prevalent in OR work. Note that this procedure also is an algorithm, where each successive execu-
tion of the (four) steps constitutes an iteration.



As shown in Table 8.16, the first allocation is x11 � 30, which exactly uses up the
demand in column 1 (and eliminates this column from further consideration). This first
iteration leaves a supply of 20 remaining in row 1, so next select x1,1�1 � x12 to be a ba-
sic variable. Because this supply is no larger than the demand of 20 in column 2, all of
it is allocated, x12 � 20, and this row is eliminated from further consideration. (Row 1 is
chosen for elimination rather than column 2 because of the parenthetical instruction in
step 3.) Therefore, select x1�1,2 � x22 next. Because the remaining demand of 0 in col-
umn 2 is less than the supply of 60 in row 2, allocate x22 � 0 and eliminate column 2.

Continuing in this manner, we eventually obtain the entire initial BF solution shown
in Table 8.16, where the circled numbers are the values of the basic variables (x11 � 30,
. . . , x45 � 50) and all the other variables (x13, etc.) are nonbasic variables equal to zero.
Arrows have been added to show the order in which the basic variables (allocations) were
selected. The value of Z for this solution is

Z � 16(30) � 16(20) � ��� � 0(50) � 2,470 � 10M.

2. Vogel’s approximation method: For each row and column remaining under considera-
tion, calculate its difference, which is defined as the arithmetic difference between the
smallest and next-to-the-smallest unit cost cij still remaining in that row or column. (If
two unit costs tie for being the smallest remaining in a row or column, then the dif-
ference is 0.) In that row or column having the largest difference, select the variable
having the smallest remaining unit cost. (Ties for the largest difference, or for the small-
est remaining unit cost, may be broken arbitrarily.)

Example. Now let us apply the general procedure to the Metro Water District problem
by using the criterion for Vogel’s approximation method to select the next basic variable
in step 1. With this criterion, it is more convenient to work with parameter tables (rather
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TABLE 8.16 Initial BF solution from the Northwest Corner Rule

Destination

1 2 3 4 5 Supply ui

1 30 20 50

2 0 60 60

Source

3 10 30 10 50

4(D) 50 50

Demand 30 20 70 30 60 Z � 2,470 � 10M

vj

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

→ →

→

→

→

→ →



than with complete transportation simplex tableaux), beginning with the one shown in
Table 8.12. At each iteration, after the difference for every row and column remaining un-
der consideration is calculated and displayed, the largest difference is circled and the small-
est unit cost in its row or column is enclosed in a box. The resulting selection (and value)
of the variable having this unit cost as the next basic variable is indicated in the lower
right-hand corner of the current table, along with the row or column thereby being elim-
inated from further consideration (see steps 2 and 3 of the general procedure). The table
for the next iteration is exactly the same except for deleting this row or column and sub-
tracting the last allocation from its supply or demand (whichever remains).

Applying this procedure to the Metro Water District problem yields the sequence of
parameter tables shown in Table 8.17, where the resulting initial BF solution consists of
the eight basic variables (allocations) given in the lower right-hand corner of the respec-
tive parameter tables.

This example illustrates two relatively subtle features of the general procedure that
warrant special attention. First, note that the final iteration selects three variables (x31, x32,
and x33) to become basic instead of the single selection made at the other iterations. The
reason is that only one row (row 3) remains under consideration at this point. Therefore,
step 4 of the general procedure says to select every remaining variable associated with
row 3 to be basic.

Second, note that the allocation of x23 � 20 at the next-to-last iteration exhausts both
the remaining supply in its row and the remaining demand in its column. However, rather
than eliminate both the row and column from further consideration, step 3 says to elimi-
nate only the row, saving the column to provide a degenerate basic variable later. Column
3 is, in fact, used for just this purpose at the final iteration when x33 � 0 is selected as
one of the basic variables. For another illustration of this same phenomenon, see Table
8.16 where the allocation of x12 � 20 results in eliminating only row 1, so that column 2
is saved to provide a degenerate basic variable, x22 � 0, at the next iteration.

Although a zero allocation might seem irrelevant, it actually plays an important role.
You will see soon that the transportation simplex method must know all m � n � 1 ba-
sic variables, including those with value zero, in the current BF solution.

3. Russell’s approximation method: For each source row i remaining under considera-
tion, determine its u�i, which is the largest unit cost cij still remaining in that row. For
each destination column j remaining under consideration, determine its v�j, which is
the largest unit cost cij still remaining in that column. For each variable xij not pre-
viously selected in these rows and columns, calculate 	ij � cij � u�i � v�j. Select the
variable having the largest (in absolute terms) negative value of 	ij. (Ties may be bro-
ken arbitrarily.)

Example. Using the criterion for Russell’s approximation method in step 1, we again
apply the general procedure to the Metro Water District problem (see Table 8.12). The re-
sults, including the sequence of basic variables (allocations), are shown in Table 8.18.

At iteration 1, the largest unit cost in row 1 is u�1 � 22, the largest in column 1 is 
v�1 � M, and so forth. Thus,

	11 � c11 � u�1 � v�1 � 16 � 22 � M � �6 � M.
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TABLE 8.17 Initial BF solution from Vogel’s approximation method

Destination
Row

1 2 3 4 5 Supply Difference

1 16 16 13 22 17 50 3
2 14 14 13 19 15 60 1Source 3 19 19 20 23 M 50 0
4(D) M 0 M 0 0 50 0

Demand 30 20 70 30 60 Select x44 � 30
Column difference 2 14 0 19 15 Eliminate column 4

Destination
Row

1 2 3 5 Supply Difference

1 16 16 13 17 50 3
2 14 14 13 15 60 1Source 3 19 19 20 M 50 0
4(D) M 0 M 0 20 0

Demand 30 20 70 60 Select x45 � 20
Column difference 2 14 0 15 Eliminate row 4(D)

Destination
Row

1 2 3 5 Supply Difference

1 16 16 13 17 50 3
Source 2 14 14 13 15 60 1

3 19 19 20 M 50 0

Demand 30 20 70 40 Select x13 � 50
Column difference 2 2 0 2 Eliminate row 1

Destination
Row

1 2 3 5 Supply Difference

2 14 14 13 15 60 1Source 3 19 19 20 M 50 0

Demand 30 20 20 40 Select x25 � 40
Column difference 5 5 7 M � 15 Eliminate column 5

Destination
Row

1 2 3 Supply Difference

2 14 14 13 20 1Source 3 19 19 20 50 0

Demand 30 20 20 Select x23 � 20
Column difference 5 5 7 Eliminate row 2

Destination

1 2 3 Supply

Source 3 19 19 20 50

Demand 30 20 0 Select x31 � 30
Select x32 � 20 Z � 2,460
Select x33 � 0

372



Calculating all the 	ij values for i � 1, 2, 3, 4 and j � 1, 2, 3, 4, 5 shows that 	45 � 0 � 2M
has the largest negative value, so x45 � 50 is selected as the first basic variable (allocation).
This allocation exactly uses up the supply in row 4, so this row is eliminated from further
consideration.

Note that eliminating this row changes v�1 and v�3 for the next iteration. Therefore, the
second iteration requires recalculating the 	ij with j � 1, 3 as well as eliminating i � 4.
The largest negative value now is

	15 � 17 � 22 � M � � 5 � M,

so x15 � 10 becomes the second basic variable (allocation), eliminating column 5 from
further consideration.

The subsequent iterations proceed similarly, but you may want to test your under-
standing by verifying the remaining allocations given in Table 8.18. As with the other pro-
cedures in this (and other) section(s), you should find your OR Courseware useful for do-
ing the calculations involved and illuminating the approach. (See the interactive routine
for finding an initial BF solution.)

Comparison of Alternative Criteria for Step 1. Now let us compare these three
criteria for selecting the next basic variable. The main virtue of the northwest corner rule
is that it is quick and easy. However, because it pays no attention to unit costs cij, usually
the solution obtained will be far from optimal. (Note in Table 8.16 that x35 � 10 even
though c35 � M.) Expending a little more effort to find a good initial BF solution might
greatly reduce the number of iterations then required by the transportation simplex method
to reach an optimal solution (see Probs. 8.2-8 and 8.2-10). Finding such a solution is the
objective of the other two criteria.

Vogel’s approximation method has been a popular criterion for many years,1 partially
because it is relatively easy to implement by hand. Because the difference represents the
minimum extra unit cost incurred by failing to make an allocation to the cell having the
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TABLE 8.18 Initial BF solution from Russell’s approximation method

Largest
Iteration u�1 u�2 u�3 u�4 v�1 v�2 v�3 v�4 v�5 Negative �ij Allocation

1 22 19 M M M 19 M 23 M 	45 � �2M x45 � 50
2 22 19 M 19 19 20 23 M 	15 � �5 � M x15 � 10
3 22 19 23 19 19 20 23 	13 � �29 x13 � 40
4 19 23 19 19 20 23 	23 � �26 x23 � 30
5 19 23 19 19 23 	21 � �24* x21 � 30
6 Irrelevant x31 � 0

x32 � 20
x34 � 30
oiZ � 2,570

*Tie with 	22 � �24 broken arbitrarily.

1N. V. Reinfeld and W. R. Vogel, Mathematical Programming, Prentice-Hall, Englewood Cliffs, NJ, 1958.



smallest unit cost in that row or column, this criterion does take costs into account in an
effective way.

Russell’s approximation method provides another excellent criterion1 that is still quick
to implement on a computer (but not manually). Although is is unclear as to which is more
effective on average, this criterion frequently does obtain a better solution than Vogel’s.
(For the example, Vogel’s approximation method happened to find the optimal solution
with Z � 2,460, whereas Russell’s misses slightly with Z � 2,570.) For a large problem,
it may be worthwhile to apply both criteria and then use the better solution to start the it-
erations of the transportation simplex method.

One distinct advantage of Russell’s approximation method is that it is patterned di-
rectly after step 1 for the transportation simplex method (as you will see soon), which
somewhat simplifies the overall computer code. In particular, the u�i and v�j values have
been defined in such a way that the relative values of the cij � u�i � v�j estimate the rela-
tive values of cij � ui � vj that will be obtained when the transportation simplex method
reaches an optimal solution.

We now shall use the initial BF solution obtained in Table 8.18 by Russell’s ap-
proximation method to illustrate the remainder of the transportation simplex method.
Thus, our initial transportation simplex tableau (before we solve for ui and vj) is shown
in Table 8.19.

The next step is to check whether this initial solution is optimal by applying the op-
timality test.
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1E. J. Russell, “Extension of Dantzig’s Algorithm to Finding an Initial Near-Optimal Basis for the Transporta-
tion Problem,” Operations Research, 17: 187–191, 1969.

TABLE 8.19 Initial transportation simplex tableau (before we obtain cij � ui � vj)
from Russell’s approximation method

Destination

1 2 3 4 5 Supply ui

1 40 10 50

2 30 30 60

Source

3 0 20 30 50

4(D) 50 50

Demand 30 20 70 30 60 Z � 2,570

vj

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

Iteration
0



Optimality Test

Using the notation of Table 8.14, we can reduce the standard optimality test for the sim-
plex method (see Sec. 4.3) to the following for the transportation problem:

Optimality test: A BF solution is optimal if and only if cij � ui � vj � 0 for
every (i, j) such that xij is nonbasic.1

Thus, the only work required by the optimality test is the derivation of the values of ui

and vj for the current BF solution and then the calculation of these cij � ui � vj, as de-
scribed below.

Since cij � ui � vj is required to be zero if xij is a basic variable, ui and vj satisfy the
set of equations

cij � ui � vj for each (i, j) such that xij is basic.

There are m � n � 1 basic variables, and so there are m � n � 1 of these equations.
Since the number of unknowns (the ui and vj) is m � n, one of these variables can be as-
signed a value arbitrarily without violating the equations. The choice of this one vari-
able and its value does not affect the value of any cij � ui � vj, even when xij is nonba-
sic, so the only (minor) difference it makes is in the ease of solving these equations. A
convenient choice for this purpose is to select the ui that has the largest number of allo-
cations in its row (break any tie arbitrarily) and to assign to it the value zero. Because
of the simple structure of these equations, it is then very simple to solve for the remaining
variables algebraically.

To demonstrate, we give each equation that corresponds to a basic variable in our ini-
tial BF solution.

x31: 19 � u3 � v1. Set u3 � 0, so v1 � 19,

x32: 19 � u3 � v2. Set u3 � 0, so v2 � 19,

x34: 23 � u3 � v4. Set u3 � 0, so v4 � 23.

x21: 14 � u2 � v1. Know v1 � 19, so u2 � �5.

x23: 13 � u2 � v3. Know u2 � � 5, so v3 � 18.

x13: 13 � u1 � v3. Know v3 � 18, so u1 � �5.

x15: 17 � u1 � v5. Know u1 � �5, so v5 � 22.

x45: 0 � u4 � v5. Know v5 � 22, so u4 � �22.

Setting u3 � 0 (since row 3 of Table 8.19 has the largest number of allocations—3) and
moving down the equations one at a time immediately give the derivation of values for
the unknowns shown to the right of the equations. (Note that this derivation of the ui and
vj values depends on which xij variables are basic variables in the current BF solution, so
this derivation will need to be repeated each time a new BF solution is obtained.)

8.2 A STREAMLINED SIMPLEX METHOD FOR THE TRANSPORTATION PROBLEM 375

1The one exception is that two or more equivalent degenerate BF solutions (i.e., identical solutions having dif-
ferent degenerate basic variables equal to zero) can be optimal with only some of these basic solutions satisfy-
ing the optimality test. This exception is illustrated later in the example (see the identical solutions in the last
two tableaux of Table 8.23, where only the latter solution satisfies the criterion for optimality).



Once you get the hang of it, you probably will find it even more convenient to solve
these equations without writing them down by working directly on the transportation sim-
plex tableau. Thus, in Table 8.19 you begin by writing in the value u3 � 0 and then pick-
ing out the circled allocations (x31, x32, x34) in that row. For each one you set vj � c3j and
then look for circled allocations (except in row 3) in these columns (x21). Mentally cal-
culate u2 � c21 � v1, pick out x23, set v3 � c23 � u2, and so on until you have filled in all
the values for ui and vj. (Try it.) Then calculate and fill in the value of cij � ui � vj for
each nonbasic variable xij (that is, for each cell without a circled allocation), and you will
have the completed initial transportation simplex tableau shown in Table 8.20.

We are now in a position to apply the optimality test by checking the values of 
cij � ui � vj given in Table 8.20. Because two of these values (c25 � u2 � v5 � �2 and
c44 � u4 � v4 � �1) are negative, we conclude that the current BF solution is not opti-
mal. Therefore, the transportation simplex method must next go to an iteration to find a
better BF solution.

An Iteration

As with the full-fledged simplex method, an iteration for this streamlined version must
determine an entering basic variable (step 1), a leaving basic variable (step 2), and then
identify the resulting new BF solution (step 3).

Step 1. Since cij � ui � vj represents the rate at which the objective function will change
as the nonbasic variable xij is increased, the entering basic variable must have a negative
cij � ui � vj value to decrease the total cost Z. Thus, the candidates in Table 8.20 are x25

and x44. To choose between the candidates, select the one having the larger (in absolute
terms) negative value of cij � ui � vj to be the entering basic variable, which is x25 in 
this case.
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TABLE 8.20 Completed initial transportation simplex tableau

Destination

1 2 3 4 5 Supply ui

1 40 10 50 �5

2 30 30 60 �5

Source

3 0 20 30 50 0

4(D) 50 50 �22

Demand 30 20 70 30 60 Z � 2,570

vj 19 19 18 23 22

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

Iteration
0

�2 �2

0

�4

�1

�2

�1�3

M � 22

M � 4M � 3

�2



Step 2. Increasing the entering basic variable from zero sets off a chain reaction of
compensating changes in other basic variables (allocations), in order to continue satisfy-
ing the supply and demand constraints. The first basic variable to be decreased to zero
then becomes the leaving basic variable.

With x25 as the entering basic variable, the chain reaction in Table 8.20 is the rela-
tively simple one summarized in Table 8.21. (We shall always indicate the entering basic
variable by placing a boxed plus sign in the center of its cell while leaving the corre-
sponding value of cij � ui � vj in the lower right-hand corner of this cell.) Increasing x25

by some amount requires decreasing x15 by the same amount to restore the demand of 60
in column 5. This change then requires increasing x13 by this same amount to restore the
supply of 50 in row 1. This change then requires decreasing x23 by this amount to restore
the demand of 70 in column 3. This decrease in x23 successfully completes the chain re-
action because it also restores the supply of 60 in row 2. (Equivalently, we could have
started the chain reaction by restoring this supply in row 2 with the decrease in x23, and
then the chain reaction would continue with the increase in x13 and decrease in x15.)

The net result is that cells (2, 5) and (1, 3) become recipient cells, each receiving its
additional allocation from one of the donor cells, (1, 5) and (2, 3). (These cells are indi-
cated in Table 8.21 by the plus and minus signs.) Note that cell (1, 5) had to be the donor
cell for column 5 rather than cell (4, 5), because cell (4, 5) would have no recipient cell
in row 4 to continue the chain reaction. [Similarly, if the chain reaction had been started
in row 2 instead, cell (2, 1) could not be the donor cell for this row because the chain re-
action could not then be completed successfully after necessarily choosing cell (3, 1) as
the next recipient cell and either cell (3, 2) or (3, 4) as its donor cell.] Also note that, ex-
cept for the entering basic variable, all recipient cells and donor cells in the chain reac-
tion must correspond to basic variables in the current BF solution.

Each donor cell decreases its allocation by exactly the same amount as the entering
basic variable (and other recipient cells) is increased. Therefore, the donor cell that starts
with the smallest allocation—cell (1, 5) in this case (since 10 
 30 in Table 8.21)—must
reach a zero allocation first as the entering basic variable x25 is increased. Thus, x15 be-
comes the leaving basic variable.
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TABLE 8.21 Part of initial transportation simplex tableau showing the chain
reaction caused by increasing the entering basic variable x25

Destination

3 4 5 Supply

1 … 40 � 10 � 50

Source

2 … 30 � � 60

… … … …

Demand 70 30 60

13

13

22

19

17

15

�2�1

�4



In general, there always is just one chain reaction (in either direction) that can be
completed successfully to maintain feasibility when the entering basic variable is increased
from zero. This chain reaction can be identified by selecting from the cells having a ba-
sic variable: first the donor cell in the column having the entering basic variable, then the
recipient cell in the row having this donor cell, then the donor cell in the column having
this recipient cell, and so on until the chain reaction yields a donor cell in the row hav-
ing the entering basic variable. When a column or row has more than one additional ba-
sic variable cell, it may be necessary to trace them all further to see which one must be
selected to be the donor or recipient cell. (All but this one eventually will reach a dead
end in a row or column having no additional basic variable cell.) After the chain reaction
is identified, the donor cell having the smallest allocation automatically provides the leav-
ing basic variable. (In the case of a tie for the donor cell having the smallest allocation,
any one can be chosen arbitrarily to provide the leaving basic variable.)

Step 3. The new BF solution is identified simply by adding the value of the leaving
basic variable (before any change) to the allocation for each recipient cell and subtract-
ing this same amount from the allocation for each donor cell. In Table 8.21 the value of
the leaving basic variable x15 is 10, so the portion of the transportation simplex tableau
in this table changes as shown in Table 8.22 for the new solution. (Since x15 is nonbasic
in the new solution, its new allocation of zero is no longer shown in this new tableau.)

We can now highlight a useful interpretation of the cij � ui � vj quantities derived
during the optimality test. Because of the shift of 10 allocation units from the donor cells
to the recipient cells (shown in Tables 8.21 and 8.22), the total cost changes by

	Z � 10(15 � 17 � 13 � 13) � 10(�2) � 10(c25 � u2 � v5).

Thus, the effect of increasing the entering basic variable x25 from zero has been a cost
change at the rate of �2 per unit increase in x25. This is precisely what the value of 
c25 � u2 � v5 � �2 in Table 8.20 indicates would happen. In fact, another (but less effi-
cient) way of deriving cij � ui � vj for each nonbasic variable xij is to identify the chain
reaction caused by increasing this variable from 0 to 1 and then to calculate the resulting
cost change. This intuitive interpretation sometimes is useful for checking calculations
during the optimality test.
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TABLE 8.22 Part of second transportation simplex tableau showing the changes in
the BF solution

Destination

3 4 5 Supply

1 … 50 50

Source
2 … 20 10 60

… … … …

Demand 70 30 60

13

13

22

19

17

15



Before completing the solution of the Metro Water District problem, we now sum-
marize the rules for the transportation simplex method.

Summary of the Transportation Simplex Method.

Initialization: Construct an initial BF solution by the procedure outlined earlier in this
section. Go to the optimality test.

Optimality test: Derive ui and vj by selecting the row having the largest number of 
allocations, setting its ui � 0, and then solving the set of equations 
cij � ui � vj for each (i, j) such that xij is basic. If cij � ui � vj � 0 for
every (i, j) such that xij is nonbasic, then the current solution is optimal,
so stop. Otherwise, go to an iteration.

Iteration:
1. Determine the entering basic variable: Select the nonbasic variable xij having the largest

(in absolute terms) negative value of cij � ui � vj.
2. Determine the leaving basic variable: Identify the chain reaction required to retain fea-

sibility when the entering basic variable is increased. From the donor cells, select the
basic variable having the smallest value.

3. Determine the new BF solution: Add the value of the leaving basic variable to the allo-
cation for each recipient cell. Subtract this value from the allocation for each donor cell.

Continuing to apply this procedure to the Metro Water District problem yields 
the complete set of transportation simplex tableaux shown in Table 8.23. Since all the 
cij � ui � vj values are nonnegative in the fourth tableau, the optimality test identifies the
set of allocations in this tableau as being optimal, which concludes the algorithm.

It would be good practice for you to derive the values of ui and vj given in the sec-
ond, third, and fourth tableaux. Try doing this by working directly on the tableaux. Also
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TABLE 8.23 Complete set of transportation simplex tableaux for the Metro Water
District problem

Destination

1 2 3 4 5 Supply ui

1 40 � 10 � 50 �5

2 30 30 � � 60 �5

Source

3 0 20 30 50 0

4(D) 50 50 �22

Demand 30 20 70 30 60 Z � 2,570

vj 19 19 18 23 22

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

Iteration
0

�2 �2

0

�4

�1

�2

�1�3

M � 22

M � 4M � 3

�2



TABLE 8.23 (Continued)

Destination

1 2 3 4 5 Supply ui

1 50 50 �5

2 30 � 20 10 � 60 �5

Source

3 0 � 20 30 � 50 0

4(D) � 50 � 50 �20

Demand 30 20 70 30 60 Z � 2,550

vj 19 19 18 23 20

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

Iteration
1

�2 �2

0

�4 �2

�1

�2

�3�1

M � 20

M � 2M � 1

Destination

1 2 3 4 5 Supply ui

1 50 50 �8

2 20 � 40 � 60 �8

Source

3 30 20 � 0 � 50 0

4(D) 30 � 20 � 50 �23

Demand 30 20 70 30 60 Z � 2,460

vj 19 19 21 23 23

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

Iteration
2

�5 �5

�3�3

�7 �2

�4

�1

�4

M � 23

M � 2M � 4

Destination

1 2 3 4 5 Supply ui

1 50 50 �7

2 20 40 60 �7

Source

3 30 20 0 50 0

4(D) 30 20 50 �22

Demand 30 20 70 30 60 Z � 2,460

vj 19 19 20 22 22

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

Iteration
3

�4 �4

�2�2

�7 �2

�4

�1

�3

M � 22

M � 2M � 3
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check out the chain reactions in the second and third tableaux, which are somewhat more
complicated than the one you have seen in Table 8.21.

Note three special points that are illustrated by this example. First, the initial BF so-
lution is degenerate because the basic variable x31 � 0. However, this degenerate basic
variable causes no complication, because cell (3, 1) becomes a recipient cell in the sec-
ond tableau, which increases x31 to a value greater than zero.

Second, another degenerate basic variable (x34) arises in the third tableau because the
basic variables for two donor cells in the second tableau, cells (2, 1) and (3, 4), tie for
having the smallest value (30). (This tie is broken arbitrarily by selecting x21 as the leav-
ing basic variable; if x34 had been selected instead, then x21 would have become the de-
generate basic variable.) This degenerate basic variable does appear to create a compli-
cation subsequently, because cell (3, 4) becomes a donor cell in the third tableau but has
nothing to donate! Fortunately, such an event actually gives no cause for concern. Since
zero is the amount to be added to or subtracted from the allocations for the recipient and
donor cells, these allocations do not change. However, the degenerate basic variable does
become the leaving basic variable, so it is replaced by the entering basic variable as the
circled allocation of zero in the fourth tableau. This change in the set of basic variables
changes the values of ui and vj. Therefore, if any of the cij � ui � vj had been negative in
the fourth tableau, the algorithm would have gone on to make real changes in the allo-
cations (whenever all donor cells have nondegenerate basic variables).

Third, because none of the cij � ui � vj turned out to be negative in the fourth tableau,
the equivalent set of allocations in the third tableau is optimal also. Thus, the algorithm
executed one more iteration than was necessary. This extra iteration is a flaw that occa-
sionally arises in both the transportation simplex method and the simplex method be-
cause of degeneracy, but it is not sufficiently serious to warrant any adjustments to these
algorithms.

For another (smaller) example of the application of the transportation simplex method,
refer to the demonstration provided for the transportation problem area in your OR Tu-
tor. Also provided in your OR Courseware is an interactive routine for the transportation
simplex method.

Now that you have studied the transportation simplex method, you are in a position
to check for yourself how the algorithm actually provides a proof of the integer solutions
property presented in Sec. 8.1. Problem 8.2-22 helps to guide you through the reasoning.
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The assignment problem is a special type of linear programming problem where as-
signees are being assigned to perform tasks. For example, the assignees might be em-
ployees who need to be given work assignments. Assigning people to jobs is a common
application of the assignment problem. However, the assignees need not be people. They
also could be machines, or vehicles, or plants, or even time slots to be assigned tasks. The
first example below involves machines being assigned to locations, so the tasks in this
case simply involve holding a machine. A subsequent example involves plants being as-
signed products to be produced.

To fit the definition of an assignment problem, these kinds of applications need to be
formulated in a way that satisfies the following assumptions.

8.3 THE ASSIGNMENT PROBLEM



1. The number of assignees and the number of tasks are the same. (This number is de-
noted by n.)

2. Each assignee is to be assigned to exactly one task.
3. Each task is to be performed by exactly one assignee.
4. There is a cost cij associated with assignee i (i � 1, 2, . . . , n) performing task j

( j � 1, 2, . . . , n).
5. The objective is to determine how all n assignments should be made to minimize the

total cost.

Any problem satisfying all these assumptions can be solved extremely efficiently by al-
gorithms designed specifically for assignment problems.

The first three assumptions are fairly restrictive. Many potential applications do not
quite satisfy these assumptions. However, it often is possible to reformulate the problem
to make it fit. For example, dummy assignees or dummy tasks frequently can be used for
this purpose. We illustrate these formulation techniques in the examples.

Prototype Example

The JOB SHOP COMPANY has purchased three new machines of different types. There
are four available locations in the shop where a machine could be installed. Some of these
locations are more desirable than others for particular machines because of their proxim-
ity to work centers that will have a heavy work flow to and from these machines. (There
will be no work flow between the new machines.) Therefore, the objective is to assign the
new machines to the available locations to minimize the total cost of materials handling.
The estimated cost in dollars per hour of materials handling involving each of the ma-
chines is given in Table 8.24 for the respective locations. Location 2 is not considered
suitable for machine 2, so no cost is given for this case.

To formulate this problem as an assignment problem, we must introduce a dummy
machine for the extra location. Also, an extremely large cost M should be attached to the
assignment of machine 2 to location 2 to prevent this assignment in the optimal solution.
The resulting assignment problem cost table is shown in Table 8.25. This cost table con-
tains all the necessary data for solving the problem. The optimal solution is to assign ma-
chine 1 to location 4, machine 2 to location 3, and machine 3 to location 1, for a total
cost of $29 per hour. The dummy machine is assigned to location 2, so this location is
available for some future real machine.

We shall discuss how this solution is obtained after we formulate the mathematical
model for the general assignment problem.
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TABLE 8.24 Materials-handling cost data 
($) for Job Shop Co.

Location

1 2 3 4

1 13 16 12 11
Machine 2 15 — 13 20

3 5 7 10 6



The Assignment Problem Model and Solution Procedures

The mathematical model for the assignment problem uses the following decision variables:

xij � �
for i � 1, 2, . . . , n and j � 1, 2, . . . , n. Thus, each xij is a binary variable (it has value
0 or 1). As discussed at length in the chapter on integer programming (Chap. 12), binary
variables are important in OR for representing yes/no decisions. In this case, the yes/no
decision is: Should assignee i perform task j?

By letting Z denote the total cost, the assignment problem model is

Minimize Z � �
n

i�1
�
n

j�1
cijxij,

subject to

�
n

j�1
xij � 1 for i � 1, 2, . . . , n,

�
n

i�1
xij � 1 for j � 1, 2, . . . , n,

and

xij � 0, for all i and j
(xij binary, for all i and j).

The first set of functional constraints specifies that each assignee is to perform exactly one
task, whereas the second set requires each task to be performed by exactly one assignee.
If we delete the parenthetical restriction that the xij be binary, the model clearly is a spe-
cial type of linear programming problem and so can be readily solved. Fortunately, for rea-
sons about to unfold, we can delete this restriction. (This deletion is the reason that the as-
signment problem appears in this chapter rather than in the integer programming chapter.)

Now compare this model (without the binary restriction) with the transportation prob-
lem model presented in the third subsection of Sec. 8.1 (including Table 8.6). Note how

if assignee i performs task j,
if not,

1
0
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TABLE 8.25 Cost table for the Job Shop Co. 
assignment problem

Task
(Location)

1 2 3 4

1 13 16 12 11
Assignee 2 15 M 13 20
(Machine) 3 5 7 10 6

4(D) 0 0 0 0



similar their structures are. In fact, the assignment problem is just a special type of trans-
portation problem where the sources now are assignees and the destinations now are tasks
and where

Number of sources m � number of destinations n,

Every supply si � 1,

Every demand dj � 1.

Now focus on the integer solutions property in the subsection on the transportation
problem model. Because si and dj are integers (� 1) now, this property implies that every
BF solution (including an optimal one) is an integer solution for an assignment problem.
The functional constraints of the assignment problem model prevent any variable from
being greater than 1, and the nonnegativity constraints prevent values less than 0. There-
fore, by deleting the binary restriction to enable us to solve an assignment problem as a
linear programming problem, the resulting BF solutions obtained (including the final op-
timal solution) automatically will satisfy the binary restriction anyway.

Just as the transportation problem has a network representation (see Fig. 8.3), the as-
signment problem can be depicted in a very similar way, as shown in Fig. 8.5. The first
column now lists the n assignees and the second column the n tasks. Each number in a
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FIGURE 8.5
Network representation of
the assignment problem.



square bracket indicates the number of assignees being provided at that location in the
network, so the values are automatically 1 on the left, whereas the values of �1 on the
right indicate that each task is using up one assignee.

For any particular assignment problem, practitioners normally do not bother writing
out the full mathematical model. It is simpler to formulate the problem by filling out a
cost table (e.g., Table 8.25), including identifying the assignees and tasks, since this table
contains all the essential data in a far more compact form.

Alternative solution procedures are available for solving assignment problems. Prob-
lems that aren’t much larger than the Job Shop Co. example can be solved very quickly
by the general simplex method, so it may be convenient to simply use a basic software
package (such as Excel and its Solver) that only employs this method. If this were done
for the Job Shop Co. problem, it would not have been necessary to add the dummy ma-
chine to Table 8.25 to make it fit the assignment problem model. The constraints on the
number of machines assigned to each location would be expressed instead as

�
3

i�1
xij � 1 for j � 1, 2, 3, 4.

As shown in the Excel file for this chapter, a spreadsheet formulation for this example
would be very similar to the formulation for a transportation problem displayed in Fig.
8.4 except now all the supplies and demands would be 1 and the demand constraints would
be �1 instead of � 1.

However, large assignment problems can be solved much faster by using more spe-
cialized solution procedures, so we recommend using such a procedure instead of the gen-
eral simplex method for big problems.

Because the assignment problem is a special type of transportation problem, one con-
venient and relatively fast way to solve any particular assignment problem is to apply the
transportation simplex method described in Sec. 8.2. This approach requires converting
the cost table to a parameter table for the equivalent transportation problem, as shown in
Table 8.26a.
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TABLE 8.26 Parameter table for the assignment problem formulated as a
transportation problem, illustrated by the Job Shop Co. example

(a) General Case

Cost per Unit
Distributed

Destination

1 2 … n Supply

1 c11 c12
… c1n 1

2 c21 c22
… c2n 1

Source
� … … … … �

m � n cn1 cn2
… cnn 1

Demand 1 1 … 1

(b) Job Shop Co. Example

Cost per Unit
Distributed

Destination (Location)

1 2 3 4 Supply

1 13 16 12 11 1
Source 2 15 M 13 20 1
(Machine) 3 5 7 10 6 1

4(D) 0 0 0 0 1

Demand 1 1 1 1



For example, Table 8.26b shows the parameter table for the Job Shop Co. problem
that is obtained from the cost table of Table 8.25. When the transportation simplex
method is applied to this transportation problem formulation, the resulting optimal so-
lution has basic variables x13 � 0, x14 � 1, x23 � 1, x31 � 1, x41 � 0, x42 � 1, x43 � 0.
(You are asked to verify this solution in Prob. 8.3-7.). The degenerate basic variables
(xij � 0) and the assignment for the dummy machine (x42 � 1) do not mean anything
for the original problem, so the real assignments are machine 1 to location 4, machine
2 to location 3, and machine 3 to location 1.

It is no coincidence that this optimal solution provided by the transportation simplex
method has so many degenerate basic variables. For any assignment problem with n as-
signments to be made, the transportation problem formulation shown in Table 8.26a has
m � n, that is, both the number of sources (m) and the number of destinations (n) in this
formulation equal the number of assignments (n). Transportation problems in general have
m � n � 1 basic variables (allocations), so every BF solution for this particular kind of
transportation problem has 2n � 1 basic variables, but exactly n of these xij equal 1 (cor-
responding to the n assignments being made). Therefore, since all the variables are binary
variables, there always are n � 1 degenerate basic variables (xij � 0). As discussed at the
end of Sec. 8.2, degenerate basic variables do not cause any major complication in the
execution of the algorithm. However, they do frequently cause wasted iterations, where
nothing changes (same allocations) except for the labeling of which allocations of zero
correspond to degenerate basic variables rather than nonbasic variables. These wasted it-
erations are a major drawback to applying the transportation simplex method in this kind
of situation, where there always are so many degenerate basic variables.

Another drawback of the transportation simplex method here is that it is purely a gen-
eral-purpose algorithm for solving all transportation problems. Therefore, it does nothing
to exploit the additional special structure in this special type of transportation problem 
(m � n, every si � 1, and every dj � 1). Although we will not take the space to describe
them,1 specialized algorithms have been developed to fully streamline the procedure for
solving just assignment problems. These algorithms operate directly on the cost table and
do not bother with degenerate basic variables. When a computer code is available for one
of these algorithms, it generally should be used in preference to the transportation sim-
plex method, especially for really big problems. (The supplement to this chapter on the
book’s website, www.mhhe.com/hillier, describes one such algorithm.)

Example—Assigning Products to Plants

The BETTER PRODUCTS COMPANY has decided to initiate the production of four new
products, using three plants that currently have excess production capacity. The products
require a comparable production effort per unit, so the available production capacity of
the plants is measured by the number of units of any product that can be produced per
day, as given in the rightmost column of Table 8.27. The bottom row gives the required
production rate per day to meet projected sales. Each plant can produce any of these prod-
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1For an article comparing various algorithms for the assignment problem, see J. L. Kennington and Z. Wang,
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ucts, except that Plant 2 cannot produce product 3. However, the variable costs per unit
of each product differ from plant to plant, as shown in the main body of Table 8.27.

Management now needs to make a decision on how to split up the production of the
products among plants. Two kinds of options are available.

Option 1: Permit product splitting, where the same product is produced in more than one
plant.

Option 2: Prohibit product splitting.

This second option imposes a constraint that can only increase the cost of an optimal so-
lution based on Table 8.27. On the other hand, the key advantage of Option 2 is that it
eliminates some hidden costs associated with product splitting that are not reflected in
Table 8.27, including extra setup, distribution, and administration costs. Therefore, man-
agement wants both options analyzed before a final decision is made. For Option 2, man-
agement further specifies that every plant should be assigned at least one of the products.

We will formulate and solve the model for each option in turn, where Option 1 leads
to a transportation problem and Option 2 leads to an assignment problem.

Formulation of Option 1. With product splitting permitted, Table 8.27 can be con-
verted directly to a parameter table for a transportation problem. The plants become the
sources, and the products become the destinations (or vice versa), so the supplies are
the available production capacities and the demands are the required production rates.
Only two changes need to be made in Table 8.27. First, because Plant 2 cannot produce
product 3, such an allocation is prevented by assigning to it a huge unit cost of M. Sec-
ond, the total capacity (75 � 75 � 45 � 195) exceeds the total required production 
(20 � 30 � 30 � 40 � 120), so a dummy destination with a demand of 75 is needed to
balance these two quantities. The resulting parameter table is shown in Table 8.28.

The optimal solution for this transportation problem has basic variables (allocations)
x12 � 30, x13 � 30, x15 � 15, x24 � 15, x25 � 60, x31 � 20, and x34 � 25, so

Plant 1 produces all of products 2 and 3.
Plant 2 produces 37.5 percent of product 4.
Plant 3 produces 62.5 percent of product 4 and all of product 1.

The total cost is Z � $3,260 per day.

Formulation of Option 2. Without product splitting, each product must be assigned
to just one plant. Therefore, producing the products can be interpreted as the tasks for an
assignment problem, where the plants are the assignees.
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TABLE 8.27 Data for the Better Products Co. problem

Unit Cost ($) for Product
Capacity

1 2 3 4 Available

1 41 27 28 24 75
Plant 2 40 29 — 23 75

3 37 30 27 21 45

Production rate 20 30 30 40



Management has specified that every plant should be assigned at least one of the prod-
ucts. There are more products (four) than plants (three), so one of the plants will need to
be assigned two products. Plant 3 has only enough excess capacity to produce one prod-
uct (see Table 8.27), so either Plant 1 or Plant 2 will take the extra product.

To make this assignment of an extra product possible within an assignment problem
formulation, Plants 1 and 2 each are split into two assignees, as shown in Table 8.29.

The number of assignees (now five) must equal the number of tasks (now four), so
a dummy task (product) is introduced into Table 8.29 as 5(D). The role of this dummy
task is to provide the fictional second product to either Plant 1 or Plant 2, whichever one
receives only one real product. There is no cost for producing a fictional product so, as
usual, the cost entries for the dummy task are zero. The one exception is the entry of M
in the last row of Table 8.29. The reason for M here is that Plant 3 must be assigned a
real product (a choice of product 1, 2, 3, or 4), so the Big M method is needed to prevent
the assignment of the fictional product to Plant 3 instead. (As in Table 8.28, M also is
used to prevent the infeasible assignment of product 3 to Plant 2.)

The remaining cost entries in Table 8.29 are not the unit costs shown in Table 8.27 or
8.28. Table 8.28 gives a transportation problem formulation (for Option 1), so unit costs are
appropriate there, but now we are formulating an assignment problem (for Option 2). For
an assignment problem, the cost cij is the total cost associated with assignee i performing
task j. For Table 8.29, the total cost (per day) for Plant i to produce product j is the unit cost
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TABLE 8.28 Parameter table for the transportation problem formulation of 
Option 1 for the Better Products Co. problem

Cost per Unit Distributed

Destination (Product)

1 2 3 4 5(D) Supply

1 41 27 28 24 0 75
Source

2 40 29 M 23 0 75
(Plant)

3 37 30 27 21 0 45

Demand 20 30 30 40 75

TABLE 8.29 Cost table for the assignment problem formulation of Option 2 for
the Better Products Co. problem

Task (Product)

1 2 3 4 5(D)

1a 820 810 840 960 0
1b 820 810 840 960 0

Assignee
2a 800 870 M 920 0

(Plant)
2b 800 870 M 920 0
3 740 900 810 840 M



of production times the number of units produced (per day), where these two quantities for
the multiplication are given separately in Table 8.27. For example, consider the assignment
of Plant 1 to product 1. By using the corresponding unit cost in Table 8.28 ($41) and the
corresponding demand (number of units produced per day) in Table 8.28 (20), we obtain

Cost of Plant 1 producing one unit of product 1 � $41

Required (daily) production of product 1 � 20 units

Total (daily) cost of assigning plant 1 to product 1 � 20 ($41)

� $820

so 820 is entered into Table 8.29 for the cost of either Assignee 1a or 1b performing
Task 1.

The optimal solution for this assignment problem is as follows:

Plant 1 produces products 2 and 3.
Plant 2 produces product 1.
Plant 3 produces product 4.

Here the dummy assignment is given to Plant 2. The total cost is Z � $3,290 per day.
As usual, one way to obtain this optimal solution is to convert the cost table of Table

8.29 to a parameter table for the equivalent transportation problem (see Table 8.26) and then
apply the transportation simplex method. Because of the identical rows in Table 8.29, this
approach can be streamlined by combining the five assignees into three sources with supplies
2, 2, and 1, respectively. (See Prob. 8.3-6.) This streamlining also decreases by two the num-
ber of degenerate basic variables in every BF solution. Therefore, even though this stream-
lined formulation no longer fits the format presented in Table 8.26a for an assignment prob-
lem, it is a more efficient formulation for applying the transportation simplex method.

Figure 8.6 shows how Excel and its Solver can be used to obtain this optimal solu-
tion, which is displayed in the changing cells (D24:G26) of the spreadsheet. Since the
general simplex method is being used, there is no need to fit this formulation into the for-
mat for either the assignment problem or transportation problem model. Therefore, the
formulation does not bother to split Plants 1 and 2 into two assignees each, or to add a
dummy task. Instead, Plants 1 and 2 are given a supply of 2 each, and then � signs are
entered into cells I24 and I25 as well as into the corresponding constraints in the Solver
dialogue box. There also is no need to include the Big M method to prohibit assigning
product 3 to Plant 2 in cell F25, since this dialogue box includes the constraint that 
F25 � 0. The target cell (H27) shows the total cost of $3,290 per day.

Now look back and compare this solution to the one obtained for Option 1, which
included the splitting of product 4 between Plants 2 and 3. The allocations are somewhat
different for the two solutions, but the total daily costs are virtually the same ($3,260 for
Option 1 versus $3,290 for Option 2). However, there are hidden costs associated with
product splitting (including the cost of extra setup, distribution, and administration) that
are not included in the objective function for Option 1. As with any application of OR,
the mathematical model used can provide only an approximate representation of the total
problem, so management needs to consider factors that cannot be incorporated into the
model before it makes a final decision. In this case, after evaluating the disadvantages of
product splitting, management decided to adopt the Option 2 solution.
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FIGURE 8.6
A spreadsheet formulation of
Option 2 for the Better
Products Co. problem as a
variant of an assignment
problem, where rows 12 to
18 show the cost table and
the changing cells (D24:G26)
display the optimal
production plan obtained by
the Solver.
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The linear programming model encompasses a wide variety of specific types of problems.
The general simplex method is a powerful algorithm that can solve surprisingly large ver-
sions of any of these problems. However, some of these problem types have such simple
formulations that they can be solved much more efficiently by streamlined algorithms that
exploit their special structure. These streamlined algorithms can cut down tremendously
on the computer time required for large problems, and they sometimes make it computa-
tionally feasible to solve huge problems. This is particularly true for the two types of lin-
ear programming problems studied in this chapter, namely, the transportation problem and
the assignment problem. Both types have a number of common applications, so it is im-
portant to recognize them when they arise and to use the best available algorithms. These
special-purpose algorithms are included in some linear programming software packages.

We shall reexamine the special structure of the transportation and assignment problems
in Sec. 9.6. There we shall see that these problems are special cases of an important class
of linear programming problems known as the minimum cost flow problem. This problem
has the interpretation of minimizing the cost for the flow of goods through a network. A
streamlined version of the simplex method called the network simplex method (described in
Sec. 9.7) is widely used for solving this type of problem, including its various special cases.

A supplementary chapter (Chap. 23) on the book’s website, www.mhhe.com/hillier,
describes various additional special types of linear programming problems. One of these,
called the transshipment problem, is a generalization of the transportation problem which
allows shipments from any source to any destination to first go through intermediate trans-
fer points. Since the transshipment problem also is a special case of the minimum cost
flow problem, we will describe it further in Sec. 9.6.

Much research continues to be devoted to developing streamlined algorithms for spe-
cial types of linear programming problems, including some not discussed here. At the
same time, there is widespread interest in applying linear programming to optimize the
operation of complicated large-scale systems. The resulting formulations usually have spe-
cial structures that can be exploited. Being able to recognize and exploit special structures
is an important factor in the successful application of linear programming.

8.4 CONCLUSIONS
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A Demonstration Example in OR Tutor:

The Transportation Problem

Interactive Routines:

Enter or Revise a Transportation Problem
Find Initial Basic Feasible Solution—for Interactive Method
Solve Interactively by the Transportation Simplex Method

An Excel Add-in:

Premium Solver

“Ch. 8—Transp. & Assignment” Files for Solving the Examples:

Excel File
LINGO/LINDO File
MPL/CPLEX File

Supplement to this Chapter:

An Algorithm for the Assignment Problem (appears on the book’s website, www.mhhe.com/hillier)

See Appendix 1 for documentation of the software.

LEARNING AIDS FOR THIS CHAPTER IN YOUR OR COURSEWARE

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example listed above may be helpful.
I: We suggest that you use the corresponding interactive routines

listed above (the printout records your work).
C: Use the computer with any of the software options available to

you (or as instructed by your instructor) to solve the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

8.1-1. The Childfair Company has three plants producing child
push chairs that are to be shipped to four distribution centers. Plants
1, 2, and 3 produce 12, 17, and 11 shipments per month, respec-
tively. Each distribution center needs to receive 10 shipments per
month. The distance from each plant to the respective distributing
centers is given to the right:

PROBLEMS

The freight cost for each shipment is $100 plus 50 cents per mile.
How much should be shipped from each plant to each of the

distribution centers to minimize the total shipping cost?
(a) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
(b) Draw the network representation of this problem.
C (c) Obtain an optimal solution.

Distance

Distribution Center

1 2 3 4

1 800 miles 1,300 miles 400 miles 700 miles
Plant 2 1,100 miles 1,400 miles 600 miles 1,000 miles

3 600 miles 1,200 miles 800 miles 900 miles



ducing barley is $8.10, $9.00, and $8.40 in England, France, and
Spain, respectively. The labor cost per hour in producing oats is
$6.90, $7.50, and $6.30 in England, France, and Spain, respec-
tively. The problem is to allocate land use in each country so as to
meet the world food requirement and minimize the total labor cost.
(a) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
(b) Draw the network representation of this problem.
C (c) Obtain an optimal solution.

8.1-5. Reconsider the P & T Co. problem presented in Sec. 8.1.
You now learn that one or more of the shipping costs per truckload
given in Table 8.2 may change slightly before shipments begin.

Use the Excel Solver to generate the Sensitivity Report for
this problem. Use this report to determine the allowable range to
stay optimal for each of the unit costs. What do these allowable
ranges tell P & T management?

8.1-6. The Onenote Co. produces a single product at three plants
for four customers. The three plants will produce 60, 80, and 40
units, respectively, during the next time period. The firm has made
a commitment to sell 40 units to customer 1, 60 units to customer
2, and at least 20 units to customer 3. Both customers 3 and 4 also
want to buy as many of the remaining units as possible. The net
profit associated with shipping a unit from plant i for sale to cus-
tomer j is given by the following table:

8.1-2.* Tom would like 3 pints of home brew today and an addi-
tional 4 pints of home brew tomorrow. Dick is willing to sell a
maximum of 5 pints total at a price of $3.00 per pint today and
$2.70 per pint tomorrow. Harry is willing to sell a maximum of 4
pints total at a price of $2.90 per pint today and $2.80 per pint 
tomorrow.

Tom wishes to know what his purchases should be to mini-
mize his cost while satisfying his thirst requirements.
(a) Formulate a linear programming model for this problem, and

construct the initial simplex tableau (see Chaps. 3 and 4).
(b) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
C (c) Obtain an optimal solution.

8.1-3. The Versatech Corporation has decided to produce three new
products. Five branch plants now have excess product capacity. The
unit manufacturing cost of the first product would be $31, $29,
$32, $28, and $29 in Plants 1, 2, 3, 4, and 5, respectively. The unit
manufacturing cost of the second product would be $45, $41, $46,
$42, and $43 in Plants 1, 2, 3, 4, and 5, respectively. The unit man-
ufacturing cost of the third product would be $38, $35, and $40 in
Plants 1, 2, and 3, respectively, whereas Plants 4 and 5 do not have
the capability for producing this product. Sales forecasts indicate
that 600, 1,000, and 800 units of products 1, 2, and 3, respectively,
should be produced per day. Plants 1, 2, 3, 4, and 5 have the ca-
pacity to produce 400, 600, 400, 600, and 1,000 units daily, re-
spectively, regardless of the product or combination of products in-
volved. Assume that any plant having the capability and capacity
to produce them can produce any combination of the products in
any quantity.

Management wishes to know how to allocate the new prod-
ucts to the plants to minimize total manufacturing cost.
(a) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
C (b) Obtain an optimal solution.

8.1-4. Suppose that England, France, and Spain produce all the
wheat, barley, and oats in the world. The world demand for wheat
requires 125 million acres of land devoted to wheat production.
Similarly, 60 million acres of land are required for barley and 75
million acres of land for oats. The total amount of land available
for these purposes in England, France, and Spain is 70 million
acres, 110 million acres, and 80 million acres, respectively. The
number of hours of labor needed in England, France, and Spain to
produce an acre of wheat is 18, 13, and 16, respectively. The num-
ber of hours of labor needed in England, France, and Spain to pro-
duce an acre of barley is 15, 12, and 12, respectively. The number
of hours of labor needed in England, France, and Spain to produce
an acre of oats is 12, 10, and 16, respectively. The labor cost per
hour in producing wheat is $9.00, $7.20, and $9.90 in England,
France, and Spain, respectively. The labor cost per hour in pro-
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Customer

1 2 3 4

1 $800 $700 $500 $200
Plant 2 $500 $200 $100 $300

3 $600 $400 $300 $500

Management wishes to know how many units to sell to customers
3 and 4 and how many units to ship from each of the plants to each
of the customers to maximize profit.
(a) Formulate this problem as a transportation problem where the

objective function is to be maximized by constructing the ap-
propriate parameter table that gives unit profits.

(b) Now formulate this transportation problem with the usual ob-
jective of minimizing total cost by converting the parameter
table from part (a) into one that gives unit costs instead of unit
profits.

(c) Display the formulation in part (a) on an Excel spreadsheet.
C (d) Use this information and the Excel Solver to obtain an op-

timal solution.
C (e) Repeat parts (c) and (d ) for the formulation in part (b). Com-

pare the optimal solutions for the two formulations.



gets on hand currently, but the company does not want to retain
any widgets in inventory after the 3 weeks.

Management wants to know how many units should be pro-
duced in each week to minimize the total cost of meeting the de-
livery schedule.
(a) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
C (b) Obtain an optimal solution.

8.1-10. The MJK Manufacturing Company must produce two
products in sufficient quantity to meet contracted sales in each of
the next three months. The two products share the same produc-
tion facilities, and each unit of both products requires the same
amount of production capacity. The available production and stor-
age facilities are changing month by month, so the production ca-
pacities, unit production costs, and unit storage costs vary by
month. Therefore, it may be worthwhile to overproduce one or both
products in some months and store them until needed.

For each of the three months, the second column of the fol-
lowing table gives the maximum number of units of the two prod-
ucts combined that can be produced on Regular Time (RT) and on
Overtime (O). For each of the two products, the subsequent
columns give (1) the number of units needed for the contracted
sales, (2) the cost (in thousands of dollars) per unit produced on
Regular Time, (3) the cost (in thousands of dollars) per unit pro-
duced on Overtime, and (4) the cost (in thousands of dollars) of
storing each extra unit that is held over into the next month. In
each case, the numbers for the two products are separated by a
slash /, with the number for Product 1 on the left and the number
for Product 2 on the right.

8.1-7. The Move-It Company has two plants producing forklift
trucks that then are shipped to three distribution centers. The pro-
duction costs are the same at the two plants, and the cost of ship-
ping for each truck is shown for each combination of plant and dis-
tribution center:

394 8 THE TRANSPORTATION AND ASSIGNMENT PROBLEMS

A total of 60 forklift trucks are produced and shipped per week.
Each plant can produce and ship any amount up to a maximum of
50 trucks per week, so there is considerable flexibility on how to
divide the total production between the two plants so as to reduce
shipping costs. However, each distribution center must receive ex-
actly 20 trucks per week.

Management’s objective is to determine how many forklift
trucks should be produced at each plant, and then what the over-
all shipping pattern should be to minimize total shipping cost.
(a) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
(b) Display the transportation problem on an Excel spreadsheet.
C (c) Use the Excel Solver to obtain an optimal solution.

8.1-8. Redo Prob. 8.1-7 when any distribution center may receive
any quantity between 10 and 30 forklift trucks per week in order
to further reduce total shipping cost, provided only that the total
shipped to all three distribution centers must still equal 60 trucks
per week.

8.1-9. The Build-Em-Fast Company has agreed to supply its best
customer with three widgets during each of the next 3 weeks, even
though producing them will require some overtime work. The rel-
evant production data are as follows:

Distribution Center

1 2 3

A $800 $700 $400
Plant

B $600 $800 $500

Maximum Maximum Production Cost
Production, Production, per Unit,

Week Regular Time Overtime Regular Time

1 2 2 $300
2 3 2 $500
3 1 2 $400

Product 1/Product 2

Maximum Unit Cost
Combined of Production Unit Cost
Production ($1,000’s) of Storage

Month RT OT Sales RT OT ($1,000’s)

1 10 3 5/3 15/16 18/20 1/2
2 8 2 3/5 17/15 20/18 2/1
3 10 3 4/4 19/17 22/22

The production manager wants a schedule developed for the
number of units of each of the two products to be produced on
Regular Time and (if Regular Time production capacity is used up)
on Overtime in each of the three months. The objective is to min-
imize the total of the production and storage costs while meeting
the contracted sales for each month. There is no initial inventory,
and no final inventory is desired after the three months.

The cost per unit produced with overtime for each week is $100
more than for regular time. The cost of storage is $50 per unit for
each week it is stored. There is already an inventory of two wid-



Use each of the following criteria to obtain an initial BF solution.
Compare the values of the objective function for these solutions.
(a) Northwest corner rule.
(b) Vogel’s approximation method.
(c) Russell’s approximation method.

8.2-4. Consider the transportation problem having the following
parameter table:

(a) Formulate this problem as a transportation problem by con-
structing the appropriate parameter table.

C (b) Obtain an optimal solution.

8.2-1. Consider the transportation problem having the following
parameter table:
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(a) Use Vogel’s approximation method manually (don’t use the in-
teractive routine in your OR Courseware) to select the first ba-
sic variable for an initial BF solution.

(b) Use Russell’s approximation method manually to select the
first basic variable for an initial BF solution.

(c) Use the northwest corner rule manually to construct a com-
plete initial BF solution.

D,I 8.2-2.* Consider the transportation problem having the fol-
lowing parameter table:

Use each of the following criteria to obtain an initial BF solution.
Compare the values of the objective function for these solutions.
(a) Northwest corner rule.
(b) Vogel’s approximation method.
(c) Russell’s approximation method.

D,I 8.2-3. Consider the transportation problem having the follow-
ing parameter table:

Destination

1 2 3 Supply

1 6 3 5 4
Source 2 4 M 7 3

3 3 4 3 2

Demand 4 2 3

Destination

1 2 3 4 5 Supply

1 2 4 6 5 7 4
2 7 6 3 M 4 6

Source
3 8 7 5 2 5 6
4 0 0 0 0 0 4

Demand 4 4 2 5 5

Destination

1 2 3 4 5 6 Supply

1 13 10 22 29 18 0 5
2 14 13 16 21 M 0 6

Source 3 3 0 M 11 6 0 7
4 18 9 19 23 11 0 4
5 30 24 34 36 28 0 3

Demand 3 5 4 5 6 2

Destination

1 2 3 4 Supply

1 7 4 1 4 1
2 4 6 7 2 1

Source
3 8 5 4 6 1
4 6 7 6 3 1

Demand 1 1 1 1

(a) Notice that this problem has three special characteristics:
(1) number of sources � number of destinations, (2) each sup-
ply � 1, and (3) each demand � 1. Transportation problems
with these characteristics are of a special type called the as-
signment problem (as described in Sec. 8.3). Use the integer
solutions property to explain why this type of transportation
problem can be interpreted as assigning sources to destinations
as a one-to-one basis.

(b) How many basic variables are there in every BF solution? How
many of these are degenerate basic variables (� 0)?

D,I (c) Use the northwest corner rule to obtain an initial BF 
solution.

I (d) Construct an initial BF solution by applying the general pro-
cedure for the initialization step of the transportation sim-
plex method. However, rather than using one of the three cri-
teria for step 1 presented in Sec. 8.2, use the minimum cost
criterion given next for selecting the next basic variable.
(With the corresponding interactive routine in your OR
Courseware, choose the Northwest Corner Rule, since this
choice actually allows the use of any criterion.)



Use each of the following criteria to obtain an initial BF solution.
In each case, interactively apply the transportation simplex method,
starting with this initial solution, to obtain an optimal solution.
Compare the resulting number of iterations for the transportation
simplex method.
(a) Northwest corner rule.
(b) Vogel’s approximation method.
(c) Russell’s approximation method.

D,I 8.2-9. The Cost-Less Corp. supplies its four retail outlets from
its four plants. The shipping cost per shipment from each plant to
each retail outlet is given below.

Minimum cost criterion: From among the rows
and columns still under consideration, select the
variable xij having the smallest unit cost cij to be the
next basic variable. (Ties may be broken arbitrarily.)

D,I (e) Starting with the initial BF solution from part (c), interac-
tively apply the transportation simplex method to obtain an
optimal solution.

8.2-5. Consider the prototype example for the transportation prob-
lem (the P & T Co. problem) presented at the beginning of Sec.
8.1. Verify that the solution given there actually is optimal by ap-
plying just the optimality test portion of the transportation simplex
method to this solution.

8.2-6. Consider the transportation problem formulation of Option
1 for the Better Products Co. problem presented in Table 8.28. Ver-
ify that the optimal solution given in Sec. 8.3 actually is optimal
by applying just the optimality test portion of the transportation
simplex method to this solution.

8.2-7. Consider the transportation problem having the following
parameter table:
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Destination

1 2 3 4 5 Supply

1 8 6 3 7 5 20
2 5 M 8 4 7 30

Source
3 6 3 9 6 8 30
4(D) 0 0 0 0 0 20

Demand 25 25 20 10 20

After several iterations of the transportation simplex method, a BF
solution is obtained that has the following basic variables: x13 �
20, x21 � 25, x24 � 5, x32 � 25, x34 � 5, x42 � 0, x43 � 0, x45 �
20. Continue the transportation simplex method for two more iter-
ations by hand. After two iterations, state whether the solution is
optimal and, if so, why.

D,I 8.2-8.* Consider the transportation problem having the fol-
lowing parameter table:

Destination

1 2 3 4 Supply

1 3 7 6 4 5
Source 2 2 4 3 2 2

3 4 3 8 5 3

Demand 3 3 2 2

Unit Shipping Cost
Retail Outlet

1 2 3 4

1 $500 $600 $400 $200
2 $200 $900 $100 $300

Plant
3 $300 $400 $200 $100
4 $200 $100 $300 $200

Plants 1, 2, 3, and 4 make 10, 20, 20, and 10 shipments per month,
respectively. Retail outlets 1, 2, 3, and 4 need to receive 20, 10,
10, and 20 shipments per month, respectively.

The distribution manager, Randy Smith, now wants to deter-
mine the best plan for how many shipments to send from each plant
to the respective retail outlets each month. Randy’s objective is to
minimize the total shipping cost.
(a) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
(b) Use the northwest corner rule to construct an initial BF solution.
(c) Starting with the initial basic solution from part (b), interac-

tively apply the transportation simplex method to obtain an op-
timal solution.

8.2-10. The Energetic Company needs to make plans for the en-
ergy systems for a new building.

The energy needs in the building fall into three categories:
(1) electricity, (2) heating water, and (3) heating space in the build-
ing. The daily requirements for these three categories (all measured
in the same units) are

Electricity 20 units
Water heating 10 units
Space heating 30 units.

The three possible sources of energy to meet these needs are elec-
tricity, natural gas, and a solar heating unit that can be installed on
the roof. The size of the roof limits the largest possible solar heater



D,I 8.2-15. Reconsider Prob. 8.1-4. Starting with the northwest
corner rule, interactively apply the transportation simplex method
to obtain an optimal solution for this problem.

D,I 8.2-16. Reconsider Prob. 8.1-6. Starting with Russell’s ap-
proximation method, interactively apply the transportation simplex
method to obtain an optimal solution for this problem.

8.2-17. Reconsider the transportation problem formulated in Prob.
8.1-7a.
D,I (a) Use each of the three criteria presented in Sec. 8.2 to ob-

tain an initial BF solution, and time how long you spend
for each one. Compare both these times and the values of
the objective function for these solutions.

C (b) Obtain an optimal solution for this problem. For each of the
three initial BF solutions obtained in part (a), calculate the
percentage by which its objective function value exceeds the
optimal one.

D,I (c) For each of the three initial BF solutions obtained in part
(a), interactively apply the transportation simplex method
to obtain (and verify) an optimal solution. Time how long
you spend in each of the three cases. Compare both these
times and the number of iterations needed to reach an op-
timal solution.

8.2-18. Follow the instructions of Prob. 8.2-17 for the transporta-
tion problem formulated in Prob. 8.1-8a.

8.2-19. Consider the transportation problem having the following
parameter table:

to 30 units, but there is no limit to the electricity and natural gas
available. Electricity needs can be met only by purchasing elec-
tricity (at a cost of $50 per unit). Both other energy needs can be
met by any source or combination of sources. The unit costs are
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Electricity Natural Gas Solar Heater

Water heating $90 $60 $30
Space heating $80 $50 $40

The objective is to minimize the total cost of meeting the energy
needs.
(a) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
D,I (b) Use the northwest corner rule to obtain an initial BF solu-

tion for this problem.
D,I (c) Starting with the initial BF solution from part (b), interac-

tively apply the transportation simplex method to obtain an
optimal solution.

D,I (d) Use Vogel’s approximation method to obtain an initial BF
solution for this problem.

D,I (e) Starting with the initial BF solution from part (d ), interac-
tively apply the transportation simplex method to obtain an
optimal solution.

I (f) Use Russell’s approximation method to obtain an initial BF
solution for this problem.

D,I (g) Starting with the initial BF solution obtained from part ( f ),
interactively apply the transportation simplex method to
obtain an optimal solution. Compare the number of itera-
tions required by the transportation simplex method here
and in parts (c) and (e).

D,I 8.2-11.* Interactively apply the transportation simplex method
to solve the Northern Airplane Co. production scheduling problem
as it is formulated in Table 8.9.

D,I 8.2-12.* Reconsider Prob. 8.1-1.
(a) Use the northwest corner rule to obtain an initial BF solution.
(b) Starting with the initial BF solution from part (a), interactively

apply the transportation simplex method to obtain an optimal
solution.

D,I 8.2-13. Reconsider Prob. 8.1-2b. Starting with the northwest
corner rule, interactively apply the transportation simplex method
to obtain an optimal solution for this problem.

D,I 8.2-14. Reconsider Prob. 8.1-3. Starting with the northwest
corner rule, interactively apply the transportation simplex method
to obtain an optimal solution for this problem.

(a) Using your choice of a criterion from Sec. 8.2 for obtaining
the initial BF solution, solve this problem manually by the
transportation simplex method. (Keep track of your time.)

(b) Reformulate this problem as a general linear programming
problem, and then solve it manually by the simplex method.
Keep track of how long this takes you, and contrast it with the
computation time for part (a).

8.2-20. Consider the Northern Airplane Co. production schedul-
ing problem presented in Sec. 8.1 (see Table 8.7). Formulate this
problem as a general linear programming problem by letting the

Destination

1 2 Supply

1 8 5 4
Source

2 6 4 2

Demand 3 3



of this table (and the corresponding transportation simplex
tableau) used by the transportation simplex method with the
size of the simplex tableaux from part (a) that would be needed
by the simplex method.

D (c) Susan Meyer notices that she can supply sites 1 and 2 com-
pletely from the north pit and site 3 completely from the
south pit. Use the optimality test (but no iterations) of the
transportation simplex method to check whether the corre-
sponding BF solution is optimal.

D,I (d) Starting with the northwest corner rule, interactively apply
the transportation simplex method to solve the problem as
formulated in part (b).

(e) As usual, let cij denote the unit cost associated with source i
and destination j as given in the parameter table constructed
in part (b). For the optimal solution obtained in part (d ), sup-
pose that the value of cij for each basic variable xij is fixed at
the value given in the parameter table, but that the value of cij

for each nonbasic variable xij possibly can be altered through
bargaining because the site manager wants to pick up the busi-
ness. Use sensitivity analysis to determine the allowable range
to stay optimal for each of the latter cij, and explain how this
information is useful to the contractor.

C 8.2-24. Consider the transportation problem formulation and so-
lution of the Metro Water District problem presented in Secs. 8.1
and 8.2 (see Tables 8.12 and 8.23).

The numbers given in the parameter table are only estimates
that may be somewhat inaccurate, so management now wishes to
do some what-if analysis. Use the Excel Solver to generate the Sen-
sitivity Report. Then use this report to address the following ques-
tions. (In each case, assume that the indicated change is the only
change in the model.)
(a) Would the optimal solution in Table 8.23 remain optimal if the

cost per acre foot of shipping Calorie River water to San Go
were actually $200 rather than $230?

(b) Would this solution remain optimal if the cost per acre foot of
shipping Sacron River water to Los Devils were actually $160
rather than $130?

(c) Must this solution remain optimal if the costs considered in
parts (a) and (b) were simultaneously changed from their orig-
inal values to $215 and $145, respectively?

(d) Suppose that the supply from the Sacron River and the demand
at Hollyglass are decreased simultaneously by the same
amount. Must the shadow prices for evaluating these changes
remain valid if the decrease were 0.5 million acre feet?

8.2-25. Without generating the Sensitivity Report, adapt the sensi-
tivity analysis procedure presented in Secs. 6.6 and 6.7 to conduct
the sensitivity analysis specified in the four parts of Prob. 8.2-24.

decision variables be xj � number of jet engines to be produced in
month j ( j � 1, 2, 3, 4). Construct the initial simplex tableau for
this formulation, and then contrast the size (number of rows and
columns) of this tableau and the corresponding tableaux used to
solve the transportation problem formulation of the problem (see
Table 8.9).

8.2-21. Consider the general linear programming formulation of
the transportation problem (see Table 8.6). Verify the claim in Sec.
8.2 that the set of (m � n) functional constraint equations (m sup-
ply constraints and n demand constraints) has one redundant equa-
tion; i.e., any one equation can be reproduced from a linear com-
bination of the other (m � n � 1) equations.

8.2-22. When you deal with a transportation problem where the
supply and demand quantities have integer values, explain why the
steps of the transportation simplex method guarantee that all the
basic variables (allocations) in the BF solutions obtained must have
integer values. Begin with why this occurs with the initialization
step when the general procedure for constructing an initial BF so-
lution is used (regardless of the criterion for selecting the next ba-
sic variable). Then given a current BF solution that is integer, next
explain why Step 3 of an iteration must obtain a new BF solution
that also is integer. Finally, explain how the initialization step can
be used to construct any initial BF solution, so the transportation
simplex method actually gives a proof of the integer solutions prop-
erty presented in Sec. 8.1.

8.2-23. A contractor, Susan Meyer, has to haul gravel to three
building sites. She can purchase as much as 18 tons at a gravel pit
in the north of the city and 14 tons at one in the south. She needs
10, 5, and 10 tons at sites 1, 2, and 3, respectively. The purchase
price per ton at each gravel pit and the hauling cost per ton are
given in the table below.
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Hauling Cost per Ton at Site

Pit 1 2 3 Price per Ton

North $30 $60 $50 $100
South $60 $30 $40 $120

Susan wishes to determine how much to haul from each pit to each
site to minimize the total cost for purchasing and hauling gravel.
(a) Formulate a linear programming model for this problem. Us-

ing the Big M method, construct the initial simplex tableau
ready to apply the simplex method (but do not actually solve).

(b) Now formulate this problem as a transportation problem by
constructing the appropriate parameter table. Compare the size



8.3-3. Reconsider Prob. 8.1-3. Suppose that the sales forecasts
have been revised downward to 240, 400, and 320 units per day of
products 1, 2, and 3, respectively, and that each plant now has the
capacity to produce all that is required of any one product. There-
fore, management has decided that each new product should be as-
signed to only one plant and that no plant should be assigned more
than one product (so that three plants are each to be assigned one
product, and two plants are to be assigned none). The objective is
to make these assignments so as to minimize the total cost of pro-
ducing these amounts of the three products.
(a) Formulate this problem as an assignment problem by con-

structing the appropriate cost table.
C (b) Obtain an optimal solution.
(c) Reformulate this assignment problem as an equivalent trans-

portation problem by constructing the appropriate parameter
table.

D,I (d) Starting with Vogel’s approximation method, interactively
apply the transportation simplex method to solve the prob-
lem as formulated in part (c).

8.3-4.* The coach of an age group swim team needs to assign
swimmers to a 200-yard medley relay team to send to the Junior
Olympics. Since most of his best swimmers are very fast in more
than one stroke, it is not clear which swimmer should be assigned
to each of the four strokes. The five fastest swimmers and the best
times (in seconds) they have achieved in each of the strokes (for
50 yards) are

8.3-1. Consider the assignment problem having the following cost
table.
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(a) Draw the network representation of this assignment problem.
(b) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
(c) Display this formulation on an Excel spreadsheet.
C (d) Use the Excel Solver to obtain an optimal solution.

8.3-2. Four cargo ships will be used for shipping goods from one
port to four other ports (labeled 1, 2, 3, 4). Any ship can be used
for making any one of these four trips. However, because of dif-
ferences in the ships and cargoes, the total cost of loading, trans-
porting, and unloading the goods for the different ship-port com-
binations varies considerably, as shown in the following table:

Task

1 2 3 4

A 8 6 5 7
B 6 5 3 4

Assignee
C 7 8 4 6
D 6 7 5 6

Port

1 2 3 4

1 $500 $400 $600 $700
2 $600 $600 $700 $500

Ship
3 $700 $500 $700 $600
4 $500 $400 $600 $600

The objective is to assign the four ships to four different ports in
such a way as to minimize the total cost for all four shipments.
(a) Describe how this problem fits into the general format for the

assignment problem.
C (b) Obtain an optimal solution.
(c) Reformulate this problem as an equivalent transportation prob-

lem by constructing the appropriate parameter table.
D,I (d) Use the northwest corner rule to obtain an initial BF solu-

tion for the problem as formulated in part (c).
D,I (e) Starting with the initial BF solution from part (d ), interac-

tively apply the transportation simplex method to obtain an
optimal set of assignments for the original problem.

D,I (f) Are there other optimal solutions in addition to the one ob-
tained in part (e)? If so, use the transportation simplex
method to identify them.

Stroke Carl Chris David Tony Ken

Backstroke 37.7 32.9 33.8 37.0 35.4
Breaststroke 43.4 33.1 42.2 34.7 41.8
Butterfly 33.3 28.5 38.9 30.4 33.6
Freestyle 29.2 26.4 29.6 28.5 31.1

The coach wishes to determine how to assign four swimmers to
the four different strokes to minimize the sum of the correspond-
ing best times.
(a) Formulate this problem as an assignment problem.
C (b) Obtain an optimal solution.

8.3-5. Reconsider Prob. 8.2-23. Now suppose that trucks (and their
drivers) need to be hired to do the hauling, where each truck can
only be used to haul gravel from a single pit to a single site. Each
truck can haul 5 tons, and the cost per truck is five times the haul-
ing cost per ton given earlier. Only full trucks would be used to
supply each site.
(a) Formulate this problem as an assignment problem by con-

structing the appropriate cost table, including identifying the
assignees and tasks.



choice of these assignments of plants to distribution centers is to
be made solely on the basis of minimizing total shipping cost.
(a) Formulate this problem as an assignment problem by con-

structing the appropriate cost table, including identifying the
corresponding assignees and tasks.

C (b) Obtain an optimal solution.
(c) Reformulate this assignment problem as an equivalent trans-

portation problem (with four sources) by constructing the ap-
propriate parameter table.

C (d) Solve the problem as formulated in part (c).
(e) Repeat part (c) with just two sources.
C (f) Solve the problem as formulated in part (e).

8.3-9. Consider the assignment problem having the following cost
table.

C (b) Obtain an optimal solution.
(c) Reformulate this assignment problem as an equivalent trans-

portation problem with two sources and three destinations by
constructing the appropriate parameter table.

C (d) Obtain an optimal solution for the problem as formulated in
part (c).

8.3-6. Consider the assignment problem formulation of Option 2
for the Better Products Co. problem presented in Table 8.29.
(a) Reformulate this problem as an equivalent transportation prob-

lem with three sources and five destinations by constructing
the appropriate parameter table.

(b) Convert the optimal solution given in Sec. 8.3 for this assign-
ment problem into a complete BF solution (including degen-
erate basic variables) for the transportation problem formulated
in part (a). Specifically, apply the “General Procedure for Con-
structing an Initial BF Solution” given in Sec. 8.2. For each it-
eration of the procedure, rather than using any of the three al-
ternative criteria presented for step 1, select the next basic
variable to correspond to the next assignment of a plant to a
product given in the optimal solution. When only one row or
only one column remains under consideration, use step 4 to
select the remaining basic variables.

(c) Verify that the optimal solution given in Sec. 8.3 for this as-
signment problem actually is optimal by applying just the op-
timality test portion of the transportation simplex method to
the complete BF solution obtained in part (b).

(d) Now reformulate this assignment problem as an equivalent
transportation problem with five sources and five destinations
by constructing the appropriate parameter table. Compare this
transportation problem with the one formulated in part (a).

(e) Repeat part (b) for the problem as formulated in part (d ). Com-
pare the BF solution obtained with the one from part (b).

D,I 8.3-7. Starting with Vogel’s approximation method, interac-
tively apply the transportation simplex method to solve the Job
Shop Co. assignment problem as formulated in Table 8.26b. (As
stated in Sec. 8.3, the resulting optimal solution has 
x14 � 1, x23 � 1, x31 � 1, x42 � 1, and all other xij � 0.)

8.3-8. Reconsider Prob. 8.1-7. Now assume that distribution cen-
ters 1, 2, and 3 must receive exactly 10, 20, and 30 units per week,
respectively. For administrative convenience, management has de-
cided that each distribution center will be supplied totally by a sin-
gle plant, so that one plant will supply one distribution center and
the other plant will supply the other two distribution centers. The
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The optimal solution is A-3, B-1, C-2, with Z � 10.
C (a) Use the computer to verify this optimal solution.
(b) Reformulate this problem as an equivalent transportation prob-

lem by constructing the appropriate parameter table.
C (c) Obtain an optimal solution for the transportation problem

formulated in part (b).
(d) Why does the optimal BF solution obtained in part (c) include

some (degenerate) basic variables that are not part of the op-
timal solution for the assignment problem?

(e) Now consider the nonbasic variables in the optimal BF solu-
tion obtained in part (c). For each nonbasic variable xij and the
corresponding cost cij, adapt the sensitivity analysis procedure
for general linear programming (see Case 2a in Sec. 6.7) to
determine the allowable range to stay optimal for cij.

8.3-10. Consider the linear programming model for the general as-
signment problem given in Sec. 8.3. Construct the table of con-
straint coefficients for this model. Compare this table with the one
for the general transportation problem (Table 8.6). In what ways
does the general assignment problem have more special structure
than the general transportation problem?

Job

1 2 3

A 5 7 4
Person B 3 6 5

C 2 3 4
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Unit Cost by Rail ($1,000’s) Unit Cost by Ship ($1,000’s)
Market Market

Source 1 2 3 4 5 1 2 3 4 5

1 61 72 45 55 66 31 38 24 — 35
2 69 78 60 49 56 36 43 28 24 31
3 59 66 63 61 47 — 33 36 32 26

Investment for Ships ($1,000’s)
Market

Source 1 2 3 4 5

1 275 303 238 — 285
2 293 318 270 250 265
3 — 283 275 268 240

The capital investment (in thousands of dollars) in ships required for each million board
feet to be transported annually by ship along each route is given as follows:

Alabama Atlantic is a lumber company that has three sources of wood and five mar-
kets to be supplied. The annual availability of wood at sources 1, 2, and 3 is 15, 20,
and 15 million board feet, respectively. The amount that can be sold annually at mar-
kets 1, 2, 3, 4, and 5 is 11, 12, 9, 10, and 8 million board feet, respectively.

In the past the company has shipped the wood by train. However, because ship-
ping costs have been increasing, the alternative of using ships to make some of the de-
liveries is being investigated. This alternative would require the company to invest in
some ships. Except for these investment costs, the shipping costs in thousands of dol-
lars per million board feet by rail and by water (when feasible) would be the follow-
ing for each route:
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Considering the expected useful life of the ships and the time value of money, the
equivalent uniform annual cost of these investments is one-tenth the amount given in
the table. The objective is to determine the overall shipping plan that minimizes the to-
tal equivalent uniform annual cost (including shipping costs).

You are the head of the OR team that has been assigned the task of determining
this shipping plan for each of the following three options.

Option 1: Continue shipping exclusively by rail.
Option 2: Switch to shipping exclusively by water (except where only rail is feasible).
Option 3: Ship by either rail or water, depending on which is less expensive for the particular

route.

Present your results for each option. Compare.



Finally, consider the fact that these results are based on current shipping and in-
vestment costs, so that the decision on the option to adopt now should take into ac-
count management’s projection of how these costs are likely to change in the future.
For each option, describe a scenario of future cost changes that would justify adopt-
ing that option now.
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Tazer, a pharmaceutical manufacturing company, entered the pharmaceutical market 12
years ago with the introduction of six new drugs. Five of the six drugs were simply
permutations of existing drugs and therefore did not sell very heavily. The sixth drug,
however, addressed hypertension and was a huge success. Since Tazer had a patent on
the hypertension drug, it experienced no competition, and profits from the hyperten-
sion drug alone kept Tazer in business.

During the past 12 years, Tazer continued a moderate amount of research and de-
velopment, but it never stumbled upon a drug as successful as the hypertension drug.
One reason is that the company never had the motivation to invest heavily in innova-
tive research and development. The company was riding the profit wave generated by
its hypertension drug and did not feel the need to commit significant resources to find-
ing new drug breakthroughs.

Now Tazer is beginning to fear the pressure of competition. The patent for the hy-
pertension drug expires in 5 years,1 and Tazer knows that once the patent expires,
generic drug manufacturing companies will swarm into the market like vultures. His-
torical trends show that generic drugs decreased sales of branded drugs by 75 percent.

Tazer is therefore looking to invest significant amounts of money in research and
development this year to begin the search for a new breakthrough drug that will offer
the company the same success as the hypertension drug. Tazer believes that if the com-
pany begins extensive research and development now, the probability of finding a suc-
cessful drug shortly after the expiration of the hypertension patent will be high.

As head of research and development at Tazer, you are responsible for choosing
potential projects and assigning project directors to lead each of the projects. After re-
searching the needs of the market, analyzing the shortcomings of current drugs, and
interviewing numerous scientists concerning the promising areas of medical research,
you have decided that your department will pursue five separate projects, which are
listed below:

Project Up Develop an antidepressant that does not cause serious mood swings.
Project Stable Develop a drug that addresses manic-depression.
Project Choice Develop a less intrusive birth control method for women.
Project Hope Develop a vaccine to prevent HIV infection.
Project Release Develop a more effective drug to lower blood pressure.
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1In general, patents protect inventions for 17 years. In 1995, GATT legislation extending the protection given
by new pharmaceutical patents to 20 years became effective. The patent for Tazer’s hypertension drug was
issued prior to the GATT legislation, however. Thus, the patent only protects the drug for 17 years.



For each of the five projects, you are only able to specify the medical ailment the re-
search should address, since you do not know what compounds will exist and be ef-
fective without research.

You also have five senior scientists to lead the five projects. You know that scien-
tists are very temperamental people and will work well only if they are challenged and
motivated by the project. To ensure that the senior scientists are assigned to projects they
find motivating, you have established a bidding system for the projects. You have given
each of the five scientists 1000 bid points. They assign bids to each project, giving a
higher number of bid points to projects they most prefer to lead. The following table pro-
vides the bids from the five individual senior scientists for the five individual projects:
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Project Dr. Kvaal Dr. Zuner Dr. Tsai Dr. Mickey Dr. Rollins

Project Up 100 0 100 267 100
Project Stable 400 200 100 153 33
Project Choice 200 800 100 99 33
Project Hope 200 0 100 451 34
Project Release 100 0 600 30 800

You decide to evaluate a variety of scenarios you think are likely.

(a) Given the bids, you need to assign one senior scientist to each of the five projects to maxi-
mize the preferences of the scientists. What are the assignments?

(b) Dr. Rollins is being courted by Harvard Medical School to accept a teaching position. You
are fighting desperately to keep her at Tazer, but the prestige of Harvard may lure her away.
If this were to happen, the company would give up the project with the least enthusiasm.
Which project would not be done?

(c) You do not want to sacrifice any project, since researching only four projects decreases the
probability of finding a breakthrough new drug. You decide that either Dr. Zuner or Dr.
Mickey could lead two projects. Under these new conditions with just four senior scientists,
which scientists will lead which projects to maximize preferences?

(d) After Dr. Zuner was informed that she and Dr. Mickey are being considered for two proj-
ects, she decided to change her bids. The following table shows Dr. Zuner’s new bids for
each of the projects:

Project Up 20
Project Stable 450
Project Choice 451
Project Hope 39
Project Release 40

Under these new conditions with just four scientists, which scientists will lead which proj-
ects to maximize preferences?

(e) Do you support the assignment found in part (d )? Why or why not?
(f) Now you again consider all five scientists. You decide, however, that several scientists can-

not lead certain projects. In particular, Dr. Mickey does not have experience with research
on the immune system, so he cannot lead Project Hope. His family also has a history of
manic-depression, and you feel that he would be too personally involved in Project Stable



to serve as an effective project leader. Dr. Mickey therefore cannot lead Project Stable. Dr.
Kvaal also does not have experience with research on the immune systems and cannot lead
Project Hope. In addition, Dr. Kvaal cannot lead Project Release because he does not have
experience with research on the cardiovascular system. Finally, Dr. Rollins cannot lead Proj-
ect Up because her family has a history of depression and you feel she would be too per-
sonally involved in the project to serve as an effective leader. Because Dr. Mickey and Dr.
Kvaal cannot lead two of the five projects, they each have only 600 bid points. Dr. Rollins
has only 800 bid points because she cannot lead one of the five projects. The following table
provides the new bids of Dr. Mickey, Dr. Kvaal, and Dr. Rollins:
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Which scientists should lead which projects to maximize preferences?
(g) You decide that Project Hope and Project Release are too complex to be led by only one

scientist. Therefore, each of these projects will be assigned two scientists as project leaders.
You decide to hire two more scientists in order to staff all projects: Dr. Arriaga and Dr. San-
tos. Because of religious reasons, the two doctors both do not want to lead Project Choice.
The following table lists all projects, scientists, and their bids.

Which scientists should lead which projects to maximize preferences?
(h) Do you think it is wise to base your decision in part (g) only on an optimal solution for an

assignment problem?

Project Dr. Mickey Dr. Kvaal Dr. Rollins.

Project Up 300 86 Can’t lead
Project Stable Can’t lead 343 50
Project Choice 125 171 50
Project Hope Can’t lead Can’t lead 100
Project Release 175 Can’t lead 600

Kvaal Zuner Tsai Mickey Rollins Arriaga Santos

Up 86 0 100 300 Can’t lead 250 111

Stable 343 200 100 Can’t lead 50 250 1

Choice 171 800 100 125 50 Can’t lead Can’t lead

Hope Can’t lead 0 100 Can’t lead 100 250 333

Release Can’t lead 0 600 175 600 250 555
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9
Network Optimization 
Models

Networks arise in numerous settings and in a variety of guises. Transportation, electrical,
and communication networks pervade our daily lives. Network representations also are
widely used for problems in such diverse areas as production, distribution, project plan-
ning, facilities location, resource management, and financial planning—to name just a few
examples. In fact, a network representation provides such a powerful visual and concep-
tual aid for portraying the relationships between the components of systems that it is used
in virtually every field of scientific, social, and economic endeavor.

One of the most exciting developments in operations research (OR) in recent years
has been the unusually rapid advance in both the methodology and application of network
optimization models. A number of algorithmic breakthroughs have had a major impact,
as have ideas from computer science concerning data structures and efficient data ma-
nipulation. Consequently, algorithms and software now are available and are being used
to solve huge problems on a routine basis that would have been completely intractable
two or three decades ago.

Many network optimization models actually are special types of linear programming
problems. For example, both the transportation problem and the assignment problem dis-
cussed in the preceding chapter fall into this category because of their network represen-
tations presented in Figs. 8.3 and 8.5.

One of the linear programming examples presented in Sec. 3.4 also is a network op-
timization problem. This is the Distribution Unlimited Co. problem of how to distribute
its goods through the distribution network shown in Fig. 3.13. This special type of linear
programming problem, called the minimum cost flow problem, is presented in Sec. 9.6.
We shall return to this specific example in that section and then solve it with network
methodology in the following section.

The third linear programming case study presented in Sec. 3.5 also features an ap-
plication of the minimum cost flow problem. This case study involved planning the sup-
ply, distribution, and marketing of goods at Citgo Petroleum Corp. The OR team at Citgo
developed an optimization-based decision support system, using a minimum cost flow
problem model for each product, and coupled this system with an on-line corporate data-
base. Each product’s model has about 3,000 equations (nodes) and 15,000 variables (arcs),
which is a very modest size by today’s standards for the application of network opti-



mization models. The model takes in all aspects of the business, helping management de-
cide everything from run levels at the various refineries to what prices to pay or charge.
A network representation is essential because of the flow of goods through several stages:
purchase of crude oil from various suppliers, shipping it to refineries, refining it into var-
ious products, and sending the products to distribution centers and product storage ter-
minals for subsequent sale. As discussed in Sec. 3.5, the modeling system enabled the
company to reduce its petroleum products inventory by over $116 million with no drop
in service levels. This resulted in a savings in annual interest of $14 million as well as
improvements in coordination, pricing, and purchasing decisions worth another $2.5 mil-
lion each year, along with many indirect benefits.

In this one chapter we only scratch the surface of the current state of the art of net-
work methodology. However, we shall introduce you to four important kinds of network
problems and some basic ideas of how to solve them (without delving into issues of data
structures that are so vital to successful large-scale implementations). Each of the first three
problem types—the shortest-path problem, the minimum spanning tree problem, and the
maximum flow problem—has a very specific structure that arises frequently in applications.

The fourth type—the minimum cost flow problem—provides a unified approach to
many other applications because of its far more general structure. In fact, this structure is
so general that it includes as special cases both the shortest-path problem and the maxi-
mum flow problem as well as the transportation problem and the assignment problem
from Chap. 8. Because the minimum cost flow problem is a special type of linear pro-
gramming problem, it can be solved extremely efficiently by a streamlined version of the
simplex method called the network simplex method. (We shall not discuss even more gen-
eral network problems that are more difficult to solve.)

The first section introduces a prototype example that will be used subsequently to il-
lustrate the approach to the first three of these problems. Section 9.2 presents some basic
terminology for networks. The next four sections deal with the four problems in turn. Sec-
tion 9.7 then is devoted to the network simplex method.
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SEERVADA PARK has recently been set aside for a limited amount of sightseeing and
backpack hiking. Cars are not allowed into the park, but there is a narrow, winding road
system for trams and for jeeps driven by the park rangers. This road system is shown
(without the curves) in Fig. 9.1, where location O is the entrance into the park; other let-
ters designate the locations of ranger stations (and other limited facilities). The numbers
give the distances of these winding roads in miles.

The park contains a scenic wonder at station T. A small number of trams are used to
transport sightseers from the park entrance to station T and back.

The park management currently faces three problems. One is to determine which route
from the park entrance to station T has the smallest total distance for the operation of the
trams. (This is an example of the shortest-path problem to be discussed in Sec. 9.3.)

A second problem is that telephone lines must be installed under the roads to estab-
lish telephone communication among all the stations (including the park entrance). Be-
cause the installation is both expensive and disruptive to the natural environment, lines

9.1 PROTOTYPE EXAMPLE



will be installed under just enough roads to provide some connection between every pair
of stations. The question is where the lines should be laid to accomplish this with a min-
imum total number of miles of line installed. (This is an example of the minimum span-
ning tree problem to be discussed in Sec. 9.4.)

The third problem is that more people want to take the tram ride from the park en-
trance to station T than can be accommodated during the peak season. To avoid unduly
disturbing the ecology and wildlife of the region, a strict ration has been placed on the
number of tram trips that can be made on each of the roads per day. (These limits differ
for the different roads, as we shall describe in detail in Sec. 9.5.) Therefore, during the
peak season, various routes might be followed regardless of distance to increase the num-
ber of tram trips that can be made each day. The question pertains to how to route the
various trips to maximize the number of trips that can be made per day without violating
the limits on any individual road. (This is an example of the maximum flow problem to
be discussed in Sec. 9.5.)
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FIGURE 9.1
The road system for Seervada
Park.

A relatively extensive terminology has been developed to describe the various kinds of
networks and their components. Although we have avoided as much of this special vo-
cabulary as we could, we still need to introduce a considerable number of terms for use
throughout the chapter. We suggest that you read through this section once at the outset
to understand the definitions and then plan to return to refresh your memory as the terms
are used in subsequent sections. To assist you, each term is highlighted in boldface at the
point where it is defined.

A network consists of a set of points and a set of lines connecting certain pairs of the
points. The points are called nodes (or vertices); e.g., the network in Fig. 9.1 has seven
nodes designated by the seven circles. The lines are called arcs (or links or edges or
branches); e.g., the network in Fig. 9.1 has 12 arcs corresponding to the 12 roads in the
road system. Arcs are labeled by naming the nodes at either end; for example, AB is the
arc between nodes A and B in Fig. 9.1.

9.2 THE TERMINOLOGY OF NETWORKS



The arcs of a network may have a flow of some type through them, e.g., the flow of
trams on the roads of Seervada Park in Sec. 9.1. Table 9.1 gives several examples of flow
in typical networks. If flow through an arc is allowed in only one direction (e.g., a one-
way street), the arc is said to be a directed arc. The direction is indicated by adding an
arrowhead at the end of the line representing the arc. When a directed arc is labeled by
listing two nodes it connects, the from node always is given before the to node; e.g., an
arc that is directed from node A to node B must be labeled as AB rather than BA. Alter-
natively, this arc may be labeled as A � B.

If flow through an arc is allowed in either direction (e.g., a pipeline that can be used
to pump fluid in either direction), the arc is said to be an undirected arc. To help you
distinguish between the two kinds of arcs, we shall frequently refer to undirected arcs by
the suggestive name of links.

Although the flow through an undirected arc is allowed to be in either direction, we do
assume that the flow will be one way in the direction of choice rather than having simulta-
neous flows in opposite directions. (The latter case requires the use of a pair of directed
arcs in opposite directions.) However, in the process of making the decision on the flow
through an undirected arc, it is permissible to make a sequence of assignments of flows in
opposite directions, but with the understanding that the actual flow will be the net flow (the
difference of the assigned flows in the two directions). For example, if a flow of 10 has been
assigned in one direction and then a flow of 4 is assigned in the opposite direction, the ac-
tual effect is to cancel 4 units of the original assignment by reducing the flow in the origi-
nal direction from 10 to 6. Even for a directed arc, the same technique sometimes is used
as a convenient device to reduce a previously assigned flow. In particular, you are allowed
to make a fictional assignment of flow in the “wrong” direction through a directed arc to
record a reduction of that amount in the flow in the “right” direction.

A network that has only directed arcs is called a directed network. Similarly, if all
its arcs are undirected, the network is said to be an undirected network. A network with
a mixture of directed and undirected arcs (or even all undirected arcs) can be converted
to a directed network, if desired, by replacing each undirected arc by a pair of directed
arcs in opposite directions. (You then have the choice of interpreting the flows through
each pair of directed arcs as being simultaneous flows in opposite directions or providing
a net flow in one direction, depending on which fits your application.)

When two nodes are not connected by an arc, a natural question is whether they are
connected by a series of arcs. A path between two nodes is a sequence of distinct arcs
connecting these nodes. For example, one of the paths connecting nodes O and T in Fig.
9.1 is the sequence of arcs OB–BD–DT (O � B � D � T), or vice versa. When some
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TABLE 9.1 Components of typical networks

Nodes Arcs Flow

Intersections Roads Vehicles
Airports Air lanes Aircraft
Switching points Wires, channels Messages
Pumping stations Pipes Fluids
Work centers Materials-handling routes Jobs



of or all the arcs in the network are directed arcs, we then distinguish between directed
paths and undirected paths. A directed path from node i to node j is a sequence of con-
necting arcs whose direction (if any) is toward node j, so that flow from node i to node j
along this path is feasible. An undirected path from node i to node j is a sequence of
connecting arcs whose direction (if any) can be either toward or away from node j. (No-
tice that a directed path also satisfies the definition of an undirected path, but not vice
versa.) Frequently, an undirected path will have some arcs directed toward node j but oth-
ers directed away (i.e., toward node i). You will see in Secs. 9.5 and 9.7 that, perhaps sur-
prisingly, undirected paths play a major role in the analysis of directed networks.

To illustrate these definitions, Fig. 9.2 shows a typical directed network. (Its nodes
and arcs are the same as in Fig. 3.13, where nodes A and B represent two factories, nodes
D and E represent two warehouses, node C represents a distribution center, and the arcs
represent shipping lanes.) The sequence of arcs AB–BC–CE (A � B � C � E) is a di-
rected path from node A to E, since flow toward node E along this entire path is feasible.
On the other hand, BC–AC–AD (B � C � A � D) is not a directed path from node B
to node D, because the direction of arc AC is away from node D (on this path). However,
B � C � A � D is an undirected path from node B to node D, because the sequence of
arcs BC–AC–AD does connect these two nodes (even though the direction of arc AC pre-
vents flow through this path).

As an example of the relevance of undirected paths, suppose that 2 units of flow from
node A to node C had previously been assigned to arc AC. Given this previous assign-
ment, it now is feasible to assign a smaller flow, say, 1 unit, to the entire undirected path
B � C � A � D, even though the direction of arc AC prevents positive flow through 
C � A. The reason is that this assignment of flow in the “wrong” direction for arc AC
actually just reduces the flow in the “right” direction by 1 unit. Sections 9.5 and 9.7 make
heavy use of this technique of assigning a flow through an undirected path that includes
arcs whose direction is opposite to this flow, where the real effect for these arcs is to re-
duce previously assigned positive flows in the “right” direction.

A path that begins and ends at the same node is called a cycle. In a directed network,
a cycle is either a directed or an undirected cycle, depending on whether the path involved
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is a directed or an undirected path. (Since a directed path also is an undirected path, a di-
rected cycle is an undirected cycle, but not vice versa in general.) In Fig. 9.2, for exam-
ple, DE–ED is a directed cycle. By contrast, AB–BC–AC is not a directed cycle, because
the direction of arc AC opposes the direction of arcs AB and BC. On the other hand,
AB–BC–AC is an undirected cycle, because A � B � C � A is an undirected path. In
the undirected network shown in Fig. 9.1, there are many cycles, for example,
OA–AB–BC–CO. However, note that the definition of path (a sequence of distinct arcs)
rules out retracing one’s steps in forming a cycle. For example, OB–BO in Fig. 9.1 does
not qualify as a cycle, because OB and BO are two labels for the same arc (link). On the
other hand, DE–ED is a (directed) cycle in Fig. 9.2, because DE and ED are distinct arcs.

Two nodes are said to be connected if the network contains at least one undirected
path between them. (Note that the path does not need to be directed even if the network
is directed.) A connected network is a network where every pair of nodes is connected.
Thus, the networks in Figs. 9.1 and 9.2 are both connected. However, the latter network
would not be connected if arcs AD and CE were removed.

Consider a connected network with n nodes (e.g., the n � 5 nodes in Fig. 9.2) where
all the arcs have been deleted. A “tree” can then be “grown” by adding one arc (or “branch”)
at a time from the original network in a certain way. The first arc can go anywhere to con-
nect some pair of nodes. Thereafter, each new arc should be between a node that already
is connected to other nodes and a new node not previously connected to any other nodes.
Adding an arc in this way avoids creating a cycle and ensures that the number of con-
nected nodes is 1 greater than the number of arcs. Each new arc creates a larger tree,
which is a connected network (for some subset of the n nodes) that contains no undirected
cycles. Once the (n � 1)st arc has been added, the process stops because the resulting tree
spans (connects) all n nodes. This tree is called a spanning tree, i.e., a connected net-
work for all n nodes that contains no undirected cycles. Every spanning tree has exactly
n � 1 arcs, since this is the minimum number of arcs needed to have a connected network
and the maximum number possible without having undirected cycles.

Figure 9.3 uses the five nodes and some of the arcs of Fig. 9.2 to illustrate this process
of growing a tree one arc (branch) at a time until a spanning tree has been obtained. There
are several alternative choices for the new arc at each stage of the process, so Fig. 9.3
shows only one of many ways to construct a spanning tree in this case. Note, however,
how each new added arc satisfies the conditions specified in the preceding paragraph. We
shall discuss and illustrate spanning trees further in Sec. 9.4.

Spanning trees play a key role in the analysis of many networks. For example, they
form the basis for the minimum spanning tree problem discussed in Sec. 9.4. Another
prime example is that (feasible) spanning trees correspond to the BF solutions for the net-
work simplex method discussed in Sec. 9.7.

Finally, we shall need a little additional terminology about flows in networks. The
maximum amount of flow (possibly infinity) that can be carried on a directed arc is re-
ferred to as the arc capacity. For nodes, a distinction is made among those that are net
generators of flow, net absorbers of flow, or neither. A supply node (or source node or
source) has the property that the flow out of the node exceeds the flow into the node. The
reverse case is a demand node (or sink node or sink), where the flow into the node ex-
ceeds the flow out of the node. A transshipment node (or intermediate node) satisfies
conservation of flow, so flow in equals flow out.
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FIGURE 9.3
Example of growing a tree
one arc at a time for the
network of Fig. 9.2: (a) The
nodes without arcs; (b) a tree
with one arc; (c) a tree with
two arcs; (d) a tree with
three arcs; (e) a spanning
tree.

Although several other versions of the shortest-path problem (including some for directed
networks) are mentioned at the end of the section, we shall focus on the following sim-
ple version. Consider an undirected and connected network with two special nodes called
the origin and the destination. Associated with each of the links (undirected arcs) is a non-
negative distance. The objective is to find the shortest path (the path with the minimum
total distance) from the origin to the destination.

A relatively straightforward algorithm is available for this problem. The essence of
this procedure is that it fans out from the origin, successively identifying the shortest path
to each of the nodes of the network in the ascending order of their (shortest) distances
from the origin, thereby solving the problem when the destination node is reached. We
shall first outline the method and then illustrate it by solving the shortest-path problem
encountered by the Seervada Park management in Sec. 9.1.

Algorithm for the Shortest-Path Problem.

Objective of nth iteration: Find the nth nearest node to the origin (to be repeated for 
n � 1, 2, . . . until the nth nearest node is the destination.

Input for nth iteration: n � 1 nearest nodes to the origin (solved for at the previous iter-
ations), including their shortest path and distance from the origin.
(These nodes, plus the origin, will be called solved nodes; the oth-
ers are unsolved nodes.)
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Candidates for nth nearest node: Each solved node that is directly connected by a link
to one or more unsolved nodes provides one candi-
date—the unsolved node with the shortest connecting
link. (Ties provide additional candidates.)

Calculation of nth nearest node: For each such solved node and its candidate, add the
distance between them and the distance of the shortest
path from the origin to this solved node. The candidate
with the smallest such total distance is the nth nearest
node (ties provide additional solved nodes), and its
shortest path is the one generating this distance.

Applying This Algorithm to the Seervada Park 
Shortest-Path Problem

The Seervada Park management needs to find the shortest path from the park entrance (node
O) to the scenic wonder (node T) through the road system shown in Fig. 9.1. Applying the
above algorithm to this problem yields the results shown in Table 9.2 (where the tie for the
second nearest node allows skipping directly to seeking the fourth nearest node next). The
first column (n) indicates the iteration count. The second column simply lists the solved
nodes for beginning the current iteration after deleting the irrelevant ones (those not con-
nected directly to any unsolved node). The third column then gives the candidates for the
nth nearest node (the unsolved nodes with the shortest connecting link to a solved node).
The fourth column calculates the distance of the shortest path from the origin to each of
these candidates (namely, the distance to the solved node plus the link distance to the can-
didate). The candidate with the smallest such distance is the nth nearest node to the origin,
as listed in the fifth column. The last two columns summarize the information for this newest
solved node that is needed to proceed to subsequent iterations (namely, the distance of the
shortest path from the origin to this node and the last link on this shortest path).
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TABLE 9.2 Applying the shortest-path algorithm to the Seervada Park problem

Solved Nodes Closest Total nth
Directly Connected Connected Distance Nearest Minimum Last

n to Unsolved Nodes Unsolved Node Involved Node Distance Connection

1 O A 2 A 2 OA

O C 4 C 4 OC
2, 3

A B 2 � 2 � 4 B 4 AB

A D 2 � 7 � 9
4 B E 4 � 3 � 7 E 7 BE

C E 4 � 4 � 8

A D 2 � 7 � 9
5 B D 4 � 4 � 8 D 8 BD

E D 7 � 1 � 8 D 8 ED

D T 8 � 5 � 13 T 13 DT
6

E T 7 � 7 � 14



Now let us relate these columns directly to the outline given for the algorithm. The
input for nth iteration is provided by the fifth and sixth columns for the preceding itera-
tions, where the solved nodes in the fifth column are then listed in the second column for
the current iteration after deleting those that are no longer directly connected to unsolved
nodes. The candidates for nth nearest node next are listed in the third column for the cur-
rent iteration. The calculation of nth nearest node is performed in the fourth column, and
the results are recorded in the last three columns for the current iteration.

After the work shown in Table 9.2 is completed, the shortest path from the destination
to the origin can be traced back through the last column of Table 9.2 as either
T � D � E � B � A � O or T � D � B � A � O. Therefore, the two alternates for
the shortest path from the origin to the destination have been identified as O � A � B �
E � D � T and O � A � B � D � T, with a total distance of 13 miles on either path.

Using Excel to Formulate and Solve Shortest-Path Problems

This algorithm provides a particularly efficient way of solving large shortest-path prob-
lems. However, some mathematical programming software packages do not include this
algorithm. If not, they often will include the network simplex method described in Sec.
9.7, which is another good option for these problems.

Since the shortest-path problem is a special type of linear programming problem, the
general simplex method also can be used when better options are not readily available. Al-
though not nearly as efficient as these specialized algorithms on large shortest-path problems,
it is quite adequate for problems of even very substantial size (much larger than the Seervada
Park problem). Excel, which relies on the general simplex method, provides a convenient
way of formulating and solving shortest-path problems with dozens of arcs and nodes.

Figure 9.4 shows an appropriate spreadsheet formulation for the Seervada Park short-
est-path problem. Rather than using the kind of formulation presented in Sec. 3.6 that uses
a separate row for each functional constraint of the linear programming model, this for-
mulation exploits the special structure by listing the nodes in column G and the arcs in
columns B and C, as well as the distance (in miles) along each arc in column E. Since
each link in the network is an undirected arc, whereas travel through the shortest path is
in one direction, each link can be replaced by a pair of directed arcs in opposite direc-
tions. Thus, columns B and C together list both of the nearly vertical links in Fig. 9.1 
(A–B and D–E) twice, once as a downward arc and once as an upward arc, since either
direction might be on the chosen path. However, the other links are only listed as left-to-
right arcs, since this is the only direction of interest for choosing a shortest path from the
origin to the destination.

A trip from the origin to the destination is interpreted to be a “flow” of 1 on the cho-
sen path through the network. The decisions to be made are which arcs should be included
in the path to be traversed. A flow of 1 is assigned to an arc if it is included, whereas the
flow is 0 if it is not included. Thus, the decision variables are

xij � �
for each of the arcs under consideration. The values of these decision variables are en-
tered in the changing cells in column D (cells D4:D17).

if arc i � j is not included
if arc i � j is included

0
1
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Each node can be thought of as having a flow of 1 passing through it if it is on the
selected path, but no flow otherwise. The net flow generated at a node is the flow out mi-
nus the flow in, so the net flow is 1 at the origin, �1 at the destination, and 0 at every
other node. These requirements for the net flows are specified in column J of Fig. 9.4.
Using the equations at the bottom of the figure, each column H cell then calculates the
actual net flow at that node by adding the flow out and subtracting the flow in. The cor-
responding constraints, H4:H10 � J4:J10, are specified in the Solver dialogue box.

The target cell (D19) gives the total distance in miles of the chosen path by using the
equation for this cell given at the bottom of Fig. 9.4. The objective of minimizing this tar-
get cell has been specified in the Solver dialogue box. The solution shown in column D
is an optimal solution obtained after clicking on the Solve button. This solution is, of
course, one of the two shortest paths identified earlier by the algorithm for the shortest-
path algorithm.
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FIGURE 9.4
A spreadsheet formulation for
the Seervada Park shortest-
path problem, where the
changing cells (D4:D17)
show the optimal solution
obtained by the Excel Solver
and the target cell (D19)
gives the total distance (in
miles) of this shortest path.



Other Applications

Not all applications of the shortest-path problem involve minimizing the distance traveled
from the origin to the destination. In fact, they might not even involve travel at all. The
links (or arcs) might instead represent activities of some other kind, so choosing a path
through the network corresponds to selecting the best sequence of activities. The numbers
giving the “lengths” of the links might then be, for example, the costs of the activities, in
which case the objective would be to determine which sequence of activities minimizes
the total cost.

Here are three categories of applications.

1. Minimize the total distance traveled, as in the Seervada Park example.
2. Minimize the total cost of a sequence of activities. (Problem 9.3-2 is of this type.)
3. Minimize the total time of a sequence of activities. (Problems 9.3-5 and 9.3-6 are of

this type.)

It is even possible for all three categories to arise in the same application. For example, sup-
pose you wish to find the best route for driving from one town to another through a num-
ber of intermediate towns. You then have the choice of defining the best route as being the
one that minimizes the total distance traveled or that minimizes the total cost incurred or
that minimizes the total time required. (Problem 9.3-1 illustrates such an application.)

Many applications require finding the shortest directed path from the origin to the
destination through a directed network. The algorithm already presented can be easily
modified to deal just with directed paths at each iteration. In particular, when candidates
for the nth nearest node are identified, only directed arcs from a solved node to an un-
solved node are considered.

Another version of the shortest-path problem is to find the shortest paths from the
origin to all the other nodes of the network. Notice that the algorithm already solves for
the shortest path to each node that is closer to the origin than the destination. Therefore,
when all nodes are potential destinations, the only modification needed in the algorithm
is that it does not stop until all nodes are solved nodes.

An even more general version of the shortest-path problem is to find the shortest paths
from every node to every other node. Another option is to drop the restriction that “dis-
tances” (arc values) be nonnegative. Constraints also can be imposed on the paths that can
be followed. All these variations occasionally arise in applications and so have been stud-
ied by researchers.

The algorithms for a wide variety of combinatorial optimization problems, such as cer-
tain vehicle routing or network design problems, often call for the solution of a large num-
ber of shortest-path problems as subroutines. Although we lack the space to pursue this
topic further, this use may now be the most important kind of application of the shortest-
path problem.
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The minimum spanning tree problem bears some similarities to the main version of the
shortest-path problem presented in the preceding section. In both cases, an undirected and
connected network is being considered, where the given information includes some mea-
sure of the positive length (distance, cost, time, etc.) associated with each link. Both prob-
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lems also involve choosing a set of links that have the shortest total length among all sets
of links that satisfy a certain property. For the shortest-path problem, this property is that
the chosen links must provide a path between the origin and the destination. For the min-
imum spanning tree problem, the required property is that the chosen links must provide
a path between each pair of nodes.

The minimum spanning tree problem can be summarized as follows.

1. You are given the nodes of a network but not the links. Instead, you are given the po-
tential links and the positive length for each if it is inserted into the network. (Alter-
native measures for the length of a link include distance, cost, and time.)

2. You wish to design the network by inserting enough links to satisfy the requirement
that there be a path between every pair of nodes.

3. The objective is to satisfy this requirement in a way that minimizes the total length of
the links inserted into the network.

A network with n nodes requires only (n � 1) links to provide a path between each pair
of nodes. No extra links should be used, since this would needlessly increase the total length
of the chosen links. The (n � 1) links need to be chosen in such a way that the resulting
network (with just the chosen links) forms a spanning tree (as defined in Sec. 9.2). There-
fore, the problem is to find the spanning tree with a minimum total length of the links.

Figure 9.5 illustrates this concept of a spanning tree for the Seervada Park problem
(see Sec. 9.1). Thus, Fig. 9.5a is not a spanning tree because nodes O, A, B, and C are
not connected with nodes D, E, and T. It needs another link to make this connection. This
network actually consists of two trees, one for each of these two sets of nodes. The links
in Fig. 9.5b do span the network (i.e., the network is connected as defined in Sec. 9.2),
but it is not a tree because there are two cycles (O–A–B–C–O and D–T–E–D). It has too
many links. Because the Seervada Park problem has n � 7 nodes, Sec. 9.2 indicates that
the network must have exactly n � 1 � 6 links, with no cycles, to qualify as a spanning
tree. This condition is achieved in Fig. 9.5c, so this network is a feasible solution (with a
value of 24 miles for the total length of the links) for the minimum spanning tree prob-
lem. (You soon will see that this solution is not optimal because it is possible to construct
a spanning tree with only 14 miles of links.)

Some Applications

Here is a list of some key types of applications of the minimum spanning tree problem.

1. Design of telecommunication networks (fiber-optic networks, computer networks,
leased-line telephone networks, cable television networks, etc.)

2. Design of a lightly used transportation network to minimize the total cost of provid-
ing the links (rail lines, roads, etc.)

3. Design of a network of high-voltage electrical power transmission lines
4. Design of a network of wiring on electrical equipment (e.g., a digital computer sys-

tem) to minimize the total length of the wire
5. Design of a network of pipelines to connect a number of locations

In this age of the information superhighway, applications of this first type have be-
come particularly important. In a telecommunication network, it is only necessary to in-
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sert enough links to provide a path between every pair of nodes, so designing such a net-
work is a classic application of the minimum spanning tree problem. Because some
telecommunication networks now cost many millions of dollars, it is very important to
optimize their design by finding the minimum spanning tree for each one.

An Algorithm

The minimum spanning tree problem can be solved in a very straightforward way because
it happens to be one of the few OR problems where being greedy at each stage of the so-
lution procedure still leads to an overall optimal solution at the end! Thus, beginning with
any node, the first stage involves choosing the shortest possible link to another node, with-
out worrying about the effect of this choice on subsequent decisions. The second stage
involves identifying the unconnected node that is closest to either of these connected nodes
and then adding the corresponding link to the network. This process is repeated, per the
following summary, until all the nodes have been connected. (Note that this is the same
process already illustrated in Fig. 9.3 for constructing a spanning tree, but now with a spe-
cific rule for selecting each new link.) The resulting network is guaranteed to be a mini-
mum spanning tree.
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Algorithm for the Minimum Spanning Tree Problem.

1. Select any node arbitrarily, and then connect it (i.e., add a link) to the nearest distinct node.
2. Identify the unconnected node that is closest to a connected node, and then connect

these two nodes (i.e., add a link between them). Repeat this step until all nodes have
been connected.

3. Tie breaking: Ties for the nearest distinct node (step 1) or the closest unconnected node
(step 2) may be broken arbitrarily, and the algorithm must still yield an optimal solu-
tion. However, such ties are a signal that there may be (but need not be) multiple op-
timal solutions. All such optimal solutions can be identified by pursuing all ways of
breaking ties to their conclusion.

The fastest way of executing this algorithm manually is the graphical approach il-
lustrated next.

Applying This Algorithm to the Seervada Park 
Minimum Spanning Tree Problem

The Seervada Park management (see Sec. 9.1) needs to determine under which roads tele-
phone lines should be installed to connect all stations with a minimum total length of line.
Using the data given in Fig. 9.1, we outline the step-by-step solution of this problem.

Nodes and distances for the problem are summarized below, where the thin lines now
represent potential links.
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The unconnected node closest to either node O or node A is node B (closest to A). Con-
nect node B to node A.
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The unconnected node closest to node O, A, or B is node C (closest to B). Connect node
C to node B.

The unconnected node closest to node O, A, B, or C is node E (closest to B). Connect
node E to node B.
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The unconnected node closest to node O, A, B, C, or E is node D (closest to E). Connect
node D to node E.
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The only remaining unconnected node is node T. It is closest to node D. Connect node T
to node D.

All nodes are now connected, so this solution to the problem is the desired (optimal) one.
The total length of the links is 14 miles.

Although it may appear at first glance that the choice of the initial node will affect
the resulting final solution (and its total link length) with this procedure, it really does
not. We suggest you verify this fact for the example by reapplying the algorithm, starting
with nodes other than node O.

The minimum spanning tree problem is the one problem we consider in this chapter
that falls into the broad category of network design. In this category, the objective is to
design the most appropriate network for the given application (frequently involving trans-
portation systems) rather than analyzing an already designed network. Selected Reference
7 provides a survey of this important area.
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Now recall that the third problem facing the Seervada Park management (see Sec. 9.1)
during the peak season is to determine how to route the various tram trips from the park
entrance (station O in Fig. 9.1) to the scenic wonder (station T) to maximize the number
of trips per day. (Each tram will return by the same route it took on the outgoing trip, so
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the analysis focuses on outgoing trips only.) To avoid unduly disturbing the ecology and
wildlife of the region, strict upper limits have been imposed on the number of outgoing
trips allowed per day in the outbound direction on each individual road. For each road,
the direction of travel for outgoing trips is indicated by an arrow in Fig. 9.6. The number
at the base of the arrow gives the upper limit on the number of outgoing trips allowed per
day. Given the limits, one feasible solution is to send 7 trams per day, with 5 using the
route O � B � E � T, 1 using O � B � C � E � T, and 1 using O � B � C �
E � D � T. However, because this solution blocks the use of any routes starting with 
O � C (because the E � T and E � D capacities are fully used), it is easy to find bet-
ter feasible solutions. Many combinations of routes (and the number of trips to assign to
each one) need to be considered to find the one(s) maximizing the number of trips made
per day. This kind of problem is called a maximum flow problem.

In general terms, the maximum flow problem can be described as follows.

1. All flow through a directed and connected network originates at one node, called the
source, and terminates at one other node, called the sink. (The source and sink in the
Seervada Park problem are the park entrance at node O and the scenic wonder at node
T, respectively.)

2. All the remaining nodes are transshipment nodes. (These are nodes A, B, C, D, and E
in the Seervada Park problem.)

3. Flow through an arc is allowed only in the direction indicated by the arrowhead, where
the maximum amount of flow is given by the capacity of that arc. At the source, all
arcs point away from the node. At the sink, all arcs point into the node.

4. The objective is to maximize the total amount of flow from the source to the sink. This
amount is measured in either of two equivalent ways, namely, either the amount leav-
ing the source or the amount entering the sink.

Some Applications

Here are some typical kinds of applications of the maximum flow problem.

1. Maximize the flow through a company’s distribution network from its factories to its
customers.

2. Maximize the flow through a company’s supply network from its vendors to its factories.
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3. Maximize the flow of oil through a system of pipelines.
4. Maximize the flow of water through a system of aqueducts.
5. Maximize the flow of vehicles through a transportation network.

For some of these applications, the flow through the network may originate at more
than one node and may also terminate at more than one node, even though a maximum
flow problem is allowed to have only a single source and a single sink. For example, a
company’s distribution network commonly has multiple factories and multiple customers.
A clever reformulation is used to make such a situation fit the maximum flow problem.
This reformulation involves expanding the original network to include a dummy source,
a dummy sink, and some new arcs. The dummy source is treated as the node that origi-
nates all the flow that, in reality, originates from some of the other nodes. For each of
these other nodes, a new arc is inserted that leads from the dummy source to this node,
where the capacity of this arc equals the maximum flow that, in reality, can originate from
this node. Similarly, the dummy sink is treated as the node that absorbs all the flow that,
in reality, terminates at some of the other nodes. Therefore, a new arc is inserted from
each of these other nodes to the dummy sink, where the capacity of this arc equals the
maximum flow that, in reality, can terminate at this node. Because of all these changes,
all the nodes in the original network now are transshipment nodes, so the expanded net-
work has the required single source (the dummy source) and single sink (the dummy sink)
to fit the maximum flow problem.

An Algorithm

Because the maximum flow problem can be formulated as a linear programming prob-
lem (see Prob. 9.5-2), it can be solved by the simplex method, so any of the linear pro-
gramming software packages introduced in Chaps. 3 and 4 can be used. However, an even
more efficient augmenting path algorithm is available for solving this problem. This al-
gorithm is based on two intuitive concepts, a residual network and an augmenting path.

After some flows have been assigned to the arcs, the residual network shows the re-
maining arc capacities (called residual capacities) for assigning additional flows. For ex-
ample, consider arc O � B in Fig. 9.6, which has an arc capacity of 7. Now suppose that
the assigned flows include a flow of 5 through this arc, which leaves a residual capacity
of 7 � 5 � 2 for any additional flow assignment through O � B. This status is depicted
as follows in the residual network.
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The number on an arc next to a node gives the residual capacity for flow from that node
to the other node. Therefore, in addition to the residual capacity of 2 for flow from O to
B, the 5 on the right indicates a residual capacity of 5 for assigning some flow from B to
O (that is, for canceling some previously assigned flow from O to B).

Initially, before any flows have been assigned, the residual network for the Seervada
Park problem has the appearance shown in Fig. 9.7. Every arc in the original network
(Fig. 9.6) has been changed from a directed arc to an undirected arc. However, the arc
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capacity in the original direction remains the same and the arc capacity in the opposite
direction is zero, so the constraints on flows are unchanged.

Subsequently, whenever some amount of flow is assigned to an arc, that amount is
subtracted from the residual capacity in the same direction and added to the residual ca-
pacity in the opposite direction.

An augmenting path is a directed path from the source to the sink in the residual
network such that every arc on this path has strictly positive residual capacity. The mini-
mum of these residual capacities is called the residual capacity of the augmenting path
because it represents the amount of flow that can feasibly be added to the entire path.
Therefore, each augmenting path provides an opportunity to further augment the flow
through the original network.

The augmenting path algorithm repeatedly selects some augmenting path and adds a
flow equal to its residual capacity to that path in the original network. This process con-
tinues until there are no more augmenting paths, so the flow from the source to the sink
cannot be increased further. The key to ensuring that the final solution necessarily is op-
timal is the fact that augmenting paths can cancel some previously assigned flows in the
original network, so an indiscriminate selection of paths for assigning flows cannot pre-
vent the use of a better combination of flow assignments.

To summarize, each iteration of the algorithm consists of the following three steps.

The Augmenting Path Algorithm for the Maximum Flow Problem.1

1. Identify an augmenting path by finding some directed path from the source to the sink
in the residual network such that every arc on this path has strictly positive residual
capacity. (If no augmenting path exists, the net flows already assigned constitute an
optimal flow pattern.)

2. Identify the residual capacity c* of this augmenting path by finding the minimum of
the residual capacities of the arcs on this path. Increase the flow in this path by c*.

3. Decrease by c* the residual capacity of each arc on this augmenting path. Increase by
c* the residual capacity of each arc in the opposite direction on this augmenting path.
Return to step 1.
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1It is assumed that the arc capacities are either integers or rational numbers.



When step 1 is carried out, there often will be a number of alternative augmenting
paths from which to choose. Although the algorithmic strategy for making this selection
is important for the efficiency of large-scale implementations, we shall not delve into this
relatively specialized topic. (Later in the section, we do describe a systematic procedure
for finding some augmenting path.) Therefore, for the following example (and the prob-
lems at the end of the chapter), the selection is just made arbitrarily.

Applying This Algorithm to the Seervada Park Maximum Flow Problem

Applying this algorithm to the Seervada Park problem (see Fig. 9.6 for the original net-
work) yields the results summarized next. Starting with the initial residual network given
in Fig. 9.7, we give the new residual network after each one or two iterations, where the
total amount of flow from O to T achieved thus far is shown in boldface (next to nodes
O and T).

Iteration 1: In Fig. 9.7, one of several augmenting paths is O � B � E � T, which
has a residual capacity of min{7, 5, 6} � 5. By assigning a flow of 5 to this path, the re-
sulting residual network is
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Iteration 2: Assign a flow of 3 to the augmenting path O � A � D � T. The re-
sulting residual network is
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Iteration 3: Assign a flow of 1 to the augmenting path O � A � B � D � T.



Iteration 4: Assign a flow of 2 to the augmenting path O � B � D � T. The re-
sulting residual network is
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Iteration 5: Assign a flow of 1 to the augmenting path O � C � E � D � T.
Iteration 6: Assign a flow of 1 to the augmenting path O � C � E � T. The re-

sulting residual network is

Iteration 7: Assign a flow of 1 to the augmenting path O � C � E � B � D � T.
The resulting residual network is
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There are no more augmenting paths, so the current flow pattern is optimal.



The current flow pattern may be identified by either cumulating the flow assignments
or comparing the final residual capacities with the original arc capacities. If we use the
latter method, there is flow along an arc if the final residual capacity is less than the orig-
inal capacity. The magnitude of this flow equals the difference in these capacities. Ap-
plying this method by comparing the residual network obtained from the last iteration
with either Fig. 9.6 or 9.7 yields the optimal flow pattern shown in Fig. 9.8.

This example nicely illustrates the reason for replacing each directed arc i � j in the
original network by an undirected arc in the residual network and then increasing the resid-
ual capacity for j � i by c* when a flow of c* is assigned to i � j. Without this refine-
ment, the first six iterations would be unchanged. However, at that point it would appear
that no augmenting paths remain (because the real unused arc capacity for E � B is zero).
Therefore, the refinement permits us to add the flow assignment of 1 for O � C � E �
B � D � T in iteration 7. In effect, this additional flow assignment cancels 1 unit of
flow assigned at iteration 1 (O � B � E � T) and replaces it by assignments of 1 unit
of flow to both O � B � D � T and O � C � E � T.

Finding an Augmenting Path

The most difficult part of this algorithm when large networks are involved is finding an
augmenting path. This task may be simplified by the following systematic procedure. Be-
gin by determining all nodes that can be reached from the source along a single arc with
strictly positive residual capacity. Then, for each of these nodes that were reached, deter-
mine all new nodes (those not yet reached) that can be reached from this node along an
arc with strictly positive residual capacity. Repeat this successively with the new nodes
as they are reached. The result will be the identification of a tree of all the nodes that can
be reached from the source along a path with strictly positive residual flow capacity. Hence,
this fanning-out procedure will always identify an augmenting path if one exists. The pro-
cedure is illustrated in Fig. 9.9 for the residual network that results from iteration 6 in the
preceding example.

Although the procedure illustrated in Fig. 9.9 is a relatively straightforward one, it
would be helpful to be able to recognize when optimality has been reached without an
exhaustive search for a nonexistent path. It is sometimes possible to recognize this event
because of an important theorem of network theory known as the max-flow min-cut the-
orem. A cut may be defined as any set of directed arcs containing at least one arc from
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every directed path from the source to the sink. There normally are many ways to slice
through a network to form a cut to help analyze the network. For any particular cut, the
cut value is the sum of the arc capacities of the arcs (in the specified direction) of the
cut. The max-flow min-cut theorem states that, for any network with a single source and
sink, the maximum feasible flow from the source to the sink equals the minimum cut value
for all cuts of the network. Thus, if we let F denote the amount of flow from the source
to the sink for any feasible flow pattern, the value of any cut provides an upper bound to
F, and the smallest of the cut values is equal to the maximum value of F. Therefore, if a
cut whose value equals the value of F currently attained by the solution procedure can be
found in the original network, the current flow pattern must be optimal. Eventually, opti-
mality has been attained whenever there exists a cut in the residual network whose value
is zero.

To illustrate, consider the network of Fig. 9.7. One interesting cut through this net-
work is shown in Fig. 9.10. Notice that the value of the cut is 3 � 4 � 1 � 6 � 14, which
was found to be the maximum value of F, so this cut is a minimum cut. Notice also that,
in the residual network resulting from iteration 7, where F � 14, the corresponding cut
has a value of zero. If this had been noticed, it would not have been necessary to search
for additional augmenting paths.
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Using Excel to Formulate and Solve Maximum Flow Problems

Most maximum flow problems that arise in practice are considerably larger, and occa-
sionally vastly larger, than the Seervada Park problem. Some problems have thousands of
nodes and arcs. The augmenting path algorithm just presented is far more efficient than
the general simplex method for solving such large problems. However, for problems of
modest size, a reasonable and convenient alternative is to use Excel and its Solver based
on the general simplex method.

Figure 9.11 shows a spreadsheet formulation for the Seervada Park maximum flow
problem. The format is similar to that for the Seervada Park shortest-path problem dis-
played in Fig. 9.4. The arcs are listed in columns B and C, and the corresponding arc ca-
pacities are given in column F. Since the decision variables are the flows through the re-
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FIGURE 9.11
A spreadsheet formulation for the Seervada Park maximum flow problem, where the
changing cells (D4:D15) show the optimal solution obtained by the Excel Solver and
the target cell (D17) gives the resulting maximum flow through the network.



spective arcs, these quantities are entered in the changing cells in column D (cells D4:D15).
Employing the equations given in the bottom right-hand corner of the figure, these flows
then are used to calculate the net flow generated at each of the nodes (see columns H and
I). These net flows are required to be 0 for the transshipment nodes (A, B, C, D, and E),
as indicated by the second set of constraints (I5:I9 � K5:K9) in the Solver dialogue box.
The first set of constraints (D4:D15 � F4:F15) specifies the arc capacity constraints. The
total amount of flow from the source (node O) to the sink (node T) equals the flow gen-
erated at the source (cell I4), so the target cell (D17) is set equal to I4. After specifying
maximization of the target cell in the Solver dialogue box and then clicking on the Solve
button, the optimal solution shown in cells D4:D15 is obtained.
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The minimum cost flow problem holds a central position among network optimization mod-
els, both because it encompasses such a broad class of applications and because it can be
solved extremely efficiently. Like the maximum flow problem, it considers flow through a
network with limited arc capacities. Like the shortest-path problem, it considers a cost (or
distance) for flow through an arc. Like the transportation problem or assignment problem of
Chap. 8, it can consider multiple sources (supply nodes) and multiple destinations (demand
nodes) for the flow, again with associated costs. In fact, all four of these previously studied
problems are special cases of the minimum cost flow problem, as we will demonstrate shortly.

The reason that the minimum cost flow problem can be solved so efficiently is that
it can be formulated as a linear programming problem so it can be solved by a stream-
lined version of the simplex method called the network simplex method. We describe this
algorithm in the next section.

The minimum cost flow problem is described below.

1. The network is a directed and connected network.
2. At least one of the nodes is a supply node.
3. At least one of the other nodes is a demand node.
4. All the remaining nodes are transshipment nodes.
5. Flow through an arc is allowed only in the direction indicated by the arrowhead, where

the maximum amount of flow is given by the capacity of that arc. (If flow can occur in
both directions, this would be represented by a pair of arcs pointing in opposite directions.)

6. The network has enough arcs with sufficient capacity to enable all the flow generated
at the supply nodes to reach all the demand nodes.

7. The cost of the flow through each arc is proportional to the amount of that flow, where
the cost per unit flow is known.

8. The objective is to minimize the total cost of sending the available supply through the
network to satisfy the given demand. (An alternative objective is to maximize the to-
tal profit from doing this.)

Some Applications

Probably the most important kind of application of minimum cost flow problems is to the
operation of a company’s distribution network. As summarized in the first row of Table
9.3, this kind of application always involves determining a plan for shipping goods from
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its sources (factories, etc.) to intermediate storage facilities (as needed) and then on to
the customers.

For example, consider the distribution network for the International Paper Company
(as described in the March–April 1988 issue of Interfaces). This company is the world’s
largest manufacturer of pulp, paper, and paper products, as well as a major producer of
lumber and plywood. It also either owns or has rights over about 20 million acres of wood-
lands. The supply nodes in its distribution network are these woodlands in their various
locations. However, before the company’s goods can eventually reach the demand nodes
(the customers), the wood must pass through a long sequence of transshipment nodes. A
typical path through the distribution network is

Woodlands � woodyards � sawmills
� paper mills � converting plants
� warehouses � customers.

Another example of a complicated distribution network is the one for the Citgo Pe-
troleum Corporation described in Sec. 3.5. Applying a minimum cost flow problem for-
mulation to improve the operation of this distribution network saved Citgo at least $16.5
million annually.

For some applications of minimum cost flow problems, all the transshipment nodes
are processing facilities rather than intermediate storage facilities. This is the case for
solid waste management, as indicated in the second row of Table 9.3. Here, the flow of
materials through the network begins at the sources of the solid waste, then goes to the
facilities for processing these waste materials into a form suitable for landfill, and then
sends them on to the various landfill locations. However, the objective still is to deter-
mine the flow plan that minimizes the total cost, where the cost now is for both ship-
ping and processing.

In other applications, the demand nodes might be processing facilities. For example,
in the third row of Table 9.3, the objective is to find the minimum cost plan for obtain-
ing supplies from various possible vendors, storing these goods in warehouses (as needed),
and then shipping the supplies to the company’s processing facilities (factories, etc.). Since
the total amount that could be supplied by all the vendors is more than the company needs,
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TABLE 9.3 Typical kinds of applications of minimum cost flow problems

Kind of Application Supply Nodes Transshipment Nodes Demand Nodes

Operation of a Sources of goods Intermediate storage Customers
distribution network facilities

Solid waste Sources of solid Processing facilities Landfill locations
management waste

Operation of a supply Vendors Intermediate warehouses Processing
network facilities

Coordinating product Plants Production of a specific Market for a
mixes at plants product specific product

Cash flow Sources of cash at Short-term investment Needs for cash at
management a specific time options a specific time



the network includes a dummy demand node that receives (at zero cost) all the unused
supply capacity at the vendors.

The July–August 1987 issue of Interfaces describes how, even back then, microcom-
puters were being used by Marshalls, Inc. (an off-price retail chain) to deal with a mini-
mum cost flow problem this way. In this application, Marshalls was optimizing the flow
of freight from vendors to processing centers and then on to retail stores. Some of their
networks had over 20,000 arcs.

The next kind of application in Table 9.3 (coordinating product mixes at plants) illus-
trates that arcs can represent something other than a shipping lane for a physical flow of
materials. This application involves a company with several plants (the supply nodes) that
can produce the same products but at different costs. Each arc from a supply node repre-
sents the production of one of the possible products at that plant, where this arc leads to
the transshipment node that corresponds to this product. Thus, this transshipment node has
an arc coming in from each plant capable of producing this product, and then the arcs lead-
ing out of this node go to the respective customers (the demand nodes) for this product.
The objective is to determine how to divide each plant’s production capacity among the
products so as to minimize the total cost of meeting the demand for the various products.

The last application in Table 9.3 (cash flow management) illustrates that different nodes
can represent some event that occurs at different times. In this case, each supply node rep-
resents a specific time (or time period) when some cash will become available to the com-
pany (through maturing accounts, notes receivable, sales of securities, borrowing, etc.). The
supply at each of these nodes is the amount of cash that will become available then. Sim-
ilarly, each demand node represents a specific time (or time period) when the company will
need to draw on its cash reserves. The demand at each such node is the amount of cash
that will be needed then. The objective is to maximize the company’s income from in-
vesting the cash between each time it becomes available and when it will be used. There-
fore, each transshipment node represents the choice of a specific short-term investment op-
tion (e.g., purchasing a certificate of deposit from a bank) over a specific time interval. The
resulting network will have a succession of flows representing a schedule for cash becoming
available, being invested, and then being used after the maturing of the investment.

Formulation of the Model

Consider a directed and connected network where the n nodes include at least one sup-
ply node and at least one demand node. The decision variables are

xij � flow through arc i � j,

and the given information includes

cij � cost per unit flow through arc i � j,
uij � arc capacity for arc i � j,
bi � net flow generated at node i.

The value of bi depends on the nature of node i, where

bi � 0 if node i is a supply node,
bi � 0 if node i is a demand node,
bi � 0 if node i is a transshipment node.
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The objective is to minimize the total cost of sending the available supply through the
network to satisfy the given demand.

By using the convention that summations are taken only over existing arcs, the lin-
ear programming formulation of this problem is

Minimize Z � �
n

i�1
�
n

j�1
cijxij,

subject to

�
n

j�1
xij � �

n

j�1
xji � bi, for each node i,

and

0 � xij � uij, for each arc i � j.

The first summation in the node constraints represents the total flow out of node i, whereas
the second summation represents the total flow into node i, so the difference is the net
flow generated at this node.

In some applications, it is necessary to have a lower bound Lij � 0 for the flow through
each arc i � j. When this occurs, use a translation of variables x�ij � xij � Lij, with x�ij �
Lij substituted for xij throughout the model, to convert the model back to the above for-
mat with nonnegativity constraints.

It is not guaranteed that the problem actually will possess feasible solutions, depending
partially upon which arcs are present in the network and their arc capacities. However,
for a reasonably designed network, the main condition needed is the following.

Feasible solutions property: A necessary condition for a minimum cost flow
problem to have any feasible solutions is that

�
n

i�1
bi � 0.

That is, the total flow being generated at the supply nodes equals the total flow
being absorbed at the demand nodes.

If the values of bi provided for some application violate this condition, the usual interpreta-
tion is that either the supplies or the demands (whichever are in excess) actually represent up-
per bounds rather than exact amounts. When this situation arose for the transportation prob-
lem in Sec. 8.1, either a dummy destination was added to receive the excess supply or a
dummy source was added to send the excess demand. The analogous step now is that either
a dummy demand node should be added to absorb the excess supply (with cij � 0 arcs added
from every supply node to this node) or a dummy supply node should be added to generate
the flow for the excess demand (with cij � 0 arcs added from this node to every demand node).

For many applications, bi and uij will have integer values, and implementation will
require that the flow quantities xij also be integer. Fortunately, just as for the transporta-
tion problem, this outcome is guaranteed without explicitly imposing integer constraints
on the variables because of the following property.
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Integer solutions property: For minimum cost flow problems where every bi

and uij have integer values, all the basic variables in every basic feasible (BF)
solution (including an optimal one) also have integer values.

An Example

An example of a minimum cost flow problem is shown in Fig. 9.12. This network actu-
ally is the distribution network for the Distribution Unlimited Co. problem presented in
Sec. 3.4 (see Fig. 3.13). The quantities given in Fig. 3.13 provide the values of the bi, cij,
and uij shown here. The bi values in Fig. 9.12 are shown in square brackets by the nodes,
so the supply nodes (bi � 0) are A and B (the company’s two factories), the demand nodes
(bi � 0) are D and E (two warehouses), and the one transshipment node (bi � 0) is C (a
distribution center). The cij values are shown next to the arcs. In this example, all but two
of the arcs have arc capacities exceeding the total flow generated (90), so uij � � for all
practical purposes. The two exceptions are arc A � B, where uAB � 10, and arc C � E,
which has uCE � 80.

The linear programming model for this example is

Minimize Z � 2xAB � 4xAC � 9xAD � 3xBC � xCE � 3xDE � 2xED,

subject to

xAB � xAC � xAD � 50
�xAB � xBC � 40

� xAC � xBC � xCE � 0
� xAD � xDE � xED � �30

� xCE � xDE � xED � �60

and

xAB � 10, xCE � 80, all xij 	 0.
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Now note the pattern of coefficients for each variable in the set of five node constraints
(the equality constraints). Each variable has exactly two nonzero coefficients, where one
is �1 and the other is �1. This pattern recurs in every minimum cost flow problem, and
it is this special structure that leads to the integer solutions property.

Another implication of this special structure is that (any) one of the node constraints
is redundant. The reason is that summing all these constraint equations yields nothing but
zeros on both sides (assuming feasible solutions exist, so the bi values sum to zero), so
the negative of any one of these equations equals the sum of the rest of the equations.
With just n � 1 nonredundant node constraints, these equations provide just n � 1 basic
variables for a BF solution. In the next section, you will see that the network simplex
method treats the xij � uij constraints as mirror images of the nonnegativity constraints,
so the total number of basic variables is n � 1. This leads to a direct correspondence be-
tween the n � 1 arcs of a spanning tree and the n � 1 basic variables—but more about
that story later.

Using Excel to Formulate and Solve Minimum Cost Flow Problems

Excel provides a convenient way of formulating and solving small minimum cost flow
problems like this one, as well as somewhat larger problems. Figure 9.13 shows how this
can be done. The format is almost the same as displayed in Fig. 9.11 for a maximum flow
problem. One difference is that the unit costs (cij) now need to be included (in column
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FIGURE 9.13
A spreadsheet formulation for
the Distribution Unlimited
Co. minimum cost flow
problem, where the
changing cells (D4:D10)
show the optimal solution
obtained by the Excel Solver
and the target cell (D12)
gives the resulting total cost
of the flow of shipments
through the network.



G). Because bi values are specified for every node, net flow constraints are needed for all
the nodes. However, only two of the arcs happen to need arc capacity constraints. The tar-
get cell (D12) now gives the total cost of the flow (shipments) through the network (see
its equation at the bottom of the figure), so the objective specified in the Solver dialogue
box is to minimize this quantity. The changing cells (D4:D10) in this spreadsheet show
the optimal solution obtained after clicking on the Solve button.

For much larger minimum cost flow problems, the network simplex method described
in the next section provides a considerably more efficient solution procedure. It also is an
attractive option for solving various special cases of the minimum cost flow problem out-
lined below. This algorithm is commonly included in mathematical programming soft-
ware packages. For example, it is one of the options with CPLEX.

We shall soon solve this same example by the network simplex method. However, let
us first see how some special cases fit into the network format of the minimum cost flow
problem.

Special Cases

The Transportation Problem. To formulate the transportation problem presented in
Sec. 8.1 as a minimum cost flow problem, a supply node is provided for each source, as
well as a demand node for each destination, but no transshipment nodes are included in the
network. All the arcs are directed from a supply node to a demand node, where distributing
xij units from source i to destination j corresponds to a flow of xij through arc i � j. The
cost cij per unit distributed becomes the cost cij per unit of flow. Since the transportation
problem does not impose upper bound constraints on individual xij, all the uij � �.

Using this formulation for the P & T Co. transportation problem presented in Table
8.2 yields the network shown in Fig. 8.2. The corresponding network for the general trans-
portation problem is shown in Fig. 8.3.

The Assignment Problem. Since the assignment problem discussed in Sec. 8.3 is a
special type of transportation problem, its formulation as a minimum cost flow problem
fits into the same format. The additional factors are that (1) the number of supply nodes
equals the number of demand nodes, (2) bi � 1 for each supply node, and (3) bi � �1
for each demand node.

Figure 8.5 shows this formulation for the general assignment problem.

The Transshipment Problem. This special case actually includes all the general fea-
tures of the minimum cost flow problem except for not having (finite) arc capacities. Thus,
any minimum cost flow problem where each arc can carry any desired amount of flow is
also called a transshipment problem.

For example, the Distribution Unlimited Co. problem shown in Fig. 9.13 would be a
transshipment problem if the upper bounds on the flow through arcs A � B and C � E
were removed.

Transshipment problems frequently arise as generalizations of transportation prob-
lems where units being distributed from each source to each destination can first pass
through intermediate points. These intermediate points may include other sources and des-
tinations, as well as additional transfer points that would be represented by transshipment
nodes in the network representation of the problem. For example, the Distribution Un-
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limited Co. problem can be viewed as a generalization of a transportation problem with
two sources (the two factories represented by nodes A and B in Fig. 9.13), two destina-
tions (the two warehouses represented by nodes D and E), and one additional intermedi-
ate transfer point (the distribution center represented by node C ).

(Chapter 23 on our website includes a further discussion of the transshipment problem.)

The Shortest-Path Problem. Now consider the main version of the shortest-path
problem presented in Sec. 9.3 (finding the shortest path from one origin to one destina-
tion through an undirected network). To formulate this problem as a minimum cost flow
problem, one supply node with a supply of 1 is provided for the origin, one demand node
with a demand of 1 is provided for the destination, and the rest of the nodes are trans-
shipment nodes. Because the network of our shortest-path problem is undirected, whereas
the minimum cost flow problem is assumed to have a directed network, we replace each
link by a pair of directed arcs in opposite directions (depicted by a single line with ar-
rowheads at both ends). The only exceptions are that there is no need to bother with arcs
into the supply node or out of the demand node. The distance between nodes i and j be-
comes the unit cost cij or cji for flow in either direction between these nodes. As with the
preceding special cases, no arc capacities are imposed, so all uij � �.

Figure 9.14 depicts this formulation for the Seervada Park shortest-path problem
shown in Fig. 9.1, where the numbers next to the lines now represent the unit cost of flow
in either direction.

The Maximum Flow Problem. The last special case we shall consider is the maxi-
mum flow problem described in Sec. 9.5. In this case a network already is provided with
one supply node (the source), one demand node (the sink), and various transshipment
nodes, as well as the various arcs and arc capacities. Only three adjustments are needed
to fit this problem into the format for the minimum cost flow problem. First, set cij � 0
for all existing arcs to reflect the absence of costs in the maximum flow problem. Sec-
ond, select a quantity F�, which is a safe upper bound on the maximum feasible flow
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through the network, and then assign a supply and a demand of F� to the supply node and
the demand node, respectively. (Because all other nodes are transshipment nodes, they au-
tomatically have bi � 0.) Third, add an arc going directly from the supply node to the de-
mand node and assign it an arbitrarily large unit cost of cij � M as well as an unlimited
arc capacity (uij � �). Because of this positive unit cost for this arc and the zero unit cost
for all the other arcs, the minimum cost flow problem will send the maximum feasible
flow through the other arcs, which achieves the objective of the maximum flow problem.

Applying this formulation to the Seervada Park maximum flow problem shown in
Fig. 9.6 yields the network given in Fig. 9.15, where the numbers given next to the orig-
inal arcs are the arc capacities.

Final Comments. Except for the transshipment problem, each of these special cases
has been the focus of a previous section in either this chapter or Chap. 8. When each was
first presented, we talked about a special-purpose algorithm for solving it very efficiently.
Therefore, it certainly is not necessary to reformulate these special cases to fit the format
of the minimum cost flow problem in order to solve them. However, when a computer
code is not readily available for the special-purpose algorithm, it is very reasonable to use
the network simplex method instead. In fact, recent implementations of the network sim-
plex method have become so powerful that it now provides an excellent alternative to the
special-purpose algorithm.

The fact that these problems are special cases of the minimum cost flow problem is
of interest for other reasons as well. One reason is that the underlying theory for the min-
imum cost flow problem and for the network simplex method provides a unifying theory
for all these special cases. Another reason is that some of the many applications of the
minimum cost flow problem include features of one or more of the special cases, so it is
important to know how to reformulate these features into the broader framework of the
general problem.
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The network simplex method is a highly streamlined version of the simplex method for
solving minimum cost flow problems. As such, it goes through the same basic steps at
each iteration—finding the entering basic variable, determining the leaving basic variable,
and solving for the new BF solution—in order to move from the current BF solution to a
better adjacent one. However, it executes these steps in ways that exploit the special net-
work structure of the problem without ever needing a simplex tableau.

You may note some similarities between the network simplex method and the trans-
portation simplex method presented in Sec. 8.2. In fact, both are streamlined versions of
the simplex method that provide alternative algorithms for solving transportation prob-
lems in similar ways. The network simplex method extends these ideas to solving other
types of minimum cost flow problems as well.

In this section, we provide a somewhat abbreviated description of the network sim-
plex method that focuses just on the main concepts. We omit certain details needed for a
full computer implementation, including how to construct an initial BF solution and how
to perform certain calculations (such as for finding the entering basic variable) in the most
efficient manner. These details are provided in various more specialized textbooks, such
as Selected References 1, 2, 3, 5, and 8.

Incorporating the Upper Bound Technique

The first concept is to incorporate the upper bound technique described in Sec. 7.3 to deal
efficiently with the arc capacity constraints xij � uij. Thus, rather than these constraints
being treated as functional constraints, they are handled just as nonnegativity constraints
are. Therefore, they are considered only when the leaving basic variable is determined. In
particular, as the entering basic variable is increased from zero, the leaving basic variable
is the first basic variable that reaches either its lower bound (0) or its upper bound (uij).
A nonbasic variable at its upper bound xij � uij is replaced by xij � uij � yij, so yij � 0
becomes the nonbasic variable. See Sec. 7.3 for further details.

In our current context, yij has an interesting network interpretation. Whenever yij be-
comes a basic variable with a strictly positive value (� uij), this value can be thought of
as flow from node j to node i (so in the “wrong” direction through arc i � j) that, in ac-
tuality, is canceling that amount of the previously assigned flow (xij � uij) from node i to
node j. Thus, when xij � uij is replaced by xij � uij � yij, we also replace the real arc 
i � j by the reverse arc j � i, where this new arc has arc capacity uij (the maximum
amount of the xij � uij flow that can be canceled) and unit cost � cij (since each unit of
flow canceled saves cij). To reflect the flow of xij � uij through the deleted arc, we shift
this amount of net flow generated from node i to node j by decreasing bi by uij and in-
creasing bj by uij. Later, if yij becomes the leaving basic variable by reaching its upper
bound, then yij � uij is replaced by yij � uij � xij with xij � 0 as the new nonbasic vari-
able, so the above process would be reversed (replace arc j � i by arc i � j, etc.) to the
original configuration.

To illustrate this process, consider the minimum cost flow problem shown in Fig.
9.12. While the network simplex method is generating a sequence of BF solutions, sup-
pose that xAB has become the leaving basic variable for some iteration by reaching its up-
per bound of 10. Consequently, xAB � 10 is replaced by xAB � 10 � yAB, so yAB � 0 
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becomes the new nonbasic variable. At the same time, we replace arc A � B by arc 
B � A (with yAB as its flow quantity), and we assign this new arc a capacity of 10 and a
unit cost of �2. To take xAB � 10 into account, we also decrease bA from 50 to 40 and
increase bB from 40 to 50. The resulting adjusted network is shown in Fig. 9.16.

We shall soon illustrate the entire network simplex method with this same example,
starting with yAB � 0 (xAB � 10) as a nonbasic variable and so using Fig. 9.16. A later it-
eration will show xCE reaching its upper bound of 80 and so being replaced by xCE �
80 � yCE, and so on, and then the next iteration has yAB reaching its upper bound of 10.
You will see that all these operations are performed directly on the network, so we will
not need to use the xij or yij labels for arc flows or even to keep track of which arcs are
real arcs and which are reverse arcs (except when we record the final solution). Using the
upper bound technique leaves the node constraints (flow out minus flow in � bi) as the
only functional constraints. Minimum cost flow problems tend to have far more arcs than
nodes, so the resulting number of functional constraints generally is only a small fraction
of what it would have been if the arc capacity constraints had been included. The com-
putation time for the simplex method goes up relatively rapidly with the number of func-
tional constraints, but only slowly with the number of variables (or the number of bound-
ing constraints on these variables). Therefore, incorporating the upper bound technique
here tends to provide a tremendous saving in computation time.

However, this technique is not needed for uncapacitated minimum cost flow prob-
lems (including all but the last special case considered in the preceding section), where
there are no arc capacity constraints.

Correspondence between BF Solutions and Feasible Spanning Trees

The most important concept underlying the network simplex method is its network rep-
resentation of BF solutions. Recall from Sec. 9.6 that with n nodes, every BF solution has
(n � 1) basic variables, where each basic variable xij represents the flow through arc 
i � j. These (n � 1) arcs are referred to as basic arcs. (Similarly, the arcs corresponding
to the nonbasic variables xij � 0 or yij � 0 are called nonbasic arcs.)

A key property of basic arcs is that they never form undirected cycles. (This property
prevents the resulting solution from being a weighted average of another pair of feasible
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solutions, which would violate one of the general properties of BF solutions.) However,
any set of n � 1 arcs that contains no undirected cycles forms a spanning tree. Therefore,
any complete set of n � 1 basic arcs forms a spanning tree.

Thus, BF solutions can be obtained by “solving” spanning trees, as summarized below.
A spanning tree solution is obtained as follows:

1. For the arcs not in the spanning tree (the nonbasic arcs), set the corresponding vari-
ables (xij or yij) equal to zero.

2. For the arcs that are in the spanning tree (the basic arcs), solve for the corresponding
variables (xij or yij) in the system of linear equations provided by the node constraints.

(The network simplex method actually solves for the new BF solution from the current
one much more efficiently, without solving this system of equations from scratch.) Note
that this solution process does not consider either the nonnegativity constraints or the arc
capacity constraints for the basic variables, so the resulting spanning tree solution may or
may not be feasible with respect to these constraints—which leads to our next definition.

A feasible spanning tree is a spanning tree whose solution from the node constraints also
satisfies all the other constraints (0 � xij � uij or 0 � yij � uij).

With these definitions, we now can summarize our key conclusion as follows:

The fundamental theorem for the network simplex method says that basic solutions
are spanning tree solutions (and conversely) and that BF solutions are solutions for fea-
sible spanning trees (and conversely).

To begin illustrating the application of this fundamental theorem, consider the net-
work shown in Fig. 9.16 that results from replacing xAB � 10 by xAB � 10 � yAB for our
example in Fig. 9.12. One spanning tree for this network is the one shown in Fig. 9.3e,
where the arcs are A � D, D � E, C � E, and B � C. With these as the basic arcs, the
process of finding the spanning tree solution is shown below. On the left is the set of node
constraints given in Sec. 9.6 after 10 � yAB is substituted for xAB, where the basic vari-
ables are shown in boldface. On the right, starting at the top and moving down, is the se-
quence of steps for setting or calculating the values of the variables.

yAB � 0, xAC � 0, xED � 0

�yAB � xAC � xAD � xBC � xCE � xDE � xED � �40 xAD � 40.
�yAB � xAC � xAD � xBC � �50 xBC � 50.
�yAB � xAC �xAD � xBC � xCE � � 0 so xCE � 50.
�yAB � xAC� xAD � xBC � xCE � xDE � xED � �30 so xDE � 10.
�yAB � xAC � xAD � xBC � xCE � xDE � xED � �60 Redundant.

Since the values of all these basic variables satisfy the nonnegativity constraints and the
one relevant arc capacity constraint (xCE � 80), the spanning tree is a feasible spanning
tree, so we have a BF solution.

We shall use this solution as the initial BF solution for demonstrating the network
simplex method. Figure 9.17 shows its network representation, namely, the feasible span-
ning tree and its solution. Thus, the numbers given next to the arcs now represent flows
(values of xij) rather than the unit costs cij previously given. (To help you distinguish, we
shall always put parentheses around flows but not around costs.)
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Selecting the Entering Basic Variable

To begin an iteration of the network simplex method, recall that the standard simplex
method criterion for selecting the entering basic variable is to choose the nonbasic vari-
able which, when increased from zero, will improve Z at the fastest rate. Now let us see
how this is done without having a simplex tableau.

To illustrate, consider the nonbasic variable xAC in our initial BF solution, i.e., the
nonbasic arc A � C. Increasing xAC from zero to some value � means that the arc 
A � C with flow � must be added to the network shown in Fig. 9.17. Adding a nonba-
sic arc to a spanning tree always creates a unique undirected cycle, where the cycle in this
case is seen in Fig. 9.18 to be AC–CE–DE–AD. Figure 9.18 also shows the effect of adding
the flow � to arc A � C on the other flows in the network. Specifically, the flow is thereby
increased by � for other arcs that have the same direction as A � C in the cycle (arc 
C � E), whereas the net flow is decreased by � for other arcs whose direction is oppo-
site to A � C in the cycle (arcs D � E and A � D). In the latter case, the new flow is,
in effect, canceling a flow of � in the opposite direction. Arcs not in the cycle (arc 
B � C ) are unaffected by the new flow. (Check these conclusions by noting the effect of
the change in xAC on the values of the other variables in the solution just derived for the
initial feasible spanning tree.)
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FIGURE 9.17
The initial feasible spanning
tree and its solution for the
example.
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arc A � C with flow � to the
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Now what is the incremental effect on Z (total flow cost) from adding the flow � to
arc A � C? Figure 9.19 shows most of the answer by giving the unit cost times the change
in the flow for each arc of Fig. 9.18. Therefore, the overall increment in Z is

�Z � cAC� � cCE� � cDE(��) � cAD(��)
� 4� � � � 3� � 9�
� �7�.

Setting � � 1 then gives the rate of change of Z as xAC is increased, namely,

�Z � �7, when � � 1.

Because the objective is to minimize Z, this large rate of decrease in Z by increasing xAC

is very desirable, so xAC becomes a prime candidate to be the entering basic variable.
We now need to perform the same analysis for the other nonbasic variables before

we make the final selection of the entering basic variable. The only other nonbasic vari-
ables are yAB and xED, corresponding to the two other nonbasic arcs B � A and E � D
in Fig. 9.16.

Figure 9.20 shows the incremental effect on costs of adding arc B � A with flow �
to the initial feasible spanning tree given in Fig. 9.17. Adding this arc creates the undi-
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The incremental effect on
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rected cycle BA–AD–DE–CE–BC, so the flow increases by � for arcs A � D and 
D � E but decreases by � for the two arcs in the opposite direction on this cycle,
C � E and B � C. These flow increments, � and ��, are the multiplicands for the cij

values in the figure. Therefore,

�Z � �2� � 9� � 3� � 1(��) � 3(��) � 6�
� 6, when � � 1.

The fact that Z increases rather than decreases when yAB (flow through the reverse arc 
B � A) is increased from zero rules out this variable as a candidate to be the entering ba-
sic variable. (Remember that increasing yAB from zero really means decreasing xAB, flow
through the real arc A � B, from its upper bound of 10.)

A similar result is obtained for the last nonbasic arc E � D. Adding this arc with
flow � to the initial feasible spanning tree creates the undirected cycle ED–DE shown in
Fig. 9.21, so the flow also increases by � for arc D � E, but no other arcs are affected.
Therefore,

�Z � 2� � 3� � 5�
� 5, when � � 1,

so xED is ruled out as a candidate to be the entering basic variable.
To summarize,

�7, if �xAC � 1
�Z � � 6, if �yAB � 1

�5, if �xED � 1

so the negative value for xAC implies that xAC becomes the entering basic variable for the
first iteration. If there had been more than one nonbasic variable with a negative value of
�Z, then the one having the largest absolute value would have been chosen. (If there had
been no nonbasic variables with a negative value of �Z, the current BF solution would
have been optimal.)

Rather than identifying undirected cycles, etc., the network simplex method actually
obtains these �Z values by an algebraic procedure that is considerably more efficient (es-
pecially for large networks). The procedure is analogous to that used by the transporta-
tion simplex method (see Sec. 8.2) to solve for ui and vj in order to obtain the value of
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cij � ui � vj for each nonbasic variable xij. We shall not describe this procedure further,
so you should just use the undirected cycles method when you are doing problems at the
end of the chapter.

Finding the Leaving Basic Variable and the Next BF Solution

After selection of the entering basic variable, only one more quick step is needed to si-
multaneously determine the leaving basic variable and solve for the next BF solution. For
the first iteration of the example, the key is Fig. 9.18. Since xAC is the entering basic vari-
able, the flow � through arc A � C is to be increased from zero as far as possible until
one of the basic variables reaches either its lower bound (0) or its upper bound (uij). For
those arcs whose flow increases with � in Fig. 9.18 (arcs A � C and C � E), only the
upper bounds (uAC � � and uCE � 80) need to be considered:

xAC � � � �.
xCE � 50 � � � 80, so � � 30.

For those arcs whose flow decreases with � (arcs D � E and A � D), only the lower
bound of 0 needs to be considered:

xDE � 10 � � 	 0, so � � 10.
xAD � 40 � � 	 0, so � � 40.

Arcs whose flow is unchanged by � (i.e., those not part of the undirected cycle), which is
just arc B � C in Fig. 9.18, can be ignored since no bound will be reached as � is increased.

For the five arcs in Fig. 9.18, the conclusion is that xDE must be the leaving basic
variable because it reaches a bound for the smallest value of � (10). Setting � � 10 in this
figure thereby yields the flows through the basic arcs in the next BF solution:

xAC � � � 10,
xCE � 50 � � � 60,
xAD � 40 � � � 30,
xBC � 50.

The corresponding feasible spanning tree is shown in Fig. 9.22.
If the leaving basic variable had reached its upper bound, then the adjustments dis-

cussed for the upper bound technique would have been needed at this point (as you will
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see illustrated during the next two iterations). However, because it was the lower bound
of 0 that was reached, nothing more needs to be done.

Completing the Example. For the two remaining iterations needed to reach the op-
timal solution, the primary focus will be on some features of the upper bound technique
they illustrate. The pattern for finding the entering basic variable, the leaving basic vari-
able, and the next BF solution will be very similar to that described for the first iteration,
so we only summarize these steps briefly.

Iteration 2: Starting with the feasible spanning tree shown in Fig. 9.22 and referring
to Fig. 9.16 for the unit costs cij, we arrive at the calculations for selecting the entering
basic variable in Table 9.4. The second column identifies the unique undirected cycle that
is created by adding the nonbasic arc in the first column to this spanning tree, and the
third column shows the incremental effect on costs because of the changes in flows on
this cycle caused by adding a flow of � � 1 to the nonbasic arc. Arc E � D has the largest
(in absolute terms) negative value of �Z, so xED is the entering basic variable.

We now make the flow � through arc E � D as large as possible, while satisfying
the following flow bounds:

xED � � � uED � �, so � � �.
xAD � 30 � � 	 0, so � � 30.
xAC � 10 � � � uAC � �, so � � �.
xCE � 60 � � � uCE � 80, so � � 20. � Minimum

Because xCE imposes the smallest upper bound (20) on �, xCE becomes the leaving basic
variable. Setting � � 20 in the above expressions for xED, xAD, and xAC then yields the
flow through the basic arcs for the next BF solution (with xBC � 50 unaffected by �), as
shown in Fig. 9.23.
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TABLE 9.4 Calculations for selecting the entering basic variable for iteration 2

Nonbasic Arc Cycle Created �Z When � � 1

B � A BA–AC–BC 2 �2 � 4 � 3 � �1
D � E DE–CE–AC–AD 3 � 1 � 4 � 9 � �7
E � D ED–AD–AC–CE 2 � 9 � 4 � 1 � �2 � Minimum
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FIGURE 9.23
The third feasible spanning
tree and its solution for the
example.



What is of special interest here is that the leaving basic variable xCE was obtained by
the variable reaching its upper bound (80). Therefore, by using the upper bound technique,
xCE is replaced by 80 � yCE, where yCE � 0 is the new nonbasic variable. At the same
time, the original arc C � E with cCE � 1 and uCE � 80 is replaced by the reverse arc 
E � C with cEC � �1 and uEC � 80. The values of bE and bC also are adjusted by adding
80 to bE and subtracting 80 from bC. The resulting adjusted network is shown in Fig. 9.24,
where the nonbasic arcs are shown as dashed lines and the numbers by all the arcs are
unit costs.

Iteration 3: If Figs. 9.23 and 9.24 are used to initiate the next iteration, Table 9.5
shows the calculations that lead to selecting yAB (reverse arc B � A) as the entering ba-
sic variable. We then add as much flow � through arc B � A as possible while satisfying
the flow bounds below:

yAB � � � uBA � 10, so � � 10. � Minimum
xAC � 30 � � � uAC � �, so � � �.
xBC � 50 � � 	 0, so � � 50.

The smallest upper bound (10) on � is imposed by yAB, so this variable becomes the leav-
ing basic variable. Setting � � 10 in these expressions for xAC and xBC (along with the
unchanged values of xAC � 10 and xED � 20) then yields the next BF solution, as shown
in Fig. 9.25.

As with iteration 2, the leaving basic variable (yAB) was obtained here by the vari-
able reaching its upper bound. In addition, there are two other points of special interest
concerning this particular choice. One is that the entering basic variable yAB also became
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TABLE 9.5 Calculations for selecting the entering basic variable for iteration 3

Nonbasic Arc Cycle Created �Z When � � 1

B � A BA–AC–BC �1 �2 � 4 � 3 � �1 � Minimum
D � E DE–ED �1 �2 � 3 � 2 � �5
E � C EC–AC–AD–ED �1 � 4 � 9 � 2 � �2

FIGURE 9.24
The adjusted network with
unit costs at the completion
of iteration 2.



the leaving basic variable on the same iteration! This event occurs occasionally with the
upper bound technique whenever increasing the entering basic variable from zero causes
its upper bound to be reached first before any of the other basic variables reach a bound.

The other interesting point is that the arc B � A that now needs to be replaced by a
reverse arc A � B (because of the leaving basic variable reaching an upper bound) al-
ready is a reverse arc! This is no problem, because the reverse arc for a reverse arc is sim-
ply the original real arc. Therefore, the arc B � A (with cBA � �2 and uBA � 10) in Fig.
9.24 now is replaced by arc A � B (with cAB � 2 and uAB � 10), which is the arc be-
tween nodes A and B in the original network shown in Fig. 9.12, and a generated net flow
of 10 is shifted from node B (bB � 50 � 40) to node A (bA � 40 � 50). Simultaneously,
the variable yAB � 10 is replaced by 10 � xAB, with xAB � 0 as the new nonbasic vari-
able. The resulting adjusted network is shown in Fig. 9.26.

Passing the Optimality Test: At this point, the algorithm would attempt to use Figs.
9.25 and 9.26 to find the next entering basic variable with the usual calculations shown
in Table 9.6. However, none of the nonbasic arcs gives a negative value of �Z, so an im-
provement in Z cannot be achieved by introducing flow through any of them. This means
that the current BF solution shown in Fig. 9.25 has passed the optimality test, so the al-
gorithm stops.

To identify the flows through real arcs rather than reverse arcs for this optimal solu-
tion, the current adjusted network (Fig. 9.26) should be compared with the original net-
work (Fig. 9.12). Note that each of the arcs has the same direction in the two networks
with the one exception of the arc between nodes C and E. This means that the only re-
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TABLE 9.6 Calculations for the optimality test at the end of iteration 3

Nonbasic Arc Cycle Created �Z When � � 1

A � B AB–BC–AC 2 � 3 � 4 � 1
D � E DE–EC–AC–AD 3 � 1 � 4 � 9 � 7
E � C EC–AC–AD–ED �1 � 4 � 9 � 2 � 2

FIGURE 9.25
The fourth (and final) feasible
spanning tree and its
solution for the example.



verse arc in Fig. 9.26 is arc E � C, where its flow is given by the variable yCE. There-
fore, calculate xCE � uCE � yCE � 80 � yCE. Arc E � C happens to be a nonbasic arc,
so yCE � 0 and xCE � 80 is the flow through the real arc C � E. All the other flows
through real arcs are the flows given in Fig. 9.25. Therefore, the optimal solution is the
one shown in Fig. 9.27.

Another complete example of applying the network simplex method is provided by
the demonstration in the Network Analysis Area of your OR Tutor. Also included in your
OR Courseware is an interactive routine for the network simplex method.
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Networks of some type arise in a wide variety of contexts. Network representations are
very useful for portraying the relationships and connections between the components of
systems. Frequently, flow of some type must be sent through a network, so a decision needs
to be made about the best way to do this. The kinds of network optimization models and
algorithms introduced in this chapter provide a powerful tool for making such decisions.

9.8 CONCLUSIONS

FIGURE 9.27
The optimal flow pattern in
the original network for the
Distribution Unlimited Co.
example.
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The minimum cost flow problem plays a central role among these network opti-
mization models, both because it is so broadly applicable and because it can be solved
extremely efficiently by the network simplex method. Two of its special cases included
in this chapter, the shortest-path problem and the maximum flow problem, also are basic
network optimization models, as are additional special cases discussed in Chap. 8 (the
transportation problem and the assignment problem).

Whereas all these models are concerned with optimizing the operation of an existing
network, the minimum spanning tree problem is a prominent example of a model for op-
timizing the design of a new network.

This chapter has only scratched the surface of the current state of the art of network
methodology. Because of their combinatorial nature, network problems often are extremely
difficult to solve. However, great progress is being made in developing powerful model-
ing techniques and solution methodologies that are opening up new vistas for important
applications. In fact, recent algorithmic advances are enabling us to solve successfully
some complex network problems of enormous size.
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The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example listed above may be helpful.
I: We suggest that you use the interactive routine listed above (the

printout records your work).
C: Use the computer with any of the software options available to

you (or as instructed by your instructor) to solve the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

9.2-1. Consider the following directed network.

PROBLEMS

shows the mileage along each road that directly connects two
towns without any intervening towns. These numbers are sum-
marized in the following table, where a dash indicates that there
is no road directly connecting these two towns without going
through any other towns.

Miles between Adjacent Towns

Town A B C D E Destination

Origin 40 60 50 — — —
A 10 — 70 — —
B 20 55 40 —
C — 50 —
D 10 60
E 80

(a) Find a directed path from node A to node F, and then identify
three other undirected paths from node A to node F.

(b) Find three directed cycles. Then identify an undirected cycle
that includes every node.

(c) Identify a set of arcs that forms a spanning tree.
(d) Use the process illustrated in Fig. 9.3 to grow a tree one arc

at a time until a spanning tree has been formed. Then repeat
this process to obtain another spanning tree. [Do not duplicate
the spanning tree identified in part (c).]

9.3-1. You need to take a trip by car to another town that you
have never visited before. Therefore, you are studying a map to
determine the shortest route to your destination. Depending on
which route you choose, there are five other towns (call them A,
B, C, D, E) that you might pass through on the way. The map

A

B

C

D

E

F
(a) Formulate this problem as a shortest-path problem by drawing

a network where nodes represent towns, links represent roads,
and numbers indicate the length of each link in miles.

(b) Use the algorithm described in Sec. 9.3 to solve this shortest-
path problem.

C (c) Formulate and solve a spreadsheet model for this problem.
(d) If each number in the table represented your cost (in dollars)

for driving your car from one town to the next, would the an-
swer in part (b) or (c) now give your minimum cost route?

(e) If each number in the table represented your time (in minutes)
for driving your car from one town to the next, would the an-
swer in part (b) or (c) now give your minimum time route?

9.3-2. At a small but growing airport, the local airline company is
purchasing a new tractor for a tractor-trailer train to bring luggage
to and from the airplanes. A new mechanized luggage system will
be installed in 3 years, so the tractor will not be needed after that.
However, because it will receive heavy use, so that the running and



(Origin) (Destination)T
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D
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1

(a)

1

maintenance costs will increase rapidly as the tractor ages, it may
still be more economical to replace the tractor after 1 or 2 years.
The following table gives the total net discounted cost associated
with purchasing a tractor (purchase price minus trade-in allowance,
plus running and maintenance costs) at the end of year i and trad-
ing it in at the end of year j (where year 0 is now).
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The problem is to determine at what times (if any) the tractor should
be replaced to minimize the total cost for the tractors over 3 years.
(Continue at the top of the next column.)

j

1 2 3

0 $8,000 $18,000 $31,000
i 1 $10,000 $21,000

2 $12,000
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(a) Formulate this problem as a shortest-path problem.
(b) Use the algorithm described in Sec. 9.3 to solve this shortest-

path problem.
C (c) Formulate and solve a spreadsheet model for this problem.

9.3-3.* Use the algorithm described in Sec. 9.3 to find the short-
est path through each of the following networks, where the num-
bers represent actual distances between the corresponding nodes.

9.3-4. Formulate the shortest-path problem as a linear program-
ming problem.

9.3-5. One of Speedy Airlines’ flights is about to take off from
Seattle for a nonstop flight to London. There is some flexibility in
choosing the precise route to be taken, depending upon weather
conditions. The following network depicts the possible routes un-
der consideration, where SE and LN are Seattle and London, re-

(b)

spectively, and the other nodes represent various intermediate lo-
cations. The winds along each arc greatly affect the flying time
(and so the fuel consumption). Based on current meteorological re-
ports, the flying times (in hours) for this particular flight are shown
next to the arcs. Because the fuel consumed is so expensive, the
management of Speedy Airlines has established a policy of choos-
ing the route that minimizes the total flight time.
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9.4-1.* Reconsider the networks shown in Prob. 9.3-3. Use the al-
gorithm described in Sec. 9.4 to find the minimum spanning tree
for each of these networks.

9.4-2. The Wirehouse Lumber Company will soon begin logging
eight groves of trees in the same general area. Therefore, it must
develop a system of dirt roads that makes each grove accessible
from every other grove. The distance (in miles) between every pair
of groves is as follows:

(a) What plays the role of “distances” in interpreting this problem
to be a shortest-path problem?

(b) Use the algorithm described in Sec. 9.3 to solve this shortest-
path problem.

C (c) Formulate and solve a spreadsheet model for this problem.

9.3-6. The Quick Company has learned that a competitor is plan-
ning to come out with a new kind of product with a great sales po-
tential. Quick has been working on a similar product that had been
scheduled to come to market in 20 months. However, research is
nearly complete and Quick’s management now wishes to rush the
product out to meet the competition.

There are four nonoverlapping phases left to be accomplished,
including the remaining research that currently is being conducted
at a normal pace. However, each phase can instead be conducted at
a priority or crash level to expedite completion, and these are the
only levels that will be considered for the last three phases. The times
required at these levels are given in the following table. (The times
in parentheses at the normal level have been ruled out as too long.)
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Management has allocated $30 million for these four phases.
The cost of each phase at the different levels under consideration
is as follows:

Cost

Initiate
Design of Production 

Remaining Manufacturing and
Level Research Development System Distribution

Normal $3 million — — —
Priority $6 million $6 million $9 million $3 million
Crash $9 million $9 million $12 million $6 million

Time

Initiate
Design of Production 

Remaining Manufacturing and
Level Research Development System Distribution

Normal 5 months (4 months) (7 months) (4 months)
Priority 4 months 3 months 5 months 2 months
Crash 2 months 2 months 3 months 1 month

Management wishes to determine at which level to conduct each
of the four phases to minimize the total time until the product can
be marketed subject to the budget restriction of $30 million.
(a) Formulate this problem as a shortest-path problem.
(b) Use the algorithm described in Sec. 9.3 to solve this shortest-

path problem.

Distance between Pairs of Groves

1 2 3 4 5 6 7 8

1 — 1.3 2.1 0.9 0.7 1.8 2.0 1.5
2 1.3 — 0.9 1.8 1.2 2.6 2.3 1.1
3 2.1 0.9 — 2.6 1.7 2.5 1.9 1.0

Grove 4 0.9 1.8 2.6 — 0.7 1.6 1.5 0.9
5 0.7 1.2 1.7 0.7 — 0.9 1.1 0.8
6 1.8 2.6 2.5 1.6 0.9 — 0.6 1.0
7 2.0 2.3 1.9 1.5 1.1 0.6 — 0.5
8 1.5 1.1 1.0 0.9 0.8 1.0 0.5 —

Management now wishes to determine between which pairs
of groves the roads should be constructed to connect all groves
with a minimum total length of road.
(a) Describe how this problem fits the network description of the

minimum spanning tree problem.
(b) Use the algorithm described in Sec. 9.4 to solve the problem.

9.4-3. The Premiere Bank soon will be hooking up computer ter-
minals at each of its branch offices to the computer at its main of-
fice using special phone lines with telecommunications devices.
The phone line from a branch office need not be connected directly
to the main office. It can be connected indirectly by being con-
nected to another branch office that is connected (directly or indi-
rectly) to the main office. The only requirement is that every branch
office be connected by some route to the main office.

The charge for the special phone lines is $100 times the num-
ber of miles involved, where the distance (in miles) between every
pair of offices is as follows:

Distance between Pairs of Offices

Main B.1 B.2 B.3 B.4 B.5

Main office — 190 70 115 270 160
Branch 1 190 — 100 110 215 50
Branch 2 70 100 — 140 120 220
Branch 3 115 110 140 — 175 80
Branch 4 270 215 120 175 — 310
Branch 5 160 50 220 80 310 —
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Management wishes to determine which pairs of offices should be
directly connected by special phone lines in order to connect every
branch office (directly or indirectly) to the main office at a mini-
mum total cost.
(a) Describe how this problem fits the network description of the

minimum spanning tree problem.
(b) Use the algorithm described in Sec. 9.4 to solve the problem.
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(b)

9.5-2. Formulate the maximum flow problem as
a linear programming problem.

9.5-3. The diagram to the right depicts a system
of aqueducts that originate at three rivers (nodes
R1, R2, and R3) and terminate at a major city
(node T), where the other nodes are junction points
in the system.

Using units of thousands of acre feet, the fol-
lowing tables show the maximum amount of wa-
ter that can be pumped through each aqueduct per
day.

(a)

9.5-1.* For networks (a) and (b), use the augmenting path algo-
rithm described in Sec. 9.5 to find the flow pattern giving the max-
imum flow from the source to the sink, given that the arc capacity
from node i to node j is the number nearest node i along the arc
between these nodes.

A

C
F

R3

R1 D

B
E

T

R2



(a) Draw a rough map that shows the location of Texago’s oil
fields, refineries, and distribution centers. Add arrows to show
the flow of crude oil and then petroleum products through this
distribution network.

(b) Redraw this distribution network by lining up all the nodes
representing oil fields in one column, all the nodes represent-
ing refineries in a second column, and all the nodes repre-
senting distribution centers in a third column. Then add arcs
to show the possible flow.

(c) Modify the network in part (b) as needed to formulate this
problem as a maximum flow problem with a single source, a
single sink, and a capacity for each arc.

(d) Use the augmenting path algorithm described in Sec. 9.5 to
solve this maximum flow problem.

C (e) Formulate and solve a spreadsheet model for this problem.

9.5-5. One track of the Eura Railroad system runs from the major
industrial city of Faireparc to the major port city of Portstown. This
track is heavily used by both express passenger and freight trains.
The passenger trains are carefully scheduled and have priority over
the slow freight trains (this is a European railroad), so that the
freight trains must pull over onto a siding whenever a passenger
train is scheduled to pass them soon. It is now necessary to in-
crease the freight service, so the problem is to schedule the freight
trains so as to maximize the number that can be sent each day with-
out interfering with the fixed schedule for passenger trains.

Consecutive freight trains must maintain a schedule differen-
tial of at least 0.1 hour, and this is the time unit used for schedul-
ing them (so that the daily schedule indicates the status of each
freight train at times 0.0, 0.1, 0.2, . . . , 23.9). There are S sidings
between Faireparc and Portstown, where siding i is long enough
to hold ni freight trains (i � 1, . . . , S ). It requires ti time units
(rounded up to an integer) for a freight train to travel from siding
i to siding i � 1 (where t0 is the time from the Faireparc station to
siding 1 and ts is the time from siding S to the Portstown station).
A freight train is allowed to pass or leave siding i (i � 0, 1, . . . ,
S ) at time j ( j � 0.0, 0.1, . . . , 23.9) only if it would not be over-
taken by a scheduled passenger train before reaching siding i � 1
(let 
ij � 1 if it would not be overtaken, and let 
ij � 0 if it would
be). A freight train also is required to stop at a siding if there will
not be room for it at all subsequent sidings that it would reach be-
fore being overtaken by a passenger train.

Formulate this problem as a maximum flow problem by iden-
tifying each node (including the supply node and the demand node)
as well as each arc and its arc capacity for the network represen-
tation of the problem. (Hint: Use a different set of nodes for each
of the 240 times.)

9.5-6. Consider the maximum flow problem shown next, where
the source is node A, the sink is node F, and the arc capacities are
the numbers shown next to these directed arcs.
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FromTo FromTo FromTo

From A B C From D E F From T

R1 75 65 — A 60 45 — D 120
R2 40 50 60 B 70 55 45 E 190
R3 — 80 70 C — 70 90 F 130

The city water manager wants to determine a flow plan that will
maximize the flow of water to the city.
(a) Formulate this problem as a maximum flow problem by iden-

tifying a source, a sink, and the transshipment nodes, and
then drawing the complete network that shows the capacity
of each arc.

(b) Use the augmenting path algorithm described in Sec. 9.5 to
solve this problem.

C (c) Formulate and solve a spreadsheet model for this problem.

9.5-4. The Texago Corporation has four oil fields, four refineries,
and four distribution centers. A major strike involving the trans-
portation industries now has sharply curtailed Texago’s capacity to
ship oil from the oil fields to the refineries and to ship petroleum
products from the refineries to the distribution centers. Using units
of thousands of barrels of crude oil (and its equivalent in refined
products), the following tables show the maximum number of units
that can be shipped per day from each oil field to each refinery,
and from each refinery to each distribution center.

Refinery

Oil Field New Orleans Charleston Seattle St. Louis

Texas 11 7 2 8
California 5 4 8 7
Alaska 7 3 12 6
Middle East 8 9 4 15

Distribution Center

Refinery Pittsburgh Atlanta Kansas City San Francisco

New Orleans 5 9 6 4
Charleston 8 7 9 5
Seattle 4 6 7 8
St. Louis 12 11 9 7

The Texago management now wants to determine a plan for
how many units to ship from each oil field to each refinery and
from each refinery to each distribution center that will maximize
the total number of units reaching the distribution centers.



9.6-4. The Makonsel Company is a fully integrated company that
both produces goods and sells them at its retail outlets. After pro-
duction, the goods are stored in the company’s two warehouses un-
til needed by the retail outlets. Trucks are used to transport the
goods from the two plants to the warehouses, and then from the
warehouses to the three retail outlets.

Using units of full truckloads, the following table shows each
plant’s monthly output, its shipping cost per truckload sent to each
warehouse, and the maximum amount that it can ship per month
to each warehouse.

(a) Use the augmenting path algorithm described in
Sec. 9.5 to solve this problem.

C (b) Formulate and solve a spreadsheet model for
this problem.

9.6-1. Reconsider the maximum flow problem shown
in Prob. 9.5-6. Formulate this problem as a minimum
cost flow problem, including adding the arc A � F.
Use F� � 20.

9.6-2. A company will be producing the same new product at two
different factories, and then the product must be shipped to two
warehouses. Factory 1 can send an unlimited amount by rail to
warehouse 1 only, whereas factory 2 can send an unlimited amount
by rail to warehouse 2 only. However, independent truckers can be
used to ship up to 50 units from each factory to a distribution cen-
ter, from which up to 50 units can be shipped to each warehouse.
The shipping cost per unit for each alternative is shown in the fol-
lowing table, along with the amounts to be produced at the facto-
ries and the amounts needed at the warehouses.
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For each retail outlet (RO), the next table shows its monthly
demand, its shipping cost per truckload from each warehouse, and
the maximum amount that can be shipped per month from each
warehouse.

Unit Shipping Cost

To Warehouse
Distribution

From Center 1 2 Output

Factory 1 3 7 — 80
Factory 2 4 — 9 70

Distribution center 2 4

Allocation 60 90

(a) Formulate the network representation of this problem as a min-
imum cost flow problem.

(b) Formulate the linear programming model for this problem.

9.6-3. Reconsider Prob. 9.3-1. Now formulate this problem as a
minimum cost flow problem by showing the appropriate network
representation.

To Unit Shipping Cost Shipping Capacity

From RO1 RO2 RO3 RO1 RO2 RO3

Warehouse 1 $470 $505 $490 100 150 100
Warehouse 2 $390 $410 $440 125 150 75

Demand $150 $200 $150 150 200 150

Management now wants to determine a distribution plan
(number of truckloads shipped per month from each plant to each
warehouse and from each warehouse to each retail outlet) that will
minimize the total shipping cost.
(a) Draw a network that depicts the company’s distribution net-

work. Identify the supply nodes, transshipment nodes, and de-
mand nodes in this network.

(b) Formulate this problem as a minimum cost flow problem by
inserting all the necessary data into this network.

C (c) Formulate and solve a spreadsheet model for this problem.
C (d) Use the computer to solve this problem without using Excel.

9.6-5. The Audiofile Company produces boomboxes. However,
management has decided to subcontract out the production of the
speakers needed for the boomboxes. Three vendors are available
to supply the speakers. Their price for each shipment of 1,000
speakers is shown on the next page.

To Unit Shipping Cost Shipping Capacity

From Warehouse 1 Warehouse 2 Warehouse 1 Warehouse 2 Output

Plant 1 $425 $560 125 150 200
Plant 2 $510 $600 175 200 300



In addition, each vendor would charge a shipping cost. Each ship-
ment would go to one of the company’s two warehouses. Each ven-
dor has its own formula for calculating this shipping cost based on
the mileage to the warehouse. These formulas and the mileage data
are shown below.
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Vendor Price

1 $22,500
2 $22,700
3 $22,300

Vendor Charge per Shipment

1 $300 � 40¢/mile
2 $200 � 50¢/mile
3 $500 � 20¢/mile

Vendor Warehouse 1 Warehouse 2

1 1,600 miles 1,400 miles
2 1,500 miles 1,600 miles
3 2,000 miles 1,000 miles

Unit Shipping Cost

Factory 1 Factory 2

Warehouse 1 $200 $700
Warehouse 2 $400 $500

Monthly demand 10 6
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Arc capacities

A � C: 10
B � C: 25
Others: 


Each vendor is able to supply as many as 10 shipments per
month. However, because of shipping limitations, each vendor is
able to send a maximum of only 6 shipments per month to each
warehouse. Similarly, each warehouse is able to send a maximum
of only 6 shipments per month to each factory.

Management now wants to develop a plan for each month re-
garding how many shipments (if any) to order from each vendor,
how many of those shipments should go to each warehouse, and
then how many shipments each warehouse should send to each fac-
tory. The objective is to minimize the sum of the purchase costs
(including the shipping charge) and the shipping costs from the
warehouses to the factories.
(a) Draw a network that depicts the company’s supply network.

Identify the supply nodes, transshipment nodes, and demand
nodes in this network.

(b) Formulate this problem as a minimum cost flow problem by
inserting all the necessary data into this network. Also include
a dummy demand node that receives (at zero cost) all the un-
used supply capacity at the vendors.

C (c) Formulate and solve a spreadsheet model for this problem.
C (d) Use the computer to solve this problem without using 

Excel.

Whenever one of the company’s two factories needs a ship-
ment of speakers to assemble into the boomboxes, the company
hires a trucker to bring the shipment in from one of the warehouses.
The cost per shipment is given in the next column, along with the
number of shipments needed per month at each factory.

D 9.7-1. Consider the minimum cost flow problem shown above,
where the bi values (net flows generated) are given by the nodes,
the cij values (costs per unit flow) are given by the arcs, and the
uij values (arc capacities) are given to the right of the network. Do
the following work manually.

(a) Obtain an initial BF solution by solving the feasible spanning
tree with basic arcs A � B, C � E, D � E, and C � A (a
reverse arc), where one of the nonbasic arcs (C � B) also is
a reverse arc. Show the resulting network (including bi, cij, and
uij) in the same format as the above one (except use dashed



9.7-6. Consider the Metro Water District transportation problem
presented in Table 8.12.
(a) Formulate the network representation of this problem as a min-

imum cost flow problem. (Hint: Arcs where flow is prohibited
should be deleted.)

D,I (b) Starting with the initial BF solution given in Table 8.19,
use the network simplex method yourself (without an au-
tomatic computer routine) to solve this problem. Compare
the sequence of BF solutions obtained with the sequence
obtained by the transportation simplex method in Table
8.23.

D,I 9.7-7. Consider the transportation problem having the follow-
ing parameter table:

lines to draw the nonbasic arcs), and add the flows in paren-
theses next to the basic arcs.

(b) Use the optimality test to verify that this initial BF solution is
optimal and that there are multiple optimal solutions. Apply
one iteration of the network simplex method to find the other
optimal BF solution, and then use these results to identify the
other optimal solutions that are not BF solutions.

(c) Now consider the following BF solution.
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Starting from this BF solution, apply one iteration of the network
simplex method. Identify the entering basic arc, the leaving basic
arc, and the next BF solution, but do not proceed further.

9.7-2. Reconsider the minimum cost flow problem formulated in
Prob. 9.6-1.
(a) Obtain an initial BF solution by solving the feasible spanning

tree with basic arcs A � B, A � C, A � F, B � D, and E �
F, where two of the nonbasic arcs (E � C and F � D) are
reverse arcs.

D,I (b) Use the network simplex method yourself (without an au-
tomatic computer routine) to solve this problem.

9.7-3. Reconsider the minimum cost flow problem formulated in
Prob. 9.6-2.
(a) Obtain an initial BF solution by solving the feasible spanning

tree that corresponds to using just the two rail lines plus fac-
tory 1 shipping to warehouse 2 via the distribution center.

D,I (b) Use the network simplex method yourself (without an au-
tomatic computer routine) to solve this problem.

D,I 9.7-4. Reconsider the minimum cost flow problem formulated
in Prob. 9.6-3. Starting with the initial BF solution that corre-
sponds to replacing the tractor every year, use the network sim-
plex method yourself (without an automatic computer routine) to
solve this problem.

D,I 9.7-5. For the P & T Co. transportation problem given in
Table 8.2, consider its network representation as a minimum cost
flow problem presented in Fig. 8.2. Use the northwest corner rule
to obtain an initial BF solution from Table 8.2. Then use the net-
work simplex method yourself (without an automatic computer
routine) to solve this problem (and verify the optimal solution
given in Sec. 8.1).

Formulate the network representation of this problem as a mini-
mum cost flow problem. Use the northwest corner rule to obtain
an initial BF solution. Then use the network simplex method your-
self (without an automatic computer routine) to solve the problem.

D,I 9.7-8. Consider the minimum cost flow problem shown below,
where the bi values are given by the nodes, the cij values are given
by the arcs, and the finite uij values are given in parentheses by the
arcs. Obtain an initial BF solution by solving the feasible spanning
tree with basic arcs A � C, B � A, C � D, and C � E, where
one of the nonbasic arcs (D � A) is a reverse arc. Then use the
network simplex method yourself (without an automatic computer
routine) to solve this problem.

Basic Arc Flow Nonbasic Arc

A � D 20 A � B
B � C 10 A � C
C � E 10 B � D
D � E 20

Destination

1 2 3 Supply

1 6 7 4 40
Source

2 5 8 6 60

Demand 30 40 30

3

5

[50]

[80]

A
6 (uAD � 40)

C

[�70]

[�60]

[0]

(uBE � 40)

4
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Commander Votachev steps into the cold October night and deeply inhales the smoke
from his cigarette, savoring its warmth. He surveys the destruction surrounding him—
shattered windows, burning buildings, torn roads—and smiles. His two years of work
training revolutionaries east of the Ural Mountains has proved successful; his troops
now occupy seven strategically important cities in the Russian Federation: Kazan, Perm,
Yekaterinburg, Ufa, Samara, Saratov, and Orenburg. His siege is not yet over, however.
He looks to the west. Given the political and economic confusion in the Russian Fed-
eration at this time, he knows that his troops will be able to conquer Saint Petersburg
and Moscow shortly. Commander Votachev will then be able to rule with the wisdom
and control exhibited by his communist predecessors Lenin and Stalin.

Across the Pacific Ocean, a meeting of the top security and foreign policy advis-
ers of the United States is in progress at the White House. The President has recently
been briefed about the communist revolution masterminded by Commander Votachev
and is determining a plan of action. The President reflects upon a similar October long
ago in 1917, and he fears the possibility of a new age of radical Communist rule ac-
companied by chaos, bloodshed, escalating tensions, and possibly nuclear war. He there-
fore decides that the United States needs to respond and to respond quickly. Moscow
has requested assistance from the United States military, and the President plans to
send troops and supplies immediately.

The President turns to General Lankletter and asks him to describe the prepara-
tions being taken in the United States to send the necessary troops and supplies to the
Russian Federation.

General Lankletter informs the President that along with troops, weapons, ammu-
nition, fuel, and supplies, aircraft, ships, and vehicles are being assembled at two port
cities with airfields: Boston and Jacksonville. The aircraft and ships will transfer all
troops and cargo across the Atlantic Ocean to the Eurasian continent. The general hands
the President a list of the types of aircraft, ships, and vehicles being assembled along
with a description of each type. The list is shown below.
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Transportation Type Name Capacity Speed

Aircraft C-141 Starlifter 150 tons 400 miles per hour
Ship Transport 240 tons 35 miles per hour
Vehicle Palletized Load 16,000 kilograms 60 miles per hour

System Truck

All aircraft, ships, and vehicles are able to carry both troops and cargo. Once an
aircraft or ship arrives in Europe, it stays there to support the armed forces.

The President then turns to Tabitha Neal, who has been negotiating with the NATO
countries for the last several hours to use their ports and airfields as stops to refuel and
resupply before heading to the Russian Federation. She informs the President that the
following ports and airfields in the NATO countries will be made available to the United
States military.
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The President stands and walks to the map of the world projected on a large screen
in the middle of the room. He maps the progress of troops and cargo from the United
States to three strategic cities in the Russian Federation that have not yet been seized
by Commander Votachev. The three cities are Saint Petersburg, Moscow, and Rostov.
He explains that the troops and cargo will be used both to defend the Russian cities
and to launch a counterattack against Votachev to recapture the cities he currently oc-
cupies. (The map is shown at the end of the case.)

The President also explains that all Starlifters and transports leave Boston or Jack-
sonville. All transports that have traveled across the Atlantic must dock at one of the
NATO ports to unload. Palletized load system trucks brought over in the transports will
then carry all troops and materials unloaded from the ships at the NATO ports to the
three strategic Russian cities not yet seized by Votachev. All Starlifters that have trav-
eled across the Atlantic must land at one of the NATO airfields for refueling. The planes
will then carry all troops and cargo from the NATO airfields to the three Russian cities.

(a) Draw a network showing the different routes troops and supplies may take to reach the Russ-
ian Federation from the United States.

(b) Moscow and Washington do not know when Commander Votachev will launch his next at-
tack. Leaders from the two countries have therefore agreed that troops should reach each of
the three strategic Russian cities as quickly as possible. The President has determined that
the situation is so dire that cost is no object—as many Starlifters, transports, and trucks as
are necessary will be used to transfer troops and cargo from the United States to Saint Pe-
tersburg, Moscow, and Rostov. Therefore, no limitations exist on the number of troops and
amount of cargo that can be transferred between any cities.

The President has been given the following information about the length of the avail-
able routes between cities:

Ports Airfields

Napoli London
Hamburg Berlin
Rotterdam Istanbul

From To Length of route in kilometers

Boston Berlin 7,250 km
Boston Hamburg 8,250 km
Boston Istanbul 8,300 km
Boston London 6,200 km
Boston Rotterdam 6,900 km
Boston Napoli 7,950 km
Jacksonville Berlin 9,200 km
Jacksonville Hamburg 9,800 km
Jacksonville Istanbul 10,100 km
Jacksonville London 7,900 km
Jacksonville Rotterdam 8,900 km
Jacksonville Napoli 9,400 km
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Given the distance and the speed of the transportation used between each pair of cities,
how can the President most quickly move troops from the United States to each of the three
strategic Russian cities? Highlight the path(s) on the network. How long will it take troops and
supplies to reach Saint Petersburg? Moscow? Rostov?

(c) The President encounters only one problem with his first plan: he has to sell the military de-
ployment to Congress. Under the War Powers Act, the President is required to consult with
Congress before introducing troops into hostilities or situations where hostilities will occur.
If Congress does not give authorization to the President for such use of troops, the President
must withdraw troops after 60 days. Congress also has the power to decrease the 60-day
time period by passing a concurrent resolution.

The President knows that Congress will not authorize significant spending for another
country’s war, especially when voters have paid so much attention to decreasing the national
debt. He therefore decides that he needs to find a way to get the needed troops and supplies
to Saint Petersburg, Moscow, and Rostov at the minimum cost.

Each Russian city has contacted Washington to communicate the number of troops and
supplies the city needs at a minimum for reinforcement. After analyzing the requests, General
Lankletter has converted the requests from numbers of troops, gallons of gasoline, etc., to tons
of cargo for easier planning. The requirements are listed below.

City Requirements

Saint Petersburg 320,000 tons
Moscow 440,000 tons
Rostov 240,000 tons

From To Length of route in kilometers

Berlin Saint Petersburg 1,280 km
Hamburg Saint Petersburg 1,880 km
Istanbul Saint Petersburg 2,040 km
London Saint Petersburg 1,980 km
Rotterdam Saint Petersburg 2,200 km
Napoli Saint Petersburg 2,970 km
Berlin Moscow 1,600 km
Hamburg Moscow 2,120 km
Istanbul Moscow 1,700 km
London Moscow 2,300 km
Rotterdam Moscow 2,450 km
Napoli Moscow 2,890 km
Berlin Rostov 1,730 km
Hamburg Rostov 2,470 km
Istanbul Rostov 990 km
London Rostov 2,860 km
Rotterdam Rostov 2,760 km
Napoli Rostov 2,800 km



Both in Boston and Jacksonville there are 500,000 tons of the necessary cargo avail-
able. When the United States decides to send a plane, ship, or truck between two cities, sev-
eral costs occur—fuel costs, labor costs, maintenance costs, and appropriate port or airfield
taxes and tariffs. These costs are listed below.
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The President faces a number of restrictions when trying to satisfy the requirements.
Early winter weather in northern Russia has brought a deep freeze with much snow. There-
fore, General Lankletter is opposed to sending truck convoys in the area. He convinces the
President to supply Saint Petersburg only through the air. Moreover, the truck routes into
Rostov are quite limited, so that from each port at most 2,500 trucks can be sent to Rostov.
The Ukrainian government is very sensitive about American airplanes flying through their
air space. It restricts the U.S. military to at most 200 flights from Berlin to Rostov and to at
most 200 flights from London to Rostov. (The U.S. military does not want to fly around the
Ukraine and is thus restricted by the Ukrainian limitations.)

How does the President satisfy each Russian city’s military requirements at minimum
cost? Highlight the path to be used between the United States and Russian Federation on the
network.

From To Cost

Boston Berlin $50,000 per Starlifter
Boston Hamburg $30,000 per transport
Boston Istanbul $55,000 per Starlifter
Boston London $45,000 per Starlifter
Boston Rotterdam $30,000 per transport
Boston Napoli $32,000 per transport
Jacksonville Berlin $57,000 per Starlifter
Jacksonville Hamburg $48,000 per transport
Jacksonville Istanbul $61,000 per Starlifter
Jacksonville London $49,000 per Starlifter
Jacksonville Rotterdam $44,000 per transport
Jacksonville Napoli $56,000 per transport
Berlin Saint Petersburg $24,000 per Starlifter
Hamburg Saint Petersburg $ 3,000 per truck
Istanbul Saint Petersburg $28,000 per Starlifter
London Saint Petersburg $22,000 per Starlifter
Rotterdam Saint Petersburg $ 3,000 per truck
Napoli Saint Petersburg $ 5,000 per truck
Berlin Moscow $22,000 per Starlifter
Hamburg Moscow $ 4,000 per truck
Istanbul Moscow $25,000 per Starlifter
London Moscow $19,000 per Starlifter
Rotterdam Moscow $ 5,000 per truck
Napoli Moscow $ 5,000 per truck
Berlin Rostov $23,000 per Starlifter
Hamburg Rostov $ 7,000 per truck
Istanbul Rostov $ 2,000 per Starlifter
London Rostov $ 4,000 per Starlifter
Rotterdam Rostov $ 8,000 per truck
Napoli Rostov $ 9,000 per truck



(d) Once the President releases the number of planes, ships, and trucks that will travel between
the United States and the Russian Federation, Tabitha Neal contacts each of the American
cities and NATO countries to indicate the number of planes to expect at the airfields, the
number of ships to expect at the docks, and the number of trucks to expect traveling across
the roads. Unfortunately, Tabitha learns that several additional restrictions exist which can-
not be immediately eliminated. Because of airfield congestion and unalterable flight sched-
ules, only a limited number of planes may be sent between any two cities. These plane lim-
itations are given below.
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In addition, because some countries fear that citizens will become alarmed if too many
military trucks travel the public highways, they object to a large number of trucks traveling
through their countries. These objections mean that a limited number of trucks are able to
travel between certain ports and Russian cities. These limitations are listed below.

From To Maximum

Rotterdam Moscow 600 trucks
Rotterdam Rostov 750 trucks
Hamburg Moscow 700 trucks
Hamburg Rostov 500 trucks
Napoli Moscow 1,500 trucks
Napoli Rostov 1,400 trucks

Tabitha learns that all shipping lanes have no capacity limits, owing to the American
control of the Atlantic Ocean.

The President realizes that because of all the restrictions he will not be able to satisfy
all the reinforcement requirements of the three Russian cities. He decides to disregard the

From To Maximum

Boston Berlin 300 airplanes
Boston Istanbul 500 airplanes
Boston London 500 airplanes
Jacksonville Berlin 500 airplanes
Jacksonville Istanbul 700 airplanes
Jacksonville London 600 airplanes
Berlin Saint Petersburg 500 airplanes
Istanbul Saint Petersburg 0 airplanes
London Saint Petersburg 1,000 airplanes
Berlin Moscow 300 airplanes
Istanbul Moscow 100 airplanes
London Moscow 200 airplanes
Berlin Rostov 0 airplanes
Istanbul Rostov 900 airplanes
London Rostov 100 airplanes



cost issue and instead to maximize the total amount of cargo he can get to the Russian cities.
How does the President maximize the total amount of cargo that reaches the Russian Fed-
eration? Highlight the path(s) used between the United States and the Russian Federation
on the network.

(e) Even before all American troops and supplies had reached Saint Petersburg, Moscow, and
Rostov, infighting among Commander Votachev’s troops about whether to make the next at-
tack against Saint Petersburg or against Moscow split the revolutionaries. Troops from
Moscow easily overcame the vulnerable revolutionaries. Commander Votachev was impris-
oned, and the next step became rebuilding the seven cities razed by his armies.

The President’s top priority is to help the Russian government to reestablish commu-
nications between the seven Russian cities and Moscow at minimum cost. The price of in-
stalling communication lines between any two Russian cities varies given the cost of ship-
ping wire to the area, the level of destruction in the area, and the roughness of the terrain.
Luckily, a city is able to communicate with all others if it is connected only indirectly to
every other city. Saint Petersburg and Rostov are already connected to Moscow, so if any of
the seven cities is connected to Saint Petersburg or Rostov, it will also be connected to
Moscow. The cost of replacing communication lines between two given cities for which this
is possible is shown below.
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Where should communication lines be installed to minimize the total cost of reestab-
lishing communications between Moscow and all seven Russian cities?

Between Cost to Reestablish Communication Lines

Saint Petersburg and Kazan $210,000
Saint Petersburg and Perm $185,000
Saint Petersburg and Ufa $225,000
Moscow and Ufa $310,000
Moscow and Samara $195,000
Moscow and Orenburg $440,000
Moscow and Saratov $140,000
Rostov and Saratov $200,000
Rostov and Orenburg $120,000
Kazan and Perm $150,000
Kazan and Ufa $105,000
Kazan and Samara $ 95,000
Perm and Yekaterinburg $ 85,000
Perm and Ufa $125,000
Yekaterinburg and Ufa $125,000
Ufa and Samara $100,000
Ufa and Orenburg $ 75,000
Saratov and Samara $100,000
Saratov and Orenburg $ 95,000
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Jake Nguyen runs a nervous hand through his once finely combed hair. He loosens his
once perfectly knotted silk tie. And he rubs his sweaty hands across his once immac-
ulately pressed trousers.

Today has certainly not been a good day.
Over the past few months, Jake had heard whispers circulating from Wall Street—

whispers from the lips of investment bankers and stockbrokers famous for their out-
spokenness. They had whispered about a coming Japanese economic collapse—whis-
pered because they had believed that publicly vocalizing their fears would hasten the
collapse.

And today, their very fears have come true. Jake and his colleagues gather round
a small television dedicated exclusively to the Bloomberg channel. Jake stares in dis-
belief as he listens to the horrors taking place in the Japanese market. And the Japan-
ese market is taking the financial markets in all other East Asian countries with it on
its tailspin. He goes numb. As manager of Asian foreign investment for Grant Hill As-
sociates, a small West Coast investment boutique specializing in currency trading, Jake
bears personal responsibility for any negative impacts of the collapse.

And Grant Hill Associates will experience negative impacts.
Jake had not heeded the whispered warnings of a Japanese collapse. Instead, he

had greatly increased the stake Grant Hill Associates held in the Japanese market. Be-
cause the Japanese market had performed better than expected over the past year, Jake
had increased investments in Japan from 2.5 million to 15 million dollars only 1 month
ago. At that time, 1 dollar was worth 80 yen.

No longer. Jake realizes that today’s devaluation of the yen means that 1 dollar is
worth 125 yen. He will be able to liquidate these investments without any loss in yen,
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but now the dollar loss when converting back into U.S. currency would be huge. He
takes a deep breath, closes his eyes, and mentally prepares himself for serious damage
control.

Jake’s meditation is interrupted by a booming voice calling for him from a large
corner office. Grant Hill, the president of Grant Hill Associates, yells, “Nguyen, get
the hell in here!”

Jake jumps and looks reluctantly toward the corner office hiding the furious Grant
Hill. He smooths his hair, tightens his tie, and walks briskly into the office.

Grant Hill meets Jake’s eyes upon his entrance and continues yelling, “I don’t want
one word out of you, Nguyen! No excuses; just fix this debacle! Get all of our money
out of Japan! My gut tells me this is only the beginning! Get the money into safe U.S.
bonds! NOW! And don’t forget to get our cash positions out of Indonesia and Malaysia
ASAP with it!”

Jake has enough common sense to say nothing. He nods his head, turns on his heel,
and practically runs out of the office.

Safely back at his desk, Jake begins formulating a plan to move the investments
out of Japan, Indonesia, and Malaysia. His experiences investing in foreign markets
have taught him that when playing with millions of dollars, how he gets money out of
a foreign market is almost as important as when he gets money out of the market. The
banking partners of Grant Hill Associates charge different transaction fees for con-
verting one currency into another one and wiring large sums of money around the globe.

And now, to make matters worse, the governments in East Asia have imposed very
tight limits on the amount of money an individual or a company can exchange from
the domestic currency into a particular foreign currency and withdraw it from the coun-
try. The goal of this dramatic measure is to reduce the outflow of foreign investments
out of those countries to prevent a complete collapse of the economies in the region.
Because of Grant Hill Associates’ cash holdings of 10.5 billion Indonesian rupiahs and
28 million Malaysian ringgits, along with the holdings in yen, it is not clear how these
holdings should be converted back into dollars.

Jake wants to find the most cost-effective method to convert these holdings into
dollars. On his company’s website he always can find on-the-minute exchange rates
for most currencies in the world (Table 1).

The table states that, for example, 1 Japanese yen equals 0.008 U.S. dollars. By
making a few phone calls he discovers the transaction costs his company must pay for
large currency transactions during these critical times (Table 2).

Jake notes that exchanging one currency for another one results in the same trans-
action cost as a reverse conversion. Finally, Jake finds out the maximum amounts of
domestic currencies his company is allowed to convert into other currencies in Japan,
Indonesia, and Malaysia (Table 3).

(a) Formulate Jake’s problem as a minimum cost flow problem, and draw the network for his
problem. Identify the supply and demand nodes for the network.

(b) Which currency transactions must Jake perform in order to convert the investments from
yen, rupiah, and ringgit into U.S. dollars to ensure that Grant Hill Associates has the max-
imum dollar amount after all transactions have occurred? How much money does Jake have
to invest in U.S. bonds?



(c) The World Trade Organization forbids transaction limits because they promote protection-
ism. If no transaction limits exist, what method should Jake use to convert the Asian hold-
ings from the respective currencies into dollars?

(d) In response to the World Trade Organization’s mandate forbidding transaction limits, the In-
donesian government introduces a new tax that leads to an increase of transaction costs for
transaction of rupiah by 500 percent to protect their currency. Given these new transaction
costs but no transaction limits, what currency transactions should Jake perform in order to
convert the Asian holdings from the respective currencies into dollars?
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TABLE 1 Currency exchange rates

To U.S. Canadian
From Yen Rupiah Ringgit Dollar Dollar Euro Pound Peso

Japanese yen 1 50 0.04 0.008 0.01 0.0064 0.0048 0.0768

Indonesian rupiah 1 0.0008 0.00016 0.0002 0.000128 0.000096 0.001536

Malaysian ringgit 1 0.2 0.25 0.16 0.12 1.92

U.S. dollar 1 1.25 0.8 0.6 9.6

Canadian dollar 1 0.64 0.48 7.68

European euro 1 0.75 12

English pound 1 16

Mexican peso 1

TABLE 2 Transaction cost, percent

To U.S. Canadian
From Yen Rupiah Ringgit Dollar Dollar Euro Pound Peso

Yen — 0.5 0.5 0.4 0.4 0.4 0.25 0.5

Rupiah — 0.7 0.5 0.3 0.3 0.75 0.75

Ringgit — 0.7 0.7 0.4 0.45 0.5

U.S. dollar — 0.05 0.1 0.1 0.1

Canadian dollar — 0.2 0.1 0.1

Euro — 0.05 0.5

Pound — 0.5

Peso —



(e) Jake realizes that his analysis is incomplete because he has not included all aspects that might
influence his planned currency exchanges. Describe other factors that Jake should examine
before he makes his final decision.
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TABLE 3 Transaction limits in equivalent of 1,000 dollars

To U.S. Canadian
From Yen Rupiah Ringgit Dollar Dollar Euro Pound Peso

Yen — 5,000 5,000 2,000 2,000 2,000 2,000 4,000

Rupiah 5,000 — 2,000 200 200 1,000 500 200

Ringgit 3,000 4,500 — 1,500 1,500 2,500 1,000 1,000
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10
Project Management 
with PERT/CPM

One of the most challenging jobs that any manager can take on is the management of a
large-scale project that requires coordinating numerous activities throughout the organi-
zation. A myriad of details must be considered in planning how to coordinate all these
activities, in developing a realistic schedule, and then in monitoring the progress of the
project.

Fortunately, two closely related operations research techniques, PERT (program eval-
uation and review technique) and CPM (critical path method), are available to assist the
project manager in carrying out these responsibilities. These techniques make heavy use
of networks (as introduced in the preceding chapter) to help plan and display the coordi-
nation of all the activities. They also normally use a software package to deal with all the
data needed to develop schedule information and then to monitor the progress of the pro-
ject. Project management software, such as MS Project in your OR Courseware, now is
widely available for these purposes.

PERT and CPM have been used for a variety of projects, including the following
types.

1. Construction of a new plant
2. Research and development of a new product
3. NASA space exploration projects
4. Movie productions
5. Building a ship
6. Government-sponsored projects for developing a new weapons system
7. Relocation of a major facility
8. Maintenance of a nuclear reactor
9. Installation of a management information system

10. Conducting an advertising campaign

PERT and CPM were independently developed in the late 1950s. Ever since, they
have been among the most widely used OR techniques.

The original versions of PERT and CPM had some important differences, as we will
point out later in the chapter. However, they also had a great deal in common, and the two
techniques have gradually merged further over the years. In fact, today’s software pack-
ages often include all the important options from both original versions.
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Consequently, practitioners now commonly use the two names interchangeably, or
combine them into the single acronym PERT/CPM, as we often will do. We will make
the distinction between them only when we are describing an option that was unique to
one of the original versions.

The next section introduces a prototype example that will carry through the chapter
to illustrate the various options for analyzing projects provided by PERT/CPM.

The RELIABLE CONSTRUCTION COMPANY has just made the winning bid of $5.4
million to construct a new plant for a major manufacturer. The manufacturer needs the plant
to go into operation within a year. Therefore, the contract incudes the following provisions:

• A penalty of $300,000 if Reliable has not completed construction by the deadline 47
weeks from now.

• To provide additional incentive for speedy construction, a bonus of $150,000 will be
paid to Reliable if the plant is completed within 40 weeks.

Reliable is assigning its best construction manager, David Perty, to this project to help
ensure that it stays on schedule. He looks forward to the challenge of bringing the proj-
ect in on schedule, and perhaps even finishing early. However, since he is doubtful that it
will be feasible to finish within 40 weeks without incurring excessive costs, he has de-
cided to focus his initial planning on meeting the deadline of 47 weeks.

Mr. Perty will need to arrange for a number of crews to perform the various con-
struction activities at different times. Table 10.1 shows his list of the various activities.
The third column provides important additional information for coordinating the sched-
uling of the crews.

For any given activity, its immediate predecessors (as given in the third column of Table
10.1) are those activities that must be completed by no later than the starting time of the

10.1 A PROTOTYPE EXAMPLE—THE RELIABLE 
CONSTRUCTION CO. PROJECT

TABLE 10.1 Activity list for the Reliable Construction Co. project

Immediate Estimated
Activity Activity Description Predecessors Duration

A Excavate — 2 weeks
B Lay the foundation A 4 weeks
C Put up the rough wall B 10 weeks
D Put up the roof C 6 weeks
E Install the exterior plumbing C 4 weeks
F Install the interior plumbing E 5 weeks
G Put up the exterior siding D 7 weeks
H Do the exterior painting E, G 9 weeks
I Do the electrical work C 7 weeks
J Put up the wallboard F, I 8 weeks
K Install the flooring J 4 weeks
L Do the interior painting J 5 weeks
M Install the exterior fixtures H 2 weeks
N Install the interior fixtures K, L 6 weeks



given activity. (Similarly, the given activity is called an immediate successor of each of
its immediate predecessors.)

For example, the top entries in this column indicate that

1. Excavation does not need to wait for any other activities.
2. Excavation must be completed before starting to lay the foundation.
3. The foundation must be completely laid before starting to put up the rough wall, etc.

When a given activity has more than one immediate predecessor, all must be finished be-
fore the activity can begin.

In order to schedule the activities, Mr. Perty consults with each of the crew supervi-
sors to develop an estimate of how long each activity should take when it is done in the
normal way. These estimates are given in the rightmost column of Table 10.1.

Adding up these times gives a grand total of 79 weeks, which is far beyond the dead-
line for the project. Fortunately, some of the activities can be done in parallel, which sub-
stantially reduces the project completion time.

Given all the information in Table 10.1, Mr. Perty now wants to develop answers to
the following questions.

1. How can the project be displayed graphically to better visualize the flow of the activ-
ities? (Section 10.2)

2. What is the total time required to complete the project if no delays occur? (Section 10.3)
3. When do the individual activities need to start and finish (at the latest) to meet this

project completion time? (Section 10.3)
4. When can the individual activities start and finish (at the earliest) if no delays occur?

(Section 10.3)
5. Which are the critical bottleneck activities where any delays must be avoided to pre-

vent delaying project completion? (Section 10.3)
6. For the other activities, how much delay can be tolerated without delaying project com-

pletion? (Section 10.3)
7. Given the uncertainties in accurately estimating activity durations, what is the proba-

bility of completing the project by the deadline? (Section 10.4)
8. If extra money is spent to expedite the project, what is the least expensive way of at-

tempting to meet the target completion time (40 weeks)? (Section 10.5)
9. How should ongoing costs be monitored to try to keep the project within budget? (Sec-

tion 10.6)

Being a regular user of PERT/CPM, Mr. Perty knows that this technique will provide in-
valuable help in answering these questions (as you will see in the sections indicated in
parentheses above).
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The preceding chapter describes how valuable networks can be to represent and help an-
alyze many kinds of problems. In much the same way, networks play a key role in deal-
ing with projects. They enable showing the relationships between the activities and plac-
ing everything into perspective. They then are used to help analyze the project and answer
the kinds of questions raised at the end of the preceding section.

10.2 USING A NETWORK TO VISUALLY DISPLAY A PROJECT
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Project Networks

A network used to represent a project is called a project network. A project network
consists of a number of nodes (typically shown as small circles or rectangles) and a
number of arcs (shown as arrows) that lead from some node to another. (If you have
not previously studied Chap. 9, where nodes and arcs are discussed extensively, just
think of them as the names given to the small circles or rectangles and to the arrows in
the network.)

As Table 10.1 indicates, three types of information are needed to describe a project.

1. Activity information: Break down the project into its individual activities (at the de-
sired level of detail).

2. Precedence relationships: Identify the immediate predecessor(s) for each activity.
3. Time information: Estimate the duration of each activity.

The project network needs to convey all this information. Two alternative types of proj-
ect networks are available for doing this.

One type is the activity-on-arc (AOA) project network, where each activity is rep-
resented by an arc. A node is used to separate an activity (an outgoing arc) from each of
its immediate predecessors (an incoming arc). The sequencing of the arcs thereby shows
the precedence relationships between the activities.

The second type is the activity-on-node (AON) project network, where each activ-
ity is represented by a node. The arcs then are used just to show the precedence relation-
ships between the activities. In particular, the node for each activity with immediate pre-
decessors has an arc coming in from each of these predecessors.

The original versions of PERT and CPM used AOA project networks, so this was the
conventional type for some years. However, AON project networks have some important
advantages over AOA project networks for conveying exactly the same information.

1. AON project networks are considerably easier to construct than AOA project networks.
2. AON project networks are easier to understand than AOA project networks for inex-

perienced users, including many managers.
3. AON project networks are easier to revise than AOA project networks when there are

changes in the project.

For these reasons, AON project networks have become increasingly popular with practi-
tioners. It appears somewhat likely that they will become the conventional type to use.
Therefore, we now will focus solely on AON project networks, and will drop the adjec-
tive AON.

Figure 10.1 shows the project network for Reliable’s project.1 Referring also to the
third column of Table 10.1, note how there is an arc leading to each activity from each
of its immediate predecessors. Because activity A has no immediate predecessors, there
is an arc leading from the start node to this activity. Similarly, since activities M and N
have no immediate successors, arcs lead from these activities to the finish node. There-
fore, the project network nicely displays at a glance all the precedence relationships be-

1Although project networks often are drawn from left to right, we go from top to bottom to better fit on the
printed page.



tween all the activities (plus the start and finish of the project). Based on the rightmost
column of Table 10.1, the number next to the node for each activity then records the es-
timated duration (in weeks) of that activity.

In real applications, software commonly is used to construct the project network, etc.
We next describe how MS Project (included in your OR Courseware) does this for Reli-
able’s project.

Using Microsoft Project

The first step with Microsoft Project (commonly called MS Project) is to enter the infor-
mation in the activity list (Table 10.1). Choose the View menu and then select its option
called Table. From the resulting submenu, choose the option called Entry to bring up the
table needed to enter the information. This table is displayed in Fig. 10.2 for Reliable’s
project. You enter the task (activity) names, the duration of each, a starting date for the
first activity, and the immediate predecessors of each, as shown in the figure. The pro-
gram automatically builds up the rest of the table (including the chart on the right) as you
enter this information.
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The default duration is in units of days, but we have changed the units to weeks here.
Such a change can be made by choosing Options under the Tools menu and then chang-
ing “Duration is entered in” under the Schedule options.

The default date format is a calendar date (e.g., 1/2/01). This can be changed by
choosing Options from the Tools menu and then changing the “Date Format” option un-
der the View options. We have chosen to count time from time 0. Thus, the start time for
the first activity is given as W1/1, which is shorthand for Week 1, day 1. A 5-day work
week is assumed. For example, since the duration of the first activity is 2 weeks, its fin-
ish time is given as W2/5 (Week 2, day 5).

The chart on the right is referred to as a Gantt chart. This kind of chart is a popu-
lar one in practice for displaying a project schedule, because the bars nicely show the
scheduled start and finish times for the respective activities. (This figure assumes that the
project begins at the beginning of a calendar year.) The arrows show the precedence re-
lationships between the activities. For example, since both activities 5 and 7 are immedi-
ate predecessors of activity 8, there are arrows from both activities 5 and 7 leading to ac-
tivity 8.

This project entry table can be returned to at any time by choosing Table:Entry in the
View menu.

You can choose between various views with the view toolbar down the left side of
the screen. The Gantt chart view is the default. The PERT chart view shows the project
network. This view initially lines all the activity boxes up in a row, but they can be moved
as desired by dragging the boxes with the mouse. Figure 10.3 shows this project network
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FIGURE 10.2
The spreadsheet used by MS Project for entering the activity list for the Reliable
Construction Co. project. On the right is a Gantt chart showing the project schedule.



after placing the activity boxes in the same locations as the corresponding nodes in Fig.
10.1 (except no boxes are included now for the start and finish of the project). Note that
each box provides considerable information about the activity. After giving its name, the
second row shows the activity number and duration. The last row then gives the sched-
uled start and finish times.

MS Project also provides additional information of the types described in some of
the subsequent sections. However, rather than continuing to display the form of the out-
put in the upcoming sections, we will show it in the MS Project folder for this chapter in
your OR Courseware. (Begin with this folder’s document entitled “Instructions.”)
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FIGURE 10.3
Reliable’s project network as
constructed with MS Project.
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At the end of Sec. 10.1, we mentioned that Mr. Perty, the project manager for the Reli-
able Construction Co. project, wants to use PERT/CPM to develop answers to a series of
questions. His first question has been answered in the preceding section. Here are the five
questions that will be answered in this section.

Question 2: What is the total time required to complete the project if no delays occur?
Question 3: When do the individual activities need to start and finish (at the latest) to

meet this project completion time?
Question 4: When can the individual activities start and finish (at the earliest) if no de-

lays occur?
Question 5: Which are the critical bottleneck activities where any delays must be avoided

to prevent delaying project completion?
Question 6: For the other activities, how much delay can be tolerated without delaying

project completion?

The project network in Fig. 10.1 enables answering all these questions by providing
two crucial pieces of information, namely, the order in which certain activities must be
performed and the (estimated) duration of each activity. We begin by focusing on Ques-
tions 2 and 5.

The Critical Path

How long should the project take? We noted earlier that summing the durations of all the
activities gives a grand total of 79 weeks. However, this isn’t the answer to the question
because some of the activities can be performed (roughly) simultaneously.

What is relevant instead is the length of each path through the network.

A path through a project network is one of the routes following the arcs from the START
node to the FINISH node. The length of a path is the sum of the (estimated) durations of
the activities on the path.

The six paths through the project network in Fig. 10.1 are given in Table 10.2, along with
the calculations of the lengths of these paths. The path lengths range from 31 weeks up
to 44 weeks for the longest path (the fourth one in the table).

So given these path lengths, what should be the (estimated) project duration (the to-
tal time required for the project)? Let us reason it out.

Since the activities on any given path must be done one after another with no over-
lap, the project duration cannot be shorter than the path length. However, the project du-
ration can be longer because some activity on the path with multiple immediate prede-
cessors might have to wait longer for an immediate predecessor not on the path to finish
than for the one on the path. For example, consider the second path in Table 10.2 and fo-
cus on activity H. This activity has two immediate predecessors, one (activity G) not on
the path and one (activity E) that is. After activity C finishes, only 4 more weeks are re-
quired for activity E but 13 weeks will be needed for activity D and then activity G to
finish. Therefore, the project duration must be considerably longer than the length of the
second path in the table.
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However, the project duration will not be longer than one particular path. This is the
longest path through the project network. The activities on this path can be performed se-
quentially without interruption. (Otherwise, this would not be the longest path.) There-
fore, the time required to reach the FINISH node equals the length of this path. Further-
more, all the shorter paths will reach the FINISH node no later than this.

Here is the key conclusion.

The (estimated) project duration equals the length of the longest path through the project
network. This longest path is called the critical path. (If more than one path tie for the
longest, they all are critical paths.)

Thus, for the Reliable Construction Co. project, we have

Critical path: START �A�B�C�E�F�J�L�N� FINISH
(Estimated) project duration � 44 weeks.

We now have answered Mr. Perty’s Questions 2 and 5 given at the beginning of
the section. If no delays occur, the total time required to complete the project should
be about 44 weeks. Furthermore, the activities on this critical path are the critical bot-
tleneck activities where any delays in their completion must be avoided to prevent de-
laying project completion. This is valuable information for Mr. Perty, since he now
knows that he should focus most of his attention on keeping these particular activities
on schedule in striving to keep the overall project on schedule. Furthermore, if he de-
cides to reduce the duration of the project (remember that bonus for completion within
40 weeks), these are the main activities where changes should be made to reduce their
durations.

For small project networks like Fig. 10.1, finding all the paths and determining the
longest path is a convenient way to identify the critical path. However, this is not an effi-
cient procedure for larger projects. PERT/CPM uses a considerably more efficient proce-
dure instead.

Not only is this PERT/CPM procedure very efficient for larger projects, it also pro-
vides much more information than is available from finding all the paths. In particu-
lar, it answers all five of Mr. Perty’s questions listed at the beginning of the section
rather than just two. These answers provide the key information needed to schedule all
the activities and then to evaluate the consequences should any activities slip behind
schedule.

The components of this procedure are described in the remainder of this section.
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TABLE 10.2 The paths and path lengths through Reliable’s project network

Path Length

START �A�B�C�D�G�H�M� FINISH 2 � 4 � 10 � 6 � 7 � 9 � 2 � 6 � 40 weeks
START �A�B�C�E�H�M� FINISH 2 � 4 � 10 � 4 � 9 � 2 � 2 � 6 � 31 weeks
START �A�B�C�E�F�J�K�N� FINISH 2 � 4 � 10 � 4 � 5 � 8 � 4 � 6 � 43 weeks
START �A�B�C�E�F�J�L�N� FINISH 2 � 4 � 10 � 4 � 5 � 8 � 5 � 6 � 44 weeks
START �A�B�C�I�J�K�N� FINISH 2 � 4 � 10 � 7 � 8 � 4 � 6 � 6 � 41 weeks
START �A�B�C�I�J�L�N� FINISH 2 � 4 � 10 � 7 � 8 � 5 � 6 � 6 � 42 weeks



Scheduling Individual Activities

The PERT/CPM scheduling procedure begins by addressing Question 4: When can the
individual activities start and finish (at the earliest) if no delays occur? Having no delays
means that (1) the actual duration of each activity turns out to be the same as its esti-
mated duration and (2) each activity begins as soon as all its immediate predecessors are
finished. The starting and finishing times of each activity if no delays occur anywhere in
the project are called the earliest start time and the earliest finish time of the activity.
These times are represented by the symbols

ES � earliest start time for a particular activity,
EF � earliest finish time for a particular activity,

where

EF � ES � (estimated) duration of the activity.

Rather than assigning calendar dates to these times, it is conventional instead to count
the number of time periods (weeks for Reliable’s project) from when the project started.
Thus,

Starting time for project � 0.

Since activity A starts Reliable’s project, we have

Activity A: ES � 0,
EF � 0 � duration (2 weeks)

� 2,

where the duration (in weeks) of activity A is given in Fig. 10.1 as the boldfaced number
next to this activity. Activity B can start as soon as activity A finishes, so

Activity B: ES � EF for activity A
� 2,

EF � 2 � duration (4 weeks)
� 6.

This calculation of ES for activity B illustrates our first rule for obtaining ES.

If an activity has only a single immediate predecessor, then

ES for the activity � EF for the immediate predecessor.

This rule (plus the calculation of each EF) immediately gives ES and EF for activity C,
then for activities D, E, I, and then for activities G, F as well. Figure 10.4 shows ES and
EF for each of these activities to the right of its node. For example,

Activity G: ES � EF for activity D
� 22,

EF � 22 � duration (7 weeks)
� 29,
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which means that this activity (putting up the exterior siding) should start 22 weeks and
finish 29 weeks after the start of the project.

Now consider activity H, which has two immediate predecessors, activities G and E.
Activity H must wait to start until both activities G and E are finished, which gives the
following calculation.

Immediate predecessors of activity H:

Activity G has EF � 29.
Activity E has EF � 20.

Larger EF � 29.

Therefore,

ES for activity H � larger EF above
� 29.
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FIGURE 10.4
Earliest start time (ES) and earliest finish time (EF) values for the initial activities in Fig.
10.1 that have only a single immediate predecessor.



When the activity has only a single immediate predecessor, this rule becomes the same
as the first rule given earlier. However, it also allows any larger number of immediate
predecessors as well. Applying this rule to the rest of the activities in Fig. 10.4 (and
calculating each EF from ES) yields the complete set of ES and EF values given in
Fig. 10.5.
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Earliest Start Time Rule

The earliest start time of an activity is equal to the largest of the earliest finish times of its im-
mediate predecessors. In symbols,

ES � largest EF of the immediate predecessors.

This calculation illustrates the general rule for obtaining the earliest start time for any
activity.
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FIGURE 10.5
Earliest start time (ES) and
earliest finish time (EF) values
for all the activities (plus the
START and FINISH nodes) of
the Reliable Construction Co.
project.



Note that Fig. 10.5 also includes ES and EF values for the START and FINISH nodes.
The reason is that these nodes are conventionally treated as dummy activities that require
no time. For the START node, ES�0�EF automatically. For the FINISH node, the ear-
liest start time rule is used to calculate ES in the usual way, as illustrated below.

Immediate predecessors of the FINISH node:

Activity M has EF � 40.
Activity N has EF � 44.

Larger EF � 44.

Therefore,

ES for the FINISH node � larger EF above
� 44.

EF for the FINISH node � 44 � 0 � 44.

This last calculation indicates that the project should be completed in 44 weeks if
everything stays on schedule according to the start and finish times for each activity given
in Fig. 10.5. (This answers Question 2.) Mr. Perty now can use this schedule to inform
the crew responsible for each activity as to when it should plan to start and finish its work.

This process of starting with the initial activities and working forward in time toward
the final activities to calculate all the ES and EF values is referred to as making a for-
ward pass through the network.

Keep in mind that the schedule obtained from this procedure assumes that the actual
duration of each activity will turn out to be the same as its estimated duration. What hap-
pens if some activity takes longer than expected? Would this delay project completion?
Perhaps, but not necessarily. It depends on which activity and the length of the delay.

The next part of the procedure focuses on determining how much later than indicated
in Fig. 10.5 can an activity start or finish without delaying project completion.

The latest start time for an activity is the latest possible time that it can start with-
out delaying the completion of the project (so the FINISH node still is reached at
its earliest finish time), assuming no subsequent delays in the project. The latest
finish time has the corresponding definition with respect to finishing the activity.

In symbols,

LS � latest start time for a particular activity,
LF � latest finish time for a particular activity,

where

LS � LF � (estimated) duration of the activity.

To find LF, we have the following rule.
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Latest Finish Time Rule

The latest finish time of an activity is equal to the smallest of the latest start times of its imme-
diate successors. In symbols,

LF � smallest LS of the immediate successors.



Since an activity’s immediate successors cannot start until the activity finishes, this rule
is saying that the activity must finish in time to enable all its immediate successors to be-
gin by their latest start times.

For example, consider activity M in Fig. 10.1. Its only immediate successor is the
FINISH node. This node must be reached by time 44 in order to complete the project
within 44 weeks, so we begin by assigning values to this node as follows.

FINISH node: LF � its EF � 44,
LS � 44 � 0 � 44.

Now we can apply the latest finish time rule to activity M.

Activity M: LF � LS for the FINISH node
� 44,

LS � 44 � duration (2 weeks)
� 42.

(Since activity M is one of the activities that together complete the project, we also could
have automatically set its LF equal to the earliest finish time of the FINISH node with-
out applying the latest finish time rule.)

Since activity M is the only immediate successor of activity H, we now can apply the
latest finish time rule to the latter activity.

Activity H: LF � LS for activity M
� 42,

LS � 42 � duration (9 weeks)
� 33.

Note that the procedure being illustrated above is to start with the final activities and
work backward in time toward the initial activities to calculate all the LF and LS values.
Thus, in contrast to the forward pass used to find earliest start and finish times, we now
are making a backward pass through the network.

Figure 10.6 shows the results of making a backward pass to its completion. For ex-
ample, consider activity C, which has three immediate successors.

Immediate successors of activity C:

Activity D has LS � 20.
Activity E has LS � 16.
Activity I has LS � 18.

Smallest LS � 16.

Therefore,

LF for activity C � smallest LS above
� 16.

Mr. Perty now knows that the schedule given in Fig. 10.6 represents his “last chance
schedule.” Even if an activity starts and finishes as late as indicated in the figure, he still
will be able to avoid delaying project completion beyond 44 weeks as long as there is no
subsequent slippage in the schedule. However, to allow for unexpected delays, he would
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prefer to stick instead to the earliest time schedule given in Fig. 10.5 whenever possible
in order to provide some slack in parts of the schedule.

If the start and finish times in Fig. 10.6 for a particular activity are later than the cor-
responding earliest times in Fig. 10.5, then this activity has some slack in the schedule.
The last part of the PERT/CPM procedure for scheduling a project is to identify this slack,
and then to use this information to find the critical path. (This will answer both Ques-
tions 5 and 6.)

Identifying Slack in the Schedule

To identify slack, it is convenient to combine the latest times in Fig. 10.6 and the earliest
times in Fig. 10.5 into a single figure. Using activity M as an example, this is done by
displaying the information for each activity as follows.
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FIGURE 10.6
Latest start time (LS) and latest finish time (LF) for all the activities (plus the START and
FINISH nodes) of the Reliable Construction Co. project.
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duration
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start time
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start time
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F (40, 44)
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M 2

(Note that the S or F in front of each parentheses will remind you of whether these are
Start times or Finish times.) Figure 10.7 displays this information for the entire project.
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FIGURE 10.7
The complete project network showing ES and LS (in parentheses above the node) and
EF and LF (in parentheses below the node) for each activity of the Reliable Construction
Co. project. The darker arrows show the critical path through the project network.



This figure makes it easy to see how much slack each activity has.

The slack for an activity is the difference between its latest finish time and its earliest fin-
ish time. In symbols,

Slack � LF � EF.

(Since LF � EF � LS � ES, either difference actually can be used to calculate slack.)

For example,

Slack for activity M � 44 � 40 � 4.

This indicates that activity M can be delayed up to 4 weeks beyond the earliest time sched-
ule without delaying the completion of the project at 44 weeks. This makes sense, since
the project is finished as soon as both activities M and N are completed and the earliest
finish time for activity N (44) is 4 weeks later than for activity M (40). As long as activ-
ity N stays on schedule, the project still will finish at 44 weeks if any delays in starting
activity M (perhaps due to preceding activities taking longer than expected) and in per-
forming activity M do not cumulate more than 4 weeks.

Table 10.3 shows the slack for each of the activities. Note that some of the activities
have zero slack, indicating that any delays in these activities will delay project comple-
tion. This is how PERT/CPM identifies the critical path(s).

Each activity with zero slack is on a critical path through the project network such that
any delay along this path will delay project completion.

Thus, the critical path is

START �A�B�C�E�F�J�L�N� FINISH,
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TABLE 10.3 Slack for Reliable’s activities

On
Slack Critical

Activity (LF � EF) Path?

A 0 Yes
B 0 Yes
C 0 Yes
D 4 No
E 0 Yes
F 0 Yes
G 4 No
H 4 No
I 2 No
J 0 Yes
K 1 No
L 0 Yes
M 4 No
N 0 Yes



just as we found by a different method at the beginning of the section. This path is high-
lighted in Fig. 10.7 by the darker arrows. It is the activities on this path that Mr. Perty
must monitor with special care to keep the project on schedule.

Review

Now let us review Mr. Perty’s questions at the beginning of the section and see how all
of them have been answered by the PERT/CPM scheduling procedure.

Question 2: What is the total time required to complete the project if no delays occur?
This is the earliest finish time at the FINISH node (EF � 44 weeks), as given
at the bottom of Figs. 10.5 and 10.7.

Question 3: When do the individual activities need to start and finish (at the latest) to
meet this project completion time? These times are the latest start times (LS)
and latest finish times (LF) given in Figs. 10.6 and 10.7. These times pro-
vide a “last chance schedule” to complete the project in 44 weeks if no fur-
ther delays occur.

Question 4: When can the individual activities start and finish (at the earliest) if no de-
lays occur? These times are the earliest start times (ES) and earliest finish
times (EF) given in Figs. 10.5 and 10.7. These times usually are used to es-
tablish the initial schedule for the project. (Subsequent delays may force later
adjustments in the schedule.)

Question 5: Which are the critical bottleneck activities where any delays must be avoided to
prevent delaying project completion? These are the activities on the critical path
shown by the darker arrows in Fig. 10.7. Mr. Perty needs to focus most of his
attention on keeping these particular activities on schedule in striving to keep
the overall project on schedule.

Question 6: For the other activities, how much delay can be tolerated without delaying
project completion? These tolerable delays are the positive slacks given in
the middle column of Table 10.3.
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Now we come to the next of Mr. Perty’s questions posed at the end of Sec.10.1.

Question 7: Given the uncertainties in accurately estimating activity durations, what is
the probability of completing the project by the deadline (47 weeks)?

Recall that Reliable will incur a large penalty ($300,000) if this deadline is missed. There-
fore, Mr. Perty needs to know the probability of meeting the deadline. If this probability
is not very high, he will need to consider taking costly measures (using overtime, etc.) to
shorten the duration of some of the activities.

It is somewhat reassuring that the PERT/CPM scheduling procedure in the preceding
section obtained an estimate of 44 weeks for the project duration. However, Mr. Perty un-
derstands very well that this estimate is based on the assumption that the actual duration
of each activity will turn out to be the same as its estimated duration for at least the ac-
tivities on the critical path. Since the company does not have much prior experience with
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Beta distribution

Elasped time

0 o m p

FIGURE 10.8
Model of the probability distribution of the duration of an activity for the PERT three-
estimate approach: m � most likely estimate, o � optimistic estimate, and p �
pessimistic estimate.

this kind of project, there is considerable uncertainty about how much time actually will
be needed for each activity. In reality, the duration of each activity is a random variable
having some probability distribution.

The original version of PERT took this uncertainty into account by using three dif-
ferent types of estimates of the duration of an activity to obtain basic information about
its probability distribution, as described below.

The PERT Three-Estimate Approach

The three estimates to be obtained for each activity are

Most likely estimate (m) � estimate of the most likely value of the duration,

Optimistic estimate (o) � estimate of the duration under the most favorable conditions,

Pessimistic estimate (p) � estimate of the duration under the most unfavorable 
conditions.

The intended location of these three estimates with respect to the probability distribution
is shown in Fig. 10.8.

Thus, the optimistic and pessimistic estimates are meant to lie at the extremes of what
is possible, whereas the most likely estimate provides the highest point of the probability
distribution. PERT also assumes that the form of the probability distribution is a beta dis-
tribution (which has a shape like that in the figure) in order to calculate the mean (�) and
variance (�2) of the probability distribution. For most probability distributions such as
the beta distribution, essentially the entire distribution lies inside the interval between 
(� � 3�) and (� � 3�). (For example, for a normal distribution, 99.73 percent of the dis-
tribution lies inside this interval.) Thus, the spread between the smallest and largest elapsed
times in Fig. 10.8 is roughly 6�. Therefore, an approximate formula for �2 is

�2 � � �
2

.
p � o
�

6



Similarly, an approximate formula for � is

� � .

Intuitively, this formula is placing most of the weight on the most likely estimate and then
small equal weights on the other two estimates.

MS Project provides the option of calculating � for each activity with this formula.
Choosing Table:PA_PERT Entry under the View menu enables entering the three types of
estimates for the respective activities (where the most likely estimate is labeled as the ex-
pected duration). Choosing Toolbars:PERT Analysis under the View menu then enables a
toolbar that allows doing various types of analysis with these estimates. Using the “Cal-
culate PERT” option on this toolbar recalculates “Duration” with the above formula to
obtain �. Another option is to show the Gantt charts based on each of the three kinds of
estimates.

Mr. Perty now has contacted the supervisor of each crew that will be responsible for
one of the activities to request that these three estimates be made of the duration of the
activity. The responses are shown in the first four columns of Table 10.4.

The last two columns show the approximate mean and variance of the duration of
each activity, as calculated from the above formulas. In this example, all the means hap-
pen to be the same as the estimated duration obtained in Table 10.1 of Sec. 10.1. There-
fore, if all the activity durations were to equal their means, the duration of the project still
would be 44 weeks, so 3 weeks before the deadline. (See Fig. 10.7 for the critical path
requiring 44 weeks.)

However, this piece of information is not very reassuring to Mr. Perty. He knows that
the durations fluctuate around their means. Consequently, it is inevitable that the duration
of some activities will be larger than the mean, perhaps even nearly as large as the pes-
simistic estimate, which could greatly delay the project.

To check the worst case scenario, Mr. Perty reexamines the project network with the
duration of each activity set equal to the pessimistic estimate (as given in the fourth col-
umn of Table 10.4). Table 10.5 shows the six paths through this network (as given previ-
ously in Table 10.2) and the length of each path using the pessimistic estimates. The fourth
path, which was the critical path in Fig. 10.5, now has increased its length from 44 weeks
to 69 weeks. However, the length of the first path, which originally was 40 weeks (as
given in Table 10.2), now has increased all the way up to 70 weeks. Since this is the
longest path, it is the critical path with pessimistic estimates, which would give a project
duration of 70 weeks.

Given this dire (albeit unlikely) worst case scenario, Mr. Perty realizes that it is far from
certain that the deadline of 47 weeks will be met. But what is the probability of doing so?

PERT/CPM makes three simplifying approximations to help calculate this probability.

Three Simplifying Approximations

To calculate the probability that project duration will be no more than 47 weeks, it is
necessary to obtain the following information about the probability distribution of proj-
ect duration.

o � 4m � p
��

6
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TABLE 10.4 Expected value and variance of the duration of each activity for
Reliable’s project

Optimistic Most Likely Pessimistic Mean Variance
Estimate Estimate Estimate

Activity o m p � � �
o � 4

6
m � p
� �2 � ��p �

6
o

��
2

A 1 2�
1
2

� 3 2 �
1
9

�

B 2 3�
1
2

� 8 4 1�
1
2

�

C 6 9�
1
2

� 18 10 4�
1
2

�

D 4 5�
1
2

� 10 6 1�
1
2

�

E 1 4�
1
2

� 5 4 �
4
9

�

F 4 4�
1
2

� 10 5 1�
1
2

�

G 5 6�
1
2

� 11 7 1�
1
2

�

H 5 8�
1
2

� 17 9 4�
1
2

�

I 3 7�
1
2

� 9 7 1�
1
2

�

J 3 9�
1
2

� 9 8 1�
1
2

�

K 4 4�
1
2

� 4 4 0�
1
2

�

L 1 5�
1
2

� 7 5 1�
1
2

�

M 1 2�
1
2

� 3 2 �
1
9

�

N 5 5�
1
2

� 9 6 �
4
9

�

TABLE 10.5 The paths and path lengths through Reliable’s project network when
the duration of each activity equals its pessimistic estimate

Path Length

START�A�B�C�D�G�H�M�FINISH 3 � 8 � 18 � 10 � 11 � 17 � 3 � 70 weeks
START�A�B�C�E�H�M�FINISH 3 � 8 � 18 � 5 � 17 � 3 � 54 weeks
START�A�B�C�E�F�J�K�N�FINISH 3 � 8 � 18 � 5 � 10 � 9 � 4 � 9 � 66 weeks
START�A�B�C�E�F�J�L�N�FINISH 3 � 8 � 18 � 5 � 10 � 9 � 7 � 9 � 69 weeks
START�A�B�C�I�J�K�N�FINISH 3 � 8 � 18 � 9 � 9 � 4 � 9 � 60 weeks
START�A�B�C�I�J�L�N�FINISH 3 � 8 � 18 � 9 � 9 � 7 � 9 � 63 weeks

Probability Distribution of Project Duration.

1. What is the mean (denoted by �p) of this distribution?
2. What is the variance (denoted by �p

2) of this distribution?
3. What is the form of this distribution?

Recall that project duration equals the length (total elapsed time) of the longest path
through the project network. However, just about any of the six paths listed in Table 10.5



can turn out to be the longest path (and so the critical path), depending upon what the du-
ration of each activity turns out to be between its optimistic and pessimistic estimates.
Since dealing with all these paths would be complicated, PERT/CPM focuses on just the
following path.

The mean critical path is the path through the project network that would be
the critical path if the duration of each activity equals its mean.

Reliable’s mean critical path is

START�A�B�C�E�F�J�L�N�FINISH,

as highlighted in Fig. 10.7.

Simplifying Approximation 1: Assume that the mean critical path will turn out
to be the longest path through the project network. This is only a rough approx-
imation, since the assumption occasionally does not hold in the usual case where
some of the activity durations do not equal their means. Fortunately, when the
assumption does not hold, the true longest path commonly is not much longer
than the mean critical path (as illustrated in Table 10.5).

Although this approximation will enable us to calculate �p, we need one more ap-
proximation to obtain �p

2.

Simplifying Approximation 2: Assume that the durations of the activities on the
mean critical path are statistically independent. This assumption should hold if
the activities are performed truly independently of each other. However, the as-
sumption becomes only a rough approximation if the circumstances that cause
the duration of one activity to deviate from its mean also tend to cause similar
deviations for some other activities.

We now have a simple method for computing �p and �p
2.

Calculation of �p and �p
2: Because of simplifying approximation 1, the mean

of the probability distribution of project duration is approximately

�p � sum of the means of the durations for the activities on the mean critical
path.

Because of both simplifying approximations 1 and 2, the variance of the proba-
bility distribution of project duration is approximately

�p
2 � sum of the variances of the durations for the activities on the mean

critical path.

Since the means and variances of the durations for all the activities of Reliable’s project
already are given in Table 10.4, we only need to record these values for the activities on
the mean critical path as shown in Table 10.6. Summing the second column and then sum-
ming the third column give

�p � 44, �p
2 � 9.
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Now we just need an approximation for the form of the probability distribution of
project duration.

Simplifying Approximation 3: Assume that the form of the probability distrib-
ution of project duration is a normal distribution, as shown in Fig. 10.9. By us-
ing simplifying approximations 1 and 2, one version of the central limit theorem
justifies this assumption as being a reasonable approximation if the number of
activities on the mean critical path is not too small (say, at least 5). The approx-
imation becomes better as this number of activities increases.

Now we are ready to determine (approximately) the probability of completing Reli-
able’s project within 47 weeks.
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TABLE 10.6 Calculation of �p and �p
2 for Reliable’s project

Activities on Mean Critical Path Mean Variance

A 2 �
1
9

�

B 4 1�
1
2

�

C 10 4�
1
2

�

E 4 �
4
9

�

F 5 1�
1
2

�

J 8 1�
1
2

�

L 5 1�
1
2

�

N 6 �
4
9

�

Project duration �p � 44 �p
2 � 9

44
(Mean)

47
(Deadline)

Project duration
(in weeks)

d � �p
�p

p
2 � 9�

47 � 44
3

� � 1�
�

FIGURE 10.9
The three simplifying approximations lead to the probability distribution of the duration
of Reliable’s project being approximated by the normal distribution shown here. The
shaded area is the portion of the distribution that meets the deadline of 47 weeks.



Approximating the Probability of Meeting the Deadline

Let

T � project duration (in weeks), which has (approximately) a normal distribution
with mean �p � 44 and variance �p

2 � 9,
d � deadline for the project � 47 weeks.

Since the standard deviation of T is �p � 3, the number of standard deviations by which
d exceeds �p is

K� � �
d �

�p

�p
� � �

47 �
3

44
� � 1.

Therefore, using Table A5.1 in Appendix 5 for a standard normal distribution (a normal
distribution with mean 0 and variance 1), the probability of meeting the deadline (given
the three simplifying approximations) is

P(T 	 d ) � P(standard normal 	 K�)
� 1 � P(standard normal 
 K�) � 1 � 0.1587 � 0.84.

Warning: This P(T 	 d ) is only a rough approximation of the true probability
of meeting the project deadline. Furthermore, because of simplifying approxi-
mation 1, it usually overstates the true probability somewhat. Therefore, the proj-
ect manager should view P(T 	 d ) as only providing rough guidance on the best
odds of meeting the deadline without taking new costly measures to try to re-
duce the duration of some activities.

To assist you in carrying out this procedure for calculating P(T 	 d ), we have pro-
vided an Excel template (labeled PERT) in this chapter’s Excel file in your OR Course-
ware. Figure 10.10 illustrates the use of this template for Reliable’s project. The data for
the problem is entered in the light sections of the spreadsheet. After entering data, the re-
sults immediately appear in the dark sections. In particular, by entering the three time es-
timates for each activity, the spreadsheet will automatically calculate the corresponding
estimates for the mean and variance. Next, by specifying the mean critical path (by en-
tering * in column G for each activity on the mean critical path) and the deadline (in cell
L10), the spreadsheet automatically calculates the mean and variance of the length of the
mean critical path along with the probability that the project will be completed by the
deadline. (If you are not sure which path is the mean critical path, the mean length of any
path can be checked by entering a * for each activity on that path in column G. The path
with the longest mean length then is the mean critical path.)

Realizing that P(T 	 d ) � 0.84 is probably an optimistic approximation, Mr. Perty
is somewhat concerned that he may have perhaps only a 70 to 80 percent chance of meet-
ing the deadline with the current plan. Therefore, rather than taking the significant chance
of the company incurring the late penalty of $300,000, he decides to investigate what it
would cost to reduce the project duration to about 40 weeks. If the time-cost trade-off for
doing this is favorable, the company might then be able to earn the bonus of $150,000 for
finishing within 40 weeks.

You will see this story unfold in the next section.
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FIGURE 10.10
This PERT template in your OR Courseware enables efficient application of the PERT
three-estimate approach, as illustrated here for Reliable’s project.

Mr. Perty now wants to investigate how much extra it would cost to reduce the expected
project duration down to 40 weeks (the deadline for the company earning a bonus of
$150,000 for early completion). Therefore, he is ready to address the next of his ques-
tions posed at the end of Sec. 10.1.

Question 8: If extra money is spent to expedite the project, what is the least expensive
way of attempting to meet the target completion time (40 weeks)?

10.5 CONSIDERING TIME-COST TRADE-OFFS



Mr. Perty remembers that CPM provides an excellent procedure for using linear pro-
gramming to investigate such time-cost trade-offs, so he will use this approach again to
address this question.

We begin with some background.

Time-Cost Trade-Offs for Individual Activities

The first key concept for this approach is that of crashing.

Crashing an activity refers to taking special costly measures to reduce the duration of
an activity below its normal value. These special measures might include using overtime,
hiring additional temporary help, using special time-saving materials, obtaining special
equipment, etc. Crashing the project refers to crashing a number of activities in order
to reduce the duration of the project below its normal value.

The CPM method of time-cost trade-offs is concerned with determining how much (if
any) to crash each of the activities in order to reduce the anticipated duration of the proj-
ect to a desired value.

The data necessary for determining how much to crash a particular activity are given
by the time-cost graph for the activity. Figure 10.11 shows a typical time-cost graph. Note
the two key points on this graph labeled Normal and Crash.

The normal point on the time-cost graph for an activity shows the time (duration) and
cost of the activity when it is performed in the normal way. The crash point shows the
time and cost when the activity is fully crashed, i.e., it is fully expedited with no cost
spared to reduce its duration as much as possible. As an approximation, CPM assumes
that these times and costs can be reliably predicted without significant uncertainty.

For most applications, it is assumed that partially crashing the activity at any level will
give a combination of time and cost that will lie somewhere on the line segment between
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FIGURE 10.11
A typical time-cost graph for
an activity.



these two points. (For example, this assumption says that half of a full crash will give a
point on this line segment that is midway between the normal and crash points.) This sim-
plifying approximation reduces the necessary data gathering to estimating the time and
cost for just two situations: normal conditions (to obtain the normal point) and a full crash
(to obtain the crash point).

Using this approach, Mr. Perty has his staff and crew supervisors working on devel-
oping these data for each of the activities of Reliable’s project. For example, the super-
visor of the crew responsible for putting up the wallboard indicates that adding two tem-
porary employees and using overtime would enable him to reduce the duration of this
activity from 8 weeks to 6 weeks, which is the minimum possible. Mr. Perty’s staff then
estimates the cost of fully crashing the activity in this way as compared to following the
normal 8-week schedule, as shown below.

Activity J (put up the wallboard):

Normal point: time � 8 weeks, cost � $430,000.
Crash point: time � 6 weeks, cost � $490,000.
Maximum reduction in time � 8 � 6 � 2 weeks.

Crash cost per week saved �

� $30,000.

Table 10.7 gives the corresponding data obtained for all the activities.

Which Activities Should Be Crashed?

Summing the normal cost and crash cost columns of Table 10.7 gives

Sum of normal costs � $4.55 million,
Sum of crash costs � $6.15 million.

$490,000 � $430,000
���

2
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TABLE 10.7 Time-cost trade-off data for the activities of Reliable’s project

Time Cost Maximum Crash Cost
Reduction per Week

Activity Normal Crash Normal Crash in Time Saved

A 2 weeks 1 weeks $180,000 $1,280,000 1 weeks $100,000
B 4 weeks 2 weeks $320,000 $1,420,000 2 weeks $ 50,000
C 10 weeks 7 weeks $620,000 $1,860,000 3 weeks $ 80,000
D 6 weeks 4 weeks $260,000 $1,340,000 2 weeks $ 40,000
E 4 weeks 3 weeks $410,000 $1,570,000 1 weeks $160,000
F 5 weeks 3 weeks $180,000 $1,260,000 2 weeks $ 40,000
G 7 weeks 4 weeks $900,000 $1,020,000 3 weeks $ 40,000
H 9 weeks 6 weeks $200,000 $1,380,000 3 weeks $ 60,000
I 7 weeks 5 weeks $210,000 $1,270,000 2 weeks $ 30,000
J 8 weeks 6 weeks $430,000 $1,490,000 2 weeks $ 30,000
K 4 weeks 3 weeks $160,000 $1,200,000 1 weeks $ 40,000
L 5 weeks 3 weeks $250,000 $1,350,000 2 weeks $ 50,000
M 2 weeks 1 weeks $100,000 $1,200,000 1 weeks $100,000
N 6 weeks 3 weeks $330,000 $1,510,000 3 weeks $ 60,000



Recall that the company will be paid $5.4 million for doing this project. (This figure ex-
cludes the $150,000 bonus for finishing within 40 weeks and the $300,000 penalty for
not finishing within 47 weeks.) This payment needs to cover some overhead costs in ad-
dition to the costs of the activities listed in the table, as well as provide a reasonable profit
to the company. When developing the (winning) bid of $5.4 million, Reliable’s manage-
ment felt that this amount would provide a reasonable profit as long as the total cost of
the activities could be held fairly close to the normal level of about $4.55 million. Mr.
Perty understands very well that it is now his responsibility to keep the project as close
to both budget and schedule as possible.

As found previously in Fig. 10.7, if all the activities are performed in the normal way,
the anticipated duration of the project would be 44 weeks (if delays can be avoided). If all
the activities were to be fully crashed instead, then a similar calculation would find that this
duration would be reduced to only 28 weeks. But look at the prohibitive cost ($6.15 million)
of doing this! Fully crashing all activities clearly is not an option that can be considered.

However, Mr. Perty still wants to investigate the possibility of partially or fully crash-
ing just a few activities to reduce the anticipated duration of the project to 40 weeks.

The problem: What is the least expensive way of crashing some activities to re-
duce the (estimated) project duration to the specified level (40 weeks)?

One way of solving this problem is marginal cost analysis, which uses the last col-
umn of Table 10.7 (along with Fig. 10.7 in Sec. 10.3) to determine the least expensive
way to reduce project duration 1 week at a time. The easiest way to conduct this kind of
analysis is to set up a table like Table 10.8 that lists all the paths through the project net-
work and the current length of each of these paths. To get started, this information can be
copied directly from Table 10.2.

Since the fourth path listed in Table 10.8 has the longest length (44 weeks), the only
way to reduce project duration by a week is to reduce the duration of the activities on this
particular path by a week. Comparing the crash cost per week saved given in the last col-
umn of Table 10.7 for these activities, the smallest cost is $30,000 for activity J. (Note
that activity I with this same cost is not on this path.) Therefore, the first change is to
crash activity J enough to reduce its duration by a week.

This change results in reducing the length of each path that includes activity J (the
third, fourth, fifth, and sixth paths in Table 10.8) by a week, as shown in the second row
of Table 10.9. Because the fourth path still is the longest (43 weeks), the same process is
repeated to find the least expensive activity to shorten on this path. This again is activity
J, since the next-to-last column in Table 10.7 indicates that a maximum reduction of 2
weeks is allowed for this activity. This second reduction of a week for activity J leads to
the third row of Table 10.9.
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TABLE 10.8 The initial table for starting marginal cost analysis of Reliable’s project

Length of Path
Activity to Crash

Crash Cost ABCDGHM ABCEHM ABCEFJKN ABCEFJLN ABCIJKN ABCIJLN

40 31 43 44 41 42



At this point, the fourth path still is the longest (42 weeks), but activity J cannot be
shortened any further. Among the other activities on this path, activity F now is the least
expensive to shorten ($40,000 per week) according to the last column of Table 10.7. There-
fore, this activity is shortened by a week to obtain the fourth row of Table 10.9, and then
(because a maximum reduction of 2 weeks is allowed) is shortened by another week to
obtain the last row of this table.

The longest path (a tie between the first, fourth, and sixth paths) now has the desired
length of 40 weeks, so we don’t need to do any more crashing. (If we did need to go fur-
ther, the next step would require looking at the activities on all three paths to find the least
expensive way of shortening all three paths by a week.) The total cost of crashing activ-
ities J and F to get down to this project duration of 40 weeks is calculated by adding the
costs in the second column of Table 10.9—a total of $140,000. Figure 10.12 shows the
resulting project network.

Since $140,000 is slightly less than the bonus of $150,000 for finishing within 40
weeks, it might appear that Mr. Perty should proceed with this solution. However, because
of uncertainties about activity durations, he concludes that he probably should not crash
the project at all. (We will discuss this further at the end of the section.)

Figure 10.12 shows that reducing the durations of activities F and J to their crash
times has led to now having three critical paths through the network. The reason is that,
as we found earlier from the last row of Table 10.9, the three paths tie for being the longest,
each with a length of 40 weeks.

With larger networks, marginal cost analysis can become quite unwieldy. A more ef-
ficient procedure would be desirable for large projects.

For these reasons, the standard CPM procedure is to apply linear programming in-
stead (commonly with a customized software package).

Using Linear Programming to Make Crashing Decisions

The problem of finding the least expensive way of crashing activities can be rephrased in
a form more familiar to linear programming as follows.

Restatement of the problem: Let Z be the total cost of crashing activities. The
problem then is to minimize Z, subject to the constraint that project duration must
be less than or equal to the time desired by the project manager.
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TABLE 10.9 The final table for performing marginal cost analysis on 
Reliable’s project

Length of Path
Activity to Crash

Crash Cost ABCDGHM ABCEHM ABCEFJKN ABCEFJLN ABCIJKN ABCIJLN

40 31 43 44 41 42
J $30,000 40 31 42 43 40 41
J $30,000 40 31 41 42 39 40
F $40,000 40 31 40 41 39 40
F $40,000 40 31 39 40 39 40



The natural decision variables are

xj � reduction in the duration of activity j due to crashing this activity,
for j � A, B . . . , N.

By using the last column of Table 10.7, the objective function to be minimized then is

Z � 100,000xA � 50,000xB � … � 60,000xN.

Each of the 14 decision variables on the right-hand side needs to be restricted to nonnega-
tive values that do not exceed the maximum given in the next-to-last column of Table 10.7.

To impose the constraint that project duration must be less than or equal to the de-
sired value (40 weeks), let

yFINISH � project duration, i.e., the time at which the FINISH node in the project
network is reached.

The constraint then is

yFINISH 	 40.
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To help the linear programming model assign the appropriate value to yFINISH, given
the values of xA, xB, . . . , xN, it is convenient to introduce into the model the following
additional variables.

yj � start time of activity j (for j � B, C, . . . , N), given the values of xA, xB, . . . , xN.

(No such variable is needed for activity A, since an activity that begins the project is au-
tomatically assigned a value of 0.) By treating the FINISH node as another activity (al-
beit one with zero duration), as we now will do, this definition of yj for activity FINISH
also fits the definition of yFINISH given in the preceding paragraph.

The start time of each activity (including FINISH) is directly related to the start time
and duration of each of its immediate predecessors as summarized below.

For each activity (B, C, . . . , N, FINISH) and each of its immediate predecessors,
Start time of this activity � (start time � duration) for this immediate predecessor.

Furthermore, by using the normal times from Table 10.7, the duration of each activity is
given by the following formula:

Duration of activity j � its normal time � xj,

To illustrate these relationships, consider activity F in the project network (Fig. 10.7
or 10.12).

Immediate predecessor of activity F:
Activity E, which has duration � 4 � xE.

Relationship between these activities:

yF � yE � 4 � xE.

Thus, activity F cannot start until activity E starts and then completes its duration of 4 � xE.
Now consider activity J, which has two immediate predecessors.

Immediate predecessors of activity J:
Activity F, which has duration � 5 � xF.
Activity I, which has duration � 7 � xI.

Relationships between these activities:

yJ � yF � 5 � xF,
yJ � yI � 7 � xI.

These inequalities together say that activity j cannot start until both of its predecessors
finish.

By including these relationships for all the activities as constraints, we obtain the
complete linear programming model given below.

Minimize Z � 100,000xA � 50,000xB � … � 60,000xN,

subject to the following constraints:

1. Maximum reduction constraints:
Using the next-to-last column of Table 10.7,

xA 	 1, xB 	 2, . . . , xN 	 3.
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2. Nonnegativity constraints:

xA � 0, xB � 0, . . . , xN � 0
yB � 0, yC � 0, . . . , yN � 0, yFINISH � 0.

3. Start time constraints:
As described above the objective function, except for activity A (which starts the proj-
ect), there is one such constraint for each activity with a single immediate predecessor
(activities B, C, D, E, F, G, I, K, L, M) and two constraints for each activity with two
immediate predecessors (activities H, J, N, FINISH), as listed below.
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yB � 0 � 2 � xA yH � yG � 7 � xG

yC � yB � 4 � xB yH � yE � 4 � xE

yD � yC � 10 � xC �

� yFINISH � yM � 2 � xM

yM � yH � 9 � xH yFINISH � yN � 6 � xN

4. Project duration constraint:

yFINISH 	 40.

Figure 10.13 shows how this problem can be formulated as a linear programming
model on a spreadsheet. The decisions to be made are shown in the changing cells, I6:J19
and J21. Columns B to H correspond to the columns in Table 10.8. As the equations in
the bottom half of the figure indicate, columns G and H are calculated in a straightfor-
ward way. The equations for column K express the fact that the finish time for each ac-
tivity is its start time plus its normal time minus its time reduction due to crashing. The
equation entered into the target cell (J22) adds all the normal costs plus the extra costs
due to crashing to obtain the total cost.

The last set of constraints in the Solver dialogue box (J6:J19 	 G6:G19) specifies
that the time reduction for each activity cannot exceed its maximum time reduction given
in column G. The two preceding constraints (J21 � K18 and J21 � K19) indicate that the
project cannot finish until each of the two immediate predecessors (activities M and N )
finish. The constraint that J21 	 40 is a key one that specifies that the project must fin-
ish within 40 weeks.

The constraints involving cells I7:I19 all are start-time constraints that specify that
an activity cannot start until each of its immediate predecessors has finished. For exam-
ple, the first constraint shown (I10 � K8) says that activity E cannot start until activity C
(its immediate predecessor) finishes. When an activity has more than one immediate pre-
decessor, there is one such constraint for each of them. To illustrate, activity H has both
activities E and G as immediate predecessors. Consequently, activity H has two start-time
constraints, I13 � K10 and I13 � K12.

You may have noticed that the � form of the start-time constraints allows a delay in
starting an activity after all its immediate predecessors have finished. Although such a de-
lay is feasible in the model, it cannot be optimal for any activity on a critical path, since
this needless delay would increase the total cost (by necessitating additional crashing to
meet the project duration constraint). Therefore, an optimal solution for the model will
not have any such delays, except possibly for activities not on a critical path.
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FIGURE 10.13
The spreadsheet displays the application of the CPM method of time-cost trade-offs to
Reliable’s project, where columns I and J show the optimal solution obtained by using
the Excel Solver with the entries shown in the Solver dialogue box.



Columns I and J in Fig. 10.13 show the optimal solution obtained after having clicked
on the Solve button. (Note that this solution involves one delay—activity K starts at 30
even though its only immediate predecessor, activity J, finishes at 29—but this doesn’t
matter since activity K is not on a critical path.) This solution corresponds to the one dis-
played in Fig. 10.12 that was obtained by marginal cost analysis.

Mr. Perty’s Conclusions

Mr. Perty always keeps a sharp eye on the bottom line. Therefore, when his staff brings
him the above plan for crashing the project to try to reduce its duration from about 44
weeks to about 40 weeks, he first looks at the estimated total cost of $4.69 million. Since
the estimated total cost without any crashing is $4.55 million, the additional cost from the
crashing would be about $140,000. This is $10,000 less than the bonus of $150,000 that
the company would earn by finishing within 40 weeks.

However, Mr. Perty knows from long experience what we discussed in the preceding
section, namely, that there is considerable uncertainty about how much time actually will
be needed for each activity and so for the overall project. Recall that the PERT three-
estimate approach led to having a probability distribution for project duration. Without
crashing, this probability distribution has a mean of 44 weeks but such a large variance
that there is even a substantial probability (roughly 0.2) of not even finishing within 47
weeks (which would trigger a penalty of $300,000). With the new crashing plan reducing
the mean to 40 weeks, there is as much chance that the actual project duration will turn
out to exceed 40 weeks as being within 40 weeks. Why spend an extra $140,000 to ob-
tain a 50 percent chance of earning the bonus of $150,000?

Conclusion 1: The plan for crashing the project only provides a probability of
0.5 of actually finishing the project within 40 weeks, so the extra cost of the plan
($140,000) is not justified. Therefore, Mr. Perty rejects any crashing at this stage.

Mr. Perty does note that the two activities that had been proposed for crashing (F and
J) come about halfway through the project. Therefore, if the project is well ahead of sched-
ule before reaching activity F, then implementing the crashing plan almost certainly would
enable finishing the project within 40 weeks. Furthermore, Mr. Perty knows that it would be
good for the company’s reputation (as well as a feather in his own cap) to finish this early.

Conclusion 2: The extra cost of the crashing plan can be justified if it almost
certainly would earn the bonus of $150,000 for finishing the project within 40
weeks. Therefore, Mr. Perty will hold the plan in reserve to be implemented if
the project is running well ahead of schedule before reaching activity F.

Mr. Perty is more concerned about the possibility that the project will run so far be-
hind schedule that the penalty of $300,000 will be incurred for not finishing within 47
weeks. If this becomes likely without crashing, Mr. Perty sees that it probably can be
avoided by crashing activity J (at a cost of $30,000 per week saved) and, if necessary,
crashing activity F as well (at a cost of $40,000 per week saved). This will hold true as
long as these activities remain on the critical path (as is likely) after the delays occurred.

Conclusion 3: The extra cost of part or all of the crashing plan can be easily jus-
tified if it likely would make the difference in avoiding the penalty of $300,000
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for not finishing the project within 47 weeks. Therefore, Mr. Perty will hold the
crashing plan in reserve to be partially or wholly implemented if the project is
running far behind schedule before reaching activity F or activity J.

In addition to carefully monitoring the schedule as the project evolves (and making
a later decision about any crashing), Mr. Perty will be closely watching the costs to try
to keep the project within budget. The next section describes how he plans to do this.
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Any good project manager like Mr. Perty carefully plans and monitors both the time and
cost aspects of the project. Both schedule and budget are important.

Sections 10.3 and 10.4 have described how PERT/CPM deals with the time aspect in
developing a schedule and taking uncertainties in activity or project durations into ac-
count. Section 10.5 then placed an equal emphasis on time and cost by describing the
CPM method of time-cost trade-offs.

Mr. Perty now is ready to turn his focus to costs by addressing the last of his ques-
tions posed at the end of Sec. 10.1.

Question 9: How should ongoing costs be monitored to try to keep the project within 
budget?

Mr. Perty recalls that the PERT/CPM technique known as PERT/Cost is specifically
designed for this purpose.

PERT/Cost is a systematic procedure (normally computerized) to help the project man-
ager plan, schedule, and control project costs.

The PERT/Cost procedure begins with the hard work of developing an estimate of
the cost of each activity when it is performed in the planned way (including any crash-
ing). At this stage, Mr. Perty does not plan on any crashing, so the estimated costs of the
activities in Reliable’s project are given in the normal cost column of Table 10.7 in the
preceding section. These costs then are displayed in the project budget shown in Table
10.10. This table also includes the estimated duration of each activity (as already given
in Table 10.1 or in Figs. 10.1 to 10.7 or in the normal time column of Table 10.7). Di-
viding the cost of each activity by its duration gives the amount in the rightmost column
of Table 10.10.

Assumption: A common assumption when using PERT/Cost is that the costs of
performing an activity are incurred at a constant rate throughout its duration. Mr.
Perty is making this assumption, so the estimated cost during each week of an
activity’s duration is given by the rightmost column of Table 10.10.

When applying PERT/Cost to larger projects with numerous activities, it is common
to combine each group of related activities into a “work package.” Both the project bud-
get and the schedule of project costs (described next) then are developed in terms of these
work packages rather than the individual activities. Mr. Perty has chosen not to do this,
since his project has only 14 activities.
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Scheduling Project Costs

Mr. Perty needs to know how much money is required to cover project expenses week by
week. PERT/Cost provides this information by using the rightmost column of Table 10.10
to develop a weekly schedule of expenses when the individual activities begin at their ear-
liest start times. Then, to indicate how much flexibility is available for delaying expenses,
PERT/Cost does the same thing when the individual activities begin at their latest start
times instead.

To do this, this chapter’s Excel file in your OR Courseware includes an Excel tem-
plate (labeled PERT Cost) for generating a project’s schedule of costs for up to 45 time
periods. (MS Project generates basically the same information by choosing Table:Cost and
then Reports under the View menu, and next choosing the Costs … option and selecting
the Cash Flow report.) Figure 10.14 shows this Excel template (including the equations
entered into its output cells) for the beginning of Reliable’s project, based on earliest start
times (column B) as first obtained in Fig. 10.5, where columns B, C, and D come directly
from Table 10.10. Figure 10.15 jumps ahead to show this same template for weeks 17 to
25. Since activities D, E, and I all have earliest start times of 16 (16 weeks after the com-
mencement of the project), they all start in week 17, while activities F and G commence
later during the period shown. Columns W through AE give the weekly cost (in dollars)
of each of these activities, as obtained from column F (see Fig. 10.14), for the duration
of the activity (given by column C). Row 22 shows the sum of the weekly activity costs
for each week.

Row 23 of this template gives the total project cost from week 1 on up to the indicated
week. For example, consider week 17. Prior to week 17, activities A, B, and C all have been
completed but no other activities have begun, so the total cost for the first 16 weeks (from
the third column of Table 10.10) is $180,000 � $320,000 � $620,000 � $1,120,000. Adding
the weekly project cost for week 17 then gives $1,120,000 � $175,833 � $1,295,833.
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TABLE 10.10 The project budget for Reliable’s project

Estimated Estimated Cost per Week
Activity Duration Cost of Its Duration

A 2 weeks $180,000 $190,000
B 4 weeks $320,000 $180,000
C 10 weeks $620,000 $162,000
D 6 weeks $260,000 $143,333
E 4 weeks $410,000 $102,500
F 5 weeks $180,000 $136,000
G 7 weeks $900,000 $128,571
H 9 weeks $200,000 $122,222
I 7 weeks $210,000 $130,000
J 8 weeks $430,000 $153,750
K 4 weeks $160,000 $140,000
L 5 weeks $250,000 $150,000
M 2 weeks $100,000 $150,000
N 6 weeks $330,000 $155,000



Thus, Fig. 10.15 (and its extension to earlier and later weeks) shows Mr. Perty just
how much money he will need to cover each week’s expenses, as well as the cumulative
amount, assuming the project can stick to the earliest start time schedule.

Next, PERT/Cost uses the same procedure to develop the corresponding information
when each activity begins at its latest start times instead. These latest start times were first
obtained in Fig. 10.6 and are repeated here in column E of Fig. 10.16. The rest of this
figure then is generated in the same way as for Fig. 10.15. For example, since activity D
has a latest start time of 20 (versus an earliest start time of 16), its weekly cost of $43,333
now begins in week 21 rather than week 17. Similarly, activity G has a latest start time
of 26, so it has no entries for the weeks considered in this figure.

Figure 10.16 (and its extension to earlier and later weeks) tells Mr. Perty what his
weekly and cumulative expenses would be if he postpones each activity as long as possi-
ble without delaying project completion (assuming no unexpected delays occur). Com-
paring row 23 of Figs. 10.15 and 10.16 indicates that fairly substantial temporary savings
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FIGURE 10.14
This Excel template in your
OR Courseware enables
efficient application of the
PERT/Cost procedure, as
illustrated here for the
beginning of Reliable’s
project when using earliest
start times.



can be achieved by such postponements, which is very helpful if the company is incur-
ring cash shortages. (However, such postponements would only be used reluctantly since
they would remove any latitude for avoiding a delay in the completion of the project if
any activities incur unexpected delays.)

To better visualize the comparison between row 23 of Figs. 10.15 and 10.16, it is
helpful to graph these two rows together over all 44 weeks of the project as shown in Fig.
10.17. Since the earliest start times and latest start times are the same for the first three
activities (A, B, C ), which encompass the first 16 weeks, the cumulative project cost is
the same for the two kinds of start times over this period. After week 16, we obtain two
distinct cost curves by plotting the values in row 23 of Figs. 10.15 and 10.16 (and their
extensions to later weeks). Since sticking to either earliest start times or latest start times
leads to project completion at the end of 44 weeks, the two cost curves come together
again at that point with a total project cost of $4.55 million. The dots on either curve are
the points at which the weekly project costs change.

Naturally, the start times and activity costs that lead to Fig. 10.17 are only estimates
of what actually will transpire. However, the figure provides a best forecast of cumula-
tive project costs week by week when following a work schedule based on either earliest
or latest start times. If either of these work schedules is selected, this best forecast then
becomes a budget to be followed as closely as possible. A budget in the shaded area be-
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FIGURE 10.15
This spreadsheet extends the template in Fig. 10.14 to weeks 17 to 25.



tween the two cost curves also can be obtained by selecting a work schedule that calls for
beginning each activity somewhere between its earliest and latest start times. The only
feasible budgets for scheduling project completion at the end of week 44 (without any
crashing) lie in this shaded area or on one of the two cost curves.

Reliable Construction Co. has adequate funds to cover expenses until payments are
received. Therefore, Mr. Perty has selected a work schedule based on earliest start times
to provide the best chance for prompt completion. (He is still nervous about the signifi-
cant probability of incurring the penalty of $300,000 for not finishing within 47 weeks.)
Consequently, his budget is provided by the top cost curve in Fig. 10.17.

Controlling Project Costs

Once the project is under way, Mr. Perty will need to carefully monitor actual costs and
take corrective action as needed to avoid serious cost overruns. One important way of
monitoring costs is to compare actual costs to date with his budget provided by the top
curve in Fig. 10.17.

However, since deviations from the planned work schedule may occur, this method
of monitoring costs is not adequate by itself. For example, suppose that individual activ-
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FIGURE 10.16
The application of the PERT/Cost procedure to weeks 17 to 25 of Reliable’s project
when using latest start times.



ities have been costing more than budgeted, but delays have prevented some activities
from beginning when scheduled. These delays might cause the total cost to date to be less
than the budgeted cumulative project cost, thereby giving the illusion that project costs
are well under control. Furthermore, regardless of whether the cost performance of the
project as a whole seems satisfactory, Mr. Perty needs information about the cost perfor-
mance of individual activities in order to identify trouble spots where corrective action is
needed.

Therefore, PERT/Cost periodically generates a report that focuses on the cost per-
formance of the individual activities. To illustrate, Table 10.11 shows the report that Mr.
Perty received after the completion of week 22 (halfway through the project schedule).
The first column lists the activities that have at least begun by this time. The next column
gives the budgeted total cost of each activity (as given previously in the third column of
Table 10.10). The third column indicates what percentage of the activity now has been
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completed. Multiplying the second and third columns then gives the fourth column, which
thereby represents the budgeted value of the work completed on the activity.

The fourth column is the one that Mr. Perty wants to compare to the actual cost to
date given in the fifth column. Subtracting the fourth column from the fifth gives the cost
overrun to date of each activity, as shown in the rightmost column. (A negative number
in the cost overrun column indicates a cost underrun.)

Mr. Perty pays special attention in the report to the activities that are not yet com-
pleted, since these are the ones that he can still affect. (He used earlier reports to moni-
tor activities A, B, C, and E while they were under way, which led to meeting the total
budget for these four activities.) Activity D is barely over budget (less than 3 percent), but
Mr. Perty is very concerned about the large cost overruns to date for activities F and I.
Therefore, he next will investigate these two activities and work with the supervisors in-
volved to improve their cost performances.

Note in the bottom row of Table 10.11 that the cumulative project cost after week 22
is $1.92 million. This is considerably less than Mr. Perty’s budgeted cumulative project
cost of $2.042 million given in cell AB23 of Fig. 10.15. Without any further information,
this comparison would suggest an excellent cost performance for the project so far. How-
ever, the real reason for being under budget is that the current activities all are behind
schedule and so have not yet incurred some expenses that had been scheduled to occur
earlier. Fortunately, the PERT/Cost report provides valuable additional information that
paints a truer picture of cost performance to date. By focusing on individual activities
rather than the overall project, the report identifies the current trouble spots (activities F
and I) that require Mr. Perty’s immediate attention. Thus, the report enables him to take
corrective action while there is still time to reverse these cost overruns.
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TABLE 10.11 PERT/Cost report after week 22 of Reliable’s project

Budgeted Percent Value Actual Cost Cost Overrun
Activity Cost Completed Completed to Date to Date

A $1,180,000 100% $1,180,000 $1,200,000 $20,000
B $1,320,000 100% $1,320,000 $1,330,000 $10,000
C $1,620,000 100% $1,620,000 $1,600,000 �$20,000
D $1,260,000 75% $1,195,000 $1,200,000 $15,000
E $1,410,000 100% $1,410,000 $1,400,000 �$10,000
F $1,180,000 25% $1,045,000 $1,060,000 $15,000
I $1,210,000 50% $1,105,000 $1,130,000 $25,000

Total $2,180,000 $1,875,000 $1,920,000 $45,000

PERT/CPM has stood the test of time. Despite being more than 40 years old, it continues
to be one of the most widely used OR techniques. It is a standard tool of project managers.

The Value of PERT/CPM

Much of the value of PERT/CPM derives from the basic framework it provides for plan-
ning a project. Recall its planning steps: (1) Identify the activities that are needed to carry
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out the project. (2) Estimate how much time will be needed for each activity. (3) Deter-
mine the activities that must immediately precede each activity. (4) Develop the project
network that visually displays the relationships between the activities. The discipline of
going through these steps forces the needed planning to be done.

The scheduling information generated by PERT/CPM also is vital to the project man-
ager. When can each activity begin if there are no delays? How much delay in an activ-
ity can be tolerated without delaying project completion? What is the critical path of ac-
tivities where no delay can be tolerated? What is the effect of uncertainty in activity times?
What is the probability of meeting the project deadline under the current plan? PERT/CPM
provides the answers.

PERT/CPM also assists the project manager in other ways. Schedule and budget are
key concerns. The CPM method of time-cost trade-offs enables investigating ways of re-
ducing the duration of the project at an additional cost. PERT/Cost provides a systematic
procedure for planning, scheduling, and controlling project costs.

In many ways, PERT/CPM exemplifies the application of OR at its finest. Its model-
ing approach focuses on the key features of the problem (activities, precedence relation-
ships, time, and cost) without getting mired down in unimportant details. The resulting
model (a project network and an optional linear programming formulation) are easy to un-
derstand and apply. It addresses the issues that are important to management (planning,
scheduling, dealing with uncertainty, time-cost trade-offs, and controlling costs). It assists
the project manager in dealing with these issues in useful ways and in a timely manner.

Using the Computer

PERT/CPM continues to evolve to meet new needs. At its inception over 40 years ago, it
was largely executed manually. The project network sometimes was spread out over the
walls of the project manager. Recording changes in the plan became a major task. Com-
municating changes to crew supervisors and subcontractors was cumbersome. The com-
puter has changed all of that.

For many years now, PERT/CPM has become highly computerized. There has been
a remarkable growth in the number and power of software packages for PERT/CPM that
run on personal computers or workstations. Project management software (for example,
Microsoft Project) now is a standard tool for project managers. This has enabled appli-
cations to numerous projects that each involve many millions of dollars and perhaps even
thousands of activities. Possible revisions in the project plan now can be investigated al-
most instantaneously. Actual changes and the resulting updates in the schedule, etc., are
recorded virtually effortlessly. Communications to all parties involved through computer
networks and telecommunication systems also have become quick and easy.

Nevertheless, PERT/CPM still is not a panacea. It has certain major deficiencies for
some applications. We briefly describe each of these deficiencies below along with how
it is being addressed through research on improvements or extensions to PERT/CPM.

Approximating the Means and Variances of Activity Durations

The PERT three-estimate approach described in Sec. 10.4 provides a straightforward pro-
cedure for approximating the mean and variance of the probability distribution of the du-
ration of each activity. Recall that this approach involved obtaining a most likely estimate,
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an optimistic estimate, and a pessimistic estimate of the duration. Given these three esti-
mates, simple formulas were given for approximating the mean and variance. The means
and variances for the various activities then were used to estimate the probability of com-
pleting the project by a specified time.

Unfortunately, considerable subsequent research has shown that this approach tends
to provide a pretty rough approximation of the mean and variance. Part of the difficulty
lies in aiming the optimistic and pessimistic estimates at the endpoints of the probability
distribution. These endpoints correspond to very rare events (the best and worst that could
ever occur) that typically are outside the estimator’s realm of experience. The accuracy
and reliability of such estimates are not as good as for points that are not at the extremes
of the probability distribution. For example, research has demonstrated that much better
estimates can be obtained by aiming them at the 10 and 90 percent points of the proba-
bility distribution. The optimistic and pessimistic estimates then would be described in
terms of having 1 chance in 10 of doing better or 1 chance in 10 of doing worse. The
middle estimate also can be improved by aiming it at the 50 percent point (the median
value) of the probability distribution.

Revising the definitions of the three estimates along these lines leads to considerably
more complicated formulas for the mean and variance of the duration of an activity. How-
ever, this is no problem since the analysis is computerized anyway. The important con-
sideration is that much better approximations of the mean and variance are obtained in
this way.1

Approximating the Probability of Meeting the Deadline

Of all the assumptions and simplifying approximations made by PERT/CPM, one is par-
ticularly controversial. This is Simplifying Approximation 1 in Sec. 10.4, which assumes
that the mean critical path will turn out to be the longest path through the project net-
work. This approximation greatly simplifies the calculation of the approximate probabil-
ity of completing the project by a specified deadline. Unfortunately, in reality, there usu-
ally is a significant chance, and sometimes a very substantial chance, that some other path
or paths will turn out to be longer than the mean critical path. Consequently, the calcu-
lated probability of meeting the deadline usually overstates the true probability somewhat.
PERT/CPM provides no information on the likely size of the error. (Research has found
that the error often is modest, but can be very large.) Thus, the project manager who re-
lies on the calculated probability can be badly misled.

Considerable research has been conducted to develop more accurate (albeit more com-
plicated) analytical approximations of this probability. Of special interest are methods that
provide both upper and lower bounds on the probability.2

Another alternative is to use the technique of simulation described in Chap. 22 to ap-
proximate this probability. This appears to be the most commonly used method in prac-
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1For further information, see, for example, D. L. Keefer and W. A. Verdini, “Better Estimation of PERT Activ-
ity Time Parameters,” Management Science, 39: 1086–1091, Sept. 1993. Also see A. H.-L. Lau, H.-S. Lau, and
Y. Zhang, “A Simple and Logical Alternative for Making PERT Time Estimates,” IIE Transactions, 28: 183–192,
March 1996.
2See, for example, J. Kamburowski, “Bounding the Distribution of Project Duration in PERT Networks,” Op-
erations Research Letters, 12: 17–22, July 1992.



tice (when any is used) to improve upon the PERT/CPM approximation. We describe in
Sec. 22.6 how this would be done for the Reliable Construction Co. project.

Dealing with Overlapping Activities

Another key assumption of PERT/CPM is that an activity cannot begin until all its im-
mediate predecessors are completely finished. Although this may appear to be a perfectly
reasonable assumption, it too is sometimes only a rough approximation of reality.

For example, in the Reliable Construction Co. project, consider activity H (do the ex-
terior painting) and its immediate predecessor, activity G (put up the exterior siding). Nat-
urally, this painting cannot begin until the exterior siding is there on which to paint. How-
ever, it certainly is possible to begin painting on one wall while the exterior siding still is
being put up to form the other walls. Thus, activity H actually can begin before activity
G is completely finished. Although careful coordination is needed, this possibility to over-
lap activities can significantly reduce project duration below that predicted by PERT/CPM.

The precedence diagramming method (PDM) has been developed as an extension
of PERT/CPM to deal with such overlapping activities.1 PDM provides four options for
the relationship between an activity and any one of its immediate predecessors.

Option 1: The activity cannot begin until the immediate predecessor has been in progress
a certain amount of time.

Option 2: The activity cannot finish until a certain amount of time after the immediate
predecessor has finished.

Option 3: The activity cannot finish until a certain amount of time after the immediate
predecessor has started.

Option 4: The activity cannot begin until a certain amount of time after the immediate
predecessor has finished. (Rather than overlapping the activities, note that this
option creates a lag between them such as, for example, waiting for the paint
to dry before beginning the activity that follows painting.)

Alternatively, the certain amount of time mentioned in each option also can be expressed
as a certain percentage of the work content of the immediate predecessor.

After incorporating these options, PDM can be used much like PERT/CPM to deter-
mine earliest start times, latest start times, and the critical path and to investigate time-
cost trade-offs, etc.

Although it adds considerable flexibility to PERT/CPM, PDM is neither as well known
nor as widely used as PERT/CPM. This should gradually change.

Incorporating the Allocation of Resources to Activities

PERT/CPM assumes that each activity has available all the resources (money, personnel,
equipment, etc.) needed to perform the activity in the normal way (or on a crashed ba-
sis). In actuality, many projects have only limited resources for which the activities must
compete. A major challenge in planning the project then is to determine how the resources
should be allocated to the activities.
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Once the resources have been allocated, PERT/CPM can be applied in the usual way.
However, it would be far better to combine the allocation of the resources with the kind
of planning and scheduling done by PERT/CPM so as to strive simultaneously toward a
desired objective. For example, a common objective is to allocate the resources so as to
minimize the duration of the project.

Much research has been conducted (and is continuing) to develop the methodology
for simultaneously allocating resources and scheduling the activities of a project. This sub-
ject is beyond the scope of this book, but considerable reading is available elsewhere.1

The Future

Despite its deficiencies, PERT/CPM undoubtedly will continue to be widely used for the
foreseeable future. It provides the project manager with most of what he or she wants:
structure, scheduling information, tools for controlling schedule (latest start times, slacks,
the critical path, etc.) and controlling costs (PERT/Cost), as well as the flexibility to in-
vestigate time-cost trade-offs.

Even though some of the approximations involved with the PERT three-estimate ap-
proach are questionable, these inaccurances ultimately may not be too important. Just the
process of developing estimates of the duration of activities encourages effective interac-
tion between the project manager and subordinates that leads to setting mutual goals for
start times, activity durations, project duration, etc. Striving together toward these goals
may make them self-fulfilling prophecies despite inaccuracies in the underlying mathe-
matics that led to these goals.

Similarly, possibilities for a modest amount of overlapping of activities need not in-
validate a schedule by PERT/CPM, despite its assumption that no overlapping can occur.
Actually having a small amount of overlapping may just provide the slack needed to com-
pensate for the “unexpected” delays that inevitably seem to slip into a schedule.

Even when needing to allocate resources to activities, just using common sense in this
allocation and then applying PERT/CPM should be quite satisfactory for some projects.

Nevertheless, it is unfortunate that the kinds of improvements and extensions to
PERT/CPM described in this section have not been incorporated much into practice to
date. Old comfortable methods that have proved their value are not readily discarded, and
it takes awhile to learn about and gain confidence in new, better methods. However, we
anticipate that these improvements and extensions gradually will come into more wide-
spread use as they prove their value as well. We also expect that the recent and current
extensive research on techniques for project management and scheduling (much of it in
Europe) will continue and will lead to further improvements in the future.

512 10 PROJECT MANAGEMENT WITH PERT/CPM

1See, for example, ibid., pp. 162–209. Also see L. Özdamar and G. Ulusay, “A Survey on the Resource-
Constrained Project Scheduling Problem,” IIE Transactions, 27: 574–586, Oct. 1995.

Ever since their inception in the late 1950s, PERT and CPM have been used extensively
to assist project managers in planning, scheduling, and controlling their projects. Over
time, these two techniques gradually have merged.

10.8 CONCLUSIONS



The application of PERT/CPM begins by breaking the project down into its individ-
ual activities, identifying the immediate predecessors of each activity, and estimating the
duration of each activity. A project network then is constructed to visually display all this
information. The type of network that is becoming increasingly popular for this purpose is
the activity-on-node (AON) project network, where each activity is represented by a node.

PERT/CPM generates a great deal of useful scheduling information for the project man-
ager, including the earliest start time, the latest start time, and the slack for each activity. It
also identifies the critical path of activities such that any delay along this path will delay
project completion. Since the critical path is the longest path through the project network,
its length determines the duration of the project, assuming all activities remain on schedule.

However, it is difficult for all activities to remain on schedule because there frequently
is considerable uncertainty about what the duration of an activity will turn out to be. The
PERT three-estimate approach addresses this situation by obtaining three different kinds
of estimates (most likely, optimistic, and pessimistic) for the duration of each activity.
This information is used to approximate the mean and variance of the probability distri-
bution of this duration. It then is possible to approximate the probability that the project
will be completed by the deadline.

The CPM method of time-cost trade-offs enables the project manager to investigate the
effect on total cost of changing the estimated duration of the project to various alternative
values. The data needed for this activity are the time and cost for each activity when it is
done in the normal way and then when it is fully crashed (expedited). Either marginal cost
analysis or linear programming can be used to determine how much (if any) to crash each
activity in order to minimize the total cost of meeting any specified deadline for the project.

The PERT/CPM technique called PERT/Cost provides the project manager with a
systematic procedure for planning, scheduling, and controlling project costs. It generates
a complete schedule for what the project costs should be in each time period when ac-
tivities begin at either their earliest start times or latest start times. It also generates peri-
odic reports that evaluate the cost performance of the individual activities, including iden-
tifying those where cost overruns are occurring.

PERT/CPM does have some important deficiencies. These include questionable ap-
proximations made when estimating the mean and variance of activity durations as well
as when estimating the probability that the project will be completed by the deadline. An-
other deficiency is that it does not allow an activity to begin until all its immediate pre-
decessors are completely finished, even though some overlap is sometimes possible. In
addition, PERT/CPM does not address the important issue of how to allocate limited re-
sources to the various activities.

Nevertheless, PERT/CPM has stood the test of time in providing project managers
with most of the help they want. Furthermore, much progress is being made in develop-
ing improvements and extensions to PERT/CPM (such as the precedence diagramming
method for dealing with overlapping activities) that addresses these deficiencies.
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“Ch. 10—Project Management” Files:

Excel File
LINGO/LINDO File
MPL/CPLEX File

Excel Templates in Excel File:

Template for PERT Three-Estimate Approach (labeled PERT)
Template for PERT/Cost (labeled PERT Cost)

An Excel Add-in:

Premium Solver

Special Software:

MS Project

MS Project Folder:

Reliable’s Schedule
Reliable’s Three-Estimate Data
Reliable’s Schedule of Costs Based on Earliest Start Times

See Appendix 1 for documentation of the software.

LEARNING AIDS FOR THIS CHAPTER IN YOUR OR COURSEWARE

The symbols to the left of some of the problems (or their parts)
have the following meaning:

P: Although this problem can be done by hand, another available
option is to use MS Project. Your instructor may specify which
option to use (or both).

T: The corresponding template listed above may be helpful.
C: Use the computer with any of the software options available to

you (or as instructed by your instructor) to solve the problem.

PROBLEMS

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

P 10.2-1. Christine Phillips is in charge of planning and coordi-
nating next spring’s sales management training program for her
company. Christine has listed the following activity information for
this project:



10.3-1. You and several friends are about to prepare a lasagna din-
ner. The tasks to be performed, their immediate predecessors, and
their estimated durations are as follows:

Construct the project network for this project.

P 10.2-2.* Reconsider Prob. 10.2-1. Christine has done more de-
tailed planning for this project and so now has the following ex-
panded activity list:
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Immediate Estimated
Activity Activity Description Predecessors Duration

A Select location — 2 weeks
B Obtain speakers — 3 weeks
C Make speaker travel plans A, B 2 weeks
D Prepare and mail brochure A, B 2 weeks
E Take reservations D 3 weeks

Immediate Estimated
Activity Activity Description Predecessors Duration

A Select location — 2 weeks
B Obtain keynote speaker — 1 weeks
C Obtain other speakers B 2 weeks
D Make travel plans for A, B 2 weeks

keynote speaker
E Make travel plans for A, C 3 weeks

other speakers
F Make food arrangements A 2 weeks
G Negotiate hotel rates A 1 weeks
H Prepare brochure C, G 1 weeks
I Mail brochure H 1 weeks
J Take reservations I 3 weeks
K Prepare handouts C, F 4 weeks

Construct the new project network.

P 10.2-3. Construct the project network for a project with the fol-
lowing activity list.

Immediate Estimated
Activity Predecessors Duration

A — 1 months
B A 2 months
C B 4 months
D B 3 months
E B 2 months
F C 3 months
G D, E 5 months
H F 1 months
I G, H 4 months
J I 2 months
K I 3 months
L J 3 months
M K 5 months
N L 4 months

P (a) Construct the project network for preparing this dinner.
(b) Find all the paths and path lengths through this project net-

work. Which of these paths is a critical path?
(c) Find the earliest start time and earliest finish time for each 

activity.
(d) Find the latest start time and latest finish time for each activity.
(e) Find the slack for each activity. Which of the paths is a criti-

cal path?
(f) Because of a phone call, you were interrupted for 6 minutes

when you should have been cutting the onions and mushrooms.
By how much will the dinner be delayed? If you use your food
processor, which reduces the cutting time from 7 to 2 minutes,
will the dinner still be delayed?

10.3-2. Consider Christine Phillip’s project involving planning and
coordinating next spring’s sales management training program for
her company as described in Prob. 10.2-1. After constructing the
project network, she now is ready for the following steps.
(a) Find all the paths and path lengths through this project net-

work. Which of these paths is a critical path?
(b) Find the earliest times, latest times, and slack for each activ-

ity. Use this information to determine which of the paths is a
critical path.

(c) It is now one week later, and Christine is ahead of schedule.
She has already selected a location for the sales meeting, and
all the other activities are right on schedule. Will this shorten
the length of the project? Why or why not?

10.3-3. Refer to the activity list given in Prob. 10.2-2 as Christine
Phillips does more detailed planning for next spring’s sales man-

Tasks that
Task Task Description Must Precede Time

A Buy the mozzarella cheese* 30 minutes
B Slice the mozzarella A 5 minutes
C Beat 2 eggs 2 minutes
D Mix eggs and ricotta cheese C 3 minutes
E Cut up onions and mushrooms 7 minutes
F Cook the tomato sauce E 25 minutes
G Boil large quantity of water 15 minutes
H Boil the lasagna noodles G 10 minutes
I Drain the lasagna noodles H 2 minutes
J Assemble all the ingredients I, F, D, B 10 minutes
K Preheat the oven 15 minutes
L Bake the lasagna J, K 30 minutes

*There is none in the refrigerator.



all the other activities are right on schedule. Will this shorten
the length of the project? Why or why not?

10.3-4.* Ken Johnston, the data processing manager for Stanley
Morgan Bank, is planning a project to install a new management
information system. He now is ready to start the project, and wishes
to finish in 20 weeks. After identifying the 14 separate activities
needed to carry out this project, as well as their precedence rela-
tionships and estimated durations (in weeks), Ken has constructed
the following project network:

agement training program for her company. After constructing the
project network (described in the back of the book as the answer
for Prob. 10.2-2), she now is ready for the following steps.
(a) Find all the paths and path lengths through this project net-

work. Which of these paths is a critical path?
(b) Find the earliest times, latest times, and slack for each activ-

ity. Use this information to determine which of the paths is a
critical path.

(c) It is now one week later, and Christine is ahead of schedule.
She has already selected a location for the sales meeting, and
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(a) Find all the paths and path lengths through this project net-
work. Which of these paths is a critical path?

(b) Find the earliest times, latest times, and slack for each activ-
ity. Will Ken be able to meet his deadline if no delays occur?

(c) Use the information from part (b) to determine which of the
paths is a critical path. What does this tell Ken about which
activities he should focus most of his attention on for staying
on schedule?

(d) Use the information from part (b) to determine what the 
duration of the project would be if the only delay is that ac-
tivity I takes 2 extra weeks. What if the only delay is that 
activity H takes 2 extra weeks? What if the only delay is that
activity J takes 2 extra weeks?

10.3-5. You are given the following information about a project
consisting of six activities:

P (a) Construct the project network for this project.
(b) Find the earliest times, latest times, and slack for each activ-

ity. Which of the paths is a critical path?
(c) If all other activities take the estimated amount of time, what

is the maximum duration of activity D without delaying the
completion of the project?

Immediate Estimated
Activity Predecessors Duration

A — 5 months
B — 1 months
C B 2 months
D A, C 4 months
E A 6 months
F D, E 3 months



10.4-1.* Using the PERT three-estimate approach, the three esti-
mates for one of the activities are as follows: optimistic estimate �
30 days, most likely estimate � 36 days, pessimistic estimate � 48
days. What are the resulting estimates of the mean and variance of
the duration of the activity?

10.4-2. Alfred Lowenstein is the president of the research division
for Better Health, Inc., a major pharmaceutical company. His most
important project coming up is the development of a new drug to
combat AIDS. He has identified 10 groups in his division which
will need to carry out different phases of this research and devel-
opment project. Referring to the work to be done by the respec-
tive groups as activities A, B, . . . , J, the precedence relationships
for when these groups need to do their work are shown in the fol-
lowing project network.

10.3-6. Reconsider the Reliable Construction Co. project intro-
duced in Sec. 10.1, including the complete project network ob-
tained in Fig. 10.7 at the end of Sec. 10.3. Note that the estimated
durations of the activities in this figure turn out to be the same as
the mean durations given in Table 10.4 (Sec. 10.4) when using the
PERT three-estimate approach.

Now suppose that the pessimistic estimates in Table 10.4 are
used instead to provide the estimated durations in Fig. 10.7. Find
the new earliest times, latest times, and slacks for all the activities
in this project network. Also identify the critical path and the total
estimated duration of the project. (Table 10.5 provides some clues.)

10.3-7.* Follow the instructions for Prob. 10.3-6 except use the
optimistic estimates in Table 10.4 instead.

10.3-8. Follow the instructions for Prob. 10.3-6 except use the
crash times given in Table 10.7 (Sec. 10.5) instead.
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To beat the competition, Better Health’s CEO has informed
Alfred that he wants the drug ready within 22 months if possible.

Alfred knows very well that there is considerable uncertainty
about how long each group will need to do its work. Using the
PERT three-estimate approach, the manager of each group has pro-
vided a most likely estimate, an optimistic estimate, and a pes-
simistic estimate of the duration of that group’s activity. Using
PERT formulas, these estimates now have been converted into es-
timates of the mean and variance of the probability distribution of
the duration of each group’s activity, as given in the following table
(after rounding to the nearest integer).

START FINISH

A
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E

F

G
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J

Duration

Activity Estimated Mean Estimated Variance

A 4 months 5 months
B 6 months 10 months
C 4 months 8 months
D 3 months 6 months
E 8 months 12 months
F 4 months 6 months
G 3 months 5 months
H 7 months 14 months
I 5 months 8 months
J 5 months 7 months



(Note how the great uncertainty in the duration of these research
activities causes each pessimistic estimate to be several times larger
than either the optimistic estimate or the most likely estimate.)

Now use the Excel template in your OR Courseware (as de-
picted in Fig. 10.10) to help you carry out the instructions for Prob.
10.4-2. In particular, enter the three estimates for each activity, and
the template immediately will display the estimates of the means
and variances of the activity durations. After indicating each path
of interest, the template also will display the approximate proba-
bility that the path will be completed within 22 months.

10.4-4. Bill Fredlund, president of Lincoln Log Construction, is
considering placing a bid on a building project. Bill has determined
that five tasks would need to be performed to carry out the proj-

T (a) Find the mean critical path for this project.
T (b) Use this mean critical path to find the approximate proba-

bility that the project will be completed within 22 months.
T (c) Now consider the other three paths through this project net-

work. For each of these paths, find the approximate proba-
bility that the path will be completed within 22 months.

(d) What should Alfred tell his CEO about the likelihood that the
drug will be ready within 22 months?

T 10.4-3. Reconsider Prob. 10.4-2. For each of the 10 activities,
here are the three estimates that led to the estimates of the mean
and variance of the duration of the activity (rounded to the near-
est integer) given in the table for Prob. 10.4-2.
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There is a penalty of $500,000 if the project is not completed
in 11 weeks. Therefore, Bill is very interested in how likely it is
that his company could finish the project in time.
P (a) Construct the project network for this project.
T (b) Find the estimate of the mean and variance of the duration

of each activity.
(c) Find the mean critical path.
T (d) Find the approximate probability of completing the project

within 11 weeks.
(e) Bill has concluded that the bid he would need to make to have

a realistic chance of winning the contract would earn Lincoln
Log Construction a profit of about $250,000 if the project is
completed within 11 weeks. However, because of the penalty
for missing this deadline, his company would lose about
$250,000 if the project takes more than 11 weeks. Therefore,
he wants to place the bid only if he has at least a 50 percent
chance of meeting the deadline. How would you advise him?

10.4-5.* Sharon Lowe, vice president for marketing for the Elec-
tronic Toys Company, is about to begin a project to design an ad-
vertising campaign for a new line of toys. She wants the project
completed within 57 days in time to launch the advertising cam-
paign at the beginning of the Christmas season.

Sharon has identified the six activities (labeled A, B, . . . , F)
needed to execute this project. Considering the order in which these
activities need to occur, she also has constructed the following pro-
ject network.

Optimistic Most Likely Pessimistic
Activity Estimate Estimate Estimate

A 1.5 months 1.2 months 15 months
B 1.2 months 3.5 months 21 months
C 1.1 month 1.5 months 18 months
D 0.5 month 1.1 months 15 months
E 1.3 months 1.5 months 24 months
F 1.1 month 1.2 months 16 months
G 0.5 month 1.1 months 14 months
H 2.5 months 3.5 months 25 months
I 1.1 month 1.3 months 18 months
J 1.2 months 1.3 months 18 months

Time Required

Optimistic Most Likely Pessimistic Immediate
Task Estimate Estimate Estimate Predecessors

A 3 weeks 4 weeks 5 weeks —
B 2 weeks 2 weeks 2 weeks A
C 3 weeks 5 weeks 6 weeks B
D 1 weeks 3 weeks 5 weeks A
E 2 weeks 3 weeks 5 weeks B, D

START FINISH
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ect. Using the PERT three-estimate approach, Bill has obtained the
estimates in the table below for how long these tasks will take.
Also shown are the precedence relationships for these tasks.



T (d) Now consider the other path through the project network.
Find the approximate probability that this path will be com-
pleted within 57 days.

(e) Since these paths do not overlap, a better estimate of the prob-
ability that the project will finish within 57 days can be ob-
tained as follows. The project will finish within 57 days if both
paths are completed within 57 days. Therefore, the approxi-
mate probability that the project will finish within 57 days is
the product of the probabilities found in parts (c) and (d ). Per-
form this calculation. What does this answer say about the ac-
curacy of the standard procedure used in part (c)?

10.4-6. The Lockhead Aircraft Co. is ready to begin a project to de-
velop a new fighter airplane for the U.S. Air Force. The company’s
contract with the Department of Defense calls for project comple-
tion within 100 weeks, with penalties imposed for late delivery.

The project involves 10 activities (labeled A, B, . . . , J ), where
their precedence relationships are shown in the following project
network.

Using the PERT three-estimate approach, Sharon has obtained
the following estimates of the duration of each activity.
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Using the PERT three-estimate approach, the usual three es-
timates of the duration of each activity have been obtained as given
below.

T (a) Find the estimate of the mean and variance of the duration
of each activity.

(b) Find the mean critical path.
T (c) Find the approximate probability that the project will finish

within 100 weeks.
(d) Is the approximate probability obtained in part (c) likely to be

higher or lower than the true value?

10.4-7. Label each of the following statements about the PERT
three-estimate approach as true or false, and then justify your an-
swer by referring to specific statements (with page citations) in the
chapter.
(a) Activity durations are assumed to be no larger than the opti-

mistic estimate and no smaller than the pessimistic estimate.
(b) Activity durations are assumed to have a normal distribution.
(c) The mean critical path is assumed to always require the min-

imum elapsed time of any path through the project network.

START FINISH

A C

B

D G

E

F
J

H

I

Optimistic Most Likely Pessimistic 
Activity Estimate Estimate Estimate

A 12 days 12 days 12 days
B 15 days 21 days 39 days
C 12 days 15 days 18 days
D 18 days 27 days 36 days
E 12 days 18 days 24 days
F 2 days 5 days 14 days

T (a) Find the estimate of the mean and variance of the duration
of each activity.

(b) Find the mean critical path.
T (c) Use the mean critical path to find the approximate proba-

bility that the advertising campaign will be ready to launch
within 57 days.

Optimistic Most Likely Pessimistic 
Activity Estimate Estimate Estimate

A 28 weeks 32 weeks 36 weeks
B 22 weeks 28 weeks 32 weeks
C 26 weeks 36 weeks 46 weeks
D 14 weeks 16 weeks 18 weeks
E 32 weeks 32 weeks 32 weeks
F 40 weeks 52 weeks 74 weeks
G 12 weeks 16 weeks 24 weeks
H 16 weeks 20 weeks 26 weeks
I 26 weeks 34 weeks 42 weeks
J 12 weeks 16 weeks 30 weeks



The project manager, Sean Murphy, has concluded that he cannot
meet the deadline by performing all these activities in the normal
way. Therefore, Sean has decided to use the CPM method of time-

10.5-1. The Tinker Construction Company is ready to begin a proj-
ect that must be completed in 12 months. This project has four ac-
tivities (A, B, C, D) with the project network shown below.
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cost trade-offs to determine the most economical way of crashing
the project to meet the deadline. He has gathered the following data
for the four activities.

C (f) Use another software option to solve this problem.
C (g) Check the effect of changing the deadline by repeating part

(e) or ( f ) with the deadline of 11 months and then with a
deadline of 13 months.

10.5-3. Reconsider the Electronic Toys Co. problem presented in
Prob. 10.4-5. Sharon Lowe is concerned that there is a significant
chance that the vitally important deadline of 57 days will not be
met. Therefore, to make it virtually certain that the deadline will
be met, she has decided to crash the project, using the CPM method
of time-cost trade-offs to determine how to do this in the most eco-
nomical way.

Sharon now has gathered the data needed to apply this method,
as given below.

START FINISH

A

B D

C

Normal Crash Normal Crash
Activity Time Time Cost Cost

A 8 months 5 months $25,000 $40,000
B 9 months 7 months $20,000 $30,000
C 6 months 4 months $16,000 $24,000
D 7 months 4 months $27,000 $45,000

Use marginal cost analysis to solve the problem.

10.5-2. Reconsider the Tinker Construction Co. problem presented
in Prob. 10.5-1. While in college, Sean Murphy took an OR course
that devoted a month to linear programming, so Sean has decided
to use linear programming to analyze this problem.
(a) Consider the upper path through the project network. Formu-

late a two-variable linear programming model for the problem
of how to minimize the cost of performing this sequence of
activities within 12 months. Use the graphical method to solve
this model.

(b) Repeat part (a) for the lower path through the project network.
(c) Combine the models in parts (a) and (b) into a single complete

linear programming model for the problem of how to mini-
mize the cost of completing the project within 12 months. What
must an optimal solution for this model be?

(d) Use the CPM linear programming formulation presented in
Sec. 10.5 to formulate a complete model for this problem. [This
model is a little larger than the one in part (c) because this
method of formulation is applicable to more complicated proj-
ect networks as well.]

C (e) Use Excel to solve this problem.

Normal Crash Normal Crash
Activity Time Time Cost Cost

A 12 days 9 days $210,000 $270,000
B 23 days 18 days $410,000 $460,000
C 15 days 12 days $290,000 $320,000
D 27 days 21 days $440,000 $500,000
E 18 days 14 days $350,000 $410,000
F 6 days 4 days $160,000 $210,000

The normal times are the estimates of the means obtained from the
original data in Prob. 10.4-5. The mean critical path gives an esti-
mate that the project will finish in 51 days. However, Sharon knows
from the earlier analysis that some of the pessimistic estimates are
far larger than the means, so the project duration might be con-
siderably longer than 51 days. Therefore, to better ensure that the
project will finish within 57 days, she has decided to require that
the estimated project duration based on means (as used through-
out the CPM analysis) must not exceed 47 days.



These costs reflect the company’s direct costs for the material,
equipment, and direct labor required to perform the activities. In
addition, the company incurs indirect project costs such as super-
vision and other customary overhead costs, interest charges for cap-
ital tied up, and so forth. Michael estimates that these indirect costs
run $5,000 per week. He wants to minimize the overall cost of the
project. Therefore, to save some of these indirect costs, Michael
concludes that he should shorten the project by doing some crash-
ing to the extent that the crashing cost for each additional week
saved is less than $5,000.
(a) To prepare for analyzing the effect of crashing, find the earli-

est times, latest times, and slack for each activity when they
are done in the normal way. Also identify the corresponding
critical path(s) and project duration.

(b) Use marginal cost analysis to determine which activities should
be crashed and by how much to minimize the over-
all cost of the project. Under this plan, what is the
duration and cost of each activity? How much money
is saved by doing this crashing?
C (c) Now use the linear programming approach to

do part (b) by shortening the deadline 1 week
at a time from the project duration found in
part (a).

10.5-5.* The 21st Century Studios is about to begin the produc-
tion of its most important (and most expensive) movie of the year.
The movie’s producer, Dusty Hoffmer, has decided to use
PERT/CPM to help plan and control this key project. He has iden-
tified the eight major activities (labeled A, B, . . . , H) required to
produce the movie. Their precedence relationships are shown in
the project network below.

(a) Consider the lower path through the project network. Use mar-
ginal cost analysis to determine the most economical way of
reducing the length of this path to 47 days.

(b) Repeat part (a) for the upper path through the project network.
What is the total crashing cost for the optimal way of de-
creasing estimated project duration of 47 days?

C (c) Use Excel to solve the problem.
C (d) Use another software option to solve the problem.

10.5-4.* Good Homes Construction Company is about to begin the
construction of a large new home. The company’s President, Michael
Dean, is currently planning the schedule for this project. Michael
has identified the five major activities (labeled A, B, . . . , E) that
will need to be performed according to the following project 
network.
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He also has gathered the following data about the normal point
and crash point for each of these activities.

Normal Crash Normal Crash
Activity Time Time Cost Cost

A 3 weeks 2 weeks $54,000 $60,000
B 4 weeks 3 weeks $62,000 $65,000
C 5 weeks 2 weeks $66,000 $70,000
D 3 weeks 1 weeks $40,000 $43,000
E 4 weeks 2 weeks $75,000 $80,000
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These normal times are the rounded estimates of the means
obtained from the original data in Prob. 10.4-6. The correspond-
ing mean critical path provides an estimate that the project will fin-
ish in 100 weeks. However, management understands well that the
high variability of activity durations means that the actual duration
of the project may be much longer. Therefore, the decision is made
to require that the estimated project duration based on means (as
used throughout the CPM analysis) must not exceed 92 weeks.
(a) Formulate a linear programming model for this problem.
C (b) Use Excel to solve the problem.
C (c) Use another software option to solve the problem.

10.6-1. Reconsider Prob. 10.5-4 involving the Good Homes Con-
struction Co. project to construct a large new home. Michael Dean
now has generated the plan for how to crash this project (as given
as an answer in the back of the book). Since this plan causes all
three paths through the project network to be critical paths, the ear-
liest start time for each activity also is its latest start time.

Michael has decided to use PERT/Cost to schedule and con-
trol project costs.
(a) Find the earliest start time for each activity and the earliest fin-

ish time for the completion of the project.
(b) Construct a table like Table 10.10 to show the budget for this

project.
(c) Construct a table like Fig. 10.15 (by hand) to show the sched-

ule of costs based on earliest times for each of the 8 weeks of
the project.

T (d) Now use the corresponding Excel template in your OR
Courseware to do parts (b) and (c) on a single spreadsheet.

(e) After 4 weeks, activity A has been completed (with an actual
cost of $65,000), and activity B has just now been completed
(with an actual cost of $55,000), but activity C is just 33 per-
cent completed (with an actual cost to date of $44,000). Con-
struct a PERT/Cost report after week 4. Where should Michael
concentrate his efforts to improve cost performances?

Dusty now has learned that another studio also will be com-
ing out with a blockbuster movie during the middle of the up-
coming summer, just when his movie was to be released. This
would be very unfortunate timing. Therefore, he and the top man-
agement of 21st Century Studios have concluded that they must
accelerate production of their movie and bring it out at the begin-
ning of the summer (15 weeks from now) to establish it as THE
movie of the year. Although this will require substantially in-
creasing an already huge budget, management feels that this will
pay off in much larger box office earnings both nationally and in-
ternationally.

Dusty now wants to determine the least costly way of meet-
ing the new deadline 15 weeks hence. Using the CPM method of
time-cost trade-offs, he has obtained the following data.
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Normal Crash Normal Crash
Activity Time Time Cost Cost

A 5 weeks 3 weeks $20 million $30 million
B 3 weeks 2 weeks $10 million $20 million
C 4 weeks 2 weeks $16 million $24 million
D 6 weeks 3 weeks $25 million $43 million
E 5 weeks 4 weeks $22 million $30 million
F 7 weeks 4 weeks $30 million $48 million
G 9 weeks 5 weeks $25 million $45 million
H 8 weeks 6 weeks $30 million $44 million

(a) Formulate a linear programming model for this problem.
C (b) Use Excel to solve the problem.
C (c) Use another software option to solve the problem.

10.5-6. Reconsider the Lockhead Aircraft Co. problem presented
in Prob. 10.4-6 regarding a project to develop a new fighter air-
plane for the U.S. Air Force. Management is extremely concerned
that current plans for this project have a substantial likelihood
(roughly a probability of 0.5) of missing the deadline imposed in
the Department of Defense contract to finish within 100 weeks.
The company has a bad record of missing deadlines, and manage-
ment is worried that doing so again would jeopardize obtaining fu-
ture contracts for defense work. Furthermore, management would
like to avoid the hefty penalties for missing the deadline in the cur-
rent contract. Therefore, the decision has been made to crash the
project, using the CPM method of time-cost trade-offs to deter-
mine how to do this in the most economical way. The data needed
to apply this method are given next.

Normal Crash Normal Crash
Activity Time Time Cost Cost

A 32 weeks 28 weeks $160 million $180 million
B 28 weeks 25 weeks $125 million $146 million
C 36 weeks 31 weeks $170 million $210 million
D 16 weeks 13 weeks $ 60 million $ 72 million
E 32 weeks 27 weeks $135 million $160 million
F 54 weeks 47 weeks $215 million $257 million
G 17 weeks 15 weeks $ 90 million $ 96 million
H 20 weeks 17 weeks $120 million $132 million
I 34 weeks 30 weeks $190 million $226 million
J 18 weeks 16 weeks $ 80 million $ 84 million



The estimated durations and costs of these activities are shown
below in the left column.

10.6-2.* The P-H Microchip Co. needs to undertake a major main-
tenance and renovation program to overhaul and modernize its fa-
cilities for wafer fabrication. This project involves six activities (la-
beled A, B, . . . , F ) with the precedence relationships shown in
the following network.

CHAPTER 10 PROBLEMS 523

START FINISH

A C E

B D F

Activity Estimated Duration Estimated Cost

A 6 weeks $180,000
B 3 weeks $ 75,000
C 4 weeks $120,000
D 4 weeks $140,000
E 7 weeks $175,000
F 4 weeks $ 80,000
G 6 weeks $210,000
H 3 weeks $ 45,000
I 5 weeks $125,000
J 4 weeks $100,000
K 3 weeks $ 60,000
L 5 weeks $ 50,000
M 6 weeks $ 90,000
N 5 weeks $150,000

Activity Estimated Duration Estimated Cost

A 6 weeks $420,000
B 2 weeks $180,000
C 4 weeks $540,000
D 5 weeks $360,000
E 7 weeks $590,000
F 9 weeks $630,000

(a) Find the earliest times, latest times, and slack for each activ-
ity. What is the earliest finish time for the completion of the
project?

T (b) Use the Excel template for PERT/Cost in your OR Course-
ware to display the budget and schedule of costs based on
earliest start times for this project on a single spreadsheet.

T (c) Repeat part (b) except based on latest start times.
(d) Use these spreadsheets to draw a figure like Fig. 10.17 to show

the schedule of cumulative project costs when all activities be-
gin at their earliest start times or at their latest start times.

(e) After 4 weeks, activity B has been completed (with an actual
cost of $200,000), activity A is 50 percent completed (with an
actual cost to date of $200,000), and activity D is 50 percent
completed (with an actual cost to date of $210,000). Construct
a PERT/Cost report after week 4. Where should the project
manager focus her attention to improve cost performances?

10.6-3. Reconsider Prob. 10.3-4 involving a project at Stanley
Morgan Bank to install a new management information system.
Ken Johnston already has obtained the earliest times, latest times,
and slack for each activity (see a partial answer in the back of the
book). He now is getting ready to use PERT/Cost to schedule and
control the costs for this project. The estimated durations and costs
of the various activities are given in the table on the right.

T (a) Use the Excel template for PERT/Cost in your OR Course-
ware to display the budget and schedule of costs based on
earliest start times for this project on a single spreadsheet.

T (b) Repeat part (a) except based on latest start times.
(c) Use these spreadsheets to draw a figure like Fig. 10.17 to show

the schedule of cumulative project costs when all activities be-
gin at their earliest start times or at their latest start times.

(d) After 8 weeks, activities A, B, and C have been completed with
actual costs of $190,000, $70,000, and $150,000, respectively.
Activities D, E, F, G, and I are under way, with the percent
completed being 40, 50, 60, 25, and 20 percent, respectively.
Their actual costs to date are $70,000, $100,000, $45,000,
$50,000, and $35,000, respectively. Construct a PERT/Cost re-
port after week 8. Which activities should Ken Johnston in-
vestigate to try to improve their cost performances?
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Janet Richards fixes her eyes on those of her partner Gilbert Baker and says firmly,
“All right. Let’s do it.”

And with those words, InterCat, a firm founded by Janet and Gilbert that special-
izes in the design and maintenance of Internet catalogs for small consumer businesses,
will be going public. InterCat employs 30 individuals, with the majority of them com-
puter programmers. Many of the employees have followed the high-technology market
very closely and have decided that since high-technology firms are more understood and
valued in the United States than in other countries, InterCat should issue its stock only
in the United States. Five million shares of InterCat stock will comprise this new issue.

The task the company has ahead of itself is certainly daunting. Janet and Gilbert
know that many steps have to be completed in the process of making an initial public
offering. They also know that they need to complete the process within 28 weeks be-
cause they need the new capital fairly soon to ensure that InterCat has the resources to
capture valuable new business from its competitors and continue growing. They also value
a speedy initial public offering because they believe that the window of opportunity for
obtaining a good stock price is presently wide open—the public is wild about shopping
on the Internet, and few companies offering Web page design services have gone public.

Because the 28-week deadline is breathing down their necks, Janet and Gilbert de-
cide to map the steps in the process of making an initial public offering. They list each
major activity that needs to be completed, the activities that directly precede each ac-
tivity, the time needed to complete each activity, and the cost of each activity. This list
is shown below.

CASE 10.1 STEPS TO SUCCESS

Activity Preceding Activities Time Cost

Evaluate the prestige of each 1.3 weeks $ 8,000
potential underwriter.

Select a syndicate of Evaluate the prestige of each 1.5 weeks $ 4,500
underwriters. potential underwriter.

Negotiate the commitment of Select a syndicate of 1.2 weeks $ 9,000
each member of the syndicate. underwriters.

Negotiate the spread* for each Select a syndicate of 1.3 weeks $12,000
member of the syndicate. underwriters.

Prepare the registration Negotiate both the commitment 1.5 weeks $50,000
statement including the and spread for each member of
proposed financing and the syndicate.
information about the firm’s
history, existing business, and
plans for the future.

Submit the registration Prepare the registration 1.1 week $ 1,000
statement to the Securities and statement.
Exchange Commission (SEC).
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Activity Preceding Activities Time Cost

Make presentations to Submit the registration 1.6 weeks $25,000
institutional investors and statement to the SEC.
develop the interest of
potential buyers.

Distribute the preliminary Submit the registration 1.3 weeks $15,000
prospectus affectionately statement to the SEC.
termed the red herring.

Calculate the issue price. Submit the registration 1.5 weeks $12,000
statement to the SEC.

Receive deficiency Submit the registration 1.3 weeks $15,000
memorandum from the SEC. statement to the SEC.

Amend the registration Receive deficiency 1.1 week $ 6,000
statement and resubmit it to memorandum from the SEC.
the SEC.

Receive registration Amend the registration 1.2 weeks $15,000
confirmation from the SEC. statement and resubmit it to the

SEC.

Confirm that the new issue Make presentations to 1.1 week $ 5,000
complies with the “blue sky” institutional investors and
laws of each state. develop the interest of potential

buyers.
Distribute the preliminary
prospectus affectionately
termed the red herring.
Calculate the issue price.
Receive registration
confirmation from the SEC.

Appoint a registrar. Receive registration 1.3 weeks $12,000
confirmation from the SEC.

Appoint a transfer agent. Receive registration 3.5 weeks $13,000
confirmation from the SEC.

Issue final prospectus that Confirm that the new issue 4.5 weeks $40,000
includes the final offer price complies with the “blue sky”
and any amendments to all laws of each state.
purchasers offered securities Appoint a registrar and transfer
through the mail. agent.

Phone interested buyers. Confirm that the new issue 1.4 weeks $ 9,000
complies with the “blue sky”
laws of each state.
Appoint a registrar and transfer
agent.

*The spread is the payment an underwriter receives for services.



Janet and Gilbert present the list of steps to the employees of InterCat. The head of
the finance department, Leslie Grey, is fresh out of business school. She remembers
the various project management tools she has learned in business school and suggests
that Janet and Gilbert use PERT/CPM analysis to understand where their priorities
should lie.

(a) Draw the project network for completing the initial public offering of InterCat stock. How
long is the initial public offering process? What are the critical steps in the process?

(b) How would the change in the following activities affect the time to complete the initial pub-
lic offering? Please evaluate each change independently.
(i) Some members of the syndicate are playing hardball. Therefore, the time it takes to ne-

gotiate the commitment of each member of the syndicate increases from 2 to 3 weeks.
(ii) The underwriters are truly math geniuses. Therefore, the time it takes to calculate the

issue price decreases to 4 weeks.
(iii) Whoa! The SEC found many deficiencies in the initial registration statement. The un-

derwriters must therefore spend 2.5 weeks amending the statement and resubmitting it
to the SEC.

(iv) The new issue does not comply with the “blue sky” laws of a handful of states. The
time it takes to edit the issue for each state to ensure compliance increases to 4 weeks.

(c) Janet and Gilbert hear through the grapevine that their most fierce competitor, Soft Sales,
is also planning to go public. They fear that if InterCat does not complete its initial pub-
lic offering before Soft Sales, the price investors are willing to pay for InterCat stock will
drop, since investors will perceive Soft Sales to be a stronger, more organized company.
Janet and Gilbert therefore decide that they want to complete the process of issuing new
stock within 22 weeks. They think such a goal is possible if they throw more resources—
workers and money—into some activities. They list the activities that can be shortened,
the time the activity will take when it is fully shortened, and the cost of shortening the ac-
tivity this much. They also conclude that partially shortening each activity listed below is
possible and will give a time reduction and cost proportional to the amounts when fully
shortening.
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Activity Time Cost

Evaluate the prestige of each potential underwriter. 1.5 weeks $14,000

Select a syndicate of underwriters. 0.5 weeks $ 8,000

Prepare the registration statement including the proposed 0.4 weeks $95,000
financing and information about the firm’s history, existing business, 
and plans for the future.

Make presentations to institutional investors and develop the 0.4 weeks $60,000
interest of potential buyers.

Distribute the preliminary prospectus affectionately termed the 0.2 weeks $22,000
red herring.

Calculate the issue price. 3.5 weeks $31,000



How can InterCat meet the new deadline set by Janet and Gilbert at minimum cost?
(d) Janet and Gilbert learn that the investment bankers are two-timing scoundrels! They are also

serving as lead underwriters for the Soft Sales new issue! To keep the deal with InterCat,
the bankers agree to let Janet and Gilbert in on a little secret. Soft Sales has been forced to
delay its public issue because the company’s records are disorganized and incomplete. Given
this new information, Janet and Gilbert decide that they can be more lenient on the initial
public offering timeframe. They want to complete the process of issuing new stock within
24 weeks instead of 22 weeks. Assume that the cost and time to complete the appointment
of the registrar and transfer agent are the same as in part (c). How can InterCat meet this
new deadline set by Janet and Gilbert at minimum cost?
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Activity Time Cost

Amend the registration statement and resubmit it to the SEC. 0.5 week $ 9,000

Confirm that the new issue complies with the “blue sky” laws of 0.5 week $ 8,300
each state.

Appoint a registrar. 1.5 weeks $19,000

Appoint a transfer agent. 1.5 weeks $21,000

Issue final prospectus that includes the final offer price and any 0.2 weeks $99,000
amendments to all purchasers offered securities through the mail.

Phone interested buyers. 1.5 weeks $20,000

Brent Bonnin begins his senior year of college filled with excitement and a twinge of
fear. The excitement stems from his anticipation of being done with it all—professors,
exams, problem sets, grades, group meetings, all-nighters. . . . The list could go on and
on. The fear stems from the fact that he is graduating in December and has only 4
months to find a job.

Brent is a little unsure about how he should approach the job search. During his
sophomore and junior years, he had certainly heard seniors talking about their strate-
gies for finding the perfect job, and he knows that he should first visit the Campus Ca-
reer Planning Center to devise a search plan.

On Sept. 1, the fist day of school, he walks through the doors of the Campus Ca-
reer Planning Center and meets Elizabeth Merryweather, a recent graduate overflow-
ing with energy and comforting smiles. Brent explains to Elizabeth that since he is
graduating in December and plans to begin work in January, he wants to leave all of
November and December open for interviews. Such a plan means that he has to have
all his preliminary materials, such as cover letters and résumés, submitted to the com-
panies where he wants to work by Oct. 31.

CASE 10.2 ”SCHOOL’S OUT FOREVER . . .“—Alice Cooper



Elizabeth recognizes that Brent has to follow a very tight schedule, if he wants to
meet his goal within the next 60 days. She suggests that the two of them sit down to-
gether and decide the major milestones that need to be completed in the job search
process. Elizabeth and Brent list the 19 major milestones. For each of the 19 mile-
stones, they identify the other milestones that must be accomplished directly before
Brent can begin this next milestone. They also estimate the time needed to complete
each milestone. The list is shown below.
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Milestones Directly Time to Complete
Milestone Preceding Each Milestone Each Milestone

A. Complete and submit an None. 2 days
on-line registration form to (This figure includes the time
the career center. needed for the career center

to process the registration
form.)

B. Attend the career center None. 5 days
orientation to learn about the (This figure includes the time
resources available at the Brent must wait before the
center and the campus career center hosts an
recruiting process. orientation.)

C. Write an initial résumé None. 7 days
that includes all academic
and career experiences.

D. Search the Internet to None. 10 days
find job opportunities
available outside of campus
recruiting.

E. Attend the company None. 25 days
presentations hosted during
the fall to understand the
cultures of companies and
to meet with company
representatives.

F. Review the industry Complete and submit an on-line 7 days
resources available at the registration form to the career
career center to understand center.
the career and growth Attend the career center
opportunities available in orientation.
each industry. Take career
test to understand the career 
that provides the best fit with 
your skills and interests. 
Contact alumni listed in the 
career center directories to 
discuss the nature of a 
variety of jobs.
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Milestones Directly Time to Complete
Milestone Preceding Each Milestone Each Milestone

G. Attend a mock interview Complete and submit an on-line 4 days
hosted by the career center registration form to the career
to practice interviewing and center. (This figure includes the time
to learn effective Attend the career center that elapses between the day
interviewing styles. orientation. that Brent signs up for the

Write the initial résumé. interview and the day that
the interview takes place.)

H. Submit the initial résumé Complete and submit an on-line 2 days
to the career center for registration form to the career (This figure includes the time
review. center. the career center needs to

Attend the career center review the résumé.)

orientation.

Write the initial résumé.

I. Meet with a résumé Submit the initial résumé to the 1 day
expert to discuss career center for review.
improvements to the initial
résumé.

J. Revise the initial résumé. Meet with a résumé expert to 4 days
discuss improvements.

K. Attend the career fair to Revise the initial résumé. 1 day
gather company literature,
speak to company
representatives, and submit
résumés.

L. Search campus job Review the industry resources, 5 days
listings to identify the take the career test, and contact
potential jobs that fit your alumni.
qualifications and interests.

M. Decide which jobs you Search the Internet. 3 days
will pursue given the job Search the campus job listings.
opportunities you found on Attend the career fair.
the Internet, at the career
fair, and through the
campus job listings.

N. Bid to obtain job Decide which jobs you will 3 days
interviews with companies pursue.
that recruit through the
campus career center and
have open interview
schedules.*
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Milestones Directly Time to Complete
Milestone Preceding Each Milestone Each Milestone

O. Write cover letters to Decide which jobs you will 10 days
seek jobs with companies pursue. Attend company
that either do not recruit presentations.
through the campus career
center or recruit through the
campus career center but
have closed interview
schedules.† Tailor each
cover letter to the culture of
each company.

P. Submit the cover letters Write the cover letters. 4 days
to the career center for (This figure includes the time
review. the career center needs to

review the cover letters.)

Q. Revise the cover letters. Submit the cover letters to the 4 days
career center for review.

R. For the companies that Revise the cover letters. 6 days
are not recruiting through (This figure includes the time
the campus career center, needed to print and package
mail the cover letter and the application materials and
résumé to the company’s the time needed for the
recruiting department. materials to reach the

companies.)

S. For the companies that Revise the cover letters 2 days
recruit through the campus (This figure includes the time
career center but that hold needed to print and package
closed interview schedules, the application materials).
drop the cover letter and
résumé at the career center.

*An open interview schedule occurs when the company does not select the candidates that it wants to inter-
view. Any candidate may interview, but since the company has only a limited number of interview slots, inter-
ested candidates must bid points (out of their total allocation of points) for the interviews. The candidates with
the highest bids win the interview slots.

†Closed interview schedules occur when a company requires candidates to submit their cover letters,
résumés, and test scores so that the company is able to select the candidates it wants to interview.

In the evening after his meeting with Elizabeth, Brent meets with his buddies at
the college coffeehouse to chat about their summer endeavors. Brent also tells his friends
about the meeting he had earlier with Elizabeth. He describes the long to-do list he and
Elizabeth developed and says that he is really worried about keeping track of all the
major milestones and getting his job search organized. One of his friends reminds him
of the cool OR class they all took together in the first semester of Brent’s junior year,
and how they had learned about some techniques to organize large projects. Brent re-



members this class fondly, since he was able to use a number of the methods he stud-
ied in that class in his last summer job.

(a) Draw the project network for completing all milestones before the interview process. If every-
thing stays on schedule, how long will it take Brent until he can start with the interviews?
What are the critical steps in the process?

(b) Brent realizes that there is a lot of uncertainty in the times it will take him to complete some
of the milestones. He expects to get really busy during his senior year, in particular since he
is taking a demanding course load. Also, students sometimes have to wait quite a while be-
fore they get appointments with the counselors at the career center. In addition to the list es-
timating the most likely times that he and Elizabeth wrote down, he makes a list of opti-
mistic and pessimistic estimates of how long the various milestones might take.
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Milestone Optimistic Estimate Pessimistic Estimate

A 1 days 4 days

B 3 days 10 days

C 5 days 14 days

D 7 days 12 days

E 20 days 30 days

F 5 days 12 days

G 3 days 8 days

H 1 days 6 days

I 1 days 1 day

J 3 days 6 days

K 1 day 1 days

L 3 days 10 days

M 2 days 4 days

N 2 days 8 days

O 3 days 12 days

P 2 days 7 days

Q 3 days 9 days

R 4 days 10 days

S 1 days 3 days

How long will it take Brent to get done under the worst-case scenario? How long will it
take if all his optimistic estimates are correct?



(c) Determine the mean critical path for Brent’s job search process. What is the variance of the
project duration?

(d) Give a rough estimate of the probability that Brent will be done within 60 days.
(e) Brent realizes that he has made a serious mistake in his calculations so far. He cannot sched-

ule the career fair to fit his schedule. Brent read in the campus newspaper that the fair has
been set 24 days from today on Sept. 25. Draw a revised project network that takes into ac-
count this complicating fact.

(f ) What is the mean critical path for the new network? What is the probability that Brent will
complete his project within 60 days?
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11
Dynamic Programming

Dynamic programming is a useful mathematical technique for making a sequence of in-
terrelated decisions. It provides a systematic procedure for determining the optimal com-
bination of decisions.

In contrast to linear programming, there does not exist a standard mathematical for-
mulation of “the” dynamic programming problem. Rather, dynamic programming is a gen-
eral type of approach to problem solving, and the particular equations used must be de-
veloped to fit each situation. Therefore, a certain degree of ingenuity and insight into the
general structure of dynamic programming problems is required to recognize when and
how a problem can be solved by dynamic programming procedures. These abilities can
best be developed by an exposure to a wide variety of dynamic programming applications
and a study of the characteristics that are common to all these situations. A large number
of illustrative examples are presented for this purpose.

11.1 A PROTOTYPE EXAMPLE FOR DYNAMIC PROGRAMMING

EXAMPLE 1 The Stagecoach Problem

The STAGECOACH PROBLEM is a problem specially constructed1 to illustrate the fea-
tures and to introduce the terminology of dynamic programming. It concerns a mythical
fortune seeker in Missouri who decided to go west to join the gold rush in California dur-
ing the mid-19th century. The journey would require traveling by stagecoach through un-
settled country where there was serious danger of attack by marauders. Although his start-
ing point and destination were fixed, he had considerable choice as to which states (or
territories that subsequently became states) to travel through en route. The possible routes
are shown in Fig. 11.1, where each state is represented by a circled letter and the direc-
tion of travel is always from left to right in the diagram. Thus, four stages (stagecoach
runs) were required to travel from his point of embarkation in state A (Missouri) to his
destination in state J (California).

This fortune seeker was a prudent man who was quite concerned about his safety. Af-
ter some thought, he came up with a rather clever way of determining the safest route. Life

1This problem was developed by Professor Harvey M. Wagner while he was at Stanford University.



insurance policies were offered to stagecoach passengers. Because the cost of the policy
for taking any given stagecoach run was based on a careful evaluation of the safety of that
run, the safest route should be the one with the cheapest total life insurance policy.

The cost for the standard policy on the stagecoach run from state i to state j, which
will be denoted by cij, is
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These costs are also shown in Fig. 11.1.
We shall now focus on the question of which route minimizes the total cost of the

policy.

Solving the Problem

First note that the shortsighted approach of selecting the cheapest run offered by each suc-
cessive stage need not yield an overall optimal decision. Following this strategy would
give the route A � B � F � I � J, at a total cost of 13. However, sacrificing a little on
one stage may permit greater savings thereafter. For example, A � D � F is cheaper
overall than A � B � F.

One possible approach to solving this problem is to use trial and error.1 However, the
number of possible routes is large (18), and having to calculate the total cost for each
route is not an appealing task.

A C F

D G

B E

I

H

J

2

4

3

6
4

7
1

3
3

2

4

4
1

5
3

3

3

6

4

4

FIGURE 11.1
The road system and costs
for the stagecoach problem.

1This problem also can be formulated as a shortest-path problem (see Sec. 9.3), where costs here play the role
of distances in the shortest-path problem. The algorithm presented in Sec. 9.3 actually uses the philosophy of
dynamic programming. However, because the present problem has a fixed number of stages, the dynamic pro-
gramming approach presented here is even better.



Fortunately, dynamic programming provides a solution with much less effort than ex-
haustive enumeration. (The computational savings are enormous for larger versions of this
problem.) Dynamic programming starts with a small portion of the original problem and
finds the optimal solution for this smaller problem. It then gradually enlarges the prob-
lem, finding the current optimal solution from the preceding one, until the original prob-
lem is solved in its entirety.

For the stagecoach problem, we start with the smaller problem where the fortune
seeker has nearly completed his journey and has only one more stage (stagecoach run) to
go. The obvious optimal solution for this smaller problem is to go from his current state
(whatever it is) to his ultimate destination (state J). At each subsequent iteration, the prob-
lem is enlarged by increasing by 1 the number of stages left to go to complete the jour-
ney. For this enlarged problem, the optimal solution for where to go next from each pos-
sible state can be found relatively easily from the results obtained at the preceding iteration.
The details involved in implementing this approach follow.

Formulation. Let the decision variables xn (n � 1, 2, 3, 4) be the immediate destina-
tion on stage n (the nth stagecoach run to be taken). Thus, the route selected is A �
x1 � x2 � x3 � x4, where x4 � J.

Let fn(s, xn) be the total cost of the best overall policy for the remaining stages, given
that the fortune seeker is in state s, ready to start stage n, and selects xn as the immedi-
ate destination. Given s and n, let xn* denote any value of xn (not necessarily unique) that
minimizes fn(s, xn), and let f n* (s) be the corresponding minimum value of fn(s, xn). Thus,

f n*(s) � min fn(s, xn) � fn(s, xn*),
xn

where

fn(s, xn) � immediate cost (stage n) � minimum future cost (stages n � 1 onward)
� csxn

� f n*�1(xn).

The value of csxn
is given by the preceding tables for cij by setting i � s (the current state)

and j � xn (the immediate destination). Because the ultimate destination (state J) is reached
at the end of stage 4, f 5* ( J) � 0.

The objective is to find f 1* (A) and the corresponding route. Dynamic programming
finds it by successively finding f 4*(s), f 3*(s), f 2*(s), for each of the possible states s and
then using f 2*(s) to solve for f 1*(A).1

Solution Procedure. When the fortune seeker has only one more stage to go (n � 4),
his route thereafter is determined entirely by his current state s (either H or I) and his fi-
nal destination x4 � J, so the route for this final stagecoach run is s � J. Therefore, since
f 4*(s) � f4(s, J) � cs,J, the immediate solution to the n � 4 problem is
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n � 4: s f 4*(s) x4*

H 3 J
I 4 J

1Because this procedure involves moving backward stage by stage, some writers also count n backward to denote
the number of remaining stages to the destination. We use the more natural forward counting for greater simplicity.



When the fortune seeker has two more stages to go (n � 3), the solution procedure
requires a few calculations. For example, suppose that the fortune seeker is in state F.
Then, as depicted below, he must next go to either state H or I at an immediate cost of
cF,H � 6 or cF,I � 3, respectively. If he chooses state H, the minimum additional cost af-
ter he reaches there is given in the preceding table as f 4*(H) � 3, as shown above the H
node in the diagram. Therefore, the total cost for this decision is 6 � 3 � 9. If he chooses
state I instead, the total cost is 3 � 4 � 7, which is smaller. Therefore, the optimal choice
is this latter one, x3* � I, because it gives the minimum cost f 3*(F) � 7.
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Similar calculations need to be made when you start from the other two possible states
s � E and s � G with two stages to go. Try it, proceeding both graphically (Fig. 11.1)
and algebraically [combining cij and f 4*(s) values], to verify the following complete re-
sults for the n � 3 problem.

f3(s, x3) � csx3
� f 4*(x3)

x3

n � 3: s H I f 3*(s) x3*

E 4 8 4 H
F 9 7 7 I
G 6 7 6 H

The solution for the second-stage problem (n � 2), where there are three stages to
go, is obtained in a similar fashion. In this case, f2(s, x2) � csx2

� f 3*(x2). For example,
suppose that the fortune seeker is in state C, as depicted below.
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He must next go to state E, F, or G at an immediate cost of cC,E � 3, cC,F � 2, or 
cC,G � 4, respectively. After getting there, the minimum additional cost for stage 3 to the
end is given by the n � 3 table as f 3*(E) � 4, f 3*(F) � 7, or f 3*(G) � 6, respectively, as
shown above the E and F nodes and below the G node in the preceding diagram. The re-
sulting calculations for the three alternatives are summarized below.

x2 � E: f2(C, E) � cC,E � f 3*(E) � 3 � 4 � 7.
x2 � F: f2(C, F) � cC,F � f 3*(F) � 2 � 7 � 9.
x2 � G: f2(C, G) � cC,G � f 3*(G) � 4 � 6 � 10.

The minimum of these three numbers is 7, so the minimum total cost from state C to the
end is f 2*(C ) � 7, and the immediate destination should be x2* � E.

Making similar calculations when you start from state B or D (try it) yields the fol-
lowing results for the n � 2 problem:
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f2(s, x2) � csx2
� f 3*(x2)

x2

n � 2: s E F G f 2*(s) x2*

B 11 11 12 11 E or F
C 7 9 10 7 E
D 8 8 11 8 E or F

In the first and third rows of this table, note that E and F tie as the minimizing value of
x2, so the immediate destination from either state B or D should be x2* � E or F.

Moving to the first-stage problem (n � 1), with all four stages to go, we see that the
calculations are similar to those just shown for the second-stage problem (n � 2), except
now there is just one possible starting state s � A, as depicted below.

These calculations are summarized next for the three alternatives for the immediate des-
tination:

x1 � B: f1(A, B) � cA,B � f 2*(B) � 2 � 11 � 13.
x1 � C: f1(A, C) � cA,C � f 2*(C ) � 4 � 7 � 11.
x1 � D: f1(A, D) � cA,D � f 2*(D) � 3 � 8 � 11.
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Since 11 is the minimum, f 1*(A) � 11 and x1* � C or D, as shown in the following table.
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f1(s, x1) � csx1
� f 2*(x1)

x1

n � 1: s B C D f 1*(s) x1*

A 13 11 11 11 C or D

An optimal solution for the entire problem can now be identified from the four ta-
bles. Results for the n � 1 problem indicate that the fortune seeker should go initially to
either state C or state D. Suppose that he chooses x1* � C. For n � 2, the result for s � C
is x2* � E. This result leads to the n � 3 problem, which gives x3* � H for s � E, and the
n � 4 problem yields x4* � J for s � H. Hence, one optimal route is A � C � E �
H � J. Choosing x1* � D leads to the other two optimal routes A � D � E � H � J
and A � D � F � I � J. They all yield a total cost of f 1*(A) � 11.

These results of the dynamic programming analysis also are summarized in Fig. 11.2.
Note how the two arrows for stage 1 come from the first and last columns of the n � 1
table and the resulting cost comes from the next-to-last column. Each of the other arrows
(and the resulting cost) comes from one row in one of the other tables in just the same way.

You will see in the next section that the special terms describing the particular con-
text of this problem—stage, state, and policy—actually are part of the general terminol-
ogy of dynamic programming with an analogous interpretation in other contexts.
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FIGURE 11.2
Graphical display of the
dynamic programming
solution of the stagecoach
problem. Each arrow shows
an optimal policy decision
(the best immediate
destination) from that state,
where the number by the
state is the resulting cost
from there to the end.
Following the boldface
arrows from A to T gives the
three optimal solutions (the
three routes giving the
minimum total cost of 11).

The stagecoach problem is a literal prototype of dynamic programming problems. In fact,
this example was purposely designed to provide a literal physical interpretation of the
rather abstract structure of such problems. Therefore, one way to recognize a situation
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that can be formulated as a dynamic programming problem is to notice that its basic struc-
ture is analogous to the stagecoach problem.

These basic features that characterize dynamic programming problems are presented
and discussed here.

1. The problem can be divided into stages, with a policy decision required at each stage.
The stagecoach problem was literally divided into its four stages (stagecoaches)

that correspond to the four legs of the journey. The policy decision at each stage was
which life insurance policy to choose (i.e., which destination to select for the next stage-
coach ride). Similarly, other dynamic programming problems require making a sequence
of interrelated decisions, where each decision corresponds to one stage of the problem.

2. Each stage has a number of states associated with the beginning of that stage.
The states associated with each stage in the stagecoach problem were the states

(or territories) in which the fortune seeker could be located when embarking on that
particular leg of the journey. In general, the states are the various possible conditions
in which the system might be at that stage of the problem. The number of states may
be either finite (as in the stagecoach problem) or infinite (as in some subsequent ex-
amples).

3. The effect of the policy decision at each stage is to transform the current state to a
state associated with the beginning of the next stage (possibly according to a proba-
bility distribution).

The fortune seeker’s decision as to his next destination led him from his current
state to the next state on his journey. This procedure suggests that dynamic program-
ming problems can be interpreted in terms of the networks described in Chap. 9. Each
node would correspond to a state. The network would consist of columns of nodes,
with each column corresponding to a stage, so that the flow from a node can go only
to a node in the next column to the right. The links from a node to nodes in the next
column correspond to the possible policy decisions on which state to go to next. The
value assigned to each link usually can be interpreted as the immediate contribution to
the objective function from making that policy decision. In most cases, the objective
corresponds to finding either the shortest or the longest path through the network.

4. The solution procedure is designed to find an optimal policy for the overall problem,
i.e., a prescription of the optimal policy decision at each stage for each of the possi-
ble states.

For the stagecoach problem, the solution procedure constructed a table for each
stage (n) that prescribed the optimal decision (xn*) for each possible state (s). Thus, in
addition to identifying three optimal solutions (optimal routes) for the overall problem,
the results show the fortune seeker how he should proceed if he gets detoured to a state
that is not on an optimal route. For any problem, dynamic programming provides this
kind of policy prescription of what to do under every possible circumstance (which is
why the actual decision made upon reaching a particular state at a given stage is re-
ferred to as a policy decision). Providing this additional information beyond simply
specifying an optimal solution (optimal sequence of decisions) can be helpful in a va-
riety of ways, including sensitivity analysis.

5. Given the current state, an optimal policy for the remaining stages is independent of
the policy decisions adopted in previous stages. Therefore, the optimal immediate de-
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cision depends on only the current state and not on how you got there. This is the prin-
ciple of optimality for dynamic programming.

Given the state in which the fortune seeker is currently located, the optimal life
insurance policy (and its associated route) from this point onward is independent of
how he got there. For dynamic programming problems in general, knowledge of the
current state of the system conveys all the information about its previous behavior nec-
essary for determining the optimal policy henceforth. (This property is the Markovian
property, discussed in Sec. 16.2.) Any problem lacking this property cannot be for-
mulated as a dynamic programming problem.

6. The solution procedure begins by finding the optimal policy for the last stage.
The optimal policy for the last stage prescribes the optimal policy decision for

each of the possible states at that stage. The solution of this one-stage problem is usu-
ally trivial, as it was for the stagecoach problem.

7. A recursive relationship that identifies the optimal policy for stage n, given the opti-
mal policy for stage n � 1, is available.

For the stagecoach problem, this recursive relationship was

f n*(s) � min
xn

{csxn
� f *n�1(xn)}.

Therefore, finding the optimal policy decision when you start in state s at stage n re-
quires finding the minimizing value of xn. For this particular problem, the corresponding
minimum cost is achieved by using this value of xn and then following the optimal pol-
icy when you start in state xn at stage n � 1.

The precise form of the recursive relationship differs somewhat among dynamic
programming problems. However, notation analogous to that introduced in the pre-
ceding section will continue to be used here, as summarized below.

N � number of stages.

n � label for current stage (n � 1, 2, . . . , N ).

sn � current state for stage n.

xn � decision variable for stage n.

xn* � optimal value of xn (given sn).

fn(sn, xn) � contribution of stages n, n � 1, . . . , N to objective function if system starts
in state sn at stage n, immediate decision is xn, and optimal decisions are
made thereafter.

f n*(sn) � fn(sn, xn*).

The recursive relationship will always be of the form

f n*(sn) � max { fn(sn, xn)} or f n*(sn) � min {fn(sn, xn)},
xn xn

where fn(sn, xn) would be written in terms of sn, xn, f *n�1(sn�1), and probably some
measure of the immediate contribution of xn to the objective function. It is the inclu-
sion of f *n�1(sn�1) on the right-hand side, so that f *n(sn) is defined in terms of f *n�1(sn�1),
that makes the expression for f *n(sn) a recursive relationship.

The recursive relationship keeps recurring as we move backward stage by stage.
When the current stage number n is decreased by 1, the new f *n(sn) function is derived
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by using the f *n�1(sn�1) function that was just derived during the preceding iteration,
and then this process keeps repeating. This property is emphasized in the next (and fi-
nal) characteristic of dynamic programming.

8. When we use this recursive relationship, the solution procedure starts at the end and
moves backward stage by stage—each time finding the optimal policy for that stage—
until it finds the optimal policy starting at the initial stage. This optimal policy imme-
diately yields an optimal solution for the entire problem, namely, x1* for the initial state
s1, then x2* for the resulting state s2, then x3* for the resulting state s3, and so forth to
x*N for the resulting stage sN.

This backward movement was demonstrated by the stagecoach problem, where the
optimal policy was found successively beginning in each state at stages 4, 3, 2, and 1,
respectively.1 For all dynamic programming problems, a table such as the following
would be obtained for each stage (n � N, N � 1, . . . , 1).
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fn(sn, xn)
xn

sn f n*(sn) xn*

When this table is finally obtained for the initial stage (n � 1), the problem of interest
is solved. Because the initial state is known, the initial decision is specified by x1* in this
table. The optimal value of the other decision variables is then specified by the other ta-
bles in turn according to the state of the system that results from the preceding decisions.

This section further elaborates upon the dynamic programming approach to deterministic
problems, where the state at the next stage is completely determined by the state and pol-
icy decision at the current stage. The probabilistic case, where there is a probability dis-
tribution for what the next state will be, is discussed in the next section.

Deterministic dynamic programming can be described diagrammatically as shown in
Fig. 11.3. Thus, at stage n the process will be in some state sn. Making policy decision
xn then moves the process to some state sn�1 at stage n � 1. The contribution thereafter
to the objective function under an optimal policy has been previously calculated to be
f *n�1(sn�1). The policy decision xn also makes some contribution to the objective func-
tion. Combining these two quantities in an appropriate way provides fn(sn, xn), the con-
tribution of stages n onward to the objective function. Optimizing with respect to xn then
gives f n*(sn) � fn(sn, xn*). After xn* and f n*(sn) are found for each possible value of sn, the
solution procedure is ready to move back one stage.

One way of categorizing deterministic dynamic programming problems is by the form
of the objective function. For example, the objective might be to minimize the sum of the
contributions from the individual stages (as for the stagecoach problem), or to maximize
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1Actually, for this problem the solution procedure can move either backward or forward. However, for many
problems (especially when the stages correspond to time periods), the solution procedure must move backward.



such a sum, or to minimize a product of such terms, and so on. Another categorization is
in terms of the nature of the set of states for the respective stages. In particular, states sn

might be representable by a discrete state variable (as for the stagecoach problem) or by
a continuous state variable, or perhaps a state vector (more than one variable) is required.

Several examples are presented to illustrate these various possibilities. More impor-
tantly, they illustrate that these apparently major differences are actually quite inconse-
quential (except in terms of computational difficulty) because the underlying basic struc-
ture shown in Fig. 11.3 always remains the same.

The first new example arises in a much different context from the stagecoach prob-
lem, but it has the same mathematical formulation except that the objective is to maxi-
mize rather than minimize a sum.
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State:

Stage
n

Stage
n � 1

sn sn � 1
Contribution

of xnfn(sn, xn) f *
n � 1(sn � 1)

xn

Value:

FIGURE 11.3
The basic structure for
deterministic dynamic
programming.

TABLE 11.1 Data for the World Health Council problem

Thousands of Additional
Person-Years of Life

Country
Medical
Teams 1 2 3

0 0 0 0
1 45 20 50
2 70 45 70
3 90 75 80
4 105 110 100
5 120 150 130

EXAMPLE 2 Distributing Medical Teams to Countries

The WORLD HEALTH COUNCIL is devoted to improving health care in the underde-
veloped countries of the world. It now has five medical teams available to allocate among
three such countries to improve their medical care, health education, and training pro-
grams. Therefore, the council needs to determine how many teams (if any) to allocate to
each of these countries to maximize the total effectiveness of the five teams. The teams
must be kept intact, so the number allocated to each country must be an integer.

The measure of performance being used is additional person-years of life. (For a par-
ticular country, this measure equals the increased life expectancy in years times the coun-
try’s population.) Table 11.1 gives the estimated additional person-years of life (in multi-
ples of 1,000) for each country for each possible allocation of medical teams.

Which allocation maximizes the measure of performance?



Formulation. This problem requires making three interrelated decisions, namely, how
many medical teams to allocate to each of the three countries. Therefore, even though
there is no fixed sequence, these three countries can be considered as the three stages in
a dynamic programming formulation. The decision variables xn (n � 1, 2, 3) are the num-
ber of teams to allocate to stage (country) n.

The identification of the states may not be readily apparent. To determine the states,
we ask questions such as the following. What is it that changes from one stage to the next?
Given that the decisions have been made at the previous stages, how can the status of the
situation at the current stage be described? What information about the current state of
affairs is necessary to determine the optimal policy hereafter? On these bases, an appro-
priate choice for the “state of the system” is

sn � number of medical teams still available for allocation to remaining countries
(n, . . . , 3).

Thus, at stage 1 (country 1), where all three countries remain under consideration for al-
locations, s1 � 5. However, at stage 2 or 3 (country 2 or 3), sn is just 5 minus the num-
ber of teams allocated at preceding stages, so that the sequence of states is

s1 � 5, s2 � 5 � x1, s3 � s2 � x2.

With the dynamic programming procedure of solving backward stage by stage, when we
are solving at stage 2 or 3, we shall not yet have solved for the allocations at the preced-
ing stages. Therefore, we shall consider every possible state we could be in at stage 2 or
3, namely, sn � 0, 1, 2, 3, 4, or 5.

Figure 11.4 shows the states to be considered at each stage. The links (line segments)
show the possible transitions in states from one stage to the next from making a feasible
allocation of medical teams to the country involved. The numbers shown next to the links
are the corresponding contributions to the measure of performance, where these numbers
come from Table 11.1. From the perspective of this figure, the overall problem is to find
the path from the initial state 5 (beginning stage 1) to the final state 0 (after stage 3) that
maximizes the sum of the numbers along the path.

To state the overall problem mathematically, let pi(xi) be the measure of performance
from allocating xi medical teams to country i, as given in Table 11.1. Thus, the objective
is to choose x1, x2, x3 so as to

Maximize �
3

i�1
pi(xi),

subject to

�
3

i�1
xi � 5,

and

xi are nonnegative integers.

Using the notation presented in Sec. 11.2, we see that fn(sn, xn) is

fn(sn, xn) � pn(xn) � max �
3

i�n�1
pi(xi),
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where the maximum is taken over xn�1, . . . , x3 such that

�
3

i�n

xi � sn

and the xi are nonnegative integers, for n � 1, 2, 3. In addition,

f n*(sn) � max      fn(sn, xn)
xn�0,1, . . . , sn

Therefore,

fn(sn, xn) � pn(xn) � f *n�1(sn � xn)

(with f 4* defined to be zero). These basic relationships are summarized in Fig. 11.5.
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FIGURE 11.4
Graphical display of the
World Health Council
problem, showing the
possible states at each stage,
the possible transitions in
states, and the corresponding
contributions to the measure
of performance.



Consequently, the recursive relationship relating functions f 1*, f 2*, and f 3* for this prob-
lem is

f n*(sn) � max {pn(xn) � f *n�1(sn � xn)}, for n � 1, 2.
xn�0,1, . . . , sn

For the last stage (n � 3),

f 3*(s3) � max p3(x3).
x3�0,1, . . . , s3

The resulting dynamic programming calculations are given next.

Solution Procedure. Beginning with the last stage (n � 3), we note that the values of
p3(x3) are given in the last column of Table 11.1 and these values keep increasing as we
move down the column. Therefore, with s3 medical teams still available for allocation to
country 3, the maximum of p3(x3) is automatically achieved by allocating all s3 teams; so
x3* � s3 and f 3*(s3) � p3(s3), as shown in the following table.
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sn sn � xn

Stage
n � 1

Stage
n

State:

Value: fn(sn, xn) pn(xn)
� pn(xn) � f *

n � 1(sn � xn)

f *
n � 1(sn � xn)

xn

n � 3: s3 f 3*(s3) x3*

0 0 0
1 50 1
2 70 2
3 80 3
4 100 4
5 130 5

We now move backward to start from the next-to-last stage (n � 2). Here, finding 
x2* requires calculating and comparing f2(s2, x2) for the alternative values of x2, namely,
x2 � 0, 1, . . . , s2. To illustrate, we depict this situation when s2 � 2 graphically:

FIGURE 11.5
The basic structure for the
World Health Council
problem.
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State:



This diagram corresponds to Fig. 11.5 except that all three possible states at stage 3 are
shown. Thus, if x2 � 0, the resulting state at stage 3 will be s2 � x2 � 2 � 0 � 2, whereas
x2 � 1 leads to state 1 and x2 � 2 leads to state 0. The corresponding values of p2(x2)
from the country 2 column of Table 11.1 are shown along the links, and the values of
f 3*(s2 � x2) from the n � 3 table are given next to the stage 3 nodes. The required calcu-
lations for this case of s2 � 2 are summarized below.

Formula: f2(2, x2) � p2(x2) � f 3*(2 � x2).
p2(x2) is given in the country 2 column of Table 11.1.
f 3*(2 � x2) is given in the n � 3 table (bottom of preceding page).

x2 � 0: f2(2, 0) � p2(0) � f 3*(2) � 0 � 70 � 70.
x2 � 1: f2(2, 1) � p2(1) � f 3*(1) � 20 � 50 � 70.
x2 � 2: f2(2, 2) � p2(2) � f 3*(0) � 45 � 0 � 45.

Because the objective is maximization, x2* � 0 or 1 with f 2*(2) � 70.
Proceeding in a similar way with the other possible values of s2 (try it) yields the fol-

lowing table.
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f2(s2, x2) � p2(x2) � f 3*(s2 � x2)
x2

n � 2: s2 0 1 2 3 4 5 f 2*(s2) x2*

0 0 0 0 or 1
1 50 20 50 0 or 1
2 70 70 45 70 0 or 1
3 80 90 95 75 95 2 or 1
4 100 100 115 125 110 125 3 or 1
5 130 120 125 145 160 150 160 4 or 1

We now are ready to move backward to solve the original problem where we are start-
ing from stage 1 (n � 1). In this case, the only state to be considered is the starting state
of s1 � 5, as depicted below.

5

0

5

120

45

0

4

125

160

0

State:

•
•
•

Since allocating x1 medical teams to country 1 leads to a state of 5 � x1 at stage 2, a
choice of x1 � 0 leads to the bottom node on the right, x � 1 leads to the next node up,
and so forth up to the top node with x1 � 5. The corresponding p1(x1) values from Table



11.1 are shown next to the links. The numbers next to the nodes are obtained from the
f 2*(s2) column of the n � 2 table. As with n � 2, the calculation needed for each alterna-
tive value of the decision variable involves adding the corresponding link value and node
value, as summarized below.

Formula: f1(5, x1) � p1(x1) � f 2*(5 � x1).
p1(x1) is given in the country 1 column of Table 11.1.
f 2*(5 � x1) is given in the n � 2 table.

x1 � 0: f1(5, 0) � p1(0) � f 2*(5) � 0 � 160 � 160.
x1 � 1: f1(5, 1) � p1(1) � f 2*(4) � 45 � 125 � 170.

�

x1 � 5: f1(5, 5) � p1(5) � f 2*(0) � 120 � 0 � 120.

The similar calculations for x1 � 2, 3, 4 (try it) verify that x1* � 1 with f 1*(5) � 170, as
shown in the following table.
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f1(s1, x1) � p1(x1) � f 2*(s1 � x1)
x2

n � 1: s1 0 1 2 3 4 5 f 1*(s1) x1*

5 160 170 165 160 155 120 170 1

Thus, the optimal solution has x1* � 1, which makes s2 � 5 � 1 � 4, so x2* � 3, which
makes s3 � 4 � 3 � 1, so x3* � 1. Since f 1*(5) � 170, this (1, 3, 1) allocation of medical
teams to the three countries will yield an estimated total of 170,000 additional person-
years of life, which is at least 5,000 more than for any other allocation.

These results of the dynamic programming analysis also are summarized in Fig. 11.6.

A Prevalent Problem Type—The Distribution of Effort Problem

The preceding example illustrates a particularly common type of dynamic programming
problem called the distribution of effort problem. For this type of problem, there is just
one kind of resource that is to be allocated to a number of activities. The objective is to
determine how to distribute the effort (the resource) among the activities most effectively.
For the World Health Council example, the resource involved is the medical teams, and
the three activities are the health care work in the three countries.

Assumptions. This interpretation of allocating resources to activities should ring a bell
for you, because it is the typical interpretation for linear programming problems given at
the beginning of Chap. 3. However, there also are some key differences between the dis-
tribution of effort problem and linear programming that help illuminate the general dis-
tinctions between dynamic programming and other areas of mathematical programming.

One key difference is that the distribution of effort problem involves only one re-
source (one functional constraint), whereas linear programming can deal with thousands
of resources. (In principle, dynamic programming can handle slightly more than one re-
source, as we shall illustrate in Example 5 by solving the three-resource Wyndor Glass



Co. problem, but it quickly becomes very inefficient when the number of resources is
increased.)

On the other hand, the distribution of effort problem is far more general than linear
programming in other ways. Consider the four assumptions of linear programming pre-
sented in Sec. 3.3: proportionality, additivity, divisibility, and certainty. Proportionality is
routinely violated by nearly all dynamic programming problems, including distribution of
effort problems (e.g., Table 11.1 violates proportionality). Divisibility also is often vio-
lated, as in Example 2, where the decision variables must be integers. In fact, dynamic
programming calculations become more complex when divisibility does hold (as in Ex-
amples 4 and 5). Although we shall consider the distribution of effort problem only un-
der the assumption of certainty, this is not necessary, and many other dynamic program-
ming problems violate this assumption as well (as described in Sec. 11.4).
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Of the four assumptions of linear programming, the only one needed by the distrib-
ution of effort problem (or other dynamic programming problems) is additivity (or its ana-
log for functions involving a product of terms). This assumption is needed to satisfy the
principle of optimality for dynamic programming (characteristic 5 in Sec. 11.2).

Formulation. Because they always involve allocating one kind of resource to a num-
ber of activities, distribution of effort problems always have the following dynamic pro-
gramming formulation (where the ordering of the activities is arbitrary):

Stage n � activity n (n � 1, 2, . . . , N ).
xn � amount of resource allocated to activity n.

State sn � amount of resource still available for allocation to remaining activities
(n, . . . , N ).

The reason for defining state sn in this way is that the amount of the resource still avail-
able for allocation is precisely the information about the current state of affairs (entering
stage n) that is needed for making the allocation decisions for the remaining activities.

When the system starts at stage n in state sn, the choice of xn results in the next state
at stage n � 1 being sn�1 � sn � xn, as depicted below:1
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sn sn � xn
xn

n � 1n

State:

Stage:

1This statement assumes that xn and sn are expressed in the same units. If it is more convenient to define xn as
some other quantity such that the amount of the resource allocated to activity n is anxn, then sn�1 � sn � anxn.

Note how the structure of this diagram corresponds to the one shown in Fig. 11.5 for the
World Health Council example of a distribution of effort problem. What will differ from
one such example to the next is the rest of what is shown in Fig. 11.5, namely, the rela-
tionship between fn(sn, xn) and f *n�1(sn � xn), and then the resulting recursive relationship
between the f n* and f *n�1 functions. These relationships depend on the particular objective
function for the overall problem.

The structure of the next example is similar to the one for the World Health Council
because it, too, is a distribution of effort problem. However, its recursive relationship dif-
fers in that its objective is to minimize a product of terms for the respective stages.

At first glance, this example may appear not to be a deterministic dynamic pro-
gramming problem because probabilities are involved. However, it does indeed fit our def-
inition because the state at the next stage is completely determined by the state and pol-
icy decision at the current stage.

EXAMPLE 3 Distributing Scientists to Research Teams

A government space project is conducting research on a certain engineering problem that
must be solved before people can fly safely to Mars. Three research teams are currently
trying three different approaches for solving this problem. The estimate has been made
that, under present circumstances, the probability that the respective teams—call them 1,



2, and 3—will not succeed is 0.40, 0.60, and 0.80, respectively. Thus, the current proba-
bility that all three teams will fail is (0.40)(0.60)(0.80) � 0.192. Because the objective is
to minimize the probability of failure, two more top scientists have been assigned to the
project.

Table 11.2 gives the estimated probability that the respective teams will fail when 0,
1, or 2 additional scientists are added to that team. Only integer numbers of scientists are
considered because each new scientist will need to devote full attention to one team. The
problem is to determine how to allocate the two additional scientists to minimize the prob-
ability that all three teams will fail.

Formulation. Because both Examples 2 and 3 are distribution of effort problems, their
underlying structure is actually very similar. In this case, scientists replace medical teams
as the kind of resource involved, and research teams replace countries as the activities.
Therefore, instead of medical teams being allocated to countries, scientists are being al-
located to research teams. The only basic difference between the two problems is in their
objective functions.

With so few scientists and teams involved, this problem could be solved very easily
by a process of exhaustive enumeration. However, the dynamic programming solution is
presented for illustrative purposes.

In this case, stage n (n � 1, 2, 3) corresponds to research team n, and the state sn is the
number of new scientists still available for allocation to the remaining teams. The decision
variables xn (n � 1, 2, 3) are the number of additional scientists allocated to team n.

Let pi(xi) denote the probability of failure for team i if it is assigned xi additional sci-
entists, as given by Table 11.2. If we let � denote multiplication, the government’s ob-
jective is to choose x1, x2, x3 so as to

Minimize �
3

i�1
pi(xi) � p1(x1)p2(x2)p3(x3),

subject to

�
3

i�1
xi � 2
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TABLE 11.2 Data for the Government Space Project problem

Probability of Failure

Team
New

Scientists 1 2 3

0 0.40 0.60 0.80
1 0.20 0.40 0.50
2 0.15 0.20 0.30



and

xi are nonnegative integers.

Consequently, fn(sn, xn) for this problem is

fn(sn, xn) � pn(xn) � min �
3

i�n�1
pi(xi),

where the minimum is taken over xn�1, . . . , x3 such that

�
3

i�n

xi � sn

and

xi are nonnegative integers,

for n � 1, 2, 3. Thus,

f n*(sn) � min fn(sn, xn),
xn�0,1, . . . , sn

where

fn(sn, xn) � pn(xn) � f *n�1(sn � xn)

(with f 4* defined to be 1). Figure 11.7 summarizes these basic relationships.
Thus, the recursive relationship relating the f 1*, f 2*, and f 3* functions in this case is

f n*(sn) � min {pn(xn) � f *n�1(sn � xn)}, for n � 1, 2,
xn�0,1, . . . , sn

and, when n � 3,

f 3*(s3) � min p3(x3).
x3 � 0,1, . . . , s3

Solution Procedure. The resulting dynamic programming calculations are as follows:
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sn sn � xn

Stage
n � 1

Stage
n

State:

Value: fn(sn, xn) pn(xn)
� pn(xn) � f *

n � 1(sn � xn)

f *
n � 1(sn � xn)

xn

FIGURE 11.7
The basic structure for the
government space project
problem.

n � 3: s3 f 3*(s3) x3*

0 0.80 0
1 0.50 1
2 0.30 2



Therefore, the optimal solution must have x1* � 1, which makes s2 � 2 � 1 � 1, so that
x2* � 0, which makes s3 � 1 � 0 � 1, so that x3* � 1. Thus, teams 1 and 3 should each
receive one additional scientist. The new probability that all three teams will fail would
then be 0.060.

All the examples thus far have had a discrete state variable sn at each stage. Fur-
thermore, they all have been reversible in the sense that the solution procedure actually
could have moved either backward or forward stage by stage. (The latter alternative
amounts to renumbering the stages in reverse order and then applying the procedure in
the standard way.) This reversibility is a general characteristic of distribution of effort
problems such as Examples 2 and 3, since the activities (stages) can be ordered in any
desired manner.

The next example is different in both respects. Rather than being restricted to inte-
ger values, its state variable sn at stage n is a continuous variable that can take on any
value over certain intervals. Since sn now has an infinite number of values, it is no longer
possible to consider each of its feasible values individually. Rather, the solution for f n*(sn)
and xn* must be expressed as functions of sn. Furthermore, this example is not reversible
because its stages correspond to time periods, so the solution procedure must proceed
backward.
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f2(s2, x2) � p2(x2) � f 3*(s2 � x2)
x2

n � 2: s2 0 1 2 f 2*(s2) x2*

0 0.48 0.48 0
1 0.30 0.32 0.30 0
2 0.18 0.20 0.16 0.16 2

f1(s1, x1) � p1(x1) � f 2*(s1 � x1)
x1

n � 1: s1 0 1 2 f 1*(s1) x1*

2 0.064 0.060 0.072 0.060 1

EXAMPLE 4 Scheduling Employment Levels

The workload for the LOCAL JOB SHOP is subject to considerable seasonal fluctuation.
However, machine operators are difficult to hire and costly to train, so the manager is re-
luctant to lay off workers during the slack seasons. He is likewise reluctant to maintain
his peak season payroll when it is not required. Furthermore, he is definitely opposed to
overtime work on a regular basis. Since all work is done to custom orders, it is not pos-
sible to build up inventories during slack seasons. Therefore, the manager is in a dilemma
as to what his policy should be regarding employment levels.



The following estimates are given for the minimum employment requirements dur-
ing the four seasons of the year for the foreseeable future:
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Season Spring Summer Autumn Winter Spring

Requirements 255 220 240 200 255

Employment will not be permitted to fall below these levels. Any employment above these
levels is wasted at an approximate cost of $2,000 per person per season. It is estimated
that the hiring and firing costs are such that the total cost of changing the level of em-
ployment from one season to the next is $200 times the square of the difference in em-
ployment levels. Fractional levels of employment are possible because of a few part-time
employees, and the cost data also apply on a fractional basis.

Formulation. On the basis of the data available, it is not worthwhile to have the em-
ployment level go above the peak season requirements of 255. Therefore, spring em-
ployment should be at 255, and the problem is reduced to finding the employment level
for the other three seasons.

For a dynamic programming formulation, the seasons should be the stages. There are
actually an indefinite number of stages because the problem extends into the indefinite
future. However, each year begins an identical cycle, and because spring employment is
known, it is possible to consider only one cycle of four seasons ending with the spring
season, as summarized below.

Stage 1 � summer,
Stage 2 � autumn,
Stage 3 � winter,
Stage 4 � spring.

xn � employment level for stage n (n � 1, 2, 3, 4).
(x4 � 255.)

It is necessary that the spring season be the last stage because the optimal value of
the decision variable for each state at the last stage must be either known or obtainable
without considering other stages. For every other season, the solution for the optimal em-
ployment level must consider the effect on costs in the following season.

Let

rn � minimum employment requirement for stage n,

where these requirements were given earlier as r1 � 220, r2 � 240, r3 � 200, and 
r4 � 255. Thus, the only feasible values for xn are

rn � xn � 255.

Referring to the cost data given in the problem statement, we have

Cost for stage n � 200(xn � xn�1)2 � 2,000(xn � rn).

Note that the cost at the current stage depends upon only the current decision xn and
the employment in the preceding season xn�1. Thus, the preceding employment level is



all the information about the current state of affairs that we need to determine the opti-
mal policy henceforth. Therefore, the state sn for stage n is

State sn � xn�1.

When n � 1, s1 � x0 � x4 � 255.
For your ease of reference while working through the problem, a summary of the data

is given in Table 11.3 for each of the four stages.
The objective for the problem is to choose x1, x2, x3 (with x0 � x4 � 255) so as to

Minimize �
4

i�1
[200(xi � xi�1)2 � 2,000(xi � ri)],

subject to

ri � xi � 255, for i � 1, 2, 3, 4.

Thus, for stage n onward (n � 1, 2, 3, 4), since sn � xn�1

fn(sn, xn) � 200(xn � sn)2 � 2,000(xn � rn)

� min �
4

i�n�1
[200(xi � xi�1)2 � 2,000(xi � ri)],

ri�xi�255

where this summation equals zero when n � 4 (because it has no terms). Also,

f n*(sn) � min fn(sn, xn).
rn�xn�255

Hence,

fn(sn, xn) � 200(xn � sn)2 � 2,000(xn � rn) � f *n�1(xn)

(with f5* defined to be zero because costs after stage 4 are irrelevant to the analysis). A
summary of these basic relationships is given in Fig. 11.8.
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TABLE 11.3 Data for the Local Job Shop problem

n rn Feasible xn Possible sn � xn�1 Cost

1 220 220 � x1 � 255 s1 � 255 200(x1 � 255)2 � 2,000(x1 � 220)
2 240 240 � x2 � 255 220 � s2 � 255 200(x2 � x1)2 � 2,000(x2 � 240)
3 200 200 � x3 � 255 240 � s3 � 255 200(x3 � x2)2 � 2,000(x3 � 200)
4 255 x4 � 255 200 � s4 � 255 200(255 � x3)2

Stage
n

snState:

Stage
n � 1

Value: fn(sn, xn)
� sum

200(xn � sn)2 � 2,000(xn � rn) f *
n � 1(xn)

xn
xn

FIGURE 11.8
The basic structure for the
Local Job Shop problem.



Consequently, the recursive relationship relating the f n* functions is

f n*(sn) � min {200(xn � sn)2 � 2,000(xn � rn) � f *n�1(xn)}.
rn�xn�255

The dynamic programming approach uses this relationship to identify successively
these functions—f 4*(s4), f 3*(s3), f 2*(s2), f 1*(255)—and the corresponding minimizing xn.

Solution Procedure. Stage 4: Beginning at the last stage (n � 4), we already know
that x4* � 255, so the necessary results are
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Stage 3: For the problem consisting of just the last two stages (n � 3), the recursive
relationship reduces to

f 3*(s3) � min {200(x3 � s3)2 � 2,000(x3 � 200) � f 4*(x3)}
200�x3�255

� min {200(x3 � s3)2 � 2,000(x3 � 200) � 200(255 � x3)2},
200�x3�255

where the possible values of s3 are 240 � s3 � 255.
One way to solve for the value of x3 that minimizes f3(s3, x3) for any particular value

of s3 is the graphical approach illustrated in Fig. 11.9.

n � 4: s4 f 4*(s4) x4*

200 � s4 � 255 200(255 � s4)2 255

200 s3 s3 � 250
2

255 x3

2,000(x3 � 200)

200(x3 � s3)2

200(255 � x3)2
Sum � f3(s3, x3)

f *
3(s3)

FIGURE 11.9
Graphical solution for f 3*(s3)
for the Local Job Shop
problem.



However, a faster way is to use calculus. We want to solve for the minimizing x3 in
terms of s3 by considering s3 to have some fixed (but unknown) value. Therefore, set the
first (partial) derivative of f3(s3, x3) with respect to x3 equal to zero:

�
	
	
x3
� f3(s3, x3) � 400(x3 � s3) � 2,000 � 400(255 � x3)

� 400(2x3 � s3 � 250)
� 0,

which yields

x3* � �
s3 �

2
250
�.

Because the second derivative is positive, and because this solution lies in the feasible in-
terval for x3 (200 � x3 � 255) for all possible s3 (240 � s3 � 255), it is indeed the de-
sired minimum.

Note a key difference between the nature of this solution and those obtained for the
preceding examples where there were only a few possible states to consider. We now have
an infinite number of possible states (240 � s3 � 255), so it is no longer feasible to solve
separately for x3* for each possible value of s3. Therefore, we instead have solved for x3*
as a function of the unknown s3.

Using

f 3*(s3) � f3(s3, x3*) � 200��s3 �
2

250
� � s3�

2

� 200�255 � �
s3 �

2
250
��

2

� 2,000��s3 �
2

250
� � 200�

and reducing this expression algebraically complete the required results for the third-stage
problem, summarized as follows.
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n � 3: s3 f 3*(s3) x3*

240 � s3 � 255 50(250 � s3)2 � 50(260 � s3)2 � 1,000(s3 � 150)
s3 � 250
��

2

Stage 2: The second-stage (n � 2) and first-stage problems (n � 1) are solved in a
similar fashion. Thus, for n � 2,

f2(s2, x2) � 200(x2 � s2)2 � 2,000(x2 � r2) � f 3*(x2)
� 200(x2 � s2)2 � 2,000(x2 � 240)

� 50(250 � x2)2 � 50(260 � x2)2 � 1,000(x2 � 150).

The possible values of s2 are 220 � s2 � 255, and the feasible region for x2 is 240 �
x2 � 255. The problem is to find the minimizing value of x2 in this region, so that

f 2*(s2) � min f2(s2, x2).
240�x2�255



Setting to zero the partial derivative with respect to x2:

�
	
	
x2
� f2(s2, x2) � 400(x2 � s2) � 2,000 � 100(250 � x2) � 100(260 � x2) � 1,000

� 200(3x2 � 2s2 � 240)
� 0

yields

x2 � �
2s2 �

3
240

�.

Because

f2(s2, x2) � 600 
 0,

this value of x2 is the desired minimizing value if it is feasible (240 � x2 � 255). Over
the possible s2 values (220 � s2 � 255), this solution actually is feasible only if 240 �
s2 � 255.

Therefore, we still need to solve for the feasible value of x2 that minimizes f2(s2, x2)
when 220 � s2 � 240. The key to analyzing the behavior of f2(s2, x2) over the feasible
region for x2 again is the partial derivative of f2(s2, x2). When s2 � 240,

f2(s2, x2) 
 0, for 240 � x2 � 255,

so that x2 � 240 is the desired minimizing value.
The next step is to plug these values of x2 into f2(s2, x2) to obtain f 2*(s2) for s2 � 240

and s2 � 240. This yields

	
�
	x2

	2

�
	x2

2
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200(x1 � s1)2 � 2,000(x1 � 220) � 200(240 � x1)2 � 115,000,
if 220 � x1 � 240

f1(s1, x1) �
200(x1 � s1)2 � 2,000(x1 � 220) � [(240 � x1)2 � (255 � x1)2 � (270 � x1)2]

� 2,000(x1 � 195), if 240 � x1 � 255.

200
�

9

n � 2: s2 f 2*(s2) x2*

220 � s2 � 240 200(240 � s2)2 � 115,000 240

240 � s2 � 255 �
20

9
0

� [(240 � s2)2 � (255 � s2)2 �
2s2 �

3
240
�

� (270 � s2)2] � 2,000(s2 � 195)

Stage 1: For the first-stage problem (n � 1),

f1(s1, x1) � 200(x1 � s1)2 � 2,000(x1 � r1) � f 2*(x1).

Because r1 � 220, the feasible region for x1 is 220 � x1 � 255. The expression for f 2*(x1)
will differ in the two portions 220 � x1 � 240 and 240 � x1 � 255 of this region. 
Therefore,











Considering first the case where 220 � x1 � 240, we have

�
	
	
x1
� f1(s1, x1) � 400(x1 � s1) � 2,000 � 400(240 � x1)

� 400(2x1 � s1 � 235).

It is known that s1 � 255 (spring employment), so that

�
	
	
x1
� f1(s1, x1) � 800(x1 � 245) � 0

for all x1 � 240. Therefore, x1 � 240 is the minimizing value of f1(s1, x1) over the region
220 � x1 � 240.

When 240 � x1 � 255,

�
	
	
x1
� f1(s1, x1) � 400(x1 � s1) � 2,000

� �
40
9
0

�[(240 � x1) � (255 � x1) � (270 � x1)] � 2,000

� �
40
3
0

� (4x1 � 3s1 � 225).

Because

�
	
	
x

2

1
2� f1(s1, x1) 
 0 for all x1,

set

�
	
	
x1
� f1(s1, x1) � 0,

which yields

x1 � �
3s1 �

4
225

�.

Because s1 � 255, it follows that x1 � 247.5 minimizes f1(s1, x1) over the region 
240 � x1 � 255.

Note that this region (240 � x1 � 255) includes x1 � 240, so that f1(s1, 240) 
 f1(s1,
247.5). In the next-to-last paragraph, we found that x1 � 240 minimizes f1(s1, x1) over the
region 220 � x1 � 240. Consequently, we now can conclude that x1 � 247.5 also mini-
mizes f1(s1, x1) over the entire feasible region 220 � x1 � 255.

Our final calculation is to find f 1*(s1) for s1 � 255 by plugging x1 � 247.5 into the
expression for f1(255, x1) that holds for 240 � x1 � 255. Hence,

f 1*(255) � 200(247.5 � 255)2 � 2,000(247.5 � 220)

� �
20
9
0

� [2(250 � 247.5)2 � (265 � 247.5)2 � 30(742.5 � 575)]

� 185,000.
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These results are summarized as follows:
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Therefore, by tracing back through the tables for n � 2, n � 3, and n � 4, respec-
tively, and setting sn � x*n�1 each time, the resulting optimal solution is x1* � 247.5,
x2* � 245, x3* � 247.5, x4* � 255, with a total estimated cost per cycle of $185,000.

To conclude our illustrations of deterministic dynamic programming, we give one ex-
ample that requires more than one variable to describe the state at each stage.

n � 1: s1 f 1*(s1) x1*

255 185,000 247.5

EXAMPLE 5 Wyndor Glass Company Problem

Consider the following linear programming problem:

Maximize Z � 3x1 � 5x2,

subject to

x1 � 2x2 � 4
3x1 � 2x2 � 12
3x1 � 2x2 � 18

and

x1 � 0, x2 � 0.

(You might recognize this as being the model for the Wyndor Glass Co. problem—intro-
duced in Sec. 3.1.) One way of solving small linear (or nonlinear) programming problems
like this one is by dynamic programming, which is illustrated below.

Formulation. This problem requires making two interrelated decisions, namely, the
level of activity 1, denoted by x1, and the level of activity 2, denoted by x2. Therefore,
these two activities can be interpreted as the two stages in a dynamic programming for-
mulation. Although they can be taken in either order, let stage n � activity n (n � 1, 2).
Thus, xn is the decision variable at stage n.

What are the states? In other words, given that the decision had been made at prior
stages (if any), what information is needed about the current state of affairs before the de-
cision can be made at stage n? Reflection might suggest that the required information is
the amount of slack left in the functional constraints. Interpret the right-hand side of these
constraints (4, 12, and 18) as the total available amount of resources 1, 2, and 3, respec-
tively (as described in Sec. 3.1). Then state sn can be defined as

State sn � amount of respective resources still available for allocation to 
remaining activities.



(Note that the definition of the state is analogous to that for distribution of effort prob-
lems, including Examples 2 and 3, except that there are now three resources to be allo-
cated instead of just one.) Thus,

sn � (R1, R2, R3),

where Ri is the amount of resource i remaining to be allocated (i � 1, 2, 3). Therefore,

s1 � (4, 12, 18),
s2 � (4 � x1, 12, 18 � 3x1).

However, when we begin by solving for stage 2, we do not yet know the value of x1, and
so we use s2 � (R1, R2, R3) at that point.

Therefore, in contrast to the preceding examples, this problem has three state vari-
ables (i.e., a state vector with three components) at each stage rather than one. From a
theoretical standpoint, this difference is not particularly serious. It only means that, in-
stead of considering all possible values of the one state variable, we must consider all pos-
sible combinations of values of the several state variables. However, from the standpoint
of computational efficiency, this difference tends to be a very serious complication. Be-
cause the number of combinations, in general, can be as large as the product of the num-
ber of possible values of the respective variables, the number of required calculations tends
to “blow up” rapidly when additional state variables are introduced. This phenomenon has
been given the apt name of the curse of dimensionality.

Each of the three state variables is continuous. Therefore, rather than consider each
possible combination of values separately, we must use the approach introduced in Ex-
ample 4 of solving for the required information as a function of the state of the system.

Despite these complications, this problem is small enough that it can still be solved
without great difficulty. To solve it, we need to introduce the usual dynamic programming
notation. Thus,

f2(R1, R2, R3, x2) � contribution of activity 2 to Z if system starts in state
(R1, R2, R3) at stage 2 and decision is x2

� 5x2,

f1(4, 12, 18, x1) � contribution of activities 1 and 2 to Z if system starts in state 
(4, 12, 18) at stage 1, immediate decision is x1, and then
optimal decision is made at stage 2,

� 3x1 � max {5x2}.
x2�12

2x2�18�3x1
x2�0

Similarly, for n � 1, 2,

f n*(R1, R2, R3) � max fn(R1, R2, R3, xn),
xn

where this maximum is taken over the feasible values of xn. Consequently, using the rel-
evant portions of the constraints of the problem gives

(1) f 2*(R1, R2, R3) � max {5x2},
2x2�R2
2x2�R3
x2�0

(2) f1(4, 12, 18, x1) � 3x1 � f 2*(4 � x1, 12, 18 � 3x1),
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(3) f 1*(4, 12, 18) � max {3x1 � f 2*(4 � x1, 12, 18 � 3x1)}.
x1�4

3x1�18
x1�0

Equation (1) will be used to solve the stage 2 problem. Equation (2) shows the basic
dynamic programming structure for the overall problem, also depicted in Fig. 11.10. Equa-
tion (3) gives the recursive relationship between f 1* and f 2* that will be used to solve the
stage 1 problem.

Solution Procedure. Stage 2: To solve at the last stage (n � 2), Eq. (1) indicates that
x2* must be the largest value of x2 that simultaneously satisfies 2x2 � R2, 2x2 � R3, and
x2 � 0. Assuming that R2 � 0 and R3 � 0, so that feasible solutions exist, this largest
value is the smaller of R2/2 and R3/2. Thus, the solution is
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Stage 1: To solve the two-stage problem (n � 1), we plug the solution just obtained
for f 2*(R1, R2, R3) into Eq. (3). For stage 2,

(R1, R2, R3) � (4 � x1, 12, 18 � 3x1),

so that

f 2*(4 � x1, 12, 18 � 3x1) � 5 min ��
R
2
2�, �

R
2
3�� � 5 min ��

1
2
2
�, �

18 �
2

3x1��
is the specific solution plugged into Eq. (3). After we combine its constraints on x1, Eq.
(3) then becomes

f1*(4, 12, 18) � max �3x1 � 5 min ��
1
2
2
�, �

18 �
2

3x1���.
0�x1�4

Over the feasible interval 0 � x1 � 4, notice that

min ��
1
2
2
�, �

18 �
2

3x1�� � �
if 0 � x1 � 2

if 2 � x1 � 4,

6

9 � �
3
2

� x1

n � 2: (R1, R2, R3) f 2*(R1, R2, R3) x2*

R2 � 0, R3 � 0 5 min ��
R
2
2�, �

R
2
3�� min ��

R
2
2�, �

R
2
3��

Stage
1

State:

Stage
2

Value: f *
2(4 � x1, 12, 18 � 3x1)

x1
4, 12, 18 4 � x1, 12, 18 � 3x1

 f1(4, 12, 18, x1)
� sum

3x1

FIGURE 11.10
The basic structure for the
Wyndor Glass Co. linear
programming problem.



so that

3x1 � 5 min ��
1
2
2
�, �

18 �
2

3x1�� � �
Because both

max {3x1 � 30} and max �45 � �
9
2

� x1�0�x1�2 2�x1�4

achieve their maximum at x1 � 2, it follows that x1* � 2 and that this maximum is 36, as
given in the following table.

if 0 � x1 � 2

if 2 � x1 � 4.

3x1 � 30

45 � �
9
2

�x1
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n � 1: (R1, R2, R3) f 1*(R1, R2, R3) x1*

(4, 12, 18) 36 2

Because x1* � 2 leads to

R1 � 4 � 2 � 2, R2 � 12, R3 � 18 � 3(2) � 12

for stage 2, the n � 2 table yields x2* � 6. Consequently, x1* � 2, x2* � 6 is the optimal
solution for this problem (as originally found in Sec. 3.1), and the n � 1 table shows that
the resulting value of Z is 36.

Probabilistic dynamic programming differs from deterministic dynamic programming in
that the state at the next stage is not completely determined by the state and policy deci-
sion at the current stage. Rather, there is a probability distribution for what the next state
will be. However, this probability distribution still is completely determined by the state
and policy decision at the current stage. The resulting basic structure for probabilistic dy-
namic programming is described diagrammatically in Fig. 11.11.

For the purposes of this diagram, we let S denote the number of possible states at
stage n � 1 and label these states on the right side as 1, 2, . . . , S. The system goes to
state i with probability pi (i � 1, 2, . . . , S) given state sn and decision xn at stage n. If
the system goes to state i, Ci is the contribution of stage n to the objective function.

When Fig. 11.11 is expanded to include all the possible states and decisions at all the
stages, it is sometimes referred to as a decision tree. If the decision tree is not too large,
it provides a useful way of summarizing the various possibilities.

Because of the probabilistic structure, the relationship between fn(sn, xn) and the
f *n�1(sn�1) necessarily is somewhat more complicated than that for deterministic dynamic
programming. The precise form of this relationship will depend upon the form of the over-
all objective function.

To illustrate, suppose that the objective is to minimize the expected sum of the con-
tributions from the individual stages. In this case, fn(sn, xn) represents the minimum ex-
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pected sum from stage n onward, given that the state and policy decision at stage n are
sn and xn, respectively. Consequently,

fn(sn, xn) � �
S

i�1
pi[Ci � f *n�1(i)],

with

f *n�1(i) � min fn�1(i, xn�1),
xn�1

where this minimization is taken over the feasible values of xn�1.
Example 6 has this same form. Example 7 will illustrate another form.
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Stage n Stage n � 1

State:

Probability Contribution
from stage n

Decision 
xn

p1

p2

pS

C1

C2

CS

f *
n � 1(1)

f *
n � 1(2)

f *
n � 1(S)

1

2

�
�
�

�
�
�

S

sn

fn(sn, xn)

FIGURE 11.11
The basic structure for
probabilistic dynamic
programming.

EXAMPLE 6 Determining Reject Allowances

The HIT-AND-MISS MANUFACTURING COMPANY has received an order to supply
one item of a particular type. However, the customer has specified such stringent quality
requirements that the manufacturer may have to produce more than one item to obtain an
item that is acceptable. The number of extra items produced in a production run is called
the reject allowance. Including a reject allowance is common practice when producing
for a custom order, and it seems advisable in this case.

The manufacturer estimates that each item of this type that is produced will be ac-
ceptable with probability �

1
2

� and defective (without possibility for rework) with probability
�
1
2

�. Thus, the number of acceptable items produced in a lot of size L will have a binomial
distribution; i.e., the probability of producing no acceptable items in such a lot is (�

1
2

�)L.
Marginal production costs for this product are estimated to be $100 per item (even if

defective), and excess items are worthless. In addition, a setup cost of $300 must be in-
curred whenever the production process is set up for this product, and a completely new
setup at this same cost is required for each subsequent production run if a lengthy in-



spection procedure reveals that a completed lot has not yielded an acceptable item. The
manufacturer has time to make no more than three production runs. If an acceptable item
has not been obtained by the end of the third production run, the cost to the manufacturer
in lost sales income and penalty costs will be $1,600.

The objective is to determine the policy regarding the lot size (1 � reject allowance)
for the required production run(s) that minimizes total expected cost for the manufacturer.

Formulation. A dynamic programming formulation for this problem is

Stage n � production run n (n � 1, 2, 3),
xn � lot size for stage n,

State sn � number of acceptable items still needed (1 or 0) at beginning of stage n.

Thus, at stage 1, state s1 � 1. If at least one acceptable item is obtained subsequently, the
state changes to sn � 0, after which no additional costs need to be incurred.

Because of the stated objective for the problem,

fn(sn, xn) � total expected cost for stages n, . . . , 3 if system starts in state sn at
stage n, immediate decision is xn, and optimal decisions are made
thereafter,

f n*(sn) � min fn(sn, xn),
xn�0, 1, . . .

where f n*(0) � 0. Using $100 as the unit of money, the contribution to cost from stage n
is [K(xn) � xn] regardless of the next state, where K(xn) is a function of xn such that

K(xn) � �
Therefore, for sn � 1,

fn(1, xn) � K(xn) � xn � ��
1
2

��
xn

f *n�1(1) � �1 � ��
1
2

��
xn� f *n�1(0)

� K(xn) � xn � ��
1
2

��
xn

f *n�1(1)

[where f 4*(1) is defined to be 16, the terminal cost if no acceptable items have been ob-
tained]. A summary of these basic relationships is given in Fig. 11.12.

if xn � 0
if xn 
 0.

0,
3,
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State:

Probability Contribution
from stage n

Decision 
1 xn

f *
n � 1(0) � 0

f *
n � 1(1)

Value: fn(1, xn)
� K(   )�xn�       f *

n � 1(1)

0

1

1 � (  )xn1
2

(  )1
2

xn

(  )1
2

xn

xn(  )  1
2

K(   )�xn xn

     

K(   )�xn  xn

     

 xn

FIGURE 11.12
The basic structure for the
Hit-and-Miss Manufacturing
Co. problem.



Consequently, the recursive relationship for the dynamic programming calculations is

f n*(1) � min �K(xn) � xn � ��
1
2

��
xn

f *n�1(1)�xn�0, 1, . . . 

for n � 1, 2, 3.

Solution Procedure. The calculations using this recursive relationship are summa-
rized as follows.
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f2(1, x2) � K(x2) � x2 � ��
1
2

��
x2

f 3*(1)

x2

n � 2: s2 0 1 2 3 4 f 2*(s2) x2*

0 0 0 0

1 8 8 7 7 7�
1
2

� 7 2 or 3

f3(1, x3) � K(x3) � x3 � 16��
1
2

��
x3

x3

n � 3: s3 0 1 2 3 4 5 f 3*(s3) x3*

0 0 0 0

1 16 12 9 8 8 8�
1
2

� 8 3 or 4

f1(1, x1) � K(x1) � x1 � ��
1
2

��
x

1
f 2*(1)

x1

n � 1: s1 0 1 2 3 4 f 1*(s1) x1*

1 7 7�
1
2

� 6�
3
4

� 6�
7
8

� 7�
1
7
6
� 6�

3
4

� 2

Thus, the optimal policy is to produce two items on the first production run; if none
is acceptable, then produce either two or three items on the second production run; if none
is acceptable, then produce either three or four items on the third production run. The to-
tal expected cost for this policy is $675.

EXAMPLE 7 Winning in Las Vegas

An enterprising young statistician believes that she has developed a system for winning
a popular Las Vegas game. Her colleagues do not believe that her system works, so they
have made a large bet with her that if she starts with three chips, she will not have at least
five chips after three plays of the game. Each play of the game involves betting any de-



sired number of available chips and then either winning or losing this number of chips.
The statistician believes that her system will give her a probability of �

2
3

� of winning a given
play of the game.

Assuming the statistician is correct, we now use dynamic programming to deter-
mine her optimal policy regarding how many chips to bet (if any) at each of the three
plays of the game. The decision at each play should take into account the results of
earlier plays. The objective is to maximize the probability of winning her bet with her
colleagues.

Formulation. The dynamic programming formulation for this problem is

Stage n � nth play of game (n � 1, 2, 3),
xn � number of chips to bet at stage n,

State sn � number of chips in hand to begin stage n.

This definition of the state is chosen because it provides the needed information about the
current situation for making an optimal decision on how many chips to bet next.

Because the objective is to maximize the probability that the statistician will win her
bet, the objective function to be maximized at each stage must be the probability of fin-
ishing the three plays with at least five chips. (Note that the value of ending with more
than five chips is just the same as ending with exactly five, since the bet is won either
way.) Therefore,

fn(sn, xn) � probability of finishing three plays with at least five chips, given that
the statistician starts stage n in state sn, makes immediate decision xn,
and makes optimal decisions thereafter,

f n*(sn) � max fn(sn, xn).
xn�0, 1, . . . , sn

The expression for fn(sn, xn) must reflect the fact that it may still be possible to ac-
cumulate five chips eventually even if the statistician should lose the next play. If she
loses, the state at the next stage will be sn � xn, and the probability of finishing with at
least five chips will then be f *n�1(sn � xn). If she wins the next play instead, the state will
become sn � xn, and the corresponding probability will be f *n�1(sn � xn). Because the as-
sumed probability of winning a given play is �

2
3

�, it now follows that

fn(sn, xn) � �
1
3

� f *n�1(sn � xn) � �
2
3

� f *n�1(sn � xn)

[where f 4*(s4) is defined to be 0 for s4 � 5 and 1 for s4 � 5]. Thus, there is no direct con-
tribution to the objective function from stage n other than the effect of then being in the
next state. These basic relationships are summarized in Fig. 11.13.

Therefore, the recursive relationship for this problem is

f n*(sn) � max ��
1
3

� f *n�1(sn � xn) � �
2
3

� f *n�1(sn � xn)�,
xn�0, 1, . . . , sn

for n � 1, 2, 3, with f 4*(s4) as just defined.
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Solution Procedure. This recursive relationship leads to the following computational
results.
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State:

Probability Contribution
from stage n

Decision 
sn xn

f *
n � 1(sn � xn)

f *
n � 1(sn � xn)

Value: fn(sn, xn)

�   f *
n � 1(sn � xn) � sn � xn

sn � xn

0

0
f *

n � 1(sn � xn)2
3

1
3

1
3

2
3

Stage n Stage n � 1

FIGURE 11.13
The basic structure for the
Las Vegas problem.

n � 3: s3 f 3*(s3) x3*

�0 0 —
�1 0 —
�2 0 —

�3 �
2
3

� 2 (or more)

�4 �
2
3

� 1 (or more)

�5 1 0 (or � s3 � 5)

f1(s1, x1) � �
1
3

�f 2*(s1 � x1) � �
2
3

�f 2*(s1 � x1)

x1

n � 1: s1 0 1 2 3 f 1*(s1) x1*

3 �
2
3

� �
2
2

0
7
� �

2
3

� �
2
3

� �
2
2

0
7
� 1

f2(s2, x2) � �
1
3

�f 3*(s2 � x2) � �
2
3

�f 3*(s2 � x2)

x2

n � 2: s2 0 1 2 3 4 f 2*(s2) x2*

�0 0 0 —
�1 0 0 0 —

�2 0 �
4
9

� �
4
9

� �
4
9

� 1 or 2

�3 �
2
3

� �
4
9

� �
2
3

� �
2
3

� �
2
3

� 0, 2, or 3

�4 �
2
3

� �
8
9

� �
2
3

� �
2
3

� �
2
3

� �
8
9

� 1

�5 1 1 0 (or � s2 � 5)



Therefore, the optimal policy is

if win, x2* � 1 �
x1* � 1 

if lose, x2* � 1 or 2 �
This policy gives the statistician a probability of �

2
2
0
7
� of winning her bet with her colleagues.

if win,

if lose, bet is lost

x3* � 0
x3* � 2 or 3.

if win,
if lose,
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Dynamic programming is a very useful technique for making a sequence of interrelated
decisions. It requires formulating an appropriate recursive relationship for each individ-
ual problem. However, it provides a great computational savings over using exhaustive
enumeration to find the best combination of decisions, especially for large problems. For
example, if a problem has 10 stages with 10 states and 10 possible decisions at each stage,
then exhaustive enumeration must consider up to 10 billion combinations, whereas dy-
namic programming need make no more than a thousand calculations (10 for each state
at each stage).

This chapter has considered only dynamic programming with a finite number of stages.
Chapter 21 is devoted to a general kind of model for probabilistic dynamic programming
where the stages continue to recur indefinitely, namely, Markov decision processes.
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11.2-1. Consider the following network, where each number along
a link represents the actual distance between the pair of nodes con-
nected by that link. The objective is to find the shortest path from
the origin to the destination.
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An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

PROBLEMS

(origin) (destination)B

C

A

D

E

T

9

6
O

7

5

7

8

6

6

7

f *
3(D) � 6

f *
3(E) � 7

f *
2(C) � 13

f *
2(A) � 11

(a) What are the stages and states for the dynamic programming
formulation of this problem?

(b) Use dynamic programming to solve this problem. However,
instead of using the usual tables, show your work graphi-
cally (similar to Fig. 11.2). In particular, start with the given
network, where the answers already are given for f n*(sn) for
four of the nodes; then solve for and fill in f 2*(B) and f 1*(O).
Draw an arrowhead that shows the optimal link to traverse
out of each of the latter two nodes. Finally, identify the op-
timal path by following the arrows from node O onward to
node T.

(c) Use dynamic programming to solve this problem by manually
constructing the usual tables for n � 3, n � 2, and n � 1.

(d) Use the shortest-path algorithm presented in Sec. 9.3 to solve
this problem. Compare and contrast this approach with the one
in parts (b) and (c).

11.2-2. The sales manager for a publisher of college textbooks has
six traveling salespeople to assign to three different regions of the
country. She has decided that each region should be assigned at
least one salesperson and that each individual salesperson should
be restricted to one of the regions, but now she wants to determine
how many salespeople should be assigned to the respective regions
in order to maximize sales.

(a) Use dynamic programming to solve this problem. Instead of
using the usual tables, show your work graphically by con-
structing and filling in a network such as the one shown for
Prob. 11.2-1. Proceed as in Prob. 11.2-1b by solving for f n*(sn)
for each node (except the terminal node) and writing its value
by the node. Draw an arrowhead to show the optimal link (or
links in case of a tie) to take out of each node. Finally, iden-
tify the resulting optimal path (or paths) through the network
and the corresponding optimal solution (or solutions).

(b) Use dynamic programming to solve this problem by con-
structing the usual tables for n � 3, n � 2, and n � 1.

Region

Salespersons 1 2 3

1 35 21 28
2 48 42 41
3 70 56 63
4 89 70 75

The following table gives the estimated increase in sales (in
appropriate units) in each region if it were allocated various num-
bers of salespeople:



the problem of finding the longest path (the largest total time)
through this network from start to finish, since the longest path is
the critical path.

11.2-3. Consider the following project network when applying
PERT/CPM as described in Chap. 10, where the number over each
node is the time required for the corresponding activity. Consider
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B E

D

C

A

0

3

START

FINISH

3 2

7

4

6

0

4

1

4

5

2

5

I

L

K

J

H

G

F

(a) What are the stages and states for the dynamic programming
formulation of this problem?

(b) Use dynamic programming to solve this problem. However,
instead of using the usual tables, show your work graphically.
In particular, fill in the values of the various f n*(sn) under the
corresponding nodes, and show the resulting optimal arc to tra-
verse out of each node by drawing an arrowhead near the be-
ginning of the arc. Then identify the optimal path (the longest
path) by following these arrowheads from the Start node to the
Finish node. If there is more than one optimal path, identify
them all.

(c) Use dynamic programming to solve this problem by con-
structing the usual tables for n � 4, n � 3, n � 2, and n � 1.

11.2-4. Consider the following statements about solving dynamic
programming problems. Label each statement as true or false, and
then justify your answer by referring to specific statements (with
page citations) in the chapter.
(a) The solution procedure uses a recursive relationship that en-

ables solving for the optimal policy for stage (n � 1) given the
optimal policy for stage n.

(b) After completing the solution procedure, if a nonoptimal de-
cision is made by mistake at some stage, the solution proce-
dure will need to be reapplied to determine the new optimal
decisions (given this nonoptimal decision) at the subsequent
stages.

(c) Once an optimal policy has been found for the overall prob-
lem, the information needed to specify the optimal decision at
a particular stage is the state at that stage and the decisions
made at preceding stages.

11.3-1.* The owner of a chain of three grocery stores has purchased
five crates of fresh strawberries. The estimated probability distrib-
ution of potential sales of the strawberries before spoilage differs
among the three stores. Therefore, the owner wants to know how
to allocate five crates to the three stores to maximize expected profit.

For administrative reasons, the owner does not wish to split
crates between stores. However, he is willing to distribute no crates
to any of his stores.

The following table gives the estimated expected profit at each
store when it is allocated various numbers of crates:

Store

Crates 1 2 3

0 0 0 0
1 5 6 4
2 9 11 9
3 14 15 13
4 17 19 18
5 21 22 20



11.3-4. A political campaign is entering its final stage, and polls
indicate a very close election. One of the candidates has enough
funds left to purchase TV time for a total of five prime-time com-
mercials on TV stations located in four different areas. Based on
polling information, an estimate has been made of the number of
additional votes that can be won in the different broadcasting ar-
eas depending upon the number of commercials run. These esti-
mates are given in the following table in thousands of votes:

Use dynamic programming to determine how many of the five
crates should be assigned to each of the three stores to maximize
the total expected profit.

11.3-2. A college student has 7 days remaining before final ex-
aminations begin in her four courses, and she wants to allocate this
study time as effectively as possible. She needs at least 1 day on
each course, and she likes to concentrate on just one course each
day, so she wants to allocate 1, 2, 3, or 4 days to each course. Hav-
ing recently taken an OR course, she decides to use dynamic pro-
gramming to make these allocations to maximize the total grade
points to be obtained from the four courses. She estimates that the
alternative allocations for each course would yield the number of
grade points shown in the following table:
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Solve this problem by dynamic programming.

11.3-3. A company is planning its advertising strategy for next
year for its three major products. Since the three products are quite
different, each advertising effort will focus on a single product. In
units of millions of dollars, a total of 6 is available for advertising
next year, where the advertising expenditure for each product must
be an integer greater than or equal to 1. The vice-president for mar-
keting has established the objective: Determine how much to spend
on each product in order to maximize total sales. The following
table gives the estimated increase in sales (in appropriate units) for
the different advertising expenditures:

Estimated Grade Points

Course

Study Days 1 2 3 4

1 3 5 2 6
2 5 5 4 7
3 6 6 7 9
4 7 9 8 9

Product
Advertising
Expenditure 1 2 3

1 7 4 6
2 10 8 9
3 14 11 13
4 17 14 15

Use dynamic programming to solve this problem.

Area

Commercials 1 2 3 4

0 0 0 0 0
1 4 6 5 3
2 7 8 9 7
3 9 10 11 12
4 12 11 10 14
5 15 12 9 16

Use dynamic programming to determine how the five com-
mercials should be distributed among the four areas in order to
maximize the estimated number of votes won.

11.3-5. A county chairwoman of a certain political party is mak-
ing plans for an upcoming presidential election. She has received
the services of six volunteer workers for precinct work, and she
wants to assign them to four precincts in such a way as to maxi-
mize their effectiveness. She feels that it would be inefficient to
assign a worker to more than one precinct, but she is willing to as-
sign no workers to any one of the precincts if they can accomplish
more in other precincts.

The following table gives the estimated increase in the num-
ber of votes for the party’s candidate in each precinct if it were al-
located various numbers of workers:

Precinct

Workers 1 2 3 4

0 0 0 0 0
1 4 7 5 6
2 9 11 10 11
3 15 16 15 14
4 18 18 18 16
5 22 20 21 17
6 24 21 22 18

This problem has several optimal solutions for how many of the
six workers should be assigned to each of the four precincts to



(b) Now assume that any amount within the total budget can be spent
in each phase, where the estimated effect of spending an amount
xi (in units of millions of dollars) in phase i (i � 1, 2, 3) is

m � 10x1 � x2
1

f2 � 0.40 � 0.10x2

f3 � 0.60 � 0.07x3.

[Hint: After solving for the f 2*(s) and f 3*(s) functions analytically,
solve for x1* graphically.]

11.3-9. The management of a company is considering three pos-
sible new products for next year’s product line. A decision now
needs to be made regarding which products to market and at what
production levels.

Initiating the production of two of these products would re-
quire a substantial start-up cost, as shown in the first row of the
table below. Once production is under way, the marginal net rev-
enue from each unit produced is shown in the second row. The
third row gives the percentage of the available production capac-
ity that would be used for each unit produced.

maximize the total estimated increase in the plurality of the party’s
candidate. Use dynamic programming to find all of them so the
chairwoman can make the final selection based on other factors.

11.3-6. Use dynamic programming to solve the Northern Airplane
Co. production scheduling problem presented in Sec. 8.1 (see Table
8.7). Assume that production quantities must be integer multiples
of 5.

11.3-7. Reconsider the Build-Em-Fast Co. problem described in
Prob. 8.1-9. Use dynamic programming to solve this problem.

11.3-8.* A company will soon be introducing a new product into
a very competitive market and is currently planning its market-
ing strategy. The decision has been made to introduce the prod-
uct in three phases. Phase 1 will feature making a special intro-
ductory offer of the product to the public at a greatly reduced
price to attract first-time buyers. Phase 2 will involve an inten-
sive advertising campaign to persuade these first-time buyers to
continue purchasing the product at a regular price. It is known
that another company will be introducing a new competitive prod-
uct at about the time that phase 2 will end. Therefore, phase 3
will involve a follow-up advertising and promotion campaign to
try to keep the regular purchasers from switching to the compet-
itive product.

A total of $4 million has been budgeted for this marketing
campaign. The problem now is to determine how to allocate this
money most effectively to the three phases. Let m denote the ini-
tial share of the market (expressed as a percentage) attained in
phase 1, f2 the fraction of this market share that is retained in
phase 2, and f3 the fraction of the remaining market share that is
retained in phase 3. Given the following data, use dynamic pro-
gramming to determine how to allocate the $4 million to maxi-
mize the final share of the market for the new product, i.e., to
maximize mf2 f3.
(a) Assume that the money must be spent in integer multiples of

$1 million in each phase, where the minimum permissible
multiple is 1 for phase 1 and 0 for phases 2 and 3. The fol-
lowing table gives the estimated effect of expenditures in each
phase:
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Effect on
Market Share

Millions of
Dollars Expended m f2 f3

0 — 0.2 0.3
1 20 0.4 0.5
2 30 0.5 0.6
3 40 0.6 0.7
4 50 — —

Product

1 2 3

Start-up cost 3 2 0
Marginal net revenue 2 3 1
Capacity used per unit, % 20 40 20

Only 3 units of product 1 could be sold, whereas all units that
could be produced of the other two products could be sold. The
objective is to determine the number of units of each product to
produce in order to maximize the total profit (total net revenue mi-
nus start-up costs).
(a) Assuming that production quantities must be integers, use dy-

namic programming to solve this problem.
(b) Now consider the case where the divisibility assumption holds,

so that the variables representing production quantities are
treated as continuous variables. Assuming that proportionality
holds for both net revenues and capacities used, use dynamic
programming to solve this problem.

11.3-10. Consider an electronic system consisting of four compo-
nents, each of which must work for the system to function. The re-
liability of the system can be improved by installing several par-
allel units in one or more of the components. The following table
gives the probability that the respective components will function
if they consist of one, two, or three parallel units:



11.3-13. Consider the following integer nonlinear
programming problem.

Maximize Z � x1x2
2x3

3,

subject to

x1 � 2x2 � 3x3 � 10
x1 � 1, x2 � 1, x3 � 1,

and

x1, x2, x3 are integers.

Use dynamic programming to solve this problem.

11.3-14.* Consider the following nonlinear programming problem.

Maximize Z � 36x1 � 9x2
1 � 6x3

1

� 36x2 � 3x3
2,

subject to

x1 � x2 � 3

and

x1 � 0, x2 � 0.

Use dynamic programming to solve this problem.

11.3-15. Re-solve the Local Job Shop employment scheduling
problem (Example 4) when the total cost of changing the level of
employment from one season to the next is changed to $100 times
the square of the difference in employment levels.

11.3-16. Consider the following nonlinear programming problem.

Maximize Z � 2x2
1 � 2x2 � 4x3 � x2

3

subject to

2x1 � x2 � x3 � 4

and

x1 � 0, x2 � 0, x3 � 0.

Use dynamic programming to solve this problem.

11.3-17. Consider the following nonlinear programming problem.

Maximize Z � 2x1 � x2
2,

subject to

x2
1 � x2

2 � 4

and

x1 � 0, x2 � 0.

Use dynamic programming to solve this problem.

The probability that the system will function is the product of
the probabilities that the respective components will function.

The cost (in hundreds of dollars) of installing one, two, or
three parallel units in the respective components is given by the
following table:
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Probability of Functioning

Parallel Units Component 1 Component 2 Component 3 Component 4

1 0.5 0.6 0.7 0.5
2 0.6 0.7 0.8 0.7
3 0.8 0.8 0.9 0.9

Cost

Parallel Units Component 1 Component 2 Component 3 Component 4

1 1 2 1 2
2 2 4 3 3
3 3 5 4 4

Because of budget limitations, a maximum of $1,000 can be expended.
Use dynamic programming to determine how many parallel

units should be installed in each of the four components to maxi-
mize the probability that the system will function.

11.3-11. Consider the following integer nonlinear programming
problem.

Maximize Z � 3x2
1 � x3

1 � 5x2
2 � x3

2,

subject to

x1 � 2x2 � 4

and

x1 � 0, x2 � 0
x1, x2 are integers.

Use dynamic programming to solve this problem.

11.3-12. Consider the following integer nonlinear programming
problem.

Maximize Z � 18x1 � x2
1 � 20x2 � 10x3,

subject to

2x1 � 4x2 � 3x3 � 11

and

x1, x2, x3 are nonnegative integers.

Use dynamic programming to solve this problem.



and

x1 � 0, x2 � 0.

Use dynamic programming to solve this problem.

11.3-23. Consider the following nonlinear programming problem.

Maximize Z � 5x1 � x2,

subject to

2x2
1 � x2 � 13

x2
1 � x2 � 9

and

x1 � 0, x2 � 0.

Use dynamic programming to solve this problem.

11.3-24. Consider the following “fixed-charge” problem.

Maximize Z � 3x1 � 7x2 � 6f (x3),

subject to

x1 � 3x2 � 2x3 � 6
x1 � x2 � 2x3 � 5

and

x1 � 0, x2 � 0, x3 � 0,

where

f (x3) � �
Use dynamic programming to solve this problem.

11.4-1. A backgammon player will be playing three consecutive
matches with friends tonight. For each match, he will have the op-
portunity to place an even bet that he will win; the amount bet can
be any quantity of his choice between zero and the amount of
money he still has left after the bets on the preceding matches. For
each match, the probability is �

1
2

� that he will win the match and thus
win the amount bet, whereas the probability is �

1
2

� that he will lose
the match and thus lose the amount bet. He will begin with $75,
and his goal is to have $100 at the end. (Because these are friendly
matches, he does not want to end up with more than $100.) There-
fore, he wants to find the optimal betting policy (including all ties)
that maximizes the probability that he will have exactly $100 af-
ter the three matches.

Use dynamic programming to solve this problem.

11.4-2. Imagine that you have $5,000 to invest and that you will
have an opportunity to invest that amount in either of two invest-

if x3 � 0
if x3 
 0.

0
�1 � x3

11.3-18. Consider the following nonlinear programming problem.

Minimize Z � x4
1 � 2x2

2

subject to

x2
1 � x2

2 � 2.

(There are no nonnegativity constraints.) Use dynamic program-
ming to solve this problem.

11.3-19. Consider the following nonlinear programming problem.

Maximize Z � x2
1x2,

subject to

x2
1 � x2 � 2.

(There are no nonnegativity constraints.) Use dynamic program-
ming to solve this problem.

11.3-20. Consider the following nonlinear programming problem.

Maximize Z � x3
1 � 4x2

2 � 16x3,

subject to

x1x2x3 � 4

and

x1 � 1, x2 � 1, x3 � 1.

(a) Solve by dynamic programming when, in addition to the given
constraints, all three variables also are required to be integer.

(b) Use dynamic programming to solve the problem as given (con-
tinuous variables).

11.3-21. Consider the following nonlinear programming problem.

Maximize Z � x1(1 � x2)x3,

subject to

x1 � x2 � x3 � 1

and

x1 � 0, x2 � 0, x3 � 0.

Use dynamic programming to solve this problem.

11.3-22. Consider the following linear programming problem.

Maximize Z � 15x1 � 10x2,

subject to

x1 � 2x2 � 6
3x1 � x2 � 8
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11.4-5. The Profit & Gambit Co. has a major product that has been
losing money recently because of declining sales. In fact, during
the current quarter of the year, sales will be 4 million units below
the break-even point. Because the marginal revenue for each unit
sold exceeds the marginal cost by $5, this amounts to a loss of $20
million for the quarter. Therefore, management must take action
quickly to rectify this situation. Two alternative courses of action
are being considered. One is to abandon the product immediately,
incurring a cost of $20 million for shutting down. The other alter-
native is to undertake an intensive advertising campaign to increase
sales and then abandon the product (at the cost of $20 million) only
if the campaign is not sufficiently successful. Tentative plans for
this advertising campaign have been developed and analyzed. It
would extend over the next three quarters (subject to early cancel-
lation), and the cost would be $30 million in each of the three quar-
ters. It is estimated that the increase in sales would be approxi-
mately 3 million units in the first quarter, another 2 million units
in the second quarter, and another 1 million units in the third quar-
ter. However, because of a number of unpredictable market vari-
ables, there is considerable uncertainty as to what impact the ad-
vertising actually would have; and careful analysis indicates that
the estimates for each quarter could turn out to be off by as much
as 2 million units in either direction. (To quantify this uncertainty,
assume that the additional increases in sales in the three quarters
are independent random variables having a uniform distribution
with a range from 1 to 5 million, from 0 to 4 million, and from
�1 to 3 million, respectively.) If the actual increases are too small,
the advertising campaign can be discontinued and the product aban-
doned at the end of either of the next two quarters.

If the intensive advertising campaign were initiated and con-
tinued to its completion, it is estimated that the sales for some time
thereafter would continue to be at about the same level as in the
third (last) quarter of the campaign. Therefore, if the sales in that
quarter still were below the break-even point, the product would
be abandoned. Otherwise, it is estimated that the expected dis-
counted profit thereafter would be $40 for each unit sold over the
break-even point in the third quarter.

Use dynamic programming to determine the optimal policy
maximizing the expected profit.

ments (A or B) at the beginning of each of the next 3 years. Both
investments have uncertain returns. For investment A you will ei-
ther lose your money entirely or (with higher probability) get back
$10,000 (a profit of $5,000) at the end of the year. For investment
B you will get back either just your $5,000 or (with low probabil-
ity) $10,000 at the end of the year. The probabilities for these events
are as follows:
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Amount
Investment Returned ($) Probability

A 0 0.3
10,000 0.7

B 5,000 0.9
10,000 0.1

You are allowed to make only (at most) one investment each year,
and you can invest only $5,000 each time. (Any additional money
accumulated is left idle.)
(a) Use dynamic programming to find the investment policy that

maximizes the expected amount of money you will have after
3 years.

(b) Use dynamic programming to find the investment policy that
maximizes the probability that you will have at least $10,000
after 3 years.

11.4-3.* Suppose that the situation for the Hit-and-Miss Manu-
facturing Co. problem (Example 6) has changed somewhat. After
a more careful analysis, you now estimate that each item produced
will be acceptable with probability �

2
3

�, rather than �
1
2

�, so that the prob-
ability of producing zero acceptable items in a lot of size L is (�

1
3

�)L.
Furthermore, there now is only enough time available to make two
production runs. Use dynamic programming to determine the new
optimal policy for this problem.

11.4-4. Reconsider Example 7. Suppose that the bet is changed as
follows: “Starting with two chips, she will not have at least five
chips after five plays of the game.” By referring to the previous
computational results, make additional calculations to determine
the new optimal policy for the enterprising young statistician.
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12
Integer Programming

In Chap. 3 you saw several examples of the numerous and diverse applications of linear
programming. However, one key limitation that prevents many more applications is the
assumption of divisibility (see Sec. 3.3), which requires that noninteger values be per-
missible for decision variables. In many practical problems, the decision variables actu-
ally make sense only if they have integer values. For example, it is often necessary to as-
sign people, machines, and vehicles to activities in integer quantities. If requiring integer
values is the only way in which a problem deviates from a linear programming formula-
tion, then it is an integer programming (IP) problem. (The more complete name is inte-
ger linear programming, but the adjective linear normally is dropped except when this
problem is contrasted with the more esoteric integer nonlinear programming problem,
which is beyond the scope of this book.)

The mathematical model for integer programming is the linear programming model
(see Sec. 3.2) with the one additional restriction that the variables must have integer val-
ues. If only some of the variables are required to have integer values (so the divisibility
assumption holds for the rest), this model is referred to as mixed integer programming
(MIP). When distinguishing the all-integer problem from this mixed case, we call the for-
mer pure integer programming.

For example, the Wyndor Glass Co. problem presented in Sec. 3.1 actually would
have been an IP problem if the two decision variables x1 and x2 had represented the total
number of units to be produced of products 1 and 2, respectively, instead of the produc-
tion rates. Because both products (glass doors and wood-framed windows) necessarily
come in whole units, x1 and x2 would have to be restricted to integer values.

Another example of an IP problem is provided by the prize-winning OR study done
for the San Francisco Police Department that we introduced (and referenced) in Sec.
2.1. As indicated there, this study resulted in the development of a computerized system
for optimally scheduling and deploying police patrol officers. The new system provided
annual savings of $11 million, an annual $3 million increase in traffic citation revenues,
and a 20 percent improvement in response times. The main decision variables in the math-
ematical model were the number of officers to schedule to go on duty at each of the shift
start times. Since this number had to be an integer, these decision variables were restricted
to having integer values.



There have been numerous such applications of integer programming that involve a
direct extension of linear programming where the divisibility assumption must be dropped.
However, another area of application may be of even greater importance, namely, prob-
lems involving a number of interrelated “yes-or-no decisions.” In such decisions, the only
two possible choices are yes and no. For example, should we undertake a particular fixed
project? Should we make a particular fixed investment? Should we locate a facility in a
particular site?

With just two choices, we can represent such decisions by decision variables that are
restricted to just two values, say 0 and 1. Thus, the jth yes-or-no decision would be rep-
resented by, say, xj such that

xj � �
Such variables are called binary variables (or 0–1 variables). Consequently, IP problems
that contain only binary variables sometimes are called binary integer programming
(BIP) problems (or 0–1 integer programming problems).

Section 12.1 presents a miniature version of a typical BIP problem and Sec. 12.2 sur-
veys a variety of other BIP applications. Additional formulation possibilities with binary
variables are discussed in Sec. 12.3, and Sec. 12.4 presents a series of formulation ex-
amples. The remaining sections then deal with ways to solve IP problems, including both
BIP and MIP problems.

if decision j is yes
if decision j is no.

1
0
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The CALIFORNIA MANUFACTURING COMPANY is considering expansion by build-
ing a new factory in either Los Angeles or San Francisco, or perhaps even in both cities.
It also is considering building at most one new warehouse, but the choice of location is
restricted to a city where a new factory is being built. The net present value (total prof-
itability considering the time value of money) of each of these alternatives is shown in
the fourth column of Table 12.1. The rightmost column gives the capital required (already
included in the net present value) for the respective investments, where the total capital
available is $10 million. The objective is to find the feasible combination of alternatives
that maximizes the total net present value.

12.1 PROTOTYPE EXAMPLE

TABLE 12.1 Data for the California Manufacturing Co. example

Decision Yes-or-No Decision Net Present Capital
Number Question Variable Value Required

1 Build factory in Los Angeles? x1 $9 million $6 million
2 Build factory in San Francisco? x2 $5 million $3 million
3 Build warehouse in Los Angeles? x3 $6 million $5 million
4 Build warehouse in San Francisco? x4 $4 million $2 million

Capital available: $10 million



The BIP Model

Although this problem is small enough that it can be solved very quickly by inspection
(build factories in both cities but no warehouse), let us formulate the IP model for illus-
trative purposes. All the decision variables have the binary form

xj � � ( j � 1, 2, 3, 4).

Let

Z � total net present value of these decisions.

If the investment is made to build a particular facility (so that the corresponding decision
variable has a value of 1), the estimated net present value from that investment is given
in the fourth column of Table 12.1. If the investment is not made (so the decision vari-
able equals 0), the net present value is 0. Therefore, using units of millions of dollars,

Z � 9x1 � 5x2 � 6x3 � 4x4.

The rightmost column of Table 12.1 indicates that the amount of capital expended on
the four facilities cannot exceed $10 million. Consequently, continuing to use units of mil-
lions of dollars, one constraint in the model is

6x1 � 3x2 � 5x3 � 2x4 � 10.

Because the last two decisions represent mutually exclusive alternatives (the company
wants at most one new warehouse), we also need the constraint

x3 � x4 � 1.

Furthermore, decisions 3 and 4 are contingent decisions, because they are contingent on de-
cisions 1 and 2, respectively (the company would consider building a warehouse in a city
only if a new factory also were going there). Thus, in the case of decision 3, we require that
x3 � 0 if x1 � 0. This restriction on x3 (when x1 � 0) is imposed by adding the constraint

x3 � x1.

Similarly, the requirement that x4 � 0 if x2 � 0 is imposed by adding the constraint

x4 � x2.

Therefore, after we rewrite these two constraints to bring all variables to the left-hand
side, the complete BIP model is

Maximize Z � 9x1 � 5x2 � 6x3 � 4x4,

subject to

6x1 � 3x2 � 5x3 � 2x4 � 10
x3 � x4 � 1

�x1 � x3 � 0
� x2 � x4 � 0

xj � 1
xj � 0

if decision j is yes,
if decision j is no,

1
0
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and

xj is integer, for j � 1, 2, 3, 4.

Equivalently, the last three lines of this model can be replaced by the single restriction

xj is binary, for j � 1, 2, 3, 4.

Except for its small size, this example is typical of many real applications of integer
programming where the basic decisions to be made are of the yes-or-no type. Like the
second pair of decisions for this example, groups of yes-or-no decisions often constitute
groups of mutually exclusive alternatives such that only one decision in the group can
be yes. Each group requires a constraint that the sum of the corresponding binary vari-
ables must be equal to 1 (if exactly one decision in the group must be yes) or less than
or equal to 1 (if at most one decision in the group can be yes). Occasionally, decisions of
the yes-or-no type are contingent decisions, i.e., decisions that depend upon previous de-
cisions. For example, one decision is said to be contingent on another decision if it is al-
lowed to be yes only if the other is yes. This situation occurs when the contingent deci-
sion involves a follow-up action that would become irrelevant, or even impossible, if the
other decision were no. The form that the resulting constraint takes always is that illus-
trated by the third and fourth constraints in the example.

Software Options for Solving Such Models

All the software packages featured in your OR Courseware (Excel, LINGO/LINDO, and
MPL/CPLEX) include an algorithm for solving (pure or mixed) BIP models, as well as
an algorithm for solving general (pure or mixed) IP models where variables need to be
integer but not binary.

When using the Excel Solver, the procedure is basically the same as for linear pro-
gramming. The one difference arises when you click on the “Add” button on the Solver
dialogue box to add the constraints. In addition to the constraints that fit linear program-
ming, you also need to add the integer constraints. In the case of integer variables that are
not binary, this is accomplished in the Add Constraint dialogue box by choosing the range
of integer-restricted variables on the left-hand side and then choosing “int” from the pop-
up menu. In the case of binary variables, choose “bin” from the pop-up menu instead. (In
earlier versions of Excel that do not include the “bin” option, choose “int” and then add
�0 and �1 constraints on these binary variables.)

A LINGO model uses the function @BIN() to specify that the variable named inside
the parentheses is a binary variable. For a general integer variable (one restricted to inte-
ger values but not just binary values), the function @GIN() is used in the same way. In
either case, the function can be embedded inside an @FOR statement to impose this bi-
nary or integer constraint on an entire set of variables.

In a LINDO model, the binary or integer constraints are inserted after the END state-
ment. A variable X is specified to be a general integer variable by entering GIN X. Al-
ternatively, for any positive integer value of n, the statement GIN n specifies that the first
n variables are general integer variables. Binary variables are handled in the same way
except for substituting the word INTEGER for GIN.

For an MPL model, the keyword INTEGER is used to designate general integer vari-
ables, whereas BINARY is used for binary variables. In the variables section of an MPL
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model, all you need to do is add the appropriate adjective (INTEGER or BINARY) in front
of the label VARIABLES to specify that the set of variables listed below the label is of that
type. Alternatively, you can ignore this specification in the variables section and instead place
the integer or binary constraints in the model section anywhere after the other constraints.
In this case, the label over the set of variables becomes just INTEGER or BINARY.

The prime MPL solver CPLEX includes state-of-the-art algorithms for solving pure
or mixed IP or BIP models. By selecting MIP Strategy from the CPLEX Parameters sub-
menu in the Options menu, an experienced practitioner can even choose from a wide va-
riety of options for exactly how to execute the algorithm to best fit the particular problem.

These instructions for how to use the various software packages become clearer when you
see them applied to examples. The Excel, LINGO/LINDO, and MPL/CPLEX files for this
chapter in your OR Courseware show how each of these software options would be applied
to the prototype example introduced in this section, as well as to the subsequent IP examples.

The latter part of the chapter will focus on IP algorithms that are similar to those used
in these software packages. Section 12.6 will use the prototype example to illustrate the
application of the pure BIP algorithm presented there.
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Just as in the California Manufacturing Co. example, managers frequently must face yes-
or-no decisions. Therefore, binary integer programming (BIP) is widely used to aid in
these decisions.

We now will introduce various types of yes-or-no decisions. We also will mention
some examples of actual applications where BIP was used to address these decisions.

Each of these applications is fully described in an article in the journal called Inter-
faces. In each case, we will mention the specific issue in which the article appears in case
you want to read further.

Capital Budgeting with Fixed Investment Proposals

Linear programming sometimes is used to make capital budgeting decisions about how
much to invest in various projects. However, as the California Manufacturing Co. exam-
ple demonstrates, some capital budgeting decisions do not involve how much to invest,
but rather, whether to invest a fixed amount. Specifically, the four decisions in the exam-
ple were whether to invest the fixed amount of capital required to build a certain kind of
facility (factory or warehouse) in a certain location (Los Angeles or San Francisco).

Management often must face decisions about whether to make fixed investments
(those where the amount of capital required has been fixed in advance). Should we ac-
quire a certain subsidiary being spun off by another company? Should we purchase a cer-
tain source of raw materials? Should we add a new production line to produce a certain
input item ourselves rather than continuing to obtain it from a supplier?

In general, capital budgeting decisions about fixed investments are yes-or-no deci-
sions of the following type.

Each yes-or-no decision:
Should we make a certain fixed investment?

Its decision variable � � if yes
if no.

1
0
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The July–August 1990 issue of Interfaces describes how the Turkish Petroleum Re-
fineries Corporation used BIP to analyze capital investments worth tens of millions of
dollars to expand refinery capacity and conserve energy.

A rather different example that still falls somewhat into this category is described in
the January–February 1997 issue of Interfaces. A major OR study was conducted for the
South African National Defense Force to upgrade its capabilities with a smaller budget.
The “investments” under consideration in this case were acquisition costs and ongoing
expenses that would be required to provide specific types of military capabilities. A mixed
BIP model was formulated to choose those specific capabilities that would maximize the
overall effectiveness of the Defense Force while satisfying a budget constraint. The model
had over 16,000 variables (including 256 binary variables) and over 5,000 functional con-
straints. The resulting optimization of the size and shape of the defense force provided
savings of over $1.1 billion per year as well as vital nonmonetary benefits. The impact of
this study won it the prestigious first prize among the 1996 Franz Edelman Awards for
Management Science Achievement.

Site Selection

In this global economy, many corporations are opening up new plants in various parts of
the world to take advantage of lower labor costs, etc. Before selecting a site for a new
plant, many potential sites may need to be analyzed and compared. (The California Man-
ufacturing Co. example had just two potential sites for each of two kinds of facilities.)
Each of the potential sites involves a yes-or-no decision of the following type.

Each yes-or-no decision:
Should a certain site be selected for the location of a certain new facility?

Its decision variable � �
In many cases, the objective is to select the sites so as to minimize the total cost of the
new facilities that will provide the required output.

As described in the January–February 1990 issue of Interfaces, AT&T used a BIP
model to help dozens of their customers select the sites for their telemarketing centers.
The model minimizes labor, communications, and real estate costs while providing the
desired level of coverage by the centers. In one year alone (1988), this approach enabled
46 AT&T customers to make their yes-or-no decisions on site locations swiftly and con-
fidently, while committing to $375 million in annual network services and $31 million in
equipment sales from AT&T.

We next describe an important type of problem for many corporations where site se-
lection plays a key role.

Designing a Production and Distribution Network

Manufacturers today face great competitive pressure to get their products to market more
quickly as well as to reduce their production and distribution costs. Therefore, any cor-
poration that distributes its products over a wide geographical area (or even worldwide)
must pay continuing attention to the design of its production and distribution network.

if yes
if no.

1
0
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This design involves addressing the following kinds of yes-or-no decisions.

Should a certain plant remain open?
Should a certain site be selected for a new plant?
Should a certain distribution center remain open?
Should a certain site be selected for a new distribution center?

If each market area is to be served by a single distribution center, then we also have an-
other kind of yes-or-no decision for each combination of a market area and a distribution
center.

Should a certain distribution center be assigned to serve a certain market area?

For each of the yes-or-no decisions of any of these kinds,

Its decision variable � �
Ault Foods Limited (July–August 1994 issue of Interfaces) used this approach to de-

sign its production and distribution center. Management considered 10 sites for plants, 13
sites for distribution centers, and 48 market areas. This application of BIP was credited
with saving the company $200,000 per year.

Digital Equipment Corporation (January–February 1995 issue of Interfaces) provides
another example of an application of this kind. At the time, this large multinational cor-
poration was serving one-quarter million customer sites, with more than half of its $14
billion annual revenues coming from 81 countries outside the United States. Therefore,
this application involved restructuring the corporation’s entire global supply chain, con-
sisting of its suppliers, plants, distribution centers, potential sites, and market areas all
around the world. The restructuring generated annual cost reductions of $500 million in
manufacturing and $300 million in logistics, as well as a reduction of over $400 million
in required capital assets.

Dispatching Shipments

Once a production and distribution network has been designed and put into operation,
daily operating decisions need to be made about how to send the shipments. Some of these
decisions again are yes-or-no decisions.

For example, suppose that trucks are being used to transport the shipments and each
truck typically makes deliveries to several customers during each trip. It then becomes
necessary to select a route (sequence of customers) for each truck, so each candidate for
a route leads to the following yes-or-no decision.

Should a certain route be selected for one of the trucks?

Its decision variable � �
The objective would be to select the routes that would minimize the total cost of making
all the deliveries.

Various complications also can be considered. For example, if different truck sizes
are available, each candidate for selection would include both a certain route and a cer-

if yes
if no.

1
0

if yes
if no.

1
0
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tain truck size. Similarly, if timing is an issue, a time period for the departure also can be
specified as part of the yes-or-no decision. With both factors, each yes-or-no decision
would have the form shown below.

Should all the following be selected simultaneously for a delivery run:

1. A certain route,
2. A certain size of truck, and
3. A certain time period for the departure?

Its decision variable � �
Here are a few of the companies which use BIP to help make these kinds of deci-

sions. A Michigan-based retail chain called Quality Stores (March–April 1987 issue of
Interfaces) makes the routing decisions for its delivery trucks this way, thereby saving
about $450,000 per year. Air Products and Chemicals, Inc. (December 1983 issue of In-
terfaces) saves approximately $2 million annually (about 8 percent of its prior distribu-
tion costs) by using this approach to produce its daily delivery schedules. The Reynolds
Metals Co. (January–February 1991 issue of Interfaces) achieves savings of over $7 mil-
lion annually with an automated dispatching system based partially on BIP for its freight
shipments from over 200 plants, warehouses, and suppliers.

Scheduling Interrelated Activities

We all schedule interrelated activities in our everyday lives, even if it is just scheduling
when to begin our various homework assignments. So too, managers must schedule var-
ious kinds of interrelated activities. When should we begin production for various new or-
ders? When should we begin marketing various new products? When should we make
various capital investments to expand our production capacity?

For any such activity, the decision about when to begin can be expressed in terms of
a series of yes-or-no decisions, with one of these decisions for each of the possible time
periods in which to begin, as shown below.

Should a certain activity begin in a certain time period?

Its decision variable � �
Since a particular activity can begin in only one time period, the choice of the various
time periods provides a group of mutually exclusive alternatives, so the decision variable
for only one time period can have a value of 1.

For example, this approach was used to schedule the building of a series of office
buildings on property adjacent to Texas Stadium (home of the Dallas Cowboys) over a 
7-year planning horizon. In this case, the model had 49 binary decision variables, 7 for
each office building corresponding to each of the 7 years in which its construction could
begin. This application of BIP was credited with increasing the profit by $6.3 million.
(See the October 1983 issue of Interfaces.)

A somewhat similar application on a vastly larger scale occurred in China recently
(January–February 1995 issue of Interfaces). China was facing at least $240 billion in
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if no.
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1
0

12.2 SOME BIP APPLICATIONS 583



new investments over a 15-year horizon to meet the energy needs of its rapidly growing
economy. Shortages of coal and electricity required developing new infrastructure for
transporting coal and transmitting electricity, as well as building new dams and plants for
generating thermal, hydro, and nuclear power. Therefore, the Chinese State Planning Com-
mission and the World Bank collaborated in developing a huge mixed BIP model to guide
the decisions on which projects to approve and when to undertake them over the 15-year
planning period to minimize the total discounted cost. It is estimated that this OR appli-
cation is saving China about $6.4 billion over the 15 years.

Scheduling Asset Divestitures

This next application actually is another example of the preceding one (scheduling inter-
related activities). However, rather than dealing with such activities as constructing office
buildings or investing in hydroelectric plants, the activities now are selling (divesting) as-
sets to generate income. The assets can be either financial assets, such as stocks and bonds,
or physical assets, such as real estate. Given a group of assets, the problem is to deter-
mine when to sell each one to maximize the net present value of total profit from these
assets while generating the desired income stream.

In this case, each yes-or-no decision has the following form.

Should a certain asset be sold in a certain time period?

Its decision variable � �
One company that deals with these kinds of yes-or-no decisions is Homart Develop-

ment Company (January–February 1987 issue of Interfaces), which ranks among the
largest commercial land developers in the United States. One of its most important strate-
gic issues is scheduling divestiture of shopping malls and office buildings. At any partic-
ular time, well over 100 assets will be under consideration for divestiture over the next
10 years. Applying BIP to guide these decisions is credited with adding $40 million of
profit from the divestiture plan.

Airline Applications

The airline industry is an especially heavy user of OR throughout its operations. For ex-
ample, one large consulting firm called SABRE (spun off by American Airlines) employs
several hundred OR professionals solely to focus on the problem of companies involved
with transportation, including especially airlines. We will mention here just two of the ap-
plications which specifically use BIP.

One is the fleet assignment problem. Given several different types of airplanes avail-
able, the problem is to assign a specific type to each flight leg in the schedule so as to
maximize the total profit from meeting the schedule. The basic trade-off is that if the air-
line uses an airplane that is too small on a particular flight leg, it will leave potential cus-
tomers behind, while if it uses an airplane that is too large, it will suffer the greater ex-
pense of the larger airplane to fly empty seats.

For each combination of an airplane type and a flight leg, we have the following yes-
or-no decision.

if yes
if no.

1
0

584 12 INTEGER PROGRAMMING



Should a certain type of airplane be assigned to a certain flight leg?

Its decision variable � �
Delta Air Lines (January–February 1994 issue of Interfaces) flies over 2,500 domes-

tic flight legs every day, using about 450 airplanes of 10 different types. They use a huge
integer programming model (about 40,000 functional constraints, 20,000 binary variables,
and 40,000 general integer variables) to solve their fleet assignment problem each time a
change is needed. This application saves Delta approximately $100 million per year.

A fairly similar application is the crew scheduling problem. Here, rather than assigning
airplane types to flight legs, we are instead assigning sequences of flight legs to crews of
pilots and flight attendants. Thus, for each feasible sequence of flight legs that leaves from
a crew base and returns to the same base, the following yes-or-no decision must be made.

Should a certain sequence of flight legs be assigned to a crew?

Its decision variable � �
The objective is to minimize the total cost of providing crews that cover each flight leg
in the schedule.

American Airlines (July–August 1989 and January–February 1991 issues of Inter-
faces) achieves annual savings of over $20 million by using BIP to solve its crew sched-
uling problem on a monthly basis.

A full-fledged formulation example of this type will be presented at the end of
Sec. 12.4.

if yes
if no.

1
0

if yes
if no.

1
0

12.3 INNOVATIVE USES OF BINARY VARIABLES IN MODEL FORMULATION 585

You have just seen a number of examples where the basic decisions of the problem are
of the yes-or-no type, so that binary variables are introduced to represent these deci-
sions. We now will look at some other ways in which binary variables can be very use-
ful. In particular, we will see that these variables sometimes enable us to take a prob-
lem whose natural formulation is intractable and reformulate it as a pure or mixed IP
problem.

This kind of situation arises when the original formulation of the problem fits either
an IP or a linear programming format except for minor disparities involving combinator-
ial relationships in the model. By expressing these combinatorial relationships in terms of
questions that must be answered yes or no, auxiliary binary variables can be introduced
to the model to represent these yes-or-no decisions. Introducing these variables reduces
the problem to an MIP problem (or a pure IP problem if all the original variables also are
required to have integer values).

Some cases that can be handled by this approach are discussed next, where the xj

denote the original variables of the problem (they may be either continuous or integer
variables) and the yi denote the auxiliary binary variables that are introduced for the
reformulation.

12.3 INNOVATIVE USES OF BINARY VARIABLES 
IN MODEL FORMULATION



Either-Or Constraints

Consider the important case where a choice can be made between two constraints, so that
only one (either one) must hold (whereas the other one can hold but is not required to do
so). For example, there may be a choice as to which of two resources to use for a certain
purpose, so that it is necessary for only one of the two resource availability constraints to
hold mathematically. To illustrate the approach to such situations, suppose that one of the
requirements in the overall problem is that

Either 3x1 � 2x2 � 18
or x1 � 4x2 � 16,

i.e., at least one of these two inequalities must hold but not necessarily both. This re-
quirement must be reformulated to fit it into the linear programming format where all
specified constraints must hold. Let M be a very large positive number. Then this re-
quirement can be rewritten as

3x1 � 2x2 � 18
Either

x1 � 4x2 � 16 � M

3x1 � 2x2 � 18 � M
or

x1 � 4x2 � 16.

The key is that adding M to the right-hand side of such constraints has the effect of elim-
inating them, because they would be satisfied automatically by any solutions that satisfy
the other constraints of the problem. (This formulation assumes that the set of feasible so-
lutions for the overall problem is a bounded set and that M is large enough that it will not
eliminate any feasible solutions.) This formulation is equivalent to the set of constraints

3x1 � 2x2 � 18 � My
x1 � 4x2 � 16 � M(1 � y).

Because the auxiliary variable y must be either 0 or 1, this formulation guarantees that
one of the original constraints must hold while the other is, in effect, eliminated. This new
set of constraints would then be appended to the other constraints in the overall model to
give a pure or mixed IP problem (depending upon whether the xj are integer or continu-
ous variables).

This approach is related directly to our earlier discussion about expressing combina-
torial relationships in terms of questions that must be answered yes or no. The combina-
torial relationship involved concerns the combination of the other constraints of the model
with the first of the two alternative constraints and then with the second. Which of these
two combinations of constraints is better (in terms of the value of the objective function
that then can be achieved)? To rephrase this question in yes-or-no terms, we ask two com-
plementary questions:

1. Should x1 � 4x2 � 16 be selected as the constraint that must hold?
2. Should 3x1 � 2x2 � 18 be selected as the constraint that must hold?

Because exactly one of these questions is to be answered affirmatively, we let the binary
terms y and 1 � y, respectively, represent these yes-or-no decisions. Thus, y � 1 if the an-

586 12 INTEGER PROGRAMMING



swer is yes to the first question (and no to the second), whereas 1 � y � 1 (that is, y � 0)
if the answer is yes to the second question (and no to the first). Since y � 1 � y � 1 (one
yes) automatically, there is no need to add another constraint to force these two decisions
to be mutually exclusive. (If separate binary variables y1 and y2 had been used instead to
represent these yes-or-no decisions, then an additional constraint y1 � y2 � 1 would have
been needed to make them mutually exclusive.)

A formal presentation of this approach is given next for a more general case.

K out of N Constraints Must Hold

Consider the case where the overall model includes a set of N possible constraints such
that only some K of these constraints must hold. (Assume that K � N.) Part of the opti-
mization process is to choose the combination of K constraints that permits the objective
function to reach its best possible value. The N � K constraints not chosen are, in effect,
eliminated from the problem, although feasible solutions might coincidentally still satisfy
some of them.

This case is a direct generalization of the preceding case, which had K � 1 and N � 2.
Denote the N possible constraints by

f1(x1, x2, . . . , xn) � d1

f2(x1, x2, . . . , xn) � d2

�

fN (x1, x2, . . . , xn) � dN.

Then, applying the same logic as for the preceding case, we find that an equivalent for-
mulation of the requirement that some K of these constraints must hold is

f1(x1, x2, . . . , xn) � d1 � My1

f2(x1, x2, . . . , xn) � d2 � My2

�

fN (x1, x2, . . . , xn) � dN � MyN

�
N

i�1
yi � N � K,

and

yi is binary, for i � 1, 2, . . . , N,

where M is an extremely large positive number. For each binary variable yi (i � 1, 2, . . . ,
N), note that yi � 0 makes Myi � 0, which reduces the new constraint i to the original con-
straint i. On the other hand, yi � 1 makes (di � Myi) so large that (again assuming a bounded
feasible region) the new constraint i is automatically satisfied by any solution that satisfies
the other new constraints, which has the effect of eliminating the original constraint i. There-
fore, because the constraints on the yi guarantee that K of these variables will equal 0 and
those remaining will equal 1, K of the original constraints will be unchanged and the other
(N � K) original constraints will, in effect, be eliminated. The choice of which K constraints
should be retained is made by applying the appropriate algorithm to the overall problem so
it finds an optimal solution for all the variables simultaneously.
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Functions with N Possible Values

Consider the situation where a given function is required to take on any one of N given
values. Denote this requirement by

f(x1, x2, . . . , xn) � d1 or d2, . . . , or dN.

One special case is where this function is

f(x1, x2, . . . , xn) � �
n

j�1
ajxj,

as on the left-hand side of a linear programming constraint. Another special case is where
f(x1, x2, . . . , xn) � xj for a given value of j, so the requirement becomes that xj must take
on any one of N given values.

The equivalent IP formulation of this requirement is the following:

f(x1, x2, . . . , xn) � �
N

i�1
diyi

�
N

i�1
yi � 1

and

yi is binary, for i � 1, 2, . . . , N.

so this new set of constraints would replace this requirement in the statement of the over-
all problem. This set of constraints provides an equivalent formulation because exactly one
yi must equal 1 and the others must equal 0, so exactly one di is being chosen as the value
of the function. In this case, there are N yes-or-no questions being asked, namely, should
di be the value chosen (i � 1, 2, . . . , N)? Because the yi respectively represent these yes-
or-no decisions, the second constraint makes them mutually exclusive alternatives.

To illustrate how this case can arise, reconsider the Wyndor Glass Co. problem pre-
sented in Sec. 3.1. Eighteen hours of production time per week in Plant 3 currently is un-
used and available for the two new products or for certain future products that will be
ready for production soon. In order to leave any remaining capacity in usable blocks for
these future products, management now wants to impose the restriction that the produc-
tion time used by the two current new products be 6 or 12 or 18 hours per week. Thus,
the third constraint of the original model (3x1 � 2x2 � 18) now becomes

3x1 � 2x2 � 6 or 12 or 18.

In the preceding notation, N � 3 with d1 � 6, d2 � 12, and d3 � 18. Consequently, man-
agement’s new requirement should be formulated as follows:

3x1 � 2x2 � 6y1 � 12y2 � 18y3

y1 � y2 � y3 � 1

and

y1, y2, y3 are binary.
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The overall model for this new version of the problem then consists of the original model
(see Sec. 3.1) plus this new set of constraints that replaces the original third constraint.
This replacement yields a very tractable MIP formulation.

The Fixed-Charge Problem

It is quite common to incur a fixed charge or setup cost when undertaking an activity. For
example, such a charge occurs when a production run to produce a batch of a particular
product is undertaken and the required production facilities must be set up to initiate the
run. In such cases, the total cost of the activity is the sum of a variable cost related to the
level of the activity and the setup cost required to initiate the activity. Frequently the vari-
able cost will be at least roughly proportional to the level of the activity. If this is the case,
the total cost of the activity (say, activity j) can be represented by a function of the form

fj(xj) � �
where xj denotes the level of activity j (xj � 0), kj denotes the setup cost, and cj denotes
the cost for each incremental unit. Were it not for the setup cost kj, this cost structure would
suggest the possibility of a linear programming formulation to determine the optimal lev-
els of the competing activities. Fortunately, even with the kj, MIP can still be used.

To formulate the overall model, suppose that there are n activities, each with the pre-
ceding cost structure (with kj � 0 in every case and kj � 0 for some j � 1, 2, . . . , n), and
that the problem is to

Minimize Z � f1(x1) � f2(x2) � 			 � fn(xn),

subject to

given linear programming constraints.

To convert this problem to an MIP format, we begin by posing n questions that must
be answered yes or no; namely, for each j � 1, 2, . . . , n, should activity j be undertaken
(xj � 0)? Each of these yes-or-no decisions is then represented by an auxiliary binary vari-
able yj, so that

Z � �
n

j�1
(cjxj � kjyj),

where

yj � �
Therefore, the yj can be viewed as contingent decisions similar to (but not identical to)
the type considered in Sec. 12.1. Let M be an extremely large positive number that ex-
ceeds the maximum feasible value of any xj ( j � 1, 2, . . . , n). Then the constraints

xj � Myj for j � 1, 2, . . . , n

will ensure that yj � 1 rather than 0 whenever xj � 0. The one difficulty remaining is that
these constraints leave yj free to be either 0 or 1 when xj � 0. Fortunately, this difficulty

if xj � 0
if xj � 0.

1
0

if xj � 0
if xj � 0,

kj � cjxj

0
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is automatically resolved because of the nature of the objective function. The case where
kj � 0 can be ignored because yj can then be deleted from the formulation. So we con-
sider the only other case, namely, where kj � 0. When xj � 0, so that the constraints per-
mit a choice between yj � 0 and yj � 1, yj � 0 must yield a smaller value of Z than 
yj � 1. Therefore, because the objective is to minimize Z, an algorithm yielding an opti-
mal solution would always choose yj � 0 when xj � 0.

To summarize, the MIP formulation of the fixed-charge problem is

Minimize Z � �
n

j�1
(cjxj � kjyj),

subject to

the original constraints, plus
xj � Myj � 0

and

yj is binary, for j � 1, 2, . . . , n.

If the xj also had been restricted to be integer, then this would be a pure IP problem.
To illustrate this approach, look again at the Nori & Leets Co. air pollution problem

described in Sec. 3.4. The first of the abatement methods considered—increasing the height
of the smokestacks—actually would involve a substantial fixed charge to get ready for any
increase in addition to a variable cost that would be roughly proportional to the amount of
increase. After conversion to the equivalent annual costs used in the formulation, this fixed
charge would be $2 million each for the blast furnaces and the open-hearth furnaces, whereas
the variable costs are those identified in Table 3.14. Thus, in the preceding notation, k1 � 2,
k2 � 2, c1 � 8, and c2 � 10, where the objective function is expressed in units of millions
of dollars. Because the other abatement methods do not involve any fixed charges, kj � 0
for j � 3, 4, 5, 6. Consequently, the new MIP formulation of this problem is

Minimize Z � 8x1 � 10x2 � 7x3 � 6x4 � 11x5 � 9x6 � 2y1 � 2y2,

subject to

the constraints given in Sec. 3.4, plus
x1 � My1 � 0,
x2 � My2 � 0,

and

y1, y2 are binary.

Binary Representation of General Integer Variables

Suppose that you have a pure IP problem where most of the variables are binary vari-
ables, but the presence of a few general integer variables prevents you from solving the
problem by one of the very efficient BIP algorithms now available. A nice way to cir-
cumvent this difficulty is to use the binary representation for each of these general inte-
ger variables. Specifically, if the bounds on an integer variable x are

0 � x � u
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and if N is defined as the integer such that

2N � u � 2N�1,

then the binary representation of x is

x � �
N

i�0
2iyi,

where the yi variables are (auxiliary) binary variables. Substituting this binary represen-
tation for each of the general integer variables (with a different set of auxiliary binary
variables for each) thereby reduces the entire problem to a BIP model.

For example, suppose that an IP problem has just two general integer variables x1 and
x2 along with many binary variables. Also suppose that the problem has nonnegativity
constraints for both x1 and x2 and that the functional constraints include

x1 � 5
2x1 � 3x2 � 30.

These constraints imply that u � 5 for x1 and u � 10 for x2, so the above definition of N
gives N � 2 for x1 (since 22 � 5 � 23) and N � 3 for x2 (since 23 � 10 � 24). Therefore,
the binary representations of these variables are

x1 � y0 � 2y1 � 4y2

x2 � y3 � 2y4 � 4y5 � 8y6.

After we substitute these expressions for the respective variables throughout all the functional
constraints and the objective function, the two functional constraints noted above become

y0 � 2y1 � 4y2 � 5
2y0 � 4y1 � 8y2 � 3y3 � 6y4 � 12y5 � 24y6 � 30.

Observe that each feasible value of x1 corresponds to one of the feasible values of the
vector (y0, y1, y2), and similarly for x2 and (y3, y4, y5, y6). For example, x1 � 3 corre-
sponds to (y0, y1, y2) � (1, 1, 0), and x2 � 5 corresponds to (y3, y4, y5, y6) � (1, 0, 1, 0).

For an IP problem where all the variables are (bounded) general integer variables, it
is possible to use this same technique to reduce the problem to a BIP model. However,
this is not advisable for most cases because of the explosion in the number of variables
involved. Applying a good IP algorithm to the original IP model generally should be more
efficient than applying a good BIP algorithm to the much larger BIP model.

In general terms, for all the formulation possibilities with auxiliary binary variables
discussed in this section, we need to strike the same note of caution. This approach some-
times requires adding a relatively large number of such variables, which can make the
model computationally infeasible. (Section 12.5 will provide some perspective on the sizes
of IP problems that can be solved.)
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We now present a series of examples that illustrate a variety of formulation techniques
with binary variables, including those discussed in the preceding sections. For the sake of
clarity, these examples have been kept very small. In actual applications, these formula-
tions typically would be just a small part of a vastly larger model.
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EXAMPLE 1 Making Choices When the Decision Variables Are Continuous.

The Research and Development Division of the GOOD PRODUCTS COMPANY has de-
veloped three possible new products. However, to avoid undue diversification of the com-
pany’s product line, management has imposed the following restriction.

Restriction 1: From the three possible new products, at most two should be cho-
sen to be produced.

Each of these products can be produced in either of two plants. For administrative rea-
sons, management has imposed a second restriction in this regard.

Restriction 2: Just one of the two plants should be chosen to be the sole pro-
ducer of the new products.

The production cost per unit of each product would be essentially the same in the two
plants. However, because of differences in their production facilities, the number of hours
of production time needed per unit of each product might differ between the two plants.
These data are given in Table 12.2, along with other relevant information, including mar-
keting estimates of the number of units of each product that could be sold per week if it
is produced. The objective is to choose the products, the plant, and the production rates
of the chosen products so as to maximize total profit.

In some ways, this problem resembles a standard product mix problem such as the
Wyndor Glass Co. example described in Sec. 3.1. In fact, if we changed the problem by
dropping the two restrictions and by requiring each unit of a product to use the production
hours given in Table 12.2 in both plants (so the two plants now perform different opera-
tions needed by the products), it would become just such a problem. In particular, if we
let x1, x2, x3 be the production rates of the respective products, the model then becomes

Maximize Z � 5x1 � 7x2 � 3x3,

subject to

3x1 � 4x2 � 2x3 � 30
4x1 � 6x2 � 2x3 � 40
x1 � 7

x2 � 5
x3 � 9

TABLE 12.2 Data for Example 1 (the Good Products Co. problem)

Production Time Used
Production Timefor Each Unit Produced

Available
Product 1 Product 2 Product 3 per Week

Plant 1 3 hours 4 hours 2 hours 30 hours
Plant 2 4 hours 6 hours 2 hours 40 hours

Unit profit 5 7 3 (thousands of dollars)

Sales potential 7 5 9 (units per week)



and

x1 � 0, x2 � 0, x3 � 0.

For the real problem, however, restriction 1 necessitates adding to the model the
constraint

The number of strictly positive decision variables (x1, x2, x3) must be � 2.

This constraint does not fit into a linear or an integer programming format, so the key
question is how to convert it to such a format so that a corresponding algorithm can be
used to solve the overall model. If the decision variables were binary variables, then the
constraint would be expressed in this format as x1 � x2 � x3 � 2. However, with con-
tinuous decision variables, a more complicated approach involving the introduction of aux-
iliary binary variables is needed.

Requirement 2 necessitates replacing the first two functional constraints (3x1 �
4x2 � 2x3 � 30 and 4x1 � 6x2 � 2x3 � 40) by the restriction

Either 3x1 � 4x2 � 2x3 � 30
Or 4x1 � 6x2 � 2x3 � 40

must hold, where the choice of which constraint must hold corresponds to the choice of
which plant will be used to produce the new products. We discussed in the preceding sec-
tion how such an either-or constraint can be converted to a linear or an integer program-
ming format, again with the help of an auxiliary binary variable.

Formulation with Auxiliary Binary Variables. To deal with requirement 1, we in-
troduce three auxiliary binary variables (y1, y2, y3) with the interpretation

yj � �
for j � 1, 2, 3. To enforce this interpretation in the model with the help of M (an ex-
tremely large positive number), we add the constraints

x1 � My1

x2 � My2

x3 � My3

y1 � y2 � y3 � 2
yj is binary, for j � 1, 2, 3.

The either-or constraint and nonnegativity constraints give a bounded feasible region 
for the decision variables (so each xj � M throughout this region). Therefore, in each 
xj � Myj constraint, yj � 1 allows any value of xj in the feasible region, whereas yj � 0
forces xj � 0. (Conversely, xj � 0 forces yj � 1, whereas xj � 0 allows either value of yj.)
Consequently, when the fourth constraint forces choosing at most two of the yj to equal 1,
this amounts to choosing at most two of the new products as the ones that can be produced.

To deal with requirement 2, we introduce another auxiliary binary variable y4 with
the interpretation

y4 � � if 4x1 � 6x2 � 2x3 � 40 must hold (choose Plant 2)
if 3x1 � 4x2 � 2x3 � 30 must hold (choose Plant 1).

1
0

if xj � 0 can hold (can produce product j)
if xj � 0 must hold (cannot produce product j),

1
0
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As discussed in Sec. 12.3, this interpretation is enforced by adding the constraints,

3x1 � 4x2 � 2x3 � 30 � My4

4x1 � 6x2 � 2x3 � 40 � M(1 � y4)
y4 is binary.

Consequently, after we move all variables to the left-hand side of the constraints, the
complete model is

Maximize Z � 5x1 � 7x2 � 3x3,

subject to

x1 � 7
x2 � 5
x3 � 9

x1 � My1 � 0
x2 � My2 � 0
x3 � My3 � 0

y1 � y2 � y3 � 2
3x1 � 4x2 � 2x3 � My4 � 30
4x1 � 6x2 � 2x3 � My4 � 40 � M

and

x1 � 0, x2 � 0, x3 � 0
yj is binary, for j � 1, 2, 3, 4.

This now is an MIP model, with three variables (the xj) not required to be integer and
four binary variables, so an MIP algorithm can be used to solve the model. When this is
done (after substituting a large numerical value for M),1 the optimal solution is y1 � 1,
y2 � 0, y3 � 1, y4 � 1, x1 � 5


1
2


, x2 � 0, and x3 � 9; that is, choose products 1 and 3 to
produce, choose Plant 2 for the production, and choose the production rates of 5


1
2


 units
per week for product 1 and 9 units per week for product 3. The resulting total profit is
$54,500 per week.
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1In practice, some care is taken to choose a value for M that definitely is large enough to avoid eliminating any
feasible solutions, but as small as possible otherwise in order to avoid unduly enlarging the feasible region for
the LP-relaxation (and to avoid numerical instability). For this example, a careful examination of the constraints
reveals that the minimum feasible value of M is M � 9.

EXAMPLE 2 Violating Proportionality.

The SUPERSUDS CORPORATION is developing its marketing plans for next year’s new
products. For three of these products, the decision has been made to purchase a total of
five TV spots for commercials on national television networks. The problem we will fo-
cus on is how to allocate the five spots to these three products, with a maximum of three
spots (and a minimum of zero) for each product.



Table 12.3 shows the estimated impact of allocating zero, one, two, or three spots to
each product. This impact is measured in terms of the profit (in units of millions of dol-
lars) from the additional sales that would result from the spots, considering also the cost
of producing the commercial and purchasing the spots. The objective is to allocate five
spots to the products so as to maximize the total profit.

This small problem can be solved easily by dynamic programming (Chap. 10) or even
by inspection. (The optimal solution is to allocate two spots to product 1, no spots to prod-
uct 2, and three spots to product 3.) However, we will show two different BIP formula-
tions for illustrative purposes. Such a formulation would become necessary if this small
problem needed to be incorporated into a larger IP model involving the allocation of re-
sources to marketing activities for all the corporation’s new products.

One Formulation with Auxiliary Binary Variables. A natural formulation would
be to let x1, x2, x3 be the number of TV spots allocated to the respective products. The
contribution of each xj to the objective function then would be given by the correspond-
ing column in Table 12.3. However, each of these columns violates the assumption of pro-
portionality described in Sec. 3.3. Therefore, we cannot write a linear objective function
in terms of these integer decision variables.

Now see what happens when we introduce an auxiliary binary variable yij for each
positive integer value of xi � j ( j � 1, 2, 3), where yij has the interpretation

yij � �
(For example, y21 � 0, y22 � 0, and y23 � 1 mean that x2 � 3.) The resulting linear BIP
model is

Maximize Z � y11 � 3y12 � 3y13 � 2y22 � 3y23 � y31 � 2y32 � 4y33,

subject to

y11 � y12 � y13 � 1
y21 � y22 � y23 � 1
y31 � y32 � y33 � 1

y11 � 2y12 � 3y13 � y21 � 2y22 � 3y23 � y31 � 2y32 � 3y33 � 5

if xi � j
otherwise.

1
0
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TABLE 12.3 Data for Example 2 (the 
Supersuds Corp. problem)

Profit

Product
Number of
TV Spots 1 2 3

0 0 0 �0
1 1 0 �1
2 3 2 �2
3 3 3 �4



and

each yij is binary.

Note that the first three functional constraints ensure that each xi will be assigned just
one of its possible values. (Here yi1 � yi2 � yi3 � 0 corresponds to xi � 0, which con-
tributes nothing to the objective function.) The last functional constraint ensures that 
x1 � x2 � x3 � 5. The linear objective function then gives the total profit according to
Table 12.3.

Solving this BIP model gives an optimal solution of

y11 � 0, y12 � 1, y13 � 0, so x1 � 2
y21 � 0, y22 � 0, y23 � 0, so x2 � 0
y31 � 0, y32 � 0, y33 � 1, so x3 � 3.

Another Formulation with Auxiliary Binary Variables. We now redefine the above
auxiliary binary variables yij as follows:

yij � �
Thus, the difference is that yij � 1 now if xi � j instead of xi � j. Therefore,

xi � 0 ⇒ yi1 � 0, yi2 � 0, yi3 � 0,
xi � 1 ⇒ yi1 � 1, yi2 � 0, yi3 � 0,
xi � 2 ⇒ yi1 � 1, yi2 � 1, yi3 � 0,
xi � 3 ⇒ yi1 � 1, yi2 � 1, yi3 � 1,
so xi � yi1 � yi2 � yi3

for i � 1, 2, 3. Because allowing yi2 � 1 is contingent upon yi1 � 1 and allowing yi3 �
1 is contingent upon yi2 � 1, these definitions are enforced by adding the constraints

yi2 � yi1 and yi3 � yi2, for i � 1, 2, 3.

The new definition of the yij also changes the objective function, as illustrated in Fig.
12.1 for the product 1 portion of the objective function. Since y11, y12, y13 provide the suc-
cessive increments (if any) in the value of x1 (starting from a value of 0), the coefficients
of y11, y12, y13 are given by the respective increments in the product 1 column of Table
12.3 (1 � 0 � 1, 3 � 1 � 2, 3 � 3 � 0). These increments are the slopes in Fig. 12.1,
yielding 1y11 � 2y12 � 0y13 for the product 1 portion of the objective function. Note that
applying this approach to all three products still must lead to a linear objective function.

After we bring all variables to the left-hand side of the constraints, the resulting com-
plete BIP model is

Maximize Z � y11 � 2y12 � 2y22 � y23 � y31 � 3y32 � 2y33,

subject to

y12 � y11 � 0
y13 � y12 � 0
y22 � y21 � 0
y23 � y22 � 0

if xi � j
otherwise.

1
0
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y32 � y31 � 0
y33 � y32 � 0
y11 � y12 � y13 � y21 � y22 � y23 � y31 � y32 � y33 � 5

and

each yij is binary.

Solving this BIP model gives an optimal solution of

y11 � 1, y12 � 1, y13 � 0, so x1 � 2
y21 � 0, y22 � 0, y23 � 0, so x2 � 0
y31 � 1, y32 � 1, y33 � 1, so x3 � 3.

There is little to choose between this BIP model and the preceding one other than
personal taste. They have the same number of binary variables (the prime consideration
in determining computational effort for BIP problems). They also both have some special

12.4 SOME FORMULATION EXAMPLES 597

Profit from product 1 � 1y11 � 2y12 � 0y13

1 2 3 x1

4

3

2

1

0

Slope � 1

Slope � 2

Slope � 0

y11 y12 y13

FIGURE 12.1
The profit from the
additional sales of product 1
that would result from x1
TV spots, where the slopes
give the corresponding
coefficients in the objective
function for the second BIP
formulation for Example 2
(the Supersuds Corp.
problem).



structure (constraints for mutually exclusive alternatives in the first model and constraints
for contingent decisions in the second) that can lead to speedup. The second model does
have more functional constraints than the first.
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EXAMPLE 3 Covering All Characteristics.

SOUTHWESTERN AIRWAYS needs to assign its crews to cover all its upcoming flights.
We will focus on the problem of assigning three crews based in San Francisco to the
flights listed in the first column of Table 12.4. The other 12 columns show the 12 feasi-
ble sequences of flights for a crew. (The numbers in each column indicate the order of
the flights.) Exactly three of the sequences need to be chosen (one per crew) in such a
way that every flight is covered. (It is permissible to have more than one crew on a flight,
where the extra crews would fly as passengers, but union contracts require that the extra
crews would still need to be paid for their time as if they were working.) The cost of as-
signing a crew to a particular sequence of flights is given (in thousands of dollars) in the
bottom row of the table. The objective is to minimize the total cost of the three crew as-
signments that cover all the flights.

Formulation with Binary Variables. With 12 feasible sequences of flights, we have
12 yes-or-no decisions:

Should sequence j be assigned to a crew? ( j � 1, 2, . . . , 12)

Therefore, we use 12 binary variables to represent these respective decisions:

xj � �
The most interesting part of this formulation is the nature of each constraint that en-

sures that a corresponding flight is covered. For example, consider the last flight in Table

if sequence j is assigned to a crew
otherwise.

1
0

TABLE 12.4 Data for Example 3 (the Southwestern Airways problem)

Feasible Sequence of Flights

Flight 1 2 3 4 5 6 7 8 9 10 11 12

1. San Francisco to Los Angeles 1 1 1 1
2. San Francisco to Denver 1 1 1 1
3. San Francisco to Seattle 1 1 1 1
4. Los Angeles to Chicago 2 2 3 2 3
5. Los Angeles to San Francisco 2 3 5 5
6. Chicago to Denver 3 3 4
7. Chicago to Seattle 3 3 3 3 4
8. Denver to San Francisco 2 4 4 5
9. Denver to Chicago 2 2 2

10. Seattle to San Francisco 2 4 4 5
11. Seattle to Los Angeles 2 2 4 4 2

Cost, $1,000’s 2 3 4 6 7 5 7 8 9 9 8 9



12.4 [Seattle to Los Angeles (LA)]. Five sequences (namely, sequences 6, 9, 10, 11, and
12) include this flight. Therefore, at least one of these five sequences must be chosen. The
resulting constraint is

x6 � x9 � x10 � x11 � x12 � 1.

Using similar constraints for the other 10 flights, the complete BIP model is

Minimize Z � 2x1 � 3x2 � 4x3 � 6x4 � 7x5 � 5x6 � 7x7 � 8x8 � 9x9

� 9x10 � 8x11 � 9x12,

subject to

x1 � x4 � x7 � x10 � 1 (SF to LA)
x2 � x5 � x8 � x11 � 1 (SF to Denver)
x3 � x6 � x9 � x12 � 1 (SF to Seattle)

x4 � x7 � x9 � x10 � x12 � 1 (LA to Chicago)
x1 � x6 � x10 � x11 � 1 (LA to SF)

x4 � x5 � x9 � 1 (Chicago to Denver)
x7 � x8 � x10 � x11 � x12 � 1 (Chicago to Seattle)

x2 � x4 � x5 � x9 � 1 (Denver to SF)
x5 � x8 � x11 � 1 (Denver to Chicago)

x3 � x7 � x8 � x12 � 1 (Seattle to SF)
x6 � x9 � x10 � x11 � x12 � 1 (Seattle to LA)

�
12

j�1
xj � 3 (assign three crews)

and

xj is binary, for j � 1, 2, . . . , 12.

One optimal solution for this BIP model is

x3 � 1 (assign sequence 3 to a crew)
x4 � 1 (assign sequence 4 to a crew)

x11 � 1 (assign sequence 11 to a crew)

and all other xj � 0, for a total cost of $18,000. (Another optimal solution is x1 � 1,
x5 � 1, x12 � 1, and all other xj � 0.)

This example illustrates a broader class of problems called set covering problems.1

Any set covering problem can be described in general terms as involving a number of po-
tential activities (such as flight sequences) and characteristics (such as flights). Each ac-
tivity possesses some but not all of the characteristics. The objective is to determine the
least costly combination of activities that collectively possess (cover) each characteristic
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1Strictly speaking, a set covering problem does not include any other functional constraints such as the last func-
tional constraint in the above crew scheduling example. It also is sometimes assumed that every coefficient in
the objective function being minimized equals one, and then the name weighted set covering problem is used
when this assumption does not hold.



at least once. Thus, let Si be the set of all activities that possess characteristic i. At least
one member of the set Si must be included among the chosen activities, so a constraint,

�
j�Si

xj � 1,

is included for each characteristic i.
A related class of problems, called set partitioning problems, changes each such

constraint to

�
j�Si

xj � 1,

so now exactly one member of each set Si must be included among the chosen activities.
For the crew scheduling example, this means that each flight must be included exactly
once among the chosen flight sequences, which rules out having extra crews (as passen-
gers) on any flight.
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It may seem that IP problems should be relatively easy to solve. After all, linear pro-
gramming problems can be solved extremely efficiently, and the only difference is that IP
problems have far fewer solutions to be considered. In fact, pure IP problems with a
bounded feasible region are guaranteed to have just a finite number of feasible solutions.

Unfortunately, there are two fallacies in this line of reasoning. One is that having a
finite number of feasible solutions ensures that the problem is readily solvable. Finite num-
bers can be astronomically large. For example, consider the simple case of BIP problems.
With n variables, there are 2n solutions to be considered (where some of these solutions
can subsequently be discarded because they violate the functional constraints). Thus, each
time n is increased by 1, the number of solutions is doubled. This pattern is referred to
as the exponential growth of the difficulty of the problem. With n � 10, there are more
than 1,000 solutions (1,024); with n � 20, there are more than 1,000,000; with n � 30,
there are more than 1 billion; and so forth. Therefore, even the fastest computers are in-
capable of performing exhaustive enumeration (checking each solution for feasibility and,
if it is feasible, calculating the value of the objective value) for BIP problems with more
than a few dozen variables, let alone for general IP problems with the same number of
integer variables. Sophisticated algorithms, such as those described in subsequent sec-
tions, can do somewhat better. In fact, Sec. 12.8 discusses how some algorithms have suc-
cessfully solved certain vastly larger BIP problems. The best algorithms today are capa-
ble of solving many pure BIP problems with a few hundred variables and some
considerably larger ones (including certain problems with several tens of thousands of
variables). Nevertheless, because of exponential growth, even the best algorithms cannot
be guaranteed to solve every relatively small problem (less than a hundred binary or in-
teger variables). Depending on their characteristics, certain relatively small problems can
be much more difficult to solve than some much larger ones.

The second fallacy is that removing some feasible solutions (the noninteger ones)
from a linear programming problem will make it easier to solve. To the contrary, it is only
because all these feasible solutions are there that the guarantee can be given (see Sec. 5.1)
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that there will be a corner-point feasible (CPF) solution [and so a corresponding basic fea-
sible (BF) solution] that is optimal for the overall problem. This guarantee is the key to
the remarkable efficiency of the simplex method. As a result, linear programming prob-
lems generally are much easier to solve than IP problems.

Consequently, most successful algorithms for integer programming incorporate the
simplex method (or dual simplex method) as much as they can by relating portions of the
IP problem under consideration to the corresponding linear programming problem (i.e.,
the same problem except that the integer restriction is deleted). For any given IP problem,
this corresponding linear programming problem commonly is referred to as its LP re-
laxation. The algorithms presented in the next two sections illustrate how a sequence of
LP relaxations for portions of an IP problem can be used to solve the overall IP problem
effectively.

There is one special situation where solving an IP problem is no more difficult than
solving its LP relaxation once by the simplex method, namely, when the optimal solution
to the latter problem turns out to satisfy the integer restriction of the IP problem. When
this situation occurs, this solution must be optimal for the IP problem as well, because it
is the best solution among all the feasible solutions for the LP relaxation, which includes
all the feasible solutions for the IP problem. Therefore, it is common for an IP algorithm
to begin by applying the simplex method to the LP relaxation to check whether this for-
tuitous outcome has occurred.

Although it generally is quite fortuitous indeed for the optimal solution to the LP re-
laxation to be integer as well, there actually exist several special types of IP problems for
which this outcome is guaranteed. You already have seen the most prominent of these
special types in Chaps. 8 and 9, namely, the minimum cost flow problem (with integer pa-
rameters) and its special cases (including the transportation problem, the assignment prob-
lem, the shortest-path problem, and the maximum flow problem). This guarantee can be
given for these types of problems because they possess a certain special structure (e.g.,
see Table 8.6) that ensures that every BF solution is integer, as stated in the integer solu-
tions property given in Secs. 8.1 and 9.6. Consequently, these special types of IP prob-
lems can be treated as linear programming problems, because they can be solved com-
pletely by a streamlined version of the simplex method.

Although this much simplification is somewhat unusual, in practice IP problems fre-
quently have some special structure that can be exploited to simplify the problem. (Ex-
amples 2 and 3 in the preceding section fit into this category, because of their mutually
exclusive alternatives constraints or contingent decisions constraints or set-covering con-
straints.) Sometimes, very large versions of these problems can be solved successfully.
Special-purpose algorithms designed specifically to exploit certain kinds of special struc-
tures are becoming increasingly important in integer programming.

Thus, the two primary determinants of computational difficulty for an IP problem are
(1) the number of integer variables and (2) any special structure in the problem. This sit-
uation is in contrast to linear programming, where the number of (functional) constraints
is much more important than the number of variables. In integer programming, the num-
ber of constraints is of some importance (especially if LP relaxations are being solved),
but it is strictly secondary to the other two factors. In fact, there occasionally are cases
where increasing the number of constraints decreases the computation time because the
number of feasible solutions has been reduced. For MIP problems, it is the number of in-
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teger variables rather than the total number of variables that is important, because the con-
tinuous variables have almost no effect on the computational effort.

Because IP problems are, in general, much more difficult to solve than linear pro-
gramming problems, sometimes it is tempting to use the approximate procedure of sim-
ply applying the simplex method to the LP relaxation and then rounding the noninteger
values to integers in the resulting solution. This approach may be adequate for some ap-
plications, especially if the values of the variables are quite large so that rounding creates
relatively little error. However, you should beware of two pitfalls involved in this approach.

One pitfall is that an optimal linear programming solution is not necessarily feasible
after it is rounded. Often it is difficult to see in which way the rounding should be done
to retain feasibility. It may even be necessary to change the value of some variables by
one or more units after rounding. To illustrate, consider the following problem:

Maximize Z � x2,

subject to

�x1 � x2 � 

1
2




�x1 � x2 � 3

1
2




and

x1 � 0, x2 � 0
x1, x2 are integers.

As Fig. 12.2 shows, the optimal solution for the LP relaxation is x1 � 1

1
2


, x2 � 2, but it is
impossible to round the noninteger variable x1 to 1 or 2 (or any other integer) and retain
feasibility. Feasibility can be retained only by also changing the integer value of x2. It is
easy to imagine how such difficulties can be compounded when there are tens or hun-
dreds of constraints and variables.

Even if an optimal solution for the LP relaxation is rounded successfully, there re-
mains another pitfall. There is no guarantee that this rounded solution will be the optimal
integer solution. In fact, it may even be far from optimal in terms of the value of the ob-
jective function. This fact is illustrated by the following problem:

Maximize Z � x1 � 5x2,

subject to

x1 � 10x2 � 20
x1 � 2

and

x1 � 0, x2 � 0
x1, x2 are integers.

Because there are only two decision variables, this problem can be depicted graphically
as shown in Fig. 12.3. Either the graph or the simplex method may be used to find that
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the optimal solution for the LP relaxation is x1 � 2, x2 � 

9
5


, with Z � 11. If a graphical
solution were not available (which would be the case with more decision variables),
then the variable with the noninteger value x2 � 


9
5


 would normally be rounded in the
feasible direction to x2 � 1. The resulting integer solution is x1 � 2, x2 � 1, which yields
Z � 7. Notice that this solution is far from the optimal solution (x1, x2) � (0, 2), where
Z � 10.
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Because of these two pitfalls, a better approach for dealing with IP problems that are
too large to be solved exactly is to use one of the available heuristic algorithms. These
algorithms are extremely efficient for large problems, but they are not guaranteed to find
an optimal solution. However, they do tend to be considerably more effective than the
rounding approach just discussed in finding very good feasible solutions.

One of the particularly exciting developments in OR in recent years has been the rapid
progress in developing very effective heuristic algorithms (commonly called metaheuris-
tics) for various combinatorial problems such as IP problems. Three prominent types of
metaheuristics are tabu search, simulated annealing, and genetic algorithms. All three use
innovative concepts that guide a search procedure to move toward an optimal solution.
Tabu search explores promising areas to hold good solutions by rapidly eliminating un-
promising areas that are classified as tabu. Simulated annealing conducts the search by
using the analog of a physical annealing process. The basic concept underlying the search
with genetic algorithms is survival of the fittest through natural evolution. These sophis-
ticated metaheuristics (described further in Selected Reference 8) can even be applied to
integer nonlinear programming problems that have locally optimal solutions that may be
far removed from a globally optimal solution.

Returning to integer linear programming, for IP problems that are small enough to
be solved to optimality, a considerable number of algorithms now are available. However,
no IP algorithm possesses computational efficiency that is even nearly comparable to the
simplex method (except on special types of problems). Therefore, developing IP algorithms
has continued to be an active area of research. Fortunately, some exciting algorithmic ad-
vances have been made within the last two decades, and additional progress can be an-
ticipated during the coming years. These advances are discussed further in Sec. 12.8.

The most popular mode for IP algorithms is to use the branch-and-bound technique
and related ideas to implicitly enumerate the feasible integer solutions, and we shall fo-
cus on this approach. The next section presents the branch-and-bound technique in a gen-
eral context, and illustrates it with a basic branch-and-bound algorithm for BIP problems.
Section 12.7 presents another algorithm of the same type for general MIP problems.
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Because any bounded pure IP problem has only a finite number of feasible solutions, it
is natural to consider using some kind of enumeration procedure for finding an optimal
solution. Unfortunately, as we discussed in the preceding section, this finite number can
be, and usually is, very large. Therefore, it is imperative that any enumeration procedure
be cleverly structured so that only a tiny fraction of the feasible solutions actually need
be examined. For example, dynamic programming (see Chap. 11) provides one such kind
of procedure for many problems having a finite number of feasible solutions (although it
is not particularly efficient for most IP problems). Another such approach is provided by
the branch-and-bound technique. This technique and variations of it have been applied
with some success to a variety of OR problems, but it is especially well known for its ap-
plication to IP problems.

The basic concept underlying the branch-and-bound technique is to divide and con-
quer. Since the original “large” problem is too difficult to be solved directly, it is divided

12.6 THE BRANCH-AND-BOUND TECHNIQUE AND ITS APPLICATION
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into smaller and smaller subproblems until these subproblems can be conquered. The di-
viding (branching) is done by partitioning the entire set of feasible solutions into smaller
and smaller subsets. The conquering ( fathoming) is done partially by bounding how good
the best solution in the subset can be and then discarding the subset if its bound indicates
that it cannot possibly contain an optimal solution for the original problem.

We shall now describe in turn these three basic steps—branching, bounding, and fath-
oming—and illustrate them by applying a branch-and-bound algorithm to the prototype
example (the California Manufacturing Co. problem) presented in Sec. 12.1 and repeated
here (with the constraints numbered for later reference).

Maximize Z � 9x1 � 5x2 � 6x3 � 4x4,

subject to

(1) 6x1 � 3x2 � 5x3 � 2x4 � 10
(2) x3 � 3x2 � 5x3 � 2x4 � 1
(3) �x1 � 3x2 � 5x3 � 0
(4) 6x1 ��x2 � 5x3 � x4 � 0

and

(5) xj is binary, for j � 1, 2, 3, 4.

Branching

When you are dealing with binary variables, the most straightforward way to partition the
set of feasible solutions into subsets is to fix the value of one of the variables (say, x1) at
x1 � 0 for one subset and at x1 � 1 for the other subset. Doing this for the prototype ex-
ample divides the whole problem into the two smaller subproblems shown below.

Subproblem 1:
Fix x1 � 0 so the resulting subproblem is

Maximize Z � 5x2 � 6x3 � 4x4,

subject to

(1) 3x2 � 5x3 � 2x4 � 10
(2) x3 � x4 � 1
(3) x3 � 0
(4) �x2 5x3 � x4 � 0
(5) xj is binary, for j � 2, 3, 4.

Subproblem 2:
Fix x1 � 1 so the resulting subproblem is

Maximize Z � 9 � 5x2 � 6x3 � 4x4,

subject to

(1) 3x2 � 5x3 � 2x4 � 4
(2) x3 � x4 � 1
(3) x3 � 1
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(4) �x2 5x3 � x4 � 0
(5) xj is binary, for j � 2, 3, 4.

Figure 12.4 portrays this dividing (branching) into subproblems by a tree (defined in Sec.
9.2) with branches (arcs) from the All node (corresponding to the whole problem having
all feasible solutions) to the two nodes corresponding to the two subproblems. This tree,
which will continue “growing branches” iteration by iteration, is referred to as the solu-
tion tree (or enumeration tree) for the algorithm. The variable used to do this branch-
ing at any iteration by assigning values to the variable (as with x1 above) is called the
branching variable. (Sophisticated methods for selecting branching variables are an im-
portant part of some branch-and-bound algorithms but, for simplicity, we always select
them in their natural order—x1, x2, . . . , xn—throughout this section.)

Later in the section you will see that one of these subproblems can be conquered
(fathomed) immediately, whereas the other subproblem will need to be divided further
into smaller subproblems by setting x2 � 0 or x2 � 1.

For other IP problems where the integer variables have more than two possible val-
ues, the branching can still be done by setting the branching variable at its respective in-
dividual values, thereby creating more than two new subproblems. However, a good al-
ternate approach is to specify a range of values (for example, xj � 2 or xj � 3) for the
branching variable for each new subproblem. This is the approach used for the algorithm
presented in Sec. 12.7.

Bounding

For each of these subproblems, we now need to obtain a bound on how good its best fea-
sible solution can be. The standard way of doing this is to quickly solve a simpler relax-
ation of the subproblem. In most cases, a relaxation of a problem is obtained simply by
deleting (“relaxing”) one set of constraints that had made the problem difficult to solve.
For IP problems, the most troublesome constraints are those requiring the respective vari-
ables to be integer. Therefore, the most widely used relaxation is the LP relaxation that
deletes this set of constraints.

To illustrate for the example, consider first the whole problem given in Sec. 12.1. Its
LP relaxation is obtained by replacing the last line of the model (xj is binary, for j � 1,
2, 3, 4) by the constraints that xj � 1 and xj � 0 for j � 1, 2, 3, 4. Using the simplex
method to quickly solve this LP relaxation yields its optimal solution

(x1, x2, x3, x4) � �

5
6


, 1, 0, 1�, with Z � 16

1
2


.

Therefore, Z � 16

1
2


 for all feasible solutions for the original BIP problem (since these so-
lutions are a subset of the feasible solutions for the LP relaxation). In fact, as summarized
below, this bound of 16


1
2


 can be rounded down to 16, because all coefficients in the ob-
jective function are integer, so all integer solutions must have an integer value for Z.

Bound for whole problem: Z � 16.

Now let us obtain the bounds for the two subproblems in the same way. Their LP re-
laxations are obtained from the models in the preceding subsection by replacing the con-
straints that xj is binary for j � 2, 3, 4 by the constraints 0 � xj � 1 for j � 2, 3, 4. Ap-
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plying the simplex method then yields their optimal solutions (plus the fixed value of x1)
shown below.

LP relaxation of subproblem 1: (x1, x2, x3, x4) � (0, 1, 0, 1) with Z � 9.

LP relaxation of subproblem 2: (x1, x2, x3, x4) � �1, 

4
5


, 0, 

4
5


� with Z � 16

1
5


.

The resulting bounds for the subproblems then are

Bound for subproblem 1: Z � 9,
Bound for subproblem 2: Z � 16.

Figure 12.5 summarizes these results, where the numbers given just below the nodes
are the bounds and below each bound is the optimal solution obtained for the LP relaxation.

Fathoming

A subproblem can be conquered (fathomed), and thereby dismissed from further consid-
eration, in the three ways described below.

One way is illustrated by the results for subproblem 1 given by the x1 � 0 node in
Fig. 12.5. Note that the (unique) optimal solution for its LP relaxation, (x1, x2, x3, x4) �
(0, 1, 0, 1), is an integer solution. Therefore, this solution must also be the optimal solu-
tion for subproblem 1 itself. This solution should be stored as the first incumbent (the
best feasible solution found so far) for the whole problem, along with its value of Z. This
value is denoted by

Z* � value of Z for current incumbent,

so Z* � 9 at this point. Since this solution has been stored, there is no reason to consider
subproblem 1 any further by branching from the x1 � 0 node, etc. Doing so could only
lead to other feasible solutions that are inferior to the incumbent, and we have no inter-
est in such solutions. Because it has been solved, we fathom (dismiss) subproblem 1 now.

The above results suggest a second key fathoming test. Since Z* � 9, there is no rea-
son to consider further any subproblem whose bound � 9, since such a subproblem can-
not have a feasible solution better than the incumbent. Stated more generally, a subprob-
lem is fathomed whenever its

Bound � Z*.

This outcome does not occur in the current iteration of the example because subproblem 2
has a bound of 16 that is larger than 9. However, it might occur later for descendants of
this subproblem (new smaller subproblems created by branching on this subproblem, and
then perhaps branching further through subsequent “generations”). Furthermore, as new in-
cumbents with larger values of Z* are found, it will become easier to fathom in this way.

The third way of fathoming is quite straightforward. If the simplex method finds that
a subproblem’s LP relaxation has no feasible solutions, then the subproblem itself must
have no feasible solutions, so it can be dismissed (fathomed).

In all three cases, we are conducting our search for an optimal solution by retaining
for further investigation only those subproblems that could possibly have a feasible solu-
tion better than the current incumbent.
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Summary of Fathoming Tests. A subproblem is fathomed (dismissed from further
consideration) if

Test 1: Its bound � Z*,
or
Test 2: Its LP relaxation has no feasible solutions,
or
Test 3: The optimal solution for its LP relaxation is integer. (If this solution is better

than the incumbent, it becomes the new incumbent, and test 1 is reapplied to all unfath-
omed subproblems with the new larger Z*.)

Figure 12.6 summarizes the results of applying these three tests to subproblems 1 and
2 by showing the current solution tree. Only subproblem 1 has been fathomed, by test 3,
as indicated by F(3) next to the x1 � 0 node. The resulting incumbent also is identified
below this node.

The subsequent iterations will illustrate successful applications of all three tests. How-
ever, before continuing the example, we summarize the algorithm being applied to this
BIP problem. (This algorithm assumes that all coefficients in the objective function are
integer and that the ordering of the variables for branching is x1, x2, . . . , xn.)

Summary of the BIP Branch-and-Bound Algorithm.

Initialization: Set Z* � ��. Apply the bounding step, fathoming step, and op-
timality test described below to the whole problem. If not fathomed, classify this
problem as the one remaining “subproblem” for performing the first full itera-
tion below.

Steps for each iteration:

1. Branching: Among the remaining (unfathomed) subproblems, select the one that was
created most recently. (Break ties according to which has the larger bound.) Branch
from the node for this subproblem to create two new subproblems by fixing the next
variable (the branching variable) at either 0 or 1.

2. Bounding: For each new subproblem, obtain its bound by applying the simplex method
to its LP relaxation and rounding down the value of Z for the resulting optimal solution.

3. Fathoming: For each new subproblem, apply the three fathoming tests summarized
above, and discard those subproblems that are fathomed by any of the tests.
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Optimality test: Stop when there are no remaining subproblems; the current in-
cumbent is optimal.1 Otherwise, return to perform another iteration.

The branching step for this algorithm warrants a comment as to why the subproblem
to branch from is selected in this way. One option not used would have been always to
select the remaining subproblem with the best bound, because this subproblem would be
the most promising one to contain an optimal solution for the whole problem. The rea-
son for instead selecting the most recently created subproblem is that LP relaxations are
being solved in the bounding step. Rather than start the simplex method from scratch each
time, each LP relaxation generally is solved by reoptimization in large-scale implemen-
tations of this algorithm. This reoptimization involves revising the final simplex tableau
from the preceding LP relaxation as needed because of the few differences in the model
( just as for sensitivity analysis) and then applying a few iterations of perhaps the dual
simplex method. This reoptimization tends to be much faster than starting from scratch,
provided the preceding and current models are closely related. The models will tend to be
closely related under the branching rule used, but not when you are skipping around in
the solution tree by selecting the subproblem with the best bound.

Completing the Example

The pattern for the remaining iterations will be quite similar to that for the first iteration de-
scribed above except for the ways in which fathoming occurs. Therefore, we shall summa-
rize the branching and bounding steps fairly briefly and then focus on the fathoming step.

Iteration 2. The only remaining subproblem corresponds to the x1 � 1 node in Fig.
12.6, so we shall branch from this node to create the two new subproblems given below.

Subproblem 3:
Fix x1 � 1, x2 � 0 so the resulting subproblem is

Maximize Z � 9 � 6x3 � 4x4,

subject to

(1) 5x3 � 2x4 � 4
(2) x3 � x4 � 1
(3) x3 � 1
(4) x4 � 0
(5) xj is binary, for j � 3, 4.

Subproblem 4:
Fix x1 � 1, x2 � 1 so the resulting subproblem is

Maximize Z � 14 � 6x3 � 4x4,

subject to

(1) 5x3 � 2x4 � 1
(2) x3 � x4 � 1
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(3) x3 � 1
(4) x4 � 1
(5) xj is binary, for j � 3, 4.

The LP relaxations of these subproblems are obtained by replacing the constraints xj

is binary for j � 3, 4 by the constraints 0 � xj � 1 for j � 3, 4. Their optimal solutions
(plus the fixed values of x1 and x2) are

LP relaxation of subproblem 3: (x1, x2, x3, x4) � �1, 0, 

4
5


, 0� with Z � 13

4
5


,

LP relaxation of subproblem 4: (x1, x2, x3, x4) � �1, 1, 0, 

1
2


� with Z � 16.

The resulting bounds for the subproblems are

Bound for subproblem 3: Z � 13,
Bound for subproblem 4: Z � 16.

Note that both these bounds are larger than Z* � 9, so fathoming test 1 fails in both
cases. Test 2 also fails, since both LP relaxations have feasible solutions (as indicated by
the existence of an optimal solution). Alas, test 3 fails as well, because both optimal so-
lutions include variables with noninteger values.

Figure 12.7 shows the resulting solution tree at this point. The lack of an F to the
right of either new node indicates that both remain unfathomed.

Iteration 3. So far, the algorithm has created four subproblems. Subproblem 1 has been
fathomed, and subproblem 2 has been replaced by (separated into) subproblems 3 and 4,
but these last two remain under consideration. Because they were created simultaneously,
but subproblem 4 (x1 � 1, x2 � 1) has the larger bound (16 � 13), the next branching is
done from the (x1, x2) � (1, 1) node in the solution tree, which creates the following new
subproblems (where constraint 3 disappears because it does not contain x4).
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Subproblem 5:
Fix x1 � 1, x2 � 1, x3 � 0 so the resulting subproblem is

Maximize Z � 14 � 4x4,

subject to

(1) 2x4 � 1
(2), (4) x4 � 1 (twice)
(5) x4 is binary.

Subproblem 6:
Fix x1 � 1, x2 � 1, x3 � 1 so the resulting subproblem is

Maximize Z � 20 � 4x4,

subject to

(1) 2x4 � �4
(2) x4 � �0
(4) x4 � �1
(5) x4 is binary.

If we form their LP relaxations by replacing constraint 5 by

(5) 0 � x4 � 1,

the following results are obtained:

LP relaxation of subproblem 5: (x1, x2, x3, x4) � �1, 1, 0, 

1
2


�, with Z � 16.

LP relaxation of subproblem 6: No feasible solutions.
Bound for subproblem 5: Z � 16.

Note how the combination of constraints 1 and 5 in the LP relaxation of subproblem 6
prevents any feasible solutions. Therefore, this subproblem is fathomed by test 2. How-
ever, subproblem 5 fails this test, as well as test 1 (16 � 9) and test 3 (x4 � 


1
2


 is not inte-
ger), so it remains under consideration.

We now have the solution tree shown in Fig. 12.8.

Iteration 4. The subproblems corresponding to nodes (1, 0) and (1, 1, 0) in Fig. 12.8
remain under consideration, but the latter node was created more recently, so it is selected
for branching from next. Since the resulting branching variable x4 is the last variable, fix-
ing its value at either 0 or 1 actually creates a single solution rather than subproblems re-
quiring fuller investigation. These single solutions are

x4 � 0: (x1, x2, x3, x4) � (1, 1, 0, 0) is feasible, with Z � 14,
x4 � 1: (x1, x2, x3, x4) � (1, 1, 0, 1) is infeasible.

Formally applying the fathoming tests, we see that the first solution passes test 3 and the
second passes test 2. Furthermore, this feasible first solution is better than the incumbent
(14 � 9), so it becomes the new incumbent, with Z* � 14.

Because a new incumbent has been found, we now reapply fathoming test 1 with the
new larger value of Z* to the only remaining subproblem, the one at node (1, 0).
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Subproblem 3:

Bound � 13 � Z* � 14.

Therefore, this subproblem now is fathomed.
We now have the solution tree shown in Fig. 12.9. Note that there are no remaining

(unfathomed) subproblems. Consequently, the optimality test indicates that the current in-
cumbent

(x1, x2, x3, x4) � (1, 1, 0, 0)

is optimal, so we are done.
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Your OR Tutor includes another example of applying this algorithm. Also included
in the OR Courseware is an interactive routine for executing this algorithm. As usual, the
Excel, LINGO/LINDO, and MPL/CPLEX files for this chapter in your OR Courseware
show how the student version of these software packages is applied to the various exam-
ples in the chapter. The algorithms they use for BIP problems all are similar to the one
described above.1

Other Options with the Branch-and-Bound Technique

This section has illustrated the branch-and-bound technique by describing a basic branch-
and-bound algorithm for solving BIP problems. However, the general framework of the
branch-and-bound technique provides a great deal of flexibility in how to design a spe-
cific algorithm for any given type of problem such as BIP. There are many options avail-
able, and constructing an efficient algorithm requires tailoring the specific design to fit
the specific structure of the problem type.

Every branch-and-bound algorithm has the same three basic steps of branching,
bounding, and fathoming. The flexibility lies in how these steps are performed.

Branching always involves selecting one remaining subproblem and dividing it into
smaller subproblems. The flexibility here is found in the rules for selecting and dividing.
Our BIP algorithm selected the most recently created subproblem, because this is very ef-
ficient for reoptimizing each LP relaxation from the preceding one. Selecting the subprob-
lem with the best bound is the other most popular rule, because it tends to lead more quickly
to better incumbents and so more fathoming. Combinations of the two rules also can be
used. The dividing typically (but not always) is done by choosing a branching variable and
assigning it either individual values (e.g., our BIP algorithm) or ranges of values (e.g., the
algorithm in the next section). More sophisticated algorithms generally use a rule for strate-
gically choosing a branching variable that should tend to lead to early fathoming.

Bounding usually is done by solving a relaxation. However, there are a variety of
ways to form relaxations. For example, consider the Lagrangian relaxation, where the
entire set of functional constraints Ax � b (in matrix notation) is deleted (except possi-
bly for any “convenient” constraints) and then the objective function

Maximize Z � cx,

is replaced by

Maximize ZR � cx � �(Ax � b),

where the fixed vector � � 0. If x* is an optimal solution for the original problem, its 
Z � ZR, so solving the Lagrangian relaxation for the optimal value of ZR provides a valid
bound. If � is chosen well, this bound tends to be a reasonably tight one (at least com-
parable to the bound from the LP relaxation). Without any functional constraints, this re-
laxation also can be solved extremely quickly. The drawbacks are that fathoming tests 2
and 3 (revised) are not as powerful as for the LP relaxation.
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In general terms, two features are sought in choosing a relaxation: it can be solved rel-
atively quickly, and provides a relatively tight bound. Neither alone is adequate. The LP
relaxation is popular because it provides an excellent trade-off between these two factors.

One option occasionally employed is to use a quickly solved relaxation and then, if
fathoming is not achieved, to tighten the relaxation in some way to obtain a somewhat
tighter bound.

Fathoming generally is done pretty much as described for the BIP algorithm. The
three fathoming criteria can be stated in more general terms as follows.

Summary of Fathoming Criteria. A subproblem is fathomed if an analysis of its re-
laxation reveals that

Criterion 1: Feasible solutions of the subproblem must have Z � Z*, or
Criterion 2: The subproblem has no feasible solutions, or
Criterion 3: An optimal solution of the subproblem has been found.

Just as for the BIP algorithm, the first two criteria usually are applied by solving the re-
laxation to obtain a bound for the subproblem and then checking whether this bound is
� Z* (test 1) or whether the relaxation has no feasible solutions (test 2). If the relaxation
differs from the subproblem only by the deletion (or loosening) of some constraints, then
the third criterion usually is applied by checking whether the optimal solution for the re-
laxation is feasible for the subproblem, in which case it must be optimal for the sub-
problem. For other relaxations (such as the Lagrangian relaxation), additional analysis is
required to determine whether the optimal solution for the relaxation is also optimal for
the subproblem.

If the original problem involves minimization rather than maximization, two options
are available. One is to convert to maximization in the usual way (see Sec. 4.6). The other
is to convert the branch-and-bound algorithm directly to minimization form, which re-
quires changing the direction of the inequality for fathoming test 1 from

Is the subproblem’s bound � Z*?

to

Is the subproblem’s bound � Z*?

So far, we have described how to use the branch-and-bound technique to find only
one optimal solution. However, in the case of ties for the optimal solution, it is sometimes
desirable to identify all these optimal solutions so that the final choice among them can
be made on the basis of intangible factors not incorporated into the mathematical model.
To find them all, you need to make only a few slight alterations in the procedure. First,
change the weak inequality for fathoming test 1 (Is the subproblem’s bound � Z*?) to a
strict inequality (Is the subproblem’s bound � Z*?), so that fathoming will not occur if
the subproblem can have a feasible solution equal to the incumbent. Second, if fathom-
ing test 3 passes and the optimal solution for the subproblem has Z � Z*, then store this
solution as another (tied) incumbent. Third, if test 3 provides a new incumbent (tied or
otherwise), then check whether the optimal solution obtained for the relaxation is unique.
If it is not, then identify the other optimal solutions for the relaxation and check whether
they are optimal for the subproblem as well, in which case they also become incumbents.
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Finally, when the optimality test finds that there are no remaining (unfathomed) subsets,
all the current incumbents will be the optimal solutions.

Finally, note that rather than find an optimal solution, the branch-and-bound tech-
nique can be used to find a nearly optimal solution, generally with much less computa-
tional effort. For some applications, a solution is “good enough” if its Z is “close enough”
to the value of Z for an optimal solution (call it Z**). Close enough can be defined in ei-
ther of two ways as either

Z** � K � Z or (1 � 
)Z** � Z

for a specified (positive) constant K or 
. For example, if the second definition is chosen
and 
 � 0.05, then the solution is required to be within 5 percent of optimal. Consequently,
if it were known that the value of Z for the current incumbent (Z*) satisfies either

Z** � K � Z* or (1 � 
)Z** � Z*

then the procedure could be terminated immediately by choosing the incumbent as the
desired nearly optimal solution. Although the procedure does not actually identify an op-
timal solution and the corresponding Z**, if this (unknown) solution is feasible (and so
optimal) for the subproblem currently under investigation, then fathoming test 1 finds an
upper bound such that

Z** � bound

so that either

Bound � K � Z* or (1 � 
)bound � Z*

would imply that the corresponding inequality in the preceding sentence is satisfied. Even
if this solution is not feasible for the current subproblem, a valid upper bound is still ob-
tained for the value of Z for the subproblem’s optimal solution. Thus, satisfying either of
these last two inequalities is sufficient to fathom this subproblem because the incumbent
must be “close enough” to the subproblem’s optimal solution.

Therefore, to find a solution that is close enough to being optimal, only one change
is needed in the usual branch-and-bound procedure. This change is to replace the usual
fathoming test 1 for a subproblem

Bound � Z*?

by either

Bound � K � Z*?

or

(1 � 
)(bound) � Z*?

and then perform this test after test 3 (so that a feasible solution found with Z � Z* is still
kept as the new incumbent). The reason this weaker test 1 suffices is that regardless of how
close Z for the subproblem’s (unknown) optimal solution is to the subproblem’s bound, the
incumbent is still close enough to this solution (if the new inequality holds) that the sub-
problem does not need to be considered further. When there are no remaining subprob-
lems, the current incumbent will be the desired nearly optimal solution. However, it is much
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easier to fathom with this new fathoming test (in either form), so the algorithm should run
much faster. For a large problem, this acceleration may make the difference between fin-
ishing with a solution guaranteed to be close to optimal and never terminating.
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We shall now consider the general MIP problem, where some of the variables (say, I of
them) are restricted to integer values (but not necessarily just 0 and 1) but the rest are or-
dinary continuous variables. For notational convenience, we shall order the variables so
that the first I variables are the integer-restricted variables. Therefore, the general form of
the problem being considered is

Maximize Z � �
n

j�1
cjxj,

subject to

�
n

j�1
aijxj � bi, for i � 1, 2, . . . , m,

and

xj � 0, for j � 1, 2, . . . , n,
xj is integer, for j � 1, 2, . . . , I; I � n.

(When I � n, this problem becomes the pure IP problem.)
We shall describe a basic branch-and-bound algorithm for solving this problem that,

with a variety of refinements, has provided a standard approach to MIP. The structure of
this algorithm was first developed by R. J. Dakin,1 based on a pioneering branch-and-
bound algorithm by A. H. Land and A. G. Doig.2

This algorithm is quite similar in structure to the BIP algorithm presented in the pre-
ceding section. Solving LP relaxations again provides the basis for both the bounding and
fathoming steps. In fact, only four changes are needed in the BIP algorithm to deal with
the generalizations from binary to general integer variables and from pure IP to mixed IP.

One change involves the choice of the branching variable. Before, the next variable
in the natural ordering—x1, x2, . . . , xn—was chosen automatically. Now, the only vari-
ables considered are the integer-restricted variables that have a noninteger value in the
optimal solution for the LP relaxation of the current subproblem. Our rule for choosing
among these variables is to select the first one in the natural ordering. (Production codes
generally use a more sophisticated rule.)

12.7 A BRANCH-AND-BOUND ALGORITHM FOR 
MIXED INTEGER PROGRAMMING

1R. J. Dakin, “A Tree Search Algorithm for Mixed Integer Programming Problems,” Computer Journal, 8(3):
250–255, 1965.
2A. H. Land and A. G. Doig, “An Automatic Method of Solving Discrete Programming Problems,” Economet-
rica, 28: 497–520, 1960.



The second change involves the values assigned to the branching variable for creat-
ing the new smaller subproblems. Before, the binary variable was fixed at 0 and 1, re-
spectively, for the two new subproblems. Now, the general integer-restricted variable could
have a very large number of possible integer values, and it would be inefficient to create
and analyze many subproblems by fixing the variable at its individual integer values.
Therefore, what is done instead is to create just two new subproblems (as before) by spec-
ifying two ranges of values for the variable.

To spell out how this is done, let xj be the current branching variable, and let xj* be
its (noninteger) value in the optimal solution for the LP relaxation of the current sub-
problem. Using square brackets to denote

[xj*] � greatest integer � xj*,

we have for the range of values for the two new subproblems

xj � [xj*] and xj � [xj*] � 1,

respectively. Each inequality becomes an additional constraint for that new subproblem.
For example, if xj* � 3


1
2


, then

xj � 3 and xj � 4

are the respective additional constraints for the new subproblem.
When the two changes to the BIP algorithm described above are combined, an in-

teresting phenomenon of a recurring branching variable can occur. To illustrate, as shown
in Fig. 12.10, let j � 1 in the above example where xj* � 3


1
2


, and consider the new sub-
problem where x1 � 3. When the LP relaxation of a descendant of this subproblem is
solved, suppose that x1* � 1


1
4


. Then x1 recurs as the branching variable, and the two new
subproblems created have the additional constraint x1 � 1 and x1 � 2, respectively (as
well as the previous additional constraint x1 � 3). Later, when the LP relaxation for a de-
scendant of, say, the x1 � 1 subproblem is solved, suppose that x1* � 


3
4


. Then x1 recurs
again as the branching variable, and the two new subproblems created have x1 � 0 (be-
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cause of the new x1 � 0 constraint and the nonnegativity constraint on x1) and x1 � 1 (be-
cause of the new x1 � 1 constraint and the previous x1 � 1 constraint).

The third change involves the bounding step. Before, with a pure IP problem and in-
teger coefficients in the objective function, the value of Z for the optimal solution for the
subproblem’s LP relaxation was rounded down to obtain the bound, because any feasible
solution for the subproblem must have an integer Z. Now, with some of the variables not
integer-restricted, the bound is the value of Z without rounding down.

The fourth (and final) change to the BIP algorithm to obtain our MIP algorithm in-
volves fathoming test 3. Before, with a pure IP problem, the test was that the optimal so-
lution for the subproblem’s LP relaxation is integer, since this ensures that the solution is
feasible, and therefore optimal, for the subproblem. Now, with a mixed IP problem, the
test requires only that the integer-restricted variables be integer in the optimal solution
for the subproblem’s LP relaxation, because this suffices to ensure that the solution is fea-
sible, and therefore optimal, for the subproblem.

Incorporating these four changes into the summary presented in the preceding sec-
tion for the BIP algorithm yields the following summary for the new algorithm for MIP.

Summary of the MIP Branch-and-Bound Algorithm.

Initialization: Set Z* � ��. Apply the bounding step, fathoming step, and optimality
test described below to the whole problem. If not fathomed, classify this
problem as the one remaining subproblem for performing the first full it-
eration below.

Steps for each iteration:

1. Branching: Among the remaining (unfathomed) subproblems, select the one that was
created most recently. (Break ties according to which has the larger bound.) Among
the integer-restricted variables that have a noninteger value in the optimal solution for
the LP relaxation of the subproblem, choose the first one in the natural ordering of the
variables to be the branching variable. Let xj be this variable and xj* its value in this
solution. Branch from the node for the subproblem to create two new subproblems by
adding the respective constraints xj � [xj*] and xj � [xj*] � 1.

2. Bounding: For each new subproblem, obtain its bound by applying the simplex method
(or the dual simplex method when reoptimizing) to its LP relaxation and using the
value of Z for the resulting optimal solution.

3. Fathoming: For each new subproblem, apply the three fathoming tests given below,
and discard those subproblems that are fathomed by any of the tests.
Test 1: Its bound � Z*, where Z* is the value of Z for the current incumbent.
Test 2: Its LP relaxation has no feasible solutions.
Test 3: The optimal solution for its LP relaxation has integer values for the integer-

restricted variables. (If this solution is better than the incumbent, it becomes
the new incumbent and test 1 is reapplied to all unfathomed subproblems with
the new larger Z*.)

Optimality test: Stop when there are no remaining subproblems; the current incumbent is
optimal.1 Otherwise, perform another iteration.
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An MIP Example. We will now illustrate this algorithm by applying it to the follow-
ing MIP problem:

Maximize Z � 4x1 � 2x2 � 7x3 � x4,

subject to

x1 � 5x3 � 10
x1 � x2 � x3 � 1

6x1 � 5x2 � 2x4 � 0
�x1 5x2 � 2x3 � 2x4 � 3

and

xj � 0, for j � 1, 2, 3, 4
xj is an integer, for j � 1, 2, 3.

Note that the number of integer-restricted variables is I � 3, so x4 is the only continuous
variable.

Initialization. After setting Z* � ��, we form the LP relaxation of this problem by
deleting the set of constraints that xj is an integer for j � 1, 2, 3. Applying the simplex
method to this LP relaxation yields its optimal solution below.

LP relaxation of whole problem: (x1, x2, x3, x4) � �

5
4


, 

3
2


, 

7
4


, 0�, with Z � 14

1
4


.

Because it has feasible solutions and this optimal solution has noninteger values for its
integer-restricted variables, the whole problem is not fathomed, so the algorithm contin-
ues with the first full iteration below.

Iteration 1. In this optimal solution for the LP relaxation, the first integer-restricted
variable that has a noninteger value is x1 � 


5
4


, so x1 becomes the branching variable. Branch-
ing from the All node (all feasible solutions) with this branching variable then creates the
following two subproblems:

Subproblem 1:
Original problem plus additional constraint

x1 � 1.

Subproblem 2:
Original problem plus additional constraint

x1 � 2.

Deleting the set of integer constraints again and solving the resulting LP relaxations of
these two subproblems yield the following results.

LP relaxation of subproblem 1: (x1, x2, x3, x4) � �1, 

6
5


, 

9
5


, 0�, with Z � 14

1
5


.

Bound for subproblem 1: Z � 14

1
5


.

LP relaxation of subproblem 2: No feasible solutions.
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This outcome for subproblem 2 means that it is fathomed by test 2. However, just as
for the whole problem, subproblem 1 fails all fathoming tests.

These results are summarized in the solution tree shown in Fig. 12.11.

Iteration 2. With only one remaining subproblem, corresponding to the x1 � 1 node
in Fig. 12.11, the next branching is from this node. Examining its LP relaxation’s opti-
mal solution given below, we see that this node reveals that the branching variable is x2,
because x2 � 


6
5


 is the first integer-restricted variable that has a noninteger value. Adding
one of the constraints x2 � 1 or x2 � 2 then creates the following two new subproblems.

Subproblem 3:
Original problem plus additional constraints

x1 � 1, x2 � 1.

Subproblem 4:
Original problem plus additional constraints

x1 � 1, x2 � 2.

Solving their LP relaxations gives the following results.

LP relaxation of subproblem 3: (x1, x2, x3, x4) � �

5
6


, 1, 

1
6
1

, 0�, with Z � 14


1
6


.

Bound for subproblem 3: Z � 14

1
6


.

LP relaxation of subproblem 4: (x1, x2, x3, x4) � �

5
6


, 2, 

1
6
1

, 0�, with Z � 12


1
6


.

Bound for subproblem 4: Z � 12

1
6


.

Because both solutions exist (feasible solutions) and have noninteger values for integer-
restricted variables, neither subproblem is fathomed. (Test 1 still is not operational, since
Z* � �� until the first incumbent is found.)

The solution tree at this point is given in Fig. 12.12.

Iteration 3. With two remaining subproblems (3 and 4) that were created simultane-
ously, the one with the larger bound (subproblem 3, with 14


1
6


 � 12

1
6


) is selected for the
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next branching. Because x1 � 

5
6


 has a noninteger value in the optimal solution for this sub-
problem’s LP relaxation, x1 becomes the branching variable. (Note that x1 now is a re-
curring branching variable, since it also was chosen at iteration 1.) This leads to the fol-
lowing new subproblems.

Subproblem 5:
Original problem plus additional constraints

x1 � 1
x2 � 1
x1 � 0 (so x1 � 0).

Subproblem 6:
Original problem plus additional constraints

x1 � 1
x2 � 1
x1 � 1 (so x1 � 1).

The results from solving their LP relaxations are given below.

LP relaxation of subproblem 5: (x1, x2, x3, x4) � �0, 0, 2, 

1
2


�, with Z � 13

1
2


.

Bound for subproblem 5: Z � 13

1
2


.

LP relaxation of subproblem 6: No feasible solutions.

Subproblem 6 is immediately fathomed by test 2. However, note that subproblem 5
also can be fathomed. Test 3 passes because the optimal solution for its LP relaxation has
integer values (x1 � 0, x2 � 0, x3 � 2) for all three integer-restricted variables. (It does
not matter that x4 � 


1
2


, since x4 is not integer-restricted.) This feasible solution for the orig-
inal problem becomes our first incumbent:

Incumbent � �0, 0, 2, 

1
2


� with Z* � 13

1
2


.
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FIGURE 12.12
The solution tree after the
second iteration of the MIP
branch-and-bound algorithm
for the MIP example.



Using this Z* to reapply fathoming test 1 to the only other subproblem (subproblem 4) is
successful, because its bound 12


1
6


 � Z*.
This iteration has succeeded in fathoming subproblems in all three possible ways. Fur-

thermore, there now are no remaining subproblems, so the current incumbent is optimal.

Optimal solution � �0, 0, 2, 

1
2


� with Z � 13

1
2


.

These results are summarized by the final solution tree given in Fig. 12.13.

Another example of applying the MIP algorithm is presented in your OR Tutor. The
OR Courseware also includes an interactive routine for executing this algorithm.
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FIGURE 12.13
The solution tree after the
final (third) iteration of the
MIP branch-and-bound
algorithm for the MIP
example.

Integer programming has been an especially exciting area of OR since the mid-1980s be-
cause of the dramatic progress being made in its solution methodology.

Background

To place this progress into perspective, consider the historical background. One big break-
through had come in the 1960s and early 1970s with the development and refinement of
the branch-and-bound approach. But then the state of the art seemed to hit a plateau. Rel-
atively small problems (well under 100 variables) could be solved very efficiently, but
even a modest increase in problem size might cause an explosion in computation time be-
yond feasible limits. Little progress was being made in overcoming this exponential growth
in computation time as the problem size was increased. Many important problems arising
in practice could not be solved.

Then came the next breakthrough in the mid-1980s, as reported largely in four pa-
pers published in 1983, 1985, 1987, and 1991. (See Selected References 3, 6, 10, and 5.)
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In the 1983 paper, Harlan Crowder, Ellis Johnson, and Manfred Padberg presented a new
algorithmic approach to solving pure BIP problems that had successfully solved problems
with no apparent special structure having up to 2,756 variables! This paper won the Lan-
chester Prize, awarded by the Operations Research Society of America for the most no-
table publication in operations research during 1983. In the 1985 paper, Ellis Johnson,
Michael Kostreva, and Uwe Suhl further refined this algorithmic approach.

However, both of these papers were limited to pure BIP. For IP problems arising in
practice, it is quite common for all the integer-restricted variables to be binary, but a large
proportion of these problems are mixed BIP problems. What was critically needed was a
way of extending this same kind of algorithmic approach to mixed BIP. This came in the
1987 paper by Tony Van Roy and Laurence Wolsey of Belgium. Once again, problems of
very substantial size (up to nearly 1,000 binary variables and a larger number of contin-
uous variables) were being solved successfully. And once again, this paper won a very
prestigious award, the Orchard-Hays Prize given triannually by the Mathematical Pro-
gramming Society.

In the 1991 paper, Karla Hoffman and Manfred Padberg followed up on the 1983 and
1985 papers by developing improved techniques for solving pure BIP problems. Using
the name branch-and-cut algorithm for this algorithmic approach, they reported suc-
cessfully solving problems with as many as 6,000 variables!

We do need to add one note of caution. This algorithmic approach cannot consistently
solve all pure BIP problems with a few thousand variables, or even a few hundred vari-
ables. The very large pure BIP problems solved had sparse A matrices; i.e., the percent-
age of coefficients in the functional constraints that were nonzeros was quite small (per-
haps less than 5 percent). In fact, the approach depends heavily upon this sparsity.
(Fortunately, this kind of sparsity is typical in large practical problems.) Furthermore, there
are other important factors besides sparsity and size that affect just how difficult a given
IP problem will be to solve. IP formulations of fairly substantial size should still be ap-
proached with considerable caution.

On the other hand, each new algorithmic breakthrough in OR always generates a
flurry of new research and development activity to try to refine the new approach further.
We have seen substantial effort to develop sophisticated software packages for widespread
use. For example, the kinds of IP techniques discussed above have been incorporated into
the IP module of IBM’s Optimization Subroutine Library (OSL). The developers of
CPLEX have an ongoing project to maintain a fully state-of-the-art IP module. Theoret-
ical research also continues. 

Throughout the 1990s, we have seen further fruits of these intensified research and
development activities in integer programming. Larger and larger problems are being
solved. For example, at the end of that decade, CPLEX 6.5 successfully used a sophisti-
cated branch-and-cut algorithm to solve a real-world problem with over 4,000 functional
constraints and over 120,000 binary variables! MIP problems with thousands of general
integer variables, along with numerous continuous variables and binary variables, also
were being solved. (Selected Reference 2 provides details.)

Although it would be beyond the scope and level of this book to fully describe the al-
gorithmic approach discussed above, we will now give a brief overview. (You are encour-
aged to read Selected References 2, 3, 5, 6, and 10 for further information.) This overview
is limited to pure BIP, so all variables introduced later in this section are binary variables.
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The approach mainly uses a combination of three kinds1 of techniques: automatic
problem preprocessing, the generation of cutting planes, and clever branch-and-bound
techniques. You already are familiar with branch-and-bound techniques, and we will not
elaborate further on the more advanced versions incorporated here. An introduction to the
other two kinds of techniques is given below.

Automatic Problem Preprocessing for Pure BIP

Automatic problem preprocessing involves a “computer inspection” of the user-supplied
formulation of the IP problem in order to spot reformulations that make the problem
quicker to solve without eliminating any feasible solutions. These reformulations fall into
three categories:

1. Fixing variables: Identify variables that can be fixed at one of their possible values (ei-
ther 0 or 1) because the other value cannot possibly be part of a solution that is both
feasible and optimal.

2. Eliminating redundant constraints: Identify and eliminate redundant constraints (con-
straints that automatically are satisfied by solutions that satisfy all the other constraints).

3. Tightening constraints: Tighten some constraints in a way that reduces the feasible region
for the LP relaxation without eliminating any feasible solutions for the BIP problem.

These categories are described in turn.

Fixing Variables. One general principle for fixing variables is the following.

If one value of a variable cannot satisfy a certain constraint, even when the other vari-
ables equal their best values for trying to satisfy the constraint, then that variable should
be fixed at its other value.

For example, each of the following � constraints would enable us to fix x1 at x1 � 0,
since x1 � 1 with the best values of the other variables (0 with a nonnegative coefficient
and 1 with a negative coefficient) would violate the constraint.

3x1 � 2 ⇒ x1 � 0, since 3(1) � 2.
3x1 � x2 � 2 ⇒ x1 � 0, since 3(1) � 1(0) � 2.

5x1 � x2 � 2x3 � 2 ⇒ x1 � 0, since 5(1) � 1(0) � 2(1) � 2.

The general procedure for checking any � constraint is to identify the variable with
the largest positive coefficient, and if the sum of that coefficient and any negative coeffi-
cients exceeds the right-hand side, then that variable should be fixed at 0. (Once the vari-
able has been fixed, the procedure can be repeated for the variable with the next largest
positive coefficient, etc.)

An analogous procedure with � constraints can enable us to fix a variable at 1 in-
stead, as illustrated below three times.

3x1 � 2 ⇒ x1 � 1, since 3(0) � 2.
3x1 � x2 � 2 ⇒ x1 � 1, since 3(0) � 1(1) � 2.

3x1 � x2 � 2x3 � 2 ⇒ x1 � 1, since 3(0) � 1(1) � 2(0) � 2.
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A � constraint also can enable us to fix a variable at 0, as illustrated next.

x1 � x2 � 2x3 � 1 ⇒ x3 � 0, since 1(1) � 1(1) � 2(1) � 1.

The next example shows a � constraint fixing one variable at 1 and another at 0.

3x1 � x2 � 3x3 � 2 ⇒ x1 � 1, since 3(0) � 1(1) � 3(0) � 2
and ⇒ x3 � 0, since 3(1) � 1(1) � 3(1) � 2.

Similarly, a � constraint with a negative right-hand side can result in either 0 or 1
becoming the fixed value of a variable. For example, both happen with the following
constraint.

3x1 � 2x2 � �1 ⇒ x1 � 0, since 3(1) � 2(1) � �1
and ⇒ x2 � 1, since 3(0) � 2(0) � �1.

Fixing a variable from one constraint can sometimes generate a chain reaction of then
being able to fix other variables from other constraints. For example, look at what hap-
pens with the following three constraints.

3x1 � x2 � 2x3 � 2 ⇒ x1 � 1 (as above).

Then

x1 � x4 � x5 � 1 ⇒ x4 � 0, x5 � 0.

Then

�x5 � x6 � 0 ⇒ x6 � 0.

In some cases, it is possible to combine one or more mutually exclusive alternatives
constraints with another constraint to fix a variable, as illustrated below,

8x1 � 4x2 � 5x3 � 3x4 � 2� ⇒ x1 � 0,
8x1 � 4x2 � x3 � 3x4 � 1

since 8(1) � max{4, 5}(1) � 3(0) � 2.

There are additional techniques for fixing variables, including some involving opti-
mality considerations, but we will not delve further into this topic.

Fixing variables can have a dramatic impact on reducing the size of a problem. One
example is the problem with 2,756 variables reported in Selected Reference 3. A major
factor in being able to solve this problem is that the algorithm succeeded in fixing 1,341
variables, thereby eliminating essentially half of the problem’s variables from further
consideration.

Eliminating Redundant Constraints. Here is one easy way to detect a redundant
constraint.

If a functional constraint satisfies even the most challenging binary solution, then it has
been made redundant by the binary constraints and can be eliminated from further con-
sideration. For a � constraint, the most challenging binary solution has variables equal to
1 when they have nonnegative coefficients and other variables equal to 0. (Reverse these
values for a � constraint.)
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Some examples are given below.

3x1 � 2x2 � �6 is redundant, since 3(1) � 2(1) � 6.
3x1 � 2x2 � �3 is redundant, since 3(1) � 2(0) � 3.
3x1 � 2x2 � �3 is redundant, since 3(0) � 2(1) � �3.

In most cases where a constraint has been identified as redundant, it was not redundant
in the original model but became so after fixing some variables. Of the 11 examples of fix-
ing variables given above, all but the last one left a constraint that then was redundant.

Tightening Constraints.1 Consider the following problem.

Maximize Z � 3x1 � 2x2,

subject to

2x1 � 3x2 � 4

and

x1, x2 binary.

This BIP problem has just three feasible solutions—(0, 0), (1, 0), and (0, 1)—where the
optimal solution is (1, 0) with Z � 3. The feasible region for the LP relaxation of this
problem is shown in Fig. 12.14. The optimal solution for this LP relaxation is (1, 


2
3


) with
Z � 4


1
3


, which is not very close to the optimal solution for the BIP problem. A branch-
and-bound algorithm would have some work to do to identify the optimal BIP solution.
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FIGURE 12.14
The LP relaxation (including
its feasible region and
optimal solution) for the BIP
example used to illustrate
tightening a constraint.

1Also commonly called coefficient reduction.



Now look what happens when the functional constraint 2x1 � 3x2 � 4 is replaced by

x1 � x2 � 1.

The feasible solutions for the BIP problem remain exactly the same—(0, 0), (1, 0), and
(0, 1)—so the optimal solution still is (1, 0). However, the feasible region for the LP re-
laxation has been greatly reduced, as shown in Fig. 12.15. In fact, this feasible region has
been reduced so much that the optimal solution for the LP relaxation now is (1, 0), so the
optimal solution for the BIP problem has been found without needing any additional work.

This is an example of tightening a constraint in a way that reduces the feasible re-
gion for the LP relaxation without eliminating any feasible solutions for the BIP problem.
It was easy to do for this tiny two-variable problem that could be displayed graphically.
However, with application of the same principles for tightening a constraint without elim-
inating any feasible BIP solutions, the following algebraic procedure can be used to do
this for any � constraint with any number of variables.

Procedure for Tightening a � Constraint
Denote the constraint by a1x1 � a2x2 � 			 � anxn � b.

1. Calculate S � sum of the positive aj.
2. Identify any aj � 0 such that S � b � aj.

(a) If none, stop; the constraint cannot be tightened further.
(b) If aj � 0, go to step 3.
(c) If aj � 0, go to step 4.

3. (aj � 0) Calculate a�j � S � b and b� � S � aj. Reset aj � a�j and b � b�. Return to
step 1.

4. (aj � 0) Increase aj to aj � b � S. Return to step 1.
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Applying this procedure to the functional constraint in the above example flows as
follows:

The constraint is 2x1 � 3x2 � 4 (a1 � 2, a2 � 3, b � 4).

1. S � 2 � 3 � 5.
2. a1 satisfies S � b � a1, since 5 � 4 � 2. Also a2 satisfies S � b � a2, since 

5 � 4 � 3. Choose a1 arbitrarily.
3. a�1 � 5 � 4 � 1 and b� � 5 � 2 � 3, so reset a1 � 1 and b � 3. The new tighter con-

straint is

x1 � 3x2 � 3 (a1 � 1, a2 � 3, b � 3).

1. S � 1 � 3 � 4.
2. a2 satisfies S � b � a2, since 4 � 3 � 3.
3. a�2 � 4 � 3 � 1 and b� � 4 � 3 � 1, so reset a2 � 1 and b � 1. The new tighter con-

straint is

x1 � x2 � 1 (a1 � 1, a2 � 1, b � 1).

1. S � 1 � 1 � 2.
2. No aj � 0 satisfies S � b � aj, so stop; x1 � x2 � 1 is the desired tightened constraint.

If the first execution of step 2 in the above example had chosen a2 instead, then the
first tighter constraint would have been 2x1 � x2 � 2. The next series of steps again would
have led to x1 � x2 � 1.

In the next example, the procedure tightens the constraint on the left to become the
one on its right and then tightens further to become the second one on the right.

4x1 � 3x2 � x3 � 2x4 � 5 ⇒ 2x1 � 3x2 � x3 � 2x4 � 3
⇒ 2x1 � 2x2 � x3 � 2x4 � 3.

(Problem 12.8-5 asks you to apply the procedure to confirm these results.)
A constraint in � form can be converted to � form (by multiplying through both

sides by �1) to apply this procedure directly.

Generating Cutting Planes for Pure BIP

A cutting plane (or cut) for any IP problem is a new functional constraint that reduces the
feasible region for the LP relaxation without eliminating any feasible solutions for the IP
problem. In fact, you have just seen one way of generating cutting planes for pure BIP prob-
lems, namely, apply the above procedure for tightening constraints. Thus, x1 � x2 � 1 is a
cutting plane for the BIP problem considered in Fig. 12.14, which leads to the reduced fea-
sible region for the LP relaxation shown in Fig. 12.15.

In addition to this procedure, a number of other techniques have been developed for
generating cutting planes that will tend to accelerate how quickly a branch-and-bound al-
gorithm can find an optimal solution for a pure BIP problem. We will focus on just one
of these techniques.

To illustrate this technique, consider the California Manufacturing Co. pure BIP prob-
lem presented in Sec. 12.1 and used to illustrate the BIP branch-and-bound algorithm in
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Sec. 12.6. The optimal solution for its LP relaxation is given in Fig. 12.5 as (x1, x2, x3,
x4) � (


5
6


, 1, 0, 1). One of the functional constraints is

6x1 � 3x2 � 5x3 � 2x4 � 10.

Now note that the binary constraints and this constraint together imply that

x1 � x2 � x4 � 2.

This new constraint is a cutting plane. It eliminates part of the feasible region for the LP
relaxation, including what had been the optimal solution, (


5
6


, 1, 0, 1), but it does not elim-
inate any feasible integer solutions. Adding just this one cutting plane to the original model
would improve the performance of the BIP branch-and-bound algorithm in Sec. 12.6 (see
Fig. 12.9) in two ways. First, the optimal solution for the new (tighter) LP relaxation
would be (1, 1, 


1
5


, 0), with Z � 15

1
5


, so the bounds for the All node, x1 � 1 node, and (x1,
x2) � (1, 1) node now would be 15 instead of 16. Second, one less iteration would be
needed because the optimal solution for the LP relaxation at the (x1, x2, x3) � (1, 1, 0)
node now would be (1, 1, 0, 0), which provides a new incumbent with Z* � 14. There-
fore, on the third iteration (see Fig. 12.8), this node would be fathomed by test 3, and the
(x1, x2) � (1, 0) node would be fathomed by test 1, thereby revealing that this incumbent
is the optimal solution for the original BIP problem.

Here is the general procedure used to generate this cutting plane.

A Procedure for Generating Cutting Planes

1. Consider any functional constraint in � form with only nonnegative coefficients.
2. Find a group of variables (called a minimum cover of the constraint) such that

(a) The constraint is violated if every variable in the group equals 1 and all other vari-
ables equal 0.

(b) But the constraint becomes satisfied if the value of any one of these variables is
changed from 1 to 0.

3. By letting N denote the number of variables in the group, the resulting cutting plane
has the form

Sum of variables in group � N � 1.

Applying this procedure to the constraint 6x1 � 3x2 � 5x3 � 2x4 � 10, we see that
the group of variables {x1, x2, x4} is a minimal cover because

(a) (1, 1, 0, 1) violates the constraint.
(b) But the constraint becomes satisfied if the value of any one of these three vari-

ables is changed from 1 to 0.

Since N � 3 in this case, the resulting cutting plane is x1 � x2 � x4 � 2.
This same constraint also has a second minimal cover {x1, x3}, since (1, 0, 1, 0) vi-

olates the constraint but both (0, 0, 1, 0) and (1, 0, 0, 0) satisfy the constraint. Therefore,
x1 � x3 � 1 is another valid cutting plane.

The new algorithmic approach presented in Selected References 3, 6, 10, 5, and 2
involves generating many cutting planes in a similar manner before then applying clever
branch-and-bound techniques. The results of including the cutting planes can be quite
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dramatic in tightening the LP relaxations. For example, for the test problem with 2,756
binary variables considered in Selected Reference 3,326 cutting planes were generated.
The result was that the gap between Z for the optimal solution for the LP relaxation of
the whole BIP problem and Z for this problem’s optimal solution was reduced by 98 per-
cent. Similar results were obtained on about half of the problems considered in Selected
Reference 3.

Ironically, the very first algorithms developed for integer programming, including
Ralph Gomory’s celebrated algorithm announced in 1958, were based on cutting planes
(generated in a different way), but this approach proved to be unsatisfactory in practice
(except for special classes of problems). However, these algorithms relied solely on cut-
ting planes. We now know that judiciously combining cutting planes and branch-and-bound
techniques (along with automatic problem preprocessing) provides a powerful algorith-
mic approach for solving large-scale BIP problems. This is one reason that the name
branch-and-cut algorithm has been given to this new approach.
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IP problems arise frequently because some or all of the decision variables must be re-
stricted to integer values. There also are many applications involving yes-or-no decisions
(including combinatorial relationships expressible in terms of such decisions) that can be
represented by binary (0–1) variables. These factors have made integer programming one
of the most widely used OR techniques.

IP problems are more difficult than they would be without the integer restriction,
so the algorithms available for integer programming are generally much less efficient
than the simplex method. The most important determinants of computation time are the
number of integer variables and whether the problem has some special structure that
can be exploited. For a fixed number of integer variables, BIP problems generally are
much easier to solve than problems with general integer variables, but adding continu-
ous variables (MIP) may not increase computation time substantially. For special types
of BIP problems containing a special structure that can be exploited by a special-
purpose algorithm, it may be possible to solve very large problems (thousands of bi-
nary variables) routinely. Other much smaller problems without such special structure
may not be solvable.

Computer codes for IP algorithms now are commonly available in mathematical pro-
gramming software packages. Traditionally, these algorithms usually have been based on
the branch-and-bound technique and variations thereof.

A new era in IP solution methodology has now been ushered in by a series of land-
mark papers since the mid-1980s. The new branch-and-cut algorithmic approach involves
combining automatic problem preprocessing, the generation of cutting planes, and clever
branch-and-bound techniques. Research in this area is continuing, along with the devel-
opment of sophisticated new software packages that incorporate these new techniques.

In recent years, there has been considerable investigation into the development of al-
gorithms (including heuristic algorithms) for integer nonlinear programming, and this area
continues to be a very active area of research.
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The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The corresponding demonstration example listed above may be
helpful.

I: We suggest that you use the corresponding interactive routine
listed above (the printout records your work).

C: Use the computer with any of the software options available to
you (or as instructed by your instructor) to solve the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

12.1-1. Reconsider the California Manufacturing Co. example pre-
sented in Sec. 12.1. The mayor of San Diego now has contacted
the company’s president to try to persuade him to build a factory
and perhaps a warehouse in that city. With the tax incentives be-
ing offered the company, the president’s staff estimates that the net
present value of building a factory in San Diego would be $7 mil-
lion and the amount of capital required to do this would be $4 mil-
lion. The net present value of building a warehouse there would be
$5 million and the capital required would be $3 million. (This op-
tion would be considered only if a factory also is being built there.)

The company president now wants the previous OR study re-
vised to incorporate these new alternatives into the overall prob-
lem. The objective still is to find the feasible combination of in-
vestments that maximizes the total net present value, given that the
amount of capital available for these investments is $10 million.
(a) Formulate a BIP model for this problem.
(b) Display this model on an Excel spreadsheet.
C (c) Use the computer to solve this model.

12.1-2* A young couple, Eve and Steven, want to divide their
main household chores (marketing, cooking, dishwashing, and
laundering) between them so that each has two tasks but the total
time they spend on household duties is kept to a minimum. Their
efficiencies on these tasks differ, where the time each would need
to perform the task is given by the following table:

12.1-3. A real estate development firm, Peterson and Johnson, is
considering five possible development projects. The following table
shows the estimated long-run profit (net present value) that each
project would generate, as well as the amount of investment re-
quired to undertake the project, in units of millions of dollars.
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Time Needed per Week

Marketing Cooking Dishwashing Laundry

Eve 4.5 hours 7.8 hours 3.6 hours 2.9 hours
Steven 4.9 hours 7.2 hours 4.3 hours 3.1 hours

(a) Formulate a BIP model for this problem.
(b) Display this model on an Excel spreadsheet.
C (c) Use the computer to solve this model.

The owners of the firm, Dave Peterson and Ron Johnson, have
raised $20 million of investment capital for these projects. Dave
and Ron now want to select the combination of projects that will
maximize their total estimated long-run profit (net present value)
without investing more that $20 million.
(a) Formulate a BIP model for this problem.
(b) Display this model on an Excel spreadsheet.
C (c) Use the computer to solve this model.

12.1-4. The board of directors of General Wheels Co. is consid-
ering seven large capital investments. Each investment can be made
only once. These investments differ in the estimated long-run profit
(net present value) that they will generate as well as in the amount
of capital required, as shown by the following table (in units of
millions of dollars):

Investment Opportunity

1 2 3 4 5 6 7

Estimated profit 17 10 15 19 7 13 9
Capital required 43 28 34 48 17 32 23

The total amount of capital available for these investments is $100
million. Investment opportunities 1 and 2 are mutually exclusive,
and so are 3 and 4. Furthermore, neither 3 nor 4 can be undertaken
unless one of the first two opportunities is undertaken. There are
no such restrictions on investment opportunities 5, 6, and 7. The
objective is to select the combination of capital investments that
will maximize the total estimated long-run profit (net present
value).
(a) Formulate a BIP model for this problem.
C (b) Use the computer to solve this model.

Development Project

1 2 3 4 5

Estimated profit 1 1.8 1.6 0.8 1.4
Capital required 6 12 10 4 8



ated with hiring each truck. A truck can haul 5 tons, but it is not
required to go full. For each combination of pit and site, there are
now two decisions to be made: the number of trucks to be used
and the amount of gravel to be hauled.
(a) Formulate an MIP model for this problem.
C (b) Use the computer to solve this model.

12.2-1. Select one of the actual applications of BIP by a company
or governmental agency mentioned in Sec. 12.2. Read the article
describing the application in the referenced issue of Interfaces.
Write a two-page summary of the application and its benefits.

12.2-2. Select three of the actual applications of BIP by a com-
pany or governmental agency mentioned in Sec. 12.2. Read the ar-
ticles describing the applications in the referenced issues of Inter-
faces. For each one, write a one-page summary of the application
and its benefits.

12.3-1.* The Research and Development Division of the Progres-
sive Company has been developing four possible new product lines.
Management must now make a decision as to which of these four
products actually will be produced and at what levels. Therefore,
an operations research study has been requested to find the most
profitable product mix.

A substantial cost is associated with beginning the production
of any product, as given in the first row of the following table.
Management’s objective is to find the product mix that maximizes
the total profit (total net revenue minus start-up costs).

12.1-5. Reconsider Prob. 8.3-4, where a swim team coach needs
to assign swimmers to the different legs of a 200-yard medley re-
lay team. Formulate a BIP model for this problem. Identify the
groups of mutually exclusive alternatives in this formulation.

12.1-6. Vincent Cardoza is the owner and manager of a machine
shop that does custom order work. This Wednesday afternoon, he
has received calls from two customers who would like to place
rush orders. One is a trailer hitch company which would like some
custom-made heavy-duty tow bars. The other is a mini-car-carrier
company which needs some customized stabilizer bars. Both cus-
tomers would like as many as possible by the end of the week (two
working days). Since both products would require the use of the
same two machines, Vincent needs to decide and inform the cus-
tomers this afternoon about how many of each product he will agree
to make over the next two days.

Each tow bar requires 3.2 hours on machine 1 and 2 hours on
machine 2. Each stabilizer bar requires 2.4 hours on machine 1 and
3 hours on machine 2. Machine 1 will be available for 16 hours
over the next two days and machine 2 will be available for 15 hours.
The profit for each tow bar produced would be $130 and the profit
for each stabilizer bar produced would be $150.

Vincent now wants to determine the mix of these production
quantities that will maximize the total profit.
(a) Formulate an IP model for this problem.
(b) Use a graphical approach to solve this model.
C (c) Use the computer to solve the model.

12.1-7. Pawtucket University is planning to buy new copier ma-
chines for its library. Three members of its Operations Research
Department are analyzing what to buy. They are considering two
different models: Model A, a high-speed copier, and Model B, a
lower-speed but less expensive copier. Model A can handle 20,000
copies a day, and costs $6,000. Model B can handle 10,000 copies
a day, but costs only $4,000. They would like to have at least six
copiers so that they can spread them throughout the library. They
also would like to have at least one high-speed copier. Finally, the
copiers need to be able to handle a capacity of at least 75,000 copies
per day. The objective is to determine the mix of these two copiers
which will handle all these requirements at minimum cost.
(a) Formulate an IP model for this problem.
(b) Use a graphical approach to solve this model.
C (c) Use the computer to solve the model.

12.1-8. Reconsider Prob. 8.2-23 involving a contractor (Susan
Meyer) who needs to arrange for hauling gravel from two pits to
three building sites.

Susan now needs to hire the trucks (and their drivers) to do
the hauling. Each truck can only be used to haul gravel from a sin-
gle pit to a single site. In addition to the hauling and gravel costs
specified in Prob. 8.2-23, there now is a fixed cost of $50 associ-
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Product

1 2 3 4

Start-up cost $50,000 $40,000 $70,000 $60,000
Marginal revenue $50,070 $50,060 $50,090 $50,080

Let the continuous decision variables x1, x2, x3, and x4 be the
production levels of products 1, 2, 3, and 4, respectively. Manage-
ment has imposed the following policy constraints on these vari-
ables:

1. No more than two of the products can be produced.
2. Either product 3 or 4 can be produced only if either product 1

or 2 is produced.
3. Either 5x1 � 3x2 � 6x3 � 4x4 � 6,000

or 4x1 � 6x2 � 3x3 � 5x4 � 6,000.

(a) Introduce auxiliary binary variables to formulate a mixed BIP
model for this problem.

C (b) Use the computer to solve this model.



at essentially maximum capacity. It is estimated that the net annual
profit (after capital recovery costs are subtracted) would be $4.2
million per long-range plane, $3 million per medium-range plane,
and $2.3 million per short-range plane.

It is predicted that enough trained pilots will be available to
the company to crew 30 new airplanes. If only short-range planes
were purchased, the maintenance facilities would be able to han-
dle 40 new planes. However, each medium-range plane is equiva-
lent to 1


1
3


 short-range planes, and each long-range plane is equiv-
alent to 1


2
3


 short-range planes in terms of their use of the
maintenance facilities.

The information given here was obtained by a preliminary
analysis of the problem. A more detailed analysis will be conducted
subsequently. However, using the preceding data as a first ap-
proximation, management wishes to know how many planes of
each type should be purchased to maximize profit.
(a) Formulate an IP model for this problem.
C (b) Use the computer to solve this problem.
(c) Use a binary representation of the variables to reformulate the

IP model in part (a) as a BIP problem.
C (d) Use the computer to solve the BIP model formulated in part

(c). Then use this optimal solution to identify an optimal so-
lution for the IP model formulated in part (a).

12.3-6. Consider the two-variable IP example discussed in Sec.
12.5 and illustrated in Fig. 12.3.
(a) Use a binary representation of the variables to reformulate this

model as a BIP problem.
C (b) Use the computer to solve this BIP problem. Then use this

optimal solution to identify an optimal solution for the orig-
inal IP model.

12.3-7. The Fly-Right Airplane Company builds small jet airplanes
to sell to corporations for the use of their executives. To meet the
needs of these executives, the company’s customers sometimes or-
der a custom design of the airplanes being purchased. When this
occurs, a substantial start-up cost is incurred to initiate the pro-
duction of these airplanes.

Fly-Right has recently received purchase requests from three
customers with short deadlines. However, because the company’s
production facilities already are almost completely tied up filling
previous orders, it will not be able to accept all three orders. There-
fore, a decision now needs to be made on the number of airplanes
the company will agree to produce (if any) for each of the three
customers.

The relevant data are given in the next table. The first row
gives the start-up cost required to initiate the production of the air-
planes for each customer. Once production is under way, the mar-
ginal net revenue (which is the purchase price minus the marginal
production cost) from each airplane produced is shown in the sec-
ond row. The third row gives the percentage of the available pro-

12.3-2. Suppose that a mathematical model fits linear program-
ming except for the restriction that x1 � x2 � 0, or 3, or 6. Show
how to reformulate this restriction to fit an MIP model.

12.3-3. Suppose that a mathematical model fits linear program-
ming except for the restrictions that

1. At least one of the following two inequalities holds:

x1 � x2 � x3 � x4 � 4
3x1 � x2 � x3 � x4 � 3.

2. At least two of the following four inequalities holds:

5x1 � 3x2 � 3x3 � x4 � 10
2x1 � 5x2 � x3 � 3x4 � 10

�x1 � 3x2 � 5x3 � 3x4 � 10
3x1 � x2 � 3x3 � 5x4 � 10.

Show how to reformulate these restrictions to fit an MIP model.

12.3-4. The Toys-R-4-U Company has developed two new toys for
possible inclusion in its product line for the upcoming Christmas
season. Setting up the production facilities to begin production
would cost $50,000 for toy 1 and $80,000 for toy 2. Once these
costs are covered, the toys would generate a unit profit of $10 for
toy 1 and $15 for toy 2.

The company has two factories that are capable of producing
these toys. However, to avoid doubling the start-up costs, just one
factory would be used, where the choice would be based on max-
imizing profit. For administrative reasons, the same factory would
be used for both new toys if both are produced.

Toy 1 can be produced at the rate of 50 per hour in factory
1 and 40 per hour in factory 2. Toy 2 can be produced at the rate
of 40 per hour in factory 1 and 25 per hour in factory 2. Facto-
ries 1 and 2, respectively, have 500 hours and 700 hours of pro-
duction time available before Christmas that could be used to pro-
duce these toys.

It is not known whether these two toys would be continued
after Christmas. Therefore, the problem is to determine how many
units (if any) of each new toy should be produced before Christ-
mas to maximize the total profit.
(a) Formulate an MIP model for this problem.
C (b) Use the computer to solve this model.

12.3-5.* Northeastern Airlines is considering the purchase of new
long-, medium-, and short-range jet passenger airplanes. The pur-
chase price would be $67 million for each long-range plane, $50
million for each medium-range plane, and $35 million for each
short-range plane. The board of directors has authorized a maxi-
mum commitment of $1.5 billion for these purchases. Regardless
of which airplanes are purchased, air travel of all distances is ex-
pected to be sufficiently large that these planes would be utilized
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new products should be produced, and the choice is to be made on
the basis of maximizing profit. Introduce auxiliary binary variables
to formulate an MIP model for this new version of the problem.

12.4-3.* Reconsider Prob. 3.1-11, where the management of the
Omega Manufacturing Company is considering devoting excess
production capacity to one or more of three products. (See the Par-
tial Answers to Selected Problems in the back of the book for ad-
ditional information about this problem.) Management now has de-
cided to add the restriction that no more than two of the three
prospective products should be produced.
(a) Introduce auxiliary binary variables to formulate an MIP

model for this new version of the problem.
C (b) Use the computer to solve this model.

12.4-4. Consider the following integer nonlinear programming
problem.

Maximize Z � 4x2
1 � x3

1 � 10x2
2 � x4

2,

subject to

x1 � x2 � 3

and

x1 � 0, x2 � 0
x1 and x2 are integers.

This problem can be reformulated in two different ways as an
equivalent pure BIP problem (with a linear objective function) with
six binary variables (y1 j and y2 j for j � 1, 2, 3), depending on the
interpretation given the binary variables.
(a) Formulate a BIP model for this problem where the binary vari-

ables have the interpretation,

yij � �
C (b) Use the computer to solve the model formulated in part (a),

and thereby identify an optimal solution for (x1, x2) for the
original problem.

(c) Formulate a BIP model for this problem where the binary vari-
ables have the interpretation,

yij � �
C (d) Use the computer to solve the model formulated in part (c),

and thereby identify an optimal solution for (x1, x2) for the
original problem.

12.4-5. Consider the following discrete nonlinear programming
problem.

Maximize Z � 2x1 � x2
1 � 3x2 � 3x2

2,

if xi � j
otherwise.

1
0

if xi � j
otherwise.

1
0

duction capacity that would be used for each airplane produced.
The last row indicates the maximum number of airplanes requested
by each customer (but less will be accepted).
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Fly-Right now wants to determine how many airplanes to pro-
duce for each customer (if any) to maximize the company’s total
profit (total net revenue minus start-up costs).
(a) Formulate a model with both integer variables and binary vari-

ables for this problem.
C (b) Use the computer to solve this model.

12.4-1. Reconsider the Fly-Right Airplane Co. problem introduced
in Prob. 12.3-7. A more detailed analysis of the various cost and
revenue factors now has revealed that the potential profit from pro-
ducing airplanes for each customer cannot be expressed simply in
terms of a start-up cost and a fixed marginal net revenue per air-
plane produced. Instead, the profits are given by the following table.

Customer

1 2 3

Start-up cost $3 million $2 million 0
Marginal net revenue $2 million $3 million $0.8 million
Capacity used per plane 20% 40% 20%
Maximum order 3 planes 2 planes 5 planes

Profit from

Airplanes
Customer

Produced 1 2 3

0 0 0 0
1 �$1 million $1 million $1 million
2 �$2 million $5 million $3 million
3 �$4 million $5 million
4 $6 million
5 $7 million

(a) Formulate a BIP model for this problem that includes con-
straints for mutually exclusive alternatives.

C (b) Use the computer to solve the model formulated in part (a).
Then use this optimal solution to identify the optimal num-
ber of airplanes to produce for each customer.

(c) Formulate another BIP model for this model that includes con-
straints for contingent decisions.

C (d) Repeat part (b) for the model formulated in part (c).

12.4-2. Reconsider the Wyndor Glass Co. problem presented in
Sec. 3.1. Management now has decided that only one of the two



(a) Reformulate this problem as a pure binary integer linear pro-
gramming problem.

C (b) Use the computer to solve the model formulated in part (a),
and thereby identify an optimal solution for (x1, x2) for the
original problem.

12.4-6.* Consider the following special type of shortest-path prob-
lem (see Sec. 9.3) where the nodes are in columns and the only
paths considered always move forward one column at a time.

subject to

x1 � x2 � 0.75

and

each variable is restricted to the values: 

1
2


, 

1
3


, 

1
4


, 

1
5


.

(Continue in the next column.)
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(Origin) (Destination)O

A

B

C

D

T

6

3

4

3

6

5
3

2

The numbers along the links represent distances, and the objective
is to find the shortest path from the origin to the destination.

This problem also can be formulated as a BIP model involv-
ing both mutually exclusive alternatives and contingent decisions.
(a) Formulate this model. Identify the constraints that are for mu-

tually exclusive alternatives and that are for contingent deci-
sions.

C (b) Use the computer to solve this problem.

12.4-7. Consider the project network for a PERT-type system
shown in Prob. 11.2-3. Formulate a BIP model for the problem of
finding a critical path (i.e., a longest path) for this project network.

12.4-8. Speedy Delivery provides two-day delivery service of large
parcels across the United States. Each morning at each collection
center, the parcels that have arrived overnight are loaded onto sev-
eral trucks for delivery throughout the area. Since the competitive
battlefield in this business is speed of delivery, the parcels are di-
vided among the trucks according to their geographical destina-
tions to minimize the average time needed to make the deliveries.

On this particular morning, the dispatcher for the Blue River
Valley Collection Center, Sharon Lofton, is hard at work. Her three
drivers will be arriving in less than an hour to make the day’s de-
liveries. There are nine parcels to be delivered, all at locations many
miles apart. As usual, Sharon has loaded these locations into her
computer. She is using her company’s special software package, a
decision support system called Dispatcher. The first thing Dis-
patcher does is use these locations to generate a considerable num-
ber of attractive possible routes for the individual delivery trucks.
These routes are shown in the following table (where the numbers

in each column indicate the order of the deliveries), along with the
estimated time required to traverse the route.

Attractive Possible Route

Delivery Location 1 2 3 4 5 6 7 8 9 10

A 1 1 1
B 2 1 2 2 2
C 3 3 3 3
D 2 1 1
E 2 2 3
F 1 2
G 3 1 2 3
H 1 3 1
I 3 4 2

Time (in hours) 6 4 7 5 4 6 5 3 7 6

Dispatcher is an interactive system that shows these routes to
Sharon for her approval or modification. (For example, the com-
puter may not know that flooding has made a particular route in-
feasible.) After Sharon approves these routes as attractive possi-
bilities with reasonable time estimates, Dispatcher next formulates
and solves a BIP model for selecting three routes that minimize
their total time while including each delivery location on exactly
one route. This morning, Sharon does approve all the routes.
(a) Formulate this BIP model.
C (b) Use the computer to solve this model.



In contrast to the original problem, note that the total number of
fire stations is no longer fixed. Furthermore, if a tract without a
station has more than one station within 15 minutes, it is no longer
necessary to assign this tract to just one of these stations.
(a) Formulate a complete pure BIP model with 5 binary variables

for this problem.
(b) Is this a set covering problem? Explain, and identify the rele-

vant sets.
C (c) Use the computer to solve the model formulated in part (a).

12.4-11. Suppose that a state sends R persons to the U.S. House
of Representatives. There are D counties in the state (D � R), and
the state legislature wants to group these counties into R distinct
electoral districts, each of which sends a delegate to Congress. The
total population of the state is P, and the legislature wants to form
districts whose population approximates p � P/R. Suppose that the
appropriate legislative committee studying the electoral districting
problem generates a long list of N candidates to be districts 
(N � R). Each of these candidates contains contiguous counties
and a total population pj ( j � 1, 2, . . . , N ) that is acceptably close
to p. Define cj � pj � p. Each county i (i � 1, 2, . . . , D) is in-
cluded in at least one candidate and typically will be included in
a considerable number of candidates (in order to provide many fea-
sible ways of selecting a set of R candidates that includes each
county exactly once). Define

aij � �
Given the values of the cj and the aij, the objective is to se-

lect R of these N possible districts such that each county is con-
tained in a single district and such that the largest of the associ-
ated cj is as small as possible.

Formulate a BIP model for this problem.

12.4-12. A U.S. professor will be spending a short sabbatical leave
at the University of Iceland. She wishes to bring all needed items
with her on the airplane. After collecting the professional items that
she must have, she finds that airline regulations on space and weight
for checked luggage will severely limit the clothes she can take. (She
plans to carry on a warm coat and then purchase a warm Icelandic
sweater upon arriving in Iceland.) Clothes under consideration for
checked luggage include 3 skirts, 3 slacks, 4 tops, and 3 dresses. The
professor wants to maximize the number of outfits she will have in
Iceland (including the special dress she will wear on the airplane).
Each dress constitutes an outfit. Other outfits consist of a combina-
tion of a top and either a skirt or slacks. However, certain combina-
tions are not fashionable and so will not qualify as an outfit.

In the following table, the combinations that will make an out-
fit are marked with an x.

if county i is included in candidate j
if not.

1
0

12.4-9. An increasing number of Americans are moving to a
warmer climate when they retire. To take advantage of this trend,
Sunny Skies Unlimited is undertaking a major real estate devel-
opment project. The project is to develop a completely new re-
tirement community (to be called Pilgrim Haven) that will cover
several square miles. One of the decisions to be made is where to
locate the two fire stations that have been allocated to the com-
munity. For planning purposes, Pilgrim Haven has been divided
into five tracts, with no more than one fire station to be located in
any given tract. Each station is to respond to all the fires that oc-
cur in the tract in which it is located as well as in the other tracts
that are assigned to this station. Thus, the decisions to be made
consist of (1) the tracts to receive a fire station and (2) the assign-
ment of each of the other tracts to one of the fire stations. The ob-
jective is to minimize the overall average of the response times to
fires.

The following table gives the average response time to a fire
in each tract (the columns) if that tract is served by a station in a
given tract (the rows). The bottom row gives the forecasted aver-
age number of fires that will occur in each of the tracts per day.
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Formulate a BIP model for this problem. Identify any con-
straints that correspond to mutually exclusive alternatives or con-
tingent decisions.

12.4-10. Reconsider Prob. 12.4-9. The management of Sunny
Skies Unlimited now has decided that the decision on the locations
of the fire stations should be based mainly on costs.

The cost of locating a fire station in a tract is $200,000 for
tract 1, $250,000 for tract 2, $400,000 for tract 3, $300,000 for
tract 4, and $500,000 for tract 5. Management’s objective now is
the following:

Determine which tracts should receive a station to min-
imize the total cost of stations while ensuring that each
tract has at least one station close enough to respond to
a fire in no more than 15 minutes (on the average).

Response Times (in minutes)

Assigned Station
Fire in Tract

Located in Tract 1 2 3 4 5

1 5 12 30 20 15
2 20 4 15 10 25
3 15 20 6 15 12
4 25 15 25 4 10
5 10 25 15 12 5

Average frequency 2 per 1 per 3 per 1 per 3 per 
of fires day day day day day



and

x1 � 0, x2 � 0
x1, x2 are integers.

(a) Solve this problem graphically.
(b) Solve the LP relaxation graphically. Round this solution to the

nearest integer solution and check whether it is feasible. Then
enumerate all the rounded solutions by rounding this solution
for the LP relaxation in all possible ways (i.e., by rounding each
noninteger value both up and down). For each rounded solu-
tion, check for feasibility and, if feasible, calculate Z. Are any
of these feasible rounded solutions optimal for the IP problem?

12.5-2. Follow the instructions of Prob. 12.5-1 for the following
IP problem.

Maximize Z � 220x1 � 80x2,

subject to

5x1 � 2x2 � 16
2x1 � x2 � 4

�x1 � 2x2 � 4

and

x1 � 0, x2 � 0
x1, x2 are integers.

12.5-3. Follow the instructions of Prob. 12.5-1 for the following
BIP problem.

Maximize Z � 2x1 � 5x2,

subject to

10x1 � 30x2 � 30
95x1 � 30x2 � 75

and

x1, x2 are binary.

12.5-4. Follow the instructions of Prob. 12.5-1 for the following
BIP problem.

Maximize Z � �5x1 � 25x2,

subject to

�3x1 � 30x2 � 27
3x1 � x2 � 4

and

x1, x2 are binary.

12.5-5. Label each of the following statements as True or False,
and then justify your answer by referring to specific statements
(with page citations) in the chapter.

The weight (in grams) and volume (in cubic centimeters) of each
item are shown in the following table:
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Top

1 2 3 4 Icelandic Sweater

1 x x x
Skirt 2 x x

3 x x x x

1 x x
Slacks 2 x x x x

3 x x x

Weight Volume

1 600 5,000
Skirt 2 450 3,500

3 700 3,000

1 600 3,500
Slacks 2 550 6,000

3 500 4,000

1 350 4,000

Top
2 300 3,500
3 300 3,000
4 450 5,000

1 600 6,000
Dress 2 700 5,000

3 800 4,000

Total allowed 4,000 32,000

Formulate a BIP model to choose which items of clothing to
take. (Hint: After using binary decision variables to represent the
individual items, you should introduce auxiliary binary variables
to represent outfits involving combinations of items. Then use con-
straints and the objective function to ensure that these auxiliary
variables have the correct values, given the values of the decision
variables.)

12.5-1.* Consider the following IP problem.

Maximize Z � 5x1 � x2,

subject to

�x1 � 2x2 � 4
x1 � x2 � 1

4x1 � x2 � 12



12.6-6. Consider the following statements about any pure IP prob-
lem (in maximization form) and its LP relaxation. Label each of
the statements as True or False, and then justify your answer.
(a) The feasible region for the LP relaxation is a subset of the fea-

sible region for the IP problem.
(b) If an optimal solution for the LP relaxation is an integer solu-

tion, then the optimal value of the objective function is the
same for both problems.

(c) If a noninteger solution is feasible for the LP relaxation, then
the nearest integer solution (rounding each variable to the near-
est integer) is a feasible solution for the IP problem.

12.6-7.* Consider the assignment problem with the following cost
table:

(a) Linear programming problems are generally much easier to
solve than IP problems.

(b) For IP problems, the number of integer variables is generally
more important in determining the computational difficulty
than is the number of functional constraints.

(c) To solve an IP problem with an approximate procedure, one
may apply the simplex method to the LP relaxation problem
and then round each noninteger value to the nearest integer.
The result will be a feasible but not necessarily optimal solu-
tion for the IP problem.

D,I 12.6-1.* Use the BIP branch-and-bound algorithm presented
in Sec. 12.6 to solve the following problem interactively.

Maximize Z � 2x1 � x2 � 5x3 � 3x4 � 4x5,

subject to

3x1 � 2x2 � 7x3 � 5x4 � 4x5 � 6
x1 � x2 � 2x3 � 4x4 � 2x5 � 0

and

xj is binary, for j � 1, 2, . . . , 5.

D,I 12.6-2. Use the BIP branch-and-bound algorithm presented in
Sec. 12.6 to solve the following problem interactively.

Minimize Z � 5x1 � 6x2 � 7x3 � 8x4 � 9x5,

subject to

3x1 � x2 � x3 � x4 � 2x5 � 2
x1 � 3x2 � x3 � 2x4 � x5 � 0

�x1 � x2 � 3x3 � x4 � x5 � 1

and

xj is binary, for j � 1, 2, . . . , 5.

D,I 12.6-3. Use the BIP branch-and-bound algorithm presented in
Sec. 12.6 to solve the following problem interactively.

Maximize Z � 5x1 � 5x2 � 8x3 � 2x4 � 4x5,

subject to

�3x1 � 6x2 � 7x3 � 9x4 � 9x5 � 10
x1 � 2x2 7x3 � x4 � 3x5 � 0

and

xj is binary, for j � 1, 2, . . . , 5.

D,I 12.6-4. Reconsider Prob. 12.3-6(a). Use the BIP branch-and-
bound algorithm presented in Sec. 12.6 to solve this BIP model
interactively.

D,I 12.6-5. Reconsider Prob. 12.4-10(a). Use the BIP algorithm
presented in Sec. 12.6 to solve this problem interactively.
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Task

1 2 3 4 5

1 39 65 69 66 57
2 64 84 24 92 22

Assignee 3 49 50 61 31 45
4 48 45 55 23 50
5 59 34 30 34 18

(a) Design a branch-and-bound algorithm for solving such as-
signment problems by specifying how the branching, bound-
ing, and fathoming steps would be performed. (Hint: For the
assignees not yet assigned for the current subproblem, form
the relaxation by deleting the constraints that each of these as-
signees must perform exactly one task.)

(b) Use this algorithm to solve this problem.

12.6-8. Five jobs need to be done on a certain machine. However,
the setup time for each job depends upon which job immediately
preceded it, as shown by the following table:

Setup Time

Job

1 2 3 4 5

None 4 5 8 9 4
1 — 7 12 10 9

Immediately 2 6 — 10 14 11
Preceding Job 3 10 11 — 12 10

4 7 8 15 — 7
5 12 9 8 16 —

The objective is to schedule the sequence of jobs that minimizes
the sum of the resulting setup times.



D,I (d) Use the BIP branch-and-bound algorithm presented in Sec.
12.6 to solve the problem as formulated in part (c) inter-
actively.

12.7-2. Follow the instructions of Prob. 12.7-1 for the following
IP model.

Minimize Z � 2x1 � 3x2,

subject to

x1 � x2 � 3
x1 � 3x2 � 6

and

x1 � 0, x2 � 0
x1, x2 are integers.

12.7-3. Reconsider the IP model of Prob. 12.5-1.
(a) Use the MIP branch-and-bound algorithm presented in Sec.

12.7 to solve this problem by hand. For each subproblem, solve
its LP relaxation graphically.

D,I (b) Now use the interactive routine for this algorithm in your
OR Courseware to solve this problem.

C (c) Check your answer by using an automatic routine to solve
the problem.

12.7-4. Follow the instructions of Prob. 12.7-3 for the IP model of
Prob. 12.5-2.

D,I 12.7-5. Consider the IP example discussed in Sec. 12.5 and il-
lustrated in Fig. 12.3. Use the MIP branch-and-bound algorithm
presented in Sec. 12.7 to solve this problem interactively.

D,I 12.7-6. Reconsider Prob. 12.3-5a. Use the MIP branch-and-
bound algorithm presented in Sec. 12.7 to solve this IP problem
interactively.

12.7-7. A machine shop makes two products. Each unit of the first
product requires 3 hours on machine 1 and 2 hours on machine 2.
Each unit of the second product requires 2 hours on machine 1 and
3 hours on machine 2. Machine 1 is available only 8 hours per day
and machine 2 only 7 hours per day. The profit per unit sold is 16
for the first product and 10 for the second. The amount of each
product produced per day must be an integral multiple of 0.25. The
objective is to determine the mix of production quantities that will
maximize profit.
(a) Formulate an IP model for this problem.
(b) Solve this model graphically.
(c) Use graphical analysis to apply the MIP branch-and-bound al-

gorithm presented in Sec. 12.7 to solve this model.
D,I (d) Now use the interactive routine for this algorithm in your

OR Courseware to solve this model.
C (e) Check your answers in parts (b), (c), and (d ) by using an

automatic routine to solve the model.

(a) Design a branch-and-bound algorithm for sequencing prob-
lems of this type by specifying how the branch, bound, and
fathoming steps would be performed.

(b) Use this algorithm to solve this problem.

12.6-9.* Consider the following nonlinear BIP problem.

Maximize Z � 80x1 � 60x2 � 40x3 � 20x4

� (7x1 � 5x2 � 3x3 � 2x4)2,
subject to

xj is binary, for j � 1, 2, 3, 4.

Given the value of the first k variables x1, . . . , xk, where k � 0,
1, 2, or 3, an upper bound on the value of Z that can be achieved
by the corresponding feasible solutions is

�
k

j�1
cjxj � ��

k

j�1
djxj�

2

� �
4

j�k�1
max�0, cj � ���

k

i�1
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� ��
k

i�1
dixi�

2

	�,

where c1 � 80, c2 � 60, c3 � 40, c4 � 20, d1 � 7, d2 � 5, d3 � 3,
d4 � 2. Use this bound to solve the problem by the branch-and-
bound technique.

12.6-10. Consider the Lagrangian relaxation described near the
end of Sec. 12.6.
(a) If x is a feasible solution for an MIP problem, show that x also

must be a feasible solution for the corresponding Lagrangian
relaxation.

(b) If x* is an optimal solution for an MIP problem, with an ob-
jective function value of Z, show that Z � Z*R, where Z*R is the
optimal objective function value for the corresponding La-
grangian relaxation.

12.7-1.* Consider the following IP problem.

Maximize Z � �3x1 � 5x2,

subject to

5x1 � 7x2 � 3

and

xj � 3
xj � 0
xj is integer, for j � 1, 2.

(a) Solve this problem graphically.
(b) Use the MIP branch-and-bound algorithm presented in Sec.

12.7 to solve this problem by hand. For each subproblem, solve
its LP relaxation graphically.

(c) Use the binary representation for integer variables to refor-
mulate this problem as a BIP problem.
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D,I 12.7-8. Use the MIP branch-and-bound algorithm presented in
Sec. 12.7 to solve the following MIP problem interactively.

Maximize Z � 5x1 � 4x2 � 4x3 � 2x4,

subject to

x1 � 3x2 � 2x3 � x4 � 10
5x1 � x2 � 3x3 � 2x4 � 15
x1 � x2 � x3 � x4 � 6

and

xj � 0, for j � 1, 2, 3, 4
xj is integer, for j � 1, 2, 3.

D,I 12.7-9. Use the MIP branch-and-bound algorithm presented in
Sec. 12.7 to solve the following MIP problem interactively.

Maximize Z � 3x1 � 4x2 � 2x3 � x4 � 2x5,

subject to

2x1 � x2 � x3 � x4 � x5 � 3
�x1 � 3x2 � x3 � x4 � 2x5 � 2
2x1 � x2 � x3 � x4 � 3x5 � 1

and

xj � 0, for j � 1, 2, 3, 4, 5
xj is binary, for j � 1, 2, 3.

D,I 12.7-10. Use the MIP branch-and-bound algorithm presented
in Sec. 12.7 to solve the following MIP problem interactively.

Minimize Z � 5x1 � x2 � x3 � 2x4 � 3x5,

subject to

x2 � 5x3 � x4 � 2x5 � �2
5x1 � x2 � x4 � x5 � �7

x1 � x2 � 6x3 � x4 � �4

and

xj � 0, for j � 1, 2, 3, 4, 5
xj is integer, for j � 1, 2, 3.

12.7-11. Reconsider the discrete nonlinear programming problem
given in Prob. 12.4-5.
(a) Use the following outline in designing the main features of a

branch-and-bound algorithm for solving this problem (and sim-
ilar problems) directly without reformulation.
(i) Specify the tightest possible nonlinear programming re-

laxation that has only continuous variables and so can be
solved efficiently by nonlinear programming techniques.
(The next chapter will describe how such nonlinear pro-
gramming problems can be solved efficiently.)
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(ii) Specify the fathoming tests.
(iii) Specify a branching procedure that involves specifying

two ranges of values for a single variable.
(b) Use the algorithm designed in part (a) to solve this problem

by using an available software package to solve the quadratic
programming relaxation at each iteration. (As described in Sec.
13.7, Excel, LINDO, LINGO, and MPL/CPLEX all are able
to solve quadratic programming problems.)

12.8-1.* For each of the following constraints of pure BIP prob-
lems, use the constraint to fix as many variables as possible.
(a) 4x1 � x2 � 3x3 � 2x4 � 2
(b) 4x1 � x2 � 3x3 � 2x4 � 2
(c) 4x1 � x2 � 3x3 � 2x4 � 7

12.8-2. For each of the following constraints of pure BIP prob-
lems, use the constraint to fix as many variables as possible.
(a) 20x1 � 7x2 � 5x3 � 10
(b) 10x1 � 7x2 � 5x3 � 10
(c) 10x1 � 7x2 � 5x3 � �1

12.8-3. Use the following set of constraints for the same pure BIP
problem to fix as many variables as possible. Also identify the con-
straints which become redundant because of the fixed variables.

3x3 � x5 � x7 � 1
x2 � x4 � x6 � 1
x1 � 2x5 � 2x6 � 2
x1 � x2 � x4 � 0

12.8-4. For each of the following constraints of pure BIP prob-
lems, identify which ones are made redundant by the binary con-
straints. Explain why each one is, or is not, redundant.
(a) 2x1 � x2 � 2x3 � 5
(b) 3x1 � 4x2 � 5x3 � 5
(c) x1 � x2 � x3 � 2
(d) 3x1 � x2 � 2x3 � �4

12.8-5. In Sec. 12.8, at the end of the subsection on tightening
constraints, we indicated that the constraint 4x1 � 3x2 � x3 �
2x4 � 5 can be tightened to 2x1 � 3x2 � x3 � 2x4 � 3 and then
to 2x1 � 2x2 � x3 � 2x4 � 3. Apply the procedure for tightening
constraints to confirm these results.

12.8-6. Apply the procedure for tightening constraints to the fol-
lowing constraint for a pure BIP problem.

3x1 � 2x2 � x3 � 3.

12.8-7. Apply the procedure for tightening constraints to the fol-
lowing constraint for a pure BIP problem.

x1 � x2 � 3x3 � 4x4 � 1.



12.8-13. Generate as many cutting planes as possible from the fol-
lowing constraint for a pure BIP problem.

5x1 � 3x2 � 7x3 � 4x4 � 6x5 � 9.

12.8-14. Consider the following BIP problem.

Maximize Z � 2x1 � 3x2 � x3 � 4x4 � 3x5

� 2x6 � 2x7 � x8 � 3x9,

subject to

3x2 � x4 � x5 � 3
x1 � x2 � 1

x2 � x4 � x5 � x6 � �1
x2 � 2x6 � 3x7 � x8 � 2x9 � 4

�x3 � 2x5 � x6 � 2x7 � 2x8 � x9 � 5

and

all xj binary.

Develop the tightest possible formulation of this problem by using
the techniques of automatic problem reprocessing (fixing variables,
deleting redundant constraints, and tightening constraints). Then
use this tightened formulation to determine an optimal solution by
inspection.

12.8-8. Apply the procedure for tightening constraints to each of
the following constraints for a pure BIP problem.
(a) x1 � 3x2 � 4x3 � 2.
(b) 3x1 � x2 � 4x3 � 1.

12.8-9. In Sec. 12.8, a pure BIP example with the constraint, 2x1 �
3x2 � 4, was used to illustrate the procedure for tightening constraints.
Show that applying the procedure for generating cutting planes to this
constraint yields the same new constraint, x1 � x2 � 1.

12.8-10. One of the constraints of a certain pure BIP problem is

x1 � 3x2 � 2x3 � 4x4 � 5.

Identify all the minimal covers for this constraint, and then give
the corresponding cutting planes.

12.8-11. One of the constraints of a certain pure BIP problem is

3x1 � 4x2 � 2x3 � 5x4 � 7.

Identify all the minimal covers for this constraint, and then give
the corresponding cutting planes.

12.8-12. Generate as many cutting planes as possible from the fol-
lowing constraint for a pure BIP problem.

3x1 � 5x2 � 4x3 � 8x4 � 10.
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Bentley Hamilton throws the business section of the New York Times onto the confer-
ence room table and watches as his associates jolt upright in their overstuffed chairs.

Mr. Hamilton wants to make a point.
He throws the front page of the Wall Street Journal on top of the New York Times

and watches as his associates widen their eyes once heavy with boredom.
Mr. Hamilton wants to make a big point.
He then throws the front page of the Financial Times on top of the newspaper pile

and watches as his associates dab the fine beads of sweat off their brows.
Mr. Hamilton wants his point indelibly etched into his associates’ minds.
“I have just presented you with three leading financial newspapers carrying to-

day’s top business story,” Mr. Hamilton declares in a tight, angry voice. “My dear as-
sociates, our company is going to hell in a hand basket! Shall I read you the headlines?
From the New York Times, ‘CommuniCorp stock drops to lowest in 52 weeks.’ From
the Wall Street Journal, ‘CommuniCorp loses 25 percent of the pager market in only
one year.’ Oh and my favorite, from the Financial Times, ‘CommuniCorp cannot Com-
muniCate: CommuniCorp stock drops because of internal communications disarray.’
How did our company fall into such dire straits?”
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Mr. Hamilton throws a transparency showing a line sloping slightly upward onto
the overhead projector. “This is a graph of our productivity over the last 12 months. As
you can see from the graph, productivity in our pager production facility has increased
steadily over the last year. Clearly, productivity is not the cause of our problem.”

Mr. Hamilton throws a second transparency showing a line sloping steeply upward
onto the overhead projector. “This is a graph of our missed or late orders over the last
12 months.” Mr. Hamilton hears an audible gasp from his associates. “As you can see
from the graph, our missed or late orders have increased steadily and significantly over
the past 12 months. I think this trend explains why we have been losing market share,
causing our stock to drop to its lowest level in 52 weeks. We have angered and lost the
business of retailers, our customers who depend upon on-time deliveries to meet the
demand of consumers.”

“Why have we missed our delivery dates when our productivity level should have
allowed us to fill all orders?” Mr. Hamilton asks. “I called several departments to ask
this question.”

“It turns out that we have been producing pagers for the hell of it!” Mr. Hamilton
says in disbelief. “The marketing and sales departments do not communicate with the
manufacturing department, so manufacturing executives do not know what pagers to
produce to fill orders. The manufacturing executives want to keep the plant running,
so they produce pagers regardless of whether the pagers have been ordered. Finished
pagers are sent to the warehouse, but marketing and sales executives do not know the
number and styles of pagers in the warehouse. They try to communicate with ware-
house executives to determine if the pagers in inventory can fill the orders, but they
rarely receive answers to their questions.”

Mr. Hamilton pauses and looks directly at his associates. “Ladies and gentlemen,
it seems to me that we have a serious internal communications problem. I intend to
correct this problem immediately. I want to begin by installing a companywide com-
puter network to ensure that all departments have access to critical documents and are
able to easily communicate with each other through e-mail. Because this intranet will
represent a large change from the current communications infrastructure, I expect some
bugs in the system and some resistance from employees. I therefore want to phase in
the installation of the intranet.”

Mr. Hamilton passes the following timeline and requirements chart to his associ-
ates (IN � Intranet).
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Month 1 Month 2 Month 3 Month 4 Month 5

IN Education
Install IN in
Sales

Install IN in
Manufacturing

Install IN in
Warehouse

Install IN in
Marketing



Mr. Hamilton proceeds to explain the timeline and requirements chart. “In the first
month, I do not want to bring any department onto the intranet; I simply want to dis-
seminate information about it and get buy-in from employees. In the second month, I
want to bring the sales department onto the intranet since the sales department receives
all critical information from customers. In the third month, I want to bring the manu-
facturing department onto the intranet. In the fourth month, I want to install the in-
tranet at the warehouse, and in the fifth and final month, I want to bring the market-
ing department onto the intranet. The requirements chart under the timeline lists the
number of employees requiring access to the intranet in each department.”

Mr. Hamilton turns to Emily Jones, the head of Corporate Information Manage-
ment. “I need your help in planning for the installation of the intranet. Specifically, the
company needs to purchase servers for the internal network. Employees will connect
to company servers and download information to their own desktop computers.”

Mr. Hamilton passes Emily the following chart detailing the types of servers avail-
able, the number of employees each server supports, and the cost of each server.
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Department Number of Employees

Sales 60
Manufacturing 200
Warehouse 30
Marketing 75

Number of Employees
Type of Server Server Supports Cost of Server

Standard Intel Pentium PC Up to 30 employees $12,500
Enhanced Intel Pentium PC Up to 80 employees $15,000
SGI Workstation Up to 200 employees $10,000
Sun Workstation Up to 2,000 employees $25,000

“Emily, I need you to decide what servers to purchase and when to purchase them
to minimize cost and to ensure that the company possesses enough server capacity to
follow the intranet implementation timeline,” Mr. Hamilton says. “For example, you
may decide to buy one large server during the first month to support all employees, or
buy several small servers during the first month to support all employees, or buy one
small server each month to support each new group of employees gaining access to the
intranet.”

“There are several factors that complicate your decision,” Mr. Hamilton continues.
“Two server manufacturers are willing to offer discounts to CommuniCorp. SGI is will-
ing to give you a discount of 10 percent off each server purchased, but only if you pur-
chase servers in the first or second month. Sun is willing to give you a 25 percent dis-
count off all servers purchased in the first two months. You are also limited in the
amount of money you can spend during the first month. CommuniCorp has already al-



located much of the budget for the next two months, so you only have a total of $9,500
available to purchase servers in months 1 and 2. Finally, the Manufacturing Depart-
ment requires at least one of the three more powerful servers. Have your decision on
my desk at the end of the week.”

(a) Emily first decides to evaluate the number and type of servers to purchase on a month-to-
month basis. For each month, formulate an IP model to determine which servers Emily should
purchase in that month to minimize costs in that month and support the new users. How
many and which types of servers should she purchase in each month? How much is the to-
tal cost of the plan?

(b) Emily realizes that she could perhaps achieve savings if she bought a larger server in the
initial months to support users in the final months. She therefore decides to evaluate the
number and type of servers to purchase over the entire planning period. Formulate an IP
model to determine which servers Emily should purchase in which months to minimize to-
tal cost and support all new users. How many and which types of servers should she pur-
chase in each month? How much is the total cost of the plan?

(c) Why is the answer using the first method different from that using the second method?
(d) Are there other costs that Emily is not accounting for in her problem formulation? If so,

what are they?
(e) What further concerns might the various departments of CommuniCorp have regarding the

intranet?
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It had been a dream come true for Ash Briggs, a struggling artist living in the San Fran-
cisco Bay Area. He had made a trip to the corner grocery store late one Friday after-
noon to buy some milk, and on impulse, he had also purchased a California lottery
ticket. One week later, he was a millionaire.

Ash did not want to squander his winnings on materialistic, trivial items. Instead
he wanted to use his money to support his true passion: art. Ash knew all too well the
difficulties of gaining recognition as an artist in this postindustrial, technological soci-
ety where artistic appreciation is rare and financial support even rarer. He therefore de-
cided to use the money to fund an exhibit of up-and-coming modern artists at the San
Francisco Museum of Modern Art.

Ash approached the museum directors with his idea, and the directors became ex-
cited immediately after he informed them that he would fund the entire exhibit in ad-
dition to donating $1 million to the museum. Celeste McKenzie, a museum director,
was assigned to work with Ash in planning the exhibit. The exhibit was slated to open
one year from the time Ash met with the directors, and the exhibit pieces would re-
main on display for two months.

CASE 12.2 ASSIGNING ART



Ash began the project by combing the modern art community for potential artists
and pieces. He presented the following list of artists, their pieces, and the price of dis-
playing each piece1 to Celeste.
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1The display price includes the cost of paying the artist for loaning the piece to the museum, transporting
the piece to San Francisco, constructing the display for the piece, insuring the piece while it is on display,
and transporting the piece back to its origin.

Artist Piece Description of Piece Price

Colin Zweibell “Perfection” A wire mesh sculpture of $300,000
the human body

“Burden” A wire mesh sculpture of a mule $250,000

“The Great Equalizer” A wire mesh sculpture of a gun $125,000

Rita Losky “Chaos Reigns” A series of computer-generated $400,000
drawings

“Who Has Control?” A computer-generated drawing $500,000
intermeshed with lines of computer 
code

“Domestication” A pen-and-ink drawing of a house $400,000

“Innocence” A pen-and-ink drawing of a child $550,000

Norm Marson “Aging Earth” A sculpture of trash covering a $700,000
larger globe

“Wasted Resources” A collage of various packaging $575,000
materials

Candy Tate “Serenity” An all blue watercolor painting $200,000

“Calm Before the A painting with an all blue $225,000
Storm” watercolor background and a black 

watercolor center

Robert Bayer “Void” An all black oil painting $150,000

“Sun” An all yellow oil painting $150,000

David Lyman “Storefront Window” A photo-realistic painting of a $850,000
jewelry store display window

“Harley” A photo-realistic painting of a $750,000
Harley-Davidson motorcycle

Angie Oldman “Consumerism” A collage of magazine advertisements $400,000

“Reflection” A mirror (considered a sculpture) $175,000

“Trojan Victory” A wooden sculpture of a condom $450,000
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Ash possesses certain requirements for the exhibit. He believes the majority of
Americans lack adequate knowledge of art and artistic styles, and he wants the exhibit
to educate Americans. Ash wants visitors to become aware of the collage as an art form,
but he believes collages require little talent. He therefore decides to include only one
collage. Additionally, Ash wants viewers to compare the delicate lines in a three-
dimensional wire mesh sculpture to the delicate lines in a two-dimensional computer-

Artist Piece Description of Piece Price

Rick Rawls “Rick” A photo-realistic self-portrait $500,000
(painting)

“Rick II” A cubist self-portrait (painting) $500,000

“Rick III” An expressionist self-portrait $500,000
(painting)

Bill Reynolds “Beyond” A science fiction oil painting $650,000
depicting Mars colonization

“Pioneers” An oil painting of three astronauts $650,000
aboard the space shuttle

Bear Canton “Wisdom” A pen-and-ink drawing of an $250,000
Apache chieftain

“Superior Powers” A pen-and-ink drawing of a $350,000
traditional Native American rain 
dance

“Living Land” An oil painting of the Grand Canyon $450,000

Helen Row “Study of a Violin” A cubist painting of a violin $400,000

“Study of a Fruit Bowl” A cubist painting of a bowl of fruit $400,000

Ziggy Lite “My Namesake” A collage of Ziggy cartoons $300,000

“Narcissism” A collage of photographs of Ziggy Lite $300,000

Ash Briggs “All That Glitters” A watercolor painting of the $50,000*
Golden Gate Bridge

“The Rock” A watercolor painting of Alcatraz $150,000

“Winding Road” A watercolor painting of Lombard $150,000
Street

“Dreams Come True” A watercolor painting of the San $150,000
Francisco Museum of Modern Art

*Ash does not require personal compensation, and the cost for moving his pieces to the museum
from his home in San Francisco is minimal. The cost of displaying his pieces therefore only
includes the cost of constructing the display and insuring the pieces.



generated drawing. He therefore wants at least one wire mesh sculpture displayed if a
computer-generated drawing is displayed. Alternatively, he wants at least one com-
puter-generated drawing displayed if a wire mesh sculpture is displayed. Furthermore,
Ash wants to expose viewers to all painting styles, but he wants to limit the number
of paintings displayed to achieve a balance in the exhibit between paintings and other
art forms. He therefore decides to include at least one photo-realistic painting, at least
one cubist painting, at least one expressionist painting, at least one watercolor paint-
ing, and at least one oil painting. At the same time, he wants the number of paintings
to be no greater than twice the number of other art forms.

Ash wants all his own paintings included in the exhibit since he is sponsoring the
exhibit and since his paintings celebrate the San Francisco Bay Area, the home of the
exhibit.

Ash possesses personal biases for and against some artists. Ash is currently hav-
ing a steamy affair with Candy Tate, and he wants both of her paintings displayed.
Ash counts both David Lyman and Rick Rawls as his best friends, and he does not
want to play favorites among these two artists. He therefore decides to display as many
pieces from David Lyman as from Rick Rawls and to display at least one piece from
each of them. Although Ziggy Lite is very popular within art circles, Ash believes
Ziggy makes a mockery of art. Ash will therefore only accept one display piece from
Ziggy, if any at all.

Celeste also possesses her own agenda for the exhibit. As a museum director, she
is interested in representing a diverse population of artists, appealing to a wide audi-
ence, and creating a politically correct exhibit. To advance feminism, she decides to
include at least one piece from a female artist for every two pieces included from a
male artist. To advance environmentalism, she decides to include either one or both of
the pieces “Aging Earth” and “Wasted Resources.” To advance Native American rights,
she decides to include at least one piece by Bear Canton. To advance science, she de-
cides to include at least one of the following pieces: “Chaos Reigns,” “Who Has Con-
trol,” “Beyond,” and “Pioneers.”

Celeste also understands that space is limited at the museum. The museum only
has enough floor space for four sculptures and enough wall space for 20 paintings, col-
lages, and drawings.

Finally, Celeste decides that if “Narcissism” is displayed, “Reflection” should also
be displayed since “Reflection” also suggests narcissism.

Please explore the following questions independently except where otherwise in-
dicated.

(a) Ash decides to allocate $4 million to fund the exhibit. Given the pieces available and the
specific requirements from Ash and Celeste, formulate and solve a BIP model to maximize
the number of pieces displayed in the exhibit without exceeding the budget. How many pieces
are displayed? Which pieces are displayed?

(b) To ensure that the exhibit draws the attention of the public, Celeste decides that it must in-
clude at least 20 pieces. Formulate and solve a BIP model to minimize the cost of the ex-
hibit while displaying at least 20 pieces and meeting the requirements set by Ash and Ce-
leste. How much does the exhibit cost? Which pieces are displayed?
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(c) An influential patron of Rita Losky’s work who chairs the Museum Board of Directors learns
that Celeste requires at least 20 pieces in the exhibit. He offers to pay the minimum amount
required on top of Ash’s $4 million to ensure that exactly 20 pieces are displayed in the ex-
hibit and that all of Rita’s pieces are displayed. How much does the patron have to pay?
Which pieces are displayed?

CASE 12.3 STOCKING SETS 649

Daniel Holbrook, an expeditor at the local warehouse for Furniture City, sighed as he
moved boxes and boxes of inventory to the side in order to reach the shelf where the
particular item he needed was located. He dropped to his hands and knees and squinted
at the inventory numbers lining the bottom row of the shelf. He did not find the num-
ber he needed. He worked his way up the shelf until he found the number matching
the number on the order slip. Just his luck! The item was on the top row of the shelf!
Daniel walked back through the warehouse to find a ladder, stumbling over boxes of
inventory littering his path. When he finally climbed the ladder to reach the top shelf,
his face crinkled in frustration. Not again! The item he needed was not in stock! All
he saw above the inventory number was an empty space covered with dust!

Daniel trudged back through the warehouse to make the dreadful phone call. He
dialed the number of Brenda Sims, the saleswoman on the kitchen showroom floor of
Furniture City, and informed her that the particular light fixture the customer had re-
quested was not in stock. He then asked her if she wanted him to look for the rest of
the items in the kitchen set. Brenda told him that she would talk to the customer and
call him back.

Brenda hung up the phone and frowned. Mr. Davidson, her customer, would not
be happy. Ordering and receiving the correct light fixture from the regional warehouse
would take at least two weeks.

Brenda then paused to reflect upon business during the last month and realized
that over 80 percent of the orders for kitchen sets could not be filled because items
needed to complete the sets were not in stock at the local warehouse. She also real-
ized that Furniture City was losing customer goodwill and business because of stock-
outs. The furniture megastore was gaining a reputation for slow service and delayed
deliveries, causing customers to turn to small competitors that sold furniture directly
from the showroom floor.

Brenda decided to investigate the inventory situation at the local warehouse. She
walked the short distance to the building next door and gasped when she stepped in-
side the warehouse. What she saw could only be described as chaos. Spaces allocated
for some items were overflowing into the aisles of the warehouse while other spaces
were completely bare. She walked over to one of the spaces overflowing with inven-
tory to discover the item that was overstocked. She could not believe her eyes! The
warehouse had at least 30 rolls of pea-green wallpaper! No customer had ordered pea-
green wallpaper since 1973!
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Brenda marched over to Daniel demanding an explanation. Daniel said that the
warehouse had been in such a chaotic state since his arrival one year ago. He said the
inventory problems occurred because management had a policy of stocking every fur-
niture item on the showroom floor in the local warehouse. Management only replen-
ished inventory every three months, and when inventory was replenished, management
ordered every item regardless of if it had been sold. Daniel also said that he had tried
to make management aware of the problems with overstocking unpopular items and
understocking popular items, but that management would not listen to him because he
was simply an expeditor.

Brenda understood that Furniture City required a new inventory policy. Not only
was the megastore losing money by making customers unhappy with delivery de-
lays, but it was also losing money by wasting warehouse space. By changing the
inventory policy to stock only popular items and replenish them immediately when
they are sold, Furniture City would ensure that the majority of customers receive
their furniture immediately and that the valuable warehouse space was utilized 
effectively.

Brenda needed to sell her inventory policy to management. Using her extensive
sales experience, she decided that the most effective sales strategy would be to use
her kitchen department as a model for the new inventory policy. She would identify
all kitchen sets comprising 85 percent of customers orders. Given the fixed amount
of warehouse space allocated to the kitchen department, she would identify the items
Furniture City should stock in order to satisfy the greatest number of customer or-
ders. She would then calculate the revenue from satisfying customer orders under the
new inventory policy, using the bottom line to persuade management to accept her
policy.

Brenda analyzed her records over the past three years and determined that 20
kitchen sets were responsible for 85 percent of the customer orders. These 20 kitchen
sets were composed of up to eight features in a variety of styles. Brenda listed each
feature and its popular styles:
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Floor Tile Wallpaper Light Fixtures Cabinets

(T1) White textured (W1) Plain ivory (L1) One large rectangular (C1) Light solid 
tile paper frosted fixture wood cabinets

(T2) Ivory textured (W2) Ivory paper (L2) Three small square (C2) Dark solid 
tile with dark brown frosted fixtures wood cabinets

pinstripes

(T3) White (W3) Blue paper (L3) One large oval (C3) Light wood
checkered tile with marble texture frosted fixture cabinets with glass
with blue trim doors

(T4) White (W4) Light yellow (L4) Three small frosted (C4) Dark wood 
checkered tile with paper with marble globe fixtures cabinets with glass
light yellow trim texture doors



Brenda then created a table showing the 20 kitchen sets and the particular features
composing each set. To simplify the table, she used the codes shown in parentheses
above to represent the particular feature and style. The table is given below. For ex-
ample, kitchen set 1 consists of floor tile T2, wallpaper W2, light fixture L4, cabinet
C2, countertop O2, dishwasher D2, sink S2, and range R2. Notice that sets 14 through
20 do not contain dishwashers.

Brenda knew she had only a limited amount of warehouse space allocated to the
kitchen department. The warehouse could hold 50 square feet of tile and 12 rolls of
wallpaper in the inventory bins. The inventory shelves could hold two light fixtures,
two cabinets, three countertops, and two sinks. Dishwashers and ranges are similar in
size, so Furniture City stored them in similar locations. The warehouse floor could hold
a total of four dishwashers and ranges.

Every kitchen set always includes exactly 20 square feet of tile and exactly five
rolls of wallpaper. Therefore, 20 square feet of a particular style of tile and five rolls
of a particular style of wallpaper are required for the styles to be in stock.

(a) Formulate and solve a BIP model to maximize the total number of kitchen sets (and thus the
number of customer orders) Furniture City stocks in the local warehouse. Assume that when
a customer orders a kitchen set, all the particular items composing that kitchen set are re-
plenished at the local warehouse immediately.

(b) How many of each feature and style should Furniture City stock in the local warehouse?
How many different kitchen sets are in stock?

(c) Furniture City decides to discontinue carrying nursery sets, and the warehouse space previ-
ously allocated to the nursery department is divided between the existing departments at Fur-
niture City. The kitchen department receives enough additional space to allow it to stock
both styles of dishwashers and three of the four styles of ranges. How does the optimal in-
ventory policy for the kitchen department change with this additional warehouse space?

(d) Brenda convinces management that the kitchen department should serve as a testing ground
for future inventory policies. To provide adequate space for testing, management decides to
allocate all the space freed by the nursery department to the kitchen department. The extra
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Countertops Dishwashers Sinks Ranges

(O1) Plain light (D1) White energy- (S1) Sink with separate (R1) White electric
wood countertops saving dishwasher hot and cold water taps oven

(O2) Stained light (D2) Ivory energy- (S2) Divided sink with (R2) Ivory electric
wood countertops saving dishwasher separate hot and cold oven

water taps and garbage 
disposal

(O3) White  (S3) Sink with one hot (R3) White gas 
lacquer-coated and cold water tap oven
countertops

(O4) Ivory lacquer- (S4) Divided sink with (R4) Ivory gas oven
coated countertops one hot and cold water tap

and garbage disposal
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space means that the kitchen department can store not only the dishwashers and ranges from
part (c), but also all sinks, all countertops, three of the four light fixtures, and three of the
four cabinets. How much does the additional space help?

(e) How would the inventory policy be affected if the items composing a kitchen set could not
be replenished immediately? Under what conditions is the assumption of immediate replen-
ishment nevertheless justified?

CASE 12.4 ASSIGNING STUDENTS TO SCHOOLS (REVISITED AGAIN) 653

Reconsider Case 4.3.
The Springfield School Board now has made the decision to prohibit the splitting

of residential areas among multiple schools. Thus, each of the six areas must be as-
signed to a single school.

(a) Formulate a BIP model for this problem under the current policy of providing bussing for
all middle school students who must travel more than approximately a mile.

(b) Referring to part (a) of Case 4.3, explain why that linear programming model and the BIP
model just formulated are so different when they are dealing with nearly the same problem.

(c) Solve the BIP model formulated in part (a).
(d) Referring to part (c) of Case 4.3, determine how much the total bussing cost increases be-

cause of the decision to prohibit the splitting of residential areas among multiple schools.
(e, f, g, h) Repeat parts (e, f, g, h) of Case 4.3 under the new school board decision to prohibit

splitting residential areas among multiple schools.
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654

13
Nonlinear Programming

The fundamental role of linear programming in OR is accurately reflected by the fact that
it is the focus of a third of this book. A key assumption of linear programming is that all
its functions (objective function and constraint functions) are linear. Although this as-
sumption essentially holds for numerous practical problems, it frequently does not hold. In
fact, many economists have found that some degree of nonlinearity is the rule and not the
exception in economic planning problems.1 Therefore, it often is necessary to deal directly
with nonlinear programming problems, so we turn our attention to this important area.

In one general form,2 the nonlinear programming problem is to find x � (x1, x2, . . . ,
xn) so as to

Maximize f(x),

subject to

gi(x) � bi, for i � 1, 2, . . . , m,

and

x � 0,

where f(x) and the gi(x) are given functions of the n decision variables.3

No algorithm that will solve every specific problem fitting this format is available.
However, substantial progress has been made for some important special cases of this
problem by making various assumptions about these functions, and research is continu-
ing very actively. This area is a large one, and we do not have the space to survey it com-
pletely. However, we do present a few sample applications and then introduce some of
the basic ideas for solving certain important types of nonlinear programming problems.

Both Appendixes 2 and 3 provide useful background for this chapter, and we rec-
ommend that you review these appendixes as you study the next few sections.

1For example, see W. J. Baumol and R. C. Bushnell, “Error Produced by Linearization in Mathematical Pro-
gramming,” Econometrica, 35: 447–471, 1967.
2The other legitimate forms correspond to those for linear programming listed in Sec. 3.2. Section 4.6 describes
how to convert these other forms to the form given here.
3For simplicity, we assume throughout the chapter that all these functions either are differentiable everywhere
or are piecewise linear functions (discussed in Secs. 13.1 and 13.8).
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The following examples illustrate a few of the many important types of problems to which
nonlinear programming has been applied.

The Product-Mix Problem with Price Elasticity

In product-mix problems, such as the Wyndor Glass Co. problem of Sec. 3.1, the goal is
to determine the optimal mix of production levels for a firm’s products, given limitations
on the resources needed to produce those products, in order to maximize the firm’s total
profit. In some cases, there is a fixed unit profit associated with each product, so the re-
sulting objective function will be linear. However, in many product-mix problems, certain
factors introduce nonlinearities into the objective function.

For example, a large manufacturer may encounter price elasticity, whereby the amount
of a product that can be sold has an inverse relationship to the price charged. Thus, the
price-demand curve for a typical product might look like the one shown in Fig. 13.1,
where p(x) is the price required in order to be able to sell x units. The firm’s profit from
producing and selling x units of the product then would be the sales revenue, xp(x), mi-
nus the production and distribution costs. Therefore, if the unit cost for producing and dis-
tributing the product is fixed at c (see the dashed line in Fig. 13.1), the firm’s profit from
producing and selling x units is given by the nonlinear function

P(x) � xp(x) � cx,

as plotted in Fig. 13.2. If each of the firm’s n products has a similar profit function, say,
Pj(xj) for producing and selling xj units of product j ( j � 1, 2, . . . , n), then the overall
objective function is

f(x) � �
n

j�1
Pj(xj),

a sum of nonlinear functions.
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Another reason that nonlinearities can arise in the objective function is the fact that
the marginal cost of producing another unit of a given product varies with the production
level. For example, the marginal cost may decrease when the production level is increased
because of a learning-curve effect (more efficient production with more experience). On
the other hand, it may increase instead, because special measures such as overtime or more
expensive production facilities may be needed to increase production further.

Nonlinearities also may arise in the gi(x) constraint functions in a similar fashion. For
example, if there is a budget constraint on total production cost, the cost function will be
nonlinear if the marginal cost of production varies as just described. For constraints on the
other kinds of resources, gi(x) will be nonlinear whenever the use of the corresponding re-
source is not strictly proportional to the production levels of the respective products.

The Transportation Problem with Volume Discounts 
on Shipping Costs

As illustrated by the P & T Company example in Sec. 8.1, a typical application of the
transportation problem is to determine an optimal plan for shipping goods from various
sources to various destinations, given supply and demand constraints, in order to mini-
mize total shipping cost. It was assumed in Chap. 8 that the cost per unit shipped from a
given source to a given destination is fixed, regardless of the amount shipped. In actual-
ity, this cost may not be fixed. Volume discounts sometimes are available for large ship-
ments, so that the marginal cost of shipping one more unit might follow a pattern like the
one shown in Fig. 13.3. The resulting cost of shipping x units then is given by a nonlin-
ear function C(x), which is a piecewise linear function with slope equal to the marginal
cost, like the one shown in Fig. 13.4. [The function in Fig. 13.4 consists of a line seg-
ment with slope 6.5 from (0, 0) to (0.6, 3.9), a second line segment with slope 5 from
(0.6, 3.9) to (1.5, 8.4), a third line segment with slope 4 from (1.5, 8.4) to (2.7, 13.2), and
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a fourth line segment with slope 3 from (2.7, 13.2) to (4.5, 18.6).] Consequently, if each
combination of source and destination has a similar shipping cost function, so that the
cost of shipping xij units from source i (i � 1, 2, . . . , m) to destination j ( j � 1, 2, . . . ,
n) is given by a nonlinear function Cij(xij), then the overall objective function to be min-
imized is

f(x) � �
m

i�1
�
n

j�1
Cij(xij).

Even with this nonlinear objective function, the constraints normally are still the special
linear constraints that fit the transportation problem model in Sec. 8.1.

Portfolio Selection with Risky Securities

It now is common practice for professional managers of large stock portfolios to use com-
puter models based partially on nonlinear programming to guide them. Because investors
are concerned about both the expected return (gain) and the risk associated with their in-
vestments, nonlinear programming is used to determine a portfolio that, under certain as-
sumptions, provides an optimal trade-off between these two factors. This approach is based
largely on path-breaking research done by Harry Markowitz and William Sharpe that
helped them win the 1990 Nobel Prize in Economics.

A nonlinear programming model can be formulated for this problem as follows. Sup-
pose that n stocks (securities) are being considered for inclusion in the portfolio, and let
the decision variables xj ( j � 1, 2, . . . , n) be the number of shares of stock j to be in-
cluded. Let �j and �jj be the (estimated) mean and variance, respectively, of the return
on each share of stock j, where �jj measures the risk of this stock. For i � 1, 2, . . . , n
(i � j), let �ij be the covariance of the return on one share each of stock i and stock j.
(Because it would be difficult to estimate all the �ij values, the usual approach is to make
certain assumptions about market behavior that enable us to calculate �ij directly from �ii

and �jj .) Then the expected value R(x) and the variance V(x) of the total return from the
entire portfolio are

R(x) � �
n

j�1
�jxj

and

V(x) � �
n

i�1
�
n

j�1
�ij xixj,

where V(x) measures the risk associated with the portfolio. One way to consider the trade-
off between these two factors is to use V(x) as the objective function to be minimized and
then impose the constraint that R(x) must be no smaller than the minimum acceptable ex-
pected return. The complete nonlinear programming model then would be

Minimize V(x) � �
n

i�1
�
n

j�1
�ij xixj,
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subject to

�
n

j�1
�j xj � L

�
n

j�1
Pjxj � B

and

xj � 0, for j � 1, 2, . . . , n,

where L is the minimum acceptable expected return, Pj is the price for each share of stock
j, and B is the amount of money budgeted for the portfolio.

One drawback of this formulation is that it is relatively difficult to choose an appro-
priate value for L for obtaining the best trade-off between R(x) and V(x). Therefore, rather
than stopping with one choice of L, it is common to use a parametric (nonlinear) pro-
gramming approach to generate the optimal solution as a function of L over a wide range
of values of L. The next step is to examine the values of R(x) and V(x) for these solutions
that are optimal for some value of L and then to choose the solution that seems to give
the best trade-off between these two quantities. This procedure often is referred to as gen-
erating the solutions on the efficient frontier of the two-dimensional graph of (R(x), V(x))
points for feasible x. The reason is that the (R(x), V(x)) point for an optimal x (for some
L) lies on the frontier (boundary) of the feasible points. Furthermore, each optimal x is
efficient in the sense that no other feasible solution is at least equally good with one mea-
sure (R or V) and strictly better with the other measure (smaller V or larger R).

13.2 GRAPHICAL ILLUSTRATION OF NONLINEAR PROGRAMMING PROBLEMS 659

When a nonlinear programming problem has just one or two variables, it can be repre-
sented graphically much like the Wyndor Glass Co. example for linear programming in
Sec. 3.1. Because such a graphical representation gives considerable insight into the prop-
erties of optimal solutions for linear and nonlinear programming, let us look at a few ex-
amples. To highlight the difference between linear and nonlinear programming, we shall
use some nonlinear variations of the Wyndor Glass Co. problem.

Figure 13.5 shows what happens to this problem if the only changes in the model
shown in Sec. 3.1 are that both the second and the third functional constraints are replaced
by the single nonlinear constraint 9x2

1 	 5x2
2 � 216. Compare Fig. 13.5 with Fig. 3.3. The

optimal solution still happens to be (x1, x2) � (2, 6). Furthermore, it still lies on the bound-
ary of the feasible region. However, it is not a corner-point feasible (CPF) solution. The
optimal solution could have been a CPF solution with a different objective function (check
Z � 3x1 	 x2), but the fact that it need not be one means that we no longer have the
tremendous simplification used in linear programming of limiting the search for an opti-
mal solution to just the CPF solutions.

Now suppose that the linear constraints of Sec. 3.1 are kept unchanged, but the ob-
jective function is made nonlinear. For example, if

Z � 126x1 � 9x2
1 	 182x2 � 13x2

2,

13.2 GRAPHICAL ILLUSTRATION OF 
NONLINEAR PROGRAMMING PROBLEMS
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then the graphical representation in Fig. 13.6 indicates that the optimal solution is x1 � 

8
3


,
x2 � 5, which again lies on the boundary of the feasible region. (The value of Z for this
optimal solution is Z � 857, so Fig. 13.6 depicts the fact that the locus of all points with
Z � 857 intersects the feasible region at just this one point, whereas the locus of points
with any larger Z does not intersect the feasible region at all.) On the other hand, if

Z � 54x1 � 9x2
1 	 78x2 � 13x2

2,

then Fig. 13.7 illustrates that the optimal solution turns out to be (x1, x2) � (3, 3), which
lies inside the boundary of the feasible region. (You can check that this solution is opti-
mal by using calculus to derive it as the unconstrained global maximum; because it also
satisfies the constraints, it must be optimal for the constrained problem.) Therefore, a gen-

FIGURE 13.7
The Wyndor Glass Co.
example with the original
feasible region but with
another nonlinear objective
function, Z � 54x1 � 9x2

1 	
78x2 � 13x2

2, replacing the
original objective function.



eral algorithm for solving similar problems needs to consider all solutions in the feasible
region, not just those on the boundary.

Another complication that arises in nonlinear programming is that a local maximum
need not be a global maximum (the overall optimal solution). For example, consider the
function of a single variable plotted in Fig. 13.8. Over the interval 0 � x � 5, this func-
tion has three local maxima—x � 0, x � 2, and x � 4—but only one of these—x � 4—
is a global maximum. (Similarly, there are local minima at x � 1, 3, and 5, but only x � 5
is a global minimum.)

Nonlinear programming algorithms generally are unable to distinguish between a lo-
cal maximum and a global maximum (except by finding another better local maximum).
Therefore, it becomes crucial to know the conditions under which any local maximum is
guaranteed to be a global maximum over the feasible region. You may recall from cal-
culus that when we maximize an ordinary (doubly differentiable) function of a single vari-
able f(x) without any constraints, this guarantee can be given when

� 0 for all x.

Such a function that is always “curving downward” (or not curving at all) is called a con-
cave function.1 Similarly, if � is replaced by �, so that the function is always “curving
upward” (or not curving at all), it is called a convex function.2 (Thus, a linear function
is both concave and convex.) See Fig. 13.9 for examples. Then note that Fig. 13.8 illus-
trates a function that is neither concave nor convex because it alternates between curving
upward and curving downward.

Functions of multiple variables also can be characterized as concave or convex if they
always curve downward or curve upward. These intuitive definitions are restated in pre-
cise terms, along with further elaboration on these concepts, in Appendix 2. Appendix 2
also provides a convenient test for checking whether a function of two variables is con-
cave, convex, or neither.

Here is a convenient way of checking this for a function of more than two variables
when the function consists of a sum of smaller functions of just one or two variables each.

d2f


dx2
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f (x)

0 1 2 3 4 5 x

FIGURE 13.8
A function with several local
maxima (x � 0, 2, 4), but
only x � 4 is a global
maximum.

1Concave functions sometimes are referred to as concave downward.
2Convex functions sometimes are referred to as concave upward.



If each smaller function is concave, then the overall function is concave. Similarly, the
overall function is convex if each smaller function is convex.

To illustrate, consider the function

f(x1, x2, x3) � 4x1 � x2
1 � (x2 � x3)2

� [4x1 � x2
1] 	 [�(x2 � x3)2],

which is the sum of the two smaller functions given in square brackets. The first smaller
function 4x1 � x2

1 is a function of the single variable x1, so it can be found to be concave
by noting that its second derivative is negative. The second smaller function �(x2 � x3)2

is a function of just x2 and x3, so the test for functions of two variables given in Appen-
dix 2 is applicable. In fact, Appendix 2 uses this particular function to illustrate the test
and finds that the function is concave. Because both smaller functions are concave, the
overall function f(x1, x2, x3) must be concave.

If a nonlinear programming problem has no constraints, the objective function being
concave guarantees that a local maximum is a global maximum. (Similarly, the objective
function being convex ensures that a local minimum is a global minimum.) If there are
constraints, then one more condition will provide this guarantee, namely, that the feasi-
ble region is a convex set. As discussed in Appendix 2, a convex set is simply a set of
points such that, for each pair of points in the collection, the entire line segment joining
these two points is also in the collection. Thus, the feasible region for the original Wyn-
dor Glass Co. problem (see Fig. 13.6 or 13.7) is a convex set. In fact, the feasible region
for any linear programming problem is a convex set. Similarly, the feasible region in Fig.
13.5 is a convex set.

In general, the feasible region for a nonlinear programming problem is a convex set
whenever all the gi(x) [for the constraints gi(x) � bi] are convex functions. For the ex-
ample of Fig. 13.5, both of its gi(x) are convex functions, since g1(x) � x1 (a linear func-
tion is automatically both concave and convex) and g2(x) � 9x1

2 	 5x2
2 (both 9x1

2 and 5x2
2

are convex functions so their sum is a convex function). These two convex gi(x) lead to
the feasible region of Fig. 13.5 being a convex set.

Now let’s see what happens when just one of these gi(x) is a concave function in-
stead. In particular, suppose that the only change made in the example of Fig. 13.5 is that
its nonlinear constraint is replaced by 8x1 � x2

1 	 14x2 � x2
2 � 49. Therefore, the new
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FIGURE 13.9
Examples of (a) a concave
function and (b) a convex
function.



g2(x) � 8x1 � x2
1 	 14x2 � x2

2, which is a concave function since both 8x1 � x2
1 and 

14x2 � x2
2 are concave functions. The new feasible region shown in Fig. 13.10 is not a

convex set. Why? Because this feasible region contains pairs of points, for example,
(0, 7) and (4, 3), such that part of the line segment joining these two points is not in the
feasible region. Consequently, we cannot guarantee that a local maximum is a global max-
imum. In fact, this example has two local maxima, (0, 7) and (4, 3), but only (0, 7) is a
global maximum.

Therefore, to guarantee that a local maximum is a global maximum for a nonlinear
programming problem with constraints gi(x) � bi (i � 1, 2, . . . , m) and x � 0, the ob-
jective function f(x) must be a concave function and each gi(x) must be a convex func-
tion. Such a problem is called a convex programming problem, which is one of the key
types of nonlinear programming problems discussed in the next section.
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(4, 3) � local maximum

Z � 35 � 3x1 	 5x2

Z � 27 � 3x1 	 5x2

(0, 7) � optimal solution

Feasible region (not a convex set)

Maximize Z � 3x1 	 5x2,  
subject to

and

x1 �   4
8x1 � x1 	 14x2 � x2 � 49

x1 � 0, x2 � 0

22

FIGURE 13.10
The Wyndor Glass Co.
example with another
nonlinear constraint, 
8x1 � x2

1 	 14x2 � x2
2 � 49,

replacing the original second
and third functional
constraints.

Nonlinear programming problems come in many different shapes and forms. Unlike the
simplex method for linear programming, no single algorithm can solve all these different
types of problems. Instead, algorithms have been developed for various individual classes
(special types) of nonlinear programming problems. The most important classes are in-
troduced briefly in this section. The subsequent sections then describe how some prob-
lems of these types can be solved.
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Unconstrained Optimization

Unconstrained optimization problems have no constraints, so the objective is simply to

Maximize f(x)

over all values of x � (x1, x2, . . . , xn). As reviewed in Appendix 3, the necessary condi-
tion that a particular solution x � x* be optimal when f(x) is a differentiable function is

� 0 at x � x*, for j � 1, 2, . . . , n.

When f(x) is a concave function, this condition also is sufficient, so then solving for x* re-
duces to solving the system of n equations obtained by setting the n partial derivatives equal
to zero. Unfortunately, for nonlinear functions f(x), these equations often are going to be non-
linear as well, in which case you are unlikely to be able to solve analytically for their si-
multaneous solution. What then? Sections 13.4 and 13.5 describe algorithmic search proce-
dures for finding x*, first for n � 1 and then for n � 1. These procedures also play an important
role in solving many of the problem types described next, where there are constraints. The
reason is that many algorithms for constrained problems are designed so that they can focus
on an unconstrained version of the problem during a portion of each iteration.

When a variable xj does have a nonnegativity constraint xj � 0, the preceding neces-
sary and (perhaps) sufficient condition changes slightly to

�
for each such j. This condition is illustrated in Fig. 13.11, where the optimal solution for
a problem with a single variable is at x � 0 even though the derivative there is negative
rather than zero. Because this example has a concave function to be maximized subject
to a nonnegativity constraint, having the derivative less than or equal to 0 at x � 0 is both
a necessary and sufficient condition for x � 0 to be optimal.

A problem that has some nonnegativity constraints but no functional constraints is
one special case (m � 0) of the next class of problems.

Linearly Constrained Optimization

Linearly constrained optimization problems are characterized by constraints that com-
pletely fit linear programming, so that all the gi(x) constraint functions are linear, but the
objective function f(x) is nonlinear. The problem is considerably simplified by having just
one nonlinear function to take into account, along with a linear programming feasible re-
gion. A number of special algorithms based upon extending the simplex method to con-
sider the nonlinear objective function have been developed.

One important special case, which we consider next, is quadratic programming.

Quadratic Programming

Quadratic programming problems again have linear constraints, but now the objective
function f(x) must be quadratic. Thus, the only difference between such a problem and a
linear programming problem is that some of the terms in the objective function involve
the square of a variable or the product of two variables.

if xj* � 0
if xj* � 0

at x � x*,
at x � x*,

� 0
� 0

�f


�xj

�f


�xj
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Many algorithms have been developed for this case under the additional assumption
that f(x) is a concave function. Section 13.7 presents an algorithm that involves a direct
extension of the simplex method.

Quadratic programming is very important, partially because such formulations arise
naturally in many applications. For example, the problem of portfolio selection with
risky securities described in Sec. 13.1 fits into this format. However, another major
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Global maximum because f (x) is concave and

 � �2 � 0 at x � 0. So x � 0 is optimal.
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Maximize f (x) � 24 � 2x � x2,  
subject to x � 0.

FIGURE 13.11
An example that illustrates
how an optimal solution can
lie at a point where a
derivative is negative instead
of zero, because that point
lies at the boundary of a
nonnegativity constraint.



reason for its importance is that a common approach to solving general linearly 
constrained optimization problems is to solve a sequence of quadratic programming
approximations.

Convex Programming

Convex programming covers a broad class of problems that actually encompasses as spe-
cial cases all the preceding types when f(x) is a concave function. The assumptions are that

1. f(x) is a concave function.
2. Each gi(x) is a convex function.

As discussed at the end of Sec. 13.2, these assumptions are enough to ensure that a local
maximum is a global maximum. You will see in Sec. 13.6 that the necessary and suffi-
cient conditions for such an optimal solution are a natural generalization of the conditions
just given for unconstrained optimization and its extension to include nonnegativity con-
straints. Section 13.9 then describes algorithmic approaches to solving convex program-
ming problems.

Separable Programming

Separable programming is a special case of convex programming, where the one addi-
tional assumption is that

3. All the f(x) and gi(x) functions are separable functions.

A separable function is a function where each term involves just a single variable, so
that the function is separable into a sum of functions of individual variables. For exam-
ple, if f(x) is a separable function, it can be expressed as

f(x) � �
n

j�1
fj(xj),

where each fj(xj) function includes only the terms involving just xj. In the terminology of
linear programming (see Sec. 3.3), separable programming problems satisfy the assump-
tion of additivity but not the assumption of proportionality (for nonlinear functions).

To illustrate, the objective function considered in Fig. 13.6,

f(x1, x2) � 126x1 � 9x1
2 	 182x2 � 13x2

2

is a separable function because it can be expressed as

f(x1, x2) � f1(x1) 	 f2(x2)

where f1(x1) � 126x1 � 9x1
2 and f2(x2) � 182x2 � 13x2

2 are each a function of a single vari-
able—x1 and x2, respectively. By the same reasoning, you can verify that the objective
function considered in Fig. 13.7 also is a separable function.

It is important to distinguish separable programming problems from other convex pro-
gramming problems, because any such problem can be closely approximated by a linear
programming problem so that the extremely efficient simplex method can be used. This
approach is described in Sec. 13.8. (For simplicity, we focus there on the linearly con-
strained case where the special approach is needed only on the objective function.)
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Nonconvex Programming

Nonconvex programming encompasses all nonlinear programming problems that do not
satisfy the assumptions of convex programming. Now, even if you are successful in find-
ing a local maximum, there is no assurance that it also will be a global maximum. There-
fore, there is no algorithm that will guarantee finding an optimal solution for all such
problems. However, there do exist some algorithms that are relatively well suited for find-
ing local maxima, especially when the forms of the nonlinear functions do not deviate too
strongly from those assumed for convex programming. One such algorithm is presented
in Sec. 13.10.

However, certain specific types of nonconvex programming problems can be solved
without great difficulty by special methods. Two especially important such types are dis-
cussed briefly next.

Geometric Programming

When we apply nonlinear programming to engineering design problems, the objective
function and the constraint functions frequently take the form

g(x) � �
N

i�1
ciPi(x),

where

Pi(x) � x1
ai1x2

ai2 


 xn
ain, for i � 1, 2, . . . , N.

In such cases, the ci and aij typically represent physical constants, and the xj are design vari-
ables. These functions generally are neither convex nor concave, so the techniques of convex
programming cannot be applied directly to these geometric programming problems. How-
ever, there is one important case where the problem can be transformed to an equivalent con-
vex programming problem. This case is where all the ci coefficients in each function are
strictly positive, so that the functions are generalized positive polynomials—(now called
posynomials)—and the objective function is to be minimized. The equivalent convex pro-
gramming problem with decision variables y1, y2, . . . , yn is then obtained by setting

xj � eyj, for j � 1, 2, . . . , n

throughout the original model, so now a convex programming algorithm can be applied.
Alternative solution procedures also have been developed for solving these posynomial
programming problems, as well as for geometric programming problems of other types.1

Fractional Programming

Suppose that the objective function is in the form of a fraction, i.e., the ratio of two
functions,

Maximize f(x) � .
f1(x)


f2(x)
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Such fractional programming problems arise, e.g., when one is maximizing the ratio of
output to person-hours expended (productivity), or profit to capital expended (rate of re-
turn), or expected value to standard deviation of some measure of performance for an in-
vestment portfolio (return/risk). Some special solution procedures1 have been developed
for certain forms of f1(x) and f2(x).

When it can be done, the most straightforward approach to solving a fractional pro-
gramming problem is to transform it to an equivalent problem of a standard type for which
effective solution procedures already are available. To illustrate, suppose that f(x) is of
the linear fractional programming form

f(x) � ,

where c and d are row vectors, x is a column vector, and c0 and d0 are scalars. Also as-
sume that the constraint functions gi(x) are linear, so that the constraints in matrix form
are Ax � b and x � 0.

Under mild additional assumptions, we can transform the problem to an equivalent
linear programming problem by letting

y � and t � ,

so that x � y/t. This result yields

Maximize Z � cy 	 c0t,

subject to

Ay � bt � 0,
dy 	 d0t � 1,

and

y � 0, t � 0,

which can be solved by the simplex method. More generally, the same kind of transfor-
mation can be used to convert a fractional programming problem with concave f1(x), con-
vex f2(x), and convex gi(x) to an equivalent convex programming problem.

The Complementarity Problem

When we deal with quadratic programming in Sec. 13.7, you will see one example of how
solving certain nonlinear programming problems can be reduced to solving the comple-
mentarity problem. Given variables w1, w2, . . . , wp and z1, z2, . . . , zp, the complemen-
tarity problem is to find a feasible solution for the set of constraints

w � F(z), w � 0, z � 0

1


dx 	 d0

x


dx 	 d0

cx 	 c0


dx 	 d0
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that also satisfies the complementarity constraint

wTz � 0.

Here, w and z are column vectors, F is a given vector-valued function, and the superscript
T denotes the transpose (see Appendix 4). The problem has no objective function, so tech-
nically it is not a full-fledged nonlinear programming problem. It is called the comple-
mentarity problem because of the complementary relationships that either

wi � 0 or zi � 0 (or both) for each i � 1, 2, . . . , p.

An important special case is the linear complementarity problem, where

F(z) � q 	 Mz,

where q is a given column vector and M is a given p � p matrix. Efficient algorithms
have been developed for solving this problem under suitable assumptions1 about the prop-
erties of the matrix M. One type involves pivoting from one basic feasible (BF) solution
to the next, much like the simplex method for linear programming.

In addition to having applications in nonlinear programming, complementarity prob-
lems have applications in game theory, economic equilibrium problems, and engineering
equilibrium problems.
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1See R. W. Cottle and G. B. Dantzig, “Complementary Pivot Theory of Mathematical Programming,” Linear
Algebra and Its Applications, 1: 103–125, 1966; and R. W. Cottle, J.-S. Pang, and R. E. Stone, The Linear Com-
plementarity Problem, Academic Press, Boston, 1992.
2See the beginning of Appendix 3 for a review of the corresponding case when f(x) is not concave.

We now begin discussing how to solve some of the types of problems just described by
considering the simplest case—unconstrained optimization with just a single variable x
(n � 1), where the differentiable function f(x) to be maximized is concave.2 Thus, the nec-
essary and sufficient condition for a particular solution x � x* to be optimal (a global
maximum) is



d

d

x

f

 � 0 at x � x*,

as depicted in Fig. 13.12. If this equation can be solved directly for x*, you are done.
However, if f(x) is not a particularly simple function, so the derivative is not just a linear
or quadratic function, you may not be able to solve the equation analytically. If not, the
one-dimensional search procedure provides a straightforward way of solving the problem
numerically.

The One-Dimensional Search Procedure

Like other search procedures in nonlinear programming, the one-dimensional search pro-
cedure finds a sequence of trial solutions that leads toward an optimal solution. At each
iteration, you begin at the current trial solution to conduct a systematic search that cul-
minates by identifying a new improved trial solution.

13.4 ONE-VARIABLE UNCONSTRAINED OPTIMIZATION



The idea behind the one-dimensional search procedure is a very intuitive one, namely,
that whether the slope (derivative) is positive or negative at a trial solution definitely indicates
whether improvement lies immediately to the right or left, respectively. Thus, if the deriva-
tive evaluated at a particular value of x is positive, then x* must be larger than this x (see Fig.
13.12), so this x becomes a lower bound on the trial solutions that need to be considered
thereafter. Conversely, if the derivative is negative, then x* must be smaller than this x, so x
would become an upper bound. Therefore, after both types of bounds have been identified,
each new trial solution selected between the current bounds provides a new tighter bound of
one type, thereby narrowing the search further. As long as a reasonable rule is used to select
each trial solution in this way, the resulting sequence of trial solutions must converge to x*.
In practice, this means continuing the sequence until the distance between the bounds is suf-
ficiently small that the next trial solution must be within a prespecified error tolerance of x*.

This entire process is summarized next, given the notation

x� � current trial solution,

x



� current lower bound on x*,

x� � current upper bound on x*,

� � error tolerance for x*.

Although there are several reasonable rules for selecting each new trial solution, the one
used in the following procedure is the midpoint rule (traditionally called the Bolzano
search plan), which says simply to select the midpoint between the two current bounds.

Summary of the One-Dimensional Search Procedure.

Initialization: Select �. Find an initial x



and x� by inspection (or by respectively finding
any value of x at which the derivative is positive and then negative). Select
an initial trial solution

x� � 

x



	
2

x�
.

13.4 ONE-VARIABLE UNCONSTRAINED OPTIMIZATION 671

x
x*

f (x)

df (x)
dx � 0

FIGURE 13.12
The one-variable unconstrained 
programming problem when
the function is concave.



Iteration:

1. Evaluate 

df

d

(

x

x)

 at x � x�.

2. If 

df

d

(

x

x)

 � 0, reset x



� x�.

3. If 

df

d

(

x

x)

 � 0, reset x� � x�.

4. Select a new x� � 

x



	
2

x�
.

Stopping rule: If x� � x



� 2�, so that the new x� must be within � of x*, stop. Otherwise,
perform another iteration.

We shall now illustrate this procedure by applying it to the following example.

Example. Suppose that the function to be maximized is

f(x) � 12x � 3x4 � 2x6,

as plotted in Fig. 13.13. Its first two derivatives are



df

d
(
x
x)

 � 12(1 � x3 � x5),



d

d

2f
x
(
2
x)


 � �12(3x2 	 5x4).
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TABLE 13.1 Application of the one-dimensional search procedure to the example

Iteration 

df
d
(
x
x)

 x



x� New x� f(x�)

0 0. 2. 1. 7.0000
1 �12. 0. 1. 0.5 5.7812
2 	10.12 0.5 1. 0.75 7.6948
3 	4.09 0.75 1. 0.875 7.8439
4 �2.19 0.75 0.875 0.8125 7.8672
5 	1.31 0.8125 0.875 0.84375 7.8829
6 �0.34 0.8125 0.84375 0.828125 7.8815
7 	0.51 0.828125 0.84375 0.8359375 7.8839

Stop

Now consider the problem of maximizing a concave function f(x) of multiple variables 
x � (x1, x2, . . . , xn ) when there are no constraints on the feasible values. Suppose again
that the necessary and sufficient condition for optimality, given by the system of equa-
tions obtained by setting the respective partial derivatives equal to zero (see Sec. 13.3),
cannot be solved analytically, so that a numerical search procedure must be used. How
can the preceding one-dimensional search procedure be extended to this multidimensional
problem?

In Sec. 13.4, the value of the ordinary derivative was used to select one of just two
possible directions (increase x or decrease x) in which to move from the current trial so-
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Because the second derivative is nonpositive everywhere, f(x) is a concave function, so
the one-dimensional search procedure can be applied safely to find its global maximum
(assuming a global maximum exists).

A quick inspection of this function (without even constructing its graph as shown in
Fig. 13.13) indicates that f(x) is positive for small positive values of x, but it is negative
for x � 0 or x � 2. Therefore, x



� 0 and x� � 2 can be used as the initial bounds, with

their midpoint, x� � 1, as the initial trial solution. Let � � 0.01 be the error tolerance for
x* in the stopping rule, so the final (x� � x



) � 0.02 with the final x� at the midpoint.

Applying the one-dimensional search procedure then yields the sequence of results
shown in Table 13.1. [This table includes both the function and derivative values for your
information, where the derivative is evaluated at the trial solution generated at the pre-
ceding iteration. However, note that the algorithm actually doesn’t need to calculate f(x�)
at all and that it only needs to calculate the derivative far enough to determine its sign.]
The conclusion is that

x* � 0.836,
0.828125 � x* � 0.84375.

Your OR Courseware includes an interactive routine for executing the one-dimen-
sional search procedure.



lution to the next one. The goal was to reach a point eventually where this derivative is
(essentially) 0. Now, there are innumerable possible directions in which to move; they
correspond to the possible proportional rates at which the respective variables can be
changed. The goal is to reach a point eventually where all the partial derivatives are (es-
sentially) 0. Therefore, extending the one-dimensional search procedure requires using the
values of the partial derivatives to select the specific direction in which to move. This se-
lection involves using the gradient of the objective function, as described next.

Because the objective function f(x) is assumed to be differentiable, it possesses a gra-
dient, denoted by �f(x), at each point x. In particular, the gradient at a specific point 
x � x� is the vector whose elements are the respective partial derivatives evaluated at 
x � x�, so that

�f(x�) � �

�

�

x
f

1

, 


�

�

x
f

2

,


, 


�

�

x
f

n

� at x � x�.

The significance of the gradient is that the (infinitesimal) change in x that maximizes the
rate at which f(x) increases is the change that is proportional to �f(x). To express this
idea geometrically, the “direction” of the gradient �f(x�) is interpreted as the direction of
the directed line segment (arrow) from the origin (0, 0, . . . , 0) to the point (�f/�x1, �f/�x2,
. . . , �f/�xn), where �f/�xj is evaluated at xj � x�j. Therefore, it may be said that the rate
at which f(x) increases is maximized if (infinitesimal) changes in x are in the direction
of the gradient �f(x). Because the objective is to find the feasible solution maximizing
f(x), it would seem expedient to attempt to move in the direction of the gradient as much
as possible.

The Gradient Search Procedure

Because the current problem has no constraints, this interpretation of the gradient sug-
gests that an efficient search procedure should keep moving in the direction of the gradi-
ent until it (essentially) reaches an optimal solution x*, where �f(x*) � 0. However, nor-
mally it would not be practical to change x continuously in the direction of �f(x), because
this series of changes would require continuously reevaluating the �f/�xj and changing
the direction of the path. Therefore, a better approach is to keep moving in a fixed direc-
tion from the current trial solution, not stopping until f(x) stops increasing. This stopping
point would be the next trial solution, so the gradient then would be recalculated to de-
termine the new direction in which to move. With this approach, each iteration involves
changing the current trial solution x� as follows:

Reset x� � x� 	 t* �f(x�),

where t* is the positive value of t that maximizes f(x� 	 t �f(x�)); that is,

f(x� 	 t* �f(x�)) � max f(x� 	 t �f(x�)).
t�0

[Note that f(x� 	 t �f(x�)) is simply f(x) where

xj � x�j 	 t �

�

�

x
f

j

�x�x�

, for j � 1, 2, . . . , n,
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and that these expressions for the xj involve only constants and t, so f(x) becomes a func-
tion of just the single variable t.] The iterations of this gradient search procedure continue
until �f(x) � 0 within a small tolerance �, that is, until

�
�
�

x

f

j


� � � for j � 1, 2, . . . , n.1

An analogy may help to clarify this procedure. Suppose that you need to climb to the
top of a hill. You are nearsighted, so you cannot see the top of the hill in order to walk
directly in that direction. However, when you stand still, you can see the ground around
your feet well enough to determine the direction in which the hill is sloping upward most
sharply. You are able to walk in a straight line. While walking, you also are able to tell
when you stop climbing (zero slope in your direction). Assuming that the hill is concave,
you now can use the gradient search procedure for climbing to the top efficiently. This
problem is a two-variable problem, where (x1, x2) represents the coordinates (ignoring
height) of your current location. The function f(x1, x2) gives the height of the hill at 
(x1, x2). You start each iteration at your current location (current trial solution) by deter-
mining the direction [in the (x1, x2) coordinate system] in which the hill is sloping up-
ward most sharply (the direction of the gradient) at this point. You then begin walking in
this fixed direction and continue as long as you still are climbing. You eventually stop at
a new trial location (solution) when the hill becomes level in your direction, at which
point you prepare to do another iteration in another direction. You continue these itera-
tions, following a zigzag path up the hill, until you reach a trial location where the slope
is essentially zero in all directions. Under the assumption that the hill [ f(x1, x2)] is con-
cave, you must then be essentially at the top of the hill.

The most difficult part of the gradient search procedure usually is to find t*, the value
of t that maximizes f in the direction of the gradient, at each iteration. Because x and �f(x)
have fixed values for the maximization, and because f(x) is concave, this problem should
be viewed as maximizing a concave function of a single variable t. Therefore, it can be
solved by the one-dimensional search procedure of Sec. 13.4 (where the initial lower bound
on t must be nonnegative because of the t � 0 constraint). Alternatively, if f is a simple
function, it may be possible to obtain an analytical solution by setting the derivative with
respect to t equal to zero and solving.

Summary of the Gradient Search Procedure.
Initialization: Select � and any initial trial solution x�. Go first to the stopping rule.
Iteration:

1. Express f(x� 	 t �f(x�)) as a function of t by setting

xj � x�j 	 t �

�

�

x
f

j

�x�x�

, for j � 1, 2, . . . , n,

and then substituting these expressions into f(x).
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1This stopping rule generally will provide a solution x that is close to an optimal solution x*, with a value of
f(x) that is very close to f(x*). However, this cannot be guaranteed, since it is possible that the function main-
tains a very small positive slope (� �) over a great distance from x to x*.



2. Use the one-dimensional search procedure (or calculus) to find t � t* that maximizes
f(x� 	 t �f(x�)) over t � 0.

3. Reset x� � x� 	 t* �f(x�). Then go to the stopping rule.

Stopping rule: Evaluate �f(x�) at x � x�. Check if

�
�
�

x
f

j

� � � for all j � 1, 2, . . . , n.

If so, stop with the current x� as the desired approximation of an optimal
solution x*. Otherwise, perform another iteration.

Now let us illustrate this procedure.

Example. Consider the following two-variable problem:

Maximize f(x) � 2x1x2 	 2x2 � x2
1 � 2x2

2.

Thus,



�

�

x
f

1

 � 2x2 � 2x1,



�

�

x
f

2

 � 2x1 	 2 � 4x2.

We also can verify (see Appendix 2) that f(x) is concave. To begin the gradient search
procedure, suppose that x � (0, 0) is selected as the initial trial solution. Because the re-
spective partial derivatives are 0 and 2 at this point, the gradient is

�f(0, 0) � (0, 2).

Therefore, to begin the first iteration, set

x1 � 0 	 t(0) � 0,
x2 � 0 	 t(2) � 2t,

and then substitute these expressions into f(x) to obtain

f(x� 	 t �f(x�)) � f(0, 2t)
� 2(0)(2t) 	 2(2t) � 02 � 2(2t)2

� 4t � 8t2.

Because

f(0, 2t*) � max f(0, 2t) � max {4t � 8t2}
t�0 t�0

and



d
d
t

 (4t � 8t2) � 4 � 16t � 0,

it follows that

t* � 

1
4


,
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so

Reset x� � (0, 0) 	 

1
4


(0, 2) � �0, 

1
2


�.

For this new trial solution, the gradient is

�f �0, 

1
2


� � (1, 0).

Thus, for the second iteration, set

x � �0, 

1
2


� 	 t(1, 0) � �t, 

1
2


�,

so

f(x� 	 t �f(x�)) � f �0 	 t, 

1
2


 	 0t� � f�t, 

1
2


�
� (2t)�


1
2


� 	 2�

1
2


� � t2 � 2�

1
2


�
2

� t � t2 	 

1
2


.

Because

f �t*, 

1
2


� � max f �t, 

1
2


� � max �t � t2 	 

1
2


	t�0 t�0

and



d
d
t

 �t � t2 	 


1
2


� � 1 � 2t � 0,

then

t* � 

1
2


,

so

Reset x� � �0, 

1
2


� 	 

1
2


(1, 0) � �

1
2


, 

1
2


�.

A nice way of organizing this work is to write out a table such as Table 13.2 which sum-
marizes the preceding two iterations. At each iteration, the second column shows the current
trial solution, and the rightmost column shows the eventual new trial solution, which then is
carried down into the second column for the next iteration. The fourth column gives the ex-
pressions for the xj in terms of t that need to be substituted into f(x) to give the fifth column.

By continuing in this fashion, the subsequent trial solutions would be (

1
2


, 

3
4


), (

3
4


, 

3
4


),
(


3
4


, 

7
8


), (

7
8


, 

7
8


), . . . , as shown in Fig. 13.14. Because these points are converging to x* �
(1, 1), this solution is the optimal solution, as verified by the fact that

�f(1, 1) � (0, 0).
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However, because this converging sequence of trial solutions never reaches its limit, the
procedure actually will stop somewhere (depending on �) slightly below (1, 1) as its fi-
nal approximation of x*.

As Fig. 13.14 suggests, the gradient search procedure zigzags to the optimal solution
rather than moving in a straight line. Some modifications of the procedure have been de-
veloped that accelerate movement toward the optimal solution by taking this zigzag be-
havior into account.

If f(x) were not a concave function, the gradient search procedure still would con-
verge to a local maximum. The only change in the description of the procedure for this
case is that t* now would correspond to the first local maximum of f(x� 	 t �f(x�)) as t
is increased from 0.

If the objective were to minimize f (x) instead, one change in the procedure would be
to move in the opposite direction of the gradient at each iteration. In other words, the rule
for obtaining the next point would be

Reset x� � x� � t* �f(x�).

The only other change is that t* now would be the nonnegative value of t that minimizes
f(x� � t �f(x�)); that is,

f(x� � t* �f(x�)) � min f(x� � t �f(x�)).
t�0
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1
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1
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4( ),

7
8

3
4( ), 7

8
7
8( ),

x* � (1, 1)..
FIGURE 13.14
Illustration of the gradient
search procedure when 
f(x1, x2) � 2x1x2 	 2x2 �
x1

2 � 2x2
2.

TABLE 13.2 Application of the gradient search procedure to the example

Iteration x� �f(x�) x� 	 t �f(x�) f(x� 	 t �f(x�)) t* x� 	 t* �f(x�)

1 (0, 0) (0, 2) (0, 2t) 4t � 8t2 

1
4


 �0, 

1
2


�
2 �0, 


1
2


� (1, 0) �t, 

1
2


� t � t2 	 

1
2


 

1
2


 �

1
2


, 

1
2


�



Another example of an application of the gradient search procedure is included in
your OR Tutor. The OR Courseware includes both an interactive routine and an automatic
routine for applying this algorithm.
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We now focus on the question of how to recognize an optimal solution for a nonlinear
programming problem (with differentiable functions). What are the necessary and (per-
haps) sufficient conditions that such a solution must satisfy?

In the preceding sections we already noted these conditions for unconstrained opti-
mization, as summarized in the first two rows of Table 13.3. Early in Sec. 13.3 we also
gave these conditions for the slight extension of unconstrained optimization where the
only constraints are nonnegativity constraints. These conditions are shown in the third row
of Table 13.3. As indicated in the last row of the table, the conditions for the general case
are called the Karush-Kuhn-Tucker conditions (or KKT conditions), because they were
derived independently by Karush1 and by Kuhn and Tucker.2 Their basic result is em-
bodied in the following theorem.

Theorem. Assume that f(x), g1(x), g2(x), . . . , gm(x) are differentiable functions satis-
fying certain regularity conditions.3 Then

x* � (x1*, x2*, . . . , x*n)

13.6 THE KARUSH-KUHN-TUCKER (KKT) CONDITIONS FOR
CONSTRAINED OPTIMIZATION

TABLE 13.3 Necessary and sufficient conditions for optimality

Problem Necessary Conditions for Optimality Also Sufficient if:

One-variable unconstrained 

d
d
x
f

 � 0 f(x) concave

Multivariable unconstrained 

�
�
x
f
j


 � 0 ( j � 1, 2, . . . , n) f(x) concave

Constrained, nonnegativity 

�
�
x
f
j


 � 0 ( j � 1, 2, . . . , n) f(x) concave
constraints only

(or � 0 if xj � 0)

General constrained problem Karush-Kuhn-Tucker conditions f(x) concave and gi (x) convex
(i � 1, 2, . . . , m)

1W. Karush, “Minima of Functions of Several Variables with Inequalities as Side Conditions,” M.S. thesis, De-
partment of Mathematics, University of Chicago, 1939.
2H. W. Kuhn and A. W. Tucker, “Nonlinear Programming,” in Jerzy Neyman (ed.), Proceedings of the Second
Berkeley Symposium, University of California Press, Berkeley, 1951, pp. 481–492.
3Ibid., p. 483.



can be an optimal solution for the nonlinear programming problem only if there exist m
numbers u1, u2, . . . , um such that all the following KKT conditions are satisfied:

1. 

�

�

x
f

j

 � �

m

i�1
ui 


�

�

g
xj

i

 � 0

at x � x*, for j � 1, 2, . . . , n.

2. xj* �

�

�

x
f

j

 � �

m

i�1
ui 


�

�

g
xj

i

� � 0

3. gi(x*) � bi � 0
for i � 1, 2, . . . , m.

4. ui[gi(x*) � bi] � 0	
5. xj* � 0, for j � 1, 2, . . . , n.
6. ui � 0, for i � 1, 2, . . . , m.

Note that both conditions 2 and 4 require that the product of two quantities be zero.
Therefore, each of these conditions really is saying that at least one of the two quantities
must be zero. Consequently, condition 4 can be combined with condition 3 to express
them in another equivalent form as

(3, 4) gi(x*) � bi � 0
(or � 0 if ui � 0), for i � 1, 2, . . . , m.

Similarly, condition 2 can be combined with condition 1 as

(1, 2) 

�

�

x
f

j

 � �

m

i�1
ui 


�

�

g
xj

i

 � 0

(or � 0 if xj* � 0), for j � 1, 2, . . . , n.

When m � 0 (no functional constraints), this summation drops out and the combined con-
dition (1, 2) reduces to the condition given in the third row of Table 13.3. Thus, for 
m � 0, each term in the summation modifies the m � 0 condition to incorporate the ef-
fect of the corresponding functional constraint.

In conditions 1, 2, 4, and 6, the ui correspond to the dual variables of linear pro-
gramming (we expand on this correspondence at the end of the section), and they have a
comparable economic interpretation. However, the ui actually arose in the mathematical
derivation as Lagrange multipliers (discussed in Appendix 3). Conditions 3 and 5 do noth-
ing more than ensure the feasibility of the solution. The other conditions eliminate most
of the feasible solutions as possible candidates for an optimal solution.

However, note that satisfying these conditions does not guarantee that the solution is
optimal. As summarized in the rightmost column of Table 13.3, certain additional con-
vexity assumptions are needed to obtain this guarantee. These assumptions are spelled out
in the following extension of the theorem.

Corollary. Assume that f(x) is a concave function and that g1(x), g2(x), . . . , gm(x) are
convex functions (i.e., this problem is a convex programming problem), where all these
functions satisfy the regularity conditions. Then x* � (x1*, x2*, . . . , xn*) is an optimal so-
lution if and only if all the conditions of the theorem are satisfied.
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Example. To illustrate the formulation and application of the KKT conditions, we con-
sider the following two-variable nonlinear programming problem:

Maximize f(x) � ln(x1 	 1) 	 x2,

subject to

2x1 	 x2 � 3

and

x1 � 0, x2 � 0,

where ln denotes the natural logarithm. Thus, m � 1 (one functional constraint) and 
g1(x) � 2x1 	 x2, so g1(x) is convex. Furthermore, it can be easily verified (see Appen-
dix 2) that f(x) is concave. Hence, the corollary applies, so any solution that satisfies the
KKT conditions will definitely be an optimal solution. Applying the formulas given in the
theorem yields the following KKT conditions for this example:

1( j � 1). 

x1 	

1
1


 � 2u1 � 0.

2( j � 1). x1�
x1

1
	 1

 � 2u1� � 0.

1( j � 2). 1 � u1 � 0.
2( j � 2). x2(1 � u1) � 0.
3. 2x1 	 x2 � 3 � 0.
4. u1(2x1 	 x2 � 3) � 0.
5. x1 � 0, x2 � 0.
6. u1 � 0.

The steps in solving the KKT conditions for this particular example are outlined below.

1. u1 � 1, from condition 1( j � 2).
x1 � 0, from condition 5.

2. Therefore, 

x1 	

1
1


 � 2u1 � 0.

3. Therefore, x1 � 0, from condition 2( j � 1).
4. u1 � 0 implies that 2x1 	 x2 � 3 � 0, from condition 4.
5. Steps 3 and 4 imply that x2 � 3.
6. x2 � 0 implies that u1 � 1, from condition 2( j � 2).
7. No conditions are violated by x1 � 0, x2 � 3, u1 � 1.

Therefore, there exists a number u1 � 1 such that x1 � 0, x2 � 3, and u1 � 1 satisfy all
the conditions. Consequently, x* � (0, 3) is an optimal solution for this problem.

The particular progression of steps needed to solve the KKT conditions will differ
from one problem to the next. When the logic is not apparent, it is sometimes helpful to
consider separately the different cases where each xj and ui are specified to be either equal
to or greater than 0 and then trying each case until one leads to a solution. In the exam-
ple, there are eight such cases corresponding to the eight combinations of x1 � 0 versus
x1 � 0, x2 � 0 versus x2 � 0, and u1 � 0 versus u1 � 0. Each case leads to a simpler state-
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ment and analysis of the conditions. To illustrate, consider first the case shown next, where
x1 � 0, x2 � 0, and u1 � 0.

KKT Conditions for the Case x1 � 0, x2 � 0, u1 � 0

1( j � 1). 

0 	

1
1


 � 0. Contradiction.

1( j � 2). 1 � 0 � 0. Contradiction.
3. 0 	 0 � 3.
(All the other conditions are redundant.)

As listed below, the other three cases where u1 � 0 also give immediate contradic-
tions in a similar way, so no solution is available.

Case x1 � 0, x2 � 0, u1 � 0 contradicts conditions 1( j � 1), 1( j � 2), and 2( j � 2).
Case x1 � 0, x2 � 0, u1 � 0 contradicts conditions 1( j � 1), 2( j � 1), and 1( j � 2).
Case x1 � 0, x2 � 0, u1 � 0 contradicts conditions 1( j � 1), 2( j � 1), 1( j � 2), and 

2( j � 2).

The case x1 � 0, x2 � 0, u1 � 0 enables one to delete these nonzero multipliers from con-
ditions 2( j � 1), 2( j � 2), and 4, which then enables deletion of conditions 1( j � 1),
1( j � 2), and 3 as redundant, as summarized next.

KKT Conditions for the Case x1 � 0, x2 � 0, u1 � 0

1( j � 1). 

x1 	

1
1


 � 2u1 � 0.

2( j � 2). 1 � u1 � 0.
4. 2x1 	 x2 � 3 � 0.
(All the other conditions are redundant.)

Therefore, u1 � 1, so x1 � �

1
2


, which contradicts x1 � 0.
Now suppose that the case x1 � 0, x2 � 0, u1 � 0 is tried next.

KKT Conditions for the Case x1 � 0, x2 � 0, u1 � 0

1( j � 1). 

0 	

1
1


 � 2u1 � 0.

2( j � 2). 1 � u1 � 0.
4. 0 	 x2 � 3 � 0.
(All the other conditions are redundant.)

Therefore, x1 � 0, x2 � 3, u1 � 1. Having found a solution, we know that no additional
cases need be considered.

For problems more complicated than this example, it may be difficult, if not essen-
tially impossible, to derive an optimal solution directly from the KKT conditions. Never-
theless, these conditions still provide valuable clues as to the identity of an optimal solu-
tion, and they also permit us to check whether a proposed solution may be optimal.

There also are many valuable indirect applications of the KKT conditions. One of these
applications arises in the duality theory that has been developed for nonlinear programming
to parallel the duality theory for linear programming presented in Chap. 6. In particular, for
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any given constrained maximization problem (call it the primal problem), the KKT condi-
tions can be used to define a closely associated dual problem that is a constrained mini-
mization problem. The variables in the dual problem1 consist of both the Lagrange multi-
pliers ui (i � 1, 2, . . . , m) and the primal variables xj ( j � 1, 2, . . . , n). In the special case
where the primal problem is a linear programming problem, the xj variables drop out of the
dual problem and it becomes the familiar dual problem of linear programming (where the
ui variables here correspond to the yi variables in Chap. 6). When the primal problem is a
convex programming problem, it is possible to establish relationships between the primal
problem and the dual problem that are similar to those for linear programming. For exam-
ple, the strong duality property of Sec. 6.1, which states that the optimal objective function
values of the two problems are equal, also holds here. Furthermore, the values of the ui vari-
ables in an optimal solution for the dual problem can again be interpreted as shadow prices
(see Secs. 4.7 and 6.2); i.e., they give the rate at which the optimal objective function value
for the primal problem could be increased by (slightly) increasing the right-hand side of the
corresponding constraint. Because duality theory for nonlinear programming is a relatively
advanced topic, the interested reader is referred elsewhere for further information.2

You will see another indirect application of the KKT conditions in the next section.
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1For details on this formulation, see O. T. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969,
chap 8. For a unified survey of various approaches to duality in nonlinear programming, see A. M. Geoffrion, “Du-
ality in Nonlinear Programming: A Simplified Applications-Oriented Development,” SIAM Review, 13: 1–37, 1971.
2Ibid.

As indicated in Sec. 13.3, the quadratic programming problem differs from the linear pro-
gramming problem only in that the objective function also includes xj

2 and xixj (i � j)
terms. Thus, if we use matrix notation like that introduced at the beginning of Sec. 5.2,
the problem is to find x so as to

Maximize f(x) � cx � 

1
2


xTQx,

subject to

Ax � b and x � 0,

where c is a row vector, x and b are column vectors, Q and A are matrices, and the su-
perscript T denotes the transpose (see Appendix 4). The qij (elements of Q) are given con-
stants such that qij � qji (which is the reason for the factor of 


1
2


 in the objective function).
By performing the indicated vector and matrix multiplications, the objective function then
is expressed in terms of these qij, the cj (elements of c), and the variables as follows:

f(x) � cx � 

1
2


xTQx � �
n

j�1
cjxj � 


1
2


 �
n

i�1
�
n

j�1
qijxixj.

For each term where i � j in this double summation, xixj � xj
2, so �


1
2


qjj is the coefficient
of xj

2. When i � j, then �

1
2


(qijxixj 	 qjixjxi) � �qijxixj, so �qij is the total coefficient for
the product of xi and xj.
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To illustrate this notation, consider the following example of a quadratic program-
ming problem.

Maximize f(x1, x2) � 15x1 	 30x2 	 4x1x2 � 2x1
2 � 4x2

2,

subject to

x1 	 2x2 � 30

and

x1 � 0, x2 � 0.

In this case,

c � [15 30], x � 
 �, Q � 
 �,

A � [1 2], b � [30].

Note that

xTQx � [x1 x2] 
 �
 �
� [(4x1 � 4x2) (�4x1 	 8x2)]
 �
� 4x1

2 � 4x2x1 � 4x1x2 	 8x2
2

� q11x1
2 	 q21x2x1 	 q12x1x2 	 q22x2

2.

Multiplying through by �

1
2


 gives

�

1
2


xTQx � �2x1
2 	 4x1x2 � 4x2

2,

which is the nonlinear portion of the objective function for this example. Since q11 � 4
and q22 � 8, the example illustrates that �


1
2


qjj is the coefficient of xj
2 in the objective func-

tion. The fact that q12 � q21 � �4 illustrates that both �qij and �qji give the total coef-
ficient of the product of xi and xj.

Several algorithms have been developed for the special case of the quadratic pro-
gramming problem where the objective function is a concave function. (A way to verify
that the objective function is concave is to verify the equivalent condition that

xTQx � 0

for all x, that is, Q is a positive semidefinite matrix.) We shall describe one1 of these al-
gorithms, the modified simplex method, that has been quite popular because it requires us-
ing only the simplex method with a slight modification. The key to this approach is to
construct the KKT conditions from the preceding section and then to reexpress these con-
ditions in a convenient form that closely resembles linear programming. Therefore, be-
fore describing the algorithm, we shall develop this convenient form.

x1

x2

x1

x2

�4

8

4

�4

�4

8

4

�4

x1

x2
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1P. Wolfe, “The Simplex Method for Quadratic Programming,” Econometrics, 27: 382–398, 1959. This paper
develops both a short form and a long form of the algorithm. We present a version of the short form, which as-
sumes further that either c � 0 or the objective function is strictly concave.



The KKT Conditions for Quadratic Programming

For concreteness, let us first consider the above example. Starting with the form given in
the preceding section, its KKT conditions are the following.

1( j � 1). 15 	 4x2 � 4x1 � u1 � 0.
2( j � 1). x1(15 	 4x2 � 4x1 � u1) � 0.
1( j � 2). 30 	 4x1 � 8x2 � 2u1 � 0.
2( j � 2). x2(30 	 4x1 � 8x2 � 2u1) � 0.
3. x1 	 2x2 � 30 � 0.
4. u1(x1 	 2x2 � 30) � 0.
5. x1 � 0, x2 � 0.
6. u1 � 0.

To begin reexpressing these conditions in a more convenient form, we move the con-
stants in conditions 1( j � 1), 1( j � 2), and 3 to the right-hand side and then introduce
nonnegative slack variables (denoted by y1, y2, and v1, respectively) to convert these in-
equalities to equations.

1( j � 1). �4x1 	 4x2 � u1 	 y1 � �15
1( j � 2). 4x1 � 8x2 � 2u1 	 y2 � �30
3. x1 	 2x2 	 v1 � �30

Note that condition 2( j � 1) can now be reexpressed as simply requiring that either 
x1 � 0 or y1 � 0; that is,

2( j � 1). x1y1 � 0.

In just the same way, conditions 2( j � 2) and 4 can be replaced by

2( j � 2). x2y2 � 0,
4. u1v1 � 0.

For each of these three pairs—(x1, y1), (x2, y2), (u1, v1)—the two variables are called com-
plementary variables, because only one of the two variables can be nonzero. These new
forms of conditions 2( j � 1), 2( j � 2), and 4 can be combined into one constraint,

x1y1 	 x2y2 	 u1v1 � 0,

called the complementarity constraint.
After multiplying through the equations for conditions 1( j � 1) and 1( j � 2) by �1

to obtain nonnegative right-hand sides, we now have the desired convenient form for the
entire set of conditions shown here:

�4x1 � 4x2 	 u1 � y1 � 15
�4x1 	 8x2 	 2u1 � y2 � 30
�4x1 	 2x2 	 v1 � 30
x1 � 0, x2 � 0, u1 � 0, y1 � 0, y2 � 0, v1 � 0
x1y1 	 x2y2 	 u1v1 � 0

This form is particularly convenient because, except for the complementarity constraint,
these conditions are linear programming constraints.
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For any quadratic programming problem, its KKT conditions can be reduced to this
same convenient form containing just linear programming constraints plus one comple-
mentarity constraint. In matrix notation again, this general form is

Qx 	 ATu � y � cT,
Ax 	 v � b,

x � 0, u � 0, y � 0, v � 0,
xTy 	 uTv � 0,

where the elements of the column vector u are the ui of the preceding section and the el-
ements of the column vectors y and v are slack variables.

Because the objective function of the original problem is assumed to be concave
and because the constraint functions are linear and therefore convex, the corollary to
the theorem of Sec. 13.6 applies. Thus, x is optimal if and only if there exist values of
y, u, and v such that all four vectors together satisfy all these conditions. The original
problem is thereby reduced to the equivalent problem of finding a feasible solution to
these constraints.

It is of interest to note that this equivalent problem is one example of the linear com-
plementarity problem introduced in Sec. 13.3 (see Prob. 13.3-6), and that a key constraint
for the linear complementarity problem is its complementarity constraint.

The Modified Simplex Method

The modified simplex method exploits the key fact that, with the exception of the com-
plementarity constraint, the KKT conditions in the convenient form obtained above are
nothing more than linear programming constraints. Furthermore, the complementarity con-
straint simply implies that it is not permissible for both complementary variables of any
pair to be (nondegenerate) basic variables (the only variables � 0) when (nondegenerate)
BF solutions are considered. Therefore, the problem reduces to finding an initial BF so-
lution to any linear programming problem that has these constraints, subject to this addi-
tional restriction on the identity of the basic variables. (This initial BF solution may be
the only feasible solution in this case.)

As we discussed in Sec. 4.6, finding such an initial BF solution is relatively straight-
forward. In the simple case where cT � 0 (unlikely) and b � 0, the initial basic variables
are the elements of y and v (multiply through the first set of equations by �1), so that
the desired solution is x � 0, u � 0, y � �cT, v � b. Otherwise, you need to revise the
problem by introducing an artificial variable into each of the equations where cj � 0 (add
the variable on the left) or bi � 0 (subtract the variable on the left and then multiply
through by �1) in order to use these artificial variables (call them z1, z2, and so on) as
initial basic variables for the revised problem. (Note that this choice of initial basic vari-
ables satisfies the complementarity constraint, because as nonbasic variables x � 0 and 
u � 0 automatically.)

Next, use phase 1 of the two-phase method (see Sec. 4.6) to find a BF solution for
the real problem; i.e., apply the simplex method (with one modification) to the following
linear programming problem

Minimize Z � �
j

zj,
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subject to the linear programming constraints obtained from the KKT conditions, but with
these artificial variables included.

The one modification in the simplex method is the following change in the procedure
for selecting an entering basic variable.

Restricted-Entry Rule: When you are choosing an entering basic variable, ex-
clude from consideration any nonbasic variable whose complementary variable
already is a basic variable; the choice should be made from the other nonbasic
variables according to the usual criterion for the simplex method.

This rule keeps the complementarity constraint satisfied throughout the course of the
algorithm. When an optimal solution

x*, u*, y*, v*, z1 � 0, . . . , zn � 0

is obtained for the phase 1 problem, x* is the desired optimal solution for the original
quadratic programming problem. Phase 2 of the two-phase method is not needed.

Example. We shall now illustrate this approach on the example given at the beginning
of the section. As can be verified from the results in Appendix 2 (see Prob. 13.7-1a), f(x1,
x2) is strictly concave; i.e.,

Q � 
 �
is positive definite, so the algorithm can be applied.

The starting point for solving this example is its KKT conditions in the convenient
form obtained earlier in the section. After the needed artificial variables are introduced,
the linear programming problem to be addressed explicitly by the modified simplex method
then is

Minimize Z � z1 	 z2,

subject to

4x1 � 4x2 	 u1 � y1 	 z1 � 15
�4x1 	 8x2 	 2u1 � y2 	 z2 � 30

x1 	 2x2 	 v1 � 30

and

x1 � 0, x2 � 0, u1 � 0, y1 � 0, y2 � 0, v1 � 0,
z1 � 0, z2 � 0.

The additional complementarity constraint

x1y1 	 x2y2 	 u1v1 � 0,

is not included explicitly, because the algorithm automatically enforces this constraint be-
cause of the restricted-entry rule. In particular, for each of the three pairs of comple-
mentary variables—(x1, y1), (x2, y2), (u1,v1)—whenever one of the two variables already
is a basic variable, the other variable is excluded as a candidate for the entering basic vari-

�4

8

4

�4
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able. Remember that the only nonzero variables are basic variables. Because the initial set
of basic variables for the linear programming problem—z1, z2, v1—gives an initial BF so-
lution that satisfies the complementarity constraint, there is no way that this constraint can
be violated by any subsequent BF solution.

Table 13.4 shows the results of applying the modified simplex method to this prob-
lem. The first simplex tableau exhibits the initial system of equations after converting
from minimizing Z to maximizing �Z and algebraically eliminating the initial basic vari-
ables from Eq. (0), just as was done for the radiation therapy example in Sec. 4.6. The
three iterations proceed just as for the regular simplex method, except for eliminating cer-
tain candidates for the entering basic variable because of the restricted-entry rule. In the
first tableau, u1 is eliminated as a candidate because its complementary variable (v1) al-
ready is a basic variable (but x2 would have been chosen anyway because �4 � �3). In
the second tableau, both u1 and y2 are eliminated as candidates (because v1 and x2 are ba-
sic variables), so x1 automatically is chosen as the only candidate with a negative coeffi-

688 13 NONLINEAR PROGRAMMING

TABLE 13.4 Application of the modified simplex method to the quadratic
programming example

Basic Right
Iteration Variable Eq. Z x1 x2 u1 y1 y2 v1 z1 z2 Side

Z (0) �1 0 �4 �3 1 1 0 0 0 �45

1
4




z1 (1) 0 4 �4 1 �1 0 0 1 0 15

1
4



0

z2 (2) 0 �4 8 2 0 �1 0 0 1 30

1
4




v1 (3) 0 1 2 0 0 0 1 0 0 30

1
4




Z (0) �1 �2 0 �2 1 

1
2


 0 0 

1
2


 �30

1
4




z1 (1) 0 2 0 2 �1 �

1
2


 0 1 

1
2


 30

1
4




1
x2 (2) 0 �


1
2


 1 

1
4


 0 �

1
8


 0 0 

1
8


 3

3
4




v1 (3) 0 2 0 �

1
2


 0 

1
4


 1 0 �

1
4


 22

1
2




Z (0) �1 0 0 �

5
2


 1 

3
4


 1 0 

1
4


 �7

1
2




z1 (1) 0 0 0 

5
2


 �1 �

3
4


 �1 1 

3
4


 7

1
2




2
x2 (2) 0 0 1 


1
8


 0 �

1
1
6

 


1
4


 0 

1
1
6

 9


3
8




x1 (3) 0 1 0 �

1
4


 0 

1
8


 

1
2


 0 �

1
8


 11

1
4




Z (0) �1 0 0 0 0 0 0 1 1 0

1
4




u1 (1) 0 0 0 1 �

2
5


 �

1
3
0

 �


2
5


 

2
5


 

1
3
0

 3


1
4




3
x2 (2) 0 0 1 0 


2
1
0

 �


4
1
0

 


1
3
0

 �


2
1
0

 


4
1
0

 9


1
4




x1 (3) 0 1 0 0 �

1
1
0

 


2
1
0

 


2
5


 

1
1
0

 �


2
1
0

 12


1
4






cient in row 0 (whereas the regular simplex method would have permitted choosing ei-
ther x1 or u1 because they are tied for having the largest negative coefficient). In the third
tableau, both y1 and y2 are eliminated (because x1 and x2 are basic variables). However,
u1 is not eliminated because 
v1 no longer is a basic variable, so u1 is chosen as the en-
tering basic variable in the usual way.

The resulting optimal solution for this phase 1 problem is x1 � 12, x2 � 9, u1 � 3,
with the rest of the variables zero. (Problem 13.7-1c asks you to verify that this solution
is optimal by showing that x1 � 12, x2 � 9, u1 � 3 satisfy the KKT conditions for the
original problem when they are written in the form given in Sec. 13.6.) Therefore, the op-
timal solution for the quadratic programming problem (which includes only the x1 and x2

variables) is (x1, x2) � (12, 9).

Some Software Options

Your OR Tutor includes an interactive routine for the modified simplex method to help
you learn this algorithm efficiently. In addition, Excel, LINGO, LINDO, and MPL/CPLEX
all can solve quadratic programming problems.

The procedure for using Excel is almost the same as with linear programming. The
one crucial difference is that the equation entered for the cell that contains the value of
the objective function now needs to be a quadratic equation. To illustrate, consider again
the example introduced at the beginning of the section, which has the objective function

f(x1, x2) � 15x1 	 30x2 	 4x1x2 � 2x1
2 � 4x2

2.

Suppose that the values of x1 and x2 are in cells B4 and C4 of the Excel spreadsheet,
and that the value of the objective function is in cell F4. Then the equation for cell F4
needs to be

F4 � 15*B4 	 30*C4 	 4*B4*C4 � 2*(B4^2) � 4*(C4^2),

where the symbol ^2 indicates an exponent of 2. Before solving the model, you should
click on the Option button and make sure that the Assume Linear Model option is not se-
lected (since this is not a linear programming model).

When using MPL/CPLEX, you should select the Quadratic Models option from the
MPL Language option dialogue box and the Barrier method from the CPLEX Simplex
options dialogue box. Otherwise, the procedure is the same as with linear programming
except that the expression for the objective function now is a quadratic function. Thus,
for the example, the objective function would be expressed as

15x1 	 30x2 	 4x1*x2 � 2(x1^2) � 4(x2^2).

Nothing more needs to be done when calling CPLEX, since it will automatically recog-
nize the model as being a quadratic programming problem.

This objective function would be expressed in this same way for a LINGO model.
LINGO then will automatically call its nonlinear solver to solve the model. When using
LINDO instead, the procedure is somewhat more involved, since it requires converting
the model to an equivalent linear form in terms of the KKT conditions. The LINDO file
for this chapter illustrates how this is done for the example.
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In fact, the Excel, MPL/CPLEX, and LINGO/LINDO files for this chapter in your
OR Courseware all demonstrate their procedures by showing the details for how these
software packages set up and solve this example.

Some of these software packages also can be applied to more complicated kinds of
nonlinear programming problems than quadratic programming. Although CPLEX cannot,
the professional version of MPL does support some other solvers that can. The student
version of MPL on the CD-ROM includes one such solver called CONOPT (a product of
ARKI Consulting) that should be used instead of CPLEX after selecting Nonlinear Mod-
els for the Default Model Type entry in the MPL Language option dialogue box. Both
Excel and LINGO include versatile nonlinear solvers. However, be aware that these solvers
are not guaranteed to find an optimal solution for complicated problems, especially non-
convex programming problems.
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The preceding section showed how one class of nonlinear programming problems can be
solved by an extension of the simplex method. We now consider another class, called sep-
arable programming, that actually can be solved by the simplex method itself, because
any such problem can be approximated as closely as desired by a linear programming
problem with a larger number of variables.

As indicated in Sec. 13.3, in separable programming it is assumed that the objective
function f(x) is concave, that each of the constraint functions gi(x) is convex, and that all
these functions are separable functions (functions where each term involves just a single
variable). However, to simplify the discussion, we focus here on the special case where
the convex and separable gi(x) are, in fact, linear functions, just as for linear program-
ming. Thus, only the objective function requires special treatment.

Under the preceding assumptions, the objective function can be expressed as a sum
of concave functions of individual variables

f(x) � �
n

j�1
fj(xj),

so that each fj(xj) has a shape1 such as the one shown in Fig. 13.15 (either case) over the
feasible range of values of xj. Because f(x) represents the measure of performance (say,
profit) for all the activities together, fj(xj) represents the contribution to profit from activ-
ity j when it is conducted at level xj. The condition of f(x) being separable simply implies
additivity (see Sec. 3.3); i.e., there are no interactions between the activities (no cross-
product terms) that affect total profit beyond their independent contributions. The as-
sumption that each fj(xj) is concave says that the marginal profitability (slope of the profit
curve) either stays the same or decreases (never increases) as xj is increased.

Concave profit curves occur quite frequently. For example, it may be possible to sell
a limited amount of some product at a certain price, then a further amount at a lower price,
and perhaps finally a further amount at a still lower price. Similarly, it may be necessary
to purchase raw materials from increasingly expensive sources. In another common situ-
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ation, a more expensive production process must be used (e.g., overtime rather than reg-
ular-time work) to increase the production rate beyond a certain point.

These kinds of situations can lead to either type of profit curve shown in Fig. 13.15.
In case 1, the slope decreases only at certain breakpoints, so that fj(xj) is a piecewise lin-
ear function (a sequence of connected line segments). For case 2, the slope may decrease
continuously as xj increases, so that fj(xj) is a general concave function. Any such func-
tion can be approximated as closely as desired by a piecewise linear function, and this
kind of approximation is used as needed for separable programming problems. (Figure
13.15 shows an approximating function that consists of just three line segments, but the
approximation can be made even better just by introducing additional breakpoints.) This
approximation is very convenient because a piecewise linear function of a single variable
can be rewritten as a linear function of several variables, with one special restriction on
the values of these variables, as described next.

Reformulation as a Linear Programming Problem

The key to rewriting a piecewise linear function as a linear function is to use a separate
variable for each line segment. To illustrate, consider the piecewise linear function fj(xj)
shown in Fig. 13.15, case 1 (or the approximating piecewise linear function for case 2),
which has three line segments over the feasible range of values of xj. Introduce the three
new variables xj1, xj2, and xj3 and set

xj � xj1 	 xj2 	 xj3,

where

0 � xj1 � uj1, 0 � xj2 � uj2, 0 � xj3 � uj3.

Then use the slopes sj1, sj2, and sj3 to rewrite fj(xj) as

fj(xj) � sj1xj1 	 sj2xj2 	 sj3xj3,

with the special restriction that

xj2 � 0 whenever xj1 � uj1,
xj3 � 0 whenever xj2 � uj2.

To see why this special restriction is required, suppose that xj � 1, where ujk � 1 (k � 1,
2, 3), so that fj(1) � sj1. Note that

xj1 	 xj2 	 xj3 � 1

permits

xj1 � 1, xj2 � 0, xj3 � 0 ⇒ fj(1) � sj1,
xj1 � 0, xj2 � 1, xj3 � 0 ⇒ fj(1) � sj2,
xj1 � 0, xj2 � 0, xj3 � 1 ⇒ fj(1) � sj3,

and so on, where

sj1 � sj2 � sj3.

However, the special restriction permits only the first possibility, which is the only one
giving the correct value for fj(1).
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Unfortunately, the special restriction does not fit into the required format for linear
programming constraints, so some piecewise linear functions cannot be rewritten in a lin-
ear programming format. However, our fj(xj) are assumed to be concave, so sj1 � sj2 � 


,
so that an algorithm for maximizing f(x) automatically gives the highest priority to using
xj1 when (in effect) increasing xj from zero, the next highest priority to using xj2, and so
on, without even including the special restriction explicitly in the model. This observa-
tion leads to the following key property.

Key Property of Separable Programming. When f(x) and the gi(x) satisfy the as-
sumptions of separable programming, and when the resulting piecewise linear functions
are rewritten as linear functions, deleting the special restriction gives a linear program-
ming model whose optimal solution automatically satisfies the special restriction.

We shall elaborate further on the logic behind this key property later in this section
in the context of a specific example. (Also see Prob. 13.8-8a).

To write down the complete linear programming model in the above notation, let nj

be the number of line segments in fj(xj) (or the piecewise linear function approximating
it), so that

xj � �
nj

k�1
xjk

would be substituted throughout the original model and

fj(xj) � �
nj

k�1
sjkxjk

would be substituted1 into the objective function for j � 1, 2, . . . , n. The resulting
model is

Maximize Z � �
n

j�1
��

nj

k�1
sjkxjk�,

subject to

�
n

j�1
aij��

nj

k�1
xjk� � bi , for i � 1, 2, . . . , m

xjk � ujk, for k � 1, 2, . . . , nj; j � 1, 2, . . . , n

and

xjk � 0, for k � 1, 2, . . . , nj; j � 1, 2, . . . , n.

(The �nj
k�1 xjk � 0 constraints are deleted because they are ensured by the xjk � 0 con-

straints.) If some original variable xj has no upper bound, then ujnj
� �, so the constraint

involving this quantity will be deleted.
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An efficient way of solving this model1 is to use the streamlined version of the sim-
plex method for dealing with upper bound constraints (described in Sec. 7.3). After ob-
taining an optimal solution for this model, you then would calculate

xj � �
nj

k�1
xjk,

for j � 1, 2, . . . , n in order to identify an optimal solution for the original separable pro-
gramming program (or its piecewise linear approximation).

Example. The Wyndor Glass Co. (see Sec. 3.1) has received a special order for hand-
crafted goods to be made in Plants 1 and 2 throughout the next 4 months. Filling this or-
der will require borrowing certain employees from the work crews for the regular prod-
ucts, so the remaining workers will need to work overtime to utilize the full production
capacity of the plant’s machinery and equipment for these regular products. In particular,
for the two new regular products discussed in Sec. 3.1, overtime will be required to uti-
lize the last 25 percent of the production capacity available in Plant 1 for product 1 and
for the last 50 percent of the capacity available in Plant 2 for product 2. The additional
cost of using overtime work will reduce the profit for each unit involved from $3 to $2
for product 1 and from $5 to $1 for product 2, giving the profit curves of Fig. 13.16, both
of which fit the form for case 1 of Fig. 13.15.
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1For a specialized algorithm for solving this model very efficiently, see R. Fourer, “A Specialized Algorithm for
Piecewise-Linear Programming III: Computational Analysis and Applications,” Mathematical Programming,
53: 213–235, 1992. Also see A. M. Geoffrion, “Objective Function Approximations in Mathematical Program-
ming,” Mathematical Programming, 13: 23–37, 1977.



Management has decided to go ahead and use overtime work rather than hire addi-
tional workers during this temporary situation. However, it does insist that the work crew
for each product be fully utilized on regular time before any overtime is used. Further-
more, it feels that the current production rates (x1 � 2 for product 1 and x2 � 6 for prod-
uct 2) should be changed temporarily if this would improve overall profitability. There-
fore, it has instructed the OR team to review products 1 and 2 again to determine the most
profitable product mix during the next 4 months.

Formulation. To refresh your memory, the linear programming model for the original
Wyndor Glass Co. problem in Sec. 3.1 is

Maximize Z � 3x1 	 5x2,

subject to

x1 � 4
2x2 � 12

3x1 	 2x2 � 18

and

x1 � 0, x2 � 0.

We now need to modify this model to fit the new situation described above. For this pur-
pose, let the production rate for product 1 be x1 � x1R 	 x1O, where x1R is the production
rate achieved on regular time and x1O is the incremental production rate from using over-
time. Define x2 � x2R 	 x2O in the same way for product 2. Thus, in the notation of the
general linear programming model for separable programming given just before this ex-
ample, n � 2, n1 � 2, and n2 � 2. Plugging the data given in Fig. 13.16 (including max-
imum rates of production on regular time and on overtime) into this general model gives
the specific model for this application. In particular, the new linear programming prob-
lem is to determine the values of x1R, x1O, x2R, and x2O so as to

Maximize Z � 3x1R 	 2x1O 	 5x2R 	 x2O,

subject to

x1R 	 x1O � 4
2(x2R 	 x2O) � 12

3(x1R 	 x1O) 	 2(x2R 	 x2O) � 18
x1R � 3, x1O � 1, x2R � 3, x2O � 3

and

x1R � 0, x1O � 0, x2R � 0, x2O � 0.

(Note that the upper bound constraints in the next-to-last row of the model make the first
two functional constraints redundant, so these two functional constraints can be deleted.)

However, there is one important factor that is not taken into account explicitly in this
formulation. Specifically, there is nothing in the model that requires all available regular
time for a product to be fully utilized before any overtime is used for that product. In
other words, it may be feasible to have x1O � 0 even when x1R � 3 and to have x2O � 0
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even when x2R � 3. Such solutions would not, however, be acceptable to management.
(Prohibiting such solutions is the special restriction discussed earlier in this section.)

Now we come to the key property of separable programming. Even though the model
does not take this factor into account explicitly, the model does take it into account im-
plicitly! Despite the model’s having excess “feasible” solutions that actually are unac-
ceptable, any optimal solution for the model is guaranteed to be a legitimate one that does
not replace any available regular-time work with overtime work. (The reasoning here is
analogous to that for the Big M method discussed in Sec. 4.6, where excess feasible but
nonoptimal solutions also were allowed in the model as a matter of convenience.) There-
fore, the simplex method can be safely applied to this model to find the most profitable
acceptable product mix. The reasons are twofold. First, the two decision variables for each
product always appear together as a sum, x1R 	 x1O or x2R 	 x2O, in each functional con-
straint other than the upper bound constraints on individual variables. Therefore, it always
is possible to convert an unacceptable feasible solution to an acceptable one having the
same total production rates, x1 � x1R 	 x1O and x2 � x2R 	 x2O, merely by replacing over-
time production by regular-time production as much as possible. Second, overtime pro-
duction is less profitable than regular-time production (i.e., the slope of each profit curve
in Fig. 13.16 is a monotonic decreasing function of the rate of production), so converting
an unacceptable feasible solution to an acceptable one in this way must increase the total
rate of profit Z. Consequently, any feasible solution that uses overtime production for a
product when regular-time production is still available cannot be optimal with respect to
the model.

For example, consider the unacceptable feasible solution x1R � 1, x1O � 1, x2R � 1,
x2O � 3, which yields a total rate of profit Z � 13. The acceptable way of achieving the
same total production rates x1 � 2 and x2 � 4 is x1R � 2, x1O � 0, x2R � 3, x2O � 1. This
latter solution is still feasible, but it also increases Z by (3 � 2)(1) 	 (5 � 1)(2) � 9 to a
total rate of profit Z � 22.

Similarly, the optimal solution for this model turns out to be x1R � 3, x1O � 1,
x2R � 3, x2O � 0, which is an acceptable feasible solution.

Extensions

Thus far we have focused on the special case of separable programming where the only
nonlinear function is the objective function f(x). Now consider briefly the general case
where the constraint functions gi(x) need not be linear but are convex and separable, so
that each gi(x) can be expressed as a sum of functions of individual variables

gi(x) � �
n

j�1
gij(xj),

where each gij(xj) is a convex function. Once again, each of these new functions may be
approximated as closely as desired by a piecewise linear function (if it is not already in
that form). The one new restriction is that for each variable xj ( j � 1, 2, . . . , n), all the
piecewise linear approximations of the functions of this variable [ fj(xj), g1j(xj), . . . , gmj(xj)]
must have the same breakpoints so that the same new variables (xj1, xj2, . . . , xjnj

) can be
used for all these piecewise linear functions. This formulation leads to a linear program-
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ming model just like the one given for the special case except that for each i and j, the
xjk variables now have different coefficients in constraint i [where these coefficients are
the corresponding slopes of the piecewise linear function approximating gij(xj)]. Because
the gij(xj) are required to be convex, essentially the same logic as before implies that the
key property of separable programming still must hold. (See Prob. 13.8-8b.)

One drawback of approximating functions by piecewise linear functions as described
in this section is that achieving a close approximation requires a large number of line seg-
ments (variables), whereas such a fine grid for the breakpoints is needed only in the im-
mediate neighborhood of an optimal solution. Therefore, more sophisticated approaches
that use a succession of two-segment piecewise linear functions have been developed1 to
obtain successively closer approximations within this immediate neighborhood. This kind
of approach tends to be both faster and more accurate in closely approximating an opti-
mal solution.
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We already have discussed some special cases of convex programming in Secs. 13.4 and
13.5 (unconstrained problems), 13.7 (quadratic objective function with linear constraints),
and 13.8 (separable functions). You also have seen some theory for the general case (nec-
essary and sufficient conditions for optimality) in Sec. 13.6. In this section, we briefly
discuss some types of approaches used to solve the general convex programming prob-
lem [where the objective function f(x) to be maximized is concave and the gi(x) constraint
functions are convex], and then we present one example of an algorithm for convex pro-
gramming.

There is no single standard algorithm that always is used to solve convex program-
ming problems. Many different algorithms have been developed, each with its own ad-
vantages and disadvantages, and research continues to be active in this area. Roughly
speaking, most of these algorithms fall into one of the following three categories.

The first category is gradient algorithms, where the gradient search procedure of
Sec. 13.5 is modified in some way to keep the search path from penetrating any constraint
boundary. For example, one popular gradient method is the generalized reduced gradient
(GRG) method.

The second category—sequential unconstrained algorithms—includes penalty
function and barrier function methods. These algorithms convert the original constrained
optimization problem to a sequence of unconstrained optimization problems whose opti-
mal solutions converge to the optimal solution for the original problem. Each of these un-
constrained optimization problems can be solved by the gradient search procedure of Sec.
13.5. This conversion is accomplished by incorporating the constraints into a penalty func-
tion (or barrier function) that is subtracted from the objective function in order to impose
large penalties for violating constraints (or even being near constraint boundaries). You
will see one example of this category of algorithms in the next section.

The third category—sequential-approximation algorithms—includes linear ap-
proximation and quadratic approximation methods. These algorithms replace the nonlin-
ear objective function by a succession of linear or quadratic approximations. For linearly
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constrained optimization problems, these approximations allow repeated application of
linear or quadratic programming algorithms. This work is accompanied by other analysis
that yields a sequence of solutions that converges to an optimal solution for the original
problem. Although these algorithms are particularly suitable for linearly constrained op-
timization problems, some also can be extended to problems with nonlinear constraint
functions by the use of appropriate linear approximations.

As one example of a sequential-approximation algorithm, we present here the Frank-
Wolfe algorithm1 for the case of linearly constrained convex programming (so the con-
straints are Ax � b and x � 0 in matrix form). This procedure is particularly straightfor-
ward; it combines linear approximations of the objective function (enabling us to use the
simplex method) with the one-dimensional search procedure of Sec. 13.4.

A Sequential Linear Approximation Algorithm (Frank-Wolfe)

Given a feasible trial solution x�, the linear approximation used for the objective function
f(x) is the first-order Taylor series expansion of f(x) around x � x�, namely,

f(x�) � f(x�) 	 �
n

j�1
(xj � x�j) � f(x�) 	 �f(x�)(x � x�),

where these partial derivatives are evaluated at x � x�. Because f(x�) and �f(x�)x� have
fixed values, they can be dropped to give an equivalent linear objective function

g(x) � �f(x�)x � �
n

j�1
cjxj, where cj � at x � x�.

The simplex method (or the graphical procedure if n � 2) then is applied to the re-
sulting linear programming problem [maximize g(x) subject to the original constraints,
Ax � b and x � 0] to find its optimal solution xLP. Note that the linear objective func-
tion necessarily increases steadily as one moves along the line segment from x� to xLP

(which is on the boundary of the feasible region). However, the linear approximation
may not be a particularly close one for x far from x�, so the nonlinear objective func-
tion may not continue to increase all the way from x� to xLP. Therefore, rather than
just accepting xLP as the next trial solution, we choose the point that maximizes the
nonlinear objective function along this line segment. This point may be found by con-
ducting the one-dimensional search procedure of Sec. 13.4, where the one variable for
purposes of this search is the fraction t of the total distance from x� to xLP. This point
then becomes the new trial solution for initiating the next iteration of the algorithm,
as just described. The sequence of trial solutions generated by repeated iterations con-
verges to an optimal solution for the original problem, so the algorithm stops as soon
as the successive trial solutions are close enough together to have essentially reached
this optimal solution.

�f(x)



�xj

�f(x�)



�xj
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Summary of the Frank-Wolfe Algorithm.

Initialization: Find a feasible initial trial solution x(0), for example, by applying linear
programming procedures to find an initial BF solution. Set k � 1.

Iteration:

1. For j � 1, 2, . . . , n, evaluate

at x � x(k�1)

and set cj equal to this value.
2. Find an optimal solution x(k)

LP for the following linear programming problem.

Maximize g(x) � �
n

j�1
cjxj,

subject to

Ax � b and x � 0.

3. For the variable t (0 � t � 1), set

h(t) � f(x) for x � x(k�1) 	 t(x
LP

(k) � x(k�1)),

so that h(t) gives the value of f(x) on the line segment between x(k�1) (where t � 0)
and x(k)

LP (where t � 1). Use some procedure such as the one-dimensional search pro-
cedure (see Sec. 13.4) to maximize h(t) over 0 � t � 1, and set x(k) equal to the cor-
responding x. Go to the stopping rule.

Stopping rule: If x(k�1) and x(k) are sufficiently close, stop and use x(k) (or some extrap-
olation of x(0), x(1), . . . , x(k�1), x(k)) as your estimate of an optimal solu-
tion. Otherwise, reset k � k 	 1 and perform another iteration.

Now let us illustrate this procedure.

Example. Consider the following linearly constrained convex programming problem:

Maximize f(x) � 5x1 � x2
1 	 8x2 � 2x2

2,

subject to

3x1 	 2x2 � 6

and

x1 � 0, x2 � 0.

Note that

� 5 � 2x1, � 8 � 4x2,
�f



�x2

�f


�x1

�f(x)



�xj
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so that the unconstrained maximum x � (

5
2


, 2) violates the functional constraint. Thus,
more work is needed to find the constrained maximum.

Because x � (0, 0) is clearly feasible (and corresponds to the initial BF solution for
the linear programming constraints), let us choose it as the initial trial solution x(0) for the
Frank-Wolfe algorithm. Plugging x1 � 0 and x2 � 0 into the expressions for the partial
derivatives gives c1 � 5 and c2 � 8, so that g(x) � 5x1 	 8x2 is the initial linear approx-
imation of the objective function. Graphically, solving this linear programming problem
(see Fig. 13.17a) yields x(1)

LP � (0, 3). For step 3 of the first iteration, the points on the
line segment between (0, 0) and (0, 3) shown in Fig. 13.17a are expressed by

(x1, x2) � (0, 0) 	 t[(0, 3) � (0, 0)] for 0 � t � 1
� (0, 3t)

as shown in the sixth column of Table 13.5. This expression then gives

h(t) � f(0, 3t) � 8(3t) � 2(3t)2

� 24t � 18t2,

so that the value t � t* that maximizes h(t) over 0 � t � 1 may be obtained in this case
by setting

� 24 � 36t � 0,

so that t* � 

2
3


. This result yields the next trial solution

x(1) � (0, 0) 	 

2
3


[(0, 3) � (0, 0)]

� (0, 2),

which completes the first iteration.

dh(t)



dt
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FIGURE 13.17
Illustration of the Frank-Wolfe
algorithm.



To sketch the calculations that lead to the results in the second row of Table 13.5,
note that x(1) � (0, 2) gives

c1 � 5 � 2(0) � 5,
c2 � 8 � 4(2) � 0.

For the objective function g(x) � 5x1, graphically solving the problem over the feasible
region in Fig. 13.17a gives x(2)

LP � (2, 0). Therefore, the expression for the line segment
between x(1) and x(2)

LP (see Fig. 13.17a) is

x � (0, 2) 	 t[(2, 0) � (0, 2)]
� (2t, 2 � 2t),

so that

h(t) � f(2t, 2 � 2t)
� 5(2t) � (2t)2 	 8(2 � 2t) � 2(2 � 2t)2

� 8 	 10t � 12t2.

Setting

� 10 � 24t � 0

yields t* � 

1
5
2

. Hence,

x(2) � (0, 2) 	 

1
5
2

[(2, 0) � (0, 2)]

� �

5
6


, 

7
6


�.

You can see in Fig. 13.17b how the trial solutions keep alternating between two tra-
jectories that appear to intersect at approximately the point x � (1, 


3
2


). This point is, in fact,
the optimal solution, as can be verified by applying the KKT conditions from Sec. 13.6.

This example illustrates a common feature of the Frank-Wolfe algorithm, namely, that
the trial solutions alternate between two (or more) trajectories. When they alternate in this
way, we can extrapolate the trajectories to their approximate point of intersection to esti-
mate an optimal solution. This estimate tends to be better than using the last trial solu-
tion generated. The reason is that the trial solutions tend to converge rather slowly toward
an optimal solution, so the last trial solution may still be quite far from optimal.

dh(t)



dt
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TABLE 13.5 Application of the Frank-Wolfe algorithm to the example

k x(k�1) c1 c2 xLP
(k) x for h(t) h(t) t* x(k)

1 (0, 0) 5 8 (0, 3) (0, 3t) 24t � 18t2 

2
3


 (0, 2)

2 (0, 2) 5 0 (2, 0) (2t, 2 � 2t) 8 	 10t � 12t2 

1
5
2

 �


5
6


, 

7
6


�



In conclusion, we emphasize that the Frank-Wolfe algorithm is just one example of
sequential-approximation algorithms. Many of these algorithms use quadratic instead of
linear approximations at each iteration because quadratic approximations provide a con-
siderably closer fit to the original problem and thus enable the sequence of solutions to
converge considerably more rapidly toward an optimal solution than was the case in Fig.
13.17b. For this reason, even though sequential linear approximation methods such as the
Frank-Wolfe algorithm are relatively straightforward to use, sequential quadratic ap-
proximation methods1 now are generally preferred in actual applications. Popular among
these are the quasi-Newton (or variable metric) methods, which compute a quadratic ap-
proximation to the curvature of a nonlinear function without explicitly calculating second
(partial) derivatives. (For linearly constrained optimization problems, this nonlinear func-
tion is just the objective function; whereas with nonlinear constraints, it is the Lagrangian
function described in Appendix 3.) Some quasi-Newton algorithms do not even explicitly
form and solve an approximating quadratic programming problem at each iteration, but
instead incorporate some of the basic ingredients of gradient algorithms.

For further information about convex programming algorithms, see Selected Refer-
ences 4 and 6.

Some Software Options

Another example illustrating the application of the Frank-Wolfe algorithm is provided in
your OR Tutor. The OR Courseware also includes an interactive routine for this algorithm.

As indicated at the end of Sec. 13.7, both Excel and LINGO can solve convex pro-
gramming problems, but LINDO and CPLEX cannot except for the special case of qua-
dratic programming (which includes the example in this section). Details for this exam-
ple are given in the Excel and LINGO/LINDO files for this chapter in your OR Courseware.
The professional version of MPL supports a large number of solvers, including some that
can handle convex programming. One of these, called CONOPT, is included with the stu-
dent version of MPL that is on the CD-ROM. The convex programming examples that are
formulated in this chapter’s MPL file have been solved with this solver after selecting
Nonlinear Models for the Default Model Type entry in the MPL Language option dia-
logue box.
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1For a survey of these methods, see M. J. D. Powell, “Variable Metric Methods for Constrained Optimization,”
in A. Bachem, M. Grotschel, and B. Korte (eds.), Mathematical Programming: The State of the Art, Springer-
Verlag, Berlin, 1983, pp. 288–311.

The assumptions of convex programming are very convenient ones, because they ensure
that any local maximum also is a global maximum. Unfortunately, the nonlinear pro-
gramming problems that arise in practice frequently only come fairly close to satisfying
these assumptions, but they have some relatively minor disparities. What kind of approach
can be used to deal with such nonconvex programming problems?

A common approach is to apply an algorithmic search procedure that will stop when
it finds a local maximum and then to restart it a number of times from a variety of initial
trial solutions in order to find as many distinct local maxima as possible. The best of these

13.10 NONCONVEX PROGRAMMING



local maxima is then chosen for implementation. Normally, the search procedure is one
that has been designed to find a global maximum when all the assumptions of convex pro-
gramming hold, but it also can operate to find a local maximum when they do not.

One such search procedure that has been widely used since its development in the
1960s is the sequential unconstrained minimization technique (or SUMT for short).1 There
actually are two main versions of SUMT, one of which is an exterior-point algorithm that
deals with infeasible solutions while using a penalty function to force convergence to the
feasible region. We shall describe the other version, which is an interior-point algorithm
that deals directly with feasible solutions while using a barrier function to force staying
inside the feasible region. Although SUMT was originally presented as a minimization
technique, we shall convert it to a maximization technique in order to be consistent with
the rest of the chapter. Therefore, we continue to assume that the problem is in the form
given at the beginning of the chapter and that all the functions are differentiable.

Sequential Unconstrained Minimization Technique (SUMT)

As the name implies, SUMT replaces the original problem by a sequence of unconstrained
optimization problems whose solutions converge to a solution (local maximum) of the
original problem. This approach is very attractive because unconstrained optimization
problems are much easier to solve (see the gradient search procedure in Sec. 13.5) than
those with constraints. Each of the unconstrained problems in this sequence involves choos-
ing a (successively smaller) strictly positive value of a scalar r and then solving for x so
as to

Maximize P(x; r) � f(x) � rB(x).

Here B(x) is a barrier function that has the following properties (for x that are feasible
for the original problem):

1. B(x) is small when x is far from the boundary of the feasible region.
2. B(x) is large when x is close to the boundary of the feasible region.
3. B(x) � � as the distance from the (nearest) boundary of the feasible region � 0.

Thus, by starting the search procedure with a feasible initial trial solution and then at-
tempting to increase P(x; r), B(x) provides a barrier that prevents the search from ever
crossing (or even reaching) the boundary of the feasible region for the original problem.

The most common choice of B(x) is

B(x) � �
m

i�1
	 �

n

j�1
.

For feasible values of x, note that the denominator of each term is proportional to the dis-
tance of x from the constraint boundary for the corresponding functional or nonnegativ-
ity constraint. Consequently, each term is a boundary repulsion term that has all the pre-
ceding three properties with respect to this particular constraint boundary. Another
attractive feature of this B(x) is that when all the assumptions of convex programming are
satisfied, P(x; r) is a concave function.

1


xj

1



bi � gi(x)
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Because B(x) keeps the search away from the boundary of the feasible region, you
probably are asking the very legitimate question: What happens if the desired solution lies
there? This concern is the reason that SUMT involves solving a sequence of these uncon-
strained optimization problems for successively smaller values of r approaching zero (where
the final trial solution from each one becomes the initial trial solution for the next). For
example, each new r might be obtained from the preceding one by multiplying by a con-
stant � (0 � � � 1), where a typical value is � � 0.01. As r approaches 0, P(x; r) approaches
f(x), so the corresponding local maximum of P(x; r) converges to a local maximum of the
original problem. Therefore, it is necessary to solve only enough unconstrained optimiza-
tion problems to permit extrapolating their solutions to this limiting solution.

How many are enough to permit this extrapolation? When the original problem sat-
isfies the assumptions of convex programming, useful information is available to guide
us in this decision. In particular, if x� is a global maximizer of P(x; r), then

f(x�) � f(x*) � f(x�) 	 rB(x�),

where x* is the (unknown) optimal solution for the original problem. Thus, rB(x�) is the
maximum error (in the value of the objective function) that can result by using x� to ap-
proximate x*, and extrapolating beyond x� to increase f(x) further decreases this error. If
an error tolerance is established in advance, then you can stop as soon as rB(x�) is less
than this quantity.

Unfortunately, no such guarantee for the maximum error can be given for noncon-
vex programming problems. However, rB(x�) still is likely to exceed the actual error
when x� and x* now are corresponding local maxima of P(x; r) and the original prob-
lem, respectively.

Summary of SUMT.

Initialization: Identify a feasible initial trial solution x(0) that is not on the boundary of
the feasible region. Set k � 1 and choose appropriate strictly positive val-
ues for the initial r and for � � 1 (say, r � 1 and � � 0.01).1

Iteration: Starting from x(k�1), apply the gradient search procedure described in Sec. 13.5
(or some similar method) to find a local maximum x(k) of

P(x; r) � f(x) � r 
�
m

i�1
	 �

n

j�1
�.

Stopping rule: If the change from x(k�1) to x(k) is negligible, stop and use x(k) (or an ex-
trapolation of x(0), x(1), . . . , x(k�1), x(k)) as your estimate of a local max-
imum of the original problem. Otherwise, reset k � k 	 1 and r � �r and
perform another iteration.

When the assumptions of convex programming are not satisfied, this algorithm should
be repeated a number of times by starting from a variety of feasible initial trial solutions.
The best of the local maxima thereby obtained for the original problem should be used
as the best available approximation of a global maximum.

1


xj

1



bi � gi(x)
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Finally, note that SUMT also can be extended to accommodate equality constraints
gi(x) � bi. One standard way is as follows. For each equality constraint,

replaces

in the expression for P(x; r) given under “Summary of SUMT,” and then the same pro-
cedure is used. The numerator �[bi � gi(x)]2 imposes a large penalty for deviating sub-
stantially from satisfying the equality constraint, and then the denominator tremendously
increases this penalty as r is decreased to a tiny amount, thereby forcing the sequence of
trial solutions to converge toward a point that satisfies the constraint.

SUMT has been widely used because of its simplicity and versatility. However, nu-
merical analysts have found that it is relatively prone to numerical instability, so consid-
erable caution is advised. For further information on this issue as well as similar analy-
ses for alternative algorithms, see Selected Reference 4.

Example. To illustrate SUMT, consider the following two-variable problem:

Maximize f(x) � x1x2,

subject to

x2
1 	 x2 � 3

and

x1 � 0, x2 � 0.

Even though g1(x) � x2
1 	 x2 is convex (because each term is convex), this problem is a

nonconvex programming problem because f(x) � x1x2 is not concave (see Appendix 2).
For the initialization, (x1, x2) � (1, 1) is one obvious feasible solution that is not on

the boundary of the feasible region, so we can set x(0) � (1, 1). Reasonable choices for r
and � are r � 1 and � � 0.01.

For each iteration,

P(x; r) � x1x2 � r � 	 	 �.

With r � 1, applying the gradient search procedure starting from (1, 1) to maximize this
expression eventually leads to x(1) � (0.90, 1.36). Resetting r � 0.01 and restarting the
gradient search procedure from (0.90, 1.36) then lead to x(2) � (0.983, 1.933). One more
iteration with r � 0.01(0.01) � 0.0001 leads from x(2) to x(3) � (0.998, 1.994). This se-
quence of points, summarized in Table 13.6, quite clearly is converging to (1, 2). Apply-
ing the KKT conditions to this solution verifies that it does indeed satisfy the necessary
condition for optimality. Graphical analysis demonstrates that (x1, x2) � (1, 2) is, in fact,
a global maximum (see Prob. 13.10-4b).

For this problem, there are no local maxima other than (x1, x2) � (1, 2), so reapply-
ing SUMT from various feasible initial trial solutions always leads to this same solution.1

1


x2

1


x1

1



3 � x2

1 � x2

�r



bi � gi(x)

�[bi � gi(x)]2




�r�
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Diewert, S. Schaible, and I. Zang, Generalized Concavity, Plenum, New York, 1985.



Your OR Tutor includes another example illustrating the application of SUMT. The
OR Courseware includes an automatic routine for executing SUMT.
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TABLE 13.6 Illustration of SUMT

k r x1
(k) x2

(k)

0 1 1
1 1 0.90 1.36
2 10�2 0.983 1.933
3 10�4 0.998 1.994

 
↓ ↓
1. 2

Practical optimization problems frequently involve nonlinear behavior that must be taken
into account. It is sometimes possible to reformulate these nonlinearities to fit into a lin-
ear programming format, as can be done for separable programming problems. However,
it is frequently necessary to use a nonlinear programming formulation.

In contrast to the case of the simplex method for linear programming, there is no ef-
ficient all-purpose algorithm that can be used to solve all nonlinear programming prob-
lems. In fact, some of these problems cannot be solved in a very satisfactory manner by
any method. However, considerable progress has been made for some important classes
of problems, including quadratic programming, convex programming, and certain special
types of nonconvex programming. A variety of algorithms that frequently perform well
are available for these cases. Some of these algorithms incorporate highly efficient pro-
cedures for unconstrained optimization for a portion of each iteration, and some use a
succession of linear or quadratic approximations to the original problem.

There has been a strong emphasis in recent years on developing high-quality, reliable
software packages for general use in applying the best of these algorithms. (See Selected
Reference 7 for a comprehensive survey of the available software packages for nonlinear
programming.) For example, several powerful software packages such as MINOS have
been developed in the Systems Optimization Laboratory at Stanford University. These
packages are widely used elsewhere for solving many of the types of problems discussed
in this chapter (as well as linear programming problems). The steady improvements be-
ing made in both algorithmic techniques and software now are bringing some rather large
problems into the range of computational feasibility.

Research in nonlinear programming remains very active.
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Demonstration Examples in OR Tutor:

Gradient Search Procedure
Frank-Wolfe Algorithm
Sequential Unconstrained Minimization Technique—SUMT

Interactive Routines:

Interactive One-Dimensional Search Procedure
Interactive Gradient Search Procedure
Interactive Modified Simplex Method
Interactive Frank-Wolfe Algorithm

Automatic Routines:

Automatic Gradient Search Procedure
Sequential Unconstrained Minimization Technique—SUMT

An Excel Add-in:

Premium Solver

“Ch. 13—Nonlinear Programming” Files for Solving the Examples:

Excel File
LINGO/LINDO File
MPL/CPLEX/CONOPT File

See Appendix 1 for documentation of the software.
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The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The corresponding demonstration example listed above may be
helpful.

I: We suggest that you use the corresponding interactive routine
listed above (the printout records your work).

C: Use the computer with any of the software options available to
you (or as instructed by your instructor) to solve the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

13.1-1. Consider the product mix problem described in Prob. 
3.1-11. Suppose that this manufacturing firm actually encounters
price elasticity in selling the three products, so that the profits
would be different from those stated in Chap. 3. In particular, sup-
pose that the unit costs for producing products 1, 2, and 3 are $25,
$10, and $15, respectively, and that the prices required (in dollars)
in order to be able to sell x1, x2, and x3 units are (35 	 100x1

�

1
3




),
(15 	 40x2

�

1
4




), and (20 	 50x3
�


1
2




), respectively.
Formulate a nonlinear programming model for the problem

of determining how many units of each product the firm should
produce to maximize profit.

13.1-2. For the P & T Co. problem described in Sec. 8.1, suppose
that there is a 10 percent discount in the shipping cost for all truck-
loads beyond the first 40 for each combination of cannery and ware-
house. Draw figures like Figs. 13.3 and 13.4, showing the marginal
cost and total cost for shipments of truckloads of peas from can-
nery 1 to warehouse 1. Then describe the overall nonlinear pro-
gramming model for this problem.

13.1-3. A stockbroker, Richard Smith, has just received a call from
his most important client, Ann Hardy. Ann has $50,000 to invest,
and wants to use it to purchase two stocks. Stock 1 is a solid blue-
chip security with a respectable growth potential and little risk in-
volved. Stock 2 is much more speculative. It is being touted in two
investment newsletters as having outstanding growth potential, but
also is considered very risky. Ann would like a large return on her
investment, but also has considerable aversion to risk. Therefore,
she has instructed Richard to analyze what mix of investments in
the two stocks would be appropriate for her.

Ann is used to talking in units of thousands of dollars and
1,000-share blocks of stocks. Using these units, the price per block
is 20 for stock 1 and 30 for stock 2. After doing some research,
Richard has made the following estimates. The expected return per
block is 5 for stock 1 and 10 for stock 2. The variance of the re-
turn on each block is 4 for stock 1 and 100 for stock 2. The co-
variance of the return on one block each of the two stocks is 5.

Without yet assigning a specific numerical value to the min-
imum acceptable expected return, formulate a nonlinear program-
ming model for this problem.

13.2-1. Reconsider Prob. 13.1-1. Verify that this problem is a con-
vex programming problem.

13.2-2. Reconsider Prob. 13.1-3. Show that the model formulated
is a convex programming problem by using the test in Appendix 2
to show that the objective function being minimized is convex.

13.2-3. Consider the variation of the Wyndor Glass Co. example
represented in Fig. 13.5, where the second and third functional con-
straints of the original problem (see Sec. 3.1) have been replaced
by 9x1

2 	 5x2
2 � 216. Demonstrate that (x1, x2) � (2, 6) with 

Z � 36 is indeed optimal by showing that the objective function
line 36 � 3x1 	 5x2 is tangent to this constraint boundary at 
(2, 6). (Hint: Express x2 in terms of x1 on this boundary, and then
differentiate this expression with respect to x1 to find the slope of
the boundary.)

13.2-4. Consider the variation of the Wyndor Glass Co. problem
represented in Fig. 13.6, where the original objective function (see
Sec. 3.1) has been replaced by Z � 126x1 � 9x1

2 	 182x2 �
13x2

2. Demonstrate that (x1, x2) � (

8
3


, 5) with Z � 857 is indeed op-
timal by showing that the ellipse 857 � 126x1 � 9x1

2 	
182x2 � 13x2

2 is tangent to the constraint boundary 3x1 	
2x2 � 18 at (


8
3


, 5). (Hint: Solve for x2 in terms of x1 for the ellipse,
and then differentiate this expression with respect to x1 to find the
slope of the ellipse.)

13.2-5. Consider the following function:

f(x) � 48x � 60x2 	 x3.

(a) Use the first and second derivatives to find the local maxima
and local minima of f(x).

(b) Use the first and second derivatives to show that f(x) has nei-
ther a global maximum nor a global minimum because it is
unbounded in both directions.

13.2-6. For each of the following functions, show whether it is
convex, concave, or neither.
(a) f(x) � 10x � x2

(b) f(x) � x4 	 6x2 	 12x
(c) f(x) � 2x3 � 3x2

(d) f(x) � x4 	 x2

(e) f(x) � x3 	 x4

13.2-7.* For each of the following functions, use the test given in
Appendix 2 to determine whether it is convex, concave, or neither.
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subject to

2x1 	 x2 � 10
x1 	 2x2 � 10

and

x1 � 0, x2 � 0.

(a) Of the special types of nonlinear programming problems de-
scribed in Sec. 13.3, to which type or types can this particular
problem be fitted? Justify your answer.

(b) Now suppose that the problem is changed slightly by replac-
ing the nonnegativity constraints by x1 � 1 and x2 � 1. Con-
vert this new problem to an equivalent problem that has just
two functional constraints, two variables, and two nonnegativ-
ity constraints.

13.3-4. Consider the following geometric programming problem:

Minimize f(x) � 2x1
�2x2

�1 	 x2
�2,

subject to

4x1x2 	 x1
2x2

2 � 12

and

x1 � 0, x2 � 0.

(a) Transform this problem to an equivalent convex programming
problem.

(b) Use the test given in Appendix 2 to verify that the model for-
mulated in part (a) is indeed a convex programming problem.

13.3-5. Consider the following linear fractional programming
problem:

Maximize f(x) �

10
3
x
x

1

1

	

	

2
4
0
x2

x2

	

	

2
1
0
0


,

subject to

x1 	 3x2 � 50
3x1 	 2x2 � 80

and

x1 � 0, x2 � 0.

(a) Transform this problem to an equivalent linear programming
problem.

C (b) Use the computer to solve the model formulated in part
(a). What is the resulting optimal solution for the original
problem?

13.3-6. Consider the expressions in matrix notation given in Sec.
13.7 for the general form of the KKT conditions for the quadratic
programming problem. Show that the problem of finding a feasi-

(a) f(x) � x1x2 � x2
1 � x2

2

(b) f(x) � 3x1 	 2x2
1 	 4x2 	 x2

2 � 2x1x2

(c) f(x) � x2
1 	 3x1x2 	 2x2

2

(d) f(x) � 20x1 	 10x2

(e) f(x) � x1x2

13.2-8. Consider the following function:

f(x) � 5x1 	 2x2
2 	 x2

3 � 3x3x4 	 4x2
4 	 2x4

5 	 x2
5

	 3x5x6 	 6x2
6 	 3x6x7 	 x2

7.

Show that f(x) is convex by expressing it as a sum of functions of
one or two variables and then showing (see Appendix 2) that all
these functions are convex.

13.2-9. Consider the following nonlinear programming problem:

Maximize f(x) � x1 	 x2,

subject to

x2
1 	 x2

2 � 1

and

x1 � 0, x2 � 0.

(a) Verify that this is a convex programming problem.
(b) Solve this problem graphically.

13.2-10. Consider the following nonlinear programming problem:

Minimize Z � x4
1 	 2x2

2,

subject to

x2
1 	 x2

2 � 2.
(No nonnegativity constraints.)

(a) Use geometric analysis to determine whether the feasible re-
gion is a convex set.

(b) Now use algebra and calculus to determine whether the feasi-
ble region is a convex set.

13.3-1. Reconsider Prob. 13.1-2. Show that this problem is a non-
convex programming problem.

13.3-2. Consider the following constrained optimization problem:

Maximize f(x) � �6x 	 3x2 � 2x3,

subject to

x � 0.

Use just the first and second derivatives of f(x) to derive an opti-
mal solution.

13.3-3. Consider the following nonlinear programming problem:

Minimize Z � x1
4 	 2x1

2 	 2x1x2 	 4x2
2,
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(a) Given x

0, x�0, and � � 0, the sequence of trial solutions selected

by the midpoint rule must converge to a limiting solution.
[Hint: First show that limn��(x�n � x


n) � 0, where x�n and x

n

are the upper and lower bounds identified at iteration n.]
(b) If f(x) is concave [so that df(x)/dx is a monotone decreasing

function of x], then the limiting solution in part (a) must be a
global maximum.

(c) If f(x) is not concave everywhere, but would be concave if its
domain were restricted to the interval between x


0 and x�0, then
the limiting solution in part (a) must be a global maximum.

(d) If f(x) is not concave even over the interval between x

0 and x�0,

then the limiting solution in part (a) need not be a global max-
imum. (Prove this by graphically constructing a counterexam-
ple.)

(e) If df(x)/dx � 0 for all x, then no x

0 exists. If df(x)/dx � 0 for

all x, then no x�0 exists. In either case, f(x) does not possess a
global maximum.

(f) If f(x) is concave and lim
x���

f(x)/dx � 0, then no x

0 exists. If

f(x) is concave and lim
x��

df(x)/dx � 0, then no x�0 exists. In ei-
ther case, f(x) does not possess a global maximum.

I 13.4-7. Consider the following linearly constrained convex pro-
gramming problem:

Maximize f(x) � 32x1 	 50x2 � 10x2
2 	 x2

3 � x1
4 � x2

4,

subject to

3x1 	 x2 � 11
2x1 	 5x2 � 16

and

x1 � 0, x2 � 0.

Ignore the constraints and solve the resulting two one-variable un-
constrained optimization problems. Use calculus to solve the prob-
lem involving x1 and use the one-dimensional search procedure with
� � 0.001 and initial bounds 0 and 4 to solve the problem involv-
ing x2. Show that the resulting solution for (x1, x2) satisfies all of
the constraints, so it is actually optimal for the original problem.

13.5-1. Consider the following unconstrained optimization prob-
lem:

Maximize f(x) � 2x1x2 	 x2 � x1
2 � 2x2

2.

D,I (a) Starting from the initial trial solution (x1, x2) � (1, 1),
interactively apply the gradient search procedure with 
� � 0.25 to obtain an approximate solution.

(b) Solve the system of linear equations obtained by setting 
�f(x) � 0 to obtain the exact solution.

(c) Referring to Fig 13.14 as a sample for a similar problem, draw
the path of trial solutions you obtained in part (a). Then show

ble solution for these conditions is a linear complementarity prob-
lem, as introduced in Sec. 13.3, by identifying w, z, q, and M in
terms of the vectors and matrices in Sec. 13.7.

I 13.4-1.* Use the one-dimensional search procedure to interac-
tively solve (approximately) the following problem:

Maximize f(x) � x3 	 2x � 2x2 � 0.25x4.

Use an error tolerance � � 0.04 and initial bounds x



� 0, x� � 2.4.

I 13.4-2. Use the one-dimensional search procedure with an error
tolerance � � 0.04 and with the following initial bounds to inter-
actively solve (approximately) each of the following problems.
(a) Maximize f(x) � 6x � x2, with x



� 0, x� � 4.8.

(b) Minimize f(x) � 6x 	 7x2 	 4x3 	 x4, with x



� �4,
x� � 1.

I 13.4-3. Use the one-dimensional search procedure to interac-
tively solve (approximately) the following problem:

Maximize f(x) � 48x5 	 42x3 	 3.5x � 16x6

� 61x4 � 16.5x2.

Use an error tolerance � � 0.08 and initial bounds x



� �1, x� � 4.

I 13.4-4. Use the one-dimensional search procedure to interac-
tively solve (approximately) the following problem:

Maximize f(x) � x3 	 30x � x6 � 2x4 � 3x2.

Use an error tolerance � � 0.07 and find appropriate initial bounds
by inspection.

13.4-5. Consider the following convex programming problem:

Minimize Z � x4 	 x2 � 4x,

subject to

x � 2 and x � 0.

(a) Use one simple calculation just to check whether the optimal
solution lies in the interval 0 � x � 1 or the interval 1 � x �
2. (Do not actually solve for the optimal solution in order to
determine in which interval it must lie.) Explain your logic.

I (b) Use the one-dimensional search procedure with initial
bounds x



� 0, x� � 2 and with an error tolerance � � 0.02 to

interactively solve (approximately) this problem.

13.4-6. Consider the problem of maximizing a differentiable func-
tion f(x) of a single unconstrained variable x. Let x


0 and x�0, re-
spectively, be a valid lower bound and upper bound on the same
global maximum (if one exists). Prove the following general prop-
erties of the one-dimensional search procedure (as presented in Sec.
13.4) for attempting to solve such a problem.
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� � 0.05 to solve (approximately) the two-variable problem
identified in part (a).

C (c) Repeat part (b) with the automatic routine for this procedure
(with � � 0.005).

D,I,C 13.5-8.* Starting from the initial trial solution (x1, x2) � (0, 0),
interactively apply the gradient search procedure with � � 1 to solve
(approximately) each of the following problems, and then apply the
automatic routine for this procedure (with � � 0.01).
(a) Maximize f(x) � x1x2 	 3x2 � x1

2 � x2
2.

(b) Minimize f(x) � x1
2x2

2 	 2x1
2 	 2x2

2 � 4x1 	 4x2.

13.6-1. Reconsider the one-variable convex programming model
given in Prob. 13.4-5. Use the KKT conditions to derive an opti-
mal solution for this model.

13.6-2. Reconsider Prob. 13.2-9. Use the KKT conditions to check
whether (x1, x2) � (1/�2�, 1/�2�) is optimal.

13.6-3.* Reconsider the model given in Prob. 13.3-3. What are the
KKT conditions for this model? Use these conditions to determine
whether (x1, x2) � (0, 10) can be optimal.

13.6-4. Consider the following convex programming problem:

Maximize f(x) � 24x1 � x1
2 	 10x2 � x2

2,

subject to

x1 � 8,
x2 � 7,

and

x1 � 0, x2 � 0.

(a) Use the KKT conditions for this problem to derive an optimal
solution.

(b) Decompose this problem into two separate constrained opti-
mization problems involving just x1 and just x2, respectively.
For each of these two problems, plot the objective function
over the feasible region in order to demonstrate that the value
of x1 or x2 derived in part (a) is indeed optimal. Then prove
that this value is optimal by using just the first and second de-
rivatives of the objective function and the constraints for the
respective problems.

13.6-5. Consider the following linearly constrained optimization
problem:

Maximize f(x) � ln(1 	 x1 	 x2),

subject to

x1 	 2x2 � 5

the apparent continuation of this path with your best guess for
the next three trial solutions [based on the pattern in part 
(a) and in Fig. 13.14]. Also show the exact solution from part
(b) toward which this sequence of trial solutions is converging.

C (d) Apply the automatic routine for the gradient search procedure
(with � � 0.01) in your OR Courseware to this problem.

13.5-2. Repeat the four parts of Prob. 13.5-1 (except with � � 0.5)
for the following unconstrained optimization problem:

Maximize f(x) � 2x1x2 � 2x1
2 � x2

2.

D,I,C 13.5-3. Starting from the initial trial solution (x1, x2) � (1, 1),
interactively apply two iterations of the gradient search procedure
to begin solving the following problem, and then apply the auto-
matic routine for this procedure (with � � 0.01).

Maximize f(x) � 4x1x2 � 2x1
2 � 3x2

2.

Then solve �f(x) � 0 directly to obtain the exact solution.

D,I,C 13.5-4.* Starting from the initial trial solution (x1, x2) � (0, 0),
interactively apply the gradient search procedure with � � 0.3 to ob-
tain an approximate solution for the following problem, and then ap-
ply the automatic routine for this procedure (with � � 0.01).

Maximize f(x) � 8x1 � x1
2 � 12x2 � 2x2

2 	 2x1x2.

Then solve �f(x) � 0 directly to obtain the exact solution.

D,I,C 13.5-5. Starting from the initial trial solution (x1, x2) � (0, 0),
interactively apply two iterations of the gradient search procedure
to begin solving the following problem, and then apply the auto-
matic routine for this procedure (with � � 0.01).

Maximize f(x) � 6x1 	 2x1x2 � 2x2 � 2x1
2 � x2

2.

Then solve �f(x) � 0 directly to obtain the exact solution.

13.5-6. Starting from the initial trial solution (x1, x2) � (0, 0), ap-
ply one iteration of the gradient search procedure to the following
problem by hand:

Maximize f(x) � 4x1 	 2x2 	 x1
2 � x1

4 � 2x1x2 � x2
2.

To complete this iteration, approximately solve for t* by manually
applying two iterations of the one-dimensional search procedure
with initial bounds t



� 0, t� � 1.

13.5-7. Consider the following unconstrained optimization problem:

Maximize f(x) � 3x1x2 	 3x2x3 � x1
2 � 6x2

2 � x3
2.

(a) Describe how solving this problem can be reduced to solving
a two-variable unconstrained optimization problem.

D,I (b) Starting from the initial trial solution (x1, x2, x3) � (1, 1, 1),
interactively apply the gradient search procedure with 

CHAPTER 13 PROBLEMS 711



and

x1 � 0, x2 � 0.

(a) Use the KKT conditions to demonstrate that (x1, x2) � (4, 2)
is not optimal.

(b) Derive a solution that does satisfy the KKT conditions.
(c) Show that this problem is not a convex programming problem.
(d) Despite the conclusion in part (c), use intuitive reasoning to

show that the solution obtained in part (b) is, in fact, optimal.
[The theoretical reason is that f(x) is pseudo-concave.]

(e) Use the fact that this problem is a linear fractional program-
ming problem to transform it into an equivalent linear pro-
gramming problem. Solve the latter problem and thereby iden-
tify the optimal solution for the original problem. (Hint: Use
the equality constraint in the linear programming problem to
substitute one of the variables out of the model, and then solve
the model graphically.)

13.6-10.* Use the KKT conditions to derive an optimal solution
for each of the following problems.

(a) Maximize f(x) � x1 	 2x2 � x2
3,

subject to

x1 	 x2 � 1

and

x1 � 0, x2 � 0.

(b) Maximize f(x) � 20x1 	 10x2,

subject to

x1
2 	 x2

2 � 1
x1 	 2x2 � 2

and

x1 � 0, x2 � 0.

13.6-11. Reconsider the nonlinear programming model given in
Prob. 11.3-16.
(a) Use the KKT conditions to determine whether (x1, x2, x3) �

(1, 1, 1) can be optimal.
(b) If a specific solution satisfies the KKT conditions for this prob-

lem, can you draw the definite conclusion that this solution is
optimal? Why?

13.6-12. What are the KKT conditions for nonlinear programming
problems of the following form?

Minimize f(x),

subject to

gi(x) � bi, for i � 1, 2, . . . , m

and

x1 � 0, x2 � 0,

where ln denotes the natural logarithm.
(a) Verify that this problem is a convex programming problem.
(b) Use the KKT conditions to derive an optimal solution.
(c) Use intuitive reasoning to demonstrate that the solution 

obtained in part (b) is indeed optimal. [Hint: Note that 
ln(1 	 x1 	 x2) is a monotonic strictly increasing function of
1 	 x1 	 x2.]

13.6-6. Consider the following linearly constrained optimization
problem:

Maximize f(x) � ln(x1 	 1) � x2
2,

subject to

x1 	 2x2 � 3

and

x1 � 0, x2 � 0,

where ln denotes the natural logarithm,
(a) Verify that this problem is a convex programming problem.
(b) Use the KKT conditions to derive an optimal solution.
(c) Use intuitive reasoning to demonstrate that the solution ob-

tained in part (b) is indeed optimal.

13.6-7. Consider the following convex programming problem:

Maximize f(x) � 10x1 � 2x1
2 � x1

3 	 8x2 � x2
2,

subject to

x1 	 x2 � 2

and

x1 � 0, x2 � 0.

(a) Use the KKT conditions to demonstrate that (x1, x2) � (1, 1)
is not an optimal solution.

(b) Use the KKT conditions to derive an optimal solution.

13.6-8.* Consider the nonlinear programming problem given in
Prob. 11.3-14. Determine whether (x1, x2) � (1, 2) can be optimal
by applying the KKT conditions.

13.6-9. Consider the following nonlinear programming problem:

Maximize f(x) � 

x2

x
	
1

1

,

subject to

x1 � x2 � 2
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and

x1 � 0, x2 � 0.

(a) Obtain the KKT conditions for this problem.
(b) Use the KKT conditions to check whether (x1, x2) � (


1
2


, 

1
2


) is
an optimal solution.

(c) Use the KKT conditions to derive an optimal solution.

13.6-16. Consider the following linearly constrained convex pro-
gramming problem:

Maximize f(x) � 8x1 � x1
2 	 2x2 	 x3,

subject to

x1 	 3x2 	 2x3 � 12

and

x1 � 0, x2 � 0, x3 � 0.

(a) Use the KKT conditions to demonstrate that (x1, x2, x3) �
(2, 2, 2) is not an optimal solution.

(b) Use the KKT conditions to derive an optimal solution. (Hint:
Do some preliminary intuitive analysis to determine the most
promising case regarding which variables are nonzero and
which are zero.)

13.6-17. Use the KKT conditions to determine whether (x1, x2,
x3) � (1, 1, 1) can be optimal for the following problem:

Minimize Z � 2x1 	 x2
3 	 x3

2,

subject to

x1
2 	 2x2

2 	 x3
2 � 4

and

x1 � 0, x2 � 0, x3 � 0.

13.6-18. Reconsider the model given in Prob. 13.2-10. What are
the KKT conditions for this problem? Use these conditions to de-
termine whether (x1, x2) � (1, 1) can be optimal.

13.6-19. Reconsider the linearly constrained convex programming
model given in Prob. 13.4-7. Use the KKT conditions to determine
whether (x1, x2) � (2, 2) can be optimal.

13.7-1. Consider the quadratic programming example presented in
Sec. 13.7.
(a) Use the test given in Appendix 2 to show that the objective

function is strictly concave.
(b) Verify that the objective function is strictly concave by demon-

strating that Q is a positive definite matrix; that is, xTQx � 0
for all x � 0. (Hint: Reduce xTQx to a sum of squares.)

(c) Show that x1 � 12, x2 � 9, and u1 � 3 satisfy the KKT con-
ditions when they are written in the form given in Sec. 13.6.

and

x � 0.

(Hint: Convert this form to our standard form assumed in this chap-
ter by using the techniques presented in Sec. 4.6 and then apply-
ing the KKT conditions as given in Sec. 13.6.)

13.6-13. Consider the following nonlinear programming problem:

Minimize Z � 2x1
2 	 x2

2,

subject to

x1 	 x2 � 10

and

x1 � 0, x2 � 0.

(a) Of the special types of nonlinear programming problems de-
scribed in Sec. 13.3, to which type or types can this particular
problem be fitted? Justify your answer. (Hint: First convert this
problem to an equivalent nonlinear programming problem that
fits the form given in the second paragraph of the chapter, with
m � 2 and n � 2.)

(b) Obtain the KKT conditions for this problem.
(c) Use the KKT conditions to derive an optimal solution.

13.6-14. Consider the following linearly constrained programming
problem:

Minimize f(x) � x1
3 	 4x2

2 	 16x3,

subject to

x1 	 x2 	 x3 � 5

and

x1 � 1, x2 � 1, x3 � 1.

(a) Convert this problem to an equivalent nonlinear programming
problem that fits the form given at the beginning of the chap-
ter (second paragraph), with m � 2 and n � 3.

(b) Use the form obtained in part (a) to construct the KKT con-
ditions for this problem.

(c) Use the KKT conditions to check whether (x1, x2, x3) � (2, 1, 2)
is optimal.

13.6-15. Consider the following linearly constrained convex pro-
gramming problem:

Minimize Z � x1
2 � 6x1 	 x2

3 � 3x2,

subject to

x1 	 x2 � 1

CHAPTER 13 PROBLEMS 713



lem that is to be addressed explicitly, and then identify the ad-
ditional complementarity constraint that is enforced automat-
ically by the algorithm.

(c) Without applying the modified simplex method, show that the
solution derived in part (a) is indeed optimal (Z � 0) for the
equivalent problem formulated in part (b).

I (d) Apply the modified simplex method to the problem as for-
mulated in part (b).

C (e) Use the computer to solve the quadratic programming prob-
lem directly.

13.7-5. Reconsider the first quadratic programming variation of
the Wyndor Glass Co. problem presented in Sec. 13.2 (see Fig.
13.6). Analyze this problem by following the instructions of parts
(a), (b), and (c) of Prob. 13.7-4.

C 13.7-6. Reconsider Prob. 13.1-3 and its quadratic programming
model.
(a) Display this model [including the values of R(x) and V(x)] on

an Excel spreadsheet.
(b) Solve this model for four cases: minimum acceptable expected

return � 13, 14, 15, 16.
(c) For typical probability distributions (with mean � and variance

�2) of the total return from the entire portfolio, the probabil-
ity is fairly high (about 0.8 or 0.9) that the return will exceed
� � �, and the probability is extremely high (often close to
0.999) that the return will exceed � � 3�. Calculate � � �
and � � 3� for the four portfolios obtained in part (b). Which
portfolio will give the highest � among those that also give 
� � � � 0?

13.7-7. Jim Matthews, Vice President for Marketing of the J. R.
Nickel Company, is planning advertising campaigns for two unre-
lated products. These two campaigns need to use some of the same
resources. Therefore, Jim knows that his decisions on the levels of
the two campaigns need to be made jointly after considering these
resource constraints. In particular, letting x1 and x2 denote the lev-
els of campaigns 1 and 2, respectively, these constraints are 4x1 	
x2 � 20 and x1 	 4x2 � 20.

In facing these decisions, Jim is well aware that there is a point
of diminishing returns when raising the level of an advertising cam-
paign too far. At that point, the cost of additional advertising be-
comes larger than the increase in net revenue (excluding advertis-
ing costs) generated by the advertising. After careful analysis, he
and his staff estimate that the net profit from the first product (in-
cluding advertising costs) when conducting the first campaign at
level x1 would be 3x1 � (x1 � 1)2 in millions of dollars. The cor-
responding estimate for the second product is 3x2 � (x2 � 2)2.

This analysis led to the following quadratic programming
model for determining the levels of the two advertising campaigns:

Maximize Z � 3x1 � (x1 � 1)2 	 3x2 � (x2 � 2)2,

13.7-2.* Consider the following quadratic programming problem:

Maximize f(x) � 8x1 � x1
2 	 4x2 � x2

2,

subject to

x1 	 x2 � 2

and

x1 � 0, x2 � 0.

(a) Use the KKT conditions to derive an optimal solution.
(b) Now suppose that this problem is to be solved by the modi-

fied simplex method. Formulate the linear programming prob-
lem that is to be addressed explicitly, and then identify the 
additional complementarity constraint that is enforced auto-
matically by the algorithm.

I (c) Apply the modified simplex method to the problem as for-
mulated in part (b).

C (d) Use the computer to solve the quadratic programming prob-
lem directly.

13.7-3. Consider the following quadratic programming problem:

Maximize f(x) � 20x1 � 20x1
2 	 50x2 � 5x2

2 	 18x1x2,

subject to

x1 	 x2 � 6
x1 	 4x2 � 18

and

x1 � 0, x2 � 0.

Suppose that this problem is to be solved by the modified simplex
method.
(a) Formulate the linear programming problem that is to be ad-

dressed explicitly, and then identify the additional comple-
mentarity constraint that is enforced automatically by the 
algorithm.

I (b) Apply the modified simplex method to the problem as for-
mulated in part (a).

13.7-4. Consider the following quadratic programming problem.

Maximize f(x) � 2x1 	 3x2 � x1
2 � x2

2,

subject to

x1 	 x2 � 2

and

x1 � 0, x2 � 0.

(a) Use the KKT conditions to derive an optimal solution directly.
(b) Now suppose that this problem is to be solved by the modi-

fied simplex method. Formulate the linear programming prob-
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Management wants to know what values of x1, x2 and x3 should
be chosen to maximize the total profit.
(a) Plot the profit graph for each of the three products.
(b) Use separable programming to formulate a linear programming

model for this problem.
C (c) Solve the model. What is the resulting recommendation to

management about the values of x1, x2, and x3 to use?
(d) Now suppose that there is an additional constraint that the profit

from products 1 and 2 must total at least $9,000. Use the tech-
nique presented in the “Extensions” subsection of Sec. 13.8 to
add this constraint to the model formulated in part (b).

C (e) Repeat part (c) for the model formulated in part (d ).

13.8-3.* The Dorwyn Company has two new products that will
compete with the two new products for the Wyndor Glass Co. (de-
scribed in Sec. 3.1). Using units of hundreds of dollars for the ob-
jective function, the linear programming model shown below has
been formulated to determine the most profitable product mix.

Maximize Z � 4x1 	 6x2,

subject to

x1 	 3x2 � 8
5x1 	 2x2 � 14

and

x1 � 0, x2 � 0.

However, because of the strong competition from Wyndor, Dor-
wyn management now realizes that the company will need to make
a strong marketing effort to generate substantial sales of these prod-
ucts. In particular, it is estimated that achieving a production and
sales rate of x1 units of Product 1 per week will require weekly
marketing costs of x1

3 hundred dollars. The corresponding market-
ing costs for Product 2 are estimated to be 2x2

2 hundred dollars.
Thus, the objective function in the model should be Z � 4x1 	
6x2 � x1

3 � 2x2
2.

Dorwyn management now would like to use the revised model
to determine the most profitable product mix.
(a) Verify that (x1, x2) � (2/�3�, 


3
2


) is an optimal solution by ap-
plying the KKT conditions.

(b) Construct tables to show the profit data for each product when
the production rate is 0, 1, 2, 3.

(c) Draw a figure like Fig. 13.15b that plots the weekly profit
points for each product when the production rate is 0, 1, 2, 3.
Connect the pairs of consecutive points with (dashed) line seg-
ments.

(d) Use separable programming based on this figure to formulate
an approximate linear programming model for this problem.

C (e) Solve the model. What does this say to Dorwyn manage-
ment about which product mix to use?

subject to

4x1 	 x2 � 20
x1 	 4x2 � 20

and

x1 � 0, x2 � 0.

(a) Obtain the KKT conditions for this problem in the form given
in Sec. 13.6.

(b) You are given the information that the optimal solution does
not lie on the boundary of the feasible region. Use this infor-
mation to derive the optimal solution from the KKT conditions.

(c) Now suppose that this problem is to be solved by the modi-
fied simplex method. Formulate the linear programming prob-
lem that is to be addressed explicitly, and then identify the 
additional complementarity constraint that is enforced auto-
matically by the algorithm.

(d) Apply the modified simplex method to the problem as formu-
lated in part (c).

C (e) Use the computer to solve the quadratic programming prob-
lem directly.

13.8-1. Reconsider the quadratic programming model given in
Prob. 13.7-7.
(a) Use the separable programming formulation presented in Sec.

13.8 to formulate an approximate linear programming model
for this problem. Use x1, x2 � 0, 2.5, 5 as the breakpoints of
the piecewise linear functions.

C (b) Use the computer to solve the model formulated in part (a).
Then reexpress this solution in terms of the original vari-
ables of the problem.

C (c) To improve the approximation, now use x1, x2 � 0, 1, 2, 3,
4, 5 as the breakpoints of the piecewise linear functions and
repeat parts (a) and (b).

13.8-2. The MFG Corporation is planning to produce and market
three different products. Let x1, x2, and x3 denote the number of
units of the three respective products to be produced. The prelim-
inary estimates of their potential profitability are as follows.

For the first 15 units produced of Product 1, the unit profit
would be approximately $360. The unit profit would be only $30
for any additional units of Product 1. For the first 20 units pro-
duced of Product 2, the unit profit is estimated at $240. The unit
profit would be $120 for each of the next 20 units and $90 for any
additional units. For the first 10 units of Product 3, the unit profit
would be $450. The unit profit would be $300 for each of the next
5 units and $180 for any additional units.

Certain limitations on the use of needed resources impose the
following constraints on the production of the three products:

x1 	 x2 	 x3 � 60
3x1 	 2x2 � 200
x1 	 x2 	 2x3 � 70.
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13.8-6. Reconsider the linearly constrained convex programming
model given in Prob. 13.4-7.
(a) Use the separable programming technique presented in Sec.

13.8 to formulate an approximate linear programming model
for this problem. Use x1 � 0, 1, 2, 3 and x2 � 0, 1, 2, 3 as the
breakpoints of the piecewise linear functions.

C (b) Use the simplex method to solve the model formulated in
part (a). Then reexpress this solution in terms of the origi-
nal variables of the problem.

13.8-7. Suppose that the separable programming technique has
been applied to a certain problem (the “original problem”) to con-
vert it to the following equivalent linear programming problem:

Maximize Z � 5x11 	 4x12 	 2x13 	 4x21 	 x22,

subject to

3x11 	 3x12 	 3x13 	 2x21 	 2x22 � 25
2x11 	 2x12 	 2x13 � x21 � x22 � 10

and

0 � x11 � 2 0 � x21 � 3
0 � x12 � 3 0 � x22 � 1.
0 � x13

What was the mathematical model for the original problem?
(You may define the objective function either algebraically or
graphically, but express the constraints algebraically.)

13.8-8. For each of the following cases, prove that the key prop-
erty of separable programming given in Sec. 13.8 must hold. (Hint:
Assume that there exists an optimal solution that violates this prop-
erty, and then contradict this assumption by showing that there ex-
ists a better feasible solution.)
(a) The special case of separable programming where all the gi(x)

are linear functions.
(b) The general case of separable programming where all the func-

tions are nonlinear functions of the designated form. [Hint:
Think of the functional constraints as constraints on resources,
where gij(xj) represents the amount of resource i used by run-
ning activity j at level xj, and then use what the convexity as-
sumption implies about the slopes of the approximating piece-
wise linear function.]

13.8-9. The MFG Company produces a certain subassembly in
each of two separate plants. These subassemblies are then brought
to a third nearby plant where they are used in the production of a
certain product. The peak season of demand for this product is ap-
proaching, so to maintain the production rate within a desired
range, it is necessary to use temporarily some overtime in making
the subassemblies. The cost per subassembly on regular time (RT)
and on overtime (OT) is shown in the following table for both

13.8-4. Reconsider the production scheduling problem of the
Build-Em-Fast Company described in Prob. 8.1-9. The special re-
striction for such a situation is that overtime should not be used in
any particular period unless regular time in that period is com-
pletely used up. Explain why the logic of separable programming
implies that this restriction will be satisfied automatically by any
optimal solution for the transportation problem formulation of the
problem.

13.8-5. The B. J. Jensen Company specializes in the production
of power saws and power drills for home use. Sales are relatively
stable throughout the year except for a jump upward during the
Christmas season. Since the production work requires considerable
work and experience, the company maintains a stable employment
level and then uses overtime to increase production in November.
The workers also welcome this opportunity to earn extra money
for the holidays.

B. J. Jensen, Jr., the current president of the company, is over-
seeing the production plans being made for the upcoming No-
vember. He has obtained the following data.
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However, Mr. Jensen now has learned that, in addition to the
limited number of labor hours available, two other factors will limit
the production levels that can be achieved this November. One is
that the company’s vendor for power supply units will only be able
to provide 10,000 of these units for November (2,000 more than
his usual monthly shipment). Each power saw and each power drill
requires one of these units. Second, the vendor who supplies a key
part for the gear assemblies will only be able to provide 15,000 for
November (4,000 more than for other months). Each power saw
requires two of these parts and each power drill requires one.

Mr. Jensen now wants to determine how many power saws
and how many power drills to produce in November to maximize
the company’s total profit.
(a) Draw the profit graph for each of these two products.
(b) Use separable programming to formulate a linear programming

model for this problem.
C (c) Solve the model. What does this say about how many power

saws and how many power drills to produce in November?

Maximum Monthly Profit per 
Production* Unit Produced

Regular Regular
Time Overtime Time Overtime

Power saws 3,000 2,000 $150 $50
Power drills 5,000 3,000 $100 $75

*Assuming adequate supplies of materials from the company’s
vendors.



subject to

x1
2 	 x2

2 � 9

and

x1 � 0, x2 � 0.

(a) Apply the separable programming technique discussed at the
end of Sec. 13.8, with x1 � 0, 1, 2, 3 and x2 � 0, 1, 2, 3 as the
breakpoint of the piecewise linear functions, to formulate an
approximate linear programming model for this problem.

C (b) Use the computer to solve the model formulated in part (a).
Then reexpress this solution in terms of the original vari-
ables of the problem.

(c) Use the KKT conditions to determine whether the solution for
the original variables obtained in part (b) actually is optimal
for the original problem (not the approximate model).

13.8-12. Reconsider the integer nonlinear programming model
given in Prob. 11.3-11.
(a) Show that the objective function is not concave.
(b) Formulate an equivalent pure binary integer linear program-

ming model for this problem as follows. Apply the separable
programming technique with the feasible integers as the break-
points of the piecewise linear functions, so that the auxiliary
variables are binary variables. Then add some linear program-
ming constraints on these binary variables to enforce the spe-
cial restriction of separable programming. (Note that the key
property of separable programming does not hold for this prob-
lem because the objective function is not concave.)

C (c) Use the computer to solve this problem as formulated in part
(b). Then reexpress this solution in terms of the original vari-
ables of the problem.

D,I 13.9-1.* Reconsider the linearly constrained convex program-
ming model given in Prob. 13.6-5. Starting from the initial trial so-
lution (x1, x2) � (1, 1), use one iteration of the Frank-Wolfe algo-
rithm to obtain exactly the same solution you found in part (b) of
Prob. 13.6-5, and then use a second iteration to verify that it is an
optimal solution (because it is replicated exactly). Explain why ex-
actly the same results would be obtained on these two iterations
with any other initial trial solution.

D,I 13.9-2. Reconsider the linearly constrained convex program-
ming model given in Prob. 13.6-6. Starting from the initial trial so-
lution (x1, x2) � (0, 0), use one iteration of the Frank-Wolfe algo-
rithm to obtain exactly the same solution you found in part (b) of
Prob. 13.6-6, and then use a second iteration to verify that it is an
optimal solution (because it is replicated exactly).

D,I 13.9-3. Reconsider the linearly constrained convex program-
ming model given in Prob. 13.6-15. Starting from the initial trial

plants, along with the maximum number of subassemblies that can
be produced on RT and on OT each day.
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Let x1 and x2 denote the total number of subassemblies pro-
duced per day at plants 1 and 2, respectively. The objective is to
maximize Z � x1 	 x2, subject to the constraint that the total daily
cost not exceed $60,000. Note that the mathematical programming
formulation of this problem (with x1 and x2 as decision variables)
has the same form as the main case of the separable programming
model described in Sec. 13.8, except that the separable functions
appear in a constraint function rather than the objective function.
However, the same approach can be used to reformulate the prob-
lem as a linear programming model where it is feasible to use OT
even when the RT capacity at that plant is not fully used.
(a) Formulate this linear programming model.
(b) Explain why the logic of separable programming also applies

here to guarantee that an optimal solution for the model for-
mulated in part (a) never uses OT unless the RT capacity at
that plant has been fully used.

13.8-10. Consider the following nonlinear programming problem
(first considered in Prob. 11.3-23).

Maximize Z � 5x1 	 x2,

subject to

2x1
2 	 x2 � 13

x1
2 	 x2 � 9

and

x1 � 0, x2 � 0.

(a) Show that this problem is a convex programming problem.
(b) Use the separable programming technique discussed at the end

of Sec. 13.8 to formulate an approximate linear programming
model for this problem. Use the integers as the breakpoints of
the piecewise linear function.

C (c) Use the computer to solve the model formulated in part (b).
Then reexpress this solution in terms of the original vari-
ables of the problem.

13.8-11. Consider the following convex programming problem:

Maximize Z � 32x1 � x1
4 	 4x2 � x2

2,

Unit Cost Capacity

RT OT RT OT

Plant 1 $15 $25 2,000 1,000
Plant 2 $16 $24 1,000 500



D,I 13.9-10.* Consider the following linearly constrained convex
programming problem:

Maximize f(x) � 3x1 	 4x2 � x1
3 � x2

2,

subject to

x1 	 x2 � 1

and

x1 � 0, x2 � 0.

(a) Starting from the initial trial solution (x1, x2) � (

1
4


, 

1
4


), apply
three iterations of the Frank-Wolfe algorithm.

(b) Use the KKT conditions to check whether the solution obtained
in part (a) is, in fact, optimal.

13.9-11. Consider the following linearly constrained convex pro-
gramming problem:

Maximize f(x) � 4x1 � x1
4 	 2x2 � x2

2,

subject to

4x1 	 2x2 � 5

and

x1 � 0, x2 � 0.

(a) Starting from the initial trial solution (x1, x2) � (

1
2


, 

1
2


), apply
four iterations of the Frank-Wolfe algorithm.

(b) Show graphically how the sequence of trial solutions obtained
in part (a) can be extrapolated to obtain a closer approxima-
tion of an optimal solution. What is your resulting estimate of
this solution?

(c) Use the KKT conditions to check whether the solution you ob-
tained in part (b) is, in fact, optimal. If not, use these condi-
tions to derive the exact optimal solution.

13.10-1. Reconsider the linearly constrained convex programming
model given in Prob. 13.9-10.
(a) If SUMT were to be applied to this problem, what would be

the unconstrained function P(x; r) to be maximized at each it-
eration?

(b) Setting r � 1 and using (

1
4


, 

1
4


) as the initial trial solution, man-
ually apply one iteration of the gradient search procedure (ex-
cept stop before solving for t*) to begin maximizing the func-
tion P(x; r) you obtained in part (a).

D,C (c) Beginning with the same initial trial solution as in part (b),
use the automatic routine in your OR Courseware to ap-
ply SUMT to this problem with r � 1, 10�2, 10�4.

(d) Compare the final solution obtained in part (c) to the true op-
timal solution for Prob. 13.9-10 given in the back of the book.
What is the percentage error in x1, in x2, and in f(x)?

solution (x1, x2) � (0, 0), use one iteration of the Frank-Wolfe al-
gorithm to obtain exactly the same solution you found in part (c)
of Prob. 13.6-15, and then use a second iteration to verify that it
is an optimal solution (because it is replicated exactly). Explain
why exactly the same results would be obtained on these two it-
erations with any other trial solution.

D,I 13.9-4. Reconsider the linearly constrained convex program-
ming model given in Prob. 13.6-16. Starting from the initial trial
solution (x1, x2, x3) � (0, 0, 0), apply two iterations of the Frank-
Wolfe algorithm.

D,I 13.9-5. Consider the quadratic programming example presented
in Sec. 13.7. Starting from the initial trial solution (x1, x2) � (5, 5),
apply seven iterations of the Frank-Wolfe algorithm.

13.9-6. Reconsider the quadratic programming model given in
Prob. 13.7-4.
D,I (a) Starting from the initial trial solution (x1, x2) � (0, 0), use

the Frank-Wolfe algorithm (six iterations) to solve the
problem (approximately).

(b) Show graphically how the sequence of trial solutions obtained
in part (a) can be extrapolated to obtain a closer approxima-
tion of an optimal solution. What is your resulting estimate of
this solution?

D,I 13.9-7. Reconsider the first quadratic programming variation
of the Wyndor Glass Co. problem presented in Sec. 13.2 (see Fig.
13.6). Starting from the initial trial solution (x1, x2) � (0, 0), use
three iterations of the Frank-Wolfe algorithm to obtain and verify
the optimal solution.

D,I 13.9-8. Reconsider the linearly constrained convex program-
ming model given in Prob. 13.4-7. Starting from the initial trial so-
lution (x1, x2) � (0, 0), use the Frank-Wolfe algorithm (four itera-
tions) to solve this model (approximately).

D,I 13.9-9. Consider the following linearly constrained convex
programming problem:

Maximize f(x) � 3x1x2 	 40x1 	 30x2 � 4x1
2 � x1

4

� 3x2
2 � x2

4,

subject to

4x1 	 3x2 � 12
x1 	 2x2 � 4

and

x1 � 0, x2 � 0.

Starting from the initial trial solution (x1, x2) � (0, 0), apply two
iterations of the Frank-Wolfe algorithm.
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(b) Derive the minimizing solution of P(x; r) analytically, and then
give this solution for r � 1, 10�2, 10�4, 10�6.

D,C (c) Beginning with the initial trial solution (x1, x2) � (2, 1),
use the automatic routine in your OR Courseware to ap-
ply SUMT to this problem (in maximization form) with 
r � 1, 10�2, 10�4, 10�6.

D,C 13.10-7. Consider the following convex programming problem:

Maximize f(x) � x1x2 � x1 � x1
2 � x2 � x2

2,

subject to

x2 � 0.

Beginning with the initial trial solution (x1, x2) � (1, 1), use the
automatic routine in your OR Courseware to apply SUMT to this
problem with r � 1, 10�2, 10�4.

D,C 13.10-8. Reconsider the quadratic programming model given
in Prob. 13.7-4. Beginning with the initial trial solution (x1, x2) �
(


1
2


, 

1
2


), use the automatic routine in your OR Courseware to apply
SUMT to this model with r � 1, 10�2, 10�4, 10�6.

D,C 13.10-9. Reconsider the first quadratic programming variation
of the Wyndor Glass Co. problem presented in Sec. 13.2 (see Fig.
13.6). Beginning with the initial trial solution (x1, x2) � (2, 3), use
the automatic routine in your OR Courseware to apply SUMT to
this problem with r � 102, 1, 10�2, 10�4.

13.10-10. Consider the following nonconvex programming problem:

Maximize f(x) � 1,000x � 400x2 	 40x3 � x4,

subject to

x2 	 x � 500

and

x � 0.

(a) Identify the feasible values for x. Obtain general expressions
for the first three derivatives of f(x). Use this information to
help you draw a rough sketch of f(x) over the feasible region
for x. Without calculating their values, mark the points on your
graph that correspond to local maxima and minima.

I (b) Use the one-dimensional search procedure with � � 0.05 to
find each of the local maxima. Use your sketch from part (a)
to identify appropriate initial bounds for each of these
searches. Which of the local maxima is a global maximum?

D,C (c) Use the automatic routine in your OR Courseware to ap-
ply SUMT to this problem with r � 103, 102, 10, 1 to find
each of the local maxima. Use x � 3 and x � 15 as the
initial trial solutions for these searches. Which of the lo-
cal maxima is a global maximum?

13.10-2. Reconsider the linearly constrained convex programming
model given in Prob. 13.9-11. Follow the instructions of parts (a),
(b), and (c) of Prob. 13.10-1 for this model, except use (x1, x2) �
(


1
2


, 

1
2


) as the initial trial solution and use r � 1, 10�2, 10�4, 10�6.

13.10-3. Reconsider the model given in Prob. 13.3-3.
(a) If SUMT were to be applied directly to this problem, what

would be the unconstrained function P(x; r) to be minimized
at each iteration?

(b) Setting r � 100 and using (x1, x2) � (5, 5) as the initial trial
solution, manually apply one iteration of the gradient search
procedure (except stop before solving for t*) to begin mini-
mizing the function P(x; r) you obtained in part (a).

D,C (c) Beginning with the same initial trial solution as in part (b),
use the automatic routine in your OR Courseware to ap-
ply SUMT to this problem with r � 100, 1, 10�2, 10�4.
(Hint: The computer routine assumes that the problem has
been converted to maximization form with the functional
constraints in � form.)

13.10-4. Consider the example for applying SUMT given in Sec.
13.10.
(a) Show that (x1, x2) � (1, 2) satisfies the KKT conditions.
(b) Display the feasible region graphically, and then plot the lo-

cus of points x1x2 � 2 to demonstrate that (x1, x2) � (1, 2) with
f(1, 2) � 2 is, in fact, a global maximum.

13.10-5.* Consider the following convex programming problem:

Maximize f(x) � �2x1 � (x2 � 3)2,

subject to

x1 � 3 and x2 � 3.

(a) If SUMT were applied to this problem, what would be the un-
constrained function P(x; r) to be maximized at each iteration?

(b) Derive the maximizing solution of P(x; r) analytically, and then
give this solution for r � 1, 10�2, 10�4, 10�6.

D,C (c) Beginning with the initial trial solution (x1, x2) � (4, 4),
use the automatic routine in your OR Courseware to ap-
ply SUMT to this problem with r � 1, 10�2, 10�4, 10�6.

13.10-6. Use SUMT to solve the following convex programming
problem:

Minimize f(x) � 

(x1 	

3
1)3


 	 x2,

subject to

x1 � 1 and x2 � 0.

(a) If SUMT were applied directly to this problem, what would
be the unconstrained function P(x; r) to be minimized at each
iteration?
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(a) If SUMT were applied to this problem, what would be the un-
constrained function P(x; r) to be minimized at each iteration?

(b) Describe how SUMT should be applied to attempt to obtain a
global minimum. (Do not actually solve.)

13.11-1. Consider the following problem:

Maximize Z � 4x1 � x1
2 	 10x2 � x2

2,

subject to

x1
2 	 4x2

2 � 16

and

x1 � 0, x2 � 0.

(a) Is this a convex programming problem? Answer yes or no, and
then justify your answer.

(b) Can the modified simplex method be used to solve this prob-
lem? Answer yes or no, and then justify your answer (but do
not actually solve.)

(c) Can the Frank-Wolfe algorithm be used to solve this problem?
Answer yes or no, and then justify your answer (but do not ac-
tually solve).

(d) What are the KKT conditions for this problem? Use these con-
ditions to determine whether (x1, x2) � (1, 1) can be optimal.

(e) Use the separable programming technique to formulate an ap-
proximate linear programming model for this problem. Use the
feasible integers as the breakpoints for each piecewise linear
function.

C (f) Use the simplex method to solve the problem as formulated
in part (e).

(g) Give the function P(x; r) to be maximized at each iteration
when applying SUMT to this problem. (Do not actually solve.)

D,C (h) Use SUMT (the automatic routine in your OR Course-
ware) to solve the problem as formulated in part (g). Be-
gin with the initial trial solution (x1, x2) � (2, 1) and use
r � 1, 10�2, 10�4, 10�6.

13.10-11. Consider the following nonconvex programming problem:

Maximize f(x) � 3x1x2 � 2x1
2 � x2

2,

subject to

x1
2 	 2x2

2 � 4
2x1 � x2 � 3

x1x2
2 	 x1

2x2 � 2

and

x1 � 0, x2 � 0.

(a) If SUMT were to be applied to this problem, what would be
the unconstrained function P(x; r) to be maximized at each it-
eration?

D,C (b) Starting from the initial trial solution (x1, x2) � (1, 1), use
the automatic routine in your OR Courseware to apply
SUMT to this problem with r � 1, 10�2, 10�4.

13.10-12. Reconsider the convex programming model with an
equality constraint given in Prob. 13.6-14.
(a) If SUMT were to be applied to this model, what would be the

unconstrained function P(x; r) to be minimized at each itera-
tion?

D,C (b) Starting from the initial trial solution (x1, x2, x3) � (

3
2


, 

3
2


, 2),
use the automatic routine in your OR Courseware to apply
SUMT to this model with r � 10�2, 10�4, 10�6, 10�8.

13.10-13. Consider the following nonconvex programming problem.

Minimize f(x) � sin 3x1 	 cos 3x2 	 sin(x1 	 x2),

subject to

x1
2 � 10x2 � �1

10x1 	 x2
2 � 100

and

x1 � 0, x2 � 0.
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Ever since the day she took her first economics class in high school, Lydia wondered
about the financial practices of her parents. They worked very hard to earn enough
money to live a comfortable middle-class life, but they never made their money work
for them. They simply deposited their hard-earned paychecks in savings accounts
earning a nominal amount of interest. (Fortunately, there always was enough money
when it came time to pay her college bills.) She promised herself that when she be-
came an adult, she would not follow the same financially conservative practices as
her parents.
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And Lydia kept this promise. Every morning while getting ready for work, she
watches the CNN financial reports. She plays investment games on the World Wide
Web, finding portfolios that maximize her return while minimizing her risk. She reads
the Wall Street Journal and Financial Times with a thirst she cannot quench.

Lydia also reads the investment advice columns of the financial magazines, and
she has noticed that on average, the advice of the investment advisers turns out to be
very good. Therefore, she decides to follow the advice given in the latest issue of one
of the magazines. In his monthly column the editor Jonathan Taylor recommends three
stocks that he believes will rise far above market average. In addition, the well-known
mutual fund guru Donna Carter advocates the purchase of three more stocks that she
thinks will outperform the market over the next year.

BIGBELL (ticker symbol on the stock exchange: BB), one of the nation’s largest
telecommunications companies, trades at a price-earnings ratio well below market av-
erage. Huge investments over the last 8 months have depressed earnings considerably.
However, with their new cutting edge technology, the company is expected to signifi-
cantly raise their profit margins. Taylor predicts that the stock will rise from its cur-
rent price of $60 per share to $72 per share within the next year.

LOTSOFPLACE (LOP) is one of the leading hard drive manufacturers in the world.
The industry recently underwent major consolidation, as fierce price wars over the last
few years were followed by many competitors going bankrupt or being bought by 
LOTSOFPLACE and its competitors. Due to reduced competition in the hard drive
market, revenues and earnings are expected to rise considerably over the next year. Tay-
lor predicts a one-year increase of 42 percent in the stock of LOTSOFPLACE from
the current price of $127 per share.

INTERNETLIFE (ILI) has survived the many ups and downs of Internet compa-
nies. With the next Internet frenzy just around the corner, Taylor expects a doubling of
this company’s stock price from $4 to $8 within a year.

HEALTHTOMORROW (HEAL) is a leading biotechnology company that is about
to get approval for several new drugs from the Food and Drug Administration, which
will help earnings to grow 20 percent over the next few years. In particular a new drug
to significantly reduce the risk of heart attacks is supposed to reap huge profits. Also,
due to several new great-tasting medications for children, the company has been able
to build an excellent image in the media. This public relations coup will surely have
positive effects for the sale of its over-the-counter medications. Carter is convinced that
the stock will rise from $50 to $75 per share within a year.

QUICKY (QUI) is a fast-food chain which has been vastly expanding its network
of restaurants all over the United States. Carter has followed this company closely
since it went public some 15 years ago when it had only a few dozen restaurants on
the west coast of the United States. Since then the company has expanded, and it now
has restaurants in every state. Due to its emphasis on healthy foods, it is capturing a
growing market share. Carter believes that the stock will continue to perform well
above market average for an increase of 46 percent in one year from its current stock
price of $150.

AUTOMOBILE ALLIANCE (AUA) is a leading car manufacturer from the De-
troit area that just recently introduced two new models. These models show very strong
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initial sales, and therefore the company’s stock is predicted to rise from $20 to $26
over the next year.

On the World Wide Web Lydia found data about the risk involved in the stocks of
these companies. The historical variances of return of the six stocks and their covari-
ances are shown below.
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Covariances LOP ILI HEAL QUI AUA

BB 0.005 0.03 �0.031 �0.027 0.01

LOP 0.085 �0.07 �0.05 0.02

ILI �0.11 �0.02 0.042

HEAL 0.05 �0.06

QUI �0.02

(a) At first, Lydia wants to ignore the risk of all the investments. Given this strategy, what is her
optimal investment portfolio; that is, what fraction of her money should she invest in each of
the six different stocks? What is the total risk of her portfolio?

(b) Lydia decides that she doesn’t want to invest more than 40 percent in any individual stock.
While still ignoring risk, what is her new optimal investment portfolio? What is the total risk
of her new portfolio?

(c) Now Lydia wants to take into account the risk of her investment opportunities. Identify one
of the model types described in this chapter that is applicable to her problem, and then for-
mulate a model of this kind to be used in the following parts.

(d) What fractions of her money should Lydia put into the various stocks if she decides to max-
imize the expected return minus beta times the risk of her investment for beta � 0.25?

(e) Lydia recently received a bonus at work, $15,000 after taxes, that she wishes to invest. For
the investment policy in part (d ), how much money does she invest in the various stocks?
How many shares of each stock does she buy?

(f) How does the solution in part (e) change if beta � 0.5? If beta � 1? If beta � 2?
(g) Give an intuitive explanation for the change in the expected return and the risk in part ( f )

as beta changes.
(h) Lydia wants to ensure that she receives an expected return of at least 35 percent. She wants

to reach this goal at minimum risk. What investment portfolio allows her to do that?
(i) What is the minimum risk Lydia can achieve if she wants an expected return of at least 25

percent? Of at least 40 percent?
( j) Do you see any problems or disadvantages with Lydia’s approach to her investment 

strategy?

Company BB LOP ILI HEAL QUI AUA

Variance 0.032 0.1 0.333 0.125 0.065 0.08
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Charles Rosen relaxes in a plush, overstuffed recliner by the fire, enjoying the final
vestiges of his week-long winter vacation. As a financial analyst working for a large
investment firm in Germany, Charles has very few occasions to enjoy these private mo-
ments, since he is generally catching red-eye flights around the world to evaluate var-
ious investment opportunities. Charles pats the loyal golden retriever lying at his feet
and takes a swig of brandy, enjoying the warmth of the liquid. He sighs and realizes
that he must begin attending to his own financial matters while he still has the time
during the holiday. He opens a folder placed conspicuously on the top of a large stack
of papers. The folder contains information about an investment Charles made when he
graduated from college four years ago. . . . 

Charles remembers his graduation day fondly. He obtained a degree in business
administration and was full of investment ideas that were born while he had been day-
dreaming in his numerous finance classes. Charles maintained a well-paying job
throughout college, and he was able to save a large portion of the college fund that his
parents had invested for him.

Upon graduation, Charles decided that he should transfer the college funds to a
more lucrative investment opportunity. Since he had signed to work in Germany, he
evaluated investment opportunities in that country. Ultimately, he decided to invest
30,000 German marks (DM) in so-called B-Bonds that would mature in 7 years. Charles
purchased the bonds just 4 years ago last week (in early January of what will be called
the “first year” in this discussion). He considered the bonds an excellent investment
opportunity, since they offered high interest rates (see Table I) that would rise over the
subsequent 7 years and because he could sell the bonds whenever he wanted after the
first year. He calculated the amount that he would be paid if he sold bonds originally
worth DM 100 on the last day of any of the 7 years (see Table II). The amount paid
included the principal plus the interest. For example, if he sold bonds originally worth
DM 100 on December 31 of the sixth year, he would be paid DM 163.51 (the princi-
pal is DM 100, and the interest is DM 63.51).

Charles did not sell any of the bonds during the first four years. Last year, how-
ever, the German federal government introduced a capital gains tax on interest income.
The German government designated that the first DM 6,100 a single individual earns
in interest per year would be tax-free. Any interest income beyond DM 6,100 would
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TABLE 1 Interest rates over the 7 years

Year Interest Rate Annual Percentage Yield

1 7.50% 7.50%
2 8.50% 8.00%
3 8.50% 8.17%
4 8.75% 8.31%
5 9.00% 8.45%
6 9.00% 8.54%
7 9.00% 8.61%



be taxed at a rate of 30 percent. For example, if Charles earned interest income of DM
10,100, he would be required to pay 30 percent of DM 4,000 (DM 10,100 � DM 6,100)
in taxes, or DM 1,200. His after-tax income would therefore be DM 8,900.

Because of the new tax implemented last year, Charles has decided to reevaluate
the investment. He knows that the new tax affects his potential return on the B-Bonds,
but he also knows that most likely a strategy exists for maximizing his return on the
bonds. He might be able to decrease the tax he has to pay on interest income by sell-
ing portions of his bonds in different years. Charles considers his strategy viable be-
cause the government requires investors to pay taxes on interest income only when they
sell their B-Bonds. For example, if Charles were to sell one-third of his B-Bonds on
December 31 of the sixth year, he would have to pay taxes on the interest income of
DM 251 (DM 6,351 � DM 6,100).

Charles asks himself several questions. Should he keep all the bonds until the end
of the seventh year? If so, he would earn 0.7823 times DM 30,000 in interest income,
but he would have to pay very substantial taxes for that year. Considering these tax
payments, Charles wonders if he should sell a portion of the bonds at the end of this
year (the fifth year) and at the end of next year.

If Charles sells his bonds, his alternative investment opportunities are limited. He
could purchase a certificate of deposit (CD) paying 4.0 percent interest, so he investi-
gates this alternative. He meets with an investment adviser from the local branch of a
bank, and the adviser tells him to keep the B-Bonds until the end of the seventh year.
She argues that even if he had to pay 30 percent in taxes on the 9.00 percent rate of
interest the B-Bonds would be paying in their last year (see Table I), this strategy would
still result in a net rate of 6.30 percent interest, which is much better than the 4.0 per-
cent interest he could obtain on a CD.

Charles concludes that he would make all his transactions on December 31, re-
gardless of the year. Also, since he intends to attend business school in the United
States in the fall of the seventh year and plans to pay his tuition for his second, third,
and fourth semester with his investment, he does not plan to keep his money in Ger-
many beyond December 31 of the seventh year.

(For the first three parts, assume that if Charles sells a portion of his bonds, he
will put the money under his mattress earning zero percent interest. For the subsequent
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TABLE II Total return on 
100 DM

Year DM

1 107.50
2 116.64
3 126.55
4 137.62
5 150.01
6 163.51
7 178.23



parts, assume that he could invest the proceeds of the bonds in the certificate of de-
posit.)

(a) Identify one of the model types described in this chapter that is applicable to this problem,
and then formulate a model of this kind to be used in the following parts.

(b) What is the optimal investment strategy for Charles?
(c) What is fundamentally wrong with the advice Charles got from the investment adviser at the

bank?
(d) Now that Charles is considering investment in the certificate of deposit, what is his optimal

investment strategy?
(e) What would his optimal investment strategy for the fifth, sixth, and seventh years have been

if he had originally invested DM 50,000?
(f) Charles and his fiancée have been planning to get married after his first year in business

school. However, Charles learns that for married couples, the tax-free amount of interest earn-
ings each year is DM 12,200. How much money could Charles save on his DM 30,000 in-
vestment by getting married this year (the fifth year for his investment)?

(g) Due to a recession in Germany, interest rates are low and are expected to remain low. How-
ever, since the American economy is booming, interest rates are expected to rise in the United
States. A rise in interest rates would lead to a rise of the dollar in comparison to the mark.
Analysts at Charles’ investment bank expect the dollar to remain at the current exchange rate
of DM 1.50 per dollar for the fifth year and then to rise to DM 1.80 per dollar by the end
of the seventh year. Therefore, Charles is considering investing at the beginning of the sixth
year in a 2-year American municipal bond paying 3.6 percent tax-exempt interest to help
pay tuition. How much money should he plan to convert into dollars by selling B-Bonds for
this investment?
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14
Game Theory

Life is full of conflict and competition. Numerous examples involving adversaries in con-
flict include parlor games, military battles, political campaigns, advertising and market-
ing campaigns by competing business firms, and so forth. A basic feature in many of these
situations is that the final outcome depends primarily upon the combination of strategies
selected by the adversaries. Game theory is a mathematical theory that deals with the gen-
eral features of competitive situations like these in a formal, abstract way. It places par-
ticular emphasis on the decision-making processes of the adversaries.

As briefly surveyed in Sec. 14.6, research on game theory continues to delve into
rather complicated types of competitive situations. However, the focus in this chapter is
on the simplest case, called two-person, zero-sum games. As the name implies, these
games involve only two adversaries or players (who may be armies, teams, firms, and so
on). They are called zero-sum games because one player wins whatever the other one
loses, so that the sum of their net winnings is zero.

Section 14.1 introduces the basic model for two-person, zero-sum games, and the next
four sections describe and illustrate different approaches to solving such games. The chap-
ter concludes by mentioning some other kinds of competitive situations that are dealt with
by other branches of game theory.

To illustrate the basic characteristics of two-person, zero-sum games, consider the game
called odds and evens. This game consists simply of each player simultaneously showing
either one finger or two fingers. If the number of fingers matches, so that the total number
for both players is even, then the player taking evens (say, player 1) wins the bet (say, $1)
from the player taking odds (player 2). If the number does not match, player 1 pays $1 to
player 2. Thus, each player has two strategies: to show either one finger or two fingers.
The resulting payoff to player 1 in dollars is shown in the payoff table given in Table 14.1.

In general, a two-person game is characterized by

1. The strategies of player 1
2. The strategies of player 2
3. The payoff table
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Before the game begins, each player knows the strategies she or he has available, the ones
the opponent has available, and the payoff table. The actual play of the game consists of
each player simultaneously choosing a strategy without knowing the opponent’s choice.

A strategy may involve only a simple action, such as showing a certain number of
fingers in the odds and evens game. On the other hand, in more complicated games in-
volving a series of moves, a strategy is a predetermined rule that specifies completely
how one intends to respond to each possible circumstance at each stage of the game. For
example, a strategy for one side in chess would indicate how to make the next move for
every possible position on the board, so the total number of possible strategies would be
astronomical. Applications of game theory normally involve far less complicated com-
petitive situations than chess does, but the strategies involved can be fairly complex.

The payoff table shows the gain (positive or negative) for player 1 that would result
from each combination of strategies for the two players. It is given only for player 1 be-
cause the table for player 2 is just the negative of this one, due to the zero-sum nature of
the game.

The entries in the payoff table may be in any units desired, such as dollars, provided
that they accurately represent the utility to player 1 of the corresponding outcome. How-
ever, utility is not necessarily proportional to the amount of money (or any other com-
modity) when large quantities are involved. For example, $2 million (after taxes) is prob-
ably worth much less than twice as much as $1 million to a poor person. In other words,
given the choice between (1) a 50 percent chance of receiving $2 million rather than noth-
ing and (2) being sure of getting $1 million, a poor person probably would much prefer
the latter. On the other hand, the outcome corresponding to an entry of 2 in a payoff table
should be “worth twice as much” to player 1 as the outcome corresponding to an entry
of 1. Thus, given the choice, he or she should be indifferent between a 50 percent chance
of receiving the former outcome (rather than nothing) and definitely receiving the latter
outcome instead.1

A primary objective of game theory is the development of rational criteria for se-
lecting a strategy. Two key assumptions are made:

1. Both players are rational.
2. Both players choose their strategies solely to promote their own welfare (no compas-

sion for the opponent).

14.1 THE FORMULATION OF TWO-PERSON, ZERO-SUM GAMES 727

TABLE 14.1 Payoff table for 
the odds and 
evens game

Player 2

Strategy 1 2

Player 1
1 1 �1
2 �1 1

1See Sec. 15.5 for a further discussion of the concept of utility.



Game theory contrasts with decision analysis (see Chap. 15), where the assumption
is that the decision maker is playing a game with a passive opponent—nature—which
chooses its strategies in some random fashion.

We shall develop the standard game theory criteria for choosing strategies by means
of illustrative examples. In particular, the next section presents a prototype example that
illustrates the formulation of a two-person, zero-sum game and its solution in some sim-
ple situations. A more complicated variation of this game is then carried into Sec. 14.3 to
develop a more general criterion. Sections 14.4 and 14.5 describe a graphical procedure
and a linear programming formulation for solving such games.
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1We use only his or only her in some examples and problems for ease of reading: we do not mean to imply that
only men or only women are engaged in the various activities.

Two politicians are running against each other for the U.S. Senate. Campaign plans must
now be made for the final 2 days, which are expected to be crucial because of the close-
ness of the race. Therefore, both politicians want to spend these days campaigning in two
key cities, Bigtown and Megalopolis. To avoid wasting campaign time, they plan to travel
at night and spend either 1 full day in each city or 2 full days in just one of the cities.
However, since the necessary arrangements must be made in advance, neither politician
will learn his (or her)1 opponent’s campaign schedule until after he has finalized his own.
Therefore, each politician has asked his campaign manager in each of these cities to as-
sess what the impact would be (in terms of votes won or lost) from the various possible
combinations of days spent there by himself and by his opponent. He then wishes to use
this information to choose his best strategy on how to use these 2 days.

Formulation as a Two-Person, Zero-Sum Game

To formulate this problem as a two-person, zero-sum game, we must identify the two play-
ers (obviously the two politicians), the strategies for each player, and the payoff table.

As the problem has been stated, each player has the following three strategies:

Strategy 1 � spend 1 day in each city.
Strategy 2 � spend both days in Bigtown.
Strategy 3 � spend both days in Megalopolis.

By contrast, the strategies would be more complicated in a different situation where
each politician learns where his opponent will spend the first day before he finalizes his
own plans for his second day. In that case, a typical strategy would be: Spend the first
day in Bigtown; if the opponent also spends the first day in Bigtown, then spend the sec-
ond day in Bigtown; however, if the opponent spends the first day in Megalopolis, then
spend the second day in Megalopolis. There would be eight such strategies, one for each
combination of the two first-day choices, the opponent’s two first-day choices, and the
two second-day choices.

Each entry in the payoff table for player 1 represents the utility to player 1 (or the
negative utility to player 2) of the outcome resulting from the corresponding strategies
used by the two players. From the politician’s viewpoint, the objective is to win votes,
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and each additional vote (before he learns the outcome of the election) is of equal value
to him. Therefore, the appropriate entries for the payoff table for politician 1 are the to-
tal net votes won from the opponent (i.e., the sum of the net vote changes in the two cities)
resulting from these 2 days of campaigning. Using units of 1,000 votes, this formulation
is summarized in Table 14.2. Game theory assumes that both players are using the same
formulation (including the same payoffs for player 1) for choosing their strategies.

However, we should also point out that this payoff table would not be appropriate if
additional information were available to the politicians. In particular, assume that they
know exactly how the populace is planning to vote 2 days before the election, so that each
politician knows exactly how many net votes (positive or negative) he needs to switch in
his favor during the last 2 days of campaigning to win the election. Consequently, the only
significance of the data prescribed by Table 14.2 would be to indicate which politician
would win the election with each combination of strategies. Because the ultimate goal is
to win the election and because the size of the plurality is relatively inconsequential, the
utility entries in the table then should be some positive constant (say, �1) when politi-
cian 1 wins and �1 when he loses. Even if only a probability of winning can be deter-
mined for each combination of strategies, the appropriate entries would be the probabil-
ity of winning minus the probability of losing because they then would represent expected
utilities. However, sufficiently accurate data to make such determinations usually are not
available, so this example uses the thousands of total net votes won by politician 1 as the
entries in the payoff table.

Using the form given in Table 14.2, we give three alternative sets of data for the pay-
off table to illustrate how to solve three different kinds of games.

Variation 1 of the Example

Given that Table 14.3 is the payoff table for player 1 (politician 1), which strategy should
each player select?

This situation is a rather special one, where the answer can be obtained just by ap-
plying the concept of dominated strategies to rule out a succession of inferior strategies
until only one choice remains.
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TABLE 14.2 Form of the payoff table for 
politician 1 for the political 
campaign problem

Total Net Votes Won
by Politician 1

(in Units of 1,000 Votes)

Politician 2

Strategy 1 2 3

1
Politician 1 2

3



A strategy is dominated by a second strategy if the second strategy is always at least as
good (and sometimes better) regardless of what the opponent does. A dominated strategy
can be eliminated immediately from further consideration.

At the outset, Table 14.3 includes no dominated strategies for player 2. However, for
player 1, strategy 3 is dominated by strategy 1 because the latter has larger payoffs 
(1 � 0, 2 � 1, 4 � �1) regardless of what player 2 does. Eliminating strategy 3 from fur-
ther consideration yields the following reduced payoff table:
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TABLE 14.3 Payoff table for player 1 
for variation 1 of the 
political campaign 
problem

Player 2

Strategy 1 2 3

1 1 2 4
Player 1 2 1 0 5

3 0 1 �1

Because both players are assumed to be rational, player 2 also can deduce that player
1 has only these two strategies remaining under consideration. Therefore, player 2 now
does have a dominated strategy—strategy 3, which is dominated by both strategies 1 and
2 because they always have smaller losses for player 2 (payoffs to player 1) in this re-
duced payoff table (for strategy 1: 1 � 4, 1 � 5; for strategy 2: 2 � 4, 0 � 5). Eliminat-
ing this strategy yields

At this point, strategy 2 for player 1 becomes dominated by strategy 1 because the
latter is better in column 2 (2 � 0) and equally good in column 1 (1 � 1). Eliminating
the dominated strategy leads to

1 2 3

1 1 2 4
2 1 0 5

1 2

1 1 2
2 1 0

1 2

1 1 2

Strategy 2 for player 2 now is dominated by strategy 1 (1 � 2), so strategy 2 should be
eliminated.



Consequently, both players should select their strategy 1. Player 1 then will receive
a payoff of 1 from player 2 (that is, politician 1 will gain 1,000 votes from politician 2).

In general, the payoff to player 1 when both players play optimally is referred to as
the value of the game. A game that has a value of 0 is said to be a fair game. Since this
particular game has a value of 1, it is not a fair game.

The concept of a dominated strategy is a very useful one for reducing the size of the
payoff table that needs to be considered and, in unusual cases like this one, actually iden-
tifying the optimal solution for the game. However, most games require another approach
to at least finish solving, as illustrated by the next two variations of the example.

Variation 2 of the Example

Now suppose that the current data give Table 14.4 as the payoff table for player 1 (politi-
cian 1). This game does not have dominated strategies, so it is not obvious what the play-
ers should do. What line of reasoning does game theory say they should use?

Consider player 1. By selecting strategy 1, he could win 6 or could lose as much as
3. However, because player 2 is rational and thus will seek a strategy that will protect
himself from large payoffs to player 1, it seems likely that player 1 would incur a loss by
playing strategy 1. Similarly, by selecting strategy 3, player 1 could win 5, but more prob-
ably his rational opponent would avoid this loss and instead administer a loss to player 1
which could be as large as 4. On the other hand, if player 1 selects strategy 2, he is guar-
anteed not to lose anything and he could even win something. Therefore, because it pro-
vides the best guarantee (a payoff of 0), strategy 2 seems to be a “rational” choice for
player 1 against his rational opponent. (This line of reasoning assumes that both players
are averse to risking larger losses than necessary, in contrast to those individuals who en-
joy gambling for a large payoff against long odds.)

Now consider player 2. He could lose as much as 5 or 6 by using strategy 1 or 3, but
is guaranteed at least breaking even with strategy 2. Therefore, by the same reasoning of
seeking the best guarantee against a rational opponent, his apparent choice is strategy 2.

If both players choose their strategy 2, the result is that both break even. Thus, in this
case, neither player improves upon his best guarantee, but both also are forcing the op-
ponent into the same position. Even when the opponent deduces a player’s strategy, the
opponent cannot exploit this information to improve his position. Stalemate.
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TABLE 14.4 Payoff table for player 1 for variation 2 of the political campaign
problem

Player 2

Strategy 1 2 3 Minimum

1 �3 �2 �6 �3
Player 1 2 �2 �0 �2 �0 ← Maximin value

3 �5 �2 �4 �4

Maximum: 5 �0 �6
↑
Minimax value



The end product of this line of reasoning is that each player should play in such a
way as to minimize his maximum losses whenever the resulting choice of strategy cannot
be exploited by the opponent to then improve his position. This so-called minimax cri-
terion is a standard criterion proposed by game theory for selecting a strategy. In effect,
this criterion says to select a strategy that would be best even if the selection were being
announced to the opponent before the opponent chooses a strategy. In terms of the pay-
off table, it implies that player 1 should select the strategy whose minimum payoff is
largest, whereas player 2 should choose the one whose maximum payoff to player 1 is the
smallest. This criterion is illustrated in Table 14.4, where strategy 2 is identified as the
maximin strategy for player 1 and strategy 2 is the minimax strategy for player 2. The re-
sulting payoff of 0 is the value of the game, so this is a fair game.

Notice the interesting fact that the same entry in this payoff table yields both the max-
imin and minimax values. The reason is that this entry is both the minimum in its row
and the maximum of its column. The position of any such entry is called a saddle point.

The fact that this game possesses a saddle point was actually crucial in determining
how it should be played. Because of the saddle point, neither player can take advantage
of the opponent’s strategy to improve his own position. In particular, when player 2 pre-
dicts or learns that player 1 is using strategy 2, player 2 would incur a loss instead of
breaking even if he were to change from his original plan of using his strategy 2. Simi-
larly, player 1 would only worsen his position if he were to change his plan. Thus, nei-
ther player has any motive to consider changing strategies, either to take advantage of his
opponent or to prevent the opponent from taking advantage of him. Therefore, since this
is a stable solution (also called an equilibrium solution), players 1 and 2 should exclu-
sively use their maximin and minimax strategies, respectively.

As the next variation illustrates, some games do not possess a saddle point, in which
case a more complicated analysis is required.

Variation 3 of the Example

Late developments in the campaign result in the final payoff table for player 1 (politician 1)
given by Table 14.5. How should this game be played?

Suppose that both players attempt to apply the minimax criterion in the same way as
in variation 2. Player 1 can guarantee that he will lose no more than 2 by playing strategy
1. Similarly, player 2 can guarantee that he will lose no more than 2 by playing strategy 3.
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TABLE 14.5 Payoff table for player 1 for variation 3 of the political campaign
problem

Player 2

Strategy 1 2 3 Minimum

1 �0 �2 �2 �2
Player 1 2 �5 �4 �3 �3

← Maximin value

3 �2 �3 �4 �4

Maximum: 5 �4 �2
↑
Minimax value



However, notice that the maximin value (�2) and the minimax value (2) do not co-
incide in this case. The result is that there is no saddle point.

What are the resulting consequences if both players plan to use the strategies just de-
rived? It can be seen that player 1 would win 2 from player 2, which would make player
2 unhappy. Because player 2 is rational and can therefore foresee this outcome, he would
then conclude that he can do much better, actually winning 2 rather than losing 2, by play-
ing strategy 2 instead. Because player 1 is also rational, he would anticipate this switch
and conclude that he can improve considerably, from �2 to 4, by changing to strategy 2.
Realizing this, player 2 would then consider switching back to strategy 3 to convert a loss
of 4 to a gain of 3. This possibility of a switch would cause player 1 to consider again
using strategy 1, after which the whole cycle would start over again. Therefore, even
though this game is being played only once, any tentative choice of a strategy leaves that
player with a motive to consider changing strategies, either to take advantage of his op-
ponent or to prevent the opponent from taking advantage of him.

In short, the originally suggested solution (player 1 to play strategy 1 and player 2 to
play strategy 3) is an unstable solution, so it is necessary to develop a more satisfactory
solution. But what kind of solution should it be?

The key fact seems to be that whenever one player’s strategy is predictable, the op-
ponent can take advantage of this information to improve his position. Therefore, an es-
sential feature of a rational plan for playing a game such as this one is that neither player
should be able to deduce which strategy the other will use. Hence, in this case, rather than
applying some known criterion for determining a single strategy that will definitely be
used, it is necessary to choose among alternative acceptable strategies on some kind of
random basis. By doing this, neither player knows in advance which of his own strategies
will be used, let alone what his opponent will do.

This suggests, in very general terms, the kind of approach that is required for games
lacking a saddle point. In the next section we discuss the approach more fully. Given this
foundation, the following two sections will develop procedures for finding an optimal way
of playing such games. This particular variation of the political campaign problem will
continue to be used to illustrate these ideas as they are developed.
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Whenever a game does not possess a saddle point, game theory advises each player to as-
sign a probability distribution over her set of strategies. To express this mathematically, let

xi � probability that player 1 will use strategy i (i � 1, 2, . . . , m),
yj � probability that player 2 will use strategy j ( j � 1, 2, . . . , n),

where m and n are the respective numbers of available strategies. Thus, player 1 would
specify her plan for playing the game by assigning values to x1, x2, . . . , xm. Because these
values are probabilities, they would need to be nonnegative and add to 1. Similarly, the
plan for player 2 would be described by the values she assigns to her decision variables
y1, y2, . . . , yn. These plans (x1, x2, . . . , xm) and (y1, y2, . . . , yn) are usually referred to
as mixed strategies, and the original strategies are then called pure strategies.

When the game is actually played, it is necessary for each player to use one of her
pure strategies. However, this pure strategy would be chosen by using some random de-
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vice to obtain a random observation from the probability distribution specified by the mixed
strategy, where this observation would indicate which particular pure strategy to use.

To illustrate, suppose that players 1 and 2 in variation 3 of the political campaign prob-
lem (see Table 14.5) select the mixed strategies (x1, x2, x3) � (�

1
2

�, �
1
2

�, 0) and (y1, y2, y3) �
(0, �

1
2

�, �
1
2

�), respectively. This selection would say that player 1 is giving an equal chance (prob-
ability of �

1
2

�) of choosing either (pure) strategy 1 or 2, but he is discarding strategy 3 en-
tirely. Similarly, player 2 is randomly choosing between his last two pure strategies. To
play the game, each player could then flip a coin to determine which of his two accept-
able pure strategies he will actually use.

Although no completely satisfactory measure of performance is available for evalu-
ating mixed strategies, a very useful one is the expected payoff. By applying the proba-
bility theory definition of expected value, this quantity is

Expected payoff for player 1 � �
m

i�1
�
n

j�1
pijxiyj,

where pij is the payoff if player 1 uses pure strategy i and player 2 uses pure strategy j. In
the example of mixed strategies just given, there are four possible payoffs (�2, 2, 4, �3),
each occurring with a probability of �

1
4

�, so the expected payoff is �
1
4

�(�2 � 2 � 4 � 3) � �
1
4

�.
Thus, this measure of performance does not disclose anything about the risks involved in
playing the game, but it does indicate what the average payoff will tend to be if the game
is played many times.

By using this measure, game theory extends the concept of the minimax criterion to
games that lack a saddle point and thus need mixed strategies. In this context, the minimax
criterion says that a given player should select the mixed strategy that minimizes the max-
imum expected loss to himself. Equivalently, when we focus on payoffs (player 1) rather
than losses (player 2), this criterion says to maximin instead, i.e., maximize the minimum ex-
pected payoff to the player. By the minimum expected payoff we mean the smallest possi-
ble expected payoff that can result from any mixed strategy with which the opponent can
counter. Thus, the mixed strategy for player 1 that is optimal according to this criterion is
the one that provides the guarantee (minimum expected payoff) that is best (maximal). (The
value of this best guarantee is the maximin value, denoted by v

�
.) Similarly, the optimal strat-

egy for player 2 is the one that provides the best guarantee, where best now means mini-
mal and guarantee refers to the maximum expected loss that can be administered by any of
the opponent’s mixed strategies. (This best guarantee is the minimax value, denoted by v�.)

Recall that when only pure strategies were used, games not having a saddle point
turned out to be unstable (no stable solutions). The reason was essentially that v

�
� v�, so

that the players would want to change their strategies to improve their positions. Simi-
larly, for games with mixed strategies, it is necessary that v

�
� v� for the optimal solution

to be stable. Fortunately, according to the minimax theorem of game theory, this condi-
tion always holds for such games.

Minimax theorem: If mixed strategies are allowed, the pair of mixed strategies
that is optimal according to the minimax criterion provides a stable solution with
v
�

� v� � v (the value of the game), so that neither player can do better by uni-
laterally changing her or his strategy.

One proof of this theorem is included in Sec. 14.5.
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Although the concept of mixed strategies becomes quite intuitive if the game is played
repeatedly, it requires some interpretation when the game is to be played just once. In this
case, using a mixed strategy still involves selecting and using one pure strategy (randomly
selected from the specified probability distribution), so it might seem more sensible to ig-
nore this randomization process and just choose the one “best” pure strategy to be used.
However, we have already illustrated for variation 3 in the preceding section that a player
must not allow the opponent to deduce what his strategy will be (i.e., the solution proce-
dure under the rules of game theory must not definitely identify which pure strategy will
be used when the game is unstable). Furthermore, even if the opponent is able to use only
his knowledge of the tendencies of the first player to deduce probabilities (for the pure
strategy chosen) that are different from those for the optimal mixed strategy, then the op-
ponent still can take advantage of this knowledge to reduce the expected payoff to the
first player. Therefore, the only way to guarantee attaining the optimal expected payoff v
is to randomly select the pure strategy to be used from the probability distribution for the
optimal mixed strategy. (Valid statistical procedures for making such a random selection
are discussed in Sec. 22.4.)

Now we need to show how to find the optimal mixed strategy for each player. There
are several methods of doing this. One is a graphical procedure that may be used when-
ever one of the players has only two (undominated) pure strategies; this approach is de-
scribed in the next section. When larger games are involved, the usual method is to trans-
form the problem to a linear programming problem that then can be solved by the simplex
method on a computer; Sec. 14.5 discusses this approach.

14.4 GRAPHICAL SOLUTION PROCEDURE 735

Consider any game with mixed strategies such that, after dominated strategies are elimi-
nated, one of the players has only two pure strategies. To be specific, let this player be
player 1. Because her mixed strategies are (x1, x2) and x2 � 1 � x1, it is necessary for her
to solve only for the optimal value of x1. However, it is straightforward to plot the ex-
pected payoff as a function of x1 for each of her opponent’s pure strategies. This graph
can then be used to identify the point that maximizes the minimum expected payoff. The
opponent’s minimax mixed strategy can also be identified from the graph.

To illustrate this procedure, consider variation 3 of the political campaign problem
(see Table 14.5). Notice that the third pure strategy for player 1 is dominated by her sec-
ond, so the payoff table can be reduced to the form given in Table 14.6. Therefore, for
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TABLE 14.6 Reduced payoff table for player 1 for variation 3 of the political
campaign problem

Player 2

Probability y1 y2 y3

Pure
Probability Strategy 1 2 3

x1 1 0 �2 �2
Player 1

1 � x1 2 5 �4 �3



Now plot these expected-payoff lines on a graph, as shown in Fig. 14.1. For any given
values of x1 and (y1, y2, y3), the expected payoff will be the appropriate weighted aver-
age of the corresponding points on these three lines. In particular,

Expected payoff for player 1 � y1(5 � 5x1) � y2(4 � 6x1) � y3(�3 � 5x1).

Remember that player 2 wants to minimize this expected payoff for player 1. Given x1,
player 2 can minimize this expected payoff by choosing the pure strategy that corresponds
to the “bottom” line for that x1 in Fig. 14.1 (either �3 � 5x1 or 4 � 6x1, but never 
5 � 5x1). According to the minimax (or maximin) criterion, player 1 wants to maximize
this minimum expected payoff. Consequently, player 1 should select the value of x1 where
the bottom line peaks, i.e., where the (�3 � 5x1) and (4 � 6x1) lines intersect, which
yields an expected payoff of

v
�

� v � max {min{�3 � 5x1, 4 � 6x1}}.
0�x1�1

To solve algebraically for this optimal value of x1 at the intersection of the two lines 
�3 � 5x1 and 4 � 6x1, we set

�3 � 5x1 � 4 � 6x1,
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FIGURE 14.1
Graphical procedure for
solving games

each of the pure strategies available to player 2, the expected payoff for player 1 will be

(y1, y2, y3) Expected Payoff

(1, 0, 0) 0x1 � 5(1 � x1) � 5 � 5x1

(0, 1, 0) �2x1 � 4(1 � x1) � 4 � 6x1

(0, 0, 1) 2x1 � 3(1 � x1) � �3 � 5x1



which yields x1 � �
1
7
1
�. Thus, (x1, x2) � (�

1
7
1
�, �

1
4
1
�) is the optimal mixed strategy for player 1, and

v
�

� v � �3 � 5��
1
7
1
�� � �

1
2
1
�

is the value of the game.
To find the corresponding optimal mixed strategy for player 2, we now reason as fol-

lows. According to the definition of the minimax value v� and the minimax theorem, the
expected payoff resulting from the optimal strategy (y1, y2, y3) � (y*1, y*2, y*3) will satisfy
the condition

y*1(5 � 5x1) � y*2(4 � 6x1) � y*3(�3 � 5x1) � v� � v � �
1
2
1
�

for all values of x1 (0 � x1 � 1). Furthermore, when player 1 is playing optimally (that
is, x1 � �

1
7
1
�), this inequality will be an equality (by the minimax theorem), so that

�
2
1
0
1
�y*1 � �

1
2
1
�y*2 � �

1
2
1
�y*3 � v � �

1
2
1
�.

Because (y1, y2, y3) is a probability distribution, it is also known that

y*1 � y*2 � y*3 � 1.

Therefore, y*1 � 0 because y*1 � 0 would violate the next-to-last equation; i.e., the ex-
pected payoff on the graph at x1 � �

1
7
1
� would be above the maximin point. (In general, any

line that does not pass through the maximin point must be given a zero weight to avoid
increasing the expected payoff above this point.)

Hence,

y*2 (4 � 6x1) � y*3 (�3 � 5x1) 

But y*2 and y*3 are numbers, so the left-hand side is the equation of a straight line, which
is a fixed weighted average of the two “bottom” lines on the graph. Because the ordinate
of this line must equal �

1
2
1
� at x1 � �

1
7
1
�, and because it must never exceed �

1
2
1
�, the line neces-

sarily is horizontal. (This conclusion is always true unless the optimal value of x1 is ei-
ther 0 or 1, in which case player 2 also should use a single pure strategy.) Therefore,

y*2(4 � 6x1) � y*3(�3 � 5x1) � �
1
2
1
�, for 0 � x1 � 1.

Hence, to solve for y*2 and y*3, select two values of x1 (say, 0 and 1), and solve the re-
sulting two simultaneous equations. Thus,

�4y*2 � 3y*3 � �
1
2
1
�,

�2y*2 � 2y*3 � �
1
2
1
�,

which has a simultaneous solution of y*2 � �
1
5
1
� and y*3 � �

1
6
1
�. Therefore, the optimal mixed

strategy for player 2 is (y1, y2, y3) � (0, �
1
5
1
�, �

1
6
1
�).

for 0 � x1 � 1,

for x1 � �
1
7
1
�.

� �
1
2
1
�

� �
1
2
1
�






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If, in another problem, there should happen to be more than two lines passing through
the maximin point, so that more than two of the y*j values can be greater than zero, this con-
dition would imply that there are many ties for the optimal mixed strategy for player 2. One
such strategy can then be identified by setting all but two of these y*j values equal to zero
and solving for the remaining two in the manner just described. For the remaining two, the
associated lines must have positive slope in one case and negative slope in the other.

Although this graphical procedure has been illustrated for only one particular prob-
lem, essentially the same reasoning can be used to solve any game with mixed strategies
that has only two undominated pure strategies for one of the players.
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Any game with mixed strategies can be solved by transforming the problem to a linear
programming problem. As you will see, this transformation requires little more than ap-
plying the minimax theorem and using the definitions of the maximin value v

�
and mini-

max value v�.
First, consider how to find the optimal mixed strategy for player 1. As indicated in

Sec. 14.3,

Expected payoff for player 1 � �
m

i�1
�
n

j�1
pijxiyj

and the strategy (x1, x2, . . . , xm) is optimal if

�
m

i�1
�
n

j�1
pijxiyj 	 v

�
� v

for all opposing strategies (y1, y2, . . . , yn). Thus, this inequality will need to hold, e.g.,
for each of the pure strategies of player 2, that is, for each of the strategies (y1, y2, . . . ,
yn) where one yj � 1 and the rest equal 0. Substituting these values into the inequality
yields

�
m

i�1
pijxi 	 v for j � 1, 2, . . . , n,

so that the inequality implies this set of n inequalities. Furthermore, this set of n inequalities
implies the original inequality (rewritten)

�
n

j�1
yj��

m

i�1
pijxi� 	 �

n

j�1
yjv � v,

since

�
n

j�1
yj � 1.

Because the implication goes in both directions, it follows that imposing this set of n lin-
ear inequalities is equivalent to requiring the original inequality to hold for all strategies
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(y1, y2, . . . , yn). But these n inequalities are legitimate linear programming constraints,
as are the additional constraints

x1 � x2 � 


 � xm � 1
xi 	 0, for i � 1, 2, . . . , m

that are required to ensure that the xi are probabilities. Therefore, any solution (x1, x2, . . . ,
xm) that satisfies this entire set of linear programming constraints is the desired optimal
mixed strategy.

Consequently, the problem of finding an optimal mixed strategy has been reduced to
finding a feasible solution for a linear programming problem, which can be done as de-
scribed in Chap. 4. The two remaining difficulties are that (1) v is unknown and (2) the
linear programming problem has no objective function. Fortunately, both these difficul-
ties can be resolved at one stroke by replacing the unknown constant v by the variable
xm�1 and then maximizing xm�1, so that xm�1 automatically will equal v (by definition)
at the optimal solution for the linear programming problem!

To summarize, player 1 would find his optimal mixed strategy by using the simplex
method to solve the linear programming problem:

Maximize xm�1,

subject to

p11x1 � p21x2 � 


 � pm1xm � xm�1 	 0
p12x1 � p22x2 � 


 � pm2xm � xm�1 	 0




















































p1nx1 � p2nx2 � 


 � pmnxm � xm�1 	 0

x1 � x2 � 


 � xm � 1

and

xi 	 0, for i � 1, 2, . . . , m.

Note that xm�1 is not restricted to be nonnegative, whereas the simplex method can be
applied only after all the variables have nonnegativity constraints. However, this matter
can be easily rectified, as will be discussed shortly.

Now consider player 2. He could find his optimal mixed strategy by rewriting the
payoff table as the payoff to himself rather than to player 1 and then by proceeding ex-
actly as just described. However, it is enlightening to summarize his formulation in terms
of the original payoff table. By proceeding in a way that is completely analogous to that
just described, player 2 would conclude that his optimal mixed strategy is given by an op-
timal solution to the linear programming problem:

Minimize yn�1,

subject to

p11y1 � p12y2 � 


 � p1nyn � yn�1 � 0
p21y1 � p22y2 � 


 � p2nyn � yn�1 � 0





















































pm1y1 � pm2y2 � 


 � pmnyn � yn�1 � 0

y1 � y2 � 


 � yn � 1
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and

yj 	 0, for j � 1, 2, . . . , n.

It is easy to show (see Prob. 14.5-5 and its hint) that this linear programming problem and
the one given for player 1 are dual to each other in the sense described in Secs. 6.1 and 6.4.
This fact has several important implications. One implication is that the optimal mixed strate-
gies for both players can be found by solving only one of the linear programming problems
because the optimal dual solution is an automatic by-product of the simplex method calcu-
lations to find the optimal primal solution. A second implication is that this brings all du-
ality theory (described in Chap. 6) to bear upon the interpretation and analysis of games.

A related implication is that this provides a simple proof of the minimax theorem.
Let x*m�1 and y*n�1 denote the value of xm�1 and yn�1 in the optimal solution of the re-
spective linear programming problems. It is known from the strong duality property given
in Sec. 6.1 that �x*m�1 � �y*n�1, so that x*m�1 � y*n�1. However, it is evident from the
definition of v

�
and v� that v

�
� x*m�1 and v� � y*n�1, so it follows that v

�
� v�, as claimed by

the minimax theorem.
One remaining loose end needs to be tied up, namely, what to do about xm�1 and yn�1

being unrestricted in sign in the linear programming formulations. If it is clear that v 	 0 so
that the optimal values of xm�1 and yn�1 are nonnegative, then it is safe to introduce non-
negativity constraints for these variables for the purpose of applying the simplex method.
However, if v � 0, then an adjustment needs to be made. One possibility is to use the ap-
proach described in Sec. 4.6 for replacing a variable without a nonnegativity constraint by
the difference of two nonnegative variables. Another is to reverse players 1 and 2 so that the
payoff table would be rewritten as the payoff to the original player 2, which would make the
corresponding value of v positive. A third, and the most commonly used, procedure is to add
a sufficiently large fixed constant to all the entries in the payoff table that the new value of
the game will be positive. (For example, setting this constant equal to the absolute value of
the largest negative entry will suffice.) Because this same constant is added to every entry,
this adjustment cannot alter the optimal mixed strategies in any way, so they can now be ob-
tained in the usual manner. The indicated value of the game would be increased by the amount
of the constant, but this value can be readjusted after the solution has been obtained.

To illustrate this linear programming approach, consider again variation 3 of the po-
litical campaign problem after dominated strategy 3 for player 1 is eliminated (see Table
14.6). Because there are some negative entries in the reduced payoff table, it is unclear at
the outset whether the value of the game v is nonnegative (it turns out to be). For the mo-
ment, let us assume that v 	 0 and proceed without making any of the adjustments dis-
cussed in the preceding paragraph.

To write out the linear programming model for player 1 for this example, note that
pij in the general model is the entry in row i and column j of Table 14.6, for i � 1, 2 and
j � 1, 2, 3. The resulting model is

Maximize x3,

subject to

5x2 � x3 	 0
�2x1 � 4x2 � x3 	 0
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2x1 � 3x2 � x3 	 0
x1 � x2 � 1

and

x1 	 0, x2 	 0.

Applying the simplex method to this linear programming problem (after adding the
constraint x3 	 0) yields x*1 � �

1
7
1
�, x*2 � �

1
4
1
�, x*3 � �

1
2
1
� as the optimal solution. (See Probs. 14.5-7

and 14.5-8.) Consequently, just as was found by the graphical procedure in the preceding
section, the optimal mixed strategy for player 1 according to the minimax criterion is (x1,
x2) � (�

1
7
1
�, �

1
4
1
�), and the value of the game is v � x*3 � �

1
2
1
�. The simplex method also yields

the optimal solution for the dual (given next) of this problem, namely, y*1 � 0, y*2 � �
1
5
1
�,

y*3 � �
1
6
1
�, y*4 � �

1
2
1
�, so the optimal mixed strategy for player 2 is (y1, y2, y3) � (0, �

1
5
1
�, �

1
6
1
�).

The dual of the preceding problem is just the linear programming model for player
2 (the one with variables y1, y2, . . . , yn, yn�1) shown earlier in this section. (See Prob.
14.5-6.) By plugging in the values of pij from Table 14.6, this model is

Minimize y4,

subject to

� 2y2 � 2y3 � y4 � 0
5y1 � 4y2 � 3y3 � y4 � 0
y1 � y2 � y3 � 1

and

y1 	 0, y2 	 0, y3 	 0.

Applying the simplex method directly to this model (after adding the constraint y4 	 0)
yields the optimal solution: y*1 � 0, y*2 � �

1
5
1
�, y*3 � �

1
6
1
�, y*4 � �

1
2
1
� (as well as the optimal dual

solution x*1 � �
1
7
1
�, x*2 � �

1
4
1
�, x*3 � �

1
2
1
�). Thus, the optimal mixed strategy for player 2 is (y1,

y2, y3) � (0, �
1
5
1
�, �

1
6
1
�), and the value of the game is again seen to be v � y*4 � �

1
2
1
�.

Because we already had found the optimal mixed strategy for player 2 while dealing
with the first model, we did not have to solve the second one. In general, you always can
find optimal mixed strategies for both players by choosing just one of the models (either
one) and then using the simplex method to solve for both an optimal solution and an op-
timal dual solution.

When the simplex method was applied to both of these linear programming models,
a nonnegativity constraint was added that assumed that v 	 0. If this assumption were vi-
olated, both models would have no feasible solutions, so the simplex method would stop
quickly with this message. To avoid this risk, we could have added a positive constant,
say, 3 (the absolute value of the largest negative entry), to all the entries in Table 14.6.
This then would increase by 3 all the coefficients of x1, x2, y1, y2, and y3 in the inequal-
ity constraints of the two models. (See Prob. 14.5-1.)
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Although this chapter has considered only two-person, zero-sum games with a finite num-
ber of pure strategies, game theory extends far beyond this kind of game. In fact, exten-
sive research has been done on a number of more complicated types of games, including
the ones summarized in this section.
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The simplest generalization is to the two-person, constant-sum game. In this case, the
sum of the payoffs to the two players is a fixed constant (positive or negative) regardless
of which combination of strategies is selected. The only difference from a two-person,
zero-sum game is that, in the latter case, the constant must be zero. A nonzero constant
may arise instead because, in addition to one player winning whatever the other one loses,
the two players may share some reward (if the constant is positive) or some cost (if the
constant is negative) for participating in the game. Adding this fixed constant does noth-
ing to affect which strategies should be chosen. Therefore, the analysis for determining
optimal strategies is exactly the same as described in this chapter for two-person, zero-
sum games.

A more complicated extension is to the n-person game, where more than two play-
ers may participate in the game. This generalization is particularly important because, in
many kinds of competitive situations, frequently more than two competitors are involved.
This may occur, e.g., in competition among business firms, in international diplomacy,
and so forth. Unfortunately, the existing theory for such games is less satisfactory than it
is for two-person games.

Another generalization is the nonzero-sum game, where the sum of the payoffs to the
players need not be 0 (or any other fixed constant). This case reflects the fact that many
competitive situations include noncompetitive aspects that contribute to the mutual ad-
vantage or mutual disadvantage of the players. For example, the advertising strategies of
competing companies can affect not only how they will split the market but also the to-
tal size of the market for their competing products. However, in contrast to a constant-
sum game, the size of the mutual gain (or loss) for the players depends on the combina-
tion of strategies chosen.

Because mutual gain is possible, nonzero-sum games are further classified in terms
of the degree to which the players are permitted to cooperate. At one extreme is the non-
cooperative game, where there is no preplay communication between the players. At the
other extreme is the cooperative game, where preplay discussions and binding agreements
are permitted. For example, competitive situations involving trade regulations between
countries, or collective bargaining between labor and management, might be formulated
as cooperative games. When there are more than two players, cooperative games also al-
low some of or all the players to form coalitions.

Still another extension is to the class of infinite games, where the players have an in-
finite number of pure strategies available to them. These games are designed for the kind
of situation where the strategy to be selected can be represented by a continuous decision
variable. For example, this decision variable might be the time at which to take a certain
action, or the proportion of one’s resources to allocate to a certain activity, in a competi-
tive situation.

However, the analysis required in these extensions beyond the two-person, zero-sum,
finite game is relatively complex and will not be pursued further here.
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The general problem of how to make decisions in a competitive environment is a very
common and important one. The fundamental contribution of game theory is that it pro-
vides a basic conceptual framework for formulating and analyzing such problems in sim-
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ple situations. However, there is a considerable gap between what the theory can handle
and the complexity of most competitive situations arising in practice. Therefore, the con-
ceptual tools of game theory usually play just a supplementary role in dealing with these
situations.

Because of the importance of the general problem, research is continuing with some
success to extend the theory to more complex situations.

CHAPTER 14 PROBLEMS 743

1. Aumann, R. J., and S. Hart (eds.): Handbook of Game Theory: With Application to Economics,
vols. 1, 2, and 3, North-Holland, Amsterdam, 1992, 1994, 1995.

2. Binmore, K.: Fun and Games: A Text on Game Theory, Heath, Lexington, MA, 1992.
3. Fudenberg, D., and J. Tirole: Game Theory, MIT Press, Cambridge, MA, 1991.
4. Meyerson, R. B.: Game Theory: Analysis of Conflict, Harvard University Press, Cambridge, MA,

1991.
5. Owen, G.: Game Theory, 3d ed., Academic Press, San Diego, 1995.
6. Parthasarathy, T., B. Dutta, and A. Sen (eds.): Game Theoretical Applications to Economics and

Operations Research, Kluwer Academic Publishers, Boston, 1997.
7. Shubik, M.: Game Theory in the Social Sciences, vols. 1 (1982) and 2 (1987), MIT Press, Cam-

bridge, MA.

SELECTED REFERENCES

“Ch. 14—Game Theory” Files for Solving the Examples:

Excel File
LINGO/LINDO File
MPL/CPLEX File

See Appendix 1 for documentation of the software.

LEARNING AIDS IN YOUR OR COURSEWARE FOR THIS CHAPTER

The symbol to the left of some of the problems (or their parts) has
the following meaning.

C: Use the computer with any of the software options available to
you (or as instructed by your instructor) to solve the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

14.1-1. The labor union and management of a particular com-
pany have been negotiating a new labor contract. However, ne-
gotiations have now come to an impasse, with management mak-
ing a “final” offer of a wage increase of $1.10 per hour and the
union making a “final” demand of a $1.60 per hour increase.

Therefore, both sides have agreed to let an impartial arbitrator
set the wage increase somewhere between $1.10 and $1.60 per
hour (inclusively).

The arbitrator has asked each side to submit to her a confi-
dential proposal for a fair and economically reasonable wage in-
crease (rounded to the nearest dime). From past experience, both
sides know that this arbitrator normally accepts the proposal of the
side that gives the most from its final figure. If neither side changes
its final figure, or if they both give in the same amount, then the
arbitrator normally compromises halfway between ($1.35 in this
case). Each side now needs to determine what wage increase to
propose for its own maximum advantage.

Formulate this problem as a two-person, zero-sum game.

PROBLEMS



14.2-1. Reconsider Prob. 14.1-1.
(a) Use the concept of dominated strategies to determine the best

strategy for each side.
(b) Without eliminating dominated strategies, use the minimax cri-

terion to determine the best strategy for each side.

14.2-2.* For each of the following payoff tables, determine the op-
timal strategy for each player by successively eliminating dominated
strategies. (Indicate the order in which you eliminated strategies.)

14.1-2. Two manufacturers currently are competing for sales in
two different but equally profitable product lines. In both cases the
sales volume for manufacturer 2 is three times as large as that for
manufacturer 1. Because of a recent technological breakthrough,
both manufacturers will be making a major improvement in both
products. However, they are uncertain as to what development and
marketing strategy to follow.

If both product improvements are developed simultaneously,
either manufacturer can have them ready for sale in 12 months.
Another alternative is to have a “crash program” to develop only
one product first to try to get it marketed ahead of the competi-
tion. By doing this, manufacturer 2 could have one product ready
for sale in 9 months, whereas manufacturer 1 would require 10
months (because of previous commitments for its production fa-
cilities). For either manufacturer, the second product could then be
ready for sale in an additional 9 months.

For either product line, if both manufacturers market their im-
proved models simultaneously, it is estimated that manufacturer 1
would increase its share of the total future sales of this product by
8 percent of the total (from 25 to 33 percent). Similarly, manufac-
turer 1 would increase its share by 20, 30, and 40 percent of the
total if it marketed the product sooner than manufacturer 2 by 2,
6, and 8 months, respectively. On the other hand, manufacturer 1
would lose 4, 10, 12, and 14 percent of the total if manufacturer 2
marketed it sooner by 1, 3, 7, and 10 months, respectively.

Formulate this problem as a two-person, zero-sum game, and
then determine which strategy the respective manufacturers should
use according to the minimax criterion.

14.1-3. Consider the following parlor game to be played between
two players. Each player begins with three chips: one red, one
white, and one blue. Each chip can be used only once.

To begin, each player selects one of her chips and places it
on the table, concealed. Both players then uncover the chips and
determine the payoff to the winning player. In particular, if both
players play the same kind of chip, it is a draw; otherwise, the fol-
lowing table indicates the winner and how much she receives from
the other player. Next, each player selects one of her two remain-
ing chips and repeats the procedure, resulting in another payoff ac-
cording to the following table. Finally, each player plays her one
remaining chip, resulting in the third and final payoff.
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Winning Chip Payoff ($)

Red beats white 50
White beats blue 40
Blue beats red 30
Matching colors 0

Formulate this problem as a two-person, zero-sum game by iden-
tifying the form of the strategies and payoffs.

14.2-3. Consider the game having the following payoff table.

Player 2

Strategy 1 2 3

1 �3 1 �2
Player 1 2 �1 2 �1

3 �1 0 �2

Player 2

Strategy 1 2 3

1 1 �2 �0
Player 1 2 2 �3 �2

3 0 �3 �1

Player 2

Strategy 1 2 3 4

1 �2 �3 �1 1
Player 1 2 �1 �1 �2 2

3 �1 �2 �1 3

Determine the optimal strategy for each player by successively
eliminating dominated strategies. Give a list of the dominated
strategies (and the corresponding dominating strategies) in the or-
der in which you were able to eliminate them.

14.2-4. Find the saddle point for the game having the following
payoff table.

Player 2

Strategy 1 2 3

1 �1 �1 1
Player 1 2 �2 �0 3

3 �3 �1 2

(a)

(b)



14.2-7.* Two politicians soon will be starting their campaigns
against each other for a certain political office. Each must now se-
lect the main issue she will emphasize as the theme of her cam-
paign. Each has three advantageous issues from which to choose,
but the relative effectiveness of each one would depend upon the
issue chosen by the opponent. In particular, the estimated increase
in the vote for politician 1 (expressed as a percentage of the total
vote) resulting from each combination of issues is as follows:

Use the minimax criterion to find the best strategy for each player.
Does this game have a saddle point? Is it a stable game?

14.2-5. Find the saddle point for the game having the following
payoff table.
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Use the minimax criterion to find the best strategy for each player.
Does this game have a saddle point? Is it a stable game?

14.2-6. Two companies share the bulk of the market for a partic-
ular kind of product. Each is now planning its new marketing plans
for the next year in an attempt to wrest some sales away from the
other company. (The total sales for the product are relatively fixed,
so one company can increase its sales only by winning them away
from the other.) Each company is considering three possibilities:
(1) better packaging of the product, (2) increased advertising, and
(3) a slight reduction in price. The costs of the three alternatives
are quite comparable and sufficiently large that each company will
select just one. The estimated effect of each combination of alter-
natives on the increased percentage of the sales for company 1 is
as follows:

Each company must make its selection before learning the deci-
sion of the other company.
(a) Without eliminating dominated strategies, use the minimax (or

maximin) criterion to determine the best strategy for each
company.

(b) Now identify and eliminate dominated strategies as far as pos-
sible. Make a list of the dominated strategies, showing the or-
der in which you were able to eliminate them. Then show the
resulting reduced payoff table with no remaining dominated
strategies.

Player 2

Strategy 1 2 3 4

1 �3 �3 �2 �4
Player 1 2 �4 �2 �1 �1

3 �1 �1 �2 �0

Player 2

Strategy 1 2 3

1 2 �3 �1
Player 1 2 1 �4 �0

3 3 �2 �1

However, because considerable staff work is required to research
and formulate the issue chosen, each politician must make her own
choice before learning the opponent’s choice. Which issue should
she choose?

For each of the situations described here, formulate this prob-
lem as a two-person, zero-sum game, and then determine which
issue should be chosen by each politician according to the speci-
fied criterion.
(a) The current preferences of the voters are very uncertain, so

each additional percent of votes won by one of the politicians
has the same value to her. Use the minimax criterion.

(b) A reliable poll has found that the percentage of the voters cur-
rently preferring politician 1 (before the issues have been
raised) lies between 45 and 50 percent. (Assume a uniform dis-
tribution over this range.) Use the concept of dominated strate-
gies, beginning with the strategies for politician 1.

(c) Suppose that the percentage described in part (b) actually were
45 percent. Should politician 1 use the minimax criterion? Ex-
plain. Which issue would you recommend? Why?

14.2-8. Briefly describe what you feel are the advantages and dis-
advantages of the minimax criterion.

14.3-1. Consider the following parlor game between two players.
It begins when a referee flips a coin, notes whether it comes up
heads or tails, and then shows this result to player 1 only. Player
1 may then (1) pass and thereby pay $5 to player 2 or (2) bet. If
player 1 passes, the game is terminated. However, if he bets, the
game continues, in which case player 2 may then either (1) pass
and thereby pay $5 to player 1 or (2) call. If player 2 calls, the ref-
eree then shows him the coin; if it came up heads, player 2 pays
$10 to player 1; if it came up tails, player 2 receives $10 from
player 1.

Issue for
Politician 2

1 2 3

1 �7 �1 �3
Issue for

2 �1 �0 �2
Politician 1

3 �5 �3 �1



(b)(a) Give the pure strategies for each player. (Hint: Player 1 will
have four pure strategies, each one specifying how he would
respond to each of the two results the referee can show him;
player 2 will have two pure strategies, each one specifying how
he will respond if player 1 bets.)

(b) Develop the payoff table for this game, using expected values
for the entries when necessary. Then identify and eliminate any
dominated strategies.

(c) Show that none of the entries in the resulting payoff table are
a saddle point. Then explain why any fixed choice of a pure
strategy for each of the two players must be an unstable solu-
tion, so mixed strategies should be used instead.

(d) Write an expression for the expected payoff in terms of the
probabilities of the two players using their respective pure
strategies. Then show what this expression reduces to for the
following three cases: (i) Player 2 definitely uses his first strat-
egy, (ii) player 2 definitely uses his second strategy, (iii) player
2 assigns equal probabilities to using his two strategies.

14.4-1. Reconsider Prob. 14.3-1. Use the graphical procedure de-
scribed in Sec. 14.4 to determine the optimal mixed strategy for
each player according to the minimax criterion. Also give the cor-
responding value of the game.

14.4-2. Consider the game having the following payoff table.
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Use the graphical procedure described in Sec. 14.4 to determine
the value of the game and the optimal mixed strategy for each
player according to the minimax criterion. Check your answer for
player 2 by constructing his payoff table and applying the graph-
ical procedure directly to this table.

14.4-3.* For each of the following payoff tables, use the graphi-
cal procedure described in Sec. 14.4 to determine the value of the
game and the optimal mixed strategy for each player according to
the minimax criterion.

Player 2

Strategy 1 2

1 �3 �2
Player 1

2 �1 �2

Player 2

Strategy 1 2 3

1 4 3 1
Player 1

2 0 1 2

Player 2

Strategy 1 2 3

1 �1 �1 �3
2 �0 �4 �1

Player 1
3 �3 �2 �5
4 �3 �6 �2

14.4-4. The A. J. Swim Team soon will have an important swim
meet with the G. N. Swim Team. Each team has a star swimmer
(John and Mark, respectively) who can swim very well in the 100-
yard butterfly, backstroke, and breaststroke events. However, the
rules prevent them from being used in more than two of these
events. Therefore, their coaches now need to decide how to use
them to maximum advantage.

Each team will enter three swimmers per event (the maximum
allowed). For each event, the following table gives the best time
previously achieved by John and Mark as well as the best time for
each of the other swimmers who will definitely enter that event.
(Whichever event John or Mark does not swim, his team’s third
entry for that event will be slower than the two shown in the table.)

A. J. Swim Team G. N. Swim Team

Entry Entry

1 2 John Mark 1 2

Butterfly
stroke 1:01.6 59.1 57.5 58.4 1:03.2 59.8

Backstroke 1:06.8 1:05.6 1:03.3 1:02.6 1:04.9 1:04.1
Breaststroke 1:13.9 1:12.5 1:04.7 1:06.1 1:15.3 1:11.8

The points awarded are 5 points for first place, 3 points for
second place, 1 point for third place, and none for lower places.
Both coaches believe that all swimmers will essentially equal their
best times in this meet. Thus, John and Mark each will definitely
be entered in two of these three events.
(a) The coaches must submit all their entries before the meet with-

out knowing the entries for the other team, and no changes are
permitted later. The outcome of the meet is very uncertain, so
each additional point has equal value for the coaches. Formu-
late this problem as a two-person, zero-sum game. Eliminate
dominated strategies, and then use the graphical procedure de-
scribed in Sec. 14.4 to find the optimal mixed strategy for each
team according to the minimax criterion.

(b) The situation and assignment are the same as in part (a), ex-
cept that both coaches now believe that the A. J. team will win

(a)



the swim meet if it can win 13 or more points in these three
events, but will lose with less than 13 points. [Compare the re-
sulting optimal mixed strategies with those obtained in part (a).]

(c) Now suppose that the coaches submit their entries during the
meet one event at a time. When submitting his entries for an
event, the coach does not know who will be swimming that
event for the other team, but he does know who has swum in
preceding events. The three key events just discussed are swum
in the order listed in the table. Once again, the A. J. team needs
13 points in these events to win the swim meet. Formulate this
problem as a two-person, zero-sum game. Then use the con-
cept of dominated strategies to determine the best strategy for
the G. N. team that actually “guarantees” it will win under the
assumptions being made.

(d) The situation is the same as in part (c). However, now assume
that the coach for the G. N. team does not know about game
theory and so may, in fact, choose any of his available strate-
gies that have Mark swimming two events. Use the concept of
dominated strategies to determine the best strategies from
which the coach for the A. J. team should choose. If this coach
knows that the other coach has a tendency to enter Mark in the
butterfly and the backstroke more often than in the breaststroke,
which strategy should she choose?

14.5-1. Refer to the last paragraph of Sec. 14.5. Suppose that 3
were added to all the entries of Table 14.6 to ensure that the cor-
responding linear programming models for both players have fea-
sible solutions with x3 	 0 and y4 	 0. Write out these two mod-
els. Based on the information given in Sec. 14.5, what are the
optimal solutions for these two models? What is the relationship
between x*3 and y*4? What is the relationship between the value of
the original game v and the values of x*3 and y*4?

14.5-2.* Consider the game having the following payoff table.
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14.5-3. Follow the instructions of Prob. 14.5-2 for the game hav-
ing the following payoff table.

Player 2

Strategy 1 2 3 4

1 5 0 3 1
Player 1 2 2 4 3 2

3 3 2 0 4

(a) Use the approach described in Sec. 14.5 to formulate the prob-
lem of finding optimal mixed strategies according to the min-
imax criterion as a linear programming problem.

C (b) Use the simplex method to find these optimal mixed
strategies.

14.5-4. Follow the instructions of Prob. 14.5-2 for the game hav-
ing the following payoff table.

14.5-5. Section 14.5 presents a general linear programming for-
mulation for finding an optimal mixed strategy for player 1 and for
player 2. Using Table 6.14, show that the linear programming prob-
lem given for player 2 is the dual of the problem given for player
1. (Hint: Remember that a dual variable with a nonpositivity con-
straint yi� � 0 can be replaced by yi � �yi� with a nonnegativity
constraint yi 	 0.)

14.5-6. Consider the linear programming models for players 1 and
2 given near the end of Sec. 14.5 for variation 3 of the political
campaign problem (see Table 14.6). Follow the instructions of Prob.
14.5-5 for these two models.

14.5-7. Consider variation 3 of the political campaign problem (see
Table 14.6). Refer to the resulting linear programming model for
player 1 given near the end of Sec. 14.5. Ignoring the objective
function variable x3, plot the feasible region for x1 and x2 graphi-
cally (as described in Sec. 3.1). (Hint: This feasible region con-
sists of a single line segment.) Next, write an algebraic expression
for the maximizing value of x3 for any point in this feasible region.
Finally, use this expression to demonstrate that the optimal solu-
tion must, in fact, be the one given in Sec. 14.5.

C 14.5-8. Consider the linear programming model for player 1
given near the end of Sec. 14.5 for variation 3 of the political cam-
paign problem (see Table 14.6). Verify the optimal mixed strate-
gies for both players given in Sec. 14.5 by applying an automatic
routine for the simplex method to this model to find both its opti-
mal solution and its optimal dual solution.

Player 2

Strategy 1 2 3

1 �4 2 �3
Player 1 2 �1 0 �3

3 �2 3 �2

Player 2

Strategy 1 2 3 4 5

1 �1 �3 �2 �2 �1
2 �2 �3 �0 �3 �2

Player 1
3 �0 �4 �1 �3 �2
4 �4 �0 �2 �2 �1



strategies under the minimax criterion. Prove that eliminating
weakly dominated strategies from the payoff table cannot elim-
inate all these saddle points and cannot produce any new ones.

(b) Assume that the payoff table does not possess any saddle
points, so that the optimal strategies under the minimax crite-
rion are mixed strategies. Prove that eliminating weakly dom-
inated pure strategies from the payoff table cannot eliminate
all optimal mixed strategies and cannot produce any new ones.

14.5-9. Consider the general m � n, two-person, zero-sum game.
Let pij denote the payoff to player 1 if he plays his strategy 
i (i � 1, . . . , m) and player 2 plays her strategy j ( j � 1, . . . , n).
Strategy 1 (say) for player 1 is said to be weakly dominated by
strategy 2 (say) if p1j � p2j for j � 1, . . . , n and p1j � p2j for one
or more values of j.
(a) Assume that the payoff table possesses one or more saddle

points, so that the players have corresponding optimal pure

748 14 GAME THEORY



749

15
Decision Analysis

The previous chapters have focused mainly on decision making when the consequences of
alternative decisions are known with a reasonable degree of certainty. This decision-mak-
ing environment enabled formulating helpful mathematical models (linear programming,
integer programming, nonlinear programming, etc.) with objective functions that specify
the estimated consequences of any combination of decisions. Although these consequences
usually cannot be predicted with complete certainty, they could at least be estimated with
enough accuracy to justify using such models (along with sensitivity analysis, etc.).

However, decisions often must be made in environments that are much more fraught
with uncertainty. Here are a few examples.

1. A manufacturer introducing a new product into the marketplace. What will be the re-
action of potential customers? How much should be produced? Should the product be
test marketed in a small region before deciding upon full distribution? How much ad-
vertising is needed to launch the product successfully?

2. A financial firm investing in securities. Which are the market sectors and individual
securities with the best prospects? Where is the economy headed? How about interest
rates? How should these factors affect the investment decisions?

3. A government contractor bidding on a new contract. What will be the actual costs of
the project? Which other companies might be bidding? What are their likely bids?

4. An agricultural firm selecting the mix of crops and livestock for the upcoming season.
What will be the weather conditions? Where are prices headed? What will costs be?

5. An oil company deciding whether to drill for oil in a particular location. How likely
is oil there? How much? How deep will they need to drill? Should geologists investi-
gate the site further before drilling?

These are the kinds of decision making in the face of great uncertainty that decision
analysis is designed to address. Decision analysis provides a framework and methodol-
ogy for rational decision making when the outcomes are uncertain.

The preceding chapter describes how game theory also can be used for certain kinds
of decision making in the face of uncertainty. There are some similarities in the approaches
used by game theory and decision analysis. However, there also are differences because
they are designed for different kinds of applications. We will describe these similarities
and differences in Sec. 15.2.



Frequently, one question to be addressed with decision analysis is whether to make
the needed decision immediately or to first do some testing (at some expense) to reduce
the level of uncertainty about the outcome of the decision. For example, the testing might
be field testing of a proposed new product to test consumer reaction before making a de-
cision on whether to proceed with full-scale production and marketing of the product. This
testing is referred to as performing experimentation. Therefore, decision analysis divides
decision making between the cases of without experimentation and with experimentation.

The first section introduces a prototype example that will be carried throughout the
chapter for illustrative purposes. Sections 15.2 and 15.3 then present the basic principles
of decision making without experimentation and decision making with experimentation.
We next describe decision trees, a useful tool for depicting and analyzing the decision
process when a series of decisions needs to be made. Section 15.5 introduces utility the-
ory, which provides a way of calibrating the possible outcomes of the decision to reflect
the true value of these outcomes to the decision maker. We then conclude the chapter by
discussing the practical application of decision analysis and summarizing a variety of ap-
plications that have been very beneficial to the organizations involved.
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TABLE 15.1 Prospective profits for the Goferbroke Company

Status Payoff

Alternative
of Land

Oil Dry

Drill for oil $700,000 �$100,000
Sell the land $ 90,000 �$ 90,000

Chance of status 1 in 4 3 in 4

The GOFERBROKE COMPANY owns a tract of land that may contain oil. A consulting
geologist has reported to management that she believes there is 1 chance in 4 of oil.

Because of this prospect, another oil company has offered to purchase the land for
$90,000. However, Goferbroke is considering holding the land in order to drill for oil it-
self. The cost of drilling is $100,000. If oil is found, the resulting expected revenue will
be $800,000, so the company’s expected profit (after deducting the cost of drilling) will be
$700,000. A loss of $100,000 (the drilling cost) will be incurred if the land is dry (no oil).

Table 15.1 summarizes these data. Section 15.2 discusses how to approach the deci-
sion of whether to drill or sell based just on these data. (We will refer to this as the first
Goferbroke Co. problem.)

However, before deciding whether to drill or sell, another option is to conduct a de-
tailed seismic survey of the land to obtain a better estimate of the probability of finding
oil. Section 15.3 discusses this case of decision making with experimentation, at which
point the necessary additional data will be provided.

This company is operating without much capital, so a loss of $100,000 would be quite
serious. In Sec. 15.5, we describe how to refine the evaluation of the consequences of the
various possible outcomes.

15.1 A PROTOTYPE EXAMPLE
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Before seeking a solution to the first Goferbroke Co. problem, we will formulate a gen-
eral framework for decision making.

In general terms, the decision maker must choose an action from a set of possible
actions. The set contains all the feasible alternatives under consideration for how to pro-
ceed with the problem of concern.

This choice of an action must be made in the face of uncertainty, because the out-
come will be affected by random factors that are outside the control of the decision maker.
These random factors determine what situation will be found at the time that the action
is executed. Each of these possible situations is referred to as a possible state of nature.

For each combination of an action and a state of nature, the decision maker knows
what the resulting payoff would be. The payoff is a quantitative measure of the value to
the decision maker of the consequences of the outcome. For example, the payoff frequently
is represented by the net monetary gain (profit), although other measures also can be used
(as described in Sec. 15.5). If the consequences of the outcome do not become completely
certain even when the state of nature is given, then the payoff becomes an expected value
(in the statistical sense) of the measure of the consequences. A payoff table commonly
is used to provide the payoff for each combination of an action and a state of nature.

If you previously studied game theory (Chap. 14), we should point out an interesting
analogy between this decision analysis framework and the two-person, zero-sum games
described in Chap. 14. The decision maker and nature can be viewed as the two players
of such a game. The alternative actions and the possible states of nature can then be
viewed as the available strategies for these respective players, where each combination of
strategies results in some payoff to player 1 (the decision maker). From this viewpoint,
the decision analysis framework can be summarized as follows:

1. The decision maker needs to choose one of the alternative actions.
2. Nature then would choose one of the possible states of nature.
3. Each combination of an action and state of nature would result in a payoff, which is

given as one of the entries in a payoff table.
4. This payoff table should be used to find an optimal action for the decision maker ac-

cording to an appropriate criterion.

Soon we will present three possibilities for this criterion, where the first one (the max-
imin payoff criterion) comes from game theory.

However, this analogy to two-person, zero-sum games breaks down in one important
respect. In game theory, both players are assumed to be rational and choosing their strate-
gies to promote their own welfare. This description still fits the decision maker, but cer-
tainly not nature. By contrast, nature now is a passive player that chooses its strategies
(states of nature) in some random fashion. This change means that the game theory cri-
terion for how to choose an optimal strategy (action) will not appeal to many decision
makers in the current context.

One additional element needs to be added to the decision analysis framework. The
decision maker generally will have some information that should be taken into account
about the relative likelihood of the possible states of nature. Such information can usu-
ally be translated to a probability distribution, acting as though the state of nature is a ran-
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dom variable, in which case this distribution is referred to as a prior distribution. Prior
distributions are often subjective in that they may depend upon the experience or intuition
of an individual. The probabilities for the respective states of nature provided by the prior
distribution are called prior probabilities.

Formulation of the Prototype Example in This Framework

As indicated in Table 15.1, the Goferbroke Co. has two possible actions under consider-
ation: drill for oil or sell the land. The possible states of nature are that the land contains
oil and that it does not, as designated in the column headings of Table 15.1 by oil and
dry. Since the consulting geologist has estimated that there is 1 chance in 4 of oil (and so
3 chances in 4 of no oil), the prior probabilities of the two states of nature are 0.25 and
0.75, respectively. Therefore, with the payoff in units of thousands of dollars of profit, the
payoff table can be obtained directly from Table 15.1, as shown in Table 15.2.

We will use this payoff table next to find the optimal action according to each of the
three criteria described below. In each case, we will employ an Excel template provided
in this chapter’s Excel file for the criterion. These templates expedite entering a payoff
table in a spreadsheet format and then applying the criteria.

The Maximin Payoff Criterion

If the decision maker’s problem were to be viewed as a game against nature, then game
theory would say to choose the action according to the minimax criterion (as described
in Sec. 14.2). From the viewpoint of player 1 (the decision maker), this criterion is more
aptly named the maximin payoff criterion, as summarized below.

Maximin payoff criterion: For each possible action, find the minimum payoff
over all possible states of nature. Next, find the maximum of these minimum pay-
offs. Choose the action whose minimum payoff gives this maximum.

The Excel template displayed in Fig. 15.1 shows the application of this criterion to the
prototype example. Thus, since the minimum payoff for selling (90) is larger than that for
drilling (�100), the former alternative (sell the land) will be chosen as the action to take.

The rationale for this criterion is that it provides the best guarantee of the payoff that
will be obtained. Regardless of what the true state of nature turns out to be for the ex-
ample, the payoff from selling the land cannot be less than 90, which provides the best
available guarantee. Thus, this criterion takes the pessimistic viewpoint that, regardless of
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TABLE 15.2 Payoff table for the decision analysis
formulation of the Goferbroke Co. problem

State of Nature

Alternative Oil Dry

1. Drill for oil 700 �100
2. Sell the land 90 90

Prior probability 0.25 0.75



which action is selected, the worst state of nature for that action is likely to occur, so we
should choose the action which provides the best payoff with its worst state of nature.

This rationale is quite valid when one is competing against a rational and malevolent
opponent. However, this criterion is not often used in games against nature because it is
an extremely conservative criterion in this context. In effect, it assumes that nature is a
conscious opponent that wants to inflict as much damage as possible on the decision maker.
Nature is not a malevolent opponent, and the decision maker does not need to focus solely
on the worst possible payoff from each action. This is especially true when the worst pos-
sible payoff from an action comes from a relatively unlikely state of nature.

Thus, this criterion normally is of interest only to a very cautious decision maker.

The Maximum Likelihood Criterion

The next criterion focuses on the most likely state of nature, as summarized below.

Maximum likelihood criterion: Identify the most likely state of nature (the one
with the largest prior probability). For this state of nature, find the action with
the maximum payoff. Choose this action.

Applying this criterion to the example, Fig. 15.2 indicates that the Dry state has the
largest prior probability. In the Dry column, the sell alternative has the maximum payoff,
so the choice is to sell the land.

The appeal of this criterion is that the most important state of nature is the most likely
one, so the action chosen is the best one for this particularly important state of nature.
Basing the decision on the assumption that this state of nature will occur tends to give a
better chance of a favorable outcome than assuming any other state of nature. Further-
more, the criterion does not rely on questionable subjective estimates of the probabilities
of the respective states of nature other than identifying the most likely state.
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FIGURE 15.1
The application of the Excel
template for the maximin
payoff criterion to the first
Goferbroke Co. problem.



The major drawback of the criterion is that it completely ignores much relevant in-
formation. No state of nature is considered other than the most likely one. In a problem
with many possible states of nature, the probability of the most likely one may be quite
small, so focusing on just this one state of nature is quite unwarranted. Even in the ex-
ample, where the prior probability of the Dry state is 0.75, this criterion ignores the ex-
tremely attractive payoff of 700 if the company drills and finds oil. In effect, the criterion
does not permit gambling on a low-probability big payoff, no matter how attractive the
gamble may be.

Bayes’ Decision Rule1

Our third criterion, and the one commonly chosen, is Bayes’ decision rule, described below.

Bayes’ decision rule: Using the best available estimates of the probabilities of
the respective states of nature (currently the prior probabilities), calculate the ex-
pected value of the payoff for each of the possible actions. Choose the action
with the maximum expected payoff.

For the prototype example, these expected payoffs are calculated directly from Table
15.2 as follows:

E[Payoff (drill)] � 0.25(700) � 0.75(�100)
� 100.

E[Payoff (sell)] � 0.25(90) � 0.75(90)
� 90.

Since 100 is larger than 90, the alternative action selected is to drill for oil.
Note that this choice contrasts with the selection of the sell alternative under each of

the two preceding criteria.
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FIGURE 15.2
The application of the Excel
template for the maximum
likelihood criterion to the first
Goferbroke Co. problem.

1The origin of this name is that this criterion is often credited to the Reverend Thomas Bayes, a nonconform-
ing 18th-century English minister who won renown as a philosopher and mathematician. (The same basic idea
has even longer roots in the field of economics.) This decision rule also is sometimes called the expected mon-
etary value (EMF) criterion, although this is a misnomer for those cases where the measure of the payoff is
something other than monetary value (as in Sec. 15.5).



Figure 15.3 shows the application of the Excel template for Bayes’ decision rule to
this problem. The word Maximum in cell I5 signifies that the drill alternative in row 5
should be chosen because it has the maximum expected payoff.

The big advantage of Bayes’ decision rule is that it incorporates all the available in-
formation, including all the payoffs and the best available estimates of the probabilities
of the respective states of nature.

It is sometimes argued that these estimates of the probabilities necessarily are largely
subjective and so are too shaky to be trusted. There is no accurate way of predicting the
future, including a future state of nature, even in probability terms. This argument has
some validity. The reasonableness of the estimates of the probabilities should be assessed
in each individual situation.

Nevertheless, under many circumstances, past experience and current evidence en-
able one to develop reasonable estimates of the probabilities. Using this information should
provide better grounds for a sound decision than ignoring it. Furthermore, experimenta-
tion frequently can be conducted to improve these estimates, as described in the next sec-
tion. Therefore, we will be using only Bayes’ decision rule throughout the remainder of
the chapter.

To assess the effect of possible inaccuracies in the prior probabilities, it often is help-
ful to conduct sensitivity analysis, as described below.

Sensitivity Analysis with Bayes’ Decision Rule

Sensitivity analysis commonly is used with various applications of operations research to
study the effect if some of the numbers included in the mathematical model are not cor-
rect. In this case, the mathematical model is represented by the payoff table shown in Fig.
15.3. The numbers in this table that are most questionable are the prior probabilities in
cells C10 and D10. We will focus the sensitivity analysis on these numbers, although a
similar approach could be applied to the payoffs given in the table.
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FIGURE 15.3
The application of the Excel
template for Bayes’ decision
rule to the first Goferbroke
Co. problem.



The sum of the two prior probabilities must equal 1, so increasing one of these prob-
abilities automatically decreases the other one by the same amount, and vice versa. Gofer-
broke’s management feels that the true chances of having oil on the tract of land are likely
to lie somewhere between 15 and 35 percent. In other words, the true prior probability of
having oil is likely to be in the range from 0.15 to 0.35, so the corresponding prior prob-
ability of the land being dry would range from 0.85 to 0.65.

Sensitivity analysis begins by reapplying Bayes’ decision rule twice, once when the
prior probability of oil is at the lower end of this range (0.15) and next when it is at the
upper end (0.35). Figure 15.4 shows the results from doing this. When the prior proba-
bility of oil is only 0.15, the decision swings over to selling the land by a wide margin
(an expected payoff of 90 versus only 20 for drilling). However, when this probability is
0.35, the decision is to drill by a wide margin (expected payoff � 180 versus only 90 for
selling). Thus, the decision is very sensitive to the prior probability of oil. This sensitiv-
ity analysis has revealed that it is important to do more, if possible, to pin down just what
the true value of the probability of oil is.

Letting

p � prior probability of oil,

the expected payoff from drilling for any p is

E[Payoff (drill)] � 700p � 100(1 � p)
� 800p � 100.
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FIGURE 15.4
Performing sensitivity analysis
by trying alternative values of
the prior probability of oil.



The slanting line in Fig. 15.5 shows the plot of this expected payoff versus p, which is
just the line passing through the two points given by cells C10 and H5 in the two spread-
sheets in Fig. 15.4. Since the payoff from selling the land would be 90 for any p, the flat
line in Fig. 15.5 gives E[Payoff (sell)] versus p.

The point in Fig. 15.5 where the two lines intersect is the crossover point where the
decision shifts from one alternative (sell the land) to the other (drill for oil) as the prior
probability increases. To find this point, we set

E[Payoff (drill)] � E[Payoff (sell)]
800p � 100 � 90

p � �
1
8
9
0
0
0

� � 0.2375

Conclusion: Should sell the land if p � 0.2375.
Should drill for oil if p � 0.2375.

For other problems that have more than two alternative actions, the same kind of
analysis can be applied. The main difference is that there now would be more than two
lines (one per alternative) in the graphical display corresponding to Fig. 15.5. However,
the top line for any particular value of the prior probability still indicates which alterna-
tive should be chosen. With more than two lines, there might be more than one crossover
point where the decision shifts from one alternative to another.
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For a problem with more than two possible states of nature, the most straightforward
approach is to focus the sensitivity analysis on only two states at a time as described above.
This again would involve investigating what happens when the prior probability of one
state increases as the prior probability of the other state decreases by the same amount,
holding fixed the prior probabilities of the remaining states. This procedure then can be
repeated for as many other pairs of states as desired.

Practitioners sometimes use software to assist them in performing this kind of sensi-
tivity analysis, including generating the graphs. For example, an Excel add-in in your OR
Courseware called SensIt is designed specifically for conducting sensitivity analysis with
probabilistic models such as when applying Bayes’ decision rule. Complete documenta-
tion for SensIt is included on your CD-ROM.

Because the decision the Goferbroke Co. should make depends so critically on the
true probability of oil, serious consideration should be given to conducting a seismic sur-
vey to estimate this probability more closely. We will explore this option in the next two
sections.
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Frequently, additional testing (experimentation) can be done to improve the preliminary
estimates of the probabilities of the respective states of nature provided by the prior prob-
abilities. These improved estimates are called posterior probabilities.

We first update the Goferbroke Co. example to incorporate experimentation, then de-
scribe how to derive the posterior probabilities, and finally discuss how to decide whether
it is worthwhile to conduct experimentation.

Continuing the Prototype Example

As mentioned at the end of Sec. 15.1, an available option before making a decision is to
conduct a detailed seismic survey of the land to obtain a better estimate of the probabil-
ity of oil. The cost is $30,000.

A seismic survey obtains seismic soundings that indicate whether the geological struc-
ture is favorable to the presence of oil. We will divide the possible findings of the survey
into the following two categories:

USS: Unfavorable seismic soundings; oil is fairly unlikely.
FSS: Favorable seismic soundings; oil is fairly likely.

Based on past experience, if there is oil, then the probability of unfavorable seismic sound-
ings is

P(USSState � Oil) � 0.4, so P(FSSState � Oil) � 1 � 0.4 � 0.6.

Similarly, if there is no oil (i.e., the true state of nature is Dry), then the probability of
unfavorable seismic soundings is estimated to be

P(USSState � Dry) � 0.8, so P(FSSState � Dry) � 1 � 0.8 � 0.2.

We soon will use these data to find the posterior probabilities of the respective states
of nature given the seismic soundings.
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Posterior Probabilities

Proceeding now in general terms, we let

n � number of possible states of nature;

P(State � state i) � prior probability that true state of nature is
state i, for i � 1, 2, . . . , n;

Finding � finding from experimentation (a random
variable);

Finding j � one possible value of finding;

P(State � state iFinding � finding j) � posterior probability that true state of na-
ture is state i, given that Finding � finding
j, for i � 1, 2, . . . , n.

The question currently being addressed is the following:

Given P(State � state i) and P(Finding � finding jState � state i),
for i � 1, 2, . . . , n, what is P(State � state iFinding � finding j)?

This question is answered by combining the following standard formulas of proba-
bility theory:

P(State � state iFinding � finding j) �

P(Finding � finding j) � �
n

k�1
P(State � state k, Finding � finding j)

P(State � state i, Finding � finding j) � P(Finding � finding jState � state i)
P(State � state i).

Therefore, for each i � 1, 2, . . . , n, the desired formula for the corresponding posterior
probability is

P(State � state iFinding � finding j) �

(This formula often is referred to as Bayes’ theorem because it was developed by Thomas
Bayes, the same 18th-century mathematician who is credited with developing Bayes’ de-
cision rule.)

Now let us return to the prototype example and apply this formula. If the finding of the
seismic survey is unfavorable seismic soundings (USS), then the posterior probabilities are

P(State � OilFinding � USS) � � �
1
7

�,

P(State � DryFinding � USS) � 1 � �
1
7

� � �
6
7

�.

0.4(0.25)
���
0.4(0.25) � 0.8(0.75)

P(Finding � finding jState � state i)P(State � state i)
�������

�
n

k�1
P(Finding � finding jState � state k)P(State � state k)

P(State � state i, Finding � finding j)
����

P(Finding � finding j)
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Similarly, if the seismic survey gives favorable seismic soundings (FSS), then

P(State � OilFinding � FSS) � � �
1
2

�,

P(State � DryFinding � FSS) � 1 � �
1
2

� � �
1
2

�.

The probability tree diagram in Fig. 15.6 shows a nice way of organizing these cal-
culations in an intuitive manner. The prior probabilities in the first column and the con-
ditional probabilities in the second column are part of the input data for the problem. Mul-
tiplying each probability in the first column by a probability in the second column gives
the corresponding joint probability in the third column. Each joint probability then be-
comes the numerator in the calculation of the corresponding posterior probability in the
fourth column. Cumulating the joint probabilities with the same finding (as shown at the
bottom of the figure) provides the denominator for each posterior probability with this
finding.

Your OR Courseware also includes an Excel template for computing these posterior
probabilities, as shown in Fig. 15.7.

After these computations have been completed, Bayes’ decision rule can be applied
just as before, with the posterior probabilities now replacing the prior probabilities. Again,

0.6(0.25)
���
0.6(0.25) � 0.2(0.75)
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FIGURE 15.6
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nature given the finding of
the seismic survey.



by using the payoffs (in units of thousands of dollars) from Table 15.2 and subtracting
the cost of the experimentation, we obtain the results shown below.

Expected payoffs if finding is unfavorable seismic soundings (USS):

E[Payoff (drillFinding � USS)] � �
1
7

�(700) � �
6
7

�(�100) � 30

� �15.7.

E[Payoff (sellFinding � USS)] � �
1
7

�(90) � �
6
7

�(90) � 30

� 60.

Expected payoffs if finding is favorable seismic soundings (FSS):

E[Payoff (drillFinding � FSS)] � �
1
2

�(700) � �
1
2

�(�100) � 30

� 270.
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FIGURE 15.7
This posterior probabilities
template in your OR
Courseware enables efficient
calculation of posterior
probabilities, as illustrated
here for the full Goferbroke
Co. problem.



E[Payoff (sellFinding � FSS)] � �
1
2

�(90) � �
1
2

�(90) � 30

� 60.

Since the objective is to maximize the expected payoff, these results yield the optimal pol-
icy shown in Table 15.3.

However, what this analysis does not answer is whether it is worth spending $30,000
to conduct the experimentation (the seismic survey). Perhaps it would be better to forgo
this major expense and just use the optimal solution without experimentation (drill for oil,
with an expected payoff of $100,000). We address this issue next.

The Value of Experimentation

Before performing any experiment, we should determine its potential value. We present
two complementary methods of evaluating its potential value.

The first method assumes (unrealistically) that the experiment will remove all uncer-
tainty about what the true state of nature is, and then this method makes a very quick cal-
culation of what the resulting improvement in the expected payoff would be (ignoring the
cost of the experiment). This quantity, called the expected value of perfect information, pro-
vides an upper bound on the potential value of the experiment. Therefore, if this upper
bound is less than the cost of the experiment, the experiment definitely should be forgone.

However, if this upper bound exceeds the cost of the experiment, then the second
(slower) method should be used next. This method calculates the actual improvement in
the expected payoff (ignoring the cost of the experiment) that would result from per-
forming the experiment. Comparing this improvement with the cost indicates whether the
experiment should be performed.

Expected Value of Perfect Information. Suppose now that the experiment could
definitely identify what the true state of nature is, thereby providing “perfect” informa-
tion. Whichever state of nature is identified, you naturally choose the action with the max-
imum payoff for that state. We do not know in advance which state of nature will be iden-
tified, so a calculation of the expected payoff with perfect information (ignoring the cost
of the experiment) requires weighting the maximum payoff for each state of nature by the
prior probability of that state of nature.

Figure 15.8 shows the Excel template in your OR Courseware that can be used to or-
ganize and perform this calculation. Using the equation given for cell F13,

Expected payoff with perfect information � 0.25(700) � 0.75(90)
� 242.5.
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TABLE 15.3 The optimal policy with experimentation, under Bayes’ decision rule,
for the Goferbroke Co. problem

Finding from Expected Payoff Expected Payoff Including
Seismic Survey Optimal Action Excluding Cost of Survey Cost of Survey

USS Sell the land 90 60
FSS Drill for oil 300 270



Thus, if the Goferbroke Co. could learn before choosing its action whether the land con-
tains oil, the expected payoff as of now (before acquiring this information) would be
$242,500 (excluding the cost of the experiment generating the information.)

To evaluate whether the experiment should be conducted, we now use this quantity
to calculate the expected value of perfect information.

The expected value of perfect information, abbreviated EVPI, is calculated as

EVPI � expected payoff with perfect information � expected payoff without
experimentation.1

Thus, since experimentation usually cannot provide perfect information, EVPI provides
an upper bound on the expected value of experimentation.

For the prototype example, we found in Sec. 15.2 that the expected payoff without
experimentation (under Bayes’ decision rule) is 100. Therefore,

EVPI � 242.5 � 100 � 142.5.

Since 142.5 far exceeds 30, the cost of experimentation (a seismic survey), it may be
worthwhile to proceed with the seismic survey. To find out for sure, we now go to the
second method of evaluating the potential benefit of experimentation.
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FIGURE 15.8
This Excel template for
obtaining the expected
payoff with perfect
information is applied here
to the first Goferbroke Co.
problem.

1The value of perfect information is a random variable equal to the payoff with perfect information minus the
payoff without experimentation. EVPI is the expected value of this random variable.



Expected Value of Experimentation. Rather than just obtain an upper bound on the
expected increase in payoff (excluding the cost of the experiment) due to performing ex-
perimentation, we now will do somewhat more work to calculate this expected increase
directly. This quantity is called the expected value of experimentation.

Calculating this quantity requires first computing the expected payoff with experimen-
tation (excluding the cost of the experiment). Obtaining this latter quantity requires doing
all the work described earlier to find all the posterior probabilities, the resulting optimal pol-
icy with experimentation, and the corresponding expected payoff (excluding the cost of the
experiment) for each possible finding from the experiment. Then each of these expected
payoffs needs to be weighted by the probability of the corresponding finding, that is,

Expected payoff with experimentation � �
j

P(Finding � finding j)
E[payoffFinding � finding j ],

where the summation is taken over all possible values of j.
For the prototype example, we have already done all the work to obtain the terms on

the right side of this equation. The values of P(Finding � finding j) for the two possible
findings from the seismic survey—unfavorable (USS) and favorable (FSS)—were calcu-
lated at the bottom of the probability tree diagram in Fig. 15.6 as

P(USS) � 0.7, P(FSS) � 0.3.

For the optimal policy with experimentation, the corresponding expected payoff (exclud-
ing the cost of the seismic survey) for each finding was obtained in the third column of
Table 15.3 as

E(PayoffFinding � USS) � 90,

E(PayoffFinding � FSS) � 270.

With these numbers,

Expected payoff with experimentation � 0.7(90) � 0.3(300)
� 153.

Now we are ready to calculate the expected value of experimentation.

The expected value of experimentation, abbreviated EVE, is calculated as

EVE � expected payoff with experimentation � expected payoff without experimentation.

Thus, EVE identifies the potential value of experimentation.

For the Goferbroke Co.,

EVE � 153 � 100 � 53.

Since this value exceeds 30, the cost of conducting a detailed seismic survey (in units of
thousands of dollars), this experimentation should be done.
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Decision trees provide a useful way of visually displaying the problem and then organiz-
ing the computational work already described in the preceding two sections. These trees
are especially helpful when a sequence of decisions must be made.

15.4 DECISION TREES



Constructing the Decision Tree

The prototype example involves a sequence of two decisions:

1. Should a seismic survey be conducted before an action is chosen?
2. Which action (drill for oil or sell the land) should be chosen?

The corresponding decision tree (before adding numbers and performing computations)
is displayed in Fig. 15.9.

The nodes of the decision tree are referred to as forks, and the arcs are called
branches.

A decision fork, represented by a square, indicates that a decision needs to be made at
that point in the process. A chance fork, represented by a circle, indicates that a random
event occurs at that point.

Thus, in Fig. 15.9, the first decision is represented by decision fork a. Fork b is a
chance fork representing the random event of the outcome of the seismic survey. The two
branches emanating from fork b represent the two possible outcomes of the survey. Next
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comes the second decision (forks c, d, and e) with its two possible choices. If the deci-
sion is to drill for oil, then we come to another chance fork (forks f, g, and h), where its
two branches correspond to the two possible states of nature.

Note that the path followed from fork a to reach any terminal branch (except the bot-
tom one) is determined both by the decisions made and by random events that are out-
side the control of the decision maker. This is characteristic of problems addressed by de-
cision analysis.

The next step in constructing the decision tree is to insert numbers into the tree as
shown in Fig. 15.10. The numbers under or over the branches that are not in parentheses
are the cash flows (in thousands of dollars) that occur at those branches. For each path
through the tree from node a to a terminal branch, these same numbers then are added to
obtain the resulting total payoff shown in boldface to the right of that branch. The last set
of numbers is the probabilities of random events. In particular, since each branch ema-
nating from a chance fork represents a possible random event, the probability of this event
occurring from this fork has been inserted in parentheses along this branch. From chance
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fork h, the probabilities are the prior probabilities of these states of nature, since no seis-
mic survey has been conducted to obtain more information in this case. However, chance
forks f and g lead out of a decision to do the seismic survey (and then to drill). There-
fore, the probabilities from these chance forks are the posterior probabilities of the states
of nature, given the finding from the seismic survey, where these numbers are given in
Figs. 15.6 and 15.7. Finally, we have the two branches emanating from chance fork b. The
numbers here are the probabilities of these findings from the seismic survey, Favorable
(FSS) or Unfavorable (USS), as given underneath the probability tree diagram in Fig. 15.6
or in cells C15:C16 of Fig. 15.7.

Performing the Analysis

Having constructed the decision tree, including its numbers, we now are ready to analyze
the problem by using the following procedure.

1. Start at the right side of the decision tree and move left one column at a time. For each
column, perform either step 2 or step 3 depending upon whether the forks in that col-
umn are chance forks or decision forks.

2. For each chance fork, calculate its expected payoff by multiplying the expected payoff
of each branch (shown in boldface to the right of the branch) by the probability of that
branch and then summing these products. Record this expected payoff for each deci-
sion fork in boldface next to the fork, and designate this quantity as also being the ex-
pected payoff for the branch leading to this fork.

3. For each decision fork, compare the expected payoffs of its branches and choose the
alternative whose branch has the largest expected payoff. In each case, record the choice
on the decision tree by inserting a double dash as a barrier through each rejected branch.

To begin the procedure, consider the rightmost column of forks, namely, chance forks
f, g, and h. Applying step 2, their expected payoffs (EP) are calculated as

EP � �
1
7

�(670) � �
6
7

�(�130) � �15.7, for fork f,

EP � �
1
2

�(670) � �
1
2

�(�130) � 270, for fork g,

EP � �
1
4

�(700) � �
3
4

�(�100) � 100, for fork h.

These expected payoffs then are placed above these forks, as shown in Fig. 15.11.
Next, we move one column to the left, which consists of decision forks c, d, and e.

The expected payoff for a branch that leads to a chance fork now is recorded in boldface
over that chance fork. Therefore, step 3 can be applied as follows.

Fork c: Drill alternative has EP � �15.7.
Sell alternative has EP � 60.

60 � �15.7, so choose the Sell alternative.

Fork d: Drill alternative has EP � 270.
Sell alternative has EP � 60.

270 � 60, so choose the Drill alternative.
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Fork e: Drill alternative has EP � 100.
Sell alternative has EP � 90.

100 � 90, so choose the Drill alternative.

The expected payoff for each chosen alternative now would be recorded in boldface over
its decision node, as already shown in Fig. 15.11. The chosen alternative also is indicated
by inserting a double dash as a barrier through each rejected branch.

Next, moving one more column to the left brings us to fork b. Since this is a chance
fork, step 2 of the procedure needs to be applied. The expected payoff for each of 
its branches is recorded over the following decision fork. Therefore, the expected pay-
off is

EP � 0.7(60) � 0.3(270) � 123, for fork b,

as recorded over this fork in Fig. 15.11.
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Finally, we move left to fork a, a decision fork. Applying step 3 yields

Fork a: Do seismic survey has EP � 123.
No seismic survey has EP � 100.

123 � 100, so choose Do seismic survey.

This expected payoff of 123 now would be recorded over the fork, and a double dash in-
serted to indicate the rejected branch, as already shown in Fig. 15.11.

This procedure has moved from right to left for analysis purposes. However, having
completed the decision tree in this way, the decision maker now can read the tree from
left to right to see the actual progression of events. The double dashes have closed off the
undesirable paths. Therefore, given the payoffs for the final outcomes shown on the right
side, Bayes’ decision rule says to follow only the open paths from left to right to achieve
the largest possible expected payoff.

Following the open paths from left to right in Fig. 15.11 yields the following opti-
mal policy, according to Bayes’ decision rule.

Optimal policy:
Do the seismic survey.
If the result is unfavorable, sell the land.
If the result is favorable, drill for oil.
The expected payoff (including the cost of the seismic survey) is 123 ($123,000).

This (unique) optimal solution naturally is the same as that obtained in the preceding sec-
tion without the benefit of a decision tree. (See the optimal policy with experimentation
given in Table 15.3 and the conclusion at the end of Sec. 15.3 that experimentation is
worthwhile.)

For any decision tree, this backward induction procedure always will lead to the
optimal policy (or policies) after the probabilities are computed for the branches emanat-
ing from a chance fork.

Helpful Software

Practitioners sometimes use special software to help construct and analyze decision trees.
This software often is in the form of an Excel add-in. One popular add-in of this type is
TreePlan, which is shareware developed by Professor Michael Middleton. The academic
version of TreePlan is included in your OR Courseware, along with Professor Middleton’s
companion shareware SensIt mentioned at the end of Sec. 15.2.

It is straightforward to use TreePlan to quickly construct a decision tree equivalent
to the one in Fig. 15.11, as well as much larger ones. In the process, TreePlan also will
automatically solve the decision tree. The Excel file for this chapter includes the TreePlan
decision trees for three versions of the Goferbroke Co. problem. Complete documenta-
tion for TreePlan also is included on the CD-ROM.

To construct a decision tree with TreePlan, go to its Tools menu and choose Deci-
sion Tree, which brings up the “TreePlan . . . New” dialogue box shown in Fig. 15.12.
Clicking on New Tree then adds a tree to the spreadsheet that initially consists of a sin-
gle (square) decision fork with two branches. Clicking just to the right of a terminal fork
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(displayed by a vertical hash mark at the end of a branch) and then choosing Decision
Tree from the Tools menu brings up the “TreePlan . . .  Terminal” dialogue box (see Fig.
15.12), which enables you to change the terminal fork into either a decision fork or a
chance fork with the desired number of branches (between 1 and 5). (TreePlan refers to
decision forks as decision nodes and to chance forks as event nodes.) At any time, you
also can click on any existing decision fork (a square) or chance fork (circle) and choose
Decision Tree from the Tools menu to bring up the corresponding dialogue box—
“TreePlan . . . Decision” or “TreePlan . . . Event”—to make any of the modifications
listed in Fig. 15.12 at that fork. To complete the decision tree, the names, cash flows,
and probabilities for the various branches are typed directly into the spreadsheet. TreePlan
then automatically adds the cash flows to obtain the total cash flows (payoffs) to be
shown at the right of each end branch.
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FIGURE 15.12
The dialogue boxes used by TreePlan for constructing a decision tree.

Thus far, when applying Bayes’ decision rule, we have assumed that the expected payoff
in monetary terms is the appropriate measure of the consequences of taking an action.
However, in many situations this assumption is inappropriate.
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For example, suppose that an individual is offered the choice of (1) accepting a 50:50
chance of winning $100,000 or nothing or (2) receiving $40,000 with certainty. Many peo-
ple would prefer the $40,000 even though the expected payoff on the 50:50 chance of
winning $100,000 is $50,000. A company may be unwilling to invest a large sum of money
in a new product even when the expected profit is substantial if there is a risk of losing
its investment and thereby becoming bankrupt. People buy insurance even though it is a
poor investment from the viewpoint of the expected payoff.

Do these examples invalidate Bayes’ decision rule? Fortunately, the answer is no, be-
cause there is a way of transforming monetary values to an appropriate scale that reflects
the decision maker’s preferences. This scale is called the utility function for money.

Utility Functions for Money

Figure 15.13 shows a typical utility function u(M) for money M. It indicates that an indi-
vidual having this utility function would value obtaining $30,000 twice as much as $10,000
and would value obtaining $100,000 twice as much as $30,000. This reflects the fact that
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the person’s highest-priority needs would be met by the first $10,000. Having this decreas-
ing slope of the function as the amount of money increases is referred to as having a de-
creasing marginal utility for money. Such an individual is referred to as being risk-averse.

However, not all individuals have a decreasing marginal utility for money. Some peo-
ple are risk seekers instead of risk-averse, and they go through life looking for the “big
score.” The slope of their utility function increases as the amount of money increases, so
they have an increasing marginal utility for money.

The intermediate case is that of a risk-neutral individual, who prizes money at its
face value. Such an individual’s utility for money is simply proportional to the amount of
money involved. Although some people appear to be risk-neutral when only small amounts
of money are involved, it is unusual to be truly risk-neutral with very large amounts.

It also is possible to exhibit a mixture of these kinds of behavior. For example, an in-
dividual might be essentially risk-neutral with small amounts of money, then become a
risk seeker with moderate amounts, and then turn risk-averse with large amounts. In ad-
dition, one’s attitude toward risk can shift over time depending upon circumstances.

An individual’s attitude toward risk also may be different when dealing with one’s
personal finances than when making decisions on behalf of an organization. For example,
managers of a business firm need to consider the company’s circumstances and the col-
lective philosophy of top management in determining the appropriate attitude toward risk
when making managerial decisions.

The fact that different people have different utility functions for money has an im-
portant implication for decision making in the face of uncertainty.

When a utility function for money is incorporated into a decision analysis approach to a prob-
lem, this utility function must be constructed to fit the preferences and values of the decision
maker involved. (The decision maker can be either a single individual or a group of people.)

The key to constructing the utility function for money to fit the decision maker is the
following fundamental property of utility functions.

Fundamental Property: Under the assumptions of utility theory, the decision
maker’s utility function for money has the property that the decision maker is in-
different between two alternative courses of action if the two alternatives have
the same expected utility.

To illustrate, suppose that the decision maker has the utility function shown in Fig.
15.13. Further suppose that the decision maker is offered the following opportunity.

Offer: An opportunity to obtain either $100,000 (utility � 4) with probability p
or nothing (utility � 0) with probability (1 � p).

Thus,

E(utility) � 4p, for this offer.

Therefore, for each of the following three pairs of alternatives, the decision maker is in-
different between the first and second alternatives:

1. The offer with p � 0.25 [E(utility) � 1] or definitely obtaining $10,000 (utility � 1)
2. The offer with p � 0.5 [E(utility) � 2] or definitely obtaining $30,000 (utility � 2)
3. The offer with p � 0.75 [E(utility) � 3] or definitely obtaining $60,000 (utility � 3)
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This example also illustrates one way in which the decision maker’s utility function
for money can be constructed in the first place. The decision maker would be made the
same hypothetical offer to obtain either a large amount of money (for example, $100,000)
with probability p or nothing. Then, for each of a few smaller amounts of money (for ex-
ample, $10,000, $30,000, and $60,000), the decision maker would be asked to choose a
value of p that would make him or her indifferent between the offer and definitely ob-
taining that amount of money. The utility of the smaller amount of money then is p times
the utility of the large amount.

The scale of the utility function (e.g., utility � 1 for $10,000) is irrelevant. It is only
the relative values of the utilities that matter. All the utilities can be multiplied by any
positive constant without affecting which alternative course of action will have the largest
expected utility.

Now we are ready to summarize the basic role of utility functions in decision analysis.

When the decision maker’s utility function for money is used to measure the relative worth
of the various possible monetary outcomes, Bayes’ decision rule replaces monetary pay-
offs by the corresponding utilities. Therefore, the optimal action (or series of actions) is
the one which maximizes the expected utility.

Only utility functions for money have been discussed here. However, we should men-
tion that utility functions can sometimes still be constructed when some of or all the im-
portant consequences of the alternative courses of action are not monetary. (For example,
the consequences of a doctor’s decision alternatives in treating a patient involve the fu-
ture health of the patient.) Nevertheless, under these circumstances, it is important to in-
corporate such value judgments into the decision process. This is not necessarily easy,
since it may require making value judgments about the relative desirability of rather in-
tangible consequences. Nevertheless, under these circumstances, it is important to incor-
porate such value judgments into the decision process.

Applying Utility Theory to the Goferbroke Co. Problem

At the end of Sec. 15.1, we mentioned that the Goferbroke Co. was operating without
much capital, so a loss of $100,000 would be quite serious. The (primary) owner of the
company already has gone heavily into debt to keep going. The worst-case scenario would
be to come up with $30,000 for a seismic survey and then still lose $100,000 by drilling
when there is no oil. This scenario would not bankrupt the company at this point, but def-
initely would leave it in a precarious financial position.

On the other hand, striking oil is an exciting prospect, since earning $700,000 finally
would put the company on a fairly solid financial footing.

To apply the owner’s (decision maker’s) utility function for money to the problem as
described in Secs. 15.1 and 15.3, it is necessary to identify the utilities for all the possi-
ble monetary payoffs. In units of thousands of dollars, these possible payoffs and the cor-
responding utilities are given in Table 15.4. We now will discuss how these utilities were
obtained.

As a starting point in constructing the utility function, it is natural to let the utility of
zero money be zero, so u(0) � 0. An appropriate next step is to consider the worst sce-
nario and best scenario and then to address the following question.
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Suppose you have only the following two alternatives. Alternative 1 is to do nothing (pay-
off and utility � 0). Alternative 2 is to have a probability p of a payoff of 700 and a prob-
ability 1 � p of a payoff of �130 (loss of 130). What value of p makes you indifferent
between two alternatives?

The decision maker’s choice: p � �
1
5

�.

If we continue to let u(M) denote the utility of a monetary payoff of M, this choice of p
implies that

�
4
5

�u(�130) � �
1
5

�u(700) � 0 (utility of alternative 1).

The value of either u(�130) or u(700) can be set arbitrarily (provided only that the first
is negative and the second positive) to establish the scale of the utility function. By choos-
ing u(�130) � �150 (a convenient choice since it will make u(M) approximately equal
to M when M is in the vicinity of 0), this equation then yields u(700) � 600.

To identify u(�100), a choice of p is made that makes the decision maker indiffer-
ent between a payoff of �130 with probability p or definitely incurring a payoff of �100.
The choice is p � 0.7, so

u(�100) � p u(�130) � 0.7(�150) � �105.

To obtain u(90), a value of p is selected that makes the decision maker indifferent be-
tween a payoff of 700 with probability p or definitely obtaining a payoff of 90. The value
chosen is p � 0.15, so

u(90) � p u(700) � 0.15(600) � 90.

At this point, a smooth curve was drawn through u(�130), u(�100), u(90), and u(700)
to obtain the decision maker’s utility function for money shown in Fig. 15.14. The values
on this curve at M � 60 and M � 670 provide the corresponding utilities, u(60) � 60 and
u(670) � 580, which completes the list of utilities given in the right column of Table 15.4.
For contrast, the dashed line drawn at 45° in Fig. 15.14 shows the monetary value M of
the amount of money M. This dashed line has provided the values of the payoffs used ex-
clusively in the preceding sections. Note how u(M) essentially equals M for small values
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TABLE 15.4 Utilities for the
Goferbroke Co. problem

Monetary Payoff Utility

�130 �150
�100 �105

60 60
90 90

670 580
700 600
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FIGURE 15.14
The utility function for money of the owner of the Goferbroke Co.

(positive or negative) of M, and then how u(M) gradually falls off M for larger values of
M. This is typical for a moderately risk-averse individual.

By nature, the owner of the Goferbroke Co. is inclined to be a risk seeker. However,
the difficult financial circumstances of his company, which he badly wants to keep solvent,
have forced him to adopt a moderately risk-averse stance in addressing his current decisions.

Another Approach for Estimating u(M)

The above procedure for constructing u(M) asks the decision maker to repeatedly make
a difficult decision about which probability would make him or her indifferent between
two alternatives. Many individuals would be uncomfortable with making this kind of de-
cision. Therefore, an alternative approach is sometimes used instead to estimate the util-
ity function for money.



This approach is to assume that the utility function has a certain mathematical form,
and then adjust this form to fit the decision maker’s attitude toward risk as closely as pos-
sible. For example, one particularly popular form to assume (because of its relative sim-
plicity) is the exponential utility function,

u(M) � R�1 � e��MR��,

where R is the decision maker’s risk tolerance. This utility function has a decreasing mar-
ginal utility for money, so it is designed to fit a risk-averse individual. A great aversion
to risk corresponds to a small value of R (which would cause the utility function curve to
bend sharply), whereas a small aversion to risk corresponds to a large value of R (which
gives a much more gradual bend in the curve).

Since the owner of the Goferbroke Co. has a relatively small aversion to risk, the util-
ity function curve in Fig. 15.14 bends quite slowly. The value of R that would give the
utilities of u(670) � 580 and u(700) � 600 is approximately R � 2,250. On the other hand,
the owner becomes much more risk-averse when large losses can occur, since this now
would threaten bankruptcy, so the value of R that would give the utility of u(�130) �
�150 is only about R � 465.

Unfortunately, it is not possible to use two different values of R for the same utility
function. A drawback of the exponential utility function is that it assumes a constant aver-
sion to risk (a fixed value of R), regardless of how much (or how little) money the decision
maker currently has. This doesn’t fit the Goferbroke Co. situation, since the current short-
age of money makes the owner much more concerned than usual about incurring a large loss.

In other situations where the consequences of the potential losses are not as severe,
assuming an exponential utility function may provide a reasonable approximation. In such
a case, here is an easy (slightly approximate) way of estimating the appropriate value of
R. The decision maker would be asked to choose the number R that would make him (or
her) indifferent between the following two alternatives.

A1: A 50-50 gamble where he would gain R dollars with probability 0.5 and lose �
R
2

�
dollars with probability 0.5.

A2: Neither gain nor lose anything.

TreePlan includes the option of using the exponential utility function. All you need
to do is click on the Options button in the TreePlan dialogue box and then select “Use
Exponential Utility Function.” TreePlan uses a different form for the exponential utility
function that requires specifying the values of three constants (by choosing Define Name
under the Insert menu and entering the values). By choosing the value of R for all three
of these constants, this utility function becomes the same as the exponential utility func-
tion described above.

Using a Decision Tree to Analyze the Goferbroke Co. Problem 
with Utilities

Now that the utility function for money of the owner of the Goferbroke Co. has been ob-
tained in Table 15.4 (and Fig. 15.14), this information can be used with a decision tree as
summarized next.
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The procedure for using a decision tree to analyze the problem now is identical to that
described in the preceding section except for substituting utilities for monetary payoffs.
Therefore, the value obtained to evaluate each fork of the tree now is the expected utility
there rather than the expected (monetary) payoff. Consequently, the optimal decisions se-
lected by Bayes’ decision rule maximize the expected utility for the overall problem.

Thus, our final decision tree shown in Fig. 15.15 closely resembles the one in Fig.
15.11 given in the preceding section. The forks and branches are exactly the same, as are
the probabilities for the branches emanating from the chance forks. For informational pur-
poses, the total monetary payoffs still are given to the right of the terminal branches (but
we no longer bother to show the individual monetary payoffs next to any of the branches).
However, we now have added the utilities on the right side. It is these numbers that have
been used to compute the expected utilities given next to all the forks.

These expected utilities lead to the same decisions at forks a, c, and d as in Fig. 15.11,
but the decision at fork e now switches to sell instead of drill. However, the backward in-
duction procedure still leaves fork e on a closed path. Therefore, the overall optimal pol-
icy remains the same as given at the end of Sec. 15.4 (do the seismic survey; sell if the
result is unfavorable; drill if the result is favorable).
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The approach used in the preceding sections of maximizing the expected monetary
payoff amounts to assuming that the decision maker is risk-neutral, so that u(M) � M. By
using utility theory, the optimal solution now reflects the decision maker’s attitude about
risk. Because the owner of the Goferbroke Co. adopted only a moderately risk-averse
stance, the optimal policy did not change from before. For a somewhat more risk-averse
owner, the optimal solution would switch to the more conservative approach of immedi-
ately selling the land (no seismic survey). (See Prob. 15.5-1.)

The current owner is to be commended for incorporating utility theory into a deci-
sion analysis approach to his problem. Utility theory helps to provide a rational approach
to decision making in the face of uncertainty. However, many decision makers are not suf-
ficiently comfortable with the relatively abstract notion of utilities, or with working with
probabilities to construct a utility function, to be willing to use this approach. Conse-
quently, utility theory is not yet used very widely in practice.
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In one sense, this chapter’s prototype example (the Goferbroke Co. problem) is a very
typical application of decision analysis. Like other applications, management needed to
make some decisions (Do a seismic survey? Drill for oil or sell the land?) in the face of
great uncertainty. The decisions were difficult because their payoffs were so unpredictable.
The outcome depended on factors that were outside management’s control (does the land
contain oil or is it dry?). Therefore, management needed a framework and methodology
for rational decision making in this uncertain environment. These are the usual charac-
teristics of applications of decision analysis.

However, in other ways, the Goferbroke problem is not such a typical application. It
was oversimplified to include only two possible states of nature (Oil and Dry), whereas there
actually would be a considerable number of distinct possibilities. For example, the actual
state might be dry, a small amount of oil, a moderate amount, a large amount, and a huge
amount, plus different possibilities concerning the depth of the oil and soil conditions that
impact the cost of drilling to reach the oil. Management also was considering only two al-
ternatives for each of two decisions. Real applications commonly involve more decisions,
more alternatives to be considered for each one, and many possible states of nature.

When dealing with larger problems, the decision tree can explode in size, with per-
haps many thousand terminal branches. In this case, it clearly would not be feasible to
construct the tree by hand, including computing posterior probabilities, and calculating
the expected payoffs (or utilities) for the various forks, and then identifying the optimal
decisions. Fortunately, some excellent software packages (mainly for personal computers)
are available specifically for doing this work. Furthermore, special algebraic techniques
are being developed and incorporated into the computer solvers for dealing with ever larger
problems.1

Sensitivity analysis also can become unwieldy on large problems. Although it normally
is supported by the computer software, the amount of data generated can easily overwhelm

15.6 THE PRACTICAL APPLICATION OF DECISION ANALYSIS

1For example, see C. W. Kirkwood, “An Algebraic Approach to Formulating and Solving Large Models for Se-
quential Decisions under Uncertainty,” Management Science, 39: 900–913, July 1993.



an analyst or decision maker. Therefore, some graphical techniques, such as tornado dia-
grams, have been developed to organize the data in a readily understandable way.1

Other kinds of graphical techniques also are available to complement the decision tree
in representing and solving decision analysis problems. One that has become quite popu-
lar is called the influence diagram, and researchers continue to develop others as well.2

Many strategic business decisions are made collectively by several members of man-
agement. One technique for group decision making is called decision conferencing. This
is a process where the group comes together for discussions in a decision conference with
the help of an analyst and a group facilitator. The facilitator works directly with the group
to help it structure and focus discussions, think creatively about the problem, bring as-
sumptions to the surface, and address the full range of issues involved. The analyst uses
decision analysis to assist the group in exploring the implications of the various decision
alternatives. With the assistance of a computerized group decision support system, the an-
alyst builds and solves models on the spot, and then performs sensitivity analysis to re-
spond to what-if questions from the group.3

Applications of decision analysis commonly involve a partnership between the man-
agerial decision maker (whether an individual or a group) and an analyst (whether an in-
dividual or a team) with training in OR. Some companies do not have a staff member who
is qualified to serve as the analyst. Therefore, a considerable number of management con-
sulting firms specializing in decision analysis have been formed to fill this role. (For ex-
ample, a few large ones are located in Silicon Valley next to Stanford University, with
names such as Applied Decision Analysis and the Strategic Decisions Group.)

Decision analysis is widely used around the world. For proprietary reasons (among
others), companies usually do not publish articles in professional journals to describe their
applications of OR techniques, including decision analysis. Fortunately, such articles do
filter out once in awhile, with some of them appearing in the journal called Interfaces.
The articles about decision analysis provide valuable insights about the practical applica-
tion of this technique in practice.

Table 15.5 briefly summarizes the nature of some of the applications of decision
analysis that have appeared in Interfaces. The rightmost column identifies the specific is-
sue of the journal for each application. Note in the other columns the wide diversity of
organizations and applications (with public utilities as the heaviest users). For each spe-
cific application, think about how uncertainties in the situation make decision analysis a
natural technique to use.
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1For further information, see T. G. Eschenbach, “Spiderplots versus Tornado Diagrams for Sensitivity Analy-
sis,” Interfaces, 22: 40–46, Nov.–Dec. 1992.
2For example, see P. P. Schnoy, “A Comparison of Graphical Techniques for Decision Analysis,” European Jour-
nal of Operational Research, 78: 1–21, Oct. 13, 1994. Also see Z. Covaliu and R. M. Oliver, “Representation
and Solution of Decision Problems Using Sequential Decision Diagrams,” Management Science, 41: 1860–1881,
Dec., 1995, as well as Chaps. 4 and 9 in K. T. Marshall and R. M. Oliver, Decision Making and Forecasting,
McGraw-Hill, New York, 1995.
3For further information, see the two articles on decision conferencing in the November–December 1992 issue
of Interfaces, where one describes an application in Australia and the other summarizes the experience of 26
decision conferences in Hungary.
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TABLE 15.5 Some applications of decision analysis

Organization Nature of Application Issue of Interfaces

Amoco Oil Co. Used utilities to evaluate strategies for marketing its Dec., 1982
products through full-facility service stations.

Ohio Edison Co. Evaluated and selected particulate emission control Feb., 1983
equipment for a coal-fired power plant.

New England Electric Determined an appropriate bid for the salvage March–April, 1984
System rights to a grounded ship.

National Weather Developed a plan for responding to flood forecasts May–June, 1984
Service and warnings.

National Forest Planned prescribed fires to improve forest and Sept.–Oct., 1984
Administrations rangeland ecosystems.

Tomco Oil Corp. Chose between two site locations for drilling an oil March–April, 1986
well, with 74 states of nature.

Personal decision Used decision criteria without probabilities to choose May–June, 1986
between adjustable-rate and fixed-rate mortgages.

U.S. Postal Service Chose between six alternatives for a postal March–April, 1987;
automation program, saving $200 million. Jan.–Feb., 1988

Santa Clara University Evaluated whether to implement a drug-testing May–June, 1990
program for their intercollegiate athletes.

Independent Living A decision conference developed a strategic plan for Nov.–Dec., 1992
Center (Australia) reorganizing the center.

DuPont Corp. Many applications to strategic planning; one added Nov.–Dec., 1992
$175 million in value.

British Columbia Elicited a utility function for clarifying value trade-offs Nov.–Dec., 1992
Hydro and Power for many strategic issues.
Authority

U.S. Department of Improved the decision process for the acquisition of Nov.–Dec., 1992
Defense weapon systems.

Electric utility industry Considered health and environmental risks in dealing Nov.–Dec., 1992
with utility-generated solid wastes and air emissions.

An anonymous Developed a contingency-planning program against Nov.–Dec., 1992
international bank fire and power failure for all services.

General Motors More than 40 major decision analysis projects over Nov.–Dec., 1992
5 years.

Southern Company Evaluated alternative preventive maintenance May–June, 1993
(electric utility) programs for motor vehicle and construction 

equipment fleets.



If you would like to do more reading about the practical application of decision analy-
sis, a good place to begin would be the November–December 1992 issue of Interfaces.
This is a special issue devoted entirely to decision analysis and the related area of risk
analysis. It includes many interesting articles, including descriptions of basic methods,
sensitivity analysis, and decision conferencing. Also included are several of the articles
on applications that are listed in Table 15.5.
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Organization Nature of Application Issue of Interfaces

ICI Americas Selected research and development projects with Nov.–Dec., 1993
little data available for assessing them.

Federal National Used utilities to select the composition of a portfolio May–June, 1994
Mortgage Association of home mortgage assets.

Oglethorpe Power Evaluated whether to invest in a major transmission March–April, 1995
Corp. system and how to finance it.

Phillips Petroleum Co. Evaluated oil exploration opportunities with a Nov.–Dec., 1995
consistent risk-taking policy.

Energy Electric System Evaluated schedules for preventive maintenance for July–Aug., 1996
electrical generator units.

Decision analysis has become an important technique for decision making in the face of
uncertainty. It is characterized by enumerating all the available courses of action, identi-
fying the payoffs for all possible outcomes, and quantifying the subjective probabilities
for all the possible random events. When these data are available, decision analysis be-
comes a powerful tool for determining an optimal course of action.

One option that can be readily incorporated into the analysis is to perform experi-
mentation to obtain better estimates of the probabilities of the possible states of nature.
Decision trees are a useful visual tool for analyzing this option or any series of decisions.

Utility theory provides a way of incorporating the decision maker’s attitude toward
risk into the analysis.

Good software (including TreePlan and SensIt in your OR Courseware) is becoming
widely available for performing decision analysis.

15.7 CONCLUSIONS

1. Clemen, R. T.: Making Hard Decisions: An Introduction to Decision Analysis, 2d ed., Duxbury
Press, Belmont, CA, 1996.

2. Edwards, W. (ed.): Utility Theories: Measurements and Applications, Kluwer Academic Pub-
lishers, Boston, 1992.

3. Fishburn, P. C.: “Foundations of Decision Analysis: Along the Way,” Management Science, 35:
387–405, 1989.
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“Ch. 15—Decision Analysis” Excel File:

TreePlan Decision Trees for Goferbroke Problems (3)
Template for Maximin Payoff Criterion
Template for Maximum Likelihood Criterion
Template for Bayes’ Decision Rule
Decision Analysis Spreadsheets for Goferbroke Problems (2)
Template for Expected Payoff with Perfect Information
Template for Posterior Probabilities

Excel Add-Ins:

TreePlan (academic version)
SensIt (academic version)

LEARNING AIDS FOR THIS CHAPTER IN YOUR OR COURSEWARE

The symbols to the left of some of the problems (or their parts)
have the following meaning:

T: The corresponding Excel template listed above can be helpful.
A: The corresponding Excel add-in listed above can be used.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

15.2-1.* Silicon Dynamics has developed a new computer chip
that will enable it to begin producing and marketing a personal
computer if it so desires. Alternatively, it can sell the rights to the
computer chip for $15 million. If the company chooses to build
computers, the profitability of the venture depends upon the com-
pany’s ability to market the computer during the first year. It has
sufficient access to retail outlets that it can guarantee sales of
10,000 computers. On the other hand, if this computer catches on,
the company can sell 100,000 machines. For analysis purposes,
these two levels of sales are taken to be the two possible outcomes
of marketing the computer, but it is unclear what their prior prob-
abilities are. The cost of setting up the assembly line is $6 million.
The difference between the selling price and the variable cost of
each computer is $600.

PROBLEMS

(a) Develop a decision analysis formulation of this problem by
identifying the alternative actions, the states of nature, and the
payoff table.

(b) Develop a graph that plots the expected payoff for each of the
alternative actions versus the prior probability of selling 10,000
computers.

(c) Referring to the graph developed in part (b), use algebra to
solve for the crossover point. Explain the significance of this
point.

A (d) Develop a graph that plots the expected payoff (when using
Bayes’ decision rule) versus the prior probability of selling
10,000 computers.

T (e) Assuming the prior probabilities of the two levels of sales
are both 0.5, which alternative action should be chosen?

15.2-2. Jean Clark is the manager of the Midtown Saveway Gro-
cery Store. She now needs to replenish her supply of strawberries.
Her regular supplier can provide as many cases as she wants. How-
ever, because these strawberries already are very ripe, she will need
to sell them tomorrow and then discard any that remain unsold.
Jean estimates that she will be able to sell 10, 11, 12, or 13 cases
tomorrow. She can purchase the strawberries for $3 per case and



Which investment should Warren make under each of the fol-
lowing criteria?
(a) Maximin payoff criterion.
(b) Maximum likelihood criterion.
(c) Bayes’ decision rule.

15.2-4. Reconsider Prob. 15.2-3. Warren Buffy decides that Bayes’
decision rule is his most reliable decision criterion. He believes
that 0.1 is just about right as the prior probability of an improving
economy, but is quite uncertain about how to split the remaining
probabilities between a stable economy and a worsening economy.
Therefore, he now wishes to do sensitivity analysis with respect to
these latter two prior probabilities.
T (a) Reapply Bayes’ decision rule when the prior probability of

a stable economy is 0.3 and the prior probability of a wors-
ening economy is 0.6.

T (b) Reapply Bayes’ decision rule when the prior probability of
a stable economy is 0.7 and the prior probability of a wors-
ening economy is 0.2.

(c) Graph the expected profit for each of the three investment al-
ternatives versus the prior probability of a stable economy
(with the prior probability of an improving economy fixed at
0.1). Use this graph to identify the crossover points where the
decision shifts from one investment to another.

(d) Use algebra to solve for the crossover points identified in
part (c).

A (e) Develop a graph that plots the expected profit (when using
Bayes’ decision rule) versus the prior probability of a stable
economy.

15.2-5.* Consider a decision analysis problem whose payoffs (in
units of thousands of dollars) are given by the following payoff
table:

sell them for $8 per case. Jean now needs to decide how many
cases to purchase.

Jean has checked the store’s records on daily sales of straw-
berries. On this basis, she estimates that the prior probabilities are
0.2, 0.4, 0.3, and 0.1 for being able to sell 10, 11, 12, and 13 cases
of strawberries tomorrow.
(a) Develop a decision analysis formulation of this problem by

identifying the alternative actions, the states of nature, and the
payoff table.

T (b) How many cases of strawberries should Jean purchase if she
uses the maximin payoff criterion?

T (c) How many cases should be purchased according to the max-
imum likelihood criterion?

T (d) How many cases should be purchased according to Bayes’
decision rule?

T (e) Jean thinks she has the prior probabilities just about right
for selling 10 cases and selling 13 cases, but is uncertain
about how to split the prior probabilities for 11 cases and 12
cases. Reapply Bayes’ decision rule when the prior proba-
bilities of 11 and 12 cases are (i) 0.2 and 0.5, (ii) 0.3 and
0.4, and (iii) 0.5 and 0.2.

T 15.2-3.* Warren Buffy is an enormously wealthy investor who
has built his fortune through his legendary investing acumen. He cur-
rently has been offered three major investments and he would like
to choose one. The first one is a conservative investment that would
perform very well in an improving economy and only suffer a small
loss in a worsening economy. The second is a speculative investment
that would perform extremely well in an improving economy but
would do very badly in a worsening economy. The third is a coun-
tercyclical investment that would lose some money in an improving
economy but would perform well in a worsening economy.

Warren believes that there are three possible scenarios over
the lives of these potential investments: (1) an improving economy,
(2) a stable economy, and (3) a worsening economy. He is pes-
simistic about where the economy is headed, and so has assigned
prior probabilities of 0.1, 0.5, and 0.4, respectively, to these three
scenarios. He also estimates that his profits under these respective
scenarios are those given by the following table:
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Improving Stable Worsening
Economy Economy Economy

Conservative 
investment �$30 million $ 5 million �$10 million

Speculative 
investment �$40 million $10 million �$30 million

Countercyclical 
investment �$10 million 0 �$15 million

Prior probability 0.1 0.5 0.4

State of Nature

Alternative S1 S2

A1 80 25
A2 30 50
A3 60 40

Prior probability 0.4 0.6

T (a) Which alternative should be chosen under the maximin pay-
off criterion?

T (b) Which alternative should be chosen under the maximum
likelihood criterion?

T (c) Which alternative should be chosen under Bayes’ decision
rule?



After referring to historical meteorological records, Dwight also
estimated the following prior probabilities for the weather during
the growing season:

A (d) Using Bayes’ decision rule, do sensitivity analysis graphi-
cally with respect to the prior probabilities to determine the
crossover points where the decision shifts from one alter-
native to another.

(e) Use algebra to solve for the crossover points identified in
part (d ).

15.2-6. You are given the following payoff table (in units of thou-
sands of dollars) for a decision analysis problem:
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State of Nature

Alternative S1 S2 S3

A1 220 170 110
A2 200 180 150

Prior probability 0.6 0.3 0.1

T (a) Which alternative should be chosen under the maximin pay-
off criterion?

T (b) Which alternative should be chosen under the maximum
likelihood criterion?

T (c) Which alternative should be chosen under Bayes’decision rule?
(d) Using Bayes’ decision rule, do sensitivity analysis graphically

with respect to the prior probabilities of states S1 and S2 (with-
out changing the prior probability of state S3) to determine the
crossover point where the decision shifts from one alternative
to the other. Then use algebra to calculate this crossover point.

(e) Repeat part (d ) for the prior probabilities of states S1 and S3.
(f) Repeat part (d ) for the prior probabilities of states S2 and S3.
(g) If you feel that the true probabilities of the states of nature are

within 10 percent of the given prior probabilities, which alter-
native would you choose?

15.2-7. Dwight Moody is the manager of a large farm with 1,000
acres of arable land. For greater efficiency, Dwight always devotes
the farm to growing one crop at a time. He now needs to make a
decision on which one of four crops to grow during the upcoming
growing season. For each of these crops, Dwight has obtained the
following estimates of crop yields and net incomes per bushel un-
der various weather conditions.

Expected Yield, Bushels/Acre

Weather Crop 1 Crop 2 Crop 3 Crop 4

Dry 20 15 30 40
Moderate 35 20 25 40
Damp 40 30 25 40

Net income per bushel $1.00 $1.50 $1.00 $0.50

State of Nature

Alternative � � 21 � � 24

Order 15 1.155 � 107 1.414 � 107

Order 20 1.012 � 107 1.207 � 107

Order 25 1.047 � 107 1.135 � 107

Determine the optimal action under Bayes’ decision rule.

15.2-9. An individual makes decisions according to Bayes’ deci-
sion rule. For her current problem, she has constructed the fol-

Dry 0.3
Moderate 0.5
Damp 0.2

(a) Develop a decision analysis formulation of this problem by
identifying the alternative actions, the states of nature, and the
payoff table.

T (b) Use Bayes’ decision rule to determine which crop to grow.
T (c) Using Bayes’ decision rule, do sensitivity analysis with re-

spect to the prior probabilities of moderate weather and damp
weather (without changing the prior probability of dry
weather) by re-solving when the prior probability of mod-
erate weather is 0.2, 0.3, 0.4, and 0.6.

T 15.2-8.* A new type of airplane is to be purchased by the Air
Force, and the number of spare engines to be ordered must be de-
termined. The Air Force must order these spare engines in batches
of five, and it can choose among only 15, 20, or 25 spares. The sup-
plier of these engines has two plants, and the Air Force must make
its decision prior to knowing which plant will be used. However, the
Air Force knows from past experience that two-thirds of all types of
airplane engines are produced in Plant A, and only one-third are pro-
duced in Plant B. The Air Force also knows that the number of spare
engines required when production takes place at Plant A is approx-
imated by a Poisson distribution with mean 	 � 21, whereas the
number of spare engines required when production takes place at
Plant B is approximated by a Poisson distribution with mean 	 �
24. The cost of a spare engine purchased now is $400,000, whereas
the cost of a spare engine purchased at a later date is $900,000.
Spares must always be supplied if they are demanded, and unused
engines will be scrapped when the airplanes become obsolete. Hold-
ing costs and interest are to be neglected. From these data, the total
costs (negative payoffs) have been computed as follows:



(c) You are given the opportunity to spend $1,000 to obtain more
information about which state of nature is likely to occur. Given
your answer to part (b), might it be worthwhile to spend this
money?

15.3-3.* Betsy Pitzer makes decisions according to Bayes’ deci-
sion rule. For her current problem, Betsy has constructed the fol-
lowing payoff table (in units of dollars):

lowing payoff table, and she now wishes to maximize the expected
payoff.
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State of Nature

Alternative �1 �2 �3

a1 2x 60 10
a2 25 40 90
a3 35 3x 30

Prior probability 0.4 0.2 0.4

The value of x currently is 50, but there is an opportunity to in-
crease x by spending some money now.

What is the maximum amount that should be spent to increase
x to 75?

15.3-1.* Reconsider Prob. 15.2-1. Management of Silicon Dy-
namics now is considering doing full-fledged market research at a
cost of $1 million to predict which of the two levels of demand is
likely to occur. Previous experience indicates that such market re-
search is correct two-thirds of the time.
T (a) Find EVPI for this problem.
(b) Does the answer in part (a) indicate that it might be worth-

while to perform this market research?
(c) Develop a probability tree diagram to obtain the posterior prob-

abilities of the two levels of demand for each of the two pos-
sible outcomes of the market research.

T (d) Use the corresponding Excel template to check your answers
in part (c).

(d) Find EVE. Is it worthwhile to perform the market research?

15.3-2. You are given the following payoff table (in units of thou-
sands of dollars) for a decision analysis problem:

State of Nature

Alternative S1 S2 S3

A1 4 0 0
A2 0 2 0
A3 3 0 1

Prior probability 0.2 0.5 0.3

T (a) According to Bayes’ decision rule, which alternative should
be chosen?

T (b) Find EVPI.

T (a) Which alternative should Betsy choose?
T (b) Find EVPI.
(c) What is the most that Betsy should consider paying to obtain

more information about which state of nature will occur?

15.3-4. Using Bayes’ decision rule, consider the decision analysis
problem having the following payoff table (in units of thousands
of dollars):

State of Nature

Alternative S1 S2 S3

A1 50 100 �100
A2 20 210 0�10
A3 20 240 2�40

Prior probability 0.5 0.3 0.2

State of Nature

Alternative S1 S2 S3

A1 �100 10 100
A2 �10 20 50
A3 �10 10 60

Prior probability 0.2 0.3 0.5

T (a) Which alternative should be chosen? What is the resulting
expected payoff?

(b) You are offered the opportunity to obtain information which
will tell you with certainty whether the first state of nature S1

will occur. What is the maximum amount you should pay for
the information? Assuming you will obtain the information,
how should this information be used to choose an alternative?
What is the resulting expected payoff (excluding the payment)?

(c) Now repeat part (b) if the information offered concerns S2 in-
stead of S1.

(d) Now repeat part (b) if the information offered concerns S3 in-
stead of S1.



the research predicts S1, and (iv) the state of nature is S2 and
the research predicts S2.

(d) Find the unconditional probability that the research predicts
S1. Also find the unconditional probability that the research
predicts S2

(e) Given that the research is done, use your answers in parts (c)
and (d ) to determine the posterior probabilities of the states of
nature for each of the two possible predictions of the research.

T (f) Use the corresponding Excel template to obtain the answers
for part (e).

T (g) Given that the research predicts S1, use Bayes’ decision rule
to determine which decision alternative should be chosen
and the resulting expected payoff.

T (h) Repeat part (g) when the research predicts S2.
T (i) Given that research is done, what is the expected payoff when

using Bayes’ decision rule?
(j) Use the preceding results to determine the optimal policy re-

garding whether to do the research and the choice of the de-
cision alternative.

15.3-7. You are given the opportunity to guess whether a coin is
fair or two-headed, where the prior probabilities are 0.5 for each
of these possibilities. If you are correct, you win $5; otherwise,
you lose $5. You are also given the option of seeing a demonstra-
tion flip of the coin before making your guess. You wish to use
Bayes’ decision rule to maximize expected profit.
(a) Develop a decision analysis formulation of this problem by

identifying the alternative actions, states of nature, and payoff
table.

T (b) What is the optimal action, given that you decline the op-
tion of seeing a demonstration flip?

T (c) Find EVPI.
(d) Use the procedure presented in Sec. 15.3 to calculate the pos-

terior distribution if the demonstration flip is a tail. Do the
same if the flip is a head.

T (e) Use the corresponding Excel template to confirm your re-
sults in part (d ).

(f) Determine your optimal policy.
(g) Now suppose that you must pay to see the demonstration flip.

What is the most that you should be willing to pay?

T 15.3-8.* Reconsider Prob. 15.2-8. Suppose now that the Air
Force knows that a similar type of engine was produced for an ear-
lier version of the type of airplane currently under consideration.
The order size for this earlier version was the same as for the cur-
rent type. Furthermore, the probability distribution of the number
of spare engines required, given the plant where production takes
place, is believed to be the same for this earlier airplane model and
the current one. The engine for the current order will be produced
in the same plant as the previous model, although the Air Force
does not know which of the two plants this is. The Air Force does

T (e) Now suppose that the opportunity is offered to provide in-
formation which will tell you with certainty which state of
nature will occur (perfect information). What is the maxi-
mum amount you should pay for the information? Assum-
ing you will obtain the information, how should this infor-
mation be used to choose an alternative? What is the resulting
expected payoff (excluding the payment)?

(f) If you have the opportunity to do some testing that will give
you partial additional information (not perfect information)
about the state of nature, what is the maximum amount you
should consider paying for this information?

15.3-5. Reconsider the Goferbroke Co. prototype example, in-
cluding its analysis in Sec. 15.3. With the help of a consulting ge-
ologist, some historical data have been obtained that provide more
precise information on the likelihood of obtaining favorable seis-
mic soundings on similar tracts of land. Specifically, when the land
contains oil, favorable seismic soundings are obtained 80 percent
of the time. This percentage changes to 40 percent when the land
is dry.
(a) Revise Fig. 15.6 to find the new posterior probabilities.
T (b) Use the corresponding Excel template to check your answers

in part (a).
(c) What is the resulting optimal policy?

15.3-6. You are given the following payoff table (in units of dollars):
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State of Nature

Alternative S1 S2

A1 400 �100
A2 0 �100

Prior probability 0.4 0.6

You have the option of paying $100 to have research done to bet-
ter predict which state of nature will occur. When the true state of
nature is S1, the research will accurately predict S1 60 percent of
the time (but will inaccurately predict S2 40 percent of the time).
When the true state of nature is S2, the research will accurately
predict S2 80 percent of the time (but will inaccurately predict S1

20 percent of the time).
T (a) Given that the research is not done, use Bayes’ decision rule

to determine which decision alternative should be chosen.
T (b) Find EVPI. Does this answer indicate that it might be

worthwhile to do the research?
(c) Given that the research is done, find the joint probability of

each of the following pairs of outcomes: (i) the state of nature
is S1 and the research predicts S1, (ii) the state of nature is S1

and the research predicts S2, (iii) the state of nature is S2 and



T (e) Use the corresponding Excel template to obtain the answers
for part (d ).

(f) Determine Vincent’s optimal policy.

15.3-10. An athletic league does drug testing of its athletes, 10
percent of whom use drugs. This test, however, is only 95 percent
reliable. That is, a drug user will test positive with probability 0.95
and negative with probability 0.05, and a nonuser will test nega-
tive with probability 0.95 and positive with probability 0.05.

Develop a probability tree diagram to determine the posterior
probability of each of the following outcomes of testing an athlete.
(a) The athlete is a drug user, given that the test is positive.
(b) The athlete is not a drug user, given that the test is positive.
(c) The athlete is a drug user, given that the test is negative.
(d) The athlete is not a drug user, given that the test is negative.
T (e) Use the corresponding Excel template to check your answers

in the preceding parts.

15.3-11. Management of the Telemore Company is considering de-
veloping and marketing a new product. It is estimated to be twice
as likely that the product would prove to be successful as unsuc-
cessful. It it were successful, the expected profit would be
$1,500,000. If unsuccessful, the expected loss would be
$1,800,000. A marketing survey can be conducted at a cost of
$300,000 to predict whether the product would be successful. Past
experience with such surveys indicates that successful products
have been predicted to be successful 80 percent of the time, whereas
unsuccessful products have been predicted to be unsuccessful 70
percent of the time.
(a) Develop a decision analysis formulation of this problem by

identifying the alternative actions, the states of nature, and the
payoff table when the market survey is not conducted.

T (b) Assuming the market survey is not conducted, use Bayes’
decision rule to determine which decision alternative should
be chosen.

T (c) Find EVPI. Does this answer indicate that consideration
should be given to conducting the market survey?

T (d) Assume now that the market survey is conducted. Find the
posterior probabilities of the respective states of nature for
each of the two possible predictions from the market survey.

(e) Find the optimal policy regarding whether to conduct the mar-
ket survey and whether to develop and market the new product.

15.3-12. The Hit-and-Miss Manufacturing Company produces
items that have a probability p of being defective. These items are
produced in lots of 150. Past experience indicates that p for an en-
tire lot is either 0.05 or 0.25. Furthermore, in 80 percent of the lots
produced, p equals 0.05 (so p equals 0.25 in 20 percent of the lots).
These items are then used in an assembly, and ultimately their qual-
ity is determined before the final assembly leaves the plant. Ini-
tially the company can either screen each item in a lot at a cost of

have access to the data on the number of spares actually required
for the older version, but the supplier has not revealed the pro-
duction location.
(a) How much money is it worthwhile to pay for perfect infor-

mation on which plant will produce these engines?
(b) Assume that the cost of the data on the old airplane model is

free and that 30 spares were required. You are given that the
probability of 30 spares, given a Poisson distribution with mean
	, is 0.013 for 	 � 21 and 0.036 for 	 � 24. Find the optimal
action under Bayes’ decision rule.

15.3-9.* Vincent Cuomo is the credit manager for the Fine Fab-
rics Mill. He is currently faced with the question of whether to ex-
tend $100,000 credit to a potential new customer, a dress manu-
facturer. Vincent has three categories for the credit-worthiness of
a company: poor risk, average risk, and good risk, but he does not
know which category fits this potential customer. Experience in-
dicates that 20 percent of companies similar to this dress manu-
facturer are poor risks, 50 percent are average risks, and 30 per-
cent are good risks. If credit is extended, the expected profit for
poor risks is �$15,000, for average risks $10,000, and for good
risks $20,000. If credit is not extended, the dress manufacturer will
turn to another mill. Vincent is able to consult a credit-rating or-
ganization for a fee of $5,000 per company evaluated. For com-
panies whose actual credit record with the mill turns out to fall into
each of the three categories, the following table shows the per-
centages that were given each of the three possible credit evalua-
tions by the credit-rating organization.
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Actual Credit Record

Credit Evaluation Poor Average Good

Poor 50% 40% 20%
Average 40% 50% 40%
Good 10% 10% 40%

(a) Develop a decision analysis formulation of this problem by
identifying the alternative actions, the states of nature, and the
payoff table when the credit-rating organization is not used.

T (b) Assuming the credit-rating organization is not used, use
Bayes’ decision rule to determine which decision alternative
should be chosen.

T (c) Find EVPI. Does this answer indicate that consideration
should be given to using the credit-rating organization?

(d) Assume now that the credit-rating organization is used. De-
velop a probability tree diagram to find the posterior proba-
bilities of the respective states of nature for each of the three
possible credit evaluations of this potential customer.



must be paid by the camera store, and the selling price has been
fixed at $2 if this guarantee is to be valid. The camera store may
sell the film for $1 if the preceding guarantee is replaced by one
that pays $0.20 for each defective sheet. The cost of the film to the
camera store is $0.40, and the film is not returnable. The store may
choose any one of three actions:
1. Scrap the film.
2. Sell the film for $2.
3. Sell the film for $1.
(a) If the six states of nature correspond to 0, 1, 2, 3, 4, and 5 de-

fective sheets in the package, complete the following payoff table:

$10 per item and replace defective items or use the items directly
without screening. If the latter action is chosen, the cost of rework
is ultimately $100 per defective item. Because screening requires
scheduling of inspectors and equipment, the decision to screen or
not screen must be made 2 days before the screening is to take
place. However, one item can be taken from the lot and sent to a
laboratory for inspection, and its quality (defective or nondefec-
tive) can be reported before the screen/no screen decision must be
made. The cost of this initial inspection is $125.
(a) Develop a decision analysis formulation of this problem by

identifying the alternative actions, the states of nature, and the
payoff table if the single item is not inspected in advance.

T (b) Assuming the single item is not inspected in advance, use
Bayes’ decision rule to determine which decision alternative
should be chosen.

T (c) Find EVPI. Does this answer indicate that consideration
should be given to inspecting the single item in advance?

T (d) Assume now that the single item is inspected in advance.
Find the posterior probabilities of the respective states of
nature for each of the two possible outcomes of this in-
spection.

(e) Find EVE. Is inspecting the single item worthwhile?
(f) Determine the optimal policy.

T 15.3-13.* Consider two weighted coins. Coin 1 has a probabil-
ity of 0.3 of turning up heads, and coin 2 has a probability of 0.6
of turning up heads. A coin is tossed once; the probability that coin
1 is tossed is 0.6, and the probability that coin 2 is tossed is 0.4.
The decision maker uses Bayes’ decision rule to decide which coin
is tossed. The payoff table is as follows:
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State of Nature

Alternative Coin 1 Tossed Coin 2 Tossed

Say coin 1 tossed �0 �1
Say coin 2 tossed �1 �0

Prior probability 0.6 0.4

(a) What is the optimal action before the coin is tossed?
(b) What is the optimal action after the coin is tossed if the out-

come is heads? If it is tails?

15.3-14. A new type of photographic film has been developed. It
is packaged in sets of five sheets, where each sheet provides an in-
stantaneous snapshot. Because this process is new, the manufac-
turer has attached an additional sheet to the package, so that the
store may test one sheet before it sells the package of five. In pro-
moting the film, the manufacturer offers to refund the entire pur-
chase price of the film if one of the five is defective. This refund

State of Nature

Alternative 0 1 2 3 4 5

1 �0.40
2 �1.60 �0.40
3 �0.60 0.40 0.00 0.00 0.00

T (b) The store has accumulated the following information on
sales of 60 such packages:

Defectives in Package
Quality of
Attached Sheet 0 1 2 3 4 5

Good 10 8 6 4 2 0
Bad 0 2 4 6 8 10

Total 10 10 10 10 10 10

These data indicate that each state of nature is equally likely, so
that this prior distribution can be assumed. What is the optimal ac-
tion under Bayes’ decision rule (before the attached sheet is tested)
for a package of film?
(c) Now assume that the attached sheet is tested. Use a probabil-

ity tree diagram to find the posterior probabilities of the state
of nature for each of the two possible outcomes of this testing.

T (d) What is the optimal expected payoff for a package of film
if the attached sheet is tested? What is the optimal action if
the sheet is good? If it is bad?

15.3-15. There are two biased coins with probabilities of landing
heads of 0.8 and 0.4, respectively. One coin is chosen at random
(each with probability �

1
2

�) to be tossed twice. You are to receive $100
if you correctly predict how many heads will occur in two tosses.
T (a) Using Bayes’ decision rule, what is the optimal prediction,

and what is the corresponding expected payoff?
T (b) Suppose now that you may observe a practice toss of the



chosen coin before predicting. Use the corresponding Excel
template to find the posterior probabilities for which coin is
being tossed.

T (c) Determine your optimal prediction after observing the prac-
tice toss. What is the resulting expected payoff?

(d) Find EVE for observing the practice toss. If you must pay $30
to observe the practice toss, what is your optimal policy?

15.4-1.* Reconsider Prob. 15.3-1. The management of Silicon
Dynamics now wants to see a decision tree displaying the entire
problem.
(a) Construct and solve this decision tree by hand.
A (b) Use TreePlan to construct and solve this decision tree.

15.4-2. You are given the decision tree to the right, where the num-
bers in parentheses are probabilities and the numbers on the far
right are payoffs at these terminal points.
(a) Analyze this decision tree to obtain the optimal policy.
A (b) Use TreePlan to construct and solve the same decision tree.

15.4-3. You are given the decision tree below, with the probabili-
ties at chance forks shown in parentheses and with the payoffs at
terminal points shown on the right. Analyze this decision tree to
obtain the optimal policy.
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The probabilities of growth, recession, and depression for the first
year are 0.7, 0.3, and 0, respectively. If growth occurs in the first
year, these probabilities remain the same for the second year. How-
ever, if a recession occurs in the first year, these probabilities
change to 0.2, 0.7, and 0.1, respectively, for the second year.
(a) Construct the decision tree for this problem by hand.
(b) Analyze the decision tree to identify the optimal policy.
A (c) Use TreePlan to construct and solve the decision tree.

15.4-6. On Monday, a certain stock closed at $10 per share. On
Tuesday, you expect the stock to close at $9, $10, or $11 per share,
with respective probabilities 0.3, 0.3, and 0.4. On Wednesday, you
expect the stock to close 10 percent lower, unchanged, or 10 per-
cent higher than Tuesday’s close, with the following probabilities:

15.4-4.* The Athletic Department of Leland University is consid-
ering whether to hold an extensive campaign next year to raise
funds for a new athletic field. The response to the campaign de-
pends heavily upon the success of the football team this fall. In the
past, the football team has had winning seasons 60 percent of the
time. If the football team has a winning season (W) this fall, then
many of the alumnae and alumni will contribute and the campaign
will raise $3 million. If the team has a losing season (L), few will
contribute and the campaign will lose $2 million. If no campaign
is undertaken, no costs are incurred. On September 1, just before
the football season begins, the Athletic Department needs to make
its decision about whether to hold the campaign next year.
(a) Develop a decision analysis formulation of this problem by

identifying the alternative actions, the states of nature, and the
payoff table.

T (b) According to Bayes’ decision rule, should the campaign be
undertaken?

T (c) What is EVPI?
(d) A famous football guru, William Walsh, has offered his ser-

vices to help evaluate whether the team will have a winning
season. For $100,000, he will carefully evaluate the team
throughout spring practice and then throughout preseason
workouts. William then will provide his prediction on Sep-
tember 1 regarding what kind of season, W or L, the team will
have. In similar situations in the past when evaluating teams
that have winning seasons 50 percent of the time, his predic-
tions have been correct 75 percent of the time. Considering
that this team has more of a winning tradition, if William pre-
dicts a winning season, what is the posterior probability that
the team actually will have a winning season? What is the pos-
terior probability of a losing season? If Williams predicts a los-
ing season instead, what is the posterior probability of a win-
ning season? Of a losing season? Show how these answers are
obtained from a probability tree diagram.

T (e) Use the corresponding Excel template to obtain the answers
requested in part (d ).

(f) Draw the decision tree for this entire problem by hand. Ana-
lyze this decision tree to determine the optimal policy regard-
ing whether to hire William and whether to undertake the cam-
paign.

A (g) Use TreePlan to construct and solve this decision tree.

15.4-5. The comptroller of the Macrosoft Corporation has $100
million of excess funds to invest. She has been instructed to invest
the entire amount for 1 year in either stocks or bonds (but not both)
and then to reinvest the entire fund in either stocks or bonds (but
not both) for 1 year more. The objective is to maximize the ex-
pected monetary value of the fund at the end of the second year.

The annual rates of return on these investments depend on the
economic environment, as shown in the following table:
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Rate of Return

Economic Environment Stocks Bonds

Growth �20% 5%
Recession �10% 10%
Depression �50% 20%

Today’s Close 10% Lower Unchanged 10% Higher

$ 9 0.4 0.3 0.3
$10 0.2 0.2 0.6
$11 0.1 0.2 0.7

On Tuesday, you are directed to buy 100 shares of the stock be-
fore Thursday. All purchases are made at the end of the day, at the
known closing price for that day, so your only options are to buy
at the end of Tuesday or at the end of Wednesday. You wish to de-
termine the optimal strategy for whether to buy on Tuesday or de-
fer the purchase until Wednesday, given the Tuesday closing price,
to minimize the expected purchase price.
(a) Develop and evaluate a decision tree by hand for determining

the optimal strategy.
A (b) Use TreePlan to construct and solve the decision tree.

15.4-7. Use the scenario given in Prob. 15.3-7.
(a) Draw and properly label the decision tree. Include all the pay-

offs but not the probabilities.
T (b) Find the probabilities for the branches emanating from the

chance forks.
(c) Apply the backward induction procedure, and identify the re-

sulting optimal policy.



15.4-11. Use the scenario given in Prob. 15.3.-11.
(a) Draw and properly label the decision tree. Include all the pay-

offs but not the probabilities.
T (b) Find the probabilities for the branches emanating from the

chance forks.
(c) Apply the backward induction procedure, and identify the re-

sulting optimal policy.

15.4-12. Use the scenario given in Prob. 15.3-12.
(a) Draw and properly label the decision tree. Include all the pay-

offs but not the probabilities.
T (b) Find the probabilities for the branches emanating from the

chance forks.
(c) Apply the backward induction procedure, and identify the re-

sulting optimal policy.

15.4-13. Use the scenario given in Prob. 15.3-13.
(a) Draw and properly label the decision tree. Include all the pay-

offs but not the probabilities.
T (b) Find the probabilities for the branches emanating from the

chance forks.
(c) Apply the backward induction procedure, and identify the re-

sulting optimal policy.

15.4-14. Chelsea Bush is an emerging candidate for her party’s
nomination for President of the United States. She now is consid-
ering whether to run in the high-stakes Super Tuesday primaries.
If she enters the Super Tuesday (S.T.) primaries, she and her ad-
visers believe that she will either do well (finish first or second)
or do poorly (finish third or worse) with probabilities 0.4 and 0.6,
respectively. Doing well on Super Tuesday will net the candidate’s
campaign approximately $16 million in new contributions, whereas
a poor showing will mean a loss of $10 million after numerous TV
ads are paid for. Alternatively, she may choose not to run at all on
Super Tuesday and incur no costs.

Chelsea’s advisers realize that her chances of success on Su-
per Tuesday may be affected by the outcome of the smaller New
Hampshire (N.H.) primary occurring 3 weeks before Super Tues-
day. Political analysts feel that the results of New Hampshire’s pri-
mary are correct two-thirds of the time in predicting the results of
the Super Tuesday primaries. Among Chelsea’s advisers is a deci-
sion analysis expert who uses this information to calculate the fol-
lowing probabilities:

P{Chelsea does well in S.T. primaries, given she does 
well in N.H.} � �

4
7

�

P{Chelsea does well in S.T. primaries, given she does 
poorly in N.H.} � �

1
4

�

P{Chelsea does well in N.H. primary} � �
1
7
5
�

A 15.4-8. Jose Morales manages a large outdoor fruit stand in one
of the less affluent neighborhoods of San Jose, California. To re-
plenish his supply, Jose buys boxes of fruit early each morning
from a grower south of San Jose. About 90 percent of the boxes
of fruit turn out to be of satisfactory quality, but the other 10 per-
cent are unsatisfactory. A satisfactory box contains 80 percent ex-
cellent fruit and will earn $200 profit for Jose. An unsatisfactory
box contains 30 percent excellent fruit and will produce a loss of
$1,000. Before Jose decides to accept a box, he is given the op-
portunity to sample one piece of fruit to test whether it is excel-
lent. Based on that sample, he then has the option of rejecting the
box without paying for it. Jose wonders (1) whether he should con-
tinue buying from this grower, (2) if so, whether it is worthwhile
sampling just one piece of fruit from a box, and (3) if so, whether
he should be accepting or rejecting the box based on the outcome
of this sampling.

Use TreePlan (and the Excel template for posterior probabil-
ities) to construct and solve the decision tree for this problem.

15.4-9. Use the scenario given in Prob. 15.3-9.
(a) Draw and properly label the decision tree. Include all the pay-

offs but not the probabilities.
T (b) Find the probabilities for the branches emanating from the

chance forks.
(c) Apply the backward induction procedure, and identify the re-

sulting optimal policy.

15.4-10.* The Morton Ward Company is considering the introduc-
tion of a new product that is believed to have a 50-50 chance of be-
ing successful. One option is to try out the product in a test market,
at a cost of $5 million, before making the introduction decision. Past
experience shows that ultimately successful products are approved
in the test market 80 percent of the time, whereas ultimately unsuc-
cessful products are approved in the test market only 25 percent of
the time. If the product is successful, the net profit to the company
will be $40 million; if unsuccessful, the net loss will be $15 million.
T (a) Discarding the option of trying out the product in a test mar-

ket, develop a decision analysis formulation of the problem
by identifying the alternative actions, states of nature, and
payoff table. Then apply Bayes’ decision rule to determine
the optimal decision alternative.

T (b) Find EVPI.
A (c) Now including the option of trying out the product in a test

market, use TreePlan (and the Excel template for posterior
probabilities) to construct and solve the decision tree for this
problem.

A (d) There is some uncertainty in the stated profit and loss fig-
ures ($40 million and $15 million). Either could vary from
its base by as much as 25 percent in either direction. Use
SensIt to generate a graph for each that plots the expected
payoff over this range of variability.
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15.5-1. Reconsider the Goferbroke Co. prototype example, in-
cluding the application of utilities in Sec. 15.5. The owner now has
decided that, given the company’s precarious financial situation,
he needs to take a much more risk-averse approach to the prob-
lem. Therefore, he has revised the utilities given in Table 15.4 as
follows: u(�130) � �200, u(�100) � �130, u(60) � 60,
u(90) � 90, u(670) � 440, and u(700) � 450.
(a) Analyze the revised decision tree corresponding to Fig. 15.15

by hand to obtain the new optimal policy.
A (b) Use TreePlan to construct and solve this revised decision

tree.

15.5-2.* You live in an area that has a possibility of incurring a
massive earthquake, so you are considering buying earthquake in-
surance on your home at an annual cost of $180. The probability
of an earthquake damaging your home during 1 year is 0.001. If
this happens, you estimate that the cost of the damage (fully cov-
ered by earthquake insurance) will be $160,000. Your total assets
(including your home) are worth $250,000.
T (a) Apply Bayes’ decision rule to determine which alternative

(take the insurance or not) maximizes your expected assets
after 1 year.

(b) You now have constructed a utility function that measures how
much you value having total assets worth x dollars (x 
 0).
This utility function is u(x) � �x�. Compare the utility of re-
ducing your total assets next year by the cost of the earthquake
insurance with the expected utility next year of not taking the
earthquake insurance. Should you take the insurance?

15.5-3. For your graduation present from college, your parents are
offering you your choice of two alternatives The first alternative is
to give you a money gift of $19,000. The second alternative is to
make an investment in your name. This investment will quickly
have the following two possible outcomes:

The cost of entering and campaigning in the New Hampshire pri-
mary is estimated to be $1.6 million.

Chelsea feels that her chance of winning the nomination de-
pends largely on having substantial funds available after the Super
Tuesday primaries to carry on a vigorous campaign the rest of the
way. Therefore, she wants to choose the strategy (whether to run
in the New Hampshire primary and then whether to run in the Su-
per Tuesday primaries) that will maximize her expected funds af-
ter these primaries.
(a) Construct and solve the decision tree for this problem.
A (b) There is some uncertainty in the estimates of a gain of $16

million or a loss of $10 million depending on the showing
on Super Tuesday. Either amount could differ from this es-
timate by as much as 25 percent in either direction. Develop
a graph for each amount that plots the expected payoff over
this range of variability.

A 15.4-15. The executive search being conducted for Western
Bank by Headhunters Inc. may finally be bearing fruit. The posi-
tion to be filled is a key one—Vice President for Information Pro-
cessing—because this person will have responsibility for develop-
ing a state-of-the-art management information system that will link
together Western’s many branch banks. However, Headhunters
feels they have found just the right person, Matthew Fenton, who
has an excellent record in a similar position for a midsized bank
in New York.

After a round of interviews, Western’s president believes that
Matthew has a probability of 0.7 of designing the management in-
formation system successfully. If Matthew is successful, the com-
pany will realize a profit of $2 million (net of Matthew’s salary,
training, recruiting costs, and expenses). If he is not successful, the
company will realize a net loss of $400,000.

For an additional fee of $20,000, Headhunters will provide a
detailed investigative process (including an extensive background
check, a battery of academic and psychological tests, etc.) that will
further pinpoint Matthew’s potential for success. This process has
been found to be 90 percent reliable; i.e., a candidate who would
successfully design the management information system will pass
the test with probability 0.9, and a candidate who would not suc-
cessfully design the system will fail the test with probability 0.9.

Western’s top management needs to decide whether to hire
Matthew and whether to have Headhunters conduct the detailed in-
vestigative process before making this decision.
(a) Construct the decision tree for this problem.
T (b) Find the probabilities for the branches emanating from the

chance nodes.
(c) Analyze the decision tree to identify the optimal policy.
(d) Now suppose that the Headhunters’ fee for administering its

detailed investigative process is negotiable. What is the maxi-
mum amount that Western Bank should pay?
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Outcome Probability

Receive $10,000 0.3
Receive $30,000 0.7

Your utility for receiving M thousand dollars is given by the util-
ity function u(M) � �M � 6�. Which choice should you make to
maximize expected utility?

15.5-4.* Reconsider Prob. 15.5-3. You now are uncertain about
what your true utility function for receiving money is, so you are
in the process of constructing this utility function. So far, you have
found that u(19) � 16.7 and u(30) � 20 are the utility of receiv-
ing $19,000 and $30,000, respectively. You also have concluded
that you are indifferent between the two alternatives offered to you
by your parents. Use this information to find u(10).



ing disease A) for only 80 percent of patients who have disease A,
whereas it will give a positive result for 20 percent of patients who
actually have disease B instead.

Disease B is a very serious disease with no known treatment.
It is sometimes fatal, and those who survive remain in poor health
with a poor quality of life thereafter. The prognosis is similar for
victims of disease A if it is left untreated. However, there is a fairly
expensive treatment available that eliminates the danger for those
with disease A, and it may return them to good health. Unfortu-
nately, it is a relatively radical treatment that always leads to death
if the patient actually has disease B instead.

The probability distribution for the prognosis for this patient
is given for each case in the following table, where the column
headings (after the first one) indicate the disease for the patient.

15.5-5. You wish to construct your personal utility function u(M)
for receiving M thousand dollars. After setting u(0) � 0, you next
set u(1) � 1 as your utility for receiving $1,000. You next want to
find u(10) and then u(5).
(a) You offer yourself the following two hypothetical alternatives:

A1: Obtain $10,000 with probability p.
Obtain 0 with probability (1 � p).

A2: Definitely obtain $1,000.

You then ask yourself the question: What value of p makes you
indifferent between these two alternatives? Your answer is 
p � 0.125. Find u(10).

(b) You next repeat part (a) except for changing the second alter-
native to definitely receiving $5,000. The value of p that 
makes you indifferent between these two alternatives now is 
p � 0.5625. Find u(5).

(c) Repeat parts (a) and (b), but now use your personal choices
for p.

15.5-6. You are given the following payoff table:
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State of Nature

Alternative S1 S2

A1 25 36
A2 100 0
A3 0 49

Prior probability p 1 � p

(a) Assume that your utility function for the payoffs is u(x) � �x�.
Plot the expected utility of each alternative action versus the
value of p on the same graph. For each alternative action, find
the range of values of p over which this alternative maximizes
the expected utility.

A (b) Now assume that your utility function is the exponential util-
ity function with a risk tolerance of R � 5. Use TreePlan to
construct and solve the resulting decision tree in turn for 
p � 0.25, p � 0.5, and p � 0.75.

15.5-7. Dr. Switzer has a seriously ill patient but has had trouble
diagnosing the specific cause of the illness. The doctor now has
narrowed the cause down to two alternatives: disease A or disease
B. Based on the evidence so far, she feels that the two alternatives
are equally likely.

Beyond the testing already done, there is no test available to
determine if the cause is disease B. One test is available for dis-
ease A, but it has two major problems. First, it is very expensive.
Second, it is somewhat unreliable, giving an accurate result only
80 percent of the time. Thus, it will give a positive result (indicat-

Outcome Probabilities

No Treatment
Receive Treatment

for Disease A

Outcome A B A B

Die 0.2 0.5 0 1.0
Survive with 
poor health 0.8 0.5 0.5 0

Return to 
good health 0 0 0.5 0

The patient has assigned the following utilities to the possible out-
comes:

Outcome Utility

Die 0
Survive with poor health 10
Return to good health 30

In addition, these utilities should be incremented by �2 if the pa-
tient incurs the cost of the test for disease A and by �1 if the pa-
tient (or the patient’s estate) incurs the cost of the treatment for
disease A.

Use decision analysis with a complete decision tree to deter-
mine if the patient should undergo the test for disease A and then
how to proceed (receive the treatment for disease A?) to maximize
the patient’s expected utility.

15.5-8. Consider the following decision tree, where the probabil-
ities for each chance fork are shown in parentheses.



Your utility function for money (the payoff received) is

u(M) � �
(a) For p � 0.25, determine which action is optimal in the sense

that it maximizes the expected utility of the payoff.
(b) Determine the range of values of the probability p (0 � p �

0.5) for which this same action remains optimal.

15.6-1. Select one of the applications of decision analysis listed
in Table 15.5. Read the article describing the application in the in-
dicated issue of Interfaces. Write a two-page summary of the ap-
plication and the benefits it provided.

15.6-2. Select three of the applications of decision analysis listed
in Table 15.5. Read the articles describing the applications in the
indicated issues of Interfaces. For each one, write a one-page sum-
mary of the application and the benefits it provided.

M2 if M 
 0
M2 if M � 0.

The dollar amount given next to each branch is the cash flow
generated along that branch, where these intermediate cash flows
add up to the total net cash flow shown to the right of each termi-
nal branch. (The unknown amount for the top branch is represented
by the variable x.) The decision maker has a utility function 
u( y) � y

�
1
3

�

where y is the total net cash flow after a terminal branch.
The resulting utilities for the various terminal branches are shown
to the right of the decision tree.

Use these utilities to analyze the decision tree. Then deter-
mine the value of x for which the decision maker is indifferent be-
tween alternative actions A1 and A2.

15.5-9. You want to choose between actions A1 and A2 in the fol-
lowing decision tree, but you are uncertain about the value of the
probability p, so you need to perform sensitivity analysis of p as well.

$x
$x

Utility

$6,859

�$1,331

�$125

19

�11

�5

0 0
�$141

(0.50)

A1

A2

x

�$7,600

(0.60)

�$590

(0.40)

$16

�$141

�$600

$0
(0.50)

Payoff

1/3

Payoff

10

�5

3

�2

2

0

A1

A2

p

2p

1 � p

1 � 2p

0.5

0.5
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CASE 15.1 BRAINY BUSINESS 795

While El Niño is pouring its rain on northern California, Charlotte Rothstein, CEO,
major shareholder and founder of Cerebrosoft, sits in her office, contemplating the de-
cision she faces regarding her company’s newest proposed product, Brainet. This has
been a particularly difficult decision. Brainet might catch on and sell very well. How-
ever, Charlotte is concerned about the risk involved. In this competitive market, mar-
keting Brainet also could lead to substantial losses. Should she go ahead anyway and
start the marketing campaign? Or just abandon the product? Or perhaps buy additional
marketing research information from a local market research company before decid-
ing whether to launch the product? She has to make a decision very soon and so, as
she slowly drinks from her glass of high protein-power multivitamin juice, she reflects
on the events of the past few years.

Cerebrosoft was founded by Charlotte and two friends after they had graduated
from business school. The company is located in the heart of Silicon Valley. Charlotte
and her friends managed to make money in their second year in business and contin-
ued to do so every year since. Cerebrosoft was one of the first companies to sell soft-
ware over the World Wide Web and to develop PC-based software tools for the multi-
media sector. Two of the products generate 80 percent of the company’s revenues:
Audiatur and Videatur. Each product has sold more than 100,000 units during the past
year. Business is done over the Web: customers can download a trial version of the
software, test it, and if they are satisfied with what they see, they can purchase the
product (by using a password that enables them to disable the time counter in the trial
version). Both products are priced at $75.95 and are exclusively sold over the Web.

Although the World Wide Web is a network of computers of different types, run-
ning different kinds of software, a standardized protocol between the computers en-
ables them to communicate. Users can “surf” the Web and visit computers many thou-
sand miles away, accessing information available at the site. Users can also make files
available on the Web, and this is how Cerebrosoft generates its sales. Selling software
over the Web eliminates many of the traditional cost factors of consumer products:
packaging, storage, distribution, sales force, etc. Instead, potential customers can down-
load a trial version, take a look at it (that is, use the product) before its trial period ex-
pires, and then decide whether to buy it. Furthermore, Cerebrosoft can always make
the most recent files available to the customer, avoiding the problem of having out-
dated software in the distribution pipeline.

Charlotte is interrupted in her thoughts by the arrival of Jeannie Korn. Jeannie is
in charge of marketing for on-line products and Brainet has had her particular atten-
tion from the beginning. She is more than ready to provide the advice that Charlotte
has requested. “Charlotte, I think we should really go ahead with Brainet. The soft-
ware engineers have convinced me that the current version is robust and we want to
be on the market with this as soon as possible! From the data for our product launches
during the past two years we can get a rather reliable estimate of how the market will
respond to the new product, don’t you think? And look!” She pulls out some presen-
tation slides. “During that time period we launched 12 new products altogether and 4
of them sold more than 30,000 units during the first 6 months alone! Even better: the
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last two we launched even sold more than 40,000 copies during the first two quarters!”
Charlotte knows these numbers as well as Jeannie does. After all, two of these launches
have been products she herself helped to develop. But she feels uneasy about this par-
ticular product launch. The company has grown rapidly during the past three years and
its financial capabilities are already rather stretched. A poor product launch for Brainet
would cost the company a lot of money, something that isn’t available right now due
to the investments Cerebrosoft has recently made.

Later in the afternoon, Charlotte meets with Reggie Ruffin, a jack-of-all-trades and
the production manager. Reggie has a solid track record in his field and Charlotte wants
his opinion on the Brainet project.

“Well, Charlotte, quite frankly I think that there are three main factors that are rel-
evant to the success of this project: competition, units sold, and cost—ah, and of course
our pricing. Have you decided on the price yet?”

“I am still considering which of the three strategies would be most beneficial to
us. Selling for $50.00 and trying to maximize revenues—or selling for $30.00 and 
trying to maximize market share. Of course, there is still your third alternative; we
could sell for $40.00 and try to do both.”

At this point Reggie focuses on the sheet of paper in front of him. “And I still be-
lieve that the $40.00 alternative is the best one. Concerning the costs, I checked the
records; basically we have to amortize the development costs we incurred for Brainet.
So far we have spent $800,000 and we expect to spend another $50,000 per year for
support and shipping the CDs to those who want a hardcopy on top of their down-
loaded software.” Reggie next hands a report to Charlotte. “Here we have some data
on the industry. I just received that yesterday, hot off the press. Let’s see what we can
learn about the industry here.” He shows Charlotte some of the highlights. Reggie then
agrees to compile the most relevant information contained in the report and have it
ready for Charlotte the following morning. It takes him long into the night to gather
the data from the pages of the report, but in the end he produces three tables, one for
each of the three alternative pricing strategies. Each table shows the corresponding
probability of various amounts of sales given the level of competition (high, medium,
or low) that develops from other companies.

The next morning Charlotte is sipping from another power drink. Jeannie and Reg-
gie will be in her office any moment now and, with their help, she will have to decide
what to do with Brainet. Should they launch the product? If so, at what price?
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TABLE 1 Probability distribution of unit sales, given a high price ($50)

Level of Competition

Sales High Medium Low

50,000 units 0.2 0.25 0.3
30,000 units 0.25 0.3 0.35
20,000 units 0.55 0.45 0.35



When Jeannie and Reggie enter the office, Jeannie immediately bursts out: “Guys,
I just spoke to our marketing research company. They say that they could do a study
for us about the competitive situation for the introduction of Brainet and deliver the
results within a week.”

“How much do they want for the study?”
“I knew you’d ask that, Reggie. They want $10,000 and I think it’s a fair deal.”
At this point Charlotte steps into the conversation. “Do we have any data on the

quality of the work of this marketing research company?”
“Yes, I do have some reports here. After analyzing them, I have come to the con-

clusion that the marketing research company is not very good in predicting the com-
petitive environment for medium or low pricing. Therefore, we should not ask them to
do the study for us if we decide on one of these two pricing strategies. However, in
the case of high pricing, they do quite well: given that the competition turned out to
be high, they predicted it correctly 80 percent of the time, while 15 percent of the time
they predicted medium competition in that setting. Given that the competition turned
out to be medium, they predicted high competition 15 percent of the time and medium
competition 80 percent of the time. Finally, for the case of low competition, the num-
bers were 90 percent of the time a correct prediction, 7 percent of the time a ‘medium’
prediction and 3 percent of the time a ‘high’ prediction.”

Charlotte feels that all these numbers are too much for her. “Don’t we have a sim-
ple estimate of how the market will react?”

“Some prior probabilities, you mean? Sure, from our past experience, the likeli-
hood of facing high competition is 20 percent, whereas it is 70 percent for medium
competition and 10 percent for low competition,” Jeannie has her numbers always ready
when needed.

All that is left to do now is to sit down and make sense of all this. . . . 
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TABLE 2 Probability distribution of unit sales, given a medium price ($40)

Level of Competition

Sales High Medium Low

50,000 units 0.25 0.30 0.40
30,000 units 0.35 0.40 0.50
20,000 units 0.40 0.30 0.10

TABLE 3 Probability distribution of unit sales, given a low price ($30)

Level of Competition

Sales High Medium Low

50,000 units 0.35 0.40 0.50
30,000 units 0.40 0.50 0.45
20,000 units 0.25 0.10 0.05



(a) For the initial analysis, ignore the opportunity of obtaining more information by hiring the
marketing research company. Identify the alternative actions and the states of nature. Con-
struct the payoff table. Then formulate the decision problem in a decision tree. Clearly dis-
tinguish between decision and chance forks and include all the relevant data.

(b) What is Charlotte’s decision if she uses the maximum likelihood criterion? The maximin
payoff criterion?

(c) What is Charlotte’s decision if she uses Bayes’ decision rule?
(d) Now consider the possibility of doing the market research. Develop the corresponding de-

cision tree. Calculate the relevant probabilities and analyze the decision tree. Should Cere-
brosoft pay the $10,000 for the marketing research? What is the overall optimal policy?
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On a sunny May morning, Marc Binton, CEO of Bay Area Automobile Gadgets
(BAAG), enters the conference room on the 40th floor of the Gates building in San
Francisco, where BAAG’s offices are located. The other executive officers of the com-
pany have already gathered. The meeting has only one item on its agenda: planning a
research and development project to develop a new driver support system (DSS). Brian
Huang, Manager of Research and Development, is walking around nervously. He has
to inform the group about the R&D strategy he has developed for the DSS. Marc has
identified DSS as the strategic new product for the company. Julie Aker, Vice Presi-
dent of Marketing, will speak after Brian. She will give detailed information about the
target segment, expected sales, and marketing costs associated with the introduction of
the DSS.

BAAG builds electronic nonaudio equipment for luxury cars. Founded by a group
of Stanford graduates, the company sold its first product—a car routing system rely-
ing on a technology called global positioning satellites (GPS)—a few years ago. Such
routing systems help drivers to find directions to their desired destinations using satel-
lites to determine the exact position of the car. To keep up with technology and to meet
the wishes of their customers, the company has added a number of new features to its
router during the last few years. The DSS will be a completely new product, incorpo-
rating recent developments in GPS as well as voice recognition and display technolo-
gies. Marc strongly supports this product, as it will give BAAG a competitive advan-
tage over its Asian and European competitors.

Driver support systems have been a field of intense research for more than a decade.
These systems provide the driver with a wide range of information, such as directions,
road conditions, traffic updates, etc. The information exchange can take place verbally
or via projection of text onto the windscreen. Other features help the driver avoid ob-
stacles that have been identified by cars ahead on the road (these cars transmit the in-
formation to the following vehicles). Marc wants to incorporate all these features and
other technologies into one support system that would then be sold to BAAG’s cus-
tomers in the automobile industry.
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After all the attendees have taken their seats, Brian starts his presentation: “Marc
asked me to inform you about our efforts with the driver support system, particularly
the road scanning device. We have reached a stage where we basically have to make
a go or no-go decision concerning the research for this device, which, as you all
know by now, is a key feature in the DSS. We have already integrated the other de-
vices, such as the PGS-based positioning and direction system. The question we have
to deal with is whether to fund basic research into the road scanning device. If this
research were successful, we then would have to decide if we want to develop a prod-
uct based on these results—or if we just want to sell the technology without devel-
oping a product. If we do decide to develop the product ourselves, there is a chance
that the product development process might not be successful. In that case, we could
still sell the technology. In the case of successful product development, we would
have to decide whether to market the product. If we decide not to market the devel-
oped product, we could at least sell the product concept that was the result of our
successful research and development efforts. Doing so would earn more than just
selling the technology prematurely. If, on the other hand, we decide to market the
driver support system, then we are faced with the uncertainty of how the product will
be received by our customers.”

“You completely lost me.” snipes Marc.
Max, Julie’s assistant, just shakes his head and murmurs, “those techno-nerds. . . .”
Brian starts to explain: “Sorry for the confusion. Let’s just go through it again,

step by step.”
“Good idea—and perhaps make smaller steps!” Julie obviously dislikes Brian’s

style of presentation.
“OK, the first decision we are facing is whether to invest in research for the road

scanning device.”
“How much would that cost us?” asks Marc.
“Our estimated budget for this is $300,000. Once we invest that money, the out-

come of the research effort is somewhat uncertain. Our engineers assess the probabil-
ity of successful research at 80 percent.”

“That’s a pretty optimistic success rate, don’t you think?” Julie remarks sarcasti-
cally. She still remembers the disaster with Brian’s last project, the fingerprint-based
car security system. After spending half a million dollars, the development engineers
concluded that it would be impossible to produce the security system at an attractive
price.

Brian senses Julie’s hostility and shoots back: “In engineering we are quite ac-
customed to these success rates—something we can’t say about marketing. . . .”

“What would be the next step?” intervenes Marc.
“Hm, sorry. If the research is not successful, then we can only sell the DSS in its

current form.”
“The profit estimate for that scenario is $2 million,” Julie throws in.
“If, however, the research effort is successful, then we will have to make another

decision, namely, whether to go on to the development stage.”
“If we wouldn’t want to develop a product at that point, would that mean that we

would have to sell the DSS as it is now?” asks Max.
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“Yes, Max. Except that additionally we would earn some $200,000 from selling
our research results to GM. Their research division is very interested in our work and
they have offered me that money for our findings.”

“Ah, now that’s good news,” remarks Julie.
Brian continues, “If, however, after successfully completing the research stage, we

decide to develop a new product then we’ll have to spend another $800,000 for that
task, at a chance of 35 percent of not being successful.”

“So you are telling us we’ll have to spend $800,000 for a ticket in a lottery where
we have a 35 percent chance of not winning anything?” asks Julie.

“Julie, don’t focus on the losses, but on the potential gains! The chance of win-
ning in this lottery, as you call it, is 65 percent. I believe that that’s much more than
with a normal lottery ticket,” says Marc.

“Thanks, Marc,” says Brian. “Once we invest that money in development, we have
two possible outcomes: either we will be successful in developing the road scanning
device or we won’t. If we fail, then once again we’ll sell the DSS in its current form
and cash in the $200,000 from GM for the research results. If the development process
is successful, then we have to decide whether to market the new product.”

“Why wouldn’t we want to market it after successfully developing it?” asks Marc.
“That’s a good question. Basically what I mean is that we could decide not to sell

the product ourselves but instead give the right to sell it to somebody else, to GM, for
example. They would pay us $1 million for it.”

“I like those numbers!” remarks Julie.
“Once we decide to build the product and market it, we will face the market un-

certainties and I’m sure that Julie has those numbers ready for us. Thanks.”
At this point, Brian sits down and Julie comes forward to give her presentation.

Immediately some colorful slides are projected on the wall behind her as Max oper-
ates the computer.

“Thanks, Brian. Well, here’s the data we have been able to gather from some
marketing research. The acceptance of our new product in the market can be high,
medium, or low,” Julie is pointing to some figures projected on the wall behind her.
“Our estimates indicate that high acceptance would result in profits of $8.0 million,
and that medium acceptance would give us $4.0 million. In the unfortunate case of
a poor reception by our customers, we still expect $2.2 million in profit. I should
mention that these profits do not include the additional costs of marketing or R&D
expenses.”

“So, you are saying that in the worst case we’ll make barely more money than
with the current product?” asks Brian.

“Yes, that’s what I am saying.”
“What budget would you need for the marketing of our DSS with the road scan-

ner?” asks Marc.
“For that we would need an additional $200,000 on top of what has already been

included in the profit estimates,” Julie replies.
“What are the chances of ending up with a high, medium, or low acceptance of

the new DSS?” asks Brian.
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“We can see those numbers at the bottom of the slide,” says Julie, while she is
turning toward the projection behind her. There is a 30 percent chance of high market
acceptance and a 20 percent chance of low market acceptance.

At this point, Marc moves in his seat and asks: “Given all these numbers and bits
of information, what are you suggesting that we do?”

(a) Organize the available data on cost and profit estimates in a table.
(b) Formulate the problem in a decision tree. Clearly distinguish between decision and chance

forks.
(c) Calculate the expected payoffs for each fork in the decision tree.
(d) What is BAAG’s optimal policy according to Bayes’ decision rule?
(e) What would be the expected value of perfect information on the outcome of the research

effort?
(f) What would be the expected value of perfect information on the outcome of the develop-

ment effort?
(g) Marc is a risk-averse decision maker. In a number of interviews, his utility function for

money was assessed to be

u(M) � ,

where M is the company’s net profit in units of hundreds of thousands of dollars (e.g., M �
8 would imply a net profit of $800,000). Using Marc’s utility function, calculate the utility
for each terminal branch of the decision tree.

(h) Determine the expected utilities for all forks in the decision tree.
(i) Based on Marc’s utility function, what is BAAG’s optimal policy?
(j) Based on Marc’s utility function, what would be the expected value of perfect information

on the outcome of the research effort?
(k) Based on Marc’s utility function, what would be the expected value of perfect information

on the outcome of the development effort?

1 � e��
1
M

2
�

�
1 � e��

1
1
2
�

CASE 15.2 SMART STEERING SUPPORT 801



802

16
Markov Chains

The preceding chapter focused on decision making in the face of uncertainty about one
future event (learning the true state of nature). However, some decisions need to take into
account uncertainty about many future events. We now begin laying the groundwork for
decision making in this broader context.

In particular, this chapter presents probability models for processes that evolve over
time in a probabilistic manner. Such processes are called stochastic processes. After briefly
introducing general stochastic processes in the first section, the remainder of the chapter
focuses on a special kind called a Markov chain. Markov chains have the special prop-
erty that probabilities involving how the process will evolve in the future depend only on
the present state of the process, and so are independent of events in the past. Many
processes fit this description, so Markov chains provide an especially important kind of
probability model.

A stochastic process is defined to be an indexed collection of random variables {Xt},
where the index t runs through a given set T. Often T is taken to be the set of non-
negative integers, and Xt represents a measurable characteristic of interest at time t.
For example, Xt might represent the inventory level of a particular product at the end
of week t.

Stochastic processes are of interest for describing the behavior of a system operating
over some period of time. A stochastic process often has the following structure.

The current status of the system can fall into any one of M � 1 mutually exclusive cate-
gories called states. For notational convenience, these states are labeled 0, 1, . . . , M. The
random variable Xt represents the state of the system at time t, so its only possible values
are 0, 1, . . . , M. The system is observed at particular points of time, labeled 
t � 0, 1, 2, . . . . Thus, the stochastic process {Xt} � {X0, X1, X2, . . .} provides a math-
ematical representation of how the status of the physical system evolves over time.

This kind of process is referred to as being a discrete time stochastic process with a finite
state space. Except for Sec. 16.8, this will be the only kind of stochastic process consid-
ered in this chapter. (Section 16.8 describes a certain continuous time stochastic process.)
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An Inventory Example

Consider the following inventory problem. A camera store stocks a particular model cam-
era that can be ordered weekly. Let D1, D2, . . . represent the demand for this camera (the
number of units that would be sold if the inventory is not depleted) during the first week,
second week, . . . , respectively. It is assumed that the Di are independent and identically
distributed random variables having a Poisson distribution with a mean of 1. Let X0 rep-
resent the number of cameras on hand at the outset, X1 the number of cameras on hand
at the end of week 1, X2 the number of cameras on hand at the end of week 2, and so on.
Assume that X0 � 3. On Saturday night the store places an order that is delivered in time
for the next opening of the store on Monday. The store uses the following order policy:
If there are no cameras in stock, the store orders 3 cameras. However, if there are any
cameras in stock, no order is placed. Sales are lost when demand exceeds the inventory
on hand. Thus, {Xt} for t � 0, 1, . . . is a stochastic process of the form just described.
The possible states of the process are the integers 0, 1, 2, 3, representing the possible num-
ber of cameras on hand at the end of the week. The random variables Xt are dependent
and may be evaluated iteratively by the expression

Xt�1 � �
for t � 0, 1, 2, . . . .

This example is used for illustrative purposes throughout many of the following sec-
tions. Section 16.2 further defines the particular type of stochastic process considered in
this chapter.

if Xt � 0
if Xt � 1,

max{3 � Dt�1, 0}
max{Xt � Dt�1, 0}
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Assumptions regarding the joint distribution of X0, X1, . . . are necessary to obtain ana-
lytical results. One assumption that leads to analytical tractability is that the stochastic
process is a Markov chain, which has the following key property:

A stochastic process {Xt} is said to have the Markovian property if P{Xt�1 � jX0 �
k0, X1 � k1, . . . , Xt�1 � kt�1, Xt � i} � P{Xt�1 � jXt � i}, for t � 0, 1, . . . and every
sequence i, j, k0, k1, . . . , kt�1.

In words, this Markovian property says that the conditional probability of any future
“event,” given any past “event” and the present state Xt � i, is independent of the past
event and depends only upon the present state.

A stochastic process {Xt} (t � 0, 1, . . .) is a Markov chain if it has the Markovian
property.

The conditional probabilities P{Xt�1 � jXt � i} for a Markov chain are called (one-
step) transition probabilities. If, for each i and j,

P{Xt�1 � jXt � i} � P{X1 � jX0 � i}, for all t � 1, 2, . . . ,

then the (one-step) transition probabilities are said to be stationary. Thus, having sta-
tionary transition probabilities implies that the transition probabilities do not change
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over time. The existence of stationary (one-step) transition probabilities also implies that,
for each i, j, and n (n � 0, 1, 2, . . .),

P{Xt�n � jXt � i} � P{Xn � jX0 � i}

for all t � 0, 1, . . . . These conditional probabilities are called n-step transition proba-
bilities.

To simplify notation with stationary transition probabilities, let

pij � P{Xt�1 � jXt � i},

pij
(n) � P{Xt�n � jXt � i}.

Thus, the n-step transition probability pij
(n) is just the conditional probability that the sys-

tem will be in state j after exactly n steps (time units), given that it starts in state i at any
time t. When n � 1, note that pij

(1) � pij.
1

Because the pij
(n) are conditional probabilities, they must be nonnegative, and since

the process must make a transition into some state, they must satisfy the properties

pij
(n) � 0, for all i and j; n � 0, 1, 2, . . . ,

and

�
M

j�0
pij

(n) � 1 for all i; n � 0, 1, 2, . . . .

A convenient way of showing all the n-step transition probabilities is the matrix form
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State 0 1 … M

0 p00
(n) p01

(n) … p(n)
0M

1 p10
(n) p11

(n) … p(n)
1M

P(n) � � , for n � 0, 1, 2, . . .

M p(n)
M0 p(n)

M1 … p(n)
MM

…………………………

or, equivalently, the n-step transition matrix

State 0 1 … M

P(n) �

Note that the transition probability in a particular row and column is for the transition
from the row state to the column state. When n � 1, we drop the superscript n and sim-
ply refer to this as the transition matrix.








p(n)
0M

p(n)
1M

…
p(n)

MM

…
…
…
…

p01
(n)

p11
(n)

…
p(n)

M1

p00
(n)

p10
(n)

…
p(n)

M0








0

1

�

M

1For n � 0, pij
(0) is just P{X0 � jX0 � i} and hence is 1 when i � j and is 0 when i � j.



The Markov chains to be considered in this chapter have the following properties:

1. A finite number of states.
2. Stationary transition probabilities.

We also will assume that we know the initial probabilities P{X0 � i} for all i.

Formulating the Inventory Example as a Markov Chain

Returning to the inventory example developed in the preceding section, recall that Xt is
the number of cameras in stock at the end of week t (before ordering any more), where
Xt represents the state of the system at time t. Given that the current state is Xt � i, the
expression at the end of Sec. 16.1 indicates that Xt�1 depends only on Dt�1 (the demand
in week t � 1) and Xt. Since Xt�1 is independent of any past history of the inventory sys-
tem, the stochastic process {Xt} (t � 0, 1, . . .) has the Markovian property and so is a
Markov chain.

Now consider how to obtain the (one-step) transition probabilities, i.e., the elements
of the (one-step) transition matrix

P �

given that Dt�1 has a Poisson distribution with a mean of 1. Thus,

P{Dt�1 � n} � �
(1)

n

ne
!

�1

�, for n � 0, 1, . . . ,

so

P{Dt�1 � 0} � e�1 � 0.368,
P{Dt�1 � 1} � e�1 � 0.368,

P{Dt�1 � 2} � �
1
2

�e�1 � 0.184,

P{Dt�1 � 3} � 1 � P{Dt�1 � 2} � 1 � (0.368 � 0.368 � 0.184) � 0.080.

For the first row of P, we are dealing with a transition from state Xt � 0 to some state
Xt�1. As indicated at the end of Sec. 16.1,

Xt�1 � max{3 � Dt�1, 0} if Xt � 0.

Therefore, for the transition to Xt�1 � 3 or Xt�1 � 2 or Xt�1 � 1,

p03 � P{Dt�1 � 0} � 0.368,
p02 � P{Dt�1 � 1} � 0.368,
p01 � P{Dt�1 � 2} � 0.184.








3

p03

p13

p23

p33

2

p02

p12

p22

p32

1

p01

p11

p21

p31

0

p00

p10

p20

p30








State

0

1

2

3
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A transition from Xt � 0 to Xt�1 � 0 implies that the demand for cameras in week t � 1
is 3 or more after 3 cameras are added to the depleted inventory at the beginning of the
week, so

p00 � P{Dt�1 � 3} � 0.080.

For the other rows of P, the formula at the end of Sec. 16.1 for the next state is

Xt�1 � max {Xt � Dt�1, 0} if Xt�1 � 1.

This implies that Xt�1 � Xt, so p12 � 0, p13 � 0, and p23 � 0. For the other transitions,

p11 � P{Dt�1 � 0} � 0.368,
p10 � P{Dt�1 � 1) � 1 � P{Dt�1 � 0} � 0.632,
p22 � P{Dt�1 � 0} � 0.368,
p21 � P{Dt�1 � 1} � 0.368,
p20 � P{Dt�1 � 2} � 1 � P{Dt�1 � 1} � 1 � (0.368 � 0.368) � 0.264.

For the last row of P, week t � 1 begins with 3 cameras in inventory, so the calculations
for the transition probabilities are exactly the same as for the first row. Consequently, the
complete transition matrix is

P �

The information given by this transition matrix can also be depicted graphically with
the state transition diagram in Fig. 16.1. The four possible states for the number of cameras
on hand at the end of a week are represented by the four nodes (circles) in the diagram. The
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FIGURE 16.1
State transition diagram for
the inventory example for a
camera store.



arrows show the possible transitions from one state to another, or sometimes from a state
back to itself, when the camera store goes from the end of one week to the end of the next
week. The number next to each arrow gives the probability of that particular transition oc-
curring next when the camera store is in the state at the base of the arrow.

Additional Examples of Markov Chains

A Stock Example. Consider the following model for the value of a stock. At the end
of a given day, the price is recorded. If the stock has gone up, the probability that it will
go up tomorrow is 0.7. If the stock has gone down, the probability that it will go up to-
morrow is only 0.5. This is a Markov chain, where state 0 represents the stock’s going up
and state 1 represents the stock’s going down. The transition matrix is given by

P � � �
A Second Stock Example. Suppose now that the stock market model is changed so
that the stock’s going up tomorrow depends upon whether it increased today and yester-
day. In particular, if the stock has increased for the past two days, it will increase tomor-
row with probability 0.9. If the stock increased today but decreased yesterday, then it will
increase tomorrow with probability 0.6. If the stock decreased today but increased yes-
terday, then it will increase tomorrow with probability 0.5. Finally, if the stock decreased
for the past two days, then it will increase tomorrow with probability 0.3. If we define
the state as representing whether the stock goes up or down today, the system is no longer
a Markov chain. However, we can transform the system to a Markov chain by defining
the states as follows:1

State 0: The stock increased both today and yesterday.
State 1: The stock increased today and decreased yesterday.
State 2: The stock decreased today and increased yesterday.
State 3: The stock decreased both today and yesterday.

This leads to a four-state Markov chain with the following transition matrix:

P �

A Gambling Example. Another example involves gambling. Suppose that a player
has $1 and with each play of the game wins $1 with probability p 	 0 or loses $1 with
probability 1 � p. The game ends when the player either accumulates $3 or goes broke.
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1This example demonstrates that Markov chains are able to incorporate arbitrary amounts of history, but at the
cost of significantly increasing the number of states.



This game is a Markov chain with the states representing the player’s current holding of
money, that is, 0, $1, $2, or $3, and with the transition matrix given by

P �

Note that in both the inventory and gambling examples, the numeric labeling of the
states that the process reaches coincides with the physical expression of the system—i.e.,
actual inventory levels and the player’s holding of money, respectively—whereas the nu-
meric labeling of the states in the stock examples has no physical significance.








3

0

0

p

1

2

0

p

0

0

1

0

0

1 � p

0

0

1

1 � p

0

0








State

0

1

2

3

808 16 MARKOV CHAINS

1These equations also hold in a trivial sense when m � 0 or m � n, but m � 1, 2, . . . , n � 1 are the only in-
teresting cases.

Section 16.2 introduced the n-step transition probability pij
(n). The following Chapman-

Kolmogorov equations provide a method for computing these n-step transition probabilities:

pij
(n) � �

M

k�0
pik

(m)pkj
(n�m), for all i � 0, 1, . . . , M,

j � 0, 1, . . . , M,
and any m � 1, 2, . . . , n � 1,

n � m � 1, m � 2, . . . .1

These equations point out that in going from state i to state j in n steps, the process
will be in some state k after exactly m (less than n) states. Thus, pik

(m) pkj
(n�m) is just the

conditional probability that, given a starting point of state i, the process goes to state k af-
ter m steps and then to state j in n � m steps. Therefore, summing these conditional prob-
abilities over all possible k must yield pij

(n). The special cases of m � 1 and m � n � 1
lead to the expressions

pij
(n) � �

M

k�0
pikpkj

(n�1)

and

pij
(n) � �

M

k�0
pik

(n�1)pkj,

for all states i and j. These expressions enable the n-step transition probabilities to be ob-
tained from the one-step transition probabilities recursively. This recursive relationship is
best explained in matrix notation (see Appendix 4). For n � 2, these expressions become

pij
(2) � �

M

k�0
pikpkj, for all states i and j,
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where the pij
(2) are the elements of a matrix P(2). Also note that these elements are obtained

by multiplying the matrix of one-step transition probabilities by itself; i.e.,

P(2) � P � P � P2.

In the same manner, the above expressions for pij
(n) when m � 1 and m � n � 1 indicate

that the matrix of n-step transition probabilities is

P(n) � PP(n�1) � P(n�1)P
� PPn�1 � Pn�1P
� Pn.

Thus, the n-step transition probability matrix Pn can be obtained by computing the nth
power of the one-step transition matrix P.

n-Step Transition Matrices for the Inventory Example

Returning to the inventory example, its one-step transition matrix P obtained in Sec. 16.2
can now be used to calculate the two-step transition matrix P(2) as follows:

P(2) � P2 �

� .

For example, given that there is one camera left in stock at the end of a week, the proba-
bility is 0.283 that there will be no cameras in stock 2 weeks later, that is, p10

(2) � 0.283.
Similarly, given that there are two cameras left in stock at the end of a week, the proba-
bility is 0.097 that there will be three cameras in stock 2 weeks later, that is, p23

(2) � 0.097.
The four-step transition matrix can also be obtained as follows:

P(4) � P4 � P(2) 
 P(2)

�

� .

For example, given that there is one camera left in stock at the end of a week, the prob-
ability is 0.282 that there will be no cameras in stock 4 weeks later, that is, p10

(4) � 0.282.
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Similarly, given that there are two cameras left in stock at the end of a week, the proba-
bility is 0.171 there will be three cameras in stock 4 weeks later, that is, p23

(4) � 0.171.
Your OR Courseware includes a routine for calculating P(n) � Pn for any positive in-

teger n � 99.

Unconditional State Probabilities

Recall that one- or n-step transition probabilities are conditional probabilities; for exam-
ple, P{Xn � jX0 � i} � pij

(n). If the unconditional probability P{Xn � j} is desired, it is
necessary to specify the probability distribution of the initial state, namely, P{X0 � i} for
i � 0, 1, . . . , M. Then

P{Xn � j} � P{X0 � 0} p0j
(n) � P{X0 � 1}p1j

(n) � 


 � P{X0 � M}pMj
(n).

In the inventory example, it was assumed that initially there were 3 units in stock,
that is, X0 � 3. Thus, P{X0 � 0} � P{X0 � 1} � P{X0 � 2} � 0 and P{X0 � 3} � 1.
Hence, the (unconditional) probability that there will be three cameras in stock 2 weeks
after the inventory system began is P{X2 � 3} � (1)p33

(2) � 0.165.
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It is evident that the transition probabilities associated with the states play an important
role in the study of Markov chains. To further describe the properties of Markov chains,
it is necessary to present some concepts and definitions concerning these states.

State j is said to be accessible from state i if pij
(n) 	 0 for some n � 0. (Recall that

pij
(n) is just the conditional probability of being in state j after n steps, starting in state i.)

Thus, state j being accessible from state i means that it is possible for the system to en-
ter state j eventually when it starts from state i. In the inventory example, pij

(2) 	 0 for all
i and j, so every state is accessible from every other state. In general, a sufficient condi-
tion for all states to be accessible is that there exists a value of n for which pij

(n) 	 0 for
all i and j.

In the gambling example given at the end of Sec. 16.2, state 2 is not accessible
from state 3. This can be deduced from the context of the game (once the player reaches
state 3, the player never leaves this state), which implies that p32

(n) � 0 for all n � 0.
However, even though state 2 is not accessible from state 3, state 3 is accessible from
state 2 since, for n � 1, the transition matrix given at the end of Sec. 16.2 indicates that
p23 � p 	 0.

If state j is accessible from state i and state i is accessible from state j, then states i
and j are said to communicate. In the inventory example, all states communicate. In the
gambling example, states 2 and 3 do not. In general,

1. Any state communicates with itself (because pii
(0) � P{X0 � iX0 � i} � 1).

2. If state i communicates with state j, then state j communicates with state i.
3. If state i communicates with state j and state j communicates with state k, then state i

communicates with state k.

Properties 1 and 2 follow from the definition of states communicating, whereas property
3 follows from the Chapman-Kolmogorov equations.

16.4 CLASSIFICATION OF STATES OF A MARKOV CHAIN



As a result of these three properties of communication, the states may be partitioned
into one or more separate classes such that those states that communicate with each other
are in the same class. (A class may consist of a single state). If there is only one class,
i.e., all the states communicate, the Markov chain is said to be irreducible. In the inven-
tory example, the Markov chain is irreducible. In the first stock example in Sec. 16.2, the
Markov chain is irreducible. The gambling example contains three classes. State 0 forms
a class, state 3 forms a class, and states 1 and 2 form a class.

Recurrent States and Transient States

It is often useful to talk about whether a process entering a state will ever return to this
state. Here is one possibility.

A state is said to be a transient state if, upon entering this state, the process may never
return to this state again. Therefore, state i is transient if and only if there exists a state j
( j � i) that is accessible from state i but not vice versa, that is, state i is not accessible
from state j.

Thus, if state i is transient and the process visits this state, there is a positive probability
(perhaps even a probability of 1) that the process will later move to state j and so will
never return to state i. Consequently, a transient state will be visited only a finite number
of times.

When starting in state i, another possibility is that the process definitely will return
to this state.

A state is said to be a recurrent state if, upon entering this state, the process definitely will
return to this state again. Therefore, a state is recurrent if and only if it is not transient.

Since a recurrent state definitely will be revisited after each visit, it will be visited infi-
nitely often if the process continues forever.

If the process enters a certain state and then stays in this state at the next step, this
is considered a return to this state. Hence, the following kind of state is a special type of
recurrent state.

A state is said to be an absorbing state if, upon entering this state, the process never will
leave this state again. Therefore, state i is an absorbing state if and only if pii � 1.

We will discuss absorbing states further in Sec. 16.7.
Recurrence is a class property. That is, all states in a class are either recurrent or tran-

sient. Furthermore, in a finite-state Markov chain, not all states can be transient. There-
fore, all states in an irreducible finite-state Markov chain are recurrent. Indeed, one can
identify an irreducible finite-state Markov chain (and therefore conclude that all states are
recurrent) by showing that all states of the process communicate. It has already been
pointed out that a sufficient condition for all states to be accessible (and therefore com-
municate with each other) is that there exists a value of n for which pij

(n) 	 0 for all i and
j. Thus, all states in the inventory example are recurrent, since pij

(2) is positive for all i and
j. Similarly, the first stock example contains only recurrent states, since pij is positive for
all i and j. By calculating pij

(2) for all i and j in the second stock example in Sec. 16.2, it
follows that all states are recurrent since pij

(2) 	 0.
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As another example, suppose that a Markov chain has the following transition matrix:

P �

Note that state 2 is an absorbing state (and hence a recurrent state) because if the process
enters state 2 (row 3 of the matrix), it will never leave. State 3 is a transient state because
if the process is in state 3, there is a positive probability that it will never return. The prob-
ability is �

1
3

� that the process will go from state 3 to state 2 on the first step. Once the process
is in state 2, it remains in state 2. State 4 also is a transient state because if the process
starts in state 4, it immediately leaves and can never return. States 0 and 1 are recurrent
states. To see this, observe from P that if the process starts in either of these states, it can
never leave these two states. Furthermore, whenever the process moves from one of these
states to the other one, it always will return to the original state eventually.

Periodicity Properties

Another useful property of Markov chains is periodicities. The period of state i is defined
to be the integer t (t 	 1) such that pii

(n) � 0 for all values of n other than t, 2t, 3t, . . . and
t is the largest integer with this property. In the gambling example (end of Section 16.2),
starting in state 1, it is possible for the process to enter state 1 only at times 2, 4, . . . , so
state 1 has period 2. The reason is that the player can break even (be neither winning nor
losing) only at times 2, 4, . . . , which can be verified by calculating p11

(n) for all n and not-
ing that p11

(n) � 0 for n odd.
If there are two consecutive numbers s and s � 1 such that the process can be in state

i at times s and s � 1, the state is said to have period 1 and is called an aperiodic state.
Just as recurrence is a class property, it can be shown that periodicity is a class prop-

erty. That is, if state i in a class has period t, the all states in that class have period t. In
the gambling example, state 2 also has period 2 because it is in the same class as state 1
and we noted above that state 1 has period 2.

In a finite-state Markov chain, recurrent states that are aperiodic are called ergodic
states. A Markov chain is said to be ergodic if all its states are ergodic states.
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Steady-State Probabilities

In Sec. 16.3 the four-step transition matrix for the inventory example was obtained. It will
now be instructive to examine the eight-step transition probabilities given by the matrix

P(8) � P8 � P4 
 P4 � .
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Notice the rather remarkable fact that each of the four rows has identical entries. This im-
plies that the probability of being in state j after 8 weeks is essentially independent of the ini-
tial level of inventory. In other words, it appears that there is a limiting probability that the
system will be in each state j after a large number of transitions, and that this probability is
independent of the initial state. These properties of the long-run behavior of finite-state Markov
chains do, in fact, hold under relatively general conditions, as summarized below.

For any irreducible ergodic Markov chain, lim
n→�

pij
(n) exists and is independent of i. 

Furthermore,

lim
n→�

pij
(n) � �j 	 0,

where the �j uniquely satisfy the following steady-state equations

�j � �
M

i�0
�ipij, for j � 0, 1, . . . , M,

�
M

j�0
�j � 1.

The �j are called the steady-state probabilities of the Markov chain. The term steady-
state probability means that the probability of finding the process in a certain state, say j,
after a large number of transitions tends to the value �j, independent of the probability
distribution of the initial state. It is important to note that the steady-state probability does
not imply that the process settles down into one state. On the contrary, the process con-
tinues to make transitions from state to state, and at any step n the transition probability
from state i to state j is still pij.

The �j can also be interpreted as stationary probabilities (not to be confused with sta-
tionary transition probabilities) in the following sense. If the initial probability of being in
state j is given by �j (that is, P{X0 � j} � �j) for all j, then the probability of finding the
process in state j at time n � 1, 2, . . . is also given by �j (that is, P{Xn � j} � �j).

Note that the steady-state equations consist of M � 2 equations in M � 1 unknowns.
Because it has a unique solution, at least one equation must be redundant and can, there-
fore, be deleted. It cannot be the equation

�
M

j�0
�j � 1,

because �j � 0 for all j will satisfy the other M � 1 equations. Furthermore, the solutions
to the other M � 1 steady-state equations have a unique solution up to a multiplicative con-
stant, and it is the final equation that forces the solution to be a probability distribution.

Returning to the inventory example, we see that the steady-state equations can be ex-
pressed as

�0 � �0p00 � �1p10 � �2p20 � �3p30,
�1 � �0p01 � �1p11 � �2p21 � �3p31,
�2 � �0p02 � �1p12 � �2p22 � �3p32,
�3 � �0p03 � �1p13 � �2p23 � �3p33,

1 � �0 � �1 � �2 � �3.
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Substituting values for pij into these equations leads to the equations

�0 � 0.080�0 � 0.632�1 � 0.264�2 � 0.080�3,
�1 � 0.184�0 � 0.368�1 � 0.368�2 � 0.184�3,
�2 � 0.368�0 � 0.368�2 � 0.368�3,
�3 � 0.368�0 � 0.368�3,

1 � �0 � �1 � �2 � �3.

Solving the last four equations simultaneously provides the solution

�0 � 0.286, �1 � 0.285, �2 � 0.263, �3 � 0.166,

which is essentially the result that appears in matrix P(8). Thus, after many weeks the
probability of finding zero, one, two, and three cameras in stock tends to 0.286, 0.285,
0.263, and 0.166, respectively.

Your OR Courseware includes a routine for solving the steady-state equations to ob-
tain the steady-state probabilities.

There are other important results concerning steady-state probabilities. In particular,
if i and j are recurrent states belonging to different classes, then

pij
(n) � 0, for all n.

This result follows from the definition of a class.
Similarly, if j is a transient state, then

lim
n→�

pij
(n) � 0, for all i.

Thus, the probability of finding the process in a transient state after a large number of
transitions tends to zero.

Expected Average Cost per Unit Time

The preceding subsection dealt with finite-state Markov chains whose states were ergodic
(recurrent and aperiodic). If the requirement that the states be aperiodic is relaxed, then
the limit

lim
n→�

pij
(n)

may not exist. To illustrate this point, consider the two-state transition matrix

P � � �.

If the process starts in state 0 at time 0, it will be in state 0 at times 2, 4, 6, . . . and in
state 1 at times 1, 3, 5, . . . . Thus, p00

(n) � 1 if n is even and p00
(n) � 0 if n is odd, so that

lim
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does not exist. However, the following limit always exists for an irreducible (finite-state)
Markov chain:

lim
n→� ��

1
n

� �
n

k�1
pij

(k)� � �j,

where the �j satisfy the steady-state equations given in the preceding subsection.
This result is important in computing the long-run average cost per unit time associated

with a Markov chain. Suppose that a cost (or other penalty function) C(Xt) is incurred when
the process is in state Xt at time t, for t � 0, 1, 2, . . . . Note that C(Xt) is a random variable
that takes on any one of the values C(0), C(1), . . . , C(M) and that the function C(�) is in-
dependent of t. The expected average cost incurred over the first n periods is given by

E��
1
n

� �
n

t�1
C(Xt)�.

By using the result that

lim
n→���

1
n

� �
n

k�1
pij

(k)� � �j,

it can be shown that the (long-run) expected average cost per unit time is given by

lim
n→�

E��
1
n

� �
n

t�1
C(Xt)� � �

M

j�0
�jC( j).

To illustrate, consider the inventory example introduced in Sec. 16.1, where the so-
lution for the �j was obtained in the preceding subsection. Suppose the camera store finds
that a storage charge is being allocated for each camera remaining on the shelf at the end
of the week. The cost is charged as follows:

C(xt) �

The long-run expected average storage cost per week can then be obtained from the pre-
ceding equation, i.e.,

lim
n→�

E��
1
n

� �
n

t�1
C(Xt)� � 0.286(0) � 0.285(2) � 0.263(8) � 0.166(18) � 5.662.

Note that an alternative measure to the (long-run) expected average cost per unit time
is the (long-run) actual average cost per unit time. It can be shown that this latter mea-
sure is given by

lim
n→� ��

1
n

� �
n

t�1
C(Xt)� � �

M

j�0
�jC( j)
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for essentially all paths of the process. Thus, either measure leads to the same result. These
results can also be used to interpret the meaning of the �j. To do so, let

C(Xt) � �
The (long-run) expected fraction of times the system is in state j is then given by

lim
n→�

E��
1
n

� �
n

t�1
C(Xt)� � lim

n→�
E(fraction of times system is in state j) � �j.

Similarly, �j can also be interpreted as the (long-run) actual fraction of times that the sys-
tem is in state j.

Expected Average Cost per Unit Time for Complex Cost Functions

In the preceding subsection, the cost function was based solely on the state that the process
is in at time t. In many important problems encountered in practice, the cost may also de-
pend upon some other random variable.

For example, in the inventory example of Sec. 16.1, suppose that the costs to be con-
sidered are the ordering cost and the penalty cost for unsatisfied demand (storage costs
are so small they will be ignored). It is reasonable to assume that the number of cameras
ordered to arrive at the beginning of week t depends only upon the state of the process
Xt�1 (the number of cameras in stock) when the order is placed at the end of week 
t � 1. However, the cost of unsatisfied demand in week t will also depend upon the de-
mand Dt. Therefore, the total cost (ordering cost plus cost of unsatisfied demand) for week
t is a function of Xt�1 and Dt, that is, C(Xt�1, Dt).

Under the assumptions of this example, it can be shown that the (long-run) expected
average cost per unit time is given by

lim
n→�

E��
1
n

� �
n

t�1
C(Xt�1, Dt)� � �

M

j�0
k( j) �j,

where

k( j) � E[C( j, Dt)],

and where this latter (conditional) expectation is taken with respect to the probability dis-
tribution of the random variable Dt, given the state j. Similarly, the (long-run) actual av-
erage cost per unit time is given by

lim
n→� ��

1
n

� �
n

t�1
C(Xt�1, Dt)� � �

M

j�0
k( j)�j.

Now let us assign numerical values to the two components of C(Xt�1, Dt) in this ex-
ample, namely, the ordering cost and the penalty cost for unsatisfied demand. If z 	 0
cameras are ordered, the cost incurred is (10 � 25z) dollars. If no cameras are ordered,
no ordering cost is incurred. For each unit of unsatisfied demand (lost sales), there is a

if Xt � j
if Xt � j.

1
0
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penalty of $50. Therefore, given the ordering policy described in Sec. 16.1, the cost in
week t is given by

C(Xt�1, Dt) � �
for t � 1, 2, . . . . Hence,

C(0, Dt) � 85 � 50 max{Dt � 3, 0},

so that

k(0) � E[C(0, Dt)] � 85 � 50E(max{Dt � 3, 0})
� 85 � 50[PD(4) � 2PD(5) � 3PD(6) � 


],

where PD(i) is the probability that the demand equals i, as given by a Poisson distribu-
tion with a mean of 1, so that PD(i) becomes negligible for i larger than about 6. Since
PD(4) � 0.015, PD(5) � 0.003, and PD(6) � 0.001, we obtain k(0) � 86.2. Also using
PD(2) � 0.184 and PD(3) � 0.061, similar calculations lead to the results

k(1) � E[C(1, Dt)] � 50E(max{Dt � 1, 0})
� 50[PD(2) � 2PD(3) � 3PD(4) � 


]
� 18.4,

k(2) � E[C(2, Dt)] � 50E(max{Dt � 2, 0})
� 50[PD(3) � 2PD(4) � 3PD(5) � 


]
� 5.2,

and

k(3) � E[C(3, Dt)] � 50E(max{Dt � 3, 0})
� 50[PD(4) � 2PD(5) � 3PD(6) � 


]
� 1.2.

Thus, the (long-run) expected average cost per week is given by

�
3

j�0
k( j)�j � 86.2(0.286) � 18.4(0.285) � 5.2(0.263) � 1.2(0.166) � $31.46.

This is the cost associated with the particular ordering policy described in Sec. 16.1.
The cost of other ordering policies can be evaluated in a similar way to identify the pol-
icy that minimizes the expected average cost per week.

The results of this subsection were presented only in terms of the inventory example.
However, the (nonnumerical) results still hold for other problems as long as the follow-
ing conditions are satisfied:

1. {Xt} is an irreducible (finite-state) Markov chain.
2. Associated with this Markov chain is a sequence of random variables {Dt} which are

independent and identically distributed.
3. For a fixed m � 0, �1, �2, . . . , a cost C(Xt, Dt�m) is incurred at time t, for t � 0, 1,

2, . . . .
4. The sequence X0, X1, X2, . . . , Xt must be independent of Dt�m.

if Xt�1 � 0
if Xt�1 � 1,

10 � (25)(3) � 50 max{Dt � 3, 0}
50 max {Dt � Xt�1, 0}
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In particular, if these conditions are satisfied, then

lim
n→�

E��
1
n

� �
n

t�1
C(Xt, Dt�m)� � �

M

j�0
k( j)�j,

where

k( j) � E[C( j, Dt�m)],

and where this latter conditional expectation is taken with respect to the probability dis-
tribution of the random variable Dt, given the state j. Furthermore,

lim
n→� ��

1
n

� �
n

t�1
C(Xt, Dt�m)� � �

M

j�0
k( j)�j

for essentially all paths of the process.
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Section 16.3 dealt with finding n-step transition probabilities from state i to state j. It is
often desirable to also make probability statements about the number of transitions made
by the process in going from state i to state j for the first time. This length of time is called
the first passage time in going from state i to state j. When j � i, this first passage time
is just the number of transitions until the process returns to the initial state i. In this case,
the first passage time is called the recurrence time for state i.

To illustrate these definitions, reconsider the inventory example introduced in Sec.
16.1, where Xt is the number of cameras on hand at the end of week t, where we start
with X0 � 3. Suppose that it turns out that

X0 � 3, X1 � 2, X2 � 1, X3 � 0, X4 � 3, X5 � 1.

In this case, the first passage time in going from state 3 to state 1 is 2 weeks, the first
passage time in going from state 3 to state 0 is 3 weeks, and the recurrence time for state
3 is 4 weeks.

In general, the first passage times are random variables. The probability distributions
associated with them depend upon the transition probabilities of the process. In particu-
lar, let f ij

(n) denote the probability that the first passage time from state i to j is equal to n.
For n 	 1, this first passage time is n if the first transition is from state i to some state 
k (k � j) and then the first passage time from state k to state j is n � 1. Therefore, these
probabilities satisfy the following recursive relationships:

f ij
(1) � pij

(1) � pij,

f ij
(2) � �

k�j

pik f kj
(1),

f ij
(n) � �

k�j

pik f kj
(n�1).

Thus, the probability of a first passage time from state i to state j in n steps can be com-
puted recursively from the one-step transition probabilities.
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In the inventory example, the probability distribution of the first passage time in go-
ing from state 3 to state 0 is obtained from these recursive relationships as follows:

f 30
(1) � p30 � 0.080,

f 30
(2) � p31 f 10

(1) � p32 f 20
(1) � p33 f 30

(1)

� 0.184(0.632) � 0.368(0.264) � 0.368(0.080) � 0.243,
�

where the p3k and f k0
(1) � pk0 are obtained from the (one-step) transition matrix given in

Sec. 16.2.
For fixed i and j, the f ij

(n) are nonnegative numbers such that

�
�

n�1
f ij

(n) � 1.

Unfortunately, this sum may be strictly less than 1, which implies that a process initially
in state i may never reach state j. When the sum does equal 1, f ij

(n) (for n � 1, 2, . . .) can
be considered as a probability distribution for the random variable, the first passage time.

Although obtaining f ij
(n) for all n may be tedious, it is relatively simple to obtain the

expected first passage time from state i to state j. Denote this expectation by 
ij, which
is defined by

� if �
�

n�1
f ij

(n) � 1


ij �

�
�

n�1
nf ij

(n) if �
�

n�1
f ij

(n) � 1.

Whenever

�
�

n�1
f ij

(n) � 1,


ij uniquely satisfies the equation


ij � 1 � �
k�j

pik
kj.

This equation recognizes that the first transition from state i can be to either state j or to
some other state k. If it is to state j, the first passage time is 1. Given that the first tran-
sition is to some state k (k � j) instead, which occurs with probability pik, the conditional
expected first passage time from state i to state j is 1 � 
kj. Combining these facts, and
summing over all the possibilities for the first transition, leads directly to this equation.

For the inventory example, these equations for the 
ij can be used to compute the ex-
pected time until the cameras are out of stock, given that the process is started when three
cameras are available. This expected time is just the expected first passage time 
30. Since
all the states are recurrent, the system of equations leads to the expressions


30 � 1 � p31
10 � p32
20 � p33
30,

20 � 1 � p21
10 � p22
20 � p23
30,

10 � 1 � p11
10 � p12
20 � p13
30,
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or


30 � 1 � 0.184
10 � 0.368
20 � 0.368
30,

20 � 1 � 0.368
10 � 0.368
20,

10 � 1 � 0.368
10.

The simultaneous solution to this system of equations is


10 � 1.58 weeks,

20 � 2.51 weeks,

30 � 3.50 weeks,

so that the expected time until the cameras are out of stock is 3.50 weeks. Thus, in mak-
ing these calculations for 
30, we also obtain 
20 and 
10.

For the case of 
ij where j � i, 
ii is the expected number of transitions until the
process returns to the initial state i, and so is called the expected recurrence time for
state i. After obtaining the steady-state probabilities (�0, �1, . . . , �M) as described in the
preceding section, these expected recurrence times can be calculated immediately as


ii � �
�
1

i
�, for i � 0, 1, . . . , M.

Thus, for the inventory example, where �0 � 0.286, �1 � 0.285, �2 � 0.263, and �3 �
0.166, the corresponding expected recurrence times are


00 � �
�
1

0
� � 3.50 weeks, 
22 � �

�
1

2
� � 3.80 weeks,


11 � �
�
1

1
� � 3.51 weeks, 
33 � �

�
1

3
� � 6.02 weeks.
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It was pointed out in Sec. 16.4 that a state k is called an absorbing state if pkk � 1, so that
once the chain visits k it remains there forever. If k is an absorbing state, and the process
starts in state i, the probability of ever going to state k is called the probability of absorp-
tion into state k, given that the system started in state i. This probability is denoted by fik.

When there are two or more absorbing states in a Markov chain, and it is evident that
the process will be absorbed into one of these states, it is desirable to find these probabilities
of absorption. These probabilities can be obtained by solving a system of linear equations
that considers all the possibilities for the first transition and then, given the first transition,
considers the conditional probability of absorption into state k. In particular, if the state k is
an absorbing state, then the set of absorption probabilities fik satisfies the system of equations

fik � �
M

j�0
pij fjk, for i � 0, 1, . . . , M,

subject to the conditions

fkk � 1,
fik � 0, if state i is recurrent and i � k.
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Absorption probabilities are important in random walks. A random walk is a Markov
chain with the property that if the system is in a state i, then in a single transition the sys-
tem either remains at i or moves to one of the two states immediately adjacent to i. For
example, a random walk often is used as a model for situations involving gambling.

To illustrate, consider a gambling example similar to that presented in Sec. 16.2. How-
ever, suppose now that two players (A and B), each having $2, agree to keep playing the
game and betting $1 at a time until one player is broke. The probability of A winning a
single bet is �

1
3

�, so B wins the bet with probability �
2
3

�. The number of dollars that player A
has before each bet (0, 1, 2, 3, or 4) provides the states of a Markov chain with transition
matrix

P � .

Starting from state 2, the probability of absorption into state 0 (A losing all her money)
can be obtained from the preceding system of equations as f20 � �

1
5

�, and the probability of
A winning $4 (B going broke) is given by f24 � �

4
5

�.
There are many other situations where absorbing states play an important role. Consider

a department store that classifies the balance of a customer’s bill as fully paid (state 0), 1 to
30 days in arrears (state 1), 31 to 60 days in arrears (state 2), or bad debt (state 3). The ac-
counts are checked monthly to determine the state of each customer. In general, credit is not
extended and customers are expected to pay their bills within 30 days. Occasionally, cus-
tomers pay only portions of their bill. If this occurs when the balance is within 30 days in
arrears (state 1), the store views the customer as remaining in state 1. If this occurs when the
balance is between 31 and 60 days in arrears, the store views the customer as moving to state
1 (1 to 30 days in arrears). Customers that are more than 60 days in arrears are put into the
bad-debt category (state 3), and then bills are sent to a collection agency. After examining
data over the past several years on the month by month progression of individual customers
from state to state, the store has developed the following transition matrix:1









4

0

0

0
�
1
3

�

1

3

0

0
�
1
3

�

0

0

2

0
�
1
3

�

0
�
2
3

�

0

1

0

0
�
2
3

�

0

0

0

1
�
2
3

�

0

0

0









State

0

1

2

3

4
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State 1: 1 to 30 Days 2: 31 to 60 Days
State 0: Fully Paid in Arrears in Arrears 3: Bad Debt

0: fully paid 1 0 0 0
1: 1 to 30 days 0.7 0.2 0.1 0
in arrears

2: 31 to 60 days 0.5 0.1 0.2 0.2
in arrears

3: bad debt 0 0 0 1

1Customers who are fully paid (in state 0) and then subsequently fall into arrears on new purchases are viewed
as “new” customers who start in state 1.



Although each customer ends up in state 0 or 3, the store is interested in determining the
probability that a customer will end up as a bad debt given that the account belongs to
the 1 to 30 days in arrears state, and similarly, given that the account belongs to the 31
to 60 days in arrears state.

To obtain this information, the set of equations presented at the beginning of this section
must be solved to obtain f13 and f23. By substituting, the following two equations are obtained:

f13 � p10 f03 � p11 f13 � p12 f23 � p13 f33,
f23 � p20 f03 � p21 f13 � p22 f23 � p23 f33.

Noting that f03 � 0 and f33 � 1, we now have two equations in two unknowns, namely,

(1 � p11) f13 � p13 � p12 f23,
(1 � p22) f23 � p23 � p21 f13.

Substituting the values from the transition matrix leads to

0.8f13 � 0.1 f23,
0.8f23 � 0.2 � 0.1 f13,

and the solution is

f13 � 0.032,
f23 � 0.254.

Thus, approximately 3 percent of the customers whose accounts are 1 to 30 days in ar-
rears end up as bad debts, whereas about 25 percent of the customers whose accounts are
31 to 60 days in arrears end up as bad debts.
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In all the previous sections, we assumed that the time parameter t was discrete (that is,
t � 0, 1, 2, . . .). Such an assumption is suitable for many problems, but there are certain
cases (such as for some queueing models considered in the next chapter) where a con-
tinuous time parameter (call it t�) is required, because the evolution of the process is be-
ing observed continuously over time. The definition of a Markov chain given in Sec. 16.2
also extends to such continuous processes. This section focuses on describing these “con-
tinuous time Markov chains” and their properties.

Formulation

As before, we label the possible states of the system as 0, 1, . . . , M. Starting at time 0
and letting the time parameter t� run continuously for t� � 0, we let the random variable
X(t�) be the state of the system at time t�. Thus, X(t�) will take on one of its possible 
(M � 1) values over some interval, 0 � t� � t1, then will jump to another value over the
next interval, t1 � t� � t2, etc., where these transit points (t1, t2, . . .) are random points
in time (not necessarily integer).

Now consider the three points in time (1) t� � r (where r � 0), (2) t� � s (where 
s 	 r), and (3) t� � s � t (where t 	 0), interpreted as follows:

t� � r is a past time,
t� � s is the current time,
t� � s � t is t time units into the future.
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Therefore, the state of the system now has been observed at times t� � s and t� � r. La-
bel these states as

X(s) � i and X(r) � x(r).

Given this information, it now would be natural to seek the probability distribution of the
state of the system at time t� � s � t. In other words, what is

P{X(s � t) � jX(s) � i and X(r) � x(r)}, for j � 0, 1, . . . , M?

Deriving this conditional probability often is very difficult. However, this task is con-
siderably simplified if the stochastic process involved possesses the following key property.

A continuous time stochastic process {X(t�); t� � 0} has the Markovian property if

P{X(t � s) � jX(s) � i and X(r) � x(r)} � P{X(t � s) � jX(s) � i},

for all i, j � 0, 1, . . . , M and for all r � 0, s 	 r, and t 	 0.

Note that P{X(t � s) � jX(s) � i} is a transition probability, just like the transi-
tion probabilities for discrete time Markov chains considered in the preceding sections,
where the only difference is that t now need not be an integer.

If the transition probabilities are independent of s, so that

P{X(t � s) � jX(s) � i} � P{X(t) � jX(0) � i}

for all s 	 0, they are called stationary transition probabilities.

To simplify notation, we shall denote these stationary transition probabilities by

pij(t) � P{X(t) � jX(0) � i},

where pij(t) is referred to as the continuous time transition probability function. We
assume that

lim
t→0

pij(t) � �
Now we are ready to define the continuous time Markov chains to be considered in

this section.

A continuous time stochastic process {X(t�); t� � 0} is a continuous time Markov chain
if it has the Markovian property.

We shall restrict our consideration to continuous time Markov chains with the following
properties:

1. A finite number of states.
2. Stationary transition probabilities.

Some Key Random Variables

In the analysis of continuous time Markov chains, one key set of random variables is the
following.

Each time the process enters state i, the amount of time it spends in that state before mov-
ing to a different state is a random variable Ti, where i � 0, 1, . . . , M.

if i � j
if i � j.

1
0
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Suppose that the process enters state i at time t� � s. Then, for any fixed amount of time
t 	 0, note that Ti 	 t if and only if X(t�) � i for all t� over the interval s � t� � s � t.
Therefore, the Markovian property (with stationary transition probabilities) implies that

P{Ti 	 t � sTi 	 s} � P{Ti 	 t}.

This is a rather unusual property for a probability distribution to possess. It says that the
probability distribution of the remaining time until the process transits out of a given state
always is the same, regardless of how much time the process has already spent in that
state. In effect, the random variable is memoryless; the process forgets its history. There
is only one (continuous) probability distribution that possesses this property—the expo-
nential distribution. The exponential distribution has a single parameter, call it q, where
the mean is 1/q and the cumulative distribution function is

P{Ti � t} � 1 � e�qt, for t � 0.

(We shall describe the properties of the exponential distribution in detail in Sec. 17.4.)
This result leads to an equivalent way of describing a continuous time Markov chain:

1. The random variable Ti has an exponential distribution with a mean of 1/qi.
2. When leaving state i, the process moves to a state j with probability pij, where the pij

satisfy the conditions

pij � 0 for all i,

and

�
M

j�0
pij � 1 for all i.

3. The next state visited after state i is independent of the time spent in state i.

Just as the one-step transition probabilities played a major role in describing discrete
time Markov chains, the analogous role for a continuous time Markov chain is played by
the transition intensities.

The transition intensities are

qi � ��
d
d
t
�pii(0) � lim

t→0
�
1 �

t
pii(t)�, for i � 0, 1, 2, . . . , M,

and

qij � �
d
d
t
�pij(0) � lim

t→0
�
pij

t
(t)
� � qipij, for all j � i,

where pij(t) is the continuous time transition probability function introduced at the be-
ginning of the section and pij is the probability described in property 2 of the preceding
paragraph. Furthermore, qi as defined here turns out to still be the parameter of the ex-
ponential distribution for Ti as well (see property 1 of the preceding paragraph).

The intuitive interpretation of the qi and qij is that they are transition rates. In par-
ticular, qi is the transition rate out of state i in the sense that qi is the expected number
of times that the process leaves state i per unit of time spent in state i. (Thus, qi is the
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reciprocal of the expected time that the process spends in state i per visit to state i; that
is, qi � 1/E[Ti].) Similarly, qij is the transition rate from state i to state j in the sense that
qij is the expected number of times that the process transits from state i to state j per unit
of time spent in state i. Thus,

qi � �
j�i

qij.

Just as qi is the parameter of the exponential distribution for Ti, each qij is the param-
eter of an exponential distribution for a related random variable described below.

Each time the process enters state i, the amount of time it will spend in state i before a
transition to state j occurs (if a transition to some other state does not occur first) is a ran-
dom variable Tij, where i, j � 0, 1, . . . , M and j � i. The Tij are independent random
variables, where each Tij has an exponential distribution with parameter qij, so E[Tij] �
1/qij. The time spent in state i until a transition occurs (Ti) is the minimum (over j � i) of
the Tij. When the transition occurs, the probability that it is to state j is pij � qij/qi.

Steady-State Probabilities

Just as the transition probabilities for a discrete time Markov chain satisfy the Chapman-
Kolmogorov equations, the continuous time transition probability function also satisfies these
equations. Therefore, for any states i and j and nonnegative numbers t and s (0 � s � t),

pij(t) � �
M

k�1
pik(s)pkj(t � s).

A pair of states i and j are said to communicate if there are times t1 and t2 such that
pij(t1) 	 0 and pji(t2) 	 0. All states that communicate are said to form a class. If all
states form a single class, i.e., if the Markov chain is irreducible (hereafter assumed), then

pij(t) 	 0, for all t 	 0 and all states i and j.

Furthermore,

lim
t→�

pij(t) � �j

always exists and is independent of the initial state of the Markov chain, for j � 0, 1, . . . ,
M. These limiting probabilities are commonly referred to as the steady-state probabilities
(or stationary probabilities) of the Markov chain.

The �j satisfy the equations

�j � �
M

i�0
�ipij(t), for j � 0, 1, . . . , M and every t � 0.

However, the following steady-state equations provide a more useful system of equa-
tions for solving for the steady-state probabilities:

�jqj � �
i�j

�iqij, for j � 0, 1, . . . , M.
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and

�
M

j�0
�j � 1.

The steady-state equation for state j has an intuitive interpretation. The left-hand side
(�jqj) is the rate at which the process leaves state j, since �j is the (steady-state) proba-
bility that the process is in state j and qj is the transition rate out of state j given that the
process is in state j. Similarly, each term on the right-hand side (�iqij) is the rate at which
the process enters state j from state i, since qij is the transition rate from state i to state j
given that the process is in state i. By summing over all i � j, the entire right-hand side
then gives the rate at which the process enters state j from any other state. The overall
equation thereby states that the rate at which the process leaves state j must equal the rate
at which the process enters state j. Thus, this equation is analogous to the conservation of
flow equations encountered in many engineering and science courses.

Because each of the first M � 1 steady-state equations requires that two rates be in
balance (equal), these equations sometimes are called the balance equations.

Example. A certain shop has two identical machines that are operated continuously ex-
cept when they are broken down. Because they break down fairly frequently, the top-
priority assignment for a full-time maintenance person is to repair them whenever needed.

The time required to repair a machine has an exponential distribution with a mean of
�
1
2

� day. Once the repair of a machine is completed, the time until the next breakdown of
that machine has an exponential distribution with a mean of 1 day. These distributions are
independent.

Define the random variable X(t�) as

X(t�) � number of machines broken down at time t�,

so the possible values of X(t�) are 0, 1, 2. Therefore, by letting the time parameter t� run
continuously from time 0, the continuous time stochastic process {X(t�); t� � 0} gives the
evolution of the number of machines broken down.

Because both the repair time and the time until a breakdown have exponential distri-
butions, {X(t�); t� � 0} is a continuous time Markov chain1 with states 0, 1, 2. Conse-
quently, we can use the steady-state equations given in the preceding subsection to find
the steady-state probability distribution of the number of machines broken down. To do
this, we need to determine all the transition rates, i.e., the qi and qij for i, j � 0, 1, 2.

The state (number of machines broken down) increases by 1 when a breakdown oc-
curs and decreases by 1 when a repair occurs. Since both breakdowns and repairs occur
one at a time, q02 � 0 and q20 � 0. The expected repair time is �

1
2

� day, so the rate at which
repairs are completed (when any machines are broken down) is 2 per day, which implies
that q21 � 2 and q10 � 2. Similarly, the expected time until a particular operational ma-
chine breaks down is 1 day, so the rate at which it breaks down (when operational) is 1
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1Proving this fact requires the use of two properties of the exponential distribution discussed in Sec. 17.4 (lack
of memory and the minimum of exponentials is exponential), since these properties imply that the Tij random
variables introduced earlier do indeed have exponential distributions.



per day, which implies that q12 � 1. During times when both machines are operational,
breakdowns occur at the rate of 1 � 1 � 2 per day, so q01 � 2.

These transition rates are summarized in the rate diagram shown in Fig. 16.2. These
rates now can be used to calculate the total transition rate out of each state.

q0 � q01 � 2.
q1 � q10 � q12 � 3.
q2 � q21 � 2.

Plugging all the rates into the steady-state equations given in the preceding subsection
then yields

Balance equation for state 0: 2�0 � 2�1

Balance equation for state 1: 3�1 � 2�0 � 2�2

Balance equation for state 2: 2�2 � �1

Probabilities sum to 1: �0 � �1 � �2 � 1

Any one of the balance equations (say, the second) can be deleted as redundant, and the
simultaneous solution of the remaining equations gives the steady-state distribution as

(�0, �1, �2) � ��
2
5

�, �
2
5

�, �
1
5

��.

Thus, in the long run, both machines will be broken down simultaneously 20 percent of
the time, and one machine will be broken down another 40 percent of the time.

The next chapter (on queueing theory) features many more examples of continuous
time Markov chains. In fact, most of the basic models of queueing theory fall into this
category. The current example actually fits one of these models (the finite calling popu-
lation variation of the M/M/s model included in Sec. 17.6).
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Automatic Routines in OR Courseware:

Enter Transition Matrix
Chapman-Kolmogorov Equations
Steady-State Probabilities

See Appendix 1 for documentation of the software.

LEARNING AIDS FOR THIS CHAPTER IN YOUR OR COURSEWARE

The symbol to the left of some of the problems (or their parts) has
the following meaning.

C: Use the computer with the corresponding automatic routines
listed above (or other equivalent routines) to solve the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

16.2-1. Assume that the probability of rain tomorrow is 0.5 if it is
raining today, and assume that the probability of its being clear (no
rain) tomorrow is 0.9 if it is clear today. Also assume that these
probabilities do not change if information is also provided about
the weather before today.
(a) Explain why the stated assumptions imply that the Markovian

property holds for the evolution of the weather.
(b) Formulate the evolution of the weather as a Markov chain by

defining its states and giving its (one-step) transition matrix.

16.2-2. Consider the second version of the stock market model
presented as an example in Sec. 16.2. Whether the stock goes up
tomorrow depends upon whether it increased today and yesterday.
If the stock increased today and yesterday, it will increase tomor-
row with probability �1. If the stock increased today and decreased
yesterday, it will increase tomorrow with probability �2. If the stock
decreased today and increased yesterday, it will increase tomorrow
with probability �3. Finally, if the stock decreased today and yes-
terday, it will increase tomorrow with probability �4.
(a) Construct the (one-step) transition matrix of the Markov chain.

PROBLEMS

(b) Explain why the states used for this Markov chain cause the
mathematical definition of the Markovian property to hold even
though what happens in the future (tomorrow) depends upon
what happened in the past (yesterday) as well as the present
(today).

16.2-3. Reconsider Prob. 16.2-2. Suppose now that whether or not
the stock goes up tomorrow depends upon whether it increased to-
day, yesterday, and the day before yesterday. Can this problem be
formulated as a Markov chain? If so, what are the possible states?
Explain why these states give the process the Markovian property
whereas the states in Prob. 16.2-2 do not.

16.3-1. Reconsider Prob. 16.2-1.
C (a) Use the routine Chapman-Kolmogorov Equations in your

OR Courseware to find the n-step transition matrix P(n) for
n � 2, 5, 10, 20.

(b) The probability that it will rain today is 0.5. Use the results
from part (a) to determine the probability that it will rain n
days from now, for n � 2, 5, 10, 20.

C (c) Use the routine Steady-State Probabilities in your OR
Courseware to determine the steady-state probabilities of the
state of the weather. Describe how the probabilities in the
n-step transition matrices obtained in part (a) compare to
these steady-state probabilities as n grows large.

16.3-2. Suppose that a communications network transmits binary
digits, 0 or 1, where each digit is transmitted 10 times in succes-
sion. During each transmission, the probability is 0.99 that the digit



16.4-2. Given each of the following (one-step) transition matrices
of a Markov chain, determine the classes of the Markov chain and
whether they are recurrent.

(a) P �

(b) P �

16.4-3. Given the following (one-step) transition matrix of a
Markov chain, determine the classes of the Markov chain and
whether they are recurrent.

P �

16.4-4. Determine the period of each of the states in the Markov
chain that has the following (one-step) transition matrix.

P �

16.4-5. Consider the Markov chain that has the following (one-
step) transition matrix.

P �

(a) Determine the classes of this Markov chain and, for each class,
determine whether it is recurrent or transient.
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entered will be transmitted accurately. In other words, the proba-
bility is 0.01 that the digit being transmitted will be recorded with
the opposite value at the end of the transmission. For each trans-
mission after the first one, the digit entered for transmission is the
one that was recorded at the end of the preceding transmission. If
X0 denotes the binary digit entering the system, X1 the binary digit
recorded after the first transmission, X2 the binary digit recorded
after the second transmission, . . . , then {Xn} is a Markov chain.
(a) Construct the (one-step) transition matrix.
C (b) Use your OR Courseware to find the 10-step transition ma-

trix P(10). Use this result to identify the probability that a
digit entering the network will be recorded accurately after
the last transmission.

C (c) Suppose that the network is redesigned to improve the prob-
ability that a single transmission will be accurate from 0.99
to 0.999. Repeat part (b) to find the new probability that a
digit entering the network will be recorded accurately after
the last transmission.

16.3-3.* A particle moves on a circle through points that have been
marked 0, 1, 2, 3, 4 (in a clockwise order). The particle starts at
point 0. At each step it has probability 0.5 of moving one point
clockwise (0 follows 4) and 0.5 of moving one point counter-
clockwise. Let Xn (n � 0) denote its location on the circle after
step n. {Xn} is a Markov chain.
(a) Construct the (one-step) transition matrix.
C (b) Use your OR Courseware to determine the n-step transition

matrix P(n) for n � 5, 10, 20, 40, 80.
C (c) Use your OR Courseware to determine the steady-state prob-

abilities of the state of the Markov chain. Describe how the
probabilities in the n-step transition matrices obtained in part
(b) compare to these steady-state probabilities as n grows
large.

16.4-1.* Given the following (one-step) transition matrices of a
Markov chain, determine the classes of the Markov chain and
whether they are recurrent.
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ies. The hospital proposes a policy of receiving 1 pint at each de-
livery and using the oldest blood first. If more blood is required than
is on hand, an expensive emergency delivery is made. Blood is dis-
carded if it is still on the shelf after 21 days. Denote the state of the
system as the number of pints on hand just after a delivery. Thus,
because of the discarding policy, the largest possible state is 7.
(a) Construct the (one-step) transition matrix for this Markov

chain.
C (b) Find the steady-state probabilities of the state of the Markov

chain.
(c) Use the results from part (b) to find the steady-state probabil-

ity that a pint of blood will need to be discarded during a 3-
day period. (Hint: Because the oldest blood is used first, a pint
reaches 21 days only if the state was 7 and then D � 0.)

(d) Use the results from part (b) to find the steady-state probabil-
ity that an emergency delivery will be needed during the 3-day
period between regular deliveries.

16.5-6. A soap company specializes in a luxury type of bath soap.
The sales of this soap fluctuate between two levels—“Low” and
“High”—depending upon two factors: (1) whether they advertise,
and (2) the advertising and marketing of new products being done
by competitors. The second factor is out of the company’s control,
but it is trying to determine what its own advertising policy should
be. For example, the marketing manager’s proposal is to advertise
when sales are low but not to advertise when sales are high. Ad-
vertising in any quarter of a year has its primary impact on sales
in the following quarter. Therefore, at the beginning of each quar-
ter, the needed information is available to forecast accurately
whether sales will be low or high that quarter and to decide whether
to advertise that quarter.

The cost of advertising is $1 million for each quarter of a year
in which it is done. When advertising is done during a quarter, the
probability of having high sales the next quarter is �

1
2

� or �
3
4

�, depend-
ing upon whether the current quarter’s sales are low or high. These
probabilities go down to �

1
4

� or �
1
2

� when advertising is not done during
the current quarter. The company’s quarterly profits (excluding ad-
vertising costs) are $4 million when sales are high but only $2 mil-
lion when sales are low. (Hereafter, use units of millions of dollars.)
(a) Construct the (one-step) transition matrix for each of the fol-

lowing advertising strategies: (i) never advertise, (ii) always
advertise, (iii) follow the marketing manager’s proposal.

(b) Determine the steady-state probabilities manually for each of
the three cases in part (a).

(c) Find the long-run expected average profit (including a deduc-
tion for advertising costs) per quarter for each of the three ad-
vertising strategies in part (a). Which of these strategies is best
according to this measure of performance?

C 16.5-7. In the last subsection of Sec. 16.5, the (long-run) ex-
pected average cost per week (based on just ordering costs and un-

(b) For each of the classes identified in part (b), determine the pe-
riod of the states in that class.

16.5-1. Reconsider Prob. 16.2-1. Suppose now that the given prob-
abilities, 0.5 and 0.9, are replaced by arbitrary values, � and �, re-
spectively. Solve for the steady-state probabilities of the state of
the weather in terms of � and �.

16.5-2. A transition matrix P is said to be doubly stochastic if the
sum over each column equals 1; that is,

�
M

i�0
pij � 1, for all j.

If such a chain is irreducible, aperiodic, and consists of M � 1
states, show that

�j � �
M

1
� 1
�, for j � 0, 1, . . . , M.

16.5-3. Reconsider Prob. 16.3-3. Use the results given in Prob.
16.5-2 to find the steady-state probabilities for this Markov chain.
Then find what happens to these steady-state probabilities if, at
each step, the probability of moving one point clockwise changes
to 0.9 and the probability of moving one point counterclockwise
changes to 0.1.

C 16.5-4. The leading brewery on the West Coast (labeled A) has
hired an OR analyst to analyze its market position. It is particu-
larly concerned about its major competitor (labeled B). The ana-
lyst believes that brand switching can be modeled as a Markov
chain using three states, with states A and B representing customers
drinking beer produced from the aforementioned breweries and
state C representing all other brands. Data are taken monthly, and
the analyst has constructed the following (one-step) transition ma-
trix from past data.

830 16 MARKOV CHAINS

A B C

A 0.7 0.2 0.1
B 0.2 0.75 0.05
C 0.1 0.1 0.8

What are the steady-state market shares for the two major breweries?

16.5-5. Consider the following blood inventory problem facing a
hospital. There is need for a rare blood type, namely, type AB, Rh
negative blood. The demand D (in pints) over any 3-day period is
given by

P{D � 0} � 0.4, P{D � 1} � 0.3,
P{D � 2} � 0.2, and P{D � 3} � 0.1.

Note that the expected demand is 1 pint, since E(D) � 0.3(1) �
0.2(2) � 0.1(3) � 1. Suppose that there are 3 days between deliver-



16.5-10. An important unit consists of two components placed in
parallel. The unit performs satisfactorily if one of the two compo-
nents is operating. Therefore, only one component is operated at a
time, but both components are kept operational (capable of being
operated) as often as possible by repairing them as needed. An op-
erating component breaks down in a given period with probability
0.2. When this occurs, the parallel component takes over, if it is
operational, at the beginning of the next period. Only one compo-
nent can be repaired at a time. The repair of a component starts at
the beginning of the first available period and is completed at the
end of the next period. Let Xt be a vector consisting of two ele-
ments U and V, where U represents the number of components that
are operational at the end of period t and V represents the number
of periods of repair that have been completed on components that
are not yet operational. Thus, V � 0 if U � 2 or if U � 1 and the
repair of the nonoperational component is just getting under way.
Because a repair takes two periods, V � 1 if U � 0 (since then one
nonoperational component is waiting to begin repair while the other
one is entering its second period of repair) or if U � 1 and the non-
operational component is entering its second period of repair.
Therefore, the state space consists of the four states (2, 0), (1, 0),
(0, 1), and (1, 1). Denote these four states by 0, 1, 2, 3, respec-
tively. {Xt} (t � 0, 1, . . .) is a Markov chain (assume that X0 � 0)
with the (one-step) transition matrix

P � .

C (a) What is the probability that the unit will be inoperable (be-
cause both components are down) after n periods, for n �
2, 5, 10, 20?

C (b) What are the steady-state probabilities of the state of this
Markov chain?

(c) If it costs $30,000 per period when the unit is inoperable (both
components down) and zero otherwise, what is the (long-run)
expected average cost per period?

16.6-1. A computer is inspected at the end of every hour. It is
found to be either working (up) or failed (down). If the computer
is found to be up, the probability of its remaining up for the next
hour is 0.90. If it is down, the computer is repaired, which may re-
quire more than 1 hour. Whenever the computer is down (regard-
less of how long it has been down), the probability of its still be-
ing down 1 hour later is 0.35.
(a) Construct the (one-step) transition matrix for this Markov

chain.
(b) Use the approach described in Sec. 16.6 to find the 
ij (the ex-

pected first passage time from state i to state j) for all i and j.
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satisfied demand costs) is calculated for the inventory example of
Sec. 16.1. Suppose now that the ordering policy is changed to the
following. Whenever the number of cameras on hand at the end of
the week is 0 or 1, an order is placed that will bring this number
up to 3. Otherwise, no order is placed.

Recalculate the (long-run) expected average cost per week un-
der this new inventory policy.

16.5-8.* Consider the inventory example introduced in Sec. 16.1,
but with the following change in the ordering policy. If the num-
ber of cameras on hand at the end of each week is 0 or 1, two ad-
ditional cameras will be ordered. Otherwise, no ordering will take
place. Assume that the storage costs are the same as given in the
second subsection of Sec. 16.5.
C (a) Find the steady-state probabilities of the state of this Markov

chain.
(b) Find the long-run expected average storage cost per week.

16.5-9. Consider the following inventory policy for a certain prod-
uct. If the demand during a period exceeds the number of items
available, this unsatisfied demand is backlogged; i.e., it is filled
when the next order is received. Let Zn (n � 0, 1, . . . ) denote the
amount of inventory on hand minus the number of units backlogged
before ordering at the end of period n (Z0 � 0). If Zn is zero or
positive, no orders are backlogged. If Zn is negative, then �Zn rep-
resents the number of backlogged units and no inventory is on hand.
At the end of period n, if Zn � 1, an order is placed for 2m units,
where m is the smallest integer such that Zn � 2m � 1. Orders are
filled immediately.

Let D1, D2, . . . , be the demand for a product in periods 1,
2, . . . , respectively. Assume that the Dn are independent and iden-
tically distributed random variables taking on the values, 0, 1, 2,
3, 4, each with probability �

1
5

�. Let Xn denote the amount of stock on
hand after ordering at the end of period n (where X0 � 2), so that

Xn � � (n � 1, 2, . . .),

when {Xn} (n � 0, 1, . . . ) is a Markov chain. It has only two
states, 1 and 2, because the only time that ordering will take place
is when Zn � 0, �1, �2, or �3, in which case 2, 2, 4, and 4 units
are ordered, respectively, leaving Xn � 2, 1, 2, 1, respectively.
(a) Construct the (one-step) transition matrix.
(b) Use the steady-state equations to solve manually for the steady-

state probabilities.
(c) Now use the result given in Prob. 16.5-2 to find the steady-

state probabilities.
(d) Suppose that the ordering cost is given by (2 � 2m) if an or-

der is placed and zero otherwise. The holding cost per period
is Zn if Zn � 0 and zero otherwise. The shortage cost per pe-
riod is �4Zn if Zn � 0 and zero otherwise. Find the (long-run)
expected average cost per unit time.

if Xn�1 � Dn � 1
if Xn�1 � Dn � 1

Xn�1 � Dn � 2m
Xn�1 � Dn
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C (d) Find the steady-state probabilities of the state of this Markov
chain.

(e) Assuming that the store pays a storage cost for each camera
remaining on the shelf at the end of the week according to the
function C(0) � 0, C(1) � $2, and C(2) � $8, find the long-
run expected average storage cost per week.

16.6-5. A production process contains a machine that deteriorates
rapidly in both quality and output under heavy usage, so that it is
inspected at the end of each day. Immediately after inspection, the
condition of the machine is noted and classified into one of four
possible states:

16.6-2. A manufacturer has a machine that, when operational at
the beginning of a day, has a probability of 0.1 of breaking down
sometime during the day. When this happens, the repair is done
the next day and completed at the end of that day.
(a) Formulate the evolution of the status of the machine as a Markov

chain by identifying three possible states at the end of each day,
and then constructing the (one-step) transition matrix.

(b) Use the approach described in Sec. 16.6 to find the 
ij (the ex-
pected first passage time from state i to state j) for all i and j.
Use these results to identify the expected number of full days
that the machine will remain operational before the next break-
down after a repair is completed.

(c) Now suppose that the machine already has gone 20 full days
without a breakdown since the last repair was completed. How
does the expected number of full days hereafter that the ma-
chine will remain operational before the next breakdown com-
pare with the corresponding result from part (b) when the re-
pair had just been completed? Explain.

16.6-3. Reconsider Prob. 16.6-2. Now suppose that the manufac-
turer keeps a spare machine that only is used when the primary
machine is being repaired. During a repair day, the spare machine
has a probability of 0.1 of breaking down, in which case it is re-
paired the next day. Denote the state of the system by (x, y), where
x and y, respectively, take on the values 1 or 0 depending upon
whether the primary machine (x) and the spare machine (y) are op-
erational (value of 1) or not operational (value of 0) at the end of
the day. [Hint: Note that (0, 0) is not a possible state.]
(a) Construct the (one-step) transition matrix for this Markov

chain.
(b) Find the expected recurrence time for the state (1, 0).

16.6-4. Consider the inventory example presented in Sec. 16.1 ex-
cept that demand now has the following probability distribution:

P{D � 0} � �
1
4

�, P{D � 2} � �
1
4

�,

P{D � 1} � �
1
2

�, P{D � 3) � 0.

The ordering policy now is changed to ordering just 2 cameras at
the end of the week if none are in stock. As before, no order is
placed if there are any cameras in stock. Assume that there is one
camera in stock at the time (the end of a week) the policy is in-
stituted.
(a) Construct the (one-step) transition matrix.
C (b) Find the probability distribution of the state of this Markov

chain n weeks after the new inventory policy is instituted,
for n � 2, 5, 10.

(c) Find the 
ij (the expected first passage time from state i to
state j) for all i and j.

832 16 MARKOV CHAINS

State Condition

0 Good as new
1 Operable—minimum deterioration
2 Operable—major deterioration
3 Inoperable and replaced by a good-as-new machine

The process can be modeled as a Markov chain with its (one-step)
transition matrix P given by

C (a) Find the steady-state probabilities.
(b) If the costs of being in states 0, 1, 2, 3, are 0, $1,000, $3,000,

and $6,000, respectively, what is the long-run expected aver-
age cost per day?

(c) Find the expected recurrence time for state 0 (i.e., the expected
length of time a machine can be used before it must be re-
placed).

16.7-1. Consider the following gambler’s ruin problem. A gam-
bler bets $1 on each play of a game. Each time, he has a proba-
bility p of winning and probability q � 1 � p of losing the dollar
bet. He will continue to play until he goes broke or nets a fortune
of T dollars. Let Xn denote the number of dollars possessed by the
gambler after the nth play of the game. Then

Xn�1 � �
Xn�1 � Xn,

for 0 � Xn � T,
with probability pXn � 1

Xn � 1

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 0 �
1
2

� �
1
2

�

3 1 0 0 0

for Xn � 0 or T.

with probability q � 1 � p



16.8-1. Reconsider the example presented at the end of Sec. 16.8.
Suppose now that a third machine, identical to the first two, has
been added to the shop. The one maintenance person still must
maintain all the machines.
(a) Develop the rate diagram for this Markov chain.
(b) Construct the steady-state equations.
(c) Solve these equations for the steady-state probabilities.

16.8-2. The state of a particular continuous time Markov chain is
defined as the number of jobs currently at a certain work center,
where a maximum of three jobs are allowed. Jobs arrive individu-
ally. Whenever fewer than three jobs are present, the time until the
next arrival has an exponential distribution with a mean of �

1
2

� day.
Jobs are processed at the work center one at a time and then leave
immediately. Processing times have an exponential distribution
with a mean of �

1
4

� day.
(a) Construct the rate diagram for this Markov chain.
(b) Write the steady-state equations.
(c) Solve these equations for the steady-state probabilities.

{Xn} is a Markov chain. The gambler starts with X0 dollars, where
X0 is a positive integer less than T.
(a) Construct the (one-step) transition matrix of the Markov chain.
(b) Find the classes of the Markov chain.
(c) Let T � 3 and p � 0.3. Using the notation of Sec. 16.7, find

f10, f1T, f20, f2T.
(d) Let T � 3 and p � 0.7. Find f10, f1T, f20, f2T.

16.7-2. A video cassette recorder manufacturer is so certain of its
quality control that it is offering a complete replacement warranty
if a recorder fails within 2 years. Based upon compiled data, the
company has noted that only 1 percent of its recorders fail during
the first year, whereas 5 percent of the recorders that survive the
first year will fail during the second year. The warranty does not
cover replacement recorders.
(a) Formulate the evolution of the status of a recorder as a Markov

chain whose states include two absorption states that involve
needing to honor the warranty or having the recorder survive
the warranty period. Then construct the (one-step) transition
matrix.

(b) Use the approach described in Sec. 16.7 to find the probabil-
ity that the manufacturer will have to honor the warranty.
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17
Queueing Theory

Queues (waiting lines) are a part of everyday life. We all wait in queues to buy a movie
ticket, make a bank deposit, pay for groceries, mail a package, obtain food in a cafeteria,
start a ride in an amusement park, etc. We have become accustomed to considerable
amounts of waiting, but still get annoyed by unusually long waits.

However, having to wait is not just a petty personal annoyance. The amount of time
that a nation’s populace wastes by waiting in queues is a major factor in both the quality
of life there and the efficiency of the nation’s economy. For example, before its dissolu-
tion, the U.S.S.R. was notorious for the tremendously long queues that its citizens fre-
quently had to endure just to purchase basic necessities. Even in the United States today,
it has been estimated that Americans spend 37,000,000,000 hours per year waiting in
queues. If this time could be spent productively instead, it would amount to nearly 20 mil-
lion person-years of useful work each year!

Even this staggering figure does not tell the whole story of the impact of causing
excessive waiting. Great inefficiencies also occur because of other kinds of waiting than
people standing in line. For example, making machines wait to be repaired may result in
lost production. Vehicles (including ships and trucks) that need to wait to be unloaded
may delay subsequent shipments. Airplanes waiting to take off or land may disrupt later
travel schedules. Delays in telecommunication transmissions due to saturated lines may
cause data glitches. Causing manufacturing jobs to wait to be performed may disrupt
subsequent production. Delaying service jobs beyond their due dates may result in lost
future business.

Queueing theory is the study of waiting in all these various guises. It uses queueing
models to represent the various types of queueing systems (systems that involve queues
of some kind) that arise in practice. Formulas for each model indicate how the corre-
sponding queueing system should perform, including the average amount of waiting that
will occur, under a variety of circumstances.

Therefore, these queueing models are very helpful for determining how to operate a
queueing system in the most effective way. Providing too much service capacity to oper-
ate the system involves excessive costs. But not providing enough service capacity results
in excessive waiting and all its unfortunate consequences. The models enable finding an
appropriate balance between the cost of service and the amount of waiting.



After some general discussion, this chapter presents most of the more elementary
queueing models and their basic results. Chapter 18 discusses how the information pro-
vided by queueing theory can be used to design queueing systems that minimize the to-
tal cost of service and waiting.
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The emergency room of COUNTY HOSPITAL provides quick medical care for emergency
cases brought to the hospital by ambulance or private automobile. At any hour there is al-
ways one doctor on duty in the emergency room. However, because of a growing tendency
for emergency cases to use these facilities rather than go to a private physician, the hospi-
tal has been experiencing a continuing increase in the number of emergency room visits
each year. As a result, it has become quite common for patients arriving during peak us-
age hours (the early evening) to have to wait until it is their turn to be treated by the doc-
tor. Therefore, a proposal has been made that a second doctor should be assigned to the
emergency room during these hours, so that two emergency cases can be treated simulta-
neously. The hospital’s management engineer has been assigned to study this question.1

The management engineer began by gathering the relevant historical data and then
projecting these data into the next year. Recognizing that the emergency room is a queue-
ing system, she applied several alternative queueing theory models to predict the waiting
characteristics of the system with one doctor and with two doctors, as you will see in the
latter sections of this chapter (see Tables 17.2, 17.3, and 17.4).

17.1 PROTOTYPE EXAMPLE

The Basic Queueing Process

The basic process assumed by most queueing models is the following. Customers requir-
ing service are generated over time by an input source. These customers enter the queue-
ing system and join a queue. At certain times, a member of the queue is selected for ser-
vice by some rule known as the queue discipline. The required service is then performed
for the customer by the service mechanism, after which the customer leaves the queueing
system. This process is depicted in Fig. 17.1.

Many alternative assumptions can be made about the various elements of the queue-
ing process; they are discussed next.

Input Source (Calling Population)

One characteristic of the input source is its size. The size is the total number of customers
that might require service from time to time, i.e., the total number of distinct potential
customers. This population from which arrivals come is referred to as the calling popu-
lation. The size may be assumed to be either infinite or finite (so that the input source
also is said to be either unlimited or limited ). Because the calculations are far easier for
the infinite case, this assumption often is made even when the actual size is some rela-
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1For one actual case study of this kind, see W. Blaker Bolling, “Queueing Model of a Hospital Emergency
Room,” Industrial Engineering, September 1972, pp. 26–31.



tively large finite number; and it should be taken to be the implicit assumption for any
queueing model that does not state otherwise. The finite case is more difficult analytically
because the number of customers in the queueing system affects the number of potential
customers outside the system at any time. However, the finite assumption must be made
if the rate at which the input source generates new customers is significantly affected by
the number of customers in the queueing system.

The statistical pattern by which customers are generated over time must also be spec-
ified. The common assumption is that they are generated according to a Poisson process;
i.e., the number of customers generated until any specific time has a Poisson distribution.
As we discuss in Sec. 17.4, this case is the one where arrivals to the queueing system oc-
cur randomly but at a certain fixed mean rate, regardless of how many customers already
are there (so the size of the input source is infinite). An equivalent assumption is that the
probability distribution of the time between consecutive arrivals is an exponential distri-
bution. (The properties of this distribution are described in Sec. 17.4.) The time between
consecutive arrivals is referred to as the interarrival time.

Any unusual assumptions about the behavior of arriving customers must also be spec-
ified. One example is balking, where the customer refuses to enter the system and is lost
if the queue is too long.

Queue

The queue is where customers wait before being served. A queue is characterized by the
maximum permissible number of customers that it can contain. Queues are called infinite
or finite, according to whether this number is infinite or finite. The assumption of an in-
finite queue is the standard one for most queueing models, even for situations where there
actually is a (relatively large) finite upper bound on the permissible number of customers,
because dealing with such an upper bound would be a complicating factor in the analy-
sis. However, for queueing systems where this upper bound is small enough that it actu-
ally would be reached with some frequency, it becomes necessary to assume a finite queue.

Queue Discipline

The queue discipline refers to the order in which members of the queue are selected for
service. For example, it may be first-come-first-served, random, according to some pri-
ority procedure, or some other order. First-come-first-served usually is assumed by queue-
ing models, unless it is stated otherwise.
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FIGURE 17.1
The basic queueing process.



Service Mechanism

The service mechanism consists of one or more service facilities, each of which contains
one or more parallel service channels, called servers. If there is more than one service
facility, the customer may receive service from a sequence of these (service channels in
series). At a given facility, the customer enters one of the parallel service channels and is
completely serviced by that server. A queueing model must specify the arrangement of
the facilities and the number of servers (parallel channels) at each one. Most elementary
models assume one service facility with either one server or a finite number of servers.

The time elapsed from the commencement of service to its completion for a customer
at a service facility is referred to as the service time (or holding time). A model of a par-
ticular queueing system must specify the probability distribution of service times for each
server (and possibly for different types of customers), although it is common to assume
the same distribution for all servers (all models in this chapter make this assumption). The
service-time distribution that is most frequently assumed in practice (largely because it is
far more tractable than any other) is the exponential distribution discussed in Sec. 17.4,
and most of our models will be of this type. Other important service-time distributions
are the degenerate distribution (constant service time) and the Erlang (gamma) distribu-
tion, as illustrated by models in Sec. 17.7.

An Elementary Queueing Process

As we have already suggested, queueing theory has been applied to many different types
of waiting-line situations. However, the most prevalent type of situation is the following:
A single waiting line (which may be empty at times) forms in the front of a single ser-
vice facility, within which are stationed one or more servers. Each customer generated by
an input source is serviced by one of the servers, perhaps after some waiting in the queue
(waiting line). The queueing system involved is depicted in Fig. 17.2.
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Notice that the queueing process in the illustrative example of Sec. 17.1 is of this
type. The input source generates customers in the form of emergency cases requiring med-
ical care. The emergency room is the service facility, and the doctors are the servers.

A server need not be a single individual; it may be a group of persons, e.g., a re-
pair crew that combines forces to perform simultaneously the required service for a cus-
tomer. Furthermore, servers need not even be people. In many cases, a server can in-
stead be a machine, a vehicle, an electronic device, etc. By the same token, the customers
in the waiting line need not be people. For example, they may be items waiting for a
certain operation by a given type of machine, or they may be cars waiting in front of a
tollbooth.

It is not necessary that there actually be a physical waiting line forming in front of
a physical structure that constitutes the service facility. The members of the queue may
instead be scattered throughout an area, waiting for a server to come to them, e.g., ma-
chines waiting to be repaired. The server or group of servers assigned to a given area
constitutes the service facility for that area. Queueing theory still gives the average num-
ber waiting, the average waiting time, and so on, because it is irrelevant whether the cus-
tomers wait together in a group. The only essential requirement for queueing theory to
be applicable is that changes in the number of customers waiting for a given service oc-
cur just as though the physical situation described in Fig. 17.2 (or a legitimate counter-
part) prevailed.

Except for Sec. 17.9, all the queueing models discussed in this chapter are of the el-
ementary type depicted in Fig. 17.2. Many of these models further assume that all inter-
arrival times are independent and identically distributed and that all service times are in-
dependent and identically distributed. Such models conventionally are labeled as follows:

Distribution of service times

– / – / – Number of servers

Distribution of interarrival times,

where M � exponential distribution (Markovian), as described in Sec. 17.4,

D � degenerate distribution (constant times), as discussed in Sec. 17.7,

Ek � Erlang distribution (shape parameter � k), as described in Sec. 17.7,

G � general distribution (any arbitrary distribution allowed),1 as discussed in
Sec. 17.7.

For example, the M/M/s model discussed in Sec. 17.6 assumes that both interarrival times
and service times have an exponential distribution and that the number of servers is s (any
positive integer). The M/G/1 model discussed again in Sec. 17.7 assumes that interarrival
times have an exponential distribution, but it places no restriction on what the distribu-
tion of service times must be, whereas the number of servers is restricted to be exactly 1.
Various other models that fit this labeling scheme also are introduced in Sec. 17.7.
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1When we refer to interarrival times, it is conventional to replace the symbol G by GI � general independent
distribution.



Terminology and Notation

Unless otherwise noted, the following standard terminology and notation will be used:

State of system � number of customers in queueing system.

Queue length � number of customers waiting for service to begin

� state of system minus number of customers being served.

N(t) � number of customers in queueing system at time t (t � 0).

Pn(t) � probability of exactly n customers in queueing system at time t,
given number at time 0.

s � number of servers (parallel service channels) in queueing system.

�n � mean arrival rate (expected number of arrivals per unit time) of
new customers when n customers are in system.

�n � mean service rate for overall system (expected number of cus-
tomers completing service per unit time) when n customers are in
system. Note: �n represents combined rate at which all busy servers
(those serving customers) achieve service completions.

�, �, � � see following paragraph.

When �n is a constant for all n, this constant is denoted by �. When the mean service
rate per busy server is a constant for all n � 1, this constant is denoted by �. (In this case,
�n � s� when n � s, that is, when all s servers are busy.) Under these circumstances, 1/�
and 1/� are the expected interarrival time and the expected service time, respectively. Also,
� � �/(s�) is the utilization factor for the service facility, i.e., the expected fraction of
time the individual servers are busy, because �/(s�) represents the fraction of the system’s
service capacity (s�) that is being utilized on the average by arriving customers (�).

Certain notation also is required to describe steady-state results. When a queueing
system has recently begun operation, the state of the system (number of customers in the
system) will be greatly affected by the initial state and by the time that has since elapsed.
The system is said to be in a transient condition. However, after sufficient time has
elapsed, the state of the system becomes essentially independent of the initial state and
the elapsed time (except under unusual circumstances).1 The system has now essentially
reached a steady-state condition, where the probability distribution of the state of the
system remains the same (the steady-state or stationary distribution) over time. Queueing
theory has tended to focus largely on the steady-state condition, partially because the tran-
sient case is more difficult analytically. (Some transient results exist, but they are gener-
ally beyond the technical scope of this book.) The following notation assumes that the
system is in a steady-state condition:

Pn � probability of exactly n customers in queueing system.

L � expected number of customers in queueing system � �
�

n�0
nPn.
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tends to grow continually larger as time goes on.



Lq � expected queue length (excludes customers being served) � �
�

n�s

(n � s)Pn.

� � waiting time in system (includes service time) for each individual customer.

W � E(�).

�q � waiting time in queue (excludes service time) for each individual customer.

Wq � E(�q).

Relationships between L, W, Lq, and Wq

Assume that �n is a constant � for all n. It has been proved that in a steady-state queue-
ing process,

L � �W.

(Because John D. C. Little1 provided the first rigorous proof, this equation sometimes is
referred to as Little’s formula.) Furthermore, the same proof also shows that

Lq � �Wq.

If the �n are not equal, then � can be replaced in these equations by ��, the average
arrival rate over the long run. (We shall show later how �� can be determined for some ba-
sic cases.)

Now assume that the mean service time is a constant, 1/� for all n � 1. It then fol-
lows that

W � Wq � 	
�
1

	.

These relationships are extremely important because they enable all four of the fun-
damental quantities—L, W, Lq, and Wq—to be immediately determined as soon as one is
found analytically. This situation is fortunate because some of these quantities often are
much easier to find than others when a queueing model is solved from basic principles.
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1J. D. C. Little, “A Proof for the Queueing Formula: L � �W,” Operations Research, 9(3): 383–387, 1961; also
see S. Stidham, Jr., “A Last Word on L � �W,” Operations Research, 22(2): 417–421, 1974.

Our description of queueing systems in the preceding section may appear relatively ab-
stract and applicable to only rather special practical situations. On the contrary, queueing
systems are surprisingly prevalent in a wide variety of contexts. To broaden your horizons
on the applicability of queueing theory, we shall briefly mention various examples of real
queueing systems.

One important class of queueing systems that we all encounter in our daily lives is
commercial service systems, where outside customers receive service from commercial
organizations. Many of these involve person-to-person service at a fixed location, such as
a barber shop (the barbers are the servers), bank teller service, checkout stands at a gro-
cery store, and a cafeteria line (service channels in series). However, many others do not,
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such as home appliance repairs (the server travels to the customers), a vending machine
(the server is a machine), and a gas station (the cars are the customers).

Another important class is transportation service systems. For some of these sys-
tems the vehicles are the customers, such as cars waiting at a tollbooth or traffic light (the
server), a truck or ship waiting to be loaded or unloaded by a crew (the server), and air-
planes waiting to land or take off from a runway (the server). (An unusual example of
this kind is a parking lot, where the cars are the customers and the parking spaces are the
servers, but there is no queue because arriving customers go elsewhere to park if the lot
is full.) In other cases, the vehicles, such as taxicabs, fire trucks, and elevators, are the
servers.

In recent years, queueing theory probably has been applied most to internal service
systems, where the customers receiving service are internal to the organization. Exam-
ples include materials-handling systems, where materials-handling units (the servers) move
loads (the customers); maintenance systems, where maintenance crews (the servers) re-
pair machines (the customers); and inspection stations, where quality control inspectors
(the servers) inspect items (the customers). Employee facilities and departments servic-
ing employees also fit into this category. In addition, machines can be viewed as servers
whose customers are the jobs being processed. A related example is a computer labora-
tory, where each computer is viewed as the server.

There is now growing recognition that queueing theory also is applicable to social
service systems. For example, a judicial system is a queueing network, where the courts
are service facilities, the judges (or panels of judges) are the servers, and the cases wait-
ing to be tried are the customers. A legislative system is a similar queueing network, where
the customers are the bills waiting to be processed. Various health-care systems also are
queueing systems. You already have seen one example in Sec. 17.1 (a hospital emergency
room), but you can also view ambulances, x-ray machines, and hospital beds as servers
in their own queueing systems. Similarly, families waiting for low- and moderate-income
housing, or other social services, can be viewed as customers in a queueing system.

Although these are four broad classes of queueing systems, they still do not exhaust
the list. In fact, queueing theory first began early in this century with applications to tele-
phone engineering (the founder of queueing theory, A. K. Erlang, was an employee of the
Danish Telephone Company in Copenhagen), and telephone engineering still is an im-
portant application. Furthermore, we all have our own personal queues—homework as-
signments, books to be read, and so forth. However, these examples are sufficient to sug-
gest that queueing systems do indeed pervade many areas of society.
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The operating characteristics of queueing systems are determined largely by two statisti-
cal properties, namely, the probability distribution of interarrival times (see “Input Source”
in Sec. 17.2) and the probability distribution of service times (see “Service Mechanism”
in Sec. 17.2). For real queueing systems, these distributions can take on almost any form.
(The only restriction is that negative values cannot occur.) However, to formulate a queue-
ing theory model as a representation of the real system, it is necessary to specify the as-
sumed form of each of these distributions. To be useful, the assumed form should be suf-
ficiently realistic that the model provides reasonable predictions while, at the same time,
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being sufficiently simple that the model is mathematically tractable. Based on these con-
siderations, the most important probability distribution in queueing theory is the expo-
nential distribution.

Suppose that a random variable T represents either interarrival or service times. (We
shall refer to the occurrences marking the end of these times—arrivals or service com-
pletions—as events.) This random variable is said to have an exponential distribution with
parameter 
 if its probability density function is

fT(t) � �
as shown in Fig. 17.3. In this case, the cumulative probabilities are

P{T � t} � 1 � e�
t

(t � 0),
P{T � t} � e�
t

and the expected value and variance of T are, respectively,

E(T) � 	


1

	,

var(T) � 	


1
2	.

What are the implications of assuming that T has an exponential distribution for a
queueing model? To explore this question, let us examine six key properties of the expo-
nential distribution.

Property 1: fT(t) is a strictly decreasing function of t (t � 0).

One consequence of Property 1 is that

P{0 � T � 
t} � P{t � T � t � 
t}

for any strictly positive values of 
t and t. [This consequence follows from the fact that
these probabilities are the area under the fT(t) curve over the indicated interval of length

t, and the average height of the curve is less for the second probability than for the first.]

for t � 0
for t � 0,


e�
t

0
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FIGURE 17.3
Probability density function
for the exponential
distribution.



Therefore, it is not only possible but also relatively likely that T will take on a small value
near zero. In fact,

P�0 � T � 	
1
2

	 	


1

	� � 0.393

whereas

P�	
1
2

	 	


1

	 � T � 	
3
2

	 	


1

	� � 0.383,

so that the value T takes on is more likely to be “small” [i.e., less than half of E(T)] than
“near” its expected value [i.e., no further away than half of E(T)], even though the sec-
ond interval is twice as wide as the first.

Is this really a reasonable property for T in a queueing model? If T represents ser-
vice times, the answer depends upon the general nature of the service involved, as dis-
cussed next.

If the service required is essentially identical for each customer, with the server al-
ways performing the same sequence of service operations, then the actual service times
tend to be near the expected service time. Small deviations from the mean may occur, but
usually because of only minor variations in the efficiency of the server. A small service
time far below the mean is essentially impossible, because a certain minimum time is
needed to perform the required service operations even when the server is working at top
speed. The exponential distribution clearly does not provide a close approximation to the
service-time distribution for this type of situation.

On the other hand, consider the type of situation where the specific tasks required of
the server differ among customers. The broad nature of the service may be the same, but
the specific type and amount of service differ. For example, this is the case in the County
Hospital emergency room problem discussed in Sec. 17.1. The doctors encounter a wide
variety of medical problems. In most cases, they can provide the required treatment rather
quickly, but an occasional patient requires extensive care. Similarly, bank tellers and gro-
cery store checkout clerks are other servers of this general type, where the required ser-
vice is often brief but must occasionally be extensive. An exponential service-time distri-
bution would seem quite plausible for this type of service situation.

If T represents interarrival times, Property 1 rules out situations where potential cus-
tomers approaching the queueing system tend to postpone their entry if they see another
customer entering ahead of them. On the other hand, it is entirely consistent with the com-
mon phenomenon of arrivals occurring “randomly,” described by subsequent properties.
Thus, when arrival times are plotted on a time line, they sometimes have the appearance
of being clustered with occasional large gaps separating clusters, because of the substan-
tial probability of small interarrival times and the small probability of large interarrival
times, but such an irregular pattern is all part of true randomness.

Property 2: Lack of memory.

This property can be stated mathematically as

P{T � t � 
tT � 
t} � P{T � t}
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for any positive quantities t and 
t. In other words, the probability distribution of the re-
maining time until the event (arrival or service completion) occurs always is the same, re-
gardless of how much time (
t) already has passed. In effect, the process “forgets” its
history. This surprising phenomenon occurs with the exponential distribution because

P{T � t � 
tT � 
t} �

� 	
P{

P
T
{T
�

�
t �


t


}

t}
	

� 	
e�

e




�

(




t�







t

t)

	

� e�
t

� P{T � t}.

For interarrival times, this property describes the common situation where the time
until the next arrival is completely uninfluenced by when the last arrival occurred. For
service times, the property is more difficult to interpret. We should not expect it to hold
in a situation where the server must perform the same fixed sequence of operations for
each customer, because then a long elapsed service should imply that probably little re-
mains to be done. However, in the type of situation where the required service operations
differ among customers, the mathematical statement of the property may be quite realis-
tic. For this case, if considerable service has already elapsed for a customer, the only im-
plication may be that this particular customer requires more extensive service than most.

Property 3: The minimum of several independent exponential random variables
has an exponential distribution.

To state this property mathematically, let T1, T2, . . . , Tn be independent exponential
random variables with parameters 
1, 
2, . . . , 
n, respectively. Also let U be the random
variable that takes on the value equal to the minimum of the values actually taken on by
T1, T2, . . . , Tn; that is,

U � min {T1, T2, . . . , Tn}.

Thus, if Ti represents the time until a particular kind of event occurs, then U represents
the time until the first of the n different events occurs. Now note that for any t � 0,

P{U � t} � P{T1 � t, T2 � t, . . . , Tn � t}
� P{T1 � t}P{T2 � t} ��� P{Tn � t}
� e�
1te�
2t ��� e
nt

� exp ���
n

i�1

it�,

so that U indeed has an exponential distribution with parameter


 � �
n

i�1

i.

This property has some implications for interarrival times in queueing models. In par-
ticular, suppose that there are several (n) different types of customers, but the interarrival

P{T � 
t, T � t � 
t}
			

P{T � 
t}
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times for each type (type i) have an exponential distribution with parameter 
i (i � 1,
2, . . . , n). By Property 2, the remaining time from any specified instant until the next ar-
rival of a customer of type i has this same distribution. Therefore, let Ti be this remain-
ing time, measured from the instant a customer of any type arrives. Property 3 then tells
us that U, the interarrival times for the queueing system as a whole, has an exponential
distribution with parameter 
 defined by the last equation. As a result, you can choose to
ignore the distinction between customers and still have exponential interarrival times for
the queueing model.

However, the implications are even more important for service times in multiple-server
queueing models than for interarrival times. For example, consider the situation where all
the servers have the same exponential service-time distribution with parameter �. For this
case, let n be the number of servers currently providing service, and let Ti be the remaining
service time for server i (i � 1, 2, . . . , n), which also has an exponential distribution with
parameter 
i � �. It then follows that U, the time until the next service completion from
any of these servers, has an exponential distribution with parameter 
 � n�. In effect, the
queueing system currently is performing just like a single-server system where service
times have an exponential distribution with parameter n�. We shall make frequent use of
this implication for analyzing multiple-server models later in the chapter.

When using this property, it sometimes is useful to also determine the probabilities
for which of the exponential random variables will turn out to be the one which has the
minimum value. For example, you might want to find the probability that a particular
server j will finish serving a customer first among n busy exponential servers. It is fairly
straightforward (see Prob. 17.4-10) to show that this probability is proportional to the pa-
rameter 
j. In particular, the probability that Tj will turn out to be the smallest of the n
random variables is

P{Tj � U} � 
j /�
n

i�1

i, for j � 1, 2, . . . , n.

Property 4: Relationship to the Poisson distribution.

Suppose that the time between consecutive occurrences of some particular kind of
event (e.g., arrivals or service completions by a continuously busy server) has an expo-
nential distribution with parameter 
. Property 4 then has to do with the resulting impli-
cation about the probability distribution of the number of times this kind of event occurs
over a specified time. In particular, let X(t) be the number of occurrences by time t (t � 0),
where time 0 designates the instant at which the count begins. The implication is that

P{X(t) � n} � 	
(
t)

n

n

!
e�
t

	, for n � 0, 1, 2, . . . ;

that is, X(t) has a Poisson distribution with parameter 
t. For example, with n � 0,

P{X(t) � 0} � e�
t,

which is just the probability from the exponential distribution that the first event occurs
after time t. The mean of this Poisson distribution is

E{X(t)} � 
t,
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so that the expected number of events per unit time is 
. Thus, 
 is said to be the mean
rate at which the events occur. When the events are counted on a continuing basis,
the counting process {X(t); t � 0} is said to be a Poisson process with parameter 
 (the 
mean rate).

This property provides useful information about service completions when service
times have an exponential distribution with parameter �. We obtain this information by
defining X(t) as the number of service completions achieved by a continuously busy server
in elapsed time t, where 
 � �. For multiple-server queueing models, X(t) can also be de-
fined as the number of service completions achieved by n continuously busy servers in
elapsed time t, where 
 � n�.

The property is particularly useful for describing the probabilistic behavior of arrivals
when interarrival times have an exponential distribution with parameter �. In this case,
X(t) is the number of arrivals in elapsed time t, where 
 � � is the mean arrival rate.
Therefore, arrivals occur according to a Poisson input process with parameter �. Such
queueing models also are described as assuming a Poisson input.

Arrivals sometimes are said to occur randomly, meaning that they occur in accor-
dance with a Poisson input process. One intuitive interpretation of this phenomenon is
that every time period of fixed length has the same chance of having an arrival re-
gardless of when the preceding arrival occurred, as suggested by the following 
property.

Property 5: For all positive values of t, P{T � t � 
tT � t} � 
 
t, for small 
t.

Continuing to interpret T as the time from the last event of a certain type (arrival
or service completion) until the next such event, we suppose that a time t already has
elapsed without the event’s occurring. We know from Property 2 that the probability
that the event will occur within the next time interval of fixed length 
t is a constant
(identified in the next paragraph), regardless of how large or small t is. Property 5 goes
further to say that when the value of 
t is small, this constant probability can be ap-
proximated very closely by 
 
t. Furthermore, when considering different small val-
ues of 
t, this probability is essentially proportional to 
t, with proportionality factor

. In fact, 
 is the mean rate at which the events occur (see Property 4), so that the
expected number of events in the interval of length 
t is exactly 
 
t. The only rea-
son that the probability of an event’s occurring differs slightly from this value is the
possibility that more than one event will occur, which has negligible probability when

t is small.

To see why Property 5 holds mathematically, note that the constant value of our prob-
ability (for a fixed value of 
t � 0) is just

P{T � t � 
tT � t} � P{T � 
t}
� 1 � e�
 
t,

for any t � 0. Therefore, because the series expansion of ex for any exponent x is

ex � 1 � x � �
�

n�2
	
n
xn

!
	,
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it follows that

P{T � t � 
tT � t} � 1 � 1 � 
 
t � �
�

n�2
	
(�


n!

t)n

	

� 
 
t, for small 
t,1

because the summation terms become relatively negligible for sufficiently small values 
of 
 
t.

Because T can represent either interarrival or service times in queueing models, this
property provides a convenient approximation of the probability that the event of interest
occurs in the next small interval (
t) of time. An analysis based on this approximation
also can be made exact by taking appropriate limits as 
t � 0.

Property 6: Unaffected by aggregation or disaggregation.

This property is relevant primarily for verifying that the input process is Poisson.
Therefore, we shall describe it in these terms, although it also applies directly to the ex-
ponential distribution (exponential interarrival times) because of Property 4.

We first consider the aggregation (combining) of several Poisson input processes
into one overall input process. In particular, suppose that there are several (n) different
types of customers, where the customers of each type (type i) arrive according to a Pois-
son input process with parameter �i (i � 1, 2, . . . , n). Assuming that these are inde-
pendent Poisson processes, the property says that the aggregate input process (arrival
of all customers without regard to type) also must be Poisson, with parameter (arrival
rate) � � �1 � �2 � ��� � �n. In other words, having a Poisson process is unaffected by
aggregation.

This part of the property follows directly from Properties 3 and 4. The latter prop-
erty implies that the interarrival times for customers of type i have an exponential distri-
bution with parameter �i. For this identical situation, we already discussed for Property 3
that it implies that the interarrival times for all customers also must have an exponential
distribution, with parameter � � �1 � �2 � ��� � �n. Using Property 4 again then implies
that the aggregate input process is Poisson.

The second part of Property 6 (“unaffected by disaggregation”) refers to the reverse
case, where the aggregate input process (the one obtained by combining the input processes
for several customer types) is known to be Poisson with parameter �, but the question
now concerns the nature of the disaggregated input processes (the individual input
processes for the individual customer types). Assuming that each arriving customer has a
fixed probability pi of being of type i (i � 1, 2, . . . , n), with

�i � pi� and �
n

i�1
pi � 1,
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t→0

� 
.
P{T � t � 
tT � t}
			


t



the property says that the input process for customers of type i also must be Poisson with
parameter �i. In other words, having a Poisson process is unaffected by disaggregation.

As one example of the usefulness of this second part of the property, consider the
following situation. Indistinguishable customers arrive according to a Poisson process with
parameter �. Each arriving customer has a fixed probability p of balking (leaving with-
out entering the queueing system), so the probability of entering the system is 1 � p. Thus,
there are two types of customers—those who balk and those who enter the system. The
property says that each type arrives according to a Poisson process, with parameters p�
and (1 � p)�, respectively. Therefore, by using the latter Poisson process, queueing mod-
els that assume a Poisson input process can still be used to analyze the performance of
the queueing system for those customers who enter the system.
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Most elementary queueing models assume that the inputs (arriving customers) and outputs
(leaving customers) of the queueing system occur according to the birth-and-death process.
This important process in probability theory has applications in various areas. However, in
the context of queueing theory, the term birth refers to the arrival of a new customer into
the queueing system, and death refers to the departure of a served customer. The state of
the system at time t (t � 0), denoted by N(t), is the number of customers in the queueing
system at time t. The birth-and-death process describes probabilistically how N(t) changes
as t increases. Broadly speaking, it says that individual births and deaths occur randomly,
where their mean occurrence rates depend only upon the current state of the system. More
precisely, the assumptions of the birth-and-death process are the following:

Assumption 1. Given N(t) � n, the current probability distribution of the remaining
time until the next birth (arrival) is exponential with parameter �n (n � 0, 1, 2, . . .).

Assumption 2. Given N(t) � n, the current probability distribution of the remaining
time until the next death (service completion) is exponential with parameter �n (n � 1,
2, . . .).

Assumption 3. The random variable of assumption 1 (the remaining time until the next
birth) and the random variable of assumption 2 (the remaining time until the next death)
are mutually independent. The next transition in the state of the process is either

n � n � 1 (a single birth)

or

n � n � 1 (a single death),

depending on whether the former or latter random variable is smaller.

Because of these assumptions, the birth-and-death process is a special type of con-
tinuous time Markov chain. (See Sec. 16.8 for a description of continuous time Markov
chains and their properties, including an introduction to the general procedure for finding
steady-state probabilities that will be applied in the remainder of this section.) Queueing
models that can be represented by a continuous time Markov chain are far more tractable
analytically than any other.
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Because Property 4 for the exponential distribution (see Sec. 17.4) implies that the
�n and �n are mean rates, we can summarize these assumptions by the rate diagram shown
in Fig. 17.4. The arrows in this diagram show the only possible transitions in the state of
the system (as specified by assumption 3), and the entry for each arrow gives the mean
rate for that transition (as specified by assumptions 1 and 2) when the system is in the
state at the base of the arrow.

Except for a few special cases, analysis of the birth-and-death process is very diffi-
cult when the system is in a transient condition. Some results about the probability dis-
tribution of N(t) have been obtained,1 but they are too complicated to be of much practi-
cal use. On the other hand, it is relatively straightforward to derive this distribution after
the system has reached a steady-state condition (assuming that this condition can be
reached). This derivation can be done directly from the rate diagram, as outlined next.

Consider any particular state of the system n (n � 0, 1, 2, . . .). Starting at time 0,
suppose that a count is made of the number of times that the process enters this state and
the number of times it leaves this state, as denoted below:

En(t) � number of times that process enters state n by time t.

Ln(t) � number of times that process leaves state n by time t.

Because the two types of events (entering and leaving) must alternate, these two numbers
must always either be equal or differ by just 1; that is,

En(t) � Ln(t) � 1.

Dividing through both sides by t and then letting t � � gives

		En

t
(t)
	 � 	

Ln

t
(t)
		 � 	

1
t
	, so lim

t→�		En

t
(t)
	 � 	

Ln

t
(t)
		 � 0.

Dividing En(t) and Ln(t) by t gives the actual rate (number of events per unit time) at
which these two kinds of events have occurred, and letting t � � then gives the mean
rate (expected number of events per unit time):

lim
t→�

	
En

t
(t)
	 � mean rate at which process enters state n.

lim
t→�

	
Ln

t
(t)
	 � mean rate at which process leaves state n.

These results yield the following key principle:
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 �0  �1  �2

�1 �2 �3

0 1 2 3

�n � 1 �n �n � 1

�n � 2 �n � 1 �n

n � 2 n � 1 n � 1nState: …

FIGURE 17.4
Rate diagram for the birth-
and-death process.

1S. Karlin and J. McGregor, “Many Server Queueing Processes with Poisson Input and Exponential Service
Times,” Pacific Journal of Mathematics, 8: 87–118, 1958.



Rate In � Rate Out Principle. For any state of the system n (n � 0, 1, 2, . . .), mean
entering rate � mean leaving rate.

The equation expressing this principle is called the balance equation for state n. Af-
ter constructing the balance equations for all the states in terms of the unknown Pn prob-
abilities, we can solve this system of equations (plus an equation stating that the proba-
bilities must sum to 1) to find these probabilities.

To illustrate a balance equation, consider state 0. The process enter this state only
from state 1. Thus, the steady-state probability of being in state 1 (P1) represents the pro-
portion of time that it would be possible for the process to enter state 0. Given that the
process is in state 1, the mean rate of entering state 0 is �1. (In other words, for each cu-
mulative unit of time that the process spends in state 1, the expected number of times that
it would leave state 1 to enter state 0 is �1.) From any other state, this mean rate is 0.
Therefore, the overall mean rate at which the process leaves its current state to enter state
0 (the mean entering rate) is

�1P1 � 0(1 � P1) � �1P1.

By the same reasoning, the mean leaving rate must be �0P0, so the balance equation for
state 0 is

�1P1 � �0P0.

For every other state there are two possible transitions both into and out of the state.
Therefore, each side of the balance equations for these states represents the sum of the
mean rates for the two transitions involved. Otherwise, the reasoning is just the same as
for state 0. These balance equations are summarized in Table 17.1.

Notice that the first balance equation contains two variables for which to solve 
(P0 and P1), the first two equations contain three variables (P0, P1, and P2), and so 
on, so that there always is one “extra” variable. Therefore, the procedure in solving
these equations is to solve in terms of one of the variables, the most convenient one
being P0. Thus, the first equation is used to solve for P1 in terms of P0; this result and
the second equation are then used to solve for P2 in terms of P0; and so forth. At 
the end, the requirement that the sum of all the probabilities equal 1 can be used to
evaluate P0.
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TABLE 17.1 Balance equations for the birth-and-
death process

State Rate In � Rate Out

0 �1P1 � �0P0

1 �0P0 � �2P2 � (�1 � �1)P1

2 �1P1 � �3P3 � (�2 � �2)P2

� �

n � 1 �n�2Pn�2 � �nPn � (�n�1 � �n�1)Pn�1

n �n�1Pn�1 � �n�1Pn�1 � (�n � �n)Pn

� �



Applying this procedure yields the following results:
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State:

0: P1 � 	
�
�0

1
	P0

1: P2 � 	
�
�1

2
	P1 � 	

�
1

2
	(�1P1 � �0P0) � 	

�
�1

2
	P1 � 	

�
�1

2

�
�

0

1
	P0

2: P3 � 	
�
�2

3
	P2 � 	

�
1

3
	(�2P2 � �1P1) � 	

�
�2

3
	P2 � 	

�
�

3

2

�
�1

2

�
�

0

1
	P0

� �

n � 1: Pn � 	
�
�
n�

n

1	Pn�1 � 	
�
1

n
	(�n�1Pn�1 � �n�2Pn�2) � 	

�
�
n�

n

1	Pn�1 � 	
�
�
n�

n�
1�

n�

n�

1

2

��
�
�
��

�
�

1

0	P0

n: Pn�1 � 	
�

�

n�

n

1
	Pn � 	

�n

1
�1
	(�nPn � �n�1Pn�1) � 	

�
�

n�

n

1
	Pn � 	

�
�

n

n

�

�n

1

�

�
1

n

�
�
�
�
�
�

�
�

0

1
	P0

� �

To simplify notation, let

Cn �	
�
�
n�

n�
1�

n�

n�

1

2

��
�
�
��

�
�

1

0	, for n � 1, 2, . . . ,

and then define Cn � 1 for n � 0. Thus, the steady-state probabilities are

Pn � CnP0, for n � 0, 1, 2, . . . .

The requirement that

�
�

n�0
Pn � 1

implies that

��
�

n�0
Cn�P0 � 1,

so that

P0 � ��
�

n�0
Cn�

�1

.

When a queueing model is based on the birth-and-death process, so the state of the
system n represents the number of customers in the queueing system, the key measures
of performance for the queueing system (L, Lq, W, and Wq) can be obtained immediately



after calculating the Pn from the above formulas. The definitions of L and Lq given in Sec.
17.2 specify that

L � �
�

n�0
nPn, Lq � �

�

n�s

(n � s)Pn.

Furthermore, the relationships given at the end of Sec. 17.2 yield

W � 	
L

��
	, Wq � 	

L

��
q
	,

where �� is the average arrival rate over the long run. Because �n is the mean arrival rate
while the system is in state n (n � 0, 1, 2, . . .) and Pn is the proportion of time that the
system is in this state,

�� � �
�

n�0
�nPn.

Several of the expressions just given involve summations with an infinite number of
terms. Fortunately, these summations have analytic solutions for a number of interesting
special cases,1 as seen in the next section. Otherwise, they can be approximated by sum-
ming a finite number of terms on a computer.

These steady-state results have been derived under the assumption that the �n and �n

parameters have values such that the process actually can reach a steady-state condition.
This assumption always holds if �n � 0 for some value of n greater than the initial state,
so that only a finite number of states (those less than this n) are possible. It also always
holds when � and � are defined (see “Terminology and Notation” in Sec. 17.2) and 
� � �/(s�) � 1. It does not hold if ��

n�1 Cn � �.
The following section describes several queueing models that are special cases of the

birth-and-death process. Therefore, the general steady-state results just given in boxes will
be used over and over again to obtain the specific steady-state results for these models.
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Because each of the mean rates �0, �1, . . . and �1, �2, . . . for the birth-and-death process
can be assigned any nonnegative value, we have great flexibility in modeling a queueing
system. Probably the most widely used models in queueing theory are based directly upon
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1These solutions are based on the following known results for the sum of any geometric series:

�
N

n�0
xn � 	

1
1
�

�
xN

x

�1

	, for any x � 1,

�
�

n�0
xn � 	

1
1
�x
	, if x � 1.



this process. Because of assumptions 1 and 2 (and Property 4 for the exponential distri-
bution), these models are said to have a Poisson input and exponential service times.
The models differ only in their assumptions about how the �n and �n change with n. We
present four of these models in this section for four important types of queueing systems.

The M/M/s Model

As described in Sec. 17.2, the M/M/s model assumes that all interarrival times are inde-
pendently and identically distributed according to an exponential distribution (i.e., the in-
put process is Poisson), that all service times are independent and identically distributed
according to another exponential distribution, and that the number of servers is s (any pos-
itive integer). Consequently, this model is just the special case of the birth-and-death
process where the queueing system’s mean arrival rate and mean service rate per busy
server are constant (� and �, respectively) regardless of the state of the system. When the
system has just a single server (s � 1), the implication is that the parameters for the birth-
and-death process are �n � � (n � 0, 1, 2, . . .) and �n � � (n � 1, 2, . . .). The result-
ing rate diagram is shown in Fig. 17.5a.

However, when the system has multiple servers (s � 1), the �n cannot be expressed
this simply. Keep in mind that �n represents the mean service rate for the overall queue-
ing system (i.e., the mean rate at which service completions occur, so that customers leave
the system) when there are n customers currently in the system. As mentioned for Prop-
erty 4 of the exponential distribution (see Sec. 17.4), when the mean service rate per busy
server is �, the overall mean service rate for n busy servers must be n�. Therefore,
�n � n� when n � s, whereas �n � s� when n � s so that all s servers are busy. The
rate diagram for this case is shown in Fig. 17.5b.

When the maximum mean service rate s� exceeds the mean arrival rate �, that is,
when

� � 	
s
�
�
	 � 1,
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� � �
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(a) Single-server case (s � 1)

(b) Multiple-server case (s � 1)

�n � �,   
�n � �,  

�n �   �,
  
�n � 

n�,  
s�,   


…

for n � 0, 1, 2, ...

for n � 1, 2, ..., s
for n � s, s � 1, ...

for n � 0, 1, 2, ...
for n � 1, 2, ...

FIGURE 17.5
Rate diagrams for the M/M/s
model.



a queueing system fitting this model will eventually reach a steady-state condition. In this
situation, the steady-state results derived in Sec. 17.5 for the general birth-and-death
process are directly applicable. However, these results simplify considerably for this model
and yield closed-form expressions for Pn, L, Lq, and so forth, as shown next.

Results for the Single-Server Case (M/M/1). For s � 1, the Cn factors for the
birth-and-death process reduce to

Cn � �	
�
�

	�
n

� �n, for n � 0, 1, 2, . . . 

Therefore,

Pn � �nP0, for n � 0, 1, 2, . . . ,

where

P0 � ��
�

n�0
�n�

�1

� �	1 �
1

�
	�

�1

� 1 � �.
Thus,

Pn � (1 � �)�n, for n � 0, 1, 2, . . . .

Consequently,

L � �
�

n�0
n(1 � �)�n

� (1 � �)� �
�

n�0
	
d
d
�
	 (�n)

� (1 � �)� 	
d
d
�
	 ��

�

n�0
�n�

� (1 � �)� 	
d
d
�
	 �	1 �

1
�

	�
� 	

1 �
�

�
	 � 	

� �
�

�
	.

Similarly,

Lq � �
�

n�1
(n � 1)Pn

� L � 1(1 � P0)

� 	
�(�

�
�

2

�)
	.

854 17 QUEUEING THEORY



When � � �, so that the mean arrival rate exceeds the mean service rate, the pre-
ceding solution “blows up” (because the summation for computing P0 diverges). For this
case, the queue would “explode” and grow without bound. If the queueing system begins
operation with no customers present, the server might succeed in keeping up with arriv-
ing customers over a short period of time, but this is impossible in the long run. (Even
when � � �, the expected number of customers in the queueing system slowly grows
without bound over time because, even though a temporary return to no customers pres-
ent always is possible, the probabilities of huge numbers of customers present become in-
creasingly significant over time.)

Assuming again that � � �, we now can derive the probability distribution of the
waiting time in the system (so including service time) � for a random arrival when the
queue discipline is first-come-first-served. If this arrival finds n customers already in the
system, then the arrival will have to wait through n � 1 exponential service times, in-
cluding his or her own. (For the customer currently being served, recall the lack-of-
memory property for the exponential distribution discussed in Sec. 17.4.) Therefore, let
T1, T2, . . . be independent service-time random variables having an exponential distrib-
ution with parameter �, and let

Sn�1 � T1 � T2 � ��� � Tn�1, for n � 0, 1, 2, . . . ,

so that Sn�1 represents the conditional waiting time given n customers already in the sys-
tem. As discussed in Sec. 17.7, Sn�1 is known to have an Erlang distribution.1 Because
the probability that the random arrival will find n customers in the system is Pn, it fol-
lows that

P{� � t} � �
�

n�0
PnP{Sn�1 � t},

which reduces after considerable manipulation (see Prob. 17.6-17) to

P{� � t} � e��(1��)t, for t � 0.

The surprising conclusion is that � has an exponential distribution with parameter 
�(1 � �). Therefore,

W � E(�) � 	
�(1

1
� �)
	

� 	
� �

1
�

	.

These results include service time in the waiting time. In some contexts (e.g., the
County Hospital emergency room problem), the more relevant waiting time is just until
service begins. Thus, consider the waiting time in the queue (so excluding service time)
�q for a random arrival when the queue discipline is first-come-first-served. If this arrival
finds no customers already in the system, then the arrival is served immediately, so that

P{�q � 0} � P0 � 1 � �.
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If this arrival finds n � 0 customers already there instead, then the arrival has to wait
through n exponential service times until his or her own service begins, so that

P{�q � t} � �
�

n�1
PnP{Sn � t}

� �
�

n�1
(1 � �)�nP{Sn � t}

� � �
�

n�0
PnP{Sn�1 � t}

� �P{� � t}
� �e��(1��)t, for t � 0.

Note that Wq does not quite have an exponential distribution, because P{�q � 0} � 0.
However, the conditional distribution of �q, given that �q � 0, does have an exponential
distribution with parameter �(1 � �), just as � does, because

P{�q � t�q � 0} � 	
P

P

{

{

�

�

q

q

�

�

0

t}

}
	 � e��(1��)t, for t � 0.

By deriving the mean of the (unconditional) distribution of �q (or applying either 
Lq � �Wq or Wq � W � 1/�),

Wq � E(�q) � 	
�(�

�
� �)
	.

Results for the Multiple-Server Case (s � 1). When s � 1, the Cn factors become

	
(�

n
/�
!
)n

	 for n � 1, 2, . . . , s
Cn �

	
(�

s
/�
!

)s

	�	
s
�
�
	�

n�s

� 	
(
s
�
!s
/�
n�

)n

s	 for n � s, s � 1, . . . .

Consequently, if � � s� [so that � � �/(s�) � 1], then

P0 � 1��1 � �
s�1

n�1
	
(�

n
/�
!
)n

	 � 	
(�

s
/�
!

)s

	 �
�

n�s
�	

s
�
�
	�

n�s



� 1���

s�1

n�0
	
(�

n
/�
!
)n

	 � 	
(�

s
/�
!

)s

	 	
1 � �

1
/(s�)
	
,

where the n � 0 term in the last summation yields the correct value of 1 because of the
convention that n! � 1 when n � 0. These Cn factors also give

	
(�

n
/�
!
)n

	P0 if 0 � n � s
Pn �

	
(
s
�
!s
/�
n�

)n

s	P0 if n � s.


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
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
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
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Furthermore,

Lq � �
�

n�s

(n � s)Pn

� �
�

j�0
jPs�j

� �
�

j�0
j 	

(�
s
/�
!

)s

	� jP0

� P0	
(�

s
/�
!

)s

	� �
�

j�0
	
d
d
�
	 (� j)

� P0	
(�

s
/�
!

)s

	� 	
d
d
�
	� �

�

j�0
� j�

� P0	
(�

s
/�
!

)s

	� 	
d
d
�
	�	1 �

1
�

	�
� 	

s
P
!
0

(1
(�

�
/�

�
)s

)
�
2	;

Wq � 	
L

�
q
	;

W � Wq � 	
�
1

	;

L � ��Wq � 	
�
1

	� � Lq � 	
�
�

	.

Figures 17.6 and 17.7 show how P0 and L change with � for various values of s.
The single-server method for finding the probability distribution of waiting times also

can be extended to the multiple-server case. This yields1 (for t � 0)

P{� � t} � e��t�	1 �
s!(

P
1

0

�
(�

�
/�
)
)s

	�	1 �
s �

e�

1

�t

�

(s�

�

1�

/�

�/�)

	�

and

P{�q � t} � (1 � P{�q � 0})e�s�(1��)t,

where

P{�q � 0} � �
s�1

n�0
Pn.

The above formulas for the various measures of performance (including the Pn) are
relatively imposing for hand calculations. However, this chapter’s Excel file in your OR
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1When s � 1 � �/� � 0, (1 � e��t(s�1��/�))/(s � 1 � �/�) should be replaced by �t.



Courseware includes an Excel template that performs all these calculations simultaneously
for any values of t, s, �, and � you want, provided that � � s�.

If � � s�, so that the mean arrival rate exceeds the maximum mean service rate, then
the queue grows without bound, so the preceding steady-state solutions are not applicable.

The County Hospital Example with the M/M/s Model. For the County Hospital
emergency room problem (see Sec. 17.1), the management engineer has concluded that the
emergency cases arrive pretty much at random (a Poisson input process), so that interar-
rival times have an exponential distribution. She also has concluded that the time spent by
a doctor treating the cases approximately follows an exponential distribution. Therefore,
she has chosen the M/M/s model for a preliminary study of this queueing system.

By projecting the available data for the early evening shift into next year, she 
estimates that patients will arrive at an average rate of 1 every 	

1
2

	 hour. A doctor re-
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FIGURE 17.6
Values of P0 for the M/M/s
model (Sec. 17.6).



quires an average of 20 minutes to treat each patient. Thus, with one hour as the unit
of time,

	
�
1

	 � 	
1
2

	 hour per customer

and

	
�
1

	 � 	
1
3

	 hour per customer,

so that

� � 2 customers per hour

and

� � 3 customers per hour.
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The two alternatives being considered are to continue having just one doctor during this
shift (s � 1) or to add a second doctor (s � 2). In both cases,

� � 	
s
�
�
	 � 1,

so that the system should approach a steady-state condition. (Actually, because � is some-
what different during other shifts, the system will never truly reach a steady-state condi-
tion, but the management engineer feels that steady-state results will provide a good ap-
proximation.) Therefore, the preceding equations are used to obtain the results shown in
Table 17.2.

On the basis of these results, she tentatively concluded that a single doctor would be
inadequate next year for providing the relatively prompt treatment needed in a hospital
emergency room. You will see later how she checked this conclusion by applying two
other queueing models that provide better representations of the real queueing system in
some ways.
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TABLE 17.2 Steady-state results from the M/M/s
model for the County Hospital problem

s � 1 s � 2

� 	
2
3

	 	
1
3

	

P0 	
1
3

	 	
1
2

	

P1 	
2
9

	 	
1
3

	

Pn for n � 2 	
1
3

	�	
2
3

	�
n

�	
1
3

	�
n

Lq 	
4
3

	 	
1
1
2
	

L 2 	
3
4

	

Wq 	
2
3

	 hour 	
2
1
4
	 hour

W 1 hour 	
3
8

	 hour

P{�q � 0} 0.667 0.167

P��q � 	
1
2

	� 0.404 0.022

P{�q � 1} 0.245 0.003

P{�q � t} 	
2
3

	e�t 	
1
6

	e�4t

P{� � t} e�t 	
1
2

	e�3t(3 � e�t)



The Finite Queue Variation of the M/M/s Model 
(Called the M/M/s/K Model)

We mentioned in the discussion of queues in Sec. 17.2 that queueing systems sometimes
have a finite queue; i.e., the number of customers in the system is not permitted to ex-
ceed some specified number (denoted by K) so the queue capacity is K � s. Any customer
that arrives while the queue is “full” is refused entry into the system and so leaves for-
ever. From the viewpoint of the birth-and-death process, the mean input rate into the sys-
tem becomes zero at these times. Therefore, the one modification needed in the M/M/s
model to introduce a finite queue is to change the �n parameters to

�n � �
Because �n � 0 for some values of n, a queueing system that fits this model always will
eventually reach a steady-state condition, even when � � �/s� � 1.

This model commonly is labeled M/M/s/K, where the presence of the fourth symbol
distinguishes it from the M/M/s model. The single difference in the formulation of these
two models is that K is finite for the M/M/s/K model and K � � for the M/M/s model.

The usual physical interpretation for the M/M/s/K model is that there is only limited
waiting room that will accommodate a maximum of K customers in the system. For ex-
ample, for the County Hospital emergency room problem, this system actually would have
a finite queue if there were only K cots for the patients and if the policy were to send ar-
riving patients to another hospital whenever there were no empty cots.

Another possible interpretation is that arriving customers will leave and “take their
business elsewhere” whenever they find too many customers (K ) ahead of them in the
system because they are not willing to incur a long wait. This balking phenomenon is
quite common in commercial service systems. However, there are other models available
(e.g., see Prob. 17.5-5) that fit this interpretation even better.

The rate diagram for this model is identical to that shown in Fig. 17.5 for the M/M/s
model, except that it stops with state K.

Results for the Single-Server Case (M/M/1/K). For this case,

�	
�
�

	�
n

� �n for n � 0, 1, 2, . . . , K
Cn �

0 for n � K.

Therefore, for � � 1,1

P0 � 	
�K

n�0

1
(�/�)n	

� 1��	1 �
1 �

(�/
�
�
/
)
�

K�1

	

� 	

1
1
�

�
�K

�
�1	,



� for n � 0, 1, 2, . . . , K � 1
0 for n � K.
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1If � � 1, then Pn � 1/(K � 1) for n � 0, 1, 2, . . . , K, so that L � K/2.



so that

Pn � 	
1

1
�

�
�K

�
�1	 �n, for n � 0, 1, 2, . . . , K.

Hence,

L � �
K

n�0
nPn

� 	
1

1
�

�
�K

�
�1	 � �

K

n�0
	
d
d
�
	(�n)

� 	
1

1
�

�
�K

�
�1	 � 	

d
d
�
	��

K

n�0
�n�

� 	
1

1
�

�
�K

�
�1	 � 	

d
d
�
	�	1 1

�
�
�K

�

�1

	�
� �

� 	
1 �

�
�

	 � 	
(K

1
�
�

1
�
)
K
�
�

K

1

�1

	.

As usual (when s � 1),

Lq � L � (1 � P0).

Notice that the preceding results do not require that � � � (i.e., that � � 1).
When � � 1, it can be verified that the second term in the final expression for L con-

verges to 0 as K � �, so that all the preceding results do indeed converge to the corre-
sponding results given earlier for the M/M/1 model.

The waiting-time distributions can be derived by using the same reasoning as for the
M/M/1 model (see Prob. 17.6-31). However, no simple expressions are obtained in this
case, so computer calculations are required. Fortunately, even though L � �W and 
Lq � �Wq for the current model because the �n are not equal for all n (see the end of Sec.
17.2), the expected waiting times for customers entering the system still can be obtained
directly from the expressions given at the end of Sec. 17.5:

W � 	
L

��
	, Wq � 	

L

��
q
	,

where

�� � �
�

n�0
�nPn

� �
K�1

n�0
�Pn

� �(1 � PK).

�(K � 1)�K � K�K�1 � 1
			

(1 � �K�1)(1 � �)
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Results for the Multiple-Server Case (s � 1). Because this model does not allow
more than K customers in the system, K is the maximum number of servers that could
ever be used. Therefore, assume that s � K. In this case, Cn becomes

	
(�

n
/�
!
)n

	 for n � 0, 1, 2, . . . , s

Cn �
	
(�

s
/�
!

)s

	 �	
s
�
�
	�

n�s

� 	
(
s
�
!s
/�
n�

)n

s	 for n � s, s � 1, . . . , K

0 for n � K.

Hence,

	
(�

n
/�
!
)n

	P0 for n � 1, 2, . . . , s

Pn � 	
(
s
�
!s
/�
n�

)n

s	P0 for n � s, s � 1, . . . , K

0 for n � K,

where

P0 � 1���
s

n�0
	
(�

n
/�
!
)n

	 � 	
(�

s
/�
!

)s

	 �
K

n�s�1
�	

s
�
�
	�

n�s


.

Adapting the derivation of Lq for the M/M/s model to this case (see Prob. 17.6-28) yields

Lq � 	
s
P
!
0

(
(
1
�
�
/�)

�

s

)
�
2	 [1 � �K�s � (K � s)�K�s(1 � �)],

where � � �/(s�).1 It can then be shown (see Prob. 17.2-5) that

L � �
s�1

n�0
nPn � Lq � s�1 � �

s�1

n�0
Pn�.

And W and Wq are obtained from these quantities just as shown for the single-server case.
This chapter’s Excel file includes an Excel template for calculating the above mea-

sures of performance (including the Pn) for this model.
One interesting special case of this model is where K � s so the queue capacity is 

K � s � 0. In this case, customers who arrive when all servers are busy will leave im-
mediately and be lost to the system. This would occur, for example, in a telephone net-
work with s trunk lines so callers get a busy signal and hang up when all the trunk lines
are busy. This kind of system (a “queueing system” with no queue) is referred to as Er-
lang’s loss system because it was first studied in the early 20th century by A. K. Erlang,
a Danish telephone engineer who is considered the founder of queueing theory.
















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1If � � 1, it is necessary to apply L’Hôpital’s rule twice to this expression for Lq. Otherwise, all these multiple-
server results hold for all � � 0. The reason that this queueing system can reach a steady-state condition even
when � � 1 is that �n � 0 for n � K, so that the number of customers in the system cannot continue to grow
indefinitely.



The Finite Calling Population Variation of the M/M/s Model

Now assume that the only deviation from the M/M/s model is that (as defined in Sec. 17.2)
the input source is limited; i.e., the size of the calling population is finite. For this case,
let N denote the size of the calling population. Thus, when the number of customers in
the queueing system is n (n � 0, 1, 2, . . . , N ), there are only N � n potential customers
remaining in the input source.

The most important application of this model has been to the machine repair prob-
lem, where one or more maintenance people are assigned the responsibility of maintain-
ing in operational order a certain group of N machines by repairing each one that breaks
down. (The example given at the end of Sec. 16.8 illustrates this application when the
general procedures for solving any continuous time Markov chain are used rather than the
specific formulas available for the birth-and-death process.) The maintenance people are
considered to be individual servers in the queueing system if they work individually on
different machines, whereas the entire crew is considered to be a single server if crew
members work together on each machine. The machines constitute the calling population.
Each one is considered to be a customer in the queueing system when it is down waiting
to be repaired, whereas it is outside the queueing system while it is operational.

Note that each member of the calling population alternates between being inside and
outside the queueing system. Therefore, the analog of the M/M/s model that fits this sit-
uation assumes that each member’s outside time (i.e., the elapsed time from leaving the
system until returning for the next time) has an exponential distribution with parameter
�. When n of the members are inside, and so N � n members are outside, the current
probability distribution of the remaining time until the next arrival to the queueing sys-
tem is the distribution of the minimum of the remaining outside times for the latter N � n
members. Properties 2 and 3 for the exponential distribution imply that this distribution
must be exponential with parameter �n � (N � n)�. Hence, this model is just the special
case of the birth-and-death process that has the rate diagram shown in Fig. 17.8.
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Because �n � 0 for n � N, any queueing system that fits this model will eventually
reach a steady-state condition. The available steady-state results are summarized as follows:

Results for the Single-Server Case (s � 1). When s � 1, the Cn factors in Sec. 17.5
reduce to

N(N � 1) ��� (N � n � 1)�	
�
�

	�
n

� 	
(N

N
�

!
n)!

	 �	
�
�

	�
n

for n � N
Cn �

0 for n � N,

for this model. Therefore,
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N
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!
n)!

	�	
�
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n

P0, if n � 1, 2, . . . , N;

Lq � �
N

n�1
(n � 1)Pn,

which can be reduced to

Lq � N � 	
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�
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	(1 � P0);

L � �
N
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nPn � Lq � 1 � P0

� N � 	
�
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Finally,
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��
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L

��
q
	,

where
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n�0
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N
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(N � n)�Pn � �(N � L).

Results for the Multiple-Server Case (s � 1). For N � s � 1,
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Hence,
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�
�

	�
n


.

Finally,

Lq � �
N

n�s

(n � s)Pn

and

L � �
s�1

n�0
nPn � Lq � s�1 � �

s�1

n�0
Pn�,

which then yield W and Wq by the same equations as in the single-server case.
This chapter’s Excel file includes an Excel template for performing all the above

calculations.
Extensive tables of computational results also are available1 for this model for both

the single-server and multiple-server cases.
For both cases, it has been shown2 that the preceding formulas for Pn and P0 (and so

for Lq, L, W, and Wq) also hold for a generalization of this model. In particular, we can
drop the assumption that the times spent outside the queueing system by the members of
the calling population have an exponential distribution, even though this takes the model
outside the realm of the birth-and-death process. As long as these times are identically
distributed with mean 1/� (and the assumption of exponential service times still holds),
these outside times can have any probability distribution!

A Model with State-Dependent Service Rate and/or Arrival Rate

All the models thus far have assumed that the mean service rate is always a constant, re-
gardless of how many customers are in the system. Unfortunately, this rate often is not a
constant in real queueing systems, particularly when the servers are people. When there
is a large backlog of work (i.e., a long queue), it is quite likely that such servers will tend
to work faster than they do when the backlog is small or nonexistent. This increase in the
service rate may result merely because the servers increase their efforts when they are un-
der the pressure of a long queue. However, it may also result partly because the quality
of the service is compromised or because assistance is obtained on certain service phases.








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1L. G. Peck and R. N. Hazelwood, Finite Queueing Tables, Wiley, New York, 1958.
2B. D. Bunday and R. E. Scraton, “The G/M/r Machine Interference Model,” European Journal of Operational
Research, 4: 399–402, 1980.



Given that the mean service rate does increase as the queue size increases, it is de-
sirable to develop a theoretical model that seems to describe the pattern by which it in-
creases. This model not only should be a reasonable approximation of the actual pattern
but also should be simple enough to be practical for implementation. One such model is
formulated next. (You have the flexibility to formulate many similar models within the
framework of the birth-and-death process.) We then show how the same results apply when
the arrival rate is affected by the queue size in an analogous way.

Formulation for the Single-Server Case (s � 1). Let

�n � nc�1, for n � 1, 2, . . . ,

where n � number of customers in system,

�n � mean service rate when n customers are in system,

1/�1 � expected “normal” service time—expected time to service customer when
that customer is only one in system,

c � pressure coefficient—positive constant that indicates degree to which ser-
vice rate of system is affected by system state.

Thus, by selecting c � 1, for example, we hypothesize that the mean service rate is di-
rectly proportional to n; c � 	

1
2

	 implies that the mean service rate is proportional to the
square root of n; and so on. The preceding queueing models in this section have implic-
itly assumed that c � 0.

Now assume additionally that the queueing system has a Poisson input with �n � �
(for n � 0, 1, 2, . . .) and exponential service times with �n as just given. This case is
now a special case of the birth-and-death process, where

Cn � 	
(�

(n
/�
!)

1
c
)n

	, for n � 0, 1, 2, . . . .

Thus, all the steady-state results given in Sec. 17.5 are applicable to this model. (A steady-
state condition always can be reached when c � 0.) Unfortunately, analytical expressions
are not available for the summations involved. However, nearly exact values of P0 and L
have been tabulated1 for various values of c and �/�1 by summing a finite number of terms
on a computer. A small portion of these results also is shown in Figs. 17.9 and 17.10.

A queueing system may react to a long queue by decreasing the arrival rate instead
of increasing the service rate. (The arrival rate may be decreased, e.g., by diverting some
of the customers requiring service to another service facility.) The corresponding model
for describing mean arrival rates for this case lets

�n � (n � 1)�b�0, for n � 0, 1, 2, . . . ,

where b is a constant whose interpretation is analogous to that for c. The Cn values for
the birth-and-death process with these �n (and with �n � � for n � 1, 2, . . .) are identi-
cal to those just shown (replacing � by �0) for the state-dependent service rate model
when c � b and �/�1 � �0 /�, so the steady-state results also are the same.
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1R. W. Conway and W. L. Maxwell, “A Queueing Model with State Dependent Service Rate,” Journal of In-
dustrial Engineering, 12: 132–136, 1961.



A more general model that combines these two patterns can also be used when both
the mean arrival rates and the mean service rates are state-dependent. Thus, let

�n � na�1 for n � 1, 2, . . . 

and

�n � (n � 1)�b�0 for n � 0, 1, 2, . . . .

Once again, the Cn values for the birth-and-death process with these parameters are identical
to those shown for the state-dependent service rate model when c � a � b and �/�1 � �0/�1,
so the tabulated steady-state results actually are applicable to this general model.

Formulation for the Multiple-Server Case (s � 1). To generalize this combined
model further to the multiple-server case, it seems natural to have the �n and �n vary with
the number of customers per server (n/s) in essentially the same way that they vary with
n for the single-server case. Thus, let

n�1 if n � s

�n � �	
n
s

	�
a

s�1 if n � s


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Values of P0 for the state-dependent model (Sec. 17.6).



and

�0 if n � s � 1
�n �

�	n �
s

1
	�

b

�0 if n � s � 1.

Therefore, the birth-and-death process with these parameters has

	
(�0

n
/�
!

1)n

	 for n � 0, 1, 2, . . . , s
Cn �

for n � s, s � 1, . . . ,

where c � a � b.

(�0/�1)n

			
s!(n!/s!)cs(1�c)(n�s)










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Computational results for P0, Lq, and L have been tabulated1 for various values of c,
�0 /�1, and s. Some of these results also are given in Figs. 17.9 and 17.10.

The County Hospital Example with State-Dependent Service Rates. After
gathering additional data for the County Hospital emergency room, the management en-
gineer found that the time a doctor spends with a patient tends to decrease as the number
of patients waiting increases. Part of the explanation is simply that the doctor works faster,
but the main reason is that more of the treatment is turned over to a nurse for completion.
The pattern of the �n (the mean rate at which a doctor treats patients while there are a to-
tal of n patients to be treated in the emergency room) seems to fit reasonably the state-
dependent service rate model presented here. Therefore, the management engineer has de-
cided to apply this model.

The new data indicate that the average time a doctor spends treating a patient is 24 min-
utes if no other patients are waiting, whereas this average becomes 12 minutes when each
doctor has six patients (so five are waiting their turn). Thus, with a single doctor on duty,

�1 � 2	
1
2

	 customers per hour,

�6 � 5 customers per hour.

Therefore, the pressure coefficient c (or a in the general model) must satisfy the rela-
tionship

�6 � 6c�1, so 6c � 2.

Using logarithms to solve for c yields c � 0.4. Because � � 2 from before, this solution
for c completes the specification of parameter values for this model.

To compare the two alternatives of having one doctor (s � 1) or two doctors (s � 2)
on duty, the management engineer developed the various measures of performance shown
in Table 17.3. The values of P0, L, and (for s � 2) Lq were obtained directly from the tab-
ulated results for this model. (Except for this Lq, you can approximate the same values
from Figs. 17.9 and 17.10.) These values were then used to calculate

P1 � C1P0,
Lq � L � (1 � P0), if s � 1,
Lq � L � P1 � 2(1 � P0 � P1), if s � 2,

Wq � 	
L
�
q	, W � 	

L
�

	,

P{�q � 0} � 1 � �
s�1

n�0
Pn.

The fact that some of the results in Table 17.3 do not deviate substantially from those
in Table 17.2 reinforces the tentative conclusion that a single doctor will be inadequate
next year.
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TABLE 17.3 Steady-state results from the 
state-dependent service rate model 
for the County Hospital problem

s � 1 s � 2

	
s�
�

1
	 0.8 0.4

	
s�

�

6s
	 0.4 0.2

P0 0.367 0.440
P1 0.294 0.352
Lq 0.618 0.095
L 1.251 0.864
Wq 0.309 hour 0.048 hour
W 0.626 hour 0.432 hour
P{�q � 0} 0.633 0.208

Because all the queueing theory models in the preceding section (except for one gen-
eralization) are based on the birth-and-death process, both their interarrival and ser-
vice times are required to have exponential distributions. As discussed in Sec. 17.4,
this type of probability distribution has many convenient properties for queueing the-
ory, but it provides a reasonable fit for only certain kinds of queueing systems. In par-
ticular, the assumption of exponential interarrival times implies that arrivals occur ran-
domly (a Poisson input process), which is a reasonable approximation in many
situations but not when the arrivals are carefully scheduled or regulated. Furthermore,
the actual service-time distribution frequently deviates greatly from the exponential
form, particularly when the service requirements of the customers are quite similar.
Therefore, it is important to have available other queueing models that use alternative
distributions.

Unfortunately, the mathematical analysis of queueing models with nonexponential
distributions is much more difficult. However, it has been possible to obtain some useful
results for a few such models. This analysis is beyond the level of this book, but in this
section we shall summarize the models and describe their results.

The M/G/1 Model

As introduced in Sec. 17.2, the M/G/1 model assumes that the queueing system has a sin-
gle server and a Poisson input process (exponential interarrival times) with a fixed mean
arrival rate �. As usual, it is assumed that the customers have independent service times
with the same probability distribution. However, no restrictions are imposed on what this
service-time distribution can be. In fact, it is only necessary to know (or estimate) the
mean 1/� and variance �2 of this distribution.

17.7 QUEUEING MODELS INVOLVING 
NONEXPONENTIAL DISTRIBUTIONS



Any such queueing system can eventually reach a steady-state condition if � � �/� � 1.
The readily available steady-state results1 for this general model are the following:

P0 � 1 � �,

Lq � 	
�
2

2

(
�
1

2

�
�

�
�
)

2

	,

L � � � Lq,

Wq � 	
L

�
q
	,

W � Wq � 	
�
1

	.

Considering the complexity involved in analyzing a model that permits any service-time
distribution, it is remarkable that such a simple formula can be obtained for Lq. This for-
mula is one of the most important results in queueing theory because of its ease of use
and the prevalence of M/G/1 queueing systems in practice. This equation for Lq (or its
counterpart for Wq) commonly is referred to as the Pollaczek-Khintchine formula, named
after two pioneers in the development of queueing theory who derived the formula inde-
pendently in the early 1930s.

For any fixed expected service time 1/�, notice that Lq, L, Wq, and W all increase as
�2 is increased. This result is important because it indicates that the consistency of the
server has a major bearing on the performance of the service facility—not just the server’s
average speed. This key point is illustrated in the next subsection.

When the service-time distribution is exponential, �2 � 1/�2, and the preceding re-
sults will reduce to the corresponding results for the M/M/1 model given at the beginning
of Sec. 17.6.

The complete flexibility in the service-time distribution provided by this model is ex-
tremely useful, so it is unfortunate that efforts to derive similar results for the multiple-
server case have been unsuccessful. However, some multiple-server results have been ob-
tained for the important special cases described by the following two models. (Excel
templates are available in this chapter’s Excel file for performing the calculations for both
the M/G/1 model and the two models considered below when s � 1.)

The M/D/s Model

When the service consists of essentially the same routine task to be performed for all
customers, there tends to be little variation in the service time required. The M/D/s
model often provides a reasonable representation for this kind of situation, because it
assumes that all service times actually equal some fixed constant (the degenerate ser-
vice-time distribution) and that we have a Poisson input process with a fixed mean ar-
rival rate �.
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1A recursion formula also is available for calculating the probability distribution of the number of customers in
the system; see A. Hordijk and H. C. Tijms, “A Simple Proof of the Equivalence of the Limiting Distribution
of the Continuous-Time and the Embedded Process of the Queue Size in the M/G/1 Queue,” Statistica Neer-
landica, 36: 97–100, 1976.



When there is just a single server, the M/D/1 model is just the special case of the
M/G/1 model where �2 � 0, so that the Pollaczek-Khintchine formula reduces to

Lq � 	
2(1

�
�

2

�)
	,

where L, Wq, and W are obtained from Lq as just shown. Notice that these Lq and Wq are
exactly half as large as those for the exponential service-time case of Sec. 17.6 (the M/M/1
model), where �2 � 1/�2, so decreasing �2 can greatly improve the measures of perfor-
mance of a queueing system.

For the multiple-server version of this model (M/D/s), a complicated method is avail-
able1 for deriving the steady-state probability distribution of the number of customers in
the system and its mean [assuming � � �/(s�) � 1]. These results have been tabulated
for numerous cases,2 and the means (L) also are given graphically in Fig. 17.11.

The M/Ek/s Model

The M/D/s model assumes zero variation in the service times (� � 0), whereas the expo-
nential service-time distribution assumes a very large variation (� � 1/�). Between these
two rather extreme cases lies a long middle ground (0 � � � 1/�), where most actual ser-
vice-time distributions fall. Another kind of theoretical service-time distribution that fills this
middle ground is the Erlang distribution (named after the founder of queueing theory).

The probability density function for the Erlang distribution is

f(t) � 	
(k

(�
�

k)
1

k

)!
	 t k�1e�k�t, for t � 0,

where � and k are strictly positive parameters of the distribution and k is further restricted
to be integer. (Except for this integer restriction and the definition of the parameters, this
distribution is identical to the gamma distribution.) Its mean and standard deviation are

Mean � 	
�
1

	

and

Standard deviation � 	
�
1

	.

Thus, k is the parameter that specifies the degree of variability of the service times rela-
tive to the mean. It usually is referred to as the shape parameter.

The Erlang distribution is a very important distribution in queueing theory for two
reasons. To describe the first one, suppose that T1, T2, . . . , Tk are k independent random
variables with an identical exponential distribution whose mean is 1/(k�). Then their sum

T � T1 � T2 � ��� � Tk

1
	
�k�
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2F. S. Hillier and O. S. Yu, with D. Avis, L. Fossett, F. Lo, and M. Reiman, Queueing Tables and Graphs, El-
sevier North-Holland, New York, 1981.



has an Erlang distribution with parameters � and k. The discussion of the exponential dis-
tribution in Sec. 17.4 suggested that the time required to perform certain kinds of tasks
might well have an exponential distribution. However, the total service required by a cus-
tomer may involve the server’s performing not just one specific task but a sequence of k
tasks. If the respective tasks have an identical exponential distribution for their duration,
the total service time will have an Erlang distribution. This will be the case, e.g., if the
server must perform the same exponential task k times for each customer.

The Erlang distribution also is very useful because it is a large (two-parameter) fam-
ily of distributions permitting only nonnegative values. Hence, empirical service-time dis-
tributions can usually be reasonably approximated by an Erlang distribution. In fact, both
the exponential and the degenerate (constant) distributions are special cases of the Erlang
distribution, with k � 1 and k � �, respectively. Intermediate values of k provide inter-
mediate distributions with mean � 1/�, mode � (k � 1)/(k�), and variance � 1/(k�2), as

874 17 QUEUEING THEORY

Utilization factor

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.1

1.0

10

100

L

� � �
s�

s �
 1

s �
 7

s �
 5

s �
 4

s �
 3

s �
 2

s �
 10s �

 15
s �

 20
s �

 25
St

ea
dy

-s
ta

te
 e

xp
ec

te
d 

nu
m

be
r 

of
 c

us
to

m
er

s 
in

 th
e 

sy
st

em

FIGURE 17.11
Values of L for the M/D/s
model (Sec. 17.7).



suggested by Fig. 17.12. Therefore, after estimating the mean and variance of an empir-
ical service-time distribution, these formulas for the mean and variance can be used to
choose the integer value of k that matches the estimates most closely.

Now consider the M/Ek/1 model, which is just the special case of the M/G/1 model
where service times have an Erlang distribution with shape parameter � k. Applying the
Pollaczek-Khintchine formula with �2 � 1/(k�2) (and the accompanying results given for
M/G/1) yields

Lq � 	
�2/

2
(
(
k
1
�

�

2) �
�)

�2

	 � 	
1

2
�
k

k
	 	

�(�
�
�

2

�)
	,

Wq � 	
1

2
�
k

k
	 	

�(�
�
� �)
	,

W � Wq � 	
�
1

	,

L � �W.

With multiple servers (M/Ek/s), the relationship of the Erlang distribution to the ex-
ponential distribution just described can be exploited to formulate a modified birth-and-
death process (continuous time Markov chain) in terms of individual exponential service
phases (k per customer) rather than complete customers. However, it has not been possi-
ble to derive a general steady-state solution [when � � �/(s�) � 1] for the probability dis-
tribution of the number of customers in the system as we did in Sec. 17.5. Instead, ad-
vanced theory is required to solve individual cases numerically. Once again, these results
have been obtained and tabulated for numerous cases.1 The means (L) also are given graph-
ically in Fig. 17.13 for some cases where s � 2.
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Models without a Poisson Input

All the queueing models presented thus far have assumed a Poisson input process (expo-
nential interarrival times). However, this assumption is violated if the arrivals are sched-
uled or regulated in some way that prevents them from occurring randomly, in which case
another model is needed.

As long as the service times have an exponential distribution with a fixed parameter,
three such models are readily available. These models are obtained by merely reversing
the assumed distributions of the interarrival and service times in the preceding three mod-
els. Thus, the first new model (GI/M/s) imposes no restriction on what the interarrival
time distribution can be. In this case, there are some steady-state results available1 (par-
ticularly in regard to waiting-time distributions) for both the single-server and multiple-
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Values of L for the M/Ek /2
model (Sec. 17.7).

1For example, see pp. 248–260 of Selected Reference 3.



server versions of the model, but these results are not nearly as convenient as the simple
expressions given for the M/G/1 model. The second new model (D/M/s) assumes that all
interarrival times equal some fixed constant, which would represent a queueing system
where arrivals are scheduled at regular intervals. The third new model (Ek /M/s) assumes
an Erlang interarrival time distribution, which provides a middle ground between regu-
larly scheduled (constant) and completely random (exponential) arrivals. Extensive com-
putational results have been tabulated1 for these latter two models, including the values
of L given graphically in Figs. 17.14 and 17.15.

If neither the interarrival times nor the service times for a queueing system have an
exponential distribution, then there are three additional queueing models for which com-
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Values of L for the D/M/s
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1Hillier and Yu, op. cit.



putational results also are available.1 One of these models (Em/Ek /s) assumes an Erlang
distribution for both these times. The other two models (Ek /D/s and D/Ek /s) assume that
one of these times has an Erlang distribution and the other time equals some fixed constant.

Other Models

Although you have seen in this section a large number of queueing models that involve
nonexponential distributions, we have far from exhausted the list. For example, another dis-
tribution that occasionally is used for either interarrival times or service times is the hy-
perexponential distribution. The key characteristic of this distribution is that even though
only nonnegative values are allowed, its standard deviation � actually is larger than its mean
1/�. This characteristic is in contrast to the Erlang distribution, where � � 1/� in every
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case except k � 1 (exponential distribution), which has � � 1/�. To illustrate a typical sit-
uation where � � 1/� can occur, we suppose that the service involved in the queueing sys-
tem is the repair of some kind of machine or vehicle. If many of the repairs turn out to be
routine (small service times) but occasional repairs require an extensive overhaul (very
large service times), then the standard deviation of service times will tend to be quite large
relative to the mean, in which case the hyperexponential distribution may be used to rep-
resent the service-time distribution. Specifically, this distribution would assume that there
are fixed probabilities, p and (1 � p), for which kind of repair will occur, that the time re-
quired for each kind has an exponential distribution, but that the parameters for these two
exponential distributions are different. (In general, the hyperexponential distribution is such
a composite of two or more exponential distributions.)

Another family of distributions coming into general use consists of phase-type dis-
tributions (some of which also are called generalized Erlangian distributions). These dis-
tributions are obtained by breaking down the total time into a number of phases, each hav-
ing an exponential distribution, where the parameters of these exponential distributions
may be different and the phases may be either in series or in parallel (or both). A group
of phases being in parallel means that the process randomly selects one of the phases to
go through each time according to specified probabilities. This approach is, in fact, how
the hyperexponential distribution is derived, so this distribution is a special case of the
phase-type distributions. Another special case is the Erlang distribution, which has the re-
strictions that all its k phases are in series and that these phases have the same parameter
for their exponential distributions. Removing these restrictions means that phase-type dis-
tributions in general can provide considerably more flexibility than the Erlang distribu-
tion in fitting the actual distribution of interarrival times or service times observed in a
real queueing system. This flexibility is especially valuable when using the actual distri-
bution directly in the model is not analytically tractable, and the ratio of the mean to the
standard deviation for the actual distribution does not closely match the available ratios
(�k� for k � 1, 2, . . .) for the Erlang distribution.

Since they are built up from combinations of exponential distributions, queueing mod-
els using phase-type distributions still can be represented by a continuous time Markov
chain. This Markov chain generally will have an infinite number of states, so solving for
the steady-state distribution of the state of the system requires solving an infinite system
of linear equations that has a relatively complicated structure. Solving such a system is
far from a routine thing, but recent theoretical advances have enabled us to solve these
queueing models numerically in some cases. An extensive tabulation of these results for
models with various phase-type distributions (including the hyperexponential distribution)
is available.1
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In priority-discipline queueing models, the queue discipline is based on a priority system.
Thus, the order in which members of the queue are selected for service is based on their
assigned priorities.
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Many real queueing systems fit these priority-discipline models much more closely
than other available models. Rush jobs are taken ahead of other jobs, and important cus-
tomers may be given precedence over others. Therefore, the use of priority-discipline mod-
els often provides a very welcome refinement over the more usual queueing models.

We present two basic priority-discipline models here. Since both models make the
same assumptions, except for the nature of the priorities, we first describe the models to-
gether and then summarize their results separately.

The Models

Both models assume that there are N priority classes (class 1 has the highest priority and
class N has the lowest) and that whenever a server becomes free to begin serving a new
customer from the queue, the one customer selected is that member of the highest prior-
ity class represented in the queue who has waited longest. In other words, customers are
selected to begin service in the order of their priority classes, but on a first-come-first-
served basis within each priority class. A Poisson input process and exponential service
times are assumed for each priority class. Except for one special case considered later,
the models also make the somewhat restrictive assumption that the expected service time
is the same for all priority classes. However, the models do permit the mean arrival rate
to differ among priority classes.

The distinction between the two models is whether the priorities are nonpreemptive
or preemptive. With nonpreemptive priorities, a customer being served cannot be ejected
back into the queue (preempted) if a higher-priority customer enters the queueing system.
Therefore, once a server has begun serving a customer, the service must be completed
without interruption. The first model assumes nonpreemptive priorities.

With preemptive priorities, the lowest-priority customer being served is preempted
(ejected back into the queue) whenever a higher-priority customer enters the queueing
system. A server is thereby freed to begin serving the new arrival immediately. (When a
server does succeed in finishing a service, the next customer to begin receiving service is
selected just as described at the beginning of this subsection, so a preempted customer
normally will get back into service again and, after enough tries, will eventually finish.)
Because of the lack-of-memory property of the exponential distribution (see Sec. 17.4),
we do not need to worry about defining the point at which service begins when a pre-
empted customer returns to service; the distribution of the remaining service time always
is the same. (For any other service-time distribution, it becomes important to distinguish
between preemptive-resume systems, where service for a preempted customer resumes at
the point of interruption, and preemptive-repeat systems, where service must start at the
beginning again.) The second model assumes preemptive priorities.

For both models, if the distinction between customers in different priority classes
were ignored, Property 6 for the exponential distribution (see Sec. 17.4) implies that all
customers would arrive according to a Poisson input process. Furthermore, all customers
have the same exponential distribution for service times. Consequently, the two models
actually are identical to the M/M/s model studied in Sec. 17.6 except for the order in which
customers are served. Therefore, when we count just the total number of customers in the
system, the steady-state distribution for the M/M/s model also applies to both models.
Consequently, the formulas for L and Lq also carry over, as do the expected waiting-time
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results (by Little’s formula) W and Wq, for a randomly selected customer. What changes
is the distribution of waiting times, which was derived in Sec. 17.6 under the assumption
of a first-come-first-served queue discipline. With a priority discipline, this distribution
has a much larger variance, because the waiting times of customers in the highest prior-
ity classes tend to be much smaller than those under a first-come-first-served discipline,
whereas the waiting times in the lowest priority classes tend to be much larger. By the
same token, the breakdown of the total number of customers in the system tends to be
disproportionately weighted toward the lower-priority classes. But this condition is just
the reason for imposing priorities on the queueing system in the first place. We want to
improve the measures of performance for each of the higher-priority classes at the ex-
pense of performance for the lower-priority classes. To determine how much improvement
is being made, we need to obtain such measures as expected waiting time in the system
and expected number of customers in the system for the individual priority classes. Ex-
pressions for these measures are given next for the two models in turn.

Results for the Nonpreemptive Priorities Model

Let Wk be the steady-state expected waiting time in the system (including service time)
for a member of priority class k. Then

Wk � 	
ABk

1
�1Bk
	 � 	

�
1

	, for k � 1, 2, . . . , N,

where A � s!	
s�

r
�
s

�
	 �

s�1

j�0
	
r
j!

j

	 � s�,

B0 � 1,

Bk � 1 � 	
�k

i�

s�
1 �i	,

s � number of servers,

� � mean service rate per busy server,

�i � mean arrival rate for priority class i,

� � �
N

i�1
�i,

r � 	
�
�

	.

(This result assumes that

�
k

i�1
�i � s�,

so that priority class k can reach a steady-state condition.) Little’s formula still applies to
individual priority classes, so Lk, the steady-state expected number of members of prior-
ity class k in the queueing system (including those being served), is

Lk � �kWk, for k � 1, 2, . . . , N.
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To determine the expected waiting time in the queue (excluding service time) for prior-
ity class k, merely subtract 1/� from Wk; the corresponding expected queue length is again
obtained by multiplying by �k. For the special case where s � 1, the expression for A re-
duces to A � �2/�.

An Excel template is provided in your OR Courseware for performing the above
calculations.

A Single-Server Variation of the Nonpreemptive Priorities Model

The above assumption that the expected service time 1/� is the same for all priority classes
is a fairly restrictive one. In practice, this assumption sometimes is violated because of
differences in the service requirements for the different priority classes.

Fortunately, for the special case of a single server, it is possible to allow different ex-
pected service times and still obtain useful results. Let 1/�k denote the mean of the ex-
ponential service-time distribution for priority class k, so

�k � mean service rate for priority class k, for k � 1, 2, . . . , N.

Then the steady-state expected waiting time in the system for a member of priority class k is

Wk � 	
bk�

ak

1bk
	 � 	

�
1

k
	, for k � 1, 2, . . . , N,

where ak � �
k

i�1
	
�
�i

2
i

	,

b0 � 1,

bk � 1 � �
k

i�1
	
�
�i

i
	.

This result holds as long as

�
k

i�1
	
�
�i

i
	 � 1,

which enables priority class k to reach a steady-state condition. Little’s formula can be
used as described above to obtain the other main measures of performance for each pri-
ority class.

Results for the Preemptive Priorities Model

For the preemptive priorities model, we need to reinstate the assumption that the expected
service time is the same for all priority classes. Using the same notation as for the origi-
nal nonpreemptive priorities model, having the preemption changes the total expected
waiting time in the system (including the total service time) to

Wk � 	
Bk

1
�

/�
1Bk
	, for k � 1, 2, . . . , N,

882 17 QUEUEING THEORY



for the single-server case (s � 1). When s � 1, Wk can be calculated by an iterative pro-
cedure that will be illustrated soon by the County Hospital example. The Lk continue to
satisfy the relationship

Lk � �kWk, for k � 1, 2, . . . , N.

The corresponding results for the queue (excluding customers in service) also can be ob-
tained from Wk and Lk as just described for the case of nonpreemptive priorities. Because
of the lack-of-memory property of the exponential distribution (see Sec. 17.4), preemp-
tions do not affect the service process (occurrence of service completions) in any way.
The expected total service time for any customer still is 1/�.

This chapter’s Excel file includes an Excel template for calculating the above mea-
sures of performance for the single-server case.

The County Hospital Example with Priorities

For the County Hospital emergency room problem, the management engineer has noticed
that the patients are not treated on a first-come-first-served basis. Rather, the admitting
nurse seems to divide the patients into roughly three categories: (1) critical cases, where
prompt treatment is vital for survival; (2) serious cases, where early treatment is important
to prevent further deterioration; and (3) stable cases, where treatment can be delayed with-
out adverse medical consequences. Patients are then treated in this order of priority, where
those in the same category are normally taken on a first-come-first-served basis. A doctor
will interrupt treatment of a patient if a new case in a higher-priority category arrives. Ap-
proximately 10 percent of the patients fall into the first category, 30 percent into the sec-
ond, and 60 percent into the third. Because the more serious cases will be sent to the hos-
pital for further care after receiving emergency treatment, the average treatment time by a
doctor in the emergency room actually does not differ greatly among these categories.

The management engineer has decided to use a priority-discipline queueing model as
a reasonable representation of this queueing system, where the three categories of patients
constitute the three priority classes in the model. Because treatment is interrupted by the
arrival of a higher-priority case, the preemptive priorities model is the appropriate one.
Given the previously available data (� � 3 and � � 2), the preceding percentages yield 
�1 � 0.2, �2 � 0.6, and �3 � 1.2. Table 17.4 gives the resulting expected waiting times in
the queue (so excluding treatment time) for the respective priority classes1 when there is
one (s � 1) or two (s � 2) doctors on duty. (The corresponding results for the nonpre-
emptive priorities model also are given in Table 17.4 to show the effect of preempting.)

Deriving the Preemptive Priority Results. These preemptive priority results for 
s � 2 were obtained as follows. Because the waiting times for priority class 1 customers
are completely unaffected by the presence of customers in the lower-priority classes, W1

will be the same for any other values of �2 and �3, including �2 � 0 and �3 � 0. There-
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fore, W1 must equal W for the corresponding one-class model (the M/M/s model in Sec.
17.6) with s � 2, � � 3, and � � �1 � 0.2, which yields

W1 � W � 0.33370 hour, for � � 0.2

so

W1 � 	
�
1

	 � 0.33370 � 0.33333 � 0.00037 hour.

Now consider the first two priority classes. Again note that customers in these classes
are completely unaffected by lower-priority classes ( just priority class 3 in this case),
which can therefore be ignored in the analysis. Let W�1�2 be the expected waiting time in
the system (so including service time) of a random arrival in either of these two classes,
so the probability is �1/(�1 � �2) � 	

1
4

	 that this arrival is in class 1 and �2/(�1 � �2) � 	
3
4

	

that it is in class 2. Therefore,

W�1�2 � 	
1
4

	W1 � 	
3
4

	W2.

Furthermore, because the expected waiting time is the same for any queue discipline, W�1�2

must also equal W for the M/M/s model in Sec. 17.6, with s � 2, � � 3, and � � �1 �
�2 � 0.8, which yields

W�1�2 � W � 0.33937 hour, for � � 0.8.

Combining these facts gives

W2 � 	
4
3

	 �0.33937 � 	
1
4

	 (0.33370)
 � 0.34126 hour.

�W2 � 	
�
1

	 � 0.00793 hour.�

884 17 QUEUEING THEORY

TABLE 17.4 Steady-state results from the priority-discipline models for the County
Hospital problem

Preemptive Nonpreemptive
Priorities Priorities

s � 1 s � 2 s � 1 s � 2

A — — 4.5 36
B1 0.933 — 0.933 0.967
B2 0.733 — 0.733 0.867
B3 0.333 — 0.333 0.667

W1 � 	
�
1

	 0.024 hour 0.00037 hour 0.238 hour 0.029 hour

W2 � 	
�
1

	 0.154 hour 0.00793 hour 0.325 hour 0.033 hour

W3 � 	
�
1

	 1.033 hours 0.06542 hour 0.889 hour 0.048 hour



Finally, let W�1�3 be the expected waiting time in the system (so including service
time) for a random arrival in any of the three priority classes, so the probabilities are 0.1,
0.3, and 0.6 that it is in classes 1, 2, and 3, respectively. Therefore,

W�1�3 � 0.1W1 � 0.3W2 � 0.6W3.

Furthermore, W�1�3 must also equal W for the M/M/s model in Sec. 17.6, with s � 2,
� � 3, and � � �1 � �2 � �3 � 2, so that (from Table 17.2)

W�1�3 � W � 0.375 hour, for � � 2.

Consequently,

W3 � 	
0
1
.6
	 [0.375 � 0.1(0.33370) � 0.3(0.34126)]

� 0.39875 hour.

�W3 � 	
�
1

	 � 0.06542 hour.�
The corresponding Wq results for the M/M/s model in Sec. 17.6 also could have been

used in exactly the same way to derive the Wk � 1/� quantities directly.

Conclusions. When s � 1, the Wk � 1/� values in Table 17.4 for the preemptive pri-
orities case indicate that providing just a single doctor would cause critical cases to wait
about 1	

1
2

	 minutes (0.024 hour) on the average, serious cases to wait more than 9 minutes,
and stable cases to wait more than 1 hour. (Contrast these results with the average wait
of Wq � 	

2
3

	 hour for all patients that was obtained in Table 17.2 under the first-come-first-
served queue discipline.) However, these values represent statistical expectations, so some
patients have to wait considerably longer than the average for their priority class. This
wait would not be tolerable for the critical and serious cases, where a few minutes can be
vital. By contrast, the s � 2 results in Table 17.4 (preemptive priorities case) indicate that
adding a second doctor would virtually eliminate waiting for all but the stable cases. There-
fore, the management engineer recommended that there be two doctors on duty in the
emergency room during the early evening hours next year. The board of directors for
County Hospital adopted this recommendation and simultaneously raised the charge for
using the emergency room!
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Thus far we have considered only queueing systems that have a single service facility with
one or more servers. However, queueing systems encountered in OR studies are sometimes
actually queueing networks, i.e., networks of service facilities where customers must re-
ceive service at some of or all these facilities. For example, orders being processed through
a job shop must be routed through a sequence of machine groups (service facilities). It is
therefore necessary to study the entire network to obtain such information as the expected
total waiting time, expected number of customers in the entire system, and so forth.

Because of the importance of queueing networks, research into this area has been
very active. However, this is a difficult area, so we limit ourselves to a brief introduction.
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One result is of such fundamental importance for queueing networks that this find-
ing and its implications warrant special attention here. This fundamental result is the fol-
lowing equivalence property for the input process of arriving customers and the output
process of departing customers for certain queueing systems.

Equivalence property: Assume that a service facility with s servers and an in-
finite queue has a Poisson input with parameter � and the same exponential ser-
vice-time distribution with parameter � for each server (the M/M/s model), where
s� � �. Then the steady-state output of this service facility is also a Poisson
process1 with parameter �.

Notice that this property makes no assumption about the type of queue discipline
used. Whether it is first-come-first-served, random, or even a priority discipline as in Sec.
17.8, the served customers will leave the service facility according to a Poisson process.
The crucial implication of this fact for queueing networks is that if these customers must
then go to another service facility for further service, this second facility also will have a
Poisson input. With an exponential service-time distribution, the equivalence property will
hold for this facility as well, which can then provide a Poisson input for a third facility,
etc. We discuss the consequences for two basic kinds of networks next.

Infinite Queues in Series

Suppose that customers must all receive service at a series of m service facilities in a fixed
sequence. Assume that each facility has an infinite queue (no limitation on the number of
customers allowed in the queue), so that the series of facilities form a system of infinite
queues in series. Assume further that the customers arrive at the first facility according to
a Poisson process with parameter � and that each facility i (i � 1, 2, . . . , m) has an ex-
ponential service-time distribution with parameter �i for its si servers, where si�i � �. It
then follows from the equivalence property that (under steady-state conditions) each ser-
vice facility has a Poisson input with parameter �. Therefore, the elementary M/M/s model
of Sec. 17.6 (or its priority-discipline counterparts in Sec. 17.8) can be used to analyze
each service facility independently of the others!

Being able to use the M/M/s model to obtain all measures of performance for each
facility independently, rather than analyzing interactions between facilities, is a tremen-
dous simplification. For example, the probability of having n customers at a given facil-
ity is given by the formula for Pn in Sec. 17.6 for the M/M/s model. The joint probabil-
ity of n1 customers at facility 1, n2 customers at facility 2, . . . , then, is the product of
the individual probabilities obtained in this simple way. In particular, this joint probabil-
ity can be expressed as

P{(N1, N2, . . . , Nm) � (n1, n2, . . . , nm)} � Pn1
Pn2

���Pnm
.

(This simple form for the solution is called the product form solution.) Similarly, the ex-
pected total waiting time and the expected number of customers in the entire system can
be obtained by merely summing the corresponding quantities obtained at the respective
facilities.
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Unfortunately, the equivalence property and its implications do not hold for the case
of finite queues discussed in Sec. 17.6. This case is actually quite important in practice,
because there is often a definite limitation on the queue length in front of service facili-
ties in networks. For example, only a small amount of buffer storage space is typically
provided in front of each facility (station) in a production-line system. For such systems
of finite queues in series, no simple product form solution is available. The facilities must
be analyzed jointly instead, and only limited results have been obtained.

Jackson Networks

Systems of infinite queues in series are not the only queueing networks where the M/M/s
model can be used to analyze each service facility independently of the others. Another
prominent kind of network with this property (a product form solution) is the Jackson net-
work, named after the individual who first characterized the network and showed that this
property holds.1

The characteristics of a Jackson network are the same as assumed above for the sys-
tem of infinite queues in series, except now the customers visit the facilities in different
orders (and may not visit them all). For each facility, its arriving customers come from
both outside the system (according to a Poisson process) and the other facilities. These
characteristics are summarized below.

A Jackson network is a system of m service facilities where facility i (i � 1, 2, . . . , m) has

1. An infinite queue
2. Customers arriving from outside the system according to a Poisson input process with

parameter ai

3. si servers with an exponential service-time distribution with parameter �i.

A customer leaving facility i is routed next to facility j ( j � 1, 2, . . . , m) with probabil-
ity pij or departs the system with probability

qi � 1 � �
m

j�1
pij.

Any such network has the following key property.

Under steady-state conditions, each facility j ( j � 1, 2, . . . , m) in a Jackson network be-
haves as if it were an independent M/M/s queueing system with arrival rate

�j � aj � �
m

i�1
�i pij,

where sj�j � �j.

This key property cannot be proved directly from the equivalence property this time
(the reasoning would become circular), but its intuitive underpinning is still provided by the
latter property. The intuitive viewpoint (not quite technically correct) is that, for each facil-
ity i, its input processes from the various sources (outside and other facilities) are indepen-
dent Poisson processes, so the aggregate input process is Poisson with parameter �i (Prop-
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erty 6 in Sec. 17.4). The equivalence property then says that the aggregate output process
for facility i must be Poisson with parameter �i. By disaggregating this output process (Prop-
erty 6 again), the process for customers going from facility i to facility j must be Poisson
with parameter �ipij. This process becomes one of the Poisson input processes for facility
j, thereby helping to maintain the series of Poisson processes in the overall system.

The equation given for obtaining �j is based on the fact that �i is the departure rate
as well as the arrival rate for all customers using facility i. Because pij is the proportion
of customers departing from facility i who go next to facility j, the rate at which cus-
tomers from facility i arrive at facility j is �ipij. Summing this product over all i, and then
adding this sum to aj, gives the total arrival rate to facility j from all sources.

To calculate �j from this equation requires knowing the �i for i � j, but these �i also
are unknowns given by the corresponding equations. Therefore, the procedure is to solve
simultaneously for �1, �2, . . . , �m by obtaining the simultaneous solution of the entire
system of linear equations for �j for j � 1, 2, . . . , m. Your OR Courseware includes an
Excel template for solving for the �j in this way.

To illustrate these calculations, consider a Jackson network with three service facili-
ties that have the parameters shown in Table 17.5. Plugging into the formula for �j for
j � 1, 2, 3, we obtain

�1 � 1 � 0.1�2 � 0.4�3

�2 � 4 � 0.6�1 � 0.4�3

�3 � 3 � 0.3�1 � 0.3�2.

(Reason through each equation to see why it gives the total arrival rate to the corresponding
facility.) The simultaneous solution for this system is

�1 � 5, �2 � 10, �3 � 7	
1
2

	.

Given this simultaneous solution, each of the three service facilities now can be ana-
lyzed independently by using the formulas for the M/M/s model given in Sec. 17.6. For ex-
ample, to obtain the distribution of the number of customers Ni � ni at facility i, note that

	
1
2

	 for i � 1

�i � 	
s
�

i�
i

i
	 � 	

1
2

	 for i � 2

	
3
4

	 for i � 3.
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TABLE 17.5 Data for the example of a Jackson network

pij

Facility j sj �j aj i � 1 i � 2 i � 3

j � 1 1 10 1 0 0.1 0.4
j � 2 2 10 4 0.6 0 0.4
j � 3 1 10 3 0.3 0.3 0













Plugging these values (and the parameters in Table 17.5) into the formula for Pn gives

Pn1
� 	

1
2

	�	
1
2

	�
n1

for facility 1,

	
1
3

	 for n2 � 0

Pn2
� 	

1
3

	 for n2 � 1 for facility 2,

	
1
3

	�	
1
2

	�
n2�1

for n2 � 2

Pn3
� 	

1
4

	�	
3
4

	�
n3

for facility 3.

The joint probability of (n1, n2, n3) then is given simply by the product form solution

P{(N1, N2, N3) � (n1, n2, n3)} � Pn1
Pn2

Pn3
.

In a similar manner, the expected number of customers Li at facility i can be calcu-
lated from Sec. 17.6 as

L1 � 1, L2 � 	
4
3

	, L3 � 3.

The expected total number of customers in the entire system then is

L � L1 � L2 � L3 � 5	
1
3

	.

Obtaining W, the expected total waiting time in the system (including service times)
for a customer, is a little trickier. You cannot simply add the expected waiting times at the
respective facilities, because a customer does not necessarily visit each facility exactly
once. However, Little’s formula can still be used, where the system arrival rate � is the
sum of the arrival rates from outside to the facilities, � � a1 � a2 � a3 � 8. Thus,

W � 	
a1 � a

L
2 � a3
	 � 	

2
3

	.

In conclusion, we should point out that there do exist other (more complicated) kinds
of queueing networks where the individual service facilities can be analyzed indepen-
dently from the others. In fact, finding queueing networks with a product form solution
has been the Holy Grail for research on queueing networks. Two sources of additional in-
formation are Selected References 6 and 7.
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Queueing systems are prevalent throughout society. The adequacy of these systems can
have an important effect on the quality of life and productivity.

Queueing theory studies queueing systems by formulating mathematical models of
their operation and then using these models to derive measures of performance. This analy-
sis provides vital information for effectively designing queueing systems that achieve an
appropriate balance between the cost of providing a service and the cost associated with
waiting for that service.
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This chapter presented the most basic models of queueing theory for which particu-
larly useful results are available. However, many other interesting models could be con-
sidered if space permitted. In fact, several thousand research papers formulating and/or
analyzing queueing models have already appeared in the technical literature, and many
more are being published each year!

The exponential distribution plays a fundamental role in queueing theory for represent-
ing the distribution of interarrival and service times, because this assumption enables us to
represent the queueing system as a continuous time Markov chain. For the same reason, phase-
type distributions such as the Erlang distribution, where the total time is broken down into
individual phases having an exponential distribution, are very useful. Useful analytical results
have been obtained for only a relatively few queueing models making other assumptions.

Priority-discipline queueing models are useful for the common situation where some
categories of customers are given priority over others for receiving service.

In another common situation, customers must receive service at several different ser-
vice facilities. Models for queueing networks are gaining widespread use for such situa-
tions. This is an area of especially active ongoing research.

When no tractable model that provides a reasonable representation of the queueing
system under study is available, a common approach is to obtain relevant performance
data by developing a computer program for simulating the operation of the system. This
technique is discussed in Chap. 22.

Chapter 18 describes how queueing theory can be used to help design effective queue-
ing systems.
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To the left of each of the following problems (or their parts), we
have inserted a T whenever one of the templates listed above can
be helpful. An asterisk on the problem number indicates that at
least a partial answer is given in the back of the book.

17.2-1.* Consider a typical barber shop. Demonstrate that it is a
queueing system by describing its components.

17.2-2.* Newell and Jeff are the two barbers in a barber shop they
own and operate. They provide two chairs for customers who are
waiting to begin a haircut, so the number of customers in the shop
varies between 0 and 4. For n � 0, 1, 2, 3, 4, the probability Pn

that exactly n customers are in the shop is P0 � 	
1
1
6
	, P1 � 	

1
4
6
	,

P2 � 	
1
6
6
	, P3 � 	

1
4
6
	, P4 � 	

1
1
6
	.

(a) Calculate L. How would you describe the meaning of L to
Newell and Jeff?

(b) For each of the possible values of the number of customers in
the queueing system, specify how many customers are in the
queue. Then calculate Lq. How would you describe the mean-
ing of Lq to Newell and Jeff?

(c) Determine the expected number of customers being served.
(d) Given that an average of 4 customers per hour arrive and stay

to receive a haircut, determine W and Wq. Describe these two
quantities in terms meaningful to Newell and Jeff.

(e) Given that Newell and Jeff are equally fast in giving haircuts,
what is the average duration of a haircut?

17.2-3. Mom-and-Pop’s Grocery Store has a small adjacent park-
ing lot with three parking spaces reserved for the store’s customers.
During store hours, cars enter the lot and use one of the spaces at
a mean rate of 2 per hour. For n � 0, 1, 2, 3, the probability Pn

that exactly n spaces currently are being used is P0 � 0.2, P1 �
0.3, P2 � 0.3, P3 � 0.2.

(a) Describe how this parking lot can be interpreted as being a
queueing system. In particular, identify the customers and the
servers. What is the service being provided? What constitutes
a service time? What is the queue capacity?

(b) Determine the basic measures of performance—L, Lq, W, and
Wq—for this queueing system.

(c) Use the results from part (b) to determine the average length
of time that a car remains in a parking space.

17.2-4. For each of the following statements about the queue in a
queueing system, label the statement as true or false and then jus-
tify your answer by referring to a specific statement in the chapter.
(a) The queue is where customers wait in the queueing system un-

til their service is completed.
(b) Queueing models conventionally assume that the queue can

hold only a limited number of customers.
(c) The most common queue discipline is first-come-first-served.

17.2-5. Midtown Bank always has two tellers on duty. Customers
arrive to receive service from a teller at a mean rate of 40 per hour.
A teller requires an average of 2 minutes to serve a customer. When
both tellers are busy, an arriving customer joins a single line to
wait for service. Experience has shown that customers wait in line
an average of 1 minute before service begins.
(a) Describe why this is a queueing system.
(b) Determine the basic measures of performance—Wq, W, Lq, and

L—for this queueing system. (Hint: We don’t know the prob-
ability distributions of interarrival times and service times for
this queueing system, so you will need to use the relationships
between these measures of performance to help answer the
question.)

PROBLEMS1

1See also the end of Chap. 18 for problems involving the application of queueing theory.



completed (i) before 2:00 P.M., (ii) before 1:10 P.M., and 
(iii) before 1:01 P.M.?

17.4-2.* The jobs to be performed on a particular machine arrive
according to a Poisson input process with a mean rate of two per
hour. Suppose that the machine breaks down and will require 1 hour
to be repaired. What is the probability that the number of new jobs
that will arrive during this time is (a) 0, (b) 2, and (c) 5 or more?

17.4-3. The time required by a mechanic to repair a machine has
an exponential distribution with a mean of 4 hours. However, a
special tool would reduce this mean to 2 hours. If the mechanic
repairs a machine in less than 2 hours, he is paid $100; otherwise,
he is paid $80. Determine the mechanic’s expected increase in pay
per machine repaired if he uses the special tool.

17.4-4. A three-server queueing system has a controlled arrival
process that provides customers in time to keep the servers con-
tinuously busy. Service times have an exponential distribution with
mean 0.5.

You observe the queueing system starting up with all three
servers beginning service at time t � 0. You then note that the first
completion occurs at time t � 1. Given this information, determine
the expected amount of time after t � 1 until the next service com-
pletion occurs.

17.4-5. A queueing system has three servers with expected service
times of 20 minutes, 15 minutes, and 10 minutes. The service times
have an exponential distribution. Each server has been busy with
a current customer for 5 minutes. Determine the expected remain-
ing time until the next service completion.

17.4-6. Consider a queueing system with two types of customers.
Type 1 customers arrive according to a Poisson process with a mean
rate of 5 per hour. Type 2 customers also arrive according to a Pois-
son process with a mean rate of 5 per hour. The system has two
servers, both of which serve both types of customers. For both types,
service times have an exponential distribution with a mean of 10
minutes. Service is provided on a first-come-first-served basis.
(a) What is the probability distribution (including its mean) of the

time between consecutive arrivals of customers of any type?
(b) When a particular type 2 customer arrives, she finds two type

1 customers there in the process of being served but no other
customers in the system. What is the probability distribution
(including its mean) of this type 2 customer’s waiting time in
the queue?

17.4-7. Consider a two-server queueing system where all service
times are independent and identically distributed according to an
exponential distribution with a mean of 10 minutes. When a par-
ticular customer arrives, he finds that both servers are busy and no
one is waiting in the queue.

17.2-6. Explain why the utilization factor � for the server in a sin-
gle-server queueing system must equal 1 � P0, where P0 is the
probability of having 0 customers in the system.

17.2-7. You are given two queueing systems, Q1 and Q2. The mean
arrival rate, the mean service rate per busy server, and the steady-
state expected number of customers for Q2 are twice the corre-
sponding values for Q1. Let Wi � the steady-state expected wait-
ing time in the system for Qi, for i � 1, 2. Determine W2/W1.

17.2-8. Consider a single-server queueing system with any ser-
vice-time distribution and any distribution of interarrival times (the
GI/G/1 model). Use only basic definitions and the relationships
given in Sec. 17.2 to verify the following general relationships:
(a) L � Lq � (1 � P0).
(b) L � Lq � �.
(c) P0 � 1 � �.

17.2-9. Show that

L � �
s�1

n�0
nPn � Lq � s�1 � �

s�1

n�0
Pn�

by using the statistical definitions of L and Lq in terms of the Pn.

17.3-1. Identify the customers and the servers in the queueing sys-
tem in each of the following situations:
(a) The checkout stand in a grocery store.
(b) A fire station.
(c) The toll booth for a bridge.
(d) A bicycle repair shop.
(e) A shipping dock.
(f) A group of semiautomatic machines assigned to one operator.
(g) The materials-handling equipment in a factory area.
(h) A plumbing shop.
(i) A job shop producing custom orders.
(j) A secretarial typing pool.

17.4-1. Suppose that a queueing system has two servers, an ex-
ponential interarrival time distribution with a mean of 2 hours, and
an exponential service-time distribution with a mean of 2 hours for
each server. Furthermore, a customer has just arrived at 12:00 noon.
(a) What is the probability that the next arrival will come (i) be-

fore 1:00 P.M., (ii) between 1:00 and 2:00 P.M., and (iii) after
2:00 P.M.?

(b) Suppose that no additional customers arrive before 1:00 P.M.
Now what is the probability that the next arrival will come be-
tween 1:00 and 2:00 P.M.?

(c) What is the probability that the number of arrivals between
1:00 and 2:00 P.M. will be (i) 0, (ii) 1, and (iii) 2 or more?

(d) Suppose that both servers are serving customers at 1:00 P.M.
What is the probability that neither customer will have service
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lar random variable Tj will turn out to be smallest of the n ran-
dom variables is

P{Tj � U} � 
j��
n

i�1

i, for j � 1, 2, . . . , n.

(Hint: P{Tj � U} � �
0
� P{Ti � Tj for all i � jTj � t}
je

�
jtdt.)

17.5-1. Consider the birth-and-death process with all �n � 2 (n �
1, 2, . . .), �0 � 3, �1 � 2, �2 � 1, and �n � 0 for n � 3, 4, . . . .
(a) Display the rate diagram.
(b) Calculate P0, P1, P2, P3, and Pn for n � 4, 5, . . . .
(c) Calculate L, Lq, W, and Wq.

17.5-2. Consider a birth-and-death process with just three attain-
able states (0, 1, and 2), for which the steady-state probabilities are
P0, P1, and P2, respectively. The birth-and-death rates are summa-
rized in the following table:

(a) What is the probability distribution (including its mean and
standard deviation) of this customer’s waiting time in the
queue?

(b) Determine the expected value and standard deviation of this
customer’s waiting time in the system.

(c) Suppose that this customer still is waiting in the queue 5 min-
utes after its arrival. Given this information, how does this
change the expected value and the standard deviation of this
customer’s total waiting time in the system from the answers
obtained in part (b)?

17.4-8. A queueing system has two servers whose service times
are independent random variables with an exponential distribution
with a mean of 15 minutes. Customer X arrives when both servers
are idle. Five minutes later, customer Y arrives and customer X still
is being served. Another 10 minutes later, customer Z arrives and
both customers X and Y still are being served. No other customers
arrived during this 15-minute interval.
(a) What is the probability that customer X will complete service

before customer Y?
(b) What is the probability that customer Z will complete service

before customer X?
(c) What is the probability that customer Z will complete service

before customer Y?
(d) Determine the cumulative distribution function of the waiting

time in the system for customer X. Also determine the mean
and standard deviation.

(e) Repeat part (d ) for customer Y.
(f) Determine the expected value and standard deviation of the

waiting time in the system for customer Z.
(g) Determine the probability of exactly 2 more customers arriv-

ing during the next 15-minute interval.

17.4-9. For each of the following statements regarding service
times modeled by the exponential distribution, label the statement
as true or false and then justify your answer by referring to spe-
cific statements (with page citations) in the chapter.
(a) The expected value and variance of the service times are al-

ways equal.
(b) The exponential distribution always provides a good approxi-

mation of the actual service-time distribution when each cus-
tomer requires the same service operations.

(c) At an s-server facility, s � 1, with exactly s customers already
in the system, a new arrival would have an expected waiting
time before entering service of 1/� time units, where � is the
mean service rate for each busy server.

17.4-10. As for Property 3 of the exponential distribution, let
T1, T2, . . . , Tn be independent exponential random variables
with parameters 
1, 
2, . . . , 
n, respectively, and let U �
min{T1, T2, . . . , Tn}. Show that the probability that a particu-
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(a) Construct the rate diagram for this birth-and-death process.
(b) Develop the balance equations.
(c) Solve these equations to find P0, P1, and P2.
(d) Use the general formulas for the birth-and-death process to cal-

culate P0, P1, and P2. Also calculate L, Lq, W, and Wq.

17.5-3. Consider the birth-and-death process with the following
mean rates. The birth rates are �0 � 2, �1 � 3, �2 � 2, �3 � 1, and
�n � 0 for n � 3. The death rates are �1 � 3, �2 � 4, �3 � 1, and
�n � 2 for n � 4.
(a) Construct the rate diagram for this birth-and-death process.
(b) Develop the balance equations.
(c) Solve these equations to find the steady-state probability dis-

tribution P0, P1, . . . .
(d) Use the general formulas for the birth-and-death process to cal-

culate P0, P1, . . . . Also calculate L, Lq, W, and Wq.

17.5-4. Consider the birth-and-death process with all �n � 2 (n �
0, 1, . . .), �1 � 2, and �n � 4 for n � 2, 3, . . . .
(a) Display the rate diagram.
(b) Calculate P0 and P1. Then give a general expression for Pn in

terms of P0 for n � 2, 3, . . . .
(c) Consider a queueing system with two servers that fits this

process. What is the mean arrival rate for this queueing sys-
tem? What is the mean service rate for each server when it is
busy serving customers?

State Birth Rate Death Rate

0 1 —
1 1 2
2 0 2



without being served). Potential customers arrive according to a
Poisson process with a mean rate of 4 per hour. An arriving po-
tential customer who finds n customers already there will balk with
the following probabilities:

0, if n � 0,

	
1
2

	, if n � 1,
P{balkn already there} �

	
3
4

	, if n � 2,

1, if n � 3.

Service times have an exponential distribution with a mean of 1
hour.

A customer already in service never reneges, but the customers
in the queue may renege. In particular, the remaining time that the
customer at the front of the queue is willing to wait in the queue
before reneging has an exponential distribution with a mean of 1
hour. For a customer in the second position in the queue, the time
that she or he is willing to wait in this position before reneging has
an exponential distribution with a mean of 	

1
2

	 hour.
(a) Construct the rate diagram for this queueing system.
(b) Obtain the steady-state distribution of the number of customers

in the system.
(c) Find the expected fraction of arriving potential customers who

are lost due to balking.
(d) Find Lq and L.

17.5-9.* A certain small grocery store has a single checkout stand
with a full-time cashier. Customers arrive at the stand “randomly”
(i.e., a Poisson input process) at a mean rate of 30 per hour. When
there is only one customer at the stand, she is processed by the
cashier alone, with an expected service time of 1.5 minutes. How-
ever, the stock boy has been given standard instructions that when-
ever there is more than one customer at the stand, he is to help the
cashier by bagging the groceries. This help reduces the expected
time required to process a customer to 1 minute. In both cases, the
service-time distribution is exponential.
(a) Construct the rate diagram for this queueing system.
(b) What is the steady-state probability distribution of the number

of customers at the checkout stand?
(c) Derive L for this system. (Hint: Refer to the derivation of L

for the M/M/1 model at the beginning of Sec. 17.6.) Use this
information to determine Lq, W, and Wq.

17.5-10. A department has one word-processing operator. Docu-
ments produced in the department are delivered for word process-
ing according to a Poisson process with an expected interarrival
time of 20 minutes. When the operator has just one document to
process, the expected processing time is 15 minutes. When she has
more than one document, then editing assistance that is available
reduces the expected processing time for each document to 10 min-









17.5-5.* A service station has one gasoline pump. Cars wanting
gasoline arrive according to a Poisson process at a mean rate of 15
per hour. However, if the pump already is being used, these po-
tential customers may balk (drive on to another service station). In
particular, if there are n cars already at the service station, the prob-
ability that an arriving potential customer will balk is n/3 for n �
1, 2, 3. The time required to service a car has an exponential dis-
tribution with a mean of 4 minutes.
(a) Construct the rate diagram for this queueing system.
(b) Develop the balance equations.
(c) Solve these equations to find the steady-state probability dis-

tribution of the number of cars at the station. Verify that this
solution is the same as that given by the general solution for
the birth-and-death process.

(d) Find the expected waiting time (including service) for those
cars that stay.

17.5-6. A maintenance person has the job of keeping two machines
in working order. The amount of time that a machine works be-
fore breaking down has an exponential distribution with a mean of
10 hours. The time then spent by the maintenance person to repair
the machine has an exponential distribution with a mean of 8 hours.
(a) Show that this process fits the birth-and-death process by defin-

ing the states, specifying the values of the �n and �n, and then
constructing the rate diagram.

(b) Calculate the Pn.
(c) Calculate L, Lq, W, and Wq.
(d) Determine the proportion of time that the maintenance person

is busy.
(e) Determine the proportion of time that any given machine is

working.
(f) Refer to the nearly identical example of a continuous time

Markov chain given at the end of Sec. 16.8. Describe the re-
lationship between continuous time Markov chains and the
birth-and-death process that enables both to be applied to this
same problem.

17.5-7. Consider a single-server queueing system where interar-
rival times have an exponential distribution with parameter � and
service times have an exponential distribution with parameter �.
In addition, customers renege (leave the queueing system without
being served) if their waiting time in the queue grows too large. In
particular, assume that the time each customer is willing to wait in
the queue before reneging has an exponential distribution with a
mean of 1/�.
(a) Construct the rate diagram for this queueing system.
(b) Develop the balance equations.

17.5-8. Consider a single-server queueing system where some po-
tential customers balk (refuse to enter the system) and some cus-
tomers who enter the system later get impatient and renege (leave
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machine breaks down before the first one has been repaired, the
third machine is shut off while the two operators work together to
repair this second machine quickly, in which case its repair time
has an exponential distribution with a mean of only 	

1
1
5
	 week. If the

service representative finishes repairing the first machine before
the two operators complete the repair of the second, the operators
go back to running the two operational machines while the repre-
sentative finishes the second repair, in which case the remaining
repair time has an exponential distribituion with a mean of 0.2
week.
(a) Letting the state of the system be the number of machines not

working, construct the rate diagram for this queueing system.
(b) Find the steady-state distribution of the number of machines

not working.
(c) What is the expected number of operators available for copying?

17.5-15. Consider a single-server queueing system with a finite
queue that can hold a maximum of 2 customers excluding any be-
ing served. The server can provide batch service to 2 customers si-
multaneously, where the service time has an exponential distribution
with a mean of 1 unit of time regardless of the number being served.
Whenever the queue is not full, customers arrive individually ac-
cording to a Poisson process at a mean rate of 1 per unit of time.
(a) Assume that the server must serve 2 customers simultane-

ously. Thus, if the server is idle when only 1 customer is in
the system, the server must wait for another arrival before be-
ginning service. Formulate the queueing model as a contin-
uous time Markov chain by defining the states and then con-
structing the rate diagram. Give the balance equations, but do
not solve further.

(b) Now assume that the batch size for a service is 2 only if 2 cus-
tomers are in the queue when the server finishes the preced-
ing service. Thus, if the server is idle when only 1 customer
is in the system, the server must serve this single customer,
and any subsequent arrivals must wait in the queue until ser-
vice is completed for this customer. Formulate the resulting
queueing model as a continuous time Markov chain by defin-
ing the states and then constructing the rate diagram. Give the
balance equations, but do not solve further.

17.5-16. Consider a queueing system that has two classes of cus-
tomers, two clerks providing service, and no queue. Potential cus-
tomers from each class arrive according to a Poisson process, with
a mean arrival rate of 10 customers per hour for class 1 and 5 cus-
tomers per hour for class 2, but these arrivals are lost to the sys-
tem if they cannot immediately enter service.

Each customer of class 1 that enters the system will receive
service from either one of the clerks that is free, where the service
times have an exponential distribution with a mean of 5 minutes.

Each customer of class 2 that enters the system requires the
simultaneous use of both clerks (the two clerks work together as a

utes. In both cases, the processing times have an exponential dis-
tribution.
(a) Construct the rate diagram for this queueing system.
(b) Find the steady-state distribution of the number of documents

that the operator has received but not yet completed.
(c) Derive L for this system. (Hint: Refer to the derivation of L

for the M/M/1 model at the beginning of Sec. 17.6.) Use this
information to determine Lq, W, and Wq.

17.5-11. Consider a self-service model in which the customer is
also the server. Note that this corresponds to having an infinite
number of servers available. Customers arrive according to a Pois-
son process with parameter �, and service times have an expo-
nential distribution with parameter �.
(a) Find Lq and Wq.
(b) Construct the rate diagram for this queueing system.
(c) Use the balance equations to find the expression for Pn in terms

of P0.
(d) Find P0.
(e) Find L and W.

17.5-12. Customers arrive at a queueing system according to a
Poisson process with a mean arrival rate of 2 customers per minute.
The service time has an exponential distribution with a mean of 1
minute. An unlimited number of servers are available as needed so
customers never wait for service to begin. Calculate the steady-
state probability that exactly 1 customer is in the system.

17.5-13. Suppose that a single-server queueing system fits all the
assumptions of the birth-and-death process except that customers
always arrive in pairs. The mean arrival rate is 2 pairs per hour (4
customers per hour) and the mean service rate (when the server is
busy) is 5 customers per hour.
(a) Construct the rate diagram for this queueing system.
(b) Develop the balance equations.
(c) For comparison purposes, display the rate diagram for the cor-

responding queueing system that completely fits the birth-and-
death process, i.e., where customers arrive individually at a
mean rate of 4 per hour.

17.5-14. The Copy Shop is open 5 days per week for copying ma-
terials that are brought to the shop. It has three identical copying
machines that are run by employees of the shop. Only two opera-
tors are kept on duty to run the machines, so the third machine is
a spare that is used only when one of the other machines breaks
down. When a machine is being used, the time until it breaks down
has an exponential distribution with a mean of 2 weeks. If one ma-
chine breaks down while the other two are operational, a service
representative is called in to repair it, in which case the total time
from the breakdown until the repair is completed has an exponen-
tial distribution with a mean of 0.2 week. However, if a second
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17.6-5. It is necessary to determine how much in-process stor-
age space to allocate to a particular work center in a new factory.
Jobs arrive at this work center according to a Poisson process
with a mean rate of 3 per hour, and the time required to perform
the necessary work has an exponential distribution with a mean
of 0.25 hour. Whenever the waiting jobs require more in-process
storage space than has been allocated, the excess jobs are stored
temporarily in a less convenient location. If each job requires 1
square foot of floor space while it is in in-process storage at the
work center, how much space must be provided to accommodate
all waiting jobs (a) 50 percent of the time, (b) 90 percent of the
time, and (c) 99 percent of the time? Derive an analytical ex-
pression to answer these three questions. Hint: The sum of a geo-
metric series is

�
N

n�0
xn � 	

1
1
�

�
xN

x

�1

	.

17.6-6. Consider the following statements about an M/M/1 queue-
ing system and its utilization factor �. Label each of the statements
as true or false, and then justify your answer.
(a) The probability that a customer has to wait before service be-

gins is proportional to �.
(b) The expected number of customers in the system is propor-

tional to �.
(c) If � has been increased from � � 0.9 to � � 0.99, the effect of

any further increase in � on L, Lq, W, and Wq will be relatively
small as long as � � 1.

17.6-7. Customers arrive at a single-server queueing system in ac-
cordance with a Poisson process with an expected interarrival time
of 25 minutes. Service times have an exponential distribution with
a mean of 30 minutes.

Label each of the following statements about this system as
true or false, and then justify your answer.
(a) The server definitely will be busy forever after the first cus-

tomer arrives.
(b) The queue will grow without bound.
(c) If a second server with the same service-time distribution is

added, the system can reach a steady-state condition.

17.6-8. For each of the following statements about an M/M/1
queueing system, label the statement as true or false and then jus-
tify your answer by referring to specific statements (with page ci-
tations) in the chapter.
(a) The waiting time in the system has an exponential distribution.
(b) The waiting time in the queue has an exponential distribution.
(c) The conditional waiting time in the system, given the number

of customers already in the system, has an Erlang (gamma)
distribution.

single server), where the service times have an exponential distri-
bution with a mean of 5 minutes. Thus, an arriving customer of
this kind would be lost to the system unless both clerks are free to
begin service immediately.
(a) Formulate the queueing model as a continuous time Markov

chain by defining the states and constructing the rate diagram.
(b) Now describe how the formulation in part (a) can be fitted into

the format of the birth-and-death process.
(c) Use the results for the birth-and-death process to calculate the

steady-state joint distribution of the number of customers of
each class in the system.

(d) For each of the two classes of customers, what is the expected
fraction of arrivals who are unable to enter the system?

17.6-1.* The 4M Company has a single turret lathe as a key work
center on its factory floor. Jobs arrive at this work center accord-
ing to a Poisson process at a mean rate of 2 per day. The process-
ing time to perform each job has an exponential distribution with
a mean of 	

1
4

	 day. Because the jobs are bulky, those not being worked
on are currently being stored in a room some distance from the
machine. However, to save time in fetching the jobs, the produc-
tion manager is proposing to add enough in-process storage space
next to the turret lathe to accommodate 3 jobs in addition to the
one being processed. (Excess jobs will continue to be stored tem-
porarily in the distant room.) Under this proposal, what proportion
of the time will this storage space next to the turret lathe be ade-
quate to accommodate all waiting jobs?
(a) Use available formulas to calculate your answer.
T (b) Use the corresponding Excel template to obtain the proba-

bilities needed to answer the question.

17.6-2. Customers arrive at a single-server queueing system ac-
cording to a Poisson process at a mean rate of 10 per hour. If the
server works continuously, the number of customers that can be
served in an hour has a Poisson distribution with a mean of 15.
Determine the proportion of time during which no one is waiting
to be served.

17.6-3. Consider the M/M/1 model, with � � �.
(a) Determine the steady-state probability that a customer’s actual

waiting time in the system is longer than the expected waiting
time in the system, i.e., P{� � W}.

(b) Determine the steady-state probability that a customer’s actual
waiting time in the queue is longer than the expected waiting
time in the queue, i.e., P{�q � Wq}.

17.6-4. Verify the following relationships for an M/M/1 queueing
system:

� � 	
(1

W
�

qP
P

0

0)2

	, � � 	
1
W
�

qP
P
0

0	.
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plane to another airport for an emergency landing before its fuel
runs out).
(a) Evaluate how well these criteria are currently being satisfied.
(b) A major airline is considering adding this airport as one of its

hubs. This would increase the mean arrival rate to 15 airplanes
per hour. Evaluate how well the above criteria would be satis-
fied if this happens.

(c) To attract additional business [including the major airline men-
tioned in part (b)], airport management is considering adding
a second runway for landings. It is estimated that this eventu-
ally would increase the mean arrival rate to 25 airplanes per
hour. Evaluate how well the above criteria would be satisfied
if this happens.

T 17.6-11. The Security & Trust Bank employs 4 tellers to serve
its customers. Customers arrive according to a Poisson process at
a mean rate of 2 per minute. However, business is growing and
management projects that the mean arrival rate will be 3 per minute
a year from now. The transaction time between the teller and cus-
tomer has an exponential distribution with a mean of 1 minute.

Management has established the following guidelines for a
satisfactory level of service to customers. The average number of
customers waiting in line to begin service should not exceed 1. At
least 95 percent of the time, the number of customers waiting in
line should not exceed 5. For at least 95 percent of the customers,
the time spent in line waiting to begin service should not exceed
5 minutes.
(a) Use the M/M/s model to determine how well these guidelines

are currently being satisfied.
(b) Evaluate how well the guidelines will be satisfied a year from

now if no change is made in the number of tellers.
(c) Determine how many tellers will be needed a year from now

to completely satisfy these guidelines.

17.6-12. Consider the M/M/s model.
T (a) Suppose there is one server and the expected service time is

exactly 1 minute. Compare L for the cases where the mean
arrival rate is 0.5, 0.9, and 0.99 customers per minute, re-
spectively. Do the same for Lq, W, Wq, and P{� � 5}. What
conclusions do you draw about the impact of increasing the
utilization factor � from small values (e.g., � � 0.5) to fairly
large values (e.g., � � 0.9) and then to even larger values
very close to 1 (e.g., � � 0.99)?

(b) Now suppose there are two servers and the expected service
time is exactly 2 minutes. Follow the instructions for part (a).

T 17.6-13. Consider the M/M/s model with a mean arrival rate of
10 customers per hour and an expected service time of 5 minutes.
Use the Excel template for this model to obtain and print out the
various measures of performance (with t � 10 and t � 0, respec-
tively, for the two waiting time probabilities) when the number of

17.6-9. The Friendly Neighbor Grocery Store has a single check-
out stand with a full-time cashier. Customers arrive randomly at
the stand at a mean rate of 30 per hour. The service-time distribu-
tion is exponential, with a mean of 1.5 minutes. This situation has
resulted in occasional long lines and complaints from customers.
Therefore, because there is no room for a second checkout stand,
the manager is considering the alternative of hiring another person
to help the cashier by bagging the groceries. This help would re-
duce the expected time required to process a customer to 1 minute,
but the distribution still would be exponential.

The manager would like to have the percentage of time that
there are more than two customers at the checkout stand down be-
low 25 percent. She also would like to have no more than 5 per-
cent of the customers needing to wait at least 5 minutes before be-
ginning service, or at least 7 minutes before finishing service.
(a) Use the formulas for the M/M/1 model to calculate L, W, Wq,

Lq, P0, P1, and P2 for the current mode of operation. What is
the probability of having more than two customers at the check-
out stand?

T (b) Use the Excel template for this model to check your answers
in part (a). Also find the probability that the waiting time
before beginning service exceeds 5 minutes, and the prob-
ability that the waiting time before finishing service exceeds
7 minutes.

(c) Repeat part (a) for the alternative being considered by the 
manager.

(d) Repeat part (b) for this alternative.
(e) Which approach should the manager use to satisfy her criteria

as closely as possible?

T 17.6-10. The Centerville International Airport has two runways,
one used exclusively for takeoffs and the other exclusively for land-
ings. Airplanes arrive in the Centerville air space to request land-
ing instructions according to a Poisson process at a mean rate of
10 per hour. The time required for an airplane to land after re-
ceiving clearance to do so has an exponential distribution with a
mean of 3 minutes, and this process must be completed before giv-
ing clearance to do so to another airplane. Airplanes awaiting clear-
ance must circle the airport.

The Federal Aviation Administration has a number of criteria
regarding the safe level of congestion of airplanes waiting to land.
These criteria depend on a number of factors regarding the airport
involved, such as the number of runways available for landing. For
Centerville, the criteria are (1) the average number of airplanes
waiting to receive clearance to land should not exceed 1, (2) 95
percent of the time, the actual number of airplanes waiting to re-
ceive clearance to land should not exceed 4, (3) for 99 percent of
the airplanes, the amount of time spent circling the airport before
receiving clearance to land should not exceed 30 minutes (since
exceeding this amount of time often would require rerouting the
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(Hint: Use the conditional expected waiting time in the queue given
that a random arrival finds n customers already in the system.)
(a) The M/M/1 model
(b) The M/M/s model

T 17.6-19. Consider an M/M/2 queueing system with � � 4 and
� � 3. Determine the mean rate at which service completions oc-
cur during the periods when no customers are waiting in the queue.

T 17.6-20. You are given an M/M/2 queueing system with � � 4
per hour and � � 6 per hour. Determine the probability that an ar-
riving customer will wait more than 30 minutes in the queue, given
that at least 2 customers are already in the system.

17.6-21.* In the Blue Chip Life Insurance Company, the deposit
and withdrawal functions associated with a certain investment
product are separated between two clerks, Clara and Clarence. De-
posit slips arrive randomly (a Poisson process) at Clara’s desk at
a mean rate of 16 per hour. Withdrawal slips arrive randomly (a
Poisson process) at Clarence’s desk at a mean rate of 14 per hour.
The time required to process either transaction has an exponential
distribution with a mean of 3 minutes. To reduce the expected wait-
ing time in the system for both deposit slips and withdrawal slips,
the actuarial department has made the following recommendations:
(1) Train each clerk to handle both deposits and withdrawals, and
(2) put both deposit and withdrawal slips into a single queue that
is accessed by both clerks.
(a) Determine the expected waiting time in the system under cur-

rent procedures for each type of slip. Then combine these re-
sults to calculate the expected waiting time in the system for
a random arrival of either type of slip.

T (b) If the recommendations are adopted, determine the expected
waiting time in the system for arriving slips.

T (c) Now suppose that adopting the recommendations would re-
sult in a slight increase in the expected processing time. Use
the Excel template for the M/M/s model to determine by trial
and error the expected processing time (within 0.001 hour)
that would cause the expected waiting time in the system for
a random arrival to be essentially the same under current
procedures and under the recommendations.

17.6-22. People’s Software Company has just set up a call center
to provide technical assistance on its new software package. Two
technical representatives are taking the calls, where the time re-
quired by either representative to answer a customer’s questions
has an exponential distribution with a mean of 8 minutes. Calls are
arriving according to a Poisson process at a mean rate of 10 per
hour.

By next year, the mean arrival rate of calls is expected to de-
cline to 5 per hour, so the plan is to reduce the number of techni-
cal representatives to one then.

servers is 1, 2, 3, 4, and 5. Then, for each of the following possi-
ble criteria for a satisfactory level of service (where the unit of time
is 1 minute), use the printed results to determine how many servers
are needed to satisfy this criterion.
(a) Lq � 0.25
(b) L � 0.9
(c) Wq � 0.1
(d) W � 6
(e) P{�q � 0} � 0.01
(f) P{� � 10} � 0.2

(g) �
s

n�0
Pn � 0.95

17.6-14. Airplanes arrive for takeoff at the runway of an airport
according to a Poisson process at a mean rate of 20 per hour. The
time required for an airplane to take off has an exponential distri-
bution with a mean of 2 minutes, and this process must be com-
pleted before the next airplane can begin to take off.

Because a brief thunderstorm has just begun, all airplanes
which have not commenced takeoff have just been grounded tem-
porarily. However, airplanes continue to arrive at the runway dur-
ing the thunderstorm to await its end.

Assuming steady-state operation before the thunderstorm, de-
termine the expected number of airplanes that will be waiting to
take off at the end of the thunderstorm if it lasts 30 minutes.

17.6-15. A gas station with only one gas pump employs the fol-
lowing policy: If a customer has to wait, the price is $1 per gal-
lon; if she does not have to wait, the price is $1.20 per gallon. Cus-
tomers arrive according to a Poisson process with a mean rate of
15 per hour. Service times at the pump have an exponential distri-
bution with a mean of 3 minutes. Arriving customers always wait
until they can eventually buy gasoline. Determine the expected
price of gasoline per gallon.

17.6-16. You are given an M/M/1 queueing system with mean ar-
rival rate � and mean service rate �. An arriving customer receives
n dollars if n customers are already in the system. Determine the
expected cost in dollars per customer.

17.6-17. Section 17.6 gives the following equations for the M/M/1
model:

(1) P{� � t} � �
�

n�0
PnP{Sn�1 � t}.

(2) P{� � t} � e��(1��)t.

Show that Eq. (1) reduces algebraically to Eq. (2). (Hint: Use dif-
ferentiation, algebra, and integration.)

17.6-18. Derive Wq directly for the following cases by developing
and reducing an expression analogous to Eq. (1) in Prob. 17.6-17.
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(a) The M/M/1 model.
(b) The finite queue variation of the M/M/1 model, with K � 2.
(c) The finite calling population variation of the M/M/1 model,

with N � 2.

T 17.6-26. Consider a telephone system with three lines. Calls ar-
rive according to a Poisson process at a mean rate of 6 per hour.
The duration of each call has an exponential distribution with a
mean of 15 minutes. If all lines are busy, calls will be put on hold
until a line becomes available.
(a) Print out the measures of performance provided by the Excel

template for this queueing system (with t � 1 hour and t � 0,
respectively, for the two waiting time probabilities).

(b) Use the printed result giving P{�q � 0} to identify the steady-
state probability that a call will be answered immediately (not
put on hold). Then verify this probability by using the printed
results for the Pn.

(c) Use the printed results to identify the steady-state probability
distribution of the number of calls on hold.

(d) Print out the new measures of performance if arriving calls are
lost whenever all lines are busy. Use these results to identify
the steady-state probability that an arriving call is lost.

17.6-27. Reconsider the specific birth-and-death process described
in Prob. 17.5-1.
(a) Identify a queueing model (and its parameter values) in Sec.

17.6 that fits this process.
T (b) Use the corresponding Excel template to obtain the answers

for parts (b) and (c) of Prob. 17.5-1.

17.6-28. The reservation office for Central Airlines has two agents
answering incoming phone calls for flight reservations. In addi-
tion, one caller can be put on hold until one of the agents is avail-
able to take the call. If all three phone lines (both agent lines and
the hold line) are busy, a potential customer gets a busy signal, in
which case the call may go to another airline. The calls and at-
tempted calls occur randomly (i.e., according to a Poisson process)
at a mean rate of 15 per hour. The length of a telephone conver-
sation has an exponential distribution with a mean of 4 minutes.
(a) Construct the rate diagram for this queueing system.
T (b) Find the steady-state probability that

(i) A caller will get to talk to an agent immediately,
(ii) The caller will be put on hold, and
(iii) The caller will get a busy signal.

17.6-29.* Janet is planning to open a small car-wash operation,
and she must decide how much space to provide for waiting cars.
Janet estimates that customers would arrive randomly (i.e., a Pois-
son input process) with a mean rate of 1 every 4 minutes, unless
the waiting area is full, in which case the arriving customers would
take their cars elsewhere. The time that can be attributed to wash-

T (a) Assuming that � will continue to be 7.5 calls per hour for
next year’s queueing system, determine L, Lq, W, and Wq for
both the current system and next year’s system. For each of
these four measures of performance, which system yields
the smaller value?

(b) Now assume that � will be adjustable when the number of
technical representatives is reduced to one. Solve algebraically
for the value of � that would yield the same value of W as for
the current system.

(c) Repeat part (b) with Wq instead of W.

17.6-23. You are given an M/M/1 queueing system in which the
expected waiting time and expected number in the system are 120
minutes and 8 customers, respectively. Determine the probability
that a customer’s service time exceeds 20 minutes.

17.6-24. Consider a generalization of the M/M/1 model where the
server needs to “warm up” at the beginning of a busy period, and
so serves the first customer of a busy period at a slower rate than
other customers. In particular, if an arriving customer finds the
server idle, the customer experiences a service time that has an ex-
ponential distribution with parameter �1. However, if an arriving
customer finds the server busy, that customer joins the queue and
subsequently experiences a service time that has an exponential
distribution with parameter �2, where �1 � �2. Customers arrive
according to a Poisson process with mean rate �.
(a) Formulate this model as a continuous time Markov chain by

defining the states and constructing the rate diagram accordingly.
(b) Develop the balance equations.
(c) Suppose that numerical values are specified for �1, �2, and �,

and that � � �2 (so that a steady-state distribution exists).
Since this model has an infinite number of states, the steady-
state distribution is the simultaneous solution of an infinite
number of balance equations (plus the equation specifying that
the sum of the probabilities equals 1). Suppose that you are
unable to obtain this solution analytically, so you wish to use
a computer to solve the model numerically. Considering that
it is impossible to solve an infinite number of equations nu-
merically, briefly describe what still can be done with these
equations to obtain an approximation of the steady-state dis-
tribution. Under what circumstances will this approximation
be essentially exact?

(d) Given that the steady-state distribution has been obtained, give
explicit expressions for calculating L, Lq, W, and Wq.

(e) Given this steady-state distribution, develop an expression for
P{� � t} that is analogous to Eq. (1) in Prob. 17.6-17.

17.6-25. For each of the following models, write the balance equa-
tions and show that they are satisfied by the solution given in Sec.
17.6 for the steady-state distribution of the number of customers
in the system.
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the operators into a single crew that will work together on any ma-
chine needing servicing.

The running time (time between completing service and the
machine’s requiring service again) of each machine is expected to
have an exponential distribution, with a mean of 150 minutes. The
service time is assumed to have an exponential distribution, with
a mean of 15 minutes (for Alternatives 1 and 2) or 15 minutes di-
vided by the number of operators in the crew (for Alternative 3).
For the department to achieve the required production rate, the ma-
chines must be running at least 89 percent of the time on average.
(a) For Alternative 1, what is the maximum number of machines

that can be assigned to an operator while still achieving the re-
quired production rate? What is the resulting utilization of each
operator?

(b) For Alternative 2, what is the minimum number of operators
needed to achieve the required production rate? What is the re-
sulting utilization of the operators?

(c) For Alternative 3, what is the minimum size of the crew needed
to achieve the required production rate? What is the resulting
utilization of the crew?

17.6-34. A shop contains three identical machines that are subject
to a failure of a certain kind. Therefore, a maintenance system is
provided to perform the maintenance operation (recharging) re-
quired by a failed machine. The time required by each operation
has an exponential distribution with a mean of 30 minutes. How-
ever, with probability 	

1
3

	, the operation must be performed a second
time (with the same distribution of time) in order to bring the failed
machine back to a satisfactory operational state. The maintenance
system works on only one failed machine at a time, performing all
the operations (one or two) required by that machine, on a first-
come-first-served basis. After a machine is repaired, the time un-
til its next failure has an exponential distribution with a mean of 3
hours.
(a) How should the states of the system be defined in order to for-

mulate this queueing system as a continuous time Markov
chain? (Hint: Given that a first operation is being performed
on a failed machine, completing this operation successfully and
completing it unsuccessfully are two separate events of inter-
est. Then use Property 6 regarding disaggregation for the ex-
ponential distribution.)

(b) Construct the corresponding rate diagram.
(c) Develop the balance equations.

17.6-35. Consider a single-server queueing system. It has been ob-
served that (1) this server seems to speed up as the number of cus-
tomers in the system increases and (2) the pattern of acceleration
seems to fit the state-dependent model presented at the end of Sec.
17.6. Furthermore, it is estimated that the expected service time is
8 minutes when there is only 1 customer in the system. Determine
the pressure coefficient c for this model for the following cases:

ing one car has an exponential distribution with a mean of 3 min-
utes. Compare the expected fraction of potential customers that will
be lost because of inadequate waiting space if (a) 0 spaces (not in-
cluding the car being washed), (b) 2 spaces, and (c) 4 spaces were
provided.

17.6-30. Consider the finite queue variation of the M/M/s model.
Derive the expression for Lq given in Sec. 17.6 for this model.

17.6-31. For the finite queue variation of the M/M/1 model, de-
velop an expression analogous to Eq. (1) in Prob. 17.6-17 for the
following probabilities:
(a) P{� � t}.
(b) P{�q � t}.
[Hint: Arrivals can occur only when the system is not full, so the
probability that a random arrival finds n customers already there
is Pn /(1 � PK).]

17.6-32. At the Forrester Manufacturing Company, one repair
technician has been assigned the responsibility of maintaining three
machines. For each machine, the probability distribution of the run-
ning time before a breakdown is exponential, with a mean of 9
hours. The repair time also has an exponential distribution, with a
mean of 2 hours.
(a) Which queueing model fits this queueing system?
T (b) Use this queueing model to find the probability distribution

of the number of machines not running, and the mean of
this distribution.

(c) Use this mean to calculate the expected time between a ma-
chine breakdown and the completion of the repair of that ma-
chine.

(d) What is the expected fraction of time that the repair technician
will be busy?

T (e) As a crude approximation, assume that the calling popula-
tion is infinite and that machine breakdowns occur randomly
at a mean rate of 3 every 9 hours. Compare the result from
part (b) with that obtained by making this approximation
while using (i) the M/M/s model and (ii) the finite queue
variation of the M/M/s model with K � 3.

T (f) Repeat part (b) when a second repair technician is made
available to repair a second machine whenever more than
one of these three machines require repair.

T 17.6-33.* The Dolomite Corporation is making plans for a new
factory. One department has been allocated 12 semiautomatic ma-
chines. A small number (yet to be determined) of operators will be
hired to provide the machines the needed occasional servicing
(loading, unloading, adjusting, setup, and so on). A decision now
needs to be made on how to organize the operators to do this. Al-
ternative 1 is to assign each operator to her own machines. Alter-
native 2 is to pool the operators so that any idle operator can take
the next machine needing servicing. Alternative 3 is to combine
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time needed by Marsha to serve a customer has an exponential dis-
tribution with a mean of 75 seconds.
(a) Use the M/G/1 model to find L, Lq, W, and Wq.
(b) Suppose Marsha is replaced by an expresso vending machine

that requires exactly 75 seconds for each customer to operate.
Find L, Lq, W, and Wq.

(c) What is the ratio of Lq in part (b) to Lq in part (a)?
T (d) Use trial and error with the Excel template for the M/G/1

model to see approximately how much Marsha would need
to reduce her expected service time to achieve the same Lq

as with the expresso vending machine.

17.7-5. Antonio runs a shoe repair store by himself. Customers ar-
rive to bring a pair of shoes to be repaired according to a Poisson
process at a mean rate of 1 per hour. The time Antonio requires to
repair each individual shoe has an exponential distribution with a
mean of 15 minutes.
(a) Consider the formulation of this queueing system where the

individual shoes (not pairs of shoes) are considered to be the
customers. For this formulation, construct the rate diagram and
develop the balance equations, but do not solve further.

(b) Now consider the formulation of this queueing system where
the pairs of shoes are considered to be the customers. Identify
the specific queueing model that fits this formulation.

(c) Calculate the expected number of pairs of shoes in the shop.
(d) Calculate the expected amount of time from when a customer

drops off a pair of shoes until they are repaired and ready to
be picked up.

T (e) Use the corresponding Excel template to check your answers
in parts (c) and (d ).

17.7-6.* The maintenance base for Friendly Skies Airline has
facilities for overhauling only one airplane engine at a time.
Therefore, to return the airplanes to use as soon as possible, the
policy has been to stagger the overhauling of the four engines
of each airplane. In other words, only one engine is overhauled
each time an airplane comes into the shop. Under this policy,
airplanes have arrived according to a Poisson process at a mean
rate of 1 per day. The time required for an engine overhaul (once
work has begun) has an exponential distribution with a mean 
of 	

1
2

	 day.
A proposal has been made to change the policy so that all four

engines are overhauled consecutively each time an airplane comes
into the shop. Although this would quadruple the expected service
time, each plane would need to come to the maintenance base only
one-fourth as often.

Management now needs to decide whether to continue the sta-
tus quo or adopt the proposal. The objective is to minimize the av-
erage amount of flying time lost by the entire fleet per day due to
engine overhauls.

(a) The expected service time is estimated to be 4 minutes when
there are 4 customers in the system.

(b) The expected service time is estimated to be 5 minutes when
there are 4 customers in the system.

T 17.6-36. For the state-dependent model presented at the end of
Sec. 17.6, show the effect of the pressure coefficient c by using
Fig. 17.10 to construct a table giving the ratio (expressed as a dec-
imal number) of L for this model to L for the corresponding M/M/s
model (i.e., with c � 0). Tabulate these ratios for �0/s�1 � 0.5, 0.9,
0.99 when c � 0.2, 0.4, 0.6, and s � 1, 2.

17.7-1.* Consider the M/G/1 model.
(a) Compare the expected waiting time in the queue if the service-

time distribution is (i) exponential, (ii) constant, (iii) Erlang
with the amount of variation (i.e., the standard deviation)
halfway between the constant and exponential cases.

(b) What is the effect on the expected waiting time in the queue
and on the expected queue length if both � and � are doubled
and the scale of the service-time distribution is changed ac-
cordingly?

17.2-2. Consider the M/G/1 model with � � 0.2 and � � 0.25.
T (a) Use the Excel template for this model (or hand calculations)

to find the main measures of performance—L, Lq, W, Wq—
for each of the following values of �: 4, 3, 2, 1, 0.

(b) What is the ratio of Lq with � � 4 to Lq with � � 0? What
does this say about the importance of reducing the variability
of the service times?

(c) Calculate the reduction in Lq when � is reduced from 4 to 3,
from 3 to 2, from 2 to 1, and from 1 to 0. Which is the largest
reduction? Which is the smallest?

(d) Use trial and error with the template to see approximately how
much � would need to be increased with � � 4 to achieve the
same Lq as with � � 0.25 and � � 0.

17.7-3. Consider the following statements about an M/G/1 queue-
ing system, where �2 is the variance of service times. Label each
statement as true or false, and then justify your answer.
(a) Increasing �2 (with fixed � and �) will increase Lq and L, but

will not change Wq and W.
(b) When choosing between a tortoise (small � and �2) and a hare

(large � and �2) to be the server, the tortoise always wins by
providing a smaller Lq.

(c) With � and � fixed, the value of Lq with an exponential ser-
vice-time distribution is twice as large as with constant service
times.

(d) Among all possible service-time distributions (with � and �
fixed), the exponential distribution yields the largest value of Lq.

17.7-4. Marsha operates an expresso stand. Customers arrive ac-
cording to a Poisson process at a mean rate of 30 per hour. The
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17.7-10.* Consider a single-server queueing system with a Pois-
son input, Erlang service times, and a finite queue. In particular,
suppose that k � 2, the mean arrival rate is 2 customers per hour,
the expected service time is 0.25 hour, and the maximum permis-
sible number of customers in the system is 2. This system can be
formulated as a continuous time Markov chain by dividing each
service time into two consecutive phases, each having an expo-
nential distribution with a mean of 0.125 hour, and then defining
the state of the system as (n, p), where n is the number of cus-
tomers in the system (n � 0, 1, 2), and p indicates the phase of the
customer being served (p � 0, 1, 2, where p � 0 means that no
customer is being served).
(a) Construct the corresponding rate diagram. Write the balance

equations, and then use these equations to solve for the steady-
state distribution of the state of this Markov chain.

(b) Use the steady-state distribution obtained in part (a) to iden-
tify the steady-state distribution of the number of customers in
the system (P0, P1, P2) and the steady-state expected number
of customers in the system (L).

(c) Compare the results from part (b) with the corresponding re-
sults when the service-time distribution is exponential.

17.7-11. Consider the E2/M/1 model with � � 4 and � � 5. This
model can be formulated as a continuous time Markov chain by di-
viding each interarrival time into two consecutive phases, each hav-
ing an exponential distribution with a mean of 1/(2�) � 0.125, and
then defining the state of the system as (n, p), where n is the num-
ber of customers in the system (n � 0, 1, 2, . . .) and p indicates
the phase of the next arrival (not yet in the system) ( p � 1, 2).

Construct the corresponding rate diagram (but do not solve
further).

17.7-12. A company has one repair technician to keep a large
group of machines in running order. Treating this group as an in-
finite calling population, individual breakdowns occur according
to a Poisson process at a mean rate of 1 per hour. For each break-
down, the probability is 0.9 that only a minor repair is needed, in
which case the repair time has an exponential distribution with a
mean of 	

1
2

	 hour. Otherwise, a major repair is needed, in which case
the repair time has an exponential distribution with a mean of 5
hours. Because both of these conditional distributions are expo-
nential, the unconditional (combined) distribution of repair times
is hyperexponential.
(a) Compute the mean and standard deviation of this hyperexponen-

tial distribution. [Hint: Use the general relationships from prob-
ability theory that, for any random variable X and any pair of 
mutually exclusive events E1 and E2, E(X) � E(XE1)P(E1) �
E(XE2)P(E2) and var(X) � E(X2) � E(X)2.] Compare this stan-
dard deviation with that for an exponential distribution having
this mean.

(b) What are P0, Lq, L, Wq, and W for this queueing system?

(a) Compare the two alternatives with respect to the average
amount of flying time lost by an airplane each time it comes
to the maintenance base.

(b) Compare the two alternatives with respect to the average num-
ber of airplanes losing flying time due to being at the mainte-
nance base.

(c) Which of these two comparisons is the appropriate one for
making management’s decision? Explain.

17.7-7. Reconsider Prob. 17.7-6. Management has adopted the
proposal but now wants further analysis conducted of this new
queueing system.
(a) How should the state of the system be defined in order to for-

mulate the queueing model as a continuous time Markov chain?
(b) Construct the corresponding rate diagram.

17.7-8. Consider a queueing system with a Poisson input, where
the server must perform two distinguishable tasks in sequence for
each customer, so the total service time is the sum of the two task
times (which are statistically independent).
(a) Suppose that the first task time has an exponential distribution

with a mean of 3 minutes and that the second task time has an
Erlang distribution with a mean of 9 minutes and with the shape
parameter k � 3. Which queueing theory model should be used
to represent this system?

(b) Suppose that part (a) is modified so that the first task time also
has an Erlang distribution with the shape parameter k � 3 (but
with the mean still equal to 3 minutes). Which queueing the-
ory model should be used to represent this system?

17.7-9. The McAllister Company factory currently has two tool
cribs, each with a single clerk, in its manufacturing area. One tool
crib handles only the tools for the heavy machinery; the second
one handles all other tools. However, for each crib the mechanics
arrive to obtain tools at a mean rate of 24 per hour, and the ex-
pected service time is 2 minutes.

Because of complaints that the mechanics coming to the tool
crib have to wait too long, it has been proposed that the two tool
cribs be combined so that either clerk can handle either kind of
tool as the demand arises. It is believed that the mean arrival rate
to the combined two-clerk tool crib would double to 48 per hour
and that the expected service time would continue to be 2 minutes.
However, information is not available on the form of the probabil-
ity distributions for interarrival and service times, so it is not clear
which queueing model would be most appropriate.

Compare the status quo and the proposal with respect to the
total expected number of mechanics at the tool crib(s) and the ex-
pected waiting time (including service) for each mechanic. Do this
by tabulating these data for the four queueing models considered
in Figs. 17.7, 17.11, 17.13, and 17.14 (use k � 2 when an Erlang
distribution is appropriate).

902 17 QUEUEING THEORY



ponential distribution with a mean of 3 minutes for both types of
customers. During the 12 hours per day that the ticket counter is
open, passengers arrive randomly at a mean rate of 2 per hour for
first-class passengers and 10 per hour for coach-class passengers.
(a) What kind of queueing model fits this queueing system?
T (b) Find the main measures of performance—L, Lq, W, and Wq—

for both first-class passengers and coach-class passengers.
(c) What is the expected waiting time before service begins for

first-class customers as a fraction of this waiting time for
coach-class customers?

(d) Determine the average number of hours per day that the ticket
agent is busy.

T 17.8-2. Consider the model with nonpreemptive priorities pre-
sented in Sec. 17.8. Suppose there are two priority classes, with 
�1 � 4 and �2 � 4. In designing this queueing system, you are of-
fered the choice between the following alternatives: (1) one fast
server (� � 10) and (2) two slow servers (� � 5).

Compare these alternatives with the usual four mean measures
of performance (W, L, Wq, Lq) for the individual priority classes
(W1, W2, L1, L2, and so forth). Which alternative is preferred if
your primary concern is expected waiting time in the system for
priority class 1 (W1)? Which is preferred if your primary concern
is expected waiting time in the queue for priority class 1?

17.8-3. Consider the single-server variation of the nonpreemptive
priorities model presented in Sec. 17.8. Suppose there are three pri-
ority classes, with �1 � 1, �2 � 1, and �3 � 1. The expected ser-
vice times for priority classes 1, 2, and 3 are 0.4, 0.3, and 0.2, re-
spectively, so �1 � 2.5, �2 � 3	

1
3

	, and �3 � 5.
(a) Calculate W1, W2, and W3.
(b) Repeat part (a) when using the approximation of applying the

general model for nonpreemptive priorities presented in Sec.
17.8 instead. Since this general model assumes that the ex-
pected service time is the same for all priority classes, use an
expected service time of 0.3 so � � 3	

1
3

	. Compare the results
with those obtained in part (a) and evaluate how good an ap-
proximation is provided by making this assumption.

T 17.8-4.* A particular work center in a job shop can be repre-
sented as a single-server queueing system, where jobs arrive ac-
cording to a Poisson process, with a mean rate of 8 per day. Al-
though the arriving jobs are of three distinct types, the time required
to perform any of these jobs has the same exponential distribution,
with a mean of 0.1 working day. The practice has been to work on
arriving jobs on a first-come-first-served basis. However, it is im-
portant that jobs of type 1 not wait very long, whereas the wait is
only moderately important for jobs of type 2 and is relatively unim-
portant for jobs of type 3. These three types arrive with a mean
rate of 2, 4, and 2 per day, respectively. Because all three types
have experienced rather long delays on average, it has been pro-

(c) What is the conditional value of W, given that the machine in-
volved requires major repair? A minor repair? What is the di-
vision of L between machines requiring the two types of re-
pairs? (Hint: Little’s formula still applies for the individual
categories of machines.)

(d) How should the states of the system be defined in order to for-
mulate this queueing system as a continuous time Markov
chain? (Hint: Consider what additional information must be
given, besides the number of machines down, for the condi-
tional distribution of the time remaining until the next event of
each kind to be exponential.)

(e) Construct the corresponding rate diagram.

17.7-13. Consider the finite queue variation of the M/G/1 model,
where K is the maximum number of customers allowed in the sys-
tem. For n � 1, 2, . . . , let the random variable Xn be the number
of customers in the system at the moment tn when the nth customer
has just finished being served. (Do not count the departing cus-
tomer.) The times {t1, t2, . . .} are called regeneration points. Fur-
thermore, {Xn} (n � 1, 2, . . .) is a discrete time Markov chain and
is known as an embedded Markov chain. Embedded Markov chains
are useful for studying the properties of continuous time stochas-
tic processes such as for an M/G/1 model.

Now consider the particular special case where K � 4, the ser-
vice time of successive customers is a fixed constant, say, 10 min-
utes, and the mean arrival rate is 1 every 50 minutes. Therefore,
{Xn} is an embedded Markov chain with states 0, 1, 2, 3. (Because
there are never more than 4 customers in the system, there can
never be more than 3 in the system at a regeneration point.) Be-
cause the system is observed at successive departures, Xn can never
decrease by more than 1. Furthermore, the probabilities of transi-
tions that result in increases in Xn are obtained directly from the
Poisson distribution.
(a) Find the one-step transition matrix for the embedded Markov

chain. (Hint: In obtaining the transition probability from state
3 to state 3, use the probability of 1 or more arrivals rather than
just 1 arrival, and similarly for other transitions to state 3.)

(b) Use the corresponding routine in the Markov chains area of
your OR Courseware to find the steady-state probabilities for
the number of customers in the system at regeneration points.

(c) Compute the expected number of customers in the system at
regeneration points, and compare it to the value of L for the
M/D/1 model (with K � �) in Sec. 17.7.

17.8-1.* Southeast Airlines is a small commuter airline serving
primarily the state of Florida. Their ticket counter at the Orlando
airport is staffed by a single ticket agent. There are two separate
lines—one for first-class passengers and one for coach-class pas-
sengers. When the ticket agent is ready for another customer, the
next first-class passenger is served if there are any in line. If not,
the next coach-class passenger is served. Service times have an ex-
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for both types of customers according to an exponential distribu-
tion with a mean of 6 minutes.
(a) First focus on the problem of deriving the steady-state distri-

bution of only the number of source 1 customers in the queue-
ing system under consideration. Using a continuous time
Markov chain formulation, define the states and construct the
rate diagram for most efficiently deriving this distribution (but
do not actually derive it).

(b) Now focus on the problem of deriving the steady-state distri-
bution of the total number of customers of both types in the
queueing system under consideration. Using a continuous time
Markov chain formulation, define the states and construct the
rate diagram for most efficiently deriving this distribution (but
do not actually derive it).

(c) Now focus on the problem of deriving the steady-state joint
distribution of the number of customers of each type in the
queueing system under consideration. Using a continuous time
Markov chain formulation, define the states and construct the
rate diagram for deriving this distribution (but do not actually
derive it).

17.9-2. Consider a system of two infinite queues in series, where
each of the two service facilities has a single server. All service
times are independent and have an exponential distribution, with a
mean of 3 minutes at facility 1 and 4 minutes at facility 2. Facil-
ity 1 has a Poisson input process with a mean rate of 10 per hour.
(a) Find the steady-state distribution of the number of customers

at facility 1 and then at facility 2. Then show the product form
solution for the joint distribution of the number at the respec-
tive facilities.

(b) What is the probability that both servers are idle?
(c) Find the expected total number of customers in the system and

the expected total waiting time (including service times) for a
customer.

17.9-3. Under the assumptions specified in Sec. 17.9 for a system
of infinite queues in series, this kind of queueing network actually
is a special case of a Jackson network. Demonstrate that this is true
by describing this system as a Jackson network, including speci-
fying the values of the aj and the pij, given � for this system.

17.9-4. Consider a Jackson network with three service facilities
having the parameter values shown below.

posed that the jobs be selected according to an appropriate prior-
ity discipline instead.

Compare the expected waiting time (including service) for
each of the three types of jobs if the queue discipline is (a) first-
come-first-served, (b) nonpreemptive priority, and (c) preemptive
priority.

T 17.8-5. Reconsider the County Hospital emergency room prob-
lem as analyzed in Sec. 17.8. Suppose that the definitions of the
three categories of patients are tightened somewhat in order to
move marginal cases into a lower category. Consequently, only 5
percent of the patients will qualify as critical cases, 20 percent as
serious cases, and 75 percent as stable cases. Develop a table show-
ing the data presented in Table 17.4 for this revised problem.

17.8-6. Reconsider the queueing system described in Prob. 17.4-6.
Suppose now that type 1 customers are more important than type
2 customers. If the queue discipline were changed from first-come-
first-served to a priority system with type 1 customers being given
nonpreemptive priority over type 2 customers, would this increase,
decrease, or keep unchanged the expected total number of customers
in the system?
(a) Determine the answer without any calculations, and then pre-

sent the reasoning that led to your conclusion.
T (b) Verify your conclusion in part (a) by finding the expected

total number of customers in the system under each of these
two queue disciplines.

17.8-7. Consider the queueing model with a preemptive priority
queue discipline presented in Sec. 17.8. Suppose that s � 1, N � 2,
and (�1 � �2) � �; and let Pij be the steady-state probability that
there are i members of the higher-priority class and j members of the
lower-priority class in the queueing system (i � 0, 1, 2, . . . ; j � 0,
1, 2, . . .). Use a method analogous to that presented in Sec. 17.5 to
derive a system of linear equations whose simultaneous solution is
the Pij. Do not actually obtain this solution.

17.9-1. Consider a queueing system with two servers, where the
customers arrive from two different sources. From source 1, the
customers always arrive 2 at a time, where the time between con-
secutive arrivals of pairs of customers has an exponential distrib-
ution with a mean of 20 minutes. Source 2 is itself a two-server
queueing system, which has a Poisson input process with a mean
rate of 7 customers per hour, and the service time from each of
these two servers has an exponential distribution with a mean of
15 minutes. When a customer completes service at source 2, he or
she immediately enters the queueing system under consideration
for another type of service. In the latter queueing system, the queue
discipline is preemptive priority where customers from source 1
always have preemptive priority over customers from source 2.
However, service times are independent and identically distributed
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j � 1 1 40 10 0 0.3 0.4
j � 2 1 50 15 0.5 0 0.5
j � 3 1 30 3 0.3 0.2 0



(c) What is the probability that all the facilities have empty queues
(no customers waiting to begin service)?

(d) Find the expected total number of customers in the system.
(e) Find the expected total waiting time (including service times)

for a customer.

T (a) Find the total arrival rate at each of the facilities.
(b) Find the steady-state distribution of the number of customers

at facility 1, facility 2, and facility 3. Then show the product
form solution for the joint distribution of the number at the re-
spective facilities.

CASE 17.1 REDUCING IN-PROCESS INVENTORY 905

Jim Wells, vice-president for manufacturing of the Northern Airplane Company, is ex-
asperated. His walk through the company’s most important plant this morning has left
him in a foul mood. However, he now can vent his temper at Jerry Carstairs, the plant’s
production manager, who has just been summoned to Jim’s office.

“Jerry, I just got back from walking through the plant, and I am very upset.” “What
is the problem, Jim?” “Well, you know how much I have been emphasizing the need
to cut down on our in-process inventory.” “Yes, we’ve been working hard on that,” re-
sponds Jerry. “Well, not hard enough!” Jim raises his voice even higher. “Do you know
what I found by the presses?” “No.” “Five metal sheets still waiting to be formed into
wing sections. And then, right next door at the inspection station, 13 wing sections!
The inspector was inspecting one of them, but the other 12 were just sitting there. You
know we have a couple hundred thousand dollars tied up in each of those wing sec-
tions. So between the presses and the inspection station, we have a few million bucks
worth of terribly expensive metal just sitting there. We can’t have that!”

The chagrined Jerry Carstairs tries to respond. “Yes, Jim, I am well aware that that
inspection station is a bottleneck. It usually isn’t nearly as bad as you found it this
morning, but it is a bottleneck. Much less so for the presses. You really caught us on
a bad morning.” “I sure hope so,” retorts Jim, “but you need to prevent anything nearly
this bad happening even occasionally. What do you propose to do about it?” Jerry now
brightens noticeably in his response. “Well actually, I’ve already been working on this
problem. I have a couple proposals on the table and I have asked an operations research
analyst on my staff to analyze these proposals and report back with recommendations.”
“Great,” responds Jim, “glad to see you are on top of the problem. Give this your high-
est priority and report back to me as soon as possible.” “Will do,” promises Jerry.

Here is the problem that Jerry and his OR analyst are addressing. Each of 10 iden-
tical presses is being used to form wing sections out of large sheets of specially
processed metal. The sheets arrive randomly to the group of presses at a mean rate of
7 per hour. The time required by a press to form a wing section out of a metal sheet
has an exponential distribution with a mean of 1 hour. When finished, the wing sec-
tions arrive randomly at an inspection station at the same mean rate as the metal sheets
arrived at the presses (7 per hour). A single inspector has the full-time job of inspect-
ing these wing sections to make sure they meet specifications. Each inspection takes
her 7	

1
2

	 minutes, so she can inspect 8 wing sections per hour. This inspection rate has
resulted in a substantial average amount of in-process inventory at the inspection sta-
tion (i.e., the average number of wing sheets waiting to complete inspection is fairly
large), in addition to that already found at the group of machines.
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The cost of this in-process inventory is estimated to be $8 per hour for each metal
sheet at the presses or each wing section at the inspection station. Therefore, Jerry
Carstairs has made two alternative proposals to reduce the average level of in-process
inventory.

Proposal 1 is to use slightly less power for the presses (which would increase their
average time to form a wing section to 1.2 hours), so that the inspector can keep up
with their output better. This also would reduce the cost of the power for running each
machine from $7.00 to $6.50 per hour. (By contrast, increasing to maximum power
would increase this cost to $7.50 per hour while decreasing the average time to form
a wing section to 0.8 hour.)

Proposal 2 is to substitute a certain younger inspector for this task. He is some-
what faster (albeit with some variability in his inspection times because of less expe-
rience), so he should keep up better. (His inspection time would have an Erlang dis-
tribution with a mean of 7.2 minutes and a shape parameter k � 2.) This inspector is
in a job classification that calls for a total compensation (including benefits) of $19 per
hour, whereas the current inspector is in a lower job classification where the compen-
sation is $17 per hour. (The inspection times for each of these inspectors are typical
of those in the same job classification.)

You are the OR analyst on Jerry Carstair’s staff who has been asked to analyze this
problem. He wants you to “use the latest OR techniques to see how much each proposal
would cut down on in-process inventory and then make your recommendations.”

(a) To provide a basis of comparison, begin by evaluating the status quo. Determine the expected
amount of in-process inventory at the presses and at the inspection station. Then calculate the
expected total cost per hour when considering all of the following: the cost of the in-process
inventory, the cost of the power for runnng the presses, and the cost of the inspector.

(b) What would be the effect of proposal 1? Why? Make specific comparisons to the results
from part (a). Explain this outcome to Jerry Carstairs.

(c) Determine the effect of proposal 2. Make specific comparisons to the results from part (a).
Explain this outcome to Jerry Carstairs.

(d) Make your recommendations for reducing the average level of in-process inventory at the
inspection station and at the group of machines. Be specific in your recommendations, and
support them with quantitative analysis like that done in part (a). Make specific comparisons
to the results from part (a), and cite the improvements that your recommendations would
yield.
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18
The Application of 
Queueing Theory

Queueing theory has enjoyed a prominent place among the modern analytical techniques
of OR. However, the emphasis thus far has been on developing a descriptive mathemati-
cal theory. Thus, queueing theory is not directly concerned with achieving the goal of OR:
optimal decision making. Rather, it develops information on the behavior of queueing sys-
tems. This theory provides part of the information needed to conduct an OR study at-
tempting to find the best design for a queueing system.

This chapter discusses the application of queueing theory in the broader context of
an overall OR study. It begins by introducing three examples that will be used for illus-
tration throughout the chapter. Section 18.2 discusses the basic considerations for deci-
sion making in this context. The following two sections then develop decision models for
the optimal design of queueing systems. The chapter concludes with a survey of some
award-winning applications of queueing theory.

Example 1—How Many Repairers?

SIMULATION, INC., a small company that makes gidgets for analog computers, has 10
gidget-making machines. However, because these machines break down and require re-
pair frequently, the company has only enough operators to operate eight machines at a
time, so two machines are available on a standby basis for use while other machines are
down. Thus, eight machines are always operating whenever no more than two machines
are waiting to be repaired, but the number of operating machines is reduced by 1 for each
additional machine waiting to be repaired.

The time until any given operating machine breaks down has an exponential distrib-
ution, with a mean of 20 days. (A machine that is idle on a standby basis cannot break
down.) The time required to repair a machine also has an exponential distribution, with a
mean of 2 days. Until now the company has had just one repairer to repair these machines,
which has frequently resulted in reduced productivity because fewer than eight machines
are operating. Therefore, the company is considering hiring a second repairer, so that two
machines can be repaired simultaneously.

18.1 EXAMPLES



Thus, the queueing system to be studied has the repairers as its servers and the ma-
chines requiring repair as its customers, where the problem is to choose between having
one or two servers. (Notice the analogy between this problem and the County Hospital
emergency room problem described in Sec. 17.1.) With one slight exception, this system
fits the finite calling population variation of the M/M/s model presented in Sec. 17.6,
where N � 10 machines, � � �

2
1
0
� customer per day (for each operating machine), and 

� � �
1
2

� customer per day. The exception is that the �0 and �1 parameters of the birth-and-
death process are changed from �0 � 10� and �1 � 9� to �0 � 8� and �1 � 8�. (All the
other parameters are the same as those given in Sec. 17.6.) Therefore, the Cn factors for
calculating the Pn probabilities change accordingly (see Sec. 17.5).

Each repairer costs the company approximately $280 per day. However, the estimated
lost profit from having fewer than eight machines operating to produce gidgets is $400
per day for each machine down. (The company can sell the full output from eight oper-
ating machines, but not much more.)

The analysis of this problem will be pursued in Secs. 18.3 and 18.4.

Example 2—Which Computer?

EMERALD UNIVERSITY is making plans to lease a supercomputer to be used for sci-
entific research by the faculty and students. Two models are being considered: one from
the MBI Corporation and the other from the CRAB Company. The MBI computer costs
more but is somewhat faster than the CRAB computer. In particular, if a sequence of typ-
ical jobs were run continuously for one 24-hour day, the number completed would have
a Poisson distribution with a mean of 30 and 25 for the MBI and the CRAB computers,
respectively. It is estimated that an average of 20 jobs will be submitted per day and that
the time from one submission to the next will have an exponential distribution with a mean
of 0.05 day. The leasing cost per day would be $5,000 for the MBI computer and $3,750
for the CRAB computer.

Thus, the queueing system of concern has the computer as its (single) server and the
jobs to be run as its customers. Furthermore, this system fits the M/M/1 model presented
at the beginning of Sec. 17.6. With 1 day as the unit of time, � � 20 customers per day,
and � � 30 and 25 customers per day with the MBI and the CRAB computers, respec-
tively. You will see in Secs. 18.3 and 18.4 how the decision was made between the two
computers.

Example 3—How Many Tool Cribs?

The MECHANICAL COMPANY is designing a new plant. This plant will need to in-
clude one or more tool cribs in the factory area to store tools required by the shop me-
chanics. The tools will be handed out by clerks as the mechanics arrive and request them
and will be returned to the clerks when they are no longer needed. In existing plants, there
have been frequent complaints from supervisors that their mechanics have had to waste
too much time traveling to tool cribs and waiting to be served, so it appears that there
should be more tool cribs and more clerks in the new plant. On the other hand, manage-
ment is exerting pressure to reduce overhead in the new plant, and this reduction would
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lead to fewer tool cribs and fewer clerks. To resolve these conflicting pressures, an OR
study is to be conducted to determine just how many tool cribs and clerks the new plant
should have.

Each tool crib constitutes a queueing system, with the clerks as its servers and the
mechanics as its customers. Based on previous experience, it is estimated that the time
required by a tool crib clerk to service a mechanic has an exponential distribution, with
a mean of �

1
2

� minute. Judging from the anticipated number of mechanics in the entire fac-
tory area, it is also predicted that they would require this service randomly but at a mean
rate of 2 mechanics per minute. Therefore, it was decided to use the M/M/s model of Sec.
17.6 to represent each queueing system. With 1 hour as the unit of time, � � 120. If only
one tool crib were to be provided, � also would be 120. With more than one tool crib,
this mean arrival rate would be divided among the different queueing systems.

The total cost to the company of each tool crib clerk is about $20 per hour. The cap-
ital recovery costs, upkeep costs, and so forth associated with each tool crib provided are
estimated to be $16 per working hour. While a mechanic is busy, the value to the com-
pany of his or her output averages about $48 per hour.

Sections 18.3 and 18.4 include discussions of how this (and additional) information
was used to make the required decisions.

18.2 DECISION MAKING 909

Queueing-type situations that require decision making arise in a wide variety of contexts.
For this reason, it is not possible to present a meaningful decision-making procedure that
is applicable to all these situations. Instead, this section attempts to give a broad concep-
tual picture of a typical approach.

Designing a queueing system typically involves making one or a combination of the
following decisions:

1. Number of servers at a service facility
2. Efficiency of the servers
3. Number of service facilities.

When such problems are formulated in terms of a queueing model, the corresponding de-
cision variables usually are s (number of servers at each facility), � (mean service rate
per busy server), and � (mean arrival rate at each facility). The number of service facili-
ties is directly related to � because, assuming a uniform workload among the facilities, �
equals the total mean arrival rate to all facilities divided by the number of facilities.

Refer to Sec. 18.1 and note how the three examples there respectively illustrate situ-
ations involving these three decisions. In particular, the decision facing Simulation, Inc.,
is how many repairers (servers) to provide. The problem for Emerald University is how
fast a computer (server) is needed. The problem facing Mechanical Company is how many
tool cribs (service facilities) to install as well as how many clerks (servers) to provide at
each facility.

The first kind of decision is particularly common in practice. However, the other two
also arise frequently, particularly for the internal service systems described in Sec. 17.3.
One example illustrating a decision on the efficiency of the servers is the selection of the
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type of materials-handling equipment (the servers) to purchase to transport certain kinds
of loads (the customers). Another such example is the determination of the size of a main-
tenance crew (where the entire crew is one server). Other decisions concern the number
of service facilities, such as copy centers, computer facilities, tool cribs, storage areas,
and so on, to distribute throughout an area.

All the specific decisions discussed here involve the general question of the appro-
priate level of service to provide in a queueing system. As mentioned at the beginning of
Chap. 17, decisions regarding the amount of service capacity to provide usually are based
primarily on two considerations: (1) the cost incurred by providing the service, as shown
in Fig. 18.1, and (2) the amount of waiting for that service, as suggested in Fig. 18.2. Fig-
ure 18.2 can be obtained by using the appropriate waiting-time equation from queueing
theory.

These two considerations create conflicting pressures on the decision maker. The ob-
jective of reducing service costs recommends a minimal level of service. On the other
hand, long waiting times are undesirable, which recommends a high level of service. There-
fore, it is necessary to strive for some type of compromise. To assist in finding this com-
promise, Figs. 18.1 and 18.2 may be combined, as shown in Fig. 18.3. The problem is
thereby reduced to selecting the point on the curve of Fig. 18.3 that gives the best bal-
ance between the average delay in being serviced and the cost of providing that service.
Reference to Figs. 18.1 and 18.2 indicates the corresponding level of service.
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Obtaining the proper balance between delays and service costs requires answers to
such questions as, How much expenditure on service is equivalent (in its detrimental im-
pact) to a customer’s being delayed 1 unit of time? Thus, to compare service costs and
waiting times, it is necessary to adopt (explicitly or implicitly) a common measure of their
impact. The natural choice for this common measure is cost, which then requires estima-
tion of the cost of waiting.

Because of the diversity of waiting-line situations, no single process for estimating
the cost of waiting is generally applicable. However, we shall discuss the basic consider-
ations involved for several types of situations.

One broad category is where the customers are external to the organization provid-
ing the service; i.e., they are outsiders bringing their business to the organization. Con-
sider first the case of profit-making organizations (typified by the commercial service sys-
tems described in Sec. 17.3). From the viewpoint of the decision maker, the cost of waiting
probably consists primarily of the lost profit from lost business. This loss of business may
occur immediately (because the customer grows impatient and leaves) or in the future (be-
cause the customer is sufficiently irritated that he or she does not come again). This kind
of cost is quite difficult to estimate, and it may be necessary to revert to other criteria,
such as a tolerable probability distribution of waiting times. When the customer is not a
human being, but a job being performed on order, there may be more readily identifiable
costs incurred, such as those caused by idle in-process inventories or increased expedit-
ing and administrative effort.

Now consider the type of situation where service is provided on a nonprofit basis to
customers external to the organization (typical of social service systems and some trans-
portation service systems described in Sec. 17.3). In this case, the cost of waiting usually
is a social cost of some kind. Thus, it is necessary to evaluate the consequences of the
waiting for the individuals involved and/or for society as a whole and to try to impute a
monetary value to avoiding these consequences. Once again, this kind of cost is quite dif-
ficult to estimate, and it may be necessary to revert to other criteria.

A situation may be more amenable to estimating waiting costs if the customers are
internal to the organization providing the service (as for the internal service systems dis-
cussed in Sec. 17.3). For example, the customers may be machines (as in Example 1) or
employees (as in Example 3) of a firm. Therefore, it may be possible to identify directly
some of or all the costs associated with the idleness of these customers. Typically, what
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is being wasted by this idleness is productive output, in which case the waiting cost be-
comes the lost profit from all lost productivity.

Given that the cost of waiting has been evaluated explicitly, the remainder of the
analysis is conceptually straightforward. The objective is to determine the level of service
that minimizes the total of the expected cost of service and the expected cost of waiting
for that service. This concept is depicted in Fig. 18.4, where WC denotes waiting cost,
SC denotes service cost, and TC denotes total cost. Thus, the mathematical statement of
the objective is to

Minimize E(TC) � E(SC) � E(WC).

The next two sections are concerned with the application of this concept to various
types of problems. Thus, Sec. 18.3 describes how E(WC) can be expressed mathemati-
cally. Section 18.4 then focuses on E(SC) to formulate the overall objective function E(TC)
for several basic design problems (including some with multiple decision variables, so
that the level-of-service axis in Fig. 18.4 then requires more than one dimension).
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To express E(WC) mathematically, we must first formulate a waiting-cost function that
describes how the actual waiting cost being incurred varies with the current behavior of
the queueing system. The form of this function depends on the context of the individual
problem. However, most situations can be represented by one of the two basic forms de-
scribed next.

The g(N) Form

Consider first the situation discussed in the preceding section where the queueing system
customers are internal to the organization providing the service, and so the primary cost
of waiting may be the lost profit from lost productivity. The rate at which productive out-
put is lost sometimes is essentially proportional to the number of customers in the queue-
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ing system. However, in many cases there is not enough productive work available to keep
all the members of the calling population continuously busy. Therefore, little productive
output may be lost by having just a few members idle, waiting for service in the queue-
ing system, whereas the loss may increase greatly if a few more members are made idle
because they require service. Consequently, the primary property of the queueing system
that determines the current rate at which waiting costs are being incurred is N, the num-
ber of customers in the system. Thus, the form of the waiting-cost function for this kind
of situation is that illustrated in Fig. 18.5, namely, a function of N. We shall denote this
form by g(N ).

The g(N ) function is constructed for a particular situation by estimating g(n), the wait-
ing-cost rate incurred when N � n, for n � 1, 2, . . . , where g(0) � 0. After computing
the Pn probabilities for a given design of the queueing system, we can calculate

E(WC) � E(g(N )).

Because N is a random variable, this calculation is made by using the expression for the
expected value of a function of a discrete random variable

E(WC) � �
�

n�0
g(n)Pn.

The Linear Case. For the special case where g(N ) is a linear function (i.e., when the
waiting cost is proportional to N ), then

g(N ) � CwN,

where Cw is the cost of waiting per unit time for each customer. In this case, E(WC) re-
duces to

E(WC) � Cw�
�

n�0
nPn � CwL.
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Example 1—How Many Repairers? For Example 1 of Sec. 18.1, Simulation, Inc.,
has two standby widget-making machines, so there is no lost productivity as long as the
number of customers (machines requiring repair) in the system does not exceed 2. How-
ever, for each additional customer (up to the maximum of 10 total), the estimated lost
profit is $400 per day. Therefore,

g(n) � �
as shown in Table 18.1. Consequently, after calculating the Pn probabilities as described in
Sec. 18.1, E(WC) is calculated by summing the rightmost column of Table 18.1 for each
of the two cases of interest, namely, having one repairer (s � 1) or two repairers (s � 2).

The h(�) Form

Now consider the cases discussed in Sec. 18.2 where the queueing system customers are
external to the organization providing the service. Three major types of queueing systems
described in Sec. 17.3—commercial service systems, transportation service systems, and
social service systems—typically fall into this category. In the case of commercial ser-
vice systems, the primary cost of waiting may be the lost profit from lost future business.
For transportation service systems and social systems, the primary cost of waiting may
be in the form of a social cost. However, for either type of cost, its magnitude tends to be
affected greatly by the size of the waiting times experienced by the customers. Thus, the
primary property of the queueing system that determines the waiting cost currently being
incurred is �, the waiting time in the system for the individual customers. Consequently,
the form of the waiting-cost function for this kind of situation is that illustrated in Fig.
18.6, namely, a function of �. We shall denote this form by h(�).

Note that the example of a h(�) function shown in Fig. 18.6 is a nonlinear function
where the slope keeps increasing as � increases. Although h(�) sometimes is a simple
linear function instead, it is fairly common to have this kind of nonlinear function. An in-

for n � 0, 1, 2
for n � 3, 4, . . . , 10,

0
400(n � 2)
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TABLE 18.1 Calculation of E(WC) for Example 1

s � 1 s � 2

N � n g(n) Pn g(n)Pn Pn g(n)Pn

0 0 0.271 0 0.433 0
1 0 0.217 0 0.346 0
2 0 0.173 0 0.139 0
3 400 0.139 56 0.055 24
4 800 0.097 78 0.019 16
5 1,200 0.058 70 0.006 8
6 1,600 0.029 46 0.001 0
7 2,000 0.012 24 3 � 10�4 0
8 2,400 0.003 7 4 � 10�5 0
9 2,800 7 � 10�4 0 4 � 10�6 0

10 3,200 7 � 10�5 0 2 � 10�7 0

E(WC) $281 per day $48 per day



creasing slope reflects a situation where the marginal cost of extending the waiting time
keeps increasing. A customer may not mind a “normal” wait of reasonable length, in which
case there may be virtually no negative consequences for the organization providing the
service in terms of lost profit from lost future business, a social cost, etc. However, if the
wait extends even further, the customer may become increasingly exasperated, perhaps
even missing deadlines. In such a situation, the negative consequences to the organization
may rapidly become relatively severe.

One way of constructing the h(�) function is to estimate h(w) (the waiting cost in-
curred when a customer’s waiting time � � w) for several values of w and then to fit a
polynomial to these points. The expectation of this function of a continuous random vari-
able is then defined as

E(h(�)) � ��

0
h(w) f�(w) dw,

where f�(w) is the probability density function of �. However, because E(h(�)) is the
expected waiting cost per customer and E(WC) is the expected waiting cost per unit time,
these two quantities are not equal in this case. To relate them, it is necessary to multiply
E(h(�)) by the expected number of customers per unit time entering the queueing sys-
tem. In particular, if the mean arrival rate is a constant �, then

E(WC) � �E(h(�)) � � ��

0
h(w) f�(w) dw.

Example 2—Which Computer? Because the faculty and students of Emerald Uni-
versity would experience different turnaround times with the two computers under con-
sideration (see Sec. 18.1), the choice between the computers required an evaluation of the
consequences of making them wait for their jobs to be run. Therefore, several leading sci-
entists on the faculty were asked to evaluate these consequences.

The scientists agreed that one major consequence is a delay in getting research done.
Little effective progress can be made while one is awaiting the results from a computer
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run. The scientists estimated that it would be worth $500 to reduce this delay by a day.
Therefore, this component of waiting cost was estimated to be $500 per day, that is, 500�,
where � is expressed in days.

The scientists also pointed out that a second major consequence of waiting is a break
in the continuity of the research. Although a short delay (a fraction of a day) causes lit-
tle problem in this regard, a longer delay causes significant wasted time in having to gear
up to resume the research. The scientists estimated that this wasted time would be roughly
proportional to the square of the delay time. Dollar figures of $100 and $400 were then
imputed to the value of being able to avoid this consequence entirely rather than having
a wait of �

1
2

� day and 1 day, respectively. Therefore, this component of the waiting cost was
estimated to be 400�2.

This analysis yields

h(�) � 500� � 400�2.

Because

f�(w) � �(1 � 	)e��(1�	)w

for the M/M/1 model (see Sec. 17.6) fitting this single-server queueing system,

E(h(�)) � ��

0
(500w � 400w2)�(1 � 	)e��(1�	)w dw,

where 	 � �/� for a single-server system. Since �(1 � 	) � (� � �), the values of � and
� presented in Sec. 18.1 give

�(1 � 	) � �
Evaluating the integral for these two cases yields

E(h(�)) � �
The result represents the expected waiting cost (in dollars) for each person arriving with
a job to be run. Because � � 20, the total expected waiting cost per day becomes

E(WC) � �
The Linear Case. Before turning to the next example, consider now the special case
where h(�) is a linear function,

h(�) � Cw�,

where Cw is the cost of waiting per unit time for each customer. In this case, E(WC) re-
duces to

E(WC) � �E(Cw�) � Cw(�W) � CwL.

Note that this result is identical to the result when g(N ) is a linear function. Consequently,
when the total waiting cost incurred by the queueing system is simply proportional to the

for MBI computer
for CRAB computer.

$1,160 per day
$2,640 per day

for MBI computer
for CRAB computer.

58
132

for MBI computer
for CRAB computer.

10
5
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total waiting time, it does not matter whether the g(N ) or the h(�) form is used for the
waiting-cost function.

Example 3—How Many Tool Cribs? As indicated in Sec. 18.1, the value to the 
Mechanical Company of a busy mechanic’s output averages about $48 per hour. Thus,
Cw � 48. Consequently, for each tool crib the expected waiting cost per hour is

E(WC) � 48L,

where L represents the expected number of mechanics waiting (or being served) at the
tool crib.
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We mentioned in Sec. 18.2 that three common decision variables in designing queueing
systems are s (number of servers), � (mean service rate for each server), and � (mean ar-
rival rate at each service facility). We shall now formulate models for making some of
these decisions.

Model 1—Unknown s

Model 1 is designed for the case where both � and � are fixed at a particular service fa-
cility, but where a decision must be made on the number of servers to have on duty at the
facility.

Formulation of Model 1.

Definition: Cs � marginal cost of a server per unit time.
Given: �, �, Cs.
To find: s.
Objective: Minimize E(TC) � Css � E(WC).

Because only a few alternative values of s normally need to be considered, the usual
way of solving this model is to calculate E(TC) for these values of s and select the min-
imizing one. For the linear case where E(WC) � CwL, an Excel template has been pro-
vided in your OR Courseware for performing these calculations when the queueing sys-
tem fits the M/M/s queueing model. However, as long as the queueing model is tractable,
it often is not very difficult to perform these calculations yourself for other cases, as il-
lustrated by the following example.

Example 1—How Many Repairers? For Example 1 of Sec. 18.1, each repairer
(server) costs Simulation, Inc., approximately $280 per day. Thus, with 1 day as the unit
of time, Cs � 280. Using the values of E(WC) calculated in Table 18.1 then yields the re-
sults shown in Table 18.2, which indicate that the company should continue having just
one repairer.

Model 2—Unknown � and s

Model 2 is designed for the case where both the efficiency of service, measured by �,
and the number of servers s at a service facility need to be selected.
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Alternative values of � may be available because there is a choice on the quality of
the servers. For example, when the servers will be materials-handling units, the quality of
the units to be purchased affects their service rate for moving loads.

Another possibility is that the speed of the servers can be adjusted mechanically. For
example, the speed of machines frequently can be adjusted by changing the amount of
power consumed, which also changes the cost of operation.

Still another type of example is the selection of the number of crews (the servers)
and the size of each crew (which determines �) for jointly performing a certain task. The
task might be maintenance work, or loading and unloading operations, or inspection work,
or setup of machines, and so forth.

In many cases, only a few alternative values of � are available, e.g., the efficiency of
the alternative types of materials-handling equipment or the efficiency of the alternative
crew sizes.

Formulation of Model 2.

Definitions: f (�) � marginal cost of server per unit time when mean service
rate is �.

A � set of feasible values of �.
Given: �, f (�), A.
To find: �, s.
Objective: Minimize E(TC) � f (�)s � E(WC), subject to ��A.

Example 2—Which Computer? As indicated in Sec. 18.1, � � 30 for the MBI com-
puter and � � 25 for the CRAB computer, where 1 day is the unit of time. These com-
puters are the only two being considered by Emerald University, so

A � {25, 30}.

Because the leasing cost per day is $3,750 for the CRAB computer (� � 25) and $5,000
for the MBI computer (� � 30),

f (�) � �
The supercomputer chosen will be the only one available to the faculty and students, so
the number of servers (supercomputers) for this queueing system is restricted to s � 1.
Hence,

E(TC) � f (�) � E(WC),

for � � 25
for � � 30.

3,750
5,000
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TABLE 18.2 Calculation of E(TC) in dollars per day for Example 1

s Css E(WC) E(TC)


1 
$280 
$281 
$561 per day � minimum

2 
$560 
$ 48 
$608 per day

3 
$840 
$ 0 
$840 per day



where E(WC) is given in Sec. 18.3 for the two alternatives. Thus,

E(TC) � �
Consequently, the decision was made to lease the MBI supercomputer.

The Application of Model 2 to Other Situations. This example illustrates a case
where the number of feasible values of � is finite but the value of s is fixed. If s were not
fixed, a two-stage approach could be used to solve such a problem. First, for each indi-
vidual value of �, set Cs � f (�), and solve for the value of s that minimizes E(TC) for
model 1. Second, compare these minimum E(TC) for the alternative values of �, and se-
lect the one giving the overall minimum.

When the number of feasible values of � is infinite (such as when the speed of a ma-
chine or piece of equipment is set mechanically within some feasible interval), another
two-stage approach sometimes can be used to solve the problem. First, for each individ-
ual value of s, analytically solve for the value of � that minimizes E(TC). [This approach
requires setting to zero the derivative of E(TC) with respect to � and then solving this
equation for �, which can be done only when analytical expressions are available for both
f (�) and E(WC).] Second, compare these minimum E(TC) for the alternative values of s,
and select the one giving the overall minimum.

This analytical approach frequently is relatively straightforward for the case of s � 1
(see Prob. 18.4-17). However, because far fewer and less convenient analytical results are
available for multiple-server versions of queueing models, this approach is either difficult
(requiring computer calculations with numerical methods to solve the equation for �) or
completely impossible when s � 1. Therefore, a more practical approach is to consider only
a relatively small number of representative values of � and to use available tabulated results
for the appropriate queueing model to obtain (or approximate) E(TC) for these � values.

A Special Result with Model 2. Fortunately, under certain fairly common circum-
stances described next, s � 1 (and its minimizing value of �) must yield the overall min-
imum E(TC) for model 2, so s � 1 cases need not be considered at all.

Optimality of a Single Server. Under certain conditions, s � 1 necessarily
is optimal for model 2.

The primary conditions1 are that

1. The value of � minimizing E(TC) for s � 1 is feasible.
2. Function f (�) is either linear or concave (as defined in Appendix 2).

In effect, this optimality result indicates that it is better to concentrate service capacity
into one fast server rather than dispersing it among several slow servers. Condition 2 says
that this concentrating of a given amount of service capacity can be done without in-
creasing the cost of service. Condition 1 says that it must be possible to make � suffi-
ciently large that a single server can be used to full advantage.

for CRAB computer
for MBI computer.

3,750 � 2,640 � $6,390 per day
5,000 � 1,160 � $6,160 per day
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1There also are minor restrictions on the queueing model and the waiting-cost function. However, any of the
constant service-rate queueing models presented in Chap. 17 for s 
 1 are allowed. If the g(N ) form is used for
the waiting-cost function, it can be any increasing function. If the h(�) form is used, it can be any linear func-
tion or any convex function (as defined in Appendix 2), which fits most cases of interest.



To understand why this result holds, consider any other solution to model 2,
(s, �) � (s*, �*), where s* � 1. The service capacity of this system (as measured by the
mean rate of service completions when all servers are working) is s*�*. We shall now
compare this solution with the corresponding single-server solution (s, �) � (1, s*�*)
having the same service capacity. In particular, Table 18.3 compares the mean rate at which
service completions occur for each given number of customers in the system N � n. This
table shows that the service efficiency of the (s*, �*) solution sometimes is worse but
never is better than for the (1, s*�*) solution because it can use the full service capacity
only when there are at least s* customers in the system, whereas the single-server solu-
tion uses the full capacity whenever there are any customers in the system. Because this
lower service efficiency can only increase waiting in the system, E(WC) must be larger
for (s*, �*) than for (1, s*�*). Furthermore, the expected service cost must be at least as
large because condition 2 [and f (0) � 0] implies that

f (�*)s 
 f (s*�*).

Therefore, E(TC) is larger for (s*, �*) than (1, s*�*). Finally, note that condition 1 im-
plies that there is a feasible solution with s � 1 that is at least as good as (1, s*�*). The
conclusion is that any s � 1 solution cannot be optimal for model 2, so s � 1 must be
optimal.1

This result is still of some use even when one or both conditions fail to hold. If �
cannot be made sufficiently large to permit a single server, it still suggests that a few fast
servers should be preferred to many slow ones. If condition 2 does not hold, we still know
that E(WC) is minimized by concentrating any given amount of service capacity into a
single server, so the best s � 1 solution must be at least nearly optimal unless it causes a
substantial increase in service cost.

Model 3—Unknown � and s

Model 3 is designed especially for the case where it is necessary to select both the num-
ber of service facilities and the number of servers s at each facility. In the typical situa-
tion, a population (such as the employees in an industrial building) must be provided with
a certain service, so a decision must be made as to what proportion of the population (and
therefore what value of �) should be assigned to each service facility. Examples of such
facilities include employee facilities (drinking fountains, vending machines, and rest-
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TABLE 18.3 Comparison of service efficiency for Model 2 solutions

Mean Rate of Service Completions

N � n (s, �) � (s*, �*) versus (s, �) � (1, s*�*)

n � 0 0 � 0
n � 1, 2, . . . , s* � 1 n�* � s*�*
n 
 s* s*�* � s*�*

1For a rigorous proof of this result, see S. Stidham, Jr., “On the Optimality of Single-Server Queueing Systems,”
Operations Research, 18: 708–732, 1970.



rooms), storage facilities, and reproduction equipment facilities. It may sometimes be clear
that only a single server should be provided at each facility (e.g., one drinking fountain
or one copy machine), but s often is also a decision variable.

To simplify our presentation, we shall require in model 3 that � and s be the same
for all service facilities. However, it should be recognized that a slight improvement in
the indicated solution might be achieved by permitting minor deviations in these param-
eters at individual facilities. This should be investigated as part of the detailed analysis
that generally follows the application of the mathematical model.

Formulation of Model 3.

Definitions: Cs � marginal cost of server per unit time.
Cf � fixed cost of service per service facility per unit time.
�p � mean arrival rate for entire calling population.
n � number of service facilities � �p /�.

Given: �, Cs, Cf, �p.
To find: �, s.
Objective: Minimize E(TC), subject to � � �p/n, where n � 1, 2, . . . .

Finding E(TC). It might appear at first glance that the appropriate expression for the
expected total cost per unit time of all the facilities should be

E(TC) � n[(Cf � Css) � E(WC)],

where E(WC) here represents the expected waiting cost per unit time for each facility.
However, if this expression actually were valid, it would imply that n � 1 necessarily is
optimal for model 3. The reasoning is completely analogous to that for the optimality of
a single-server result for model 2; namely, any solution (n, s) � (n*, s*) with n* � 1 has
higher service costs than the (n, s) � (1, n*s*) solution, and it also has a higher expected
waiting cost because it sometimes makes less effective use of the available service ca-
pacity. In particular, it sometimes has idle servers at one facility while customers are wait-
ing at another facility, so the mean rate of service completions would be less than if the
customers had access to all the servers at one common facility.

Because there are many situations where it obviously would not be optimal to have
just one service facility (e.g., the number of restrooms in a 50-story building), something
must be wrong with this expression. Its deficiency is that it considers only the cost of ser-
vice and the cost of waiting at the service facilities while totally ignoring the cost of the
time wasted in traveling to and from the facilities. Because travel time would be prohib-
itive with only one service facility for a large population, enough separate facilities must
be distributed throughout the calling population to hold travel time down to a reasonable
level.

Thus, letting the random variable T be the round-trip travel time for a customer com-
ing to and going back from one of the service facilities, we see that the total time lost by
the customer actually is � � T. (Recall from Chap. 17 that � is the waiting time in the
queueing system after the customer arrives.) Therefore, a customer’s total cost for time
lost should be based on � � T rather than just �. To simplify the analysis, let us sepa-
rate this total cost into the sum of the waiting-time cost based on � (or N ) and the travel-
time cost based on T. We shall also assume that the travel-time cost is proportional to T,
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where Ct is the cost of each unit of travel time for each customer. For ease of presenta-
tion, suppose that the probability distribution of T is the same for each service facility, so
that CtE(T) is the expected travel cost for each arrival at any of the service facilities. The
resulting expression for E(TC) is

E(TC) � n[(Cf � Css) � E(WC) � �CtE(T)]

because � is the expected number of arrivals per unit time at each facility. Consequently,
by evaluating (or estimating) E(T) for each case of interest, model 3 can be solved by cal-
culating E(TC) for various values of s for each n and then selecting the solution giving
the overall minimum.

Example 3—How Many Tool Cribs? For the new plant being designed for the Me-
chanical Company (see Sec. 18.1), the layout of the portion of the factory area where the
mechanics will work is shown in Fig. 18.7. The three possible locations for tool cribs are
identified as locations 1, 2, and 3, where access to these locations will be provided by a
system of orthogonal aisles parallel to the sides of the indicated area. The coordinates are
given in units of feet.

The three basic alternatives being considered are these:

Alternative 1: Have one tool crib—use location 2.
Alternative 2: Have two tool cribs—use locations 1 and 3.
Alternative 3: Have three tool cribs—use locations 1, 2, and 3.
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(0, 300) (300, 300)

(300, 600) (600, 600)

Location 3

(450, 450)

Location 2

(450, 150)

Location 1

(150, 150)

(0, 0) (600, 0)

FIGURE 18.7
Layout for Example 3.



The mechanics will be distributed quite uniformly throughout the area shown, and
each mechanic will be assigned to the nearest tool crib. It is estimated that the mechan-
ics will walk to and from a tool crib at an average speed of slightly less than 3 miles per
hour. Based on this information and an estimate of the average distance traveled on each
trip to and from the tool crib, E(T) is estimated to be 0.04, 0.0278, and 0.02 hour for al-
ternatives 1, 2, and 3, respectively. [A supplement to this chapter on the CD-ROM dis-
cusses the evaluation of travel time and also spells out how these particular values of E(T)
were obtained for this example.]

The stage now is set for using model 3 to choose from these alternatives. Most of the
data required for this model are given in Sec. 18.1, namely,

� � 120 per hour, Cf � $16 per hour,
Cs � $20 per hour,

�p � 120 per hour, Ct � $48 per hour,

where the M/M/s model given in Sec. 17.6 is used to calculate L and so on. In addition,
the end of Sec. 18.3 gives E(WC) � 48L in dollars per hour. Therefore,

E(TC) � n�(16 � 20s) � 48L � �
12
n
0

� 48E(T)�.

The resulting calculation of E(TC) for various s values for each n is given in Table 18.4,
which indicates that the overall minimum E(TC) of $295.20 per hour is obtained by hav-
ing three tool cribs (so � � 40 for each), with one clerk at each tool crib.
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TABLE 18.4 Calculation of E(TC), in dollars per hour for Example 3

n � s L E(T) Cf � Css E(WC) �CtE(T) E(TC)

1 120 1 � 0.0400 $36 � $230.40 �
1 120 2 1.333 0.0400 $56 $64.00 $230.40 $350.40
1 120 3 1.044 0.0400 $76 $50.11 $230.40 $356.51

2 60 1 1.000 0.0278 $36 $48.00 $ 80.00 $328.00
2 60 2 0.534 0.0278 $56 $25.63 $ 80.00 $323.26

3 40 1 0.500 0.0200 $36 $24.00 $ 38.40 $295.20
3 40 2 0.344 0.0200 $56 $16.51 $ 38.40 $332.73

The prestigious Franz Edelman Awards for Management Science Achievement are awarded
annually by the Institute of Operations Research and Management Sciences (INFORMS)
for the year’s best applications of OR. A rather substantial number of these awards have
been given for innovative applications of queueing theory. We briefly describe some of
these applications in this section.

One of the early first-prize winners (described in the November 1975 issue, Part 2,
of Interfaces) was the Xerox Corporation. The company had recently introduced a major
new duplicating system that was proving to be particularly valuable for its owners. Con-
sequently, these customers were demanding that Xerox’s tech reps reduce the waiting
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times to repair the machines. An OR team then applied queueing theory to study how to
best meet the new service requirements. This resulted in replacing the previous one-
person tech rep territories by larger three-person tech rep territories. This change had the
dramatic effect of both substantially reducing the average waiting times of the customers
and increasing the utilization of the tech reps by over 50 percent.

In Sec. 3.5, we described an award-winning application by United Airlines (January
1986 issue of Interfaces) that resulted in annual savings of over $6 million. This applica-
tion involved scheduling the work assignments of United’s 4,000 reservations sales rep-
resentatives and support personnel at its 11 reservations offices and the 1,000 customer
service agents at its 10 largest airports. After determining how many employees are needed
at each location during each half hour of the week, we discussed how linear programming
was applied to design the work schedules for all the employees to meet these service re-
quirements most efficiently. However, we never mentioned how these service requirements
on the number of employees needed each half hour were determined.

We now are in a position to point out that these service requirements were determined
by applying queueing theory. Each specific location (e.g., the check-in counters at an air-
port) constitutes a queueing system with the employees as the servers. After forecasting
the mean arrival rate during each half hour of the week, queueing models are used to find
the minimum number of servers that will provide satisfactory measures of performance
for the queueing system.

L.L. Bean, Inc., the large telemarketer and mail-order catalog house, relied mainly on
queueing theory for its award-winning study of how to allocate its telecommunications
resources. (The article describing this study is in the January 1991 issue of Interfaces, and
other articles giving additional information are in the November 1989 and March–April
1993 issues of this journal.) The telephone calls coming in to its call center to place or-
ders are the customers in a large queueing system, with the telephone agents as the servers.
The key questions being asked during the study were the following.

1. How many telephone trunk lines should be provided for incoming calls to the call
center?

2. How many telephone agents should be scheduled at various times?
3. How many hold positions should be provided for customers waiting for a telephone

agent? (Note that the limited number of hold positions causes the system to have a fi-
nite queue.)

For each interesting combination of these three quantities, queueing models provide
the measures of performance of the queueing system. Given these measures, the OR team
carefully assessed the cost of lost sales due to making some customers either incur a busy
signal or be placed on hold too long. By adding the cost of the telemarketing resources,
the team then was able to find the combination of the three quantities that minimizes the
expected total cost. This resulted in cost savings of $9 to $10 million per year.

New York City has a long-standing tradition of using OR techniques in planning and
operating many of its complex urban service systems. Starting in the late 1960s, award-
winning studies involving queueing theory have been conducted for its Fire Department
and its Police Department. (Fires and police emergencies are the customers in these re-
spective queueing systems.) Subsequently, major OR studies (including several more in-
volving queueing theory) have been conducted for its Department of Sanitation, Depart-
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ment of Transportation, Department of Health and Hospitals, Department of Environmental
Protection, Office of Management and Budget, and Department of Probation. Because of
the success of these studies, many of these departments now have their own in-house OR
groups.

The award-winning study in New York City that we will describe here involves its
arrest-to-arraignment system. This system consists of the process from when individuals
are arrested until they are arraigned (the first court appearance before an arraignment
judge, who determines whether there was probable cause for the arrest). Before the study,
the city’s arrestees (the customers in a queueing system) were in custody waiting to be
arraigned for an average of 40 hours (occasionally more than 70 hours). These waiting
times were considered excessive, because the arrestees were being held in crowded, noisy
conditions that were emotionally stressful, unhealthy, and often physically dangerous.
Therefore, a 2-year OR study was conducted to overhaul the system. Both queueing the-
ory and simulation (the subject of Chap. 22) were used. This led to sweeping operational
and policy changes that simultaneously reduced average waiting times until arraignment
to 24 hours or less and provided annual savings of $9.5 million. (See the January 1993
issue of Interfaces for details.)

The first prize in the 1993 competition was won by AT&T for a study that (like the
preceding one) also combined the use of queueing theory and simulation (January–Feb-
ruary 1994 issue of Interfaces). The queueing models are of both AT&T’s telecommuni-
cation network and the call center environment for the typical business customers of AT&T
that have such a center. The purpose of the study was to develop a user-friendly PC-based
system that AT&T’s business customers can use to guide them in how to design or re-
design their call centers. Since call centers comprise one of the United States’ fastest-
growing industries, this system had been used about 2,000 times by AT&T’s business cus-
tomers by 1992. This resulted in more than $750 million in annual profit for these
customers.

KeyCorp is one of the largest bank holding companies in the United States, with more
than 1,300 branches and over 6,000 tellers. This company’s award-winning OR study (Jan-
uary 1996 issue of Interfaces) focused on using queueing theory to improve the perfor-
mance of each branch’s queueing system where the tellers serve the customers. This re-
sulted in developing a companywide service excellence management system (SEMS). A
key part of SEMS is a performance capture system that collects data on a continuous ba-
sis for each discrete component of each teller transaction in a completely automated
process. This system enables SEMS to measure branch activities and generate reports on
customer waiting times, teller proficiency, and productivity levels. These reports help man-
agers schedule tellers to better match customer arrivals. They also identify opportunities
for enhancing the productivity and service provided by the tellers by redesigning the ser-
vice process and providing performance standards. These efforts led to a huge 53 percent
reduction in the average service times, a dramatic improvement in customer waiting times,
and a major increase in the level of customer satisfaction. At the same time, SEMS is ex-
pected to reduce personnel expenses by $98 million over 5 years.

There have been many other award-winning applications of queueing theory, as well
as numerous additional articles describing other successful applications. However, the sev-
eral examples presented in this section hopefully have given you a feeling for the kinds
of applications that are occurring and for the impact they sometimes have.
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This chapter has discussed the application of queueing theory for designing queueing sys-
tems. Every individual problem has its own special characteristics, so no standard proce-
dure can be prescribed to fit every situation. Therefore, the emphasis has been on intro-
ducing fundamental considerations and approaches that can be adapted to most cases. We
have focused on three particularly common decision variables (s, �, and �) as a vehicle
for introducing and illustrating these concepts. However, there are many other possible
decision variables (e.g., the size of a waiting room for a queueing system) and many more
complicated situations (e.g., designing a priority queueing system) that can also be ana-
lyzed in a similar way.

Another useful area for the application of queueing theory is the development of poli-
cies for controlling queueing systems, e.g., for dynamically adjusting the number of servers
or the service rate to compensate for changes in the number of customers in the system.
Research is being conducted in this area.

Queueing theory has proved to be a very useful tool, and we anticipate that its use
will continue to grow as recognition of the many guises of queueing systems grows.
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To the left of each of the following problems (or their parts), we
have inserted a T whenever one of the templates for this chapter
(and the preceding chapter) can be useful. An asterisk on the prob-
lem number indicates that at least a partial answer is given in the
back of the book.

18.2-1. For each kind of queueing system listed in Prob. 17.3-1,
briefly describe the nature of the cost of service and the cost of
waiting that would need to be considered in designing the system.

18.3-1.* Suppose that a queueing system fits the M/M/1 model de-
scribed in Sec. 17.6, with � � 2 and � � 4. Evaluate the expected
waiting cost per unit time E(WC) for this system when its wait-
ing-cost function has the form
(a) g(N ) � 10N � 2N2.
(b) h(� ) � 25� � �3.

18.3-2. Follow the instructions of Prob. 18.3-1 for the following
waiting-cost functions.

(a) g(N ) � �
(b) h(� ) � �
T 18.4-1. Section 18.3 indicates that a linear waiting-cost func-
tion yields E(WC) � CwL, where Cw is the cost of waiting per unit
time for each customer. In this case, the objective for decision
model 1 in Sec. 18.4 is to minimize E(TC) � Css � CwL. The pur-
pose of this problem is to enable you to explore the effect that the
relative sizes of Cs and Cw have on the optimal number of servers.

Suppose that the queueing system under consideration fits the
M/M/s model with � � 8 customers per hour and � � 10 customers
per hour. Use the Excel template in your OR Courseware for eco-
nomic analysis with the M/M/s model to find the optimal number
of servers for each of the following cases.
(a) Cs � $100 and Cw � $10.
(b) Cs � $100 and Cw � $100.
(c) Cs � $10 and Cw � $100.

T 18.4-2.* Jim McDonald, manager of the fast-food hamburger
restaurant McBurger, realizes that providing fast service is a key
to the success of the restaurant. Customers who have to wait very
long are likely to go to one of the other fast-food restaurants in
town next time. He estimates that each minute a customer has to
wait in line before completing service costs him an average of 30
cents in lost future business. Therefore, he wants to be sure that
enough cash registers always are open to keep waiting to a mini-

for 0 
 � 
 1
for � 
 1.

�
�2

for N � 0, 1, 2
for N � 3, 4, 5
for N � 5.

10N
6N2

N3

mum. Each cash register is operated by a part-time employee who
obtains the food ordered by each customer and collects the pay-
ment. The total cost for each such employee is $9 per hour.

During lunch time, customers arrive according to a Poisson
process at a mean rate of 66 per hour. The time needed to serve a
customer is estimated to have an exponential distribution with a
mean of 2 minutes.

Determine how many cash registers Jim should have open dur-
ing lunch time to minimize his expected total cost per hour.

T 18.4-3. The Garrett-Tompkins Company provides three copy
machines in its copying room for the use of its employees. How-
ever, due to recent complaints about considerable time being
wasted waiting for a copier to become free, management is con-
sidering adding one or more additional copy machines.

During the 2,000 working hours per year, employees arrive at
the copying room according to a Poisson process at a mean rate of
30 per hour. The time each employee needs with a copy machine
is believed to have an exponential distribution with a mean of 5
minutes. The lost productivity due to an employee spending time
in the copying room is estimated to cost the company an average
of $25 per hour. Each copy machine is leased for $3,000 per year.

Determine how many copy machines the company should
have to minimize its expected total cost per hour.

18.4-4. A certain queueing system has a Poisson input, with a
mean arrival rate of 4 customers per hour. The service-time distri-
bution is exponential, with a mean of 0.2 hour. The marginal cost
of providing each server is $20 per hour, where it is estimated that
the cost that is incurred by having each customer idle (i.e., in the
queueing system) is $120 per hour for the first customer and $180
per hour for each additional customer. Determine the number of
servers that should be assigned to the system to minimize the ex-
pected total cost per hour. [Hint: Express E(WC) in terms of L, P0,
and 	, and then use Figs. 17.6 and 17.7.]

18.4-5.* Reconsider Prob. 17.6-9. The total compensation for the
new employee would be $8 per hour, which is just half that for the
cashier. It is estimated that the grocery store incurs lost profit due
to lost future business of $0.08 for each minute that each customer
has to wait (including service time). The manager now wants to
determine on an expected total cost basis whether it would be
worthwhile to hire the new person.
(a) Which decision model presented in Sec. 18.4 applies to this

problem? Why?
(b) Use this model to determine whether to continue the status quo

or to adopt the proposal.
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native 2 is to provide one spray shop involving an hourly cost of
$100. In this case, the painting time for a car (again done one at a
time) would be 3 hours. For both alternatives, the cars arrive ac-
cording to a Poisson process with a mean rate of 1 every 5 hours.
The cost of idle time per car is $100 per hour.
(a) Use Fig. 17.11 to estimate L, Lq, W, and Wq for Alternative 1.
(b) Find these same measures of performance for Alternative 2.
(c) Determine and compare the expected total cost per hour for

these alternatives.

18.4-9. An airline maintenance base wants to make a change in its
overhaul operation. The present situation is that only one airplane
can be repaired at a time, and the expected repair time is 36 hours,
whereas the expected time between arrivals is 45 hours. This situ-
ation has led to frequent and prolonged delays in repairing in-
coming planes, even though the base operates continuously. The
average cost of an idle plane to the airline is $3,000 per hour. It is
estimated that each plane goes into the maintenance shop 5 times
per year. It is believed that the input process for the base is essen-
tially Poisson and that the probability distribution of repair times
is Erlang, with shape parameter k � 2.

Alternative A is to provide a duplicate maintenance shop, so
that two planes can be repaired simultaneously. The cost, amor-
tized over 5 years, is $400,000 per year for each of the airline’s
airplanes.

Alternative B is to replace the present maintenance equipment
by the most efficient (and expensive) equipment available, thereby
reducing the expected repair time to 18 hours. The cost, amortized
over 5 years, is $550,000 per year for each airplane.

Which alternative should the airline choose?

18.4-10.* The production of tractors at the Jim Buck Company in-
volves producing several subassemblies and then using an assem-
bly line to assemble the subassemblies and other parts into finished
tractors. Approximately three tractors per day are produced in this
way. An in-process inspection station is used to inspect the sub-
assemblies before they enter the assembly line. At present there are
two inspectors at the station, and they work together to inspect each
subassembly. The inspection time has an exponential distribution,
with a mean of 15 minutes. The cost of providing this inspection
system is $40 per hour.

A proposal has been made to streamline the inspection proce-
dure so that it can be handled by only one inspector. This inspector
would begin by visually inspecting the exterior of the subassembly,
and she would then use new efficient equipment to complete the in-
spection. Although this process with just one inspector would slightly
increase the mean of the distribution of inspection times from 15
minutes to 16 minutes, it also would reduce the variance of this dis-
tribution to only 40 percent of its current value.

The subassemblies arrive at the inspection station according
to a Poisson process at a mean rate of 3 per hour. The cost of hav-

18.4-6. Customers arrive at a fast-food restaurant with one server
according to a Poisson process at a mean rate of 30 per hour. The
server has just resigned, and the two candidates for the replace-
ment are X (fast but expensive) and Y (slow but inexpensive). Both
candidates would have an exponential distribution for service times,
with X having a mean of 1.2 minutes and Y having a mean of 1.5
minutes. Restaurant revenue per month is given by $6,000/W,
where W is the expected waiting time (in minutes) of a customer
in the system.

Determine the upper bound on the difference in their monthly
compensations that would justify hiring X rather than Y.

18.4-7. Jerry Jansen, Materials Handling Manager at the Casper-
Edison Corporation’s new factory, needs to make a purchasing de-
cision. He needs to choose between two types of materials-
handling equipment, a small tractor-trailer train and a heavy-duty
forklift truck, for transporting heavy goods between certain pro-
ducing centers in the factory. Calls for the materials-handling unit
to move a load occur according to a Poisson process at a mean rate
of 4 per hour. The total time required to move a load has an ex-
ponential distribution, where the expected time would be 12 min-
utes for the tractor-trailer train and 9 minutes for the forklift truck.
The total equivalent uniform hourly cost (capital recovery cost plus
operating cost) would be $50 for the tractor-trailer train and $150
for the forklift truck. The estimated cost of idle goods (waiting to
be moved or in transit) because of increased in-process inventory
is $20 per load per hour.

Jerry also has established certain criteria that he would like
the materials-handling unit to satisfy in order to keep production
flowing on schedule as much as possible. He would like to aver-
age no more than half an hour for completing the move of a load
after receiving the call requesting the move. He also would like the
time for completing the move to be no more than 1 hour 80 per-
cent of the time. Finally, he would like to have no more than three
loads waiting to start their move at least 80 percent of the time.
T (a) Obtain the various measures of performance if the tractor-

trailer train were to be chosen. Evaluate how well these mea-
sures meet the above criteria.

T (b) Repeat part (a) if the forklift truck were to be chosen.
(c) Compare the two alternatives in terms of their expected total

cost per hour (including the cost of idle goods).
(d) Which alternative do you think Jerry should choose?

18.4-8. The Southern Railroad Company has been subcontracting
for the painting of its railroad cars as needed. However, manage-
ment has decided that the company can save money by doing this
work itself. A decision now needs to be made to choose between
two alternative ways of doing this.

Alternative 1 is to provide two paint shops, where painting is
done by hand (one car at a time in each shop), for a total hourly
cost of $70. The painting time for a car would be 6 hours. Alter-
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longer than �
1
2

� hour (according to a time slip she receives upon ar-
rival) before her car is ready, then she receives a free car wash (at
a marginal cost of $4 for the company). This guarantee would be
well posted and advertised, so it is believed that no arriving cus-
tomers would be lost.

Proposal 2 is to obtain the most advanced equipment avail-
able, at an increased cost of $20 per hour, and each car would be
sent through two cycles of the process in succession. The time re-
quired for a cycle has an exponential distribution, with a mean of
1 minute, so total expected washing time would be 2 minutes. Be-
cause of the increased speed and effectiveness, it is believed that
essentially no arriving customers would be lost.

The owner also feels that because of the loss of customer
goodwill (and consequent lost future business) when customers
have to wait, a cost of $0.20 for each minute that a customer has
to wait before her car wash begins should be included in the analy-
sis of all alternatives.

Evaluate the expected total cost per hour E(TC) of the status
quo, proposal 1, and proposal 2 to determine which one should be
chosen.

18.4-13.* The Seabuck and Roper Company has a large warehouse
in southern California to store its inventory of goods until they are
needed by the company’s many furniture stores in that area. A sin-
gle crew with four members is used to unload and/or load each
truck that arrives at the loading dock of the warehouse. Manage-
ment currently is downsizing to cut costs, so a decision needs to
be made about the future size of this crew.

Trucks arrive at the loading dock according to a Poisson
process at a mean rate of 1 per hour. The time required by a crew
to unload and/or load a truck has an exponential distribution (re-
gardless of crew size). The mean of this distribution with the four-
member crew is 15 minutes. If the size of the crew were to be
changed, it is estimated that the mean service rate of the crew (now
� � 4 customers per hour) would be proportional to its size.

The cost of providing each member of the crew is $20 per
hour. The cost that is attributable to having a truck not in use (i.e.,
a truck standing at the loading dock) is estimated to be $30 per
hour.
(a) Identify the customers and servers for this queueing system.

How many servers does it currently have?
T (b) Use the appropriate Excel template to find the various mea-

sures of performance for this queueing system with four
members on the crew. (Set t � 1 hour in the Excel template
for the waiting-time probabilities.)

T (c) Repeat (b) with three members.
T (d) Repeat part (b) with two members.
(e) Should a one-member crew also be considered? Explain.
(f) Given the previous results, which crew size do you think man-

agement should choose?

ing the subassemblies wait at the inspection station (thereby in-
creasing in-process inventory and possibly disrupting subsequent
production) is estimated to be $20 per hour for each subassembly.

Management now needs to make a decision about whether to
continue the status quo or adopt the proposal.
T (a) Find the main measures of performance—L, Lq, W, Wq—for

the current queueing system.
(b) Repeat part (a) for the proposed queueing system.
(c) What conclusions can you draw about what management

should do from the results in parts (a) and (b)?
(d) Determine and compare the expected total cost per hour for

the status quo and the proposal.

18.4-11. The car rental company, Try Harder, has been subcon-
tracting for the maintenance of its cars in St. Louis. However, due
to long delays in getting its cars back, the company has decided to
open its own maintenance shop to do this work more quickly. This
shop will operate 42 hours per week.

Alternative 1 is to hire two mechanics (at a cost of $1,500 per
week each), so that two cars can be worked on at a time. The time
required by a mechanic to service a car has an Erlang distribution,
with a mean of 5 hours and a shape parameter of k � 8.

Alternative 2 is to hire just one mechanic (for $1,500 per
week) but to provide some additional special equipment (at a cap-
italized cost of $1,250 per week) to speed up the work. In this case,
the maintenance work on each car is done in two stages, where the
time required for each stage has an Erlang distribution with the
shape parameter k � 4, where the mean is 2 hours for the first stage
and 1 hour for the second stage.

For both alternatives, the cars arrive according to a Poisson
process at a mean rate of 0.3 car per hour (during work hours).
The company estimates that its net lost revenue due to having its
cars unavailable for rental is $150 per week per car.
(a) Use Fig. 17.13 to estimate L, Lq, W, and Wq for alternative 1.
(b) Find these same measures of performance for alternative 2.
(c) Determine and compare the expected total cost per week for

these alternatives.

18.4-12. A certain small car-wash business is currently being an-
alyzed to see if costs can be reduced. Customers arrive according
to a Poisson process at a mean rate of 15 per hour, and only one
car can be washed at a time. At present the time required to wash
a car has an exponential distribution, with a mean of 4 minutes. It
also has been noticed that if there are already 4 cars waiting (in-
cluding the one being washed), then any additional arriving cus-
tomers leave and take their business elsewhere. The lost incre-
mental profit from each such lost customer is $6.

Two proposals have been made. Proposal 1 is to add certain
equipment, at a capitalized cost of $6 per hour, which would re-
duce the expected washing time to 3 minutes. In addition, each ar-
riving customer would be given a guarantee that if she had to wait
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where Cr is the marginal cost per unit time for each unit of a server’s
mean service rate and Cw is the cost of waiting per unit time for
each customer. The optimal solution is s � 1 (by the optimality of
a single-server result), and

� � � � ��
for any queueing system fitting the M/M/1 model presented in 
Sec. 17.6.

Show that this � is indeed optimal for the M/M/1 model.

18.4-18. Greg is making plans to open a new fast-food restaurant
soon. He is estimating that customers will arrive randomly (a Pois-
son process) at a mean rate of 150 per hour during the busiest times
of the day. He is planning to have three employees directly serv-
ing the customers. He now needs to make a decision about how to
organize these employees.

Option 1 is to have three cash registers with one employee
at each to take the orders and get the food and drinks. In this case,
it is estimated that the average time to serve each customer would
be 1 minute, and the distribution of service times is assumed to
be exponential.

Option 2 is to have one cash register with the three employ-
ees working together to serve each customer. One would take the
order, a second would get the food, and the third would get the
drinks. Greg estimates that this would reduce the average time to
serve each customer down to 20 seconds, with the same assump-
tion of exponential service times.

Greg wants to choose the option that would provide the best
service to his customers. However, since Option 1 has three cash
registers, both options would serve the customers at a mean rate
of 3 per minute when everybody is busy serving customers, so it
is not clear which option is better.
T (a) Use the main measures of performance—L, Lq, W, Wq—to

compare the two options.
(b) Explain why these comparisons make sense intuitively.
(c) Which measure do you think would be most important to

Greg’s customers? Why? Which option is better with respect
to this measure?

18.4-19. Consider a harbor with a single dock for unloading ships.
The ships arrive according to a Poisson process at a mean rate of
� ships per week, and the service-time distribution is exponential
with a mean rate of � unloadings per week. Assume that harbor
facilities are owned by the shipping company, so that the objective
is to balance the cost associated with idle ships with the cost of
running the dock. The shipping company has no control over the
arrival rate � (that is, � is fixed); however, by changing the size of
the unloading crew, and so on, the shipping company can adjust
the value of � as desired.

�Cw�
Cr

(g) Use the cost figures to determine which crew size would min-
imize the expected total cost per hour.

(h) Assume now that the mean service rate of the crew is propor-
tional to the square root of its size. What should the size be to
minimize expected total cost per hour?

18.4-14. Trucks arrive at a warehouse according to a Poisson
process with a mean rate of 4 per hour. Only one truck can be
loaded at a time. The time required to load a truck has an expo-
nential distribution with a mean of 10/n minutes, where n is the
number of loaders (n � 1, 2, 3, . . .). The costs are (i) $18 per hour
for each loader and (ii) $20 per hour for each truck being loaded
or waiting in line to be loaded. Determine the number of loaders
that minimizes the expected hourly cost.

18.4-15. A company’s machines break down according to a Pois-
son process at a mean rate of 3 per hour. Nonproductive time on
any machine costs the company $60 per hour. The company em-
ploys a maintenance person who repairs machines at a mean rate
of � machines per hour (when continuously busy) if the company
pays that person a wage of $5� per hour. The repair time has an
exponential distribution.

Determine the hourly wage that minimizes the company’s to-
tal expected cost.

18.4-16. Jake’s Machine Shop contains a grinder for sharpening
the machine cutting tools. A decision must now be made on the
speed at which to set the grinder.

The grinding time required by a machine operator to sharpen
the cutting tool has an exponential distribution, where the mean
1/� can be set at 0.5 minute, 1 minute, or 1.5 minutes, depend-
ing upon the speed of the grinder. The running and maintenance
costs go up rapidly with the speed of the grinder, so the esti-
mated cost per minute is $1.60 for providing a mean of 0.5
minute, $0.40 for a mean of 1.0 minute, and $0.20 for a mean
of 1.5 minutes.

The machine operators arrive randomly to sharpen their tools
at a mean rate of 1 every 2 minutes. The estimated cost of an op-
erator being away from his or her machine to the grinder is $0.80
per minute.
T (a) Obtain the various measures of performance for this queue-

ing system for each of the three alternative speeds for the
grinder. (Set t � 5 minutes in the Excel template for the wait-
ing time probabilities.)

(b) Use the cost figures to determine which grinder speed mini-
mizes the expected total cost per minute.

18.4-17. Consider the special case of model 2 where (1) any 
� � � /s is feasible and (2) both f (�) and the waiting-cost func-
tion are linear functions, so that

E(TC) � Crs� � CwL,

930 18 THE APPLICATION OF QUEUEING THEORY



who find the drive-through lane full will be forced to leave. Half
of the customers who find the drive-through lane full wanted to
drop off film and the other half wanted to pick up their photographs.
The half who wanted to drop off film will take their business else-
where instead. The other half of the customers who find the drive-
through lane full will not be lost because they will keep trying later
until they get in and pick up their photographs. George assumes
that the time required to serve a customer will have an exponen-
tial distribution with a mean of 2 minutes.
T (a) Find L and the mean rate at which customers are lost when

the number of car lengths of space provided is 2, 3, 4, and 5.
(b) Calculate W from L for the cases considered in part (a).
(c) Use the results from part (a) to calculate the decrease in the

mean rate at which customers are lost when the number of car
lengths of space provided is increased from 2 to 3, from 3 to
4, and from 4 to 5. Then calculate the increase in expected
profit per hour (excluding space rental costs) for each of these
three cases.

(d) Compare the increases in expected profit found in part (c) with
the cost per hour of renting each car length of space. What
conclusion do you draw about the number of car lengths of
space that George should provide?

18.4-23. Consider a factory whose floor area is a square with 600
feet on each side. Suppose that one service facility of a certain kind
is provided in the center of the factory. The employees are dis-
tributed uniformly throughout the factory, and they walk to and
from the facility at an average speed of 3 miles per hour along a
system of orthogonal aisles.

Find the expected travel time E(T) per arrival.

18.4-24. A certain large shop doing light fabrication work uses a
single central storage facility (dispatch station) for material in in-
process storage. The typical procedure is that each employee per-
sonally delivers his finished work (by hand, tote box, or hand cart)
and receives new work and materials at the facility. Although this
procedure worked well in earlier years when the shop was smaller,
it appears that it may now be advisable to divide the shop into two
semi-independent parts, with a separate storage facility for each
one. You have been assigned the job of comparing the use of two
facilities and of one facility from a cost standpoint.

The factory has the shape of a rectangle 150 by 100 yards.
Thus, by letting 1 yard be the unit of distance, the (x, y) coordi-
nates of the corners are (0, 0), (150, 0), (150, 100), and (0, 100).
With this coordinate system, the existing facility is located at (50,
50), and the location available for the second facility is (100, 50).

Each facility would be operated by a single clerk. The time
required by a clerk to service a caller has an exponential distribu-
tion, with a mean of 2 minutes. Employees arrive at the present fa-
cility according to a Poisson input process at a mean rate of 24 per
hour. The employees are rather uniformly distributed throughout

Suppose that the expected cost per unit time of running the
unloading dock is D�. The waiting cost for each idle ship is some
constant (C) times the square of the total waiting time (including
loading time). The shipping company wishes to adjust � so that
the expected total cost (including the waiting cost for idle ships)
per unit time is minimized. Derive this optimal value of � in terms
of D and C.

18.4-20. Consider a queueing system with two types of customers.
Type 1 customers arrive according to a Poisson process with a mean
rate of 5 per hour. Type 2 customers also arrive according to a Pois-
son process with a mean rate of 5 per hour. The system has two
servers, and both serve both types of customers. For types 1 and
2, service times have an exponential distribution with a mean of
10 minutes. Service is provided on a first-come-first-served basis.

Management now wants you to compare this system’s design
of having both servers serve both types of customers with the al-
ternative design of having one server serve just type 1 customers
and the other server serve just type 2 customers. Assume that this
alternative design would not change the probability distribution of
service times.
(a) Without doing any calculations, indicate which design would

give a smaller expected total number of customers in the sys-
tem. What result are you using to draw this conclusion?

T (b) Verify your conclusion in part (a) by finding the expected
total number of customers in the system under the original
design and then under the alternative design.

18.4-21. Reconsider Prob. 17.6-33.
(a) Formulate part (a) to fit as closely as possible a special case

of one of the decision models presented in Sec. 18.4. (Do not
solve.)

(b) Describe Alternatives 2 and 3 in queueing theory terms, in-
cluding their relationship (if any) to the decision models pre-
sented in Sec. 18.4. Briefly indicate why, in comparison with
Alternative 1, each of these other alternatives might decrease
the total number of operators (thereby increasing their utiliza-
tion) needed to achieve the required production rate. Also point
out any dangers that might prevent this decrease.

18.4-22. George is planning to open a drive-through photo-devel-
oping booth with a single service window that will be open ap-
proximately 200 hours per month in a busy commercial area. Space
for a drive-through lane is available for a rental of $200 per month
per car length. George needs to decide how many car lengths of
space to provide for his customers.

Excluding this rental cost for the drive-through lane, George
believes that he will average a profit of $4 per customer served
(nothing for a drop-off of film and $8 when the photographs are
picked up). He also estimates that customers will arrive randomly
(a Poisson process) at a mean rate of 20 per hour, although those
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This shop does three kinds of jobs, namely, government jobs,
commercial jobs, and standard products. Whenever a turret lathe
operator finishes a job, he starts a government job if one is wait-
ing; if not, he starts a commercial job if any are waiting; if not, he
starts on a standard product if any are waiting. Jobs of the same
type are taken on a first-come-first-served basis.

Although much overtime work is required currently, manage-
ment wants the turret lathe department to operate on an 8-hour,
5-day-per-week basis. The probability distribution of the time re-
quired by a turret lathe operator for a job appears to be approxi-
mately exponential, with a mean of 10 hours. Jobs come into the
shop randomly (a Poisson process) at a mean rate of 6 per week
for governments jobs, 4 per week for commercial jobs, and 2 per
week for standard products. (These figures are expected to remain
the same for the indefinite future.)

Management feels that the average waiting time before work
begins in the turret lathe department should not exceed 0.25 (work-
ing) day for government jobs, 0.5 day for commercial jobs, and 2
days for standard products.
(a) Determine how many additional turret lathes need to be ob-

tained to satisfy these management guidelines.
(b) It is worth about $750, $450, and $150 to avoid a delay of 1

additional (working) day in a government, commercial, and
standard job, respectively. The incremental capitalized cost of
providing each turret lathe (including the operator and so on)
is estimated to be $250 per working day. Determine the num-
ber of additional turret lathes that should be obtained to min-
imize the expected total cost.

the shop, and if the second facility were installed, each employee
would normally use the nearer of the two facilities. Employees
walk at an average speed of about 5,000 yards per hour. All aisles
are parallel to the outer walls of the shop. The net cost of provid-
ing each facility is estimated to be about $20 per hour, plus $15
per hour for the clerk. The estimated total cost of an employee be-
ing idled by traveling or waiting at the facility is $25 per hour.

Given the preceding cost factors, which alternative minimizes
the expected total cost?

18.4-25.* Consider the formulation of the County Hospital emer-
gency room problem as a preemptive priority queueing system, as
presented in Sec. 17.8. Suppose that the following inputted costs
are assigned to making patients wait (excluding treatment time):
$10 per hour for stable cases, $1,000 per hour for serious cases,
and $100,000 per hour for critical cases. The cost associated with
having an additional doctor on duty would be $40 per hour. Re-
ferring to Table 17.4, determine on an expected-total-cost basis
whether there should be one or two doctors on duty.

T 18.4-26. The Becker Company factory has been experiencing
long delays in jobs going through the turret lathe department be-
cause of inadequate capacity. The head of this department contends
that five machines are required, as opposed to the three machines
now in place. However, because of pressure from management to
hold down capital expenditures, only one additional machine will
be authorized unless there is solid evidence that a second one is
necessary.
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Never dull. That is how you would describe your job at the centralized records and
benefits administration center for Cutting Edge, a large company manufacturing com-
puters and computer peripherals. Since opening the facility six months ago, you and
Mark Lawrence, the Director of Human Resources, have endured one long roller coaster
ride. Receiving the go-ahead from corporate headquarters to establish the centralized
records and benefits administration center was definitely an up. Getting caught in the
crossfire of angry customers (all employees of Cutting Edge) because of demand over-
load for the records and benefits call center was definitely a down. Accurately fore-
casting the demand for the call center provided another up.

And today you are faced with another down. Mark approaches your desk with a
not altogether attractive frown on his face.

CASE 18.1 QUEUEING QUANDARY1

1The scenario in this case is a sequel, a few months later, to the scenario introduced in Case 20.1. However,
this case can be considered completely independently of Case 20.1.



He begins complaining immediately, “I just don’t understand. The forecasting job
you did for us two months ago really allowed us to understand the weekly demand for
the center, but we still have not been able to get a grasp on the staffing problem. We
used both historical data and your forecasts to calculate the average weekly demand
for the call center. We transformed this average weekly demand into average hourly
demand by dividing the weekly demand by the number of hours in the workweek. We
then staffed the center to meet this average hourly demand by taking into account the
average number of calls a representative is able to handle per hour.

But something is horribly wrong. Operational data records show that over thirty
percent of the customers wait over four minutes for a representative to answer the call!
Customers are still sending me numerous complaints, and executives from corporate
headquarters are still breathing down my neck! I need help!”

You calm Mark down and explain to him that you think you know the problem:
the number of calls received in a certain hour can be much greater (or much less) than
the average because of the stochastic nature of the demand. In addition, the number of
calls a representative is able to handle per hour can be much less (or much greater)
than the average depending upon the types of calls received.

You then tell him to have no fear, you have the problem under control. You have
been reading about the successful application of queueing theory to the operation of
call centers, and you decide that the queueing models you learned in school will help
you determine the appropriate staffing level.

(a) You ask Mark to describe the demand and service rate. He tells you that calls are randomly
received by the call center and that the center receives an average of 70 calls per hour. The
computer system installed to answer and hold the calls is so advanced that its capacity far
exceeds the demand. Because the nature of a call is random, the time required to process a
call is random, where the time frequently is small but occasionally can be much longer. On
average, however, representatives can handle 6 calls per hour. Which queueing model seems
appropriate for this situation? Given that slightly more than 35 percent of customers wait
over 4 minutes before a representative answers the call, use this model to estimate how many
representatives Mark currently employs.

(b) Mark tells you that he will not be satisfied unless 95 percent of the customers wait only 1
minute or less for a representative to answer the call. Given this customer service level and
the average arrival rates and service rates from part (a), how many representatives should
Mark employ?

(c) Each representative receives an annual salary of $30,000, and Mark tells you that he sim-
ply does not have the resources available to hire the number of representatives required to
achieve the customer service level desired in part (b). He asks you to perform sensitivity
analysis. How many representatives would he need to employ to ensure that 80 percent of
customers wait 1 minute or less? How many would he need to employ to ensure that 95
percent of customers wait 90 seconds or less? How would you recommend Mark choose
a customer service level? Would the decision criteria be different if Mark’s call center were
to serve external customers (not connected to the company) instead of internal customers
(employees)?

(d) Mark tells you that he is not happy with the number of representatives required to achieve
a high customer service level. He therefore wants to explore alternatives to simply hiring ad-
ditional representatives. The alternative he considers is instituting a training program that
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will teach representatives to more efficiently use computer tools to answer calls. He believes
that this alternative will increase the average number of calls a representative is able to han-
dle per hour from 6 calls to 8 calls. The training program will cost $2,500 per employee per
year since employees’ knowledge will have to be updated yearly. How many representatives
will Mark have to employ and train to achieve the customer service level desired in part (b)?
Do you prefer this alternative to simply hiring additional representatives? Why or why not?

(e) Mark realizes that queueing theory helps him only so much in determining the number of
representatives needed. He realizes that the queueing models will not provide accurate an-
swers if the inputs used in the models are inaccurate. What inputs do you think need reeval-
uation? How would you go about estimating these inputs?
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19
Inventory Theory

“Sorry, we’re out of that item.” How often have you heard that during shopping trips? In
many of these cases, what you have encountered are stores that aren’t doing a very good
job of managing their inventories (stocks of goods being held for future use or sale). They
aren’t placing orders to replenish inventories soon enough to avoid shortages. These stores
could benefit from the kinds of techniques of scientific inventory management that are
described in this chapter.

It isn’t just retail stores that must manage inventories. In fact, inventories pervade
the business world. Maintaining inventories is necessary for any company dealing with
physical products, including manufacturers, wholesalers, and retailers. For example,
manufacturers need inventories of the materials required to make their products. They
also need inventories of the finished products awaiting shipment. Similarly, both whole-
salers and retailers need to maintain inventories of goods to be available for purchase
by customers.

The total value of all inventory—including finished goods, partially finished goods,
and raw materials—in the United States is more than a trillion dollars. This is more than
$4,000 each for every man, woman, and child in the country.

The costs associated with storing (“carrying”) inventory are also very large, perhaps
a quarter of the value of the inventory. Therefore, the costs being incurred for the storage
of inventory in the United States run into the hundreds of billions of dollars annually. Re-
ducing storage costs by avoiding unnecessarily large inventories can enhance any firm’s
competitiveness.

Some Japanese companies were pioneers in introducing the just-in-time inventory sys-
tem—a system that emphasizes planning and scheduling so that the needed materials ar-
rive “just-in-time” for their use. Huge savings are thereby achieved by reducing inventory
levels to a bare minimum.

Many companies in other parts of the world also have been revamping the way in
which they manage their inventories. The application of operations research techniques in
this area (sometimes called scientific inventory management) is providing a powerful tool
for gaining a competitive edge.



How do companies use operations research to improve their inventory policy for
when and how much to replenish their inventory? They use scientific inventory man-
agement comprising the following steps:

1. Formulate a mathematical model describing the behavior of the inventory system.
2. Seek an optimal inventory policy with respect to this model.
3. Use a computerized information processing system to maintain a record of the current

inventory levels.
4. Using this record of current inventory levels, apply the optimal inventory policy to sig-

nal when and how much to replenish inventory.

The mathematical inventory models used with this approach can be divided into two
broad categories—deterministic models and stochastic models—according to the pre-
dictability of demand involved. The demand for a product in inventory is the number of
units that will need to be withdrawn from inventory for some use (e.g., sales) during a
specific period. If the demand in future periods can be forecast with considerable preci-
sion, it is reasonable to use an inventory policy that assumes that all forecasts will always
be completely accurate. This is the case of known demand where a deterministic inven-
tory model would be used. However, when demand cannot be predicted very well, it be-
comes necessary to use a stochastic inventory model where the demand in any period is
a random variable rather than a known constant.

There are several basic considerations involved in determining an inventory pol-
icy that must be reflected in the mathematical inventory model. These are illustrated
in the examples presented in the first section and then are described in general terms
in Sec. 19.2. Section 19.3 develops and analyzes deterministic inventory models for
situations where the inventory level is under continuous review. Section 19.4 does the
same for situations where the planning is being done for a series of periods rather than
continuously. The following three sections present stochastic models, first under con-
tinuous review, then for a single period, and finally for a series of periods. The chap-
ter concludes with a discussion of how scientific inventory management is being used
in practice to deal with very large inventory systems, as illustrated by case studies at
IBM and Hewlett-Packard.
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We present two examples in rather different contexts (a manufacturer and a wholesaler)
where an inventory policy needs to be developed.

19.1 EXAMPLES

EXAMPLE 1 Manufacturing Speakers for TV Sets

A television manufacturing company produces its own speakers, which are used in the
production of its television sets. The television sets are assembled on a continuous pro-
duction line at a rate of 8,000 per month, with one speaker needed per set. The speak-
ers are produced in batches because they do not warrant setting up a continuous pro-
duction line, and relatively large quantities can be produced in a short time. Therefore,
the speakers are placed into inventory until they are needed for assembly into television
sets on the production line. The company is interested in determining when to produce



a batch of speakers and how many speakers to produce in each batch. Several costs must
be considered:

1. Each time a batch is produced, a setup cost of $12,000 is incurred. This cost includes
the cost of “tooling up,” administrative costs, record keeping, and so forth. Note that
the existence of this cost argues for producing speakers in large batches.

2. The unit production cost of a single speaker (excluding the setup cost) is $10, inde-
pendent of the batch size produced. (In general, however, the unit production cost need
not be constant and may decrease with batch size.)

3. The production of speakers in large batches leads to a large inventory. The estimated
holding cost of keeping a speaker in stock is $0.30 per month. This cost includes the
cost of capital tied up in inventory. Since the money invested in inventory cannot be
used in other productive ways, this cost of capital consists of the lost return (referred to
as the opportunity cost) because alternative uses of the money must be forgone. Other
components of the holding cost include the cost of leasing the storage space, the cost
of insurance against loss of inventory by fire, theft, or vandalism, taxes based on the
value of the inventory, and the cost of personnel who oversee and protect the inventory.

4. Company policy prohibits deliberately planning for shortages of any of its components.
However, a shortage of speakers occasionally crops up, and it has been estimated that
each speaker that is not available when required costs $1.10 per month. This shortage
cost includes the extra cost of installing speakers after the television set is fully as-
sembled otherwise, the interest lost because of the delay in receiving sales revenue, the
cost of extra record keeping, and so forth.

We will develop the inventory policy for this example with the help of the first in-
ventory model presented in Sec. 19.3.
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EXAMPLE 2 Wholesale Distribution of Bicycles

A wholesale distributor of bicycles is having trouble with shortages of a popular model
(a small, one-speed girl’s bicycle) and is currently reviewing the inventory policy for this
model. The distributor purchases this model bicycle from the manufacturer monthly and
then supplies it to various bicycle shops in the western United States in response to pur-
chase orders. What the total demand from bicycle shops will be in any given month is
quite uncertain. Therefore, the question is, How many bicycles should be ordered from
the manufacturer for any given month, given the stock level leading into that month?

The distributor has analyzed her costs and has determined that the following are
important:

1. The ordering cost, i.e., the cost of placing an order plus the cost of the bicycles be-
ing purchased, has two components: The administrative cost involved in placing an or-
der is estimated as $200, and the actual cost of each bicycle is $35 for this wholesaler.

2. The holding cost, i.e., the cost of maintaining an inventory, is $1 per bicycle remain-
ing at the end of the month. This cost represents the costs of capital tied up, warehouse
space, insurance, taxes, and so on.

3. The shortage cost is the cost of not having a bicycle on hand when needed. This par-
ticular model is easily reordered from the manufacturer, and stores usually accept a



delay in delivery. Still, although shortages are permissible, the distributor feels that she
incurs a loss, which she estimates to be $15 per bicycle per month of shortage. This
estimated cost takes into account the possible loss of future sales because of the loss
of customer goodwill. Other components of this cost include lost interest on delayed
sales revenue, and additional administrative costs associated with shortages. If some
stores were to cancel orders because of delays, the lost revenues from these lost sales
would need to be included in the shortage cost. Fortunately, such cancellations nor-
mally do not occur for this model.

We will return to this example again in Sec. 19.6.

These examples illustrate that there are two possibilities for how a firm replenishes in-
ventory, depending on the situation. One possibility is that the firm produces the needed
units itself (like the television manufacturer producing speakers). The other is that the firm
orders the units from a supplier (like the bicycle distributor ordering bicycles from the man-
ufacturer). Inventory models do not need to distinguish between these two ways of replen-
ishing inventory, so we will use such terms as producing and ordering interchangeably.

Both examples deal with one specific product (speakers for a certain kind of televi-
sion set or a certain bicycle model). In most inventory models, just one product is being
considered at a time. Except in Sec. 19.8, all the inventory models presented in this chap-
ter assume a single product.

Both examples indicate that there exists a trade-off between the costs involved. The
next section discusses the basic cost components of inventory models for determining the
optimal trade-off between these costs.
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Because inventory policies affect profitability, the choice among policies depends upon
their relative profitability. As already seen in Examples 1 and 2, some of the costs that
determine this profitability are (1) the ordering costs, (2) holding costs, and (3) shortage
costs. Other relevant factors include (4) revenues, (5) salvage costs, and (6) discount rates.
These six factors are described in turn below.

The cost of ordering an amount z (either through purchasing or producing this
amount) can be represented by a function c(z). The simplest form of this function is one
that is directly proportional to the amount ordered, that is, c � z, where c represents the
unit price paid. Another common assumption is that c(z) is composed of two parts: a term
that is directly proportional to the amount ordered and a term that is a constant K for z
positive and is 0 for z � 0. For this case,

c(z) � cost of ordering z units

� �
where K � setup cost and c � unit cost.

The constant K includes the administrative cost of ordering or, when producing, the
costs involved in setting up to start a production run.

if z � 0
if z � 0,

0
K � cz
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There are other assumptions that can be made about the cost of ordering, but this
chapter is restricted to the cases just described.

In Example 1, the speakers are produced and the setup cost for a production run is
$12,000. Furthermore, each speaker costs $10, so that the production cost when ordering
a production run of z speakers is given by

c(z) � 12,000 � 10z, for z � 0.

In Example 2, the distributor orders bicycles from the manufacturer and the ordering cost
is given by

c(z) � 200 � 35z, for z � 0.

The holding cost (sometimes called the storage cost) represents all the costs associ-
ated with the storage of the inventory until it is sold or used. Included are the cost of cap-
ital tied up, space, insurance, protection, and taxes attributed to storage. The holding cost
can be assessed either continuously or on a period-by-period basis. In the latter case, the
cost may be a function of the maximum quantity held during a period, the average amount
held, or the quantity in inventory at the end of the period. The last viewpoint is usually
taken in this chapter.

In the bicycle example, the holding cost is $1 per bicycle remaining at the end of the
month. In the TV speakers example, the holding cost is assessed continuously as $0.30
per speaker in inventory per month, so the average holding cost per month is $0.30 times
the average number of speakers in inventory.

The shortage cost (sometimes called the unsatisfied demand cost) is incurred when
the amount of the commodity required (demand) exceeds the available stock. This cost
depends upon which of the following two cases applies.

In one case, called backlogging, the excess demand is not lost, but instead is held
until it can be satisfied when the next normal delivery replenishes the inventory. For a
firm incurring a temporary shortage in supplying its customers (as for the bicycle exam-
ple), the shortage cost then can be interpreted as the loss of customers’ goodwill and the
subsequent reluctance to do business with the firm, the cost of delayed revenue, and the
extra administrative costs. For a manufacturer incurring a temporary shortage in materi-
als needed for production (such as a shortage of speakers for assembly into television
sets), the shortage cost becomes the cost associated with delaying the completion of the
production process.

In the second case, called no backlogging, if any excess of demand over available
stock occurs, the firm cannot wait for the next normal delivery to meet the excess de-
mand. Either (1) the excess demand is met by a priority shipment, or (2) it is not met at
all because the orders are canceled. For situation 1, the shortage cost can be viewed as
the cost of the priority shipment. For situation 2, the shortage cost is the loss of current
revenue from not meeting the demand plus the cost of losing future business because of
lost goodwill.

Revenue may or may not be included in the model. If both the price and the demand
for the product are established by the market and so are outside the control of the com-
pany, the revenue from sales (assuming demand is met) is independent of the firm’s in-
ventory policy and may be neglected. However, if revenue is neglected in the model, the
loss in revenue must then be included in the shortage cost whenever the firm cannot meet
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the demand and the sale is lost. Furthermore, even in the case where demand is backlogged,
the cost of the delay in revenue must also be included in the shortage cost. With these in-
terpretations, revenue will not be considered explicitly in the remainder of this chapter.

The salvage value of an item is the value of a leftover item when no further inven-
tory is desired. The salvage value represents the disposal value of the item to the firm,
perhaps through a discounted sale. The negative of the salvage value is called the salvage
cost. If there is a cost associated with the disposal of an item, the salvage cost may be
positive. We assume hereafter that any salvage cost is incorporated into the holding cost.

Finally, the discount rate takes into account the time value of money. When a firm
ties up capital in inventory, the firm is prevented from using this money for alternative
purposes. For example, it could invest this money in secure investments, say, government
bonds, and have a return on investment 1 year hence of, say, 7 percent. Thus, $1 invested
today would be worth $1.07 in year 1, or alternatively, a $1 profit 1 year hence is equiv-
alent to � � $1/$1.07 today. The quantity � is known as the discount factor. Thus, in
adding up the total profit from an inventory policy, the profit or costs 1 year hence should
be multiplied by �; in 2 years hence by �2; and so on. (Units of time other than 1 year
also can be used.) The total profit calculated in this way normally is referred to as the net
present value.

In problems having short time horizons, � may be assumed to be 1 (and thereby ne-
glected) because the current value of $1 delivered during this short time horizon does not
change very much. However, in problems having long time horizons, the discount factor
must be included.

In using quantitative techniques to seek optimal inventory policies, we use the criterion
of minimizing the total (expected) discounted cost. Under the assumptions that the price and
demand for the product are not under the control of the company and that the lost or de-
layed revenue is included in the shortage penalty cost, minimizing cost is equivalent to max-
imizing net income. Another useful criterion is to keep the inventory policy simple, i.e., keep
the rule for indicating when to order and how much to order both understandable and easy
to implement. Most of the policies considered in this chapter possess this property.

As mentioned at the beginning of the chapter, inventory models are usually classified
as either deterministic or stochastic according to whether the demand for a period is known
or is a random variable having a known probability distribution. The production of batches
of speakers in Example 1 of Sec. 19.1 illustrates deterministic demand because the speak-
ers are used in television assemblies at a fixed rate of 8,000 per month. The bicycle shops’
purchases of bicycles from the wholesale distributor in Example 2 of Sec. 19.1 illustrates
random demand because the total monthly demand varies from month to month accord-
ing to some probability distribution. Another component of an inventory model is the lead
time, which is the amount of time between the placement of an order to replenish inven-
tory (through either purchasing or producing) and the receipt of the goods into inventory.
If the lead time always is the same (a fixed lead time), then the replenishment can be
scheduled just when desired. Most models in this chapter assume that each replenishment
occurs just when desired, either because the delivery is nearly instantaneous or because
it is known when the replenishment will be needed and there is a fixed lead time.

Another classification refers to whether the current inventory level is being monitored
continuously or periodically. In continuous review, an order is placed as soon as the stock
level falls down to the prescribed reorder point. In periodic review, the inventory level is
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checked at discrete intervals, e.g., at the end of each week, and ordering decisions are
made only at these times even if the inventory level dips below the reorder point between
the preceding and current review times. (In practice, a periodic review policy can be used
to approximate a continuous review policy by making the time interval sufficiently small.)
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The most common inventory situation faced by manufacturers, retailers, and wholesalers
is that stock levels are depleted over time and then are replenished by the arrival of a batch
of new units. A simple model representing this situation is the following economic order
quantity model or, for short, the EOQ model. (It sometimes is also referred to as the
economic lot-size model.)

Units of the product under consideration are assumed to be withdrawn from inven-
tory continuously at a known constant rate, denoted by a; that is, the demand is a units
per unit time. It is further assumed that inventory is replenished when needed by order-
ing (through either purchasing or producing) a batch of fixed size (Q units), where all Q
units arrive simultaneously at the desired time. For the basic EOQ model to be presented
first, the only costs to be considered are

K � setup cost for ordering one batch,

c � unit cost for producing or purchasing each unit,

h � holding cost per unit per unit of time held in inventory.

The objective is to determine when and by how much to replenish inventory so as to min-
imize the sum of these costs per unit time.

We assume continuous review, so that inventory can be replenished whenever the in-
ventory level drops sufficiently low. We shall first assume that shortages are not allowed
(but later we will relax this assumption). With the fixed demand rate, shortages can be
avoided by replenishing inventory each time the inventory level drops to zero, and this
also will minimize the holding cost. Figure 19.1 depicts the resulting pattern of inventory
levels over time when we start at time 0 by ordering a batch of Q units in order to in-
crease the initial inventory level from 0 to Q and then repeat this process each time the
inventory level drops back down to 0.
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Example 1 in Sec. 19.1 (manufacturing speakers for TV sets) fits this model and will
be used to illustrate the following discussion.

The Basic EOQ Model

To summarize, in addition to the costs specified above, the basic EOQ model makes the
following assumptions.

Assumptions (Basic EOQ Model).

1. A known constant demand rate of a units per unit time.
2. The order quantity (Q) to replenish inventory arrives all at once just when desired,

namely, when the inventory level drops to 0.
3. Planned shortages are not allowed.

In regard to assumption 2, there usually is a lag between when an order is placed and
when it arrives in inventory. As indicated in Sec. 19.2, the amount of time between the
placement of an order and its receipt is referred to as the lead time. The inventory level
at which the order is placed is called the reorder point. To satisfy assumption 2, this re-
order point needs to be set at the product of the demand rate and the lead time. Thus, as-
sumption 2 is implicitly assuming a constant lead time.

The time between consecutive replenishments of inventory (the vertical line segments
in Fig. 19.1) is referred to as a cycle. For the speaker example, a cycle can be viewed as
the time between production runs. Thus, if 24,000 speakers are produced in each pro-
duction run and are used at the rate of 8,000 per month, then the cycle length is
24,000/8,000 � 3 months. In general, the cycle length is Q/a.

The total cost per unit time T is obtained from the following components.

Production or ordering cost per cycle � K � cQ.

The average inventory level during a cycle is (Q � 0)/2 � Q/2 units, and the corresponding
cost is hQ/2 per unit time. Because the cycle length is Q/a,

Holding cost per cycle � �
h
2
Q
a

2

�.

Therefore,

Total cost per cycle � K � cQ � �
h
2
Q
a

2

�,

so the total cost per unit time is

T � � �
a
Q
K
� � ac � �

h
2
Q
�.

The value of Q, say Q*, that minimizes T is found by setting the first derivative to
zero (and noting that the second derivative is positive).

�
d
d
Q
T
� � ��

a
Q
K
2� � �

h
2

� � 0,

K � cQ � hQ2/(2a)
���

Q/a
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so that

Q* � ��
2a

h
K
��,

which is the well-known EOQ formula.1 (It also is sometimes referred to as the square
root formula.) The corresponding cycle time, say t*, is

t* � �
Q
a
*
� � ��

2
a
K
h
��.

It is interesting to observe that Q* and t* change in intuitively plausible ways when
a change is made in K, h, or a. As the setup cost K increases, both Q* and t* increase
(fewer setups). When the unit holding cost h increases, both Q* and t* decrease (smaller
inventory levels). As the demand rate a increases, Q* increases (larger batches) but t* de-
creases (more frequent setups).

These formulas for Q* and t* will now be applied to the speaker example. The ap-
propriate parameter values from Sec. 19.1 are

K � 12,000, h � 0.30, a � 8,000,

so that

Q* � ��(2)(8,0�0
0
0
.3
)(
0
12�,000)
�� � 25,298

and

t* � �
2
8
5
,
,
0
2
0
9
0
8

� � 3.2 months.

Hence, the optimal solution is to set up the production facilities to produce speakers once
every 3.2 months and to produce 25,298 speakers each time. (The total cost curve is rather
flat near this optimal value, so any similar production run that might be more convenient,
say 24,000 speakers every 3 months, would be nearly optimal.)

The EOQ Model with Planned Shortages

One of the banes of any inventory manager is the occurrence of an inventory shortage
(sometimes referred to as a stockout)—demand that cannot be met currently because the
inventory is depleted. This causes a variety of headaches, including dealing with unhappy
customers and having extra record keeping to arrange for filling the demand later (back-
orders) when the inventory can be replenished. By assuming that planned shortages are
not allowed, the basic EOQ model presented above satisfies the common desire of man-
agers to avoid shortages as much as possible. (Nevertheless, unplanned shortages can still
occur if the demand rate and deliveries do not stay on schedule.)
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However, there are situations where permitting limited planned shortages makes sense
from a managerial perspective. The most important requirement is that the customers gen-
erally are able and willing to accept a reasonable delay in filling their orders if need be.
If so, the costs of incurring shortages described in Secs. 19.1 and 19.2 (including lost fu-
ture business) should not be exorbitant. If the cost of holding inventory is high relative to
these shortage costs, then lowering the average inventory level by permitting occasional
brief shortages may be a sound business decision.

The EOQ model with planned shortages addresses this kind of situation by replac-
ing only the third assumption of the basic EOQ model by the following new assumption.

Planned shortages now are allowed. When a shortage occurs, the affected customers will
wait for the product to become available again. Their backorders are filled immediately
when the order quantity arrives to replenish inventory.

Under these assumptions, the pattern of inventory levels over time has the appear-
ance shown in Fig. 19.2. The saw-toothed appearance is the same as in Fig. 19.1. How-
ever, now the inventory levels extend down to negative values that reflect the number of
units of the product that are backordered.

Let

p � shortage cost per unit short per unit of time short,

S � inventory level just after a batch of Q units is added to inventory,

Q � S � shortage in inventory just before a batch of Q units is added.

The total cost per unit time now is obtained from the following components.

Production or ordering cost per cycle � K � cQ.

During each cycle, the inventory level is positive for a time S/a. The average inventory
level during this time is (S � 0)/2 � S/2 units, and the corresponding cost is hS/2 per unit
time. Hence,

Holding cost per cycle � �
h
2
S
� �

S
a

� � �
h
2
S
a

2

�.

Similarly, shortages occur for a time (Q � S)/a. The average amount of shortages during
this time is (0 � Q � S)/2 � (Q � S)/2 units, and the corresponding cost is p(Q � S)/2
per unit time. Hence,

Shortage cost per cycle � �
p(Q

2
� S)
� �

Q �
a

S
� � �

p(Q
2
�
a

S)2

�.
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Therefore,

Total cost per cycle � K � cQ � �
h
2
S
a

2

� � �
p(Q

2
�
a

S)2

�,

and the total cost per unit time is

T �

� �
a
Q
K
� � ac � �

h
2
S
Q

2

� � �
p(Q

2
�
Q

S)2

�.

In this model, there are two decision variables (S and Q), so the optimal values (S*
and Q*) are found by setting the partial derivatives �T/�S and �T/�Q equal to zero. Thus,

�
�
�
T
S
� � �

h
Q
S
� � �

p(Q
Q
� S)
� � 0.

�
�
�
Q
T
� � ��

a
Q
K
2� � �

2
h
Q
S2

2� � �
p(Q

Q
� S)
� � �

p(Q
2Q

�
2
S)2

� � 0.

Solving these equations simultaneously leads to

S* � ��
2a

h
K
�� ��

p �
p

h
��, Q* � ��

2a
h
K
�� ��

p �
p

h
��.

The optimal cycle length t* is given by

t* � �
Q
a
*
� � ��

2
a
K
h
�� ��

p �
p

h
��.

The maximum shortage is

Q* � S* � ��
2a

p
K
�� ��

p �
h

h
��.

In addition, from Fig. 19.2, the fraction of time that no shortage exists is given by

�
Q
S*

*
/
/
a
a

� � �
p �

p
h

�,

which is independent of K.
When either p or h is made much larger than the other, the above quantities behave

in intuitive ways. In particular, when p � � with h constant (so shortage costs dominate
holding costs), Q* � S* � 0 whereas both Q* and t* converge to their values for the ba-
sic EOQ model. Even though the current model permits shortages, p � � implies that
having them is not worthwhile.

On the other hand, when h � � with p constant (so holding costs dominate short-
age costs), S* � 0. Thus, having h � � makes it uneconomical to have positive inven-
tory levels, so each new batch of Q* units goes no further than removing the current short-
age in inventory.

If planned shortages are permitted in the speaker example, the shortage cost is esti-
mated in Sec. 19.1 as

p � 1.10.

K � cQ � hS2/(2a) � p(Q � S)2/(2a)
����

Q/a
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As before,

K � 12,000, h � 0.30, a � 8,000,

so now

S* � ��(2)(8,0�0
0
0
.3
)(
0
12�,000)
�� ��

1.1
1
�
.1�0.3
�� � 22,424,

Q* � ��(2)(8,0�0
0
0
.3
)(
0
12�,000)
�� ��

1.1
1
�
.1�0.3
�� � 28,540,

and

t* � �
2
8
8
,
,
0
5
0
4
0
0

� � 3.6 months.

Hence, the production facilities are to be set up every 3.6 months to produce 28,540 speak-
ers. The maximum shortage is 6,116 speakers. Note that Q* and t* are not very different
from the no-shortage case. The reason is that p is much larger than h.

The EOQ Model with Quantity Discounts

When specifying their cost components, the preceding models have assumed that the unit
cost of an item is the same regardless of the quantity in the batch. In fact, this assump-
tion resulted in the optimal solutions being independent of this unit cost. The EOQ model
with quantity discounts replaces this assumption by the following new assumption.

The unit cost of an item now depends on the quantity in the batch. In particular, an in-
centive is provided to place a large order by replacing the unit cost for a small quantity
by a smaller unit cost for every item in a larger batch, and perhaps by even smaller unit
costs for even larger batches.

Otherwise, the assumptions are the same as for the basic EOQ model.
To illustrate this model, consider the TV speakers example introduced in Sec. 19.1.

Suppose now that the unit cost for every speaker is c1 � $11 if less than 10,000 speakers
are produced, c2 � $10 if production falls between 10,000 and 80,000 speakers, and 
c3 � $9.50 if production exceeds 80,000 speakers. What is the optimal policy? The solu-
tion to this specific problem will reveal the general method.

From the results for the basic EOQ model, the total cost per unit time Tj if the unit
cost is cj is given by

Tj � �
a
Q
K
� � acj � �

h
2
Q
�, for j � 1, 2, 3.

(This expression assumes that h is independent of the unit cost of the items, but a com-
mon small refinement would be to make h proportional to the unit cost to reflect the fact
that the cost of capital tied up in inventory varies in this way.) A plot of Tj versus Q is
shown in Fig. 19.3 for each j, where the solid part of each curve extends over the feasi-
ble range of values of Q for that discount category.

For each curve, the value of Q that minimizes Tj is found just as for the basic EOQ
model. For K � 12,000, h � 0.30, and a � 8,000, this value is

��(2)(8,0�0
0
0
.3
)(
0
12�,000)
�� � 25,298.
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(If h were not independent of the unit cost of the items, then the minimizing value of Q
would be slightly different for the different curves.) This minimizing value of Q is a fea-
sible value for the cost function T2. For any fixed Q, T2 	 T1, so T1 can be eliminated from
further consideration. However, T3 cannot be immediately discarded. Its minimum feasi-
ble value (which occurs at Q � 80,000) must be compared to T2 evaluated at 25,298 (which
is $87,589). Because T3 evaluated at 80,000 equals $89,200, it is better to produce in quan-
tities of 25,298, so this quantity is the optimal value for this set of quantity discounts.

If the quantity discount led to a unit cost of $9 (instead of $9.50) when production
exceeded 80,000, then T3 evaluated at 80,000 would equal 85,200, and the optimal pro-
duction quantity would become 80,000.

Although this analysis concerned a specific problem, the same approach is applica-
ble to any similar problem. Here is a summary of the general procedure.

1. For each available unit cost cj, use the EOQ formula for the EOQ model to calculate
its optimal order quantity Q*j.

2. For each cj where Q*j is within the feasible range of order quantities for cj, calculate
the corresponding total cost per unit time Tj.

3. For each cj where Q*j is not within this feasible range, determine the order quantity Qj

that is at the endpoint of this feasible range that is closest to Q*j. Calculate the total
cost per unit time Tj for Qj and cj.

4. Compare the Tj obtained for all the cj and choose the minimum Tj. Then choose the
order quantity Qj obtained in step 2 or 3 that gives this minimum Tj.

A similar analysis can be used for other types of quantity discounts, such as incre-
mental quantity discounts where a cost c0 is incurred for the first q0 units, c1 for the next
q1 units, and so on.

Some Useful Excel Templates

For your convenience, we have included five Excel templates for the EOQ models in this
chapter’s Excel file on the CD-ROM. Two of these templates are for the basic EOQ model.
In both cases, you enter basic data (a, K, and h), as well as the lead time for the deliver-
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ies and the number of working days per year for the firm. The template then calculates
the firm’s total annual expenditures for setups and for holding costs, as well as the sum
of these two costs (the total variable cost). It also calculates the reorder point—the in-
ventory level at which the order needs to be placed to replenish inventory so the replen-
ishment will arrive when the inventory level drops to 0. One template (the Solver version)
enables you to enter any order quantity you want and then see what the annual costs and
reorder point would be. This version also enables you to use the Excel Solver to solve for
the optimal order quantity. The second template (the analytical version) uses the EOQ
formula to obtain the optimal order quantity.

The corresponding pair of templates also is provided for the EOQ model with planned
shortages. After entering the data (including the unit shortage cost p), each of these tem-
plates will obtain the various annual costs (including the annual shortage cost). With the
Solver version, you can either enter trial values of the order quantity Q and maximum
shortage Q � S or solve for the optimal values, whereas the analytical version uses the
formulas for Q* and Q* � S* to obtain the optimal values. The corresponding maximum
inventory level S* also is included in the results.

The final template is an analytical version for the EOQ model with quantity discounts.
This template includes the refinement that the unit holding cost h is proportional to the
unit cost c, so

h � Ic,

where the proportionality factor I is referred to as the inventory holding cost rate. Thus,
the data entered includes I along with a and K. You also need to enter the number of dis-
count categories (where the lowest-quantity category with no discount counts as one of
these), as well as the unit price and range of order quantities for each of the categories.
The template then finds the feasible order quantity that minimizes the total annual cost
for each category, and also shows the individual annual costs (including the annual pur-
chase cost) that would result. Using this information, the template identifies the overall
optimal order quantity and the resulting total annual cost.

All these templates can be helpful for calculating a lot of information quickly after
entering the basic data for the problem. However, perhaps a more important use is for per-
forming sensitivity analysis on these data. You can immediately see how the results would
change for any specific change in the data by entering the new data values in the spread-
sheet. Doing this repeatedly for a variety of changes in the data is a convenient way to
perform sensitivity analysis.

Observations about EOQ Models

1. If it is assumed that the unit cost of an item is constant throughout time independent
of the batch size (as with the first two EOQ models), the unit cost does not appear in
the optimal solution for the batch size. This result occurs because no matter what in-
ventory policy is used, the same number of units is required per unit time, so this cost
per unit time is fixed.

2. The analysis of the EOQ models assumed that the batch size Q is constant from cycle
to cycle. The resulting optimal batch size Q* actually minimizes the total cost per unit
time for any cycle, so the analysis shows that this constant batch size should be used
from cycle to cycle even if a constant batch size is not assumed.
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3. The optimal inventory level at which inventory should be replenished can never be
greater than zero under these models. Waiting until the inventory level drops to zero
(or less than zero when planned shortages are permitted) reduces both holding costs
and the frequency of incurring the setup cost K. However, if the assumptions of a known
constant demand rate and the order quantity will arrive just when desired (because of
a constant lead time) are not completely satisfied, it may become prudent to plan to
have some “safety stock” left when the inventory is scheduled to be replenished. This
is accomplished by increasing the reorder point above that implied by the model.

4. The basic assumptions of the EOQ models are rather demanding ones. They seldom
are satisfied completely in practice. For example, even when a constant demand rate
is planned (as with the production line in the TV speakers example in Sec. 19.1), in-
terruptions and variations in the demand rate still are likely to occur. It also is very dif-
ficult to satisfy the assumption that the order quantity to replenish inventory arrives
just when desired. Although the schedule may call for a constant lead time, variations
in the actual lead times often will occur. Fortunately, the EOQ models have been found
to be robust in the sense that they generally still provide nearly optimal results even
when their assumptions are only rough approximations of reality. This is a key reason
why these models are so widely used in practice. However, in those cases where the
assumptions are significantly violated, it is important to do some preliminary analysis
to evaluate the adequacy of an EOQ model before it is used. This preliminary analy-
sis should focus on calculating the total cost per unit time provided by the model for
various order quantities and then assessing how this cost curve would change under
more realistic assumptions.

A Broader Perspective of the Speaker Example

Example 2 (wholesale distribution of bicycles) introduced in Sec. 19.1 focused on man-
aging the inventory of one model of bicycle. The demand for this product is generated by
the wholesaler’s customers (various retailers) who purchase these bicycles to replenish
their inventories according to their own schedules. The wholesaler has no control over this
demand. Because this model is sold separately from other models, its demand does not
even depend on the demand for any of the company’s other products. Such demand is re-
ferred to as independent demand.

The situation is different for the speaker example introduced in Sec. 19.1. Here, the
product under consideration—television speakers—is just one component being assem-
bled into the company’s final product—television sets. Consequently, the demand for the
speakers depends on the demand for the television set. The pattern of this demand for the
speakers is determined internally by the production schedule that the company establishes
for the television sets by adjusting the production rate for the production line producing
the sets. Such demand is referred to as dependent demand.

The television manufacturing company produces a considerable number of products—
various parts and subassemblies—that become components of the television sets. Like the
speakers, these various products also are dependent-demand products.

Because of the dependencies and interrelationships involved, managing the invento-
ries of dependent-demand products can be considerably more complicated than for inde-
pendent-demand products. A popular technique for assisting in this task is material re-
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quirements planning, abbreviated as MRP. MRP is a computer-based system for plan-
ning, scheduling, and controlling the production of all the components of a final product.
The system begins by “exploding” the product by breaking it down into all its sub-
assemblies and then into all its individual component parts. A production schedule is then
developed, using the demand and lead time for each component to determine the demand
and lead time for the subsequent component in the process. In addition to a master pro-
duction schedule for the final product, a bill of materials provides detailed information
about all its components. Inventory status records give the current inventory levels, num-
ber of units on order, etc., for all the components. When more units of a component need
to be ordered, the MRP system automatically generates either a purchase order to the ven-
dor or a work order to the internal department that produces the component.

When the basic EOQ model was used to calculate the optimal production lot size for
the speaker example, a very large quantity (25,298 speakers) was obtained. This enables
having relatively infrequent setups to initiate production runs (only once every 3.2 months).
However, it also causes large average inventory levels (12,649 speakers), which leads to
a large total holding cost per year of over $45,000.

The basic reason for this large cost is the high setup cost of K � $12,000 for each
production run. The setup cost is so sizable because the production facilities need to be
set up again from scratch each time. Consequently, even with less than four production
runs per year, the annual setup cost is over $45,000, just like the annual holding costs.

Rather than continuing to tolerate a $12,000 setup cost each time in the future, an-
other option for the company is to seek ways to reduce this setup cost. One possibility is
to develop methods for quickly transferring machines from one use to another. Another
is to dedicate a group of production facilities to the production of speakers so they would
remain set up between production runs in preparation for beginning another run when-
ever needed.

Suppose the setup cost could be drastically reduced from $12,000 all the way down
to K � $120. This would reduce the optimal production lot size from 25,298 speakers
down to Q* � 2,530 speakers, so a new production run lasting only a brief time would
be initiated more than 3 times per month. This also would reduce both the annual setup
cost and the annual holding cost from over $45,000 down to only slightly over $4,500
each. By having such frequent (but inexpensive) production runs, the speakers would be
produced essentially just in time for their assembly into television sets.

Just in time actually is a well-developed philosophy for managing inventories. A just-
in-time (JIT) inventory system places great emphasis on reducing inventory levels to a
bare minimum, and so providing the items just in time as they are needed. This philoso-
phy was first developed in Japan, beginning with the Toyota Company in the late 1950s,
and is given part of the credit for the remarkable gains in Japanese productivity through
much of the late 20th century. The philosophy also has become popular in other parts of
the world, including the United States, in more recent years.

Although the just-in-time philosophy sometimes is misinterpreted as being incom-
patible with using an EOQ model (since the latter gives a large order quantity when the
setup cost is large), they actually are complementary. A JIT inventory system focuses on
finding ways to greatly reduce the setup costs so that the optimal order quantity will be
small. Such a system also seeks ways to reduce the lead time for the delivery of an or-
der, since this reduces the uncertainty about the number of units that will be needed when
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the delivery occurs. Another emphasis is on improving preventive maintenance so that the
required production facilities will be available to produce the units when they are needed.
Still another emphasis is on improving the production process to guarantee good quality.
Providing just the right number of units just in time does not provide any leeway for in-
cluding defective units.

In more general terms, the focus of the just-in-time philosophy is on avoiding
waste wherever it might occur in the production process. One form of waste is un-
necessary inventory. Others are unnecessarily large setup costs, unnecessarily long lead
times, production facilities that are not operational when they are needed, and defec-
tive items. Minimizing these forms of waste is a key component of superior inventory
management.
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The preceding section explored the basic EOQ model and some of its variations. The re-
sults were dependent upon the assumption of a constant demand rate. When this assump-
tion is relaxed, i.e., when the amounts that need to be withdrawn from inventory are al-
lowed to vary from period to period, the EOQ formula no longer ensures a minimum-cost
solution.

Consider the following periodic-review model. Planning is to be done for the next n
periods regarding how much (if any) to produce or order to replenish inventory at the be-
ginning of each of the periods. (The order to replenish inventory can involve either pur-
chasing the units or producing them, but the latter case is far more common with appli-
cations of this model, so we mainly will use the terminology of producing the units.) The
demands for the respective periods are known (but not the same in every period) and are
denoted by

ri � demand in period i, for i � 1, 2, . . . , n.

These demands must be met on time. There is no stock on hand initially, but there is still
time for a delivery at the beginning of period 1.

The costs included in this model are similar to those for the basic EOQ model:

K � setup cost for producing or purchasing any units to replenish inventory at be-
ginning of period,

c � unit cost for producing or purchasing each unit,

h � holding cost for each unit left in inventory at end of period.

Note that this holding cost h is assessed only on inventory left at the end of a period.
There also are holding costs for units that are in inventory for a portion of the period be-
fore being withdrawn to satisfy demand. However, these are fixed costs that are indepen-
dent of the inventory policy and so are not relevant to the analysis. Only the variable costs
that are affected by which inventory policy is chosen, such as the extra holding costs that
are incurred by carrying inventory over from one period to the next, are relevant for se-
lecting the inventory policy.

By the same reasoning, the unit cost c is an irrelevant fixed cost because, over all the
time periods, all inventory policies produce the same number of units at the same cost.
Therefore, c will be dropped from the analysis hereafter.
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The objective is to minimize the total cost over the n periods. This is accomplished
by ignoring the fixed costs and minimizing the total variable cost over the n periods, as
illustrated by the following example.

Example. An airplane manufacturer specializes in producing small airplanes. It has just
received an order from a major corporation for 10 customized executive jet airplanes for
the use of the corporation’s upper management. The order calls for three of the airplanes
to be delivered (and paid for) during the upcoming winter months (period 1), two more
to be delivered during the spring (period 2), three more during the summer (period 3),
and the final two during the fall (period 4).

Setting up the production facilities to meet the corporation’s specifications for these
airplanes requires a setup cost of $2 million. The manufacturer has the capacity to pro-
duce all 10 airplanes within a couple of months, when the winter season will be under
way. However, this would necessitate holding seven of the airplanes in inventory, at a cost
of $200,000 per airplane per period, until their scheduled delivery times. To reduce or
eliminate these substantial holding costs, it may be worthwhile to produce a smaller num-
ber of these airplanes now and then to repeat the setup (again incurring the cost of $2 mil-
lion) in some or all of the subsequent periods to produce additional small numbers. Man-
agement would like to determine the least costly production schedule for filling this order.

Thus, using the notation of the model, the demands for this particular airplane dur-
ing the four upcoming periods (seasons) are

r1 � 3, r2 � 2, r3 � 3, r4 � 2.

Using units of millions of dollars, the relevant costs are

K � 2, h � 0.2.

The problem is to determine how many airplanes to produce (if any) during the begin-
ning of each of the four periods in order to minimize the total variable cost.

The high setup cost K gives a strong incentive not to produce airplanes every period
and preferably just once. However, the significant holding cost h makes it undesirable to
carry a large inventory by producing the entire demand for all four periods (10 airplanes)
at the beginning. Perhaps the best approach would be an intermediate strategy where air-
planes are produced more than once but less than four times. For example, one such fea-
sible solution (but not an optimal one) is depicted in Fig. 19.4, which shows the evolu-
tion of the inventory level over the next year that results from producing three airplanes
at the beginning of the first period, six airplanes at the beginning of the second period,
and one airplane at the beginning of the fourth period. The dots give the inventory levels
after any production at the beginning of the four periods.

How can the optimal production schedule be found? For this model in general, pro-
duction (or purchasing) is automatic in period 1, but a decision on whether to produce
must be made for each of the other n � 1 periods. Therefore, one approach to solving this
model is to enumerate, for each of the 2n�1 combinations of production decisions, the
possible quantities that can be produced in each period where production is to occur. This
approach is rather cumbersome, even for moderate-sized n, so a more efficient method is
desirable. Such a method is described next in general terms, and then we will return to
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finding the optimal production schedule for the example. Although the general method
can be used when either producing or purchasing to replenish inventory, we now will only
use the terminology of producing for definiteness.

An Algorithm

The key to developing an efficient algorithm for finding an optimal inventory policy (or
equivalently, an optimal production schedule) for the above model is the following insight
into the nature of an optimal policy.

An optimal policy (production schedule) produces only when the inventory level
is zero.

To illustrate why this result is true, consider the policy shown in Fig. 19.4 for the ex-
ample. (Call it policy A.) Policy A violates the above characterization of an optimal pol-
icy because production occurs at the beginning of period 4 when the inventory level is
greater than zero (namely, one airplane). However, this policy can easily be adjusted to
satisfy the above characterization by simply producing one less airplane in period 2 and
one more airplane in period 4. This adjusted policy (call it B) is shown by the dashed line
in Fig. 19.5 wherever B differs from A (the solid line). Now note that policy B must have
less total cost than policy A. The setup costs (and the production costs) for both policies
are the same. However, the holding cost is smaller for B than for A because B has less in-
ventory than A in periods 2 and 3 (and the same inventory in the other periods). There-
fore, B is better than A, so A cannot be optimal.

This characterization of optimal policies can be used to identify policies that are not
optimal. In addition, because it implies that the only choices for the amount produced at
the beginning of the ith period are 0, ri, ri � ri�1, . . . , or ri � ri�1 � 


 � rn, it can be
exploited to obtain an efficient algorithm that is related to the deterministic dynamic pro-
gramming approach described in Sec. 11.3.

19.4 A DETERMINISTIC PERIODIC-REVIEW MODEL 953

Period

6

5

4

3

2

1

0 1 2 3 4 

Inventory
level

FIGURE 19.4
The inventory levels that
result from one sample
production schedule for the
airplane example.



In particular, define

Ci � total variable cost of an optimal policy for periods i, i � 1, . . . , n when
period i starts with zero inventory (before producing), for i � 1, 2, . . . , n.

By using the dynamic programming approach of solving backward period by period, these
Ci values can be found by first finding Cn, then finding Cn�1, and so on. Thus, after Cn,
Cn�1, . . . , Ci�1 are found, then Ci can be found from the recursive relationship

Ci � minimum {Cj�1 � K � h[ri�1 � 2ri�2 � 3ri�3 � 


 � ( j � i)rj]},
j�i, i�1, . . . , n

where j can be viewed as an index that denotes the (end of the) period when the inventory
reaches a zero level for the first time after production at the beginning of period i. In the
time interval from period i through period j, the term with coefficient h represents the total
holding cost over this interval. When j � n, the term Cn�1 � 0. The minimizing value of j
indicates that if the inventory level does indeed drop to zero upon entering period i, then the
production in period i should cover all demand from period i through this period j.

The algorithm for solving the model consists basically of solving for Cn, Cn�1, . . . ,
C1 in turn. For i � 1, the minimizing value of j then indicates that the production in pe-
riod 1 should cover the demand through period j, so the second production will be in pe-
riod j � 1. For i � j � 1, the new minimizing value of j identifies the time interval cov-
ered by the second production, and so forth to the end. We will illustrate this approach with
the example.

The application of this algorithm is much quicker than the full dynamic programming
approach.1 As in dynamic programming, Cn, Cn�1, . . . , C2 must be found before C1 is
obtained. However, the number of calculations is much smaller, and the number of pos-
sible production quantities is greatly reduced.
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1The full dynamic programming approach is useful, however, for solving generalizations of the model (e.g.,
nonlinear production cost and holding cost functions) where the above algorithm is no longer applicable. (See
Probs. 19.4-3 and 19.4-4 for examples where dynamic programming would be used to deal with generalizations
of the model.)



Application of the Algorithm to the Example

Returning to the airplane example, first we consider the case of finding C4, the cost of
the optimal policy from the beginning of period 4 to the end of the planning horizon:

C4 � C5 � 2 � 0 � 2 � 2.

To find C3, we must consider two cases, namely, the first time after period 3 when
the inventory reaches a zero level occurs at (1) the end of the third period or (2) the end
of the fourth period. In the recursive relationship for C3, these two cases correspond to
(1) j � 3 and (2) j � 4. Denote the corresponding costs (the right-hand side of the recur-
sive relationship with this j) by C3

(3) and C3
(4), respectively. The policy associated with

C3
(3) calls for producing only for period 3 and then following the optimal policy for pe-

riod 4, whereas the policy associated with C3
(4) calls for producing for periods 3 and 4.

The cost C3 is then the minimum of C3
(3) and C3

(4). These cases are reflected by the poli-
cies given in Fig. 19.6.

C3
(3) � C4 � 2 � 2 � 2 � 4.

C3
(4) � C5 � 2 � 0.2(2) � 0 � 2 � 0.4 � 2.4.

C3 � min{4, 2.4} � 2.4.

Therefore, if the inventory level drops to zero upon entering period 3 (so production should
occur then), the production in period 3 should cover the demand for both periods 3 and 4.

To find C2, we must consider three cases, namely, the first time after period 2 when the
inventory reaches a zero level occurs at (1) the end of the second period, (2) the end of the
third period, or (3) the end of the fourth period. In the recursive relationship for C2, these
cases correspond to (1) j � 2, (2) j � 3, and (3) j � 4, where the corresponding costs are
C2

(2), C2
(3), and C2

(4), respectively. The cost C2 is then the minimum of C2
(2), C2

(3), and C2
(4).

C2
(2) � C3 � 2 � 2.4 � 2 � 4.4.

C2
(3) � C4 � 2 � 0.2(3) � 2 � 2 � 0.6 � 4.6.

C2
(4) � C5 � 2 � 0.2[3 � 2(2)] � 0 � 2 � 1.4 � 3.4.

C2 � min{4.4, 4.6, 3.4} � 3.4.
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Consequently, if production occurs in period 2 (because the inventory level drops to zero),
this production should cover the demand for all the remaining periods.

Finally, to find C1, we must consider four cases, namely, the first time after period 1
when the inventory reaches zero occurs at the end of (1) the first period, (2) the second
period, (3) the third period, or (4) the fourth period. These cases correspond to j � 1, 2,
3, 4 and to the costs C1

(1), C1
(2), C1

(3), C1
(4), respectively. The cost C1 is then the minimum

of C1
(1), C1

(2), C1
(3), and C1

(4).

C1
(1) � C2 � 2 � 3.4 � 2 � 5.4.

C1
(2) � C3 � 2 � 0.2(2) � 2.4 � 2 � 0.4 � 4.8.

C1
(3) � C4 � 2 � 0.2[2 � 2(3)] � 2 � 2 � 1.6 � 5.6.

C1
(4) � C5 � 2 � 0.2[2 � 2(3) � 3(2)] � 0 � 2 � 2.8 � 4.8.

C1 � min{5.4, 4.8, 5.6, 4.8} � 4.8.

Note that C1
(2) and C1

(4) tie as the minimum, giving C1. This means that the policies cor-
responding to C1

(2) and C1
(4) tie as being the optimal policies. The C1

(4) policy says to produce
enough in period 1 to cover the demand for all four periods. The C1

(2) policy covers only the
demand through period 2. Since the latter policy has the inventory level drop to zero at the
end of period 2, the C3 result is used next, namely, produce enough in period 3 to cover the
demand for periods 3 and 4. The resulting production schedules are summarized below.

Optimal Production Schedules.

1. Produce 10 airplanes in period 1.

Total variable cost � $4.8 million.

2. Produce 5 airplanes in period 1 and 5 airplanes in period 3.

Total variable cost � $4.8 million.
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We now turn to stochastic inventory models, which are designed for analyzing inventory
systems where there is considerable uncertainty about future demands. In this section, we
consider a continuous-review inventory system. Thus, the inventory level is being moni-
tored on a continuous basis so that a new order can be placed as soon as the inventory
level drops to the reorder point.

The traditional method of implementing a continuous-review inventory system was
to use a two-bin system. All the units for a particular product would be held in two bins.
The capacity of one bin would equal the reorder point. The units would first be withdrawn
from the other bin. Therefore, the emptying of this second bin would trigger placing a
new order. During the lead time until this order is received, units would then be with-
drawn from the first bin.

In more recent years, two-bin systems have been largely replaced by computerized
inventory systems. Each addition to inventory and each sale causing a withdrawal are
recorded electronically, so that the current inventory level always is in the computer. (For
example, the modern scanning devices at retail store checkout stands may both itemize
your purchases and record the sales of stable products for purposes of adjusting the cur-
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rent inventory levels.) Therefore, the computer will trigger a new order as soon as the in-
ventory level has dropped to the reorder point. Several excellent software packages are
available from software companies for implementing such a system.

Because of the extensive use of computers for modern inventory management, con-
tinuous-review inventory systems have become increasingly prevalent for products that
are sufficiently important to warrant a formal inventory policy.

A continuous-review inventory system for a particular product normally will be based
on two critical numbers:

R � reorder point.
Q � order quantity.

For a manufacturer managing its finished products inventory, the order will be for a pro-
duction run of size Q. For a wholesaler or retailer (or a manufacturer replenishing its raw
materials inventory from a supplier), the order will be a purchase order for Q units of the
product.

An inventory policy based on these two critical numbers is a simple one.

Inventory policy: Whenever the inventory level of the product drops to R units,
place an order for Q more units to replenish the inventory.

Such a policy is often called a reorder-point, order-quantity policy, or (R, Q) policy for
short. [Consequently, the overall model might be referred to as the (R, Q) model. Other vari-
ations of these names, such as (Q, R) policy, (Q, R) model, etc., also are sometimes used.]

After summarizing the model’s assumptions, we will outline how R and Q can be de-
termined.

The Assumptions of the Model

1. Each application involves a single product.
2. The inventory level is under continuous review, so its current value always is known.
3. An (R, Q) policy is to be used, so the only decisions to be made are to choose R

and Q.
4. There is a lead time between when the order is placed and when the order quantity

is received. This lead time can be either fixed or variable.
5. The demand for withdrawing units from inventory to sell them (or for any other pur-

pose) during this lead time is uncertain. However, the probability distribution of de-
mand is known (or at least estimated).

6. If a stockout occurs before the order is received, the excess demand is backlogged,
so that the backorders are filled once the order arrives.

7. A fixed setup cost (denoted by K ) is incurred each time an order is placed.
8. Except for this setup cost, the cost of the order is proportional to the order quantity Q.
9. A certain holding cost (denoted by h) is incurred for each unit in inventory per unit

time.
10. When a stockout occurs, a certain shortage cost (denoted by p) is incurred for each

unit backordered per unit time until the backorder is filled.

This model is closely related to the EOQ model with planned shortages presented in
Sec. 19.3. In fact, all these assumptions also are consistent with that model, with the one
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key exception of assumption 5. Rather than having uncertain demand, that model assumed
known demand with a fixed rate.

Because of the close relationship between these two models, their results should be
fairly similar. The main difference is that, because of the uncertain demand for the cur-
rent model, some safety stock needs to be added when setting the reorder point to pro-
vide some cushion for having well-above-average demand during the lead time. Other-
wise, the trade-offs between the various cost factors are basically the same, so the order
quantities from the two models should be similar.

Choosing the Order Quantity Q

The most straightforward approach to choosing Q for the current model is to simply use the
formula given in Sec. 19.3 for the EOQ model with planned shortages. This formula is

Q � ��
2A

h
K
�� ��

p �
p

h
��,

where A now is the average demand per unit time, and where K, h, and p are defined in
assumptions 7, 9, and 10, respectively.

This Q will be only an approximation of the optimal order quantity for the current
model. However, no formula is available for the exact value of the optimal order quan-
tity, so an approximation is needed. Fortunately, the approximation given above is a fairly
good one.1

Choosing the Reorder Point R

A common approach to choosing the reorder point R is to base it on management’s de-
sired level of service to customers. Thus, the starting point is to obtain a managerial de-
cision on service level. (Problem 19.5-3 analyzes the factors involved in this managerial
decision.)

Service level can be defined in a number of different ways in this context, as outlined
below.

Alternative Measures of Service Level.

1. The probability that a stockout will not occur between the time an order is placed and
the order quantity is received.

2. The average number of stockouts per year.
3. The average percentage of annual demand that can be satisfied immediately (no

stockout).
4. The average delay in filling backorders when a stockout occurs.
5. The overall average delay in filling orders (where the delay without a stockout is 0).

Measures 1 and 2 are closely related. For example, suppose that the order quantity Q
has been set at 10 percent of the annual demand, so an average of 10 orders are placed
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per year. If the probability is 0.2 that a stockout will occur during the lead time until an
order is received, then the average number of stockouts per year would be 10(0.2) � 2.

Measures 2 and 3 also are related. For example, suppose an average of 2 stockouts
occur per year and the average length of a stockout is 9 days. Since 2(9) � 18 days of
stockout per year are essentially 5 percent of the year, the average percentage of annual
demand that can be satisfied immediately would be 95 percent.

In addition, measures 3, 4, and 5 are related. For example, suppose that the average
percentage of annual demand that can be satisfied immediately is 95 percent and the av-
erage delay in filling backorders when a stockout occurs is 5 days. Since only 5 percent
of the customers incur this delay, the overall average delay in filling orders then would
be 0.05(5) � 0.25 day per order.

A managerial decision needs to be made on the desired value of at least one of these
measures of service level. After selecting one of these measures on which to focus pri-
mary attention, it is useful to explore the implications of several alternative values of this
measure on some of the other measures before choosing the best alternative.

Measure 1 probably is the most convenient one to use as the primary measure, so we
now will focus on this case. We will denote the desired level of service under this mea-
sure by L, so

L � management’s desired probability that a stockout will not occur between the
time an order quantity is placed and the order quantity is received.

Using measure 1 involves working with the estimated probability distribution of the
following random variable.

D � demand during the lead time in filling an order.

For example, with a uniform distribution, the formula for choosing the reorder point R is
a simple one.

If the probability distribution of D is a uniform distribution over the interval from a to 
b, set

R � a � L(b � a),

because then

P(D � R) � L.

Since the mean of this distribution is

E(D) � �
a �

2
b

�,

the amount of safety stock (the expected inventory level just before the order quantity is
received) provided by the reorder point R is

Safety stock � R � E(D) � a � L(b � a) � �
a �

2
b

�

� �L � �
1
2

��(b � a).

When the demand distribution is something other than a uniform distribution, the pro-
cedure for choosing R is similar.

19.5 A STOCHASTIC CONTINUOUS-REVIEW MODEL 959



General Procedure for Choosing R under Service Level Measure 1.

1. Choose L.
2. Solve for R such that

P(D � R) � L.

For example, suppose that D has a normal distribution with mean � and variance

2, as shown in Fig. 19.7. Given the value of L, the table for the normal distribution
given in Appendix 5 then can be used to determine the value of R. In particular, you just
need to find the value of K1�L in this table and then plug into the following formula to
find R.

R � � � K1�L
.

The resulting amount of safety stock is

Safety stock � R � � � K1�L
.

To illustrate, if L � 0.75, then K1�L � 0.675, so

R � � � 0.675
,

as shown in Fig. 19.7. This provides

Safety stock � 0.675
.

Your OR Courseware also includes an Excel template that will calculate both the
order quantity Q and the reorder point R for you. You need to enter the average de-
mand per unit time (A), the costs (K, h, and p), and the service level based on mea-
sure 1. You also indicate whether the probability distribution of the demand during the
lead time is a uniform distribution or a normal distribution. For a uniform distribution,
you specify the interval over which the distribution extends by entering the lower end-
point and upper endpoint of this interval. For a normal distribution, you instead enter
the mean � and standard deviation 
 of the distribution. After you provide all this in-
formation, the template immediately calculates Q and R and displays these results on
the right side.
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.



An Example. Consider once again Example 1 (manufacturing speakers for TV sets)
presented in Sec. 19.1. Recall that the setup cost to produce the speakers is K � $12,000,
the unit holding cost is h � $0.30 per speaker per month, and the unit shortage cost is 
p � $1.10 per speaker per month.

Originally, there was a fixed demand rate of 8,000 speakers per month to be assem-
bled into television sets being produced on a production line at this fixed rate. However,
sales of the TV sets have been quite variable, so the inventory level of finished sets has
fluctuated widely. To reduce inventory holding costs for finished sets, management has
decided to adjust the production rate for the sets on a daily basis to better match the out-
put with the incoming orders.

Consequently, the demand for the speakers now is quite variable. There is a lead time
of 1 month between ordering a production run to produce speakers and having speakers
ready for assembly into television sets. The demand for speakers during this lead time is
a random variable D that has a normal distribution with a mean of 8,000 and a standard
deviation of 2,000. To minimize the risk of disrupting the production line producing the
TV sets, management has decided that the safety stock for speakers should be large enough
to avoid a stockout during this lead time 95 percent of the time.

To apply the model, the order quantity for each production run of speakers should be

Q � ��
2A

h
K
�� ��

p �
p

h
�� � ��2(8,00�0

0
.
)
3
(1
0
2,0�00)
�� ��

1.1
1
�
.1�0.3
�� � 28,540.

This is the same order quantity that was found by the EOQ model with planned shortages
in Sec. 19.3 for the previous version of this example where there was a constant (rather than
average) demand rate of 8,000 speakers per month and planned shortages were allowed.
However, the key difference from before is that safety stock now needs to be provided to
counteract the variable demand. Management has chosen a service level of L � 0.95, so the
normal table in Appendix 5 gives K1�L � 1.645. Therefore, the reorder point should be

R � � � K1�L
 � 8,000 � 1.645(2,000) � 11,290.

The resulting amount of safety stock is

Safety stock � R � � � 3,290.
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When choosing the inventory model to use for a particular product, a distinction should
be made between two types of products. One type is a stable product, which will remain
sellable indefinitely so there is no deadline for disposing of its inventory. This is the kind
of product considered in the preceding sections (as well as the next section). The other
type, by contrast, is a perishable product, which can be carried in inventory for only a
very limited period of time before it can no longer be sold. This is the kind of product
for which the single-period model (and its variations) presented in this section is designed.
In particular, the single period in the model is the very limited period before the product
can no longer be sold.

19.6 A STOCHASTIC SINGLE-PERIOD MODEL FOR 
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One example of a perishable product is a daily newspaper being sold at a newsstand.
A particular day’s newspaper can be carried in inventory for only a single day before it
becomes outdated and needs to be replaced by the next day’s newspaper. When the de-
mand for the newspaper is a random variable (as assumed in this section), the owner of
the newsstand needs to choose a daily order quantity that provides an appropriate trade-
off between the potential cost of overordering (the wasted expense of ordering more news-
papers than can be sold) and the potential cost of underordering (the lost profit from or-
dering fewer newspapers than can be sold). This section’s model enables solving for the
daily order quantity that would maximize the expected profit.

Because the general problem being analyzed fits this example so well, the problem
has traditionally been called the newsboy problem.1 However, it has always been recog-
nized that the model being used is just as applicable to other perishable products as to
newspapers. In fact, most of the applications have been to perishable products other than
newspapers, including the examples of perishable products listed below.

Some Types of Perishable Products

As you read through the list below of various types of perishable products, think about
how the inventory management of such products is analogous to a newsstand dealing with
a daily newspaper since these products also cannot be sold after a single time period. All
that may differ is that the length of this time period may be a week, a month, or even sev-
eral months rather than just one day.

1. Periodicals, such as newspapers and magazines.
2. Flowers being sold by a florist.
3. The makings of fresh food to be prepared in a restaurant.
4. Produce, including fresh fruits and vegetables, to be sold in a grocery store.
5. Christmas trees.
6. Seasonal clothing, such as winter coats, where any goods remaining at the end of the

season must be sold at highly discounted prices to clear space for the next season.
7. Seasonal greeting cards.
8. Fashion goods that will be out of style soon.
9. New cars at the end of a model year.

10. Any product that will be obsolete soon.
11. Vital spare parts that must be produced during the last production run of a certain

model of a product (e.g., an airplane) for use as needed throughout the lengthy field
life of that model.

12. Reservations provided by an airline for a particular flight. Reservations provided in
excess of the number of seats available (overbooking) can be viewed as the inventory
of a perishable product (they cannot be sold after the flight has occurred), where the
demand then is the number of no-shows. With this interpretation, the cost of under-
ordering (too little overbooking) would be the lost profit from empty seats and the
cost of overordering (too much overbooking) would be the cost of compensating
bumped customers.
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This last type is a particularly interesting one because major airlines (and various
other companies involved with transporting passengers) now are making extensive use of
this section’s model to analyze how much overbooking to do. For example, an article in
the January–February 1992 issue of Interfaces describes how American Airlines is deal-
ing with overbooking in this way. In addition, the article describes how the company is
also using operations research to address some related issues (such as the fare structure).
These particular OR applications (commonly called revenue management) are credited
with increasing American Airline’s annual revenues by over $500 million. The total im-
pact on annual profits throughout the passenger transportation industry would run into the
billions of dollars.

When managing the inventory of these various types of perishable products, it is oc-
casionally necessary to deal with some considerations beyond those that will be discussed
in this section. Extensive research has been conducted to extend the model to encompass
these considerations, and considerable progress has been made. Further information is
available in the footnoted references.1

An Example

Refer back to Example 2 in Sec. 19.1, which involves the wholesale distribution of a par-
ticular bicycle model (a small one-speed girl’s bicycle). There now has been a new de-
velopment. The manufacturer has just informed the distributor that this model is being
discontinued. To help clear out its stock, the manufacturer is offering the distributor the
opportunity to make one final purchase at very favorable terms, namely, a unit cost of
only $20 per bicycle. With these special arrangements, the distributor also would incur no
setup cost to place this order.

The distributor feels that this offer provides an ideal opportunity to make one final
round of sales to its customers (bicycle shops) for the upcoming Christmas season for a
reduced price of only $45 per bicycle, thereby making a profit of $25 per bicycle. This will
need to be a one-time sale only because this model soon will be replaced by a new model
that will make it obsolete. Therefore, any bicycles not sold during this sale will become
almost worthless. However, the distributor believes that she will be able to dispose of any
remaining bicycles after Christmas by selling them for the nominal price of $10 each (the
salvage value), thereby recovering half of her purchase cost. Considering this loss if she
orders more than she can sell, as well as the lost profit if she orders fewer than can be sold,
the distributor needs to decide what order quantity to submit to the manufacturer.

Another relevant expense is the cost of maintaining unsold bicycles in inventory un-
til they can be disposed of after Christmas. Combining the cost of capital tied up in in-
ventory and other storage costs, this inventory cost is estimated to be $1 per bicycle re-
maining in inventory after Christmas. Thus, considering the salvage value of $10 as well,
the unit holding cost is �$9 per bicycle left in inventory at the end.

Two remaining cost components still require discussion, the shortage cost and the
revenue. If the demand exceeds the supply, those customers who fail to purchase a bicy-
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cle may bear some ill will, thereby resulting in a “cost” to the distributor. This cost is the
per-item quantification of the loss of goodwill times the unsatisfied demand whenever a
shortage occurs. The distributor considers this cost to be negligible.

If we adopt the criterion of maximizing profit, we must include revenue in the model.
Indeed, the total profit is equal to total revenue minus the costs incurred (the ordering, hold-
ing, and shortage costs). Assuming no initial inventory, this profit for the distributor is

Profit � $45 � number sold by distributor
� $20 � number purchased by distributor
� $9 � number unsold and so disposed of for salvage value.

Let

y � number purchased by distributor

and

D � demand by bicycle shops (a random variable),

so that

min{D, y} � number sold,
max{0, y � D} � number unsold.

Then

Profit � 45 min{D, y} � 20y � 9 max{0, y � D}.

The first term also can be written as

45 min{D, y} � 45D � 45 max{0, D � y}.

The term 45 max{0, D � y} represents the lost revenue from unsatisfied demand. This
lost revenue, plus any cost of the loss of customer goodwill due to unsatisfied demand
(assumed negligible in this example), will be interpreted as the shortage cost throughout
this section.

Now note that 45D is independent of the inventory policy (the value of y chosen) and
so can be deleted from the objective function, which leaves

Relevant profit � �45 max{0, D � y} � 20y � 9 max{0, y � D}

to be maximized. All the terms on the right are the negative of costs, where these costs
are the shortage cost, the ordering cost, and the holding cost (which has a negative value
here), respectively. Rather than maximizing the negative of total cost, we instead will do
the equivalent of minimizing

Total cost � 45 max{0, D � y} � 20y � 9 max{0, y � D}.

More precisely, since total cost is a random variable (because D is a random variable),
the objective adopted for the model is to minimize the expected total cost.

In the discussion about the interpretation of the shortage cost, we assumed that the
unsatisfied demand was lost (no backlogging). If the unsatisfied demand could be met by
a priority shipment, similar reasoning applies. The revenue component of net income would
become the sales price of a bicycle ($45) times the demand minus the unit cost of the pri-
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ority shipment times the unsatisfied demand whenever a shortage occurs. If our whole-
sale distributor could be forced to meet the unsatisfied demand by purchasing bicycles
from the manufacturer for $35 each plus an air freight charge of, say, $2 each, then the
appropriate shortage cost would be $37 per bicycle. (If there were any costs associated
with loss of goodwill, these also would be added to this amount.)

The distributor does not know what the demand for these bicycles will be; i.e., de-
mand D is a random variable. However, an optimal inventory policy can be obtained if
information about the probability distribution of D is available. Let

PD(d ) � P{D � d}.

It will be assumed that PD(d ) is known for all values of d.
We now are in a position to summarize the model in general terms.

The Assumptions of the Model

1. Each application involves a single perishable product.
2. Each application involves a single time period because the product cannot be sold later.
3. However, it will be possible to dispose of any units of the product remaining at the

end of the period, perhaps even receiving a salvage value for the units.
4. There is no initial inventory on hand.
5. The only decision to be made is the value of y, the number of units to order (either

through purchasing or producing) so they can be placed into inventory at the begin-
ning of the period.

6. The demand for withdrawing units from inventory to sell them (or for any other pur-
pose) during the period is a random variable D. However, the probability distribution
of D is known (or at least estimated).

7. After deleting the revenue if the demand were satisfied (since this is independent of
the decision y), the objective becomes to minimize the expected total cost, where the
cost components are

c � unit cost for purchasing or producing each unit,

h � holding cost per unit remaining at end of period (includes storage cost minus
salvage value),

p � shortage cost per unit of unsatisfied demand (includes lost revenue and cost
of loss of customer goodwill).

Analysis of the Model

The decision on the value of y, the amount of inventory to acquire, depends heavily on the
probability distribution of demand D. More than the expected demand may be desirable, but
probably less than the maximum possible demand. A trade-off is needed between (1) the
risk of being short and thereby incurring shortage costs and (2) the risk of having an excess
and thereby incurring wasted costs of ordering and holding excess units. This is accom-
plished by minimizing the expected value (in the statistical sense) of the sum of these costs.

The amount sold is given by

min{D, y} � � if D 	 y
if D � y.

D
y
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Hence, the cost incurred if the demand is D and y is stocked is given by

C(D, y) � cy � p max{0, D � y} � h max{0, y � D}.

Because the demand is a random variable [with probability distribution PD(d )], this cost
is also a random variable. The expected cost is then given by C(y), where

C(y) � E[C(D, y)] � �
�

d�0
(cy � p max{0, d � y} � h max{0, y � d})PD(d )

� cy � �
�

d�y

p(d � y)PD(d ) � �
y�1

d�0
h( y � d)PD(d ).

The function C( y) depends upon the probability distribution of D. Frequently, a rep-
resentation of this probability distribution is difficult to find, particularly when the de-
mand ranges over a large number of possible values. Hence, this discrete random vari-
able is often approximated by a continuous random variable. Furthermore, when demand
ranges over a large number of possible values, this approximation will generally yield a
nearly exact value of the optimal amount of inventory to stock. In addition, when discrete
demand is used, the resulting expressions may become slightly more difficult to solve an-
alytically. Therefore, unless otherwise stated, continuous demand is assumed throughout
the remainder of this chapter.

For this continuous random variable D, let

�D(�) � probability density function of D

and

�(a) � cumulative distribution function (CDF) of D,

so

�(a) � 	a

0
�D(�) d�.

When choosing an order quantity y, the CDF �( y) becomes the probability that a short-
age will not occur before the period ends. As in the preceding section, this probability is
referred to as the service level being provided by the order quantity. The corresponding
expected cost C( y) is expressed as

C( y) � E[C(D, y)] � 	�

0
C(�, y)�D(�) d�

� 	�

0
(cy � p max{0, � � y} � h max{0, y � �})�D(�) d�

� cy � 	�

y
p(� � y)�D(�) d� � 	y

0
h(y � �)�D(�) d�

� cy � L( y),
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where L( y) is often called the expected shortage plus holding cost. It then becomes nec-
essary to find the value of y, say y0, which minimizes C( y). First we give the answer, and
then we will show the derivation a little later.

The optimal quantity to order y0 is that value which satisfies

�( y0) � �
p
p

�
�

h
c

�.

Thus, �( y0) is the optimal service level and the corresponding order quantity y0 can be
obtained either by solving this equation algebraically or by plotting the CDF and then
identifying y0 graphically. To interpret the right-hand side of this equation, the numerator
can be viewed as

p � c � unit cost of underordering
� decrease in profit that results from failing to order a unit that could have

been sold during the period.

Similarly,

c � h � unit cost of overordering
� decrease in profit that results from ordering a unit that could not be sold

during the period.

Therefore, denoting the unit cost of underordering and of overordering by Cunder and Cover,
respectively, this equation is specifying that

Optimal service level � �
Cund

C
er

u

�
nde

C
r

over
�.

When the demand has either a uniform or an exponential distribution, an Excel tem-
plate is available in your OR Courseware for calculating y0.

If D is assumed to be a discrete random variable having the CDF

FD(b) � �
b

d�0
PD(d ),

a similar result for the optimal order quantity is obtained. In particular, the optimal quan-
tity to order y0 is the smallest integer such that

FD( y0) � �
p
p

�
�

h
c

�.

Application to the Example

Returning to the bicycle example described at the beginning of this section, we assume
that the demand has an exponential distribution with a mean of 10,000, so that its prob-
ability density function is

�
10,

1
000
�e��/10,000 if � � 0

�D(�) � �
0 otherwise
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and the CDF is

�(a) � 	a

0
�
10,

1
000
�e�� /10,000 d� � 1 � e�a /10,000.

From the data given,

c � 20, p � 45, h � �9.

Consequently, the optimal quantity to order y0 is that value which satisfies

1 � e�y0/10,000 � �
4
4
5
5
�
�

2
9
0

� � 0.69444.

By using the natural logarithm (denoted by ln), this equation can be solved as follows:

e�y0/10,000 � 0.30556,
ln e�y0/10,000 � ln 0.30556,

� �1.1856,

y0 � 11,856.

Therefore, the distributor should stock 11,856 bicycles in the Christmas season. Note that
this number is slightly more than the expected demand of 10,000.

Whenever the demand is exponential with expectation �, then y0 can be obtained from
the relation

y0 � �� ln �
p
c �

�
h
h

�.

The Model with Initial Stock Level

In the above model we assume that there is no initial inventory. As a slight variation, sup-
pose now that the distributor begins with 500 bicycles on hand. How does this stock in-
fluence the optimal inventory policy?

In general terms, suppose that the initial stock level is given by x, and the decision
to be made is the value of y, the inventory level after replenishment by ordering (or pro-
ducing) additional units. Thus, y � x is to be ordered, so that

Amount available ( y) � initial stock (x) � amount ordered ( y � x).

The cost equation presented earlier remains identical except for the term that was previ-
ously cy. This term now becomes c( y � x), so that minimizing the expected cost is given by

min 
c( y � x) � 	�

y
p(� � y)�D(�) d� � 	y

0
h(y � �)�D(�) d��.

y�x

The constraint y � x must be added because the inventory level y after replenishing
cannot be less than the initial inventory level x.

The optimal inventory policy is the following:

If x � order y0 � x to bring inventory level up to y0

do not order,
	 y0

� y0

�y0�
10,000
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where y0 satisfies

�(y0) � �
p
p

�
�

h
c

�.

Thus, in the bicycle example, if there are 500 bicycles on hand, the optimal policy is
to bring the inventory level up to 11,856 bicycles (which implies ordering 11,356 addi-
tional bicycles). On the other hand, if there were 12,000 bicycles already on hand, the op-
timal policy would be not to order.

Derivation of the Optimal Policy.1 We start by assuming that the initial stock level
is zero.

For any positive constants c1 and c2, define g(�, y) as

g(�, y) � �
and let

G(y) � 	�

0
g(�, y)�D(�) d� � cy,

where c � 0. Then G(y) is minimized at y � y0, where y0 is the solution to

�(y0) � �
c
c
2

2

�
�

c
c
1

�.

To see why this value of y0 minimizes G(y), note that, by definition,

G(y) � c1 	y

0
(y � �)�D(�) d� � c2 	�

y
(� � y)�D(�) d� � cy.

Taking the derivative (see the end of Appendix 3) and setting it equal to zero lead to

�
dG

dy
(y)
� � c1 	y

0
�D(�) d� � c2 	�

y
�D(�) d� � c � 0.

This expression implies that

c1�(y0) � c2[1 � �(y0)] � c � 0,

because

	�

0
�D(�) d� � 1.

Solving this expression results in

�(y0) � �
c
c
2

2

�
�

c
c
1

�.

if y � �
if y � �,

c1(y � �)
c2(� � y)
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The solution of this equation minimizes G(y) because

�
d2

d
G
y
(
2
y)

� � (c1 � c2)�D(y) � 0

for all y.
To apply this result, it is sufficient to show that

C(y) � cy � 	�

y
p(� � y)�D(�) d� � 	y

0
h(y � �)�D(�) d�

has the form of G(y). Clearly, c1 � h, c2 � p, and c � c, so that the optimal quantity to
order y0 is that value which satisfies

�(y0) � �
p
p

�
�

h
c

�.

To derive the results for the case where the initial stock level is x � 0, recall that it
is necessary to solve the relationship

min ��cx � 
	
�

y
p(� � y)�D(�) d� � 	y

0
h(y � �)�D(�) d� � cy��.

y�x

Note that the expression in brackets has the form of G(y), with c1 � h, c2 � p, and c � c.
Hence, the cost function to be minimized can be written as

min {�cx � G(y)}.
y�x

It is clear that �cx is a constant, so that it is sufficient to find the y that satisfies the ex-
pression

min G(y).
y�x

Therefore, the value of y0 that minimizes G(y) satisfies

�(y0) � �
p
p

�
�

h
c

�.

Furthermore, G(y) must be a convex function, because

�
d2

d
G
y
(
2
y)

� � 0.

Also,

lim
y→0

�
dG

d
(
y
y)

� � c � p,

which is negative,1 and

lim
y→�

�
dG

d
(
y
y)

� � h � c,
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which is positive. Hence, G(y) must be as shown in Fig. 19.8. Thus, the optimal policy
must be given by the following:

If x 	 y0, order y0 � x to bring the inventory level up to y0, because y0 can be achieved
together with the minimum value G(y0). If x � y0, do not order because any G(y) with 
y � x must exceed G(x).

A similar argument can be constructed for obtaining optimal policies for the follow-
ing model with nonlinear costs.

Model with Nonlinear Costs. Similar results for these models can be obtained for
other than linear holding and shortage costs. Denote the holding cost by

where h[�] is a mathematical function, not necessarily linear.
Similarly, the shortage cost can be denoted by

where p[�] is also a function, not necessarily linear.
Thus, the total expected cost is given by

c(y � x) � 	�

y
p[� � y]�D(�) d� � 	y

0
h[y � �]�D(�) d�,

where x is the amount on hand.
If L(y) is defined as the expected shortage plus holding cost, i.e.,

L(y) � 	�

y
p[� � y]�D(�) d� � 	y

0
h[y � �]�D(�) d�,

then the total expected cost can be written as

c(y � x) � L(y).

if D � y,
if D 	 y,

p[D � y]
0

if y � D,
if y 	 D,

h[y � D]
0
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The optimal policy is obtained by minimizing this expression, subject to the con-
straint that y � x, that is,

min {c(y � x) � L(y)}.
y�x

If L(y) is strictly convex1 [a sufficient condition being that the shortage and holding
costs each are convex and �D(�) � 0], then the optimal policy is the following:

If x �
where y0 is the value of y that satisfies the expression

�
dL

d
(
y
y)

� � c � 0.

A Single-Period Model with a Setup Cost

In discussing the bicycle example previously in this section, we assumed that there was
no setup cost incurred in ordering the bicycles for the Christmas season. Suppose now
that the cost of placing this special order is $800, so this cost should be included in the
analysis of the model. In fact, inclusion of the setup cost generally causes major changes
in the results.

In general, the setup cost will be denoted by K. To begin, the shortage and holding
costs will each be assumed to be linear. Their resulting effect is then given by L(y), where

L(y) � p	�

y
(� � y)�D(�) d� � h	y

0
(y � �)�D(�) d�.

Thus, the total expected cost incurred by bringing the inventory level up to y is given by

Note that cy � L(y) is the same expected cost considered earlier when the setup cost
was omitted. If cy � L(y) is drawn as a function of y, it will appear as shown in Fig. 19.9.2

Define S as the value of y that minimizes cy � L(y), and define s as the smallest value of
y for which cs � L(s) � K � cS � L(S). From Fig. 19.9, it can be seen that

If x � S, then K � cy � L(y) � cx � L(x), for all y � x,

so that

K � c(y � x) � L(y) � L(x).

The left-hand side of the last inequality represents the expected total cost of order-
ing y � x to bring the inventory level up to y, and the right-hand side of this inequality

if y � x,
if y � x.

K � c(y � x) � L(y)
L(x)

order y0 � x to bring inventory level up to y0

do not order,
	 y0

� y0
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represents the expected total cost if no ordering occurs. Hence, the optimal policy indi-
cates that if x � S, do not order.

If s � x � S, it can also be seen from Fig. 19.9 that

K � cy � L(y) � cx � L(x), for all y � x,

so that

K � c(y � x) � L(y) � L(x).

Again, no ordering is less expensive than ordering.
Finally, if x 	 s, it follows from Fig. 19.9 that

min {K � cy � L(y)} � K � cS � L(S) 	 cx � L(x),
y�x

or

min {K � c(y � x) � L(y)} � K � c(S � x) � L(S) 	 L(x),
y�x

so that it pays to order. The minimum cost is incurred by bringing the inventory level
up to S.

The optimal inventory policy is the following:

If x�
The value of S is obtained from

�(S) � �
p
p

�
�

h
c

�,

and s is the smallest value that satisfies the expression

cs � L(s) � K � cS � L(S).

When the demand has either a uniform or an exponential distribution, an Excel tem-
plate is available in your OR Courseware for calculating s and S.

This kind of policy is referred to as an (s, S) policy. It has had extensive use in 
industry.

order S � x to bring inventory level up to S
do not order.

	 s
� s
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stochastic single-period
model with a setup cost.



Example. Referring to the bicycle example, we found earlier that

y0 � S � 11,856.

If K � 800, c � 20, p � 45, and h � �9, then s is obtained from

20s � 45	�

s
(� � s)�

10,
1
000
� e�� /10,000 d� � 9	s

0
(s � �)�

10,
1
000
�e�� /10,000 d�

� 800 � 20(11,856) � 45	�

11,856
(� � 11,856)�

10,
1
000
�e�� /10,000 d�

� �9	11,856

0
(11,856 � �)�

10,
1
000
�e�� /10,000 d�,

which leads to

s � 10,674.

Hence, the optimal policy calls for bringing the inventory level up to S � 11,856 bicycles
if the amount on hand is less than s � 10,674. Otherwise, no order is placed.

Solution When the Demand Distribution Is Exponential. Now consider the spe-
cial case where the distribution of demand D is exponential, i.e.,

�D(�) � �e���, for � � 0.

From the no-setup-cost results,

1 � e��S � �
p
p

�
�

h
c

�,

so

S � �
�
1

� ln �
h
h

�
�

p
c

�.

For any y,

cy � L(y) � cy � h 	y

0
(y � �)�e��� d� � p 	�

y
(� � y)�e��� d�

� (c � h)y � �
�
1

� (h � p)e��y � �
�
h

�.

Evaluating cy � L(y) at the points y � s and y � S leads to

(c � h)s � �
�
1

�(h � p)e��s � �
�
h

� � K � (c � h)S � �
�
1

�(h � p)e��S � �
�
h

�,

or

(c � h)s � �
�
1

�(h � p)e��s � K � (c � h)S � �
�
1

�(c � h).
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Although this last equation does not have a closed-form solution, it can be solved nu-
merically quite easily. An approximate analytical solution can be obtained as follows. By
letting

� � S � s,

the last equation yields

e�� � �
c
�
�
K

h
� � �� � 1.

If �� is close to zero, e�� can be expanded into a Taylor series around zero. If the terms
beyond the quadratic term are neglected, the result becomes

1 � �� � �
�2

2
�2

� 
 �
c
�
�
K

h
� � �� � 1,

so that

� � ��
�(c

2
�
K� h)
��.

Using this approximation in the bicycle example results in

� � ��(2)(1
2
0�0

,0
�
00)

9
(8�00)

�� � 1,206,

which is quite close to the exact value of � � 1,182.

Model with Nonlinear Costs. These results can be extended to the case where the
expected shortage plus holding cost L(y) is a strictly convex function. This extension re-
sults in a strictly convex cy � L(y), similar to Fig. 19.9.

For this model, the optimal inventory policy has the following form:

If x �
where S is the value of y that satisfies

c � �
dL

d
(
y
y)

� � 0

and s is the smallest value that satisfies the expression

cs � L(s) � K � cS � L(S).

order S � x to bring inventory level up to S
do not order,

	 s
� s
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The preceding section presented a stochastic single-period model that is designed for deal-
ing with perishable products. We now return to considering stable products that will re-
main sellable indefinitely, as in the first five sections of the chapter. We again assume that
the demand is uncertain so that a stochastic model is needed. However, in contrast to the
continuous-review inventory system considered in Sec. 19.5, we now assume that the sys-
tem is only being monitored periodically. At the end of each period, when the current in-

19.7 STOCHASTIC PERIODIC-REVIEW MODELS



ventory level is determined, a decision is made on how much to order (if any) to replen-
ish inventory for the next period. Each of these decisions takes into account the planning
for multiple periods into the future.

We begin with the simplest case where the planning is only being done for the next
two periods and no setup cost is incurred when placing an order to replenish inventory.

A Stochastic Two-Period Model with No Setup Cost

One option with a stochastic periodic-review inventory system is to plan ahead only one
period at a time, using the stochastic single-period model from the preceding section to
make the ordering decision each time. However, this approach would only provide a rel-
atively crude approximation. If the probability distribution of demand in each period can
be forecasted multiple periods into the future, better decisions can be made by coordi-
nating the plans for all these periods than by planning ahead just one period at a time.
This can be quite difficult for many periods, but is considerably less difficult when con-
sidering only two periods at a time.

Even for a planning horizon of two periods, using the optimal one-period solution
twice is not generally the optimal policy for the two-period problem. Smaller costs can
usually be achieved by viewing the problem from a two-period viewpoint and then using
the methods of probabilistic dynamic programming introduced in Sec. 11.4 to obtain the
best inventory policy.

Assumptions. Except for having two periods, the assumptions for this model are ba-
sically the same as for the one-period model presented in the preceding section, as sum-
marized below.

1. Each application involves a single stable product.
2. Planning is being done for two periods, where unsatisfied demand in period 1 is back-

logged to be met in period 2, but there is no backlogging of unsatisfied demand in pe-
riod 2.

3. The demands D1 and D2 for periods 1 and 2 are independent and identically distrib-
uted random variables. Their common probability distribution has probability density
function �D(�) and cumulative distribution function �(�).

4. The initial inventory level (before replenishing) at the beginning of period 1 is x1

(x1 � 0).
5. The decisions to be made are y1 and y2, the inventory levels to reach by replenishing

(if needed) at the beginning of period 1 and period 2, respectively.
6. The objective is to minimize the expected total cost for both periods, where the cost

components for each period are

c � unit cost for purchasing or producing each unit,

h � holding cost per unit remaining at end of each period,

p � shortage cost per unit of unsatisfied demand at end of each period.

For simplicity, we are assuming that the demand distributions for the two periods are
the same and that the values of the above cost components also are the same for the two
periods. In many applications, there will be differences between the periods that should
be incorporated into the analysis. For example, because of assumption 2, the value of p
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may well be different for the two periods. Such extensions of the model can be incorpo-
rated into the dynamic programming analysis presented below, but we will not delve into
these extensions.

Analysis. To begin the analysis, let

yi
0 � optimal value of yi, for i � 1, 2,

C1(x1) � expected total cost for both periods when following an optimal policy
given that x1 is initial inventory level (before replenishing) at beginning
of period 1,

C2(x2) � expected total cost for just period 2 when following an optimal policy
given that x2 is inventory level (before replenishing) at beginning of
period 2.

To use the dynamic programming approach, we begin by solving for C2(x2) and y0
2, where

there is just one period to go. Then we will use these results to find C1(x1) and y0
1.

From the results for the single-period model, y0
2 is found by solving the equation

�(y0
2) � �

p
p

�
�

h
c

�.

Given x2, the resulting optimal policy then is the following:

If x2 �
The cost of this optimal policy can be expressed as

C2(x2) � �
where L(z) is the expected shortage plus holding cost for a single period when the inven-
tory level (after replenishing) is z. Now L(z) can be expressed as

L(z) � 	�

z
p(� � z)�D(�) d� � 	z

0
h(z � �)�D(�) d�.

When both periods 1 and 2 are considered, the costs incurred consist of the ordering
cost c(y1 � x1), the expected shortage plus holding cost L(y1), and the costs associated
with following an optimal policy during the second period. Thus, the expected cost of fol-
lowing the optimal policy for two periods is given by

C1(x1) � min {c(y1 � x1) � L(y1) � E[C2(x2)]},
y1�x1

where E[C2(x2)] is obtained as follows. Note that

x2 � y1 � D1,

so x2 is a random variable when beginning period 1. Thus,

C2(x2) � C2(y1 � D1) � � if y1 � D1 � y0
2

if y1 � D1 	 y0
2.

L(y1 � D1)
c(y0

2 � y1 � D1) � L(y0
2)

if x2 � y0
2

if x2 	 y0
2,

L(x2)
c(y0

2 � x2) � L(y0
2)

order y0
2 � x2 to bring inventory level up to y0

2

do not order.
	 y0

2

� y0
2
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Hence, C2(x2) is a random variable, and its expected value is given by

E[C2(x2)] � 	�

0
C2(y1 � �)�D(�) d�

� 	y1�y0
2

0
L(y1 � �)�D(�) d�

� 	�

y1�y0
2

[c(y0
2 � y1 � �) � L(y0

2)]�D(�) d�.

Therefore,

C1(x1) � min �c(y1 � x1) � L(y1) � 	y1�y0
2

0
L(y1 � �)�D(�) d�

y1�x1

� 	�

y1�y0
2

[(y0
2 � y1 � �) � L(y0

2)]�D(�) d��.

It can be shown that C1(x1) has a unique minimum and that the optimal value of y1,
denoted by y0

1, satisfies the equation

�p � ( p � h)�(y0
1) � (c � p)�(y0

1 � y0
2)

� ( p � h) 	y0
1�y0

2

0
�(y0

1 � �)�D(�) d� � 0.

The resulting optimal policy for period 1 then is the following:

If x1 �
The procedure for finding y0

1 reduces to a simpler result for certain demand distribu-
tions. We summarize two such cases next.

Suppose that the demand in each period has a uniform distribution over the range 0
to t, that is,

�
1
t
� if 0 � � � t

�D(�) � �0 otherwise.

Then y0
1 can be obtained from the expression

y0
1 � �(y0

2)2 ����y0
2 ����� �

t(
p
h

�
�

h
c)

�.

Now suppose that the demand in each period has an exponential distribution, i.e.,

�(�) � �e���, for � � 0.

t2[2p(p � h) � (h � c)2]
���

(p � h)2
2t(c � p)
�

p � h

order y0
1 � x1 to bring inventory level up to y0

1

do not order.
	 y0

1

� y0
1
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Then y0
1 satisfies the relationship

(h � c)e��(y0
1�y0

2) � ( p � h)e��y0
1 � �( p � h)(y0

1 � y0
2)e��y0

1 � 2h � c.

An alternative way of finding y0
1 is to let z0 denote �(y0

1 � y0
2). Then z0 satisfies the rela-

tionship

e�z0

[(h � c) � ( p � h)e��y0
2 � z0( p � h)e��y0

2] � 2h � c,

and

y0
1 � �

�
1

� z0 � y0
2.

When the demand has either a uniform or an exponential distribution, an Excel tem-
plate is available in your OR Courseware for calculating y0

1 and y0
2.

Example. Consider a two-period problem where

c � 10, h � 10, p � 15,

and where the probability density function of the demand in each period is given by

�
1
1
0
� if 0 � � � 10

�D(�) �
0 otherwise,

so that the cumulative distribution function of demand is

0 if � 	 0

�(�) � �
1
�
0
� if 0 � � � 10

1 if � � 10.

We find y0
2 from the equation

�(y0
2) � �

p
p

�
�

h
c

� � �
1
1
5
5

�
�

1
1
0
0

� � �
1
5

�,

so that

y0
2 � 2.

To find y0
1, we plug into the expression given for y0

1 for the case of a uniform demand
distribution, and we obtain

y0
1 � �22 ��

2�(10
1
)
5
(1
�
0� �

10
15)

�� (2) �� 102����
� �

10
1
(1
5
0
�
�

1
1
0
0)

�

� �4 � 8�� 184� � 8 � 13.42 � 8 � 5.42.

2(15)(15 � 10) � (10 � 10)2

����
(15 � 10)2








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Substituting y0
1 � 5 and y0

1 � 6 into C1(x1) leads to a smaller value with y0
1 � 5. Thus, the

optimal policy can be described as follows:

If x1 	 5, order 5 � x1 to bring inventory level up to 5.
If x1 � 5, do not order in period 1.
If x2 	 2, order 2 � x2 to bring inventory level up to 2.
If x2 � 2, do not order in period 2.

Since unsatisfied demand in period 1 is backlogged to be met in period 2, x2 � 5 � D
can turn out to be either positive or negative.

Stochastic Multiperiod Models—An Overview

The two-period model can be extended to several periods or to an infinite number of peri-
ods. This section presents a summary of multiperiod results that have practical importance.

Multiperiod Model with No Setup Cost. Consider the direct extension of the above
two-period model to n periods (n � 2) with the identical assumptions. The only differ-
ence is that a discount factor � (described in Sec. 19.2), with 0 	 � 	 1, now will be
used in calculating the expected total cost for n periods. The problem still is to find the
critical numbers y0

1, y0
2, . . . , y0

n that describe the optimal inventory policy. As in the two-
period model, these values are difficult to obtain numerically, but it can be shown1 that
the optimal policy has the following form.

For each period i (i � 1, 2, . . . , n), with xi as the inventory level entering that
period (before replenishing), do the following

If xi �
Furthermore,

y0
n � y0

n�1 � 


 � y0
2 � y0

1.

For the infinite-period case (where n � �), all these critical numbers y0
1, y0

2, . . . are
equal. Let y0 denote this constant value. It can be shown that y0 satisfies the equation

�(y0) � �
p �

p
c
�
(1

h
� �)
�.

When the demand has either a uniform or an exponential distribution, an Excel template
is available in your OR Courseware for calculating y0.

A Variation of the Multiperiod Inventory Model with No Setup Cost. These
results for the infinite-period case (all the critical numbers equal the same value y0 and
y0 satisfies the above equation) also apply when n is finite if two new assumptions are

order y0
i � xi to bring inventory level up to y0

i

do not order in period i.
	 y0

i

� y0
i
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made about what happens at the end of the last period. One new assumption is that each
unit left over at the end of the final period can be salvaged with a return of the initial pur-
chase cost c. Similarly, if there is a shortage at this time, assume that the shortage is met
by an emergency shipment with the same unit purchase cost c.

Example. Consider again the bicycle example as it was introduced in Example 2 of
Sec. 19.1. The cost estimates given there imply that

c � 35, h � 1, p � 15.

Suppose now that the distributor places an order with the manufacturer for various
bicycle models on the first working day of each month. Because of this routine, she is
willing to assume that the marginal setup cost is zero for including an order for the bi-
cycle model under consideration. The appropriate discount factor is � � 0.995. From past
history, the distribution of demand can be approximated by a uniform distribution with
the probability density function

�
8
1
00
� if 0 � � � 800

�D(�) �

0 otherwise,

so the cumulative distribution function over this interval is

�(�) � �
8
1
00
��, if 0 � � � 800.

The distributor expects to stock this model indefinitely, so the infinite-period model with
no setup cost is appropriate.

For this model, the critical number y0 for every period satisfies the equation

�(y0) � �
p �

p
c
�
(1

h
� �)
�,

so

�
8
y
0

0

0
� � � 0.9266,

which yields y0 � 741. Thus, if the number of bicycles on hand x at the first of each month
is fewer than 741, the optimal policy calls for bringing the inventory level up to 741 (or-
dering 741 � x bicycles). Otherwise, no order is placed.

Multiperiod Model with Setup Cost. The introduction of a fixed setup cost K that
is incurred when ordering (whether through purchasing or producing) often adds more re-
alism to the model. For the single-period model with a setup cost described in Sec. 19.6,
we found that an (s, S ) policy is optimal, so that the two critical numbers s and S indi-
cate when to order (namely, if the inventory level is less than s) and how much to order
(bring the inventory level up to S ). Now with multiple periods, an (s, S ) policy again is
optimal, but the value of each critical number may be different in different periods. Let

15 � 35(1 � 0.995)
���

15 � 1



19.7 STOCHASTIC PERIODIC-REVIEW MODELS 981



si and Si denote these critical numbers for period i, and again let xi be the inventory level
(before replenishing) at the beginning of period i.

The optimal policy is to do the following at the beginning of each period i (i � 1,
2, . . . , n):

If xi �
Unfortunately, computing exact values of the si and Si is extremely difficult.

A Multiperiod Model with Batch Orders and No Setup Cost. In the preced-
ing models, any quantity could be ordered (or produced) at the beginning of each pe-
riod. However, in some applications, the product may come in a standard batch size,
e.g., a case or a truckload. Let Q be the number of units in each batch. In our next
model we assume that the number of units ordered must be a nonnegative integer mul-
tiple of Q.

This model makes the same assumptions about what happens at the end of the last
period as the variation of the multiperiod model with no setup cost presented earlier.
Thus, we assume that each unit left over at the end of the final period can be salvaged
with a return of the initial purchase cost c. Similarly, if there is a shortage at this time,
we assume that the shortage is met by an emergency shipment with the same unit pur-
chase cost c.

Otherwise, the assumptions are the same as for our standard multiperiod model with
no setup cost.

The optimal policy for this model is known as a (k, Q) policy because it uses a crit-
ical number k and the quantity Q as described below.

If at the beginning of a period the inventory level (before replenishing) is less
than k, an order should be placed for the smallest integer multiple of Q that will
bring the inventory level up to at least k (and probably higher). Otherwise, an or-
der should not be placed. The same critical number k is used in each period.

The critical number k is chosen as follows. Plot the function

G(y) � (1 � �)cy � h 	y

0
(y � �)�D(�) d� � p 	�

y
(� � y)�D(�) d�,

as shown in Fig. 19.10. This function necessarily has the convex shape shown in the fig-
ure. As before, the minimizing value y0 satisfies the equation

�(y0) � �
p �

p
c
�
(1

h
� �)
�.

As shown in this figure, if a “ruler” of length Q is placed horizontally into the “valley,”
k is that value of the abscissa to the left of y0 where the ruler intersects the valley. If
the inventory level lies in R1, then Q is ordered; if it lies in R2, then 2Q is ordered; and
so on. However, if the inventory level is at least k, then no order should be placed.

These results hold regardless of whether the number of periods n is finite or infinite.

order Si � xi to bring inventory level up to Si

do not order.
	 si

� si
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19.8 LARGER INVENTORY SYSTEMS IN PRACTICE 983

All the inventory models presented in this chapter have been concerned with the man-
agement of the inventory of a single product at a single geographical location. Such mod-
els provide the basic building blocks of scientific inventory management.

Multiproduct Inventory Systems

However, it is important to recognize that many inventory systems must deal simultaneously
with many products, sometimes even hundreds or thousands of products. Furthermore, the
inventory of each product often is dispersed geographically, perhaps even globally.

With multiple products, it commonly is possible to apply the appropriate single-
product model to each of the products individually. However, companies may not bother
to do this for the less important products because of the costs involved in regularly mon-
itoring the inventory level to implement such a model. One popular approach in practice
is the ABC control method. This involves dividing the products into three groups called
the A group, B group, and C group. The products in the A group are the particularly im-
portant ones that are to be carefully monitored according to a formal inventory model.
Products in the C group are the least important, so they are only monitored informally on
a very occasional basis. Group B products receive an intermediate treatment.

It occasionally is not appropriate to apply a single-product inventory model because
of interactions between the products. Various interactions are possible. Perhaps similar prod-
ucts can be substituted for each other as needed. For a manufacturer, perhaps its products
must compete for production time when ordering production runs. For a wholesaler or re-
tailer, perhaps its setup cost for ordering a product can be reduced by placing a joint order
for a number of products simultaneously. Perhaps there also are joint budget limitations in-
volving all the products. Perhaps the products need to compete for limited storage space.

It is common in practice to have a little bit of such interactions between products and still
apply a single-product inventory model as a reasonable approximation. However, when an in-
teraction is playing a major role, further analysis is needed. Some research has been conducted
already to develop multiproduct inventory models to deal with some of these interactions.
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Multiechelon Inventory Systems

Our growing global economy has caused a dramatic shift in inventory management en-
tering the 21st century. Now, as never before, the inventory of many manufacturers is scat-
tered throughout the world. Even the inventory of an individual product may be dispersed
globally.

This inventory may be stored initially at the point or points of manufacture (one ech-
elon of the inventory system), then at national or regional warehouses (a second echelon),
then at field distribution centers (a third echelon), etc. Such a system with multiple ech-
elons of inventory is referred to as a multiechelon inventory system. In the case of a
fully integrated corporation that both manufactures its products and sells them at the re-
tail level, its echelons will extend all the way down to its retail outlets.

Some coordination is needed between the inventories of any particular product at the dif-
ferent echelons. Since the inventory at each echelon (except the top one) is replenished from
the next higher echelon, the inventory level currently needed at the higher echelon is affected
by how soon replenishment will be needed at the various locations for the lower echelon.

Considerable research (with roots tracing back to the middle of the 20th century) is
being conducted to develop multiechelon inventory models.

Now let us see how one major corporation has been managing one of its multieche-
lon inventory systems.

Multiechelon Inventory Management at IBM1

IBM has roughly 1,000 products in service. Therefore, it employs over 15,000 customer
engineers who are trained to repair and maintain all the installed computer systems sold
or leased by IBM throughout the United States.

To support this effort, IBM maintains a huge multiechelon inventory system of spare
parts. This system controls over 200,000 part numbers, with the total inventory valued in
the billions of dollars. Millions of parts transactions are processed annually.

The echelons of this system start with the manufacture of the parts, then national or
regional warehouses, then field distribution centers, then parts stations, and finally many
thousand outside locations (including customer stock locations and the car trunks or tool
chests of the company’s customer engineers).

To coordinate and control all these inventories at the different echelons, a huge com-
puterized system called Optimizer was developed. Optimizer consists of four major mod-
ules. A forecasting system module contains a few programs for estimating the failure rates
of individual types of parts. A data delivery system module consists of approximately 100
programs that process over 15 gigabytes of data to provide the needed input into Opti-
mizer. A decision system module then optimizes control of the inventories on a weekly
basis. The fourth module includes six programs that integrate Optimizer into IBM’s Parts
Inventory Management System (PIMS). PIMS is a sophisticated information and control
system that contains millions of lines of code.

Optimizer tracks the inventory level for each part number at all stocking locations
(except at the outside locations, where only parts costing more than a certain threshold
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are tracked). An (R, Q) type of inventory policy is used for each part at each location and
echelon in the system.

Careful planning was required to implement such a complex system after it had been
designed. Three factors proved to be especially important in achieving a successful im-
plementation. The first was the inclusion of a user team (consisting of operational man-
agers) as advisers to the project team throughout the study. By the time of the imple-
mentation phase, these operational managers had a strong sense of ownership and so had
become ardent supporters for installing Optimizer in their functional areas. A second suc-
cess factor was a very extensive user acceptance test whereby users could identify prob-
lem areas that needed rectifying prior to full implementation. The third key was that the
new system was phased in gradually, with careful testing at each phase, so the major bugs
would be eliminated before the system went live nationally.

This new multiechelon inventory system proved to be extremely successful. It pro-
vided savings of about $20 million per year through improved operational efficiency. It
also gave even larger annual savings in holding costs (including the cost of capital tied
up in inventory) by reducing the value of IBM’s inventories by over $250 million. De-
spite this large reduction in inventories, the improved inventory management still enabled
providing better service to IBM’s customers. Specifically, the new system yielded a 10
percent improvement in the parts availability at the lower echelons (where the customers
are affected) while maintaining the parts availability levels at the higher echelons.

Supply Chain Management

Another key concept that has emerged in this global economy is that of supply chain man-
agement. This concept pushes the management of a multiechelon inventory system one
step further by also considering what needs to happen to bring a product into the inven-
tory system in the first place. However, as with inventory management, a main purpose
still is to win the competitive battle against other companies in bringing the product to
the customers as promptly as possible.

A supply chain is a network of facilities that procure raw materials, transform them
into intermediate goods and then final products, and finally deliver the products to cus-
tomers through a distribution system that includes a (probably multiechelon) inventory
system. Thus, it spans procurement, manufacturing, and distribution, with effective in-
ventory management as one key element. To fill orders efficiently, it is necessary to un-
derstand the linkages and interrelationships of all the key elements of the supply chain.
Therefore, integrated management of the supply chain has become a key success factor
for some of today’s leading companies.

We summarize below the experience of one of the companies that have led the way
in making supply chain management part of their corporate culture.

Supply Chain Management at Hewlett-Packard1

Hewlett-Packard (HP) is one of today’s leading high-technology companies. Its scope is
truly global. Nearly half of its employees are outside the United States. In 1993, it had
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manufacturing or research and development sites in 16 countries, as well as sales and ser-
vice offices in 110 countries. Its total number of catalog products exceeded 22,000.

Late in the 1980s, HP faced inventories mounting into the billions of dollars and
alarming customer dissatisfaction with its order fulfillment process. Management was very
concerned, since order fulfillment was becoming a major battlefield in the high-technol-
ogy industries. Recognizing the need for OR models to support top management decision
making, HP formed a group known as Strategic Planning and Modeling (SPaM) in 1988.
Management charged the group with developing and introducing innovations in OR and
industrial engineering.

In 1989, SPaM began bringing supply chain management concepts into HP. HP’s sup-
ply chain includes manufacturing integrated circuits, board assembly, final assembly, and
delivery to customers on a global basis. With such diverse and complex products, grap-
pling with supply chain issues can be very challenging. Variabilities and uncertainties are
prevalent all along the chain. Suppliers can be late in their shipments, or the incoming
materials may be flawed. The production process may break down, or the production yield
may be imperfect. Finally, product demands also are highly uncertain.

Much of SPaM’s initial focus was on inventory modeling. This effort led to the de-
velopment of HP’s Worldwide Inventory Network Optimizer (WINO). Like IBM’s Opti-
mizer described earlier in this section, WINO manages a multiechelon inventory system.
However, rather than dealing just with inventories of finished products, WINO also con-
siders the inventories of incoming goods and departing goods at each site along the sup-
ply chain.

WINO uses a discrete-review inventory model to determine the reorder point and or-
der quantities for each of these inventories. By introducing more frequent reviews of in-
ventories, better balancing of related inventories, elimination of redundant safety stocks,
etc., inventory reductions of 10 to 30 percent typically were obtained.

WINO was even extended to include the inventory systems of some key dealers. This
enabled reducing the inventories of finished products at both HP’s distribution centers and
the dealers while maintaining the same service target for the customers.

SPaM’s initial focus on inventory modeling soon broadened to dealing with distrib-
ution strategy issues. For example, its realignment of the distribution network in Europe
reduced the total distribution cost there by $18 million per year.

SPaM’s work also evolved into other functional areas, including design and engi-
neering, finance, and marketing.

The importance of supply chain management now is recognized throughout HP. Sev-
eral key divisions have formalized such positions as supply chain project managers, sup-
ply chain analysts, and supply chain coordinators. These individuals work closely with
SPaM to ensure that supply chain models are used effectively and to identify new prob-
lems that feed SPaM’s research and development effort.

The work of SPaM in applying OR to integrate supply chain management into HP
has paid tremendous dividends. SPaM has often identified cost savings of $10 million to
$40 million per year from just a single project. Therefore, total cost savings now run into
the hundreds of millions of dollars annually. There have been key intangible benefits as
well, including enhancing HP’s reputation as a progressive company that can be counted
on by its customers to fill their orders promptly.
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We have introduced only rather basic kinds of inventory models here, but they serve the
purpose of introducing the general nature of inventory models. Furthermore, they are suf-
ficiently accurate representations of many actual inventory situations that they frequently
are useful in practice. For example, the EOQ models have been particularly widely used.
These models are sometimes modified to include some type of stochastic demand, such
as the stochastic continuous-review model does. The stochastic single-period model is a
very convenient one for perishable products. The stochastic multiperiod models have been
important in characterizing the types of policies to follow, for example, (s, S ) policies,
even though the optimal values of s and S may be difficult to obtain.

Nevertheless, many inventory situations possess complications that are not taken into
account by the models in this chapter, e.g., interactions between products or multiple ech-
elons of a supply system. More complex models have been formulated in an attempt to
fit such situations, but it is difficult to achieve both adequate realism and sufficient tractabil-
ity to be useful in practice. The development of useful models for supply chain manage-
ment currently is a particularly active area of research.

Continued growth is occurring in the computerization of inventory data processing,
along with an accompanying growth in scientific inventory management.
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To the left of each of the following problems (or their parts), we
have inserted a T whenever one of the templates listed above can
be useful. An asterisk on the problem number indicates that at least
a partial answer is given in the back of the book.

T 19.3-1.* Suppose that the demand for a product is 30 units per
month and the items are withdrawn at a constant rate. The setup
cost each time a production run is undertaken to replenish inven-
tory is $15. The production cost is $1 per item, and the inventory
holding cost is $0.30 per item per month.
(a) Assuming shortages are not allowed, determine how often to

make a production run and what size it should be.
(b) If shortages are allowed but cost $3 per item per month, de-

termine how often to make a production run and what size it
should be.

T 19.3-2. The demand for a product is 600 units per week, and
the items are withdrawn at a constant rate. The setup cost for plac-
ing an order to replenish inventory is $25. The unit cost of each
item is $3, and the inventory holding cost is $0.05 per item per
week.
(a) Assuming shortages are not allowed, determine how often to

order and what size the order should be.
(b) If shortages are allowed but cost $2 per item per week, deter-

mine how often to order and what size the order should be.

19.3-3.* Tim Madsen is the purchasing agent for Computer Cen-
ter, a large discount computer store. He has recently added the
hottest new computer, the Power model, to the store’s stock of
goods. Sales of this model now are running at about 13 per week.
Tim purchases these customers directly from the manufacturer at
a unit cost of $3,000, where each shipment takes half a week to
arrive.

Tim routinely uses the basic EOQ model to determine the
store’s inventory policy for each of its more important products. For
this purpose, he estimates that the annual cost of holding items in
inventory is 20 percent of their purchase cost. He also estimates that
the administrative cost associated with placing each order is $75.
T (a) Tim currently is using the policy of ordering 5 Power model

computers at a time, where each order is timed to have the

shipment arrive just about when the inventory of these com-
puters is being depleted. Use the Solver version of the Ex-
cel template for the basic EOQ model to determine the var-
ious annual costs being incurred with this policy.

T (b) Use this same spreadsheet to generate a table that shows
how these costs would change if the order quantity were
changed to the following values: 5, 7, 9, . . . , 25.

T (c) Use the Solver to find the optimal order quantity.
T (d) Now use the analytical version of the Excel template for the

basic EOQ model (which applies the EOQ formula directly)
to find the optimal quantity. Compare the results (including
the various costs) with those obtained in part (c).

(e) Verify your answer for the optimal order quantity obtained in
part (d ) by applying the EOQ formula by hand.

(f) With the optimal order quantity obtained above, how frequently
will orders need to be placed on the average? What should the
approximate inventory level be when each order is placed?

(g) How much does the optimal inventory policy reduce the total
variable inventory cost per year (holding costs plus adminis-
trative costs for placing orders) for Power model computers
from that for the policy described in part (a)? What is the per-
centage reduction?

19.3-4. The Blue Cab Company is the primary taxi company in
the city of Maintown. It uses gasoline at the rate of 8,500 gallons
per month. Because this is such a major cost, the company has
made a special arrangement with the Amicable Petroleum Com-
pany to purchase a huge quantity of gasoline at a reduced price of
$1.05 per gallon every few months. The cost of arranging for each
order, including placing the gasoline into storage, is $1,000. The
cost of holding the gasoline in storage is estimated to be $0.01 per
gallon per month.
T (a) Use the Solver version of the Excel template for the basic

EOQ model to determine the costs that would be incurred
annually if the gasoline were to be ordered monthly.

T (b) Use this same spreadsheet to generate a table that shows
how these costs would change if the number of months be-
tween orders were to be changed to the following values: 1,
2, 3, . . . , 10.
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19.3-6. For the basic EOQ model, use the square root formula to
determine how Q* would change for each of the following changes
in the costs or the demand rate. (Unless otherwise noted, consider
each change by itself.)
(a) The setup cost is reduced to 25 percent of its original value.
(b) The annual demand rate becomes four times as large as its

original value.
(c) Both changes in parts (a) and (b).
(d) The unit holding cost is reduced to 25 percent of its original

value.
(e) Both changes in parts (a) and (d ).

19.3-7.* Kris Lee, the owner and manager of the Quality Hard-
ware Store, is reassessing his inventory policy for hammers. He
sells an average of 50 hammers per month, so he has been placing
an order to purchase 50 hammers from a wholesaler at a cost of
$20 per hammer at the end of each month. However, Kris does all
the ordering for the store himself and finds that this is taking a
great deal of his time. He estimates that the value of his time spent
in placing each order for hammers is $75.
(a) What would the unit holding cost for hammers need to be for

Kris’ current inventory policy to be optimal according to the
basic EOQ model? What is this unit holding cost as a per-
centage of the unit acquisition cost?

T (b) What is the optimal order quantity if the unit holding cost ac-
tually is 20 percent of the unit acquisition cost? What is the
corresponding value of TVC � total variable inventory cost
per year (holding costs plus the administrative costs for plac-
ing orders)? What is TVC for the current inventory policy?

T (c) If the wholesaler typically delivers an order of hammers in
5 working days (out of 25 working days in an average
month), what should the reorder point be (according to the
basic EOQ model)?

(d) Kris doesn’t like to incur inventory shortages of important
items. Therefore, he has decided to add a safety stock of 5
hammers to safeguard against late deliveries and larger-than-
usual sales. What is his new reorder point? How much does
this safety stock add to TVC?

19.3-8. Cindy Stewart and Misty Whitworth graduated from busi-
ness school together. They now are inventory managers for compet-
ing wholesale distributors, making use of the scientific inventory
management techniques they learned in school. Both of them are
purchasing 85-horsepower speedboat engines for their inventories
from the same manufacturer. Cindy has found that the setup cost for
initiating each order is $200 and the unit holding cost is $400.

Cindy has learned that Misty is ordering 10 engines each time.
Cindy assumes that Misty is using the basic EOQ model and has
the same setup cost and unit holding cost as Cindy. Show how
Cindy can use this information to deduce what the annual demand
rate must be for Misty’s company for these engines.

T (c) Use the Solver to find the optimal order quantity.
T (d) Now use the analytical version of the Excel template for the

basic EOQ model to find the optimal order quantity. Com-
pare the results (including the various costs) with those ob-
tained in part (c).

(e) Verify your answer for the optimal order quantity obtained in
part (d ) by applying the EOQ formula by hand.

T 19.3-5. Computronics is a manufacturer of calculators, currently
producing 200 per week. One component for every calculator is a
liquid crystal display (LCD), which the company purchases from
Displays, Inc. (DI) for $1 per LCD. Computronics management
wants to avoid any shortage of LCDs, since this would disrupt pro-
duction, so DI guarantees a delivery time of �

1
2

� week on each order.
The placement of each order is estimated to require 1 hour of cler-
ical time, with a direct cost of $15 per hour plus overhead costs of
another $5 per hour. A rough estimate has been made that the an-
nual cost of capital tied up in Computronics’ inventory is 15 per-
cent of the value (measured by purchase cost) of the inventory.
Other costs associated with storing and protecting the LCDs in in-
ventory amount to 5 cents per LCD per year.
(a) What should the order quantity and reorder point be for the LCDs?

What is the corresponding total variable inventory cost per year
(holding costs plus administrative costs for placing orders)?

(b) Suppose the true annual cost of capital tied up in Computron-
ics’ inventory actually is 10 percent of the value of the inven-
tory. Then what should the order quantity be? What is the dif-
ference between this order quantity and the one obtained in
part (a)? What would the total variable inventory cost per year
(TVC) be? How much more would TVC be if the order quan-
tity obtained in part (a) still were used here because of the in-
correct estimate of the cost of capital tied up in inventory?

(c) Repeat part (b) if the true annual cost of capital tied up in Com-
putronics’ inventory actually is 20 percent of the value of the
inventory.

(d) Perform sensitivity analysis systematically on the unit holding
cost by generating a table that shows what the optimal order
quantity would be if the true annual cost of capital tied up in
Computronics’ inventory were each of the following percent-
ages of the value of the inventory: 10, 12, 14, 16, 18, 20.

(e) Assuming that the rough estimate of 15 percent is correct for
the cost of capital, perform sensitivity analysis on the setup
cost by generating a table that shows what the optimal order
quantity would be if the true number of hours of clerical time
required to place each order were each of the following: 0.5,
0.75, 1, 1.25, 1.5.

(f) Perform sensitivity analysis simultaneously on the unit hold-
ing cost and the setup cost by generating a table that shows
the optimal order quantity for the various combinations of val-
ues considered in parts (d ) and (e).
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19.3-12. You have been hired as an operations research consultant
by a company to reevaluate the inventory policy for one of its prod-
ucts. The company currently uses the basic EOQ model. Under this
model, the optimal order quantity for this product is 1,000 units,
so the maximum inventory level also is 1,000 units and the maxi-
mum shortage is 0.

You have decided to recommend that the company switch to
using the EOQ model with planned shortages instead after deter-
mining how large the unit shortage cost ( p) is compared to the unit
holding cost (h). Prepare a table for management that shows what
the optimal order quantity, maximum inventory level, and maxi-
mum shortage would be under this model for each of the follow-
ing ratios of p to h: �

1
3

�, 1, 2, 3, 5, 10.

19.3-13. Consider the EOQ model with planned shortages, as pre-
sented in Sec. 19.3. Suppose, however, that the constraint S/Q �
0.8 is added to the model. Derive the expression for the optimal
value of Q.

19.3-14. In the basic EOQ model, suppose the stock is replenished
uniformly (rather than instantaneously) at the rate of b items per
unit time until the order quantity Q is fulfilled. Withdrawals from
the inventory are made at the rate of a items per unit time, where
a 	 b. Replenishments and withdrawals of the inventory are made
simultaneously. For example, if Q is 60, b is 3 per day, and a is 2
per day, then 3 units of stock arrive each day for days 1 to 20, 31
to 50, and so on, whereas units are withdrawn at the rate of 2 per
day every day. The diagram of inventory level versus time is given
below for this example.

19.3-9.* Consider Example 1 (manufacturing speakers for TV
sets) introduced in Sec. 19.1 and used in Sec. 19.3 to illustrate the
EOQ models. Use the EOQ model with planned shortages to solve
this example when the unit shortage cost is changed to $5 per
speaker short per month.

19.3-10. Speedy Wheels is a wholesale distributor of bicycles. Its
Inventory Manager, Ricky Sapolo, is currently reviewing the in-
ventory policy for one popular model that is selling at the rate of
250 per month. The administrative cost for placing an order for
this model from the manufacturer is $200 and the purchase price
is $70 per bicycle. The annual cost of the capital tied up in inven-
tory is 20 percent of the value (based on purchase price) of these
bicycles. The additional cost of storing the bicycles—including
leasing warehouse space, insurance, taxes, and so on—is $6 per
bicycle per year.
T (a) Use the basic EOQ model to determine the optimal order

quantity and the total variable inventory cost per year.
T (b) Speedy Wheel’s customers (retail outlets) generally do not

object to short delays in having their orders filled. There-
fore, management has agreed to a new policy of having small
planned shortages occasionally to reduce the variable in-
ventory cost. After consultations with management, Ricky
estimates that the annual shortage cost (including lost future
business) would be $30 times the average number of bicy-
cles short throughout the year. Use the EOQ model with
planned shortages to determine the new optimal inventory
policy.

T 19.3-11. Reconsider Prob. 19.3-3. Because of the popularity of
the Power model computer, Tim Madsen has found that customers
are willing to purchase a computer even when none are currently
in stock as long as they can be assured that their order will be filled
in a reasonable period of time. Therefore, Tim has decided to switch
from the basic EOQ model to the EOQ model with planned short-
ages, using a shortage cost of $200 per computer short per year.
(a) Use the Solver version of the Excel template for the EOQ

model with planned shortages (with constraints added in the
Solver dialogue box that C10:C11 � integer) to find the new
optimal inventory policy and its total variable inventory cost
per year (TVC). What is the reduction in the value of TVC
found for Prob. 19.3-3 (and given in the back of the book)
when planned shortages were not allowed?

(b) Use this same spreadsheet to generate a table that shows how
TVC and its components would change if the maximum short-
age were kept the same as found in part (a) but the order quan-
tity were changed to the following values: 15, 17, 19, . . . , 35.

(c) Use this same spreadsheet to generate a table that shows how
TVC and its components would change if the order quantity
were kept the same as found in part (a) but the maximum short-
age were changed to the following values: 10, 12, 14, . . . , 30.
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Inventory
 level (20, 20)

(30, 0)
•  •  •

Time (days)
(0, 0)
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inventory

M

(a) Find the total cost per unit time in terms of the setup cost K,
production quantity Q, unit cost c, holding cost h, withdrawal
rate a, and replenishment rate b.

(b) Determine the economic order quantity Q*.

19.3-15.* MBI is a manufacturer of personal computers. All its
personal computers use a 3.5-inch high-density floppy disk drive
which it purchases from Ynos. MBI operates its factory 52 weeks



higher-quantity orders according to the following price schedule,
where the price for each category applies to every box purchased.

per year, which requires assembling 100 of these floppy disk 
drives into computers per week. MBI’s annual holding cost rate is
20 percent of the value (based on purchase cost) of the inventory.
Regardless of order size, the administrative cost of placing an or-
der with Ynos has been estimated to be $50. A quantity discount
is offered by Ynos for large orders as shown below, where the price
for each category applies to every disk drive purchased.
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T (a) Determine the optimal order quantity according to the EOQ
model with quantity discounts. What is the resulting total
cost per year?

(b) With this order quantity, how many orders need to be placed
per year? What is the time interval between orders?

19.3-16. The Gilbreth family drinks a case of Royal Cola every
day, 365 days a year. Fortunately, a local distributor offers quan-
tity discounts for large orders as shown in the table below, where
the price for each category applies to every case purchased. Con-
sidering the cost of gasoline, Mr. Gilbreth estimates it costs him
about $5 to go pick up an order of Royal Cola. Mr. Gilbreth also
is an investor in the stock market, where he has been earning a 20
percent average annual return. He considers the return lost by buy-
ing the Royal Cola instead of stock to be the only holding cost for
the Royal Cola.

Discount Quantity Price (per
Category Purchased Disk Drive)

1 001 to 99 $100
2 100 to 499 $ 95
3 500 or more $ 90

Discount Quantity Price
Category Purchased (per Case)

1 001 to 49 $4.00
2 050 to 99 $3.90
3 100 or more $3.80

T (a) Determine the optimal order quantity according to the EOQ
model with quantity discounts. What is the resulting total
cost per year?

(b) With this order quantity, how many orders need to be placed
per year? What is the time interval between orders?

19.3-17. Kenichi Kaneko is the manager of a production depart-
ment which uses 400 boxes of rivets per year. To hold down his
inventory level, Kenichi has been ordering only 50 boxes each time.
However, the supplier of rivets now is offering a discount for

The company uses an annual holding cost rate of 20 percent
of the price of the item. The total cost associated with placing an
order is $80 per order.

Kenichi has decided to use the EOQ model with quantity dis-
counts to determine his optimal inventory policy for rivets.
(a) For each discount category, write an expression for the total

cost per year (TC) as a function of the order quantity Q.
T (b) For each discount category, use the EOQ formula for the ba-

sic EOQ model to calculate the value of Q (feasible or in-
feasible) that gives the minimum value of TC. (You may use
the analytical version of the Excel template for the basic
EOQ model to perform this calculation if you wish.)

(c) For each discount category, use the results from parts (a) and
(b) to determine the feasible value of Q that gives the feasible
minimum value of TC and to calculate this value of TC.

(d) Draw rough hand curves of TC versus Q for each of the dis-
count categories. Use the same format as in Fig. 19.3 (a solid
curve where feasible and a dashed curve where infeasible).
Show the points found in parts (b) and (c). However, you don’t
need to perform any additional calculations to make the curves
particularly accurate at other points.

(e) Use the results from parts (c) and (d ) to determine the optimal
order quantity and the corresponding value of TC.

T (f) Use the Excel template for the EOQ model with quantity
discounts to check your answers in parts (b), (c), and (e).

(g) For discount category 2, the value of Q that minimizes TC
turns out to be feasible. Explain why learning this fact would
allow you to rule out discount category 1 as a candidate for
providing the optimal order quantity without even performing
the calculations for this category that were done in parts (b)
and (c).

(h) Given the optimal order quantity from parts (e) and ( f ), how
many orders need to be placed per year? What is the time in-
terval between orders?

19.3-18. Sarah operates a concession stand at a downtown loca-
tion throughout the year. One of her most popular items is circus
peanuts, selling about 200 bags per month.

Discount Price
Category Quantity (per Box)

1 1,001 to 99 $8.50
2 1,100 to 999 $8.00
3 1,000 or more $7.50



There currently is 1 unit in inventory, and we want to have 2 units
in inventory at the end of 3 months. A maximum of 3 units can be
produced on regular-time production in each month, although 1 ad-
ditional unit can be produced on overtime at a cost that is 2 larger
than the regular-time unit production cost. The holding cost is 2
per unit for each extra month that it is stored.

Use dynamic programming to determine how many units
should be produced in each month to minimize the total cost.

19.4-5. Consider a situation where a particular product is produced
and placed in in-process inventory until it is needed in a subse-
quent production process. No units currently are in inventory, but
three units will be needed in the coming month and an additional
four units will be needed in the following month. The unit pro-
duction cost is the same in either month. The setup cost to produce
in either month is $5,000. The holding cost for each unit left in in-
ventory at the end of a month is $300.

Determine the optimal schedule that satisfies the monthly re-
quirements by using the algorithm presented in Sec. 19.4.

19.5-1. Henry Edsel is the owner of Honest Henry’s, the largest
car dealership in its part of the country. His most popular car model
is the Triton, so his largest costs are those associated with order-
ing these cars from the factory and maintaining an inventory of
Tritons on the lot. Therefore, Henry has asked his general man-
ager, Ruby Willis, who once took a course in operations research,
to use this background to develop a cost-effective policy for when
to place these orders for Tritons and how many to order each time.

Ruby decides to use the stochastic continuous-review model
presented in Sec. 19.5 to determine an (R, Q) policy. After some
investigation, she estimates that the administrative cost for placing
each order is $1,500 (a lot of paperwork is needed for ordering
cars), the holding cost for each car is $3,000 per year (15 percent
of the agency’s purchase price of $20,000), and the shortage cost
per car short is $1,000 per year (an estimated probability of �

1
3

� of
losing a car sale and its profit of about $3,000). After considering
both the seriousness of incurring shortages and the high holding
cost, Ruby and Henry agree to use a 75 percent service level (a
probability of 0.75 of not incurring a shortage between the time an
order is placed and the delivery of the cars ordered). Based on pre-
vious experience, they also estimate that the Tritons sell at a rela-
tively uniform rate of about 900 per year.

Sarah purchases the circus peanuts from Peter’s Peanut Shop.
She has been purchasing 100 bags at a time. However, to encour-
age larger purchases, Peter now is offering her discounts for larger
order sizes according to the following price schedule, where the
price for each category applies to every bag purchased.
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Sarah wants to use the EOQ model with quantity discounts to
determine what her order quantity should be. For this purpose, she
estimates an annual holding cost rate of 17 percent of the value
(based on purchase price) of the peanuts. She also estimates a setup
cost of $4 for placing each order.

Follow the instructions of Prob. 19.3-17 to analyze Sarah’s
problem.

19.4-1. Suppose that production planning is to be done for the next
5 months, where the respective demands are r1 � 2, r2 � 4, r3 � 2,
r4 � 2, and r5 � 3. The setup cost is $4,000, the unit production cost
is $1,000, and the unit holding cost is $300. Use the deterministic
periodic-review model to determine the optimal production sched-
ule that satisfies the monthly requirements.

19.4-2. Reconsider the example used to illustrate the determinis-
tic periodic-review model in Sec. 19.4. Solve this problem when
the demands are increased by 1 airplane in each period.

19.4-3. Reconsider the example used to illustrate the determinis-
tic periodic-review model in Sec. 19.4. Suppose that the following
single change is made in the example. The cost of producing each
airplane now varies from period to period. In particular, in addi-
tion to the setup cost of $2 million, the cost of producing airplanes
in either period 1 or period 3 is $1.4 million per airplane, whereas
it is only $1 million per airplane in either period 2 or period 4.

Use dynamic programming to determine how many airplanes
(if any) should be produced in each of the four periods to mini-
mize the total cost.

19.4-4.* Consider a situation where a particular product is pro-
duced and placed in in-process inventory until it is needed in a sub-
sequent production process. The number of units required in each
of the next 3 months, the setup cost, and the regular-time unit pro-
duction cost (in units of thousands of dollars) that would be in-
curred in each month are as follows:

Regular-Time
Month Requirement Setup Cost Unit Cost

1 1 5 8
2 3 10 10
3 2 5 9

Discount Order Price
Category Quantity (per Bag)

1 001 to 199 $1.00
2 200 to 499 $0.95
3 500 or more $0.90



is obtained from Appendix 5. The amount of safety stock provided
by this reorder point is K1�L
. Thus, if h denotes the holding cost
for each unit held in inventory per year, the average annual hold-
ing cost for safety stock (denoted by C) is C � hK1�L
.
(a) Construct a table with five columns. The first column is the

service level L, with values 0.5, 0.75, 0.9, 0.95, 0.99, and 0.999.
The next four columns give C for four cases. Case 1 is h � $1
and 
 � 1. Case 2 is h � $100 and 
 � 1. Case 3 is h � $1
and 
 � 100. Case 4 is h � $100 and 
 � 100.

(b) Construct a second table that is based on the table obtained in
part (a). The new table has five rows and the same five columns
as the first table. Each entry in the new table is obtained by
subtracting the corresponding entry in the first table from the
entry in the next row of the first table. For example, the en-
tries in the first column of the new table are 0.75 � 0.5 � 0.25,
0.9 � 0.75 � 0.15, 0.95 � 0.9 � 0.05, 0.99 � 0.95 � 0.04,
and 0.999 � 0.99 � 0.009. Since these entries represent in-
creases in the service level L, each entry in the next four
columns represents the increase in C that would result from
increasing L by the amount shown in the first column.

(c) Based on these two tables, what advice would you give a man-
ager who needs to make a decision on the value of L to use?

19.5-4. The preceding problem describes the factors involved in
making a managerial decision on the service level L to use. It also
points out that for any given values of L, h (the unit holding cost
per year), and 
 (the standard deviation when the demand during
the lead time has a normal distribution), the average annual hold-
ing cost for the safety stock would turn out to be C � hK1�L
,
where C denotes this holding cost and K1�L is given in Appendix
5. Thus, the amount of variability in the demand, as measured by

, has a major impact on this holding cost C.

The value of 
 is substantially affected by the duration of the
lead time. In particular, 
 increases as the lead time increases. The
purpose of this problem is to enable you to explore this relation-
ship further.

To make this more concrete, suppose that the inventory system
under consideration currently has the following values: L � 0.9,
h � $100, and 
 � 100 with a lead time of 4 days. However, the
vendor being used to replenish inventory is proposing a change in
the delivery schedule that would change your lead time. You want
to determine how this would change 
 and C.

We assume for this inventory system (as is commonly the
case) that the demands on separate days are statistically indepen-
dent. In this case, the relationship between 
 and the lead time is
given by the formula


 � �d�
1,

where d � number of days in the lead time,


1 � standard deviation if d � 1.

After an order is placed, the cars are delivered in about two-
thirds of a month. Ruby’s best estimate of the probability distrib-
ution of demand during the lead time before a delivery arrives is
a normal distribution with a mean of 50 and a standard deviation
of 15.
(a) Solve by hand for the order quantity.
(b) Use a table for the normal distribution (Appendix 5) to solve

for the reorder point.
T (c) Use the Excel template for this model in your OR Course-

ware to check your answers in parts (a) and (b).
(d) Given your previous answers, how much safety stock does this

inventory policy provide?
(e) This policy can lead to placing a new order before the deliv-

ery from the preceding order arrives. Indicate when this would
happen.

19.5-2. One of the largest selling items in J.C. Ward’s Department
Store is a new model of refrigerator that is highly energy-efficient.
About 40 of these refrigerators are being sold per month. It takes
about a week for the store to obtain more refrigerators from a
wholesaler. The demand during this time has a uniform distribu-
tion between 5 and 15. The administrative cost of placing each or-
der is $40. For each refrigerator, the holding cost per month is $8
and the shortage cost per month is estimated to be $1.

The store’s inventory manager has decided to use the sto-
chastic continuous-review model presented in Sec. 19.5, with a ser-
vice level (measure 1) of 0.8, to determine an (R, Q) policy.
(a) Solve by hand for R and Q.
T (b) Use the corresponding Excel template to check your answer

in part (a).
(c) What will be the average number of stockouts per year with

this inventory policy?

19.5-3. When using the stochastic continuous-review model pre-
sented in Sec. 19.5, a difficult managerial judgment decision needs
to be made on the level of service to provide to customers. The
purpose of this problem is to enable you to explore the trade-off
involved in making this decision.

Assume that the measure of service level being used is L �
probability that a stockout will not occur during the lead time. Since
management generally places a high priority on providing excel-
lent service to customers, the temptation is to assign a very high
value to L. However, this would result in providing a very large
amount of safety stock, which runs counter to management’s de-
sire to eliminate unnecessary inventory. (Remember the just-in-
time philosophy discussed in Sec. 19.3 that is heavily influencing
managerial thinking today.) What is the best trade-off between pro-
viding good service and eliminating unnecessary inventory?

Assume that the probability distribution of demand during the
lead time is a normal distribution with mean � and standard devi-
ation 
. Then the reorder point R is R � � � K1�L
, where K1�L
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the probability distribution of demand during this lead time will be
a normal distribution with a mean of 500 pounds and a standard
deviation of 200 pounds.
T (a) Use the stochastic continuous-review model presented in

Sec. 19.5 to obtain an (R, Q) policy for Have a Cow for each
of the two alternatives of which supplier to use.

(b) Show how the reorder point is calculated for each of these two
policies.

(c) Determine and compare the amount of safety stock provided
by the two policies obtained in part (a).

(d) Determine and compare the average annual holding cost un-
der these two policies.

(e) Determine and compare the average annual acquisition cost
(combining purchase price and shipping cost) under these two
policies.

(f) Since shortages are very infrequent, the only important costs
for comparing the two suppliers are those obtained in parts (d )
and (e). Add these costs for each supplier. Which supplier
should be selected?

(g) Jed likes to use the beef (which he keeps in a freezer) within
a month of receiving it. How would this influence his choice
of supplier?

19.5-7. Micro-Apple is a manufacturer of personal computers. It
currently manufactures a single model—the MacinDOS—on an as-
sembly line at a steady rate of 500 per week. MicroApple orders
the floppy disk drives for the MacinDOS (1 per computer) from
an outside supplier at a cost of $30 each. Additional administra-
tive costs for placing an order total $30. The annual holding cost
is $6 per drive. If MicroApple stocks out of floppy disk drives,
production is halted, costing $100 per drive short. Because of the
seriousness of stockouts, management wants to keep enough safety
stock to prevent a shortage before the delivery arrives during 99
percent of the order cycles.

The supplier now is offering two shipping options. With op-
tion 1, the lead time would have a normal distribution with a mean
of 0.5 week and a standard deviation of 0.1 week. For each order,
the shipping cost charged to MicroApple would be $100 plus $3
per drive. With option 2, the lead time would have a uniform dis-
tribution from 1.0 week to 2.0 weeks. For each order, the shipping
cost charged to MicroApple would be $20 plus $2 per drive.
T (a) Use the stochastic continuous-review model presented in

Sec. 19.5 to obtain an (R, Q) policy under each of these two
shipping options.

(b) Show how the reorder point is calculated for each of these two
policies.

(c) Determine and compare the amount of safety stock provided
by these two policies.

(d) Determine and compare the average annual holding cost un-
der these two policies.

(a) Calculate C for the current inventory system.
(b) Determine 
1. Then find how C would change if the lead time

were reduced from 4 days to 1 day.
(c) How would C change if the lead time were doubled, from 4

days to 8 days?
(d) How long would the lead time need to be in order for C to

double from its current value with a lead time of 4 days?

19.5-5. What is the effect on the amount of safety stock provided
by the stochastic continuous-review model presented in Sec. 19.5
when the following change is made in the inventory system. (Con-
sider each change independently.)
(a) The lead time is reduced to 0 (instantaneous delivery).
(b) The service level (measure 1) is decreased.
(c) The unit shortage cost is doubled.
(d) The mean of the probability distribution of demand during the

lead time is increased (with no other change to the distribu-
tion).

(e) The probability distribution of demand during the lead time is
a uniform distribution from a to b, but now (b � a) has been
doubled.

(f) The probability distribution of demand during the lead time is
a normal distribution with mean � and standard deviation 
,
but now 
 has been doubled.

19.5-6.* Jed Walker is the manager of Have a Cow, a hamburger
restaurant in the downtown area. Jed has been purchasing all the
restaurant’s beef from Ground Chuck (a local supplier) but is con-
sidering switching to Chuck Wagon (a national warehouse) because
its prices are lower.

Weekly demand for beef averages 500 pounds, with some vari-
ability from week to week. Jed estimates that the annual holding
cost is 30 cents per pound of beef. When he runs out of beef, Jed
is forced to buy from the grocery store next door. The high pur-
chase cost and the hassle involved are estimated to cost him about
$3 per pound of beef short. To help avoid shortages, Jed has de-
cided to keep enough safety stock to prevent a shortage before the
delivery arrives during 95 percent of the order cycles. Placing an
order only requires sending a simple fax, so the administrative cost
is negligible.

Have a Cow’s contract with Ground Chuck is as follows: The
purchase price is $1.49 per pound. A fixed cost of $25 per order
is added for shipping and handling. The shipment is guaranteed to
arrive within 2 days. Jed estimates that the demand for beef dur-
ing this lead time has a uniform distribution from 50 to 150 pounds.

The Chuck Wagon is proposing the following terms: The beef
will be priced at $1.35 per pound. The Chuck Wagon ships via re-
frigerated truck, and so charges additional shipping costs of $200
per order plus $0.10 per pound. The shipment time will be roughly
a week, but is guaranteed not to exceed 10 days. Jed estimates that
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(a) What is the unit cost of underordering? The unit cost of
overordering?

(b) Use Bayes’decision rule presented in Sec. 15.2 to determine how
many of these doughnuts should be prepared each day to mini-
mize the average daily cost of underordering or overordering.

(c) After plotting the cumulative distribution function of demand,
apply the stochastic single-period model for perishable prod-
ucts graphically to determine how many of these doughnuts to
prepare each day.

(d) Given the answer in part (c), what will be the probability of
running short of these doughnuts on any given day?

(e) Some families make a special trip to the Donut House just to
buy this special doughnut. Therefore, Jennifer thinks that the
cost when they run short might be greater than just the lost
profit. In particular, there may be a cost for lost customer good-
will each time a customer orders this doughnut but none are
available. How high would this cost have to be before they
should prepare one more of these doughnuts each day than was
found in part (c)?

19.6-4.* Swanson’s Bakery is well known for producing the best
fresh bread in the city, so the sales are very substantial. The daily
demand for its fresh bread has a uniform distribution between 300
and 600 loaves. The bread is baked in the early morning, before
the bakery opens for business, at a cost of $2 per loaf. It then is
sold that day for $3 per loaf. Any bread not sold on the day it is
baked is relabeled as day-old bread and sold subsequently at a dis-
count price of $1.50 per loaf.
(a) Apply the stochastic single-period model for perishable prod-

ucts to determine the optimal service level.
(b) Apply this model graphically to determine the optimal num-

ber of loaves to bake each morning.
(c) With such a wide range of possible values in the demand dis-

tribution, it is difficult to draw the graph in part (b) carefully
enough to determine the exact value of the optimal number of
loaves. Use algebra to calculate this exact value.

(d) Given your answer in part (a), what is the probability of in-
curring a shortage of fresh bread on any given day?

(e) Because the bakery’s bread is so popular, its customers are
quite disappointed when a shortage occurs. The owner of the

(e) Determine and compare the average annual acquisition cost
(combining purchase price and shipping cost) under these two
policies.

(f) Since shortages are very infrequent (and very small when they
do occur), the only important costs for comparing the two ship-
ping options are those obtained in parts (d ) and (e). Add these
costs for each option. Which option should be selected?

T 19.6-1. A newspaper stand purchases newspapers for $0.36 and
sells them for $0.50. The shortage cost is $0.50 per newspaper (be-
cause the dealer buys papers at retail price to satisfy shortages).
The holding cost is $0.002 per newspaper left at the end of the day.
The demand distribution is a uniform distribution between 200 and
300. Find the optimal number of papers to buy.

19.6-2. Freddie the newsboy runs a newstand. Because of a nearby
financial services office, one of the newspapers he sells is the daily
Financial Journal. He purchases copies of this newspaper from its
distributor at the beginning of each day for $1.50 per copy, sells it
for $2.50 each, and then receives a refund of $0.50 from the dis-
tributor the next morning for each unsold copy. The number of re-
quests for this newspaper range from 15 to 18 copies per day. Fred-
die estimates that there are 15 requests on 40 percent of the days,
16 requests on 20 percent of the days, 17 requests on 30 percent
of the days, and 18 requests on the remaining days.
(a) Use Bayes’ decision rule presented in Sec. 15.2 to determine

what Freddie’s new order quantity should be to maximize his
expected daily profit.

(b) Apply Bayes’ decision rule again, but this time with the crite-
rion of minimizing Freddie’s expected daily cost of under-
ordering or overordering.

(c) Use the stochastic single-period model for perishable products
to determine Freddie’s optimal order quantity.

(d) Draw the cumulative distribution function of demand and
then show graphically how the model in part (c) finds the op-
timal order quantity.

19.6-3. Jennifer’s Donut House serves a large variety of dough-
nuts, one of which is a blueberry-filled, chocolate-covered, su-
persized doughnut supreme with sprinkles. This is an extra large
doughnut that is meant to be shared by a whole family. Since
the dough requires so long to rise, preparation of these dough-
nuts begins at 4:00 in the morning, so a decision on how many
to prepare must be made long before learning how many will be
needed. The cost of the ingredients and labor required to pre-
pare each of these doughnuts is $1. Their sale price is $3 each.
Any not sold that day are sold to a local discount grocery store
for $0.50. Over the last several weeks, the number of these
doughnuts sold for $3 each day has been tracked. These data are
summarized next.
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Number Sold Percentage of Days

0 10%
1 15%
2 20%
3 30%
4 15%
5 10%



19.6-6. Reconsider Prob. 19.6-4. The bakery owner, Ken Swan-
son, now has developed a new plan to decrease the size of short-
ages. The bread will be baked twice a day, once before the bak-
ery opens (as before) and the other during the day after it becomes
clearer what the demand for that day will be. The first baking
will produce 300 loaves to cover the minimum demand for the
day. The size of the second baking will be based on an estimate
of the remaining demand for the day. This remaining demand is
assumed to have a uniform distribution from a to b, where the
values of a and b are chosen each day based on the sales so far.
It is anticipated that (b � a) typically will be approximately 75,
as opposed to the range of 300 for the distribution of demand in
Prob. 19.6-4.
(a) Ignoring any cost of the loss of customer goodwill [as in parts

(a) to (d ) of Prob. 19.6-4], write a formula for how many loaves
should be produced in the second baking in terms of a and b.

(b) What is the probability of still incurring a shortage of fresh
bread on any given day? How should this answer compare to
the corresponding probability in Prob. 19.6-4?

(c) When b � a � 75, what is the maximum size of a shortage
that can occur? What is the maximum number of loaves of
fresh bread that will not be sold? How do these answers com-
pare to the corresponding numbers for the situation in Prob.
19.6-4 where only one (early morning) baking occurs per day?

(d) Now consider just the cost of underordering and the cost of
overordering. Given your answers in part (c), how should the ex-
pected total daily cost of underordering and overordering for this
new plan compare with that for the situation in Prob. 19.6-4?
What does this say in general about the value of obtaining as
much information as possible about what the demand will be be-
fore placing the final order for a perishable product?

(e) Repeat parts (a), (b), and (c) when including the cost of the
loss of customer goodwill as in part (e) of Prob. 19.6-4.

19.6-7. Suppose that the demand D for a spare airplane part has
an exponential distribution with mean 50, that is,

�
5
1
0
�e�� /50 for � � 0

�D(�) �

0 otherwise.

This airplane will be obsolete in 1 year, so all production of the
spare part is to take place at present. The production costs now are
$1,000 per item—that is, c � 1,000—but they become $10,000 per
item if they must be supplied at later dates—that is, p � 10,000.
The holding costs, charged on the excess after the end of the pe-
riod, are $300 per item.
T (a) Determine the optimal number of spare parts to produce.
(b) Suppose that the manufacturer has 23 parts already in inven-

tory (from a similar, but now obsolete airplane). Determine the
optimal inventory policy.





bakery, Ken Swanson, places high priority on keeping his cus-
tomers satisfied, so he doesn’t like having shortages. He feels
that the analysis also should consider the loss of customer
goodwill due to shortages. Since this loss of goodwill can have
a negative effect on future sales, he estimates that a cost of
$1.50 per loaf should be assessed each time a customer can-
not purchase fresh bread because of a shortage. Determine the
new optimal number of loaves to bake each day with this
change. What is the new probability of incurring a shortage of
fresh bread on any given day?

19.6-5. Reconsider Prob. 19.6-4. The bakery owner, Ken Swan-
son, now wants you to conduct a financial analysis of various in-
ventory policies. You are to begin with the policy obtained in the
first four parts of Prob. 19.6-4 (ignoring any cost for the loss of
customer goodwill). As given with the answers in the back of the
book, this policy is to bake 500 loaves of bread each morning,
which gives a probability of incurring a shortage of �

1
3

�.
(a) For any day that a shortage does occur, calculate the revenue

from selling fresh bread.
(b) For those days where shortages do not occur, use the probabil-

ity distribution of demand to determine the expected number of
loaves of fresh bread sold. Use this number to calculate the ex-
pected daily revenue from selling fresh bread on those days.

(c) Combine your results from parts (a) and (b) to calculate the
expected daily revenue from selling fresh bread when consid-
ering all days.

(d) Calculate the expected daily revenue from selling day-old
bread.

(e) Use the results in parts (c) and (d ) to calculate the expected
total daily revenue and then the expected daily profit (exclud-
ing overhead).

(f) Now consider the inventory policy of baking 600 loaves each
morning, so that shortages never occur. Calculate the expected
daily profit (excluding overhead) from this policy.

(g) Consider the inventory policy found in part (e) of Prob. 19.6-4.
As implied by the answers in the back of the book, this policy
is to bake 550 loaves each morning, which gives a probability
of incurring a shortage of �

1
6

�. Since this policy is midway between
the policy considered here in parts (a) to (e) and the one con-
sidered in part ( f ), its expected daily profit (excluding overhead
and the cost of the loss of customer goodwill) also is midway
between the expected daily profit for those two policies. Use this
fact to determine its expected daily profit.

(h) Now consider the cost of the loss of customer goodwill for the
inventory policy analyzed in part (g). Calculate the expected
daily cost of the loss of customer goodwill and then the ex-
pected daily profit when considering this cost.

(i) Repeat part (h) for the inventory policy considered in parts 
(a) to (e).
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time to place one more order with the factory to replenish the in-
ventory of Tritons just about when the current supply will be gone.

The general manager, Ruby Willis, now needs to decide how
many Tritons to order from the factory. Each one costs $20,000.
She then is able to sell them at an average price of $23,000, pro-
vided they are sold before the end of the model year. However, any
of these Tritons left at the end of the model year would then need
to be sold at a special sale price of $19,500. Furthermore, Ruby
estimates that the extra cost of the capital tied up by holding these
cars such an unusually long time would be $500 per car, so the net
revenue would be only $19,000. Since she would lose $1,000 on
each of these cars left at the end of the model year, Ruby concludes
that she needs to be cautious to avoid ordering too many cars, but
she also wants to avoid running out of cars to sell before the end
of the model year if possible. Therefore, she decides to use the sto-
chastic single-period model for perishable products to select the
order quantity. To do this, she estimates that the number of Tritons
being ordered now that could be sold before the end of the model
year has a normal distribution with a mean of 50 and a standard
deviation of 15.
(a) Determine the optimal service level.
(b) Determine the number of Tritons that Ruby should order from

the factory.

19.6-10. The management of Quality Airlines has decided to base
its overbooking policy on the stochastic single-period model for
perishable products, since this will maximize expected profit. This
policy now needs to be applied to a new flight from Seattle to At-
lanta. The airplane has 125 seats available for a fare of $250. How-
ever, since there commonly are a few no-shows, the airline should
accept a few more than 125 reservations. On those occasions when
more than 125 people arrive to take the flight, the airline will find
volunteers who are willing to be put on a later flight in return for
being given a certificate worth $150 toward any future travel on
this airline.

Based on previous experience with similar flights, it is esti-
mated that the relative frequency of the number of no-shows will
be as shown below.

(c) Suppose that p cannot be determined now, but the manufac-
turer wishes to order a quantity so that the probability of a
shortage equals 0.1. How many units should be ordered?

(d) If the manufacturer were following an optimal policy that re-
sulted in ordering the quantity found in part (c), what is the
implied value of p?

19.6-8.* A college student, Stan Ford, recently took a course in
operations research. He now enjoys applying what he learned to
optimize his personal decisions. He is analyzing one such decision
currently, namely, how much money (if any) to take out of his sav-
ings account to buy $100 traveler’s checks before leaving on a short
vacation trip to Europe next summer.

Stan already has used the money he had in his checking ac-
count to buy traveler’s checks worth $1,200, but this may not be
enough. In fact, he has estimated the probability distribution of
what he will need as shown in the following table:

CHAPTER 19 PROBLEMS 997

If he turns out to have less than he needs, then he will have to leave
Europe 1 day early for every $100 short. Because he places a value
of $150 on each day in Europe, each day lost would thereby rep-
resent a net loss of $50 to him. However, every $100 traveler’s
check costs an extra $1. Furthermore, each such check left over at
the end of the trip (which would be redeposited in the savings ac-
count) represents a loss of $2 in interest that could have been earned
in the savings account during the trip, so he does not want to pur-
chase too many.
(a) Describe how this problem can be interpreted to be an inven-

tory problem with uncertain demand for a perishable product.
Also identify the unit cost of underordering and the unit cost
of overordering.

(b) Use Bayes’ decision rule presented in Sec. 15.2 to determine
how many additional $100 travelers’ checks Stan should pur-
chase to minimize his expected cost of underordering or
overordering.

(c) Use the stochastic single-period model for perishable products
and the table of probabilities to make Stan’s decision.

(d) Draw a graph of the CDF of demand to show the application
of the model in part (c) graphically.

19.6-9. Reconsider Prob. 19.5-1 involving Henry Edsel’s car deal-
ership. The current model year is almost over, but the Tritons are
selling so well that the current inventory will be depleted before
the end-of-year demand can be satisfied. Fortunately, there still is

Number of No-Shows Relative Frequency

0 5%
1 10%
2 15%
3 15%
4 15%
5 15%
6 10%
7 10%
8 5%

Amount 
needed ($) 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700

Probability 0.05 0.10 0.15 0.25 0.20 0.10 0.10 0.05



T 19.6-14. Using the approximation for finding the optimal pol-
icy for the stochastic single-period model with a setup cost when
demand has an exponential distribution, find this policy when

�D(�) �

and the costs are

Holding cost � 40 cents per item,

Shortage cost � $1.50 per item,

Purchase price � $1 per item,

Setup cost � $10.

Show your work, and then check your answer by using the corre-
sponding Excel template in your OR Courseware.

T 19.7-1. Consider the following inventory situation. Demands in
different periods are independent but with a common probability
density function given by

�D(�) �

Orders may be placed at the start of each period without setup cost
at a unit cost of c � 10. There are a holding cost of 6 per unit re-
maining in stock at the end of each period and a shortage cost of
15 per unit of unsatisfied demand at the end of each period (with
backlogging except for the final period).
(a) Find the optimal one-period policy.
(b) Find the optimal two-period policy.

T 19.7-2. Consider the following inventory situation. Demands in
different periods are independent but with a common probability
density function �D(�) � �

5
1
0
� for 0 � � � 50. Orders may be placed

at the start of each period without setup cost at a unit cost of 
c � 10. There are a holding cost of 8 per unit remaining in stock
at the end of each period and a penalty cost of 15 per unit of un-
satisfied demand at the end of each period (with backlogging ex-
cept for the final period).
(a) Find the optimal one-period policy.
(b) Find the optimal two-period policy.

T 19.7-3.* Find the optimal inventory policy for the following
two-period model by using a discount factor of � � 0.9. The de-
mand D has the probability density function

�D(�) �
for � � 0

otherwise,

�
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1
5
�e�� /25

0
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for � � 0

otherwise.
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otherwise,
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(a) When interpreting this problem as an inventory problem, what
are the units of a perishable product being placed into inven-
tory?

(b) Identify the unit cost of underordering and the unit cost of
overordering.

(c) Use the model with these costs to determine how many over-
booked reservations to accept.

(d) Draw a graph of the CDF of demand to show the application
of the model graphically.

19.6-11. The campus bookstore must decide how many textbooks
to order for a course that will be offered only once. The number
of students who will take the course is a random variable D, whose
distribution can be approximated by a (continuous) uniform dis-
tribution on the interval [40, 60]. After the quarter starts, the value
of D becomes known. If D exceeds the number of books available,
the known shortfall is made up by placing a rush order at a cost
of $14 plus $2 per book over the normal ordering cost. If D is less
than the stock on hand, the extra books are returned for their orig-
inal ordering cost less $1 each. What is the order quantity that min-
imizes the expected cost?

19.6-12. Consider the following inventory model, which is a sin-
gle-period model with known density of demand �D(�) � e�� for
� � 0 and �D(�) � 0 elsewhere. There are two costs connected
with the model. The first is the purchase cost, given by c( y � x).
The second is a cost p that is incurred once if there is any unsat-
isfied demand (independent of the amount of unsatisfied demand).
(a) If x units are available and goods are ordered to bring the in-

ventory level up to y (if x 	 y), write the expression for the
expected loss and describe completely the optimal policy.

(b) If a fixed cost K is also incurred whenever an order is placed,
describe the optimal policy.

T 19.6-13. Find the optimal ordering policy for the stochastic sin-
gle-period model with a setup cost where the demand has the prob-
ability density function

�D(�) �

and the costs are

Holding cost � $1 per item,

Shortage cost � $3 per item,

Setup cost � $1.50,

Production cost � $2 per item.

Show your work, and then check your answer by using the corre-
sponding Excel template in your OR Courseware.

for 0 � � � 20

otherwise,

�
2
1
0
�

0




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The unit cost of these calculators is $80. The holding cost is $0.70
per calculator remaining at the end of a week. The shortage cost
is $2 per calculator of unsatisfied demand at the end of a week.
Using a weekly discount factor of � � 0.998, find the optimal in-
ventory policy for this infinite-period problem.

19.7-10.* Consider a one-period model where the only two costs
are the holding cost, given by

h(y � D) � �
1
3
0
�(y � D), for y � D,

and the shortage cost, given by

p(D � y) � 2.5(D � y), for D � y.

The probability density function for demand is given by

�D(�) �

If you order, you must order an integer number of batches of 100
units each, and this quantity is delivered immediately. Let G(y) de-
note the total expected cost when there are y units available for the
period (after ordering).
(a) Write the expression for G(y).
(b) What is the optimal ordering policy?

19.7-11. Find the optimal (k, Q) policy for Prob. 19.7-10 for an
infinite-period model with a discount factor of � � 0.90.

19.7-12. For the infinite-period model with no setup cost, show
that the value of y0 that satisfies

�(y0) � �
p �

p
c
�
(1

h
� �)
�

is equivalent to the value of y that satisfies

�
dL

d
(
y
y)

� � c(1 � �) � 0,

where L(y), the expected shortage plus holding cost, is given by

L(y) � 	�

y
p(� � y)�D(�) d� � 	y

0
h(y � �)�D(�) d�.

for � � 0

otherwise.
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and the costs are

Holding cost � $0.25 per item,

Shortage cost � $2 per item,

Purchase price � $1 per item.

Stock left over at the end of the final period is salvaged for $1 per
item, and shortages remaining at this time are met by purchasing
the needed items at $1 per item.

T 19.7-4. Solve Prob. 19.7-3 for a two-period model, assuming no
salvage value, no backlogging at the end of the second period, and
no discounting.

T 19.7-5. Solve Prob. 19.7-3 for an infinite-period model.

T 19.7-6. Determine the optimal inventory policy when the goods
are to be ordered at the end of every month from now on. The cost
of bringing the inventory level up to y when x already is available
is given by 2(y � x). Similarly, the cost of having the monthly de-
mand D exceed y is given by 5(D � y). The probability density
function for D is given by �D(�) � e��. The holding cost when y
exceeds D is given by y � D. A monthly discount factor of 0.95
is used.

T 19.7-7. Solve the inventory problem given in Prob. 19.7-6, but
assume that the policy is to be used for only 1 year (a 12-period
model). Shortages are backlogged each month, except that any
shortages remaining at the end of the year are made up by pur-
chasing similar items at a unit cost of $2. Any remaining inven-
tory at the end of the year can be sold at a unit price of $2.

T 19.7-8. A supplier of high-fidelity receiver kits is interested in
using an optimal inventory policy. The distribution of demand per
month is uniform between 2,000 and 3,000 kits. The supplier’s cost
for each kit is $150. The holding cost is estimated to be $2 per kit
remaining at the end of a month, and the shortage cost is $30 per
kit of unsatisfied demand at the end of a month. Using a monthly
discount factor of � � 0.99, find the optimal inventory policy for
this infinite-period problem.

T 19.7-9. The weekly demand for a certain type of electronic cal-
culator is estimated to be

�D(�) �
for � � 0

otherwise.
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Robert Gates rounds the corner of the street and smiles when he sees his wife pruning
rose bushes in their front yard. He slowly pulls his car into the driveway, turns off the
engine, and falls into his wife’s open arms.

“How was your day?” she asks.
“Great! The drugstore business could not be better!” Robert replies, “Except for

the traffic coming home from work! That traffic can drive a sane man crazy! I am so
tense right now. I think I will go inside and make myself a relaxing martini.”

Robert enters the house and walks directly into the kitchen. He sees the mail on
the kitchen counter and begins flipping through the various bills and advertisements
until he comes across the new issue of OR/MS Today. He prepares his drink, grabs the
magazine, treads into the living room, and settles comfortably into his recliner. He has
all that he wants—except for one thing. He sees the remote control lying on the top of
the television. He sets his drink and magazine on the coffee table and reaches for the
remote control. Now, with the remote control in one hand, the magazine in the other,
and the drink on the table near him, Robert is finally the master of his domain.

Robert turns on the television and flips the channels until he finds the local news.
He then opens the magazine and begins reading an article about scientific inventory
management. Occasionally he glances at the television to learn the latest in business,
weather, and sports.

As Robert delves deeper into the article, he becomes distracted by a commercial
on television about toothbrushes. His pulse quickens slightly in fear because the com-
mercial for Totalee toothbrushes reminds him of the dentist. The commerical concludes
that the customer should buy a Totalee toothbrush because the toothbrush is Totalee
revolutionary and Totalee effective. It certainly is effective; it is the most popular tooth-
brush on the market!

At that moment, with the inventory article and the toothbrush commercial fresh in
his mind, Robert experiences a flash of brilliance. He knows how to control the in-
ventory of Totalee toothbrushes at Nightingale Drugstore!

As the inventory control manager at Nightingale Drugstore, Robert has been ex-
periencing problems keeping Totalee toothbrushes in stock. He has discovered that cus-
tomers are very loyal to the Totalee brand name since Totalee holds a patent on the
toothbrush endorsed by 9 out of 10 dentists. Customers are willing to wait for the tooth-
brushes to arrive at Nightingale Drugstore since the drugstore sells the toothbrushes
for 20 percent less than other local stores. This demand for the toothbrushes at Nightin-
gale means that the drugstore is often out of Totalee toothbrushes. The store is able to
receive a shipment of toothbrushes several hours after an order is placed to the Totalee
regional warehouse because the warehouse is only 20 miles away from the store. Nev-
ertheless, the current inventory situation causes problems because numerous emergency
orders cost the store unnecessary time and paperwork and because customers become
disgruntled when they must return to the store later in the day.

Robert now knows a way to prevent the inventory problems through scientific in-
ventory management! He grabs his coat and car keys and rushes out of the house.

As he runs to the car, his wife yells, “Honey, where are you going?”
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“I’m sorry, darling,” Robert yells back. “I have just discovered a way to control
the inventory of a critical item at the drugstore. I am really excited because I am able
to apply my industrial engineering degree to my job! I need to get the data from the
store and work out the new inventory policy! I will be back before dinner!”

Because rush hour traffic has dissipated, the drive to the drugstore takes Robert
no time at all. He unlocks the darkened store and heads directly to his office where he
rummages through file cabinets to find demand and cost data for Totalee toothbrushes
over the past year.

Aha! Just as he suspected! The demand data for the toothbrushes is almost con-
stant across the months. Whether in winter or summer, customers have teeth to brush,
and they need toothbrushes. Since a toothbrush will wear out after a few months of
use, customers will always return to buy another toothbrush. The demand data shows
that Nightingale Drugstore customers purchase an average of 250 Totalee toothbrushes
per month (30 days).

After examining the demand data, Robert investigates the cost data. Because
Nightingale Drugstore is such a good customer, Totalee charges its lowest wholesale
price of only $1.25 per toothbrush. Robert spends about 20 minutes to place each or-
der with Totalee. His salary and benefits add up to $18.75 per hour. The annual hold-
ing cost for the inventory is 12 percent of the capital tied up in the inventory of To-
talee toothbrushes.

(a) Robert decides to create an inventory policy that normally fulfills all demand since he be-
lieves that stock-outs are just not worth the hassle of calming customers or the risk of los-
ing future business. He therefore does not allow any planned shortages. Since Nightingale
Drugstore receives an order several hours after it is placed, Robert makes the simplifying
assumption that delivery is instantaneous. What is the optimal inventory policy under these
conditions? How many Totalee toothbrushes should Robert order each time and how fre-
quently? What is the total variable inventory cost per year with this policy?

(b) Totalee has been experiencing financial problems because the company has lost money try-
ing to branch into producing other personal hygiene products, such as hairbrushes and den-
tal floss. The company has therefore decided to close the warehouse located 20 miles from
Nightingale Drugstore. The drugstore must now place orders with a warehouse located 350
miles away and must wait 6 days after it places an order to receive the shipment. Given this
new lead time, how many Totalee toothbrushes should Robert order each time, and when
should he order?

(c) Robert begins to wonder whether he would save money if he allows planned shortages to
occur. Customers would wait to buy the toothbrushes from Nightingale since they have high
brand loyalty and since Nightingale sells the toothbrushes for less. Even though customers
would wait to purchase the Totalee toothbrush from Nightingale, they would become un-
happy with the prospect of having to return to the store again for the product. Robert de-
cides that he needs to place a dollar value on the negative ramifications from shortages. He
knows that an employee would have to calm each disgruntled customer and track down the
delivery date for a new shipment of Totalee toothbrushes. Robert also believes that customers
would become upset with the inconvenience of shopping at Nightingale and would perhaps
begin looking for another store providing better service. He estimates the costs of dealing
with disgruntled customers and losing customer goodwill and future sales as $1.50 per unit
short per year. Given the 6-day lead time and the shortage allowance, how many Totalee
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toothbrushes should Robert order each time, and when should he order? What is the maxi-
mum shortage under this optimal inventory policy? What is the total variable inventory cost
per year?

(d) Robert realizes that his estimate for the shortage cost is simply that—an estimate. He real-
izes that employees sometimes must spend several minutes with each customer who wishes
to purchase a toothbrush when none is currently available. In addition, he realizes that the
cost of losing customer goodwill and future sales could vary within a wide range. He esti-
mates that the cost of dealing with disgruntled customers and losing customer goodwill and
future sales could range from 85 cents to $25 per unit short per year. What effect would
changing the estimate of the unit shortage cost have on the inventory policy and total vari-
able inventory cost per year found in part (c)?

(e) Closing warehouses has not improved Totalee’s bottom line significantly, so the company
has decided to institute a discount policy to encourage more sales. Totalee will charge $1.25
per toothbrush for any order of up to 500 toothbrushes, $1.15 per toothbrush for orders of
more than 500 but less than 1000 toothbrushes, and $1 per toothbrush for orders of 1000
toothbrushes or more. Robert still assumes a 6-day lead time, but he does not want planned
shortages to occur. Under the new discount policy, how many Totalee toothbrushes should
Robert order each time, and when should he order? What is the total inventory cost (in-
cluding purchase costs) per year?
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Howie Rogers sits in an isolated booth at his favorite coffee shop completely immersed
in the classified ads of the local newspaper. He is searching for his next get-rich-quick
venture. As he meticulously reviews each ad, he absent-mindedly sips his lemonade
and wonders how he will be able to exploit each opportunity to his advantage.

He is becoming quite disillusioned with his chosen vocation of being an entre-
preneur looking for high-flying ventures. These past few years have not dealt him a
lucky hand. Every project he has embarked upon has ended in utter disaster, and he is
slowly coming to the realization that he just might have to find a real job.

He reads the date at the top of the newspaper. June 18. Ohhhh. No need to look
for a real job until the end of the summer.

Each advertisement Howie reviews registers as only a minor blip on his radar
screen until the word Corvette jumps out at him. He narrows his eyes and reads:

WIN A NEW CORVETTE AND EARN CASH AT THE SAME TIME! Fourth of July is fast
approaching, and we need YOU to sell firecrackers. Call 1-800-555-3426 to es-
tablish a firecracker stand in your neighborhood. Earn fast money AND win the
car of your dreams!

Well, certainly not a business that will make him a millionaire, but a worthwhile en-
deavor nonetheless! Howie tears the advertisement out of the newspaper and heads to
the payphone in the back.
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A brief—but informative—conversation reveals the details of the operation. Leisure
Limited, a large wholesaler that distributes holiday products—Christmas decorations,
Easter decorations, firecrackers, etc.—to small independents for resale, is recruiting en-
trepreneurs to run local firecracker stands for the Fourth of July. The wholesaler is of-
fering to rent wooden shacks to entrepreneurs who will purchase firecrackers from
Leisure Limited and will subsequently resell the firecrackers in these shacks on the
side of the road to local customers for a higher price. The entrepreneurs will sell fire-
crackers until the Fourth of July, but after the holiday, customers will no longer want
to purchase firecrackers until New Year’s Eve. Therefore, the entrepreneurs will return
any firecrackers not sold by the Fourth of July while keeping the revenues from all
firecrackers sold. Leisure Limited will refund only part of the cost of the returned fire-
crackers, however, since returned firecrackers must be restocked and since they lose
their explosiveness with age. And the Corvette? The individual who sells the greatest
number of Leisure Limited firecrackers in the state will win a new Corvette.

Before Howie hangs up the phone, the Leisure Limited representative reveals one
hitch—once an entrepreneur places an order for firecrackers, 7 days are required for
the delivery of the firecrackers. Howie realizes that he better get started quickly so that
he will be able to sell firecrackers during the week preceding the Fourth of July when
most of the demand occurs.

People could call Howie many things, but “pokey” they could not. Howie springs
to action by reserving a wooden shack and scheduling a delivery 7 days hence. He then
places another quarter in the payphone to order firecracker sets, but as he starts dial-
ing the phone, he realizes that he has no idea how many sets he should order.

How should he solve this problem? If he orders too few firecracker sets, he will
not have time to place and receive another order before the holiday and will therefore
lose valuable sales (not to mention the chance to win the Corvette). If he orders too
many firecracker sets, he will simply throw away money since he will not obtain a full
refund for the cost of the surplus sets.

Quite a dilemma! He hangs up the phone and bangs his head against the hard con-
crete wall. After several bangs, he stands up straight with a thought. Of course! His
sister would help him. She had graduated from college several years ago with an in-
dustrial engineering degree, and he is sure that she will agree to help him.

Howie calls Talia, his sister, at her work and explains his problem. Once she hears
the problem, she is confident that she will be able to tell Howie how many sets he
should order. Her dedicated operations research teacher in college had taught her well.
Talia asks Howie to give her the number for Leisure Limited, and she would then have
the answer for him the next day.

Talia calls Leisure Limited and asks to speak to the manager on duty. Buddy
Williams, the manager, takes her call, and Talia explains to him that she wants to run
a firecracker stand. To decide the number of firecracker sets she should order, how-
ever, she needs some information from him. She persuades Buddy that he should not
hesitate to give her the information since a more informed order is better for Leisure
Limited—the wholesaler will not lose too many sales and will not have to deal with
too many returns.
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Talia receives the following information from Buddy. Entrepreneurs purchase fire-
cracker sets from Leisure Limited at a cost of $3.00 per set. Entrepreneurs are able to
sell the firecracker sets for any price that they deem reasonable. In addition to the
wholesale price of the firecracker sets, entrepreneurs also have to pay administrative
and delivery fees for each order they place. These fees average approximately $20.00
per order. After the Fourth of July, Leisure Limited returns only half of the wholesale
cost for each firecracker set returned. To return the unsold firecracker sets, entrepre-
neurs also have to pay shipping costs that average $0.50 per firecracker set.

Finally, Talia asks about the demand for firecracker sets. Buddy is not able to give
her very specific information, but he is able to give her general information about last
year’s sales. Data compiled from last year’s stand sales throughout the state indicate that
stands sold between 120 and 420 firecracker sets. The stands operated any time between
June 20 and July 4 and sold the firecracker sets for an average of $5.00 per set.

Talia thanks Buddy, hangs up the phone, and begins making assumptions to help
her overcome the lack of specific data. Even though Howie will operate his stand only
during the week preceding the Fourth of July, she decides to use the demands quoted
by Buddy for simplicity. She assumes that the demand follows a uniform distribution.
She decides to use the average of $5.00 for the unit sale price.

(a) How many firecracker sets should Howie purchase from Leisure Limited to maximize his
expected profit?

(b) How would Howie’s order quantity change if Leisure Limited refunds 75 percent of the
wholesale price for returned firecracker sets? How would it change if Leisure Limited re-
funds 25 percent of the wholesale price for returned firecracker sets?

(c) Howie is not happy with selling the firecracker sets for $5.00 per set. He needs to make
some serious dough! Suppose Howie wants to sell the firecracker sets for $6.00 per set in-
stead. What factors would Talia have to take into account when recalculating the optimal or-
der quantity?

(d) What do you think of Talia’s strategy for estimating demand?

1004 19 INVENTORY THEORY

Scarlett Windermere cautiously approaches the expansive gray factory building and ex-
periences a mixture of fear and excitement. The first day of a new consulting assign-
ment always leaves her fighting conflicting emotions. She takes a deep breath, clutches
her briefcase, and marches into the small, stuffy reception area of American Aerospace.

“Scarlett Windermere here to see Bryan Zimmerman,” she says to the bored se-
curity guard behind the reception desk.

The security guard eyes Scarlett suspiciously and says, “Ya don’t belong here, do
ya? Of course ya don’t. Then ya gotta fill out this paperwork for a temporary security
pass.”

As Scarlett completes the necessary paperwork, Bryan exits through the heavy
door leading to the factory floor and enters the reception area. His eyes roam the re-
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ception area and rest upon Scarlett. He approaches Scarlett booming, “So you must be
the inventory expert—Scarlett Windermere. So glad to finally meet you face to face!
They already got you pouring out your life story, huh? Well, there will be enough time
for that. Right now, let’s get you back to the factory floor to help me solve my inven-
tory problem!”

And with that, Bryan stuffs a pair of safety glasses in Scarlett’s right hand, stuffs
the incomplete security forms in her left hand, and hustles her through the heavy se-
curity door.

As Scarlett walks through the security door, she feels as though she has entered
another world. Machines twice the size of humans line the aisles as far as the eye can
see. These monsters make high-pitched squeals or low, horrifying rumbles as they cut
and grind metal. Surrounding these machines are shelves piled with metal pieces.

As Bryan leads Scarlett down the aisles of the factory, he yells to her over the ma-
chines, “As you well know from the proposal stage of this project, this factory pro-
duces the stationary parts for the military jet engines American Aerospace sells. Most
people think the aerospace industry is real high-tech. Well, not this factory. This fac-
tory is as dirty as they come. Jet engines are made out of a lot of solid metal parts, and
this factory cuts, grinds, and welds those parts.”

“This factory produces over 200 different stationary parts for jet engines. Each jet
engine model requires different parts. And each part requires different raw materials.
Hence, the factory’s current inventory problem.”

“We hold all kinds of raw materials—from rivets to steel sheets—here on the fac-
tory floor, and we currently mismanage our raw materials inventory. We order enough
raw materials to produce a year’s worth of some stationary parts, but only enough raw
materials to produce a week’s worth of others. We waste a ton of money stocking raw
materials that are not needed and lose a ton of money dealing with late deliveries of
orders. We need you to tell us how to control the inventory—how many raw materials
we need to stock for each part, how often we need to order additional raw materials,
and how many we should order.”

As she walks down the aisle, Scarlett studies the shelves and shelves of inventory.
She has quite a mission to accomplish in this factory!

Bryan continues, “Let me tell you how we receive orders for this factory. When-
ever the American Aerospace sales department gets an order for a particular jet engine,
the order is transferred to its assembly plant here on the site. The assembly plant then
submits an order to this factory here for the stationary parts required to assemble the
engine. Unfortunately, because this factory is frequently running out of raw materials,
it takes us an average of a month between the time we receive an order and the time
we deliver the finished order to the assembly plant. The finished order includes all the
stationary parts needed to assemble that particular jet engine. BUT—and that’s a big
but—the delivery time really depends upon which stationary parts are included in the
order.”

Scarlett interrupts Bryan and says, “Then I guess now would be as good a time as
any to start collecting the details of the orders and solving your inventory problem!”

Bryan smiles and says, “That’s the attitude I like to see—chomping at the bit to
solve the problem! Well, I’ll show you to your computer. We just had another con-
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sulting firm complete a data warehouse started by American Aerospace three years ago,
so you can access any of the data you need right from your desktop!” And with a flurry,
Bryan heads back down the aisle.

Scarlett realizes that the inventory system is quite complicated. She remembers a
golden rule from her consulting firm: break down a complex system into simple parts.
She therefore decides to analyze the control of inventory for each stationary part in-
dependently. But with 200 different stationary parts, where should she begin?

She remembers that when the assembly plant receives an order for a particular jet
engine, it places an order with the factory for the stationary parts required to assem-
ble the engine. The factory delivers an order to the assembly plant when all stationary
parts for that order have been completed. The stationary part that takes the longest to
complete in a given order therefore determines the delivery date of the order.

Scarlett decides to begin her analysis with the most time-intensive stationary part
required to assemble the most popular jet engine. She types a command into the com-
puter to determine the most popular jet engine. She learns that the MX332 has received
the largest number of orders over the past year. She types another command to gener-
ate the following printout of the monthly orders for the MX332.

1006 19 INVENTORY THEORY

Month Number of MX332 ordered

June 25
July 31
August 18
September 22
October 40
November 19
December 38
January 21
February 25
March 36
April 34
May 28
June 27

She enters the monthly order quantities for the MX332 into a computerized statistical
program to estimate the underlying distribution. She learns that the orders roughly fol-
low a normal distribution. It appears to Scarlett that the number of orders in a partic-
ular month does not depend on the number of orders in the previous or following
months.

(a) What is the sample mean and sample variance of the set of monthly orders for the MX332?

Scarlett next researches the most time-intensive stationary part required to assemble
the MX332. She types a command into the computer to generate a list of parts required
to assemble the MX332. She then types a command to list the average delivery time



for each part. She learns that part 10003487 typically requires the longest time to com-
plete, and that this part is only used for the MX332. She investigates the pattern for
the part further and learns that over the past year, part 10003487 has taken an average
of one month to complete once an order is placed. She also learns that the factory can
produce the part almost immediately if all the necessary raw materials for the produc-
tion process are on hand. So the completion time actually depends on how long it takes
to obtain these raw materials from the supplier. On those unusual occasions when all
the raw materials already are available in inventory, the completion time for the part
is essentially zero. But typically the completion time is 1�

1
2

� months.
Scarlett performs further analysis on the computer and learns that each MX332 jet

engine requires two parts numbered 10003487. Each part 10003487 accepts one solid
steel part molded into a cylindrical shape as its main raw material input. The data show
that several times the delivery of all the stationary parts for the MX332 to the assem-
bly plant got delayed for up to 1�

1
2

� months only because a part 10003487 was not com-
pleted. And why wasn’t it completed? The factory had run out of those steel parts and
had to wait for another shipment from its supplier! It takes the supplier 1�

1
2

� months to
produce and deliver the steel parts after receiving an order from the factory. Once an
order of steel parts arrives, the factory quickly sets up and executes a production run
to use all the steel parts for producing parts 10003487. Apparently the production prob-
lems in the factory are mainly due to the inventory management for those unassuming
steel parts. And that inventory management appears to be completely out of whack.
The only good news is that there is no significant administrative cost associated with
placing an order for the steel parts with the supplier.

After Scarlett has finished her work on the computer, she heads to Bryan’s office
to obtain the financials needed to complete her analysis. A short meeting with Bryan
yields the following financial information.
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Setup cost for a production run to produce part 10003487 $5,800
Holding cost for machine part 10003487 $750 per part per year
Shortage cost for part 10003487 (includes outsourcing cost, 

cost of production delay, and cost of the loss of future 
orders) $3,250 per part per year

Desired probability that a shortage for machine part 10003487 
will not occur between the time an order for the steel parts 
is placed and the time the order is delivered 0.85

Now Scarlett has all of the information necessary to perform her inventory analysis for
part 10003487!

(b) What is the inventory policy that American Aerospace should implement for part 10003487?
(c) What are the average annual holding costs and setup costs associated with this inventory

policy?



(d) How do the average annual holding costs and setup costs change if the desired probability
that a shortage will not occur between the time an order is placed and the time the order is
delivered is increased to 0.95?

(e) Do you think Scarlett’s independent analysis of each stationary part could generate inaccu-
rate inventory policies? Why or why not?

(f ) Scarlett knows that the aerospace industry is very cyclical—the industry experiences sev-
eral years of high sales, several years of mediocre sales, and several years of low sales.
How would you recommend incorporating this fact into the analysis?
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20 
Forecasting

How much will the economy grow over the next year? Where is the stock market headed?
What about interest rates? How will consumer tastes be changing? What will be the hot
new products?

Forecasters have answers to all these questions. Unfortunately, these answers will
more than likely be wrong. Nobody can accurately predict the future every time.

Nevertheless, the future success of any business depends heavily on how savvy its
management is in spotting trends and developing appropriate strategies. The leaders of
the best companies often seem to have a sixth sense for when to change direction to stay
a step ahead of the competition. These companies seldom get into trouble by badly mis-
estimating what the demand will be for their products. Many other companies do. The
ability to forecast well makes the difference.

The preceding chapter has presented a considerable number of models for the man-
agement of inventories. All these models are based on a forecast of future demand for a
product, or at least a probability distribution for that demand. Therefore, the missing in-
gredient for successfully implementing these inventory models is an approach for fore-
casting demand.

Fortunately, when historical sales data are available, some proven statistical fore-
casting methods have been developed for using these data to forecast future demand.
Such a method assumes that historical trends will continue, so management then needs to
make any adjustments to reflect current changes in the marketplace.

Several judgmental forecasting methods that solely use expert judgment also are
available. These methods are especially valuable when little or no historical sales data are
available or when major changes in the marketplace make these data unreliable for fore-
casting purposes.

Forecasting product demand is just one important application of the various forecast-
ing methods. A variety of applications are surveyed in the first section. The second section
outlines the main judgmental forecasting methods. Section 20.3 then describes time series,
which form the basis for the statistical forecasting methods presented in the subsequent
five sections. Section 20.9 turns to another important type of statistical forecasting method,
regression analysis, where the variable to be forecasted is expressed as a mathematical
function of one or more other variables whose values will be known at the time of the fore-
cast. The chapter then concludes by surveying forecasting practices in U.S. corporations.
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We now will discuss some main areas in which forecasting is widely used. In each case,
we will illustrate this use by mentioning one or more actual applications that have been
described in published articles. A summary table at the end of the section will tell you
where these articles can be found in case you want to read further.

Sales Forecasting

Any company engaged in selling goods needs to forecast the demand for those goods.
Manufacturers need to know how much to produce. Wholesalers and retailers need to
know how much to stock. Substantially underestimating demand is likely to lead to many
lost sales, unhappy customers, and perhaps allowing the competition to gain the upper
hand in the marketplace. On the other hand, significantly overestimating demand also is
very costly due to (1) excessive inventory costs, (2) forced price reductions, (3) unneeded
production or storage capacity, and (4) lost opportunities to market more profitable goods.
Successful marketing and production managers understand very well the importance of
obtaining good sales forecasts.

The Merit Brass Company is a family-owned company that supplies several thousand
products to the pipe, valve, and fittings industry. In 1990, Merit Brass embarked on a mod-
ernization program that emphasized installing OR methodologies in statistical sales fore-
casting and finished-goods inventory management (two activities that go hand in glove).
This program led to major improvements in customer service (as measured by product
availability) while simultaneously achieving substantial cost reductions.

A major Spanish electric utility, Hidroeléctrica Español, has developed and imple-
mented a hierarchy of OR models to assist in managing its system of reservoirs used for
generating hydroelectric power. All these models are driven by forecasts of both energy
demand (this company’s sales) and reservoir inflows. A sophisticated statistical forecast-
ing method is used to forecast energy demand on both a short-term and long-term basis.
A hydrological forecasting model generates the forecasts of reservoir inflows.

Airline companies now depend heavily on the high fares paid by business people trav-
eling on short notice while providing discount fares to others to help fill the seats. The
decision on how to allocate seats to the different fare classes is a crucial one for maxi-
mizing revenue. American Airlines, for example, uses statistical forecasting of the demand
at each fare to make this decision.

Forecasting the Need for Spare Parts

Although effective sales forecasting is a key for virtually any company, some organiza-
tions must rely on other types of forecasts as well. A prime example involves forecasts of
the need for spare parts.

Many companies need to maintain an inventory of spare parts to enable them to quickly
repair either their own equipment or their products sold or leased to customers. In some
cases, this inventory is huge. For example, IBM’s spare-parts inventory described in Sec.
19.8 is valued in the billions of dollars and includes many thousand different parts.

Just as for a finished-goods inventory ready for sale, effective management of a spare-
parts inventory depends upon obtaining a reliable forecast of the demand for that inven-
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tory. Although the types of costs incurred by misestimating demand are somewhat differ-
ent, the consequences may be no less severe for spare parts. For example, the consequence
for an airline not having a spare part available on location when needed to continue fly-
ing an airplane probably is at least one canceled flight.

To support its operation of several hundred aircraft, American Airlines maintains an
extensive inventory of spare parts. Included are over 5,000 different types of rotatable
parts (e.g., landing gear and wing flaps) with an average value of $5,000 per item. When
a rotatable part on an airplane is found to be defective, it is immediately replaced by a
corresponding part in inventory so the airplane can depart. However, the replaced part then
is repaired and placed back into inventory for subsequent use as a replacement part.

American Airlines uses a PC-based forecasting system called the Rotatables Alloca-
tion and Planning System (RAPS) to forecast demand for the rotatable parts and to help
allocate these parts to the various airports. The statistical forecast uses an 18-month his-
tory of parts usage and flying hours for the fleet, and then projects ahead based on planned
flying hours.

Forecasting Production Yields

The yield of a production process refers to the percentage of the completed items that
meet quality standards (perhaps after rework) and so do not need to be discarded. Partic-
ularly with high-technology products, the yield frequently is well under 100 percent.

If the forecast for the production yield is somewhat under 100 percent, the size of the
production run probably should be somewhat larger than the order quantity to provide a
good chance of fulfilling the order with acceptable items. (The difference between the run
size and the order quantity is referred to as the reject allowance.) If an expensive setup
is required for each production run, or if there is only time for one production run, the
reject allowance may need to be quite large. However, an overly large value should be
avoided to prevent excessive production costs.

Obtaining a reliable forecast of production yield is essential for choosing an appro-
priate value of the reject allowance.

This was the case for the Albuquerque Microelectronics Operation, a dedicated pro-
duction source for radiation-hardened microchips. The first phase in the production of its
microchips, the wafer fabrication process, was continuing to provide erratic production
yields. For a given product, the yield typically would be quite small (0 to 40 percent) for
the first several lots and then would gradually increase to a higher range (35 to 75 per-
cent) for later lots. Therefore, a statistical forecasting method that considered this in-
creasing trend was used to forecast the production yield.

Forecasting Economic Trends

With the possible exception of sales forecasting, the most extensive forecasting effort is
devoted to forecasting economic trends on a regional, national, or even international level.
How much will the nation’s gross domestic product grow next quarter? Next year? What
is the forecast for the rate of inflation? The unemployment rate? The balance of trade?

Statistical models to forecast economic trends (commonly called econometric mod-
els) have been developed in a number of governmental agencies, university research cen-
ters, large corporations, and consulting firms, both in the United States and elsewhere.
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Using historical data to project ahead, these econometric models typically consider a very
large number of factors that help drive the economy. Some models include hundreds of
variables and equations. However, except for their size and scope, these models resemble
some of the statistical forecasting methods used by businesses for sales forecasting, etc.

These econometric models can be very influential in determining governmental poli-
cies. For example, the forecasts provided by the U.S. Congressional Budget Office strongly
guide Congress in developing the federal budgets. These forecasts also help businesses in
assessing the general economic outlook.

As an example on a smaller scale, the U.S. Department of Labor contracted with a
consulting firm to develop the unemployment insurance econometric forecasting model
(UIEFM). The model is now in use by state employment security agencies around the na-
tion. By projecting such fundamental economic factors as unemployment rates, wage lev-
els, the size of the labor force covered by unemployment insurance, etc., UIEFM forecasts
how much the state will need to pay in unemployment insurance. By projecting tax inflows
into the state’s unemployment insurance trust fund, UIEFM also forecasts trust fund bal-
ances over a 10-year period. Therefore, UIEFM has proved to be invaluable in managing
state unemployment insurance systems and in guiding related legislative policies.

Forecasting Staffing Needs

One of the major trends in the American economy is a shifting emphasis from manufactur-
ing to services. More and more of our manufactured goods are being produced outside the
country (where labor is cheaper) and then imported. At the same time, an increasing num-
ber of American business firms are specializing in providing a service of some kind (e.g.,
travel, tourism, entertainment, legal aid, health services, financial, educational, design, main-
tenance, etc.). For such a company, forecasting “sales” becomes forecasting the demand for
services, which then translates into forecasting staffing needs to provide those services.

For example, one of the fastest-growing service industries in the United States today
is call centers. A call center receives telephone calls from the general public requesting a
particular type of service. Depending on the center, the service might be providing tech-
nical assistance over the phone, or making a travel reservation, or filling a telephone or-
der for goods, or booking services to be performed later, etc. There now are more than
350,000 call centers in the United States, with over $25 billion invested to date and an
annual growth rate of 20 percent.

As with any service organization, an erroneous forecast of staffing requirements for
a call center has serious consequences. Providing too few agents to answer the telephone
leads to unhappy customers, lost calls, and perhaps lost business. Too many agents cause
excessive personnel costs.

Section 3.5 described a major OR study that involved personnel scheduling at United
Airlines. With over 4,000 reservations sales representatives and support personnel at its
11 reservations offices, and about 1,000 customer service agents at its 10 largest airports,
a computerized planning system was developed to design the work schedules for these
employees. Although several other OR techniques (including linear programming) were
incorporated into this system, statistical forecasting of staffing requirements also was a
key ingredient. This system provided annual savings of over $6 million as well as im-
proved customer service and reduced support staff requirements.
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L.L. Bean is a major retailer of high-quality outdoor goods and apparel. Over 70 per-
cent of its total sales volume is generated through orders taken at the company’s call cen-
ter. Two 800 numbers are provided, one for placing orders and the second for making in-
quiries or reporting problems. Each of the company’s agents is trained to answer just one
of the 800 numbers. Therefore, separate statistical forecasting models were developed to
forecast staffing requirements for the two 800 numbers on a weekly basis. The improved
precision of these models is estimated to have saved L.L. Bean $300,000 annually through
enhanced scheduling efficiency.

Other

Table 20.1 summarizes the actual applications of statistical forecasting methods presented
in this section. The last column cites the issue of Interfaces which includes the article that
describes each application in detail.

All five categories of forecasting applications discussed in this section use the types
of forecasting methods presented in the subsequent sections. There also are other impor-
tant categories (including forecasting weather, the stock market, and prospects for new
products before market testing) that use specialized techniques that are not discussed here.
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TABLE 20.1 Some applications of statistical forecasting methods

Organization Quantity Being Forecasted Issue of Interfaces

Merit Brass Co. Sales of finished goods Jan.–Feb. 1993
Hidroeléctrica Español Energy demand Jan.–Feb. 1990
American Airlines Demand for different fare classes Jan.–Feb. 1992
American Airlines Need for spare parts to repair airplanes July–Aug. 1989
Albuquerque Microelectronics Production yield in wafer fabrication March–April 1994
U.S. Department of Labor Unemployment insurance payments March–April 1988
United Airlines Demand at reservations offices and airports Jan.–Feb. 1986
L.L. Bean Staffing needs at call center Nov.–Dec. 1995

Judgmental forecasting methods are, by their very nature, subjective, and they may in-
volve such qualities as intuition, expert opinion, and experience. They generally lead to
forecasts that are based upon qualitative criteria.

These methods may be used when no data are available for employing a statistical
forecasting method. However, even when good data are available, some decision makers
prefer a judgmental method instead of a formal statistical method. In many other cases,
a combination of the two may be used.

Here is a brief overview of the main judgmental forecasting methods.

1. Manager’s opinion: This is the most informal of the methods, because it simply in-
volves a single manager using his or her best judgment to make the forecast. In some
cases, some data may be available to help make this judgment. In others, the manager
may be drawing solely on experience and an intimate knowledge of the current con-
ditions that drive the forecasted quantity.
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2. Jury of executive opinion: This method is similar to the first one, except now it in-
volves a small group of high-level managers who pool their best judgment to collec-
tively make the forecast. This method may be used for more critical forecasts for which
several executives share responsibility and can provide different types of expertise.

3. Sales force composite: This method is often used for sales forecasting when a com-
pany employs a sales force to help generate sales. It is a bottom-up approach whereby
each salesperson provides an estimate of what sales will be in his or her region. These
estimates then are sent up through the corporate chain of command, with managerial
review at each level, to be aggregated into a corporate sales forecast.

4. Consumer market survey: This method goes even further than the preceding one in
adopting a grass-roots approach to sales forecasting. It involves surveying customers
and potential customers regarding their future purchasing plans and how they would
respond to various new features in products. This input is particularly helpful for de-
signing new products and then in developing the initial forecasts of their sales. It also
is helpful for planning a marketing campaign.

5. Delphi method: This method employs a panel of experts in different locations who
independently fill out a series of questionnaires. However, the results from each ques-
tionnaire are provided with the next one, so each expert then can evaluate this group
information in adjusting his or her responses next time. The goal is to reach a rela-
tively narrow spread of conclusions from most of the experts. The decision makers then
assess this input from the panel of experts to develop the forecast. This involved process
normally is used only at the highest levels of a corporation or government to develop
long-range forecasts of broad trends.

The decision on whether to use one of these judgmental forecasting methods should
be based on an assessment of whether the individuals who would execute the method have
the background needed to make an informed judgment. Another factor is whether the ex-
pertise of these individuals or the availability of relevant historical data (or a combination
of both) appears to provide a better basis for obtaining a reliable forecast.

The next seven sections discuss statistical forecasting methods based on relevant his-
torical data.
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1These times of observation sometimes are actually time periods (months, years, etc.), so we often will refer to
the times as periods.

Most statistical forecasting methods are based on using historical data from a time series.

A time series is a series of observations over time of some quantity of interest
(a random variable). Thus, if Xi is the random variable of interest at time i, and
if observations are taken at times1 i � 1, 2, . . . , t, then the observed values 
{X1 � x1, X2 � x2, . . . , Xt � xt} are a time series.

For example, the recent monthly sales figures for a product comprises a time series, as il-
lustrated in Fig. 20.1.

Because a time series is a description of the past, a logical procedure for forecasting
the future is to make use of these historical data. If the past data are indicative of what
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we can expect in the future, we can postulate an underlying mathematical model that is
representative of the process. The model can then be used to generate forecasts.

In most realistic situations, we do not have complete knowledge of the exact form of
the model that generates the time series, so an approximate model must be chosen. Fre-
quently, the choice is made by observing the pattern of the time series. Several typical
time series patterns are shown in Fig. 20.2. Figure 20.2a displays a typical time series if
the generating process were represented by a constant level superimposed with random
fluctuations. Figure 20.2b displays a typical time series if the generating process were rep-
resented by a linear trend superimposed with random fluctuations. Finally, Fig. 20.2c
shows a time series that might be observed if the generating process were represented by
a constant level superimposed with a seasonal effect together with random fluctuations.
There are many other plausible representations, but these three are particularly useful in
practice and so are considered in this chapter.
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Once the form of the model is chosen, a mathematical representation of the generat-
ing process of the time series can be given. For example, suppose that the generating
process is identified as a constant-level model superimposed with random fluctuations,
as illustrated in Fig. 20.2a. Such a representation can be given by

Xi � A � ei, for i � 1, 2, . . . ,

where Xi is the random variable observed at time i, A is the constant level of the model,
and ei is the random error occurring at time i (assumed to have expected value equal to
zero and constant variance). Let

Ft�1 � forecast of the values of the time series at time t � 1, given the observed
values, X1 � x1, X2 � x2, . . . , Xt � xt.

Because of the random error et�1, it is impossible for Ft�1 to predict the value Xt�1 �
xt�1 precisely, but the goal is to have Ft�1 estimate the constant level A � E(Xt�1) as
closely as possible. It is reasonable to expect that Ft�1 will be a function of at least some
of the observed values of the time series.
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We now present four alternative forecasting methods for the constant-level model in-
troduced in the preceding paragraph. This model, like any other, is only intended to be
an idealized representation of the actual situation. For the real time series, at least small
shifts in the value of A may be occurring occasionally. Each of the following methods
reflects a different assessment of how recently (if at all) a significant shift may have
occurred.

Last-Value Forecasting Method

By interpreting t as the current time, the last-value forecasting procedure uses the value
of the time series observed at time t (xt) as the forecast at time t � 1. Therefore,

Ft�1 � xt.

For example, if xt represents the sales of a particular product in the quarter just ended,
this procedure uses these sales as the forecast of the sales for the next quarter.

This forecasting procedure has the disadvantage of being imprecise; i.e., its variance
is large because it is based upon a sample of size 1. It is worth considering only if (1) the
underlying assumption about the constant-level model is “shaky” and the process is chang-
ing so rapidly that anything before time t is almost irrelevant or misleading or (2) the as-
sumption that the random error et has constant variance is unreasonable and the variance
at time t actually is much smaller than at previous times.

The last-value forecasting method sometimes is called the naive method, because
statisticians consider it naive to use just a sample size of one when additional relevant data
are available. However, when conditions are changing rapidly, it may be that the last value
is the only relevant data point for forecasting the next value under current conditions.
Therefore, decision makers who are anything but naive do occasionally use this method
under such circumstances.
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Averaging Forecasting Method

This method goes to the other extreme. Rather than using just a sample size of one, this
method uses all the data points in the time series and simply averages these points. Thus,
the forecast of what the next data point will turn out to be is

Ft�1 � �
t

i�1
�
x
t
i�.

This estimate is an excellent one if the process is entirely stable, i.e., if the assumptions
about the underlying model are correct. However, frequently there exists skepticism about
the persistence of the underlying model over an extended time. Conditions inevitably
change eventually. Because of a natural reluctance to use very old data, this procedure
generally is limited to young processes.

Moving-Average Forecasting Method

Rather than using very old data that may no longer be relevant, this method averages the
data for only the last n periods as the forecast for the next period, i.e.,

Ft�1 � �
t

i�t�n�1
�
x
n
i�.

Note that this forecast is easily updated from period to period. All that is needed each
time is to lop off the first observation and add the last one.

The moving-average estimator combines the advantages of the last value and aver-
aging estimators in that it uses only recent history and it uses multiple observations. A
disadvantage of this method is that it places as much weight on xt�n�1 as on xt. Intuitively,
one would expect a good method to place more weight on the most recent observation
than on older observations that may be less representative of current conditions. Our next
method does just this.

Exponential Smoothing Forecasting Method

This method uses the formula

Ft�1 � �xt � (1 � �)Ft,

where � (0 � � � 1) is called the smoothing constant. (The choice of � is discussed
later.) Thus, the forecast is just a weighted sum of the last observation xt and the preced-
ing forecast Ft for the period just ended. Because of this recursive relationship between
Ft�1 and Ft, alternatively Ft�1 can be expressed as

Ft�1 � �xt � �(1 � �)xt�1 � �(1 � �)2xt�2 � ���.

In this form, it becomes evident that exponential smoothing gives the most weight to xt

and decreasing weights to earlier observations. Furthermore, the first form reveals that the
forecast is simple to calculate because the data prior to period t need not be retained; all
that is required is xt and the previous forecast Ft.
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Another alternative form for the exponential smoothing technique is given by

Ft�1 � Ft � �(xt � Ft),

which gives a heuristic justification for this method. In particular, the forecast of the time
series at time t � 1 is just the preceding forecast at time t plus the product of the fore-
casting error at time t and a discount factor �. This alternative form is often simpler to use.

A measure of effectiveness of exponential smoothing can be obtained under the as-
sumption that the process is completely stable, so that X1, X2, . . . are independent, iden-
tically distributed random variables with variance 	2. It then follows that (for large t)

var[Ft�1] � �
2
�
�
	2

�
� � �

(2 �
	

�

2

)/�
�,

so that the variance is statistically equivalent to a moving average with (2 � �)/� obser-
vations. For example, if � is chosen equal to 0.1, then (2 � �)/� � 19. Thus, in terms of
its variance, the exponential smoothing method with this value of � is equivalent to the
moving-average method that uses 19 observations. However, if a change in the process
does occur (e.g., if the mean starts increasing), exponential smoothing will react more
quickly with better tracking of the change than the moving-average method.

An important drawback of exponential smoothing is that it lags behind a continuing
trend; i.e., if the constant-level model is incorrect and the mean is increasing steadily, then
the forecast will be several periods behind. However, the procedure can be easily adjusted
for trend (and even seasonally adjusted).

Another disadvantage of exponential smoothing is that it is difficult to choose an ap-
propriate smoothing constant �. Exponential smoothing can be viewed as a statistical filter
that inputs raw data from a stochastic process and outputs smoothed estimates of a mean that
varies with time. If � is chosen to be small, response to change is slow, with resultant smooth
estimators. On the other hand, if � is chosen to be large, response to change is fast, with re-
sultant large variability in the output. Hence, there is a need to compromise, depending upon
the degree of stability of the process. It has been suggested that � should not exceed 0.3 and
that a reasonable choice for � is approximately 0.1. This value can be increased temporarily
if a change in the process is expected or when one is just starting the forecasting. At the start,
a reasonable approach is to choose the forecast for period 2 according to

F2 � �x1 � (1 � �)(initial estimate),

where some initial estimate of the constant level A must be obtained. If past data are avail-
able, such an estimate may be the average of these data.

Your OR Courseware includes a pair of Excel templates for each of the four fore-
casting methods presented in this section. In each use, one template (without seasonality)
applies the method just as described here. The second template (with seasonality) also in-
corporates into the method the seasonal factors discussed in the next section.
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It is fairly common for a time series to have a seasonal pattern with higher values at cer-
tain times of the year than others. For example, this occurs for the sales of a product that
is a popular choice for Christmas gifts. Such a time series violates the basic assumption

20.5 INCORPORATING SEASONAL EFFECTS INTO FORECASTING METHODS



of a constant-level model, so the forecasting methods presented in the preceding section
should not be applied directly.

Fortunately, it is relatively straightforward to make seasonal adjustments in such a
time series so that these forecasting methods based on a constant-level model can still be
applied. We will illustrate the procedure with the following example.

Example. The COMPUTER CLUB WAREHOUSE (commonly referred to as CCW) sells
various computer products at bargain prices by taking telephone orders directly from cus-
tomers at its call center. Figure 20.3 shows the average number of calls received per day in
each of the four quarters of the past three years. Note how the call volume jumps up sharply
in each Quarter 4 because of Christmas sales. There also is a tendency for the call volume
to be a little higher in Quarter 3 than in Quarter 1 or 2 because of back-to-school sales.

To quantify these seasonal effects, the second column of Table 20.2 shows the average
daily call volume for each quarter over the past three years. Underneath this column, the
overall average over all four quarters is calculated to be 7,529. Dividing the average for
each quarter by this overall average gives the seasonal factor shown in the third column.

In general, the seasonal factor for any period of a year (a quarter, a month, etc.)
measures how that period compares to the overall average for an entire year.
Specifically, using historical data, the seasonal factor is calculated to be

Seasonal factor � .

Your OR Courseware includes an Excel template for calculating these seasonal factors.

average for the period
���

overall average

20.5 INCORPORATING SEASONAL EFFECTS INTO FORECASTING METHODS 1019

FIGURE 20.3
The average number of calls received per day at the CCW call center in each of the four
quarters of the past three years.



The Seasonally Adjusted Time Series

It is much easier to analyze a time series and detect new trends if the data are first ad-
justed to remove the effect of seasonal patterns. To remove the seasonal effects from the
time series shown in Fig. 20.3, each of these average daily call volumes needs to be di-
vided by the corresponding seasonal factor given in Table 20.2. Thus, the formula is

Seasonally adjusted call volume ��
ac
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e
�.

Applying this formula to all 12 call volumes in Fig. 20.3 gives the seasonally adjusted
call volumes shown in column F of the spreadsheet in Fig. 20.4.

In effect, these seasonally adjusted call volumes show what the call volumes would
have been if the calls that occur because of the time of the year (Christmas shopping, back-
to-school shopping, etc.) had been spread evenly throughout the year instead. Compare the
plots in Figs. 20.4 and 20.3. After considering the smaller vertical scale in Fig. 20.4, note
how much less fluctuation this figure has than Fig. 20.3 because of removing seasonal ef-
fects. However, this figure still is far from completely flat because fluctuations in call vol-
ume occur for other reasons beside just seasonal effects. For example, hot new products
attract a flurry of calls. A jump also occurs just after the mailing of a catalog. Some ran-
dom fluctuations occur without any apparent explanation. Figure 20.4 enables seeing and
analyzing these fluctuations in sales volumes that are not caused by seasonal effects.

The General Procedure

After seasonally adjusting a time series, any of the forecasting methods presented in the
preceding section (or the next section) can then be applied. Here is an outline of the gen-
eral procedure.

1. Use the following formula to seasonally adjust each value in the time series:

Seasonally adjusted value ��
se

a
a
c
s
t
o
u
n
a
a
l
l
v
f
a
a
l
c
u
t
e
or

�.
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TABLE 20.2 Calculation of the seasonal factors for the 
CCW problem

Three-Year Seasonal
Quarter Average Factor

1 7,019 �
7
7

,
,
0
5

1
2

9
9

� � 0.93

2 6,784 �
6
7

,
,
7
5

8
2

4
9

� � 0.90

3 7,434 �
7
7

,
,
4
5

3
2

4
9

� � 0.99

4 8,880 �
8
7

,
,
8
5

8
2

0
9

� � 1.18

Total � 30,117

Average � �
30,

4
117
� � 7,529.



2. Select a time series forecasting method.
3. Apply this method to the seasonally adjusted time series to obtain a forecast of the

next seasonally adjusted value (or values).
4. Multiply this forecast by the corresponding seasonal factor to obtain a forecast of the

next actual value (without seasonal adjustment).

As mentioned at the end of the preceding section, an Excel template that incorporates
seasonal effects is available in your OR Courseware for each of the forecasting methods
to assist you with combining the method with this procedure.
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FIGURE 20.4
The seasonally adjusted time series for the CCW problem obtained by dividing each
actual average daily call volume in Fig. 20.3 by the corresponding seasonal factor
obtained in Table 20.2.

Recall that the constant-level model introduced in Sec. 20.3 assumes that the sequence of
random variables {X1, X2, . . . , Xt} generating the time series has a constant expected
value denoted by A, where the goal of the forecast Ft�1 is to estimate A as closely as pos-
sible. However, as was illustrated in Fig. 20.2b, some time series violate this assumption
by having a continuing trend where the expected values of successive random variables

20.6 AN EXPONENTIAL SMOOTHING METHOD 
FOR A LINEAR TREND MODEL



keep changing in the same direction. Therefore, a forecasting method based on the con-
stant-level model (perhaps after adjusting for seasonal effects) would do a poor job of
forecasting for such a time series because it would be continually lagging behind the trend.
We now turn to another model that is designed for this kind of time series.

Suppose that the generating process of the observed time series can be represented
by a linear trend superimposed with random fluctuations, as illustrated in Fig. 20.2b. De-
note the slope of the linear trend by B, where the slope is called the trend factor. The
model is represented by

Xi � A � Bi � ei, for i � 1, 2, . . . ,

where Xi is the random variable that is observed at time i, A is a constant, B is the trend
factor, and ei is the random error occurring at time i (assumed to have expected value
equal to zero and constant variance).

For a real time series represented by this model, the assumptions may not be com-
pletely satisfied. It is common to have at least small shifts in the values of A and B oc-
casionally. It is important to detect these shifts relatively quickly and reflect them in the
forecasts. Therefore, practitioners generally prefer a forecasting method that places sub-
stantial weight on recent observations and little if any weight on old observations. The
exponential smoothing method presented next is designed to provide this kind of approach.

Adapting Exponential Smoothing to This Model

The exponential smoothing method introduced in Sec. 20.4 can be adapted to include the
trend factor incorporated into this model. This is done by also using exponential smooth-
ing to estimate this trend factor.

Let

Tt�1 � exponential smoothing estimate of the trend factor B at time t � 1, given
the observed values, X1 � x1, X2 � x2, . . . , Xt � xt.

Given Tt�1, the forecast of the value of the time series at time t � 1 (Ft�1) is obtained
simply by adding Tt�1 to the formula for Ft�1 given in Sec. 20.4, so

Ft�1 � �xt � (1 � �)Ft � Tt�1.

To motivate the procedure for obtaining Tt�1, note that the model assumes that

B � E(Xi�1) � E(Xi), for i � 1, 2, . . . .

Thus, the standard statistical estimator of B would be the average of the observed differ-
ences, x2 � x1, x3 � x2, . . . , xt � xt�1. However, the exponential smoothing approach
recognizes that the parameters of the stochastic process generating the time series (in-
cluding A and B) may actually be gradually shifting over time so that the most recent ob-
servations are the most reliable ones for estimating the current parameters. Let

Lt�1 � latest trend at time t � 1 based on the last two values (xt and xt�1) and the
last two forecasts (Ft and Ft�1).

The exponential smoothing formula used for Lt�1 is

Lt�1 � �(xt � xt�1) � (1 � �)(Ft � Ft�1).
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Then Tt�1 is calculated as

Tt�1 � 
Lt�1 � (1 � 
)Tt,

where 
 is the trend smoothing constant which, like �, must be between 0 and 1. Cal-
culating Lt�1 and Tt�1 in order then permits calculating Ft�1 with the formula given in
the preceding paragraph.

Getting started with this forecasting method requires making two initial estimates
about the status of the time series just prior to beginning forecasting. These initial esti-
mates are

x0 � initial estimate of the expected value of the time series (A) if the conditions
just prior to beginning forecasting were to remain unchanged without any
trend;

T1 � initial estimate of the trend of the time series (B) just prior to beginning
forecasting.

The resulting forecasts for the first two periods are

F1 � x0 � T1,
L2 � �(x1 � x0) � (1 � �)(F1 � x0),
T2 � 
L2 � (1 � 
)T1,
F2 � �x1 � (1 � �)F1 � T2.

The above formulas for Lt�1, Tt�1, and Ft�1 then are used directly to obtain subsequent
forecasts.

Since the calculations involved with this method are relatively involved, a computer
commonly is used to implement the method. Your OR Courseware includes two Excel
templates (one without seasonal adjustments and one with) for this method.

Application of the Method to the CCW Example

Reconsider the example involving the Computer Club Warehouse (CCW) that was intro-
duced in the preceding section. Figure 20.3 shows the time series for this example (rep-
resenting the average daily call volume quarterly for 3 years) and then Fig. 20.4 gives the
seasonally adjusted time series based on the seasonal factors calculated in Table 20.2. We
now will assume that these seasonal factors were determined prior to these three years of
data and that the company then was using exponential smoothing with trend to forecast
the average daily call volume quarter by quarter over the 3 years based on these data.
CCW management has chosen the following initial estimates and smoothing constants:

x0 � 7,500, T1 � 0, � � 0.3, 
 � 0.3.

Working with the seasonally adjusted call volumes given in Fig. 20.4, these initial es-
timates lead to the following seasonally adjusted forecasts.

Y1, Q1: F1 � 7,500 � 0 � 7,500.
Y1, Q2: L2 � 0.3(7,322 � 7,500) � 0.7(7,500 � 7,500) � �53.4.

T2 � 0.3(�53.4) � 0.7(0) � �16.
F2 � 0.3(7,322) � 0.7(7,500) � 16 � 7,431.
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FIGURE 20.5
The Excel template in your OR Courseware for the exponential smoothing with trend
method with seasonal adjustments is applied here to the CCW problem.
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Y1, Q3: L3 � 0.3(7,183 � 7,322) � 0.7(7,431 � 7,500) � �90.
T3 � 0.3(�90) � 0.7(�16) � �38.2.
F3 � 0.3(7,183) � 0.7(7,431) � 38.2 � 7,318.

�

The Excel template in Fig. 20.5 shows the results from these calculations for all 12 quar-
ters over the 3 years, as well as for the upcoming quarter. The middle of the figure shows
the plots of all the seasonally adjusted call volumes and seasonally adjusted forecasts.
Note how each trend up or down in the call volumes causes the forecasts to gradually
trend in the same direction, but then the trend in the forecasts takes a couple of quarters
to turn around when the trend in call volumes suddenly reverses direction. Each number
in column I is calculated by multiplying the seasonally adjusted forecast in column H by
the corresponding seasonal factor in column M to obtain the forecast of the actual value
(not seasonally adjusted) for the average daily call volume. Column J then shows the re-
sulting forecasting errors (the absolute value of the difference between columns D and I).

Forecasting More Than One Time Period Ahead

We have focused thus far on forecasting what will happen in the next time period (the
next quarter in the case of CCW). However, decision makers sometimes need to forecast
further into the future. How can the various forecasting methods be adapted to do this?

In the case of the methods for a constant-level model presented in Sec. 20.4, the fore-
cast for the next period Ft�1 also is the best available forecast for subsequent periods as
well. However, when there is a trend in the data, as we are assuming in this section, it is
important to take this trend into account for long-range forecasts. Exponential smoothing
with trend provides a straightforward way of doing this. In particular, after determining
the estimated trend Tt�1, this method’s forecast for n time periods into the future is

Ft�n � �xt � (1 � �)Ft � nTt�1.

Several forecasting methods now have been presented. How does one choose the appro-
priate method for any particular application? Identifying the underlying model that best
fits the time series (constant-level, linear trend, etc., perhaps in combination with seasonal
effects) is an important first step. Assessing how stable the parameters of the model are,
and so how much reliance can be placed on older data for forecasting, also helps to nar-
row down the selection of the method. However, the final choice between two or three
methods may still not be clear. Some measure of performance is needed.

The goal is to generate forecasts that are as accurate as possible, so it is natural to
base a measure of performance on the forecasting errors.

The forecasting error (also called the residual ) for any period t is the absolute value of
the deviation of the forecast for period t (Ft) from what then turns out to be the observed
value of the time series for period t (xt). Thus, letting Et denote this error,

Et � xt � Ft.

For example, column J of the spreadsheet in Fig. 20.5 gives the forecasting errors when
applying exponential smoothing with trend to the CCW example.
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Given the forecasting errors for n time periods (t � 1, 2, . . . , n), two popular mea-
sures of performance are available. One, called the mean absolute deviation (MAD) is
simply the average of the errors, so

MAD � .

This is the measure shown in cell M31 of Fig. 20.5. (Most of the Excel templates for this
chapter use this measure.) The other measure, called the mean square error (MSE), in-
stead averages the square of the forecasting errors, so

MSE � .

The advantages of MAD are its ease of calculation and its straightforward interpre-
tation. However, the advantage of MSE is that it imposes a relatively large penalty for a
large forecasting error that can have serious consequences for the organization while al-
most ignoring inconsequentially small forecasting errors. In practice, managers often pre-
fer to use MAD, whereas statisticians generally prefer MSE.

Either measure of performance might be used in two different ways. One is to com-
pare alternative forecasting methods in order to choose one with which to begin fore-
casting. This is done by applying the methods retrospectively to the time series in the past
(assuming such data exist). This is a very useful approach as long as the future behavior
of the time series is expected to resemble its past behavior. Similarly, this retrospective
testing can be used to help select the parameters for a particular forecasting method, e.g.,
the smoothing constant(s) for exponential smoothing. Second, after the real forecasting
begins with some method, one of the measures of performance (or possibly both) nor-
mally would be calculated periodically to monitor how well the method is performing. If
the performance is disappointing, the same measure of performance can be calculated for
alternative forecasting methods to see if any of them would have performed better.

�
n

t�1
Et

2

�
n

�
n

t�1
Et

�
n
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In practice, a forecasting method often is chosen without adequately checking whether the
underlying model is an appropriate one for the application. The beauty of the Box-Jenk-
ins method is that it carefully coordinates the model and the procedure. (Practitioners of-
ten use this name for the method because it was developed by G.E.P. Box and G.M. Jenk-
ins. An alternative name is the ARIMA method, which is an acronym for autoregressive
integrated moving average.) This method employs a systematic approach to identifying an
appropriate model, chosen from a rich class of models. The historical data are used to test
the validity of the model. The model also generates an appropriate forecasting procedure.

To accomplish all this, the Box-Jenkins method requires a great amount of past data
(a minimum of 50 time periods), so it is used only for major applications. It also is a so-
phisticated and complex technique, so we will provide only a conceptual overview of the
method. (See Selected References 2 and 6 for further details.)

20.8 BOX-JENKINS METHOD



The Box-Jenkins method is iterative in nature. First, a model is chosen. To choose
this model, we must compute autocorrelations and partial autocorrelations and examine
their patterns. An autocorrelation measures the correlation between time series values sep-
arated by a fixed number of periods. This fixed number of periods is called the lag. There-
fore, the autocorrelation for a lag of two periods measures the correlation between every
other observation; i.e., it is the correlation between the original time series and the same
series moved forward two periods. The partial autocorrelation is a conditional autocor-
relation between the original time series and the same series moved forward a fixed num-
ber of periods, holding the effect of the other lagged times fixed. Good estimates of both
the autocorrelations and the partial autocorrelations for all lags can be obtained by using
a computer to calculate the sample autocorrelations and the sample partial autocorrela-
tions. (These are “good” estimates because we are assuming large amounts of data.)

From the autocorrelations and the partial autocorrelations, we can identify the functional
form of one or more possible models because a rich class of models is characterized by these
quantities. Next we must estimate the parameters associated with the model by using the his-
torical data. Then we can compute the residuals (the forecasting errors when the forecasting
is done retrospectively with the historical data) and examine their behavior. Similarly, we can
examine the behavior of the estimated parameters. If both the residuals and the estimated pa-
rameters behave as expected under the presumed model, the model appears to be validated.
If they do not, then the model should be modified and the procedure repeated until a model
is validated. At this point, we can obtain an actual forecast for the next period.

For example, suppose that the sample autocorrelations and the sample partial auto-
correlations have the patterns shown in Fig. 20.6. The sample autocorrelations appear to
decrease exponentially as a function of the time lags, while the same partial autocorrela-
tions have spikes at the first and second time lags followed by values that seem to be of
negligible magnitude. This behavior is characteristic of the functional form

Xt � B0 � B1Xt�1 � B2Xt�2 � et.

Assuming this functional form, we use the time series data to estimate B0, B1, and B2.
Denote these estimates by b0, b1, and b2, respectively. Together with the time series data,
we then obtain the residuals

xt � (b0 � b1xt�1 � b2xt�2).
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Plot of sample autocorrelation 
and partial autocorrelation
versus time lags.



If the assumed functional form is adequate, the residuals and the estimated parameters
should behave in a predictable manner. In particular, the sample residuals should behave
approximately as independent, normally distributed random variables, each having mean
0 and variance 	2 (assuming that et, the random error at time period t, has mean 0 and
variance 	2). The estimated parameters should be uncorrelated and significantly different
from zero. Statistical tests are available for this diagnostic checking.

The Box-Jenkins procedure appears to be a complex one, and it is. Fortunately, com-
puter software is available. The programs calculate the sample autocorrelations and the
sample partial autocorrelations necessary for identifying the form of the model. They also
estimate the parameters of the model and do the diagnostic checking. These programs, how-
ever, cannot accurately identify one or more models that are compatible with the autocor-
relations and the partial autocorrelations. Expert human judgment is required. This exper-
tise can be acquired, but it is beyond the scope of this text. Although the Box-Jenkins
method is complicated, the resulting forecasts are extremely accurate and, when the time
horizon is short, better than most other forecasting methods. Furthermore, the procedure
produces a measure of the forecasting error.
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In the preceding six sections, we have focused on time series forecasting methods, i.e.,
methods that forecast the next value in a time series based on its previous values. We now
turn to another type of approach to forecasting.

Causal Forecasting

In some cases, the variable to be forecasted has a rather direct relationship with one or
more other variables whose values will be known at the time of the forecast. If so, it would
make sense to base the forecast on this relationship. This kind of approach is called causal
forecasting.

Causal forecasting obtains a forecast of the quantity of interest (the dependent variable)
by relating it directly to one or more other quantities (the independent variables) that drive
the quantity of interest.

Table 20.3 shows some examples of the kinds of situations where causal forecasting
sometimes is used. In each of the first three cases, the indicated dependent variable can
be expected to go up or down rather directly with the independent variable(s) listed in the
rightmost column. The last case also applies when some quantity of interest (e.g., sales

20.9 CAUSAL FORECASTING WITH LINEAR REGRESSION

TABLE 20.3 Possible examples of causal forecasting

Possible Dependent Possible Independent
Type of Forecasting Variable Variables

Sales Sales of a product Amount of advertising
Spare parts Demand for spare parts Usage of equipment
Economic trends Gross domestic product Various economic factors
Any quantity This same quantity Time



of a product) tends to follow a steady trend upward (or downward) with the passage of
time (the independent variable that drives the quantity of interest).

As one specific example, Sec. 20.1 includes a description of American Airline’s elab-
orate system for forecasting its need for expensive spare parts (its “rotatable” parts) to
continue operating its fleet of several hundred airplanes. This system uses causal fore-
casting, where the demand for spare parts is the dependent variable and the number of
flying hours is the independent variable. This makes sense because the demand for spare
parts should be roughly proportional to the number of flying hours for the fleet.

Linear Regression

We will focus on the type of causal forecasting where the mathematical relationship between
the dependent variable and the independent variable(s) is assumed to be a linear one (plus
some random fluctuations). The analysis in this case is referred to as linear regression.

To illustrate the linear regression approach, suppose that a publisher of textbooks is
concerned about the initial press run for her books. She sells books both through book-
stores and through mail orders. This latter method uses an extensive advertising campaign
on line, as well as through publishing media and direct mail. The advertising campaign
is conducted prior to the publication of the book. The sales manager has noted that there
is a rather interesting linear relationship between the number of mail orders and the num-
ber sold through bookstores during the first year. He suggests that this relationship be ex-
ploited to determine the initial press run for subsequent books.

Thus, if the number of mail order sales for a book is denoted by X and the number
of bookstore sales by Y, then the random variables X and Y exhibit a degree of associa-
tion. However there is no functional relationship between these two random variables;
i.e., given the number of mail order sales, one does not expect to determine exactly the
number of bookstore sales. For any given number of mail order sales, there is a range of
possible bookstore sales, and vice versa.

What, then, is meant by the statement, “The sales manager has noted that there is a
rather interesting linear relationship between the number of mail orders and the number
sold through bookstores during the first year”? Such a statement implies that the expected
value of the number of bookstore sales is linear with respect to the number of mail order
sales, i.e.,

E[YX � x] � A � Bx.

Thus, if the number of mail order sales is x for many different books, the average num-
ber of corresponding bookstore sales would tend to be approximately A � Bx. This rela-
tionship between X and Y is referred to as a degree of association model.

As already suggested in Table 20.3, other examples of this degree of association model
can easily be found. A college admissions officer may be interested in the relationship be-
tween a student’s performance on the college entrance examination and subsequent per-
formance in college. An engineer may be interested in the relationship between tensile
strength and hardness of a material. An economist may wish to predict a measure of in-
flation as a function of the cost of living index, and so on.

The degree of association model is not the only model of interest. In some cases,
there exists a functional relationship between two variables that may be linked linearly.
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In a forecasting context, one of the two variables is time, while the other is the variable
of interest. In Sec. 20.6, such an example was mentioned in the context of the generating
process of the time series being represented by a linear trend superimposed with random
fluctuations, i.e.,

Xt � A � Bt � et,

where A is a constant, B is the slope, and et is the random error, assumed to have expected
value equal to zero and constant variance. (The symbol Xt can also be read as X given t or
as Xt.) It follows that

E(Xt) � A � Bt.

Note that both the degree of association model and the exact functional relationship
model lead to the same linear relationship, and their subsequent treatment is almost iden-
tical. Hence, the publishing example will be explored further to illustrate how to treat both
kinds of models, although the special structure of the model

E(Xt) � A � Bt,

with t taking on integer values starting with 1, leads to certain simplified expressions. In
the standard notation of regression analysis, X represents the independent variable and
Y represents the dependent variable of interest. Consequently, the notational expression
for this special time series model now becomes

Yt � A � Bt � et.

Method of Least Squares

Suppose that bookstore sales and mail order sales are given for 15 books. These data ap-
pear in Table 20.4, and the resulting plot is given in Fig. 20.7.
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TABLE 20.4 Data for the mail-order and 
bookstore sales example

Mail-Order Sales Bookstore Sales

1,310 4,360
1,313 4,590
1,320 4,520
1,322 4,770
1,338 4,760
1,340 5,070
1,347 5,230
1,355 5,080
1,360 5,550
1,364 5,390
1,373 5,670
1,376 5,490
1,384 5,810
1,395 6,060
1,400 5,940



It is evident that the points in Fig. 20.7 do not lie on a straight line. Hence, it is not
clear where the line should be drawn to show the linear relationship. Suppose that an ar-
bitrary line, given by the expression y~ � a � bx, is drawn through the data. A measure of
how well this line fits the data can be obtained by computing the sum of squares of the
vertical deviations of the actual points from the fitted line. Thus, let yi represent the book-
store sales of the ith book and xi the corresponding mail order sales. Denote by y~i the
point on the fitted line corresponding to the mail order sales of xi. The proposed measure
of fit is then given by

Q � (y1 � y~1)2 � (y2 � y~2)2 � ��� � (y15 � y~15)2 � �
15

i�1
(yi � y~i)

2.
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The usual method for identifying the “best” fitted line is the method of least squares.
This method chooses that line a � bx that makes Q a minimum. Thus, a and b are ob-
tained simply by setting the partial derivatives of Q with respect to a and b equal to zero
and solving the resulting equations. This method yields the solution

b � �

and

a � y� � bx�,

where

x� � �
n

i�1
�
x
n
i�

and

y� � �
n

i�1
�
y
n
i�.

(Note that y� is not the same as y~ � a � bx discussed in the preceding paragraph.)
For the publishing example, the data in Table 20.4 and Fig. 20.7 yield

x� � 1,353.1,

y� � 5,219.3,

�
15

i�1
(xi � x�)(yi � y�) � 214,543.9,

�
15

i�1
(xi � x�)2 � 11,966,

a � �19,041.9,
b � 17.930.

Hence, the least-squares estimate of bookstore sales y~ with mail order sales x is given by

y~ � �19,041.9 � 17.930x,

and this is the line drawn in Fig. 20.7. Such a line is referred to as a regression line.
An Excel template called Linear Regression is available in your OR Courseware for

calculating a regression line in this way.
This regression line is useful for forecasting purposes. For a given value of x, the cor-

responding value of y represents the forecast.
The decision maker may be interested in some measure of uncertainty that is as-

sociated with this forecast. This measure is easily obtained provided that certain as-

�
n

i�1
xiyi � ��

n

i�1
xi �

n

i�1
yi��n

���

�
n

i�1
xi

2 � ��
n

i�1
xi�

2

�n

�
n

i�1
(xi � x�)(yi � y�)

��

�
n

i�1
(xi � x�)2
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sumptions can be made. Therefore, for the remainder of this section, it is assumed 
that

1. A random sample of n pairs (x1, Y1), (x2, Y2), . . . , (xn, Yn) is to be taken.
2. The Yi are normally distributed with mean A � Bxi and variance 	2 (independent of i).

The assumption that Yi is normally distributed is not a critical assumption in deter-
mining the uncertainty in the forecast, but the assumption of constant variance is crucial.
Furthermore, an estimate of this variance is required.

An unbiased estimate of 	2 is given by sy
2
x, where

sy
2
x � �

n

i�1
�
(y

n
i �

�
y~

2
i)

2

�.

Confidence Interval Estimation of E(Yx � x*)

A very important reason for obtaining the linear relationship between two variables is to
use the line for future decision making. From the regression line, it is possible to estimate
E(Yx) by a point estimate (the forecast) and a confidence interval estimate (a measure
of forecast uncertainty).

For example, the publisher might want to use this approach to estimate the expected
number of bookstore sales corresponding to mail order sales of, say, 1,400, by both a point
estimate and a confidence interval estimate for forecasting purposes.

A point estimate of E(Yx � x*) is given by

y~* � a � bx*,

where x* denotes the given value of the independent variable and y~* is the corresponding
point estimate.

The endpoints of a (100)(1 � �) percent confidence interval for E(Yx � x*) are
given by

a � bx* � t�/2;n�2syx��
1
n

� �		
and

a � bx* � t�/2;n�2syx ��
1
n

� �		,

where sy
2
x is the estimate of 	2, and t�/2;n�2 is the 100�/2 percentage point of the t dis-

tribution with n � 2 degrees of freedom (see Table A5.2 of Appendix 5). Note that the in-
terval is narrowest where x* � x�, and it becomes wider as x* departs from the mean.

In the publishing example with x* � 1,400, sy
2
x is computed from the data in Table

20.4 to be 17,030, so syx � 130.5. If a 95 percent confidence interval is required, Table
A5.2 gives t0.025;13 � 2.160. The earlier calculation of a and b yields

a � bx* � �19,041.9 � 17.930(1,400) � 6,060

(x* � x�)2

��

�
n

i�1
(xi � x�)2

(x* � x�)2

��

�
n

i�1
(xi � x�)2
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as the point estimate of E(Y1,400), that is, the forecast. Consequentially, the confidence
limits corresponding to mail order sales of 1,400 are

Lower confidence limit � 6,060 � 2.160(130.5)��
1
1
5
� �	�

1
4
1
6
,9
.9
6

2

6
�	

� 5,919,

Upper confidence limit � 6,060 � 2.160(130.5)��
1
1
5
� �	�

1
4
1
6
,9
.9
6

2

6
�	

� 6,201.

The fact that the confidence interval was obtained at a data point (x � 1,400) is purely
coincidental.

The Excel template for linear regression in your OR Courseware does most of the
computational work involved in calculating these confidence limits. In addition to com-

puting a and b (the regression line), it calculates sy
2
x, x�, and �

n

i�1
(xi � x�)2.

Predictions

The confidence interval statement for the expected number of bookstore sales corre-
sponding to mail order sales of 1,400 may be useful for budgeting purposes, but it is not
too useful for making decisions about the actual press run. Instead of obtaining bounds
on the expected number of bookstore sales, this kind of decision requires bounds on what
the actual bookstore sales will be, i.e., a prediction interval on the value that the ran-
dom variable (bookstore sales) takes on. This measure is a different measure of forecast
uncertainty.

The two endpoints of a prediction interval are given by the expressions

a � bx� � t�/2;n�2syx�1 � �
1
n

�	 �		
and

a � bx� � t�/2;n�2syx�1 � �
1
n

�	 �		
For any given value of x (denoted here by x�), the probability is 1 � � that the value of
the future Y� associated with x� will fall in this interval.

Thus, in the publishing example, if x� is 1,400, then the corresponding 95 percent
prediction interval for the number of bookstore sales is given by 6,060 � 315, which is
naturally wider than the confidence interval for the expected number of bookstore sales,
6,060 � 141.

This method of finding a prediction interval works fine if it is only being done once.
However, it is not feasible to use the same data to find multiple prediction intervals with
various values of x� in this way and then specify a probability that all these predictions
will be correct. For example, suppose that the publisher wants prediction intervals for sev-

(x� � x�)2

��

�
n

i�1
(xi � x�)2

(x� � x�)2

��

�
n

i�1
(xi � x�)2
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eral different books. For each individual book, she still is able to use these expressions to
find the prediction interval and then make the prediction that the bookstore sales will be
within this interval, where the probability is 1 � � that the prediction will be correct.
However, what she cannot do is specify a probability that all these predictions will be cor-
rect. The reason is that these predictions are all based upon the same statistical data, so
the predictions are not statistically independent. If the predictions were independent and
if k future bookstore sales were being predicted, with each prediction being made with
probability 1 � �, then the probability would be (1 � �)k that all k predictions of future
bookstore sales will be correct. Unfortunately, the predictions are not independent, so the
actual probability cannot be calculated, and (1 � �)k does not even provide a reasonable
approximation.

This difficulty can be overcome by using simultaneous tolerance intervals. Using
this technique, the publisher can take the mail order sales of any book, find an interval
(based on the previously determined linear regression line) that will contain the actual
bookstore sales with probability at least 1 � �, and repeat this for any number of books
having the same or different mail order sales. Furthermore, the probability is P that all
these predictions will be correct. An alternative interpretation is as follows. If every pub-
lisher followed this procedure, each using his or her own linear regression line, then 100P
percent of the publishers (on average) would find that at least 100(1 � �) percent of their
bookstore sales fell into the predicted intervals. The expression for the endpoints of each
such tolerance interval is given by

a � bx� � c**syx��
1
n

� �		
and

a � bx� � c**syx��
1
n

� �		,

where c** is given in Table 20.5.
Thus, the publisher can predict that the bookstore sales corresponding to known mail

order sales will fall in these tolerance intervals. Such statements can be made for as many
books as the publisher desires. Furthermore, the probability is P that at least 100(1 � �)
percent of bookstore sales corresponding to mail order sales will fall in these intervals. If
P is chosen as 0.90 and � � 0.05, the appropriate value of c** is 11.625. Hence, the num-
ber of bookstore sales corresponding to mail order sales of 1,400 books is predicted to
fall in the interval 6,060 � 759. If another book had mail order sales of 1,353, the book-
store sales are predicted to fall in the interval 5,258 � 390, and so on. At least 95 percent
of the bookstore sales will fall into their predicted intervals, and these statements are made
with confidence 0.90.

To summarize, we now have described three measures of forecast uncertainty. The
first (in the preceding subsection) is a confidence interval on the expected value of the
random variable Y (for example, bookstore sales) given the observed value x of the inde-
pendent variable X (for example, mail order sales). The second is a prediction interval on

(x� � x�)2

��

�
n

i�1
(xi � x�)2

(x� � x�)2

��

�
n

i�1
(xi � x�)2
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the actual value that Y will take on, given x. The third is simultaneous tolerance intervals
on a succession of actual values that Y will take on given a succession of observed val-
ues of X.
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TABLE 20.5 Values of c**

n � � 0.50 � � 0.25 � � 0.10 � � 0.05 � � 0.01 � � 0.001

P � 0.90

4 7.471 10.160 13.069 14.953 18.663 23.003
6 5.380 7.453 9.698 11.150 14.014 17.363
8 5.037 7.082 9.292 10.722 13.543 16.837

10 4.983 7.093 9.366 10.836 13.733 17.118
12 5.023 7.221 9.586 11.112 14.121 17.634
14 5.101 7.394 9.857 11.447 14.577 18.232
16 5.197 7.586 10.150 11.803 15.057 18.856
18 5.300 7.786 10.449 12.165 15.542 19.484
20 5.408 7.987 10.747 12.526 16.023 20.140

P � 0.95

4 10.756 14.597 18.751 21.445 26.760 32.982
6 6.652 9.166 11.899 13.669 17.167 21.266
8 5.933 8.281 10.831 12.484 15.750 19.568

10 5.728 8.080 10.632 12.286 15.553 19.369
12 5.684 8.093 10.701 12.391 15.724 19.619
14 5.711 8.194 10.880 12.617 16.045 20.050
16 5.771 8.337 11.107 12.898 16.431 20.559
18 5.848 8.499 11.357 13.204 16.845 21.097
20 5.937 8.672 11.619 13.521 17.272 21.652

P � 0.99

4 24.466 33.019 42.398 48.620 60.500 74.642
6 10.444 14.285 18.483 21.215 26.606 32.920
8 8.290 11.453 14.918 17.166 21.652 26.860

10 7.567 10.539 13.796 15.911 20.097 24.997
12 7.258 10.182 13.383 15.479 19.579 24.403
14 7.127 10.063 13.267 15.355 19.485 24.316
16 7.079 10.055 13.306 15.410 19.582 24.467
18 7.074 10.111 13.404 15.552 19.794 24.746
20 7.108 10.198 13.566 15.745 20.065 25.122

Source: Reprinted by permission from G. J. Lieberman and R. G. Miller, “Simultaneous Tolerance In-
tervals in Regression,” Biometrika, 50(1 and 2): 164, 1963.

You now have seen the major forecasting methods used in practice. We conclude with a
brief look at how widely the various methods are used.

To begin, consider the actual forecasting applications discussed in Sec. 20.1 and sum-
marized in Table 20.1 there. Most of this table is repeated here in Table 20.6, but the right-
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most column now identifies which forecasting method was used in each application. Not
surprisingly, these major forecasting projects chose one of the more sophisticated statis-
tical forecasting methods. (The most sophisticated is the ARIMA method, commonly called
the Box-Jenkins method, that is described in Sec. 20.8.)

Every company needs to do at least some forecasting, but their methods often are not
as sophisticated as with these major projects. Some insight into their general approach
was provided by a survey conducted a few years ago1 of sales forecasting practices at 500
U.S. corporations.

This survey indicates that, generally speaking, judgmental forecasting methods are
somewhat more widely used than statistical methods. The main reasons given for using
judgmental methods were accuracy and difficulty in obtaining the data required for sta-
tistical methods. Comments also were made that upper management is not familiar with
quantitative techniques, that judgmental methods create a sense of ownership, and that
these methods add a commonsense element to the forecast.

Among the judgmental methods, the most popular is a jury of executive opinion. This
is especially true for companywide or industry sales forecasts but also holds true by a
small margin over manager’s opinion when forecasting sales of individual products or
families of products.

Statistical forecasting methods also are fairly widely used, especially in companies
with high sales. Compared to earlier surveys, familiarity with such methods is increasing.
However, many survey respondents cited better data availability as the improvement they
most wanted to see in their organizations. The availability of good data is crucial for the
use of these methods.

The survey indicates that the moving-average method and linear regression are the most
widely used statistical forecasting methods. The moving-average method is more popular for
short- and medium-range forecasts (less than a year), as well as for forecasting sales of indi-
vidual products and families of products. Linear regression is more popular for longer-range
forecasts and for forecasting either companywide or industry sales. Both exponential smooth-
ing and the last-value method also receive considerable use. However, the highest dissatisfac-
tion is with the last-value method, and its popularity is decreasing compared to earlier surveys.

When statistical forecasting methods are used, it is fairly common to also use judg-
mental methods to adjust the forecasts.
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TABLE 20.6 The forecasting methods used in the actual applications presented in Section 20.1

Organization Quantity Being Forecasted Forecasting Model

Merit Brass Co. Sales of finished goods Exponential smoothing
Hidroeléctrica Español Energy demand ARIMA (Box-Jenkins), etc.
American Airlines Demand for different fare classes Exponential smoothing
American Airlines Need for spare parts to repair airplanes Linear regression
Albuquerque Microelectronics Production yield in wafer fabrication Exponential smoothing with a linear trend
U.S. Department of Labor Unemployment insurance payments Linear regression
United Airlines Demand at reservation offices and airports ARIMA (Box-Jenkins)
L.L. Bean Staffing needs at call center ARIMA (Box-Jenkins)

1N. R. Sanders and K. B. Manrodt, “Forecasting Practices in U.S. Corporations: Survey Results,” Interfaces,
24: 92–100, March–April 1994.



As managers become more familiar with statistical methods, and more used to using the
computer to compile data and implement OR techniques, we anticipate a continuing increase
in the usage of statistical forecasting methods. However, there always will be an important
role for judgmental methods, both alone and in combination with statistical methods.
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The future success of any business depends heavily on the ability of its management to
forecast well. Judgmental forecasting methods often play an important role in this process.
However, the ability to forecast well is greatly enhanced if historical data are available to
help guide the development of a statistical forecasting method. By studying these data, an
appropriate model can be structured. A forecasting method that behaves well under the
model should be selected. This method may require choosing one or more parameters—
e.g., the smoothing constant � in exponential smoothing—and the historical data may
prove useful in making this choice. After forecasting begins, the performance should be
monitored carefully to assess whether modifications should be made in the method.
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To the left of each of the following problems (or their parts), we
have inserted a T whenever the corresponding template listed above
can be helpful. An asterisk on the problem number indicates that
at least a partial answer is given in the back of the book.

20.1-1. Select one of the applications of statistical forecasting
methods listed in Table 20.1. Read the article describing the ap-
plication in the indicated issue of Interfaces. Write a two-page sum-
mary of the application and the benefits it provided.

20.1-2. Select three of the applications of statistical forecasting
methods listed in Table 20.1. Read the articles describing the ap-
plications in the indicated issues of Interfaces. For each one, write
a one-page summary of the application and the benefits it provided.

20.4-1.* The Hammaker Company’s newest product has had the
following sales during its first five months: 5 17 29 41 39. The
sales manager now wants a forecast of sales in the next month.
(Use hand calculations rather than an Excel template.)
(a) Use the last-value method.
(b) Use the averaging method.
(c) Use the moving-average method with the 3 most recent months.
(d) Given the sales pattern so far, do any of these methods seem

inappropriate for obtaining the forecast? Why?

20.4-2. Sales of stoves have been going well for the Good-Value
Department Store. These sales for the past five months have been
15 18 12 17 13. Use the following methods to obtain a forecast of
sales for the next month. (Use hand calculations rather than an Ex-
cel template.)
(a) The last-value method.
(b) The averaging method.
(c) The moving-average method with 3 months.
(d) If you feel that the conditions affecting sales next month will

be the same as in the last five months, which of these meth-
ods do you prefer for obtaining the forecast? Why?

20.4-3.* You are using the moving-average forecasting method
based upon the last four observations. When making the forecast for

PROBLEMS

the last period, the oldest of the four observations was 1,945 and the
forecast was 2,083. The true value for the last period then turned out
to be 1,977. What is your new forecast for the next period?

20.4-4. You are using the moving-average forecasting method
based upon sales in the last three months to forecast sales for the
next month. When making the forecast for last month, sales for the
third month before were 805. The forecast for last month was 782
and then the actual sales turned out to be 793. What is your new
forecast for next month?

20.4-5. After graduating from college with a degree in mathemat-
ical statistics, Ann Preston has been hired by the Monty Ward Com-
pany to apply statistical methods for forecasting the company’s
sales. For one of the company’s products, the moving-average
method based upon sales in the 10 most recent months already is
being used. Ann’s first task is to update last month’s forecast to
obtain the forecast for next month. She learns that the forecast for
last month was 1,551 and that the actual sales then turned out to
be 1,532. She also learns that the sales for the tenth month before
last month was 1,632. What is Ann’s forecast for next month?

20.4-6. The J.J. Bone Company uses exponential smoothing to
forecast the average daily call volume at its call center. The fore-
cast for last month was 782, and then the actual value turned out
to be 792. Obtain the forecast for next month for each of the fol-
lowing values of the smoothing constant: � � 0.1, 0.3, 0.5.

20.4-7.* You are using exponential smoothing to obtain monthly
forecasts of the sales of a certain product. The forecast for last
month was 2,083, and then the actual sales turned out to be 1,973.
Obtain the forecast for next month for each of the following val-
ues of the smoothing constant: � � 0.1, 0.3, 0.5.

20.4-8. If � is set equal to 0 or 1 in the exponential smoothing ex-
pression, what happens to the forecast?

20.4-9. A company uses exponential smoothing with � � �
1
2

� to fore-
cast demand for a product. For each month, the company keeps a



(a) Using only data in the table for March, April, May, and June,
determine the actual demands in April and May.

(b) Suppose now that a clerical error is discovered; the actual de-
mand in January was 432, not 400, as shown in the table. Us-
ing only the actual demands going back to January (even
though the February actual demand is unknown), give the cor-
rected forecast for June.

20.5-1. Figure 20.3 shows CCW’s average daily call volume for
each quarter of the past three years, and column F of Fig. 20.4
gives the seasonally adjusted call volumes. Management now won-
ders what these seasonally adjusted call volumes would have been
if the company had started using seasonal factors two years ago
rather than applying them retrospectively now. (Use hand calcula-
tions rather than an Excel template.)
(a) Use only the call volumes in Year 1 to determine the seasonal

factors for Year 2 (so that the “average” call volume for each
quarter is just the actual call volume for that quarter in Year 1).

(b) Use these seasonal factors to determine the seasonally adjusted
call volumes for Year 2.

(c) Use the call volumes in Year 1 and 2 to determine the seasonal
factors for Year 3.

(d) Use the seasonal factors obtained in part (c) to determine the
seasonally adjusted call volumes for Year 3.

20.5-2. Even when the economy is holding steady, the unemploy-
ment rate tends to fluctuate because of seasonal
effects. For example, unemployment generally
goes up in Quarter 3 (summer) as students (in-
cluding new graduates) enter the labor market. The
unemployment rate then tends to go down in Quar-
ter 4 (fall) as students return to school and tem-
porary help is hired for the Christmas season.
Therefore, using seasonal factors to obtain a sea-
sonally adjusted unemployment rate is helpful for
painting a truer picture of economic trends.

Over the past 10 years, one state’s average unemployment
rates (not seasonally adjusted) in Quarters 1, 2, 3, and 4 have been
6.2 percent, 6.0 percent, 7.5 percent, and 5.5 percent, respectively.
The overall average has been 6.3 percent. (Use hand calculations
below rather than an Excel template.)
(a) Determine the seasonal factors for the four quarters.

(b) Over the next year, the unemployment rates (not seasonally ad-
justed) for the four quarters turn out to be 7.8 percent, 7.4 per-
cent, 8.7 percent, and 6.1 percent. Determine the seasonally
adjusted unemployment rates for the four quarters. What does
this progression of rates suggest about whether the state’s econ-
omy is improving?

20.5-3. Ralph Billett is the manager of a real estate agency. He
now wishes to develop a forecast of the number of houses that will
be sold by the agency over the next year.

The agency’s quarter-by-quarter sales figures over the last
three years are shown below.

record of the forecast demand (made at the end of the preceding
month) and the actual demand. Some of the records have been lost;
the remaining data appear in the table below.
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January February March April May June

Forecast 400 380 390 380
Actual 400 360 — —

(Use hand calculations below rather than an Excel template.)
(a) Determine the seasonal factors for the four quarters.
(b) After considering seasonal effects, use the last-value method

to forecast sales in Quarter 1 of next year.
(c) Assuming that each of the quarterly forecasts is correct, what

would the last-value method forecast as the sales in each of
the four quarters next year?

(d) Based on his assessment of the current state of the housing
market, Ralph’s best judgment is that the agency will sell 100
houses next year. Given this forecast for the year, what is the
quarter-by-quarter forecast according to the seasonal factors?

20.5-4. A manufacturer sells a certain product in batches of 100
to wholesalers. The following table shows the quarterly sales fig-
ure for this product over the last several years.

Quarter Year 1 Year 2 Year 3

1 23 19 21
2 22 21 26
3 31 27 32
4 26 24 28

Quarter Quarter Quarter Quarter Quarter
of 1996 Sales of 1997 Sales of 1998 Sales of 1999 Sales of 2000 Sales

1 6,900 1 8,200 1 9,400 1 11,400 1 8,800
2 6,700 2 7,000 2 9,200 2 10,000 2 7,600
3 7,900 3 7,300 3 9,800 3 9,400 3 7,500
4 7,100 4 7,500 4 9,900 4 8,400 4 —

The company incorporates seasonal effects into its forecasting of
future sales. It then uses exponential smoothing (with seasonality)
with a smoothing constant of � � 0.1 to make these forecasts.
When starting the forecasting, it uses the average sales over the
past four quarters to make the initial estimate of the seasonally ad-
justed constant level A for the underlying constant-level model.



ing constant of 
 � 0.2, to forecast sales for the next month each
time. The forecasts for the last two months were 4,720 and then
4,975. The last estimate of the trend factor was 240.

Calculate the forecast of sales for next month. (Use hand cal-
culations rather than an Excel template.)

T 20.6-4.* The Pentel Microchip Company has started production
of its new microchip. The first phase in this production is the wafer
fabrication process. Because of the great difficulty in fabricating
acceptable wafers, many of these tiny wafers must be rejected be-
cause they are defective. Therefore, management places great em-
phasis on continually improving the wafer fabrication process to
increase its production yield (the percentage of wafers fabricated
in the current lot that are of acceptable quality for producing mi-
crochips).

So far, the production yields of the respective lots have been
15, 21, 24, 32, 37, 41, 40, 47, 51, 53 percent. Use exponential
smoothing with trend to forecast the production yield of the next
lot. Begin with initial estimates of 10 percent for the expected value
and 5 percent for the trend. Use smoothing constants of � � 0.2
and 
 � 0.2.

20.7-1.* You have been forecasting sales the last four quarters.
These forecasts and the true values that subsequently were obtained
are shown below.

T (a) Suppose that the forecasting started at the beginning of 1997.
Use the data for 1996 to determine the seasonal factors and
then determine the forecast of sales for each quarter of 1997.

T (b) Suppose that the forecasting started at the beginning of 1998.
Use the data for both 1996 and 1997 to determine the sea-
sonal factors and then determine the forecast of sales for
each quarter of 1998.

T (c) Suppose that the forecasting started at the beginning of 2000.
Use the data for 1996 through 1999 to determine the sea-
sonal factors and then determine the forecast of sales for
each quarter of 2000.

(d) Under the assumptions of the constant-level model, the fore-
cast obtained for any period of one year also provides the best
available forecast at that time for the same period in any sub-
sequent year. Use the results from parts (a), (b), and (c) to
record the forecast of sales for Quarter 4 of 2000 when enter-
ing Quarter 4 of 1997, 1998, and 2000, respectively.

(e) Evaluate whether it is important to incorporate seasonal effects
into the forecasting procedure for this particular product.

(f) Evaluate how well the constant-level assumption of the con-
stant-level model (after incorporating seasonal effects) appears
to hold for this particular product.

20.6-1. Look ahead at the scenario described in Prob. 20.7-3. No-
tice the steady trend upward in the number of applications over the
past three years—from 4,600 to 5,300 to 6,000. Suppose now that
the admissions office of Ivy College had been able to foresee this
kind of trend and so had decided to use exponential smoothing with
trend to do the forecasting. Suppose also that the initial estimates
just over three years ago had been expected value � 3,900 and
trend � 700. Then, with any values of the smoothing constants, the
forecasts obtained by this forecasting method would have been ex-
actly correct for all three years.

Illustrate this fact by doing the calculations to obtain these
forecasts when the smoothing constant is � � 0.25 and the trend
smoothing constant is 
 � 0.25. (Use hand calculations rather than
an Excel template.)

20.6-2.* Exponential smoothing with trend, with a smoothing con-
stant of � � 0.2 and a trend smoothing constant of 
 � 0.3, is be-
ing used to forecast values in a time series. At this point, the last
two values have been 535 and then 550. The last two forecasts have
been 530 and then 540. The last estimate of the trend factor has
been 10. Use this information to forecast the next value in the time
series. (Use hand calculations rather than an Excel template.)

20.6-3. The Healthwise Company produces a variety of exercise
equipment. Healthwise management is very pleased with the in-
creasing sales of its newest model of exercise bicycle. The sales
during the last two months have been 4,655 and then 4,935.

Management has been using exponential smoothing with
trend, with a smoothing constant of � � 0.1 and a trend smooth-
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(a) Calculate MAD.
(b) Calculate MSE.

20.7-2. Sharon Johnson, sales manager for the Alvarez-Baines
Company, is trying to choose between two methods for forecast-
ing sales that she has been using during the past five months. Dur-
ing these months, the two methods obtained the forecasts shown
below for the company’s most important product, where the sub-
sequent actual sales are shown on the right.

Quarter Forecast True Value

1 327 345
2 332 317
3 328 336
4 330 311

Forecast

Month Method 1 Method 2 Actual Sales

1 5,324 5,208 5,582
2 5,405 5,377 4,906
3 5,195 5,462 5,755
4 5,511 5,414 6,320
5 5,762 5,549 5,153



T (d) Use the moving-average method with n � 3 retrospectively
to determine what the forecasts would have been for the last
9 months of last year. What is MAD?

(e) Use their MAD values to compare the three methods.
(f) Do you feel comfortable in drawing a definitive conclusion

about which of the three forecasting methods should be the
most accurate in the future based on these 12 months of data?

T 20.7-5. Reconsider Prob. 20.7-4. Ben Swanson now has decided
to use the exponential smoothing method to forecast future sales
of washing machines, but he needs to decide on which smoothing
constant to use. Using an initial estimate of 24, apply this method
retrospectively to the 12 months of last year with � � 0.1, 0.2, 0.3,
0.4, and 0.5.
(a) Compare MAD for these five values of the smoothing con-

stant �.
(b) Calculate and compare MSE for these five values of �.

20.7-6. Management of the Jackson Manufacturing Corporation
wishes to choose a statistical forecasting method for forecasting
total sales for the corporation. Total sales (in millions of dollars)
for each month of last year are shown below.

(a) Calculate and compare MAD for these two forecasting methods.
(b) Calculate and compare MSE for these two forecasting methods.
(c) Sharon is uncomfortable with choosing between these two meth-

ods based on such limited data, but she also does not want to
delay further before making her choice. She does have similar
sales data for the three years prior to using these forecasting
methods the past five months. How can these older data be used
to further help her evaluate the two methods and choose one?

20.7-3. Three years ago, the admissions office for Ivy College be-
gan using exponential smoothing with a smoothing constant of 0.25
to forecast the number of applications for admission each year.
Based on previous experience, this process was begun with an ini-
tial estimate of 5,000 applications. The actual number of applica-
tions then turned out to be 4,600 in the first year. Thanks to new
favorable ratings in national surveys, this number grew to 5,300 in
the second year and 6,000 last year. (Use hand calculations below
rather than an Excel template.)
(a) Determine the forecasts that were made for each of the past

three years.
(b) Calculate MAD for these three years.
(c) Calculate MSE for these three years.
(d) Determine the forecast for next year.

20.7-4.* Ben Swanson, owner and manager of Swanson’s Depart-
ment Store, has decided to use statistical forecasting to get a better
handle on the demand for his major products. However, Ben now
needs to decide which forecasting method is most appropriate for
each category of product. One category is major household appli-
ances, such as washing machines, which have a relatively stable sales
level. Monthly sales of washing machines last year are shown below.
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(a) Considering that the sales level is relatively stable, which of
the most basic forecasting methods—the last-value method or
the averaging method or the moving-average method—do you
feel would be most appropriate for forecasting future sales?
Why?

T (b) Use the last-value method retrospectively to determine what
the forecasts would have been for the last 11 months of last
year. What is MAD?

T (c) Use the averaging method retrospectively to determine what
the forecasts would have been for the last 11 months of last
year. What is MAD?

Month Sales Month Sales Month Sales

January 23 May 22 September 21
February 24 June 27 October 29
March 22 July 20 November 23
April 28 August 26 December 28

(a) Note how the sales level is shifting significantly from month
to month—first trending upward and then dipping down be-
fore resuming an upward trend. Assuming that similar patterns
would continue in the future, evaluate how well you feel each
of the five forecasting methods introduced in Secs. 20.4 and
20.6 would perform in forecasting future sales.

T (b) Apply the last-value method, the averaging method, and the
moving-average method (with n � 3) retrospectively to last
year’s sales and compare their MAD values.

T (c) Using an initial estimate of 120, apply the exponential
smoothing method retrospectively to last year’s sales with 
� � 0.1, 0.2, 0.3, 0.4, and 0.5. Compare MAD for these five
values of the smoothing constant �.

T (d) Using initial estimates of 120 for the expected value and 10
for the trend, apply exponential smoothing with trend ret-
rospectively to last year’s sales. Use all combinations of the
smoothing constants where � � 0.1 or 0.3 or 0.5 and 

 � 0.1 or 0.3 or 0.5. Compare MAD for these nine com-
binations.

Month Sales Month Sales Month Sales

January 126 May 153 September 147
February 137 June 154 October 151
March 142 July 148 November 159
April 150 August 145 December 166



20.7-10. The Centerville Water Department provides water for the
entire town and outlying areas. The number of acre-feet of water
consumed in each of the four seasons of the three preceding years
is shown below.

(e) Which one of the above forecasting methods would you rec-
ommend that management use? Using this method, what is the
forecast of total sales for January of the new year?

T 20.7-7. Choosing an appropriate value of the smoothing con-
stant � is a key decision when applying the exponential smooth-
ing method. When relevant historical data exist, one approach to
making this decision is to apply the method retrospectively to these
data with different values of � and then choose the value of � that
gives the smallest MAD. Use this approach for choosing � with
each of the following time series representing monthly sales. In
each case, use an initial estimate of 50 and compare � � 0.1, 0.2,
0.3, 0.4, and 0.5.
(a) 51 48 52 49 53 49 48 51 50 49
(b) 52 50 53 51 52 48 52 53 49 52
(c) 50 52 51 55 53 56 52 55 54 53

T 20.7-8. The choice of the smoothing constants � and 
 has a
considerable effect on the accuracy of the forecasts obtained by us-
ing exponential smoothing with trend. For each of the following
time series, set � � 0.2 and then compare MAD obtained with 

 � 0.1, 0.2, 0.3, 0.4, and 0.5. Begin with initial estimates of 50
for the expected value and 2 for the trend.
(a) 52 55 55 58 59 63 64 66 67 72 73 74
(b) 52 55 59 61 66 69 71 72 73 74 73 74
(c) 52 53 51 50 48 47 49 52 57 62 69 74

20.7-9. The Andes Mining Company mines and ships copper ore.
The company’s sales manager, Juanita Valdes, has been using the
moving-average method based on the last three years of sales to
forecast the demand for the next year. However, she has become
dissatisfied with the inaccurate forecasts being provided by this
method.

Here are the annual demands (in tons of copper ore) over the
past 10 years: 382 405 398 421 426 415 443 451 446 464
(a) Explain why this pattern of demands inevitably led to signifi-

cant inaccuracies in the moving-average forecasts.
T (b) Determine the moving-average forecasts for the past 7 years.

What is MAD? What is the forecast for next year?
T (c) Determine what the forecasts would have been for the past

10 years if the exponential smoothing method had been used
instead with an initial estimate of 380 and a smoothing con-
stant of � � 0.5. What is MAD? What is the forecast for
next year?

T (d) Determine what the forecasts would have been for the past
10 years if exponential smoothing with trend had been used
instead. Use initial estimates of 370 for the expected value
and 10 for the trend, with smoothing constants � � 0.25 and

 � 0.25.

(e) Based on the MAD values, which of these three methods do
you recommend using hereafter?
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T (a) Determine the seasonal factors for the four seasons.
T (b) After considering seasonal effects, use the last-value method

to forecast water consumption next winter.
(c) Assuming that each of the forecasts for the next three seasons

is correct, what would the last-value method forecast as the
water consumption in each of the four seasons next year?

T (d) After considering seasonal effects, use the averaging method
to forecast water consumption next winter.

T (e) After considering seasonal effects, use the moving-average
method based on four seasons to forecast water consump-
tion next winter.

T (f) After considering seasonal effects, use the exponential
smoothing method with an initial estimate of 46 and a
smoothing constant of � � 0.1 to forecast water consump-
tion next winter.

T (g) Compare the MAD values of these four forecasting meth-
ods when they are applied retrospectively to the last three
years.

T (h) Calculate and compare the MSE values of these four fore-
casting methods when they are applied retrospectively to the
last three years.

20.7-11. Reconsider Prob. 20.5-3. Ralph Billett realizes that the
last-value method is considered to be the naive forecasting method,
so he wonders whether he should be using another method. There-
fore, he has decided to use the available Excel templates that con-
sider seasonal effects to apply various statistical forecasting meth-
ods retrospectively to the past three years of data and compare their
MAD values.
T (a) Determine the seasonal factors for the four quarters.
T (b) Apply the last-value method.
T (c) Apply the averaging method.
T (d) Apply the moving-average method based on the four most

recent quarters of data.
T (e) Apply the exponential smoothing method with an initial es-

timate of 25 and a smoothing constant of � � 0.25.
T (f) Apply exponential smoothing with trend with smoothing

constants of � � 0.25 and 
 � 0.25. Use initial estimates of
25 for the expected value and 0 for the trend.

Season Year 1 Year 2 Year 3

Winter 25 27 24
Spring 47 46 49
Summer 68 72 70
Fall 42 39 44



T (a) Repeat part (a) of Prob. 20.7-12 for the two years of data.
T (b) After considering seasonal effects, apply exponential smooth-

ing with trend to just the new year. Use initial estimates of 80
for the expected value and 2 for the trend, along with smooth-
ing constants of � � 0.2 and 
 � 0.2. Compare MAD for this
method to the MAD values obtained in part (a).

T (c) Repeat part (b) when exponential smoothing with trend is
begun at the beginning of the first year and then applied to
both years, just like the other forecasting methods in part
(a). Use the same initial estimates and smoothing constants
except change the initial estimate of trend to 0.

(d) Based on these results, which forecasting method would you
recommend that Transcontinental Airlines use hereafter?

20.7-14. Quality Bikes is a wholesale firm that specializes in the
distribution of bicycles. In the past, the company has maintained
ample inventories of bicycles to enable filling orders immediately,
so informal rough forecasts of demand were sufficient to make the
decisions on when to replenish inventory. However, the company’s
new president, Marcia Salgo, intends to run a tighter ship. Scien-
tific inventory management is to be used to reduce inventory lev-
els and minimize total variable inventory costs. At the same time,
Marcia has ordered the development of a computerized forecast-
ing system based on statistical forecasting that considers seasonal
effects. The system is to generate three sets of forecasts—one based
on the moving-average method, a second based on the exponential
smoothing method, and a third based on exponential smoothing
with trend. The average of these three forecasts for each month is
to be used for inventory management purposes.

The following table gives the available data on monthly sales
of 10-speed bicycles over the past three years. The last column also
shows monthly sales this year, which is the first year of operation
of the new forecasting system.

T (g) Compare the MAD values for these methods. Use the one
with the smallest MAD to forecast sales in Quarter 1 of next
year.

(h) Use the forecast in part (g) and the seasonal factors to make
long-range forecasts now of the sales in the remaining quar-
ters of next year.

T 20.7-12. Transcontinental Airlines maintains a computerized
forecasting system to forecast the number of customers in each fare
class who will fly on each flight in order to allocate the available
reservations to fare classes properly. For example, consider econ-
omy-class customers flying in midweek on the noon flight from
New York to Los Angeles. The following table shows the average
number of such passengers during each month of the year just com-
pleted. The table also shows the seasonal factor that has been as-
signed to each month based on historical data.
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Average Seasonal Average Seasonal
Month Number Factor Month Number Factor

January 68 0.90 July 94 1.17
February 71 0.88 August 96 1.15
March 66 0.91 September 80 0.97
April 72 0.93 October 73 0.91
May 77 0.96 November 84 1.05
June 85 1.09 December 89 1.08

(a) After considering seasonal effects, compare the MAD values
for the last-value method, the averaging method, the moving-
average method (based on the most recent three months), and
the exponential smoothing method (with an initial estimate of
80 and a smoothing constant of � � 0.2) when they are ap-
plied retrospectively to the past year.

(b) Use the forecasting method with the smallest MAD value to
forecast the average number of these passengers flying in Jan-
uary of the new year.

20.7-13. Reconsider Prob. 20.7-12. The economy is beginning to
boom so the management of Transcontinental Airlines is predict-
ing that the number of people flying will steadily increase this year
over the relatively flat (seasonally adjusted) level of last year. Since
the forecasting methods considered in Prob. 20.7-12 are relatively
slow in adjusting to such a trend, consideration is being given to
switching to exponential smoothing with trend.

Subsequently, as the year goes on, management’s prediction
proves to be true. The following table shows the average number
of the passengers under consideration in each month of the new
year.

Average Average Average
Month Number Month Number Month Number

January 75 May 185 September 194
February 76 June 199 October 190
March 81 July 107 November 106
April 84 August 108 December 110

Past Sales
Current Sales

Month Year 1 Year 2 Year 3 This Year

January 352 317 338 364
February 329 331 346 343
March 365 344 383 391
April 358 386 404 437



ond quarter as the latest observation and the sales for the
first quarter as the initial estimate.

T (c) The exponential smoothing method with � � 0.3. Start as
described in part (b).

T (d) The exponential smoothing with trend method with � � 0.3
and 
 � 0.3. Start with a forecast for the third quarter by
using the sales for the second quarter as the initial estimate
of the expected value of the time series (A) and the differ-
ence (sales for second quarter minus sales for first quarter)
as the initial estimate of the trend of the time series (B).

(e) Compare MSE for these methods. Which one has the smallest
value of MSE?

20.7-16. Follow the instructions of Prob. 20.7-15 for a product
with the following sales history.T (a) Determine the seasonal factors for the 12 months based on

past sales.
T (b) After considering seasonal effects, apply the moving-aver-

age method based on the most recent three months to fore-
cast monthly sales this year.

T (c) After considering seasonal effects, apply the exponential
smoothing method to forecast monthly sales this year. Use an
initial estimate of 420 and a smoothing constant of � � 0.2.

T (d) After considering seasonal effects, apply exponential
smoothing with trend to forecast monthly sales this year.
Use initial estimates of 420 for the expected value and 0 for
the trend, along with smoothing constants of � � 0.2 and 

 � 0.2.

(e) Compare the MAD values obtained in parts (b), (c), and (d ).
(f) Calculate the combined forecast for each month by averaging

the forecasts for that month obtained in parts (b), (c), and (d ).
Then calculate the MAD for these combined forecasts.

(g) Based on these results, what is your recommendation for how
to do the forecasts next year?

20.7-15. Reconsider the sales data for a certain product given in
Prob. 20.5-4. The company’s management now has decided to dis-
continue incorporating seasonal effects into its forecasting procedure
for this product because there does not appear to be a substantial
seasonal pattern. Management also is concerned that exponential
smoothing may not be the best forecasting method for this product
and so has decided to test and compare several forecasting methods.
Each method is to be applied retrospectively to the given data and
then its MSE is to be calculated. The method with the smallest value
of MSE will be chosen to begin forecasting.

Apply this retrospective test and calculate MSE for each of
the following methods. (Also obtain the forecast for the upcoming
quarter with each method.)
T (a) The moving-average method based on the last four quarters,

so start with a forecast for the fifth quarter.
T (b) The exponential smoothing method with � � 0.1. Start with

a forecast for the third quarter by using the sales for the sec-
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Past Sales
Current Sales

Month Year 1 Year 2 Year 3 This Year

May 412 423 431 458
June 446 472 459 494
July 420 415 433 468
August 471 492 518 555
September 355 340 309 387
October 312 301 335 364
November 567 629 594 662
December 533 505 527 581

20.9-1.* Long a market leader in the production of heavy ma-
chinery, the Spellman Corporation recently has been enjoying a
steady increase in the sales of its new lathe. The sales over the past
10 months are shown below.

Because of this steady increase, management has decided to
use causal forecasting, with the month as the independent variable
and sales as the dependent variable, to forecast sales in the com-
ing months.
(a) Plot these data on a two-dimensional graph with the month on

the horizontal axis and sales on the vertical axis.
T (b) Find the formula for the linear regression line that fits these

data.
(c) Plot this line on the graph constructed in part (a).
(d) Use this line to forecast sales in month 11.
(e) Use this line to forecast sales in month 20.
(f) What does the formula for the linear regression line indicate

is roughly the average growth in sales per month?

Quarter Sales Quarter Sales Quarter Sales

1 546 5 647 9 736
2 528 6 594 10 724
3 530 7 665 11 813
4 508 8 630 12 —

Month Sales Month Sales

1 430 6 514
2 446 7 532
3 464 8 548
4 480 9 570
5 498 10 591



(c) Plot this line on the graph constructed in part (a).
(d) Use this line to forecast demand next year (Year 11).
(e) Use this line to forecast demand in Year 15.
(f) What does the formula for the linear regression line indicate

is roughly the average growth in demand per year?

20.9-4. Luxury Cruise Lines has a fleet of ships that travel to
Alaska repeatedly every summer (and elsewhere during other times
of the year). A considerable amount of advertising is done each
winter to help generate enough passenger business for that sum-
mer. With the coming of a new winter, a decision needs to be made
about how much advertising to do this year.

The following table shows the amount of advertising (in thou-
sands of dollars) and the resulting sales (in thousands of passen-
gers booked for a cruise) for each of the past five years.

20.9-2. Reconsider Probs. 20.7-3 and 20.6-1. Since the number of ap-
plications for admission submitted to Ivy College has been increasing
at a steady rate, causal forecasting can be used to forecast the number
of applications in future years by letting the year be the independent
variable and the number of applications be the dependent variable.
(a) Plot the data for Years 1, 2, and 3 on a two-dimensional graph

with the year on the horizontal axis and the number of appli-
cations on the vertical axis.

(b) Since the three points in this graph line up in a straight line,
this straight line is the linear regression line. Draw this line.

T (c) Find the formula for this linear regression line.
(d) Use this line to forecast the number of applications for each

of the next five years (Years 4 through 8).
(e) As these next years go on, conditions change for the worse at

Ivy College. The favorable ratings in the national surveys that
had propelled the growth in applications turn unfavorable. Con-
sequently, the number of applications turn out to be 6,300 in
Year 4 and 6,200 in Year 5, followed by sizable drops to 5,600
in Year 6 and 5,200 in Year 7. Does it still make sense to use
the forecast for Year 8 obtained in part (d )? Explain.

T (f) Plot the data for all seven years. Find the formula for the
linear regression line based on all these data and plot this
line. Use this formula to forecast the number of applications
for Year 8. Does the linear regression line provide a close fit
to the data? Given this answer, do you have much confidence
in the forecast it provides for Year 8? Does it make sense to
continue to use a linear regression line when changing con-
ditions cause a large shift in the underlying trend in the data?

T (g) Apply exponential smoothing with trend to all seven years
of data to forecast the number of applications in Year 8. Use
initial estimates of 3,900 for the expected value and 700 for
the trend, along with smoothing constants of � � 0.5 and 

 � 0.5. When the underlying trend in the data stays the
same, causal forecasting provides the best possible linear re-
gression line (according to the method of least squares) for
making forecasts. However, when changing conditions cause
a shift in the underlying trend, what advantage does expo-
nential smoothing with trend have over causal forecasting?

20.9-3. Reconsider Prob. 20.7-9. Despite some fluctuations from
year to year, note that there has been a basic trend upward in the
annual demand for copper ore over the past 10 years. Therefore,
by projecting this trend forward, causal forecasting can be used to
forecast demands in future years by letting the year be the inde-
pendent variable and the demand be the dependent variable.
(a) Plot the data for the past 10 years (Years 1 through 10) on a

two-dimensional graph with the year on the horizontal axis and
the demand on the vertical axis.

T (b) Find the formula for the linear regression line that fits these
data.
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(a) To use causal forecasting to forecast sales for a given amount
of advertising, what needs to be the dependent variable and the
independent variable?

(b) Plot the data on a graph.
T (c) Find the formula for the linear regression line that fits these

data. Then plot this line on the graph constructed in part (b).
(d) Forecast the sales that would be attained by expending

$300,000 on advertising.
(e) Estimate the amount of advertising that would need to be done

to attain a booking of 22,000 passengers.
(f) According to the linear regression line, about how much in-

crease in sales can be attained on the average per $1,000 in-
crease in the amount of advertising?

20.9-5. To support its large fleet, North American Airlines main-
tains an extensive inventory of spare parts, including wing flaps.
The number of wing flaps needed in inventory to replace damaged
wing flaps each month depends partially on the number of flying
hours for the fleet that month, since increased usage increases the
chances of damage.

The following table shows both the number of replacement
wing flaps needed and the number of thousands of flying hours for
the entire fleet for each of several recent months.

Amount of advertising ($1,000s) 225 400 350 275 450

Sales (thousands of passengers) 16 21 20 17 23

Thousands of flying hours 162 149 185 171 138 154

Number of wing flaps needed 12 9 13 14 10 11

(a) Identify the dependent variable and the independent variable
for doing causal forecasting of the number of wing flaps needed
for a given number of flying hours.



(b) Plot the data on a graph.
T (c) Find the formula for the linear regression line.
(d) Plot this line on the graph constructed in part (b).
(e) Forecast the average number of wing flaps needed in a month

in which 150,000 flying hours are planned.
(f) Repeat part (e) for 200,000 flying hours.

T 20.9-6. Joe Barnes is the owner of Standing Tall, one of the ma-
jor roofing companies in town. Much of the company’s business
comes from building roofs on new houses. Joe has learned that
general contractors constructing new houses typically will sub-
contract the roofing work about 2 months after construction be-
gins. Therefore, to help him develop long-range schedules for his
work crews, Joe has decided to use county records on the number
of housing construction permits issued each month to forecast the
number of roofing jobs on new houses he will have 2 months later.

Joe has now gathered the following data for each month over
the past year, where the second column gives the number of hous-
ing construction permits issued in that month and the third column
shows the number of roofing jobs on new houses that were sub-
contracted out to Standing Tall in that month.
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Assume that Y is normally distributed with mean A � Bx and con-
stant variance for all x and that the sample is random. Interpolate
if necessary.
(a) Fit a least-squares line to the data, and forecast the accident

frequency when the road width is 55 feet.
(b) Construct a 95 percent prediction interval for Y�, a future ob-

servation of Y, corresponding to x� � 55 feet.
(c) Suppose that two future observations on Y, both correspond-

ing to x� � 55 feet, are to be made. Construct prediction in-
tervals for both of these observations so that the probability is
at least 95 percent that both future values of Y will fall into
them simultaneously. [Hint: If k predictions are to be made,
such as given in part (d ), each with probability 1 � �, then the
probability is at least 1 � k� that all k future observations will
fall into their respective intervals.]

(d) Construct a simultaneous tolerance interval for the future 
value of Y corresponding to x� � 55 feet with P � 0.90 and
1 � � � 0.95.

T 20.9-8. The following data are observations yi on a dependent
random variable Y taken at various levels of an independent vari-
able x. [It is assumed that E(Yixi) � A � Bxi, and the Yi are in-
dependent normal random variables with mean 0 and variance 	2.]

Month Permits Jobs Month Permits Jobs

January 323 19 July 446 34
February 359 17 August 407 37
March 396 24 September 374 33
April 421 23 October 343 30
May 457 28 November 311 27
June 472 32 December 277 22

Use a causal forecasting approach to develop a forecasting
procedure for Joe to use hereafter.

20.9-7. The following data relate road width x and accident fre-
quency y. Road width (in feet) was treated as the independent vari-
able, and values y of the random variable Y, in accidents per 108

vehicle miles, were observed.

Number of Observations � 7 x y

�
7

i�1
xi � 354 �

7

i�1
yi � 481

44 78

�
7

i�1
xi

2 � 19,956 �
7

i�1
yi

2 � 35,451

�
7

i�1
xiyi � 22,200

51
40

68
74

81
54

50
62

92
85

26
30

(a) Estimate the linear relationship by the method of least squares,
and forecast the value of Y when x � 10.

(b) Find a 95 percent confidence interval for the expected value
of Y at x* � 10.

(c) Find a 95 percent prediction interval for a future observation
to be taken at x� � 10.

(d) For x� � 10, P � 0.90, and 1 � � � 0.95, find a simultane-
ous tolerance interval for the future value of Y�. Interpolate if
necessary.

T 20.9-9. If a particle is dropped at time t � 0, physical theory in-
dicates that the relationship between the distance traveled r and the
time elapsed t is r � gtk for some positive constants g and k. A
transformation to linearity can be obtained by taking logarithms:

log r � log g � k log t.

By letting y � log r, A � log g, and x � log t, this relation be-
comes y � A � kx. Due to random error in measurement, however,
it can be stated only that E(Yx) � A � kx. Assume that Y is nor-
mally distributed with mean A � kx and variance 	2.

A physicist who wishes to estimate k and g performs the fol-
lowing experiment: At time 0 the particle is dropped. At time t the

xi 0 2 4 6 8

yi 0 4 7 13 16



to forecast each log r for all integer log t through log t � �3.0.
(c) Repeat part (b), except adjust the exponential smoothing

method to incorporate a trend factor into the underlying model
as described in Sec. 20.6. Use an initial estimate of trend equal
to the slope found in part (a). Let 
 � 0.1.

20.9-10. Suppose that the relation between Y and x is given by

E(Yx) � Bx,

where Y is assumed to be normally distributed with mean Bx and
known variance 	2. Also n independent pairs of observations are
taken and are denoted by x1, y1; x2, y2; . . . ; xn, yn. Find the least-
squares estimate of B.

distance r is measured. He performs this experiment five times, ob-
taining the following data (where all logarithms are to base 10).
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y � log r x � log t

�3.95 �2.0
�2.12 �1.0

0.08 0.0
2.20 �1.0
3.87 �2.0

(a) Obtain least-squares estimates for k and log g, and forecast the
distance traveled when log t � �3.0.

(b) Starting with a forecast for log r when log t � 0, use the ex-
ponential smoothing method with an initial estimate of log 
r � �3.95 and � � 0.1, that is,

Forecast of log r (when log t � 0) � 0.1(�2.12)
� 0.9(�3.95),

Mark Lawrence—the man with two first names—has been pursuing a vision for more
than two years. This pursuit began when he became frustrated in his role as director
of human resources at Cutting Edge, a large company manufacturing computers and
computer peripherals. At that time, the human resources department under his direc-
tion provided records and benefits administration to the 60,000 Cutting Edge employ-
ees throughout the United States, and 35 separate records and benefits administration
centers existed across the country. Employees contacted these records and benefits cen-
ters to obtain information about dental plans and stock options, to change tax forms
and personal information, and to process leaves of absence and retirements. The de-
centralization of these administration centers caused numerous headaches for Mark.
He had to deal with employee complaints often since each center interpreted company
policies differently—communicating inconsistent and sometimes inaccurate answers to
employees. His department also suffered high operating costs, since operating 35 sep-
arate centers created inefficiency.

His vision? To centralize records and benefits administration by establishing one
administration center. This centralized records and benefits administration center would
perform two distinct functions: data management and customer service. The data man-
agement function would include updating employee records after performance reviews
and maintaining the human resource management system. The customer service func-
tion would include establishing a call center to answer employee questions concerning
records and benefits and to process records and benefits changes over the phone.

One year after proposing his vision to management, Mark received the go-ahead
from Cutting Edge corporate headquarters. He prepared his “to do” list—specifying

CASE 20.1 FINAGLING THE FORECASTS



computer and phone systems requirements, installing hardware and software, integrat-
ing data from the 35 separate administration centers, standardizing record-keeping and
response procedures, and staffing the administration center. Mark delegated the sys-
tems requirements, installation, and integration jobs to a competent group of technol-
ogy specialists. He took on the responsibility of standardizing procedures and staffing
the administration center.

Mark had spent many years in human resources and therefore had little problem
with standardizing record-keeping and response procedures. He encountered trouble in
determining the number of representatives needed to staff the center, however. He was
particularly worried about staffing the call center since the representatives answering
phones interact directly with customers—the 60,000 Cutting Edge employees. The cus-
tomer service representatives would receive extensive training so that they would know
the records and benefits policies backward and forward—enabling them to answer ques-
tions accurately and process changes efficiently. Overstaffing would cause Mark to suf-
fer the high costs of training unneeded representatives and paying the surplus repre-
sentatives the high salaries that go along with such an intense job. Understaffing would
cause Mark to continue to suffer the headaches from customer complaints—something
he definitely wanted to avoid.

The number of customer service representatives Mark needed to hire depends on
the number of calls that the records and benefits call center would receive. Mark there-
fore needed to forecast the number of calls that the new centralized center would re-
ceive. He approached the forecasting problem by using judgmental forecasting. He
studied data from one of the 35 decentralized administration centers and learned that
the decentralized center had serviced 15,000 customers and had received 2,000 calls
per month. He concluded that since the new centralized center would service four times
the number of customers—60,000 customers—it would receive four times the number
of calls—8,000 calls per month.

Mark slowly checked off the items on his “to do” list, and the centralized records
and benefits administration center opened one year after Mark had received the go-
ahead from corporate headquarters.

Now, after operating the new center for 13 weeks, Mark’s call center forecasts are
proving to be terribly inaccurate. The number of calls the center receives is roughly
three times as large as the 8,000 calls per month that Mark had forecasted. Because of
demand overload, the call center is slowly going to hell in a handbasket. Customers
calling the center must wait an average of 5 minutes before speaking to a representa-
tive, and Mark is receiving numerous complaints. At the same time, the customer ser-
vice representatives are unhappy and on the verge of quitting because of the stress cre-
ated by the demand overload. Even corporate headquarters has become aware of the
staff and service inadequacies, and executives have been breathing down Mark’s neck
demanding improvements.

Mark needs help, and he approaches you to forecast demand for the call center
more accurately.

Luckily, when Mark first established the call center, he realized the importance of
keeping operational data, and he provides you with the number of calls received on
each day of the week over the last 13 weeks. The data (shown below) begins in week
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44 of the last year and continues to week 5 of the current year. Mark indicates that the
days where no calls were received were holidays.
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Monday Tuesday Wednesday Thursday Friday

Week 44 1,130 851 859 828 726
Week 45 1,085 1,042 892 840 799
Week 46 1,303 1,121 1,003 1,113 1,005
Week 47 2,652 2,825 1,841 0 0
Week 48 1,949 1,507 989 990 1,084
Week 49 1,260 1,134 941 847 714
Week 50 1,002 847 922 842 784
Week 51 823 0 0 401 429
Week 52/1 1,209 830 0 1,082 841
Week 2 1,362 1,174 967 930 853
Week 3 924 954 1,346 904 758
Week 4 886 878 802 945 610
Week 5 910 754 705 729 772

(a) Mark first asks you to forecast daily demand for the next week using the data from the past
13 weeks. You should make the forecasts for all the days of the next week now (at the end
of week 5), but you should provide a different forecast for each day of the week by treating
the forecast for a single day as being the actual call volume on that day.
(1) From working at the records and benefits administration center, you know that demand

follows “seasonal” patterns within the week. For example, more employees call at the
beginning of the week when they are fresh and productive than at the end of the week
when they are planning for the weekend. You therefore realize that you must account for
the seasonal patterns and adjust the data that Mark gave you accordingly. What is the
seasonally adjusted call volume for the past 13 weeks?

(2) Using the seasonally adjusted call volume, forecast the daily demand for the next week
using the last-value forecasting method.

(3) Using the seasonally adjusted call volume, forecast the daily demand for the next week
using the averaging forecasting method.

(4) Using the seasonally adjusted call volume, forecast the daily demand for the next week
using the moving-average forecasting method. You decide to use the five most recent
days in this analysis.

(5) Using the seasonally adjusted call volume, forecast the daily demand for the next week
using the exponential smoothing forecasting method. You decide to use a smoothing con-
stant of 0.1 because you believe that demand without seasonal effects remains relatively
stable. Use the daily call volume average over the past 13 weeks for the initial estimate.

(b) After 1 week, the period you have forecasted passes. You realize that you are able to deter-
mine the accuracy of your forecasts because you now have the actual call volumes from the
week you had forecasted. The actual call volumes are shown next.

Monday Tuesday Wednesday Thursday Friday

Week 6 723 677 521 571 498



For each of the forecasting methods, calculate the mean absolute deviation for the method
and evaluate the performance of the method. When calculating the mean absolute deviation,
you should use the actual forecasts you found in part (a) above. You should not recalculate
the forecasts based on the actual values. In your evaluation, provide an explanation for the
effectiveness or ineffectiveness of the method.

(c) You realize that the forecasting methods that you have investigated do not provide a great
degree of accuracy, and you decide to use a creative approach to forecasting that combines
the statistical and judgmental approaches. You know that Mark had used data from one of
the 35 decentralized records and benefits administration centers to perform his original fore-
casting. You therefore suspect that call volume data exist for this decentralized center. Be-
cause the decentralized centers performed the same functions as the new centralized center
currently performs, you decide that the call volumes from the decentralized center will help
you forecast the call volumes for the new centralized center. You simply need to understand
how the decentralized volumes relate to the new centralized volumes. Once you understand
this relationship, you can use the call volumes from the decentralized center to forecast the
call volumes for the centralized center.

You approach Mark and ask him whether call center data exist for the decentralized
center. He tells you that data exist, but they do not exist in the format that you need. Case
volume data—not call volume data—exist. You do not understand the distinction, so Mark
continues his explanation. There are two types of demand data—case volume data and call
volume data. Case volume data count the actions taken by the representatives at the call cen-
ter. Call volume data count the number of calls answered by the representatives at the call
center. A case may require one call or multiple calls to resolve it. Thus, the number of cases
is always less than or equal to the number of calls.

You know you only have case volume data for the decentralized center, and you cer-
tainly do not want to compare apples and oranges. You therefore ask if case volume data ex-
ist for the new centralized center. Mark gives you a wicked grin and nods his head. He sees
where you are going with your forecasts, and he tells you that he will have the data for you
within the hour.

At the end of the hour, Mark arrives at your desk with two data sets: weekly case vol-
umes for the decentralized center and weekly case volumes for the centralized center. You
ask Mark if he has data for daily case volumes, and he tells you that he does not. You there-
fore first have to forecast the weekly demand for the next week and then break this weekly
demand into daily demand.

The decentralized center was shut down last year when the new centralized center
opened, so you have the decentralized case data spanning from week 44 of two years ago
to week 5 of last year. You compare this decentralized data to the centralized data spanning
from week 44 of last year to week 5 of this year. The weekly case volumes are shown in the
table below.
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Decentralized Case Volume Centralized Case Volume

Week 44 612 2,052
Week 45 721 2,170
Week 46 693 2,779
Week 47 540 2,334
Week 48 1,386 2,514
Week 49 577 1,713
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(1) Find a mathematical relationship between the decentralized case volume data and the
centralized case volume data.

(2) Now that you have a relationship between the weekly decentralized case volume and the
weekly centralized case volume, you are able to forecast the weekly case volume for the
new center. Unfortunately, you do not need the weekly case volume; you need the daily
call volume. To calculate call volume from case volume, you perform further analysis and
determine that each case generates an average of 1.5 calls. To calculate daily call volume
from weekly call volume, you decide to use the seasonal factors as conversion factors.
Given the following case volume data from the decentralized center for week 6 of last
year, forecast the daily call volume for the new center for week 6 of this year.

(3) Using the actual call volumes given in part (b), calculate the mean absolute deviation and
evaluate the effectiveness of this forecasting method.

(d) Which forecasting method would you recommend Mark use and why? As the call center
continues its operation, how would you recommend improving the forecasting procedure?

Decentralized Case Volume Centralized Case Volume

Week 50 405 1,927
Week 51 441 1,167
Week 52/1 655 1,549
Week 2 572 2,126
Week 3 475 2,337
Week 4 530 1,916
Week 5 595 2,098

Week 6

Decentralized case volume 613
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21
Markov Decision 
Processes

Chapter 16 introduced Markov chains and their analysis. Most of the chapter was devoted
to discrete time Markov chains, i.e., Markov chains that are observed only at discrete
points in time (e.g., the end of each day) rather than continuously. Each time it is ob-
served, the Markov chain can be in any one of a number of states. Given the current state,
a (one-step) transition matrix gives the probabilities for what the state will be next time.
Given this transition matrix, Chap. 16 focused on describing the behavior of a Markov
chain, e.g., finding the steady-state probabilities for what state it is in.

Many important systems (e.g., many queueing systems) can be modeled as either a
discrete time or continuous time Markov chain. It is useful to describe the behavior of
such a system (as we did in Chap. 17 for queueing systems) in order to evaluate its per-
formance. However, it may be even more useful to design the operation of the system so
as to optimize its performance (as we did in Chap. 18 for queueing systems).

This chapter focuses on how to design the operation of a discrete time Markov chain
so as to optimize its performance. Therefore, rather than passively accepting the design
of the Markov chain and the corresponding fixed transition matrix, we now are being
proactive. For each possible state of the Markov chain, we make a decision about which
one of several alternative actions should be taken in that state. The action chosen affects
the transition probabilities as well as both the immediate costs (or rewards) and subse-
quent costs (or rewards) from operating the system. We want to choose the optimal ac-
tions for the respective states when considering both immediate and subsequent costs. The
decision process for doing this is referred to as a Markov decision process.

The first section gives a prototype example of an application of a Markov decision
process. Section 21.2 formulates the basic model for these processes. The next three sec-
tions describe how to solve them.

A manufacturer has one key machine at the core of one of its production processes. Be-
cause of heavy use, the machine deteriorates rapidly in both quality and output. There-
fore, at the end of each week, a thorough inspection is done that results in classifying the
condition of the machine into one of four possible states:

21.1 A PROTOTYPE EXAMPLE



After historical data on these inspection results are gathered, statistical analysis is
done on how the state of the machine evolves from month to month. The following ma-
trix shows the relative frequency (probability) of each possible transition from the state
in one month (a row of the matrix) to the state in the following month (a column of the
matrix).
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State Condition

0 Good as new
1 Operable—minor deterioration
2 Operable—major deterioration
3 Inoperable—output of unacceptable quality

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 0 �
1
2

� �
1
2

�

3 0 0 0 1

In addition, statistical analysis has found that these transition probabilities are unaffected
by also considering what the states were in prior months. This “lack-of-memory property”
is the Markovian property described in Sec. 16.2. Therefore, for the random variable Xt,
which is the state of the machine at the end of month t, it has been concluded that the
stochastic process {Xt, t � 0, 1, 2, . . .} is a discrete time Markov chain whose (one-step)
transition matrix is just the above matrix.

As the last entry in this transition matrix indicates, once the machine becomes inop-
erable (enters state 3), it remains inoperable. In other words, state 3 is an absorbing state.
Leaving the machine in this state would be intolerable, since this would shut down the
production process, so the machine must be replaced. (Repair is not feasible in this state.)
The new machine then will start off in state 0.

The replacement process takes 1 week to complete so that production is lost for this
period. The cost of the lost production (lost profit) is $2,000, and the cost of replacing
the machine is $4,000, so the total cost incurred whenever the current machine enters state
3 is $6,000.

Even before the machine reaches state 3, costs may be incurred from the production
of defective items. The expected costs per week from this source are as follows:

State Expected Cost Due to Defective Items, $

0 0
1 1,000
2 3,000



We now have mentioned all the relevant costs associated with one particular mainte-
nance policy (replace the machine when it becomes inoperable but do no maintenance
otherwise). Under this policy, the evolution of the state of the system (the succession of
machines) still is a Markov chain, but now with the following transition matrix:
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State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 0 �
1
2

� �
1
2

�

3 1 0 0 0

To evaluate this maintenance policy, we should consider both the immediate costs in-
curred over the coming week ( just described) and the subsequent costs that result from
having the system evolve in this way. As introduced in Sec. 16.5, one such widely used
measure of performance for Markov chains is the (long-run) expected average cost per
unit time.1

To calculate this measure, we first derive the steady-state probabilities �0, �1, �2,
and �3 for this Markov chain by solving the following steady-state equations:

�0 � �3,

�1 � �
7
8

��0 � �
3
4

��1,

�2 � �
1
1
6
��0 � �

1
8

��1 � �
1
2

��2,

�3 � �
1
1
6
��0 � �

1
8

��1 � �
1
2

��2,

1 � �0 � �1 � �2 � �3.

The simultaneous solution is

�0 � �
1
2
3
�, �1 � �

1
7
3
�, �2 � �

1
2
3
�, �3 � �

1
2
3
�.

Hence, the (long-run) expected average cost per week for this maintenance policy is

0�0 � 1,000�1 � 3,000�2 � 6,000�3 � �
25

1
,0
3
00
� � $1,923.08.

However, there also are other maintenance policies that should be considered and com-
pared with this one. For example, perhaps the machine should be replaced before it reaches

1The term long-run indicates that the average should be interpreted as being taken over an extremely long time
so that the effect of the initial state disappears. As time goes to infinity, Sec. 16.5 discusses the fact that the ac-
tual average cost per unit time essentially always converges to the expected average cost per unit time.



state 3. Another alternative is to overhaul the machine at a cost of $2,000. This option is
not feasible in state 3 and does not improve the machine while in state 0 or 1, so it is of
interest only in state 2. In this state, an overhaul would return the machine to state 1. A
week is required, so another consequence is $2,000 in lost profit from lost production.

In summary, the possible decisions after each inspection are as follows:
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Decision Action Relevant States

1 Do nothing 0, 1, 2
2 Overhaul (return system to state 1) 2
3 Replace (return system to state 0) 1, 2, 3

TABLE 21.1 Cost data for the prototype example

Expected Cost Cost (Lost Total
Due to Producing Maintenance Profit) of Lost Cost per

Decision State Defective Items, $ Cost, $ Production, $ Week, $

1. Do nothing 0 0 0 0 0
1 1,000 0 0 1,000
2 3,000 0 0 3,000

2. Overhaul 2 0 2,000 2,000 4,000
3. Replace 1, 2, 3 0 4,000 2,000 6,000

For easy reference, Table 21.1 also summarizes the relevant costs for each decision for
each state where that decision could be of interest.

What is the optimal maintenance policy? We will be addressing this question to il-
lustrate the material in the next four sections.

The model for the Markov decision processes considered in this chapter can be summa-
rized as follows.

1. The state i of a discrete time Markov chain is observed after each transition (i � 0,
1, . . . , M).

2. After each observation, a decision (action) k is chosen from a set of K possible deci-
sions (k � 1, 2, . . . , K ). (Some of the K decisions may not be relevant for some of
the states.)

3. If decision di � k is made in state i, an immediate cost is incurred that has an expected
value Cik.

4. The decision di � k in state i determines what the transition probabilities1 will be for
the next transition from state i. Denote these transition probabilities by pij(k), for j � 0,
1, . . . , M.

21.2 A MODEL FOR MARKOV DECISION PROCESSES

1The solution procedures given in the next two sections also assume that the resulting transition matrix is irre-
ducible.



5. A specification of the decisions for the respective states (d0, d1, . . . , dM) prescribes a
policy for the Markov decision process.

6. The objective is to find an optimal policy according to some cost criterion which con-
siders both immediate costs and subsequent costs that result from the future evolution
of the process. One common criterion is to minimize the (long-run) expected average
cost per unit time. (An alternative criterion is considered in Sec. 21.5.)

To relate this general description to the prototype example presented in Sec. 21.1, re-
call that the Markov chain being observed there represents the state (condition) of a par-
ticular machine. After each inspection of the machine, a choice is made between three
possible decisions (do nothing, overhaul, or replace). The resulting immediate expected
cost is shown in the rightmost column of Table 21.1 for each relevant combination of state
and decision. Section 21.1 analyzed one particular policy (d0, d1, d2, d3) � (1, 1, 1, 3),
where decision 1 (do nothing) is made in states 0, 1, and 2 and decision 3 (replace) is
made in state 3. The resulting transition probabilities are shown in the last transition ma-
trix given in Sec. 21.1.

Our general model qualifies to be a Markov decision process because it possesses the
Markovian property that characterizes any Markov process. In particular, given the cur-
rent state and decision, any probabilistic statement about the future of the process is com-
pletely unaffected by providing any information about the history of the process. This
property holds here since (1) we are dealing with a Markov chain, (2) the new transition
probabilities depend on only the current state and decision, and (3) the immediate ex-
pected cost also depends on only the current state and decision.

Our description of a policy implies two convenient (but unnecessary) properties that
we will assume throughout the chapter (with one exception). One property is that a pol-
icy is stationary; i.e., whenever the system is in state i, the rule for making the decision
always is the same regardless of the value of the current time t. The second property is
that a policy is deterministic; i.e., whenever the system is in state i, the rule for making
the decision definitely chooses one particular decision. (Because of the nature of the al-
gorithm involved, the next section considers randomized policies instead, where a proba-
bility distribution is used for the decision to be made.)

Using this general framework, we now return to the prototype example and find the
optimal policy by enumerating and comparing all the relevant policies. In doing this, we
will let R denote a specific policy and di(R) denote the corresponding decision to be made
in state i.

Solving the Prototype Example by Exhaustive Enumeration

The relevant policies for the prototype example are these:
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Policy Verbal Description d0(R) d1(R) d2(R) d3(R)

Ra Replace in state 3 1 1 1 3
Rb Replace in state 3, overhaul in state 2 1 1 2 3
Rc Replace in states 2 and 3 1 1 3 3
Rd Replace in states 1, 2, and 3 1 3 3 3



Each policy results in a different transition matrix, as shown below.

1058 21 MARKOV DECISION PROCESSES

From the rightmost column of Table 21.1, the values of Cik are as follows:

Ra

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 0 �
1
2

� �
1
2

�

3 1 0 0 0

Rb

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 1 0 0
3 1 0 0 0

Rc

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 1 0 0 0
3 1 0 0 0

Rd

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 1 0 0 0
2 1 0 0 0
3 1 0 0 0

Decision Cik (in Thousands of Dollars)

State 1 2 3

0 0 — —
1 1 — 6
2 3 4 6
3 — — 6

As indicated in Sec. 16.5, the (long-run) expected average cost per unit time E(C) then
can be calculated from the expression

E(C ) � �
M

i�0
Cik�i,

where k � di(R) for each i and (�0, �1, . . . , �M) represents the steady-state distribution
of the state of the system under the policy R being evaluated. After (�0, �1, . . . , �M) are



Thus, the optimal policy is Rb; that is, replace the machine when it is found to be in
state 3, and overhaul the machine when it is found to be in state 2. The resulting (long-
run) expected average cost per week is $1,667.

Using exhaustive enumeration to find the optimal policy is appropriate for this tiny
example, where there are only four relevant policies. However, many applications have so
many policies that this approach would be completely infeasible. For such cases, algo-
rithms that can efficiently find an optimal policy are needed. The next three sections con-
sider such algorithms.
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� Minimum

Policy (�0, �1, �2, �3) E(C), in Thousands of Dollars

Ra ��
1
2
3
�, �

1
7
3
�, �

1
2
3
�, �

1
2
3
�� �

1
1
3
�[2(0) � 7(1) � 2(3) � 2(6)] � �

2
1

5
3
� � $1,923

Rb ��
2
2
1
�, �

5
7

�, �
2
2
1
�, �

2
2
1
�� �

2
1
1
�[2(0) � 15(1) � 2(4) � 2(6)] � �

3
2

5
1
� � $1,667

Rc ��
1
2
1
�, �

1
7
1
�, �

1
1
1
�, �

1
1
1
�� �

1
1
1
�[2(0) � 7(1) � 1(6) � 1(6)] � �

1
1

9
1
� � $1,727

Rd ��
1
2

�, �
1
7
6
�, �

3
1
2
�, �

3
1
2
�� �

3
1
2
�[16(0) � 14(6) � 1(6) � 1(6)] � �

9
3

6
2
� � $3,000

Section 21.2 described the main kind of policy (called a stationary, deterministic policy)
that is used by Markov decision processes. We saw that any such policy R can be viewed
as a rule that prescribes decision di(R) whenever the system is in state i, for each i � 0,
1, . . . , M. Thus, R is characterized by the values

{d0(R), d1(R), . . . , dM(R)}.

Equivalently, R can be characterized by assigning values Dik � 0 or 1 in the matrix

Decision k
1 2 ��� K

State ,

where each Dik (i � 0, 1, . . . , M and k � 1, 2, . . . , K ) is defined as

Dik � � if decision k is to be made in state i
otherwise.

1
0








D0K

D1K

DMK

���

���

���

D02

D12

DM2

D01

D11

DM1








0

1

�

M
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solved for under each of the four policies (as can be done with your OR Courseware), the
calculation of E(C ) is as summarized here:

������������������������������



Therefore, each row in the matrix must contain a single 1 with the rest of the elements
0s. For example, the optimal policy Rb for the prototype example is characterized by the
matrix

Decision k
1 2 3

State ;

i.e., do nothing (decision 1) when the machine is in state 0 or 1, overhaul (decision 2) in
state 2, and replace the machine (decision 3) when it is in state 3.

Randomized Policies

Introducing Dik provides motivation for a linear programming formulation. It is hoped
that the expected cost of a policy can be expressed as a linear function of Dik or a related
variable, subject to linear constraints. Unfortunately, the Dik values are integers (0 or 1),
and continuous variables are required for a linear programming formulation. This re-
quirement can be handled by expanding the interpretation of a policy. The previous def-
inition calls for making the same decision every time the system is in state i. The new in-
terpretation of a policy will call for determining a probability distribution for the decision
to be made when the system is in state i.

With this new interpretation, the Dik now need to be redefined as

Dik � P{decision � kstate � i}.

In other words, given that the system is in state i, variable Dik is the probability of choos-
ing decision k as the decision to be made. Therefore, (Di1, Di2, . . . , DiK) is the proba-
bility distribution for the decision to be made in state i.

This kind of policy using probability distributions is called a randomized policy,
whereas the policy calling for Dik � 0 or 1 is a deterministic policy. Randomized policies
can again be characterized by the matrix

Decision k
1 2 ��� K

State ,

where each row sums to 1, and now

0 � Dik � 1.








D0K

D1K

DMK

���

���

���

D02

D12

DM2

D01

D11

DM1








0

1

�

M








0

0

0

1

0

0

1

0

1

1

0

0








0

1

2

3
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To illustrate, consider a randomized policy for the prototype example given by the
matrix

Decision k
1 2 3

State .

This policy calls for always making decision 1 (do nothing) when the machine is in state
0. If it is found to be in state 1, it is left as is with probability �

1
2

� and replaced with prob-
ability �

1
2

�, so a coin can be flipped to make the choice. If it is found to be in state 2, it is
left as is with probability �

1
4

�, overhauled with probability �
1
4

�, and replaced with probability
�
1
2

�. Presumably, a random device with these probabilities (possibly a table of random num-
bers) can be used to make the actual decision. Finally, if the machine is found to be in
state 3, it always is overhauled.

By allowing randomized policies, so that the Dik are continuous variables instead of
integer variables, it now is possible to formulate a linear programming model for finding
an optimal policy.

A Linear Programming Formulation

The convenient decision variables (denoted here by yik) for a linear programming model
are defined as follows. For each i � 0, 1, . . . , M and k � 1, 2, . . . , K, let yik be the steady-
state unconditional probability that the system is in state i and decision k is made; i.e.,

yik � P{state � i and decision � k}.

Each yik is closely related to the corresponding Dik since, from the rules of conditional
probability,

yik � �iDik,

where �i is the steady-state probability that the Markov chain is in state i. Furthermore,

�i � �
K

k�1
yik,

so that

Dik � �
y
�

ik

i
� � .

yik�

�
K

k�1
yik








0
�
1
2

�

�
1
2

�

1

0

0
�
1
4

�

0

1
�
1
2

�

�
1
4

�

0








0

1

2

3
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There exist several constraints on yik:

1. �
M

i�1
�i � 1 so that �

M

i�0
�
K

k�1
yik � 1.

2. From results on steady-state probabilities (see Sec. 16.5),1

�j � �
M

i�0
�ipij

so that

�
K

k�1
yjk � �

M

i�0
�
K

k�1
yikpij(k), for j � 0, 1, . . . , M.

3. yik � 0, for i � 0, 1, . . . , M and k � 1, 2, . . . , K.

The long-run expected average cost per unit time is given by

E(C ) � �
M

i�0
�
K

k�1
�iCikDik � �

M

i�0
�
K

k�1
Cikyik.

Hence, the linear programming model is to choose the yik so as to

Minimize Z � �
M

i�0
�
K

k�1
Cikyik,

subject to the constraints

(1) �
M

i�0
�
K

k�1
yik � 1.

(2) �
K

k�1
yjk 	 �

M

i�0
�
K

k�1
yikpij(k) � 0, for j � 0, 1, . . . , M.

(3) yik � 0, for i � 0, 1, . . . , M; k � 1, 2, . . . , K.

Thus, this model has M � 2 functional constraints and K(M � 1) decision variables. [Ac-
tually, (2) provides one redundant constraint, so any one of these M � 1 constraints can
be deleted.]

Assuming that the model is not too huge, it can be solved by the simplex method.
Once the yik values are obtained, each Dik is found from

Dik � .

The optimal solution obtained by the simplex method has some interesting proper-
ties. It will contain M � 1 basic variables yik � 0. It can be shown that yik 
 0 for at least

yik�

�
K

k�1
yik
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1The argument k is introduced in pij(k) to indicate that the appropriate transition probability depends upon the
decision k.



one k � 1, 2, . . . , K, for each i � 0, 1, . . . , M. Therefore, it follows that yik 
 0 for only
one k for each i � 0, 1, . . . , M. Consequently, each Dik � 0 or 1.

The key conclusion is that the optimal policy found by the simplex method is deter-
ministic rather than randomized. Thus, allowing policies to be randomized does not help at
all in improving the final policy. However, it serves an extremely useful role in this formu-
lation by converting integer variables (the Dik) to continuous variables so that linear pro-
gramming (LP) can be used. (The analogy in integer programming is to use the LP relax-
ation so that the simplex method can be applied and then to have the integer solutions property
hold so that the optimal solution for the LP relaxation turns out to be integer anyway.)

Solving the Prototype Example by Linear Programming

Refer to the prototype example of Sec. 21.1. The first two columns of Table 21.1 give the
relevant combinations of states and decisions. Therefore, the decision variables that need
to be included in the model are y01, y11, y13, y21, y22, y23, and y33. (The general expres-
sions given above for the model include yik for irrelevant combinations of states and de-
cisions here, so these yik � 0 in an optimal solution, and they might as well be deleted at
the outset.) The rightmost column of Table 21.1 provides the coefficients of these vari-
ables in the objective function. The transition probabilities pij(k) for each relevant com-
bination of state i and decision k also are spelled out in Sec. 21.1.

The resulting linear programming model is

Minimize Z � 1,000y11 � 6,000y13 � 3,000y21 � 4,000y22 � 6,000y23

� 6,000y33,

subject to

y01 � y11 � y13 � y21 � y22 � y23 � y33 � 1
y01 	 (y13 � y23 � y33) � 0

y11 � y13 	 ��
7
8

�y01 � �
3
4

�y11 � y22� � 0

y21 � y22 � y23 	 ��
1
1
6
�y01 � �

1
8

�y11 � �
1
2

�y21� � 0

y33 	 ��
1
1
6
�y01 � �

1
8

�y11 � �
1
2

�y21� � 0

and

all yik � 0.

Applying the simplex method, we obtain the optimal solution

y01 � �
2
2
1
�, (y11, y13) � ��

5
7

�, 0�, (y21, y22, y23) � �0, �
2
2
1
�, 0�, y33 � �

2
2
1
�,

so

D01 � 1, (D11, D13) � (1, 0), (D21, D22, D23) � (0, 1, 0), D33 � 1.

This policy calls for leaving the machine as is (decision 1) when it is in state 0 or 1, over-
hauling it (decision 2) when it is in state 2, and replacing it (decision 3) when it is in state
3. This is the same optimal policy found by exhaustive enumeration at the end of Sec. 21.2.
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You now have seen two methods for deriving an optimal policy for a Markov decision
process: exhaustive enumeration and linear programming. Exhaustive enumeration is use-
ful because it is both quick and straightforward for very small problems. Linear pro-
gramming can be used to solve vastly larger problems, and software packages for the sim-
plex method are very widely available.

We now present a third popular method, namely, a policy improvement algorithm.
The key advantage of this method is that it tends to be very efficient, because it usually
reaches an optimal policy in a relatively small number of iterations (far fewer than for the
simplex method with a linear programming formulation).

By following the model of Sec. 21.2 and as a joint result of the current state i of the
system and the decision di(R) � k when operating under policy R, two things occur. An
(expected) cost Cik is incurred that depends upon only the observed state of the system
and the decision made. The system moves to state j at the next observed time period, with
transition probability given by pij(k). If, in fact, state j influences the cost that has been
incurred, then Cik is calculated as follows. Denote by qij(k) the (expected) cost incurred
when the system is in state i and decision k is made and then it evolves to state j at the
next observed time period. Then

Cik � �
M

j�0
qij(k)pij(k).

Preliminaries

Referring to the description and notation for Markov decision processes given at the be-
ginning of Sec. 21.2, we can show that, for any given policy R, there exist values g(R),
v0(R), v1(R), . . . , vM(R) that satisfy

g(R) � vi(R) � Cik � �
M

j�0
pij(k) vj(R), for i � 0, 1, 2, . . . , M.

We now shall give a heuristic justification of these relationships and an interpretation for
these values.

Denote by vi
n(R) the total expected cost of a system starting in state i (beginning the

first observed time period) and evolving for n time periods. Then vi
n(R) has two compo-

nents: Cik, the cost incurred during the first observed time period, and �
M

j�0
pij(k) vj

n	1(R),

the total expected cost of the system evolving over the remaining n 	 1 time periods. This
gives the recursive equation

vi
n(R) � Cik � �

M

j�0
pij(k) vj

n	1(R), for i � 0, 1, 2, . . . , M,

where vi
1(R) � Cik for all i.
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It will be useful to explore the behavior of vi
n(R) as n grows large. Recall that the (long-

run) expected average cost per unit time following any policy R can be expressed as

g(R) � �
M

i�0
�iCik,

which is independent of the starting state i. Hence, vi
n(R) behaves approximately as n g(R)

for large n. In fact, if we neglect small fluctuations, vi
n(R) can be expressed as the sum of

two components

vi
n(R) � n g(R) � vi(R),

where the first component is independent of the initial state and the second is dependent
upon the initial state. Thus, vi(R) can be interpreted as the effect on the total expected cost
due to starting in state i. Consequently,

vi
n(R) 	 vj

n(R) � vi(R) 	 vj(R),

so that vi(R) 	 vj(R) is a measure of the effect of starting in state i rather than state j.
Letting n grow large, we now can substitute vi

n(R) � n g(R) � vi(R) and vj
n	1(R) �

(n 	 1)g(R) � vj(R) into the recursive equation. This leads to the system of equations
given in the opening paragraph of this subsection.

Note that this system has M � 1 equations with M � 2 unknowns, so that one of these
variables may be chosen arbitrarily. By convention, vM(R) will be chosen equal to zero.
Therefore, by solving the system of linear equations, we can obtain g(R), the (long-run)
expected average cost per unit time when policy R is followed. In principle, all policies
can be enumerated and that policy which minimizes g(R) can be found. However, even
for a moderate number of states and decisions, this technique is cumbersome. Fortunately,
there exists an algorithm that can be used to evaluate policies and find the optimal one
without complete enumeration, as described next.

The Policy Improvement Algorithm

The algorithm begins by choosing an arbitrary policy R1. It then solves the system of
equations to find the values of g(R1), v0(R), v1(R), . . . , vM	1(R) [with vM(R) � 0]. This
step is called value determination. A better policy, denoted by R2, is then constructed.
This step is called policy improvement. These two steps constitute an iteration of the al-
gorithm. Using the new policy R2, we perform another iteration. These iterations continue
until two successive iterations lead to identical policies, which signifies that the optimal
policy has been obtained. The details are outlined below.

Summary of the Policy Improvement Algorithm

Initialization: Choose an arbitrary initial trial policy R1. Set n � 1.
Iteration n:
Step 1: Value determination: For policy Rn, use pij(k), Cik, and vM(Rn) � 0 to
solve the system of M � 1 equations

g(Rn) � Cik � �
M

j�0
pij(k) vj(Rn) 	 vi(Rn), for i � 0, 1, . . . , M,
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for all M � 1 unknown values of g(Rn), v0(Rn), v1(Rn), . . . , vM	1(Rn).
Step 2: Policy improvement: Using the current values of vi(Rn) computed for pol-
icy Rn, find the alternative policy Rn�1 such that, for each state i, di(Rn�1) � k
is the decision that minimizes

Cik � �
M

j�0
pij(k) vj(Rn) 	 vi(Rn)

i.e., for each state i,

Minimize [Cik � �
M

j�0
pij(k) vj(Rn) 	 vi(Rn)],

k�1, 2, . . . , k

and then set di(Rn�1) equal to the minimizing value of k. This procedure defines
a new policy Rn�1.
Optimality test: The current policy Rn�1 is optimal if this policy is identical to
policy Rn. If it is, stop. Otherwise, reset n � n � 1 and perform another iteration.

Two key properties of this algorithm are

1. g(Rn�1) � g(Rn), for n � 1, 2, . . . .
2. The algorithm terminates with an optimal policy in a finite number of itera-

tions.1

Solving the Prototype Example by 
the Policy Improvement Algorithm

Referring to the prototype example presented in Sec. 21.1, we outline the application of
the algorithm next.

Initialization. For the initial trial policy R1, we arbitrarily choose the policy that calls
for replacement of the machine (decision 3) when it is found to be in state 3, but doing
nothing (decision 1) in other states. This policy, its transition matrix, and its costs are sum-
marized below.
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Transition matrix

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 0 �
1
2

� �
1
2

�

3 1 0 0 0

Policy R1

State Decision

0 1
1 1
2 1
3 3

Costs

State Cik

0 0
1 1,000
2 3,000
3 6,000

1This termination is guaranteed under the assumptions of the model given in Sec. 21.2, including particularly
the (implicit) assumptions of a finite number of states (M � 1) and a finite number of decisions (K), but not
necessarily for more general models. See R. Howard, Dynamic Programming and Markov Processes, M.I.T.
Press, Cambridge, MA, 1960. Also see pp. 1291–1293 in A. F. Veinott, Jr., “On Finding Optimal Policies in Dis-
crete Dynamic Programming with No Discounting,” Annals of Mathematical Statistics, 37: 1284–1294, 1966.



Iteration 1. With this policy, the value determination step requires solving the follow-
ing four equations simultaneously for g(R1), v0(R1), v1(R1), and v2(R1) [with v3(R1) � 0].

g(R1) � � �
7
8

�v1(R1) � �
1
1
6
�v2(R1) 	 v0(R1).

g(R1) � 1,000 � �
3
4

�v1(R1) � �
1
8

�v2(R1) 	 v1(R1).

g(R1) � 3,000 � �
1
2

�v2(R1) 	 v2(R1).

g(R1) � 6,000 � v0(R1).

The simultaneous solution is

g(R1) � �
25

1
,0
3
00
� � 1,923

v0(R1) � 	�
53

1
,0
3
00
� � 	4,077

v1(R1) � 	�
34

1
,0
3
00
� � 	2,615

v2(R1) � �
28

1
,0
3
00
� � 2,154.

Step 2 (policy improvement) can now be applied. We want to find an improved pol-
icy R2 such that decision k in state i minimizes the corresponding expression below.

State 0: C0k 	 p00(k)(4,077) 	 p01(k)(2,615) � p02(k)(2,154) � 4,077
State 1: C1k 	 p10(k)(4,077) 	 p11(k)(2,615) � p12(k)(2,154) � 2,615
State 2: C2k 	 p20(k)(4,077) 	 p21(k)(2,615) � p22(k)(2,154) 	 2,154
State 3: C3k 	 p30(k)(4,077) 	 p31(k)(2,615) � p32(k)(2,154).

Actually, in state 0, the only decision allowed is decision 1 (do nothing), so no cal-
culations are needed. Similarly, we know that decision 3 (replace) must be made in state
3. Thus, only states 1 and 2 require calculation of the values of these expressions for al-
ternative decisions.

For state 1, the possible decisions are 1 and 3. For each one, we show below the cor-
responding C1k, the p1j(k), and the resulting value of the expression.
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� Minimum

State 1

Value of
Decision C1k p10(k) p11(k) p12(k) p13(k) Expression

1 1,000 0 �
3
4

� �
1
8

� �
1
8

� 1,923

3 6,000 1 0 0 0 4,538

Since decision 1 minimizes the expression, it is chosen as the decision to be made in state
1 for policy R2 ( just as for policy R1).



The corresponding results for state 2 are shown below for its three possible decisions.
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Therefore, decision 2 is chosen as the decision to be made in state 2 for policy R2. Note
that this is a change from policy R1.

We summarize our new policy, its transition matrix, and its costs below.

� Minimum

State 2

Value of
Decision C2k p20(k) p21(k) p22(k) p23(k) Expression

1 3,000 0 0 �
1
2

� �
1
2

� 1,923

2 4,000 0 1 0 0 	769
3 6,000 1 0 0 0 	231

Since this policy is not identical to policy R1, the optimality test says to perform another
iteration.

Iteration 2. For step 1 (value determination), the equations to be solved for this pol-
icy are shown below.

g(R2) � � �
7
8

�v1(R2) � �
1
1
6
�v2(R2) 	 v0(R2).

g(R2) � 1,000 � �
3
4

�v1(R2) � �
1
8

�v2(R2) 	 v1(R2).

g(R2) � 4,000 � v1(R2) 	 v2(R2).
g(R2) � 6,000 � v0(R2).

The simultaneous solution is

g(R2) � �
5,0

3
00
� � 1,667

v0(R2) � 	�
13,

3
000
� � 	4,333

v1(R2) � 	3,000

v2(R2) � 	�
2,0

3
00
� � 	667.

Costs

State Cik

0 0
1 1,000
2 4,000
3 6,000

Transition matrix

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 1 0 0
3 1 0 0 0

Policy R2

State Decision

0 1
1 1
2 2
3 3



Step 2 (policy improvement) can now be applied. For the two states with more than
one possible decision, the expressions to be minimized are

State 1: C1k 	 p10(k)(4,333) 	 p11(k)(3,000) 	 p12(k)(667) � 3,000

State 2: C2k 	 p20(k)(4,333) 	 p21(k)(3,000) 	 p22(k)(667) � 667.

The first iteration provides the necessary data (the transition probabilities and Cik) re-
quired for determining the new policy, except for the values of each of these expressions
for each of the possible decisions. These values are
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Since decision 1 minimizes the expression for state 1 and decision 2 minimizes the ex-
pression for state 2, our next trial policy R3 is

Note that policy R3 is identical to policy R2. Therefore, the optimality test indicates
that this policy is optimal, so the algorithm is finished.

Another example illustrating the application of this algorithm is included in your OR
Tutor. The OR Courseware also includes an interactive routine for efficiently learning and
applying the algorithm.

Decision Value for State 1 Value for State 2

1 1,667 3,333
2 — 1,667
3 4,667 2,334

Policy R3

State Decision

0 1
1 1
2 2
3 3

Throughout this chapter, we have measured policies on the basis of their (long-run) ex-
pected average cost per unit time. We now turn to an alternative measure of performance,
namely, the expected total discounted cost.

As first introduced in Sec. 19.2, this measure uses a discount factor �, where 
0 � � � 1. The discount factor � can be interpreted as equal to 1/(1 � i), where i is the
current interest rate per period. Thus, � is the present value of one unit of cost one pe-
riod in the future. Similarly, �m is the present value of one unit of cost m periods in the
future.

This discounted cost criterion becomes preferable to the average cost criterion when
the time periods for the Markov chain are sufficiently long that the time value of money
should be taken into account in adding costs in future periods to the cost in the current
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period. Another advantage is that the discounted cost criterion can readily be adapted to
dealing with a finite-period Markov decision process where the Markov chain will ter-
minate after a certain number of periods.

Both the policy improvement technique and the linear programming approach still
can be applied here with relatively minor adjustments from the average cost case, as we
describe next. Then we will present another technique, called the method of successive
approximations, for quickly approximating an optimal policy.

A Policy Improvement Algorithm

To derive the expressions needed for the value determination and policy improvement
steps of the algorithm, we now adopt the viewpoint of probabilistic dynamic program-
ming (as described in Sec. 11.4). In particular, for each state i (i � 0, 1, . . . , M) of a
Markov decision process operating under policy R, let Vi

n(R) be the expected total dis-
counted cost when the process starts in state i (beginning the first observed time period)
and evolves for n time periods. Then Vi

n(R) has two components: Cik, the cost incurred 

during the first observed time period, and � �
M

j�0
pij(k)Vj

n	1(R), the expected total dis-

counted cost of the process evolving over the remaining n 	 1 time periods. For each 
i � 0, 1, . . . , M, this yields the recursive equation

Vi
n(R) � Cik � � �

M

j�0
pij(k)Vj

n	1(R),

with Vi
1(R) � Cik, which closely resembles the recursive relationships of probabilistic dy-

namic programming found in Sec. 11.4.
As n approaches infinity, this recursive equation converges to

Vi(R) � Cik � � �
M

j�0
pij(k)Vj(R), for i � 0, 1, . . . , M,

where Vi(R) can now be interpreted as the expected total discounted cost when the process
starts in state i and continues indefinitely. There are M � 1 equations and M � 1 un-
knowns, so the simultaneous solution of this system of equations yields the Vi(R).

To illustrate, consider again the prototype example of Sec. 21.1. Under the average
cost criterion, we found in Secs. 21.2, 21.3, and 21.4 that the optimal policy is to do noth-
ing in states 0 and 1, overhaul in state 2, and replace in state 3. Under the discounted cost
criterion, with � � 0.9, this same policy gives the following system of equations:

V0(R) � 1,000 � 0.9� �
7
8

�V1(R) � �
1
1
6
�V2(R) � �

1
1
6
�V3(R)�

V1(R) � 1,000 � 0.9� �
3
4

�V1(R) � �
1
8

�V2(R) � �
1
8

�V3(R)�
V2(R) � 4,000 � 0.9[ V1(R)]
V3(R) � 6,000 � 0.9[V0(R)].
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The simultaneous solution is

V0(R) � 14,949
V1(R) � 16,262
V2(R) � 18,636
V3(R) � 19,454.

Thus, assuming that the system starts in state 0, the expected total discounted cost is
$14,949.

This system of equations provides the expressions needed for a policy improvement
algorithm. After summarizing this algorithm in general terms, we shall use it to check
whether this particular policy still is optimal under the discounted cost criterion.

Summary of the Policy Improvement Algorithm (Discounted Cost Criterion).

Initialization: Choose an arbitrary initial trial policy R1. Set n � 1.
Iteration n:
Step 1: Value determination: For policy Rn, use pij(k) and Cik to solve the sys-
tem of M � 1 equations

Vi(Rn) � Cik � � �
M

j�0
pij(k)Vj(Rn), for i � 0, 1, . . . , M,

for all M � 1 unknown values of V0(Rn), V1(Rn), . . . , VM(Rn).
Step 2: Policy improvement: Using the current values of the Vi(Rn), find the al-
ternative policy Rn�1 such that, for each state i, di(Rn�1) � k is the decision that
minimizes

Cik � � �
M

j�0
pij(k)Vj(Rn)

i.e., for each state i,

Minimize �Cik � � �
M

j�0
pij(k)Vj(Rn)�,

k�1, 2, . . . , K

and then set di(Rn�1) equal to the minimizing value of k. This procedure defines
a new policy Rn�1.
Optimality test: The current policy Rn�1 is optimal if this policy is identical to
policy Rn. If it is, stop. Otherwise, reset n � n � 1 and perform another iteration.

Three key properties of this algorithm are as follows:

1. Vi(Rn�1) � Vi(Rn), for i � 0, 1, . . . , M and n � 1, 2, . . . .
2. The algorithm terminates with an optimal policy in a finite number of iterations.
3. The algorithm is valid without the assumption (used for the average cost case)

that the Markov chain associated with every transition matrix is irreducible.

Your OR Courseware includes an interactive routine for applying this algorithm.
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Solving the Prototype Example by This Policy Improvement Algorithm. We
now pick up the prototype example where we left it before summarizing the algorithm.

We already have selected the optimal policy under the average cost criterion to be
our initial trial policy R1. This policy, its transition matrix, and its costs are summarized
below.
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We also have already done step 1 (value determination) of iteration 1. This transi-
tion matrix and these costs led to the system of equations used to find V0(R1) � 14,949,
V1(R1) � 16,262, V2(R1) � 18,636, and V3(R1) � 19,454.

To start step 2 (policy improvement), we only need to construct the expression to be
minimized for the two states (1 and 2) with a choice of decisions.

State 1: C1k � 0.9[ p10(k)(14,949) � p11(k)(16,262) � p12(k)(18,636)
� p13(k)(19,454)]

State 2: C2k � 0.9[ p20(k)(14,949) � p21(k)(16,262) � p22(k)(18,636)
� p23(k)(19,454)].

For each of these states and their possible decisions, we show below the corresponding
Cik, the pij(k), and the resulting value of the expression.

Policy R1

State Decision

0 1
1 1
2 2
3 3

Transition matrix

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 1 0 0
3 1 0 0 0

Costs

State Cik

0 0
1 1,000
2 4,000
3 6,000

� Minimum

� Minimum

State 1

Decision C1k p10(k) p11(k) p12(k) p13(k) Value of Expression

1 1,000 0 �
3
4

� �
1
8

� �
1
8

� 16,262

3 6,000 1 0 0 0 19,454

State 2

Decision C2k p20(k) p21(k) p22(k) p23(k) Value of Expression

1 3,000 0 0 �
1
2

� �
1
2

� 20,140

2 4,000 0 1 0 0 18,636
3 6,000 1 0 0 0 19,454



Since decision 1 minimizes the expression for state 1 and decision 2 minimizes the ex-
pression for state 2, our next trial policy (R2) is as follows:

21.5 DISCOUNTED COST CRITERION 1073

Since this policy is identical to policy R1, the optimality test indicates that this pol-
icy is optimal. Thus, the optimal policy under the average cost criterion also is optimal
under the discounted cost criterion in this case. (This often occurs, but not always.)

Linear Programming Formulation

The linear programming formulation for the discounted cost case is similar to that for the
average cost case given in Sec. 21.3. However, we no longer need the first constraint given
in Sec. 21.3; but the other functional constraints do need to include the discount factor �.
The other difference is that the model now contains constants 
j for j � 0, 1, . . . , M.
These constants must satisfy the conditions

�
M

j�0

j � 1, 
j 
 0 for j � 0, 1, . . . , M,

but otherwise they can be chosen arbitrarily without affecting the optimal policy obtained
from the model.

The resulting model is to choose the values of the continuous decision variables yik

so as to

Minimize Z � �
M

i�0
�
K

k�1
Cikyik,

subject to the constraints

(1) �
K

k�1
yjk 	 � �

M

i�0
�
K

k�1
yikpij(k) � 
j, for j � 0, 1, . . . , M,

(2) yik � 0, for i � 0, 1, . . . , M; k � 1, 2, . . . , K.

Once the simplex method is used to obtain an optimal solution for this model, the
corresponding optimal policy then is defined by

Dik � P{decision � k and state � i} � .
yik�

�
K

k�1
yik

Policy R2

State Decision

0 1
1 1
2 2
3 3



The yik now can be interpreted as the discounted expected time of being in state i and
making decision k, when the probability distribution of the initial state (when observa-
tions begin) is P{X0 � j} � 
j for j � 0, 1, . . . , M. In other words, if

zn
ik � P{at time n, state � i and decision � k},

then 

yik � z0
ik � �z1

ik � �2z2
ik � �3z3

ik � ���.

With the interpretation of the 
j as initial state probabilities (with each probability greater
than zero), Z can be interpreted as the corresponding expected total discounted cost. Thus,
the choice of 
j affects the optimal value of Z (but not the resulting optimal policy).

It again can be shown that the optimal policy obtained from solving the linear pro-
gramming model is deterministic; that is, Dik � 0 or 1. Furthermore, this technique is valid
without the assumption (used for the average cost case) that the Markov chain associated
with every transition matrix is irreducible.

Solving the Prototype Example by Linear Programming. The linear program-
ming model for the prototype example (with � � 0.9) is

Minimize Z � 1,000y11 � 6,000y13 � 3,000y21 � 4,000y22 � 6,000y23

� 6,000y33,

subject to

y01 	 0.9(y13 � y23 � y33) � �
1
4

�

y11 � y13 	 0.9��
7
8

�y01 � �
3
4

�y11 � y22� � �
1
4

�

y21 � y22 � y23 	 0.9��
1
1
6
�y01 � �

1
8

�y11 � �
1
2

�y21� � �
1
4

�

y33 	 0.9��
1
1
6
�y01 � �

1
8

�y11 � �
1
2

�y21� � �
1
4

�

and

all yik � 0,

where 
0, 
1, 
2, and 
3 are arbitrarily chosen to be �
1
4

�. By the simplex method, the opti-
mal solution is

y01 � 1.210, (y11, y13) � (6.656, 0), (y21, y22, y23) � (0, 1.067, 0),
y33 � 1.067,

so

D01 � 1, (D11, D13) � (1, 0), (D21, D22, D23) � (0, 1, 0), D33 � 1.

This optimal policy is the same as that obtained earlier in this section by the policy im-
provement algorithm.

The value of the objective function for the optimal solution is Z � 17,325. This value
is closely related to the values of the Vi(R) for this optimal policy that were obtained by
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the policy improvement algorithm. Recall that Vi(R) is interpreted as the expected total
discounted cost given that the system starts in state i, and we are interpreting 
i as the
probability of starting in state i. Because each 
i was chosen to equal �

1
4

�,

17,325 � �
1
4

�[V0(R) � V1(R) � V2(R) � V3(R)]

� �
1
4

�(14,949 � 16,262 � 18,636 � 19,454).

Finite-Period Markov Decision Processes and 
the Method of Successive Approximations

We now turn our attention to an approach, called the method of successive approxima-
tions, for quickly finding at least an approximation to an optimal policy.

We have assumed that the Markov decision process will be operating indefinitely, and
we have sought an optimal policy for such a process. The basic idea of the method of suc-
cessive approximations is to instead find an optimal policy for the decisions to make in
the first period when the process has only n time periods to go before termination, start-
ing with n � 1, then n � 2, then n � 3, and so on. As n grows large, the corresponding
optimal policies will converge to an optimal policy for the infinite-period problem of in-
terest. Thus, the policies obtained for n � 1, 2, 3, . . . provide successive approximations
that lead to the desired optimal policy.

The reason that this approach is attractive is that we already have a quick method of
finding an optimal policy when the process has only n periods to go, namely, probabilis-
tic dynamic programming as described in Sec. 11.4.

In particular, for i � 0, 1, . . . , M, let

Vi
n � expected total discounted cost of following an optimal policy, given that

process starts in state i and has only n periods to go.1

By the principle of optimality for dynamic programming (see Sec. 11.2), the Vi
n are ob-

tained from the recursive relationship

Vi
n � min

k �Cik � � �
M

j�0
pij(k)Vj

n	1	, for i � 0, 1, . . . , M.

The minimizing value of k provides the optimal decision to make in the first period when
the process starts in state i.

To get started, with n � 1, all the Vi
0 � 0 so that

Vi
1 � min

k
{Cik}, for i � 0, 1, . . . , M.

Although the method of successive approximations may not lead to an optimal pol-
icy for the infinite-period problem after only a few iterations, it has one distinct advan-
tage over the policy improvement and linear programming techniques. It never requires
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1Since we want to allow n to grow indefinitely, we are letting n be the number of periods to go, instead of the
number of periods from the beginning (as in Chap. 11).



solving a system of simultaneous equations, so each iteration can be performed simply
and quickly.

Furthermore, if the Markov decision process actually does have just n periods to go,
n iterations of this method definitely will lead to an optimal policy. (For an n-period prob-
lem, it is permissible to set � � 1, that is, no discounting, in which case the objective is
to minimize the expected total cost over n periods.)

Your OR Courseware includes an interactive routine to help guide you to use this
method efficiently.

Solving the Prototype Example by the Method of Successive Approximations.
We again use � � 0.9. Refer to the rightmost column of Table 21.1 at the end of Sec. 21.1
for the values of Cik. Also note in the first two columns of this table that the only feasi-
ble decisions k for each state i are k � 1 for i � 0, k � 1 or 3 for i � 1, k � 1, 2, or 3 for
i � 2, and k � 3 for i � 3.

For the first iteration (n � 1), the value obtained for each Vi
1 is shown below, along

with the minimizing value of k (given in parentheses).

V0
1 � min {C0k} � 0 (k � 1)

k�1

V1
1 � min {C1k} � 1,000 (k � 1)

k�1,3

V2
1 � min {C2k} � 3,000 (k � 1)

k�1,2,3

V3
1 � min {C3k} � 6,000 (k � 3)

k�3

Thus, the first approximation calls for making decision 1 (do nothing) when the system is
in state 0, 1, or 2. When the system is in state 3, decision 3 (replace the machine) is made.

The second iteration leads to

V0
2 � 0 � 0.9��

7
8

�(1,000) � �
1
1
6
�(3,000) � �

1
1
6
�(6,000)� � 1,294 (k � 1).

V1
2 � min �1,000 � 0.9��

3
4

�(1,000) � �
1
8

�(3,000) � �
1
8

�(6,000)�,

6,000 � 0.9[1(0)]	 � 2,688 (k � 1).

V2
2 � min �3,000 � 0.9��

1
2

�(3,000) � �
1
2

�(6,000)�,

4,000 � 0.9[1(1,000)], 6,000 � 0.9[1(0)]	 � 4,900 (k � 2).

V3
2 � 6,000 � 0.9[1(0)] � 6,000 (k � 3).

where the min operator has been deleted from the first and fourth expressions because
only one alternative for the decision is available. Thus, the second approximation calls for
leaving the machine as is when it is in state 0 or 1, overhauling when it is in state 2, and
replacing the machine when it is in state 3. Note that this policy is the optimal one for
the infinite-period problem, as found earlier in this section by both the policy improve-
ment algorithm and linear programming. However, the Vi

2 (the expected total discounted
cost when starting in state i for the two-period problem) are not yet close to the Vi (the
corresponding cost for the infinite-period problem).
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The third iteration leads to

V0
3 � 0 � 0.9��

7
8

�(2,688) � �
1
1
6
�(4,900) � �

1
1
6
�(6,000)� � 2,730 (k � 1).

V1
3 � min �1,000 � 0.9��

3
4

�(2,688) � �
1
8

�(4,900) � �
1
8

�(6,000)�,

6,000 � 0.9[1(1,294)]	 � 4,041 (k � 1).

V2
3 � min �3,000 � 0.9��

1
2

�(4,900) � �
1
2

�(6,000)�,

4,000 � 0.9[1(2,688)], 6,000 � 0.9[1(1,294)]	 � 6,419 (k � 2).

V3
3 � 6,000 � 0.9[1(1,294)] � 7,165 (k � 3).

Again the optimal policy for the infinite-period problem is obtained, and the costs are get-
ting closer to those for that problem. This procedure can be continued, and V0

n, V1
n, V2

n,
and V3

n will converge to 14,949, 16,262, 18,636, and 19,454, respectively.
Note that termination of the method of successive approximations after the second it-

eration would have resulted in an optimal policy for the infinite-period problem, although
there is no way to know this fact without solving the problem by other methods.

As indicated earlier, the method of successive approximations definitely obtains an
optimal policy for an n-period problem after n iterations. For this example, the first, sec-
ond, and third iterations have identified the optimal immediate decision for each state if
the remaining number of periods is one, two, and three, respectively.
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approximating an optimal policy.
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A Demonstration Example in OR Tutor:

Policy Improvement Algorithm—Average Cost Case

Interactive Routines:

Enter Markov Decision Model
Interactive Policy Improvement Algorithm—Average Cost
Interactive Policy Improvement Algorithm—Discounted Cost
Interactive Method of Successive Approximations

Automatic Routines:

Enter Transition Matrix
Steady-State Probabilities

“Ch. 21—Markov Decision Proc” Files for Solving the Linear
Programming Formulations:

Excel File
LINGO/LINDO File
MPL/CPLEX File

See Appendix 1 for documentation of the software.

LEARNING AIDS FOR THIS CHAPTER IN YOUR OR COURSEWARE

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example listed above may be helpful.
I: We suggest that you use the corresponding interactive routine

listed above (the printout records your work).
A: The automatic routines listed above can be helpful.

PROBLEMS

C: Use the computer with any of the software options available to
you (or as instructed by your instructor) to solve your linear
programming formulation.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.



A (c) Use your OR Courseware to find these steady-state proba-
bilities for each policy. Then evaluate the expression ob-
tained in part (b) to find the optimal policy by exhaustive
enumeration.

21.2-3. A soap company specializes in a luxury type of bath soap.
The sales of this soap fluctuate between two levels—low and
high—depending upon two factors: (1) whether they advertise and
(2) the advertising and marketing of new products by competitors.
The second factor is out of the company’s control, but it is trying
to determine what its own advertising policy should be. For ex-
ample, the marketing manager’s proposal is to advertise when sales
are low but not to advertise when sales are high (a particular pol-
icy). Advertising in any quarter of a year has primary impact on
sales in the following quarter. At the beginning of each quarter, the
needed information is available to forecast accurately whether sales
will be low or high that quarter and to decide whether to advertise
that quarter.

The cost of advertising is $1 million for each quarter of a year
in which it is done. When advertising is done during a quarter, the
probability of having high sales the next quarter is �

1
2

� or �
3
4

� depend-
ing upon whether the current quarter’s sales are low or high. These
probabilities go down to �

1
4

� or �
1
2

� when advertising is not done dur-
ing the current quarter. The company’s quarterly profits (exclud-
ing advertising costs) are $4 million when sales are high but only
$2 million when sales are low. Management now wants to deter-
mine the advertising policy that will maximize the company’s
(long-run) expected average net profit (profit minus advertising
costs) per quarter.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each one,

find the transition matrix and write an expression for the (long-
run) expected average net profit per period in terms of the un-
known steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your OR Courseware to find these steady-state proba-
bilities for each policy. Then evaluate the expression ob-
tained in part (b) to find the optimal policy by exhaustive
enumeration.

21.2-4. Every Saturday night a man plays poker at his home with
the same group of friends. If he provides refreshments for the group
(at an expected cost of $14) on any given Saturday night, the group
will begin the following Saturday night in a good mood with prob-
ability �

7
8

� and in a bad mood with probability �
1
8

�. However, if he fails
to provide refreshments, the group will begin the following Satur-
day night in a good mood with probability �

1
8

� and in a bad mood
with probability �

7
8

�, regardless of their mood this Saturday. Further-
more, if the group begins the night in a bad mood and then he fails
to provide refreshments, the group will gang up on him so that he
incurs expected poker losses of $75. Under other circumstances,

21.2-1.* During any period, a potential customer arrives at a cer-
tain facility with probability �

1
2

�. If there are already two people at
the facility (including the one being served), the potential customer
leaves the facility immediately and never returns. However, if there
is one person or less, he enters the facility and becomes an actual
customer. The manager of the facility has two types of service con-
figurations available. At the beginning of each period, a decision
must be made on which configuration to use. If she uses her “slow”
configuration at a cost of $3 and any customers are present during
the period, one customer will be served and leave the facility with
probability �

3
5

�. If she uses her “fast” configuration at a cost of $9
and any customers are present during the period, one customer will
be served and leave the facility with probability �

4
5

�. The probability
of more than one customer arriving or more than one customer be-
ing served in a period is zero. A profit of $50 is earned when a
customer is served.
(a) Formulate the problem of choosing the service configuration

period by period as a Markov decision process. Identify the
states and decisions. For each combination of state and deci-
sion, find the expected net immediate cost (subtracting any
profit from serving a customer) incurred during that period.

(b) Identify all the (stationary deterministic) policies. For each one,
find the transition matrix and write an expression for the (long-
run) expected average net cost per period in terms of the un-
known steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your OR Courseware to find these steady-state probabil-
ities for each policy. Then evaluate the expression obtained in
part (b) to find the optimal policy by exhaustive enumeration.

21.2-2.* A student is concerned about her car and does not like
dents. When she drives to school, she has a choice of parking it on
the street in one space, parking it on the street and taking up two
spaces, or parking in the lot. If she parks on the street in one space,
her car gets dented with probability �

1
1
0
�. If she parks on the street

and takes two spaces, the probability of a dent is �
5
1
0
� and the prob-

ability of a $15 ticket is �
1
3
0
�. Parking in a lot costs $5, but the car

will not get dented. If her car gets dented, she can have it repaired,
in which case it is out of commission for 1 day and costs her $50
in fees and cab fares. She can also drive her car dented, but she
feels that the resulting loss of value and pride is equivalent to a
cost of $9 per school day. She wishes to determine the optimal pol-
icy for where to park and whether to repair the car when dented
in order to minimize her (long-run) expected average cost per
school day.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each one,

find the transition matrix and write an expression for the (long-
run) expected average cost per period in terms of the unknown
steady-state probabilities (�0, �1, . . . , �M).
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has profits (losses) of $10,000. If the market moves up (down)
2,000 points in a year, the Go-Go Fund has profits (losses) of
$50,000, while the Go-Slow Fund has profits (losses) of only
$20,000. If the market does not change, there is no profit or loss
for either fund. Ms. Fontanez wishes to determine her optimal in-
vestment policy in order to minimize her (long-run) expected av-
erage cost (loss minus profit) per year.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each one,

find the transition matrix and write an expression for the (long-
run) expected average cost per period in terms of the unknown
steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your OR Courseware to find these steady-state proba-
bilities for each policy. Then evaluate the expression ob-
tained in part (b) to find the optimal policy by exhaustive
enumeration.

21.2-7. Buck and Bill Bogus are twin brothers who work at a gas
station and have a counterfeiting business on the side. Each day a
decision is made as to which brother will go to work at the gas sta-
tion, and then the other will stay home and run the printing press
in the basement. Each day that the machine works properly, it is
estimated that 60 usable $20 bills can be produced. However, the
machine is somewhat unreliable and breaks down frequently. If the
machine is not working at the beginning of the day, Buck can have
it in working order by the beginning of the next day with proba-
bility 0.6. If Bill works on the machine, the probability decreases
to 0.5. If Bill operates the machine when it is working, the prob-
ability is 0.6 that it will still be working at the beginning of the
next day. If Buck operates the machine, it breaks down with prob-
ability 0.6. (Assume for simplicity that all breakdowns occur at the
end of the day.) The brothers now wish to determine the optimal
policy for when each should stay home in order to maximize their
(long-run) expected average profit (amount of usable counterfeit
money produced) per day.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each one,

find the transition matrix and write an expression for the (long-
run) expected average net profit per period in terms of the un-
known steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your OR Courseware to find these steady-state proba-
bilities for each policy. Then evaluate the expression ob-
tained in part (b) to find the optimal policy by exhaustive
enumeration.

21.2-8. A person often finds that she is up to 1 hour late for work.
If she is from 1 to 30 minutes late, $4 is deducted from her pay-
check; if she is from 31 to 60 minutes late for work, $8 is deducted
from her paycheck. If she drives to work at her normal speed (which

he averages no gain or loss on his poker play. The man wishes to
find the policy regarding when to provide refreshments that will
minimize his (long-run) expected average cost per week.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each one,

find the transition matrix and write an expression for the (long-
run) expected average cost per period in terms of the unknown
steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your OR Courseware to find these steady-state probabil-
ities for each policy. Then evaluate the expression obtained in
part (b) to find the optimal policy by exhaustive enumeration.

21.2-5.* When a tennis player serves, he gets two chances to serve
in bounds. If he fails to do so twice, he loses the point. If he at-
tempts to serve an ace, he serves in bounds with probability �

3
8

�. If
he serves a lob, he serves in bounds with probability �

7
8

�. If he serves
an ace in bounds, he wins the point with probability �

2
3

�. With an in-
bounds lob, he wins the point with probability �

1
3

�. If the cost is �1
for each point lost and 	1 for each point won, the problem is to
determine the optimal serving strategy to minimize the (long-run)
expected average cost per point. (Hint: Let state 0 denote point
over, two serves to go on next point; and let state 1 denote one
serve left.)
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each one,

find the transition matrix and write an expression for the (long-
run) expected average cost per point in terms of the unknown
steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your OR Courseware to find these steady-state proba-
bilities for each policy. Then evaluate the expression ob-
tained in part (b) to find the optimal policy by exhaustive
enumeration.

21.2-6. Each year Ms. Fontanez has the chance to invest in two
different no-load mutual funds: the Go-Go Fund or the Go-Slow
Mutual Fund. At the end of each year, Ms. Fontanez liquidates her
holdings, takes her profits, and then reinvests. The yearly profits
of the mutual funds are dependent upon how the market reacts each
year. Recently the market has been oscillating around the 12,000
mark from one year end to the next, according to the probabilities
given in the following transition matrix:

11,000 12,000 13,000

Each year that the market moves up (down) 1,000 points, the Go-
Go Fund has profits (losses) of $20,000, while the Go-Slow Fund



0.2

0.4

0.4

0.5

0.5

0.4

0.3

0.1

0.2



11,000

12,000

13,000
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She wishes to determine when she should speed and when she
should take her time getting to work in order to minimize her (long-
run) expected average cost per day.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each one,

find the transition matrix and write an expression for the (long-
run) expected average cost per period in terms of the unknown
steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your OR Courseware to find these steady-state probabil-
ities for each policy. Then evaluate the expression obtained in
part (b) to find the optimal policy by exhaustive enumeration.

21.2-9. Consider an infinite-period inventory problem involving a
single product where, at the beginning of each period, a decision
must be made about how many items to produce during that pe-
riod. The setup cost is $10, and the unit production cost is $5. The
holding cost for each item not sold during the period is $4 (a max-
imum of 2 items can be stored). The demand during each period
has a known probability distribution, namely, a probability of �

1
3

� of
0, 1, and 2 items, respectively. If the demand exceeds the supply
available during the period, then those sales are lost and a short-
age cost (including lost revenue) is incurred, namely, $8 and $32
for a shortage of 1 and 2 items, respectively.
(a) Consider the policy where 2 items are produced if there are no

items in inventory at the beginning of a period whereas no
items are produced if there are any items in inventory. Deter-
mine the (long-run) expected average cost per period for this
policy. In finding the transition matrix for the Markov chain
for this policy, let the states represent the inventory levels at
the beginning of the period.

(b) Identify all the feasible (stationary deterministic) inventory
policies, i.e., the policies that never lead to exceeding the stor-
age capacity.

21.3-1. Reconsider Prob. 21.2-1.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

21.3-2.* Reconsider Prob. 21.2-2.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

21.3-3. Reconsider Prob. 21.2-3.
(a) Formulate a linear programming model for finding an optimal

policy.

is well under the speed limit), she can arrive in 20 minutes. How-
ever, if she exceeds the speed limit a little here and there on her
way to work, she can get there in 10 minutes, but she runs the risk
of getting a speeding ticket. With probability �

1
8

� she will get caught
speeding and will be fined $20 and delayed 10 minutes, so that it
takes 20 minutes to reach work.

As she leaves home, let s be the time she has to reach work
before being late; that is, s � 10 means she has 10 minutes to get
to work, and s � 	10 means she is already 10 minutes late for
work. For simplicity, she considers s to be in one of four intervals:
(20, �), (10, 19), (	10, 9), and (	20, 	11).

The transition probabilities for s tomorrow if she does not
speed today are given by
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The transition probabilities for s tomorrow if she speeds to
work today are given by

Note that there are no transition probabilities for (20, �) and
(	10, 9), because she will get to work on time and from 1 to 30
minutes late, respectively, regardless of whether she speeds. Hence,
speeding when in these states would not be a logical choice.

Also note that the transition probabilities imply that the later
she is for work and the more she has to rush to get there, the more
likely she is to leave for work earlier the next day.

(20, �) (10, 19) (�10, 9) (�20, �11)

(20, �) �
3
8

� �
1
4

� �
1
4

� �
1
8

�

(10, 19) �
1
2

� �
1
4

� �
1
8

� �
1
8

�

(	10, 9) �
5
8

� �
1
4

� �
1
8

� 0

(	20, 	11) �
3
4

� �
1
4

� 0 0

(20, �) (10, 19) (�10, 9) (�20, �11)

(20, �)

(10, 19) �
3
8

� �
1
4

� �
1
4

� �
1
8

�

(	10, 9)

(	20, 	11) �
5
8

� �
1
4

� �
1
8

� 0



D,I 21.4-6. Use the policy improvement algorithm to find an op-
timal policy for Prob. 21.2-6.

D,I 21.4-7. Use the policy improvement algorithm to find an op-
timal policy for Prob. 21.2-7.

D,I 21.4-8. Use the policy improvement algorithm to find an op-
timal policy for Prob. 21.2-8.

D,I 21.4-9. Use the policy improvement algorithm to find an op-
timal policy for Prob. 21.2-9.

D,I 21.4-10. Consider the blood-inventory problem presented in
Prob. 16.6-5. Suppose now that the number of pints of blood de-
livered (on a regular delivery) can be specified at the time of de-
livery (instead of using the old policy of receiving 1 pint at each
delivery). Thus, the number of pints delivered can be 0, 1, 2, or 3
(more than 3 pints can never be used). The cost of regular deliv-
ery is $50 per pint, while the cost of an emergency delivery is $100
per pint. Starting with the proposed policy given in Prob. 16.6-5,
perform two iterations of the policy improvement algorithm.

I 21.5-1.* Joe wants to sell his car. He receives one offer each
month and must decide immediately whether to accept the offer.
Once rejected, the offer is lost. The possible offers are $600, $800,
and $1,000, made with probabilities �

5
8

�, �
1
4

�, and �
1
8

�, respectively (where
successive offers are independent of each other). There is a main-
tenance cost of $60 per month for the car. Joe is anxious to sell
the car and so has chosen a discount factor of � � 0.95.

Using the policy improvement algorithm, find a policy that
minimizes the expected total discounted cost. (Hint: There are two
actions: Accept or reject the offer. Let the state for month t be the
offer in that month. Also include a state �, where the process goes
to state � whenever an offer is accepted and it remains there at a
monthly cost of 0.)

21.5-2.* Reconsider Prob. 21.5-1.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

I 21.5-3.* For Prob. 21.5-1, use three iterations of the method of
successive approximations to approximate an optimal policy.

I 21.5-4. The price of a certain stock is fluctuating between $10,
$20, and $30 from month to month. Market analysts have predicted
that if the stock is at $10 during any month, it will be at $10 or
$20 the next month, with probabilities �

4
5

� and �
1
5

�, respectively; if the
stock is at $20, it will be at $10, $20, or $30 the next month, with
probabilities �

1
4

�, �
1
4

�, and �
1
2

�, respectively; and if the stock is at $30, it
will be at $20 or $30 the next month, with probabilities �

3
4

� and �
1
4

�, re-
spectively. Given a discount factor of 0.9, use the policy improve-

C (b) Use the simplex method to solve this model. Use the re-
sulting optimal solution to identify an optimal policy.

21.3-4. Reconsider Prob. 21.2-4.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

21.3-5.* Reconsider Prob. 21.2-5.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

21.3-6. Reconsider Prob. 21.2-6.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

21.3-7. Reconsider Prob. 21.2-7.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

21.3-8. Reconsider Prob. 21.2-8.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

21.3-9. Reconsider Prob. 21.2-9.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

D,I 21.4-1. Use the policy improvement algorithm to find an op-
timal policy for Prob. 21.2-1.

D,I 21.4-2.* Use the policy improvement algorithm to find an op-
timal policy for Prob. 21.2-2.

D,I 21.4-3. Use the policy improvement algorithm to find an op-
timal policy for Prob. 21.2-3.

D,I 21.4-4. Use the policy improvement algorithm to find an op-
timal policy for Prob. 21.2-4.

D,I 21.4-5.* Use the policy improvement algorithm to find an op-
timal policy for Prob. 21.2-5.
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Unfortunately, there is a time delay in setting up the pollution
control processes, so that a decision as to which process to use
must be made in the month prior to the production decision. Man-
agement wants to determine a policy for when to use each pollu-
tion control process that will minimize the expected total dis-
counted amount of all future pollution with a discount factor of 
� � 0.5.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states, the decisions, and the Cik. Identify all the
(stationary deterministic) policies.

I (b) Use the policy improvement algorithm to find an optimal
policy.

21.5-8. Reconsider Prob. 21.5-7.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

I 21.5-9. For Prob. 21.5-7, use two iterations of the method of suc-
cessive approximations to approximate an optimal policy.

I 21.5-10. Reconsider Prob. 21.5-7. Suppose now that the com-
pany will be producing either of these chemicals for only 4 more
months, so a decision on which pollution control process to use 1
month hence only needs to be made three more times. Find an op-
timal policy for this three-period problem.

I 21.5-11.* Reconsider the prototype example of Sec. 21.1. Sup-
pose now that the production process using the machine under con-
sideration will be used for only 4 more weeks. Using the discounted
cost criterion with a discount factor of � � 0.9, find the optimal
policy for this four-period problem.

ment algorithm to determine when to sell and when to hold the
stock to maximize the expected total discounted profit. (Hint: In-
clude a state that is reached with probability 1 when the stock is
sold and with probability 0 when the stock is held.)

21.5-5. Reconsider Prob. 21.5-4.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

I 21.5-6. For Prob. 21.5-4, use three iterations of the method of
successive approximations to approximate an optimal policy.

21.5-7. A chemical company produces two chemicals, denoted by
0 and 1, and only one can be produced at a time. Each month a
decision is made as to which chemical to produce that month. Be-
cause the demand for each chemical is predictable, it is known that
if 1 is produced this month, there is a 70 percent chance that it will
also be produced again next month. Similarly, if 0 is produced this
month, there is only a 20 percent chance that it will be produced
again next month.

To combat the emissions of pollutants, the chemical company
has two processes, process A, which is efficient in combating the
pollution from the production of 1 but not from 0, and process B,
which is efficient in combating the pollution from the production
of 0 but not from 1. Only one process can be used at a time. The
amount of pollution from the production of each chemical under
each process is
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22
Simulation

In this final chapter, we now are ready to focus on the last of the key techniques of op-
erations research. Simulation ranks very high among the most widely used of these tech-
niques. Furthermore, because it is such a flexible, powerful, and intuitive tool, it is con-
tinuing to rapidly grow in popularity.

This technique involves using a computer to imitate (simulate) the operation of an
entire process or system. For example, simulation is frequently used to perform risk analy-
sis on financial processes by repeatedly imitating the evolution of the transactions involved
to generate a profile of the possible outcomes. Simulation also is widely used to analyze
stochastic systems that will continue operating indefinitely. For such systems, the com-
puter randomly generates and records the occurrences of the various events that drive the
system just as if it were physically operating. Because of its speed, the computer can sim-
ulate even years of operation in a matter of seconds. Recording the performance of the
simulated operation of the system for a number of alternative designs or operating pro-
cedures then enables evaluating and comparing these alternatives before choosing one.

The first section describes and illustrates the essence of simulation. The following
section then presents a variety of common applications of simulation. Sections 22.3 and
22.4 focus on two key tools of simulation, the generation of random numbers and the gen-
eration of random observations from probability distributions. Section 22.5 outlines the
overall procedure for applying simulation. The next section describes how some simula-
tions now can be performed efficiently on spreadsheets. Section 22.7 introduces some spe-
cial techniques for improving the precision of the estimates of the measures of perfor-
mance of the system being simulated. The chapter concludes by presenting an innovative
statistical method for analyzing the output of a simulation.

The technique of simulation has long been an important tool of the designer. For exam-
ple, simulating airplane flight in a wind tunnel is standard practice when a new airplane
is designed. Theoretically, the laws of physics could be used to obtain the same informa-
tion about how the performance of the airplane changes as design parameters are altered,
but, as a practical matter, the analysis would be too complicated to do it all. Another al-
ternative would be to build real airplanes with alternative designs and test them in actual
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flight to choose the final design, but this would be far too expensive (as well as unsafe).
Therefore, after some preliminary theoretical analysis is performed to develop a rough de-
sign, simulating flight in a wind tunnel is a vital tool for experimenting with specific de-
signs. This simulation amounts to imitating the performance of a real airplane in a con-
trolled environment in order to estimate what its actual performance will be. After a detailed
design is developed in this way, a prototype model can be built and tested in actual flight
to fine-tune the final design.

The Role of Simulation in Operations Research Studies

Simulation plays essentially this same role in many OR studies. However, rather than
designing an airplane, the OR team is concerned with developing a design or operating
procedure for some stochastic system (a system that evolves probabilistically over time).
Some of these stochastic systems resemble the examples of Markov chains and queue-
ing systems described in Chaps. 16 to 18, and others are more complicated. Rather than
use a wind tunnel, the performance of the real system is imitated by using probability
distributions to randomly generate various events that occur in the system. Therefore,
a simulation model synthesizes the system by building it up component by component
and event by event. Then the model runs the simulated system to obtain statistical ob-
servations of the performance of the system that result from various randomly gener-
ated events. Because the simulation runs typically require generating and processing a
vast amount of data, these simulated statistical experiments are inevitably performed on
a computer.

When simulation is used as part of an OR study, commonly it is preceded and fol-
lowed by the same steps described earlier for the design of an airplane. In particular, some
preliminary analysis is done first (perhaps with approximate mathematical models) to de-
velop a rough design of the system (including its operating procedures). Then simulation
is used to experiment with specific designs to estimate how well each will perform. Af-
ter a detailed design is developed and selected in this way, the system probably is tested
in actual use to fine-tune the final design.

To prepare for simulating a complex system, a detailed simulation model needs to
be formulated to describe the operation of the system and how it is to be simulated. A
simulation model has several basic building blocks:

1. A definition of the state of the system (e.g., the number of customers in a queueing
system).

2. Identify the possible states of the system that can occur.
3. Identify the possible events (e.g., arrivals and service completions in a queueing sys-

tem) that would change the state of the system.
4. A provision for a simulation clock, located at some address in the simulation program,

that will record the passage of (simulated) time.
5. A method for randomly generating the events of the various kinds.
6. A formula for identifying state transitions that are generated by the various kinds of

events.

Great progress is being made in developing special software (described in Sec. 22.5)
for efficiently integrating the simulation model into a computer program and then per-
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forming the simulations. Nevertheless, when dealing with relatively complex systems, sim-
ulation tends to be a relatively expensive procedure. After formulating a detailed simula-
tion model, considerable time often is required to develop and debug the computer pro-
grams needed to run the simulation. Next, many long computer runs may be needed to
obtain good estimates of how well all the alternative designs of the system would per-
form. Finally, all these data should be carefully analyzed before drawing any final con-
clusions. This entire process typically takes a lot of time and effort. Therefore, simulation
should not be used when a less expensive procedure is available that can provide the same
information.

Simulation typically is used when the stochastic system involved is too complex to
be analyzed satisfactorily by the kinds of mathematical models (e.g., queueing models)
described in the preceding chapters. One of the main strengths of a mathematical model
is that it abstracts the essence of the problem and reveals its underlying structure, thereby
providing insight into the cause-and-effect relationships within the system. Therefore, if
the modeler is able to construct a mathematical model that is both a reasonable idealiza-
tion of the problem and amenable to solution, this approach usually is superior to simu-
lation. However, many problems are too complex to permit this approach. Thus, simula-
tion often provides the only practical approach to a problem.

Discrete-Event versus Continuous Simulation

Two broad categories of simulations are discrete-event and continuous simulations.
A discrete-event simulation is one where changes in the state of the system occur

instantaneously at random points in time as a result of the occurrence of discrete events.
For example, in a queueing system where the state of the system is the number of cus-
tomers in the system, the discrete events that change this state are the arrival of a cus-
tomer and the departure of a customer due to the completion of its service. Most appli-
cations of simulation in practice are discrete-event simulations.

A continuous simulation is one where changes in the state of the system occur con-
tinuously over time. For example, if the system of interest is an airplane in flight and its
state is defined as the current position of the airplane, then the state is changing continu-
ously over time. Some applications of continuous simulations occur in design studies of
such engineering systems.

Continuous simulations typically require using differential equations to describe the
rate of change of the state variables. Thus, the analysis tends to be relatively complex.

By approximating continuous changes in the state of the system by occasional dis-
crete changes, it often is possible to use a discrete-event simulation to approximate the
behavior of a continuous system. This tends to greatly simplify the analysis.

This chapter focuses hereafter on discrete-event simulations. We assume this type in
all subsequent references to simulation.

Now let us look at two examples to illustrate the basic ideas of simulation. These ex-
amples have been kept considerably simpler than the usual application of this technique
in order to highlight the main ideas more readily. The first system is so simple, in fact,
that the simulation does not even need to be performed on a computer. The second sys-
tem incorporates more of the normal features of a simulation, although it, too, is simple
enough to be solved analytically.
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EXAMPLE 1 A Coin Flipping Game

You are the lucky winner of a sweepstakes contest. Your prize is an all-expense-paid va-
cation at a major hotel in Las Vegas, including some chips for gambling in the hotel
casino.

Upon entering the casino, you find that, in addition to the usual games (blackjack,
roulette, etc.), they are offering an interesting new game with the following rules.

Rules of the Game.

1. Each play of the game involves repeatedly flipping an unbiased coin until the differ-
ence between the number of heads tossed and the number of tails is 3.

2. If you decide to play the game, you are required to pay $1 for each flip of the coin.
You are not allowed to quit during a play of the game.

3. You receive $8 at the end of each play of the game.

Thus, you win money if the number of flips required is fewer than 8, but you lose money
if more than 8 flips are required. Here are some examples (where H denotes a head and
T a tail).

How would you decide whether to play this game?
Many people would base this decision on simulation, although they probably would

not call it by that name. In this case, simulation amounts to nothing more than playing
the game alone many times until it becomes clear whether it is worthwhile to play for
money. Half an hour spent in repeatedly flipping a coin and recording the earnings or
losses that would have resulted might be sufficient. This is a true simulation because
you are imitating the actual play of the game without actually winning or losing any
money.

Now let us see how a computer can be used to perform this same simulated experi-
ment. Although a computer cannot flip coins, it can simulate doing so. It accomplishes
this by generating a sequence of random observations from a uniform distribution be-
tween 0 and 1, where these random observations are referred to as uniform random num-
bers over the interval [0, 1]. One easy way to generate these uniform random numbers is
to use the RAND() function in Excel. For example, the lower left-hand corner of Fig. 22.1
indicates that � RAND() has been entered into cell C10 and then copied into the range
C11:C59 with the Copy command. (The parentheses need to be included with this func-
tion, but nothing is inserted between them.) This causes Excel to generate the random
numbers shown in cells C10:C59 of the spreadsheet. (Rows 24–53 have been hidden to
save space in the figure.

The probabilities for the outcome of flipping a coin are

P(heads) � �
1
2

�, P(tails) � �
1
2

�.

HHH 3 flips. You win $5
THTTT 5 flips. You win $3
THHTHTHTTTT 11 flips. You lose $3
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Therefore, to simulate the flipping of a coin, the computer can just let any half of the pos-
sible random numbers correspond to heads and the other half correspond to tails. To be
specific, we will use the following correspondence.

0.0000 to 0.4999 correspond to heads.
0.5000 to 0.9999 correspond to tails.

By using the formula,

� IF(RAND()�0.5, 1, 0),

in each of the column D cells in Fig. 22.1, Excel inserts a 1 (to indicate heads) if the ran-
dom number is less than 0.5 and inserts a 0 (to indicate tails) otherwise. Consequently,
the first 11 random numbers generated in column C yield the following sequence of heads
(H) and tails (T):

THHTTHTHTTT,

at which point the game stops because the number of tails (7) exceeds the number of heads
(4) by 3. Cells D4 and D5 record the total number of flips (11) and resulting winnings 
($8 � $11 � �$3).

The equations at the bottom of Fig. 22.1 show the formulas that have been entered
into the various cells by entering them at the top and then using the Copy command to
copy them down the columns. Using these equations, the spreadsheet then records the
simulation of one complete play of the game. To virtually ensure that the game will be
completed, 50 flips of the coin have been simulated. Columns E and F record the cumu-
lative number of heads and tails after each flip. The equations entered into the column G
cells leave each cell blank until the difference in the numbers of heads and tails reaches
3, at which point STOP is inserted into the cell. Thereafter, NA (for Not Applicable) is
inserted instead. Using the equations shown in the upper right-hand side of Fig. 22.1, cells
D4 and D5 record the outcome of the simulated play of the game.

Such simulations of plays of the game can be repeated as often as desired with this
spreadsheet. Each time, Excel will generate a new sequence of random numbers, and so a
new sequence of heads and tails. (Excel will repeat a sequence of random numbers only if
you select the range of numbers you want to repeat, copy this range with the Copy com-
mand, select Paste Special from the Edit menu, choose the Values option, and click on OK.)

Simulations normally are repeated many times to obtain a more reliable estimate of an
average outcome. Therefore, this same spreadsheet has been used to generate the data table
in Fig. 22.2 for 14 plays of the game. As indicated in the upper right-hand side of Fig. 22.2,
this is done by entering equations into the first row of the data table that refer to the output
cells of interest in Fig. 22.1, so �D4 is entered into cell J6 and �D5 is entered into cell
K6. The next step is to select the entire contents of the table (cells I6:K20) and choose Table
from the Data menu. Finally, choose any blank cell (e.g., cell E4) for the column input cell
and click OK. Excel then recalculates the output cells in columns J and K for each row
where any number is entered in row I. Entering the equations, �AVERAGE(J7:J20) or
(K7:K20), into cells J22 and K22 provides the averages given in these cells.

Although this particular simulation run required using two spreadsheets—one to per-
form each replication of the simulation and the other to record the outcomes of the repli-
cations on a data table—we should point out that the replications of some other simula-
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tions can be performed on a single spreadsheet. This is the case whenever each replica-
tion can be performed and recorded on a single row of the spreadsheet. For example, if
only a single uniform random number is needed to perform a replication, then the entire
simulation run can be done and recorded by using a spreadsheet similar to Fig. 22.1.

Returning to Fig. 22.2, cell J22 shows that this sample of 14 plays of the game gives
a sample average of 7 flips. The sample average provides an estimate of the true mean of
the underlying probability distribution of the number of flips required for a play of the
game. Hence, this sample average of 7 would seem to indicate that, on the average, you
should win about $1 (cell K22) each time you play the game. Therefore, if you do not
have a relatively high aversion to risk, it appears that you should choose to play this game,
preferably a large number of times.

However, beware! One common error in the use of simulation is that conclusions are
based on overly small samples, because statistical analysis was inadequate or totally lack-
ing. In this case, the sample standard deviation is 3.67, so that the estimated standard de-
viation of the sample average is 3.67/�14� � 0.98. Therefore, even if it is assumed that
the probability distribution of the number of flips required for a play of the game is a nor-
mal distribution (which is a gross assumption because the true distribution is skewed ),
any reasonable confidence interval for the true mean of this distribution would extend far
above 8. Hence, a much larger sample size is required before we can draw a valid con-
clusion at a reasonable level of statistical significance. Unfortunately, because the stan-
dard deviation of a sample average is inversely proportional to the square root of the sam-

1090 22 SIMULATION

FIGURE 22.2
A data table that records 
the results of performing 14
replications of a simulation
with the spreadsheet in 
Fig. 22.1.



ple size, a large increase in the sample size is required to yield a relatively small increase
in the precision of the estimate of the true mean. In this case, it appears that 100 simu-
lated plays (replications) of the game might be adequate, depending on how close the sam-
ple average then is to 8, but 1,000 replications would be much safer.

It so happens that the true mean of the number of flips required for a play of this
game is 9. (This mean can be found analytically, but not easily.) Thus, in the long run,
you actually would average losing about $1 each time you played the game. Part of the
reason that the above simulated experiment failed to draw this conclusion is that you have
a small chance of a very large loss on any play of the game, but you can never win more
than $5 each time. However, 14 simulated plays of the game were not enough to obtain
any observations far out in the tail of the probability distribution of the amount won or
lost on one play of the game. Only one simulated play gave a loss of more than $3, and
that was only $9.

Figure 22.3 gives the results of running the simulation for 1,000 plays of the games
(with rows 17–1000 not shown). Cell J1008 records the average number of flips as 8.98,
very close to the true mean of 9. With this number of replications, the average winnings
of �$0.98 in cell K1008 now provides a reliable basis for concluding that this game will
not win you money in the long run. (You can bet that the casino already has used simu-
lation to verify this fact in advance.)

Although formally constructing a full-fledged simulation model was not needed to
perform this simple simulation, we do so now for illustrative purposes. The stochastic sys-
tem being simulated is the successive flipping of the coin for a play of the game. The sim-
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FIGURE 22.3
This data table improves the
reliability of the simulation
recorded in Fig. 22.2 by
performing 1,000 replications
instead of only 14.



ulation clock records the number of (simulated) flips t that have occurred so far. The in-
formation about the system that defines its current status, i.e., the state of the system, is

N(t) � number of heads minus number of tails after t flips.

The events that change the state of the system are the flipping of a head or the flipping
of a tail. The event generation method is the generation of a uniform random number over
the interval [0, 1], where

0.0000 to 0.4999 ⇒ a head,
0.5000 to 0.9999 ⇒ a tail.

The state transition formula is

Reset N(t) � �
The simulated game then ends at the first value of t where N(t) � �3, where the result-
ing sampling observation for the simulated experiment is 8 � t, the amount won (posi-
tive or negative) for that play of the game.

The next example will illustrate these building blocks of a simulation model for a
prominent stochastic system from queueing theory.

if flip t is a head
if flip t is a tail.

N(t � 1) � 1
N(t � 1) � 1
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EXAMPLE 2 An M/M/1 Queueing System

Consider the M/M/1 queueing theory model (Poisson input, exponential service times, and
single server) that was discussed at the beginning of Sec. 17.6. Although this model al-
ready has been solved analytically, it will be instructive to consider how to study it by us-
ing simulation. To be specific, suppose that the values of the arrival rate � and service
rate 	 are

� � 3 per hour, 	 � 5 per hour.

To summarize the physical operation of the system, arriving customers enter the queue,
eventually are served, and then leave. Thus, it is necessary for the simulation model to
describe and synchronize the arrival of customers and the serving of customers.

Starting at time 0, the simulation clock records the amount of (simulated) time t that
has transpired so far during the simulation run. The information about the queueing sys-
tem that defines its current status, i.e., the state of the system, is

N(t) � number of customers in system at time t.

The events that change the state of the system are the arrival of a customer or a ser-
vice completion for the customer currently in service (if any). We shall describe the event
generation method a little later. The state transition formula is

Reset N(t) � �
There are two basic methods used for advancing the simulation clock and recording

the operation of the system. We did not distinguish between these methods for Example

if arrival occurs at time t
if service completion occurs at time t.

N(t) � 1
N(t) � 1



→


1 because they actually coincide for that simple situation. However, we now describe and
illustrate these two time advance methods (fixed-time incrementing and next-event in-
crementing) in turn.

With the fixed-time incrementing time advance method, the following two-step pro-
cedure is used repeatedly.

Summary of Fixed-Time Incrementing.

1. Advance time by a small fixed amount.
2. Update the system by determining what events occurred during the elapsed time in-

terval and what the resulting state of the system is. Also record desired information
about the performance of the system.

For the queueing theory model under consideration, only two types of events can oc-
cur during each of these elapsed time intervals, namely, one or more arrivals and one or
more service completions. Furthermore, the probability of two or more arrivals or of two
or more service completions during an interval is negligible for this model if the interval
is relatively short. Thus, the only two possible events during such an interval that need to
be investigated are the arrival of one customer and the service completion for one cus-
tomer. Each of these events has a known probability.

To illustrate, let us use 0.1 hour (6 minutes) as the small fixed amount by which the
clock is advanced each time. (Normally, a considerably smaller time interval would be
used to render negligible the probability of multiple arrivals or multiple service comple-
tions, but this choice will create more action for illustrative purposes.) Because both in-
terarrival times and service times have an exponential distribution, the probability PA that
a time interval of 0.1 hour will include an arrival is

PA � 1 � e�3/10 � 0.259,

and the probability PD that it will include a departure (service completion), given that a
customer was being served at the beginning of the interval, is

PD � 1 � e�5/10 � 0.393.

To randomly generate either kind of event according to these probabilities, the 
approach is similar to that in Example 1. The computer again is used to generate a 
uniform random number over the interval [0, 1], that is, a random observation from
the uniform distribution between 0 and 1. If we denote this uniform random number
by rA,

rA � 0.259 ⇒ arrival occurred,
rA 
 0.259 ⇒ arrival did not occur.

Similarly, with another uniform random number rD,

rD � 0.393 ⇒ departure occurred,
rD 
 0.393 ⇒ departure did not occur,

given that a customer was being served at the beginning of the time interval. With no cus-
tomer in service then (i.e., no customers in the system), it is assumed that no departure
can occur during the interval even if an arrival does occur.
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Table 22.1 shows the result of using this approach for 10 iterations of the fixed-time
incrementing procedure, starting with no customers in the system and using time units of
minutes.

Step 2 of the procedure (updating the system) includes recording the desired mea-
sures of performance about the aggregate behavior of the system during this time inter-
val. For example, it could record the number of customers in the queueing system and the
waiting time of any customer who just completed his or her wait. If it is sufficient to es-
timate only the mean rather than the probability distribution of each of these random vari-
ables, the computer will merely add the value (if any) at the end of the current time in-
terval to a cumulative sum. The sample averages will be obtained after the simulation run
is completed by dividing these sums by the sample sizes involved, namely, the total num-
ber of time intervals and the total number of customers, respectively.

To illustrate this estimating procedure, suppose that the simulation run in Table 22.1
were being used to estimate W, the steady-state expected waiting time of a customer in
the queueing system (including service). Two customers arrived during this simulation
run, one during the first time interval and the other during the seventh one, and each re-
mained in the system for three time intervals. Therefore, since the duration of each time
interval is 0.1 hour, the estimate of W is

Est{W} � �
3 �

2
3

� (0.1 hour) � 0.3 hour.

This is, of course, only an extremely rough estimate, based on a sample size of only
two. (Using the formula for W given in Sec. 17.6, its true value is W � 1/(	 � �) � 0.5
hour.) A much, much larger sample size normally would be used.

Another deficiency with using only Table 22.1 is that this simulation run started with
no customers in the system, which causes the initial observations of waiting times to tend
to be somewhat smaller than the expected value when the system is in a steady-state con-
dition. Since the goal is to estimate the steady-state expected waiting time, it is important
to run the simulation for some time without collecting data until it is believed that the
simulated system has essentially reached a steady-state condition. (Section 22.8 describes
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TABLE 22.1 Fixed-time incrementing applied to Example 2

t, time Arrival in Departure
(min) N(t) rA Interval? rD in Interval?

0 0
6 1 0.096 Yes —

12 1 0.569 No 0.665 No
18 1 0.764 No 0.842 No
24 0 0.492 No 0.224 Yes
30 0 0.950 No —
36 0 0.610 No —
42 1 0.145 Yes —
48 1 0.484 No 0.552 No
54 1 0.350 No 0.590 No
60 0 0.430 No 0.041 Yes



→


a special method for circumventing this problem.) This initial period waiting to essen-
tially reach a steady-state condition before collecting data is called the warm-up period.

Next-event incrementing differs from fixed-time incrementing in that the simulation
clock is incremented by a variable amount rather than by a fixed amount each time. This
variable amount is the time from the event that has just occurred until the next event of
any kind occurs; i.e., the clock jumps from event to event. A summary follows.

Summary of Next-Event Incrementing.

1. Advance time to the time of the next event of any kind.
2. Update the system by determining its new state that results from this event and by ran-

domly generating the time until the next occurrence of any event type that can occur
from this state (if not previously generated). Also record desired information about the
performance of the system.

For this example the computer needs to keep track of two future events, namely, the
next arrival and the next service completion (if a customer currently is being served).
These times are obtained by taking a random observation from the probability distribu-
tion of interarrival and service times, respectively. As before, the computer takes such a
random observation by generating and using a random number. (This technique will be
discussed in Sec. 22.4.) Thus, each time an arrival or service completion occurs, the com-
puter determines how long it will be until the next time this event will occur, adds this
time to the current clock time, and then stores this sum in a computer file. (If the service
completion leaves no customers in the system, then the generation of the time until the
next service completion is postponed until the next arrival occurs.) To determine which
event will occur next, the computer finds the minimum of the clock times stored in the
file. To expedite the bookkeeping involved, simulation programming languages provide a
“timing routine” that determines the occurrence time and type of the next event, advances
time, and transfers control to the appropriate subprogram for the event type.

Table 22.2 shows the result of applying this approach through five iterations of the
next-event incrementing procedure, starting with no customers in the system and using
time units of minutes. For later reference, we include the uniform random numbers rA and
rD used to generate the interarrival times and service times, respectively, by the method
to be described in Sec. 22.4. These rA and rD are the same as those used in Table 22.1 in
order to provide a truer comparison between the two time advance mechanisms.
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TABLE 22.2 Next-event incrementing applied to Example 2

Next Next
t, time Interarrival Service Next Next Next
(min) N(t) rA Time rD Time Arrival Departure Event

0 0 0.096 2.019 — — 2.019 — Arrival
2.019 1 0.569 16.833 0.665 13.123 18.852 15.142 Departure

15.142 0 — — — — 18.852 — Arrival
18.852 1 0.764 28.878 0.842 22.142 47.730 40.994 Departure
40.994 0 — — — — 47.730 — Arrival
47.730 1



The Excel file for this chapter in your OR Courseware includes an automatic routine,
called Queueing Simulator, for applying the next-event incrementing procedure to vari-
ous kinds of queueing systems. The system can have either a single server or multiple
servers. Several options (exponential, Erlang, degenerate, uniform, or translated exponen-
tial) are available for the probability distributions of interarrival times and service times.
Figure 22.4 shows the input and output (in units of hours) from applying Queueing Sim-
ulator to the current example for a simulation run with 10,000 customer arrivals. Using the
notation for various measures of performance for queueing systems introduced in Sec. 17.2,
column F gives the estimate of each of these measures provided by the simulation run.
[Using the formulas given in Sec. 17.6 for an M/M/1 queueing system, the true values of
these measures are L � 1.5, Lq � 0.9, W � 0.5, Wq � 0.3, P0 � 0.4, and Pn � 0.4(0.6)n.]
Columns G and H show the corresponding 95 percent confidence interval for each of these
measures. Note that these confidence intervals are somewhat wider than might have been
expected after such a long simulation run. In general, surprisingly long simulation runs are
required to obtain relatively precise estimates (narrow confidence intervals) for the mea-
sures of performance for a queueing system (or for most stochastic systems).

The next-event incrementing procedure is considerably better suited for this example
and similar stochastic systems than the fixed-time incrementing procedure. Next-event in-
crementing requires fewer iterations to cover the same amount of simulated time, and it gen-
erates a precise schedule for the evolution of the system rather than a rough approximation.

The next-event incrementing procedure will be illustrated again in Sec. 22.8 (see Table
22.12) in the context of a full statistical experiment for estimating certain measures of
performance for another queueing system. That section also will describe the statistical
method that is used by Queueing Simulator to obtain its point estimates and confidence
intervals.

Several pertinent questions about how to conduct a simulation study of this type still
remain to be answered. These answers are presented in a broader context in subsequent
sections.
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FIGURE 22.4
The output obtained by
using the Queueing
Simulator in this chapter’s
Excel file to perform a
simulation of Example 2 over
a period of 10,000 customer
arrivals.



More Examples in Your OR Courseware

Simulation examples are easier to understand when they can be observed in action, rather
than just talked about on a printed page. Therefore, the simulation area of your OR Tu-
tor includes two demonstration examples that should be viewed at this time.

Both examples involve a bank that plans to open up a new branch office. The ques-
tions address how many teller windows to provide and then how many tellers to have on
duty at the outset. Therefore, the system being studied is a queueing system. However, in
contrast to the M/M/1 queueing system just considered in Example 2, this queueing sys-
tem is too complicated to be solved analytically. This system has multiple servers (tellers),
and the probability distributions of interarrival times and service times do not fit the stan-
dard models of queueing theory. Furthermore, in the second demonstration, it has been
decided that one class of customers (merchants) needs to be given nonpreemptive prior-
ity over other customers, but the probability distributions for this class are different from
those for other customers. These complications are typical of those that can be readily in-
corporated into a simulation study.

In both demonstrations, you will be able to see customers arrive and served customers
leave as well as the next-event incrementing procedure being applied simultaneously to
the simulation run.

The demonstrations also introduce you to an interactive routine that you should find
very helpful in dealing with some of the problems at the end of this chapter.
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Simulation is an exceptionally versatile technique. It can be used (with varying degrees
of difficulty) to investigate virtually any kind of stochastic system. This versatility has
made simulation the most widely used OR technique for studies dealing with such sys-
tems, and its popularity is continuing to increase.

Because of the tremendous diversity of its applications, it is impossible to enumerate
all the specific areas in which simulation has been used. However, we will briefly describe
here some particularly important categories of applications.

The first three categories concern types of stochastic systems considered in some pre-
ceding chapters. It is common to use the kinds of mathematical models described in those
chapters to analyze simplified versions of the system and then to apply simulation to re-
fine the results.

Design and Operation of Queueing Systems

Section 17.3 gives many examples of commonly encountered queueing systems that il-
lustrate how such systems pervade many areas of society. Many mathematical models are
available (including those presented in Chap. 17) for analyzing relatively simple types of
queueing systems. Unfortunately, these models can only provide rough approximations at
best of more complicated queueing systems. However, simulation is well suited for deal-
ing with even very complicated queueing systems, so many of its applications fall into
this category.

The two demonstration examples of simulation in your OR Tutor (both dealing with
how much teller service to provide a bank’s customers) are of this type. Because queue-
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ing applications of simulation are so pervasive, the automatic routine in the simulation
area of your OR Courseware (called the Queueing Simulator) is for simulating queueing
systems.

Among the six award-winning applications of queueing models presented in Sec. 18.6,
two of these also made heavy use of simulation. One was the study of New York City’s
arrest-to-arraignment system that led to great improvements in the efficiency of this sys-
tem plus annual savings of $9.5 million. The other was AT&T developing a PC-based sys-
tem to help its business customers design or redesign their call centers, resulting in more
than $750 million in annual profit for these customers.

Managing Inventory Systems

Sections 19.5 to 19.7 present models for the management of inventory systems when the
products involved have uncertain demand. Section 19.8 then describes the kinds of larger
inventory systems that commonly arise in practice. Although mathematical models some-
times can help analyze these more complicated systems, simulation often plays a key role
as well.

As one example, an article in the April 1996 issue of OR/MS Today describes an OR
study of this kind that was done for the IBM PC Company in Europe. Facing unrelenting
pressure from increasingly agile and aggressive competitors, the company had to find a
way to greatly improve its performance in quickly filling customer orders. The OR team
analyzed how to do this by simulating various redesigns of the company’s entire supply
chain (the network of facilities that spans procurement, manufacturing, and distribution,
including all the inventories accumulated along the way). This led to major changes in
the design and operation of the supply chain (including its inventory systems) that greatly
improved the company’s competitive position. Direct cost savings of $40 million per year
also were achieved.

Section 22.6 will illustrate the application of simulation to a relatively simple kind
of inventory system.

Estimating the Probability of Completing a Project by the Deadline

One of the key concerns of a project manager is whether his or her team will be able to
complete the project by the deadline. Section 10.4 describes how the PERT three-estimate
approach can be used to obtain a rough estimate of the probability of meeting the dead-
line with the current project plan. That section also describes three simplifying approxi-
mations made by this approach to be able to estimate this probability. Unfortunately, be-
cause of these approximations, the resulting estimate always is overly optimistic, and
sometimes by a considerable amount.

Consequently, it is becoming increasingly common now to use simulation to obtain
a better estimate of this probability. This involves generating random observations from
the probability distributions of the duration of the various activities in the projects. By us-
ing the project network, it then is straightforward to simulate when each activity begins
and ends, and so when the project finishes. By repeating this simulation thousands of
times (in one computer run), a very good estimate can be obtained of the probability of
meeting the deadline.

We shall illustrate this particular kind of application in Sec. 22.6.
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Design and Operation of Manufacturing Systems

Surveys consistently show that a large proportion of the applications of simulation involve
manufacturing systems. Many of these systems can be viewed as a queueing system of
some kind (e.g., a queueing system where the machines are the servers and the jobs to be
processed are the customers). However, various complications inherent in these systems
(e.g., occasional machine breakdowns, defective items needing to be reworked, and mul-
tiple types of jobs) go beyond the scope of the usual queueing models. Such complica-
tions are no problem for simulation.

Here are a few examples of the kinds of questions that might be addressed.

1. How many machines of each type should be provided?
2. How many materials-handling units of each type should be provided?
3. Considering their due dates for completion of the entire production process, what rule

should be used to choose the order in which the jobs currently at a machine should be
processed?

4. What are realistic due dates for jobs?
5. What will be the bottleneck operations in a new production process as currently de-

signed?
6. What will be the throughput (production rate) of a new production process?

Design and Operation of Distribution Systems

Any major manufacturing corporation needs an efficient distribution system for distribut-
ing its goods from its factories and warehouses to its customers. There are many uncer-
tainties involved in the operation of such a system. When will vehicles become available
for shipping the goods? How long will a shipment take? What will be the demands of the
various customers? By generating random observations from the relevant probability dis-
tributions, simulation can readily deal with these kinds of uncertainties. Thus, it is used
quite often to test various possibilities for improving the design and operation of these
systems.

One award-winning application of this kind is described in the January–February 1991
issue of Interfaces. Reynolds Metal Company spends over $250 million annually to de-
liver its products and receive raw materials. Shipments are made by truck, rail, ship, and
air across a network of well over a hundred shipping locations including plants, ware-
houses, and suppliers. A combination of mixed binary integer programming (Chap. 12)
and simulation was used to design a new distribution system with central dispatching. The
new system both improved on-time delivery of shipments and reduced annual freight costs
by over $7 million.

Financial Risk Analysis

Financial risk analysis was one of the earliest application areas of simulation, and it con-
tinues to be a very active area. For example, consider the evaluation of a proposed capi-
tal investment with uncertain future cash flows. By generating random observations from
the probability distributions for the cash flow in each of the respective time periods (and
considering relationships between time periods), simulation can generate thousands of sce-
narios for how the investment will turn out. This provides a probability distribution of the

22.2 SOME COMMON TYPES OF APPLICATIONS OF SIMULATION 1099



return (e.g., net present value) from the investment. This distribution (sometimes called
the risk profile) enables management to assess the risk involved in making the investment.

A similar approach enables analyzing the risk associated with investing in various se-
curities, including the more exotic financial instruments such as puts, calls, futures, stock
options, etc.

Section 22.6 includes an example of using simulation for financial risk analysis.

Health Care Applications

Health care is another area where, like the evaluation of risky investments, analyzing fu-
ture uncertainties is central to current decision making. However, rather than dealing with
uncertain future cash flows, the uncertainties now involve such things as the evolution of
human diseases.

Here are a few examples of the kinds of computer simulations that have been per-
formed to guide the design of health care systems.

1. Simulating the use of hospital resources when treating patients with coronary heart
disease.

2. Simulating health expenditures under alternative insurance plans.
3. Simulating the cost and effectiveness of screening for the early detection of a disease.
4. Simulating the use of the complex of surgical services at a medical center.
5. Simulating the timing and location of calls for ambulance services.
6. Simulating the matching of donated kidneys with transplant recipients.
7. Simulating the operation of an emergency room.

Applications to Other Service Industries

Like health care, other service industries also have proved to be fertile fields for the ap-
plication of simulation. These industries include government services, banking, hotel man-
agement, restaurants, educational institutions, disaster planning, the military, amusement
parks, and many others. In many cases, the systems being simulated are, in fact, queue-
ing systems of some type.

The January–February 1992 issue of Interfaces describes an award-winning applica-
tion in this category. The United States Postal Service had identified automation technol-
ogy as the only way it would be able to handle its increasing mail volume while remain-
ing price competitive and satisfying service goals. Extensive planning over several years
was required to convert to a largely automated system that would meet these goals. The
backbone of the analysis leading to the adopted plan was performed with a comprehen-
sive simulation model called META (model for evaluating technology alternatives). This
model was first applied extensively at the national level, and then it was moved down to
the local level for detailed planning. The resulting plan required a cumulative capital in-
vestment of $12 billion, but also was projected to achieve labor savings of over $4 bil-
lion per year. Another consequence of this highly successful application of simulation was
that the value of OR tools now is recognized at the highest levels of the Postal Service.
Operations research techniques continue to be used by the planning staff both at head-
quarters and in the field divisions.
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New Applications

More new innovative applications of simulation are being made each year. Many of these
applications are first announced publicly at the annual Winter Simulation Conference, held
each December in some U.S. city. Since its beginning in 1967, this conference has been
an institution in the simulation field. It now is attended by nearly a thousand participants,
divided roughly equally between academics and practitioners. Hundreds of papers are pre-
sented to announce both methodological advances and new innovative applications.

22.3 GENERATION OF RANDOM NUMBERS 1101

As the examples in Sec. 22.1 demonstrated, implementing a simulation model requires
random numbers to obtain random observations from probability distributions. One method
for generating such random numbers is to use a physical device such as a spinning disk
or an electronic randomizer. Several tables of random numbers have been generated in
this way, including one containing 1 million random digits, published by the Rand Cor-
poration. An excerpt from the Rand table is given in Table 22.3.

Physical devices now have been replaced by the computer as the primary source for
generating random numbers. For example, we pointed out in Sec. 22.1 that Excel uses the
RAND() function for this purpose. Many other software packages also have the capabil-
ity of generating random numbers whenever needed during a simulation run.

22.3 GENERATION OF RANDOM NUMBERS

TABLE 22.3 Table of random digits

09656 96657 64842 49222 49506 10145 48455 23505 90430 04180
24712 55799 60857 73479 33581 17360 30406 05842 72044 90764
07202 96341 23699 76171 79126 04512 15426 15980 88898 06358
84575 46820 54083 43918 46989 05379 70682 43081 66171 38942
38144 87037 46626 70529 27918 34191 98668 33482 43998 75733

48048 56349 01986 29814 69800 91609 65374 22928 09704 59343
41936 58566 31276 19952 01352 18834 99596 09302 20087 19063
73391 94006 03822 81845 76158 41352 40596 14325 27020 17546
57580 08954 73554 28698 29022 11568 35668 59906 39557 27217
92646 41113 91411 56215 69302 86419 61224 41936 56939 27816

07118 12707 35622 81485 73354 49800 60805 05648 28898 60933
57842 57831 24130 75408 83784 64307 91620 40810 06539 70387
65078 44981 81009 33697 98324 46928 34198 96032 98426 77488
04294 96120 67629 55265 26248 40602 25566 12520 89785 93932
48381 06807 43775 09708 73199 53406 02910 83292 59249 18597

00459 62045 19249 67095 22752 24636 16965 91836 00582 46721
38824 81681 33323 64086 55970 04849 24819 20749 51711 86173
91465 22232 02907 01050 07121 53536 71070 26916 47620 01619
50874 00807 77751 73952 03073 69063 16894 85570 81746 07568
26644 75871 15618 50310 72610 66205 82640 86205 73453 90232

Source: Reproduced with permission from The Rand Corporation, A Million Random Digits with
100,000 Normal Deviates. Copyright, The Free Press, Glencoe, IL, 1955, top of p. 182.



Characteristics of Random Numbers

The procedure used by a computer to obtain random numbers is called a random number
generator.

A random number generator is an algorithm that produces sequences of numbers that
follow a specified probability distribution and possess the appearance of randomness.

The reference to sequences of numbers means that the algorithm produces many random
numbers in a serial manner. Although an individual user may need only a few of the num-
bers, generally the algorithm must be capable of producing many numbers. Probability
distribution implies that a probability statement can be associated with the occurrence of
each number produced by the algorithm.

We shall reserve the term random number to mean a random observation from some
form of a uniform distribution, so that all possible numbers are equally likely. When we
are interested in some other probability distribution (as in the next section), we shall re-
fer to random observations from that distribution.

Random numbers can be divided into two main categories, random integer numbers
and uniform random numbers, defined as follows:

A random integer number is a random observation from a discretized uniform distri-
bution over some range n

�
, n

�
� 1, . . . , n�. The probabilities for this distribution are

P(n
�

) � P(n
�

� 1) � ��� � P(n�) � .

Usually, n
�

� 0 or 1, and these are convenient values for most applications. (If n
�

has an-
other value, then subtracting either n

�
or n

�
� 1 from the random integer number changes

the lower end of the range to either 0 or 1.)

A uniform random number is a random observation from a (continuous) uniform dis-
tribution over some interval [a, b]. The probability density function of this uniform dis-
tribution is

�
b �

1
a

� if a � x � b
f(x) �

0 otherwise.

When a and b are not specified, they are assumed to be a � 0 and b � 1.

The random numbers initially generated by a computer usually are random integer
numbers. However, if desired, these numbers can immediately be converted to a uniform
random number as follows:

For a given random integer number in the range 0 to n�, dividing this number by n� yields
(approximately) a uniform random number. (If n� is small, this approximation should be
improved by adding �

1
2

� to the random integer number and then dividing by n� � 1 instead.)

This is the usual method used for generating uniform random numbers. With the huge
values of n� commonly used, it is an essentially exact method.

Strictly speaking, the numbers generated by the computer should not be called ran-
dom numbers because they are predictable and reproducible (which sometimes is advan-
tageous), given the random number generator being used. Therefore, they are sometimes





1
��
n� � n

�
� 1
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given the name pseudo-random numbers. However, the important point is that they sat-
isfactorily play the role of random numbers in the simulation if the method used to gen-
erate them is valid.

Various relatively sophisticated statistical procedures have been proposed for testing
whether a generated sequence of numbers has an acceptable appearance of randomness.
Basically the requirements are that each successive number in the sequence have an equal
probability of taking on any one of the possible values and that it be statistically inde-
pendent of the other numbers in the sequence.

Congruential Methods for Random Number Generation

There are a number of random number generators available, of which the most popular
are the congruential methods (additive, multiplicative, and mixed). The mixed congruen-
tial method includes features of the other two, so we shall discuss it first.

The mixed congruential method generates a sequence of random integer numbers over
the range from 0 to m � 1. The method always calculates the next random number from the
last one obtained, given an initial random number x0, called the seed, which may be obtained
from some published source such as the Rand table. In particular, it calculates the (n � 1)st
random number xn�1 from the nth random number xn by using the recurrence relation

xn�1 ≡ (axn � c)(modulo m),

where a, c, and m are positive integers (a � m, c � m). This mathematical notation sig-
nifies that xn�1 is the remainder when axn � c is divided by m. Thus, the possible values
of xn�1 are 0, 1, . . . , m � 1, so that m represents the desired number of different values
that could be generated for the random numbers.

To illustrate, suppose that m � 8, a � 5, c � 7, and x0 � 4. The resulting sequence
of random numbers is calculated in Table 22.4. (The sequence cannot be continued fur-
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TABLE 22.4 Illustration of the mixed congruential method

n xn 5xn � 7 (5xn � 7)/8 xn�1

0 4 27 3 � �
3
8

� 3

1 3 22 2 � �
6
8

� 6

2 6 37 4 � �
5
8

� 5

3 5 32 4 � �
0
8

� 0

4 0 7 0 � �
7
8

� 7

5 7 42 5 � �
2
8

� 2

6 2 17 2 � �
1
8

� 1

7 1 12 1 � �
4
8

� 4



ther because it would just begin repeating the numbers in the same order.) Note that this
sequence includes each of the eight possible numbers exactly once. This property is a nec-
essary one for a sequence of random integer numbers, but it does not occur with some
choices of a and c. (Try a � 4, c � 7, and x0 � 3.) Fortunately, there are rules available
for choosing values of a and c that will guarantee this property. (There are no restrictions
on the seed x0 because it affects only where the sequence begins and not the progression
of numbers.)

The number of consecutive numbers in a sequence before it begins repeating itself is
referred to as the cycle length. Thus, the cycle length in the example is 8. The maximum
cycle length is m, so the only values of a and c considered are those that yield this max-
imum cycle length.

Table 22.5 illustrates the conversion of random integer numbers to uniform random
numbers. The left column gives the random integer numbers obtained in the rightmost
column of Table 22.4. The right column gives the corresponding uniform random num-
bers from the formula

Uniform random number � .

Note that each of these uniform random numbers lies at the midpoint of one of the eight
equal-sized intervals 0 to 0.125, 0.125 to 0.25, . . . , 0.875 to 1. The small value of m � 8
does not enable us to obtain other values over the interval [0, 1], so we are obtaining fairly
rough approximations of real uniform random numbers. In practice, far larger values of
m generally are used.

For a binary computer with a word size of b bits, the usual choice for m is m � 2b;
this is the total number of nonnegative integers that can be expressed within the capacity
of the word size. (Any undesired integers that arise in the sequence of random numbers
are just not used.) With this choice of m, we can ensure that each possible number occurs
exactly once before any number is repeated by selecting any of the values a � 1, 5, 9,
13, . . . and c � 1, 3, 5, 7, . . . . For a decimal computer with a word size of d digits, the
usual choice for m is m � 10d, and the same property is ensured by selecting any of the
values a � 1, 21, 41, 61, . . . and c � 1, 3, 7, 9, 11, 13, 17, 19, . . . (that is, all positive
odd integers except those ending with the digit 5). The specific selection can be made on

random integer number � �
1
2

�

���
m
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TABLE 22.5 Converting random integer numbers to uniform 
random numbers

Random Integer Number Uniform Random Number

3 0.4375
6 0.8125
5 0.6875
0 0.0625
7 0.9375
2 0.3125
1 0.1875
4 0.5625



the basis of the serial correlation between successively generated numbers, which differs
considerably among these alternatives.1

Occasionally, random integer numbers with only a relatively small number of digits
are desired. For example, suppose that only three digits are desired, so that the possible
values can be expressed as 000, 001, . . . , 999. In such a case, the usual procedure still is
to use m � 2b or m � 10d, so that an extremely large number of random integer numbers
can be generated before the sequence starts repeating itself. However, except for purposes
of calculating the next random integer number in this sequence, all but three digits of each
number generated would be discarded to obtain the desired three-digit random integer num-
ber. One convention is to take the last three digits (i.e., the three trailing digits).

The multiplicative congruential method is just the special case of the mixed con-
gruential method where c � 0. The additive congruential method also is similar, but it
sets a � 1 and replaces c by some random number preceding xn in the sequence, for ex-
ample, xn�1 (so that more than one seed is required to start calculating the sequence).

Among the possible random number generators (choices of a and m) based on the
multiplicative congruential method, perhaps the most widely used is the Learmouth-Lewis
generator

xn�1 ≡ 75xn(modulo 231 � 1).

This generator has been tested extensively, and the results of the statistical tests indicate
that it is very satisfactory. Versions of this generator are used, e.g., in IBM versions of APL,
in the International Mathematics and Statistics Library (IMSL) package, and in the random
number generator package LLRANDOM. Tables of suitable seeds also are available.
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1See R. R. Coveyou, “Serial Correlation in the Generation of Pseudo-Random Numbers,” Journal of the Asso-
ciation of Computing Machinery, 7: 72–74, 1960.

Given a sequence of random numbers, how can one generate a sequence of random ob-
servations from a given probability distribution? Several different approaches are avail-
able, depending on the nature of the distribution.

Simple Discrete Distributions

For some simple discrete distributions, a sequence of random integer numbers can be used
to generate random observations in a straightforward way. Merely allocate the possible
values of a random number to the various outcomes in the probability distribution in di-
rect proportion to the respective probabilities of those outcomes.

For Example 1 in Sec. 22.1, where flips of a coin are being simulated, the possible
outcomes of one flip are a head or a tail, where each outcome has a probability of �

1
2

�. There-
fore, rather than using uniform random numbers (as was done in Sec. 22.1), it would have
been sufficient to use random digits to generate the outcomes. Five of the ten possible
values of a random digit (say, 0, 1, 2, 3, 4) would be assigned an association with a head
and the other five (say, 5, 6, 7, 8, 9) a tail.

As another example, consider the probability distribution of the outcome of a throw of
two dice. It is known that the probability of throwing a 2 is �

3
1
6
� (as is the probability of throw-
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ing a 12), the probability of throwing a 3 is �
3
2
6
�, and so on. Therefore, �

3
1
6
� of the possible val-

ues of a random integer number should be associated with throwing a 2, �
3
2
6
� of the values

with throwing a 3, and so forth. Thus, if two-digit random integer numbers are being used,
72 of the 100 values will be selected for consideration, so that a random integer number
will be rejected if it takes on any one of the other 28 values. Then 2 of the 72 possible val-
ues (say, 00 and 01) will be assigned an association with throwing a 2, four of them (say
02, 03, 04, and 05) will be assigned an association with throwing a 3, and so on.

Using random integer numbers in this kind of way is convenient when they either are
being drawn from a table of random numbers or are being generated directly by a con-
gruential method. However, when performing the simulation on a computer, it usually is
more convenient to have the computer generate uniform random numbers and then use
them in the corresponding way. All the subsequent methods for generating random ob-
servations use uniform random numbers.

The Inverse Transformation Method

For more complicated distributions, whether discrete or continuous, the inverse transfor-
mation method can sometimes be used to generate random observations. Letting X be the
random variable involved, we denote the cumulative distribution function by

F(x) � P{X � x}.

Generating each observation then requires the following two steps.

Summary of Inverse Transformation Method.

1. Generate a uniform random number r between 0 and 1.
2. Set F(x) � r and solve for x, which then is the desired random observation from the

probability distribution.

This procedure is illustrated in Fig. 22.5 for the case where F(x) is plotted graphically and
the uniform random number r happens to be 0.5269.
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Random observation

F(x)

0

1

r � 0.5269

x

FIGURE 22.5
Illustration of the inverse
transformation method for
obtaining a random
observation from a given
probability distribution.



Although the graphical procedure illustrated by Fig. 22.5 is convenient if the simu-
lation is done manually, the computer must revert to some alternative approach. For dis-
crete distributions, a table lookup approach can be taken by constructing a table that gives
a “range” (jump) in the value of F(x) for each possible value of X � x. Excel provides a
convenient VLOOKUP function to implement this approach when performing a simula-
tion on a spreadsheet.

To illustrate how this function works, suppose that a company is simulating the main-
tenance program for its machines. The time between breakdowns of one of these ma-
chines always is 4, 5, or 6 days, where these times occur with probabilities 0.25, 0.5, and
0.25, respectively. The first step in simulating these breakdowns is to create the table
shown in Fig. 22.6 somewhere in the spreadsheet. Note that each number in the second
column gives the cumulative probability prior to the number of days in the third column.
The second and third columns (below the column headings) constitute the “lookup table.”
The VLOOKUP function has three arguments. The first argument gives the address of the
cell that is providing the uniform random number being used. The second argument iden-
tifies the range of cell addresses for the lookup table. The third argument indicates which
column of the lookup table provides the random observation, so this argument equals 2
in this case. The VLOOKUP function with these three arguments is entered as the equa-
tion for each cell in the spreadsheet where a random observation from the distribution is
to be entered.

For certain continuous distributions, the inverse transformation method can be im-
plemented on a computer by first solving the equation F(x) � r analytically for x. We il-
lustrate this approach next with the exponential distribution.

Exponential and Erlang Distributions

As indicated in Sec. 17.4, the cumulative distribution function for the exponential dis-
tribution is

F(x) � 1 � e�
x, for x 
 0,

where 1/
 is the mean of the distribution. Setting F(x) � r thereby yields

1 � e�
x � r,
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Distribution of time between breakdowns

Probability Cumulative Number of Days

0.25 0.00 4
0.5 0.25 5
0.25 0.75 6

FIGURE 22.6
The table that would be constructed in a spreadsheet for using Excel’s VLOOKUP
function to implement the inverse transformation method for the maintenance program
example.



so that

e�
x � 1 � r.

Therefore, taking the natural logarithm of both sides gives

ln e�
x � ln (1 � r),

so that

�
x � ln (1 � r),

which yields

x � �
ln (

�
1



� r)
�

as the desired random observation from the exponential distribution.
This direct application of the inverse transformation method provides the most

straightforward way of generating random observations from an exponential distribution.
(More complicated techniques also have been developed for this distribution1 that are
faster for a computer than calculating a logarithm.)

Note that 1 � r is itself a uniform random number. Therefore, to save a subtraction,
it is common in practice simply to use the original uniform random number r directly in
place of 1 � r.

A natural extension of this procedure for the exponential distribution also can be used
to generate a random observation from an Erlang (gamma) distribution (see Sec. 17.7).
The sum of k independent exponential random variables, each with mean 1/(k
), has the
Erlang distribution with shape parameter k and mean 1/
. Therefore, given a sequence of
k uniform random numbers between 0 and 1, say, r1, r2, . . . , rk, the desired random ob-
servation from the Erlang distribution is

x � �
k

i�1
�
ln (

�
1

k
�



ri)�,

which reduces to

x � ��
k
1


� ln ��

k

i�1
(1 � ri)	,

where � denotes multiplication. Once again, the subtractions may be eliminated simply
by using ri directly in place of 1 � ri.

Normal and Chi-Square Distributions

A particularly simple (but inefficient) technique for generating a random observation from
a normal distribution is obtained by applying the central limit theorem. Because a uni-
form random number has a uniform distribution from 0 to 1, it has mean �

1
2

� and standard
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1For example, see J. H. Ahrens and V. Dieter, “Efficient Table-Free Sampling Methods for Exponential, Cauchy,
and Normal Distributions,” Communications of the ACM, 31: 1330–1337, 1988.



deviation 1/�12�. Therefore, this theorem implies that the sum of n uniform random num-
bers has approximately a normal distribution with mean n/2 and standard deviation �n/12�.
Thus, if r1, r2, . . . , rn are a sample of uniform random numbers, then

x � �
n

i�1
ri � 	 � �

n
2

�

is a random observation from an approximately normal distribution with mean 	 and stan-
dard deviation �. This approximation is an excellent one (except in the tails of the distri-
bution), even with small values of n. Thus, values of n from 5 to 10 may be adequate; 
n � 12 also is a convenient value, because it eliminates the square root terms from the
preceding expression.

Since tables of the normal distribution are widely available (e.g., see Appendix 5),
another simple method to generate a close approximation of a random observation is to
use such a table to implement the inverse transformation method directly. This is fairly
convenient when you are generating a few random observations by hand, but less so for
computer implementation since it requires storing a large table and then using a table
lookup.

Various exact techniques for generating random observations from a normal distri-
bution have also been developed.1 These exact techniques are sufficiently fast that, in prac-
tice, they generally are used instead of the approximate methods described above. A rou-
tine for one of these techniques usually is already incorporated into a software package
with simulation capabilities. For example, Excel uses the function, NORMINV(RAND(),
	, �), to generate a random observation from a normal distribution with mean 	 and stan-
dard deviation �.

A simple method for handling the chi-square distribution is to use the fact that it is
obtained by summing squares of standardized normal random variables. Thus, if y1,
y2, . . . , yn are n random observations from a normal distribution with mean 0 and stan-
dard deviation 1, then

x � �
n

i�1
yi

2

is a random observation from a chi-square distribution with n degrees of freedom.

The Acceptance-Rejection Method

For many continuous distributions, it is not feasible to apply the inverse transformation
method because x � F�1(r) cannot be computed (or at least computed efficiently). There-
fore, several other types of methods have been developed to generate random observa-
tions from such distributions. Frequently, these methods are considerably faster than the
inverse transformation method even when the latter method can be used. To provide some
notion of the approach for these alternative methods, we now illustrate one called the ac-
ceptance-rejection method on a simple example.

�
�
�n/12�

�
�
�n/12�
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Consider the triangular distribution having the probability density function

f(x) �

The acceptance-rejection method uses the following two steps (perhaps repeatedly) to gen-
erate a random observation.

1. Generate a uniform random number r1 between 0 and 1, and set x � 2r1 (so that the
range of possible values of x is 0 to 2).

2. Accept x with

Probability � �
to be the desired random observation [since this probability equals f(x)]. Otherwise,
reject x and repeat the two steps.

To randomly generate the event of accepting (or rejecting) x according to this prob-
ability, the method implements step 2 as follows:

2. Generate a uniform random number r2 between 0 and 1.

Accept x if r2 � f(x).
Reject x if r2 � f(x).

If x is rejected, repeat the two steps.

Because x � 2r1 is being accepted with a probability � f(x), the probability distribution
of accepted values has f(x) as its density function, so accepted values are valid random
observations from f(x).

We were fortunate in this example that the largest value of f (x) for any x was ex-
actly 1. If this largest value were L � 1 instead, then r2 would be multiplied by L in
step 2. With this adjustment, the method is easily extended to other probability density
functions over a finite interval, and similar concepts can be used over an infinite inter-
val as well.

if 0 � x � 1
if 1 � x � 2,

x
1 � (x � 1)

if 0 � x � 1
if 1 � x � 2
otherwise.

x
1 � (x � 1)
0




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Thus far, this chapter has focused mainly on the process of performing a simulation and
some applications from doing so. We now place this material into broader perspective by
briefly outlining all the typical steps involved in a major operations research study that is
based on applying simulation. (Nearly the same steps also apply when the study is ap-
plying other operations research techniques instead.)

We should emphasize that some applications of simulation do not require all the
effort described in the following steps. The advent of Excel and Excel add-ins for ef-
ficiently performing basic simulations on a spreadsheet (as described in the next sec-
tion) now often enables conducting the study with far less time and expense than pre-
viously. However, major applications of simulation still require the extended effort
described in this section.
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Step 1: Formulate the Problem and Plan the Study

The operations research team needs to begin by meeting with management to address the
following kinds of questions.

1. What is the problem that management wants studied?
2. What are the overall objectives for the study?
3. What specific issues should be addressed?
4. What kinds of alternative system configurations should be considered?
5. What measures of performance of the system are of interest to management?
6. What are the time constraints for performing the study?

In addition, the team also will meet with engineers and operational personnel to learn the
details of just how the system would operate. (The team generally will also include one
or more members with a first-hand knowledge of the system.) If a current version of the
system is in operation, the team will observe the system to identify its components and
the linkages between them.

Before concluding this step, the head of the OR team also needs to plan the overall
study in terms of the number of people, their responsibilities, the schedule, and a budget
for the study.

Step 2: Collect the Data and Formulate the Simulation Model

The types of data needed depend on the nature of the system to be simulated. For a queue-
ing system, key pieces of data would be the distribution of interarrival times and the dis-
tribution of service times. For a single-product inventory system, the team would need the
distribution of demand for the product and the distribution of the lead time between plac-
ing an order to replenish inventory and receiving the amount ordered. For a PERT proj-
ect network where the activity durations are uncertain, distributions of the durations of
the activities are needed. For a manufacturing system involving machines that occasion-
ally break down, the team needs to determine the distribution of the time until a machine
breaks down and the distribution of repair times.

In each of these examples, note that it is the probability distributions of the relevant
quantities that are needed. In order to generate representative scenarios of how a system
would perform, it is essential that a simulation generate random observations from these
distributions rather than simply using averages.

Generally, it will only be possible to estimate these distributions. This is done after tak-
ing direct observations from an existing version of the system under study, or from a similar
system. After examining these data for a particular quantity, if the form of the distribution is
unclear but resembles the form of a standard type of distribution, a statistical test called the
chi-square goodness of fit test can be used to test whether the data fit this standard form. The
sample mean and sample variance of the data also provide an estimate of the mean and vari-
ance of the distribution. If no relevant data can be obtained because no similar system exists,
other possible sources of information for estimating a distribution include industrial engi-
neering time studies, engineering records, operating manuals, machine specifications, and in-
terviews with individuals who have experience with similar kinds of operations.

A simulation model often is formulated in terms of a flow diagram that links together
the various components of the system. Operating rules are given for each component, in-
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cluding the probability distributions that control when events will occur there. The model
only needs to contain enough detail to capture the essence of the system. For a large study,
it is a good idea to begin by formulating and debugging a relatively simple version of the
model before adding important details.

Step 3: Check the Accuracy of the Simulation Model

Before constructing a computer program, the OR team should engage the people most in-
timately familiar with how the system will operate in checking the accuracy of the sim-
ulation model. This often is done by performing a structured walk-through of the con-
ceptual model, using an overhead projector, before an audience of all the key people. At
a typical such meeting, several erroneous model assumptions will be discovered and cor-
rected, a few new assumptions will be added, and some issues will be resolved about how
much detail is needed in the various parts of the model.

In addition to helping to ensure the accuracy of the simulation model, this process
tends to provide the key people with some sense of ownership of the model and the study.

Step 4: Select the Software and Construct a Computer Program1

There are four major classes of software used for computer simulations. One is spread-
sheet software. Example 1 in Sec. 22.1 illustrated how Excel is able to perform some ba-
sic simulations on a spreadsheet. In addition, some excellent Excel add-ins now are avail-
able to enhance this kind of spreadsheet modeling. The next section focuses on the use
of these add-ins.

The other three classes of software for simulations are intended for more extensive ap-
plications where it is no longer convenient to use spreadsheet software. One such class is
a general-purpose programming language, such as C, FORTRAN, PASCAL, BASIC, etc.
Such languages (and their predecessors) often were used in the early history of the field
because of their great flexibility for programming any sort of simulation. However, because
of the considerable programming time required, they are not used nearly as much now.

The third class is a general-purpose simulation language. These languages provide
many of the features needed to program a simulation model, and so may reduce the re-
quired programming time substantially. They also provide a natural framework for simu-
lation modeling. Although less flexible than a general-purpose programming language,
they are capable of programming almost any kind of simulation model. However, some
degree of expertise in the language is needed.

Prominent general-purpose simulation languages include the current version of GPSS,
SIMSCRIPT, SLAM, and SIMAN. The initial versions of these languages date back to
1961, 1963, 1979, and 1983, respectively, but all have stood the test of time.

A key development in the 1980s and 1990s has been the emergence of the fourth
class of software, called applications-oriented simulators (or just simulators for short).
Each of these simulators is designed for simulating fairly specific types of systems, such
as certain types of manufacturing, computer, and communications systems. Some are very
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specific (e.g., for oil and gas production engineering, or nuclear power plant analysis, or
cardiovascular physiology). Their goal is to be able to construct a simulation “program”
by the use of menus and graphics, without the need for programming. They are relatively
easy to learn and have modeling constructs closely related to the system of interest.

A simulator can be wonderful if the system you wish to simulate fits right into the
prescribed category for the simulator. However, the prescription of allowable system fea-
tures tends to be fairly narrow. Therefore, the major drawback of many simulators is that
they are limited to modeling only those system configurations that are allowed by their
standard features. Some simulators do allow the option of incorporating routines written
in a general-purpose programming language to handle nonstandard features. This option
is frequently needed when simulating relatively complex systems.

Another key development in recent years has been the development of animation ca-
pabilities for displaying computer simulations in action. In an animation, key elements of
a system are represented in a computer display by icons that change shape, color, or po-
sition when there is a change in the state of the simulation system. Most simulation soft-
ware vendors now offer a version of their software with animation capabilities. Further-
more, the animation is becoming increasingly elaborate, including even three-dimensional
capabilities in some cases.

The major reason for the popularity of animation is its ability to communicate the
essence of a simulation model (or of a simulation run) to managers and other key per-
sonnel. This greatly increases the credibility of the simulation approach. In addition, an-
imation can be helpful in debugging the computer program for a simulation program.

Step 5: Test the Validity of the Simulation Model

After the computer program has been constructed and debugged, the next key step is to
test whether the simulation model incorporated into the program is providing valid results
for the system it is representing. Specifically, will the measures of performance for the
real system be closely approximated by the values of these measures generated by the
simulation model?

This question usually is difficult to answer because most versions of the “real” sys-
tem do not currently exist. Typically, the purpose of simulation is to investigate and com-
pare various proposed system configurations to help choose the best one.

However, some version of the real system may currently be in operation. If so, its
performance data should be compared with the corresponding output measures generated
by pilot runs of the simulation model.

In some cases, a mathematical model may be available to provide results for a sim-
ple version of the system. If so, these results also should be compared with the simula-
tion results.

When no real data are available to compare with simulation results, one possibility
is to conduct a field test to collect such data. This would involve constructing a small pro-
totype of some version of the proposed system and placing it into operation. This proto-
type might also be used after the simulation study has been completed to fine-tune the
design of the system before the real system is installed.

Another useful validation test is to have knowledgeable operational personnel check
the creditability of how the simulation results change as the configuration of the simu-
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lated system is changed. Even when no basis exists for checking the reasonableness of
the measures of performance obtained for a particular version of the system, some con-
clusions often can be drawn about how the relative performance of the system should
change as its parameters are changed.

Watching animations of simulation runs is another way of checking the validity of the
simulation model. Once the model is operating properly, animations also generate interest
and credibility in the simulation study for both management and operational personnel.

Step 6: Plan the Simulations to Be Performed

At this point, you need to begin making decisions on which system configurations to
simulate. This often is an evolutionary process, where the initial results for a range of
configurations help you to hone in on which specific configurations warrant detailed
investigation.

Decisions also need to be made now on some statistical issues. One such issue (un-
less using the special technique described in Sec. 22.8) is the length of the warm-up pe-
riod while waiting for the system to essentially reach a steady-state condition before start-
ing to collect data. Preliminary simulation runs often are used to analyze this issue. Since
systems frequently require a surprisingly long time to essentially reach a steady-state con-
dition, it is helpful to select starting conditions for a simulated system that appear to be
roughly representative of steady-state conditions in order to reduce this required time as
much as possible.

Another key statistical issue is the length of the simulation run following the warm-
up period for each system configuration being simulated. Keep in mind that simulation
does not produce exact values for the measures of performance of a system. Instead, each
simulation run can be viewed as a statistical experiment that is generating statistical ob-
servations of the performance of the simulated system. These observations are used to
produce statistical estimates of the measures of performance. Increasing the length of a
run increases the precision of these estimates.

The statistical theory for designing statistical experiments conducted through simu-
lation is little different than for experiments conducted by directly observing the perfor-
mance of a physical system.1 Therefore, the inclusion of a professional statistician (or at
least an experienced simulation analyst with a strong statistical background) on the OR
team can be invaluable at this step.

Step 7: Conduct the Simulation Runs and Analyze the Results

The output from the simulation runs now provides statistical estimates of the desired mea-
sures of performance for each system configuration of interest. In addition to a point es-
timate of each measure, a confidence interval normally should be obtained to indicate the
range of likely values of the measure ( just as was done for Example 2 in Sec. 22.1). Sec-
tion 22.8 will describe one method for doing this.2
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1For details about the relevant statistical theory for applying simulation, see Chaps. 9–12 in A. M. Law and 
W. D. Kelton, Simulation Modeling and Analysis, McGraw-Hill, New York, 2d ed., 1991.
2See pp. 556–557 in the reference cited in the preceding footnote for alternative methods.



These results might immediately indicate that one system configuration is clearly su-
perior to the others. More often, they will identify the few strong candidates to be the best
one. In the latter case, some longer simulation runs would be conducted to better com-
pare these candidates. Additional runs also might be used to fine-tune the details of what
appears to be the best configuration.

Step 8: Present Recommendations to Management

After completing its analysis, the OR team needs to present its recommendations to man-
agement. This usually would be done through both a written report and a formal oral pre-
sentation to the managers responsible for making the decisions regarding the system un-
der study.

The report and presentation should summarize how the study was conducted, including
documentation of the validation of the simulation model. A demonstration of the anima-
tion of a simulation run might be included to better convey the simulation process and
add credibility. Numerical results that provide the rationale for the recommendations need
to be included.

Management usually involves the OR team further in the initial implementation of
the new system, including the indoctrination of the affected personnel.
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Section 22.5 outlines the typical steps involved in major simulation studies of complex
systems. However, not all simulation studies are nearly that involved. In fact, when study-
ing relatively simple systems, it is sometimes possible to run the needed simulations
quickly and easily on spreadsheets.

Basically, whenever a spreadsheet model would be used to analyze a problem with-
out taking uncertainties into account (except through sensitivity analysis), the tools now
are available to use simulation to consider the effect of the uncertainties. As illustrated by
Example 1 in Sec. 22.1, the standard Excel package has some basic simulation capabili-
ties, including the ability to generate uniform random numbers and to generate random
observations from some probability distributions. Furthermore, some simulation add-ins
for Excel have been developed that greatly enhance the ability to use simulation to ana-
lyze spreadsheet models. Two prominent simulation add-ins with similar capabilities are
@RISK, developed by Palisade Corporation, and Crystal Ball, developed by Deci-
sioneering. Other simulation add-ins also are available as shareware. One is RiskSim, de-
veloped by Professor Michael Middleton.

We have provided the academic version of RiskSim for you in your OR Courseware.
(If you want to continue to use it after this course, you should register and pay the share-
ware fee.) In addition, the full version of @RISK can be obtained from the Palisade Corp.
for a free trial period of 10 days in either of two ways. It can be downloaded directly from
the Palisade website, www.Palisade.com. Alternatively, it can be ordered on a CD-ROM
from this website. Like any Excel add-ins, these add-ins need to be installed before they
will show up in Excel.

This section focuses on the use of @RISK to illustrate what can be done with these
simulation add-ins. However, if you decide to use RiskSim (which has many of the ca-
pabilities of @RISK), its documentation is included in the CD-ROM.
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Business spreadsheets typically include some input cells that display key data (e.g.,
the various costs associated with producing or marketing a product) and one or more out-
put cells that show measures of performance (e.g., the profit from producing or market-
ing the product). The user writes Excel equations to link the inputs to the outputs so that
the output cells will show the values that correspond to the values that are entered into
the input cells. In some cases, there will be uncertainty about what the correct values for
the input cells will turn out to be. Sensitivity analysis can be used to check how the out-
puts change as the values for the input cells change. However, if there is considerable un-
certainty about the values of some input cells, a more systematic approach to analyzing
the effect of the uncertainty would be helpful. This is where simulation enters the picture.

With a simulation, instead of entering a single number in an input cell where there
is uncertainty, a probability distribution that describes the uncertainty is entered instead.
By generating a random observation from the probability distribution for each such input
cell, the spreadsheet can calculate the output values in the usual way. Each time this is
done is referred to as an iteration by @RISK. By running the number of iterations spec-
ified by the user (typically hundreds or thousands), the simulation thereby generates the
same number of random observations of the output values. The @RISK program records
all this information and then gives you the choice of printing out detailed statistics in tab-
ular or graphical form (or both) that roughly shows the underlying probability distribu-
tion of the output values. A summary of the results also includes estimates of the mean
and standard deviation of this distribution.

Now let us look at three examples that illustrate this process.

Inventory Management—Freddie the Newsboy’s Problem

Consider the following problem being faced by a newsboy named Freddie. One of the
daily newspapers that Freddie sells from his newsstand is the Financial Journal. He pays
$1.50 per copy delivered to him at the beginning of the day, sells it at $2.50 per copy, and
then receives a refund of $0.50 per copy unsold at the end of the day. He has 9 requests
to purchase a copy on 30 percent of the days, 10 requests on 40 percent of the days, and
11 requests on 30 percent of the days. The decision Freddie needs to make is how many
copies (9, 10, or 11) per day to order from the distributor.

You may recognize this problem as an example of the newsboy problem discussed in
Sec. 19.5. Thus, the stochastic one-period inventory model for perishable products (with
no setup cost) presented there can be used to solve this problem. However, for illustrative
purposes, we now will show how simulation can be used to analyze this simple inventory
system in the same way that it analyzes more complex inventory systems that are beyond
the reach of available inventory models.

Figure 22.7 shows the @RISK spreadsheet for this problem. Since the only uncer-
tain input quantity is the day’s demand for this newspaper, its probability distribution is
entered in the range E4:F6. Because this is a discrete probability distribution, the RISKDIS-
CRETE function is used to generate random observations from this distribution. This in-
volves entering the formula, �RISKDISCRETE(E4:E6, F4:F6), in cell C12 (which shows
a typical random observation in Fig. 22.7). The simulation eventually needs to be run three
times, once for each of the three order quantities under consideration, so we start with
one of these order quantities (9) in cell C9. The regular Excel functions are used to cal-
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culate the simulated quantities in cells C14, C15, and C16 as C14 � C4*MIN (C9,C12),
C15 � C5*C9, and C16 � C6*MAX(C9�C12,0). Similarly, the profit in cell C18 (the
one output cell) is calculated as C18 � C14 � C15 � C16.

Given this spreadsheet, the @RISK toolbar buttons are used to run the simulation. To
indicate that profit is the only output of interest, select cell C18 and click on the Add Out-
put button. Next, click on the Sim Set button to select the quantity of iterations (we chose
250) and the number of simulations (1 for this first order quantity). Finally, click on the
Simulate button to run the simulation.

Once the iterations have been completed for all three simulations, you see an @RISK
screen with a new menu bar, an expanded toolbar, a Results window, and a Summary Sta-
tistics window. The Results window is a good place to start to see a summary of the sim-
ulation results, and then the Summary Statistics window can be used if you want to see
more detailed statistics. Figure 22.8 shows the summary of the results obtained for all
three simulations with the respective order quantities. This figure shows that an order
quantity of 10 gave the largest mean profit per day. An order quantity of 11 gave a larger
maximum profit on the best days, but also gave a lower minimum and a lower overall
mean. Therefore, these results indicate that an order quantity of 10 is the best choice for
Freddie.
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FIGURE 22.7
The @RISK spreadsheet for
Freddie the newsboy’s
problem.



You normally can obtain a histogram that graphically depicts the frequency with which
various daily profits are generated by each simulation by selecting the corresponding out-
put cell in the Results window and clicking on the Graph button. (We will show you a
similar histogram in the next example.) However, an exception occurs here for an order
quantity of 9. The reason is that @RISK will not produce a histogram if the output value
never changes during the simulation. This is what happens with an order quantity of 9,
since this order quantity always gives Freddie a daily profit of $9 regardless of whether
the demand turns out to be 9, 10, or 11.

Because an inventory model is available that yields an exact analytical solution for
Freddie’s problem, simulation is not the only feasible way of studying this problem. How-
ever, the situation will be somewhat different in the next example, which deals with find-
ing the probability of completing a project by its deadline. In this case, there is again an
analytical method available (through the PERT three-estimate approach), but this method
only provides a rough, overly optimistic approximation of the true probability. Therefore,
simulation frequently is used to obtain a much more precise estimate of this probability.
This illustrates a common role for simulation—refining the results from a preliminary
analysis conducted with approximate mathematical models.

Improving PERT—Revisiting the Reliable Construction Co. Problem

We now consider the prototype example that is introduced in Sec. 10.1 and then contin-
ued through most of Chap. 10. Here are the essential facts needed for the example. The
Reliable Construction Company has just made the winning bid to construct a new plant
for a major manufacturer. However, the contract includes a large penalty if construction
is not completed by the deadline 47 weeks from now. Therefore, a key element in evalu-
ating alternative construction plans is the probability of meeting this deadline under each
plan. There are 14 major activities involved in carrying out this construction project, as
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FIGURE 22.8
The summary of results
obtained by @RISK after
running the simulations in
Fig. 22.7 for all three order
quantities under
consideration.

Order Quantity � 9

Order Quantity � 10

Order Quantity � 11



listed on the right-hand side of Fig. 22.9 (which repeats Fig. 10.1 for your convenience).
The project network in this figure depicts the precedence relationships between the ac-
tivities. Thus, there are six sequences of activities (paths through the network), all of
which must be completed to finish the project. These six sequences are listed below.

Path 1: START � A � B � C � D � G � H � M � FINISH.
Path 2: START � A � B � C � E � H � M � FINISH.
Path 3: START � A � B � C � E � F � J � K � N � FINISH.
Path 4: START � A � B � C � E � F � J � L � N � FINISH.
Path 5: START � A � B � C � I � J � K � N � FINISH.
Path 6: START � A � B � C � I � J � L � N � FINISH.

The numbers next to the activities in the project network represent the estimates of the
number of weeks the activities will take if they are carried out in the normal manner with
the usual crew sizes, etc. Adding these times over each of the paths (as was done in Table
10.2) reveals that Path 4 is the longest path, requiring a total of 44 weeks. Since the proj-
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ect is finished as soon as its longest path is completed, this indicates that the project can
be completed in 44 weeks, 3 weeks before the deadline.

Now we come to the crux of the problem. The times for the activities in Fig. 22.9 are
only estimates, and there actually is considerable uncertainty about what the duration of
each activity will be. Therefore, the duration of the entire project could well differ sub-
stantially from the estimate of 44 weeks, so there is a distinct possibility of missing the
deadline of 47 weeks. What is the probability of missing this deadline? To estimate this
probability, we need to learn more about the probability distribution of the duration of the
project.

This is the reason for the PERT three-estimate approach described in Sec. 10.4. This
approach involves obtaining three estimates—a most likely estimate, an optimistic esti-
mate, and a pessimistic estimate—of the duration of each activity. (Table 10.4 lists these
estimates for all 14 activities for the project under consideration.) These three quantities
are intended to estimate the most likely duration, the minimum duration, and the maximum
duration, respectively. Using these three quantities, PERT assumes (somewhat arbitrarily)
that the form of the probability distribution of the duration of an activity is a beta distri-
bution. By also making three simplifying approximations (described in Sec. 10.4), this
leads to an analytical method for roughly approximating the probability of meeting the
project deadline.

One key advantage of simulation is that it does not need to make most of the sim-
plifying approximations that may be required by analytical methods. Another is that there
is great flexibility about which probability distribution to use. It is not necessary to choose
an analytically convenient one.

When dealing with the duration of an activity, simulations commonly use a triangu-
lar distribution as the distribution of this duration. A triangular distribution has the shape
shown in Fig. 22.10, where o, m, and p are the labels for the optimistic estimate, the most
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likely estimate, and the pessimistic estimate, respectively. The @RISK formula for this
distribution is � RISKTRIANG(o,m,p). [Other popular distributions are the normal dis-
tribution with mean 	 and standard deviation �, which has the @RISK formula �
RISKNORMAL(	,�), and the uniform distribution from a to b, which has the @RISK
formula � RISKUNIFORM(a,b).]

Figure 22.11 shows the @RISK spreadsheet for simulating the duration of the Reli-
able Construction Company’s project. The formula, � RISKTRIANG(o,m,p), is inserted
into each input cell representing the duration of an activity, where the values of o, m, and
p are obtained from Table 10.4. Each path length is obtained by adding the durations of
the activities (in weeks) on that path. For each iteration of the simulation, the maximum
of the six path lengths gives the duration of the project (in weeks). One output cell gives
this duration and the other indicates whether this duration meets the deadline by not ex-
ceeding 47 weeks (where 1 indicates yes and 0 indicates no).

To run this simulation, we chose 1,000 as the number of iterations and 1 as the num-
ber of simulations (since only one construction plan is being simulated here). The upper
right-hand side of Fig. 22.12 shows the resulting summary of the results. The most cru-
cial piece of information here is the mean for the output cell that indicates whether the
deadline has been met, because this mean gives the proportion of the 1,000 iterations
where the deadline was met. Therefore, the estimate of the probability of meeting the
deadline is 0.591. Note how much smaller this relatively precise estimate is than the rough
estimate of 0.84 obtained by the PERT three-estimate approach in Sec. 10.4. Thus, the
simulation estimate provides much better guidance to management in deciding whether
the construction plan should be changed to improve the chances of meeting the deadline.
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FIGURE 22.11
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This illustrates how useful simulation can be in refining the results obtained by approxi-
mate analytical methods.

In addition to the probability of meeting the deadline, management also will be in-
terested in the overall probability distribution of the duration of the project. What simu-
lation has provided is 1,000 random observations from this distribution, so the frequency
distribution from these random observations provides a close approximation to the true
probability distribution. Among other information, the Summary Statistics window gives
the various percentiles of the frequency distribution shown on the left-hand side of Fig.
22.12. The percentile for each percentage gives the project duration such that this per-
centage of the random observations was less than this duration. For example, the value
for the 5 percent percentile means that the project durations from 5 percent of the itera-
tions of the simulation were less than this value (so 95 percent were larger).

A histogram of this frequency distribution of project durations can be obtained by
showing the Results window, highlighting the project duration cell, and clicking on the
Graph button on the toolbar. The lower right-hand side of Fig. 22.12 shows this histogram.

Financial Risk Analysis—The Think-Big Development Co. Problem

The THINK-BIG DEVELOPMENT CO. is a major investor in commercial real-estate 
development projects. It has been considering taking a share in three large construction 
projects—a high-rise office building, a hotel, and a shopping center. In each case, the part-
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FIGURE 22.12
The various outputs
generated by @RISK after
running the Reliable
Construction Co. simulation
in Fig. 22.11 for 1,000
iterations.



ners in the project would spend three years with the construction, then retain ownership
for three years while establishing the property, and then sell the property in the seventh
year. By using estimates of expected cash flows, as well as constraints on the amounts of
investment capital available both now and over the next three years, linear programming
has been applied to obtain the following proposal for how many 1 percent shares Think-
Big should take in each of these projects.

Proposal.

Do not take any shares of the high-rise building project.
Take 16.5 shares of the hotel project.
Take 13.1 shares of the shopping center project.

This proposal is estimated to return a net present value (NPV) of $18.1 million to Think-Big.
However, Think-Big management understands very well that such decisions should

not be made without taking risk into account. These are very risky projects, since it is un-
clear how well these properties will compete in the marketplace when they go into oper-
ation in a few years. Although the construction costs during the first three years can be
estimated fairly closely, the net incomes during the following three years of operation are
very uncertain. Consequently, there is an extremely wide range of possible values for each
sale price in year 7. Therefore, management wants risk analysis to be performed in the
usual way (with simulation) to obtain a risk profile of what the total NPV might actually
turn out to be with this proposal.

To perform this risk analysis, Think-Big staff now has devoted considerable time
to estimating the amount of uncertainty in the cash flows for each project over the next
7 years. These data are summarized in Table 22.6 (in units of thousands of dollars per
share taken in each project). In years 1 through 6 for each project, the probability dis-
tribution of cash flow is assumed to be a normal distribution, where the first number
shown is the estimated mean and the second number is the estimated standard devia-
tion of the distribution. In year 7, the income from the sale of the property is assumed
to have a uniform distribution over the range from the first number shown to the sec-
ond number shown.

22.6 PERFORMING SIMULATIONS ON SPREADSHEETS 1123

TABLE 22.6 Think-Big’s estimated cash flows per share taken in the hotel and
shopping center projects

Hotel Project Shopping Center Project

Year Cash Flow ($1,000’s) Year Cash Flow ($1,000’s)

0 �800 0 �900
1 Normal (�800, 50) 1 Normal (�600, 50)
2 Normal (�800, 100) 2 Normal (�200, 50)
3 Normal (�700, 150) 3 Normal (�600, 100)
4 Normal (�300, 200) 4 Normal (�250, 150)
5 Normal (�400, 200) 5 Normal (�350, 150)
6 Normal (�500, 200) 6 Normal (�400, 150)
7 Uniform (�2,000, 8,440) 7 Uniform (�1,600, 6,000)



To compute NPV, a cost of capital of 10 percent per annum is being used. Thus, the
cash flow in year n is divided by 1.1n before adding these discounted cash flows to ob-
tain NPV.

Figure 22.13 shows the @RISK spreadsheet for using simulation to perform risk
analysis on the proposal. (The numbers currently in cells J22 and G22:G29 are expected
values computed by @RISK.) For each iteration of the simulation, @RISK uses its func-
tions, RISKNORMAL(	, �) and RISKUNIFORM(a, b), to generate a random observa-
tion from each of the normal distributions and uniform distributions specified in Table
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FIGURE 22.13
A spreadsheet model for using simulation to perform risk analysis on the proposed real
estate investments by the Think-Big Development Co.



22.6. (@RISK provides numerous such functions for a wide variety of probability distri-
butions.) These simulated cash flows then are used to calculate the total NPV for both
projects in cell J22. By repeating this process for 1,000 iterations, we thereby obtain 1,000
random observations from the underlying probability distribution of the total NPV. These
1,000 observations constitute a frequency distribution of the total NPV that is virtually
identical to the underlying probability distribution.

Figure 22.14 provides information about this frequency distribution in the usual va-
riety of forms. The first row of Summary of Results in the upper-right hand corner of the
figure indicates that the values of NPV over the 1,000 iterations ranged from about �$35
million to over $65 million, with a mean of $18.13 million. (The subsequent rows in this
table show the corresponding statistics for the cash flows per share in each year for each
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FIGURE 22.14
The various risk analysis outputs generated by @RISK after running the Think-Big
Development Co. computer simulation in Fig. 22.13 for 1,000 iterations.



project.) The Simulation Statistics on the left side gives detailed information about the fre-
quency distribution. For example, the fact that the 15 percent percentile has a negative
NPV while it is positive at the 20 percent percentile reveals that the probability of incur-
ring a loss by adopting the proposal is between 0.15 and 0.20. The histogram in the lower
right-hand corner displays the frequency distribution graphically. This histogram provides
management with the risk profile for the proposal. With this information, a managerial
decision now needs to be made about whether the likelihood of a sizable profit justifies
the significant risk of incurring a loss and perhaps even a very substantial loss.

Thus, as when using other OR techniques, management makes the decision but sim-
ulation provides the information needed for making a sound decision.
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Because considerable computer time usually is required for simulation runs, it is impor-
tant to obtain as much and as precise information as possible from the amount of simu-
lation that can be done. Unfortunately, there has been a tendency in practice to apply sim-
ulation uncritically without giving adequate thought to the efficiency of the experimental
design. This tendency has occurred despite the fact that considerable progress has been
made in developing special techniques for increasing the precision (i.e., decreasing the
variance) of sample estimators.

These variance-reducing techniques often are called Monte Carlo techniques (a term
sometimes applied to simulation in general). Because they tend to be rather sophisticated,
it is not possible to explore them deeply here. However, we shall attempt to impart the
flavor of these techniques and the great increase in precision they sometimes provide by
presenting two when applied to the following example.

Consider the exponential distribution whose parameter has a value of 1. Thus, its
probability density function is f(x) � e�x, as shown in Fig. 22.15, and its cumulative dis-
tribution function is F(x) � 1 � e�x. It is known that the mean of this distribution is 1.
However, suppose that this mean is not known and that we want to estimate this mean by
using simulation.

To provide a standard of comparison of the two variance-reducing techniques, we con-
sider first the straightforward simulation approach, sometimes called the crude Monte
Carlo technique. This approach involves generating some random observations from the
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exponential distribution under consideration and then using the average of these observa-
tions to estimate the mean. As described in Sec. 22.4, these random observations would be

xi � �ln (1 � ri), for i � 1, 2, . . . , n,

where r1, r2, . . . , rn are uniform random numbers between 0 and 1. We use the first three
digits in the fifth column of Table 22.3 to obtain 10 such uniform random numbers; the
resulting random observations are shown in Table 22.7. (These same random numbers also
are used to illustrate the variance-reducing techniques to sharpen the comparison.)

Notice that the sample average in Table 22.7 is 0.779, as opposed to the true mean
of 1.000. However, because the standard deviation of the sample average happens to be
1/�n�, or 1/�10� in this case (as could be estimated from the sample), an error of this
amount or larger would occur approximately one-half of the time. Furthermore, because
the standard deviation of a sample average is always inversely proportional to �n�, this
sample size would need to be quadrupled to reduce this standard deviation by one-half.
These somewhat disheartening facts suggest the need for other techniques that would ob-
tain such estimates more precisely and more efficiently.

Stratified Sampling

Stratified sampling is a relatively simple Monte Carlo technique for obtaining better esti-
mates. There are two shortcomings of the crude Monte Carlo approach that are rectified
by stratified sampling. First, by the very nature of randomness, a random sample may not
provide a particularly uniform cross section of the distribution. For example, the random
sample given in Table 22.7 has no observations between 0.014 and 0.328, even though
the probability that a random observation will fall inside this interval is greater than �

1
4

�.
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TABLE 22.7 Application of the crude Monte Carlo 
technique to the example

Random Random
Number* Observation

i ri xi � �ln (1 � ri)

1 0.495 0.684
2 0.335 0.408
3 0.791 1.568
4 0.469 0.633
5 0.279 0.328
6 0.698 1.199
7 0.013 0.014
8 0.761 1.433
9 0.290 0.343

10 0.693 1.183

Total � 7.793
Estimate of mean � 0.779

*Actually, 0.0005 was added to the indicated value for each of the ri

so that the range of their possible values would be from 0.0005 to
0.9995 rather than from 0.000 to 0.999.



Second, certain portions of a distribution may be more critical than others for obtaining
a precise estimate, but random sampling gives no special priority to obtaining observa-
tions from these portions. For example, the tail of an exponential distribution is especially
critical in determining its mean. However, the random sample in Table 22.7 includes no
observations larger than 1.568, even though there is at least a small probability of much
larger values. This explanation is the basic one for why this particular sample average is
far below the true mean. Stratified sampling circumvents these difficulties by dividing the
distribution into portions called strata, where each stratum would be sampled individu-
ally with disproportionately heavy sampling of the more critical strata.

To illustrate, suppose that the distribution is divided into three strata in the manner
shown in Table 22.8. These strata were chosen to correspond to observations approxi-
mately from 0 to 1, from 1 to 3, and from 3 to �, respectively. To ensure that the ran-
dom observations generated for each stratum actually lie in that portion of the distrib-
ution, the uniform random numbers must be converted to the indicated range for F(x),
as shown in the third column of Table 22.8. The number of observations to be gener-
ated from each stratum is given in the fourth column.1 The rightmost column then shows
the resulting sampling weight for each stratum, i.e., the ratio of the sampling propor-
tion (the fraction of the total sample to be drawn from the stratum) to the distribution
proportion (the probability of a random observation falling inside the stratum). These
sampling weights roughly reflect the relative importance of the respective strata in de-
termining the mean.

Given the formulation of the stratified sampling approach shown in Table 22.8, the
same uniform random numbers used in Table 22.7 yield the observations given in the fifth
column in Table 22.9. However, it would not be correct to use the unweighted average of
these observations to estimate the mean, because certain portions of the distribution have
been sampled more than others. Therefore, before we take the average, we divide the ob-
servations from each stratum by the sampling weight for that stratum to give proportion-
ate weightings to the different portions of the distribution, as shown in the rightmost col-
umn of Table 22.9. The resulting weighted average of 0.948 provides the desired estimate
of the mean.
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TABLE 22.8 Formulation of the stratified sampling approach to the example

Portion of Stratum Sample Sampling
Stratum Distribution Random No. Size Weight

1 0 � F(x) � 0.64 r�i � 0 � 0.64ri 4 wi � �
4
0
/
.6
1
4
0

� � �
5
8

�

2 0.64 � F(x) � 0.96 r�i � 0.64 � 0.32ri 4 wi � �
4
0
/
.3
1
2
0

� � �
5
4

�

3 0.96 � F(x) � 1 r�i � 0.96 � 0.04ri 2 wi � �
2
0
/
.0
1
4
0

� � 5

1These sample sizes are roughly based on a recommended guideline that they be proportional to the product of
the probability of a random observation’s falling inside the corresponding stratum times the standard deviation
within this stratum.



Method of Complementary Random Numbers

The second variance-reducing technique we shall mention is the method of complemen-
tary random numbers.1 The motivation for this method is that the “luck of the draw” on
the uniform random numbers generated may cause the average of the resulting random
observations to be substantially on one side of the true mean, whereas the complements
of those uniform random numbers (which are themselves uniform random numbers) would
have tended to yield a nearly opposite result. (For example, the uniform random numbers
in Table 22.7 average less than 0.5, and none are as large as 0.8, which led to an estimate
substantially below the true mean.) Therefore, using both the original uniform random
numbers and their complements to generate random observations and then calculating the
combined sample average should provide a more precise estimator of the mean. This ap-
proach is illustrated in Table 22.10,2 where the first three columns come from Table 22.7
and the two rightmost columns use the complementary uniform random numbers, which
results in a combined sample average of 0.920.
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TABLE 22.9 Application of stratified sampling to the example

Random Stratum Stratum Random Sampling
Number Random No. Observation Weight

Stratum i ri r �i x�i � �ln (1 � r �i) wi x�i/wi

1 0.495 0.317 0.381 �
5
8

� 0.610

2 0.335 0.215 0.242 �
5
8

� 0.387
1

3 0.791 0.507 0.707 �
5
8

� 1.131

4 0.469 0.300 0.357 �
5
8

� 0.571

5 0.279 0.729 1.306 �
5
4

� 1.045

6 0.698 0.864 1.995 �
5
4

� 1.596
2

7 0.013 0.644 1.033 �
5
4

� 0.826

8 0.761 0.884 2.154 �
5
4

� 1.723

9 0.290 0.9716 3.561 5 0.712
3

10 0.693 0.9877 4.398 5 0.880

Total � 9.481
Estimate of mean � 0.948

1This method is a special case of the method of antithetic variates, which attempts to generate pairs of random
observations having a high negative correlation, so that the combined average will tend to be closer to the mean.
2Note that 20 calculations of a logarithm were required in this case, in contrast to the 10 that were required by
each of the preceding techniques.



Conclusions

This example has suggested that the variance-reducing techniques provide a much more
precise estimator of the mean than does straightforward simulation (the crude Monte Carlo
technique). These results definitely were not a coincidence, as a derivation of the variance
of the estimators would show. In comparison with straightforward simulation, these tech-
niques (including several more complicated ones not presented here) do indeed provide a
much more precise estimator with the same amount of computer time, or they provide an
equally precise estimator with much less computer time. Despite the fact that additional
analysis may be required to incorporate one or more of these techniques into the simula-
tion study, the rewards should not be forgone readily.

Although this example was particularly simple, it is often possible, though more dif-
ficult, to apply these techniques to much more complex problems. For example, suppose
that the objective of the simulation study is to estimate the expected waiting time of cus-
tomers in a queueing system (such as those described in Sec. 18.1). Because both the
probability distribution of interarrival times and the probability distribution of service times
are involved, and because consecutive waiting times are not statistically independent, this
problem may appear to be beyond the capabilities of the variance-reducing techniques.
However, as has been described in detail elsewhere,1 these techniques and others can in-
deed be applied to this type of problem very advantageously. For example, the method of
complementary random numbers can be applied simply by repeating the original simula-
tion run, substituting the complements of the original uniform random numbers to gener-
ate the corresponding random observations.
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TABLE 22.10 Application of the method of complementary random numbers to
the example

Random Random Complementary Random
Number Observation Random Number Observation

i ri xi � �ln (1 � ri) r �i � 1 � ri x�i � �ln (1 � r �i)

1 0.495 0.684 0.505 0.702
2 0.335 0.408 0.665 1.092
3 0.791 1.568 0.209 0.234
4 0.469 0.633 0.531 0.756
5 0.279 0.328 0.721 1.275
6 0.698 1.199 0.302 0.359
7 0.013 0.014 0.987 4.305
8 0.761 1.433 0.239 0.272
9 0.290 0.343 0.710 1.236

10 0.693 1.183 0.307 0.366

Total � 7.793 Total � 10.597

Estimate of mean � �
1
2

�(0.779 � 1.060) � 0.920

1S. Ehrenfeld and S. Ben-Tuvia, “The Efficiency of Statistical Simulation Procedures,” Technometrics,
4(2): 257–275, 1962. Also see Chap. 11 of Selected Reference 11. For additional information on variance-
reducing techniques, see the November 1989 issue of Management Science for a special issue on this topic.
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The statistical analysis of a simulation run involves using the output to obtain both a point
estimate and confidence interval of some steady-state measure (or measures) of perfor-
mance of the system. (For example, one such measure for a queueing system would be
the mean of the steady-state distribution of waiting times for the customers.) To do this
analysis, the simulation run can be viewed as a statistical experiment that is generating a
series of sample observations of the measure. The question is how to use these sample
observations to compute the point estimate and confidence interval.

Traditional Methods and Their Shortcomings

The most straightforward approach would be to use standard statistical procedures to com-
pute these quantities from the observations. However, there are two special characteristics
of the observations from a simulation run that require some modification of this approach.

One characteristic is that the system is not in a steady-state condition when the sim-
ulation run begins, so the initial observations are not random observations from the un-
derlying probability distribution for the steady-state measure of performance. The tradi-
tional approach to circumventing this difficulty is to not start collecting data until it is
believed that the simulated system has essentially reached a steady-state condition. Un-
fortunately, it is difficult to estimate just how long this warm-up period needs to be. Fur-
thermore, available analytical results suggest that a surprisingly long period is required,
so that a great deal of unproductive computer time must be expended.

The second special characteristic of a simulated experiment is that its observations
are likely to be highly correlated. This is the case, for example, for the waiting times of
successive customers in a queueing system. On the other hand, standard statistical proce-
dures for computing the confidence interval for some measure of performance assume that
the sample observations are statistically independent random observations from the un-
derlying probability distribution for the measure.

One traditional method of circumventing this difficulty is to execute a series of com-
pletely separate and independent simulation runs of equal length and to use the average
measure of performance for each run (excluding the initial warm-up period) as an indi-
vidual observation. The main disadvantage is that each run requires an initial warm-up
period for approaching a steady-state condition, so that much of the simulation time is
unproductive. The second traditional method eliminates this disadvantage by making the
runs consecutively, using the ending condition of one run as the steady-state starting con-
dition for the next run. In other words, one continuous overall simulation run (except for
the one initial warm-up period) is divided for bookkeeping purposes into a series of equal
portions (referred to as batches). The average measure of performance for each batch is
then treated as an individual observation. The disadvantage of this method is that it does
not eliminate the correlation between observations entirely, even though it may reduce it
considerably by making the portions sufficiently long.

The Regenerative Method Approach

We now turn to an innovative statistical approach that is specially designed to eliminate
the shortcomings of the traditional methods described above. (This is the approach used
by Queueing Simulator to obtain its point estimates and confidence intervals.)

22.8 REGENERATIVE METHOD OF STATISTICAL ANALYSIS



The basic concept underlying this approach is that for many systems a simulation run
can be divided into a series of cycles such that the evolution of the system in a cycle is
a probabilistic replica of the evolution in any other cycle. Thus, if we calculate an ap-
propriate measure of the length of the cycle along with some statistic to summarize the
behavior of interest within each cycle, these statistics for the respective cycles constitute
a series of independent and identically distributed observations that can be analyzed by
standard statistical procedures. Because the system keeps going through these indepen-
dent and identically distributed cycles regardless of whether it is in a steady-state condi-
tion, these observations are directly applicable from the outset for estimating the steady-
state behavior of the system.

For cycles to possess these properties, they must each begin at the same regenera-
tion point, i.e., at the point where the system probabilistically restarts and can proceed
without any knowledge of its past history. The system can be viewed as regenerating it-
self at this point in the sense that the probabilistic structure of the future behavior of the
system depends upon being at this point and not on anything that happened previously.
(This property is the Markovian property described in Sec. 16.2 for Markov chains.) A
cycle ends when the system again reaches the regeneration point (when the next cycle be-
gins). Thus, the length of a cycle is the elapsed time between consecutive occurrences of
the regeneration point. This elapsed time is a random variable that depends upon the evo-
lution of the system.

When next-event incrementing is used, a typical regeneration point is a point at which
an event has just occurred but no future events have yet been scheduled. Thus, nothing
needs to be known about the history of previous schedulings, and the simulation can start
from scratch in scheduling future events. When fixed-time incrementing is used, a regen-
eration point is a point at which the probabilities of possible events occurring during the
next unit of time do not depend upon when any past events occurred, only on the current
state of the system.

Not every system possesses regeneration points, so this regenerative method of col-
lecting data cannot always be used. Furthermore, even when there are regeneration points,
the one chosen to define the beginning and ending points of the cycles must recur fre-
quently enough that a substantial number of cycles will be obtained with a reasonable
amount of computer time.1 Thus, some care must be taken to choose a suitable regener-
ation point.

Perhaps the most important application of the regenerative method to date has been
the simulation of queueing systems, including queueing networks (see Sec. 17.9) such as
the ones that arise in computer modeling.2
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1The basic theoretical requirements for the method are that the expected cycle length be finite and that the num-
ber of cycles would go to infinity if the system continued operating indefinitely. For details, see P. W. Glynn
and D. L. Iglehart, “Conditions for the Applicability of the Regenerative Method,” Management Science,
39: 1108–1111, 1993.
2See, e.g., D. L. Iglehart and G. S. Shedler, Regenerative Simulation of Passage Times in Networks of Queues,
Lecture Notes in Control and Information Sciences, vol. 4, Springer-Verlag, New York, 1980. For another ex-
position that emphasizes applications to computer system modeling, see G. S. Shedler, Regeneration and Net-
works of Queues, Springer-Verlag, New York, 1987.



Example. Suppose that information needs to be obtained about the steady-state behav-
ior of a system that can be formulated as a single-server queueing system (see Sec. 17.2).
However, both the interarrival and service times have a discrete uniform distribution with
a probability of �

1
1
0
� of the values of 6, 8, . . . , 24 and the values of 1, 3, . . . , 19, respec-

tively. Because analytical results are not available, simulation with next-event increment-
ing is to be used to obtain the desired results.

Except for the distributions involved, the general approach is the same as that de-
scribed in Sec. 22.1 for Example 2. In particular, the building blocks of the simulation
model are the same as specified there, including defining the state of the system as the
number of customers in the system. Suppose that one-digit random integer numbers are
used to generate the random observations from the distributions, as shown in Table 22.11.
Beginning the simulation run with no customers in the system then yields the results sum-
marized in Table 22.12 and Fig. 22.16, where the random numbers are obtained sequen-
tially as needed from the tenth row of Table 22.3.1 (Note in Table 22.12 that, at time 98,
the arrival of one customer and the service completion for another customer occur si-
multaneously, so these canceling events are not visible in Fig. 22.16.)
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TABLE 22.11 Correspondence between random 
numbers and random observations 
for the queueing system example

Random Interarrival Service
Number Time Time

0 6 1
1 8 3
� � �

9 24 19

N
um

be
r 

of
 c

us
to

m
er

s

4

3

2

1

240 34 37 48 50 53 62 65 70 82 89 90 98 10
6

10
9

11
4

11
7

12
4

 1
37 14
0

14
7

16
4 Time

Cycle 1 Cycle 3 Cycle 5Cycle 4C.2

0

FIGURE 22.16
Outcome of the simulation
run for the queueing system
example.

1When both an interarrival time and a service time need to be generated at the same time, the interarrival time
is obtained first.



For this system, one regeneration point is where an arrival occurs with no previous
customers left. At this point, the process probabilistically restarts, so the probabilistic struc-
ture of when future arrivals and service completions will occur is completely independent
of any previous history. The only relevant information is that the system has just entered
the special state of having had no customers and having the time until the next arrival
reach zero. The simulation run would not previously have scheduled any future events but
would now generate both the next interarrival time and the service time for the customer
that just arrived.

The only other regeneration points for this system are where an arrival and a service
completion occur simultaneously, with a prespecified number of customers in the system.
However, the regeneration point described in the preceding paragraph occurs much more
frequently and thus is a better choice for defining a cycle. With this selection, the first
five complete cycles of the simulation run are those shown in Fig. 22.16. (In most cases,
you should have a considerably larger number of cycles in the entire simulation run in or-
der to have sufficient precision in the statistical analysis.)

Various types of information about the steady-state behavior of the system can be ob-
tained from this simulation run, including point estimates and confidence intervals for the
expected number of customers in the system, the expected waiting time, and so on. In
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TABLE 22.12 Simulation run for the queueing system example

Number
of Random Next Next Service

Time Customers Number Arrival Completion

0 0 9, 0 24 —
24 1 2, 6 34 37
34 2 4, 0 48 37
37 1 6, 0 48 50
48 2 4, 0 62 50
50 1 1, 0 62 53
53 0 — 62 —
62 1 1, 1 70 65
65 0 — 70 —
70 1 3, 9 82 89
82 2 1, 0 90 89
89 1 4, 0 90 98
90 2 1, 0 98 98
98 2 1, 5 106 109

106 3 6, 0 124 109
109 2 2, 0 124 114
114 1 1, 0 124 117
117 0 — 124 —
124 1 5, 6 140 137
137 0 — 140 —
140 1 9, 3 164 147
147 0 — 164 —
164 1



each case, it is necessary to use only the corresponding statistics from the respective cy-
cles and the lengths of the cycles. We shall first present the general statistical expressions
for the regenerative method and then apply them to this example.

Statistical Formulas

Formally speaking, the statistical problem for the regenerative method is to obtain esti-
mates of the expected value of some random variable X of interest. This estimate is to be
obtained by calculating a statistic Y for each cycle and an appropriate measure Z of the
size of the cycle such that

E(X) � �
E
E

(
(
Y
Z

)
)

�.

(The regenerative property ensures that such a ratio formula holds for many steady-state
random variables X.) Thus, if n complete cycles are generated during the simulation run,
the data gathered are Y1, Y2, . . . , Yn and Z1, Z2, . . . , Zn for the respective cycles.

By letting Y� and Z�, respectively, denote the sample averages for these two sets of data,
the corresponding point estimate of E(X) would be obtained from the formula

Est {E(X)} � .

To obtain a confidence interval for E(X), we must first calculate several quantities
from the data. These quantities include the sample variances

s2
11 � �

n �
1

1
� �

n

i�1
(Yi � Y�)2 � �

n �
1

1
� �

n

i�1
Yi

2 � �
n(n

1
� 1)
� 
�

n

i�1
Yi�

2

,

s2
22 � �

n �
1

1
� �

n

i�1
(Zi � Z�)2 � �

n �
1

1
� �

n

i�1
Zi

2 � �
n(n

1
� 1)
� 
�

n

i�1
Zi�

2

,

and the combined sample covariance

s2
12 � �

n �
1

1
� �

n

i�1
(Yi � Y�)(Zi � Z�)

� �
n �

1
1

� �
n

i�1
YiZi � �

n(n
1
� 1)
� 
�

n

i�1
Yi�
�

n

i�1
Zi�.

Also let

s2 � s2
11 � 2 s2

12 � 
 �
2

s2
22.

Finally, let 
 be the constant such that 1 � 2
 is the desired confidence coefficient for the
confidence interval, and look up K
 in Table A5.1 (see App. 5) for the normal distribu-
tion. If n is not too small, an asymptotic confidence interval for E(X) is then given by

� � E(X) � � ;
K
 s
�
Z��n�

Y�
�
Z�

K
 s
�
Z��n�

Y�
�
Z�

Y�
�
Z�

Y�
�
Z�

Y�
�
Z�
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i.e., the probability is approximately 1 � 2
 that the endpoints of an interval generated
in this way will surround the actual value of E(X).

Application of the Statistical Formulas to the Example

Consider first how to estimate the expected waiting time for a customer before beginning
service (denoted by Wq in Chap. 17). Thus, the random variable X now represents a cus-
tomer’s waiting time excluding service, so that

Wq � E(X).

The corresponding information gathered during the simulation run is the actual waiting
time (excluding service) incurred by the respective customers. Therefore, for each cycle,
the summary statistic Y is the sum of the waiting times, and the size of the cycle Z is the
number of customers, so that

Wq � �
E
E

(
(
Y
Z

)
)

�.

Refer to Fig. 22.16 and Table 22.12; for cycle 1, a total of three customers are
processed, so Z1 � 3. The first customer incurs no waiting before beginning service, the
second waits 3 units of time (from 34 to 37), and the third waits 2 units of time (from 48
to 50), so Y1 � 5. We proceed similarly for the other cycles. The data for the problem are

Y1 � 5, Z1 � 3
Y2 � 0, Z2 � 1
Y3 � 34, Z3 � 5
Y4 � 0, Z4 � 1
Y5 � 0, Z5 � 1
Y� � 7.8, Z� � 2.2.

Therefore, the point estimate of Wq is

Est {Wq} � � �
7
2
.
.
8
2
� � 3�

1
6
1
�.

To obtain a 95 percent confidence interval for Wq, the preceding formulas are first
used to calculate

s2
11 � 219.20, s2

22 � 3.20, s2
12 � 24.80, s � 9.14.

Because 1 � 2
 � 0.95, then 
 � 0.025, so that K
 � 1.96 from Table A5.1. The result-
ing confidence interval is

�0.09 � Wq � 7.19;

or

Wq � 7.19.

The reason that this confidence interval is so wide (even including impossible neg-
ative values) is that the number of sample observations (cycles), n � 5, is so small.
Note in the general formula that the width of the confidence interval is inversely pro-

Y�
�
Z�
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portional to the square root of n, so that, e.g., quadrupling n reduces the width by half
(assuming no change in s or Z�). Given preliminary values of s and Z� from a short pre-
liminary simulation run (such as the run in Table 22.12), this relationship makes it pos-
sible to estimate in advance the width of the confidence interval that would result from
any given choice of n for the full simulation run. The final choice of n can then be
made based on the trade-off between computer time and the precision of the statisti-
cal analysis.

Now suppose that this simulation run is to be used to estimate P0, the probability of
having no customers in the system. (Because �/	 is the utilization factor for the server in
a single-server queueing system, the theoretical value is known to be P0 � 1 � �/	 �
1 � �

1
1
5
�/�

1
1
0
� � �

1
3

�.) The corresponding information obtained during the simulation run is the
fraction of time during which the system is empty. Therefore, the summary statistic Y for
each cycle is the total time during which no customers are present, and the size Z is the
length of the cycle, so that

P0 � �
E
E

(
(
Y
Z

)
)

�.

The length of cycle 1 is 38 (from 24 to 62), so that Z1 � 38. During this time, the
system is empty from 53 to 62, so that Y1 � 9. Proceeding in this manner for the other
cycles, we obtain the following data for the problem:

Y1 � 9, Z1 � 38
Y2 � 5, Z2 � 8
Y3 � 7, Z3 � 54
Y4 � 3, Z4 � 16
Y5 � 17, Z5 � 24
Y� � 8.2, Z� � 28.

Thus, the point estimate of P0 is

Est {P0} � �
8
2
.
8
2
� � 0.293.

By calculating

s2
11 � 29.20, s2

22 � 334, s2
12 � 17, s � 6.92,

a 95 percent confidence interval for P0 is found to be

0.076 � P0 � 0.510.

(The wide range of this interval indicates that a much longer simulation run would be
needed to obtain a relatively precise estimate of P0.)

If we redefine Y appropriately, the same approach also can be used to estimate other
probabilities involving the number of customers in the system. However, because this num-
ber never exceeded 3 during this simulation run, a much longer run will be needed if the
probability involves larger numbers.

The other basic expected values of queueing theory defined in Sec. 17.2 (W, Lq, and
L) can be estimated from the estimate of Wq by using the relationships among these four
expected values given near the end of Sec. 17.2. However, the other expected values can
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also be estimated directly from the results of the simulation run. For example, because
the expected number of customers waiting to be served is

Lq � �
�

n�2
(n � 1)Pn,

it can be estimated by defining

Y � �
�

n�2
(n � 1)Tn,

where Tn is the total time that exactly n customers are in the system during the cycle.
(This definition of Y actually is equivalent to the definition used for estimating Wq.) In
this case, Z is defined as it would be for estimating any Pn, namely, the length of the cy-
cle. The resulting point estimate of Lq then turns out to be simply the point estimate of
Wq multiplied by the actual average arrival rate for the complete cycles observed.

It is also possible to estimate higher moments of these probability distributions by re-
defining Y accordingly. For example, the second moment about the origin of the number
of customers waiting to be served Nq

E(Nq
2) � �

�

n�2
(n � 1)2Pn

can be estimated by redefining

Y � �
�

n�2
(n � 1)2Tn.

This point estimate, along with the point estimate of Lq (the first moment of Nq) just de-
scribed, can then be used to estimate the variance of Nq. Specifically, because of the gen-
eral relationship between variance and moments, this variance is

Var (Nq) � E(Nq
2) � Lq

2.

Therefore, its point estimate is obtained by substituting in the point estimates of the quan-
tities on the right-hand side of this relationship.

Finally, we should mention that it was unnecessary to generate the first interarrival
time (24) for the simulation run summarized in Table 22.12 and Fig. 22.16, because this
time played no role in the statistical analysis. It is more efficient with the regenerative
method just to start the run at the regeneration point.

Selected Reference 5 provides considerably more information about the regenerative
method, including how it can be applied to more complicated kinds of problems than those
considered here. (Also see the references given in the second footnote at the beginning of
this section.)
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Simulation is a widely used tool for estimating the performance of complex stochastic
systems if contemplated designs or operating policies are to be used.

22.9 CONCLUSIONS



We have focused in this chapter on the use of simulation for predicting the steady-
state behavior of systems whose states change only at discrete points in time. However,
by having a series of runs begin with the prescribed starting conditions, we can also use
simulation to describe the transient behavior of a proposed system. Furthermore, if we
use differential equations, simulation can be applied to systems whose states change con-
tinuously with time.

Simulation is one of the most popular techniques of operations research because it is
such a flexible, powerful, and intuitive tool. In a matter of seconds or minutes, it can sim-
ulate even years of operation of a typical system while generating a series of statistical
observations about the performance of the system over this period. Because of its excep-
tional versatility, simulation has been applied to a wide variety of areas. Furthermore, its
horizons continue to broaden because of the great progress being made in simulation soft-
ware, including software for performing simulations on spreadsheets.

On the other hand, simulation should not be viewed as a panacea when studying sto-
chastic systems. When applicable, analytical methods (such as those presented in Chaps.
15 to 21) have some significant advantages. Simulation is inherently an imprecise tech-
nique. It provides only statistical estimates rather than exact results, and it compares al-
ternatives rather than generating an optimal one. Furthermore, despite impressive advances
in software, simulation still can be a relatively slow and costly way to study complex sto-
chastic systems. For such systems, it usually requires a large amount of time and expense
for analysis and programming, in addition to considerable computer running time. Simu-
lation models tend to become unwieldy, so that the number of cases that can be run and
the accuracy of the results obtained often turn out to be inadequate. Finally, simulation
yields only numerical data about the performance of the system, so that it provides no
additional insight into the cause-and-effect relationships within the system except for the
clues that can be gleaned from these numbers (and from the analysis required to construct
the simulation model). Therefore, it is very expensive to conduct a sensitivity analysis of
the parameter values assumed by the model. The only possible way would be to conduct
new series of simulation runs with different parameter values, which would tend to pro-
vide relatively little information at a relatively high cost.

For all these reasons, analytical methods (when available) and simulation have im-
portant complementary roles for studying stochastic systems. An analytical method is well
suited for doing at least preliminary analysis, for examining cause-and-effect relationships,
for doing some rough optimization, and for conducting sensitivity analysis. When the
mathematical model for the analytical method does not capture all the important features
of the stochastic system, simulation is well suited for incorporating all these features and
then obtaining detailed information about the measures of performance of the few lead-
ing candidates for the final system configuration.

Simulation provides a way of experimenting with proposed systems or policies with-
out actually implementing them. Sound statistical theory should be used in designing these
experiments. Surprisingly long simulation runs often are needed to obtain statistically sig-
nificant results. However, variance-reducing techniques can be very helpful in reducing
the length of the runs needed.

Several tactical problems arise when we apply traditional statistical estimation pro-
cedures to simulated experiments. These problems include prescribing appropriate start-
ing conditions, determining how long a warm-up period is needed to essentially reach a
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steady-state condition, and dealing with statistically dependent observations. These prob-
lems can be eliminated by using the regenerative method of statistical analysis. However,
there are some restrictions on when this method can be applied.

Simulation unquestionably has a very important place in the theory and practice of
OR. It is an invaluable tool for use on those problems where analytical techniques are in-
adequate, and its usage is continuing to grow.
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The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration examples for this chapter may be helpful.
I: We suggest that you use the interactive routines listed above (the

printout records your work).
E: Use Excel.
A: Use one of the Excel add-ins listed above.
Q: Use the Queueing Simulator.
R: Use three-digit uniform random numbers (0.096, 0.569, etc.) that

are obtained from the consecutive random digits in Table 22.3,
starting from the front of the top row, to do each problem part.

22.1-1.* Use the uniform random numbers in cells C10:C15 of
Fig. 22.1 to generate six random observations for each of the fol-
lowing situations.
(a) Throwing an unbiased coin.
(b) A baseball pitcher who throws a strike 60 percent of the time

and a ball 40 percent of the time.
(c) The color of a traffic light found by a randomly arriving car

when it is green 40 percent of the time, yellow 10 percent of
the time, and red 50 percent of the time.

22.1-2. The weather can be considered a stochastic system, be-
cause it evolves in a probabilistic manner from one day to the next.
Suppose for a certain location that this probabilistic evolution sat-
isfies the following description:

The probability of rain tomorrow is 0.6 if it is raining today.
The probability of its being clear (no rain) tomorrow is 0.8 if it is
clear today.
(a) Use the uniform random numbers in cells C14:C23 of Fig. 22.1

to simulate the evolution of the weather for 10 days, beginning
the day after a clear day.

E (b) Now use a computer with the uniform random numbers gen-
erated by Excel to perform the simulation requested in part
(a) on a spreadsheet.

22.1-3. Jessica Williams, manager of Kitchen Appliances for the
Midtown Department Store, feels that her inventory levels of stoves
have been running higher than necessary. Before revising the in-
ventory policy for stoves, she records the number sold each day
over a period of 25 days, as summarized below.

PROBLEMS

(a) Use these data to estimate the probability distribution of daily
sales.

(b) Calculate the mean of the distribution obtained in part (a).
(c) Describe how uniform random numbers can be used to simu-

late daily sales.
(d) Use the uniform random numbers 0.4476, 0.9713, and 0.0629

to simulate daily sales over 3 days. Compare the average with
the mean obtained in part (b).

E (e) Formulate a spreadsheet model for performing a simulation
of the daily sales. Perform 300 replications and obtain the
average of the sales over the 300 simulated days.

22.1-4. The William Graham Entertainment Company will be
opening a new box office where customers can come to make ticket
purchases in advance for the many entertainment events being held
in the area. Simulation is being used to analyze whether to have
one or two clerks on duty at the box office.

Number sold 2 3 4 5 6

Number of days 4 7 8 5 1



a machine breaks down and so requires repair, management wants
its average waiting time before repair begins to be no more than 3
hours. Management also wants the crew size to be no larger than
necessary to achieve this.
(a) Develop a simulation model for this problem by describing its

basic building blocks listed in Sec. 22.1 as they would be ap-
plied to this situation.

R (b) Consider the case of a crew size of 2. Starting with no ma-
chines needing repair, use next-event incrementing to per-
form the simulation by hand for 20 hours of simulated time.

R (c) Repeat part (b), but this time with fixed-time incrementing
(with 1 hour as the time unit).

D,I (d) Use the interactive routine for simulation in your OR
Courseware (which incorporates next-event incrementing)
to interactively execute a simulation run over a period of
10 breakdowns for each of the three crew sizes under con-
sideration.

Q (e) Use the Queueing Simulator to simulate this system over a
period of 10,000 breakdowns for each of the three crew sizes.

(f) Use the M/G/1 queueing model presented in Sec. 17.7 to ob-
tain the expected waiting time Wq analytically for each of the
three crew sizes. (You can either calculate Wq by hand or use
the template for this model in the Excel file for Chap. 17.)
Which crew size should be used?

22.1-7. While performing a simulation of a single-server queue-
ing system, the number of customers in the system is 0 for the first
10 minutes, 1 for the next 17 minutes, 2 for the next 24 minutes,
1 for the next 15 minutes, 2 for the next 16 minutes, and 1 for the
next 18 minutes. After this total of 100 minutes, the number be-
comes 0 again. Based on these results for the first 100 minutes,
perform the following analysis (using the notation for queueing
models introduced in Sec. 17.2).
(a) Plot a graph showing the evolution of the number of customers

in the system over these 100 minutes.
(b) Develop estimates of P0, P1, P2, P3.
(c) Develop estimates of L and Lq.
(d) Develop estimates of W and Wq.

22.1-8. View the first demonstration example (Simulating a Basic
Queueing System) in the simulation area of your OR Tutor.
D,I (a) Enter this same problem into the interactive routine for sim-

ulation in your OR Courseware. Interactively execute a
simulation run for 20 minutes of simulated time.

Q (b) Use the Queueing Simulator with 5,000 customer arrivals
to estimate the usual measures of performance for this
queueing system under the current plan to provide two
tellers.

Q (c) Repeat part (b) if three tellers were to be provided.
Q (d) Now perform some sensitivity analysis by checking the ef-

fect if the level of business turns out to be even higher than

While simulating the beginning of a day at the box office, the
first customer arrives 5 minutes after it opens and then the inter-
arrival times for the next four customers (in order) are 3 minutes,
9 minutes, 1 minute, and 4 minutes, after which there is a long de-
lay until the next customer arrives. The service times for these first
five customers (in order) are 8 minutes, 6 minutes, 2 minutes, 4
minutes, and 7 minutes.
(a) For the alternative of a single clerk, plot a graph that shows

the evolution of the number of customers at the box office over
this period.

(b) Use this figure to estimate the usual measures of perfor-
mance—L, Lq, W, Wq, and the Pn (as defined in Sec. 17.2)—
for this queueing system.

(c) Repeat part (a) for the alternative of two clerks.
(d) Repeat part (b) for the alternative of two clerks.

22.1-5. Consider the M/M/1 queueing theory model that was dis-
cussed in Sec. 17.6 and Example 2, Sec. 22.1. Suppose that the
mean arrival rate is 5 per hour, the mean service rate is 10 per hour,
and you are required to estimate the expected waiting time before
service begins by using simulation.
R (a) Starting with the system empty, use next-event increment-

ing to perform the simulation by hand until two service com-
pletions have occurred.

R (b) Starting with the system empty, use fixed-time increment-
ing (with 2 minutes as the time unit) to perform the simu-
lation by hand until two service completions have occurred.

D,I (c) Use the interactive routine for simulation in your OR
Courseware (which incorporates next-event incrementing)
to interactively execute a simulation run until 20 service
completions have occurred.

Q (d) Use the Queueing Simulator to execute a simulation run
with 10,000 customer arrivals.

E (e) Use the Excel template for this model in the Excel file for
Chap. 17 to obtain the usual measures of performance for
this queueing system. Then compare these exact results with
the corresponding point estimates and 95 percent confidence
intervals obtained from the simulation run in part (d ). Iden-
tify any measure whose exact result falls outside the 95 per-
cent confidence interval.

22.1-6. The Rustbelt Manufacturing Company employs a mainte-
nance crew to repair its machines as needed. Management now
wants a simulation study done to analyze what the size of the crew
should be, where the crew sizes under consideration are 2, 3, and
4. The time required by the crew to repair a machine has a uni-
form distribution over the interval from 0 to twice the mean, where
the mean depends on the crew size. The mean is 4 hours with two
crew members, 3 hours with three crew members, and 2 hours with
four crew members. The time between breakdowns of some ma-
chine has an exponential distribution with a mean of 5 hours. When
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introduced in Sec. 17.6 can be used to evaluate all the above
options analytically. Use these models to determine W, the ex-
pected waiting time until repair is completed, for each of the
cases considered in parts (c), (d ), ( f ), and (g). (You can either
calculate W by hand or use the template for the M/M/s model
in the Excel file for Chap. 17.) For each case, compare the es-
timate of W obtained by computer simulation with the analyt-
ical value. What does this say about the number of car arrivals
that should be included in the simulation?

(i) Based on the above results, which option would you select if
you were Hugh? Why?

22.1-11. Vistaprint produces monitors and printers for computers.
In the past, only some of them were inspected on a sampling ba-
sis. However, the new plan is that they all will be inspected before
they are released. Under this plan, the monitors and printers will
be brought to the inspection station one at a time as they are com-
pleted. For monitors, the interarrival time will have a uniform dis-
tribution between 10 and 20 minutes. For printers, the interarrival
time will be a constant 15 minutes.

The inspection station has two inspectors. One inspector
works on only monitors and the other one only inspects printers.
In either case, the inspection time has an exponential distribution
with a mean of 10 minutes.

Before beginning the new plan, management wants an evalu-
ation made of how long the monitors and printers will be held up
waiting at the inspection station.
(a) Formulate a simulation model for performing a simulation to

estimate the expected waiting times (both before beginning in-
spection and after completing inspection) for either the moni-
tors or the printers.

D,I (b) Considering only the monitors, use the interactive routine for
simulation in your OR Courseware to interactively perform
this simulation over a period of 10 arrivals of monitors.

D,I (c) Repeat part (b) for the printers.
Q (d) Use the Queueing Simulator to repeat parts (b) and (c) with

10,000 arrivals in each case.
Q (e) Management is considering the option of providing new in-

spection equipment to the inspectors. This equipment would
not change the expected time to perform an inspection but
it would decrease the variability of the times. In particular,
for either product, the inspection time would have an Erlang
distribution with a mean of 10 minutes and shape parame-
ter k � 4. Use the Queueing Simulator to repeat part (d ) un-
der this option. Compare the results with those obtained in
part (d ).

22.2-1. Section 22.2 introduced four actual applications of simu-
lation that are described in articles in Interfaces. (The citations for
the two that also use queueing models are given in Sec. 18.6.) Se-
lect one of these applications and read the corresponding article.

projected. In particular, assume that the average time be-
tween customer arrivals turns out to be only 0.9 minute in-
stead of 1.0 minute. Evaluate the alternatives of two tellers
and three tellers under this assumption.

(e) Suppose you were the manager of this bank. Use your simu-
lation results as the basis for a managerial decision on how
many tellers to provide. Justify your answer.

D,I 22.1-9. View the second demonstration example (Simulating a
Queueing System with Priorities) in the simulation area of your
OR Tutor. Then enter this same problem into the interactive rou-
tine for simulation in your OR Courseware. Interactively execute
a simulation run for 20 minutes of simulated time.

22.1-10.* Hugh’s Repair Shop specializes in repairing German and
Japanese cars. The shop has two mechanics. One mechanic works on
only German cars and the other mechanic works on only Japanese
cars. In either case, the time required to repair a car has an expo-
nential distribution with a mean of 0.2 day. The shop’s business has
been steadily increasing, especially for German cars. Hugh projects
that, by next year, German cars will arrive randomly to be repaired
at a mean rate of 4 per day, so the time between arrivals will have an
exponential distribution with a mean of 0.25 day. The mean arrival
rate for Japanese cars is projected to be 2 per day, so the distribution
of interarrival times will be exponential with a mean of 0.5 day.

For either kind of car, Hugh would like the expected waiting
time in the shop before the repair is completed to be no more than
0.5 day.
(a) Formulate a simulation model for performing a simulation to

estimate what the expected waiting time until repair is com-
pleted will be next year for either kind of car.

D,I (b) Considering only German cars, use the interactive routine
for simulation in your OR Courseware to interactively per-
form this simulation over a period of 10 arrivals of Ger-
man cars.

Q (c) Use the Queueing Simulator to perform this simulation for
German cars over a period of 10,000 car arrivals.

Q (d) Repeat part (c) for Japanese cars.
D,I (e) Hugh is considering hiring a second mechanic who spe-

cializes in German cars so that two such cars can be re-
paired simultaneously. (Only one mechanic works on any
one car.) Repeat part (b) for this option.

Q (f) Use the Queueing Simulator with 10,000 arrivals of German
cars to evaluate the option described in part (e).

Q (g) Another option is to train the two current mechanics to work
on either kind of car. This would increase the expected re-
pair time by 10 percent, from 0.2 day to 0.22 day. Use the
Queueing Simulator with 20,000 arrivals of cars of either
kind to evaluate this option.

(h) Because both the interarrival-time and service-time distribu-
tions are exponential, the M/M/1 and M/M/s queueing models

CHAPTER 22 PROBLEMS 1143



each simulated flip of the coin. Then perform a simulation
of one play of the game.

E (c) Use this revised spreadsheet model to generate a data table
with 14 replications like Fig. 22.2.

E (d) Repeat part (c) with 1,000 replications (like Fig. 22.3).

22.4-2.* Apply the inverse transformation method as indicated be-
low to generate three random observations from the uniform dis-
tribution between �10 and 40 by using the following uniform ran-
dom numbers: 0.0965, 0.5692, 0.6658.
(a) Apply this method graphically.
(b) Apply this method algebraically.
(c) Write the equation that Excel would use to generate each such

random observation.

R 22.4-3. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, generate three random obser-
vations from each of the following probability distributions.
(a) The uniform distribution from 25 to 75.
(b) The distribution whose probability density function is

f(x) �

(c) The distribution whose probability density function is

f(x) �

R 22.4-4. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, generate three random obser-
vations from each of the following probability distributions.
(a) The random variable X has P{X � 0} � �

1
2

�. Given X � 0, it has
a uniform distribution between �5 and 15.

(b) The distribution whose probability density function is

f(x) � �
(c) The geometric distribution with parameter p � �

1
3

�, so that

P{X � k} �

22.4-5.* Suppose that random observations are needed from the
triangular distribution whose probability density function is

f(x) � �
(a) Derive an expression for each random observation as a func-

tion of the uniform random number r.

if 0 � x � 1
otherwise.

2x
0

if k � 1, 2, . . . 

otherwise.

�
1
3

�
�
2
3

��
k�1

0





if 1 � x � 2
if 2 � x � 3.

x � 1
3 � x

if 40 � x � 60

otherwise.

�
2
1
00
�(x � 40)

0





if �1 � x � 1

otherwise.

�
1
4

�(x � 1)3

0





Write a two-page summary of the application and the benefits it
provided.

22.2-2. Read the articles about all four applications of simulation
mentioned in Prob. 22.2-1. For each one, write a one-page sum-
mary of the application and the benefits it provided.

22.3-1.* Use the mixed congruential method to generate the fol-
lowing sequences of random numbers.
(a) A sequence of 10 one-digit random integer numbers such that

xn�1 ≡ (xn � 3) (modulo 10) and x0 � 2
(b) A sequence of eight random integer numbers between 0 and 7

such that xn�1 ≡ (5xn � 1) (modulo 8) and x0 � 1
(c) A sequence of five two-digit random integer numbers such that

xn�1 ≡ (61xn � 27) (modulo 100) and x0 � 10

22.3-2. Reconsider Prob. 22.3-1. Suppose now that you want to
convert these random integer numbers to (approximate) uniform
random numbers. For each of the three parts, give a formula for
this conversion that makes the approximation as close as possible.

22.3-3. Use the mixed congruential method to generate a sequence
of five two-digit random integer numbers such that xn�1 ≡ (41xn � 33)
(modulo 100) and x0 � 48.

22.3-4. Use the mixed congruential method to generate a sequence
of three three-digit random integer numbers such that xn�1 ≡
(201xn � 503) (modulo 1,000) and x0 � 485.

22.3-5. You need to generate five uniform random numbers.
(a) Prepare to do this by using the mixed congruential method to

generate a sequence of five random integer numbers between
0 and 31 such that xn�1 ≡ (13xn � 15) (modulo 32) and x0 � 14.

(b) Convert these random integer numbers to uniform random
numbers as closely as possible.

22.3-6. You are given the multiplicative congruential generator 
x0 � 1 and xn�1 ≡ 7xn (modulo 13) for n � 0, 1, 2, . . . .
(a) Calculate xn for n � 1, 2, . . . , 12.
(b) How often does each integer between 1 and 12 appear in the

sequence generated in part (a)?
(c) Without performing additional calculations, indicate how x13,

x14, . . . will compare with x1, x2, . . . .

22.4-1. Reconsider the coin flipping game introduced in Sec. 22.1
and analyzed with simulation in Figs. 22.1, 22.2, and 22.3.
(a) Simulate one play of this game by repeatedly flipping your

own coin until the game ends. Record your results in the for-
mat shown in columns B, D, E, F, and G of Fig. 22.1. How
much would you have won or lost if this had been a real play
of the game?

E (b) Revise the spreadsheet model in Fig. 22.1 by using Excel’s
VLOOKUP function instead of the IF function to generate
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sum of 7 or 11 or, alternatively, if the first sum is 4, 5, 6, 8, 9, or
10 and the same sum reappears before a sum of 7 has appeared.
Conversely, he loses if the first throw results in a sum of 2, 3, or
12 or, alternatively, if the first sum is 4, 5, 6, 8, 9, or 10 and a sum
of 7 appears before the first sum reappears.
E (a) Formulate a spreadsheet model for performing a simulation

of the throw of two dice. Perform one replication.
E (b) Perform 25 replications of this simulation.
(c) Trace through these 25 replications to determine both the num-

ber of times the simulated player would have won the game of
craps and the number of losses when each play starts with the
next throw after the previous play ends. Use this information
to calculate a preliminary estimate of the probability of win-
ning a single play of the game.

(d) For a large number of plays of the game, the proportion of
wins has approximately a normal distribution with mean �
0.493 and standard deviation � 0.5�n�. Use this information
to calculate the number of simulated plays that would be re-
quired to have a probability of at least 0.95 that the proportion
of wins will be less than 0.5.

22.4-9. The random variable X has the cumulative distribution
function F(x) whose value or derivative F�(x) is shown below for
various values of x.

F(0) � 0.

F�(x) � �
1
8

�, for 0 � x � 2.

P{X � 2} � �
1
2

�, so F(2) � �
3
4

�.

F�(x) � �
1
4

�, for 2 � x � 3.

F(3) � 1.

Generate four random observations from this probability distribu-
tion by using the following uniform random numbers: �

3
4

�, �
1
2

�, �
1
4

�, �
7
8

�. Also
calculate the sample average and compare it with the true mean
(�

1
8
5
�) for this probability distribution.

R 22.4-10. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, use the inverse transformation
method and the table of the normal distribution given in Appendix
5 (with linear interpolation between values in the table) to gener-
ate 10 random observations (to three decimal places) from a nor-
mal distribution with mean � 1 and variance � 4. Then calculate
the sample average of these random observations.

R 22.4-11. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, generate three random obser-
vations (approximately) from a normal distribution with main � 0
and standard deviation � 1.

(b) Generate five random observations for this distribution by us-
ing the following uniform random numbers: 0.0956, 0.5629,
0.6695, 0.7634, 0.8426.

(c) The inverse transformation method was applied to generate the
following three random observations from this distribution:
0.09, 0.64, 0.49. Identify the three uniform random numbers
that were used.

(d) Write an equation that Excel can use to generate each random
observation from this distribution.

22.4-6. Each time an unbiased coin is flipped three times, the prob-
ability of getting 0, 1, 2, and 3 heads is �

1
8

�, �
3
8

�, �
3
8

�, and �
1
8

�, respectively.
Therefore, with eight groups of three flips each, on the average,
one group will yield 0 heads, three groups will yield 1 head, three
groups will yield 2 heads, and one group will yield 3 heads.
(a) Using your own coin, flip it 24 times divided into eight groups

of three flips each, and record the number of groups with 0
head, with 1 head, with 2 heads, and with 3 heads.

(b) Obtaining uniform random numbers as instructed at the be-
ginning of the Problems section, simulate the flips specified in
part (a) and record the information indicated in part (a).

E (c) Formulate a spreadsheet model for performing a simulation
of three flips of the coin and recording the number of heads.
Perform one replication of this simulation.

E (d) Use this spreadsheet to generate a data table with 8 repli-
cations of the simulation. Compare this frequency distribu-
tion of the number of heads with the probability distribution
of the number of heads with three flips.

E (e) Repeat part (d ) with 800 replications.

22.4-7. Eddie’s Bicycle Shop has a thriving business repairing bi-
cycles. Trisha runs the reception area where customers check in
their bicycles to be repaired and then later pick up their bicycles
and pay their bills. She estimates that the time required to serve a
customer on each visit has a uniform distribution between 3 min-
utes and 8 minutes.

Apply the inverse transformation method as indicated below
to simulate the service times for five customers by using the fol-
lowing five uniform random numbers: 0.6505, 0.0740, 0.8443,
0.4975, 0.8178.
(a) Apply this method graphically.
(b) Apply this method algebraically.
(c) Calculate the average of the five service times and compare it

to the mean of the service-time distribution.
E (d) Use Excel to generate 500 random observations and calcu-

late the average. Compare this average to the mean of the
service-time distribution.

22.4-8.* The game of craps requires the player to throw two dice
one or more times until a decision has been reached as to whether
he (or she) wins or loses. He wins if the first throw results in a
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R 22.4-15. Obtaining uniform random numbers as instructed at
the beginning of the Problems section, generate four random ob-
servations from an exponential distribution with mean � 1. Then
use these four observations to generate one random observation
from an Erlang distribution with mean � 4 and shape parameter
k � 4.

22.4-16. You need to generate 10 random observations from the
probability distribution

P{X � n} �

(a) Prepare to do this by generating 16 random integer numbers
from the mixed congruential generator, xn�1 ≡ (5xn � 3) (mod-
ulo 16) and x0 � 1.

(b) Use the single-digit random integer numbers from part (a) to
generate the desired random observations.

(c) Note that once a particular value of X is generated in part (b),
it can never be repeated because each of the 16 possible ran-
dom integer numbers is generated exactly once in part (a). In
which ways does this violate the desirable properties of ran-
dom observations? What change would you make in what was
done in parts (a) and (b) to alleviate this problem?

(d) Now convert the first 10 random integer numbers from part (a)
to (approximate) uniform random numbers, and then apply the
inverse transformation method to obtain the desired random
observations.

(e) Does the procedure prescribed in part (d ) actually give a prob-
ability of �

1
1
0
� of generating each of the 10 possible values of X

each time? Explain. What change would you make in what was
done in parts (a) and (d ) to alleviate this problem?

22.4-17. Let r1, r2, . . . , rn be uniform random numbers. Define 

xi � �ln ri and yi � �ln (1 � ri), for i � 1, 2, . . . , n, and z � �
n

i�1

xi. Label each of the following statements as true or false, and then
justify your answer.
(a) The numbers x1, x2, . . . , xn and y1, y2, . . . , yn are random

observations from the same exponential distribution.
(b) The average of x1, x2, . . . , xn is equal to the average of y1,

y2, . . . , yn.
(c) z is a random observation from an Erlang (gamma) distribution.

22.4-18. Consider the discrete random variable X that is uniformly
distributed (equal probabilities) on the set {1, 2, . . . , 9}. You wish
to generate a series of random observations xi (i � 1, 2, . . .) of X.
The following three proposals have been made for doing this. For
each one, analyze whether it is a valid method and, if not, how it
can be adjusted to become a valid method.

if n � 0, 1, 2, . . . , 9

otherwise.

�
1
1
0
�

0





(a) Do this by applying the central limit theorem, using three uni-
form random numbers to generate each random observation.

(b) Now do this by using the table for the normal distribution given
in Appendix 5 and applying the inverse transformation method.

R 22.4-12. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, generate four random observa-
tions (approximately) from a normal distribution with mean � 0
and standard deviation � 1.
(a) Do this by applying the central limit theorem, using three uni-

form random numbers to generate each random observation.
(b) Now do this by using the table for the normal distribution given

in Appendix 5 and applying the inverse transformation method.
(c) Use your random observations from parts (a) and (b) to gen-

erate random observations from a chi-square distribution with
2 degrees of freedom.

R 22.4-13.* Obtaining uniform random numbers as instructed at
the beginning of the Problems section, generate two random ob-
servations from each of the following probability distributions.
(a) The exponential distribution with mean � 4
(b) The Erlang distribution with mean � 4 and shape parameter 

k � 2 (that is, standard deviation � 2�2�)
(c) The normal distribution with mean � 4 and standard devia-

tion � 2�2�. (Use the central limit theorem and n � 6 for each 
observation.)

22.4-14. Richard Collins, manager and owner of Richard’s Tire
Service, wishes to use simulation to analyze the operation of his
shop. One of the activities to be included in the simulation is the
installation of automobile tires (including balancing the tires).
Richard estimates that the cumulative distribution function (CDF)
of the probability distribution of the time (in minutes) required to
install a tire has the graph shown below.
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(a) Use the inverse transformation method to generate five random
observations from this distribution when using the following
five uniform random numbers: 0.2655, 0.3472, 0.0248, 0.9205,
0.6130.

(b) Use a nested IF function to write an equation that Excel can
use to generate each random observation from this distribution.



in the order given, to generate the amount of each claim: 0.80, 0.95,
0.70, 0.96, 0.54, 0.01. Calculate the total amount that the insur-
ance company pays for 2 years.

A 22.6-1. Reconsider Prob. 10.4-3, which involves trying to find
the probability that a project will be completed by the deadline.
Assume now that the duration of each activity has a triangular dis-
tribution that is based on the three estimates in the manner depicted
in Fig. 22.10. Obtain a close estimate of the probability of meet-
ing the deadline by performing 1,000 iterations of a simulation of
the project on a spreadsheet. Generate the various available kinds
of outputs similar to Fig. 22.12.

A 22.6-2. Look ahead at the scenario described in Prob. 22.7-5.
Obtain a close estimate of the expected cost of insurance coverage
for the corporation’s employees by performing 500 iterations of a
simulation of an employee’s health insurance experience on a
spreadsheet. Also generate the frequency distribution of the cost of
insurance coverage.

A 22.6-3. The Avery Co. factory has been having a maintenance
problem with the control panel for one of its production processes.
This control panel contains four identical electromechanical relays
that have been the cause of the trouble. The problem is that the re-
lays fail fairly frequently, thereby forcing the control panel (and
the production process it controls) to be shut down while a re-
placement is made. The current practice is to replace the relays
only when they fail. However, a proposal has been made to replace
all four relays whenever any one of them fails to reduce the fre-
quency with which the control panel must be shut down. The ob-
jective is to compare these two alternatives on a cost basis.

The pertinent data are the following. For each relay, the op-
erating time until failure has approximately a uniform distribution
from 1,000 to 2,000 hours. The control panel must be shut down
for 1 hour to replace one relay or for 2 hours to replace all four
relays. The total cost associated with shutting down the control
panel and replacing relays is $1,000 per hour plus $200 for each
new relay.

Use simulation on a spreadsheet to evaluate and compare the
two alternatives on a cost basis. In each case, perform 1,000 iter-
ations (where the end of each iteration coincides with the end of
a shutdown of the control panel) and generate the various avail-
able results.

A 22.6-4. For one new product to be produced by the Aplus Com-
pany, bushings will need to be drilled into a metal block and cylin-
drical shafts inserted into the bushings. The shafts are required to
have a radius of at least 1.0000 inch, but the radius should be as
little larger than this as possible. With the proposed production
process for producing the shafts, the probability distribution of the
radius of a shaft has a triangular distribution with a minimum of

(a) Proposal 1: Generate uniform random numbers ri (i � 1,
2, . . .), and then set xi � n, where n is the integer satisfying
n/8 � ri � (n � 1)/8.

(b) Proposal 2: Generate uniform random numbers ri (i � 1,
2, . . .), and then set xi equal to the greatest integer less than
or equal to 1 � 8ri.

(c) Proposal 3: Generate xi from the mixed congruential genera-
tor xn�1 ≡ (5xn � 7) (modulo 8), with starting value x0 � 4.

R 22.4-19. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, use the acceptance-rejection
method to generate three random observations from the triangular
distribution used to illustrate this method in Sec. 22.4.

R 22.4-20. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, use the acceptance-rejection
method to generate three random observations from the probabil-
ity density function

f(x) �

R 22.4-21. An insurance company insures four large risks. The
number of losses for each risk is independent and identically dis-
tributed on the points {0, 1, 2} with probabilities 0.7, 0.2, and 0.1,
respectively. The size of an individual loss has the following cu-
mulative distribution function:

F(x) �

Obtaining uniform random numbers as instructed at the beginning
of the Problems section, perform a simulation experiment twice of
the total loss generated by the four large risks.

22.4-22. A company provides its three employees with health in-
surance under a group plan. For each employee, the probability of
incurring medical expenses during a year is 0.9, so the number of
employees incurring medical expenses during a year has a bino-
mial distribution with p � 0.9 and n � 3. Given that an employee
incurs medical expenses during a year, the total amount for the
year has the distribution $100 with probability 0.9 or $10,000 with
probability 0.1. The company has a $5,000 deductible clause with
the insurance company so that each year the insurance company
pays the total medical expenses for the group in excess of $5,000.
Use the uniform random numbers 0.01 and 0.20, in the order given,
to generate the number of claims based on a binomial distribution
for each of 2 years. Use the following uniform random numbers,

if 0 � x � 100

if 100 � x � 200

if x � 200.

�
�
20

x�
�

�
20

x
0

�

1



if 10 � x � 20

otherwise.

�
5
1
0
�(x � 10)

0




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You have decided to perform simulation on a spreadsheet to
estimate this probability. Perform the number of iterations (plays
of the game) indicated below twice.
(a) 100 iterations.
(b) 1,000 iterations.
(c) 10,000 iterations.
(d) The true probability is 0.493. What conclusion do you draw

from the above simulation runs about the number of iterations
that appears to be needed to give reasonable assurance of ob-
taining an estimate that is within 0.007 of the true probability?

R 22.7-1.* Consider the probability distribution whose probabil-
ity density function is

f(x) �

The problem is to perform a simulated experiment, with the help
of variance-reducing techniques, for estimating the mean of this
distribution. To provide a standard of comparison, also derive the
mean analytically.

For each of the following cases, use the same 10 uniform ran-
dom numbers (obtained as instructed at the beginning of the Prob-
lems section) to generate random observations, and calculate the
resulting estimate of the mean.
(a) Use the crude Monte Carlo technique.
(b) Use stratified sampling with three strata—0 � F(x) � 0.6,

0.6 � F(x) � 0.9, and 0.9 � F(x) � 1—with 3, 3, and 4 ob-
servations, respectively.

(c) Use the method of complementary random numbers.

22.7-2. Simulation is being used to study a system whose measure
of performance X will be partially determined by the outcome of
a certain external factor. This factor has three possible outcomes
(unfavorable, neutral, and favorable) that will occur with equal
probability (�

1
3

�). Because the favorable outcome would greatly in-
crease the spread of possible values of X, this outcome is more crit-
ical than the others for estimating the mean and variance of X.
Therefore, a stratified sampling approach has been adopted, with
six random observations of the value of X generated under the fa-
vorable outcome, three generated under the neutral outcome, and
one generated under the unfavorable outcome, as follows:

if x 
 1

otherwise.

�
x
1
2�

0





1.0000 inch, a most likely value of 1.0010 inches, and a maximum
value of 1.0020 inches. With the proposed method of drilling the
bushings, the probability distribution of the radius of a bushing has
a normal distribution with a mean of 1.0020 inches and a standard
deviation of 0.0010 inch. The clearance between a bushing and a
shaft is the difference in their radii. Because they are selected at
random, there occasionally is interference (i.e., negative clearance)
between a bushing and a shaft to be mated.

Management is concerned about the disruption in the produc-
tion of the new product that would be caused by this occasional in-
terference. Perhaps the production processes for the shafts and bush-
ings should be improved (at considerable cost) to lessen the chance
of interference. To evaluate the need for such improvements, man-
agement has asked you to determine how frequently interference
would occur with the currently proposed production processes.

Estimate the probability of interference by performing 500 it-
erations of a simulation on a spreadsheet. Also generate other avail-
able results regarding the frequency distribution of the clearance
(positive or negative).

A 22.6-5. Refer to the financial risk analysis example presented
at the end of Sec. 22.6, including its results shown in Fig. 22.14.
Think-Big management is quite concerned about the risk profile
for the proposal. Two statistics are causing particular concern. One
is that there is nearly a 20 percent chance of losing money (a neg-
ative NPV). Second, there is a 10 percent chance of losing at least
a full third ($6 million) as much as the mean gain ($18 million).
Therefore, management is wondering whether it would be more
prudent to go ahead with just one of the two projects. Thus, in ad-
dition to option 1 (the proposal), option 2 is to take 16.5 shares of
the hotel project only (so no shares of the shopping center project)
and option 3 is to take 13.1 shares of the shopping center option
only (so no shares of the hotel project). Management wants to
choose one of the three options. Risk profiles now are needed to
evaluate the latter two.
A (a) Generate risk analysis outputs similar to those in Fig. 22.14

for option 2 after performing a simulation with 1,000 itera-
tions for this option.

A (b) Repeat part (a) for option 3.
(c) Suppose you were the CEO of the Think-Big Development Co.

Use the results in Fig. 22.14 for option 1 along with the cor-
responding results obtained for the other two options as the ba-
sis for a managerial decision on which of the three options to
choose. Justify your answer.

A 22.6-6. Reconsider Prob. 22.4-8 involving the game of craps.
Now the objective is to estimate the probability of winning a play
of this game. If the probability is greater than 0.5, you will want
to go to Las Vegas to play the game numerous times until you even-
tually win a considerable amount of money. However, if the prob-
ability is less than 0.5, you will stay home.
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Outcome of Simulated
External Factor Values of X

Favorable 8, 5, 1, 6, 3, 7
Neutral 3, 5, 2
Unfavorable 2



these random observations. Compare this average with the
true mean of the distribution.

(h) The drawbacks of the approach described in part (a) are that
(1) it does not ensure that the repair times for both minor re-
pairs and major repairs are adequately sampled and (2) it re-
quires two uniform random numbers to generate each random
observation of a repair time. To overcome these drawbacks,
combine stratified sampling and the method of complementary
random numbers by using the first three uniform random num-
bers given in part (a) to generate six random minor repair times
and the other three uniform random numbers to generate six
random major repair times. Calculate the resulting estimate of
the mean of the overall distribution of repair times.

22.7-5. The employees of General Manufacturing Corp. receive
health insurance through a group plan issued by Wellnet. During
the past year, 40 percent of the employees did not file any health
insurance claims, 40 percent filed only a small claim, and 20 per-
cent filed a large claim. The small claims were spread uniformly
between 0 and $2,000, whereas the large claims were spread uni-
formly between $2,000 and $20,000.

Based on this experience, Wellnet now is negotiating the cor-
poration’s premium payment per employee for the upcoming year.
You are an OR analyst for the insurance carrier, and you have been
assigned the task of estimating the average cost of insurance cov-
erage for the corporation’s employees.

Follow the instructions of Prob. 22.7-4, where the size of an
employee’s health insurance claim (including 0 if no claim was
filed) now plays the role that the repair time for a bicycle did in
Prob. 22.7-4. [For part ( f ), the true mean of the overall probabil-
ity distribution of the size of an employee’s health insurance claim
is $2,600.]

22.7-6. Consider the probability distribution whose probability
density function is

f(x) � �
Use the method of complementary random numbers with two uni-
form random numbers, 0.096 and 0.569, to estimate the mean of
this distribution.

22.7-7. Consider the probability distribution whose probability
density function is

f(x) �

Use the method of complementary random numbers with two uni-
form random numbers, 0.096 and 0.569, to estimate the mean of
this distribution.

if �1 � x � 1

otherwise.

�
3
2

�x2

0





if �1 � x � 1
otherwise.

1 � x
0

(a) Develop the resulting estimate of E(X).
(b) Develop the resulting estimate of E(X2).

R 22.7-3. A random variable X has P{X � 0} � 0.9. Given X � 0,
it has a uniform distribution between 5 and 15. Thus, E(X) � 1.
Obtaining uniform random numbers as instructed at the beginning
of the Problems section, use simulation to estimate E(X).
(a) Estimate E(X) by generating five random observations from

the distribution of X and then calculating the sample average.
(This is the crude Monte Carlo technique.)

(b) Estimate E(X) by using stratified sampling with two strata—
0 � F(x) � 0.9 and 0.9 � F(x) � 1—with 1 and 4 observa-
tions, respectively.

22.7-4.* Reconsider Eddie’s Bicycle Shop described in Prob.
22.4-7. Forty percent of the bicycles require only a minor repair.
The repair time for these bicycles has a uniform distribution be-
tween 0 and 1 hour. Sixty percent of the bicycles require a major
repair. The repair time for these bicycles has a uniform distribu-
tion between 1 hour and 2 hours. You now need to estimate the
mean of the overall probability distribution of the repair times for
all bicycles by using the following alternative methods.
(a) Use the uniform random numbers—0.7256, 0.0817, and

0.4392—to simulate whether each of three bicycles requires
minor repair or major repair. Then use the uniform random
numbers—0.2243, 0.9503, and 0.6104—to simulate the repair
times of these bicycles. Calculate the average of these repair
times to estimate the mean of the overall distribution of repair
times.

(b) Draw the cumulative distribution function (CDF) for the over-
all probability distribution of the repair times for all bicycles.

(c) Use the inverse transformation method with the latter three uni-
form random numbers given in part (a) to generate three ran-
dom observations from the overall distribution considered in
part (b). Calculate the average of these observations to esti-
mate the mean of this distribution.

(d) Repeat part (c) with the complements of the uniform random
numbers used there, so the new uniform random numbers are
0.7757, 0.0497, and 0.3896.

(e) Use the method of complementary random numbers to esti-
mate the mean of the overall distribution of repair times by
combining the random observations from parts (c) and (d ).

(f) The true mean of the overall probability distribution of repair
times is 1.1. Compare the estimates of this mean obtained in
parts (a), (c), (d ), and (e). For the method that provides the
closest estimate, give an intuitive explanation for why it per-
formed so well.

E (g) Formulate a spreadsheet model to apply the method of com-
plementary random numbers. Use 300 uniform random num-
bers to generate 600 random observations from the distri-
bution considered in part (b) and calculate the average of

CHAPTER 22 PROBLEMS 1149



(b) Develop and apply a stratified sampling approach to this
problem.

(c) Use the method of complementary random numbers.

22.8-1.* A certain single-server system has been simulated, with
the following sequence of waiting times before service for the re-
spective customers. Use the regenerative method to obtain a point
estimate and 90 percent confidence interval for the steady-state ex-
pected waiting time before service.
(a) 0, 5, 4, 0, 2, 0, 3, 1, 6, 0
(b) 0, 3, 2, 0, 3, 1, 5, 0, 0, 2, 4, 0, 3, 5, 2, 0

22.8-2. Consider the queueing system example presented in Sec.
22.8 for the regenerative method. Explain why the point where a
service completion occurs with no other customers left is not a re-
generation point.

22.8-3. Reconsider Prob. 22.6-3. You now wish to begin the analy-
sis by performing a short simulation by hand and then applying
the regenerative method of statistical analysis when possible.
R (a) Starting with four new tubes, simulate the operation of the

two alternative policies for 5,000 hours of simulated time.
Obtain the needed uniform random numbers as instructed at
the beginning of the Problems section.

(b) Use the data from part (a) to make a preliminary comparison
of the two alternatives on a cost basis.

(c) For the proposed policy, describe an appropriate regeneration
point for defining cycles that will permit applying the regen-
erative method of statistical analysis. Explain why the regen-
erative method cannot be applied to the current policy.

(d) For the proposed policy, use the regenerative method to obtain a
point estimate and 95 percent confidence interval for the steady-
state expected cost per hour from the data obtained in part (a).

(e) Write a computer simulation program for the two alternative
policies. Then repeat parts (a), (b), and (d ) on the computer,
with 100 cycles for the proposed policy and 55,000 hours of
simulated time (including a warm-up period of 5,000 hours)
for the current policy.

22.8-4. One of the main lessons of queueing theory (Chaps. 17
and 18) is that the amount of variability in the service times and
interarrival times has a substantial impact on the measures of per-
formance of the queueing system. Significantly decreasing vari-
ability helps considerably.

This phenomenon is well illustrated by the M/G/1 queueing
model presented at the beginning of Sec. 17.7. For this model, the
four fundamental measures of performance (L, Lq, W, and Wq) are
expressed directly in terms of the variance of service times (�2), so
we can see immediately what the impact of decreasing �2 would be.

Consider an M/G/1 queueing system with mean arrival rate 
� � 0.8 and mean service rate 	 � 1, so the utilization factor is 
� � �/	 � 0.8.

22.7-8. The probability distribution of the number of heads in 
3 flips of a fair coin is the binomial distribution with n � 3 and 
p � �

1
2

�, so that

P{X � k} � 
 �
�
1
2

��
k


�
1
2

��
3�k

� �
k!(3

3
�
!

k)!
�
�

1
2

��
3

for k � 0, 1, 2, 3.

The mean is 1.5.
R (a) Obtaining uniform random numbers as instructed at the be-

ginning of the Problems section, use the inverse transfor-
mation method to generate three random observations from
this distribution, and then calculate the sample average to
estimate the mean.

(b) Use the method of complementary random numbers [with the
same uniform random numbers as in part (a)] to estimate the
mean.

R (c) Obtaining uniform random numbers as instructed at the be-
ginning of the Problems section, simulate repeatedly flip-
ping a coin in order to generate three random observations
from this distribution, and then calculate the sample aver-
age to estimate the mean.

(d) Repeat part (c) with the method of complementary random
numbers [with the same uniform random numbers as in part
(c)] to estimate the mean.

R 22.7-9. Reconsider Prob. 22.6-4. Suppose now that more care-
ful statistical analysis has provided new estimates of the probabil-
ity distributions of the radii of the shafts and bushings. In actual-
ity, the probability distribution of the radius of a shaft (in inches)
has the probability density function

fs(x) � �
Similarly, the probability distribution of the radius of a bushing (in
inches) has the probability density function

fB(x) � �
Obtaining uniform random numbers as instructed at the be-

ginning of the Problems section, perform a simulated experiment
for estimating the probability of interference. Notice that almost
all cases of interference will occur when the radius of the bushing
is much closer to 1.0000 inch than to 1.0100 inches. Therefore, it
appears that an efficient experiment would generate most of the
simulated bushings from this critical portion of the distribution.
Take this observation into account in part (b). For each of the fol-
lowing cases, use the same 10 pairs of uniform random numbers
to generate random observations, and calculate the resulting esti-
mate of the probability of interference.
(a) Use the crude Monte Carlo technique.

if 1.0000 � x � 1.0100
otherwise.

100
0

if x 
 1.0000
otherwise.

400e�400(x�1.0000)

0

3
k
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Q 22.8-5. Follow the instructions of part (a) of Prob. 22.8-4 for
an M/G/2 queueing system (two servers), with � � 1.6 and 	 � 1
[so � � �/(2	) � 0.8] and with �2 still being the variance of ser-
vice times.

22.8-6. Reconsider Prob. 22.8-4. For the single-server queueing
system under consideration, suppose now that service times defi-
nitely have an exponential distribution. However, it now is possi-
ble to reduce the variability of interarrival times, so we want to
explore the impact of doing so.

Assume now that � � 1 and 	 � 1.25, so � � 0.8. Let �2 now
denote the variance of interarrival times.

Follow the instructions of Prob. 22.8-4a, where the distribu-
tions for the three cases now are for interarrival times instead of
service times.

Q (a) Use the Queueing Simulator to execute a simulation run with
10,000 customer arrivals for each of the following cases:
(i) � � 1 (corresponds to an exponential distribution of ser-
vice times), (ii) � � 0.5 (corresponds to an Erlang distrib-
ution of service times with shape parameter k � 4), and 
(iii) � � 0 (constant service times). Using the point esti-
mates of Lq obtained, calculate the ratio of Lq for case 
(ii) to Lq for case (i). Also calculate the ratio of Lq for case
(iii) to Lq for case (i).

(b) For each of the three cases considered in part (a), use the for-
mulas given in Sec. 15.7 to compute the exact values of L, Lq,
W, and Wq. Compare these exact values to the point estimates
and 95 percent confidence intervals obtained in part (a). Iden-
tify any exact values that fall outside the 95 percent confidence
interval. Also calculate the exact values of the ratios requested
in part (a).

CASE 22.1 PLANNING PLANERS 1151

This was the first time that Carl Schilling had been summoned to meet with the big-
wigs in the fancy executive offices upstairs. And he hopes it will be the last time. Carl
doesn’t like the pressure. He has had enough pressure just dealing with all the prob-
lems he has been encountering as the foreman of the planer department on the factory
floor. What a nightmare this last month has been!

Fortunately, the meeting had gone better than Carl had feared. The bigwigs actu-
ally had been quite nice. They explained that they needed to get Carl’s advice on how
to deal with a problem that was affecting the entire factory. The origin of the problem
is that the planer department has had a difficult time keeping up with its workload. Fre-
quently there are a number of workpieces waiting for a free planer. This waiting has
seriously disrupted the production schedule for subsequent operations, thereby greatly
increasing the cost of in-process inventory as well as the cost of idle equipment and
resulting lost production. They understood that this problem was not Carl’s fault. How-
ever, they needed to get his ideas on what changes were needed in the planer depart-
ment to relieve this bottleneck. Imagine that! All these bigwigs with graduate degrees
from the fanciest business schools in the country asking advice from a poor working
slob like him who had barely made it through high school. He could hardly wait to tell
his wife that night.

The meeting had given Carl an opportunity to get two pet peeves off his chest.
One peeve is that he has been telling his boss for months that he really needs another
planer, but nothing ever gets done about this. His boss just keeps telling him that the
planers he already has aren’t being used 100 percent of the time, so how can adding
even more capacity be justified. Doesn’t his boss understand about the big backlogs
that build up during busy times?

Then there is the other peeve—all those peaks and valleys of work coming to his
department. At times, the work just pours in and a big backlog builds up. Then there
might be a long pause when not much comes in so the planers stand idle part of the time.
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If only those departments that are feeding castings to his department could get their act
together and even out the work flow, many of his backlog problems would disappear.

Carl was pleased that the bigwigs were nodding their heads in seeming agreement
as he described these problems. They really appeared to understand. And they seemed
very sincere in thanking him for his good advice. Maybe something is actually going
to get done this time.

Here are the details of the situation that Carl and his “bigwigs” are addressing.
The company has two planers for cutting flat smooth surfaces in large castings. The
planers currently are being used for two purposes. One is to form the top surface of
the platen for large hydraulic lifts. The other is to form the mating surface of the final
drive housing for a large piece of earth-moving equipment. The time required to per-
form each type of job varies somewhat, depending largely upon the number of passes
that must be made. In particular, for each platen, the time required by a planer has an
Erlang distribution with a mean of 25 minutes and shape parameter k � 4. For each
housing, the time required has a translated exponential distribution, where the mini-
mum time is 10 minutes and the additional time beyond 10 minutes has an exponen-
tial distribution with a mean of 10 minutes. (Recall that a distribution of this type is
one of the options in the Queueing Simulator in this chapter’s Excel file.)

Castings of both types arrive one at a time to the planer department. For the cast-
ings for forming platens, the arrivals occur randomly with a mean rate of 2 per hour.
For the castings for forming housings, the interarrival times have a uniform distribu-
tion over the interval from 20 to 40 minutes.

Based on Carl Schilling’s advice, management has asked an OR analyst (you) to an-
alyze the following three proposals for relieving the bottleneck in the planer department:

Proposal 1: Obtain one additional planer. The total incremental cost (including capi-
tal recovery cost) is estimated to be $30 per hour. (This estimate takes
into account the fact that, even with an additional planer, the total run-
ning time for all the planers will remain the same.)

Proposal 2: Eliminate the variability in the interarrival times of the platen castings, so
that the castings would arrive regularly, one every 30 minutes. This would
require making some changes in the preceding production processes, with
an incremental cost of $40 per hour.

Proposal 3: This is the same as proposal 2, but now for the housing castings. The in-
cremental cost in this case would be $20 per hour.

These proposals are not mutually exclusive, so any combination can be adopted.
It is estimated that the total cost associated with castings having to wait to be

processed (including processing time) is $200 per hour for each platen casting and $100
per hour for each housing casting, provided the waits are not excessive. To avoid ex-
cessive waits for either kind of casting, all the castings are processed as soon as pos-
sible on a first-come, first-served basis.

Management’s objective is to minimize the expected total cost per hour.
Use simulation to evaluate and compare all the alternatives, including the status

quo and the various combinations of proposals. Then make your recommendation to
management.
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CASE 22.2 PRICING UNDER PRESSURE 1153

Elise Sullivan moved to New York City in September to begin her first job as an ana-
lyst working in the Client Services Division of FirstBank, a large investment bank pro-
viding brokerage services to clients across the United States. The moment she arrived
in the Big Apple after graduating with an undergraduate degree in industrial engineer-
ing that included a concentration in finance, she hit the ground running—or more ap-
propriately—working. She spent her first six weeks in training, where she met new
FirstBank analysts like herself and learned the basics of FirstBank’s approach to ac-
counting, cash flow analysis, customer service, and federal regulations.

After completing training, Elise moved into her bullpen on the fortieth floor of the
Manhattan FirstBank building to begin work. Her first few assignments have allowed
her to learn the ropes by placing her under the direction of senior staff members who
delegate specific tasks to her.

Today, she has an opportunity to distinguish herself in her career, however. Her
boss, Michael Steadman, has given her an assignment that is under her complete di-
rection and control. A very eccentric, wealthy client and avid investor by the name of
Emery Bowlander is interested in purchasing a European call option that provides him
with the right to purchase shares of Fellare stock for $44.00 on the first of February—
12 weeks from today. Fellare is an aerospace manufacturing company operating in
France, and Mr. Bowlander has a strong feeling that the European Space Agency will
award Fellare with a contract to build a portion of the International Space Station some
time in January. In the event that the European Space Agency awards the contract to
Fellare, Mr. Bowlander believes the stock will skyrocket, reflecting investor confidence
in the capabilities and growth of the company. If Fellare does not win the contract,
however, Mr. Bowlander believes the stock will continue its current slow downward
trend. To guard against this latter outcome, Mr. Bowlander does not want to make an
outright purchase of Fellare stock now.

Michael has asked Elise to price the option. He expects a figure before the stock
market closes so that if Mr. Bowlander decides to purchase the option, the transaction
can take place today.

Unfortunately, the investment science course Elise took to complete her under-
graduate degree did not cover options theory; it only covered valuation, risk, capital
budgeting, and market efficiency. She remembers from her valuation studies that she
should discount the value of the option on February 1 by the appropriate interest rate
to obtain the value of the option today. Because she is discounting over a 12-week pe-
riod, the formula she should use to discount the option is [(Value of the option)/(1 �
Weekly interest rate)12]. As a starting point for her calculations, she decides to use an
annual interest rate of 8 percent. But she now needs to decide how to calculate the
value of the option on February 1.

(a) Elise knows that on February 1, Mr. Bowlander will take one of two actions: either he will
exercise the option to purchase shares of Fellare stock or he will not exercise the option. Mr.
Bowlander will exercise the option if the price of Fellare stock on February 1 is above his
exercise price of $44.00. In this case, he purchases Fellare stock for $44.00 and then im-
mediately sells it for the market price on February 1. Under this scenario, the value of the
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option would be the difference between the stock price and the exercise price. Mr. Bowlan-
der will not exercise the option if the price of Fellare stock is below his exercise price of
$44.00. In this case, he does nothing, and the value of the option would be $0.

The value of the option is therefore determined by the value of Fellare stock on Feb-
ruary 1. Elise knows that the value of the stock on February 1 is uncertain and is therefore
represented by a probability distribution of values. Elise recalls from an operations research
course in college that she can use simulation to estimate the mean of this distribution of
stock values. Before she builds the simulation model, however, she needs to know the price
movement of the stock. Elise recalls from a probability and statistics course that the price
of a stock can be modeled as following a random walk and either growing or decaying ac-
cording to a lognormal distribution. Therefore, according to this model, the stock price at
the end of the next week is the stock price at the end of the current week multiplied by a
growth factor. This growth factor is expressed as the number e raised to a power that is equal
to a normally distributed random variable. In other words:

sn � eNsc,

where sn � the stock price at the end of next week,

sc � the stock price at the end of the current week,

N � a random variable that has a normal distribution.

To begin her analysis, Elise looks in the newspaper to find that the Fellare stock price for
the current week is $42.00. She decides to use this price to begin her 12-week analysis. Thus,
the price of the stock at the end of the first week is this current price multiplied by the growth
factor. She next estimates the mean and standard deviation of the normally distributed ran-
dom variable used in the calculation of the growth factor. This random variable determines
the degree of change (volatility) of the stock, so Elise decides to use the current annual in-
terest rate and the historical annual volatility of the stock as a basis for estimating the mean
and standard deviation.

The current annual interest rate is r � 8 percent, and the historical annual volatility of
the aerospace stock is 30 percent. But Elise remembers that she is calculating the weekly
change in stock—not the annual change. She therefore needs to calculate the weekly inter-
est rate and weekly historical stock volatility to obtain estimates for the mean and standard
deviation of the weekly growth factor. To obtain the weekly interest rate w, Elise must make
the following calculation:

w � (1 � r)(1/52) � 1.

The historical weekly stock volatility equals the historical annual volatility divided by the
square root of 52. She calculates the mean of the normally distributed random variable by
subtracting one half of the square of the weekly stock volatility from the weekly interest rate
w. In other words:

Mean � w � 0.5(weekly stock volatility)2.

The standard deviation of the normally distributed random variable is simply equal to the
weekly stock volatility.

Elise is now ready to build her simulation model.
(1) Describe the components of the system, including how they are assumed to interrelate.
(2) Define the state of the system.
(3) Describe a method for randomly generating the simulated events that occur over time.
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(4) Describe a method for changing the state of the system when an event occurs.
(5) Define a procedure for advancing the time on the simulation clock.
(6) Build the simulation model to calculate the value of the option in today’s dollars.

(b) Run three separate simulations to estimate the value of the call option and hence the price
of the option in today’s dollars. For the first simulation, run 100 iterations of the simulation.
For the second simulation, run 500 iterations of the simulation. For the third simulation, run
1,000 iterations of the simulation. For each simulation, record the price of the option in to-
day’s dollars.

(c) Elise takes her calculations and recommended price to Michael. He is very impressed, but
he chuckles and indicates that a simple, closed-form approach exists for calculating the value
of an option: the Black-Scholes formula. Michael grabs an investment science book from
the shelf above his desk and reveals the very powerful and very complicated Black-Scholes
formula:

V � N[d1]P � N[d2]PV[K]

where d1 � � ,

d2 � d1 � ��t�,
N[x] � the Excel function NORMSDIST(x) where x � d1 or x � d2,

P � current price of the stock,

K � exercise price,

PV[K] � present value of exercise price � �
(1 �

K
w)t�,

t � number of weeks to exercise date,

� � weekly volatility of stock.

Use the Black-Scholes formula to calculate the value of the call option and hence the price
of the option. Compare this value to the value obtained in part (b).

(d) In the specific case of Fellare stock, do you think that a random walk as described above
completely describes the price movement of the stock? Why or why not?

��t�
�

2
ln[P/PV[K]]
��

��t�
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APPENDIX 1
DOCUMENTATION FOR THE
OR COURSEWARE

You will find a wealth of software resources on the CD-
ROM packaged in the back of the book. The entire software
package is called OR Courseware.

The installation instructions and system requirements
are specified on the front of the CD-ROM. Although the CD-
ROM is designed for use on a Windows-based IBM-com-
patible PC, much of the software also can be run on a Mac-
intosh (as specified later for the individual cases).

To get started, and to see an overview of the available
software resources, refer to the introductory screens on the
CD-ROM. The individual software packages also are dis-
cussed briefly below.

OR TUTOR

OR Tutor is a Web document consisting of a set of HTML
pages that often contain JavaScript. Any browser that sup-
ports JavaScript can be used, including Netscape Naviga-
tor 4.0 (or higher) or Internet Explorer 4.5 (or higher). It
can be viewed with either an IBM-compatible PC or a
Macintosh.

This resource has been designed to be your personal tu-
tor by illustrating and illuminating key concepts in an in-
teractive manner. It contains 16 demonstration examples that
supplement the examples in the book in ways that cannot be
duplicated on the printed page. Each one vividly demon-
strates one of the algorithms or concepts of OR in action.
Most combine an algebraic description of each step with a
geometric display of what is happening. Some of these geo-
metric displays become quite dynamic, with moving points
or moving lines, to demonstrate the evolution of the algo-
rithm. The demonstration examples also are integrated with

the book, using the same notation and terminology, with ref-
erences to material in the book, etc. Students find them an
enjoyable and effective learning aid.

INTERACTIVE ROUTINES

Another key tutorial feature of the OR Courseware is a set
of interactive routines implemented in Excel spreadsheets
and/or Visual Basic. These routines can be viewed with re-
cent versions of Microsoft Excel such as Excel 97, 98 (for
Macintosh), or 2000. Each one is a self-contained routine
that uses prompts or help files to provide the necessary in-
formation for execution. Either Excel spreadsheets or
graphic interfaces are supplied to allow easy entry of prob-
lem data.

Each of these routines enables you to interactively ex-
ecute one of the algorithms of OR. While viewing all rele-
vant information on the computer screen, you make the de-
cision on how the next step of the algorithm should be
performed, and then the computer does all the necessary
number crunching to execute that step. When a previous mis-
take is discovered, the routine allows you to quickly back-
track to correct the mistake. To get you started properly, the
computer points out any mistake made on the first iteration
(where possible). When done, you can print out all the work
performed to turn in for homework.

In our judgment, these interactive routines provide the
“right” way in this computer age for students to do home-
work designed to help them learn the algorithms of OR. The
routines enable you to focus on concepts rather than mind-
less number crunching, thereby making the learning process
far more efficient and effective as well as stimulating. They



with Excel 98 for Macintosh). Premium Solver offers four
times the capacity (800 decision variables) of the standard
Solver for linear programming problems, and twice the ca-
pacity (400 decision variables) for nonlinear programming
problems, plus solution speeds 3 to 10 times faster than the
standard Solver. A product of the same organization that de-
veloped the standard Solver in Excel (Frontline Systems Inc.),
Premium Solver is fully upward compatible with the standard
Solver. The organization’s website is www.frontsys.com.
Technical support currently is provided at (775) 831-0300 or
by e-mail at ‹info@frontsys.com›.

The other three Excel add-ins are academic versions of
SensIt (introduced in Sec. 15.2), TreePlan (introduced in
Sec. 15.4), and RiskSim (introduced in Sec. 22.6). All are
shareware developed by Professor Michael R. Middleton for
Excel 5, 95, 97, 98, and 2000 for Windows and Macintosh.
Documentation is included on the CD-ROM for all three
add-ins. The accompanying website is www.usfca.edu/fac-
staff/middleton. This software is shareware, so those desir-
ing to use it after the course should register and pay the
shareware fee.

As with any Excel add-in, each of these add-ins needs
to be installed in Excel before it is operational. (The same
is true for the standard Excel Solver.) Installation instruc-
tions are included in the OR Courseware for each one.

Another Excel add-in discussed extensively in Sec. 22.6
is @RISK for simulation, from Palisade Corporation. Al-
though Palisade declined to make this add-in available on
our CD-ROM, it can be downloaded from the website,
www.palisade.com, for a 10-day trial period.

MPL/CPLEX

As discussed at length in Secs. 3.7 and 4.8, MPL is a state-
of-the-art modeling language and its prime solver CPLEX
is a particularly prominent and powerful solver. The student
version of MPL and CPLEX is included in the OR Course-
ware. Although this student version is limited to much
smaller problems than the massive linear, integer, and qua-
dratic programming problems commonly solved in practice
by the full version, it still can handle up to 300 functional
constraints and 300 decision variables (including any inte-
ger variables). The system requirements for the student ver-
sion are an IBM-compatible PC with a 486 or Pentium
processor, 16 Mb of memory, 4 Mb of free hard-disk space,
and Microsoft Windows 95/98, NT (3.51 or higher), or 2000.

also point you in the right direction, including organizing
the work to be done. However, the routines do not do the
thinking for you. As in any good homework assignment, you
are allowed to make mistakes (and to learn from those mis-
takes), so that hard thinking will need to be done to try to
stay on the right path. We have been careful in designing
the division of labor between the computer and the student
to provide an efficient, complete learning process.

SPECIAL AUTOMATIC ROUTINES

Once you have learned the logic of a particular algorithm
with the help of an interactive routine, you will want to be
able to apply the algorithm quickly with an automatic rou-
tine thereafter. Such a routine is provided by one or more
of the software packages discussed below for most of the
algorithms described in this book. However, for a few al-
gorithms that are not included in these commercial pack-
ages, we have provided special automatic routines in the OR
Courseware. Like the interactive routines, these automatic
routines are implemented in Excel spreadsheets and/or Vi-
sual Basic for viewing with a recent version of Excel.

EXCEL FILES

The OR Courseware includes a separate Excel file for nearly
every chapter in this book. Each file typically includes sev-
eral spreadsheets that will help you formulate and solve the
various kinds of models described in the chapter. Two types
of spreadsheets are included. First, each time an example is
presented that can be solved using Excel, the complete
spreadsheet formulation and solution is given in that chap-
ter’s Excel file. This provides a convenient reference, or even
useful templates, when you set up spreadsheets to solve sim-
ilar problems with the Excel Solver (or the Premium Solver
discussed in the next subsection). Second, for many of the
models in the book, template files are provided that already
include all the equations necessary to solve the model. You
simply enter the data for the model and the solution is im-
mediately calculated.

EXCEL ADD-INS

Four Excel add-ins are included in OR Courseware. One is
Premium Solver for Education (Version 3.5), which is a more
powerful version of the standard Solver in Excel. It works
with Excel 5, 95, 97, and 2000 on Windows systems (but not
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ter to which they can be applied. The solutions often are dis-
played in a What’s Best spreadsheet. The CD-ROM also pro-
vides LINGO and LINDO tutorials.

MICROSOFT PROJECT

Chapter 10 (especially Sec. 10.2) describes how Microsoft
Project can be used to help construct and evaluate a project
network while using PERT/CPM. The version included in
the OR Courseware is Microsoft Project 98, which is de-
signed for use on a Windows platform. (Microsoft also mar-
kets an earlier version, Project 4, for Macintosh). The CD-
ROM includes a document READTH~1.HTM in the Project
folder with various links that provide extensive documenta-
tion of the software. The OR Courseware also includes an
MS Project folder that has the main kinds of worksheets that
Microsoft Project would generate for the prototype example
of Chapter 10.

UPDATES

The software world evolves very rapidly during the lifetime
of one edition of a textbook. We believe that the documen-
tation provided in this appendix is accurate at the time of
this writing, but changes inevitably will occur as time passes.

With each new printing of this edition, we plan to pro-
vide updated versions of the software in the OR Course-
ware whenever feasible. You can also visit the book’s web-
site, www.mhhe.com/hillier, for information about software
updates.

The CD-ROM provides an extensive MPL tutorial and
documentation, as well as MPL/CPLEX formulations and so-
lutions for virtually every example in the book to which they
can be applied. Also included in the OR Courseware is the
student version of OptiMax 2000, which enables fully inte-
grating MPL models into Excel and solving with CPLEX. In
addition, the powerful nonlinear programming solver
CONOPT is included in MPL for solving such problems.

The website for further exploring MPL and its solvers,
or for downloading updated student versions of MPL/CPLEX
is, www.maximal-usa.com.

LINGO/LINDO FILES

This book also features the popular modeling language
LINGO (see especially Appendix 3.1 and the end of Sec.
3.7) and the companion solver LINDO (see Sec. 4.8 and Ap-
pendix 4.1). Although they were not available for inclusion
in the OR Courseware, student versions of both LINGO and
LINDO (as well as the companion spreadsheet solver What’s
Best) can be downloaded from the website, www.lindo.com.
Designed for use on a Windows platform, each of these
downloads currently can handle up to 150 functional con-
straints and 300 decision variables. In the case of integer
programming or nonlinear programming, they are restricted
to 30 integer variables or 30 nonlinear variables. (Extended
versions of this software can solve vastly larger problems.)

The OR Courseware includes extensive LINGO/LINDO
files or (when LINDO is not relevant) LINGO files for many
of the chapters. Each file provides the LINGO and LINDO
models and solutions for the various examples in the chap-
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APPENDIX 2
CONVEXITY

As introduced in Chap. 13, the concept of convexity is fre-
quently used in OR work, especially in the area of nonlin-
ear programming. Therefore, we further introduce the prop-
erties of convex or concave functions and convex sets here.

CONVEX OR CONCAVE FUNCTIONS 
OF A SINGLE VARIABLE

We begin with definitions.

Definitions: A function of a single variable f(x) is
a convex function if, for each pair of values of x,
say, x� and x� (x� � x�),

f [�x� � (1 � �)x�] � �f(x�) � (1 � �) f(x�)

for all values of � such that 0 � � � 1. It is a
strictly convex function if � can be replaced by
�. It is a concave function (or a strictly concave
function) if this statement holds when � is re-
placed by 	 (or by 
).

This definition of a convex function has an enlighten-
ing geometric interpretation. Consider the graph of the func-
tion f(x) drawn as a function of x, as illustrated in Fig. A2.1
for a function f(x) that decreases for x � 1, is constant for
1 � x � 2, and increases for x 
 2. Then [x�, f(x�)] and [x�,
f(x�)] are two points on the graph of f(x), and [�x� � (1 �
�)x�, �f(x�) � (1 � �) f(x�)] represents the various points on
the line segment between these two points (but excluding
these endpoints) when 0 � � � 1. Thus, the � inequality in
the definition indicates that this line segment lies entirely
above or on the graph of the function, as in Fig. A2.1. There-
fore, f(x) is convex if, for each pair of points on the graph

of f(x), the line segment joining these two points lies en-
tirely above or on the graph of f(x).

For example, the particular choice of x� and x� shown
in Fig. A2.1 results in the entire line segment (except the
two endpoints) lying above the graph of f (x). This also oc-
curs for other choices of x� and x� where either x� � 1 or
x� 
 2 (or both). If 1 � x� � x� � 2, then the entire line
segment lies on the graph of f (x). Therefore, this f (x) is 
convex.

This geometric interpretation indicates that f(x) is con-
vex if it only “bends upward” whenever it bends at all. (This
condition is sometimes referred to as concave upward, as
opposed to concave downward for a concave function.) To
be more precise, if f(x) possesses a second derivative every-
where, then f(x) is convex if and only if d2f(x)/dx2 	 0 for
all possible values of x.

The definitions of a strictly convex function, a concave
function, and a strictly concave function also have analogous
geometric interpretations. These interpretations are summa-
rized below in terms of the second derivative of the function,
which provides a convenient test of the status of the function.

Convexity test for a function of a single variable:
Consider any function of a single variable f(x) that
possesses a second derivative at all possible values
of x. Then f(x) is

1. Convex if and only if �
d

d

2f
x
(
2
x)

� 	 0 for all possi-

ble values of x

2. Strictly convex if and only if �
d

d

2f
x
(
2
x)

� 
 0 for all

possible values of x



havior at x � 1.) Applying the definition of a concave func-
tion, we see that if 0 � x� � 1 and x� 
 1 (as shown in Fig.
A2.3), then the entire line segment joining [x�, f(x�)] and [x�,
f(x�)] lies below the graph of f(x), except for the two end-
points of the line segment. If either 0 � x� � x� � 1 or 1 �
x� � x�, then the entire line segment lies on the graph of f(x).
Therefore, f(x) is concave (but not strictly concave).

The function in Fig. A2.4 is strictly concave because its
second derivative always is less than zero.

As illustrated in Fig. A2.5, any linear function has its
second derivative equal to zero everywhere and so is both
convex and concave.

The function in Fig. A2.6 is neither convex nor concave
because as x increases, the slope fluctuates between de-

3. Concave if and only if �
d

d

2f
x
(
2
x)

� � 0 for all pos-

sible values of x

4. Strictly concave if and only if �
d

d

2f
x
(
2
x)

� � 0 for all

possible values of x

Note that a strictly convex function also is convex, but a con-
vex function is not strictly convex if the second derivative
equals zero for some values of x. Similarly, a strictly con-
cave function is concave, but the reverse need not be true.

Figures A2.1 to A2.6 show examples that illustrate these
definitions and this convexity test.

Applying this test to the function in Fig. A2.1, we see
that as x is increased, the slope (first derivative) either in-
creases (for 0 � x � 1 and x 
 2) or remains constant (for
1 � x1 � 2). Therefore, the second derivative always is non-
negative, which verifies that the function is convex. How-
ever, it is not strictly convex because the second derivative
equals zero for 1 � x � 2.

However, the function in Fig. A2.2 is strictly convex be-
cause its slope always is increasing so its second derivative
always is greater than zero.

The piecewise linear function shown in Fig. A2.3
changes its slope at x � 1. Consequently, it does not possess
a first or second derivative at this point, so the convexity test
cannot be fully applied. (The fact that the second derivative
equals zero for 0 � x � 1 and x 
 1 makes the function el-
igible to be either convex or concave, depending upon its be-
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FIGURE A2.1
A convex function.

FIGURE A2.2
A strictly convex function.



m-dimensional (Euclidean) space. By letting m � n � 1, the
points on the graph of f(x1, x2, . . . , xn) become the possi-
ble values of [x1, x2, . . . , xn, f(x1, x2, . . . , xn)]. Another
point, (x1, x2, . . . , xn, xn�1), is said to lie above, on, or be-
low the graph of f(x1, x2, . . . , xn), according to whether
xn�1 is larger, equal to, or smaller than f(x1, x2, . . . , xn),
respectively.

Definition: The line segment joining any two
points (x�1, x�2, . . . , x�m) and (x�1, x�2, . . . , x�m) is the
collection of points

(x1, x2, . . . , xm) � [�x1� � (1 � �)x�1, �x2�
� (1 � �)x�2, . . . , �x�m � (1 � �)x�m]

such that 0 � � � 1.

creasing and increasing so the second derivative fluctuates
between being negative and positive.

CONVEX OR CONCAVE FUNCTIONS 
OF SEVERAL VARIABLES

The concept of a convex or concave function of a single vari-
able also generalizes to functions of more than one variable.
Thus, if f(x) is replaced by f(x1, x2, . . . , xn), the definition
still applies if x is replaced everywhere by (x1, x2, . . . , xn).
Similarly, the corresponding geometric interpretation is still
valid after generalization of the concepts of points and line
segments. Thus, just as a particular value of (x, y) is inter-
preted as a point in two-dimensional space, each possible
value of (x1, x2, . . . , xm) may be thought of as a point in
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FIGURE A2.3
A concave function.

FIGURE A2.4
A strictly concave function.

FIGURE A2.5
A function that is both convex and
concave.

FIGURE A2.6
A function that is neither convex
nor concave.



convex if and only if its n 
 n Hessian matrix is positive
semidefinite for all possible values of (x1, x2, . . . , xn).

To illustrate the convexity test for two variables, con-
sider the function

f(x1, x2) � (x1 � x2)2 � x2
1 � 2x1x2 � x2

2.

Therefore,

(1) �
�2f(

�
x
x
1
2
1

, x2)
� �

�2f(
�
x
x
1
2
2

, x2)
� � ���

2

�
f
x
(x

1

1

�
,
x
x
2

2)
��

2

�

2(2) � (�2)2 � 0,

(2) � 2 
 0,

(3) �
�2f(

�
x
x
1
2
2

, x2)
� � 2 
 0.

Since 	 0 holds for all three conditions, f(x1, x2) is convex.
However, it is not strictly convex because the first condition
only gives � 0 rather than 
 0.

Now consider the negative of this function

g(x1, x2) � �f(x1, x2) � �(x1 � x2)2

� �x2
1 � 2x1x2 � x2

2.

In this case,

(4) �
�2g(

�
x
x
1
2
1

, x2)
� �

�2g(
�
x
x
1
2
2

, x2)
� � ���

2

�
g
x
(x
1�

1,
x2

x2)
��

2

�

�2(�2) � 22 � 0,

(5) �
�2g(

�
x
x
1
2
1

, x2)
� � �2 � 0,

(6) �
�2g(

�
x
x
1
2
2

, x2)
� � �2 � 0.

�2f(x1, x2)
��

�x2
1

Thus, a line segment in m-dimensional space is a direct
generalization of a line segment in two-dimensional space.
For example, if

(x�1, x�2) � (2, 6), (x1�, x2�) � (3, 4),

then the line segment joining them is the collection of points

(x1, x2) � [3� � 2(1 � �), 4� � 6(1 � �)],

where 0 � � � 1.

Definition: f(x1, x2, . . . , xn) is a convex function
if, for each pair of points on the graph of f(x1,
x2, . . . , xn), the line segment joining these two
points lies entirely above or on the graph of f(x1,
x2, . . . , xn). It is a strictly convex function if this
line segment actually lies entirely above this graph
except at the endpoints of the line segment. Con-
cave functions and strictly concave functions are
defined in exactly the same way, except that above
is replaced by below.

Just as the second derivative can be used (when it ex-
ists everywhere) to check whether a function of a single vari-
able is convex, so second partial derivatives can be used to
check functions of several variables, although in a more
complicated way. For example, if there are two variables and
all partial derivatives exist everywhere, then the convexity
test assesses whether all three quantities in the first column
of Table A2.1 satisfy the inequalities shown in the appro-
priate column for all possible values of (x1, x2).

When there are more than two variables, the convexity
test is a generalization of the one shown in Table A2.1. For
example, in mathematical terminology, f(x1, x2, . . . , xn) is
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TABLE A2.1 Convexity test for a function of two variables

Strictly Strictly
Quantity Convex Convex Concave Concave

�
�2f(

�
x
x
1
2
1

, x2)
� �

�2f(
�
x
x
1
2
2

, x2)
� � ���

2

�
f
x
(x

1

1

�
,
x2

x2)
��

2
	 0 
 0 	 0 
 0

�
�2f (

�
x
x
1
2
1

, x2)
� 	 0 
 0 � 0 � 0

�
�2f(

�
x
x
1
2
2

, x2)
� 	 0 
 0 � 0 � 0

Values of (x1, x2) All possible values



g(x1, x2) � �x4
1 � 3x2

1 � 5x1 � 2x1x2 � x2
2,

is a concave function.

CONVEX SETS

The concept of a convex function leads quite naturally to
the related concept of a convex set. Thus, if f(x1, x2, . . . ,
xn) is a convex function, then the collection of points that
lie above or on the graph of f(x1, x2, . . . , xn) forms a con-
vex set. Similarly, the collection of points that lie below or
on the graph of a concave function is a convex set. These
cases are illustrated in Figs. A2.7 and A2.8 for the case of
a single independent variable. Furthermore, convex sets have
the important property that, for any given group of convex
sets, the collection of points that lie in all of them (i.e., the
intersection of these convex sets) is also a convex set. There-
fore, the collection of points that lie both above or on a con-
vex function and below or on a concave function is a con-
vex set, as illustrated in Fig. A2.9. Thus, convex sets may
be viewed intuitively as a collection of points whose bottom
boundary is a convex function and whose top boundary is a
concave function.

Although describing convex sets in terms of convex and
concave functions may be helpful for developing intuition
about their nature, their actual definition has nothing to do
(directly) with such functions.

Definition: A convex set is a collection of points
such that, for each pair of points in the collection,
the entire line segment joining these two points is
also in the collection.

Because 	 0 holds for the first condition and � 0 holds for
the other two, g(x1, x2) is a concave function. However, it is
not strictly concave since the first condition gives � 0.

Thus far, convexity has been treated as a general prop-
erty of a function. However, many nonconvex functions do
satisfy the conditions for convexity over certain intervals for
the respective variables. Therefore, it is meaningful to talk
about a function being convex over a certain region. For ex-
ample, a function is said to be convex within a neighbor-
hood of a specified point if its second derivative or partial
derivatives satisfy the conditions for convexity at that point.
This concept is useful in Appendix 3.

Finally, two particularly important properties of convex
or concave functions should be mentioned. First, if f(x1,
x2, . . . , xn) is a convex function, then g(x1, x2, . . . , xn) �
�f(x1, x2, . . . , xn) is a concave function, and vice versa, as
illustrated by the above example where f(x1, x2) � (x1 �
x2)2. Second, the sum of convex functions is a convex func-
tion, and the sum of concave functions is a concave func-
tion. To illustrate,

f1(x1) � x4
1 � 2x2

1 � 5x1

and

f2(x1, x2) � x2
1 � 2x1x2 � x2

2

are both convex functions, as you can verify by calculating
their second derivatives. Therefore, the sum of these functions

f(x1, x2) � x4
1 � 3x2

1 � 5x1 � 2x1x2 � x2
2

is a convex function, whereas its negative
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FIGURE A2.7
Example of a convex set
determined by a convex function.

FIGURE A2.8
Example of a convex set
determined by a concave function.

FIGURE A2.9
Example of a convex set
determined by both convex
and concave functions.



Definition: An extreme point of a convex set is a
point in the set that does not lie on any line seg-
ment that joins two other points in the set.

Thus, the extreme points of the convex set in Fig. A2.11
are (0, 0), (0, 2), (1, 2), (2, 1), (1, 0), and all the infinite
number of points on the boundary between (2, 1) and (1, 0).
If this particular boundary were a line segment instead, then
the set would have only the five listed extreme points.

The distinction between nonconvex sets and convex sets
is illustrated in Figs. A2.10 and A2.11. Thus, the set of points
shown in Fig. A2.10 is not a convex set because there exist
many pairs of these points, for example, (1, 2) and (2, 1),
such that the line segment between them does not lie en-
tirely within the set. This is not the case for the set in Fig.
A2.11, which is convex.

In conclusion, we introduce the useful concept of an ex-
treme point of a convex set.
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FIGURE A2.10
Example of a set that is not convex.

FIGURE A2.11
Example of a convex set.
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APPENDIX 3
CLASSICAL OPTIMIZATION
METHODS

This appendix reviews the classical methods of calculus for
finding a solution that maximizes or minimizes (1) a func-
tion of a single variable, (2) a function of several variables,
and (3) a function of several variables subject to equality
constraints on the values of these variables. It is assumed
that the functions considered possess continuous first and
second derivatives and partial derivatives everywhere. Some
of the concepts discussed next have been introduced briefly
in Secs. 13.2 and 13.3.

UNCONSTRAINED OPTIMIZATION OF A
FUNCTION OF A SINGLE VARIABLE

Consider a function of a single variable, such as that shown
in Fig. A3.1. A necessary condition for a particular solution
x � x* to be either a minimum or a maximum is that

�
df

d
(
x
x)
� � 0 at x � x*.

Thus, in Fig. A3.1 there are five solutions satisfying these
conditions. To obtain more information about these five crit-
ical points, it is necessary to examine the second derivative.
Thus, if

�
d

d

2f
x
(
2
x)

� � 0 at x � x*,

then x* must be at least a local minimum [that is, f(x*) �
f(x) for all x sufficiently close to x*]. Using the language in-

troduced in Appendix 2, we can say that x* must be a local
minimum if f(x) is strictly convex within a neighborhood of
x*. Similarly, a sufficient condition for x* to be a local max-
imum (given that it satisfies the necessary condition) is that
f(x) be strictly concave within a neighborhood of x* (that
is, the second derivative is negative at x*). If the second de-
rivative is zero, the issue is not resolved (the point may even
be an inflection point), and it is necessary to examine higher
derivatives.

To find a global minimum [i.e., a solution x* such that
f(x*) � f(x) for all x], it is necessary to compare the local
minima and identify the one that yields the smallest value
of f(x). If this value is less than f(x) as x � �� and as 
x � �� (or at the endpoints of the function, if it is defined
only over a finite interval), then this point is a global mini-
mum. Such a point is shown in Fig. A3.1, along with the
global maximum, which is identified in an analogous way.

However, if f(x) is known to be either a convex or a
concave function (see Appendix 2 for a description of such
functions), the analysis becomes much simpler. In particu-
lar, if f(x) is a convex function, such as the one shown in
Fig. A2.1, then any solution x* such that

�
df

d
(
x
x)
� � 0 at x � x*

is known automatically to be a global minimum. In other
words, this condition is not only a necessary but also a suf-
ficient condition for a global minimum of a convex func-



global minimum and maximum would be found by compar-
ing the local minima and maxima and then checking the
value of the function as some of the variables approach ��
or ��. However, if the function is known to be convex or
concave, then a critical point must be a global minimum or
a global maximum, respectively.

CONSTRAINED OPTIMIZATION WITH
EQUALITY CONSTRAINTS

Now consider the problem of finding the minimum or max-
imum of the function f(x), subject to the restriction that x
must satisfy all the equations

g1(x) � b1

g2(x) � b2

�

gm(x) � bm,

where m � n. For example, if n � 2 and m � 1, the prob-
lem might be

Maximize f(x1, x2) � x2
1 � 2x2,

subject to

g(x1, x2) � x2
1 � x2

2 � 1.

In this case, (x1, x2) is restricted to be on the circle of ra-
dius 1, whose center is at the origin, so that the goal is to
find the point on this circle that yields the largest value of
f(x1, x2). This example will be solved after a general ap-
proach to the problem is outlined.

tion. This solution need not be unique, since there could be
a tie for the global minimum over a single interval where
the derivative is zero. On the other hand, if f(x) actually is
strictly convex, then this solution must be the only global
minimum. (However, if the function is either always de-
creasing or always increasing, so the derivative is nonzero
for all values of x, then there will be no global minimum at
a finite value of x.)

Similarly, if f(x) is a concave function, then having

�
df

d
(
x
x)
� � 0 at x � x*

becomes both a necessary and sufficient condition for x* to
be a global maximum.

UNCONSTRAINED OPTIMIZATION OF A
FUNCTION OF SEVERAL VARIABLES

The analysis for an unconstrained function of several vari-
ables f(x), where x � (x1, x2, . . . , xn), is similar. Thus, a
necessary condition for a solution x � x* to be either a min-
imum or a maximum is that

�
	
	
f(
x
x
j

)
� � 0 at x � x*, for j � 1, 2, . . . , n.

After the critical points that satisfy this condition are iden-
tified, each such point is then classified as a local minimum
or maximum if the function is strictly convex or strictly con-
cave, respectively, within a neighborhood of the point. (Ad-
ditional analysis is required if the function is neither.) The
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FIGURE A3.1
A function having several
maxima and minima. x
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so that

�
	
	
x
h
1

� � 2x1 � 2
x1 � 0,

�
	
	
x
h
2

� � 2 � 2
x2 � 0,

�
	
	


h
� � �(x2

1 � x2
2 � 1) � 0.

The first equation implies that either 
 � 1 or x1 � 0. If 

 � 1, then the other two equations imply that x2 � 1 and
x1 � 0. If x1 � 0, then the third equation implies that 
x2 � �1. Therefore, the two critical points for the original
problem are (x1, x2) � (0, 1) and (0, �1). Thus, it is appar-
ent that these points are the global maximum and minimum,
respectively.

THE DERIVATIVE OF A DEFINITE INTEGRAL

In presenting the classical optimization methods just de-
scribed, we have assumed that you are already familiar with
derivatives and how to obtain them. However, there is a spe-
cial case of importance in OR work that warrants additional
explanation, namely, the derivative of a definite integral. In
particular, consider how to find the derivative of the function

F(y) � �h(y)

g(y)
f(x, y) dx,

where g(y) and h(y) are the limits of integration expressed
as functions of y.

To begin, suppose that these limits of integration are
constants, so that g(y) � a and h(y) � b, respectively. For
this special case, it can be shown that, given the regularity
conditions assumed at the beginning of this appendix, the
derivative is

�
d
d
y
� �b

a
f(x, y) dx � �b

a
�
	f(

	
x
y
, y)
� dx.

For example, if f(x, y) � e�xy, a � 0, and b � �, then

�
d
d
y
� ��

0
e�xy dx � ��

0
(�x)e�xy dx � ��

y
1
2�

at any positive value of y. Thus, the intuitive procedure of
interchanging the order of differentiation and integration is
valid for this case.

A classical method of dealing with this problem is the
method of Lagrange multipliers. This procedure begins by
formulating the Lagrangian function

h(x, �) � f(x) � �
m

i�1

i[gi(x) � bi],

where the new variables � � (
1, 
2, . . . , 
m) are called
Lagrange multipliers. Notice the key fact that for the feasi-
ble values of x,

gi(x) � bi � 0, for all i,

so h(x, �) � f(x). Therefore, it can be shown that if (x, �) �
(x*, �*) is a local or global minimum or maximum for the
unconstrained function h(x, �), then x* is a corresponding
critical point for the original problem. As a result, the
method now reduces to analyzing h(x, �) by the procedure
just described for unconstrained optimization. Thus, the 
n � m partial derivatives would be set equal to zero

�
	
	
x
h
j

� � �
	
	
x
f
j

� � �
m

i�1

i �

	
	
g
xj

i� � 0, for j � 1, 2, . . . , n,

�
	
	


h

i
� � �gi(x) � bi � 0, for i � 1, 2, . . . , m,

and then the critical points would be obtained by solving
these equations for (x, �). Notice that the last m equations
are equivalent to the constraints in the original problem, so
only feasible solutions are considered. After further analy-
sis to identify the global minimum or maximum of h( � ), the
resulting value of x is then the desired solution to the orig-
inal problem.

From a practical computational viewpoint, the method
of Lagrange multipliers is not a particularly powerful pro-
cedure. It is often essentially impossible to solve the equa-
tions to obtain the critical points. Furthermore, even when
the points can be obtained, the number of critical points may
be so large (often infinite) that it is impractical to attempt
to identify a global minimum or maximum. However, for
certain types of small problems, this method can sometimes
be used successfully.

To illustrate, consider the example introduced earlier. In
this case,

h(x1, x2) � x2
1 � 2x2 � 
(x2

1 � x2
2 � 1),
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f(g(y), y). To illustrate, if f(x, y) � x2y3, g(y) � y, and 
h(y) � 2y, then

�
d
d
y
� �2y

y
x2y3 dx � �2y

y
3x2y2 dx � (2y)2y3(2) � y2y3(1)

� 14y5

at any positive value of y.

However, finding the derivative becomes a little more
complicated than this when the limits of integration are func-
tions. In particular,

�
d
d
y
� �h(y)

g(y)
f(x, y) dx � �h(y)

g(y)
�
	f(

	
x
y
, y)
� dx �

f(h(y), y) �
dh

d
(
y
y)
� � f(g(y), y) �

dg
d
(
y
y)
�,

where f(h(y), y) is obtained by writing out f(x, y) and then
replacing x by h(y) wherever it appears, and similarly for
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APPENDIX 4
MATRICES AND MATRIX
OPERATIONS

A matrix is a rectangular array of numbers. For example,

A �

is a 3 � 2 matrix (where 3 � 2 is said “3 by 2”) because it
is a rectangular array of numbers with three rows and two
columns. (Matrices are denoted in this book by boldface
capital letters.) The numbers in the rectangular array are
called the elements of the matrix. For example,

B � � �
is a 2 � 4 matrix whose elements are 1, 2.4, 0, �3�, �4, 2,
�1, and 15. Thus, in more general terms,

A � � aij

is an m � n matrix, where a11, . . . , amn represent the num-
bers that are the elements of this matrix; aij is shorthand
notation for identifying the matrix whose element in row i
and column j is aij for every i � 1, 2, . . . , m and j � 1,
2, . . . , n.

MATRIX OPERATIONS

Because matrices do not possess a numerical value, they
cannot be added, multiplied, and so on as if they were in-
dividual numbers. However, it is sometimes desirable to
perform certain manipulations on arrays of numbers. There-








a1n

a2n

amn

���

���

���

a12

a22

am2

a11

a21

am1








�3�
15

0

�1

2.4

2

1

�4







5

0

1

2

3

1







fore, rules have been developed for performing operations
on matrices that are analogous to arithmetic operations. To
describe these, let A � aij and B � bij be two ma-
trices having the same number of rows and the same num-
ber of columns. (We shall change this restriction on the size
of A and B later when discussing matrix multiplication.)

Matrices A and B are said to be equal (A � B) if and
only if all the corresponding elements are equal (aij � bij

for all i and j ).
The operation of multiplying a matrix by a number (de-

note this number by k) is performed by multiplying each el-
ement of the matrix by k, so that

kA � kaij.

For example,

3� � � � �.

To add two matrices A and B, simply add the correspond-
ing elements, so that

A � B � aij � bij.

To illustrate,

� � � � � � � �.

Similarly, subtraction is done as follows:

A � B � A � (�1)B,

so that

A � B � aij � bij.

3

7

7

4

0

1

2

3

3

6

5

1

6

�9

1

0

3

15

2

�3

�
1
3

�

0

1

5

������������������������



Even when both AB and BA are defined,

AB � BA

in general. Thus, matrix multiplication should be viewed as
a specially designed operation whose properties are quite
different from those of arithmetic multiplication. To under-
stand why this special definition was adopted, consider the
following system of equations:

2x1 � x2 � 5x3 � x4 � 20
x1 � 5x2 � 4x3 � 5x4 � 30

3x1 � x2 � 6x3 � 2x4 � 20.

Rather than write out these equations as shown here, they
can be written much more concisely in matrix form as

Ax � b,

where

A � , x � , b � .

It is this kind of multiplication for which matrix multipli-
cation is designed.

Carefully note that matrix division is not defined.
Although the matrix operations described here do not

possess certain of the properties of arithmetic operations,
they do satisfy these laws

A � B � B � A,
(A � B) � C � A � (B � C),

A(B � C) � AB � AC,
A(BC) � (AB)C,

when the relative sizes of these matrices are such that the
indicated operations are defined.

Another type of matrix operation, which has no arith-
metic analog, is the transpose operation. This operation in-
volves nothing more than interchanging the rows and
columns of the matrix, which is frequently useful for per-
forming the multiplication operation in the desired way.
Thus, for any matrix A � aij, its transpose AT is

AT � aji.







20

30

20














x1

x2

x3

x4














1

5

2

5

4

�6

�1

5

1

2

1

3







For example,

� � � � � � � �.

Note that, with the exception of multiplication by a
number, all the preceding operations are defined only when
the two matrices involved are the same size. However, all of
these operations are straightforward because they involve
performing only the same comparison or arithmetic opera-
tion on the corresponding elements of the matrices.

There exists one additional elementary operation that has
not been defined—matrix multiplication—but it is consider-
ably more complicated. To find the element in row i, column
j of the matrix resulting from multiplying matrix A times ma-
trix B, it is necessary to multiply each element in row i of A
by the corresponding element in column j of B and then to add
these products. To do this element-by-element multiplication,
we need the following restriction on the sizes of A and B:

Matrix multiplication AB is defined if and only if the
number of columns of A equals the number of rows of B.

Thus, if A is an m � n matrix and B is an n � s matrix, then
their product is

AB � �
n

k�1
aikbkj,

where this product is an m � s matrix. However, if A is an
m � n matrix and B is an r � s matrix, where n � r, then
AB is not defined.

To illustrate matrix multiplication,

� � �

� .

On the other hand, if one attempts to multiply these matri-
ces in the reverse order, the resulting product

� �
is not even defined.







2

0
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4

2





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1

5
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2


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4

17
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12
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


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







1(1) � 2(5)

4(1) � 0(5)

2(1) � 3(5)

1(3) � 2(2)

4(3) � 0(2)

2(3) � 3(2)







1

5

3

2







2

0

3

1
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

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3
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On certain occasions, it is useful to partition a matrix
into several smaller matrices, called submatrices. For ex-
ample, one possible way of partitioning a 3 � 4 matrix
would be

A � � � �,

where

A12 � [a12, a13, a14], A21 � � �,

A22 � � �
all are submatrices. Rather than perform operations element
by element on such partitioned matrices, we can do them in
terms of the submatrices, provided the partitionings are such
that the operations are defined. For example, if B is a par-
titioned 4 � 1 matrix such that

B � � � �,

then

AB � ��Aa1

2

1

1

b
b

1

1

�
�

A
A

1

2

2

2

B
B

2

2
��.

VECTORS

A special kind of matrix that plays an important role in ma-
trix theory is the kind that has either a single row or a sin-
gle column. Such matrices are often referred to as vectors.
Thus,

x � [x1, x2, . . . , xn]

is a row vector, and

x �

is a column vector. (Vectors are denoted in this book by
boldface lowercase letters.) These vectors also are some-








x1

x2

�

xn








b1

B2








b1

b2

b3

b4








a24

a34

a23

a33

a22

a32

a21

a31

A12

A22

a11

A21




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a34

a13
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a33

a12

a22

a32

a11

a21

a31







For example, if

A � ,

then

AT � � �.

SPECIAL KINDS OF MATRICES

In arithmetic, 0 and 1 play a special role. There also exist
special matrices that play a similar role in matrix theory. In
particular, the matrix that is analogous to 1 is the identity
matrix I, which is a square matrix whose elements are 0s
except for 1s along the main diagonal. Thus,

I �

The number of rows or columns of I can be specified as de-
sired. The analogy of I to 1 follows from the fact that for
any matrix A,

IA � A � AI,

where I is assigned the appropriate number of rows and
columns in each case for the multiplication operation to be
defined.

Similarly, the matrix that is analogous to 0 is the null
matrix 0, which is a matrix of any size whose elements are
all 0s. Thus,

0 �

Therefore, for any matrix A,

A � 0 � A, A � A � 0, and
0A � 0 � A0,

where 0 is the appropriate size in each case for the opera-
tions to be defined.
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Thus, x1, x2, x3 can be interpreted as being linearly depen-
dent because one of them is a linear combination of the oth-
ers. However, if x3 were changed to

x3 � [2, 5, 6]

instead, then x1, x2, x3 would be linearly independent be-
cause it is impossible to express one of these vectors (say,
x3) as a linear combination of the other two.

Definition: The rank of a set of vectors is the
largest number of linearly independent vectors that
can be chosen from the set.

Continuing the preceding example, we see that the rank
of the set of vectors x1, x2, x3 was 2 (any pair of the vec-
tors is linearly independent), but it became 3 after x3 was
changed.

Definition: A basis for a set of vectors is a col-
lection of linearly independent vectors taken from
the set such that every vector in the set is a linear
combination of the vectors in the collection (i.e.,
every vector in the set equals the sum of certain
multiples of the vectors in the collection).

To illustrate, any pair of the vectors (say, x1 and x2) con-
stituted a basis for x1, x2, x3 in the preceding example be-
fore x3 was changed. After x3 is changed, the basis becomes
all three vectors.

The following theorem relates the last two definitions.

Theorem A4.1: A collection of r linearly indepen-
dent vectors chosen from a set of vectors is a ba-
sis for the set if and only if the set has rank r.

SOME PROPERTIES OF MATRICES

Given the preceding results regarding vectors, it is now possi-
ble to present certain important concepts regarding matrices.

Definition: The row rank of a matrix is the rank
of its set of row vectors. The column rank of a
matrix is the rank of its column vectors.

For example, if matrix A is

A � ,
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
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times called n-vectors to indicate that they have n elements.
For example,

x � [1, 4, �2, �
1
3

�, 7]

is a 5-vector.
A null vector 0 is either a row vector or a column vec-

tor whose elements are all 0s, that is,

0 � [0, 0, . . . , 0] or 0 � .

(Although the same symbol 0 is used for either kind of null
vector, as well as for a null matrix, the context normally will
identify which it is.)

One reason vectors play an important role in matrix the-
ory is that any m � n matrix can be partitioned into either
m row vectors or n column vectors, and important proper-
ties of the matrix can be analyzed in terms of these vectors.
To amplify, consider a set of n-vectors x1, x2, . . . , xm of
the same type (i.e., they are either all row vectors or all col-
umn vectors).

Definition: A set of vectors x1, x2, . . . , xm is said
to be linearly dependent if there exist m numbers
(denoted by c1, c2, . . . , cm), some of which are not
zero, such that

c1x1 � c2x2 � ��� � cmxm � 0.

Otherwise, the set is said to be linearly independent.

To illustrate, if m � 3 and

x1 � [1, 1, 1], x2 � [0, 1, 1], x3 � [2, 5, 5],

then there exist three numbers, namely, c1 � 2, c2 � 3, and
c3 � �1, such that

2x1 � 3x2 � x3 � [2, 2, 2] � [0, 3, 3] � [2, 5, 5]
� [0, 0, 0],

so, x1, x2, x3 are linearly dependent. Note that showing they
are linearly dependent required finding three particular num-
bers (c1, c2, c3) that make c1x1 � c2x2 � c3x3 � 0, which is
not always easy. Also note that this equation implies that

x3 � 2x1 � 3x2.
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Thus, only square matrices can be nonsingular. A use-
ful way of testing for nonsingularity is provided by the fact
that a square matrix is nonsingular if and only if its deter-
minant is nonzero.

Theorem A4.3: (a) If A is nonsingular, there is a
unique nonsingular matrix
A�1, called the inverse of A,
such that AA�1 � I � A�1A.

(b) If A is nonsingular and B is a
matrix for which either AB �
I or BA � I, then B � A�1.

(c) Only nonsingular matrices
have inverses.

To illustrate matrix inverses, consider the matrix

A � � �.

Notice that A is nonsingular since its determinant, 5(�1) �
1(�4) � �1, is nonzero. Therefore, A must have an inverse,
which happens to be

A�1 � � �.

Hence,

AA�1 � � � � � � � �,

and

A�1A � � � � � � � �.
0
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1

0
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5

1
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1

1
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1

1

0
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1

1

�4

�1

5

1
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�5

1

1

�4

�1

5

1

then the preceding example of linearly dependent vectors
shows that the row rank of A is 2. The column rank of A is
also 2. (The first two column vectors are linearly indepen-
dent but the second column vector minus the third equals
0.) Having the same column rank and row rank is no coin-
cidence, as the following general theorem indicates.

Theorem A4.2: The row rank and column rank of
a matrix are equal.

Thus, it is only necessary to speak of the rank of a matrix.
The final concept to be discussed is the inverse of a

matrix. For any nonzero number k, there exists a recipro-
cal or inverse k�1 � 1/k such that

kk�1 � 1 � k�1k.

Is there an analogous concept that is valid in matrix theory?
In other words, for a given matrix A other than the null ma-
trix, does there exist a matrix A�1 such that

AA�1 � I � A�1A?

If A is not a square matrix (i.e., if the number of rows and
the number of columns of A differ), the answer is never, be-
cause these matrix products would necessarily have a dif-
ferent number of rows for the multiplication to be defined
(so that the equality operation would not be defined). How-
ever, if A is square, then the answer is under certain cir-
cumstances, as described by the following definition and
Theorem A4.3.

Definition: A matrix is nonsingular if its rank
equals both the number of rows and the number of
columns. Otherwise, it is singular.
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APPENDIX 5
TABLES

TABLE A5.1 Areas under the normal curve from K� to �

P{standard normal � K�} � ��

K�

e�x2/2 dx � �

K� .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121

0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867

0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681

1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233

2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
2.3 .0107 .0104 .0102 .00990 .00964 .00939 .00914 .00889 .00866 .00842
2.4 .00820 .00798 .00776 .00755 .00734 .00714 .00695 .00676 .00657 .00639

2.5 .00621 .00604 .00587 .00570 .00554 .00539 .00523 .00508 .00494 .00480
2.6 .00466 .00453 .00440 .00427 .00415 .00402 .00391 .00379 .00368 .00357
2.7 .00347 .00336 .00326 .00317 .00307 .00298 .00289 .00280 .00272 .00264
2.8 .00256 .00248 .00240 .00233 .00226 .00219 .00212 .00205 .00199 .00193
2.9 .00187 .00181 .00175 .00169 .00164 .00159 .00154 .00149 .00144 .00139

1
�
�2��



TABLE A5.2 100 � percentage points of Student’s t distribution

P{Student’s t with v Degrees of Freedom � Tabled Value} � �

�
v 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

1 0.325 1.000 3.078 6.314 12.706 31.821 63.657 127.32 318.31 636.62
2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 14.089 22.327 31.598
3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 7.453 10.214 12.924
4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610

5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869
6 0.265 0.718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 0.263 0.711 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408
8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587
11 0.260 0.697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140

15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073
16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883

20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850
21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 0.256 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745

25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725
26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 0.256 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659

30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
40 0.255 0.681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460

120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373
� 0.253 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

Source: Table 12 of Biometrika Tables for Statisticians, vol. I, 3d ed., 1966, by permission of the Bio-
metrika Trustees.

K� .0 .1 .2 .3 .4 .5 .6 .7 .8 .9

3 .00135 .03968 .03687 .03483 .03337 .03233 .03159 .03108 .04723 .04481
4 .04317 .04207 .04133 .05854 .05541 .05340 .05211 .05130 .06793 .06479
5 .06287 .06170 .07996 .07579 .07333 .07190 .07107 .08599 .08332 .08182
6 .09987 .09530 .09282 .09149 .010777 .010402 .010206 .010104 .011523 .011260

Source: F. E. Croxton, Tables of Areas in Two Tails and in One Tail of the Normal Curve. Copyright
1949 by Prentice-Hall, Inc., Englewood Cliffs, NJ.
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PARTIAL ANSWERS TO
SELECTED PROBLEMS

CHAPTER 3

3.1-1. (a)

3.1-4. (x1, x2) � (13, 5); Z � 31.

3.1-11. (b) (x1, x2, x3) � (26.19, 54.76, 20); Z � 2,904.76.

3.2-3. (b) Maximize Z � 4,500x1 � 4,500x2,

subject to

x1 � 1
x2 � 1

5,000x1 � 4,000x2 � 6,000
400x1 � 500x2 � 600

and

x1 � 0, x2 � 0.

3.4-1. (a) Proportionality: OK since it is implied that a fixed fraction of the radiation dosage at a
given entry point is absorbed by a given area.

Additivity: OK since it is stated that the radiation absorption from multiple beams is ad-
ditive.

Divisibility: OK since beam strength can be any fractional level.

x1

2

1

0 1 2 3 4 5 6

x2



Certainty: Due to the complicated analysis required to estimate the data on radiation ab-
sorption in different tissue types, there is considerable uncertainty about the
data, so sensitivity analysis should be used.

3.4-11. (b) From Factory 1, ship 200 units to Customer 2 and 200 units to Customer 3.
From Factory 2, ship 300 units to Customer 1 and 200 units to Customer 3.

3.4-13. (c) Z � $152,880; A1 � 60,000; A3 � 84,000; D5 � 117,600. All other decision variables
are 0.

3.4-16. (b) Each optimal solution has Z � $13,330.

3.6-1. (c, e)
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3.6-4. (a) Minimize Z � 84C � 72T � 60A,

subject to

90C � 20T � 40A � 200
30C � 80T � 60A � 180
10C � 20T � 60A � 150

and

C � 0, T � 0, A � 0.

CHAPTER 4

4.1-1. (a) The corner-point solutions that are feasible are (0, 0), (0, 1), (�
1
4

�, 1), (�
2
3

�, �
2
3

�), (1, �
1
4

�), and
(1, 0).

4.3-4. (x1, x2, x3) � (0, 10, 6�
2
3

�); Z � 70.

4.6-1. (a, c) (x1, x2) � (2, 1); Z � 7.

4.6-4. (a, c, e) (x1, x2, x3) � (�
4
5

�, �
9
5

�, 0); Z � 7.

4.6-10. (a, b, d) (x1, x2, x3) � (0, 15, 15); Z � 90.
(c) For both the Big M method and the two-phase method, only the final tableau represents a fea-

sible solution for the real problem.

4.6-15. (a, c) (x1, x2) � (��
8
7

�, �
1
7
8
�); Z � �

8
7
0
�.

4.7-6. (a) (x1, x2, x3) � (0, 1, 3); Z � 7.
(b) y1* � �

1
2

�, y2* � �
5
2

�, y3* � 0. These are the marginal values of resources 1, 2, and 3, respectively.

Resource Usage per Unit
of Each Activity

Resource
Resource Activity 1 Activity 2 Totals Available

1 2 1 10 � 10
2 3 3 20 � 20
3 2 4 20 � 20

Unit Profit 20 30 $166.67
Solution 3.333 3.333



CHAPTER 5

5.1-1. (a) (x1, x2) � (2, 2) is optimal. Other CPF solutions are (0, 0), (3, 0), and (0, 3).

5.1-14. (x1, x2, x3) � (0, 15, 15) is optimal.

5.2-2. (x1, x2, x3, x4, x5) � (0, 5, 0, �
5
2

�, 0); Z � 50.

5.3-1. (a) Right side is Z � 8, x2 � 14, x6 � 5, x3 � 11.
(b) x1 � 0, 2x1 � 2x2 � 3x3 � 5, x1 � x2 � x3 � 3.

CHAPTER 6

6.1-2. (a) Minimize W � 15y1 � 12y2 � 45y3,

subject to

�y1 � y2 � 5y3 � 10
2y1 � y2 � 3y3 � 20

and

y1 � 0, y2 � 0, y3 � 0.

6.3-1. (c)

1178 PARTIAL ANSWERS TO SELECTED PROBLEMS

6.3-7. (c) Basic variables are x1 and x2. The other variables are nonbasic.
(e) x1 � 3x2 � 2x3 � 3x4 � x5 � 6, 4x1 � 6x2 � 5x3 � 7x4 � x5 � 15, x3 � 0, x4 � 0, x5 � 0. Op-

timal CPF solution is (x1, x2, x3, x4, x5) � (�
3
2

�, �
3
2

�, 0, 0, 0).

6.4-3. Maximize W � 8y1 � 6y2,

subject to

y1 � 3y2 � 2
4y1 � 2y2 � 3
2y1 � 2y2 � 1

and

y1 � 0, y2 � 0.

Complementary Basic Solutions

Primal Problem Dual Problem

Basic Solution Feasible? Z � W Feasible? Basic Solution

(0, 0, 20, 10) Yes 0 No (0, 0, �6, �8)

(4, 0, 0, 6) Yes 24 No �1�
1
5

�, 0, 0, �5�
3
5

��
(0, 5, 10, 0) Yes 40 No (0, 4, �2, 0)

�2�
1
2

�, 3�
3
4

�, 0, 0� Yes and optimal 45 Yes and optimal ��
1
2

�, 3�
1
2

�, 0, 0�
(10, 0, �30, 0) No 60 Yes (0, 6, 0, 4)
(0, 10, 0, �10) No 80 Yes (4, 0, 14, 0)
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6.7-2. �10 � � � �
1
9
0
�

6.7-16. (a) b1 � 2, 6 � b2 � 18, 12 � b3 � 24
(b) 0 � c1 � �

1
2
5
�, c2 � 2

CHAPTER 7

7.1-2. (x1, x2, x3) � (�
2
3

�, 2, 0) with Z � �
2
3
2
� is optimal.

7.1-6.
Part New Optimal Solution Value of Z

(a) (x1, x2, x3, x4, x5) � (0, 0, 9, 3, 0) 117
(b) (x1, x2, x3, x4, x5) � (0, 5, 5, 0, 0) 90

New Basic Solution
Part (x1, x2, x3, x4, x5) Feasible? Optimal?

(a) (0, 30, 0, 0, �30) No No
(b) (0, 20, 0, 0, �10) No No
(c) (0, 10, 0, 0, 60) Yes Yes
(d) (0, 20, 0, 0, 10) Yes Yes
(e) (0, 20, 0, 0, 10) Yes Yes
(f) (0, 10, 0, 0, 40) Yes No
(g) (0, 20, 0, 0, 10) Yes Yes
(h) (0, 20, 0, 0, 10, x6 � �10) No No
(i) (0, 20, 0, 0, 0) Yes Yes

Range of � Optimal Solution Z(�)

0 � � � 2 (x1, x2) � (0, 5) 120 � 10�

2 � � � 8 (x1, x2) � ��
1
3
0
�, �

1
3
0
�� �

320 �
3

10�
�

8 � � (x1, x2) � (5, 0) 40 � 5�

6.4-8. (a) Minimize W � 120y1 � 80y2 � 100y3,

subject to

3y1 � y2 � 3y3 � �1
3y1 � y2 � y3 � �2

y1 � 4y2 � 2y3 � �1

and

y1 � 0, y2 � 0, y3 � 0.

6.6-1. (d) Not optimal, since 2y1 � 3y2 � 3 is violated for y1* � �
1
5

�, y2* � �
3
5

�.
(f) Not optimal, since 3y1 � 2y2 � 2 is violated for y1* � �

1
5

�, y2* � �
3
5

�.

6.7-1.

7.2-1. (a, b)



Destination

Today Tomorrow Dummy Supply

Dick 3.0 2.7 0 5
Source

Harry 2.9 2.8 0 4

Demand 3.0 4.0 2
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7.3-3. (x1, x2, x3) � (1, 3, 1) with Z � 8 is optimal.

7.5-6. (x1, x2) � (15, 0) is optimal.

CHAPTER 8

8.1-2. (b)

Optimal Solution

Range of � x1 x2 Z(�)

0 � � � 1 10 � 2� 10 � 2� 30 � 6�
1 � � � 5 10 � 2� 15 � 3� 35 � �
5 � � � 25 25 � � 0 50 � 2�

Task

Backstroke Breaststroke Butterfly Freestyle Dummy

Carl 37.7 43.4 33.3 29.2 0
Chris 32.9 33.1 28.5 26.4 0

Assignee David 33.8 42.2 38.9 29.6 0
Tony 37.0 34.7 30.4 28.5 0
Ken 35.4 41.8 33.6 31.1 0

7.2-4.

8.2-2. (a) Basic variables: x11 � 4, x12 � 0, x22 � 4, x23 � 2, x24 � 0, x34 � 5, x35 � 1, x45 � 0; 
Z � 53.

(b) Basic variables: x11 � 4, x23 � 2, x25 � 4, x31 � 0, x32 � 0, x34 � 5, x35 � 1, x42 � 4; Z � 45.
(c) Basic variables: x11 � 4, x23 � 2, x25 � 4, x32 � 0, x34 � 5, x35 � 1, x41 � 0, x42 � 4; Z � 45.

8.2-8. (a) x11 � 3, x12 � 2, x22 � 1, x23 � 1, x33 � 1, x34 � 2; three iterations to reach optimality.
(b, c) x11 � 3, x12 � 0, x13 � 0, x14 � 2, x23 � 2, x32 � 3; already optimal.

8.2-11. x11 � 10, x12 � 15, x22 � 0, x23 � 5, x25 � 30, x33 � 20, x34 � 10, x44 � 10; cost �
$77.30. Also have other tied optimal solutions.

8.2-12. (b) Let xij be the shipment from plant i to distribution center j. Then x13 � 2, x14 � 10,
x22 � 9, x23 � 8, x31 � 10, x32 � 1; cost � $20,200.

8.3-4. (a)



CHAPTER 9

9.3-3. (a) O � A � B � D � T or O � A � B � E � D � T, with length � 16.

9.4-1. (a) {(O, A); (A, B); (B, C ); (B, E); (E, D); (D, T)}, with length � 18.

9.5-1. (a)
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CHAPTER 10

10.2-2. Since activities D, E, J, and K are not immediate predecessors of any other activities, the
corresponding nodes have arcs leading directly to the Finish node.

10.3-4. (b) Ken will be able to meet his deadline if no delays occur.
(c) Critical paths: Start � B � E � J � M � Finish

Start � C � G � L � N � Finish
Focus attention on activities with 0 slack.
(d) If activity I takes 2 extra weeks, there will be no delay because its slack is 3.

10.3-7. Critical path: Start � A � B � C � E � F � J � K � N � Finish
Total duration � 26 weeks

10.4-1. 	 � 37, 
2 � 9

10.4-5. (a)

Arc (1, 2) (1, 3) (1, 4) (2, 5) (3, 4) (3, 5) (3, 6) (4, 6) (5, 7) (6, 7)

Flow 4 4 1 4 1 0 3 2 4 5

(b) Start � A � C � E � F � Finish Length � 51 days Mean critical path
Start � B � D � Finish Length � 50 days

(d) � � 1.4 ⇒ P(T � 57) � 0.9192 (from the Normal table)

10.5-4. (a) Critical path: Start � A � C � E � Finish
Total duration � 12 weeks

(b) New plan:

57 � 50
�

�25�
d � 	p�
�
2

p�

Activity � �2

A 12 0
B 23 16
C 15 1
D 27 9
E 18 4
F 6 4

$7,834 is saved by this crashing schedule.

Activity Duration Cost

A 3 weeks $54,000
B 3 weeks $65,000
C 3 weeks $68,666
D 2 weeks $41,500
E 2 weeks $80,000



10.5-5. (b)
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10.6-2. (d)

Maximum Crash CostTime Cost
Time per Week Start Time Finish

Activity Normal Crash Normal Crash Reduction Saved Time Reduction Time

A 5 3 $20 $30 2 $15 0 2 13
B 3 2 $10 $20 1 $10 0 1 12
C 4 2 $16 $24 2 $14 3 0 17
D 6 3 $25 $43 3 $16 3 0 19
E 5 4 $22 $30 1 $18 2 0 17
F 7 4 $30 $48 3 $16 2 0 19
G 9 5 $25 $45 4 $15 7 1 15
H 8 6 $30 $44 2 $17 9 2 15

Finish Time � 15
Total Cost � $217
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CHAPTER 11

11.3-1.



11.3-14. x1 � �2 � �13� � 1.6056, x2 � 5 � �13� � 1.3944; Z � 98.233.

11.4-3. Produce 2 on first production run; if none acceptable, produce 2 on second run. Expected
cost � $575.

CHAPTER 12

12.1-2. (a) Minimize Z � 4.5xem � 7.8xec � 3.6xed � 2.9xel � 4.9xsm � 7.2xsc � 4.3xsd

� 3.1xsl,

subject to

xem � xec � xed � xel � 2
xsm � xsc � xsd � xsl � 2

xem � xsm � 1
xec � xsc � 1
xed � xsd � 1
xel � xsl � 1

and

all xij are binary.

12.3-1. (b)

PARTIAL ANSWERS TO SELECTED PROBLEMS 1183

Phase (a) (b)

1 2M 2.945M
2 1M 1.055M
3 1M 0

Market share 6% 6.302%

11.3-8. (a)

Modified Original
Right-Hand Right-Hand

Constraint Product 1 Product 2 Product 3 Product 4 Totals Side Side

First 5 3 6 4 6000 � 6000 6000
Second 4 6 3 5 12000 � 105999 6000

Marginal revenue $70 $60 $90 $80 $80000
Solution 0 2000 0 0

� � � �

0 9999 0 0
Set Up? 0 1 0 0 1 � 2
Start-up Cost $50,000 $40,000 $70,000 $60,000

Contingency Constraints:

Product 3: 0 � 1 :Product 1 or 2
Product 4: 0 � 1 :Product 1 or 2

Which Constraint (0 � First, 1 � Second): 0
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12.4-6. (a) Let xij � �
Mutually exclusive alternatives: For each column of arcs, exactly one arc is included
in the shortest path. Contingent decisions: The shortest path leaves node i only if it en-
ters node i.

12.5-1. (a) (x1, x2) � (2, 3) is optimal.
(b) None of the feasible rounded solutions are optimal for the integer programming problem.

12.6-1. (x1, x2, x3, x4, x5) � (0, 0, 1, 1, 1), with Z � 6.

12.6-7. (b)

if arc i � j is included in shortest path
otherwise.

1
0

Right-Hand
Constraint Product 1 Product 2 Product 3 Total Side

Milling 9 3 5 498 � 500
Lathe 5 4 0 349 � 350
Grinder 3 0 2 135 � 150
Sales Potential 0 0 1 0 � 20

Unit Profit 50 20 25 $2870
Solution 45 31 0

� � �

999 999 0
Produce? 1 1 0 2 � 2

12.3-5. (b, d) (long, medium, short) � (14, 0, 16), with profit of $95.6 million.

12.4-3. (b)

Task 1 2 3 4 5

Assignee 1 3 2 4 5

12.6-9. (x1, x2, x3, x4) � (0, 1, 1, 0), with Z � 36.

12.7-1. (a, b) (x1, x2) � (2, 1) is optimal.

12.8-1. (a) x1 � 0, x3 � 0

CHAPTER 13

13.2-7. (a) Concave.

13.4-1. Approximate solution � 1.0125.

13.5-4. Exact solution is (x1, x2) � (2, �2).

13.5-8. (a) Approximate solution is (x1, x2) � (0.75, 1.5). 

13.6-3.
�4x1

3 � 4x1 � 2x2 � 2u1 � u2 � 0 (or � 0 if x1 � 0).
�2x1 � 8x2 � u1 � 2u2 � 0 (or � 0 if x2 � 0).

� 2x1 � x2 � 10 � 0 (or � 0 if u1 � 0).
� x1 � 2x2 � 10 � 0 (or � 0 if u2 � 0).

x1 � 0, x2 � 0, u1 � 0, u2 � 0.

13.6-8. (x1, x2) � (1, 2) cannot be optimal.



PARTIAL ANSWERS TO SELECTED PROBLEMS 1185

13.6-10. (a) (x1, x2) � (1 � 3�1/2, 3�1/2).

13.7-2. (a) (x1, x2) � (2, 0) is optimal.
(b) Minimize Z � z1 � z2,

subject to

2x12x2 � � u1 � y1 � y2 � v1� z1 � z2 � 8
2x1 � 2x2 � u1 � y1 � y2 �� v1 z1 � z2 � 4
x1 � x2 u1 � y1 � y2 y2 � v1 z1� � z2 � 2

x1 � 0, x2 � 0, u1 � 0, y1 � 0, y2 � 0, v1 � 0, z1 � 0,
z2 � 0.

13.8-3. (b) Maximize Z � 3x11 � 3x12 � 15x13 � 4x21 � 4x23,

subject to

x11 � x12 � x13 � 3x21 � 3x22 � 3x23 � 8
5x11 � 5x12 � 5x13 � 2x21 � 2x22 � 2x23 � 14

and

0 � xij � 1, for i � 1, 2, 3; j � 1, 2, 3.

13.9-1. (x1, x2) � (5, 0) is optimal.

13.9-10. (a) (x1, x2) � ��
1
3

�, �
2
3

��.

13.10-5. (a) P(x; r) � �2x1 � (x2 � 3)2 � r ��x1 �
1

3
� � �

x2 �
1

3
��.

(b) (x1, x2) � �3 � ��
2
r

��
1/2

, 3 � ��
2
r

��
1/3

	.

CHAPTER 14

14.2-2. (a) Player 1: strategy 2; player 2: strategy 1.

14.2-7. (a) Politician 1: issue 2; politician 2: issue 2.
(b) Politician 1: issue 1; politician 2: issue 2.

14.4-3. (a) (x1, x2) � (�
2
5

�, �
3
5

�); (y1, y2, y3) � (�
1
5

�, 0, �
4
5

�); v � �
8
5

�.

14.5-2. (a) Maximize x4,

subject to

5x1 � 2x2 � 3x3 � x4 � 0
3x1 � 4x2 � 2x3 � x4 � 0
3x1 � 3x2 � 2x3 � x4 � 0

x1 � 2x2 � 4x3 � x4 � 0
x1 � x2 � x3 � x4 � 1

and

x1 � 0, x2 � 0, x3 � 0, x4 � 0.
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State of Nature

Alternative Sell 10,000 Sell 100,000

Build Computers 0 54
Sell Rights 15 15

A2

A3

A1

50
40

25

0.2 0.4 0.6 0.8 1.0

Expected
Profit

($thousands) Crossover
points

Prior Probability of S1

(c) Let p � prior probability of selling 10,000. They should build when p � 0.722, and sell when
p � 0.722.

15.2-3. (c) Warren should make the countercyclical investment.

15.2-5. (d)

Data: P (Finding  State)

State of Prior Finding

Nature Probability Sell 10,000 Sell 100,000

Sell 10,000 0.5 0.666666667 0.333333333
Sell 100,000 0.5 0.333333333 0.666666667

15.3-3. (b) EVPI � EP (with perfect info) � EP (without more info) � 53 � 35 � $18
(c) Betsy should consider spending up to $18 to obtain more information.

15.3-8. (a) Up to $230,000
(b) Order 25.

Posterior P (State  Finding)
Probabilities: State of Nature

Finding P (Finding) Sell 10,000 Sell 100,000

Sell 10,000 0.5 0.666666667 0.333333333
Sell 100,000 0.5 0.333333333 0.666666667

A2 and A3 cross at approximately p � 0.25. A1 and A3 cross at approximately p � 0.43.

15.2-8. Order 25.

15.3-1. (a) EVPI � EP (with perfect info) � EP (without more info) � 34.5 � 27 � $7.5 million.
(d)

CHAPTER 15

15.2-1. (a)
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(c) EVPI � EP (with perfect info) � EP (without more info) � 11,000 � 8,000 � $3,000. This in-
dicates that the credit-rating organization should not be used.

15.3-13. (a) Guess coin 1.
(b) Heads: coin 2; tails: coin 1.

15.4-1. (b) The optimal policy is to do no market research and build the computers.

15.4-4. (c) EVPI � EP (with perfect info) � EP (without more info) � 1.8 � 1 � $800,000
(d)

(f, g) Leland University should hire William. If he predicts a winning season then they should hold
the campaign. If he predicts a losing season then they should not hold the campaign.

15.4-10. (a) Choose to introduce the new product (expected payoff is $12.5 million).
(b) EVPI � EP (with perfect info) � EP (without more info) � 20 � 12.5 � $7.5 million
(c) The optimal policy is not to test but to introduce the new product.

15.5-2. (a) Choose not to buy insurance (expected payoff is $249,840).
(b) u(insurance) � 499.82

u(no insurance) � 499.8
Optimal policy is to buy insurance.

15.5-4. u(10) � 9

State of Nature

Alternative Poor Risk Average Risk Good Risk

Extend Credit �15,000 10,000 20,000
Don’t Extend Credit 0 0 0

Prior Probabilities 0.2 0.5 0.3

15.3-9. (a)

0.6

0.4

0.25

0.25

0.75

0.75

0.45

0.15

0.1

0.3

0.818

0.333

0.182

0.667

W
in

Lose

lose, given win

win, given win

lose, given lose

win, given lose

win and win

win and lose

lose and win

lose and lose

win, given win

win, given lose

lose, given win

lose, given lose

Prior
Probabilities

P (state)

Conditional
Probabilities

P (finding|state)

Joint
Probabilities

P (state and finding)

Posterior
Probabilities

P (state|finding)
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CHAPTER 16

16.3-3. (c) �0 � �1 � �2 � �3 � �4 � �
1
5

�.

16.4-1. (a) All states belong to the same recurrent class.

16.5-8. (a) �0 � 0.182, �1 � 0.285, �2 � 0.368, �3 � 0.165.
(b) 6.50

CHAPTER 17

17.2-1. Input source: population having hair; customers: customers needing haircuts; and so forth
for the queue, queue discipline, and service mechanism.

17.2-2. (b) Lq � 0.375
(d) W � Wq � 24.375 minutes

17.4-2. (c) 0.0527

17.5-5. (a) State:

(c) P0 � �
2
9
6
�, P1 � �

2
9
6
�, P2 � �

1
3
3
�, P3 � �

1
1
3
�.

(d) W � 0.11 hour.

17.5-9. (b) P0 � �
2
5

�, Pn � (�
3
5

�)(�
1
2

�)n

(c) L � �
6
5

�, Lq � �
3
5

�, W � �
2
1
5
�, Wq � �

5
1
0
�

17.6-1. (a) P0 � P1 � P2 � P3 � P4 � 0.96875 or 97 percent of the time.

17.6-21. (a) Combined expected waiting time � 0.211
(c) An expected process time of 3.43 minutes would cause the expected waiting times to be the

same for the two procedures.

17.6-29. (a) 0.429

17.6-33. (a) three machines
(b) three operators

17.7-1. (a) Wq (exponential) � 2Wq (constant) � �
8
5

�Wq (Erlang).
(b) Wq (new) � �

1
2

�Wq (old) and Lq (new) � Lq (old) for all distributions.

17.7-6. (a, b) Under the current policy an airplane loses 1 day of flying time as opposed to 3.25
days under the proposed policy.
Under the current policy 1 airplane is losing flying time per day as opposed to 0.8125
airplane.

15 10 5

15

0 1 2 3

15 15
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17.7-10.

17.8-1. (a) This system is an example of a nonpreemptive priority queueing system.

(c) � �
0
0
.
.
0
0
3
8
3
3

� � 0.4

17.8-4. (a) W � �
1
2

�

(b) W1 � 0.20, W2 � 0.35, W3 � 1.10
(c) W1 � 0.125, W2 � 0.3125, W3 � 1.250

CHAPTER 18

18.3-1. (a) E(WC ) � 16
(b) E(WC ) � 26.5

18.4-2. 4 cash registers

18.4-5. (a) Model 2 with s fixed at 1
(b) Adopt the proposal.

18.4-10. (d) E(TC ) for status quo � $85 per hour
E(TC ) for proposal � $83 per hour

18.4-13. (a) The customers are trucks to be loaded or unloaded and the servers are crews. The sys-
tem currently has 1 server.

(e) A one-person team should not be considered since that would lead to a utilization factor of 

 � 1, which is not permitted in this model.

(f, g) E(TC ) for 4 members � $82.50 per hour
E(TC ) for 3 members � $65 per hour
E(TC ) for 2 members � $55 per hour
A crew of 2 people will minimize the expected total cost per hour.

18.4-25. One doctor: E(TC ) � $624.80, two doctors: $92.50; have two doctors.

CHAPTER 19

19.3-1. (a) t � 1.83, Q � 54.77
(b) t � 1.91, Q � 57.45, S � 52.22

19.3-3. (a)

Wq for first-class passengers
����
Wq for coach-class passengers

Service Distribution P0 P1 P2 L

Erlang 0.561 0.316 0.123 0.561
Exponential 0.571 0.286 0.143 0.571

Data

D � 676 (demand/year)
K � $75 (setup cost)
h � $600.00 (unit holding cost)
L � 3.5 (lead time in days)

WD � 365 (working days/year)

Results

Reorder point � 6.5
Annual setup cost � $10,140

Annual holding cost � $ 1,500

Total variable cost � $11,640

Decision

Q � 5 (order quantity)



(d)

1190 PARTIAL ANSWERS TO SELECTED PROBLEMS

Data

D � 676 (demand/year)
K � $75 (setup cost)
h � $600 (unit holding cost)
L � 3.5 (lead time in days)

WD � 365 (working days/year)

Results

Reorder point � 6.48
Annual setup cost � $3,900

Annual holding cost � $3,900

Total variable cost � $7,800

Decision

Q � 13 (order quantity)

The results are the same as those obtained in part (c).
(f) Number of orders per year � 52

ROP � 6.5 � inventory level when each order is placed
(g) The optimal policy reduces the total variable inventory cost by $3,840 per year, which is a 33

percent reduction.

19.3-7. (a) h � $3 per month which is 15 percent of the acquisition cost.
(c) Reorder point is 10.
(d) ROP � 5 hammers, which adds $20 to his TVC (5 hammers � $4 holding cost).

19.3-9. t � 3.26, Q � 26,046, S � 24,572

19.3-15. (a) Optimal Q � 500

19.4-4. Produce 3 units in period 1 and 4 units in period 3.

19.5-6. (b) Ground Chuck: R � 145.
Chuck Wagon: R � 829.

(c) Ground Chuck: safety stock � 45.
Chuck Wagon: safety stock � 329.

(f) Ground Chuck: $39,378.71.
Chuck Wagon: $41,958.61.
Jed should choose Ground Chuck as their supplier.

(g) If Jed would like to use the beef within a month of receiving it, then Ground Chuck is the bet-
ter choice. The order quantity with Ground Chuck is roughly 1 month’s supply, whereas with
Chuck Wagon the optimal order quantity is roughly 3 month’s supply.

19.6-4. (a) Optimal service level � 0.667
(c) Q* � 500
(d) The probability of running short is 0.333.
(e) Optimal service level � 0.833

19.6-8. (a) This problem can be interpreted as an inventory problem with uncertain demand for a
perishable product with euro-traveler’s checks as the product. Once Stan gets back from
his trip the checks are not good anymore, so they are a perishable product. He can re-
deposit the amount into his savings account but will incur a fee of lost interest. Stan
must decide how many checks to buy without knowing how many he will need.

Cunder � value of 1 day � cost of 1 day � cost of 1 check � $49.
Cover � cost of check � lost interest � $3

(b) Purchase 4 additional checks.



(c) Optimal service level � 0.94
Buy 4 additional checks.

19.7-3. If x � 46, order 46 � x units; otherwise, do not order.

19.7-10. (a) G(y) � �
1
3
0
�y � 70e�y/25 � �

1
2
5
�

(b) (k, Q) � (21, 100) policy

CHAPTER 20

20.4-1. (c) Forecast � 36

20.4-3. Forecast � 2,091

20.4-7. Forecast (0.1) � 2,072

20.6-2. Forecast � 552

20.6-4. Forecast for next production yield � 62 percent

20.7-1. (a) MAD � 15

20.7-4. (a) Since sales are relatively stable, the averaging method would be appropriate for fore-
casting future sales. This method uses a larger sample size than the last-value method,
which should make it more accurate. Since the older data are still relevant, they should
not be excluded, as would be the case in the moving-average method.

(e) Considering the MAD values, the averaging method is the best one to use.
(f) Unless there is reason to believe that sales will not continue to be relatively stable, the averag-

ing method is likely to be the most accurate in the future as well. However, 12 data points gen-
erally are inadequate for drawing definitive conclusions.

20.9-1. (b) y � 410 � 17.6x
(d) y � 604

CHAPTER 21

21.2-1. (c) Use slow service when no customers or one customer is present and fast service when
two customers are present.

21.2-2. (a) The possible states of the car are dented and not dented.
(c) When the car is not dented, park it on the street in one space. When the car is dented, get it re-

paired.

21.2-5. (c) State 0: attempt ace; state 1: attempt lob.

21.3-2. (a) Minimize Z � 4.5y02 � 5y03 � 50y14 � 9y15,

subject to

y01 � y02 � y03 � y14 � y15 � 1

y01 � y02 � y03 � ��
1
9
0
�y01 � �

4
5
9
0
�y02 � y03 � y14� � 0

y14 � y15 � ��
1
1
0
�y01 � �

5
1
0
�y02 � y15� � 0
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and

all yik � 0.

21.3-5. (a) Minimize Z � ��
1
8

�y01 � �
2
7
4
�y02 � �

1
2

�y11 � �
1
5
2
�y12,

subject to

y01 � y02 � ��
3
8

�y01 � y11 � �
7
8

�y02 � y12� � 0

y11 � y12 � ��
5
8

�y01 � y11 � �
1
8

�y02� � y12 � 0

y01 � y02 � �
1
8

�y11 � y12 � 1

and

yik � 0 for i � 0, 1; k � 1, 2.

21.4-2. Car not dented: park it on the street in one space. Car dented: repair it.

21.4-5. State 0: attempt ace. State 1: attempt lob.

21.5-1. Reject $600 offer, accept any of the other two.

21.5-2. (a) Minimize Z � 60(y01 � y11 � y21) � 600y02 � 800y12 � 1,000y22,

subject to

y01 � y02 � (0.95)��
5
8

��(y01 � y11 � y21) � �
5
8

�

y11 � y12 � (0.95)��
1
4

��(y01 � y11 � y21) � �
1
4

�

y21 � y22 � (0.95)��
1
8

��(y01 � y11 � y21) � �
1
8

�

and

yik � 0 for i � 0, 1, 2; k � 1, 2.

21.5-3. After three iterations, approximation is, in fact, the optimal policy given for Prob. 21.5-1.

21.5-11. In periods 1 to 3: Do nothing when the machine is in state 0 or 1; overhaul when machine
is in state 2; and replace when machine is in state 3. In period 4: Do nothing when machine is in
state 0, 1, or 2; replace when machine is in state 3.

CHAPTER 22

22.1-1. (b) Let the numbers 0.0000 to 0.5999 correspond to strikes and the numbers 0.6000 to
0.9999 correspond to balls. The random observations for pitches are 0.7520 � ball,
0.4184 � strike, 0.4189 � strike, 0.5982 � strike, 0.9559 � ball, and 0.1403 � strike.

22.1-10. (b) Use � � 4 and 	 � 5.
(i) Answers will vary. The option of training the two current mechanics significantly decreases the

waiting time for German cars, without a significant impact on the wait for Japanese cars, and
does so without the added cost of a third mechanic. Adding a third mechanic lowers the aver-
age wait for German cars even more, but comes at an added cost for the third mechanic.
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22.3-1. (a) 5, 8, 1, 4, 7, 0, 3, 6, 9, 2

22.4-2. (b) F(x) � 0.0965 when x � �5.18
F(x) � 0.5692 when x � 18.46
F(x) � 0.6658 when x � 23.29

22.4-5. (a) x � �r�

22.4-8. (a) Here is a sample replication.

PARTIAL ANSWERS TO SELECTED PROBLEMS 1193

22.4-13. (a) x � �4 ln (1 � r)
(b) x � �2 ln [(1 � r1)(1 � r2)]

(c) x � 4

6

i�1
ri � 8

22.7-1. Use the first 10 three-digit decimals from Table 22.3 and generate observations from

xi � �
1 �

1
ri

�.

Summary of Results:

Win? (1 � Yes, 0 � No) 0
Number of Tosses � 3

Simulated Tosses

Toss Die 1 Die 2 Sum

1 4 2 6
2 3 2 5
3 6 1 7
4 5 2 7
5 4 4 8
6 1 4 5
7 2 6 8

Results

Win? Lose? Continue?

0 0 Yes
0 0 Yes
0 1 No

NA NA No
NA NA No
NA NA No
NA NA No

22.7-4. (a) Let the numbers 0.0000 to 0.3999 correspond to a minor repair and 0.4000 to 0.9999
correspond to a major repair. The average repair time is then (1.224 � 0.950 � 1.610)/
3 � 1.26 hours.

(c) The average repair time is 1.28 hours.
(e) The average repair time is 1.09 hours.
(f) The method of complementary random numbers in part (e) gave the closest estimate. It per-

forms well because using complements helps counteract the more extreme random numbers
(such as 0.9503).

22.8-1. (a) Est. {Wq} � �
7
3

� and P{1.572 � Wq � 3.094} � 0.90

Method: Analytic Monte Carlo Stratified sampling Complementary random numbers

Mean: � 4.3969 8.7661 3.812
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software options, 702

Convex set, 198, 663, 1163–1164
Cooperative game, 742
Corel Quattro Pro, 162
Corner-point feasible solution, 35, 110–114,

138, 146–148, 166, 190, 601
adjacent, 193–195
augmented, 198–199
and optimal solution, 35–36
properties of, 195–198
in simplex method, 191–193

Corner-point infeasible solution, 110, 192–193,
194

Corner-point solutions, 110, 138
augmented, 198–199

Correlation, 12
Cost assumption, 355
Cost of ordering, 938–939; see also Ordering

cost
Cost of waiting, 912
Cost overrun, 508
Cost per unit shipped, 656
Costs and benefits, 8

Cost underrun, 508
CPF; see Corner-point feasible solution
CPLEX, 6, 78, 159, 161–163, 167, 310, 623,

689–690, 1157–1158
CPM; see Critical path method
CPM method of time-cost trade-offs, 493
Crash cost, 494
Crashing activities, 493, 494–496
Crashing techniques, 160n
Crashing the project, 493
Crash point, 493
Crew scheduling problem, 585
Critical path, 475–476, 482, 484–485
Critical path method

cases, 524–532
computer use, 509
dealing with overlapping activities, 511
evaluation of, 508–512
future of, 512
means and variances of activity durations,

509–510
probability of meeting deadline, 510–511
for project costs, 502–508
project scheduling, 475–485
resource allocation, 511–512
uses, 468
value of, 508–509

Critical points, 1165
Crossover point, 657
Cross-product terms, 37n, 40
Crude Monte Carlo techniques, 1126–1127
Crystal Ball, 1115
Cuba, 347–349
Curse of dimensionality, 560
Customers, 9, 430
Cut, 426–427, 628
Cutting planes, 624, 628–630
Cut value, 427
Cycle, 409–410, 1132
Cycle length, 1104

Databases, 19
Data gathering, 7–10, 66, 1111–1112
Data verification, 66
Deadlines, 1098

construction company problem, 1118–1122
meeting, 491, 510–511

Death, 848
Decision analysis, 749–801

cases, 795–800
choosing an action, 751
compared to game theory, 728
conclusions, 781
decision making with experimentation, 750

Bayes’ theorem, 759–760
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Decision analysis—Cont.
decision making with experimentation—Cont.

posterior probabilities, 758–762
probability tree diagram, 760
prototype example, 758
value of experimentation, 762–764

decision making without experimentation,
750, 751–758

Bayes’ decision rule, 754–758
formulation of prototype example, 752
maximin payoff criterion, 752–753
maximum likelihood criterion, 753–754

decision trees, 764–770
backward induction procedure, 768
constructing, 765–767
performing the analysis, 767–769
software for, 769–770
in utility theory, 776–778

environment of uncertainty, 749
graphical techniques, 779
payoff, 751
payoff table, 751
posterior probabilities, 767
practical applications, 778–781
prior distribution, 752
prior probabilities, 752, 767
prototype example, 750
and queueing theory, 909–912
state of nature, 751
utility theory, 770–778

Decision conferencing, 779
Decision fork, 765
Decision models, queueing theory

unknown � and s, 917–920
unknown D and s, 920–923
unknown s, 917

Decision support system, 19, 20
Decision tree, 562–563
Decision variables, 11, 13, 26, 32, 42, 75, 592–594
Decreasing marginal utility for money, 772
Defining equations, 192, 194, 199
Degenerate basic feasible solution, 200
Degenerate basic variables, 381
Degenerate service-time distribution, 872
Degenerate variables, 129
Degree of association model, 1029
Degrees of freedom, 116
Delphi method, 1014
Delta Air Lines, 4, 585
Demand, 354–355, 936, 957

continuous, 966
dependent/independent, 949
exponential distribution, 974–975
known, 951, 958
unsatisfied, 964

Demand capacity, 364
Demand node, 410, 430–431
Department of Labor, 1012
Dependent demand, 949
Dependent variables, 1030
Descendants, 607
Destinations, 354
Deterministic dynamic programming, 541–562,

953–954
distributing scientists to research teams,

549–552
distribution of effort problem, 547–549
distribution of medical teams, 542–547
scheduling employment levels, 552–559
Wyndor Glass problem, 559–562

Deterministic inventory models
continuous review, 941–951

basic model, 942–943
broader perspective on, 949–951
observations about, 948–949
with planned shortages, 943–946
with quantity discounts, 946–947
templates, 947–948

periodic review, 951–956
algorithm, 953–954
application of algorithm, 955–956
example, 952–953

Deterministic policy, 1057, 1059
Diagonal matrix, 327
Difference, 370
Digital Equipment Corporation, 4, 582
Directed arc, 408, 413, 422–423
Directed network, 408
Directed path, 409
Discounted cost criterion, 1069–1077

linear programming formulation, 1073–1075
method of successive approximations,

1075–1077
policy improvement algorithm, 1070–1073

Discount factor, 940, 980
Discount rate, 940
Discrete-event simulation, 1086
Discrete time Markov chains, 1053, 1054
Discrete time stochastic process, 802
Discretized uniform distribution, 1102
Distribution network, example, 59–61
Distribution of effort problem, 547–549
Distribution proportion, 1128
Distribution systems, 1099
Distribution Unlimited Company, 59–61
Divisibility assumption, 42, 548
Documenting, 21
Dominated strategies, 729–731
Donor cells, 377
Dual, 230

Dual feasible solution, 246–247, 309–310
Duality theory, 230–254, 238, 682–683

adapting to other primal forms, 247–252
economic interpretations

dual problem, 239–241
simplex method, 241–242

essence of, 231–238
applications, 238
origin of dual problem, 232–236
summary of relationships, 236–238

primal-dual relationships, 238, 242–247
and sensitivity analysis, 230, 252–254

Dual problem, 231–232, 311
complementary basic solutions, 243
constructing, 247–249
economic interpretations, 239–241
origin of, 232–236
in simplex method, 238
SOB method, 249–252

Dual simplex method, 153, 309–312
in parametric linear programming, 316
summary of, 310–312

Dual variables, 366
Dummy assignees, 382
Dummy demand node, 431
Dummy destination, 355, 359–362
Dummy machine, 382
Dummy sink, 422
Dummy source, 355, 362–365, 364, 422
Dummy task, 382, 388
Du Pont Corporation, 780
Dynamic programming, 522–568

characteristics, 538–541
deterministic, 541–562
principle of optimality, 540, 549
probabilistic, 562–568
prototype example, 633–638
stagecoach problem, 633–638

Earliest finish time, 477
Earliest start time, 477
Earliest start time rule, 479
Earliest time schedule, 482
Econometric models, 1011–1012
Economic order quantity formula, 943, 951
Economic order quantity model, 941–951

assumptions, 942–943
broader perspective on, 949–951
observations about, 948–949
with planned shortages, 943–946, 957–958
with quantity discounts, 946–947
reorder point, 942
templates, 947–948

Economic trends, 1011–1012
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Edge of the feasible region, 110, 113–119, 193,
194

Efficient frontier, 659
Either-or-constraints, 586–587
Elementary algebraic operations, 121–122
Elementary row operations, 126, 146
Employees, 9
Employment level scheduling, 552–559
Energy Electric System, 781
Entering basic variable, 120, 311

network simplex method, 441–444
tie-breaking for, 128–129

Enumeration procedure, 604
Enumeration tree, 606
Environmental Protection Agency, 50n
EOQ; see Economic order quantity model
Equality constraint, 66, 114–115, 705,

1166–1167
in artificial-variable technique, 132–136

Equilibrium solution, 732
Equivalence property, 886
Ergodic Markov chain, 813
Erlang distribution, 837, 838, 855, 873–875,

878–879, 890, 1107–1108
Erlang’s loss system, 863
Error tolerance, 704
Excel Solver, 5–6, 31, 67–72, 157–159, 162,

163, 266, 272, 358–365, 389–390,
413–414, 428–429, 434–435, 579–580,
689–690, 769–770, 947–948, 1112,
1115–1116, 1156–1157

Excel VBA macro language, 73
Excess demand capacity, 364
Excess supply capacity, 364
Expected average cost per unit time, 1055,

1077
for complex cost functions, 816–818
in Markov chains, 814–816

Expected interarrival time, 839
Expected monetary value criterion, 754n
Expected payoff, decision trees, 767–769
Expected recurrence time, 820
Expected return, 658
Expected total discounted cost, 1069, 1077
Expected utility, 773
Expected value

and experimentation, 764
of perfect information, 762–763
probability theory definition, 734

Experimentation
decision making with, 758–764
decision making without, 751–758
expected value of, 764
value of, 762–764

Exponential demand distribution, 974–975

Exponential distribution, 825, 836, 858, 890,
1107–1108

calling population, 866
with a parameter, 842
role in queueing theory, 841–848

Exponential growth, 600
Exponential smoothing forecasting procedure,

1017–1018
for linear trend model, 1021–1025

Exponential time algorithm, 165–166
Exponential utility function, 776
Extreme point, 1164

Fair game, 731
Fanning-out procedure, 426
Farm management, case, 304–307
Fathom, 607
Fathoming, 605

binary integer programming, 607–609,
614–618

integer programming, 614–616
mixed integer programming, 618

Feasibility, condition for, 246
Feasibility test, 311

in sensitivity analysis, 261
Feasible region, 28–29, 34, 46, 110, 663
Feasible solution, 34
Feasible solutions property, 355, 362, 432
Feasible spanning tree, 439–440
Federal National Mortgage Association, 781
Field test, 1113
Financial risk analysis, 1099–1100, 1122–1126
Finite calling population variation, 908

of M/M/s model, 864–866
Finite queues, 836
Finite queue variation of M/M/s model, 861–863
Finite state space, 802
First local maximum, 678
First passage times, 818–820
First-priority rules, 336, 337
First-stage objective function, 337
Fixed lead time, 940
Fixed-time incrementing, 1093–1095, 1132
Fixing variables, 624–625
Fleet assignment problem, 584
Flow diagram, 1111
Flow in, 414
Flow out, 414
Flows, 410
Forecasting, 64, 1009–1038

applications
economic trends, 1011–1012
production yields, 10111
sales forecasting, 1010
spare parts needs, 1010–1011

Forecasting—Cont.
applications—Cont.

staffing needs, 1012–1013
Box-Jenkins method, 1026–1028
case, 1048–1052
causal, 1028–1029
conclusions, 1038
constant-level time series, 1016–1018
exponential smoothing for nonlinear trend

model, 1021–1025
judgmental methods, 1009, 1037

consumer market survey, 1014
Delphi method, 1014
jury of executive opinion, 1014
manager’s opinion, 1013
sales for composite, 1014

linear regression, 1028–1036
measures of uncertainty, 1035–1036
more than one time period ahead, 1025
in practice, 1036–1038
regression analysis, 1009
with seasonal effects, 1018–1021
statistical methods, 1009, 1037

applications, 1013
time series, 1009, 1014–1016

Forecasting errors, 1025–1026
Forks, 765
Forward pass, 480–482
Fractional programming, 668–669
Frank-Wolfe algorithm, 698–702
Franz Edelman Awards for Management

Science Achievement, 581, 923
Free goods, 155
Frequency distribution, 1122
Frontline systems, 162
Fully crashed activities, 493, 495
Functional constraints, 33, 75–76, 77–78, 161,

318
Functional constraints in � form, 137–140
Functional relationship, 1029–1030
Function value, 42
Fundamental insight, 208, 212–220

adapting to other model forms, 218–219
applications, 219–220
duality theory, 232–234
mathematical summary, 216–218
in sensitivity analysis, 255–256
transportation simplex method, 365–366
verbal description, 212

Fundamental theorem, network simplex
method, 440

Game theory
compared to decision analysis, 728
cooperative game, 742
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Game theory—Cont.
definition, 726
dominated strategies, 729–731
extensions, 741–742
fair game, 731
graphical solution procedure, 735–738
infinite games, 742
minimax criterion, 732
minimax theorem, 734
mixed strategies, 733–735
noncooperative game, 742
nonzero-sum game, 742
n-person game, 742
primary objective, 727
solved by linear programming, 738–741
solving simple games, 728–733
stable solution, 732
strategies, 726–728
two-person, zero-sum game, 726–729, 742
unstable solution, 733
value of the game, 731

Gamma distribution, 855n, 873
GAMS, 73
Gantt charts, 472
Gasoline blending, 56–57
Gaussian elimination, 118, 122, 135, 141, 146,

213, 260–261, 262, 274, 278, 283
General Agreement on Tariffs and Trade, 402n
General distribution, 838
Generalized Erlangian distributions, 879
Generalized positive polynomials, 668
Generalized reduced gradient method, 697
General Motors, 780
General-purpose algorithm, 386
General-purpose programming language,

1112–1113
General-purpose simulation language, 1112
Genetic algorithms, 604
Geometric concepts, 109
Geometric programming, 668
Global maximization, 668
Global maximum, 662, 704, 1165
Global minimum, 662, 1165
Global supply chain, 582
Goal programming, 309

nonpreemptive, 333–335
preemptive, 333, 335–339
and solution procedures, 332–333
types of goals, 332–333

Government, 9
Government space project, 549–552
Gradient, 674

of objective function, 322
projected, 323–325
relevance of, 321–323

Gradient algorithms, 697, 702
Gradient search procedure, 674–678
Graphical method, 30, 46

decision analysis, 779
game theory, 735–738
nonlinear programming, 659–664

Grass-roots forecasting approach, 1014
Group programming, case, 347–349

Health care simulation, 1100
Heuristic algorithms, 605
Heuristics, 624n
Hewlett-Packard, 4, 936, 985–986
Hidden costs, 387
Hidroeléctrica Español, 1010
Histogram, 1118, 1126
Holding cost, 937, 939, 964
Holding time, 837
Homart Development Company, 584
Hyperexponential distribution, 878–879
Hyperplane, 191, 194, 196

IBM, 4, 18, 19, 21, 936, 984–985, 1010, 1105
Optimization Subroutine Library, 623

IBM PC Company, 1098
ICI Americas, 781
Identity matrix, 211, 214, 1171
ILOG, Inc., 161, 162
Immediate predecessors, 469–470, 471
Implementation of models, 20–21
Increasing marginal utility for money, 772
Incremental analysis, 220, 259–260
Incumbent, 607
Independent demand, 949
Independent Living Center, 780
Independent Poisson processes, 887–888
Independent variable, 1030
Indicating variables, 199
Inequality constraints, 114–115
Infeasible solution, 34
Infinite games, 742
Infinite queue, 836
Infinite queues in series, 886–887
Inflection point, 1165
Influence diagram, 779
Initial basic feasible solution, 118–119, 132,

134, 148–149
constructing, 369–372

Initial basis matrix, 211
Initialization, 111–112, 118, 125, 144, 310,

368–374
Initial state probabilities, 1074
Initial transportation simplex tableau, 374, 376
Input constraints, 32
Input source, queueing theory, 835

Integer linear programming, 576
Integer programming, 64, 162, 576–631

BIP applications
airline industry, 584–585
capital budgeting, 580–581
dispatching shipments, 582–583
production and distribution, 581–582
scheduling asset divestiture, 584
scheduling interrelated activities, 583–584
site selection, 581

branch-and-bound technique
bounding, 613
branching, 613
fathoming, 614–616

California Manufacturing Company, 577–580
cases, 642–653
formulation with binary variables, 585–600

with auxiliary binary variables, 593–598
binary representation of general integer

variables, 590–591
covering all characteristics, 598–600
either-or constraints, 586–587
examples, 591–600
fixed-charge problem, 589–590
functions with n possible values, 588–589
K out of N constraints, 587
violating proportionality, 594–598
when decision variables are continuous,

592–594
prototype example, 577–580
software options, 579–580
solving problems, 600–604
special type of problems, 601

Integer programming models, 42
Integer-restricted variables, 616–618
Integer solutions property, 357, 381, 384, 433,

1063
Interactive sessions, 21
Interactive system, 63
Interarrival time, 836, 838

expected, 839
probability distribution, 841

Interfaces, 3–5, 354, 430, 431, 580–585, 779–781,
923, 924, 925, 963, 1013, 1099, 1100

Interior-point algorithm, 25, 164, 320–332, 703
centering scheme, 325–326
gradient

projected, 323–325
relevance, 321–323

illustration of, 327–332
summary of, 328

Interior-point approach, 163–168
compared to simplex, 165–166
complementary role with simplex, 167–168
key solution concept, 164–165
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Interior points, 164
Intermediate storage facilities, 430
Internal service, 841
International Federation of Operational

Research Societies, 3
International Mathematics and Statistics

Library, 1105
International Paper Company, 430
Interrelated activities scheduling, 583–584
Interrelated decisions, 543
Intersection of constraint boundaries, 194
Inventories

backlogging, 939
backorders, 943
carrying cost, 935
computerized systems, 956–957, 984–

985
continuous review, 940–941
discount factor, 940
discount rate, 940
holding cost, 937
no backlogging, 939
ordering cost, 937
periodic review, 940–941
replenishment, 938
revenue, 939–940
safety stock, 959
salvage cost, 940
salvage value, 940
setup cost, 937
shortage cost, 937
and simulation, 1098
spare parts needs, 1010–1011
stockout, 943
surplus stock, 1004–1008
two-bin system, 956
unit production cost, 937

Inventory control, 1000–1002
Inventory holding cost rate, 948
Inventory policy, 936, 957

just-in-time system, 935, 950–951
optimal, 953
simulation, 1116–1118

Inventory theory, 935–987
cases, 1000–1008
components of models, 938–941
conclusions, 987
and costs, 937–939
deterministic models

continuous review, 941–951
periodic review, 951–956

economic order quantity model, 941–951
examples, 936–938
multiechelon systems, 984–985
multiproduct systems, 983

Inventory theory—Cont.
stochastic models

continuous review, 956–961
periodic review, 975–983
single-period for perishable products,

961–975
stochastic versus deterministic models, 940
supply chain management, 985–986

Inverse of a matrix, 1173
Inverse transformation method, 1106–1107
IP; see Integer programming
Irreducible ergodic Markov chain, 813
Irreducible Markov chains, 811
Iterations, 111–112, 113, 120–122, 125–126,

161, 166, 311, 376–379, 1116
Iterative algorithm, 113, 164

Jackson networks, 887–889
Jet engine problem, 359–362
Joint probability, 886, 889
Judgmental forecasting methods, 1009, 1037

consumer market survey, 1014
Delphi method, 1014
jury of executive opinion, 1014
manager’s opinion, 1013
sales for composite, 1014

Jury of executive opinion, 1014
Just-in-time inventory system, 935, 950–951

Karush-Kuhn-Tucker conditions, 705
for constrained optimization, 679–683
for quadratic programming, 685–686

KayCorp, 925
Key solution concept, 164–165
Known constant, 43
Known demand, 936, 951, 958

L. L. Bean, 1013
Lag, 1027
Lagrange multipliers, 680, 1167
Lagrangian function, 702, 1167
Lagrangian relaxation, 613
Last chance schedule, 481–482
Last-value forecasting method, 1016
Las Vegas problem, 565–567
Latest finish time, 480–482
Latest finish time rule, 480
Latest start time, 480–482
Lead time, 940, 942, 957
Learmouth-Lewis generator, 1105
Learning curve effect, 656
Leaving basic variable, 121, 150, 311

network simplex method, 444–448
tie-breaking for, 129

Length of a cycle, 1132
Length of a path, 475
LINDO, 6, 31, 78–79, 159, 162–163, 266, 272,

579–580, 689–690, 702, 1158
introduction to, 169–171

LINDO System, Inc., 74
Linear approximation method, 697–698
Linear complementarity problem, 670
Linear fractional programming, 669
Linear function, 24, 913
Linear goal programming; see Goal

programming
Linearly constrained optimization, 665
Linearly dependent vector, 1172
Linearly independent vector, 1172
Linear programming, 2, 24–89; see also

Parametric linear programming; Simplex
method; Upper bound technique

additional examples
controlling pollution, 50–52
distribution network, 59–61
personnel scheduling, 57–59
radiation therapy, 44–46
reclaiming solid wastes, 53–57
regional planning, 46–49

assumptions
additivity, 40–42
certainty, 42, 156
divisibility, 42–43
in perspective, 43–44
proportionality, 36–40

cases, 61–67
auto assembly, 103–104
cafeteria costs, 104–106
call center staffing, 106–108
personnel scheduling, 63–65
petroleum industry, 65–67
product mix, 62–63

common applications, 24
compared to integer programming, 600–

604
for crashing decisions, 496–501
duality concept, 230
interior-point algorithm, 163–168
Markov decision processes, 1059–1064

discounted cost criterion, 1073–1075
formulation of, 1061–1063
randomized policies, 1060–1061
solving example by, 1063

maximum flow problem, 422
modeling languages, 73–74
network optimization models, 405–406
parametric, 159–160
postoptimality analysis, 152
primal-dual table, 231–233
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Linear programming—Cont.
problem formulation, 45–46, 48–49, 52–56,

58–59, 60–61
conclusions, 30
graphical solution, 27–30
and OR Courseware, 30–31
problem formulation, 26–27

and separable programming, 692–696
of simplex method, 160–163
with slack variables, 198–199
software, 161–163
to solve game theory, 738–741
on spreadsheets, 67–72
terminology for, 31–33

Linear programming constraints, 685–686
Linear programming model, 11, 25, 31–36

conversion to standard form, 248
LINGO formulation, 82–86
minimum cost flow problem, 433
MPL formulation, 76–78
other legitimate forms, 33
standard form, 32–33
terminology for solutions, 33–36
very large, 72–79

Linear regression, 1028–1036, 1037
confidence interval, 1033–1034, 1035
degree of association model, 1029
dependent variable, 1030
functional relationship, 1029–1030
independent variable, 1030
method of least squares, 1030–1033
prediction interval, 1034–1036
regression line, 1032
simultaneous tolerance levels, 1035–1036

Linear trend, 1022
Linear trend time series, 1015

exponential smoothing method, 1021–1025
Line segment, 193, 1161–1162
LINGO, 6, 31, 73, 74, 78–89, 163, 689–690,

702, 1158
Links, 408
Little’s formula, 840, 881, 889
Local maximization, 668
Local maximum, 704
Local minimum, 1165
Long-run profit maximization, 8
Lost revenue from unsatisfied demand, 964
Lotus 1-2-3, 10, 162
Lower, one-sided goal, 332
LP relaxation, 601–603, 606–607, 609, 616,

630

Machines, 834
Mainframe computers, 161
Management information system, 9, 19

Management science, 2
Managerial decisions, 230
Managerial reports, 19
Manager’s opinion forecasting, 1013
Manufacturing jobs, 834
Manufacturing systems, 1099
Marginal cost, 656–657, 915
Marginal cost analysis, 495
Marginal profitability, 690
Marginal return, 38–39
Marketing costs, 39
Markov chains, 802–827, 1053, 1054

absorbing states, 820–822
Chapman-Kolmogorov equations, 808–810
classification of, 810–812

absorbing state, 811–812
periodicity properties, 812
recurrent and transition states, 811–812

continuous time, 864, 879
in birth and death process, 848
example, 826–827
formulation, 822–823
key random variables, 823–825
steady-state probabilities, 825–827

first passage times, 818–820
formulating example, 805–807
gambling example, 807–808
inventory example, 803
irreducible, 811
long-run properties

expected average cost per unit time,
814–816

expected average cost per unit time for
complex cost functions, 816–818

steady-state probabilities, 812–814
Markovian property, 803, 805, 823
n-step transition probabilities, 804
random walk, 821
stationary transition probabilities, 803–804
stochastic processes, 802
stock examples, 807
and transition matrix, 804–805
transition probabilities, 803–804

Markov decision processes, 1053–1077
conclusions, 1077
deterministic policy, 1057
discounted cost criterion, 1069–1077
expected average cost per unit time, 1055
linear programming and optimal policies,

1058–1064
formulation of, 1061–1063
randomized policies, 1060–1061
solving example by, 1063

model, 1056–1059
policy improvement algorithm, 1064–1069

Markov decision processes—Cont.
prototype example, 1053–1056

cost data, 1056
discounted cost method, 1072–1073
and linear programming, 1061, 1063
method of successive approximations,

1076–1077
solved by linear programming, 1074–1074
solved by policy improvement algorithm,

1066–1069
solving by exhaustive enumeration,

1057–1059
stationary policy, 1057

Markovian distribution, 838
Markovian property, 540, 803, 805, 823, 1132
Marshall’s, Inc., 431
Master production schedule, 950
Material requirements planning, 949–950
Mathematical models

advantages, 11–12
applying, 18–20
assignment problem, 383
deriving solutions from, 14–16
formulating, 10–13
implementation, 20–21
inventory system, 936
in linear programming, 24–25
modeling languages, 73–74
pitfalls, 12
testing, 16–18
transportation problem, 360–362, 363–364

Matrices, 1169–1173
basis, 205
column rank, 1172–1173
diagonal, 327
identity, 211, 214, 1171
initial basis, 211
inverse of, 1173
multiplying, 1169–1170
nonsingular, 1173
null, 1171
operations of, 1169–1171
positive semidefinite, 684
projection, 323
row rank, 1172–1173
singular, 1173
submatrices, 1171
subtraction, 1169
transition, 804–805, 809–810, 812
transpose operation, 1170
vectors, 1171–1172

Matrix form, 160
Matrix form of equations, 206–208
Matrix multiplication, 1170
Max-flow min-cut theorem, 426–427
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Maximal Software, Inc., 73
Maximin payoff criterion, 752–753
Maximum flow problem, 406, 428–429, 601

algorithm, 422–424
applications, 421–422
augmenting path algorithm, 423–424
finding augmenting path, 426–427
and minimum cost flow problem, 436–437
using Excel, 428–429

Maximum likelihood criterion, 753–754
Mean, 658
Mean absolute deviation, 1026
Mean critical path, 489
Mean leaving rate, 850
Mean square error, 1026
Measures of forecast uncertainty, 1035–1036
Medical team distribution, 542–547
Merit Brass Company, 1010
Metaheuristics, 605
Method of Lagrange multipliers, 1167
Method of least squares, 1030–1033
Method of successive approximations, 1070,

1075–1077
Microcomputers, 431
Microsoft Corporation, 162
Microsoft Excel, 5–6
Microsoft Project, 468, 472–474, 487, 1158
Midpoint rule, 671
Minimax criterion, 732, 734–735
Minimax theorem, 734
Minimization technique, 703–706
Minimum cost flow problem, 61, 66, 350, 391,

405, 406, 601
applications, 429–431
and assignment problem, 435
description of, 429
distribution network problem, 433–434
example, 433–434
final comments on, 437
formulation, 431–434
special cases

maximum flow problem, 436–437
shortest-path method, 436
transportation problem, 435
transshipment problem, 435–436

using Excel, 434–435
Minimum cover, 629
Minimum ratio test, 120–121, 125
Minimum spanning tree problem, 410, 415–420

algorithm, 417–418
applications, 416–417
applying algorithm, 418–420

Mixed congruential method, 1103–1105
Mixed integer programming, 40, 576, 589, 590,

594, 601–602

Mixed integer programming—Cont.
branch-and-bound algorithm, 616–622
example, 619–622
summary of, 618

M/M/1 queueing theory model, 1092–1096
M/M/s queueing theory model, 852–860
Model, 355
Model enrichment, 12
Model for evaluating technology alternatives,

1100
Modeling languages, 73–74, 78–89, 162
Modeling system, 6
Model validation, 3, 12, 17–18, 65, 161
Modified simplex method for quadratic

programming, 684, 686–689
Money, utility functions, 771–773
Monsanto Corporation, 4, 12–13
Monte Carlo techniques, 1126–1127
Most favorable value, 34
Most likely estimate, 486
Moving-average forecasting, 1017
MPL/CPLEX, 31, 163, 579–580, 689–690,

1157–1158
MPL software, 6, 73, 76–78, 163, 702
Multiechelon inventory systems, 984–985
Multiperiod inventory models

with batch orders and no setup cost, 982
with setup cost, 981–982
without setup cost, 980
variation, 980–981

Multiple optimal solutions, 35
Multiple-server case, 863, 956–858
Multiple servers, 853
Multiplicative congruential method, 1105
Multiproduct inventory systems, 983
Multivariable unconstrained optimization,

673–679
Mutually exclusive alternatives, 578, 579, 583,

588, 601

Naive forecasting model, 1016
National Forest Administration, 780
National Weather Service, 780
Natural language financial planning, 63
Nearly optimal solution, 615–616
Negative right-hand sides, 136–137
Net flow, 414
Net flow constraints, 60–61
Net present value, 577, 1123–1126
Network design, 420
Network optimization models, 405–449

cases, 458–468
conclusions, 448–449
maximum flow problem, 420–429
minimum cost flow problem, 429–438

Network optimization models—Cont.
minimum spanning tree problem, 410, 415–420
prototype example, 406–407
shortest-path problem, 411–415
terminology for, 407–410

Network representation, 351–354, 384–385
Networks, 350, 539

components of, 408
definition, 407
to display projects, 470–474

Network simplex method, 391, 406, 410, 413,
429, 435, 438–449

correspondence between BF solution and
feasible spanning tree, 439–440

entering basic variable, 441–444
fundamental theorem, 440
leaving basic variable and next BF solution,

444–448
optimality test, 447–448
and upper bound technique, 438–439

New England Electric System, 780
New Haven Health Department, 4, 10
Newsboy problem, 962, 1002–1004,

1116–1118
Newsvendor problem, 962n
New York City, 924–925, 1098
Next-event incrementing, 1095–1096, 1132
No backlogging, 939
Node constraints, 432, 434, 439
Nodes, 407–408

decision tree, 765
No feasible solution, 34, 148–149, 607
No leaving basic variable, 129–130
Nonbasic arcs, 439–440
Nonbasic variables, 116, 118, 120, 124, 199,

204, 245
changes in coefficients of, 252, 269–273

Nonconvex programming, 668
search procedures, 702–703
sequential unconstrained minimization

technique, 703–706
Noncooperative game, 742
Nonlinear costs, 975
Nonlinear programming, 40, 322, 653–706

cases, 720–735
convexity in, 1159
convex programming, 697–702
graphical illustration, 659–664
Karush-Kuhn-Tucker conditions for

constrained optimization, 679–683
multivariable unconstrained optimization,

673–679
nonconvex programming, 702–706
one-variable unconstrained optimization,

670–673
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Nonlinear programming—Cont.
quadratic programming, 683–690
sample applications

portfolio selection, 658–659
product-mix problem, 655–656
transportation problem, 656–568

separable programming, 690–697
types of problems, 664–670

complementarity problem, 669–670
convex programming, 667
fractional programming, 668–669
geometric programming, 668
linearly constrained optimization, 665
nonconvex programming, 668
quadratic programming, 665–667
separable programming, 667
unconstrained optimization, 665, 667

Nonnegative artificial variable, 134
Nonnegative variables, 120
Nonnegativity constraints, 33, 60–61, 114–115,

116, 318, 667
Nonpreemptive goal programming, 333–335
Nonpreemptive priorities, 880, 881–882
Nonsingular matrix, 1173
Nonzero-sum game, 742
No optimal solutions, 35
Nori and Leets Company, 50–52, 160, 590
Normal cost, 494
Normal distribution, 490, 1108–1109
Northwest corner rule, 369–370

compared to other criteria, 373
n-person game, 742
NPV; see Net present value
n-step transition probabilities, 804, 808–810
Null matrix, 1171
Null vector, 203, 1172
Numerical instability, 705

Objective function, 11, 13, 33, 75
deterministic dynamic programming, 541–542
gradient, 322
simultaneous changes in coefficients, 273

Objectives, 8–10
Odds and evens game, 726
Oglethorpe Power Corporation, 781
Ohio Edison Company, 780
OMEGA, 20
One-dimensional search procedure, 670–673,

698
100 percent rule

for changes in objective function
coefficients, 273

for changes in right-hand sides, 267–268
One-variable unconstrained optimization,

670–673

Open DataBase Connectivity, 87, 89
Operations research

algorithms, 5–6
applications, 4
data gathering, 7–10
impact of, 3–5
mathematical models, 10–20
nature of, 2–3
OR Courseware, 5–6
origins of, 1–2
phases of study, 7
problem definition, 7–10
role of simulation, 1085–1086

OPL Studio, 162
Optimal basic feasible solution, 131
Optimality

condition for, 246
necessary and sufficient conditions, 679
principle of, 540, 549

Optimality test, 111–112, 609
BF solution, 122–123
duality theory, 235
mixed integer programming, 618
network simplex method, 447–448
in sensitivity analysis, 261
simplex method, 125
transportation simplex method, 375–376

Optimal mixed strategy, 737
Optimal policy, 539–540

for inventory, 953, 969–971
Markov decision processes, 1059–1064
policy improvement algorithm, 1070–1073

Optimal policy decision, 540
Optimal production schedule, 953, 956
Optimal service level, 967
Optimal solution, 3, 14, 30, 34, 539

and CPF solutions, 195–198
for dual problem, 235
multiple, 130–132
related to corner-point feasible solution,

35–36
separable programming, 696
simplex method, 122–123, 127–128

OptiMax 2000, 73, 163
Optimistic estimate, 486
Optimization methods; see Classical

optimization methods
Optimization Subroutine Library, 623
Optimizer, 19, 21
Optimizer system, 984–985
OR Courseware, 5–6, 30–31, 123, 262, 468,

1156–1158
Ordering cost, 937, 964
Order quantity, 958
Order-quantity policy, 957

Organizational complexity, 1–2
Origin, 113
Original form of the model, 118
OR/MS Today, 1098
OR Tutor, 5, 28, 30, 115, 123, 163, 262
Overall measure of performance, 12, 31
Overhead costs, 495
Owners, 9

P and T Company problem, 351–355
Panels of experts, 1014
Parameters of a model, 11, 13, 32, 255, 355
Parameter table, 355–356
Parametric linear programming, 159–160, 309,

312–317
in sensitivity analysis, 280–284
systematic changes in b1 parameters,

315–317
systematic changes in Cj parameters,

313–315
Parametric programming, 659
Partial autocorrelation, 1027
Partially crashing an activity, 493–494
Parts Inventory Management System, 19
Patent protection, 402n
Path, 408
Payoff, 751
Payoff table

in decision analysis, 751
solving simple games with, 728–733
and strategies, 726–727, 728–729

Penalty function method, 697
Penalty points, 334
Penalty weights, 333
Perfect information, 762–763
Periodicity properties, 812
Periodic review, 940–941
Periodic review inventory models, 951–956
Period of a state, 812
Perishable products, 961–975
Personnel scheduling, 57–59, 63–65
PERT; see Program evaluation and review

technique
PERT three-estimate approach, 486–487, 1098,

1118, 1120–1121
Pessimistic estimate, 486
Petroleum industry, case, 65–67
Phase-type distributions, 879
Phillips Petroleum, 781
Piecewise linear function, 316, 609–691, 656,

696–697
PIMS; see Parts Inventory Management System
Pivot column, 125
Pivot number, 126
Pivot row, 126
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Planning, 24
Point estimate, 1135
Poisson distribution, 803, 805, 845–846
Poisson input process, 846, 858, 871, 872,

876–878, 880, 886
Poisson process, 836, 846, 886

independent, 887–888
Policy decision, 539
Policy improvement algorithm, 1070–1073
Pollaczek-Khintchine formula, 872, 873, 875
Polygon, 193
Polyhedron, 193–194
Polynomial time algorithm, 165–166
Ponderosa Industrial, 62–63
Portfolio selection with risky securities, 658–659
Positive semidefinite matrix, 684
Posterior probabilities, 758–762, 767
Postoptimality analysis, 14, 15, 67, 109

and interior-point approach, 166, 167
for linear programming, 152
parametric linear programming, 159–160
reoptimization, 152–153
sensitivity analysis, 156–159
shadow prices, 153–156

Postoptimality tasks, 219
Posynomials, 668
Precedence diagramming method, 511
Prediction interval, 1034–1036
Preemptive goal programming, 333, 335–339

more than two priority levels, 339
sequential procedure, 336–338
streamlined procedure, 338–339

Preemptive priorities, 880, 882–885
Preimplementation test, 18
Premium Solver, 69, 162, 163
Price demand curve, 655
Price elasticity, 655
Primal, 230
Primal-dual relationships, 230

complementary basic solutions, 242–245,
312n

between complementary basic solutions,
245–247

complementary optimal basic solution,
245–246, 253–254

complementary optimal solutions, 237
complementary slackness property, 243–244
complementary solutions property, 236–237,

238
corresponding forms, 250
duality theorem, 238
strong duality property, 236, 238
summary of, 236–238
symmetry property, 237, 248
weak duality property, 236, 238

Primal-dual table, 231–233
Primal feasible solution, 246–247, 309–310
Primal problem, 231–232, 683

adapting to other primal forms, 247–252
complementary basic solutions, 243

Principle of optimality, 540, 549, 1075
Prior distribution, 752
Priority classes, 880
Priority-discipline queueing models, 879–885

County Hospital example, 883–885
description, 879–881
nonpreemptive priorities, 880
preemptive priorities, 880
results for nonpreemptive priorities, 881–882
results for preemptive priorities, 882–883
single-server variations, 882

Prior probabilities, 752, 767
Probabilistic dynamic programming, 562–568,

1070
decision tree, 562–563
reject allowances problem, 563–565
winning in Las Vegas, 565–567

Probability density function, 842
Probability distribution, 562, 1060, 1102

generation of random numbers from,
1105–1110

for project duration, 488–490, 501
Probability of absorption, 820–821
Probability theory, definition of expected value,

734
Probability tree diagram, 760
Problem definition, 7–10
Processing facilities, 430
Procter and Gamble, 4, 354
Product form solution, 886
Production and distribution network, 581–582
Production cost, 939
Production rates, 25–26
Production schedule

master, 950
optimal, 953, 956

Production yield forecasts, 1011
Product mix, 26

case, 62–63
in nonlinear program, 655–656
problem, 74

Products
dependent-demand, 949
perishable, 961–975
stable, 961, 975–983

Product splitting, 387
Profit curves, 609–691, 694
Profit function, 38, 39, 656
Profit maximization, 8, 25–26
Profit per batch produced, 26, 34

Program evaluation and review technique,
468–513, 1111

cases, 524–532
computer use, 509
dealing with overlapping activities, 511
evaluation of, 508–512
future of, 512
means and variances of activity durations,

509–510
probability of meeting deadline, 510–511
for project costs, 502–508
project scheduling, 475–485
resource allocation, 511–512
in simulation model, 1118–1122
uses, 468
value of, 508–509

Programming, 24
Programming languages, 1112–1113
Project costs

controlling, 502, 506–508
scheduling, 502–506

Project deadline, 1098, 1118–1122
Project duration, 475

probability distribution, 488–490, 501
simplifying approximations, 487–490

Projected gradient, 323–325
Projection matrix, 323
Project management

cases, 524–532
earliest start time, 477–482
earliest finish time, 477–482
evaluation of PERT/CPM, 508–512
with MS Project, 472–474
network visual display, 470–474
PERT/CPM for, 468–469
prototype example, 469–470
scheduling and controlling costs, 502–508
scheduling with PERT/CPM, 475–485
time-cost trade-offs, 491, 492–502
uncertain activity durations, 485–492

meeting deadline, 491
PERT three-estimate approach, 486–487
simplifying approximations, 487–490

Project management software, 468, 509
Project network, 471–472
Project scheduling

critical path, 475–476
identifying slack, 482–485
individual activities, 477–482
review of, 485

Proof by contradiction, 195–196
Proper form of the Gaussian elimination, 118
Proportionality

analysis, 62
assumption, 36–40, 548
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Proportionality—Cont.
violating, 594–598

Pseudo-random numbers, 1103
Pure strategies, 733

Quadratic approximation method, 697–698
Quadratic programming, 162, 665–667, 683–690

Korush-Kuhn-Tucker conditions, 685–686
modified simplex method, 684, 686–689
software options, 689–690

Quality constraint, in primal problem, 248–249
Quality Stores, 583
Quantity discounts, 946–947
Quasi-Newton method, 702
Queue discipline, 835, 836
Queueing models, 834–835
Queueing simulation, 1096
Queueing Simulator, 1131
Queueing systems, 834, 835

design and operation of, 1097–1098
design decisions, 909

Queueing theory, 64, 834–890
applications

award-winning, 923–926
conclusions, 926
decision making, 909–911
decision models, 917–923
examples, 907–909
waiting-cost functions, 912–917

basic structure of models
basic queueing process, 835
calling population, 835–836
elementary queueing process, 837–839
input source, 835–836
interarrival time, 836
queue, 836
queue discipline, 836
relationships between L, W, Lq, and Wq,

840
service mechanism, 837
terminology and notation, 839–840

birth and death process models, 849–866
case, 905–906, 932–934
conclusions on, 889–890
examples of real systems

commercial service, 840–841
internal service, 841
social service, 841
transportation service, 841

hyperexponential distribution, 878–879
models without Poisson input, 876–878
nonexponential distribution models

Erlang distribution and, 873–875
M/D/s model, 872–873
M/Ek/s model, 873–876

Queueing theory—Cont.
nonexponential distribution models—Cont.

M/G/1 model, 871–872
phase-type distributions, 879
Poisson input process, 846
Poisson process, 846
Pollaczek-Khintchine formula, 872, 873, 875
priority-discipline queueing models, 879–885
product form solution, 886
prototype example, 835
queue discipline, 835
queueing networks, 885–889

equivalence property, 886
infinite queues in series, 886–887
Jackson networks, 887–889

role of exponential distribution, 841–848
service mechanism, 835
and simulation, 1131–1138
simulation example, 1092–1096
time advance methods

fixed-time incrementing, 1093–1095
next-event incrementing, 1095–1096

Queue length, 839
Queues, 834, 836

Radiation therapy, example, 44–46, 137–148
Rand Corporation, 1101
Randomized policies, 1060–1061
Random number integer, 1102
Random numbers

characteristics, 1102–1103
congruential methods for generating

additive method, 1105
mixed congruential method, 1103–1105
multiplicative method, 1105

and cycle length, 1104
generation of, 1101–1105, 1102
variance-reducing techniques, 1129

Random numbers table, 1101
Random observations, generation of

acceptance-rejection method, 1109–1110
chi-square distribution, 1108–1109
Erlang distributions, 1107–1108
exponential distribution, 1107–1108
inverse transformation method, 1106–1107
normal distribution, 1108–1109
simple discrete distribution, 1105–1106

Random variables, 43, 823–825
Rank of a matrix, 1172–1173
Rank of a set of vectors, 1172
Rate in � rate out principle, 850–852
Ratio formula, 1135
Real arcs, 439
Recipient cells, 377
Recurrence time, 818–820

Recurrent state, 811–812
Recurring branching variables, 617
Recursive equation, 1064
Recursive relationship, 540, 549, 561
Reduced costs, 170, 272
Redundant constraint, 59, 624–626
Refinery LP system, 65
Regeneration point, 1132, 1134
Regenerative method

application of formula, 1136–1138
innovative approach, 1131–1135
of statistical analysis, 1131
statistical formula, 1135–1136

Regional planning, example, 46–49
Regression analysis, 1009, 1028–1036
Regression line, 1032
Reject allowance, 1011
Reject allowances problem, 563–565
Relaxation

Lagrangian, 613
LP, 601–603, 606

Reoptimization, 609
in sensitivity analysis, 261
technique, 152–153

Reorder point, 948, 957, 958–960
Replicability, 21
Requirements assumption, 355
Residual capacities, 422
Residual network, 422
Resource allocation, 511–512
Restricted-entry rule, 687–688
Retrospective test, 17
Revenue, 939–940
Revenue management, 963
Reverse arcs, 438, 439
Revised simplex method, 160, 190, 202–212

general observations, 211–212
matrix form of current set of equations,

206–208
overall procedure, 208–211
solving for a basic feasible solution, 204–206
summary of, 208–211

Reynolds Metals Company, 583, 1099
Right-hand sides, simultaneous changes in,

267–278
Rijkswaterstaat, 4, 13, 16, 18, 21
Risk analysis, 1123
Risk-averse individual, 772, 776
Risk-neutral individuals, 772
Risk profile, 1100, 1123, 1126
Risk seekers, 772
RiskSim, 1115
Risk tolerance, 776
Rotatables Allocation and Planning System,

1011
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Rounding up, 59
Row rank of a matrix, 1172–1173
Row vector, 1171
(R,Q) inventory policy, 957, 982, 985
Russell’s approximation method, 371, 373

compared to other criteria, 374

SABRE reservation system, 584
Saddle point, 732
Safety stock, 959
Sales force composite forecasting, 1014
Sales forecasting, 1010
Salvage cost, 940
Salvage value, 940, 963
Sample covariance, 1135
Sample size of one, 1016
Sample standard deviation, 1090
Sample variances, 1135
Sampling proportion, 1128
Sampling weight, 1128
San Francisco Police Department, 4, 9, 576
Santa Clara University, 780
Satisficing, 14
Save-It Company, 53–57
Scarce goods, 155
Scenarios, 16
School assignment, case, 307–308
Scientific inventory management, 935–936
Scientist distribution problem, 549–552
SDM system, 65–66
Seasonal effects time series, 1016, 1018–1021

example, 1019–1020
general procedure, 1020–1021
seasonally adjusted, 1020

Seasonal factor, 1019
Seed, 1103
Seervada Park problem, 412–413, 418–420,

424–428, 436
Sensible-odd-bizarre method; see SOB method
Sensitive parameters, 15, 156, 244
Sensitivity analysis, 11, 15, 16, 43, 62, 778–779

applying
changes in bi parameter, 262–268
changes in coefficients of basic variables,

274–278
changes in coefficients of nonbasic

variables, 269–273
introduction of a new variable, 273–274,

278–279
simultaneous changes in right-hand sides,

267–278
Bayes’ decision rule, 755–758
cases

air pollution control, 302–304
school assignments, 307–308

Sensitivity analysis—Cont.
and duality theory, 230
essence of, 254–262
need for, 255
parametric programming, 280–284
role of duality theory

changes in coefficients of nonbasic
variables, 252

introduction of a new variable, 253–254
other applications, 254

in simplex method, 156–159
summary of procedures, 261–262
using Excel Solver, 157–159

Sensitivity report, 157
Separable function, 667
Separable programming, 667

extensions, 696–697
key property of, 693–694, 696
reformulation as linear programming

problem, 692–696
Sequence of distinct acts, 408
Sequence of interrelated decisions, 539
Sequential-approximation algorithms,

697–698
Sequential procedure for preemptive goal

programming, 336–338
Sequential quadratic approximation methods,

702
Sequential unconstrained algorithms, 697
Sequential unconstrained minimization

technique, 703–706
Serial correlation, 1105
Servers, 837, 838

multiple, 853
Service completions, 1093
Service facilities, 837
Service industries, 1012, 1100
Service jobs, 834
Service level, 966–967
Service mechanism, 835, 837
Service times, 837, 838

probability distribution, 841
Set covering problems, 599–600, 601
Set partitioning problems, 600
Setup cost, 937, 957, 972–975
7-Eleven stores, 65
Shadow prices, 153–156, 219, 683
Shape parameter, 873
Shipment dispatching, 582–583
Shortage cost, 937, 939, 964
Shortages, planned, 943–946
Shortest-path problem, 406, 534n, 601

algorithm for, 411–412
applying the algorithm, 412–413
and minimum cost flow problem, 436

Shortest-path problem—Cont.
other applications, 415
using Excel, 413–414

Simple discrete distribution, 1105–1106
Simplex method, 2, 25, 30, 109–172,

1062–1063; see also Dual simplex
method; Network simplex method;
Revised simplex method; Transportation
simplex method

adaptation to other model forms, 132–152
algebra of

determining direction of movement, 120
determining where to stop, 120–121
initialization, 118
iteration 2 and optimal solution, 122–123
optimality of, 118–119
optimality test, 122
solving for the new BF solution, 121–122

Big M method, 134–136
cases

AmeriBank, 185–187
fabrics/fall fashions, 182–185
school assignment, 188–189

compared to dual simplex method, 309–310
computer implementation, 160–163
dual problem in, 238
economic interpretations, 241–242
essence of, 109–114

key solution concept, 112–114
solving the example, 111–112

foundations of, 190–202
adjacent CPF solutions, 193–195
extensions to the augmented form, 198–202
properties of CPF solutions, 195–198
terminology, 190–193

fundamental insight, 212–220
geometric and algebraic interpretations, 119
interior-point algorithm, 163–168
postoptimality analysis

parametric linear programming, 159–160
reoptimization, 152–153
sensitivity analysis, 156–159
shadow prices, 153–156

revised, 160
setting up, 114–118
tabular form, 123–128

initialization, 125
iteration, 125–126
optimality test, 125
resulting optimal solution, 127–128

tie-breaking in
entering basic variable, 128–129
leaving basic variable, 129
multiple optimal solutions, 130–132
no leaving variable, 129–130
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Simplex tableau, 124, 126, 127, 141
Simulated annealing, 605
Simulation, 1084–1140

applications/examples
coin-flipping game, 1087–1091
construction company problem,

1118–1122
distribution systems, 1099
financial risk analysis, 1099–1100,

1122–1126
health care, 1100
inventory management, 1098, 1116–1118
manufacturing systems, 1099
meeting deadlines, 1098
M/M/1 queueing system, 1092–1096
queueing systems, 1097–1098
service industries, 1100

cases, 1151–1155
conclusions, 1138–1140
cycles, 1132
essence of, 1084–1097

continuous simulation, 1086
discrete event, 1086
role in operations research, 1085–1086

generation of random numbers, 1101–1105
generation of random observations,

1105–1110
length of a cycle, 1132
outline of major study, 1110–1115

checking accuracy, 1112
data collection, 1111–1112
formulation of problem, 1111
model formulation, 1111–1112
plan simulations, 1114
presenting recommendations, 1115
run and analysis, 1114–1115
selection of software, 1112–1113
testing model validity, 1113–1114

queueing simulation, 1096
regeneration point, 1132
regenerative method of statistical analysis,

1131–1138
on spreadsheets, 1115–1126
technique and uses, 1084
time advance methods

fixed-time incrementing, 1093–1095
next-event incrementing, 1095–1096

variance-reducing techniques, 1126–1130
Simulation clock, 1091–1092
Simulation model, 1085
Simultaneous solution, 192
Simultaneous solution of constraint boundary

equations, 195
Simultaneous tolerance levels, 1035–1036
Single-period probabilistic model, 962n

Single-period stochastic model, 962n
Single-server case, 854–856, 861–862, 865
Single-server queueing system, 1133–1134
Singular matrix, 1173
Sink, 421
Site selection problem, 581
Skewed distribution, 1090
Slack

for an activity, 484
and critical path, 484–485
in functional constraints, 559
identifying, 482–485
zero, 484

Slack variables, 114–115, 198–199, 212
Slope-intercept form, 29
Slope of the profit function, 38
Smoothing constant, 1017
SOB method, 249–252
Social service, 841
Solid waste disposal, example, 53–57
Solid waste management, 430
Solutions of the model, 33–36
Solution tree, 606, 608
Solved nodes, 411–412
Solvers, 78
Sources, 354, 421, 430
South African National Defense Force, 4, 581
Southern Confederation of Kibbutzim, 46–49
Southern Electric, 780
Southland Corporation, 65, 67
Soviet Union, 347
Spanning tree, 410, 434

feasible, 439–440
Spanning tree solution, 440
Spare parts needs, 1010–1011
Special restriction, 692–693
Spreadsheets, 15

for linear programming, 67–72
with LINGO, 86–87
for simulation, 1112–1113, 1115–1126
software, 161–163
transportation problems, 358–365

Square matrix, 1171
(s,S) inventory policy, 973–974
Stable products, 961, 975–983
Stable solution, 732
Staffing needs forecasting, 1012–1013
Stages, 539
Stakeholders, 9
Start-time constraints, 499
Startup costs, 51
State of nature, 751
States, 539, 802
State system, 839
State transition formula, 1092

State vector, 560
Stationary policy, 1057, 1059
Stationary probabilities, 813
Stationary transition probabilities, 803–804,

823
Statistical analysis, 1131–1138
Statistical forecasting methods, 1009, 1037

applications, 1013
Statistical formula, 1135–1136
Steady-state condition, 839, 849
Steady-state equation, 813–814, 825–826
Steady-state probabilities, 825–826, 1055
Steady-state properties, 812–813
Stochastic inventory models, 936

continuous review, 956–961
choosing order quantity Q, 958
choosing reorder point R, 958–960
example, 961
model assumptions, 957–958
service level measures, 958–959

nonlinear costs, 975
periodic review, 975–983

multiperiod models, 980–982
two-period model with no setup cost,

976–980
single-period for perishable products,

961–975
analysis, 965–967
application, 967–968
assumptions, 965
example, 963–965
exponential demand distribution, 974–

975
with initial stock level, 968–972
nonlinear costs, 971–972
with no setup cost, 1116
with setup cost, 972–975
types of products, 962–963

Stochastic processes, 802
Stockholders, 9
Stockout, 943
Storage cost, 939
Strategies

dominated, 729–731
game theory, 726–728
minimax criterion, 732, 734–735
mixed, 733–735
optimal mixed, 737
and payoff table, 726–727, 728–729
pure, 733
stable solution, 732

Stratified sampling, 1127–1129
Streamlined algorithms, 350
Streamlined procedure for preemptive goal

programming, 338–339
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Strictly concave function
of several variables, 1162–1163
of single variable, 1159–1161

Strictly convex function, 975
of several variables, 1162–1163
of single variable, 1159–1161

Strong duality property, 236, 238, 683, 740
Structural constraints, 33
Submatrices, 1171
Sum of squares, 1031
Superoptimal basic solution, 254
Superoptimal solution, 261
Suppliers, 9
Supply, 354
Supply, distribution, and marketing planning,

case, 65–67
Supply chain, 985, 1098
Supply chain management, 985–986
Supply node, 410
Surplus stock, 1004–1008
Surplus variables, 139, 234
Symmetry property, 237, 248
SYSNET, 19
Systems Optimization Laboratory, Stanford

University, 706

Table lookup approach, 1107
Tables, 1174–1175
Tabular form of simplex method, 123–128
Tabu research, 604
Taco Bell, 4
Tasks, 381
Team approach, 3, 8
Telecommunications transmission systems, 834
Testing, 12
Texaco, 4, 20
Texas Stadium, 583
Tie breaking, 128–132
Tightening constraints, 626–622
Time advance methods

fixed-time incrementing, 1093–1095, 1132
next-event incrementing, 1095–1096, 1132

Time-cost graph, 493
Time-cost trade-offs, 491, 492–502

conclusions on, 501–502
crashing activities, 494–496
for individual activities, 493–494
linear programming for, 496–501

Time series, 1009, 1014–1016
Box-Jenkins model, 1026–1028
case, 1048–1052
constant-level model, 1016–1018
exponential smoothing for linear trend,

1021–1025

Time series—Cont.
more than one time period ahead, 1025
seasonal effects, 1018–1021

Time value of money, 1069–1070
Tomco Oil Company, 780
Tornado diagrams, 779
Torricelli Act, 347
Total function value, 42
Total variable cost, 948
Toyota Motor Company, 950
Transient condition, 839, 849
Transient state, 811–812
Transition intensities, 824
Transition matrix, 804–805, 809–810, 812
Transition probabilities, 803–804, 823, 1053,

1056
Transition rates, 824–825, 826–828
Transportation problem, 350–381, 601

award-winning application, 354
case, 401–402
jet engine production, 359–362
and minimum cost flow problem, 435
model, 354–357
network representation, 351–354
in nonlinear programming, 656–658
prototype example, 351–364
terminology for, 354–355
using Excel, 358–365
water supply problem, 362–365, 370–373

Transportation service, 841
Transportation simplex method, 350–351, 365

initialization, 368–374
northwest corner rule, 369–370
Russell’s approximation, 371, 373
Vogel’s approximation, 370–371

iteration for, 376–379
optimality test, 375–376
setting up, 365–367
summary, 379–381

Transportation simplex tableau, 367–368, 374,
376, 378

Transpose operation, 1170
Transshipment nodes, 410, 421
Transshipment problem, 391, 435–436
Tree, 410
TreePlan, 769–770, 776
Trend factor, 1022
Trend smoothing constant, 1023
Triangular distribution, 1120–1121
Turkish Petroleum Refineries Corporation, 581
Two-bin inventory system, 956
Two-period stochastic inventory model,

976–980
Two-person, zero-sum game, 742

and decision analysis, 751

Two-person, zero-sum game—Cont.
formulation of, 726–729
simple game formulation, 728–729

Two-phase method, 142–148, 686–687
Two-segment piecewise linear functions, 697
Two-sided goal, 333
Two-variable problem, 675, 676–677

Unbounded Z, 35, 129–130
Uncapacitated minimum cost flow problems,

439
Uncertainty

choice in face of, 751
and decision analysis, 749

Unconditional state probabilities, 810
Unconstrained optimization, 665

and convex programming, 667
multivariable, 673–679
one-variable, 670–673
several variables, 1166
single variable, 1165–1166

Undirected arc, 408, 413, 422–423
Undirected network, 408
Undirected path, 409
Unemployment insurance econometric

forecasting model, 1012
Uniform random number, 1092, 1102
Union Airways, 57–59
United Airlines, 4, 63–65, 67, 924, 1012
United States Department of Defense, 780
United States Postal Service, 780, 1100
Unit holding cost, 963
Unit production cost, 937
Unsatisfied demand, 964
Unsatisfied demand cost, 939
Unsolved nodes, 411–412
Unstable solution, 733
Unused demand capacity, 364
Upper, one-sided goal, 333
Upper bound, 196–197
Upper bound constraints, 60–61, 317–318
Upper bound technique, 78, 309

in linear programming, 317–320
in network simplex method, 438–439

User acceptance test, 21, 985
User team, 18, 21
Utility functions for money, 771–773
Utility theory

applying, 773–775
approach for estimating payoff, 775–776
exponential utility function, 776
fundamental property, 772
using decision analysis, 776–778
utility functions for money, 771–773

Utilization factor, 839
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Value
of experimentation, 762–763
of perfect information, 762–764

Value determination, 1065
Value of the game, 731
Variable metric method, 702
Variance, 658
Variance-reducing techniques, 1126–1130

complementary random numbers, 1129
conclusions on, 1130
Monte Carlo techniques, 1126–1127
stratified sampling, 1127–1129

Vector of basic variables, 204
Vectors, 1171–1172
Vehicles, 834
Vogel’s approximation method, 370, 371

compared to other criteria, 373–374
Volume discounts, 656

Waiting-cost functions, 912–917
g(N) form, 912–914
h(°W) form, 914–915
linear, 913

Waiting-in-line situation; see Queueing theory
Waiting time in the queue, 855
Warm-up period, 1095
Wasted iteration, 386
Water resource distribution, 362–365, 370–373
Weak duality property, 236, 238
Weighted average, 130
Weighted set covering problem, 599n
What-if questions, 20, 62–63
Winter Simulation Conference, 1101
World Bank, 584
Worldwide Inventory Network Optimizer, 986
Worst-case performance, 165–166
Worst case scenario, 487

Wyndor Glass Company problem, 25–44, 68,
109–112, 118, 119, 124–135, 150–151,
156–158, 164–165, 200–202, 205–206,
256–261, 262–284, 559–562, 659–664,
694–696

Xerox Corporation, 923–924

Yellow Freight System, Inc., 4, 19, 21
Yes-or-no decisions, 579–585, 586–587, 589

Zero slack, 484
Zero-sum games; see Two-person, zero-sum

game
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