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Preface

Fractional calculus is now being more widely accepted. The (constant) order of
differentiation and/or integration can be an arbitrary real number including integers
as special cases. For example, a low pass filter (LPF) with a fractional order pole
can be written as HðsÞ ¼ 1=ðssa0 þ 1Þ, where a0 [ 0 is a constant. Its corre-
sponding governing differential equation is

s
da0

dta0
y tð Þ þ y tð Þ ¼ u tð Þ;

where u(t) and y(t) are input and output signals, respectively; da0

dt
a0 y tð Þ or y a0ð Þ tð Þ is

the notation of fractional order derivative of y(t). It is mathematically immediate to
generalize this constant-order LPF in distributed-order sense as

Hdo sð Þ ¼ 1
b� a

Z b

a

1
ssa þ 1

da;

where a and b are given constants and the term 1
b�a is for scaling the DC gain to be

0 dB. The distributed-order dynamics can be characterized by the following dis-
tributed-order differential equation

Z b

a
w að Þ da

dta
y tð Þdaþ y tð Þ ¼ u tð Þ;

where w(a) can be regarded as order-dependent time constant or ‘‘order weight/
distribution function.’’

Note that, the above constant-order model is in the same form of the famous
classic Cole–Cole relaxation model, which can be recovered from the distributed-
order model by setting the order distribution function w(a) = d (a -a0), where d (�)
is the well known Dirac Delta function. So, it is natural to believe that distributed-
order Cole–Cole model Hdo(s) may be in a better position to characterize the
complex material properties when the distribution function w(a) is properly
chosen. The wisdom in modeling ‘‘All models are wrong but some are useful’’ and

vii



‘‘All models are wrong but some are dangerous’’, in fact, encourages us to explore
the distributed-order generalization since we believe this notion is helpful, at least
partially, as demonstrated in this Brief, with no harm.

With the above in mind, this Brief presents a general approach of distributed-
order operator which can and will find its use for real world applications, as being
observed from recent literature in many fields of science and engineering. It is
devoted to provide an introduction of the latest research results about distributed-
order dynamic system and control as well as distributed-order signal processing,
which are based on the distributed-order differential/integral equations, to serve
the control and signal processing community as a guide to understanding and using
distributed-order differential/integral equations in order to enlarge the application
domains of its disciplines, and to improve and generalize well established
(constant-order) fractional-order control methods and strategies.

A major goal of this Brief is to present a concise and insightful view of the
relevant knowledge by emphasizing fundamental methods and tools to understand
why distributed-order concept is useful in control and signal processing, to
understand its terminology, and to illuminate the key points of its applicability.
The Brief is suitable for science and engineering community for broadening their
toolbox in modeling, analysis, control, filtering tasks, with a hope that, transfor-
mative progress can be made in their respective research projects.

Tsinghua University Zhuang Jiao
Utah State University YangQuan Chen
Technical University of Kosice Igor Podlubny
September 2011
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Chapter 1
Introduction

1.1 From Integer-Order Dynamic Systems to Fractional-Order
Dynamic Systems

As a branch of mathematics, calculus includes differential calculus and integral
calculus. Calculus is the study of change, and has widespread applications in science,
economics and engineering, and can solve many real world problems. It is well known
that a system’s dynamical properties can be described by an ordinary differential
equation (ODE) which contains functions of an independent variable, and one or
more of their derivatives with respect to that variable, for example, an ODE of the
following form

F(x, y, y′, · · · , y(n−1), y(n)) = 0

is called an ordinary differential equation of (integer) order n.
Being an important analytical tool in science and engineering, ordinary differential

equation arises in many different fields including geometry, mechanics, astronomy
and population modeling. Much attention has been devoted to the solution of ordinary
differential equation. In the case where the equation is linear, it can be solved
by analytical method; and there are several theorems that establish existence and
uniqueness of solutions to initial value problems involving ordinary differential
equations both locally and globally. Unfortunately, most of the interesting differential
equations are non-linear and, with a few exceptions, can not be solved analytically
exactly; approximate solutions can be obtained by using computer approximations
(numerical ordinary differential equations).

Most of the discussions of control systems and controller design for control
systems are usually based on models which are described by using ordinary differ-
ential equations. However, the physical quantity in many systems may depend on
several independent variables. There is another type of differential equation when
there are two or more independent variables, i.e., partial differential equation (PDE)
of the following form

Z. Jiao et al., Distributed-Order Dynamic Systems, SpringerBriefs in Control, 1
Automation and Robotics, DOI: 10.1007/978-1-4471-2852-6_1,
© The Author(s) 2012



2 1 Introduction

F

(
x1, · · · , xn, u,

∂

∂x1
u, · · · ,

∂

∂xn
u,

∂2

∂x1∂x1
u,

∂2

∂x1∂x2
u, · · ·

)
= 0,

which involves partial derivatives of functions of several variables, and is a relation
involving an unknown function (or functions) of several independent variables and
their partial derivatives. Partial differential equations can be used to formulate, and
thus aid the solution of, problems involving functions of several variables; such
as the propagation of sound or heat, electrostatics, electrodynamics, fluid flow and
elasticity. Just as ordinary differential equations often model dynamical systems,
partial differential equations usually model multidimensional dynamical systems.
There are several well known partial differential equations, for example,

• heat equation ut = αuxx ;
• wave equation utt = c2uxx ;
• Laplace equation ϕxx + ϕyy = 0;

and so on. In frequency domain, it is well known that the rational transfer functions
of systems modeled by ordinary differential equations are called lumped-parameter
dynamic systems; the irrational transfer functions of systems modeled by partial
differential equations are called distributed-parameter systems.

However, all the orders in the above relevant ordinary differential equations and
partial differential equations or the powers in the rational/irrational transfer functions
are integers, curious researchers may have the question that why not the order be a
rational, irrational, or even a complex number? This lead to the letter from Leibniz to
L’Hospital at the very beginning of (integer-order) integral and differential calculus in
1695, in which Leibniz himself raised the question: “Can the meaning of derivatives
with integer orders be generalized to derivatives with non-integer orders?” Until now
the question raised by Leibniz for a non-integer-order derivative as an ongoing topic
has been studied for more than 300 years, and it is known as fractional calculus (FC)
(Miller and Ross 1993; Podlubny 1999) now, a generalization of calculus, which
contains differentiation and integration of arbitrary (non-integer) order. However, it
is necessary and important to make a clear statement that “fractional” or “fractional-
order” is improperly used, a more accurate term should be “non-integer-order” since
the order itself can be irrational, or complex number as well. The reason that we
continue to use the term “fractional” is because a tremendous amount of work in the
literatures use “fractional” more generally to refer to the same concept.

There are several well known definitions of fractional calculus operators, which
are recalled in the following:

• Grünwald-Letnikov’s fractional-order derivative/integral definition:

G
a Dα

t f (t) := lim
h→0

1

hα

[(t−a)/h]∑
j=0

(−1) j
(

α

j

)
f (t − jh), (α ∈ R).
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• Riemann-Liouville’s fractional-order integral definition:

R
a D−α

t f (t) := 1

Γ (α)

∫ t

a
(t − τ)α−1 f (τ )dτ, (α > 0).

• Riemann-Liouville’s fractional-order derivative definition:

R
a Dα

t f (t) := 1

Γ (n − α)

dn

dtn

[∫ t

a
(t − τ)n−α−1 f (τ )dτ

]
, (n − 1 < α < n).

• Caputo’s fractional-order derivative definition:

C
a Dα

t f (t) := 1

Γ (n − α)

[∫ t

a
(t − τ)n−α−1 f (n)(τ )dτ

]
, (n − 1 < α < n).

Based on these definitions, the study on fractional calculus equations, i.e.,
fractional-order differential equation (FODE) and fractional-order integral equation
(FOIE) which can describe more accurate behaviors of real physical phenomenon and
systems have become a hot topic in the last decades. Fractional derivative provides
a perfect tool when it is used to describe the memory and hereditary properties of
various materials and processes, this is the main reason that fractional differential
equations are being used in modeling mechanical and electrical properties of real
materials, rheological properties of rocks, and many other fields. As an important
application field of fractional calculus, the topic about fractional-order control and
system has attracted many researchers to work on. A traditional fractional-order
differential equation which can describe the fractional-order system’s dynamical
properties is of the following form:

F
(
x, 0Dα1

t y, 0Dα2
t y, · · · , 0Dαn

t y
) = 0

where 0Dαi
t , (i = 1, · · · , n) can adopt Riemann-Liouville’s or Caputo’s definition.

Before discussing fractional-order systems and control, let us recall some traditional
control concepts.

In feedback control, the basic control actions and their effects in the controlled
system behavior are well known in the frequency domain. Note that these actions
include proportional k, derivative s, and integral 1/s, which are known as PID control,
and their main effects over the controlled system behavior are Astrom and Murray
(2008):

• for proportional action, it is to increase the speed of the response, and to decrease
the steady-state error and relative stability;

• for derivative action, it is to increase the relative stability and the sensitivity to
noise;
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• for integral action, it is to eliminate the steady-state error, and to decrease the
relative stability.

For the derivative action s, the positive effects (increased relative stability) can
be observed in the frequency domain by the π/2 phase lead introduced, and the
negative ones (increased sensitivity to high-frequency noise) by the increasing gain
with slope of 20 dB/dec. The positive effects of integral action 1/s (elimination
of steady-state errors) can be deduced by the infinite gain at zero frequency, and
the negative ones (decreased relative stability) by the π/2 phase lag introduced.
By considering the above, it is quite natural to have a conclusion that we could
achieve more satisfactory compromises between the positive and negative effects by
introducing more general control actions of the form sα , 1/sβ , with α, β > 0, and we
could develop more powerful and flexible design methods to satisfy the controlled
system’s specifications by combining the actions sα and 1/sβ . The terms sα and 1/sβ

are the essence of fractional-order PID (PIλDμ) control, and the traditional transfer
function of fractional-order system is of the form

G(s) = b1sβ1 + b2sβ2 + · · · + bmsβm

a1sα1 + a2sα2 + · · · + ansαn
.

Now let us focus our attention on system modeling. Researchers in viscoelas-
ticity, electrochemistry, material science, biological systems and other fields in which
diffusion, electrochemical, mass transport, or other memory phenomena appear
(Bagley and Torvik 1984; Magin 2006), usually perform frequency domain exper-
iments in order to obtain the equivalent electrical circuits which can reflect the
same dynamic behaviors of the actual systems. It is quite normal in these fields
to find behaviors that are not the expected ones for common lumped elements
(resistors, inductors and capacitors) at all, and to define some special impedances
such as constant phase elements (CPEs), Warburg impedances, and others for
operational purposes. All these proposed special impedances have in common the
frequency domain responses of the form k/( jω)α, α ∈ R, and should be modelled
by k/sα, α ∈ R in the Laplace domain. These operators mentioned above can lead to
the corresponding operators in the time domain, which are the definitions of differ-
ential and integral operators of arbitrary order, i.e., the fundamental operators of the
fractional calculus. Similar to the relationship between ordinary differential equations
and fractional-order differential equations, there are fractional-order partial differ-
ential equations corresponding to the partial differential equations. The well known
fractional-order partial differential equations (FOPDE) are recalled as following:

• Time fractional-order diffusion equation:

∂αu(x, t)

∂tα
= ∂2u(x, t)

∂x2 , (0 < α ≤ 1) .



1.1 From Integer-Order Dynamic Systems to Fractional-Order Dynamic Systems 5

• Time fractional-order wave equation:

∂αu(x, t)

∂tα
= ∂2u(x, t)

∂x2 , (1 < α ≤ 2) .

• Time fractional-order diffusion-wave equation:

a
∂αu(x, t)

∂tα
+ b

∂βu(x, t)

∂tβ
= ∂2u(x, t)

∂x2 , (0 < α ≤ 1 < β ≤ 2) .

As an interdisciplinary branch of fractional calculus and control engineering, the
system can be modeled in a classical way or as a fractional-order one; the controller
can also be operated as a classical one or a fractional-order one. Then there are
four strategies of control systems, which are integer-order controller for integer-
order system, integer-order controller for fractional-order system, fractional-order
controller for integer-order system and fractional-order controller for fractional-
order system. In the last several decades, there has been continuing growth of
papers discussing the issues of fractional-order systems and controls, for example,
the stability results on fractional-order linear time-invariant (or FOLTI) systems
with commensurate orders were presented in Matignon (1996) for the first time;
PIλDμ controller, a generalization of PID controller was proposed in Podlubny
(1999); the tuning rule and experiments of fractional order proportional and deriv-
ative (FOPD) motion controller were given in Li et al. (2009); CRONE Control
(Oustaloup et al. 1995) was the first robust control method based on fractional
differentiation for linear time-invariant systems; the systematic results on the robust
stability of interval uncertain FOLTI systems were presented in Ahn et al. (2007), Ahn
and Chen (2008), Chen et al. (2006), Lu and Chen (2009, 2010); the bounded-input
bounded-output (BIBO) stability of fractional-order delay systems of retarded and
neutral types was studied in Bonnet and Partington (2002, 2007); based on Cauchy’s
integral theorem and by solving an initial-value problem, an effective numerical
algorithm for testing the BIBO stability of fractional delay systems was presented
in Hwang and Cheng (2006). The latest monograph (Caponetto et al. 2010; Lu and
Chen 2009) gave the systematic knowledge about fractional-order dynamic systems
and controls.

1.2 From Fractional-Order Dynamic Systems
to Distributed-Order Dynamic Systems

When the fractional calculus operators act on f (t), and we integrate 0Dα
t f (t) with

respect to the order, then distributed-order differential/integral equations can be
obtained. In this Brief, the following distributed-order differential/integral operator
notation is adopted:
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0Dw(α)
t f (t) :=

∫ γ2

γ1

w(α)0Dα
t f (t)dα

where w(α) denotes the weight function of distribution of order α ∈ [γ1, γ2].
The idea of distributed-order equation was first proposed by Caputo (1969) and

solved by him in 1995 (Caputo 1995). The distributed-order equation is intended to
model the input–output relationship of a linear time-invariant system based on the
frequency domain response observation, i.e., the distributed-order equation is the time
domain representation of the input–output relationship observed and constructed in
the frequency domain. The general form of the distributed-order differential equation
(DODE) can be given as:

N∑
i=1

ai

∫ 1

0
wi (α)0Di−α

t x(t)dα +
N∑

j=0

b j x ( j)(t) = f (t)

where wi (α) denotes the weight function with respect to the order α ∈ [γ1, γ2].
From now on, we note that the above equation can be viewed as the generalization of
ordinary differential equation (wi (α) ≡ 0) or fractional-order differential equation
(wi (α) takes only discrete values in [γ1, γ2]), then it can be concluded that both
integer-order systems and fractional-order systems are special cases of distributed-
order systems (Lorenzo and Hartley 2002).

Recently, much attention has been paid to the distributed-order differential
equations and their applications in engineering fields. For example, the general
solution of linear distributed-order differential equation was discussed systemati-
cally in Bagley and Torvik (2000); distributed-order equations were introduced in
the constitutive equations of dielectric media (Caputo 1995), the distributed-order
fractional kinetics was discussed in Sokolov et al. (2004); the multi-dimensional
random walk models were governed by distributed fractional order differential
equations in Umarov and Steinberg (2006); particularly, the distributed-order operator
becomes a more precise tool to explain and describe some real physical phenomena
such as the complexity of nonlinear systems (Adams et al. 2008; Atanackovic et al.
2007, 2009b, c; Diethelm and Ford 2009; Hartley and Lorenzo 2003; Lorenzo and
Hartley 1998, 2002; Mainardi et al. 2007a; Sokolov et al. 2004), networked struc-
tures (Carlson and Halijak 1964; Lorenzo and Hartley 2002; Xu and Tan 2006),
nonhomogeneous phenomena (Caputo 2001; Chen et al. 2009; Kochubei 2008;
Srokowski 2008; Sun et al. 2009, 2010; Umarov and Steinberg 2006), multi-scale
and multi-spectral phenomena (Atanackovic et al. 2005; Bohannan 2000; Connolly
2004; Mainardi et al. 2008; Mainardi and Pagnini 2007; Tsao 1987), etc.

Besides the distributed-order differential equations, there are still distributed-order
partial differential equations (DOPDE) being studied as the following:

0Dw(α)
t u(x, t) = ∂2

∂x2 u(x, t)



1.2 From Fractional-Order Dynamic Systems to Distributed-Order Dynamic Systems 7

where w(α) denotes the function of distribution of order α ∈ [0, 2].
Let supp denotes the support set, and we can set α1 := inf {α |α ∈ supp w(α) },

and α2 := sup {α |α ∈ supp w(α) }, then the following cases can be distinguished:

• Time distributed-order diffusion-wave equation: 0 < α1 ≤ 1 < α2 ≤ 2;
• Time distributed-order diffusion equation : α2 ≤ 1;
• Time distributed-order wave equation : α1 > 1.

For the distributed-order partial differential equations, there have been some
papers discussing those problems. For example, the time distributed-order diffusion-
wave equation was considered in Atanackovic et al. (2009b, c); time-fractional
diffusion of distributed order was discussed in Mainardi et al. (2007b, 2008);
distributed-order wave equation was analyzed in Atanackovic et al. (2011), for
more knowledge about distributed-order partial differential equations, please refer
to Atanackovic et al. (2009a), Chechkin et al. (2002), Mainardi and Pagnini (2007),
Meerschaert et al. (2011).

The theories of the distributed-order equations can be classified as: distributed-
order equations (Atanackovic et al. 2009b, c; Bagley and Torvik 2000; Caputo 1995),
distributed-order system identification (Hartley and Lorenzo 2003; Sokolov et al.
2004; Srokowski 2008), special functions in distributed-order calculus (Atanackovic
et al. 2009a; Caputo 2001; Mainardi et al. 2007a; Mainardi and Pagnini 2007),
numerical methods (Chen et al. 2009; Diethelm and Ford 2009; Sun et al. 2009,
2010) and so on (Atanackovic et al. 2005; Kochubei 2008). Moreover, there are also
three surveys (Lorenzo and Hartley 1998, 2002; Umarov and Steinberg 2006) and
three thesis (Bohannan 2000; Connolly 2004; Tsao 1987) discussing the theories and
applications of distributed-order operators. It is noted that the time domain analysis of
the distributed order operator is still unmature and urgently needed to be developed.
So in this Brief, some latest results are given in Chap. 5 with several worked out
examples with MATLAB codes given in the appendices.

1.3 Preview of Chapters

In this chapter, we focus on setting up a concise context of our Brief theme by
presenting our thought on progressing from integer-order system to fractional-order
system, from fractional-order system to distributed-order system.

Chapter 2 is dedicated to the stability issue of distributed-order linear time-
invariant (LTI) systems. Four different order distribution functions are analyzed
in details. This chapter offers original and fundamental stability results for LTI
distributed-order dynamic systems (DODS). Graphical and numerical results are
included to show the fundamental differences compared to constant order and integer
order LTI dynamic systems.

Chapter 3 serves the purpose of showing that DODS is a generalized model which
is so powerful that some really hard research problems like stability of noncommen-
surate order LTI systems can be readily answered. Specifically, as the special cases



8 1 Introduction

of distributed-order linear time-invariant systems, the stability analysis of fractional-
order systems with double noncommensurate orders and N-term noncommensurate
orders are studied in Chap. 3.

Chapter 4 shows two generic application examples using distributed-order
operator: distributed-order signal processing and optimal distributed-order damping.
In distributed-order signal processing, the simplest case of distributed-order
integrator/differentiator is discussed first followed by the discussion of distributed-
order low-pass filter. Then, optimal distributed-order damping strategies are given for
a given standard form of second order system knows as distributed-order fractional
mass-spring viscoelastic damper system. Frequency-domain method based optimal
fractional-order damping systems are numerically solved.

In Chap. 5, a new general approach to discretization of distributed-order deriv-
atives and integrals and to numerical solution of ordinary and partial differential
equations of distributed order is presented.

In Chap. 6, future topics related to distributed-order operator are discussed.
More than 100 reference are listed and cited in this Brief, even if it can not be

a complete bibliography for this field of interest. Readers can find other reference
related to this emerging topic.

MATLAB codes are provided as appendices so that the presented results of this
Brief are reproducible, minimizing the repetitive coding work for beginners who
decide to dive into this exciting and promising field of basic and applied research
which is full of opportunities of transformative research. Anyway, distributed-order
operator, is in fact characterizing mixed-scale dynamics, or trans-scale, or cross-scale
dynamics as we see it.

1.4 Chapter Summary

In this chapter we have introduced the progression from integer-order dynamic
systems to fractional-order dynamic systems, and from fractional-order dynamic
systems to distributed-order dynamic systems. Basic notations together with liter-
ature reviews are presented. A brief chapter preview is included as well.
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Chapter 2
Distributed-Order Linear Time-Invariant
System (DOLTIS) and Its Stability Analysis

2.1 Introduction

By using distributed-order concept, we can describe the dynamical properties of real
world system more accurately, so distributed-order system identification problem was
studied in Hartley and Lorenzo (1999, 2003, 2004). In the following sections, the
stability analysis of distributed-order linear time-invariant systems in four cases are
first studied, then the frequency-domain responses are presented, and time-domain
responses on the basis of numerical inverse Laplace transform technique are shown
in details.

2.2 Stability Analysis of DOLTIS in Four Cases

Consider a distributed-order system described by the following linear time-invariant
(LTI) distributed-order differential equation (DODE) and algebraic output equation:

0Dw(α)
t x(t) =

∫ 1

0
w(α)0Dα

t x(t)dα = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) (2.1)

where w(α) is the function of distribution of order α ∈ [0, 1], 0Dα
t denotes the

Caputo fractional-order derivative operator, A, B, C , D are matrices with appropriate
dimensions.

Remark 2.1 Since any interval (γ1, γ2) can be converted to (0, 1) through variable
substitution, without loss of generality, the integral interval in (2.1) is considered to
be (0, 1).

Z. Jiao et al., Distributed-Order Dynamic Systems, SpringerBriefs in Control, 11
Automation and Robotics, DOI: 10.1007/978-1-4471-2852-6_2,
© The Author(s) 2012
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For the distributed-order derivative operator Dw(α)x(t), the Laplace transform is

L
{

Dw(α)x(t)
}

(s) = x̃(s)
∫ 1

0
w(α)sαdα − x(0)

1

s

∫ 1

0
w(α)sαdα, s ∈ C\ (−∞, 0]

where x̃(s) = L {x(t)} (s) := ∫∞
0 x(t)e−st dt . By applying the Laplace transform

to (2.1) with the assumptions that x(0) = 0, u(t) = δ(t) (δ(t) is the Dirac delta
distribution), one obtains

x̃(s)
∫ 1

0
w(α)sαdα = Ax̃(s) + B

i.e.,

x̃(s) =
((∫ 1

0
w(α)sαdα

)
I − A

)−1

B

where I is the identity matrix. Application of the inverse Laplace transform to the
previous expression yields

x(t) = L−1

[((∫ 1

0
w(α)sαdα

)
I − A

)−1

B

]
(t), t > 0. (2.2)

In the following, four different cases of the weighting function of order are discussed
respectively.

Case 1 w(α) = 1
In this case, it can be followed by (2.2) that

x(t) = L−1

[((∫ 1

0
sαdα

)
I − A

)−1

B

]
(t)

= L−1

[(
s − 1

ln s
I − A

)−1

B

]
(t)

= L−1
[
ln s(s I − (I + ln s A))−1 B

]
(t). (2.3)

Remark 2.2 It is well known from complex analysis (Asmar and Jones 2002) that
complex logarithm ln z = ln |z|+ i arg z (z �= 0) defines a multiple-valued function,
because arg z is multiple-valued. For term ln s in (2.3), we know that it is a multi-
valued function of the complex variable s whose domain can be seen as a Riemann
surface (Cuadrado and Cabanes 1989; Westerlund and Ekstam 1994) of a number of
sheets which is infinite. Note that in multiple-valued functions only the first Riemann
sheet has its physical significance (Gross and Braga 1961), so we can make ln s a
single-valued function by specifying a single-valued −π < arg s < π . Because
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s = 0 and s on the negative real axis are nonremovable discontinuities, the branch
cut of ln s is (−∞, 0].
Definition 2.1 A distributed-order system H(s) defined by its impulse response
h(t) = L−1 {H(s)} is BIBO stable if and only if ∀u ∈ L∞(R+), h ∗ u ∈ L∞(R+).
∗ stands for the convolution product and L∞(R+) stands for the Lebesgue space of
measurable function h such that ess sup

t∈R+
|h(t)| < ∞.

Based on Definition 2.1 and the above analysis, the following theorem can be
established.

Theorem 2.1 The distributed-order linear time-invariant system (2.1) with transfer
function G1(s) = C ln s(s I − (I + A ln s))−1 B + D is BIBO stable, if and only if
all the eigenvalues of A lie on the left of curve l1 := la

⋃
lb in the complex plane,

where la and lb are symmetrical with respect to the real axis, and

la :=
{

x − iy

∣∣∣∣x = 2πω − 4 ln ω

4(ln ω)2 + π2
, y = 4ω ln ω + 2π

4(ln ω)2 + π2

}

with ω ∈ [0,∞).

Proof (if part) Note that the final value theorem implies that lim
t→∞g(t)=sG1(s) → 0,

if all poles of sG1(s) are in the left half-plane when s → 0. It can be easily known
that all the poles of sG1(s) satisfy the transcendental characteristic equation of the
form

|(s − 1)I − A ln s| = 0. (2.4)

From (2.4) we know that s−1
ln s = σi (A) (i = 1, · · · , n), where σ(A) denotes the set

of eigenvalues of A. As all the zeros of (2.4) should lie in the left half-plane to ensure
the BIBO stability of distributed-order system G1(s), it is necessary to derive the
range of λ = s−1

ln s when s belongs to the left half-plane.
It is natural to determine the range of λ = s−1

ln s when s lies on the imaginary axis.
Then, for s = jω, (−∞ < ω < 0), we have

λ = (2π(−ω) − 4 ln(−ω)) + j (4(−ω) ln(−ω) + 2π)

4(ln(−ω))2 + π2

while for s = jω, (0 ≤ ω < ∞), we have

λ = (2πω − 4 ln ω) − j (4ω ln ω + 2π)

4(ln ω)2 + π2

which means that the imaginary axis is mapped to a curve denoted by l1, which is
symmetrical with respect to the real axis. By choosing a point s randomly which lies
on the left of the imaginary axis, the range of λ = s−1

ln s lies on the left of curve l1,
which means that the stable region of distributed-order system (2.1) is the left region
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Fig. 2.1 The stable boundary
of the distributed-order system
(2.1) G1(s)
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Fig. 2.2 The stable boundary
of the distributed-order system
(2.1) G1(s) (Zoomed)
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of curve l1. In the following, l1 is plotted in Fig. 2.1, with the local property around
0 zoomed in Fig. 2.2.

It can be easily known from the above analysis that if all the eigenvalues of A
lie on the left of curve l1, all the poles of sG1(s) lie on the left half-plane. From
the final value theorem, we further know that lim

t→∞ g(t) = 0, which means the
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distributed-order system with transfer function G1(s) = C ln s(s I − (I + A ln s))−1

B + D is BIBO stable.
(only if part) It is obviously known from Definition 2.1 that G1(s) lies in H∞,

the space of bounded analytic functions on the right half plane of the complex plane,
which means that all the poles of G1(s) lie in the left half plane of the complex
plane. From the proof of (if part), it is known that {sk}k=1,2,··· ,n lie in the open left
half plane, which is equivalents to that all the eigenvalues of A lie in the left region
with respect to l1.

Remark 2.3 It is easy to conclude that the slope of the curve l1 at the original point
is 0, and is infinity at the infinite point, which means that any ray in the first quadrant
starts at point 0 will have point of intersection with the curve l1. This means any
constant fractional-order approximation of DODS is problematic, since the stability
domains are different.

Case 2 w(α) = α

In this case, the following can be obtained under the similar analysis procedure
in Case 1,

x(t) = L−1

[((∫ 1

0
αsαdα

)
I − A

)−1

B

]

= L−1

[(
1 − s + s ln s

ln2s
I − A

)−1

B

]

= L−1
[

ln2s
(
(1 − s + s ln s) I − ln2s A

)−1
B

]
.

Theorem 2.2 The distributed-order linear time-invariant system (2.1) with

transfer function G2(s) = C ln2s
(
(1 − s + s ln s)I − Aln2s

)−1
B + D is

BIBO stable, if and only if all the eigenvalues of A lie on the left of curve
l2 := lc

⋃
ld , where lc and ld are symmetrical with respect to the real axis, and

lc := {x + iy |x = xω, y = yω, ω ∈ (0,∞) }, with notations

xω =
(

ln ω − π2

4

) (
1 − π

2 ω
)− π ln ω (ω − ω ln ω)

(
ln2ω + π2

4

)2

and

yω =
(

ln ω − π2

4

)
(ω − ω ln ω) + π ln ω

(
1 − π

2 ω
)

(
ln2ω + π2

4

)2 .
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Fig. 2.3 The stable boundary
of distributed-order system
(2.1) G2(s)
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Fig. 2.4 The stable boundary
of distributed-order system
(2.1) G2(s) (Zoomed)
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The proof of Theorem 2.2 can be given by the similar procedures in Theorem 2.1,
the stable boundary for distributed-order system G2(s) is shown in Fig. 2.3, with the
local property around 0 shown in Fig. 2.4.
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Case 3 w(α) = δ(α − β), (0 < β < 1)

In this case, the DODE (2.1) converts to a constant-order fractional-order system
described by

0Dβ
t x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t). (2.5)

Using Laplace transform, the irrational transfer function of fractional-order system
(2.5) with null initial conditions is

G3(s) = C
(
sβ I − A

)−1
B + D. (2.6)

Remark 2.4 Note that term sβ in (2.6) defines a multi-valued function of the complex
variable s whose domain can be seen as a Riemann surface (Cuadrado and Cabanes
1989; Westerlund and Ekstam 1994) of a number of sheets which is finite in the
case of β ∈ Q+, and infinite in the case of β ∈ R+\Q+. It is well known that in
multiple-valued functions only the principal sheet defined by −π < arg s < π has
its physical significance (Gross and Braga 1961).

The following can be obtained under the similar analysis procedure in the previous
cases,

x(t) = L−1

[((∫ 1

0
δ(α − β)sαdα

)
I − A

)−1

B

]
(t)

= L−1
[(

sβ I − A
)−1

B
]
(t).

The following theorem which corresponds to the stability condition of fractional-
order system obtained in Matignon (1996) can be given.

Theorem 2.3 The fractional-order linear time-invariant system with transfer func-

tion G3(s) = C
(
sβ I − A

)−1
B + D is BIBO stable, if and only if all the eigenvalues

of A lie on the left of curve l3 := le
⋃

l f , where le and l f are symmetrical with
respect to the real axis, and le := {

reiθ
∣∣r = ωβ, θ = πβ/2, ω ∈ (0,∞)

}
.

The proof of Theorem 2.3 can be given by the similar procedures in Theorem 2.1, the
stable region for fractional-order system G3(s) with β = 0.5 is shown in Fig. 2.5.

Case 4 w(α) =
n∑

k=1
bkδ(α − kβ), (0 < nβ < 1).

In this case, the DODE (2.1) converts to the so-called LTI commensurate
fractional-order system
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Fig. 2.5 The stable boundary
of fractional-order system
(2.5) G3(s)
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n∑
k=1

bk 0Dkβ
t x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t). (2.7)

Let x̂(t) = [
x(t) Dβ x(t) D2β x(t) · · · D(n−1)β x(t)

]T
, (2.7) can be converted to the

following equivalent form

0Dtβ x̂(t) = Âx̂(t) + B̂u(t) (2.8)

where Â =

⎡
⎢⎢⎢⎢⎢⎣

0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I
A
bn

− b1
bn

I − b2
bn

I · · · − bn−1
bn

I

⎤
⎥⎥⎥⎥⎥⎦

, B̂ =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
B
bn

⎤
⎥⎥⎥⎥⎥⎦

.

Now we have changed Case 4 to Case 3, which can be similarly analyzed.
The following can be obtained under the similar analysis procedure in the previous

cases,
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x(t) = L−1

⎡
⎣
((∫ 1

0

N∑
n=1

bnδ(α − βn)sαdα

)
I − A

)−1

B

⎤
⎦

= L−1

⎡
⎣
(

N∑
n=1

bnsβn I − A

)−1

B

⎤
⎦ .

In the following, Case 4 will not be considered.

2.3 Time-Domain Analysis: Impulse Responses

Case 1 w(α) = 1
As the transfer function of distributed-order system for Case 1 with the assumption

that D = 0 is G1(s) = C ln s((s − 1)I − A ln s)−1 B, using the similar method of
impulse response for distributed-order integrator/differentiator in Li et al. (2010),
the inverse Laplace transform of G1(s) can be derived as follows.

y1(t) = L−1 {G1(s)}

= C

(
1

2π i

∫ σ+i∞

σ−i∞
e−st ln s(s I − (I + ln s A))−1ds

)
B

= C

(∫ ∞

0
e−xt (x + 1)A−1

1 dx

)
B (2.9)

where A1 := ((x + 1)I + A ln x)2 + (Aπ)2.

Case 2 w(α) = α

Following the same procedures, the transfer function of distributed-order system

for Case 2 with D = 0 is G2(s) = C ln2s
(
(s − 1 − ln s)I − Aln2s

)−1
B, using the

similar method of impulse response for distributed-order integrator/differentiator in
Li et al. (2010), the inverse Laplace transform of G2(s) can be derived as follows.

y2(t) = L−1{G2(s)}

= C

(
1

2π i

∫ σ+i∞

σ−i∞
est ln2s

(
(1 − s + s ln s)I − ln2s A

)−1
ds

)
B

= C

(∫ ∞

0
e−xt

((
(1 + x − x ln x) I + (

ln2x − π2
)

A
)2

+π2(x I + 2 ln x A)2

)
A−1

2 dx

)
B

(2.10)

where A2 := (
(1 + x − x ln x) I + (

ln2x − π2
)

A
)2 + π2(x I + 2 ln x A)2.
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Fig. 2.6 The Bode plot of distributed-order system g2(s) = ln2s
1−s+s ln s+ln2s

Case 3 w(α) = δ(α − β), (0 < β < 1)

The transfer function of fractional-order system for Case 3 with the assumption
that D = 0 is G3(s) = C

(
sβ I − A

)−1
B, the inverse Laplace transform of G3(s)

with null initial condition is

y3(t) = C
(

tβ−1 Eβ,β(Atβ)
)

B (2.11)

where Eα,β(·) is the Mittag-Leffler function in two parameters defined as in Podlubny
(1999)

Eα,β(z) =
∞∑

k=0

zk

Γ (αk + β)
, (	(α, β) > 0).

Remark 2.5 Computing (2.9), (2.10) and (2.11) can be easily realized in MATLAB
numerically.

2.4 Frequency-Domain Response: Bode Plots

Generally, the frequency domain response has to be obtained by the direct evaluation
of the irrational transfer function of distributed-order system along the imaginary
axis for s = jω, ω ∈ (0,∞). For simplicity, Bode plots of some scalar transfer
functions for Case 1 to Case 3 are shown as follows.
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Fig. 2.7 The Bode plot of fractional-order system g3(s) = 1
s0.5+1

For w(α) = 1, the frequency-domain response of g1(s) = ln s
s−1+ln s is shown in

Fig. 2.6.
For w(α) = α, the frequency-domain response of g2(s) = ln2s

1−s+s ln s+ln2s
is shown

in Fig. 2.7.
For w(α) = δ(α − β), (0 < β < 1), the frequency-domain response of g3(s) =

1
s0.5+1

is shown in Fig. 2.8.

2.5 Numerical Examples

In this section, numerical examples are shown to demonstrate the effectiveness of
the proposed results.

Example 1 Consider a distributed-order system with Case 1 described with parame-

ters given as A =
[

1 2
−2 1

]
, B =

[
1
1

]
, C = [

2 1
]

and D = 0.

The eigenvalues of A are λ1 = 1 + 2 j and λ2 = 1 − 2 j , so it can be known from
Theorem 2.1 that this distributed-order system is bounded-input bounded-output
stable. Using MATLAB to derive numerically, the states of impulse response with
null initiations are shown in Figs. 2.9 and 2.10, respectively.
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Fig. 2.8 The Bode plot of distributed-order system g1(s) = ln s
s−1+ln s

Fig. 2.9 The state x1 of stable
distributed-order system (2.1)
for Case 1
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Example 2 Consider a distributed-order system with Case 1 described with parame-

ters given as A =
[

2 2
−2 2

]
, B =

[
1
1

]
, C = [

2 1
]

and D = 0.

The eigenvalues of A are λ1 = 2+2 j and λ2 = 2−2 j , and it can be known from
Theorem 2.1 that this distributed-order system is not bounded-input bounded-output
stable. Using MATLAB to derive numerically, the states of impulse response with
null initiations are shown in Figs. 2.11 and 2.12, respectively.
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Fig. 2.10 The state x2 of sta-
ble distributed-order system
(2.1) for Case 1
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Fig. 2.11 The state x1 of
unstable distributed-order
system (2.1) for Case 1
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Example 3 Consider a distributed-order system with Case 2 described with parame-

ters given as A =
[

1 3
−3 1

]
, B =

[
1
1

]
, C = [

2 1
]

and D = 0.

The eigenvalues of A are λ1 = 1 + 3 j and λ2 = 1 − 3 j , so it can be known from
Theorem 2.2 that this distributed-order system is bounded-input bounded-output
stable, and the states of impulse response with null initiations are shown in Figs. 2.13
and 2.14, respectively.

Example 4 Consider a distributed-order system with Case 2 described with parame-

ters given as A =
[

2 2
−2 2

]
, B =

[
1
1

]
, C = [

2 1
]

and D = 0.

The eigenvalues of A are λ1 = 2 + 2 j and λ2 = 2 − 2 j , it can be known from
Theorem 2.2 that this distributed-order system is not bounded-input bounded-output
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Fig. 2.12 The state x2 of
unstable distributed-order
system (2.1) for Case 1
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Fig. 2.13 The state x1 of
stable distributed-order sys-
tem (2.1) for Case 2
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stable, and by using MATLAB to derive numerically, the states of impulse response
with null initiations are shown in Figs. 2.15 and 2.16, respectively.

Example 5 Consider a fractional-order system for Case 3 described with parameters

given as α = 0.5, A =
[

0 2
−2 0

]
, B =

[
1
1

]
, C = [

2 1
]

and D = 0.

The eigenvalues of A are λ1 = 2 j and λ2 = −2 j , it can be known from
Theorem 2.3 that this fractional-order system is bounded-input bounded-output sta-
ble. Using MATLAB to derive numerically, the states of impulse response with null
initiations are shown in Figs. 2.17 and 2.18, respectively.

Example 6 Consider a fractional-order system for Case 3 described with parameters

given as α = 2/3, A =
[

1 1
−1 1

]
, B =

[
1
1

]
, C = [

2 1
]

and D = 0.
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Fig. 2.14 The state x2 of
stable distributed-order sys-
tem (2.1) for Case 2
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Fig. 2.15 The state x1 of
unstable distributed-order
system (2.1) for Case 2
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Since the eigenvalues of A are λ1 = 1 + j and λ2 = 1 − j , it can be known from
Theorem 2.3 that this fractional-order system is bounded-input bounded-output sta-
ble. Using MATLAB to derive numerically, the states of impulse response with null
initiations are shown in Figs. 2.19 and 2.20, respectively.

2.6 Chapter Summary

In this chapter, the bounded-input bounded-output stability conditions for four kinds
of linear time-invariant distributed-order system whose integral interval being (0, 1)

have been derived for the first time. Based on the final value property of Laplace
transform, sufficient and necessary conditions of stability for distributed-order sys-
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Fig. 2.16 The state x2 of
unstable distributed-order
system (2.1) for Case 2
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Fig. 2.17 The state x1 of
stable fractional-order system
(2.5) for Case 3
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tems are presented. In addition, time-domain and frequency-domain responses are
presented with six illustrative numerical examples. Detailed MATLAB codes are
shown in Appendix A.
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Fig. 2.18 The state x2 of
stable fractional-order system
(2.5) for Case 3
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Fig. 2.19 The state x1 of un-
stable fractional-order system
(2.5) for Case 3
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Fig. 2.20 The state x2 of
unstable fractional-order
system (2.5) for Case 3
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Chapter 3
Noncommensurate Constant Orders
as Special Cases of DOLTIS

3.1 Introduction

Stability is a minimum requirement for control systems, certainly including fractional-
order systems. In Matignon (1996), the stability results on fractional-order linear
time-invariant (FO-LTI) systems with commensurate orders were presented for the
first time, it permits to check the asymptotically stability through the location of
the system matrix eigenvalues of the pseudo state space representation of fractional-
order system in the Complex plane. Henceforth, there were some systematic results
on the robust stability of interval uncertain FO-LTI systems as presented in Ahn and
Chen (2008), Ahn et al. (2007), Chen et al. (2006), Lu and Chen (2010), Petras et al.
(2004). The BIBO-stability of fractional-order delay systems of retarded and neutral
types was studied in Bonnet and Partington (2002), in which necessary and suffi-
cient conditions were presented for retarded type, and only sufficient conditions were
provided for neutral type. In Bonnet and Partington (2007), necessary and sufficient
conditions of stability were provided for an important special case fractional-order
delay system of neutral type. However, such theorems obtained in Bonnet and Part-
ington (2002, 2007) don’t permit to conclude the system stability without computing
the system’s poles, which constitutes tedious work, so based on Cauchy’s integral
theorem and by solving an initial-value problem, an effective numerical algorithm
for testing the BIBO stability of fractional delay systems was presented in Hwang
and Cheng (2006).

However, the fractional-order systems discussed in these literatures are mostly
with commensurate orders, which means the orders can always converted to com-
mensurate orders when they have a common divisor. To the best of our knowledge,
there are few results concerning the stability analysis problems for fractional-order
systems with noncommensurate orders. Based on Cauchy’s theorem, a graphical
test to evaluate fractional-order systems with noncommensurate orders are given in
Sabatier et al. (2010), however, this method is not very helpful because of the com-
plicated procedures. Therefore motivated by the previous references, this section

Z. Jiao et al., Distributed-Order Dynamic Systems, SpringerBriefs in Control, 29
Automation and Robotics, DOI: 10.1007/978-1-4471-2852-6_3,
© The Author(s) 2012
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addresses the bounded-input bounded-output stability for fractional-order systems
with multiple discrete noncommensurate orders.

3.2 Stability Analysis of Some Special Cases of DOLTIS

3.2.1 Case 1: Double Noncommensurate Orders

For the distributed-order system with double noncommensurate orders described by

0Dw(α)
t x(t) =

∫ 1

0
w(α)0Dα

t x(t)dα = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t), (3.1)

where 0Dα
t denotes Caputo fractional-order derivative operator, w(α) = δ (α − β1)+

δ (α − β2) is the function distribution of order α ∈ [0, 1], 0 < β1, β2 ≤ 1 are
noncommensurate orders, which means that they do not have a common divisor.

Remark 3.1 When the function distribution of order takes discrete values, distributed-
order system (3.1) will be fractional-order system with double noncommensu-
rate orders. Fractional-order system (3.1) can always be converted to a fractional-
order system with commensurate orders if both β1 and β2 are rational numbers
(Monje et al. 2010), and the stability issue of fractional-order system with com-
mensurate orders has been solved in Matignon (1996). When at least one of β1 and
β2 is not a rational number, or β1 and β2 are not commensurate numbers, they do
not have common divisors. Based on Cauchy’s theorem, a graphical test to evaluate
fractional-order systems with noncommensurate orders are given in Sabatier et al.
(2010), and the system is considered in frequency domain, however, this method is
not very helpful because of the complicated procedures. In current section, sufficient
and necessary condition for fractional-order system with double noncommensurate
orders is proposed first.

Under the assumption of zero initial conditions, taking the Laplace transform of
(3.1), we have

sβ1 X (s) + sβ2 X (s) = AX (s) + BU (s).

Assume that D = 0. The transfer function of (3.1) is

H(s) = C
(
(sβ1 + sβ2)I − A

)−1
B.

Similar to the BIBO stability for traditional control systems, we have the following
definition.
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Fig. 3.1 The stable boundary
of fractional-order system
(3.1) with double noncom-
mensurate orders β1 = √

2−1
and β2 = √

3 − 1
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Definition 3.1 Fractional-order system (3.1) defined by its impulse response h(t) =
L−1 {H(s)} is BIBO stable if and only if ∀u ∈ L∞(R+), h ∗ u ∈ L∞(R+), where
∗ stands for the convolution product and L∞(R+) stands for the Lebesgue space of
measurable function h such that ess sup

t∈R+
|h(t)| < ∞.

Theorem 3.1 Fractional-order system (3.1) is BIBO stable if and only if all the
eigenvalues of A lie on the left of curve l4 := lg

⋃
lh , where lg and lh are symmetrical

with respect to the real axis, and lg := {x + iy |x = xω, y = yω, ω ∈ [0,∞) }, with
xω and yω defined as xω := ωβ1 cos β1

2 π + ωβ2 cos β2
2 π , yω := ωβ1 sin β1

2 π +
ωβ2 sin β2

2 π .

Proof The proof of this theorem can be followed by the similar proof procedures
of Theorem 2.1. The stable boundary of fractional-order system (3.1) l4 is plotted in
Fig. 3.1, with the local property around 0 zoomed in Fig. 3.2 with β1 = √

2 − 1 and
β2 = √

3 − 1.

Generally, the frequency domain response can be obtained by the direct evaluation
of the irrational transfer function of fractional-order system with double noncom-
mensurate orders along the imaginary axis for s = jω, ω ∈ (0,∞). In the following,
the Bode plot of fractional-order system (3.1) with β1 = √

2 − 1 and β2 = √
3 − 1

is shown in Fig. 3.3.

Remark 3.2 For fractional-order system described by 0Dβi
t x(t) = Ax(t) + Bu(t)

(i = 1, 2), the stable boundary is defined as lβi := lai

⋃
lbi , where lai and lbi are

symmetrical with respect to the real axis, and lai is defined as:

lai :=
{

x + iy

∣∣∣∣x = ωβi cos
βi

2
π, y = ωβi sin

βi

2
π,ω ∈ [0,∞).

}
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Fig. 3.2 The stable boundary
of fractional-order system
(3.1) with double noncom-
mensurate orders β1 = √

2−1
and β2 = √

3 − 1 (Zoomed)
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Fig. 3.3 The bode plot of
fractional-order system (3.1)
with double noncommensu-
rate orders β1 = √

2 − 1 and
β2 = √

3 − 1
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lβ1 and lβ2 are also plotted in Figs. 3.1 and 3.2. It can be easily seen from Figs. 3.1
and 3.2 that curve l lies between lβ1 and lβ2 .

Remark 3.3 We assume that 0 < β1, β2 ≤ 1 in (3.1), which means that both
β1 and β2 cannot be 0. Without loss of generality, if β2 = 0, β1 is an irrational
number, fractional-order system (3.1) will become 0Dβ1

t x(t) = Âx(t)+ Bu(t), with
Â = A− I . In this case, the stable boundary is lβ1 defined in Remark 3.2 with respect
to Â.

Remark 3.4 If both β1 and β2 are irrational numbers. Let β2 = kβ1, where k is a
positive integer. Here it means that the orders are commensurate orders, then the
following cases can be easily given:
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• If k = 1, fractional-order system (3.1) will become 20Dβ1
t x(t) = Ax(t) + Bu(t),

i.e., 0Dβ1
t x(t) = A1x(t) + B1u(t), with A1 = A/2, B1 = B/2, and the stable

boundary is lβ1 defined in Remark 3.2 with respect to A1.

• If k = 2, fractional-order system (3.1) will become 0D2β1
t x(t) + 0Dβ1

t x(t) =
Ax(t)+Bu(t). Let x̂(t) :=

[
x(t) 0Dβ1

t x(t)
]T

, then we have Dβ1 x̂(t) = A2 x̂(t)+
B2u(t), with A2 =

[ 0 I
A −I

]
, B2 =

[ 0
B

]
, and the stable boundary is lβ1 defined

in Remark 3.2 with respect to A2.
• If k is any positive integer, the similar conclusion can be obtained.

3.2.2 Case 2: N-Term Noncommensurate Orders

For the fractional-order system with N -term noncommensurate orders described by

0Dw(α)
t x(t) =

∫ 1

0
w(α)0Dα

t x(t)dα = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) (3.2)

where 0Dα
t denotes Caputo fractional-order derivative operator, w(α)=

n∑
i=1

δ(α − βi )

is the function distribution of order α ∈ [0, 1], 0 < β1, β2, · · · , βn ≤ 1 are N -term
noncommensurate orders, which means that they do not have a common divisor.

Similar to the analysis in Case 1, let u(t) = δ(t), then the transfer function of
(3.2) under the assumption of zero initial conditions is

H1(s) = C

(
n∑

i=1

sβi I − A

)−1

B.

We have the following parallel result.

Theorem 3.2 Fractional-order system (3.2) is BIBO stable if and only if all the
eigenvalues of A lie on the left of curve l5 := li

⋃
l j , where li and l j are symmetrical

with respect to the real axis, and li is defined as:

li := {x + iy |x = xω, y = yω, ω ∈ (0,∞) }

with xω and yω defined as xω :=
n∑

i=1
ωβi cos βi

2 π , yω :=
n∑

i=1
ωβi sin βi

2 π .

Proof The proof of this theorem is similar to the proof of Theorem 2.1.
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Fig. 3.4 The state x1 of stable
fractional-order system (3.1)
with double noncommensu-
rate orders β1 = √
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3 − 1

0 2 4 6 8 10
−1

0

1

2

3

4

5

6

7

time axis

im
pu

ls
e 

re
sp

on
se

NILT
Impulse response invariant Discrete approximated

Remark 3.5 From the calculation and plots through MATLAB in Case 1, it can be
known that curve l5 must lies between lmin and lmax which are defined as

lmin :=
{

reiθ
∣∣∣∣θ = ±min {βi }

2
π, r ≥ 0

}

and

lmax :=
{

reiθ
∣∣∣∣θ = ±max {βi }

2
π, r ≥ 0

}
.

3.3 Numerical Examples

In this section, numerical examples are presented to demonstrate the effectiveness
of the proposed concept.

Example 1 Consider a fractional-order system (3.1) with double noncommensurate

orders described with parameters β1 = √
2 − 1, β2 = √

3 − 1, A =
[

1 2
−2 1

]
,

B =
[

1
1

]
, C = [

2 1
]

and D = 0.

The eigenvalues of A are λ1 = 1 + 2 j and λ2 = 1 − 2 j , and it can be
known from Theorem 3.1 that this fractional-order system is bounded-input bounded-
output stable. Based on the numerical inverse Laplace transform (NILT) technique
(Li et al. 2011), the states of impulse response for Gd1(s)=C

(
(sβ1 + sβ2)I − A

)−1
B

with null initiations are shown in Figs. 3.4 and 3.5, respectively.
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Fig. 3.5 The state x2 of stable
fractional-order system (3.1)
with double noncommensu-
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Fig. 3.6 The state x1 of
unstable fractional-order
system (3.1) with double
noncommensurate orders
β1 = √

2−1 and β2 = √
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Example 2 Consider a fractional-order system (3.1) with double noncommensurate

orders described with parameters β1 = √
2 − 1, β2 = √

3 − 1, A =
[

1 1
−1 1

]
,

B =
[

1
1

]
, C = [

2 1
]

and D = 0.

The eigenvalues of A are λ1 = 1 + j and λ2 = 1 − j , so it can be known
from Theorem 3.1 that this fractional-order system is not bounded-input bounded-
output stable. Based on the NILT technique, the states of impulse response for
Gd2 = C

(
(sβ1 + sβ2)I − A

)−1
B with null initiations are shown in Figs. 3.6 and

3.7, respectively.
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Fig. 3.7 The state x2 of
unstable fractional-order
system (3.1) with double
noncommensurate orders
β1 = √

2−1 and β2 = √
3−1
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3.4 Chapter Summary

In this chapter, the stability issues for fractional-order linear time-invariant systems
with multiple noncommensurate orders are solved. The double noncommensurate
orders and N -term noncommensurate orders are analyzed respectively and sufficient
and necessary conditions of stability are obtained. In addition, based on the nu-
merical inverse Laplace transform technique, time-domain responses for the double
noncommensurate order case are presented to verify the main results as illustrative
numerical examples. Detailed MATLAB codes are presented in Appendix A.
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Chapter 4
Distributed-Order Filtering and
Distributed-Order Optimal Damping

The idea of using the distributed-order differential equation first proposed by Caputo
(1969) is at least mathematically interesting as demonstrated in the previous chapters.
However, people may question its usefulness in engineering practice. In this chapter,
we included two generic applications. One is on distributed order signal processing
and the other is on optimal distributed damping. We hope these two initial applications
can serve as motivating examples to further the investigation in distributed order
dynamics systems, signal processing, modeling and controls.

4.1 Application I: Distributed-Order Filtering

Filtering as a special type of dynamic system is a signal processing technique.
In this section, we present two distributed-order filters: the distributed-order
integrator/differentiator and the distributed-order low-pass filter. These two
distributed order filters are studied in both time domain and frequency domain.
Moreover, the discretization method is used to obtain the digital impulse responses
of these distributed-order fractional filters. The results are verified in both time and
frequency domains.

4.1.1 Distributed-Order Integrator/Differentiator

Motivated by the applications of the distributed-order operators in control, filtering
and signal processing, a distributed-order integrator/differentiator is derived step by
step in this section. Firstly, the classical integer order integrator can be rewritten as

1

s
=

∫ ∞

−∞
δ(α − 1)

1

sα
dα, (4.1)

Z. Jiao et al., Distributed-Order Dynamic Systems, SpringerBriefs in Control, 39
Automation and Robotics, DOI: 10.1007/978-1-4471-2852-6_4,
© The Author(s) 2012
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where δ(·) denotes the Dirac–Delta function and 1
sα is the fractional-order integrator/

differentiator with order α ∈ R. Moreover, the summation of a series of fractional-
order integrators/differentiators can be expressed as

∑
k

1

sαk
=

∫ ∞

−∞

[∑
k

δ(α − αk)

]
1

sα
dα, (4.2)

where k can belong to any countable or noncountable set. Now, it is straightforward

to replace

[∑
k

δ(α − αk)

]
by a weighted kernel function w(α). It follows that the

right side of the above equation becomes

∫ ∞

−∞
w(α)

1

sα
dα, (4.3)

where w(α) is independent of time, and the above equation defines a distributed-order
integrator/differentiator. Particularly, when w(α) is a piecewise function,

∫ ∞

−∞
w(α)

1

sα
dα = w(αl)

∫ bl

al

1

sα
dα, (4.4)

where al , bl are real numbers, αl ∈ (al , bl) and w(α) is a constant on α ∈ (al , bl).
Based on the above discussions, without loss of generality, we focus on the uniform
distributed-order integrator/differentiator

∫ b
a

1
sα dα, where a < b are arbitrary real

numbers.
In order to apply the distributed-order integrator/differentiator, the numerical

discretization method is needed. This finds applications in signal modeling, filter
design, controller design (Machado 1997) and nonlinear system identification
(Hartley and Lorenzo 2003; Adams et al. 2008). The numerical discretization of the
distributed-order integrator/differentiator, the key step towards application, can be
realized in two ways: direct methods and indirect methods. In indirect discretization
methods (Oustaloup et al. 2000; Chen and Moore 2002), two steps are required, i.e.,
frequency domain fitting in continuous time domain first and then discretizing the fit
s-transfer function (Chen and Moore 2002). Other frequency-domain fitting methods
can also be used but without guaranteeing the stable minimum-phase discretization
(Chen and Moore 2002). In this section, the direct discretization method will be used
by an effective impulse response invariant discretization method discussed in Chen
and Moore (2002), Chen and Vinagre (2003), Lubich (1986), Chen et al. (2004),
and Li et al. (2011). In the above-mentioned references, the authors developed a
technique for designing the discrete-time IIR filters from continuous-time fractional-
order filters, in which the impulse response of the continuous-time fractional-
order filter is sampled to produce the impulse response of the discrete-time filter.
The detailed techniques of the impulse response invariant discretization method will
be introduced in Sect. 4.1.1.2. For more discussions of the discretization methods,
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we cite Vinagre et al. (2003), Barbosa and Machado (2006), Ferdi (2009), Oustaloup
(1981) and Radwan et al. (2007, 2008).

4.1.1.1 Impulse Response of the Distributed-Order
Integrator/Differentiator

For the distributed-order integrator/differentiator (DOI/D)

∫ b

a

1

sα
dα = s−a − s−b

ln(s)
, (4.5)

where a < b are arbitrary real numbers, its inverse Laplace transform is written as

L−1
{∫ b

a

1

sα
dα

}
= 1

2π i

∫ σ+i∞

σ−i∞
est s−a − s−b

ln(s)
ds, (4.6)

where σ > 0. It can be seen that there are two branch points of (4.5), s = 0 and
s = ∞. Therefore, we can cut the complex plane by connecting the branch points
along the negative real domain, so that the path integral in (4.6) is equivalent to the
path integral along the Hankel path.1 The Hankel path starts from −∞ along lower
side of real (horizontal) axis, encircles the circular disc |s| = ε → 0, in the positive
sense, and ends at −∞ along the upper side of real axis. Moreover, it can also be

proved that the path integral of est (s−a−s−b)
ln(s) along s → 0 equals zero for b ≤ 1, and

that there are no poles in the single value analytical plane. Therefore, by substituting
s = −xe−iπ and s = xeiπ , where x ∈ (0,+∞), we have, for an arbitrary σ > 0
and b ≤ 1,

L−1
{∫ b

a

1

sα
dα

}
= 1

2π i

∫ σ+i∞

σ−i∞
est

(
s−a − s−b

)
ln(s)

ds

= 1

2π i

∫ ∞

0

e−xt
(
x−aeaπ i − x−bebπ i

)
ln(x) − iπ

dx

− 1

2π i

∫ ∞

0

e−xt
(
x−ae−aπ i − x−be−bπ i

)
ln(x) + iπ

dx

= 1

π

∫ ∞

0

e−xt

(ln(x))2 + π2

[
x−a(sin(aπ) ln(x) + π cos(aπ))

−x−b(sin(bπ) ln(x) + π cos(bπ))
]

dx . (4.7)

Based on the above discussions, we arrive at the following theorem.

1 It follows from the residue of est (s−a−s−b)
ln(s) which equals zero at s = ∞, that the path integral of it

along s → ∞ is vanished for b ≤ 1.
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Theorem 4.1 For any a < b ≤ 1, we have

L−1
{∫ b

a

1

sα
dα

}
= 1

π

∫ ∞

0

e−xt

(ln(x))2 + π2

[
x−a(sin(aπ) ln(x) + π cos(aπ))

− x−b(sin(bπ) ln(x) + π cos(bπ))
]
dx . (4.8)

Especially, when 0 ≤ a < b ≤ 1, it can be derived that

∣∣∣∣L−1
{∫ b

a

1

sα
dα

}∣∣∣∣ ≤ 1

π2

(
M1ta−1

|a − 1| + M2tb−1

|b − 1|
)

, (4.9)

where M1 and M2 are finite positive constants.

Proof The first equation in this theorem is the same as (4.7). Moreover, by using
(4.7), it can be easily proved that

∣∣∣∣L−1
{∫ b

a

1

sα
dα

}∣∣∣∣ ≤ 1

π2

∫ ∞

0
e−xt (x−a + x−b)dx = 1

π2

(
M1ta−1

|a − 1| + M2tb−1

|b − 1|
)

,

where M1 = ∫ ∞
0 e−τ 1/(1−a)

dτ and M2 = ∫ ∞
0 e−τ 1/(1−b)

dτ are finite positive constants
for any 0 ≤ a < b ≤ 1.

Based on the above discussions we can get the time domain expression of the impulse
response of the distributed-order integrator/differentiator for any a < b ≤ 1. Note
here, for a < b ≤ 1, (4.7) can be easily computed by using “quadgk” in MATLAB®,
which will be used in the discretization method. Moreover, in order to extend a and
b to the whole real axis, we can use the following properties.

Property 4.1 It can be proved that

(A) sc
∫ b

a
1
sα dα = ∫ b−c

a−c
1
sα dα, where c ∈ R.

(B)
∫ b

a
1
sα dα = s

∫ 1
a+1

1
sα dα + ∫ b

0
1
sα dα, where a ∈ [−1, 0) and b ∈ [0, 1].

(C)
∫ b

a
1
sα dα = (s−1 +· · ·+ s−N )s−[a] ∫ a−[a]

a−[a]−1
1
sα dα + s−(N+[a]+1) ·∫ b−(N+[a]+1)

a−[a]−1
1
sα dα, where b − a > 1, N = [b − a] and [∗] denotes the integer part of ∗.

(D)
∫ b̃

ã sαdα = s
∫ b

a
1
sα dα, where ã < b̃, a = 1 − b̃ and b = 1 − ã.

(E) The distributed integrator/differentiator
∫ b

a
w(α)

sα dα, where w(α) is a piecewise
function, can be converted to the summation of uniformly distributed integrators/
differentiators.

Theorem 4.2 Any distributed-order integrator/differentiator can be composed by
the distributed-order integrator for 0 ≤ a < b ≤ 1, integrator 1

s and differentiator s.

Proof This theorem can be proved by Property 4.1.
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Fig. 4.1 The impulse responses of the approximate discrete-time IIR filter and the continuous-time
distributed-order filter when a = 0.6, b = 1 and Ts = 0.001 s

4.1.1.2 Impulse Response Invariant Discretization of DOI/DOD

The impulse response invariant discretization method converts analog filter transfer
functions to digital filter transfer function in such a way that the impulse responses
are the same (invariant) at the sampling instants. Thus, if g(t) denotes the impulse-
response of an analog (continuous-time) filter, then the digital (discrete-time) filter
given by the impulse-invariant method will have impulse response g(nTs), where Ts

denotes the sampling period in seconds.
Impulse response invariance-based IIR-type discretization method is a simple

and efficient numerical discretization method for the approximation of fractional-
order filter (Chen 2003, 2008a, b; Chen and Vinagre 2003). The method not only
can accurately approximate the fractional-order filter in time domain but also fit the
frequency response very well in the low frequency band in the frequency domain
(Li et al. 2010a). Figures 4.1 and 4.2 show the impulse responses and the frequency
response of the approximated discrete-time IIR filter and the continuous-time
fractional-order filter when a = 0.6, b = 1 and Ts = 0.001 s, respectively. The
transfer function of the approximated IIR filter is

0.00167 − 0.006112z−1 + 0.008409z−2 − 0.005208z−3 + 0.00129z−4 − 4.785 · 10−5z−5

1 − 4.488z−1 + 8.004z−2 − 7.082z−3 + 3.104z−4 − 0.5383z−5
.

(4.10)

For frequency response, the impulse response invariant discretization method
works well for the band-limited (1–100 Hz) continuous-time fractional-order filters.
This figure is plotted by the MATLAB code (Sheng 2010), where we used the
MATLAB command [sr] = irid_doi(0.001,0.6, 1,5, 5).
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Fig. 4.2 The frequency response of the approximate discrete-time IIR filter and the continuous-time
distributed-order filter when a = 0.6, b = 1 and Ts = 0.001 s

Remark 4.1 The algorithm proposed in Steiglitz and McBride (1965) permits more
accurate identification when the impulse response is slowly varying. Therefore,
it follows from Theorem 4.1 that the performance of “stmcb”, an algorithm for
finding an IIR filter with a prescribed time domain response given an input signal, in
MATLAB is related to a and b. Particularly, when 0 ≤ a < b ≤ 1, the approximated
results are more accurate for the case when a, b are closer to 1.

It follows from Remark 4.1 that the approximated results obtained by the appli-
cation of (4.7) and the discretization method have relatively good performances for
0.5 ≤ a < b ≤ 1 in both time and frequency domains. Based on Theorem 4.2, and in
order to extend a and b to the whole real domain, we can use the following property.

Property 4.2 When 0 ≤ a < b ≤ 0.5, it follows from (A) in Property 4.1 that∫ b
a

1
sα dα = s0.5−a

∫ 0.5+b−a
0.5

1
sα dα, where 0.5 ≤ 0.5 + b − a ≤ 1.

Remark 4.2 It follows from Properties 4.1 and 4.2 that, for arbitrary ã, b̃ ∈ R,∫ b̃
ã

1
sα dα can be divided into the combination of sλ(λ ∈ R) and

∫ b
a

1
sα dα, where

a, b ∈ [0.5, 1].
Lastly, it can be shown in both time and frequency domains that the distributed-

order integrator/differentiator exhibits some intermediate properties among
the integer-order and fractional-order integrators/differentiators. In the frequency
domain, for example, Fig. 4.3 presents the frequency responses of distributed-
order integrator 1

1−0.6

∫ 1
0.6 s−αdα, integer-order integrator 1

s , and fractional-order

integrators 1
s0.6 and 1

s0.8479 . The fractional integrator 1
s0.8479 was constructed by

searching the best fit to the magnitude of the distributed-order integrator
1

1−0.6

∫ 1
0.6 s−αdα. It can be seen that the magnitude and phase of the frequency

response of the distributed-order integrator are totally different from that of the
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Fig. 4.3 Frequency response comparisons

fractional-order integrator and integer-order integrator. The phase of the distributed-
order integrator is no longer a constant. The comparison study of these three
types of integrators indicates that the distributed-order integrator exhibits distinctive
frequency response characteristics. There does not exist the so-called “mean order”
equivalent constant-order integrator/differentiator for the distributed-order one.

4.1.2 Distributed-Order Low-Pass Filter

In this section, we focus on the discussions of the uniformly weighted distributed-
order low-pass filter

λa+b ln λ

λb − λa

∫ b

a

1

(s + λ)α
dα, (4.11)

where λ ≥ 0, a < b are arbitrary real numbers and λa+b ln λ
λb−λa is the normalizing

constant, such that the filter (4.11) has a unity DC gain.2

The classical first order low-pass filter can be rewritten as

1

T s + 1
=

∫ ∞

−∞
δ(α − 1)

1

(T s + 1)α
dα, (4.12)

where δ(·) denotes the Dirac–Delta function and 1
(T s+1)α

is a fractional-order
low-pass filter with order α ∈ R.

To enable the applications of the distributed-order low-pass filter in engineering,
the numerical discretization method should be applied so that the filter can be used

2 When s = 0, DC gain of
∫ b

a
1

(s+λ)α
dα = ∫ b

a
1
λα dα = 1

ln λ

(
1
λa − 1

λb

)
. So, unity gain requires gain

scaling factor λa+b ln λ
λb−λa .
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in signal modeling, filter design and nonlinear system identification (Hartley and
Lorenzo 2003; Adams et al. 2008; Li et al. 2010b). Let us first derive the analytical
form of the filter’s impulse response.

4.1.2.1 Impulse Response of the Distributed-Order Low-Pass Filter

In this section the analytical form of

L−1
{∫ b

a

1

(s + λ)α
dα

}
(4.13)

is derived and is in a computable form in MATLAB. This will be used in the impulse
response invariant discretization in the next section.

It follows from the properties of inverse Laplace transform that

L−1
{∫ b

a

1

(s + λ)α
dα

}
= e−λtL−1

{∫ b

a

1

(sα)
dα

}
. (4.14)

It has been provided that by substituting s = −xe−iπ and s = xeiπ , where x ∈
(0,+∞), we have, for an arbitrary σ > 0 and b ≤ 1,

L−1
{∫ b

a

1

sα
dα

}
= 1

π

∫ ∞

0

e−xt

(ln(x))2 + π2

[
x−a(sin(aπ) ln(x) + π cos(aπ))

− x−b(sin(bπ) ln(x) + π cos(bπ))
]
dx . (4.15)

Theorem 4.3 For any a, b ∈ R, we have

∣∣∣∣L−1
{∫ b

a

1

(s + λ)α
dα

}∣∣∣∣ ≤ e−λt

π2

(
M1ta−1

|a − 1| + M2tb−1

|b − 1|
)

,

where M1 and M2 are finite positive constants.

Proof By using (4.15), it can be easily proved that

∣∣∣∣L−1
{∫ b

a

1

(s + λ)α
dα

}∣∣∣∣ ≤ e−λt

π2

∫ ∞

0
e−xt (x−a + x−b)dx

= e−λt

π2

(
M1ta−1

|a − 1| + M2tb−1

|b − 1|
)

,
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where M1=
∫ ∞

0 e−τ 1/(1−b)
dτ and M2=

∫ ∞
0 e−τ 1/(1−b)

dτ are finite positive constants for

any a, b ∈ R \ {1}. When a = 1 or b = 1, it is obvious that
∣∣∣L−1

{∫ b
a

1
(s+λ)α

dα
}∣∣∣ ≤

+∞.

4.1.3 Impulse Response Invariant Discretization of DO-LPF

Now, let us consider how to discretize the G(s) given sampling period Ts . Our goal
is to get a discretized version of G(s), denoted by Gd(z−1) with a constraint that
Gd(z−1) and G(s) have the same impulse responses. Since the analytical impulse
response of G(s) had already been derived in Sect. 4.1.2.1, it is relatively straight-
forward to obtain the impulse response invariant discretized version of G(s) via the
well-known Prony technique (Chen 2003, 2008a, b; Chen and Vinagre 2003). In other
words, the discretization impulse response can be obtained by using the continuous
time impulse response as follows:

g(n) = Ts g(nTs), (4.16)

where n = 0, 1, 2, · · · and Ts is the sampling period.
Figure 4.4 shows the magnitude and phase of the frequency response of the approx-

imate discrete-time IIR filter and the continuous-time fractional distributed order
filter 1

0.4

∫ 1
0.6

1
(s+1)α

dα. The transfer function of the approximate IIR filter H(z) is

0.00417 − 0.01509z−1 + 0.02048z−2 − 0.01248z−3 + 0.003019z−4 − 0.0001022z−5

1 − 4.445z−1 + 7.844z−2 − 6.859z−3 + 2.967z−4 − 0.5066z−5
.

For frequency responses, the impulse response invariant discretization method works
well for the continuous-time fractional-order filters. The continuous and discretized
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Fig. 4.5 The frequency response of 1
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Fig. 4.6 The comparisons of distributed-order low-pass filter with several integer-order and
constant-order low-pass filters

impulse response and frequency response are also shown in Figs. 4.4 and 4.5, where
Ts = 0.001 s. Then, several low-pass filters are compared and shown in Fig. 4.6.

It can be seen that the distributed-order low-pass filter is an intermediate one
among integer-order and fractional-order low-pass filters.

From this section, we can see that, distributed order operator can be fruitfully used
for distributed-order filters. The next application example is closer to engineering
setting on distributed-order damping.
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4.2 Application II: Optimal Distributed-Order Damping

A damper is a valuable component for reducing the amplitude of dynamic instabil-
ities or resonances in system stabilization (Shafieezadeh et al. 2008). In physics
and engineering, the mathematical model of the conventional damping can be
represented by

f (t) = −cv(t) = −c
dx(t)

dt
, (4.17)

where f (t) is the time varying force, c is the viscous damping coefficient, v(t)
is the velocity, and x(t) is the displacement (Komkov 1972). Taking advantage of
fractional calculus, fractional-order damping with a viscoelastic damping element
provides a better model to describe a damping system (Koeller 1984). Fractional-
order damping is modeled as a force proportional to the fractional-order derivative
of the displacement (Lion 1997)

f (t) = c0Dα
t x(t), (4.18)

where 0Dα
t x(t) is the fractional-order derivative defined in Chap. 1 of Podlubny

(1999). Motivated by potential benefits of fractional damping, many efforts have been
made to investigate the modeling of systems with damping materials using fractional-
order differential operators (Rossikhin and Shitikova 1997; Padovan and Guo 1988;
Shokooh 1999; Rüdinger 2006; De Espíndola et al. 2008; Dalir and Bashour 2010).
However, up to now, little attention has been paid to time-delayed fractional-order
damping, and distributed-order fractional damping. In this section, we investigate the
potential benefits of a non-delayed fractional-order damping system, a time-delayed
fractional-order damping system, and a distributed-order fractional damping system.

In order to design an optimal transfer function form, the performance of a control
system should be measured, and the parameters of the system should be adjusted to
deliver the desirable response. The performance of a system is usually specified by
several time response indices for a step input, such as rise time, peak time, overshoot,
and so on (Dorf 1989). Furthermore, the performance index, a scalar, is adequately
used to represent the important system specifications instead of a set of indices. The
transfer function of a system is considered as an optimal form when the system
parameters are adjusted so that the performance index reaches an extremum value
(Dorf 1989). The well-known integral performance indices are the integral of absolute
error (IAE), the integral of squared error (ISE), the integral of time multiplied absolute
error (ITAE), the integral of time multiplied squared error (ITSE), and the integral
of squared of time multiplied error (ISTE) (Dorf 1989; Tavazoei 2010). Hartley and
Lorenzo studied the single term damper that minimizes the time domain ISE and
ITSE, and found that the optimal fractional-order damping is more optimal than
the optimal integer-order damping (Hartley and Lorenzo 2004). In this section, we
investigate three types of optimal fractional-order damping systems using frequency-
domain optimization method. In frequency domain, the time-delayed fractional-order
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and distributed-order fractional damping systems are optimized using ISE criterion.
The comparisons of an optimal integer-order damping system and three optimal
fractional-order damping systems indicate that ISE optimal fractional-order damping
systems perform better than ISE optimal integer-order damping systems. The optimal
time-delayed fractional-order damping system performs the best among the optimal
integer-order damping system and optimal fractional-order damping systems.

An interesting fact revealed in this section is that, the time delay, which is usually
regarded as a detrimental negative destabilizing factor, can sometimes be used to gain
benefit in control systems. And the distributed-order fractional damper performs
as well as fractional-order damping. Furthermore, the distributed-order fractional
damper has great potential to improve the damping by choosing the appropriate
order weighting function as the order-dependent viscoelastic damping coefficient.

4.2.1 Distributed-Order Damping in Mass-Spring
Viscoelastic Damper System

In this section, we explain the distributed-order fractional mass-spring viscoelastic
damper system in detail. This can serve as a physical interpretation of the origin and
need of distributed operator.

At first, we briefly review the mass-spring-damper, mass-spring viscoelastic
damper, and time-delayed mass-spring viscoelastic damper. An ideal mass-spring-
damper system with mass m, spring constant k, and viscous damper of damping
coefficient c can be described by a second-order differential equation

f (t) = m
d2x(t)

dt2 + c
dx(t)

dt
+ kx(t), (4.19)

where f (t) is the time varying force on the mass, x(t) is the displacement of the mass
relative to a fixed point of reference. The transfer function from force to displacement
for the ideal mass-spring-damper system can be expressed as

G(s) = 1

ms2 + cs + k
. (4.20)

A mass-spring viscoelastic damper system can be described by a fractional-order
differential equation

f (t) = m
d2x(t)

dt2 + c 0Dα
t x(t) + kx(t), (4.21)

where 0 < α < 2. The transfer function form of a mass-spring viscoelastic damper
system can be expressed as
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Fig. 4.7 A distributed-
order fractional mass-spring
viscoelastic damper system

G(s) = 1

ms2 + csα + k
. (4.22)

Similarly, the transfer function form of a time-delayed mass-spring viscoelastic
damper system can be expressed as

G(s) = 1

ms2 + csαe−τ s + k
, (4.23)

where 0 < α < 2.
A distributed-order fractional mass-spring viscoelastic damper system with

mass m (in kilograms), spring constant k (in Newton per meter) and an assembly of
viscoelastic dampers of damping coefficient ci (1 < i < n) is subject to the spring
force

fs(t) = −kx(t), (4.24)

and damping force

fd(t) = −
n∑

i=1

ci · 0 Dαi
t x(t), (4.25)

where ci is the viscoelastic damping coefficient. Figure 4.7 illustrates a distributed-
order fractional mass-spring viscoelastic damper system. According to the Newton’s
second law, the total force ftot (t) on the body is

ftot (t) = ma = m
d2x(t)

dt2 , (4.26)

where a is the acceleration (in meters per second squared) of the mass, and x(t) is
the displacement (in meters) of the mass relative to a fixed point of reference. The
time varying force on the mass can be represented by
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f (t) = ftot (t) − fd(t) − fs(t)

= m
d2x(t)

dt2 +
n∑

i=1

ci 0Dαi
t x(t) + kx(t). (4.27)

Assuming elements with orders that vary from a to b, the above mass-spring
viscoelastic damper system of (4.27) can be replaced by an integral over the system
order,

f (t) = m
d2x(t)

dt2 +
∫ b

a
c(α) 0Dα

t x(t)dα + kx(t), (4.28)

where 0 < a < b < 2. The transfer function from the force to displacement x for
the spring-mass-viscoelastic damper system of (4.28) can be expressed as

G(s) = X (s)

F(s)
= 1

ms2 + ∫ b
a c(α)sαdα + k

. (4.29)

What we are concentrating on in this study is the normalized transfer functions
of above three types of the spring-mass-viscoelastic damper systems. They are: the
normalized transfer function of the spring-mass-viscoelastic damper system

G(s) = 1

s2 + csα + 1
, 0 < α < 2; (4.30)

the normalized transfer function of the time-delayed spring-mass-viscoelastic damper
system

G(s) = 1

s2 + csαe−τ s + 1
, 0 < α < 2, (4.31)

and the normalized transfer function of the constant damper coefficient distributed-
order spring-mass-viscoelastic damper system

G(s) = 1

s2 + c
∫ b

a sαdα + 1
, 0 < a < b < 2. (4.32)

4.2.2 Frequency-Domain Method Based Optimal
Fractional-Order Damping Systems

The ISE optimal integer-order damping system with transfer function

G(s) = 1

s2 + s + 1
(4.33)
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has been investigated in Ogata (1970), and the ISE optimal fractional-order damping
with transfer function

G(s) = 1

s2 + 0.8791s0.8459 + 1
(4.34)

has been found in Lorenzo and Hartley(2002) using a frequency-domain method. In
this section, ISE optimal time-delayed and distributed-order fractional mass-spring
viscoelastic damper systems are studied in frequency-domain. The ISE performance
measure is the integral of the squared error of the step response e(t) = u(t) − x(t)

JISE =
∫ ∞

0
e2(t)dt, (4.35)

where x(t) is the output of the system (D’Azzo et al. 2003). Using Parseval’s identity

JISE =
∫ ∞

0
e2(t)dt = 1

2π

∫ ∞

−∞
|E( jω)|2dω, (4.36)

where E( jω) is the Fourier transform of the error e(t). For a system with transfer
function G(s), the Laplace transform of the error can be written as

E(s) = 1

s
− 1

s
G(s). (4.37)

In frequency domain, (4.37) is represented by

E( jω) = 1

jω
− 1

jω
G( jω). (4.38)

For a time-delayed spring-mass-viscoelastic damper system with the normalized
transfer function (4.31), the Laplace transform of the step response error is

E(s) = 1

s
− 1

s

(
1

s2 + csαe−τ s + 1

)
= 1

s

(
s2 + csαe−τ s

s2 + csαe−τ s + 1

)
. (4.39)

The frequency response of the error is

E( jω) = 1

jω

(
( jω)2 + c( jω)αe−τ( jω)

( jω)2 + c( jω)αe−τ( jω) + 1

)
. (4.40)

Using the frequency-domain method in Hartley and Lorenzo (2004), the minimum
JISE = 0.8102 was obtained when τ = 0.635, c = 1.12 and α = 1.05. The step
response using optimum coefficients for the ISE criterion is given in Fig. 4.8.

For a mass-spring viscoelastic damper model with the normalized distributed-
order fractional transfer function (4.32), the Laplace transform of the step response
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Fig. 4.8 Step responses of
ISE optimal damping systems
based on frequency-domain
method
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error is

E(s) = 1

s
− 1

s

(
1

s2 + c
∫ b

a sαdα + 1

)

= 1

s

(
ln(s)s2 + c

(
sb − sa

)
ln(s)s2 + c

(
sb − sa

) + ln(s)

)
. (4.41)

The frequency response of the error is

E( jω) = 1

jω

(
ln( jω)( jω)2 + c[( jω)b − ( jω)a]

ln( jω)( jω)2 + c[( jω)b − ( jω)a] + ln( jω)

)
. (4.42)

Then, we can search the optimum coefficients of the distributed-order fractional
damping system. The optimum coefficients are a = 0.8015, b = 0.8893 and c = 10,
which can minimize the ISE performance measure to JISE = 0.9494. Figure 4.8
shows the step responses of integer-order, non-delayed fractional-order, time-delayed
fractional-order, and distributed-order fractional damping systems using optimum
coefficients for ISE. It can be seen that the step responses of optimal distributed-
order fractional damping system with transfer function (4.32) are almost as good as
that of the optimal non-delayed fractional-order damping system. The optimal time-
delayed fractional-order damping system performs the best among these four types
of damping systems. The ISE optimal forms and ISE performance indexes of integer-
order, non-delayed fractional-order, time-delayed fractional-order, and distributed-
order fractional damping systems are summarized in Table 4.1.

In this section, we tried to determine the optimal non-delayed fractional-order
damping, time-delayed fractional-order damping, and optimal distributed order
fractional damping based on ISE performance criterion. The comparisons of the
step responses of the integer-order and the three types of fractional-order damping
systems indicate that the optimal fractional-order damping systems achieve much
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Table 4.1 ISE optimum
coefficients and minimum
ISE performance indexes
using frequency-domain
method

Optimal form JISE

Integer GISE(s) = 1/(s2 + s + 1) 1.0000
Fractional GISE(s) = 1/(s2 + 0.8791s0.8459 + 1) 0.9494
Delayed GISE(s) = 1/(s2 + 1.12s1.05e−0.635s + 1) 0.8102

Distributed GISE(s) = 1/(s2 + 10
∫ 0.8893

0.8015 sαdα + 1) 0.9494

better step responses than optimal integer-order systems in some instances, but
sometimes the integer-order damping systems performs as well as fractional-order
ones. Furthermore, time delay can sometimes be used to gain benefit in control
systems, and, especially, the fractional-order damping plus properly chosen delay
can bring outstanding performance. Time-delayed fractional-order damping systems
can produce a faster rise time and less overshoot than others.

4.3 Chapter Summary

This chapter shows two generic application examples using distributed-order
operator: distributed-order signal processing and optimal distributed-order damping.
In distributed-order signal processing, the simplest case of distributed-order
integrator/differentiator is discussed first followed by the discussion of distributed-
order low-pass filter. Specifically, we derived the impulse response functions of the
distributed-order integrator/differentiator and fractional-order distributed low-pass
filter from the complex path integral expressed in the definite integral form. Based
on these results, we obtained some asymptotic properties of the impulse responses,
and we can accurately compute the integrals on the whole time domain. Moreover,
for practical applications, we presented a technique known as “impulse-response-
invariant discretization” to perform the discretization of these two distributed-order
filters. We are able to show that the distributed-order fractional filters have some
unique features compared with the classical integer-order or constant-order fractional
filters.

Then, optimal distributed-order damping strategies are given for a given standard
form of second order system known as distributed-order fractional mass-spring
viscoelastic damper system. Frequency-domain method based optimal fractional-
order damping systems are numerically solved. Although the distributed-order
fractional damping system with uniform weights does not perform obviously better
than non-delayed and time-delayed fractional-order damping systems, it is believed
to have much potential to improve the damping system by choosing an appro-
priate viscoelastic damping coefficient weighting function. So, our next step is to
explore the benefits of distributed-order fractional damping system with an “optimal”
viscoelastic coefficient weighting function.
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Chapter 5
Numerical Solution of Differential Equations
of Distributed Order

5.1 Introduction

In this chapter we present a general approach to numerical solution to discretization
of distributed-order derivatives and integrals, and to numerical solution of ordinary
and partial differential equations of distributed order.

This approach is based on the matrix form representation of discretized fractional
operators of constant order introduced for the first time in Podlubny (2000) and
extended further in the works (Podlubny et al. 2009a, b; Skovranek et al. 2010;
Podlubny et al. 2011).

This approach unifies the numerical differentiation of arbitrary (including integer)
order and the n-fold integration, using the so-called triangular matrices. Applied to
numerical solution of differential equations, it also unifies the solution of integer- and
fractional-order partial differential equations. The matrix approach lead to significant
simplification of the numerical solution of partial differential equations as well, and
it is general enough to deal with different types of partial fractional differential
equations.

In this chapter we extend the range of applicability of the matrix approach to
discretization of distributed-order derivatives and integrals, and to numerical solution
of distributed-order differential equations (both ordinary and partial).

Since the distributed-order operators are represented by integrals of weighted
constant-order operators, we necessarily first introduce the matrix approach to
discretization of constant order and then demonstrate how this method can be
extended to allow numerical solution of distributed-order differential equations.

5.2 Triangular Strip Matrices

We use matrices of a specific structure, which are called triangular strip matrices
(Podlubny 2000; Suprunenko and Tyshkevich 1966), and which have been also

Z. Jiao et al., Distributed-Order Dynamic Systems, SpringerBriefs in Control, 59
Automation and Robotics, DOI: 10.1007/978-1-4471-2852-6_5,
© The Author(s) 2012
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mentioned in Bulgakov (1954) and Gantmakher (1988). We will need lower trian-
gular strip matrices,

LN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω0 0 0 0 · · · 0
ω1 ω0 0 0 · · · 0
ω2 ω1 ω0 0 · · · 0
. . .

. . .
. . .

. . . · · · · · ·
ωN−1

. . . ω2 ω1 ω0 0

ωN ωN−1
. . . ω2 ω1 ω0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.1)

and upper triangular strip matrices,

UN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω0 ω1 ω2
. . . ωN−1 ωN

0 ω0 ω1
. . .

. . . ωN−1

0 0 ω0
. . . ω2

. . .

0 0 0
. . . ω1 ω2

· · · · · · · · · · · · ω0 ω1
0 0 0 · · · 0 ω0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.2)

A lower (upper) triangular strip matrix is completely described by its first column
(row). Therefore, if we define the truncation operation, truncN (·), which truncates
(in a general case) the power series ρ(z),

ρ(z) =
∞∑

k=0

ωkzk (5.3)

to the polynomial ρN (z),

truncN (ρ(z))
def=

N∑
k=0

ωkzk = ρN (z), (5.4)

then we can consider the function ρ(z) as a generating series for the set of lower
(or upper) triangular matrices LN (or UN ), N = 1, 2, . . .

It was shown in Podlubny (2000) that operations with triangular strip matrices,
such as addition, subtraction, multiplication, and inversion, can be expressed in the
form of operations with their generating series (5.3).

Among properties of triangular strip matrices it should be noticed that if matrices
C and D are both lower (upper) triangular strip matrices, then they commute:

CD = DC. (5.5)
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5.3 Kronecker Matrix Product

The Kronecker product A ⊗ B of the n × m matrix A and the p × q matrix B

A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
. . .

...

an1 an2 . . . anm

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

b11 b12 . . . b1q

b21 b22 . . . b2q
...

...
. . .

...

bp1 bp2 . . . bpq

⎤
⎥⎥⎥⎦ , (5.6)

is the np × mq matrix having the following block structure:

A ⊗ B =

⎡
⎢⎢⎢⎣

a11B a12B . . . a1mB
a21B a22B . . . a2mB

...
...

. . .
...

an1B an2B . . . anmB

⎤
⎥⎥⎥⎦ . (5.7)

For example, if

A =
[

1 2
0 −3

]
, B =

[
1 2 3
4 5 6

]
, (5.8)

then

A ⊗ B =

⎡
⎢⎢⎣

1 2 3 2 4 6
4 5 6 8 10 12
0 0 0 −3 −6 −9
0 0 0 −12 −15 −18

⎤
⎥⎥⎦ . (5.9)

Among many known interesting properties of the Kronecker product we
would like to recall those that are important for the subsequent sections. Namely
(Loan 2000),

• if A and B are band matrices, then A ⊗ B is also a band matrix,
• if A and B are lower (upper) triangular, then A⊗B is also lower (upper) triangular.

We will also need two specific Kronecker products, namely the products En ⊗ A
and A ⊗ Em, where En is an n × n identity matrix. For example, if A is a 2 × 3 matrix

A =
[

a11 a12 a13
a21 a22 a23

]
(5.10)

then

E2 ⊗ A =

⎡
⎢⎢⎣

a11 a12 a13 0 0 0
a21 a22 a23 0 0 0
0 0 0 a11 a12 a13
0 0 0 a21 a22 a23

⎤
⎥⎥⎦ , (5.11)
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A ⊗ E3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 0 0 a12 0 0 a13 0 0
0 a11 0 0 a12 0 0 a13 0
0 0 a11 0 0 a12 0 0 a13

a21 0 0 a22 0 0 a23 0 0
0 a21 0 0 a22 0 0 a23 0
0 0 a21 0 0 a22 0 0 a23

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5.12)

This illustrates that left multiplication of An×m by En creates an n × n block
diagonal matrix by repeating the matrix A on the diagonal, and that right multipli-
cation of An×m by Em creates a sparse matrix made of n × m diagonal blocks.

5.4 Discretization of Ordinary Fractional Derivatives
of Constant Order

It follows from Podlubny (2000), that the left-sided Riemann-Liouville or Caputo
fractional derivative v(α)(t) = 0Dα

t v(t) can be approximated in all nodes of the
equidistant discretization net t = jτ (j = 0, 1, . . . , n) simultaneously with the help
of the upper triangular strip matrix B(α)

n as1

[
v(α)

n v(α)
n−1 . . . v(α)

1 v(α)
0

]T = B(α)
n

[
vn vn−1 . . . v1 v0

]T
(5.13)

where

B(α)
n = 1

τα

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω
(α)
0 ω

(α)
1

. . .
. . . ω

(α)
n−1 ω

(α)
n

0 ω
(α)
0 ω

(α)
1

. . .
. . . ω

(α)
n−1

0 0 ω
(α)
0 ω

(α)
1

. . .
. . .

· · · · · · · · · . . .
. . .

. . .

0 · · · 0 0 ω
(α)
0 ω

(α)
1

0 0 · · · 0 0 ω(α)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.14)

ω
(α)
j = (−1)j

(
α

j

)
, j = 0, 1, . . . , n. (5.15)

1 Here due to the use of the descending numbering of discretization nodes the roles of the matrices
B(α)

n (originally for backward fractional differences) and F(α)
n (originally for forward fractional

differences) are swapped in comparison with Podlubny (2000), where these matrices were intro-
duced for the first time. However, we would like to preserve the notation B(α)

n for the case of
the backward fractional differences approximation and F(α)

n for the case of the forward fractional
differences approximation.
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Similarly, the right-sided Riemann-Liouville or Caputo fractional derivative
v(α)(t) = tDα

b v(t) can be approximated in all nodes of the equidistant discretization
net t = jτ (j = 0, 1, . . . , n) simultaneously with the help of the lower triangular strip
matrix F(α)

n :

[
v(α)

n v(α)
n−1 . . . v(α)

1 v(α)
0

]T = F(α)
n

[
vn vn−1 . . . v1 v0

]T
, (5.16)

F(α)
n = 1

τα

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω
(α)
0 0 0 0 · · · 0

ω
(α)
1 ω

(α)
0 0 0 · · · 0

ω
(α)
2 ω

(α)
1 ω

(α)
0 0 · · · 0

. . .
. . .

. . .
. . . · · · · · ·

ω
(α)
n−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0 0

ω
(α)
n ω

(α)
n−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.17)

The symmetric Riesz derivative of order β can be approximated based on its
definition as a half-sum of the approximations (5.13) and (5.16) for the left- and
right-sided Riemann-Liouville derivatives. We, however, prefer using the centered
fractional differences approximation of the symmetric Riesz derivative suggested
recently by Ortigueira (2006) and Ortigueira and Batista (2008), which gives

[
v(β)

m v(β)
m−1 . . . v(β)

1 v(β)
0

]T = R(β)
m

[
vm vm−1 . . . v1 v0

]T
(5.18)

with the following symmetric matrix:

R(β)
m = h−β

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω
(β)
0 ω

(β)
1 ω

(β)
2 ω

(β)
3 · · · ω

(β)
m

ω
(β)
1 ω

(β)
0 ω

(β)
1 ω

(β)
2 · · · ω

(β)
m−1

ω
(β)
2 ω

(β)
1 ω

(β)
0 ω

(β)
1 · · · ω

(β)
m−2

. . .
. . .

. . .
. . . · · · · · ·

ω
(β)
m−1

. . . ω
(β)
2 ω

(β)
1 ω

(β)
0 ω

(β)
1

ω
(β)
m ω

(β)
m−1

. . . ω
(β)
2 ω

(β)
1 ω

(β)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.19)

ω
(β)

k = (−1)k Γ (β + 1) cos(βπ/2)

Γ (β/2 − k + 1) Γ (β/2 + k + 1)
, k = 0, 1, . . . , m. (5.20)
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5.5 Discretization of Ordinary Derivatives of Distributed Order

Using the matrix approach, the discretization of a derivative of distributed order
is very easy. Let us discretize the interval [a, b], in which the order α is changing,
using the grid with the steps Δαk , not necessarily equidistant. Then we have

0Dw(α)
t f (t) =

γ2∫
γ1

w(α) 0Dα
t f (t) dα ≈

p∑
k=1

w(αk)
(

0Dαk
t f (t)

)
Δαk (5.21)

≈
p∑

k=1

w(αk)
(

Bαk
n fn

)
Δαk =

( p∑
k=1

Bαk
n w(αk)Δαk

)
fn. (5.22)

In other words, the discrete analog of distributed-order differentiation is given by
the matrix that we will further denote as Bw(α)

n,p ,

Bw(α)
n,p =

p∑
k=1

Bαk
n w(αk)Δαk, (5.23)

and we can obtain the values of the distributed-order derivative at all points
tj (j = 1, . . . , n) at once using the following relationship:

0Dw(α)
t f (t) ≈ Bw(α)

n,p fn. (5.24)

In the notation Bw(α)
n,p the order w(α) means the function describing the distrib-

ution of orders α in the interval [γ1, γ2], and the second index p is the number of
discretization steps for α; the first index n, as above, is the number of discretization
steps with respect to the variable t.

The visualization of the formula (5.21) is shown in Fig. 5.1. On each k-th layer
of the shown “cake” the input vector fn of the values of the function f (t) at the
nodes tj is multiplied by the matrix Bαk

n and gives the output vector of the values
of the fractional derivative 0Dαk

t at the same nodes tj. Those vectors 0Dαk
t are then

multiplied by weights w(αk) and discretization steps Δαk , and the final summation
with respect to k (“summation across the layers of orders”) gives the vector of the
distributed-order derivative 0Dw(α)

t evaluated at the nodes tj (j = 1, . . . , n).

5.6 Discretization of Partial Derivatives of Distributed Order

In contrast with generally used numerical methods, where the solution is obtained
step-by-step by moving from the previous time layer to the next one, let us consider
the whole time interval of interest at once. This allows us to create a net of
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Fig. 5.1 Visualization of numerical evaluation of distributed-order derivatives with the help of the
matrix approach

discretization nodes. In the simplest case of one spatial dimension this step gives
a 2D net of nodes. An example of such discretization is shown in Fig. 5.2. The values
of the unknown function in inner nodes (shaded area in Fig. 5.2) are to be found. The
values at the boundaries are known, they are used later in constructing the system of
algebraic equations.

The system of algebraic equations is obtained by approximating the equation in
all inner nodes simultaneously (this gives the left-hand side of the resulting system
of algebraic equations) and then utilizing the initial and boundary conditions (the
values of which appears in the right-hand side of the resulting system).

The discretization nodes in Fig. 5.2 are numbered from right to left in each time
level, and the time levels are numbered from bottom to top. We use such numbering
for the clarity of presentation of our approach, although standard numberings work
equally well.

The simplest implicit discretization scheme used for numerical solution of partial
differential equations, like diffusion equation, is shown in Fig. 5.3, where the two
nodes in time direction are used for approximating the time derivative, and the three
points in spatial direction are used for the symmetric approximation of the spatial
derivative. The stencil in Fig. 5.3 involves therefore only two time layers. If we
consider fractional-order time derivative or distributed-order derivative, then we have
to involve all time levels starting from the very beginning. This is shown in Fig. 5.4
for the case of five time layers.

Similarly, if in addition to time derivative of distributed order or of fractional order
we also consider symmetric spatial derivatives of distributed order or fractional order,
then we have to use all nodes at the considered time layer. This most general situation
is shown in Fig. 5.5.

Let us consider the nodes (ih, jτ ), j = 0, 1, 2, . . . , n, corresponding to all
time layers at i-th spatial discretization node. Similarly to the case of constant
fractional orders (Podlubny 2000), all values of α-th order time derivative of u(x, t)
at these nodes are approximated using the discrete analogue of distributed-order
differentiation:
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Fig. 5.2 Nodes and their
right-to-left, and bottom-to-
top numbering

[
u(w(α))

i,n u(w(α))
i,n−1 . . . u(w(α))

i,2 u(w(α))
i,1 u(w(α))

i,0

]

= Bw(α)
n,p

[
ui,n ui,n−1 . . . ui,2 ui,1 ui,0

]T
. (5.25)

In order to obtain a simultaneous approximation of α-th order time derivative of
u(x, t) in all nodes shown in Fig. 5.2, we need to arrange all function values uij at
the discretization nodes to the form of a column vector:

Unm =
[
um,n um−1,n . . . u1,n u0,n

um,n−1 um−1,n−1 . . . u1,n−1 u0,n−1

. . . . . . . . .

um,1 um−1,1 . . . u1,1 u0,1

um,0 um−1,0 . . . u1,0 u0,0

]T
. (5.26)

In visual terms of Fig. 5.2, we first take the nodes of n-th time layer, then the
nodes of (n − 1)-th time layer, and so forth, and put them in this order in a vertical
column stack.

The matrix that transforms the vector Unm to the vector Uw(α)
t of the partial

derivative of distributed order w(α) with respect to time variable can be obtained as
a Kronecker product of the matrix Bw(α)

n,p , which corresponds to the ordinary derivative
of distributed order w(α) (recall that n is the number of time steps), and the unit matrix
Em (recall that m is the number of spatial discretization steps):

Tw(α)
mn = Bw(α)

n,p ⊗ Em. (5.27)
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This is illustrated in Fig. 5.6, where the nodes denoted as white and grey are used
to approximate the fractional-order time derivative at the node shown in grey.

Similarly, the matrix that transforms the vector U to the vector Uϕ(β)
x of the

derivative of distributed order ϕ(β) with respect to spatial variable can be obtained
as a Kronecker product of the unit matrix En (recall that n is the number of spatial
discretization nodes), and the matrix Rϕ(β)

m,p , which corresponds to symmetric Riesz
ordinary derivative of distributed order ϕ(β) (recall that m is the number of time
steps):

Sϕ(β)
mn = En ⊗ Rϕ(β)

n,p . (5.28)

This is also illustrated in Fig. 5.6, where the nodes denoted as black and grey
are used to approximate the symmetric fractional-order Riesz derivative at the same
node shown in grey.

Having these approximations for partial fractional derivatives with respect to both
variables, we can immediately discretize, for example, the diffusion equation in terms
of time- and space-derivatives of distributed order by simply replacing the derivatives
with their discrete analogs (Fig. 5.7). Namely, the equation

0Dw(α)
t u − χ

∂ϕ(β)u

∂|x|ϕ(β)
= f (x, t) (5.29)

is discretized as {
Bw(α)

n,p ⊗ Em − χ En ⊗ Rϕ(β)
m,p

}
unm = fnm. (5.30)

5.7 Initial and Boundary Conditions for Using the Matrix
Approach

It is always emphasized in case of the matrix approach to solution of differential
equations that initial and boundary conditions must be equal to zero. If it is not so,
then an auxiliary unknown function must be introduced, which satisfies the zero initial
and boundary conditions. In this way, the non-zero initial and boundary conditions
moves to the right-hand side of the equation for the new unknown function. After
obtaining the solution for the auxiliary function, the backward substitution gives the
solution of the original equation.

5.8 Implementation in MATLAB

A set of MATLAB routines implementing the described method is provided for
download (Podlubny 2011). Those routines require the previously published toolbox
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Fig. 5.3 A stencil for integer-
order derivatives

Fig. 5.4 A stencil in case
of distributed-order and
fractional time derivative and
second-order spatial deriv-
ative

Fig. 5.5 A stencil in case
of distributed-order and
fractional-order time and
spatial derivatives

Fig. 5.6 Discretization of
partial derivaives

for numerical solution of differential equations of arbitrary (fractional) constant order
(Podlubny et al. 2008).

The function DOBAN returns the matrix for the backward difference approxi-
mation of the left-sided distributed-order derivative, the function DOFAN returns the
matrix for approximating the right-sided distributed-order derivative, DORANORT
return the matrix for approximating the symmetric Riesz distributed-order derivative.

The use of these routines is illustrated by the demo functions included in the
toolbox.

5.9 Numerical Examples

The use of the matrix approach for numerical solution of differential equations with
derivatives of distributed orders is illustrated below on three examples that generalize
the standard frequently used models of the applied fractional calculus. The relaxation,
oscillation, and diffusion equations play extremely important role in numerous fields
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Fig. 5.7 Discretization of
partial derivaives and of the
equation

of science and engineering, and, because of their importance, they are also often used
for benchmarking new methods and algorithms.

To the knowledge of the authors, these are the first examples of numerical solution
of such distributed-order problems.

It is worth mentioning that existence and uniqueness of solutions of such types
of distributed-order differential equations in the particular case of w(α) = 1 were
investigated by Pskhu (2005).

5.9.1 Example 1: Distributed-Order Relaxation

Let us consider the following initial value problem for the distributed-order relaxation
equation:

0Dw(α)
t x(t) + bx(t) = f (t), (5.31)

x(0) = 1, (5.32)

where the distribution of the orders α is given by the function w(α) = 6 α (1 − α),
(0 ≤ α ≤ 1). To be able to use the matrix approach, we need zero initial condition.
Introducing an auxiliary function u(t),

x(t) = u(t) + 1

gives the following initial value problem for the new unknown u(t):

0Dw(α)
t u(t) + bu(t) = f (t) − b, (5.33)

u(t) = 0. (5.34)

The discretization of equation (5.33) gives the following system of algebraic
equations in the matrix form:
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Fig. 5.8 Solution of the
distributed-order relax-
ation equation with
w(α) = 6α(1 − α)
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Solution of DO−relaxation equation with w(α)=6α(1−α)

t

y

(
Bw(α)

n,p + bEn

)
Un = Fn, (5.35)

where Un is the vector of the values of u(t) at the discretization nodes, and Fn is the
vector of the values of the right-hand side, f (t) − B, at the same nodes; En is the
identity matrix. The MATLAB code for solving Example 1 is in the Appendix, and
the results of computations are shown in Fig. 5.8.

5.9.2 Example 2: Distributed-Order Oscillator

Let us consider the Bagley-Torvik equation with a damping term described by
a distributed-order derivative. When the damping term is of constant (integer or
non-integer) order, this equation is also called the fractional oscillator equation.

ay′′(t) + by(w(α))(t) + cy(t) = f (t), f (t) =
{

8, (0 ≤ t ≤ 1)

0, (t > 1)
, (5.36)

y(0) = y′(0) = 0. (5.37)

Similarly to Example 1, we just replace continuous operators with their corre-
sponding discrete analogs in the form of matrices, and the known and unknown
function by the vectors of their values in the discretization nodes. This gives the
following algebraic system in the matrix form:

(
a B2

n + b Bw(α)
n,p + c

)
Yn = Fn. (5.38)
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Fig. 5.9 Solution of the
distributed-order oscil-
lator equation (Bagley-
Torvik equation) with
w(α) = 6α(1 − α)
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Solution of Bagley−Torvik DO−equation with w(α)=6α(1−α)

The MATLAB code for solving Example 2 is in the Appendix, and the results of
computations are shown in Fig. 5.9.

5.9.3 Example 3: Distributed-Order Diffusion

The last example that is provided in this section is an initial value problem for a
partial differential equation with a derivative of distributed-order w(α) with respect
to time variable t and with a constant-order symmetric fractional derivative of order
β with respect to the spatial variable x:

0Dw(α)
t y − ∂βy

∂|x|β = f (x, t) (5.39)

y(0, t) = 0, y(1, t) = 0; y(x, 0) = 0. (5.40)

In order to be able to check for a “backward compatibility” of the obtained solution
with the solution of the classical diffusion equation and with the solution of the
constant-order fractional diffusion equation, we take f (x, t) = 8.

Again, we just replace continuous operators with their corresponding discrete
analogs in the form of matrices, and the known and unknown function by the vectors
of their values in the discretization nodes. This gives the following algebraic system
in the matrix form:

(
Bw(α)

n,p ⊗ Em − En ⊗ Rβ
m

)
Ynm = Fnm. (5.41)
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Fig. 5.10 Solution of distributed-order diffusion equation with w1(α) = 2(1 − α)

Here we demonstrate that distributed-order derivatives, integer-order derivatives
and fractional-order derivatives can appear in the same equations and are treated in
the same manner for the purpose of numerical solution using the matrix approach.

The MATLAB code for solving Example 3 is also provided in the Appendix. The
results of computations are shown in Fig. 5.10 for the case w1(α) = 2(1 − α), and
in Fig. 5.11 for the case w2(α) = 2α. Although we have

1∫
0

w1(α) dα =
1∫

0

w2(α) dα = 1,

the obtained solutions are different because of different weights assigned by the
functions w1(α) and w2(α) to the fractional derivatives of orders close to 0 and 1.

5.10 Chapter Summary

In this chapter we introduced the extension of Podlubny’s matrix approach to the
case of distributed-order derivatives. The matrix approach provides an extremely
convenient language and framework for discretization of differentiation of any
order—integer, fractional, and distributed order. Using discrete analogs of all those
forms of differentiation, one can easily discretize differential equations with all
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Fig. 5.11 Solution of distributed-order diffusion equation with w2(α) = 2α

possible combinations of derivatives—classical integer-order derivatives, left- and
right-sided fractional order derivatives, symmetric fractional derivatives, and left-
sided, right-sided, and symmetric distributed-order derivatives.

We have provided examples of solution of the three important types of problems
that are important for applications and appear in many fields of science and
engineering. The MATLAB code provided in the Appendix demonstrates how easy
it is using the matrix approach.
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Chapter 6
Future Topics

In previous chapters, methods and tools for the modeling of distributed-order
systems were discussed, which include stability analysis of distributed-order sys-
tems in four cases of the weighting function of order, and two special cases: double
noncommensurate orders and N -term noncommensurate orders. Distributed-order
signal processing technique and optimal distributed-order damping strategies were
studied. A general approach to numerical solution to discretization of distributed-
order derivatives and integrals, and to numerical solution of ordinary and partial
differential equations of distributed order was proposed.

Let us now outline possible topics for future research in the field of distributed-
order systems.

6.1 Geometric Interpretation of Distributed-Order
Differentiation as a Framework for Modeling

Distributed-order derivatives can be considered as a kind of averaging operators.
However, they do not average the values of parameters over a set of values—they
average the behavior of individual objects or processes over a set of objects or
processes of the same type.

Let us consider an understandable example of the impact of advertising on the
crowd consisting of a large number of individuals. The broadcast of an advertisement
is a unit-step input; this can be interpreted as charging the memory of individuals to
some initial value.

The impact of such input on an individual vanishes in time due to properties
of human’s memory (memory relaxation, or forgetting). Suppose it is possible to
classify individuals with respect to the properties of their memory into p groups.
The process of memory relaxaation in the i-th group of individuals can be described
by an initial-value problem for a two-term fractional differential equation in terms
of Caputo derivatives with non-zero initial condition:
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0Dαi
t x(t) + bx(t) = 0, x(0) = 1, (6.1)

where the order αi is from the interval [0, 1]; we assume that α1 < α2 < . . . < αp.
Denoting wi the number of individuals in i-th group normalized with respect to

the total number of individuals (so that
∑

wi = 1), we obtain a piecewise-constant
weighting function

w(α) = wi for αi < α ≤ αi+1 (i = 1, . . . , p − 1). (6.2)

Then the averaged behavior of the crowd can be described as

p−1∑
i=1

w(αi ) 0Dαi
t x(t)�αi = 0Dw(α)

t x(t), (6.3)

which is a distributed-order derivative, and the equation describing the process of the
memory relaxation of a crowd takes on the form of a distributed-order differential
equation

0Dw(α)
t x(t) + bx(t) = 0, (6.4)

x(0) = 1. (6.5)

Of course, in many situations the function w(α) describing the distribution of
orders α can be modeled as a continuous function.

The outlined general framework for creation of distributed order models can be
used for modeling multiscale and multifractal processes, multiagent systems, and in
many other cases where the subject of study consists of “individuals”.

The above considerations are presented in graphical form in Fig. 6.1, which gives
a geometric interpretation of distributed-order differentiation and integration.

6.2 From Positive Linear Time-Invariant Systems
to Generalized Distributed-Order Systems

Let us consider a linear differential equation with fractional-order derivatives,

n∑
k=1

ak 0Dαk
t x(t) = f (t), (6.6)

where all coefficients are positive constants: ak > 0, k = 1, . . . , n. Without the loss
of generality, we can assume that
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Fig. 6.1 Geometric interpretation of distributed-order differentiation as a framework for creating
distributed-order models

n∑
k=1

ak = 1.

Introducing the weighting function

w(α) =
n∑

k=1

akδ(α − αk), (6.7)

we can write the Eq. (6.6) in the form of a distributed-order differential equation:

0Dw(α)
t x(t) = f (t). (6.8)

This means that properties of positive linear time-invariant systems should
follow from the properties of distributed-order systems with a positive function w(α)

describing the distribution of orders.
Such a change of the viewpoint means also that the problem of identification of

parameters of linear time invariant systems like (6.6) can be replaced by a more
general and more interesting problem of identification of a most appropriate shape
of the function w(α) of a system described by Eq. (6.7).

Similarly, the theory of stability of linear time-invariant systems can be overcome
by the theory of stability of distributed-order systems.

Even more possibilities open if the distributed-order derivative is written in the
form
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0D̃
w(α)

t x(t) =
γ2∫

γ1

0Dα
t x(t)dW (α). (6.9)

If the function W (α) is differentiable and W ′(α) = w(α), then we have the
distributed-order derivative considered in this book; otherwise there is large space
for further generalizations with potential applications to self-similar, fractal and
multifractal systems.

6.3 From PID Controllers to Distributed-Order
PID Controllers

PID Controller

The classical PID controller, which is the most commonly used feedback controller
in industry, can be considered as a particular form of lead-lag compensation in the
frequency domain. Its transfer function can be expressed as C1(s) = K p + Ki

s +
Kds. The PID controller algorithm involves three separate constant parameters: the
proportional P , the integral I and derivative D. These values can be interpreted in
terms of time: P depends on the present error, I on the accumulation of past errors,
and D is a prediction of future errors, based on current rate of change.

Fractional-Order PIλDμ Controller

Podlubny (1999) proposed a generalization of the PID controller, namely the PIλDμ

controller. Its transfer function can be expressed as C2(s) = K p + Ki
sλ + Kdsμ, which

involves an integrator of order λ and a differentiator of order λ. Better response of this
type of controller in comparison with the classical PID controller was demonstrated
in that work. For results about using PIλDμ controller to some real world systems,
please refer to Li et al. (2009) and Luo and Chen (2009) etc.

Distributed-Order PIλ(α)Dμ(α) Controller

As a generalization of PIλDμ controller, distributed-order PID controller of the
following form

C3(s) = K p +
∫ 1

−1
w(α)sαdα
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where w(α) =
N∑

i=0
wiα

i ≈ w0 + w1α

or

C3(s) = K p + Ki

∫ γ1

0

1

sα
dα + Kd

∫ γ2

0
sαdα

will be our future work.
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Appendix A
MATLAB Codes

A.1 Stable Boundary of Distributed-Order Linear
Time-Invariant Systems

% The following matlab code describes how to plot the stable
% boundary of distributed-order linear time-invariant
% system

xð1Þ ¼ 0; % set the initial value of x

yð1Þ ¼ 0; % set the initial value of y

% the computed number of the stable boundary
w ¼ logspaceð�200;2;10000Þ;

% the stable boundary of distributed-order
% system of case 1: W (\alpha) = 1
for i ¼ 1 : length ðwÞ

xðiÞ ¼ ð2�pi�wðiÞ � 4�logðwðiÞÞÞ=ð4�ðlogðwðiÞÞÞ^2þ pi^2Þ;
yðiÞ ¼ ð4�wðiÞ�logðwðiÞÞ þ 2�piÞ=ð4�ðlogðwðiÞÞÞ^2þ pi^2Þ;

end

% the stable boundary of distributed-order
% system of case 2: w(\alpha) = \alpha
for i ¼ 1 : lengthðwÞ

xðiÞ ¼ ðð�1� logðwðiÞÞÞ�ððlogðwðiÞÞÞ^2� pi^2=4Þ þ . . .

pi�logðwðiÞÞ�ðwðiÞ � pi=2ÞÞ=ððlogðwðiÞÞÞ^2þ pi^2=4Þ^2;
yðiÞ ¼ ððwðiÞ � pi=2Þ�ððlogðwðiÞÞÞ^2� pi^2=4Þ þ . . .

pi�logðwðiÞÞ�ð1þ logðwðiÞÞÞÞ=ððlogðwðiÞÞÞ^2þ pi^2=4Þ^2;
end

% the stable boundary of distributed-order
% system of case 3: w(\alpha) = \delta(\alpha - \beta)
beta ¼ 0:5;
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for i ¼ 1 : lengthðwÞ
xðiÞ ¼ wðiÞ^beta�cosðpi�beta=2Þ;
yðiÞ ¼ wðiÞ^beta�sinðpi�beta=2Þ;

end

% the stable boundary of fractional-order
% system with double noncommensurate orders
beta1 ¼ sqrt ð2Þ � 1;
beta2 ¼ sqrt ð3Þ � 1;
for i ¼ 1 : lengthðwÞ

xðiÞ ¼ wðiÞ^beta1�cosðpi�beta1=2Þ þ wðiÞ^beta2�cosðpi�beta2=2Þ;
yðiÞ ¼ wðiÞ^beta1�sinðpi�beta1=2Þ þ wðiÞ^beta2�sinðpi�beta2=2Þ;

end

% plot the stable boundary
plot(x,y)
hold on
plot(x,-y)
axis square
grid on
xlabel(’Real axis’);
ylabel(’Imag axis’);

A.2 Bode Plots of Distributed-Order Linear
Time-Invariant Systems

% The following matlab code describes how to plot the Bode
% plots of distributed-order linear time-invariant system

function ½bd� ¼ bode dosðTsÞ

% Ts: The sampling period
if Ts\ ¼ 0;
sprintf(’%s’,’Sampling period has to be positive’),
return,
end

% rad./sec. Nyquist frequency
wmax0 ¼ 2�pi=Ts=2;

wmax ¼ floorðlog10ðwmax0ÞÞ þ 1;
wmin ¼ wmax� 5;
w ¼ logspaceðwmin;wmax;1000Þ;
j ¼ sqrtð�1Þ;

% the Bode plot of distributed-order
% system of case 1: w(\alpha)=1
srfr ¼ logðj:�wÞ:=ðj:�w� 1þ logðj:�wÞÞ;
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% the Bode plot of distributed-order
% system of case 2: w(alpha)=\alpha
srfr ¼ ðlogðj:�wÞÞ:^2:=ðj:�w� 1� logðj:�wÞ þ logðj:�wÞ:�logðj:�wÞÞ;

% the Bode plot of distributed-order
% system of case 3: w(\alpha)=\delta(\alpha-\beta)
srfr ¼ 1:=ððj:�wÞ:^0:5þ 1Þ;

% the Bode plot of fractional-order
% system with double noncommensurate orders
%srfr ¼ 1:=ððj:�wÞ:^ðsqrtð3Þ � 1Þ þ ðj:�wÞ: ^0:5þ ðj:�wÞ:^ðsqrtð2Þ � 1Þ þ 1Þ;

% plot the magnitude property
subplot(2,1,1);
semilogxðw;20�log10ðabsðsrfrÞÞÞ;
hold on;
ylabel(’Magnitude (dB)’);
grid on;

% plot the phase property
subplot(2,1,2);
semilogxðw; ð180=piÞ�ðangleðsrfrÞÞÞ;
xlabel(’Frequency (Hz)’);
ylabel(’Phase (degrees)’);

end

A.3 Impulse Responses of Distributed-Order Linear
Time-Invariant Systems

% The following matlab code describes how to plot the impulse responses
% of distributed-order linear time-invariant system based on NILT
% technique
% Code adapted from

% L. Bran.cL.k. Programs for fast numerical inversion of Laplace
% transforms in MATLAB language environment. In Proceedings of the
% 7th Conference MATLABf99, pages 27.39, Prague, Nov. 1999. Czech
% Republic.

function ½id� ¼ BICO iridðTsÞ;

% Ts: The sampling period
% the impulse response of distributed-order
% system of cases 1: w(\alpha)=1
F ¼ C�logðsÞ:�ððs� 1Þ�eyeð2Þ � A�logðsÞÞ:^ð�1Þ�B;

% the impulse response of distributed-order
% system of cases 2: w(\alpha) = \alpha
F ¼ C�logðsÞ:̂2:�ððs� 1� logðsÞÞ�eyeð2Þ � A�logðsÞ:^2Þ:^ð�1Þ�B;
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% the impulse response of distributed-order
% system of case 3: w(\alpha)=\delta(\alpha-\beta)
F ¼ C�ðs:^beta�eyeð2Þ � AÞ:^ð�1Þ�B;

% the Bode plot of fractional-order
% system with double noncommensurate orders
F ¼ C�ððs:^beta1þ s:^;beta2Þ�eyeð2Þ � AÞ:^ð�1Þ�B;

alfa ¼ 0;
M ¼ 3072;
P ¼ 20;
Er ¼ 1e� 10;
tm ¼ M�Ts;
wmax0 ¼ 2�pi=Ts=2;
L ¼ M;
Taxis ¼ ½0 : L� 1��Ts;
n=1:L-1;
n ¼ n�Ts;
q1 ¼ q;
N ¼ 2�M;
qd ¼ 2�Pþ 1;
t ¼ linspaceð0;tm;MÞ;
NT ¼ 2�tm�N=ðN� 2Þ;
omega ¼ 2�pi=NT;
c ¼ alfa� logðErÞ=NT;
s ¼ c� i�omega�ð0 : Nþ qd� 1Þ;
Fsc ¼ fevalðF;sÞ;
ft ¼ fftðFscð1 : NÞÞ;
ft ¼ ftð1 : MÞ;
q ¼ FscðNþ 2 : Nþ qdÞ:=FscðNþ 1 : Nþ qd� 1Þ;
d ¼ zerosð1;qdÞ;
e ¼ d;
dð1Þ ¼ FscðNþ 1Þ;
dð2Þ ¼ �qð1Þ;
z ¼ expð�i�omega�tÞ;

for r ¼ 2 : 2 : qd� 1
w ¼ qd� r;
eð1 : wÞ ¼ qð2 : wþ 1Þ � qð1 : wÞ þ eð2 : wþ 1Þ;
dðrþ 1Þ ¼ eð1Þ;
if r[2

qð1 : w� 1Þ ¼ qð2 : wÞ:�eð2 : wÞ:=eð1 : w� 1Þ;
dðrÞ ¼ �qð1Þ;
end

end
A2 ¼ zerosð1;MÞ;
B2 ¼ onesð1;MÞ;
A1 ¼ dð1Þ�B2;
B1 ¼ B2;
for n ¼ 2 : qd
A ¼ A1þ dðnÞ�z:�A2;
B ¼ B1þ dðnÞ�z:�B2;
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A2 ¼ A1;
B2 ¼ B1;
A1 ¼ A;
B1 ¼ B;
end

ht ¼ expðc�tÞ=NT:�ð2�realðftþ A:=BÞ � Fscð1ÞÞ;
½b1;a1� ¼ stmcbðhtð1 : endÞ:�Ts;q1;q1;100Þ;

sprintf(’Impulse response of approximated transfer function:’)

sr ¼ tfðb1;a1;TsÞ;
hhat ¼ impulseðsr;TaxisÞ;
figure
plot(t,ht,’b’);
grid on;

xlabel(’time axis’);
ylabel(’impulse response’);
xlim([0,30])

A.4 Solution of Distributed-Order Relaxation Equation

% (1) Prepare constants and nodes
% (this is the longest part of the script):
h ¼ 0:01; % step of discretization in space
t ¼ 0:h:5; % step of discretization in time
N ¼ lengthðtÞ þ 1; % number of nodes
B ¼ 0:1; % coefficient of the equation
f ¼ 00þ 0�t0; % right-hand side
M ¼ zerosðN;NÞ; % pre-allocate matrix M for the system

% (2) Write the discretization matrix

M ¼ dobanð06�alf:�ð1� alfÞ0;½01�;0:01;N� 1;hÞ þ B�eyeðN� 1;N� 1Þ;

% (3) Compute the right-hand side at discretization nodes:

F ¼ eval ð½f0 � B0�;tÞ0;

% (4) Utilize zero initial condition:

M ¼ eliminatorðN� 1; ½1�Þ�M�eliminatorðN� 1; ½1�Þ0;
F ¼ eliminatorðN� 1; ½1�Þ�F;

% (5) And solve the system MY ¼ F :
Y = M\F;

% (6) Pre-pend the zero initial value
% (that one due to zero initial condition)
Y0 ¼ ½0;Y�;
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% Plot the solution:
U ¼ Y0þ 1;
plot(t, U, ’k’)

A.5 Solution of Distributed-Order Oscillation Equation

% (1) Prepare constants and nodes
% (this is the longest part of the script):
A ¼ 1;B ¼ 1;C ¼ 1; % coefficients of the Bagley-Torvik equation
h ¼ 0:075; % step of discretization
T ¼ 0:h:30; % nodes
N ¼ 30=hþ 1; % number of nodes
M ¼ zerosðN;NÞ; % pre-allocate matrix M for the system

% (2) Make the matrix for the entire equation --- this is really easy:

M ¼ A�banð2;N;hÞ þ B�dobanð06�alf:�ð1� alfÞ0; ½01�;0:01;N;hÞ þ . . .C�eyeðN;NÞ;

% (3) Make right-hand side:

F ¼ 8�ðT\ ¼ 1Þ0;

% (4) Utilize zero initial conditions:

M ¼ eliminatorðN; ½12�Þ�M�eliminatorðN; ½12�Þ0;
F ¼ eliminatorðN; ½12�Þ�F;

% (5) Solve the system MY ¼ F :
Y = M\F;

% (6) Pre-pend the zero values (those due to zero initial conditions)
Y0 ¼ ½0;0;Y�;

% Plot the solution:
plot(T,Y0,’k’)
grid on

A.6 Solution of Distributed-Order Diffusion Equation

alpha ¼0 2�alf0 ;beta ¼ 2; % First, define the orders:
a2 ¼ 1; % coefficient from the diffusion equation
L ¼ 1; % length of spatial interval

% Number of spatial steps ? 1 is:
m ¼ 21;% 11, 21
% Number of steps in time ? 1 is:
n ¼ 148;% 37, 148
h ¼ L=ðm� 1Þ;tau ¼ h^2=ð6�a2Þ; % space step, time step
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% generating the matrix for approximation
% alpha-th order derivative with respect to time

B1 ¼ dobanðalpha; ½01�;0:01;n� 1;tauÞ0;
TD ¼ kronðB1;eyeðmÞÞ; % time derivative matrix
B2 ¼ ransymðbeta;m;hÞ; % beta-th order derivative with respect to X
SD ¼ kronðeyeðn� 1Þ;B2Þ; % spatial derivative matrix
SystemMatrix ¼ TD� a2�SD; % matrix corresponding to

discretization
% in space and time

% remove columns with ’1’ and ’m’ from SystemMatrix
S ¼ eliminator ðm; ½1m�Þ;SK ¼ kronðeyeðn� 1Þ;SÞ;
SystemMatrix without columns 1 m ¼ SystemMatrix�SK0;

% remove rows with ’1’ and ’m’ from SystemMatrix_without_
columns_1_m

S ¼ eliminatorðm; ½1m�Þ;SK ¼ kronðeyeðn� 1Þ;SÞ;
SystemMatrix without rows columns 1 m ¼ . . .

SK�SystemMatrix without columns 1 m;
% Right hand side
F ¼ 8�onesðsizeðSystemMatrix without rows columns 1 m;1Þ;1Þ;

% Solution of the system
Y ¼ SystemMatrix without rows columns 1 mnF

% Reshape solution array -- values for k-th time step
% are in the k-th column of YS:

YS ¼ reshapeðY;m� 2;n� 1Þ;
YS ¼ fliplrðYSÞ;
U ¼ YS;

% plot graph
½rows;columns� ¼ sizeðUÞ;
U ¼ ½zerosð1;columnsÞ;U;zerosð1;columnsÞ�;
U ¼ ½zerosð1;mÞ0 U�;
½XX;YY� ¼ meshgridðtau�ð0 : n� 1Þ;h�ð0 : m� 1ÞÞ;

mesh(XX,YY,U)
xlabel(’t’); ylabel(’x’); zlabel(’y(x,t)’);
title([’\phi =’, num2str(alpha), ’, \beta = ’, … num2str(beta)])
set(gca, ’xlim’, [0 tau*n], ’zlim’, [0 1]); box on

Appendix A: MATLAB Codes 87



This page intentionally left blank



Index

B
Bounded-input bounded-output stability, 25

C
Caputo’s fractional-order derivative

definition, 3
Constant phase element, 4
CRONE control, 5

D
Differentiator, 45
Digital filter, 43
Distributed-order damping, 48
Distributed-order differential equation, 6
Distributed-order differential/integral opera-

tors, 5
Distributed-order diffusion equation, 7
Distributed-order diffusion-wave equation, 7
Distributed-order fractional mass-spring

viscoelastic damper, 51, 53
Distributed-order integrator/differentiator, 8,

19, 39, 40, 42, 55
Distributed-order linear time-invariant system,

8
Distributed-order low-pass filter, 7, 45, 55
Distributed-order partial differential equation,

7
Distributed-order signal processing, 8, 55
Distributed-order systems, 6
Distributed-order wave equation, 7
Distributed-parameter systems, 2
Double noncommensurate orders, 30

F
Fractional calculus operators, 5
Fractional calculus, 2
Fractional filter, 39
Fractional-order controller, 5, 48, 49
Fractional-order differential equation, 3
Fractional-order diffusion equation, 4
Fractional-order diffusion-wave equation, 5
Fractional-order integral equation, 3
Fractional-order partial differential

equations, 4
Fractional-order system, 5, 7
Fractional-order wave equation, 5
Function of distribution of order, 6

G
Generating series, 60
Grünwald-Letnikov’s fractional-order

derivative/integral definition, 2

H
Heat equation, 2
Human’s memory, 75

I
Impulse response invariant

discretization, 43, 47
Integer-order controller, 5
Integer-order system, 5, 7
Integral of absolute error, 49
Integral of squared error, 49, 53

Z. Jiao et al., Distributed-Order Dynamic Systems, SpringerBriefs in Control,
Automation and Robotics, DOI: 10.1007/978-1-4471-2852-6,
� The Author(s) 2012

89



I (cont.)
Integral of time multiplied absolute

error, 49
Integral of time multiplied squared

error, 49

K
Kronecker product, 61

L
Lower triangular strip matrices, 60
Lumped-parameter systems, 2

M
Mass-spring viscoelastic damper, 50
Multiscale and multifractal processes, 76
Multi-valued function, 12

N
Noncommensurate orders, 8
N-term noncommensurate orders, 33
Numerical inverse Laplace transform, 34

O
Optimal fractional-order damping, 53
Ordinary and partial differential equations of

distributed order, 8
Ordinary differential equation, 1

P
Partial differential equation, 1
PIkDl controller, 5
PID controller, 78

R
Realization of fractional system, 43, 47
Riemann-Liouville’s fractional-order

derivative definition, 3
Riemann-Liouville’s fractional-order integral

definition, 3

S
Self-similar, fractal and multifractal

systems, 78
Support set, 7
Symmetric Riesz derivative, 63

T
Triangular strip matrices, 59

U
Upper triangular strip

matrices, 60

W
Warburg impedances, 4
Wave equation, 2

90 Index


	Cover
	Distributed-Order Dynamic Systems
	ISBN 9781447128519  e-ISBN 9781447128526
	Preface
	Acknowledgements
	Contents
	Acronyms
	1 Introduction
	1.1 From Integer-Order Dynamic Systems to Fractional-Order Dynamic Systems
	1.2 From Fractional-Order Dynamic Systems  to Distributed-Order Dynamic Systems
	1.3 Preview of Chapters
	1.4 Chapter Summary
	References

	2 Distributed-Order Linear Time-Invariant System (DOLTIS) and Its Stability Analysis
	2.1 Introduction
	2.2 Stability Analysis of DOLTIS in Four Cases
	2.3 Time-Domain Analysis: Impulse Responses
	2.4 Frequency-Domain Response: Bode Plots
	2.5 Numerical Examples
	2.6 Chapter Summary
	References

	3 Noncommensurate Constant Orders  as Special Cases of DOLTIS
	3.1 Introduction
	3.2 Stability Analysis of Some Special Cases of DOLTIS
	3.2.1 Case 1: Double Noncommensurate Orders
	3.2.2 Case 2: N-Term Noncommensurate Orders

	3.3 Numerical Examples
	3.4 Chapter Summary
	References

	4 Distributed-Order Filtering and Distributed-Order Optimal Damping
	4.1 Application I: Distributed-Order Filtering 
	4.1.1 Distributed-Order Integrator/Differentiator
	4.1.2 Distributed-Order Low-Pass Filter
	4.1.3 Impulse Response Invariant Discretization of DO-LPF

	4.2 Application II: Optimal Distributed-Order Damping
	4.2.1 Distributed-Order Damping in Mass-Spring  Viscoelastic Damper System
	4.2.2 Frequency-Domain Method Based Optimal  Fractional-Order Damping Systems

	4.3 Chapter Summary
	References

	5 Numerical Solution of Differential Equations  of Distributed Order
	5.1 Introduction
	5.2 Triangular Strip Matrices
	5.3 Kronecker Matrix Product
	5.4 Discretization of Ordinary Fractional Derivatives  of Constant Order
	5.5 Discretization of Ordinary Derivatives of Distributed Order
	5.6 Discretization of Partial Derivatives of Distributed Order
	5.7 Initial and Boundary Conditions for Using the Matrix Approach
	5.8 Implementation in MATLAB
	5.9 Numerical Examples
	5.9.1 Example 1: Distributed-Order Relaxation
	5.9.2 Example 2: Distributed-Order Oscillator
	5.9.3 Example 3: Distributed-Order Diffusion

	5.10 Chapter Summary
	References

	6 Future Topics
	6.1 Geometric Interpretation of Distributed-Order Differentiation as a Framework for Modeling
	6.2 From Positive Linear Time-Invariant Systems  to Generalized Distributed-Order Systems
	6.3 From PID Controllers to Distributed-Order  PID Controllers
	References

	Appendix A MATLAB Codes
	A.2 Bode Plots of Distributed-Order LinearTime-Invariant Systems
	A.3 Impulse Responses of Distributed-Order LinearTime-Invariant Systems
	A.4 Solution of Distributed-Order Relaxation Equation
	A.5 Solution of Distributed-Order Oscillation Equation

	Index



