

Advances in Industrial Control

Other titles published in this series:

Digital Controller Implementation
and Fragility
Robert S.H. Istepanian and James F.
Whidborne (Eds.)

Optimisation of Industrial Processes
at Supervisory Level
Doris Sáez, Aldo Cipriano and Andrzej W.
Ordys

Robust Control of Diesel Ship Propulsion
Nikolaos Xiros

Hydraulic Servo-systems
Mohieddine Jelali and Andreas Kroll

Model-based Fault Diagnosis in Dynamic
Systems Using Identification Techniques
Silvio Simani, Cesare Fantuzzi and Ron J.
Patton

Strategies for Feedback Linearisation
Freddy Garces, Victor M. Becerra,
Chandrasekhar Kambhampati and
Kevin Warwick

Robust Autonomous Guidance
Alberto Isidori, Lorenzo Marconi and
Andrea Serrani

Dynamic Modelling of Gas Turbines
Gennady G. Kulikov and Haydn A.
Thompson (Eds.)

Control of Fuel Cell Power Systems
Jay T. Pukrushpan, Anna G. Stefanopoulou
and Huei Peng

Fuzzy Logic, Identification and Predictive
Control
Jairo Espinosa, Joos Vandewalle and
Vincent Wertz

Optimal Real-time Control of Sewer
Networks
Magdalene Marinaki and Markos
Papageorgiou

Process Modelling for Control
Benoît Codrons

Computational Intelligence in Time Series
Forecasting
Ajoy K. Palit and Dobrivoje Popovic

Modelling and Control of Mini-Flying
Machines
Pedro Castillo, Rogelio Lozano and
Alejandro Dzul

Ship Motion Control
Tristan Perez

Hard Disk Drive Servo Systems (2nd Ed.)
Ben M. Chen, Tong H. Lee, Kemao Peng
and Venkatakrishnan Venkataramanan

Measurement, Control, and
Communication Using IEEE 1588
John C. Eidson

Piezoelectric Transducers for Vibration
Control and Damping
S.O. Reza Moheimani and Andrew J.
Fleming

Manufacturing Systems Control Design
Stjepan Bogdan, Frank L. Lewis, Zdenko
Kovačić and José Mireles Jr.

Windup in Control
Peter Hippe

Nonlinear H2/H∞ Constrained Feedback
Control
Murad Abu-Khalaf, Jie Huang and
Frank L. Lewis

Practical Grey-box Process Identification
Torsten Bohlin

Control of Traffic Systems in Buildings
Sandor Markon, Hajime Kita, Hiroshi Kise
and Thomas Bartz-Beielstein

Wind Turbine Control Systems
Fernando D. Bianchi, Hernán De Battista
and Ricardo J. Mantz

Advanced Fuzzy Logic Technologies in
Industrial Applications
Ying Bai, Hanqi Zhuang and Dali Wang
(Eds.)

Practical PID Control
Antonio Visioli

Matjaž Colnarič • Domen Verber
Wolfgang A. Halang

Distributed Embedded
Control Systems

Improving Dependability with Coherent
Design

123

ISBN 978-1-84800-051-3 e-ISBN 978-1-84800-052-0

DOI 10.1007/978-1-84800-052-0

Advances in Industrial Control series ISSN 1430-9491

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2007939804

© 2008 Springer-Verlag London Limited

MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc., 3 Apple Hill Drive, Natick,
MA 01760-2098, USA. http://www.mathworks.com

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted
under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or
transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case
of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing
Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free for
general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that
may be made.

Cover design: eStudio Calamar S.L., Girona, Spain

Printed on acid-free paper

9 8 7 6 5 4 3 2 1
springer.com

Prof. Dr. Matjaž Colnarič
University of Maribor
Faculty of Electrical Engineering and

Computer Science
2000 Maribor
Slovenia

Dr. Domen Verber
University of Maribor
Faculty of Electrical Engineering and

Computer Science
2000 Maribor
Slovenia

 Prof. Dr. Dr. Wolfgang A. Halang
Faculty of Electrical and Computer

Engineering
FernUniversität in Hagen
58084 Hagen
Germany

Advances in Industrial Control

Series Editors

Professor Michael J. Grimble, Professor of Industrial Systems and Director
Professor Michael A. Johnson, Professor (Emeritus) of Control Systems and Deputy Director

Industrial Control Centre
Department of Electronic and Electrical Engineering
University of Strathclyde
Graham Hills Building
50 George Street
Glasgow G1 1QE
United Kingdom

Series Advisory Board

Professor E.F. Camacho
Escuela Superior de Ingenieros
Universidad de Sevilla
Camino de los Descubrimientos s/n
41092 Sevilla
Spain

Professor S. Engell
Lehrstuhl für Anlagensteuerungstechnik
Fachbereich Chemietechnik
Universität Dortmund
44221 Dortmund
Germany

Professor G. Goodwin
Department of Electrical and Computer Engineering
The University of Newcastle
Callaghan
NSW 2308
Australia

Professor T.J. Harris
Department of Chemical Engineering
Queen’s University
Kingston, Ontario
K7L 3N6
Canada

Professor T.H. Lee
Department of Electrical Engineering
National University of Singapore
4 Engineering Drive 3
Singapore 117576

Professor Emeritus O.P. Malik
Department of Electrical and Computer Engineering
University of Calgary
2500, University Drive, NW
Calgary
Alberta
T2N 1N4
Canada

Professor K.-F. Man
Electronic Engineering Department
City University of Hong Kong
Tat Chee Avenue
Kowloon
Hong Kong

Professor G. Olsson
Department of Industrial Electrical Engineering and Automation
Lund Institute of Technology
Box 118
S-221 00 Lund
Sweden

Professor A. Ray
Pennsylvania State University
Department of Mechanical Engineering
0329 Reber Building
University Park
PA 16802
USA

Professor D.E. Seborg
Chemical Engineering
3335 Engineering II
University of California Santa Barbara
Santa Barbara
CA 93106
USA

Doctor K.K. Tan
Department of Electrical Engineering
National University of Singapore
4 Engineering Drive 3
Singapore 117576

Professor Ikuo Yamamoto
The University of Kitakyushu
Department of Mechanical Systems and Environmental Engineering
Faculty of Environmental Engineering
1-1, Hibikino,Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135
Japan

We wish to dedicate this book to our families in gratitude of their
support during the last fifteen years of work on this research.

Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage tech-
nology transfer in control engineering. The rapid development of control tech-
nology has an impact on all areas of the control discipline. New theory, new
controllers, actuators, sensors, new industrial processes, computer methods,
new applications, new philosophies. . . , new challenges. Much of this devel-
opment work resides in industrial reports, feasibility study papers and the
reports of advanced collaborative projects. The series offers an opportunity
for researchers to present an extended exposition of such new work in all
aspects of industrial control for wider and rapid dissemination.

Embedded systems are computer systems designed to execute a specific
task or group of tasks. In the parlance of the subject, an embedded system
has dedicated functionality. Looking at the hardware of an embedded system
one would expect to find a small unified module involving a microprocessor,
a Random Access Memory unit, some task-specific hardware units and even
mechanical parts that would not be found in a more general computer system.
The objective of a dedicated functionality means that the design engineer can
optimise hardware and software components to achieve the required function-
ality in the smallest possible size, with good operational efficiency and at
reduced cost. If the application is to be mass-produced, economies of scale
often play an important role in reducing the costs involved.

From an applications viewpoint there are two aspects to embedded sys-
tems:

• low-level aspects; these involve microprocessor-based, real-time computer
system design and optimisation. To achieve the dedicated-functional objec-
tives of the embedded system, the internal tasks are performed sequentially
and in a temporally feasible manner;

• high-level aspects; the applications for embedded systems can be simple
using only one or two system modules to achieve a few high-level tasks as
might be needed in a central-heating system controller or digital camera.
In more complex applications, there may be dozens of embedded systems

x Series Editors’ Foreword

working in concert, organised in a hierarchical multi-level network commu-
nicating low-level sensory information (collected by dedicated embedded
system modules) to high-level processors that will direct actuators to con-
trol a complex process. Typical applications are holistic automobile control
systems or the control of a highly dynamical industrial process like a steel
mill or an avionics system used in aircraft flight control.

Clearly, embedded systems are extremely important in industrial control
system implementation, providing, as they do, the hardware and software
infrastructure for each application whether simple or complex. Professors
Matjaž Colnarič, Domen Verber and Wolfgang Halang have devoted many
years’ study to the design of the architectures for embedded system mod-
ules. They have been supported in their research by European Union funding
mechanisms for the EU has been very concerned to promote expertise in em-
bedded system technologies. This Advances in Industrial Control monograph
reports their important research. They have divided their monograph into two
parts; the first part is devoted to concepts and guidelines and the second is
concerned with implementation. The monograph will be of considerable inter-
est to the wide readership of academic and industrial practitioners in control
engineering.

Industrial Control Centre M.J. Grimble
Glasgow M.A. Johnson
Scotland, UK

Preface

This book is a result of 15 years of relatively intensive co-operation. All this
time, we have been dealing with proper design of safety-related embedded sys-
tems, considering many domains in a holistic way. We started with concepts,
and have proposed hypothetical hardware and system architectures, together
with programming means. We have also implemented a couple of prototypes.
Now, as our common research has reached a stage that many of the pertinent
domains have been dealt with to a reasonable extent, we thought it was time
to publish our results.

To promote adequate and consistent design of embedded systems with
dependability requirements, this book is primarily dedicated to practitioners
and specialists, as well as to students in computer, electrical and automation
engineering. In order to provide information useful to them, for each topic we
present both basic considerations and examples of use and/or implementation.
In this sense, this book’s role is at least twofold. First, it is intended to help
designers of control applications to select and design appropriate solutions
and, second, to provide some ideas and case studies from on-going research
into the topics, related to the further elaboration of hardware and software
solutions to be employed in real-time control systems.

The book is structured in two parts. In Part I, long established concepts
are presented, which we find to be most important and suitable for the im-
plementation of embedded control systems. This part could also serve as a
textbook for courses covering embedded real-time systems. In Part II, the ap-
proaches and solutions to implement prototypes of embedded systems are de-
tailed, which were jointly devised by the authors. Some of them also originate
from the 5th Framework EU project IFATIS, which dealt with reconfiguration
as a means to achieve fault tolerance, and which was successfully concluded
in March 2005.

What we offer in this book, and particularly in Part II, is not to be consid-
ered as the only solutions possible, probably not even the most adequate or
applicable ones, but as possible solutions coherent with commonly accepted

xii Preface

guidelines. Their feasibility was shown by prototype implementations in our
laboratory, and by utilisation in process control projects.

This book could not have been realised without substantial contributions
from a number of persons. Most of the practical work described has been
carried out in the Real-Time Systems Laboratory of the Faculty of Electrical
Engineering and Computer Science at the University in Maribor, Slovenia. In
this framework, three doctoral theses have successfully been concluded, jointly
supervised by the authors, and a number of journal and conference papers has
been co-authored. Thus, we should like to express our sincere appreciation to
the members of the Real-Time Systems Laboratory who participated in the
research on embedded systems’ design, viz., to Dr. Roman Gumzej, Dr. Matej
Šprogar, Rok Ostrovršnik, Stanislav Moraus, and Bojan Hadjar. In particu-
lar, Dr. Matej Šprogar worked on time-triggered communication, Dr. Roman
Gumzej elaborated certain issues in hardware/software co-design and spec-
ification of embedded real-time systems, and Rok Ostrovršnik implemented
the system for designing embedded applications in MATLAB R©/Simulink R©.
Stanislav Moraus and Bojan Hadjar worked on the technical implementa-
tion of the prototypes. Finally, Dr. Šprogar thoroughly proof-read the texts
for technical errors and consistency. A special chapter on implementation of
embedded systems from his doctoral thesis, jointly supervised at Fernuniver-
sität in Hagen, and some other parts (specifically, history of safety standards
and comparison of rate-monotonic and earliest-deadline-first scheduling) have
been prepared by Dr.-Ing. Martin Skambraks. Last but not least, our thanks
go to Springer-Verlag’s assistant editor Oliver Jackson for his encouragement,
support and, most of all, his patience.

Matjaž Colnarič
Maribor, Hagen, Domen Verber
September 2007 Wolfgang A. Halang

Contents

Part I Concepts

1 Real-time Characteristics and Safety of Embedded Systems 3
1.1 Introduction . 3
1.2 Real-time Systems and their Properties . 5

1.2.1 Definitions, Classification and Properties 6
1.2.2 Problems in Adequate Implementation of Embedded

Applications and General Guidelines 10
1.3 Safety of Embedded Computer Control Systems 13

1.3.1 Brief History of Safety Standards Relating to
Computers in Control . 16

1.3.2 Safety Integrity Levels . 19
1.3.3 Dealing with Faults in Embedded Control Systems 21
1.3.4 Fault-tolerance Measures . 23

1.4 Summary of Chapter 1 and Synopsis of What Follows 28

2 Multitasking . 29
2.1 Task Management Systems . 29

2.1.1 Cyclic Executive . 30
2.1.2 Asynchronous Multitasking . 32

2.2 Scheduling and Schedulability . 34
2.2.1 Scheduling Methods and Techniques 35
2.2.2 Deadline-driven Scheduling . 39
2.2.3 Sufficient Condition for Feasible Schedulability Under

Earliest Deadline First . 41

xiv Contents

2.2.4 Implications of Employing Earliest Deadline First
Scheduling . 45

2.2.5 Rate Monotonic vs Earliest Deadline First Scheduling . . 46
2.3 Synchronisation Between Tasks . 50

2.3.1 Busy Waiting . 51
2.3.2 Semaphores . 53
2.3.3 Bolts . 54
2.3.4 Monitors . 55
2.3.5 Rendezvous . 56
2.3.6 Bounding Waiting Times in Synchronisation 57

3 Hardware and System Architectures . 61
3.1 Undesirable Properties of Conventional Hardware

Architectures and Implementations . 62
3.1.1 Processor Architectures . 63
3.1.2 System Architectures . 67

3.2 Top-layer Architecture: An Asymmetrical Multiprocessor
System . 69
3.2.1 Concept . 70
3.2.2 Operating System Kernel Processor 73
3.2.3 Task Processor . 78

3.3 Implementation of Architectural Models . 82
3.3.1 Centralised Asymmetrical Multiprocessor Model 83
3.3.2 Distributed Multiprocessor Model 86

3.4 Intelligent Peripheral Interfaces for Increased Dependability
and Functionality . 86
3.4.1 Higher-level Functions of the Intelligent Peripheral

Interfaces . 88
3.4.2 Enhancing Fault Tolerance . 89
3.4.3 Support for Programmed Temporal Functions 90
3.4.4 Programming Peripheral Interfaces 93

3.5 Adequate Data Transfer . 93
3.5.1 Real-time Communication . 94
3.5.2 Time-triggered Communication . 95
3.5.3 Fault Tolerance in Communication 98
3.5.4 Distributed Data Access: Distributed Replicated

Shared Memory . 100

Contents xv

4 Programming of Embedded Systems . 107
4.1 Properties Desired of Control Systems Development 111

4.1.1 Support for Time and Timing Operations 111
4.1.2 Explicit Representation of Control System Entities 116
4.1.3 Explicit Representation of Other Control System

Entities . 119
4.1.4 Support for Temporal Predictability 120
4.1.5 Support for Low-level Interaction with Special-purpose

Hardware Devices . 121
4.1.6 Support for Overload Prevention 124
4.1.7 Support for Handling Faults and Exceptions 124
4.1.8 Support for Hardware/Software Co-implementation . . . 130
4.1.9 Other Capabilities . 132

4.2 Time Modeling and Analysis . 132
4.2.1 Execution Time Analysis of Specifications 135
4.2.2 Execution Time Analysis of Source Code 136
4.2.3 Execution Time Analysis of Executable Code 140
4.2.4 Execution Time Analysis of Hardware Components 141
4.2.5 Direct Measurement of Execution Times 142
4.2.6 Programming Language Support for Temporal

Predictability . 144
4.2.7 Schedulability Analysis . 147

4.3 Object-orientation and Embedded Systems 149
4.3.1 Difficulties of Introducing Object-orientation to

Embedded Real-time Systems . 150
4.3.2 Integration of Objects into Distributed Embedded

Systems . 150
4.4 Survey of Programming Languages for Embedded Systems 156

4.4.1 Assembly Language . 157
4.4.2 General-purpose Programming Languages 158
4.4.3 Special-purpose Real-time Programming Languages 160
4.4.4 Languages for Programmable Logic Controllers 163

Part II Implementation

5 Hardware Platform . 169
5.1 Architecture . 169

xvi Contents

5.2 Communication Module Used in Processing and Peripheral
Units . 171

5.3 Fault Tolerance of the Hardware Platform 175
5.4 System Software of the Experimental Platform 176

6 Implementation of a Fault-tolerant Distributed Embedded
System . 181
6.1 Generalised Model of Fault-tolerant Real-time Control Systems182
6.2 Implementation of Logical Structures on the Hardware

Platform . 185
6.3 Partial Implementation in Firmware . 187

6.3.1 Communication Support Module . 188
6.3.2 Supporting Middleware for Distributed Shared Memory 189
6.3.3 Kernel Processor . 190
6.3.4 Implementation of Monitoring, Reconfiguration and

Mode Control Unit . 195
6.4 Programming of the FTCs . 196

6.4.1 Extensions to MATLAB R©/Simulink R©Function Block
Library . 196

6.4.2 Generation of Time Schedules for the TTCAN
Communication Protocol . 197

6.4.3 Development Process . 199

7 Asynchronous Real-time Execution with Runtime State
Restoration by Martin Skambraks . 201
7.1 Design Objectives . 201
7.2 Task-oriented Real-time Execution Without Asynchronous

Interrupts . 202
7.2.1 Operating Principle . 203
7.2.2 Priority Inheritance Protocol . 206
7.2.3 Aspects of Safety Licensing . 211
7.2.4 Fragmentation of Program Code . 213

7.3 State Restoration at Runtime . 220
7.3.1 State Restoration at Runtime and Associated Problems 222
7.3.2 Classification of State Changes . 226
7.3.3 State Restoration with Modification Bits 227
7.3.4 Concept of State Restoration . 229
7.3.5 Influence on Program Code Fragmentation and

Performance Aspects . 233

Contents xvii

8 Epilogue . 237

References . 241

Index . 247

Part I

Concepts

1

Real-time Characteristics and Safety of
Embedded Systems

1.1 Introduction

What an embedded system is, is not exactly defined. In general, this term is
understood to mean a special-purpose computer system designed to control
or support the operation of a larger technical system (termed the embedding
system) usually having mechanical components and in which the embedded
system is encapsulated. Unlike a general-purpose computer, it only performs a
few specific, more or less complex pre-defined tasks. It is expected to function
without human interaction and, therefore, it usually has sensors and actuators,
but not peripheral interfaces like keyboards or monitors, except if the latter
are required to operate the embedding system. Often, it functions under real-
time constraints, what means that service requests must be handled within
pre-defined time intervals.

Embedded systems are composed of hardware and corresponding software
parts. The complexity of the hardware ranges from very simple programmable
chips (like field programmable gate arrays or FPGAs) over single microcon-
troller boards to complex distributed computer systems. Usually the software
is stored in ROMs, as embedded systems seldom have mass storage facilities.
Peripheral interfaces communicate with the process environments, and usu-
ally include digital and analogue inputs and outputs to connect with sensors
and actuators.

In simpler cases, the software consists of a single program running in a
loop, which is started on power-on, and which responds to certain events in
the environment. In more complex cases, operating systems are employed,
providing features like multitasking, different scheduling policies, synchroni-
sation, resource management and others, to be dealt with later in this book.

The trend towards distributed architectures away from centralised ones
assures modularity for structured design, better distribution of processing
power, robustness, fault tolerance, and other advantages.

4 1 Real-time Characteristics and Safety of Embedded Systems

There are almost no areas of modern technology which could do without
embedded systems. They appear in all areas of industrial applications and
process control, in cars, in home appliances, entertainment electronics, cellular
phones, video and photo cameras, and many more places. We even have them
implanted, or wear them in our garments, shoes, or eye glasses. Their major
spread has occurred particularly in the last decade. They pervade areas where
they were only recently not considered. As they are becoming ubiquitous, we
gradually do not notice them any more.

Contemporary cars, for example, contain dozens of embedded comput-
ers connected via hierarchically organised multi-level networks to communi-
cate low-level sensory information or inter-processor messages, and to provide
higher application-level interconnection of multimedia appliances, navigation
systems, etc. The driver is not aware of the computers involved, but is merely
utilising the new functionality. Within such automotive systems, there are
also safety-critical components being prepared to deal in the near future with
functions like drive-, brake-, or steer-by-wire. Should such a system fail, the
consequences are much different than for, e.g., Anti-Blocking Systems, whose
function simply ceases in the case of a failure without putting users in im-
mediate danger. With to the failure of an x-by-wire facility, however, drivers
would not even be in a position to stop their cars safely.

Such considerations brought into light another aspect that has not been
observed before. Since in the past embedded systems were considered to be
sensitive high-technology elements, they were observed with a certain amount
of precautious scepticism and doubt in their proper functioning. Special care
was taken in their implementation, and they were not employed in the most
safety-critical environments, like control units of nuclear power plants.

As a consequence of the increasing complexity of control algorithms in
such applications, for better flexibility, and for economic reasons, however,
and of getting used to their application in other areas, embedded systems
have also found their way into more safety-critical areas where the integrity
of the systems substantially depends on them. Any failures could have severe
consequences: they may result in massive material losses or endanger human
safety. Often the implementation of embedded systems is inadequate with
regard to the means and/or the methods employed. Therefore, it is the prime
goal of this book to point out what should be considered in the various design
domains of embedded systems. A number of long existing guidelines, methods,
and technologies of proper design will be mentioned and some elaborated in
more detail.

By definition, embedded systems operate in the real-time domain, which
means that their temporal behaviour is — at least — equally as important as
their functional behaviour. This fact is often not considered seriously enough.
There are a number of misconceptions that have been identified in an early
paper by Stankovic [104]; some characteristic and still partially valid ones will
be elaborated later in this chapter.

1.2 Real-time Systems and their Properties 5

While verifying embedded systems’ conformance to functional specifica-
tions is well established, temporal circumstances are seldom consistently veri-
fied. The methods and techniques employed are predominantly based on test-
ing, and the quality achieved mainly depends on the experience and intuition
of the designers. It is almost never proven at design time that such a system
will meet its temporal requirements in every situation that it may encounter.

Unfortunately, this situation was identified more than 20 years ago, when
the basic principles of the real-time research domain was already well organ-
ised. Although adequate partial solutions were known for a number of years,
in practice embedded systems design did not progress essentially during this
time. Therefore, in this work we present certain contributions to several crit-
ical areas of control systems design in a holistic manner, with the aim to
improve both functional and temporal correctness. The implementation of
long established, but often neglected, viable solutions will be shown with ex-
amples, rather than devising new methods and techniques. As verification of
functional correctness is more established than that of temporal correctness,
although equally important, special emphasis will be given to the latter.

While adequate verification of temporal and functional behaviour is im-
portant for high quality design of embedded systems, it cannot be taken as
a sufficient basis to improve their dependability. It is necessary to consider
the principles of fault management and safety measures for such systems in
the early design phases, which means that common commercial off-the-shelf
control computers are usually unsuitable for safety-critical applications.

In the late 1980s, the International Electrotechnical Commission (IEC)
started the standardisation of safety issues in computer control [58]. It iden-
tified four Safety Integrity Levels (SIL), with SIL 4 being the most critical
one (more details follow in Section 1.3.2). This book, however, is concerned
with applications falling into the least demanding first level SIL 1, which al-
lows the use of computer control systems based on generic microprocessors.
It is desirable that such systems should formally be proven correct or even be
safety-licensed. Owing to the complexity of software-based computer control
systems, however, this is very difficult if not impossible to achieve.

1.2 Real-time Systems and their Properties

Let us start with some examples that demonstrate what real-time behaviour
of a system actually is. A very good, but unexpected, example of proper
and problem-oriented temporal behaviour, dynamic handling of priorities,
synchronisation, adaptive scheduling and much more is the daily work of a
housekeeper and parent, whose tasks are to care for children, to do a lot of
housework and shopping, and to cook for the family. Apart from that, the
housekeeper also receives telephone calls and visitors. Some of these tasks
are known in advance and can be statically planned (scheduled), like sending
children to school, doing laundry, cooking lunch, or shopping. On the other

6 1 Real-time Characteristics and Safety of Embedded Systems

hand, there are others that happen sporadically, like a visit of a postman,
telephone calls, or other events, that cannot be planned in advance. The re-
actions to them must be scheduled dynamically, i.e., current plans must be
adapted when such events occur.

For statically scheduled tasks, often a chain of activities must be properly
carried through. For instance, to send the children to the school bus, they
must be woken on time, they must use the bathroom along with other family
members, enough time must be allowed for breakfast which is prepared in
parallel with the children being in the bathroom and getting dressed. The
deadline is quite firm, namely, the departure of the school bus. In the planning,
enough time must be allocated for all these activities. It is not a good idea,
however, to allow for too much slack, since the children should not have to
get up much earlier than necessary, thus losing sleep in the morning.

After sending the children to school, there are further tasks to be taken
care of. Housekeeping, laundry, cooking and shopping are carried out in an
interleaved manner and partly in parallel. Some of these tasks have more or
less strict deadlines (e.g., lunch should be ready for the children coming in
from school). The deadlines can be set according to the time of the day (or
the clock) or relative to the flow of other events. If the housekeeper is cooking
eggs or boiling milk, the time until they will be ready is known in advance.
If a sporadic event like a telephone call or postman’s visit occurs during that
time, the housekeeper must decide whether to accept it or not. If the event is
urgent, it may be decided to re-schedule the procedure and interrupt cooking
until the event is taken care of. Needless to say, that there are events with high
and absolute priorities that will be handled regardless of other consequences;
if, for example, a child is approaching a hot electric iron, then the housekeeper
will interrupt any other activity whatsoever, even at the cost of milk boiling
over.

Knowing his or her resources well, the housekeeper behaves very rationally.
If, for instance, food provisions are kept in the same room where the laundry
is done, the housekeeper will collect the vegetables needed for cooking when
going there to start the washing machine, although they will not be needed
until a later stage in the course of the housework planned, e.g., after having
made the beds.

1.2.1 Definitions, Classification and Properties

Following the pattern of the above example, in technical control systems there
is usually a process that needs to be carried through. A process is the totality
of activities in a system which influence each other and by which material,
energy, or information is transformed, transported, or stored [28]. Specifically,
a technical process is a process dealing with technical means. The basic ele-
ment of a process is the task. It represents the elementary and atomic entity
of parallel execution. The task concept is fundamental for asynchronous pro-

1.2 Real-time Systems and their Properties 7

gramming. It is concerned with the execution of a program in a computing
system during the lifetime of a process.

Considering the housewife example again, it is interesting that very com-
plex sequences of tasks are quite normal for ordinary people like in the house-
keeper example, and are carried out just with common sense. In the so-called
“high technology” world of computers, however, people are reluctant to con-
sider similar problems that way. Instead, sophisticated methods and proce-
dures are devised to match obsolete approaches that were used in the past
due to under-development, such as static priority scheduling.

Control systems should be considered in terms of tasks with their inherent
natural properties. Each one’s urgency is expressed by its deadline and not
by artificially assigned priorities. This concept matches the natural behaviour
of the housewife, as it is her goal to perform her tasks in such a sequence
and schedule that each tasks will be completed before its deadline. This nat-
ural perception of tasks, priorities and deadlines is the essence of real-time
behaviour:

In the real-time operating mode of a computer system the programs for
the processing of data arriving from the outside are permanently ready,
so that their results will be available within predetermined periods of
time [27].

Let us now consider two further examples that will lead us to a classification
of real-time systems.

In preparation for a journey, we visit a travel agent to book a flight and
buy tickets. The agent’s job is to see which flights are available, to check the
prices, and to make a reservation. If the service is busy, or there are any other
unfortunate circumstances, this can take some time, or could even not be
completed during our margin of patience. In the latter case, the agent could
not fulfill the job, and we did not get our tickets. The deadline that has not
been met was not very firmly set; it depended on a number of circumstances,
e.g., we were in a hurry or in a bad mood. Also, the longer we had to wait,
the higher the probability that we would go to another agent next time.

When we go to the airport after the booking, the deadlines are set differ-
ently: if we are for some reason late and arrive after the door is closed (that
deadline was known to us in advance), we have failed. It does not matter if
we were late only by a few seconds or an hour. It does not even matter if we
made any other functional mistake, for example went to wrong airport: it is
the same if the failure to board was due to a functional or temporal error.

Considering the two examples above, we can classify the real-time systems
into two general categories: systems with hard and soft real-time behaviour.
Their main difference lies in the cost or penalty for missing their deadlines
(see Figure 1.1). In the case of soft real-time systems, like in our example
of flight ticketing, after a certain deadline the costs or penalty (customer
dissatisfaction and, consequently, possibility of losing the customer) begin to
rise. After a certain time, the action can be considered to have failed.

8 1 Real-time Characteristics and Safety of Embedded Systems

penalty for the
missed deadline

deadline

hard real−time

soft real−time

time of
termination
of a task

Fig. 1.1. Soft vs hard real-time temporal behavioural

In the case of hard real-time systems, as in our second example of missing
a flight, the action has failed immediately after the deadline is missed. The
cost or penalty function exhibits a jump to a certain high value indicating
total failure, which may be high material costs or even endangering of envi-
ronmental or human safety. Hence, hard real-time systems are those for which
it holds that:

although functionally correct, the results produced after a certain pre-
defined deadline are incorrect and, thus, useless.

A task’s failure to perform its function in due time may have different con-
sequences. According to them, the hard- or soft real-time task may or may
not be mission-critical, i.e., the main objective of the entire application could
not be met. Sometimes, however, a failure of a task can be tolerated, e.g.,
when as a consequence only the performance is reduced to a certain extent.
For instance, MPEG video-decoders in multimedia applications operate in the
hard real-time mode: if a frame could not be decoded and composed before
it would have to be put on screen, which is a hard deadline, the task failed
as the frame is missing. The consequence would be flickering, which can be
tolerated if it does not happen often — thus, it is not mission-critical.

On the other hand, soft real-time systems can be safety-critical. As an ex-
ample, let us consider a diagnostics system whose goal is to report a situation
of alert. Since human reaction times are relatively long and variable, it is not
sensible to require the system’s reaction to be within a precisely defined time-
frame. However, the action’s urgency increases with delay. The soft real-time
deadline has a very positive side effect, namely, it allows other tasks more
time to deal with the situation causing the alert and possibly to solve it.

Figure 1.1 depicts, and the definitions describe, two extreme cases of hard
and soft real-time behaviour. In reality, however, the boundaries are often not
so strict. Moreover, beside cost, benefit functions may also be considered, and
different curves can be drawn [97]. Jensen describes the problem colourfully:

1.2 Real-time Systems and their Properties 9

“They (the real-time research community) have consensus on a pre-
cise technical (and correct) definition of “hard real-time,” but left “soft
real-time” to be tautologically defined as “not hard” — that is accu-
rate and precise, but no more useful than dichotomising all colours
into “black” and “not black” [67].

Together with Gouda and others [44] he has further elaborated the issue with
“Time/Utility Functions” based on earliness, tardiness and lateness.

From the above we can conclude that predictability of temporal behaviour
is the ultimate property of real-time systems. The necessary condition is de-
terminism of temporal behaviour of the (sub-) systems. Strict and realistic
predictability, however, is very difficult to achieve — practically impossible
regarding the hardware and system architectures as employed in state-of-the-
art embedded control systems. Hence, a much more pragmatic approach is
needed.

In [105], Stankovic and Ramamritham elaborate two different approaches
to predictability: the layer-by-layer (microscopic) and the top-layer (macro-
scopic) approach. The former stands for low-level predictability which is de-
rived hierarchically: a layer in the design of a real-time system (processor,
system architecture, scheduling, operating system, language, application) can
only be predictable if all underlying layers are predictable. This type of pre-
dictability is necessary for low-level critical parts of real-time systems, and it
should be provable.

For the higher layers (real-time databases, artificial intelligence, and other
complex controls) microscopic predictability cannot be achieved. In these cases
it is important that best effort is to be devoted, and that temporal behaviour
is observed. The goal is to meet the deadlines in most cases. However, since it
was not possible to prove that they are met in all cases, provisions should be
made for the rare occasions of missed deadlines. Fault tolerance means should
be implemented to resolve this situation. These must be simple and, thus,
provably predictable in the microscopic sense.

The history of systematic research into real-time systems goes back at
least to the 1970s. Although many solutions to the essential questions have
been found very early, there are still many misconceptions that characterise
this domain. In 1988, Stankovic collected many of them [104]. He found that
one of the most characteristic misconceptions in the domain of hard real-time
systems is that real-time computing is often considered as fast computing;
probably to a lesser extent, this misconception is still alive. It is obvious from
the above-mentioned facts that computer speed itself cannot guarantee that
specified timing requirements will be met. Instead, predictability of temporal
behaviour has been recognised as the ultimate objective. Being able to assure
that a process will be serviced within a predefined timeframe is of utmost
importance. Thus

10 1 Real-time Characteristics and Safety of Embedded Systems

A computer system can be used in real-time operating mode if it is
possible to prove at design time that in all cases all requests will be
served within predefined timeframes.

Beside timeliness, which is ensured by predictability, another requirement
real-time systems should fulfill is simultaneity. This property is more severe,
especially in multitasking and multiprocessor environments. It involves the
demand that the execution behaviour of a process should be timely even in
the presence of other parallel processes, whose number and behaviour are not
known at design time and with whom it will share resources. It is not always
possible to prove this property, but it should be considered and best efforts
made.

Finally, real-time systems are inherently safety-related. For that reason,
real-time systems should be dependable which, beside the properties of func-
tional and temporal correctness, also includes robustness and permanent
readiness. This property renders them particularly hard to design. The safety
issues will be elaborated later in this chapter.

1.2.2 Problems in Adequate Implementation of Embedded
Applications and General Guidelines

Although guidelines for proper design and implementation of embedded con-
trol systems operating in real-time environments have been known for a long
time, in practice ad hoc approaches still prevail to a large extent. There are
some major causes for this phenomenon:

• The basic problem seems to be the mismatch between the design objectives
of generic universal computing and embedded control systems. It is reason-
able to employ various low-level (caching, pipelining, etc.) and high-level
measures (dynamic structures, objects, etc.) to achieve the best possible
average performance with universal computers. Often, these measures are
based on improvement of statistical properties and are, thus, in contradic-
tion to the ultimate requirement of real-time systems, viz., temporal deter-
minism and predictability. There are no modern and powerful processors
with easily predictable behaviour, nor compilers for languages that would
prevent us from writing software with non-predictable run times. Prac-
tically all dynamic and “virtual” features aiming to enhance the average
performance of non-real-time systems are, therefore, considered harmful.
Inappropriate categories and optimality criteria widely employed in sys-
tems design are probabilistic and statistical terms, fairness in task pro-
cessing, and minimisation of average reaction time. In contrast to this, the
view adequate for real-time systems can be characterised by observation
of hard timing constraints and worst cases, prevention of deadlocks, pre-
vention of features taking arbitrarily long to execute, static analysis, and
recognition of the constraints imposed by the real, i.e., physical, world.

1.2 Real-time Systems and their Properties 11

• The costs of consistently designed real-time embedded applications are
much higher than conventional software. Timing circumstances need to be
considered in all design stages, from specification to maintenance. Espe-
cially the verification and validation phases, when performed properly, are
much more demanding and costly than in conventional computing.

• Designers of embedded systems are often reluctant to observe guidelines
for proper design. Often overloaded, they tend to develop their applications
in the usual way that was more or less appropriate in previous projects,
but may fail in a critical situation. Owing to lack of time, knowledge, and
will, they are not prepared to do the hard, annoying and time-consuming
work of proving their designs’ functional and temporal correctness.

The notion of time has long been ignored as a category in computer science.
It is suggested in a natural way by the flow of occurrences in the world sur-
rounding us. As the fourth dimension of our (Euclidean) space of experience,
time is already a model defined by law and technically represented by Univer-
sal Time Co-ordinated (UTC). Time is an absolute measure and a practical
tool allowing us to plan processes and future events easily and predictably
with their mutual interactions requiring no further synchronisation. This is
contrasted by the conceptual primitivity of computing, whose central notion
algorithm is time-independent. Here, time is reduced to predecessor-successor
relations, and is abstracted away even in parallel systems. No absolute time
specifications are possible, the timing of actions is left implicit in real-time
systems, and there are no time-based synchronisation schemes. As a result,
the poor state of the “art” is characterised by computers using interval timers
and software clocks with low (and in operation decreasing) accuracy, which
are much more primitive than wrist watches. Moreover, meeting temporal
conditions cannot be guaranteed, timer interrupts may be lost, every inter-
rupt causes overhead, and clock synchronisation in distributed systems is still
assumed to be a serious problem, although radio receivers for official date and
time signals, as already available for 100 years and widely used for many pur-
poses, providing the precise and worldwide only legal time UTC could easily
and cheaply be incorporated in any node.

The core problem of contemporary information technology, however, is
complexity, which is particularly severe in embedded systems design. It can be
observed that people tend to use sophisticated and complicated measures and
approaches when they feel that they need to provide good real-time solutions
for demanding and critical applications. It is, however, much more appropriate
to find simple solutions, which are transparent and understandable and, thus,
safer. Simplicity is a means to realise dependability, which is the fundamental
requirement of safety-related systems. (Easy) understandability is the most
important precondition to prove the correctness of real-time systems, since
safety-licensing (verification) is a social process with a legal quality.

There is a large number of examples for extensive complexity, or bet-
ter, “artificial complicatedness”. Thus, for instance, the standard document

12 1 Real-time Characteristics and Safety of Embedded Systems

DIN 19245 of the fieldbus system Profibus consists of 750 pages, and a tele-
phone exchange, which burned down in Reutlingen, had an installed software
base of 12 million lines of code. On the other hand, a good example of success-
fully employing simple means in a high-technology environment is the general
purpose computer used for the Space Shuttle’s main control functions. It is
based on five redundant IBM AP-101S computer systems whose development
started in 1972; the last revision is from 1984, and it was deployed in 1991.
They come out with 256k of 32 bit words of storage, and were programmed in
the high-level assembly language HAL. Simplicity and stability of the design
ensure the application’s high integrity.

A serious problem in the design of safety-critical embedded systems is
dependability of software:

We are now faced with a society in which the amount of software is
doubling about every 18 months in consumer electronic devices, and
in which software defect density is more or less unchanged in the last
20 years.

In spite of this, we persist in the delusion that we can write software
sufficiently well to justify its inclusion at the highest levels of safety
criticality.

Considering, for instance, the mean time between failure of a typical
modern disk of around 500,000 h, the widening gulf between software
quality and hardware quality becomes even more emphatic, to the point
that the common procedure in safety critical systems of triplicating the
same incredibly reliable hardware system and running the same much
less reliable software in each channel seems questionable to say the
least [52].

Software must be valid and correct, which means that it must fulfil its
problem specification. For the validity of specifications there is no more au-
thority of control — except the developers’ wishes, or more or less vaguely
formulated requests. In principle, automatic verification is possible. Valida-
tion, on the other hand, is inherently hard, because it involves the human
element to a great extent.

Software always contains design errors and, thus, needs correctness proofs,
as tests cannot show the absence of errors. Safety-licensing of systems, whose
behaviour is largely program-controlled, is still an unsolved problem, whose
severity is increased by the legal requirement that verification must be based
on object code. The still too big semantic gap between specifications on one
hand and the too low a level programming constructs available on the other
can be coped with by the-other-way-around approach, viz., to select program-
ming and verification methods of the utmost simplicity and, hence, highest
trustworthiness, and to custom-tailor execution platforms for them.

Descartes (1641) pointed out the very nature of verification, which is nei-
ther a scientific nor a technical, but a cognitive process :

1.3 Safety of Embedded Computer Control Systems 13

Verum est quod valde clare et distincte percipio.1

Verification is also a social process, since mathematical proofs rely on con-
sensus between the members of the mathematical community. To verify safety-
related computerised systems, this consensus ought to be as wide as possible.
Furthermore, verification has a legal quality as well, in particular for embed-
ded systems whose malfunctioning can result in liability suits. Simplicity can
be used as the fundamental design principle to fight complexity and to create
confidence. Based on simplicity, easy understandability of software verifica-
tion methods — preferably also for non-experts — is the most important
precondition to prove software correctness.

Design-integrated verification with the quality of mathematical rigour and
oriented at the comprehension capabilities of non-experts ought to replace
testing to facilitate safety-licensing. It should be characterised by simple, in-
herently safe programming — better specification, re-use of already licensed
application-oriented modules, graphics instead of text, and rigourous — but
not necessarily formal — verification methods understandable by non-experts
such as judges. The more safety-critical a function is, the more simple the
related software and its verification ought to be.

Simple solutions are the most difficult ones: they require high innova-
tion and complete intellectual penetration of issues.

Progress is the road from the primitive via the complicated to the sim-
ple.

(Biedenkopf, 1994)

1.3 Safety of Embedded Computer Control Systems

To err is human, but to really foul things up requires a computer.
(Farmers’ Almanac, 1978)

As society increasingly depends on computerised systems for control and
automation functions in safety-critical applications and, for economical rea-
sons, it is desirable to replace hardwired logic by programmable electronic
systems in safety-related automation, there is a big demand for highly depend-
able programmable electronic systems for safety-critical embedded control and
regulation applications. This domain forms a relatively new field, which still
lacks its scientific foundations. Its significance arises from the growing aware-
ness for safety in our society on the one hand, and from the technological
trend towards more flexible, i.e., program controlled, automation devices on
the other hand. It is the aim to reach the state that computer-based systems
can be constructed with a sufficient degree of confidence in their dependability.

1 That which I perceive very clearly and distinctly is true.

14 1 Real-time Characteristics and Safety of Embedded Systems

Let us start with an example of a fault-tolerant design. In the Airbus 340
family, the fly-by-wire system, which is an extremely safety-critical feature,
incorporates multiple redundancy [112]. There are three primary and two sec-
ondary main computers, each one comprising two units with different software.
The primary and secondary computers run on different processors, and have
different hardware and different architectures. They were designed and are
supplied by different vendors. Only one flight computer is sufficient for full
operation. Since mechanical signaling was retained for rudder movement and
horizontal stabiliser trim, the aircraft can, if necessary, still be flown relying
on mechanical systems only. Each computer has its command and monitoring
units running in parallel; see Figure 1.2. They have separate hardware. The
software for different channels in each computer was designed by different
groups using different languages. Each control surface is controlled by differ-
ent actuators which are driven by different computers. The hydraulic system
is triplicated and the corresponding lines take different routes through the
aircraft. The power supply sources and the signaling lanes are segregated.

actuator
outputs

command

monitor

check
sensor
inputs

Fig. 1.2. Architecture of an A340 computer

In case of a loss of system resources, the flight control system may be re-
configured dynamically. This involves switching to alternative control software
while maintaining system availability. Three operational modes are supported:

Normal - control plus reduction of workload,
Alternate - minimum computer-mediated control, and
Direct - no computer-mediation of pilot commands.

In spite of all these measures, there has been a number of incidents and
accidents that may be related to the flight control system or its specifications,
although a direct dependence has never been proven.

As functional and non-functional demands for computer systems have con-
tinued to grow over the last 30 years, so has the size of the resulting systems.
They have become extremely large, consisting of many components, includ-
ing distributed and parallel software, hardware, and communications, which
increasingly interface with a large number of external devices, such as sensors
and actuators. Another reason for large (and certain small) systems grow-
ing extensively complex is also the large number and complexity of inter-
connections between their components. Naturally, neither size nor number
of connections nor components are the only sources of complexity. As users
place increasing importance on such non-functional objectives as availability,

1.3 Safety of Embedded Computer Control Systems 15

fault tolerance, security, safety, and traceability, the operation of a complex
computer system is also required to be “non-stop”, real-time, adaptable, and
dependable, providing graceful degradation.

It is typical that such systems have lifetimes measured in decades. Over
such periods, components evolve, logical and physical interconnections change,
and interfaces and operational semantics do likewise, often leading to increased
system complexity. Other factors that may also affect complexity are geo-
graphic distribution of processing and databases, interaction with humans,
and unpredictability of system reactions to unexpected sequences of external
events. When left unchecked, non-functional objectives, especially in legacy
systems, can easily be violated. For instance, there are big, commercial off-
the-shelf, embedded systems now running large amounts of software basically
unknown to the user, which are problematic when trying to use them for
real-time applications.

The safety of control systems needs to be established by certification. In
that process, developers need to convince official bodies that all relevant haz-
ards have been identified and dealt with. Certification methods and procedures
used in different countries and in different industry domains vary to a large
extent. Depending on national legislation and practice, currently the licensing
authorities are still very reluctant or even refuse to approve safety-related tech-
nical systems, whose behaviour is exclusively program-controlled. In general,
safety-licensing is denied for highly safety-critical systems relying on software
with non-trivial complexity. The reasons lie mainly in a lack of confidence
in complex software systems, and in the considerable effort needed for their
safety validation. In practice, a number of established methods and guidelines
have already proven its usefulness for the development of high integrity soft-
ware employed for the control of safety-critical technical processes. Prior to
its application, such software is further subjected to appropriate measures for
its verification and validation.

However, according to the present state-of-the-art, all these measures can-
not guarantee the correctness of larger programs with mathematical rigour.
The method of diverse back-translation, for instance, which is the only general
method approved by TÜV Rheinland (a public German licensing authority) to
verify safety-critical software, is so cumbersome that up to two person-months
are needed to verify just 4kB of machine code [48]. Practice has shown that
even such small software components may include severe deficiencies as soft-
ware developers mainly focus on functionality and often neglect safety issues.
The problems encountered are exacerbated by the need to verify proper real-
time behaviour.

16 1 Real-time Characteristics and Safety of Embedded Systems

1.3.1 Brief History of Safety Standards Relating to Computers in
Control

This section provides a brief historical overview of the most important inter-
national, European and German safety standards. The list is roughly ordered
by the year of publication.

DIN VVDE 0801 and DIN V19250: [31, 32]
These documents belong to the first German safety standards applicable
to general electric/electronic/programmable electronic (E/E/PE) safety-
related systems comprehensively covering software aspects. Previous stan-
dards that dealt with the use of software covered only few life-cycle ac-
tivities and were rather sector-specific, e.g., IEC 60880 [57] “Software for
Computers in the Safety Systems of Nuclear Power Stations”. Although
officially published in different years, viz., DIN V VDE 0801 in 1990 and
DIN V 19250 in 1994, there is a close link between them. They estab-
lish eight safety requirement classes (German: Anforderungsklassen), with
AK 1 the lowest and AK 8 the highest.
DIN V VDE 0801: Principles for using Computers Safety-related Sys-

tems
This standard defines techniques and measures required to meet each
of the requirement classes. It includes techniques to control the EF-
FECT of hardware failures as well as measures to avoid the insertion of
design-faults during hardware and software development. These mea-
sures cover design, coding, implementation, integration and validation,
but the life-cycle approach is not explicitly mentioned.

DIN V 19250: Control Technology; Fundamental Safety Aspects for Mea-
surement and Control Equipment
This standard specifies a methodology to establish the potential risk
to individuals. The methodology takes the consequences of failures as
well as the their probabilities into account. A risk graph is used to
map the potential risk to one of the eight requirement classes.

EUROCAE-ED-12B: Software Considerations in Airborne Systems
and Equipment Certification [38]
This standard, which is equivalent to the US standard RTCA DO-178B,
was drafted by a co-operation of the European Organisation for Civil
Aviation Equipment (EUROCAE) and its US counterpart Radio Tech-
nical Commission for Aeronautics (RTCA). It was released in 1992 and
replaces earlier versions published in 1982 (DO-178/ED-12) and in 1985
(DO-178A/ED-12A). The standard considers the entire software life-cycle
and provides a thorough basis for certifying software used in avionic sys-
tems like airplanes. It defines five levels of criticality, from A (Software
whose failure would cause or contribute to a catastrophic failure of the
aircraft) to E (Software whose failure would have no effect on the aircraft
or on pilot workload).

1.3 Safety of Embedded Computer Control Systems 17

EN 954: Safety of Machinery — Safety-related Parts of Control
Systems [37]
This standard was developed by the European Committee for Standardis-
ation (CEN) and has two parts: General Principles for Design and Valida-
tion, Testing, Fault Lists. Part 1 was first released in 1996, Part 2 in 1999.
The standard complies with the basic terminology and methodology intro-
duced in EN 292-1 (1991), and covers the following five steps of the safety
life-cycle: hazard analysis and risk assessment, selection of measures to
reduce risk, specification of safety requirements that safety-related parts
must meet, design, and validation. It defines five safety categories: B, 1,
2, 3 and 4. The lowest category is B which requires no special measures
for safety, and the highest is 4 requiring sophisticated techniques to avoid
the consequences of any single fault. The standard focuses merely on the
application of fault tolerance techniques in parts of machinery, it does not
consider the system and its life-cycle as a whole [102].

ANSI/ISA S84.01: Application of Safety Instrumented Systems for
the Process Industry [3]
This is the US standard for safety systems in the process industry. It was
primarily introduced in 1996, and founded on the draft of IEC 61508 pub-
lished in 1995. The standard follows nearly the same life-cycle approach
as IEC 61508 and, thus, can be considered a sector-specific derivative of
this umbrella standard. The specialisation on the process industry be-
comes apparent by its strong focus on Safety Instrumented Systems (SIS)
and Safety Instrumented Functions (SIFs). According to the standard,
SISs transfer a process to a safe state in case predefined conditions are
violated, such as overruns of pressure or temperature limits. SIFs are the
actions that a SIS carries out to achieve this. Since the committee initially
thought that SIL 4 applications do not exist in the process industry, the
first edition defined only three SILs, which are equivalent to SIL 1 to 3 of
IEC 61508. However, the new release, ANSI/ISA S84.00.01-2004, includes
the highest class SIL 4.

IEC 61508: Functional Safety of Electrical/Electronic/Programm-
able Electronic (E/E/PE) Safety-related Systems [58]
The first draft of this standard was devised by IEC’s Scientific Committee
65A and published in 1995 under the name “IEC 1508 Functional Safety:
Safety-related Systems”. After it gained wide publicity, a revised version
was released in December 1998 as IEC 61508. This version comprises seven
parts:
Part 1: General requirements
Part 2: Requirements for electrical/electronic/programmable electronic

safety-related systems
Part 3: Software requirements
Part 4: Definitions and abbreviations

18 1 Real-time Characteristics and Safety of Embedded Systems

Part 5: Examples of methods for the determination of safety integrity
levels

Part 6: Guidance on the application of IEC 61508-2 and IEC 61508-3
Part 7: Overview of techniques and measures
The first four parts are normative, i.e., they state definite requirements,
whereas Parts 5 to 7 are informative, i.e., they supplement the normative
parts by offering guidance rather than stating requirements.
The standard defines four Safety Integrity Levels (SILs). SIL 1 is the low-
est, SIL 4 the highest safety class. It is important to note that SILs are
measures of the safety requirements of a given process; an individual prod-
uct cannot carry a SIL rating. If a vendor claims a product to be certified
for SIL 3, this means that it is certified for use in a SIL 3 environment
[102].
The standard has a “generic” character, i.e., it is intended as basis for writ-
ing sector- or application-specific standards. Nevertheless, if application-
specific standards are not available, this umbrella standard can be used
on its own.
In December 2001, CENELEC published a European version as EN 61508.
It obliged all its member countries to implement this European version at
national level by August 2002, and to withdraw conflicting national stan-
dards by August 2004. That is why DIN V VDE 0801 and DIN V 19250,
as well as their extensions, were withdrawn at that date.

EN 50126, EN 50128 and EN 50129: CENELEC railway standards
[34, 35, 36]
These three standards represent the backbone of the European safety li-
censing procedure for railway systems. They were developed by the Comité
Européen de Normalisation Electrotechnique (CENELEC), the European
Committee for Electrotechnical Standardisation in Brussels.
EN 50126: Railway Applications — The Specification and Demonstration

of Dependability, Reliability, Availability, Maintainability and Safety
(RAMS)

EN 50128: Railway Applications — Software for Railway Control and
Protection Systems

EN 50129: Railway Applications — Safety-Related Electronic Systems
for Signaling

This suite of standards, which is often referred to as the “CENELEC
railway standards”, was created with the intention to increase compati-
bility between rail systems throughout Europe and to allow mutual ac-
ceptance of approvals given by the different railway authorities. EN 50126
was published in 1999, whereas EN 50128 and EN 50129, which represent
application-specific derivatives of IEC 61508 for railways, were released in
2002.

1.3 Safety of Embedded Computer Control Systems 19

IEC 61511: Functional Safety: Safety Instrumented Systems for the
Process Industry Sector [59]
This safety standard was first released in 2003, and represents a sector-
specific implementation of IEC 61508 for the process industry. Thus, it
covers the same safety life-cycle approach and re-iterates many definitions
of its umbrella standard. Aspects that are of crucial importance for this
application area, such as sensors und actuators, are treated in considerably
higher detail. The standard consists of three parts named “Requirements”,
“Guidance to Support the Requirements”, and “Hazard and Risk Assess-
ment Techniques”.
In September 2004, the IEC added a “Corrigendum” to the standard,
and the ANSI adopted this version as new ANSI/ISA 84.00.01-2004
(IEC 61511 MOD). The US version is identical to IEC 61511 with one
exception, a “grandfather clause” that preserves the validity of approvals
for existing SISs.

IEC 61513: Nuclear Power Plants — Instrumentation and Control
for Systems Important to Safety — General Requirements for
Systems [60]
This sector-specific derivative of IEC 61508 for nuclear power plants was
primarily released in 2002. Other safety standards for nuclear facilities
like, e.g., IEC 60880 were revised in conformity with IEC 61508.

There are many more safety standards related to Programmable Electronic
Systems (PES), especially in the military area. This sometimes causes un-
certainty in choosing the standard applicable for a given application, e.g.,
EN 954-1 or IEC 61508 [41]. Moreover, if a system is used in several regions
with different legal licensing authorities, e.g., intercontinental aircraft, they
may need to conform with multiple safety standards.

The overview presented in this section highlights the importance of
IEC 61508. Its principles are internationally recognised as fundamental to
modern safety management. Its life-cycle approach and holistic system view
is applied in many modern safety standards — not only the ones that fall
under the regulations of CENELEC.

1.3.2 Safety Integrity Levels

In the late 1980s, the IEC started the standardisation of safety issues in com-
puter control [58]. They identified four Safety Integrity2 Levels SIL 1 to SIL 4,
with SIL 4 being the most critical one. In Table 1.1, applicable programming
methods, language constructs, and verification methods are assigned to the
safety integrity levels.

2 Safety integrity is the likelihood of a safety-related system to perform the required
safety functions satisfactorily under all stated conditions within a stated period
of time [107].

20 1 Real-time Characteristics and Safety of Embedded Systems

Table 1.1. Safety integrity levels

Safety
integrity
level

Verification method Language constructs
Typical
programming
method

SIL 4 Social consensus Marking table entries Cause-effect tables

SIL 3
Diverse
back translation

Procedure calls

Function block
diagrams with
formally verified
libraries

SIL 2
Symbolic execution,
formal correctness
proofs

Procedure call,
assignment,
case selection,
iteration restricted
loop

Language subsets
enabling
(formal)
verification

SIL 1 All
Inherently safe ones,
application oriented
ones

Static language
with safe
constructs

For applications with highest safety-criticality falling into the SIL 4 group,
one is not allowed to employ programming means such as we are used to. They
can only be “programmed” using cause-effect tables (such as programming of
simple PLA3, PAL and similar programmable hardware devices), which are
executed by hardware proven correct. The rows in cause-effect tables are as-
sociated with events, occurrence of which gives rise to Boolean preconditions.
They can be verified by deriving the control functions from the rules read out
from the tables stored in permanent memory and comparing them with the
specifications. In Figure 1.3 a safety-critical fire fighting application is pre-
sented as a combination of cause-effect tables and functional block macros.

At SIL 3, programming of sequential software is already allowed, although
only in a very limited form as interconnection of formally verified routines.
No compilers may be used, because there are no formally proven correct com-
pilers yet. A convenient way to interconnect routines utilises Function Block
Diagrams as known from programmable logic controllers [56]. The suitable
verification method is diverse back-translation: several inspectors take a pro-
gram code from memory, disassemble it, and derive the control function. If
they can all prove that it matches the specifications, a certificate can be issued
[73]. This procedure is very demanding and can only be used in the case of
pre-fabricated and formally proven correct software components.

3 Programmable Logic Array.

1.3 Safety of Embedded Computer Control Systems 21

cause & effect table

functional block macros

logging into a database

deluge

fire
damper

flame
Area 1
Fuel
select.

flame
detect

gaz

gaz

gaz

gaz

UV

IR

Fig. 1.3. An example of a safety-critical application

SIL 2 is the first level to allow for programming in the usual sense. Since
formal verification of the programs is still required, only a safe subset of
the chosen language may be used, providing for procedure calls, assignments,
alternative selection, and loops with bounded numbers of iterations.

Conventional programming is possible for applications with the integrity
requirements falling into SIL 1. However, since their safety is still critical, only
static languages are permitted without dynamic features such as pointers
or recursion that could jeopardise their integrity. Further, constructs that
could lead to temporal or functional inconsistencies are also restricted. Any
reasonable verification methods can be used.

In this book, applications falling into SIL 1 will be considered, although
for safety back-up systems or partial implementations of critical subsystems
higher levels could also apply. For that reason, in the sequel we shall only refer
to SIL 1.

1.3.3 Dealing with Faults in Embedded Control Systems

A good systematic elaboration of handling faults and a taxonomy from this
domain was presented by Storey [107]. Some points are summarised below.
Faults may be characterised in different ways, for example, by:

Nature: random faults (hardware failure), systematic faults (design faults,
software faults);

Duration: permanent (systematic faults), transient (alpha particle strikes
on semiconductor memories), intermittent (faulty contacts); or by

Extent: local (single hardware or software module), global (system).

More and more, the general public is realising the inherent safety problems
associated with computerised systems, and particularly with their software.
Hardware is subject to wear, transient or random faults, and unintended envi-
ronmental influences. These sources of non-dependability can, to a very large
extent, be coped with successfully by applying a wide spectrum of redundancy
and fault-tolerance methods.

22 1 Real-time Characteristics and Safety of Embedded Systems

Software, on the other hand, does not wear out nor can environmental
circumstances cause software faults. Instead, software is imperfect, with all
errors being design errors, i.e., of systematic nature, and their causes always
being latently present. They originate from insufficient insight into the prob-
lems at hand, leading to incomplete or inappropriate requirements and design
flaws. Programming errors may add new failure modes that were not apparent
at the requirements level. In general, not all errors contained in the resulting
software can be detected by applying the methods prevailing in contemporary
software development practice. Since the remaining errors may endanger the
environment and even human lives, embedded systems are often less trust-
worthy than they ought to be. Taking the high and fast increasing complexity
of control software into account, it is obvious that the problem of software
dependability will exacerbate severely.

As already mentioned, due to the complexity of programmable control
systems, faults are an unavoidable fact. A discipline coping with them is called
“fault management”. Broadly, its measures can be subdivided into four groups
of techniques:

Fault avoidance aims to prevent faults from entering a system during the
design stage,

Fault removal attempts to find faults before the system enters service (test-
ing),

Fault detection aims to find faults in the system during service to minimise
their effects, and

Fault tolerance allows the system to operate correctly in the presence of
faults.

The best way to cope with faults is to prevent them from occurring. A good
practice is to restrict the use of potentially dangerous features. Compliance
with these restrictions must be checked by the compiler. For instance, dynamic
features like recursion, references, virtual addressing, or dynamic file names
and other parameters can be restricted, if they are not absolutely necessary.

It is important to consider the possible hazards, i.e., the capability to do
harm to people, property or the environment [107], during design time of a
control system. In this sense the appropriate actions can be categorised as:

• Identification of possible hazards associated with the system and their
classification,

• Determination of methods to dealing with these hazards,
• Assignment of appropriate reliability and availability requirements,
• Determination of an appropriate Safety Integrity Level, and
• Specification of appropriate development methods.

Hazard analysis presents a range of techniques that provide diverse insight
into the characteristics of a system under investigation. The most common
approaches are Failure Modes and Effects Analysis (FMEA), Hazard and Op-

1.3 Safety of Embedded Computer Control Systems 23

erability Studies (HAZOP), and the Event- and Fault Tree Analyses (ETA
and FTA).

Fault tree analysis in particular appears to be most suitable for use in the
design of embedded control systems. It is a graphical method using symbols
similar to those used in digital systems design, and some additional ones rep-
resenting primary and secondary (the implicit) fault events to represent the
logical function of the effects of faults in a system. The potential hazards are
identified; then the faults and their interrelations that could lead to undesired
events are explored. Once the fault tree is constructed it can be analysed, and
eventually improvements proposed by adding redundant resources or alterna-
tive algorithms.

Since it is not possible in non-trivial cases to guarantee that there are no
faults, it is important to detect them properly in order to deal with them.
Some examples of fault-detection schemes are:

Functionality checking involves software routines that check the function-
ality of the hardware, usually memories, processor or communication re-
sources.

Consistency checking. Using knowledge about the reasonable behaviour of
signals or data, their validity may be checked. An example is range check-
ing.

Checking pairs. In the case of redundant resources it is possible to check
whether different instances of partial systems behave similarly.

Information redundancy. If feasible, it is reasonable to introduce certain
redundancy in the data or signals in order to allow for fault detection,
like checksums or parities.

Loop-back testing. In order to prevent faults of signal or data transmission,
they can be transmitted back to the sources and verified.

Watchdog timers. To check the viability of a system, its response to a peri-
odical signal is tested. If there is no response within a predefined interval,
a timer detects a fault.

Bus monitoring. Operation of a computer system can often be monitored
by observing the behaviour on its system bus to detect hardware failures.

It is advisable that these fault-detection techniques are implemented as op-
erating system kernel functions, or in any other way built into the system
software. Their employment is thus technically decoupled from their imple-
mentation allowing for their systematic use.

1.3.4 Fault-tolerance Measures

Approaches of Fault-Tolerant Control can be divided into two categories: pas-
sive and active fault tolerant control. The key difference between them is that
an active fault tolerant control system includes a fault detection and isolation
(FDI) system, and that fault handling is carried out based on information on
faults delivered by the FDI system. In a passive fault tolerant control system,

24 1 Real-time Characteristics and Safety of Embedded Systems

on the other hand, the system components and controllers are designed to
be robust to possible faults to a certain degree. Figure 1.4 sketches the basic
classification of fault tolerant control concepts.

fault tolerance

passive active
− robust components
− design for fault
 tolerance redundance

− hardware
− software

reconfiguration
− computer system
− control methods

combined methods

integrated fault tolerance

Fig. 1.4. Classification of fault-tolerance measures

Passive measures to improve fault tolerance mean that any reasonable
effort must be made to make a design robust. For instance, the components
must be selected accordingly, and with reasonable margins in critical features.
Also, fault tolerance should already be considered in the design of subsystems.
In addition to enhancing the quality and robustness of process components,
using redundancy is a traditional way to improve process reliability and avail-
ability. However, because of the increased costs and complexity of the system,
its usability is limited.

Evidently more flexible and cost effective is the reconfiguration scheme.
Fault tolerance is achieved by system and/or controller reconfiguration, i.e.,
after faults are identified and a reduction of system performance is observed,
the overall system performance will be recovered (possibly to an acceptable
degree, only) by a reconfiguration of parts of the control system under real-
time conditions. This is a new challenge in the field of control engineering. In
the following, the most common approaches for this are briefly sketched.

Redundancy

The most common measure to make a system tolerant to faults is to employ
redundant resources. In the area of computing this idea originated in 1949:
although still not tolerant to faults, EDVAC already had two ALUs to detect
errors in calculation. Probably the first fault-tolerant computer was SAPO
[87] built in Prague from 1950 to 1954 under the supervision of A. Svoboda,
using relays and a magnetic drum memory. The processor used triplication and
voting, and the memory implemented error detection with automatic retries

1.3 Safety of Embedded Computer Control Systems 25

when an error was detected. A second machine developed by the same group
(EPOS) also contained comprehensive fault-tolerance features.

The most simple model of redundancy-based fault tolerance is Triple Mod-
ular Redundancy (TMR): three resources with a voter allow for recognising a
single resource failure. This is also called two-out-of-three (2oo3). The model
can be extended to N-Modular Redundancy (NMR), which can accommodate
more failures, but becomes more and more expensive. Seldom does N exceed
5 (3oo5). For other examples please refer to Section 7.3.1.

There are several ways in which the redundancy can be employed:

Hardware redundancy: e.g., in form of TMR,
Software redundancy: e.g., diversely implemented routines in recovery blocks,

see below,
Information redundancy: e.g., as parity bits or redundant codes, and
Time redundancy: i.e., repetitive calculations to cope with the intermittent

faults. fault-detection

Both in hardware and software redundancy it is most important to avoid com-
mon mode failures. They can be coped with successfully by design diversity.
For a good example, see the description of the Airbus fly-by-wire computer
control system on Page 14. To achieve a fully decoupled design, one should
start with separate specifications to avoid errors in this stage, which are most
costly and difficult to find by testing — a wrong system can thus even be
verified formally!

Sometimes, the sources of common mode faults are deeply anchored in
the designers by their education and training. This introduces a social com-
ponent of fault management. This social problem of common mode failures
was addressed by M.P. Hilsenkopf, an expert concerned with research and
development for French nuclear power plants [53]. He pointed out that safety
critical components are developed in parallel in two places by two different
groups without a contact, viz., in Toulouse and Paris. Starting with separate
acquisition of requirements from physicists and engineers, they each provide
their own specifications each. Based on that, they develop, verify and validate
two different solutions. Then they swap them for final testing. Since they have
both specified and developed their solutions, both groups know the problem
very well, they know which questions and difficulties they had to solve, and
they check how the respective competing group has coped with them. Thus,
they verify each others’ design on their own specifications, and both try to
prove that their solution is better.

Reconfiguration

Owing to the fixed structure and high demands for hardware and software
resources, and for economic reasons in less critical applications, the employ-
ment of the redundancy strategy is usually limited to certain specific technical
processes or to key system components like the central computing system or

26 1 Real-time Characteristics and Safety of Embedded Systems

the bus system. To cover entire systems, fault-tolerant strategies with fault
accommodation or system and/or controller reconfiguration are more suitable.

Owing to significantly different functions and working principles, the prob-
lems related to reconfiguration of control methods, algorithms and approaches
as well as of the computer platforms, on which the latter and signal and data
processing are running, are generally considered in separate and usually inde-
pendent contexts. In this book we shall deal in more detail with the aspect of
reconfiguring computer control systems, and with supporting the methods of
higher-level control system reconfiguration.

When the occurrence of faults is detected, a system decides either to ac-
commodate these faults or to perform controller and/or hardware reconfigu-
ration, which might imply graceful performance degradation or, in the case of
severe faults, to drive the component or process concerned into a safe mode.
The decision on the type of action taken by the reconfiguration system is
based on the evaluation of the actual system performance provided by a mon-
itoring system, and on the need to assure an adequate transient behaviour
upon reconfiguration.

Thus, for reconfiguration, designers prepare different solutions to a prob-
lem with gradually decreasing quality; the last one usually drives the system
into a safe failing mode. For each of the solutions the necessary resources and
the preconditions are listed. On the other hand, the computer system archi-
tecture provides for reconfiguration of the hardware in order to cope with
resource failure. The optimum approach is normally run at the start, utilising
all (or most of) the computer and control resources. This is also the main
difference between redundancy and reconfiguration: most of the operational
resources are always used.

Important components of reconfiguration-based fault-tolerant control are
a fault detection system and a reconfiguration manager: based on the infor-
mation provided by the former and on the resource needs attached to the
gradually degraded options, the latter decides on the operating mode. Since
the reconfiguration manager represents a central point of failure, it must be
implemented in the safest possible way. It may be redundant or distributed
among the other resources, which by a voting protocol then compete for tak-
ing over control. An example for the latter solution is the protocol to select a
new time master in the case of failure in the TTCAN protocol [64]; cf. Section
3.5.2.

With respect to application design, dynamic reconfiguration resembles
software redundancy (see below) — the recovery approaches or N versions
of a control algorithm. According to the occurrence of faults, control will be
switched to the most competent version, utilising the sound resources, and
providing the best possible quality of service.

Hardware Fault Tolerance

In the design of fault-tolerant hardware, systems can be classified as static,
dynamic or hybrid.

1.3 Safety of Embedded Computer Control Systems 27

Static systems utilise fault effect masking, i.e., preventing the effects of
faults to propagate further into the systems. They use some voting mech-
anism to compare the outputs and mask the effect of faults. Well-known
approaches include the n-modular redundancy, TMR with replicated vot-
ers (to eliminate the danger that a single voter fails).

Dynamic systems try to detect faults instead of masking their effects. The
technique used is providing the stand-by resources. There is a single sys-
tem producing output. If a fault is detected, control is switched to a redun-
dant resource. The latter may have been running all the time in parallel
with the master resource (hot stand-by), or was switched on when the
master resource failed. In the case of hot redundancy, faults can be de-
tected by, e.g., self-checking pairs. In this case, obviously the redundant
resource is more reliable, although probably delivering lower quality of
service.
Static redundancy masks faults and they do not appear in the system. This
is, however, achieved at a high cost for massive redundancy. Dynamic sys-
tems utilise less redundancy and provide continuous service, but introduce
transient faults to the system: when an error occurs, the fault is in the
first instant propagated, then coped with.

Hybrid systems combine the properties of the former two classes: by com-
bining the techniques of dynamic redundancy with voters, they detect
faults, mask their effects, and switch to stand-by units.

Software Fault Tolerance

Software fault tolerance copes with faults (of whatever origin) by software
means rather than tolerating software errors. There are two major methods
falling into this category, N-version programming and recovery blocks.

N-version programming resembles static hardware redundancy. A problem
is solved by N different and diversely designed programs, all fulfilling the re-
quirements stated in the specifications. All these programs are then run on the
same data, either sequentially, or in parallel in the case of a multiprocessing
system. If the results do not match, a fault is assumed and the results are
blocked. The disadvantage of this method is that it either requires a multi-
processor system or takes more than N-times more time even if the system is
working correctly.

Recovery blocks do not take much more time if there is no fault. Again,
N versions of a program are designed, but only the most appropriate one
is executed first. If a fault can be recognised, the results are discarded, the
intermediate system states are reset, and the next alternative solution is tried.
Eventually, one alternative must fulfil the requirements, or at least assure fail-
safe behaviour. There are two different types of recovery blocks techniques
[23, 24], backward and forward recovery.

The principle of backward recovery is to return to a previous consistent sys-
tem state after an inconsistency (fault) is detected by consistency tests called

28 1 Real-time Characteristics and Safety of Embedded Systems

postconditions. This can be done in two ways; (1) by the operating system
recording the current context before a program is “run”, and restoring it after
its unsuccessful termination, or (2) by recovery blocks inside the context of a
task. The syntax of a recovery block (RB) could be

RB ≡ ensure post by P0 else by P1 else by . . . else failure

where P0, P1, etc. are alternatives which are consecutively tried until either
consistency is ensured by meeting the post -condition, or the failure-handler
is executed to bring the system into a safe state. Each alternative should
independently be able to ensure consistent results.

The forward error recovery technique tries to obtain a consistent state
from partly inconsistent data. Which data are usable can be determined by
consistency tests, error presumptions, or with the help of independent external
sources.

If in embedded process control systems an action directly affects a periph-
eral process, an irreversible change of initial states inside a failed alternative is
caused. In this case, backward recovery is generally not possible. As a conse-
quence, no physical control outputs should be generated inside the alternatives
which may cause backward recovery in case of failure, i.e., inside those which
have postconditions. If this is not feasible, only forward recovery is possible,
bringing the system into a certain predefined, safe, and stable state.

1.4 Summary of Chapter 1 and Synopsis of What
Follows

In this introduction, some definitions have been laid down and the nature of
real-time systems’ execution behaviour has been demonstrated on examples.
Safety issues have been discussed together with a brief enumeration of exist-
ing fault management measures and standards. This chapter has introduced
terminology and provided the structure of guidelines on which the remaining
chapters will build.

In the remainder of Part I, the concepts most important in designing dis-
tributed embedded real-time control systems will be elaborated. To start with,
multitasking is the topic of Section 2, as it presents the nature of complex
embedded control systems. In the section, first the approaches to task man-
agement are introduced and, then, two most common issues, scheduling and
synchronisation, are dealt with. The preferred solutions are elaborated in more
detail.

Sections 3 and 4 more specifically deal with hardware and software aspects
of embedded systems design. They present some original solutions to certain
problems, which have been developed by the authors, and which constitute
guidelines for the implementation of platforms for distributed systems. In
Part II the latter are elaborated in detail.

2

Multitasking

Tasks (or computing processes) are the smallest entities and fundamental
elements of asynchronous programming. They represent the execution of pro-
grams in a computing system during the lifetime of the processes. Such a
lifetime begins with the registration instant of a process and ends with its
cancellation. Thus, the computing process exists not only during the actual
processing in a functional unit of a computing system, but also before the
start of processing and during the planned and forced waiting periods.

Tasks are programmed using adequate programming methods, languages
and tools. The basic requirement for hard real-time tasks is that it must be
possible to assess their maximum execution time, called Worst-Case Execution
Time (WCET). A precondition, in turn, for this is that the behaviour of
the execution platform is deterministic and predictable. More details about
WCET analysis will be given in Section 4.2.

In the following sections, first the concepts of task and multitasking will
be dealt with. Then, the ultimate guideline to design architectures for embed-
ded systems — schedulability — will be explored, and a feasible scheduling
policy presented. Finally, the principles of inter-task synchronisation will be
explained.

2.1 Task Management Systems

Execution of tasks is administered by system programs. Since there are (except
in very specific applications) never enough processing units that each task
could exclusively be mapped on one of its own, tasks must be arranged or
scheduled in a sequence for execution. Sometimes, tasks can be scheduled
a priori during design time. This is only possible if the system behaviour is
completely known in advance like, e.g., for a washing machine, whose tasks
filling with water, heating, turning the drum either way, draining water, etc.
follow sequences that are always the same. Such systems are called static. Here,
the execution schedules of parallel tasks can be carefully planned, optimised,

30 2 Multitasking

and verified off-line during design time. Consequently, this is the safest way
to implement embedded applications.

Most systems, however, are dynamic: at least some of the events requir-
ing service by tasks are known in advance with their parameters, but their
occurrence instants are sporadic and asynchronous to other control system
processings. In such cases, tasks need to be scheduled at run-time. These sys-
tems are more flexible, but their design is also much more challenging. In this
chapter we shall deal with dynamic or mixed systems. There are different ap-
proaches to how mixtures of static and dynamic tasks can be executed. Two
representative examples are the cyclic executive approach and asynchronous
multitasking.

2.1.1 Cyclic Executive

The simpler approach of the two can accommodate both statically scheduled
periodic tasks and asynchronous sporadic tasks, although for the latter it can
only be used with limitations. The approach is based on periodic execution of
a schedule, part of which is determined statically and the other part dynam-
ically. The start of each cycle is triggered by a timer interrupt.

Periodic tasks may have different requirements and need to be executed
within their specified periods. Further, it is assumed that the tasks are com-
pletely independent of each other. The periodic tasks are assigned to be run
in cycles according to their requirements. The longest cycle is called the ma-
jor cycle, consisting of a number of minor cycles of different durations. All
process periods must be integer multiples of the minor cycle.

It is possible to include asynchronously arriving sporadic tasks into this
scheme: they can be executed in the slack time between the termination of
the last periodic task in a cycle and the start of the next cycle. This also
means that the execution time of a sporadic task is limited to this slack; if it
is longer, an overrun situation occurs. A major use of such sporadic tasks is
to report exceptions.

An example of a schedule generated by a cyclic executive for periodic tasks
A, B, C and D with periods 1, 2, 2 and 4, respectively, and two sporadic tasks
E1 and E2 is shown in Figure 2.1.

A very simple implementation of the cyclic executive approach is sketched
by pseudo-code in Figure 2.2. It is based on an array of task control blocks. For
each task there are parameters: duty cycle, cycle counter, and start address.
Another array mentions signals and addresses of sporadic tasks. It is assumed
that the worst-case execution times are shorter than the smallest slack between
the end of the last periodic task and the beginning of the next cycle, which
can be calculated at design time. Further, it is assumed that sporadic tasks
are rare; if there are more in a queue they are executed in first-in-first-out
(FIFO) manner. Finally, there is a check at the beginning whether it came
to an overload in the preceding cycle; that may happen if the worst-case
execution times of tasks were exceeded.

2.1 Task Management Systems 31

A A A A AB B BC CD DE1 E2

minor A
minor B

minor C
major

E1, E2: sporadic tasks

int int int int int

time

Fig. 2.1. A schedule generated by a cyclic executive

on timer interrupt:

IF NOT waiting_for_interrupt THEN

break execution;

overrun error

END IF;

waiting_for_interrupt:=false;

FOR i:= 1 TO number_of_periodic_tasks DO

cycle_counter[i]:=cycle_counter[i]+1;

IF cycle_counter[i]=duty_cycle[i] THEN

cycle_counter[i]:=0;

execute periodic_task[i]

END IF

END DO;

FOR i:= 1 TO number_of_possible_signals DO

IF signal[i] has arrived THEN

execute asynchronous_task[i]

END IF

END DO;

waiting_for_interrupt:=true;

wait for interrupt

Fig. 2.2. Algorithm of cyclic executive

It must be noted that the “tasks” here are actually only procedure calls. No
usual tasking operations can be performed; their static schedule assures them
exclusive execution slots. Thus, there is no interdependency, and synchronisa-
tion with its possible dangers is not necessary. Execution of the tasks is tempo-
rally predictable in full. If it is difficult to construct a feasible schedule off-line
due to high system load, different optimisation methods can be utilised. Once
a schedule is composed, no further run-time schedulability tests are needed for
periodic tasks. In the most simple, although not very rare cases, the cyclic ex-
ecutive reduces to periodic invocation of a single task. Simple programmable
logic controllers (PLC) operate in this manner, first acquiring sensor inputs,
then executing control functions, and finally causing process actuations.

32 2 Multitasking

A large number of successful implementations of process control applica-
tion using the cyclic executive can be found. Lawson [76], for instance, has
presented a philosophy, paradigm and model called Cy-Clone (Clone of Cyclic
Paradigm), which aims to remove the drawbacks of the cyclic approach while
providing deterministic properties for time- and safety-critical systems. In his
cyclic approach, the period should be long enough to allow for all processing,
but sufficiently short to ensure the stability of control. To adapt to dynamic
situations, the method can provide mode shifts, where the period varies in
a controlled manner during execution. As Lawson points out, the Cy-Clone
approach is not claimed to be the best solution for all real-time systems, but
was established on the basis “If the shoe fits, wear it”. In the early 1980s it was
employed in a control system of the Swedish National Railway to assist train
engineers in following the speed limits along the railway system in Sweden. In
2000, Lawson reported [77] that it was still working (after a non-significant
re-design in 1992), but now in high-speed trains!

2.1.2 Asynchronous Multitasking

Although convenient and safe, the above approach cannot be used for dy-
namic systems, where all or most tasks are asynchronous. In such cases, real
asynchronous multitasking needs to be employed. In contrast to the static
cyclic executive, timeliness and simultaneity are to be provided dynamically.
The dynamic load behaviour requires scheduling problems to be solved with
an adequate strategy. The demand for simultaneity implies pre-emptability
of tasks: a running task may be pre-empted and put back into the waiting
state if another task needs to be executed according to the scheduling policy.
However, as a consequence this leads to synchronisation requirements.

Context-switching, i.e., swapping the tasks that are executing on a pro-
cessor, starts with saving the context (i.e., the state consisting of program
counter, local variables, and other internal task information) of the execut-
ing task to storage in order to allow its eventual resumption when it is re-
scheduled to run. This storage is often called Task Control Block, (TCB) and
also includes other information about tasks, e.g., their full and remaining ex-
ecution time, deadlines, resource contention, etc. Then, the state of the newly
scheduled task is loaded and the task is run. Obviously, as this represents a
non-productive overhead consuming certain processing capacity, it should be
kept to a minimum by choosing the most adequate task scheduling policy.

Multitasking must be supported by operating systems. Any one mainly
supports its own scheme of tasks states and transitions or has, at least, dif-
ferent names for them. A typical, simple but sufficient task state transition
diagram is presented in Figure 2.3. In this model, tasks may assume one of
the following states:

2.1 Task Management Systems 33

ready

dormant

running

suspen−
ded

abort

resume

suspend

pre−
empt

schedule

termi−
nate

abort abort

activate

Fig. 2.3. Task state transition diagram

Dormant (also known or terminated). Once a task is introduced in a system
by its initialisation, it enters the dormant state. Here it is waiting to be
activated by an event. Further, when the task accomplishes its mission
and terminates in the “running” state, it is brought back to the dormant
(or, in this case better, terminated) state. If for any reason a task is not
needed any more in any other state, it can be aborted, i.e., put into the
dormant state again.

Ready. A task in the dormant state can be activated by an event and then
joins the set of tasks ready to be scheduled for execution. Such a task en-
ters the ready state. A task can also enter this state when it is pre-empted
from running, or resumed from suspension. Upon occurrence of any event
changing the set of ready tasks, a scheduling algorithm is invoked to order
them, according to a certain policy, in a sequence in which they will be
executed. If a task from the ready set has lost its meaning for any reason
(e.g., it was explicitly aborted by another task, or its waiting time for
resources has exceeded, so that its deadlines cannot be met anymore) it
can be aborted to the dormant state.

Running. As a result of scheduling the tasks in the ready state, the first
task in the sequence is dispatched to the running state, i.e., to be run on
the processor. Eventually, it is terminated, when finished, or aborted to
the dormant state. A running task can be pre-empted, i.e., its execution is
discontinued and the processor allocated to another task, and it is brought
back into the ready state to re-join the set of ready tasks for further
scheduling. Pre-emption is related to certain overheads, so one always
strives to minimise the number of pre-emptions to the lowest amount
possible.

Suspended. If the running task lacks certain resources for further execution,
or if any other precedence relation calls for deferral through a synchroni-

34 2 Multitasking

sation mechanism, its execution is suspended. Once a certain condition
that the suspended task is waiting for is fulfilled, it is resumed and, thus,
brought into the ready state again. If, on the other hand, due to excessive
waiting, the task cannot meet its deadline, it is aborted and a certain
prepared action is taken in order to deal with this situation.

Task transitions are performed when certain events occur. These may be
external events, e.g., signals from the process environment or arrivals of mes-
sages, timing events, when a time monitor recognises an instant for triggering
a task, or internal events, when, for instance, a semaphore blocks execution of
a task. Internal events can also be induced by other tasks. Instead of explicit
operating system calls, tasking operations should be supported by adequate
language commands. An example of an apt set of tasking commands will be
given in Section 4.1.2 in Figure 4.6.

2.2 Scheduling and Schedulability

In Section 1.2.1 it has been established that predictability of temporal be-
haviour is the most important property of embedded and real-time applica-
tions. The final goal is that tasks complete their functions within predefined
time periods. Thus, when running a single task it is enough to know its execu-
tion time. Dynamic embedded systems, however, must support multitasking.
There is always a set of tasks which have been invoked by certain event oc-
currences, and which compete for the same resources, most notably the pro-
cessor(s). Since all of them have their deadlines to meet, an adequate schedule
should be found to assure that. The pre-condition for being able to elaborate
all these tasks is, of course, the availability of resources. Lawson [76] presented
the concept of resource adequacy meaning that there are sufficient resources
to guarantee that all processing requirements are met on time.

A schedule to process a task system is called feasible if all tasks of the sys-
tem meet their deadlines (assuming the above mentioned resource adequacy).
A task system is called feasibly executable if there exists a feasible schedule.

At run-time, a scheduler is responsible for allocating the tasks ready to exe-
cute in a such way that all deadlines are observed, following an apt processor
allocation strategy, i.e., a scheduling algorithm. A strategy is feasible if it gen-
erates for any feasibly executable (free) task set a feasible schedule. Another
notion concerning feasibility of a task set is schedulability: the ability to find,
a priori , a schedule such that each task will meet its deadline [108].

Sometimes it may happen that a task cannot meet its deadline; in hard
real-time systems this is considered a severe fault. It can be a consequence of
improper scheduling, or of system overload. In the former case this is due to
selecting an improper or infeasible scheduling strategy. In the latter case the
specification of system behaviour and, thus, the dimensioning of the computer
control system was wrong. To prevent such specification errors, it is essential

2.2 Scheduling and Schedulability 35

to have — prior to system design — a clear understanding of the peak load
a system is expected to handle. As it is not possible to design, for instance, a
bridge without knowing the load it is expected to carry, so it is not possible
to design a real-time system with predictable performance without estimating
the load parameters and task execution times.

In order to estimate correctly the necessary capacity of a system and, thus,
prevent overload situations, a proof of feasible executability or schedulability
of occurring tasks set has to be carried out in the planning phase. This is a
difficult problem, especially in dynamic systems with task reacting to sporad-
ically occurring events. There are methods that may provide such proofs, cf.
e.g., [108]. Their complexity, however, can easily become NP-complete, and
the methods may yield rather pessimistic estimations.

2.2.1 Scheduling Methods and Techniques

Scheduling policies fall into two classes, depending on whether the tasks, once
executing, can be pre-empted by other tasks of higher urgency or not. For
scheduling dynamic systems, pre-emptions are necessary in order to assure
feasibility of the scheduling algorithms. In this subsection, two scheduling poli-
cies, fixed priority and rate monotonic scheduling, will be elaborated. Deadline
driven scheduling policies, which are problem-oriented and more suitable, will
be covered in more detail in the next subsection.

Fixed Priorities

Many popular operating systems, which are currently most frequently em-
ployed in embedded systems, base their scheduling on fixed priorities. The
advantage is that the latter are in most cases built into the processors them-
selves in a form of priority interrupt handling systems. Thus, implementation
is fast and simple.

As scheduling criteria, however, priorities are not problem-oriented, but ar-
tificially invented categories not emerging from the nature of the applications.
As a rule, it is difficult to assign adequate priorities to tasks, bearing in mind
all their properties (frequency of their invocations, required resources, tempo-
ral tightness, relative importance, etc.). Designers tend to over-emphasise rel-
ative importance, which leads to starvation of other tasks waiting for blocked
resources. Priorities are not flexible and cannot adapt to the current behaviour
of systems. For these reasons, it is not possible to prove feasibility of such a
policy. Once a task is assigned a fixed priority, the scheduler allocates the
resources regardless of real needs of that and other tasks.

As an example, let us consider a situation of three tasks with arbitrarily
assigned priorities; see Figure 2.4. As we can see, the selection of priorities was
unfortunate: the lowest priority task misses its deadlines, although the laxities
of the tasks are relatively large. Possibly, the importance of a task suggested
it be assigned the highest priority, although its deadline is far and execution

36 2 Multitasking

priority

high

low

time

preemption

Fig. 2.4. Missing a deadline by inappropriately assigned priorities

time short. A feasible schedule, however, is possible by simply overturning the
priorities, as shown in Figure 2.5.

priority

high

low

time

preemption

Fig. 2.5. Appropriate assignment of priorities

Further, a number of problems emerge from the priority-based scheduling
policy. For instance, if there is a set of tasks of different priorities requesting
the same resources, it could easily result in priority inversion: a low-priority
task pre-empted by a higher-priority one is blocking a resource and, thus, the
execution of all those that wait for the same resource. In this case the waiting
time cannot be bounded. The situation is depicted in Figure 2.6.

One of the attempts to cure this inherent problem uses priority inheri-
tance; see Figure 2.7. However, the system is now behaving differently than
specified, namely a task is given a different priority than originally assigned,
which disturbs the global relationships, especially if the resource is allocated
for a longer time. The higher-priority tasks are still delayed by the lower, al-
though for a shorter time. Further, a track must be kept of which resources
are allocated by which tasks.

Another widely used, but only slightly better policy is round-robin schedul-
ing, where each of the ready tasks is assigned a time slice. Needless to say,
the policy is not feasible unless the temporal circumstances of all competing
tasks are more or less the same.

2.2 Scheduling and Schedulability 37

priority

high

low

time

allocate resource

free resource

resource allocated

preemption

blocked by resource

Fig. 2.6. Priority inversion

priority

high

low

time

priority inheritance

Fig. 2.7. Priority inheritance

Rate-Monotonic Priority Assignment

There are other policies to assign priorities to tasks which are more adequate
to solve the scheduling problem. Well-known and particularly suitable for
periodic tasks is rate-monotonic scheduling. It follows the simple rule that
priorities are assigned according to increasing periods of periodic tasks — the
shorter the period the higher the priority. The policy is feasible, and it is
possible to carry out schedulability tests.

In their widely recognised publication [80], in 1973 Liu and Layland con-
sidered periodic task sets whose relative deadlines equal their periods. All n
tasks were assumed to start simultaneously at t=0 and to be independent, i.e.,
there exist no precedence relations or shared resources. Under these assump-
tions they proved that rate-monotonic priority assignment yields a feasible
schedule if

U ≤ n(21/n − 1) , (2.1)

where U is the processor utilisation

U =
n∑

i=1

Ci

Ti
. (2.2)

The utilisation of the processor by n rate-monotonically scheduled tasks is
shown in Table 2.1.

38 2 Multitasking

Table 2.1. Processor utilisation of systems with N tasks

N Utilisation bound

1 100%
2 82.8%
3 78.0%
5 74.3%
10 71.8%

As an illustration, a Gantt chart of the feasible schedule of three tasks
with their priorities assigned rate-monotonically is shown in Figure 2.8. The
overall utilisation is 0.72, with the maximum for three tasks (from Table 2.1)
being 0.78.

Period Exec. time Utilisation

Task 1 15 4 0.27
Task 2 20 5 0.25
Task 3 25 5 0.20

task1

task3

task2

0 2 4 10 126 8 14 16 18 24 2620 22 3028 34 3632 4038

Fig. 2.8. Example of feasible rate-monotonic scheduling

In the next example in Figure 2.9, the attempted utilisation is 85%. As
a result, Task 3 only receives four units of service time in its first period, is
then pre-empted by Task 1, followed by Task 2, and misses its deadline.

For a large number of tasks, Equation 2.1 returns the feasibility bound

lim
n→∞n(21/n − 1) = ln 2 ∼= 0.69 .

Thus, it is proven that the policy provides an adequate and feasible schedule
for any set of ready tasks as long as the utilisation of the processor is below
0.69. Renouncing 30% of processor performance and using rate-monotonicity,
it can be guaranteed that the schedule is always feasible.

The feasibility bound of Equation 2.1 is sufficient but not necessary, i.e.,
it is possible that a task set will meet its deadlines under rate-monotonic
scheduling although the condition is violated. Bini et al. [8] proved that a
periodic task set is feasible under rate-monotonic scheduling as long as

n∏

i=1

(
Ci

Ti
+ 1

)
≤ 2 .

2.2 Scheduling and Schedulability 39

Period Exec. time Utilisation

Task 1 15 6 0.40
Task 2 20 5 0.25
Task 3 25 5 0.20

task1

task3

task2

0 2 4 10 126 8 14 16 18 24 2620 22 3028

(preemption)

34 3632 4038

Fig. 2.9. Example of overload with rate-monotonic scheduling

This schedulability test, which is known as the Hyperbolic Bound, allows
higher processor utilisation. It takes into account that the schedulability
bound improves if the periods have harmonic relations.

The rate-monotonic scheduling policy relates to periodic tasks. With the
assumption that non-periodic tasks can only be invoked once within a certain
period of time, in the worst case sporadic tasks become periodic; thus, rate-
monotonic scheduling can also be used for them.

2.2.2 Deadline-driven Scheduling

Following the ultimate requirement for real-time systems, viz., that all tasks
meet their deadlines, leads to problem-oriented deadline-driven scheduling.
The artificial priorities of tasks are no more relevant. In some adequate
scheduling algorithms, priorities are only used in order to handle system over-
loads; in this case, priorities may indicate which tasks must be retained under
any circumstances, and which ones may be gracefully degraded or renounced.

There are several deadline-based algorithms, actually rate-monotonic sche-
duling as described above being one of them. Some observe deadlines them-
selves, and others schedule tasks according to slack or margin (the difference
between the time to the deadline and the remaining execution time of a task).

One of the most suitable scheduling algorithms is the earliest deadline first
scheduling algorithm [80]. Tasks are scheduled in increasing order of their
deadlines, see Figure 2.10. It was shown that this algorithm is feasible for
tasks running on single processor systems; with the so-called throw-forward
extension it is also feasible on homogeneous multiprocessor systems. How-
ever, this extension leads to more pre-emptions, is more complex and, thus,
less practical. To be able to employ the strategy earliest deadline first, it is
best to structure real-time computer systems as single processors. The idea
can be extended to distributed systems, by structuring them as sets of in-
terconnected uni-processors, each of which dedicated to control a part of an

40 2 Multitasking

external environment. This is actually not a very critical limitation because
of the nature of application tasks occurring in control.

arrival exec. time due after

Task 3 6 2 6
Task 2 2 4 10
Task 1 1 4 12

task1

task3

task2

1 2 3 6 74 5 8 9 10 13 1411 12

preemption

Fig. 2.10. An example of earliest deadline first scheduling

To handle the case of overloads, many researchers are considering load
sharing schemes which migrate tasks between the nodes of distributed sys-
tems. In industrial process control environments, however, such schemes are
generally not applicable, because only computing tasks can be migrated. In
contrast to this, control tasks are highly input/output bound, and the perma-
nent wiring of the peripherals to certain nodes makes load sharing impossible.
Therefore, the earliest deadline first scheduling algorithm is to be applied in-
dependently from considerations of the overall system load on each node in
a distributed system. The implementation of this scheme is facilitated by the
fact that, typically, industrial process control systems are already designed
in the form of co-operating, possibly heterogeneous, single processor systems,
even though the processors’ operating systems do not (yet) schedule by dead-
line.

Another scheduling policy based on deadlines, least laxity first, schedules
tasks according to their slack. It was shown that it is feasible for both single-
and multiprocessor systems. By the algorithm, the task with the least time
reserve is executed first; see Figure 2.11. As a consequence, its reserve is main-
tained (accumulated execution time and the distance to the deadline are both
running at the same speed), but the reserves of other, waiting tasks vanish.
Thus, the reserve of one or more tasks being the next smallest reserve eventu-
ally reaches the executing task’s reserve. From this moment on, the processor
must be shared among the two or more tasks in round-robin fashion. Now,
their reserves are not maintained anymore, since their execution is shared,
but they expire more slowly than the ready tasks not executing. Sooner or
later, the reserves of other waiting tasks will reach theirs, so that these tasks
also join the pool for switched execution. Obviously, the overhead for context-

2.2 Scheduling and Schedulability 41

switching caused in this way is high and usually unacceptable. For that reason,
the least laxity first algorithm is mainly of theoretical interest only.

arrival exec. time due after

Task 3 6 2 6
Task 2 2 4 10
Task 1 1 4 12

task1

task3

task2

1 2 3 6 74 5 8 9 10 13 1411 12

8 8 7 6 5.5 5 4 3.5 3 2 2

6 6 6 5.5 5 4 3.5 2.5 2

4 4 3 2.5 2

remaining slack
preemption

Fig. 2.11. An example of least laxity first scheduling

In contrast to least laxity first, the earliest deadline first algorithm does not
require context-switches unless a new task with an earlier deadline arrives or
an executing task terminates. In fact, if the number of pre-emptions enforced
by a scheduling procedure is considered as a selection criterion, the earliest
deadline first algorithm is the optimum one. Even when tasks arrive dynami-
cally, this policy maintains its properties and generates optimum pre-emptive
schedules [74].

This scheduling strategy establishes the direction in which an appropriate
architecture should be developed. The objective ought to be to maintain, as
much as possible, a strictly sequential execution of task sets. The processor(s)
need(s) to be relieved of frequent interruptions caused by external and inter-
nal events in the sequential program flow. These interruptions are counter-
productive in the sense that they seldom result in immediate (re-) activation
of tasks.

2.2.3 Sufficient Condition for Feasible Schedulability Under
Earliest Deadline First

When deadlines and processing requirements of tasks are available a priori ,
the earliest deadline first algorithm schedules the ready tasks by their dead-
lines. For any time t, 0 ≤ t < ∞, and any task T ∈ F(t) with deadline tz > t,
from the set of ready tasks F(t) with n elements, let

a(t) = tz − t be its response time,
l(t) the (residual) execution time required before completion, and
s(t) = a(t) − l(t) its laxity (slack-time, margin, time reserve).

42 2 Multitasking

Then, necessary and sufficient conditions that the task set F(t), indexed ac-
cording to increasing response times of its n elements, can be carried through
meeting all deadlines for single processor systems, are

ak ≥
k∑

i=1

li, k = 1, ..., n (2.3)

This necessary and sufficient condition determines whether a task set given
at a certain instant can be executed within its specified deadlines. In words,
it reads

If it holds for each task that its response time (the time until its due
date) is greater then, or equal to, the sum of its (residual) execution
time and the execution times of all tasks scheduled to be run before it,
the schedule is feasible.

In the ideal case, the earliest deadline first method guarantees one-at-a-time
scheduling of tasks, modulo new task arrivals. Thus, unproductive context-
switches are eliminated. Furthermore, and even more importantly, resource
access conflicts and many concurrency problems among the competing tasks,
such as deadlocks, do not occur and, hence, do not need to be handled. Unfor-
tunately, such an ideal case is by its very nature unrealistic. In the following,
more realistic conditions will be considered.

Earliest Deadline First Scheduling under Resource Constraints and Feasible
Schedulability Conditions

The above considerations have revealed that the earliest deadline first algo-
rithm is the best choice for use in a general multitasking environment, provided
that the tasks are pre-emptable at any arbitrary point in time. Unfortunately,
this pre-condition is not very realistic, since it is only fulfilled by pure comput-
ing tasks fully independent of one another. In general, however, tasks have re-
source requirements and, therefore, execute critical regions to lock peripherals
and other resources for exclusive and uninterrupted access. Hence, the elabo-
ration of a task consists of phases of unrestricted pre-emptability alternating
with critical regions. While a task may be pre-empted in a critical region, the
pre-emption may cause a number of problems and additional overheads, such
as the possibility of deadlocks or the necessity for a further context-switch,
when the pre-empting task tries to gain access to a locked resource. Therefore,
to accommodate resource constraints, the earliest deadline first discipline is
modified as follows:

Schedule tasks earliest deadline first, unless this calls for pre-emption
of a task executing in a critical region. (In this case, wait until the
task execution leaves the critical region.)

Note that task precedence relations do not need to be addressed here, since
the task set in consideration consists of ready tasks only, i.e., the set consists

2.2 Scheduling and Schedulability 43

of tasks whose activation conditions are fulfilled (and, thus, their predecessors
have already terminated).

If all tasks competing for the allocation of the processor are pre-emptable,
then the entire set is executed sequentially and earliest deadline first. There-
fore, the (partial) non-pre-emptability of certain tasks can only cause a prob-
lem if a newly arrived task’s deadline is shorter than that of the task running,
which is at that same time executing in a critical region. Hence, all tasks with
deadlines closer than that of the executing task, including the newly arrived
one, have to wait for some time d, before the running task can be pre-empted.
Practically it is not feasible to determine the exact value of d. The most ap-
propriate upper bound for d is given by the maximum of the lengths of all
non-pre-emptive regions of all tasks in a certain application, since this is the
most general expression fully independent on the actual time and the amount
of resource contention. With this, a sufficient condition, that allows one to
determine a task set’s feasible schedulability at any arbitrary time instant
under the above algorithm, reads as follows:

If a newly arrived task has an earlier deadline than the executing one,
which is just within a critical region, the schedule according to the
above algorithm is feasible if:
(a) all tasks, which should precede the running one (Tj) according
to the earliest deadline first policy, have their response times greater
than, or equal to, the sums of (1) their execution times, (2) those of
all tasks in the schedule before them, and (3) d, the time required to
leave the critical region,

ai(t) ≥ d +
i∑

k=1

lk(t), i = 1, ..., j − 1 (2.4)

and

(b) all other tasks have their response times greater than, or equal to,
the sum of their (residual) execution times and the execution times of
all tasks scheduled to be run before them:

ai(t) ≥
i∑

k=1

lk(t), i = j, ..., n (2.5)

We observe that, if there are no critical regions, this condition reduces to the
one holding for feasible schedulability under no resource constraints. When
running tasks may not be pre-empted at all, a newly arrived task with an
earlier deadline has to wait until the running task terminates. A sufficient
condition for feasibly scheduling non-pre-emptive tasks follows as an easy
corollary from the result mentioned above.

This modified earliest deadline first policy offers a practical way to sched-
ule tasks predictably in the presence of resource constraints. The policy main-
tains most of the advantageous properties as listed in Section 2.2.4. In fact, the

44 2 Multitasking

only property no longer exhibited is the attainability of maximum processor
utilisation because of the pessimistic prediction of the delay in pre-empting
the executing task. From the point of view of classical computer performance
theory, this may be considered a serious drawback. For embedded real-time
systems, however, it is not so relevant whether processor utilisation is opti-
mum, as costs have to be seen in the framework of the controlled external
process, and with regard to the latter’s safety requirements. Taking the costs
of a technical process and the possible damage into account which a processor
overload may cause, the cost of a processor is of less importance. Moreover,
while industrial production cost in general increases with time, the cost of
computer hardware decreases. Hence, processor utilisation is not a suitable
design criterion for embedded real-time systems. Lower processor utilisation
is, thus, a small price to be paid for the simplicity and the other advanta-
geous properties of the scheduling method presented here, which yields high
dependability and predictability of system behaviour.

Avoiding Context-Switches Without Violating Feasible Schedulability

So far we have neglected the overhead costs due to context-switching. Now we
demonstrate how some of the context-switches can be avoided, and how the
cost of the remaining switches can be taken into account. Let us assume that
the time required to prepare a task’s execution and to load its initial context
into the processor registers as well as to remove the task from the processor
after the task has terminated normally is already included in the maximum
execution time specified for the task. This assumption is realistic, since these
context-changes have to be carried out under any circumstances and are not
caused by pre-emptions. Thus, we only have to account for the time required
for a pre-emptive switch. Without loss of generality, we further assume that
this time is the same for all tasks, and denote it by u, and that to either save
or restore a task takes u/2.

The following modified form of the earliest deadline first task scheduling
algorithm not only takes resource constraints into account, but also avoids
superfluous pre-emptions:

Always assign the ready task with the earliest deadline to the proces-
sor, unless new tasks with earlier deadlines than the deadline of the
currently running task arrive. If the laxities of the newly arrived tasks
allow for feasible non-pre-emptive scheduling, then continue executing
the running task. Otherwise, pre-empt the task as soon as its critical
region permits, and allocate the processor to the task with the earliest
deadline.

Let us examine what occurs, when a pre-emption is required:

If a newly arrived task has an earlier deadline than the executing one,
which is just within a critical region, the schedule according to the
above algorithm is feasible, if:

2.2 Scheduling and Schedulability 45

(a) all tasks, which should precede the running one according to the
earliest deadline first policy, have their response times greater than, or
equal to, the sums of (1) their execution times, (2) those of all tasks
in the schedule before them, (3) the time d required to leave the critical
region, and (4) a half of the switching time u/2,

ai(t) ≥ d + u/2 +
i∑

k=1

lk(t), i = 1, ..., j − 1 (2.6)

and

(b) all other tasks have their response times greater than, or equal to,
the sum of their (residual) execution times, the execution times of all
tasks scheduled to be run before them, and the full switching time u:

ai(t) ≥ u +
i∑

k=1

lk(t), i = j, ..., n (2.7)

Note that only the status-saving part of the context-switch needs to be consid-
ered in the feasibility check of tasks scheduled to be run before the pre-empted
one, since they already contain their start-up time. For all other tasks, the
total context-switching time u has to be taken into account. If there is no
pre-emption, the feasibility check for non-pre-emptable scheduling applies.

2.2.4 Implications of Employing Earliest Deadline First Scheduling

To summarise, earliest deadline first task scheduling on a single processor
system has the following advantages:

• Scheduling on the basis of task deadlines is problem-oriented,
• It allows one to formulate tasks and to extend and modify existing software

without the knowledge of the global task system,
• All tasks can be treated by a common scheduling strategy, regardless of

whether they are sporadically or periodically activated, or have any prece-
dence relations,

• Feasibility,
• Upon a dynamic arrival of a ready task, the task’s response time can be

guaranteed (or a future overload can be detected),
• The cost of running the algorithm is almost negligible (its complexity is

linear in the number of tasks in the ready queue),
• Ease of implementation,
• The cost of checking a task set’s feasible schedulability is almost negligible

(again, linear in the number of tasks in the ready queue), and the check
itself is trivial, i.e., the operating system is enabled to supervise if the
fundamental timeliness condition is met,

46 2 Multitasking

• Facilitation of early overload detection and handling by dynamic load
adaptation, thus allowing system performance to degrade gracefully,

• Achieving the minimum number of task pre-emptions required to execute
a feasible schedule,

• Achieving maximum processor utilisation while maintaining feasible schedu-
lability of a task set,

• It is essentially non-pre-emptive, i.e., task pre-emptions may only be
caused when dormant tasks are activated or suspended ones are resumed,

• The sequence of task executions is determined at the instants of task
(re-) activations and remains constant afterwards, i.e., when a new task
turns ready, the order among the others remains constant,

• The order of task processing is essentially sequential,
• Resource access conflicts and deadlocks are inherently prevented,
• Unproductive overhead is inherently minimised,
• The priority inversion problem, which has received much attention, does

not arise at all, and
• Pre-emptable and (partially) non-pre-emptable tasks can be scheduled in

a common way.

Apart from these implications, there is another important one to be consid-
ered here: earliest deadline first scheduling directly supports reconfiguration
of a system as an adequate measure of fault tolerance. If any change to the
tasks occurs (either graceful degradation and thus smaller execution time, or
complete omission in order to provide more time to other ones), no additional
change other than the tasks’ parameters is necessary. The scheduling system
automatically adapts to the new situation.

2.2.5 Rate Monotonic vs Earliest Deadline First Scheduling

In this section, the two most appreciated scheduling policies, viz., rate-
monotonic and the earliest deadline first, are compared. Although the ear-
liest deadline first algorithm has various interesting advantages compared to
rate-monotonic scheduling, the latter is applied more often in practice. The
comparison provided in this section shows that merely implementation aspects
are in favour of the rate-monotonic approach in all other aspects earliest dead-
line first provides better or at least equal performance. A considerable fraction
of the facts listed below are taken from [12], where the interested reader can
find further details.

Implementation Complexity

A common misconception is that rate-monotonic scheduling causes far less
implementation complexity than earliest deadline first scheduling. Both algo-
rithms require one to administrate a list of activated tasks. A rate-monotonic
scheduler selects the activated task with the highest priority, whereas the
earliest deadline first policy requires one to look for the task with the closest

2.2 Scheduling and Schedulability 47

absolute deadline. The computational effort to order the list of activated tasks
by priorities or by absolute deadlines differs only insignificantly, due to the
higher word length required for time values. Only the fact that the earliest
deadline first algorithm computes a new absolute deadline at each task activa-
tion causes an observable difference in computing complexity. This, however,
can be neglected as long as the time values are handled as binary numbers and
not in a representation conforming to Universal Time Co-ordinated (UTC).
Since most real-time operating systems are based on priority-based schedul-
ing, the earliest deadline first algorithm is sometimes implemented by map-
ping deadlines to priorities. However, this workaround implementing earliest
deadline first is neither easy nor efficient.

Runtime Overhead

The slightly higher implementation complexity of the earliest deadline first
algorithm results in a little greater need for execution time of the operat-
ing system kernel functions. Nevertheless, this algorithm causes less runtime
overhead. This is because the average number of pre-emptions is significantly
higher for rate-monotonic than for earliest deadline first scheduling. Hence,
the runtime overhead due to context-switching is considerably higher. Fig-
ure 2.12 exemplifies how rate-monotonic scheduling leads to unnecessary task
pre-emptions. The simulation results presented in [12] show that the ratio
of the average number of pre-emptions induced by rate-monotonic schedul-
ing to those induced by earliest deadline first scheduling is higher the higher
the number of tasks or the system load. This reflects the fact that a higher
number of tasks as well as longer execution times increase the chance that a
higher-priority task is activated during a task’s execution.

T
1

T
1

T
2a

T
2a

(2,10,10)

(2,10,10)

(9,13,13)

(9,13,13)

RM:

EDF:

t

t

t

t

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

Fig. 2.12. Scenario in which rate-monotonic scheduling induces dispensable task
pre-emptions compared to earliest deadline first scheduling. Succeeding instances of
the tasks are displayed in different colours

48 2 Multitasking

Schedulability

The computational effort to check feasibility depends strongly on the tem-
poral characteristics of the task set analysed, i.e., the application software.
All schedulability conditions presented in the previous sections for both rate-
monotonic and deadline-driven scheduling are based on the assumption that
tasks are pre-emptable at any point of execution. Under this assumption, the
optimality theorem of Dertouzos [26] applies:

The earliest deadline first algorithm is optimum in the sense that, if
there exists any algorithm that can build a valid (feasible) schedule
on a single processor, then the earliest deadline first algorithm also
builds a valid (feasible) schedule.

According to that, a task set proven feasible under rate-monotonic scheduling
is also feasible under earliest deadline first scheduling. This, however, does not
hold the other way. Figure 2.13 illustrates the higher schedulability bound of
earliest deadline first scheduling for an example.

T
1

T
1

T
2b

T
2b

(2,10,10)

(2,10,10)

(10,13,13)

(10,13,13)

RM:

Deadline miss!

EDF:

t

t

t

t

Deadline miss!

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

Fig. 2.13. Scenario in which the earliest deadline first algorithm creates a feasible
schedule, but the rate-monotonic algorithm does not. Succeeding instances of the
tasks are displayed in different colours

If tasks contain non-interruptible program parts, the computational com-
plexity of both scheduling algorithms increases significantly. Most methods
proposed in the literature compensate for this by adding a delay to each task’s
execution time. This delay results from the duration of the non-interruptible
program segments of all other tasks that can fall within a task’s execution. In
rate-monotonic scheduling, a task can only be delayed by a task with a lower
priority if this lower-priority task is running and in a critical section at the
activation instant. Hence, the approach of assuming a delay is less pessimistic
for tasks with high priorities. On the other hand, tasks with long periods are
pre-empted more often in rate-monotonic scheduling than in earliest dead-
line first scheduling. This causes more pessimistic delay assumptions for tasks

2.2 Scheduling and Schedulability 49

with lower priorities. The characteristics of earliest deadline first scheduling
can also be used to obtain more precise delay assumptions.

In summary, the feasibility analysis of task sets with critical sections has
different characteristics for the two scheduling policies. Earliest deadline first
has the higher schedulability bound in general, but the specific characteris-
tics of rate-monotonic scheduling might be beneficial to analyse feasibility in
certain applications.

Resource Sharing

Mutually exclusive access to shared resources requires one to take the priority
inversion phenomenon into account and to apply mechanisms that exclude
deadlocks. Although most concurrency control protocols, like, e.g., the Prior-
ity Inheritance Protocol (PIP) and the Priority Ceiling Protocol (PCP) [100],
were originally devised to solve this problem under rate-monotonic schedul-
ing, their underlying principles are applicable to both scheduling algorithms
[106].

Overload Behaviour

Under rate-monotonic scheduling a permanent overload causes complete
blocking of low-priority tasks, whereas in case of earliest deadline first schedul-
ing tasks behave as they were activated at a lower rate [12]. Both characteris-
tics can be useful in certain applications. Rate-monotonic scheduling has the
advantage that an overrun of a task cannot cause tasks with higher priorities
to miss their deadlines, while an overrun under earliest deadline first schedul-
ing can affect all tasks. Since the temporal behaviour changes significantly in
overload situations, however, highly safety-critical applications require one to
exclude them by design. The acceptance of overload situations would unnec-
essarily increase the effort for proving safety dramatically, since all possible
overload scenarios would have to be analysed.

Jitter and Latency

The absolute response jitter, i.e., the difference between the actual maximum
and minimum response time of a task, is an important measure of real-time
performance. Since high jitter can cause instability of control loops, low jit-
ter is desirable. Rate-monotonic and earliest deadline first scheduling have
different jitter characteristics. As the simulation results in [12] show, the rate-
monotonic algorithm realises low jitter for high-priority tasks at the price
of high jitter for low-priority tasks. Earliest deadline first scheduling treats
tasks more evenly. Compared to rate-monotonic scheduling, tasks with short
periods have slightly higher jitter, but tasks with long periods have consid-
erably smaller jitter. Earliest deadline first scheduling can also provide very
low jitter for certain tasks if the results of a task are output by a separate
output task with a very short relative deadline. Since this constrains feasibil-
ity, the small jitter of that particular task must be realised at the expense for

50 2 Multitasking

longer relative deadlines of the former tasks — just like under rate-monotonic
scheduling. Hence, rate-monotonic scheduling does not clearly outperform the
earliest deadline first algorithm in terms of jitter.

Input-output latency is another measure of real-time performance, that is
important, e.g., in terms of control stability. Cervin proved that input-output
latency under earliest deadline first scheduling is always less than or equal to
that of rate-monotonic scheduling [13].

Summary of the Comparison

The argument that rate-monotonic scheduling causes less implementation
complexity holds for work-around implementations on top of priority-based
real-time operating systems, only. Rate-monotonic scheduling provides the ad-
vantages of timely execution in overload situations and less jitter just for high-
priority tasks, whereas earliest deadline first scheduling treats all tasks evenly.
The major advantage of earliest deadline first scheduling is its higher schedu-
lability bound. This enables higher exploitation of the computing capacity and
more efficient implementation of periodic or aperiodic servers. Since most re-
source reservation strategies are based on mechanisms similar to these servers,
they also provide better performance under earliest deadline first scheduling
[12].

2.3 Synchronisation Between Tasks

A task being executed may require certain resources that can be available
or not. Further, there may be precedence relations among tasks that require
a task’s execution to be postponed to the time when these conditions are
fulfilled. The mechanism allowing for these and further related features is
synchronisation.

It may be noted at the beginning that in some cases, e.g., providing for
mutual exclusion of tasks, synchronisation problems arise as soon as dynamic
and asynchronous pre-emptive tasking is involved. If systems can be imple-
mented in a static manner, e.g., using the cyclic executive approach, or can be
statically scheduled in any other way, no synchronisation problems can arise.
Even in the case of dynamic scheduling, by selecting an appropriate scheduling
paradigm (e.g., earliest deadline first), and by renouncing pre-emptions, tasks
are not forced to check out at arbitrary instants. Thus, the critical sections
are always executed in a non-interruptible way and there is no need for other
mechanisms providing for that.

Unfortunately, this is not always possible; as a rule, dynamic asynchronous
systems require pre-emptions to guarantee asserted response times of sporad-
ically appearing tasks and, thus, some sort of synchronisation mechanisms are
also needed for mutual exclusion and similar features.

As can be seen in the task state transition scheme in Figure 2.3, the exe-
cuting task is suspended from the “running” state into a state where it waits

2.3 Synchronisation Between Tasks 51

for resumption. On any state change of synchronisation primitives a mecha-
nism is checking whether a task from the “suspended” state can be resumed
and, in this case, carries out the state change.

When in the states “suspended”, “ready”, or “running”, tasks have al-
ready been activated and their response times a(t) are running out. There is,
however, a difference between the “suspended” and the other two states: as
in the cases of feasible scheduling policies the scheduler is keeping track that
deadlines are met; it cannot control the waiting of tasks in the “suspended”
state until they are resumed to the “ready” state. Meanwhile, deadlines may
already have passed, or laxities s(t) may have become smaller than remaining
execution times l(t), which means that deadlines will be missed.

It is a severe problem that waiting in the “suspended” state is non-
deterministic and non-predictable. For this reason, and to allow one to meet
suspended tasks’ deadlines, it is necessary to bound the waiting time in this
state: after a task has waited for a certain predefined time, it is released from
the waiting state and a predefined action is taken to resolve the situation. In
the worst case, the task has failed and is aborted to the state “dormant”.

Mutual Exclusion

When different tasks require access to the same resources (peripherals, com-
mon variables, etc.), a mechanism must be employed to prevent simultaneous
actions resulting in erroneous states of the shared resources. A critical section
is part of a task’s program for which the task requires exclusive access to a

shared resource. The mechanism preventing other tasks from simultaneously
accessing it is mutual exclusion.

A typical example is a test-and-set operation on a flag: with its first in-
struction the state of a Boolean variable is read, with the second one tested,
and with the third one set, if the test yielded that the flag marks free. Clearly,
if two tasks would execute the same instructions simultaneously, they would
both find the flag signaling free and would set it.

Fully consistent methods to implement mutual exclusion are based on
hardware. In Motorola’s 68K microprocessor family, for instance, the instruc-
tion Test And Set (TAS) performs this action in a non-interruptible manner.
Hence, double access is physically prevented. If this is not possible, mutual ex-
clusion must be implemented with programmed synchronisation mechanisms.
There is a number of them which are more or less suitable for application
in embedded real-time systems. A competent and in-depth description can
be found in [6]. Below, some of the most common concepts based on shared
variables will be sketched briefly.

2.3.1 Busy Waiting

The simplest synchronisation mechanism consists of waiting in an idle loop
while the condition for entering a critical section is not fulfilled. This procedure

52 2 Multitasking

is also called “spinning” and the flag variable “spin lock”. Before entering a
critical section, a task tests whether a flag (initially set to “free”) indicates
that no other task is in its critical section. If yes, it locks the flag and enters.
If not, it waits until some other task unlocks it.

If there are two tasks, each with a critical section, two flags are needed
in order to avoid simultaneity problems: before entering its critical section,
each task first sets its own flag to indicate its intention and then checks the
other task’s flag. If the latter does not indicate free, the task spins in a loop;
otherwise the task enters its critical section and sets its own flag to free on
exiting; see Figure 2.14.

Task1: Task2:

flag1:=locked; flag2:=locked;

while flag2=locked do while flag1=locked do

nothing nothing

end do; end do;

run critical section; run critical section;

flag1:=free; flag2:=free;

... ...

Fig. 2.14. Busy waiting, first example

An alternative procedure is first to check the other task’s flag and even-
tually wait and then to seize its own when entering the critical section; see
Figure 2.15.

Task1: Task2:

while flag2=locked do while flag1=locked do

nothing nothing

end do; end do;

flag1:=locked; flag2:=locked;

run critical section; run critical section;

flag1:=free; flag2:=free;

... ...

Fig. 2.15. Busy waiting, second example

Busy waiting is inefficient, since during waiting the processor is occupied by
running a useless loop. Also, it is prone to livelock : let us consider a situation
in Figure 2.14 when a task sets its flag, then unsuccessfully checks the other
task’s flag, and goes into a waiting loop. The other task does exactly the same
at the same moment; thus, both tasks wait running in idle loops. Further, since
the mechanism is performed by the tasks themselves, it may be pre-empted
during its execution. Such a situation may, for example, happen in the second

2.3 Synchronisation Between Tasks 53

solution of Figure 2.15, when both flags indicate free in the beginning. The
first task checks the flag, is pre-empted, then the second one does the same,
and is pre-empted too. Now the first task locks the flag and enters the critical
region, is pre-empted, and now the second task does exactly the same. Thus,
they are both in the critical sections.

2.3.2 Semaphores

Semaphores, introduced by Dijkstra, are implemented by two procedures, P
and V; for clarity, however, we shall use the alternative names:

WAIT(S) : if S > 0 then S = S − 1 else suspend the running task;

SIGNAL(S) : if no task is suspended on S then S = S +1 else resume
one task.

Generally, a semaphore is a non-negative integer value. In this case it is called
counting semaphore. If the values are 0 and 1 only, it is known as binary
semaphore.

wait(S)

print message

signal(S)

task 1

wait(S)

print report

signal(S)

task 2

. . .

initial value S=1

wait(S)

print report

signal(S)

task n

Fig. 2.16. Printer server, first example

Mutual exclusion is achieved if each task performs WAIT(S) before enter-
ing its critical section, and SIGNAL(S) on leaving it. The initial value of the
semaphore S is 1. The first task which succeeds in seizing the semaphore wins,
the other(s) have to wait. If there are more resources available, S is initialised
by their number. Tasks each obtain an instance of the resource, until there
are none left. An example of a printer server is shown in Figure 2.16. If more
printers are in a system, S can be initialised by n; the printer driver then as-
signs printing jobs to different printers as long as they are available. Another
possibility to implement a printer server is shown in Figure 2.17.

If the procedures WAIT and SIGNAL are executed without being inter-
rupted, there can be no simultaneity problems accessing synchronisers. In
other words, tasks that execute the two procedures may not be pre-empted.

Employing semaphores there is the danger of causing deadlocks. Let us
assume that a task A is waiting for S1 before it can release (signal) S2. Task B,

54 2 Multitasking

calculation

put message

signal(S)

task 1

wait(S)

get message

print message

printer server

initial value S=0

buffer

calculation

put message

signal(S)

task 2

Fig. 2.17. Printer server, second example

on the other hand, is waiting for S2, which prevents it from releasing S1. The
situation is known as deadlock, since none of the tasks involved can proceed
and both are, thus, stuck indefinitely long in this situation. Another danger
is starvation. Due to an unfortunate sequence it may happen that a task can
never gain access to the semaphore, or may wait for it non-predictably and
unacceptably long.

2.3.3 Bolts

An interesting generalisation of semaphores are bolts. They were introduced in
the process automation programming language PEARL [29], and are useful
for situations when some tasks only wish to read resources (e.g., common
variables or peripherals) whereas the others need to change their states. Thus,
the reading tasks could be allowed shared access, but only if the states are
not changed at the same time by the writing tasks. The latter, naturally, need
exclusive access to the shared resources.

Bolts may acquire the values “locked” (bolt = −1), “free” (or lockable,
bolt = 0), or “shared” (or non-lockable, 0 < bolt < range). There are four
operations on a bolt:

RESERVE: if the state of the bolt is “free” (lockable), it is locked; if not, the
executing task is suspended in a RESERVE queue.

FREE: the bolt becomes “free”. If there are any tasks waiting in its RE-
SERVE queue, they are put to the ready state and the one with the
highest priority locks the bolt. If the RESERVE queue is empty, tasks
from the ENTER queue are released.

2.3 Synchronisation Between Tasks 55

ENTER: if the bolt is locked or there are tasks in the RESERVE queue, the
executing task is suspended in the ENTER queue. If not, the task puts
the bolt in the “shared” state (if it is not already) by incrementing its
value.

LEAVE: the value of the bolt is decremented. If it reaches 0 (the task was
the only one in the shared critical section), the bolt becomes “free” and
the tasks in the RESERVE queue are released, if any.

2.3.4 Monitors

A monitor is a structured synchronisation construct with a higher level of ab-
straction that is supported by programming languages rather than operating
systems. It has been introduced by Hoare in 1974. His purpose was to relieve
programmers from explicit handling of semaphores, which is not easily under-
stood and error-prone if, e.g., any of the semaphore operations is omitted or
mistaken. Being a structured construct, that cannot happen with monitors.
There are two basic ideas monitors are built on:

• Monolithic monitors centralise critical functions; they run in an un-
interruptible mode, can access protected memory areas, and execute priv-
ileged instructions;

• They structure the critical synchronisation functions and put them under
system supervision.

Monitors encapsulate shared data with procedures that incorporate the crit-
ical sections. Their execution cannot be pre-empted. A monitor has a single
lock, and a task that wants to execute monitor functions must acquire it ex-
clusively; it is then called active task. That is the only task that can activate
the monitor’s functions.

In a monitor there is any number of event- or condition variables queues.
A condition variable is not actually a variable, but a condition that is handled
with two monitor methods associated with that queue, typically called wait
and signal. In these queues tasks wait for certain conditions (e.g., availability
of a resource) to be fulfilled. An active task may release the monitor lock and
enter a queue by executing the corresponding wait command. Different to
semaphores, the monitor wait always blocks the executing task. It may also
unblock a task that is waiting in a queue by sending a signal to that queue.
If no task is waiting in this queue, the signal has no effect. To enable these
actions, there are three further types of queues in a monitor; see Figure 2.18:

• Entry queue: when a task attempts to enter the monitor (to access a
monitor method), it is put into this queue;

• Signaler queue: when a task performs a signal method, it is placed into
this queue;

• Ready queue: a task is put into this queue, when it is removed from one
of the condition variable queues.

56 2 Multitasking

The entry, signaler, and ready queues are called monitor queues ; tasks are
waiting in these queues to become active, i.e., to acquire the monitor lock.
The functions and priorities of the monitor queues define the nature of a
monitor. They are not all necessary, e.g., the signaler queue can be replaced
by a certain behaviour of a signaling task, viz., by immediately leaving the
monitor.

w
ai

t(i
)

si
gn

al
(i)

exit

ready
 queue

signaller
queue

en
try

qu
eu

e

conditional
variables

queues

active task
blocked task

Fig. 2.18. Queues within a monitor

2.3.5 Rendezvous

Semaphores and monitors have the drawback of being centralised solutions:
first, this presents a central point of failure and, second, embedded systems
are by their nature becoming more and more distributed. In such systems,
message-based synchronisation mechanisms are preferable. In multitasking
environments, executing tasks run asynchronously. However, tasks may check
certain conditions and, when fulfilled, decide whether to continue code exe-
cution or to wait further. Such conditions can be message arrivals from other
tasks.

The idea of message-based synchronisation is that a task arriving at a
certain place in a program first, sends a message to its partners and waits.
This is called a rendezvous, was proposed by Hoare, and implemented in the
language Ada. Its procedure is the following: a task Q is providing a shared
resource to tasks Pi. When, e.g., the task P1 arrives to a place where this
resource is needed, it waits until the task Q arrives to the place where it can
offer the service. Then the part of Q is executed, and the tasks continue their
execution separately. If the task Q arrives at the rendezvous first, it waits
until one of the tasks Pi requires the service. The basic properties of this
synchronisation concept are that waiting of the two tasks is symmetrical, that

2.3 Synchronisation Between Tasks 57

one transaction is performed during the rendezvous, that the other tasks Pi

are mutually excluded, and that the tasks communicate by messages.

...

perform (x:in, Y:out)

...

p

accept perform (x:in,Y:out) do

(rendezvous body)

end perform

Q

i
...

...

Fig. 2.19. Rendezvous operation and syntax

The concept is implemented by the accept statement which is syntactically
similar to a declaration of a procedure (see Figure 2.19); it also includes input
and output parameters. If the task Pi arrives at the place where the common
code should be executed, it waits until Q reaches the accept statement. Al-
ternatively, if Q first comes to the accept statement, it waits until one of the
tasks Pi requires it. During execution of the accept part (between do and end
in Ada) the calling task is blocked, and thus the accept acts as critical section.

In Figure 2.20 the problem of shared resources is solved using the ren-
dezvous principle. If two tasks wish to use the same resource as process out-
put, both can request it sending a message to the resource server. The message
received first allocates it to its task. The resource is freed when the rendezvous
is executed, and the two tasks that ran in common through the rendezvous
are separated again.

2.3.6 Bounding Waiting Times in Synchronisation

When a task is suspended from execution and put into a waiting queue, it
has no opportunity to follow its temporal circumstances like remaining slack
time or time to its deadline. Also, it is out of reach of the scheduler and other
operating system kernel mechanisms that could monitor the task and take
care that it meets the temporal requirements imposed on it. The situation
can become critical when a task is waiting too long for certain conditions to
allow for its resumption of execution.

Therefore, it is necessary to introduce certain mechanisms providing means
to tackle the above problem. This is much easier if the synchronisation con-
structs are structured. In this case, the time for waiting in a queue of sus-
pended tasks can be bounded to certain predefined values. If exceeded, pro-
grammed actions can be carried through, followed by certain tasking oper-
ations like termination, activation, or abort. An example of shared objects

58 2 Multitasking

calculation

UseRes(data:in)

task 1

accept UseRes(data:in) do

(using resource)

end

resource server

calculation

UseRes(data:in)

task 2

Fig. 2.20. Using rendezvous for exclusive use of an outbound resource

protected by implicit bolts is presented below. Accesses to them are enclosed
in LOCK statements. The syntax is problem-oriented and allows one to:

• Express resource requests explicitly,
• Specify limits for waiting times and alternative reactions,
• Supervise the execution times of critical regions,
• Release resources as soon as possible, and
• Implement deadlock prevention schemes.

A syntax for structured synchronisation with bounded waiting times is shown
in Figure 2.21. The statements between the PERFORM and UNLOCK clauses
represent a critical region which is managed by synchronisation objects de-
clared in the list. They are locked in an exclusive or shared manner (certain
objects may only be locked exclusively, e.g., semaphores). Pre-emption of ex-
ecution within the critical region may be prevented. To bound waiting for
synchronisers, a TIMEOUT clause may be defined. In the case of overrun,
the OUTTIME statement string is executed to deal with the unsuccessful
synchronisation. When the UNLOCK is reached, all synchronisers used are
unlocked. With the QUIT statement it is possible to leave a critical region
prematurely, unlocking all locked synchronisers. Within the region it is also
possible to unlock a certain subset of them explicitly if they are not relevant
any more.

2.3 Synchronisation Between Tasks 59

structured-synchronisation-statement::=

LOCK synchronisation-clause-list

[NONPREEMPTIVELY]

[timeout-clause] [exectime-clause]

PERFORM statement-string UNLOCK;

synchronisation-clause-list::=

synchronisation-clause {,synchronisation-clause}

synchronisation-clause::=

EXCLUSIVE(synchronisation-object-list) |

SHARED(synchronisation-object-list)

synchronisation-object-list::=

synchronisation-object {,synchronisation-object}

synchronisation-object::=

semaphore | bolt | shared-variable | ...

timeout-clause::=

TIMEOUT

{AFTER duration-expression | AT clock-expression}

OUTTIME statement-string FIN

exectime-clause::=

EXECTIMEBOUND duration-expression

quit-statement;;=

QUIT;

unlock-statement::=

UNLOCK synchronisation-object-list;

Fig. 2.21. Syntax of structured synchronisation construct

3

Hardware and System Architectures

Hardware architectures and their implementations provide the lowest level
of control system design. Regarding the microscopic predictability approach
[105], the higher layers of real-time systems are only predictable if the lower
ones are. For that reason, extreme care ought to be taken when selecting ap-
proaches, guidelines, technologies and, particularly, off-the-shelf components
in their design. The operation on the hardware layer must inherently be as
safe as possible. It is not sufficient that hardware platforms are tested after
being built; support for integrity and its validation must be considered an
important guideline in their design. In spite of that, only little research ded-
icated to apt hardware solutions for embedded real-time applications can be
found.

Generally, microprocessors and microcontrollers are becoming more and
more complex. The market ratio between general-purpose and embedded ap-
plications a decade or two ago called, at that time, for more effort in designing
the former. Thus, the main guideline in their design was to boost average per-
formance, but not to improve their worst-case behaviour, often resulting in
excessive complexity. The aim of these efforts was to achieve the best resource
utilisation in order to accelerate processing in a carefully assessed most prob-
able situation. The resulting processor complexity is unfortunate for the use
of such microprocessors in embedded real-time applications. It renders almost
impossible the assessment of the execution times for even the most simple sets
of instructions, not to speak of verifying their correctness.

Today, in contrast, processor utilisation is an anachronism that should not
be an issue any more at the current state of technology and well advanced
techniques of distributed processing. Moreover, the ratio between embedded
and desktop applications has turned around. For the year 2003 the following
information could be found:

“In 2003, about 44 billion US$ worth of microprocessors were man-
ufactured and sold. Although about half of that money was spent on
CPUs used in desktop or laptop personal computers, those count for

62 3 Undesirable Properties of Conventional Hardware Architectures

only about 0.2% of all CPUs sold. The body count is dominated by
8-bit processors, followed by 16-bit and then 4-bit chips.
Source: World Semiconductor Trade Statistics Blue book, 2003.

In spite of the fact that this information is rather old and already outdated,
it is realistic to presume that since then the situation has only become even
more biased. In 2005, e.g., only 2% of the money spent on microprocessors
went to Pentium (Jim Turley, Silicon Insider, 2006.)

Considering this background, it is surprising that so little effort is devoted
to the development of novel processor architectures explicitly dedicated to
embedded applications. According to Moore’s law – doubling the number of
on-chip transistors every 18 months – we are getting enormous processing
power which is now difficult to deploy. Instead of investing it in the overhead
of sophisticated systems for enhancing its utilisation, at least in the case of
processors for embedded applications, it should be used in a different way.

Following the pattern discussed in the section on general guidelines, the
most important one is simplicity. It is impossible to ensure behavioral pre-
dictability of hardware if, e.g., it employs a complicated pipeline managed
by sophisticated speculative algorithms. Technological advances, on the other
hand, allow for immense processing power without resorting to such features,
freeing chip space to be used for application-oriented on-chip resources.

In the sequel, the undesirable properties found in conventional architec-
tures will be pointed out. Further, a non-orthodox processor architecture will
be outlined, which is able to cope with non-deterministic occurrences of events.
Finally, an experimental implementation of it will be sketched.

3.1 Undesirable Properties of Conventional Hardware
Architectures and Implementations

In hardware architecture design, an unfortunate situation can be observed:
although technological advances offer immense possibilities for design and im-
plementation of processor architectures suitable for embedded real-time appli-
cations, the processors produced are mainly designed with universal comput-
ing in mind. Except for simple microcontrollers with low performance and only
basic features, modern processors exhibit serious drawbacks when employed
in embedded real-time applications. The main reason for the poor suitabil-
ity of current microprocessors for real-time processing is the mismatch of the
global objectives in the design of universal processors and those dedicated to
real-time applications.

Besides technological advances, architectural means have always been em-
ployed to increase the performance of microprocessors. Examples are pipelin-
ing, caching, or virtual addressing. Virtually all of these measures try to op-
timise the behaviour of processors and computers in the most common sit-
uations of computational processing. Embedded computer systems, however,

operate in real-time mode. Most often, its requirements are demanding, and
it is of utmost importance that tasks are completed within the requested time
frames, implying consideration of worst-case behaviour in contrast to average-
case behaviour. This is the main mismatch in the design requirements holding
for generic devices on one hand and created by real-time environments on
the other. No high performance processor enables the exact calculation of a
program’s execution time even at the machine code level, as is possible for
the 8-bit microprocessors developed the 1970s.

For that reason, we are forced to attempt other approaches to obtain
worst-case execution times in absolute units. Some of them will be presented
in Section 4.2. In the immediately following sections, certain measures to
improve average performance of computer systems will be dealt with. It will
be shown how they influence temporal behaviour and predictability of task
execution.

3.1.1 Processor Architectures

The increase in microprocessor performance was, to a great extent, influenced
by novel ideas employed in architectural design. These ideas were the RISC
philosophy, parallel processing (pipelining), and caching. Measures related to
the RISC idea also appear to be very useful for architectures employed in hard
real-time systems, because of the simplicity and verifiability rendered. The ab-
sence of a microprogrammed control unit promises simpler, more transparent
instructions and corresponding execution. However, in conjunction with other
measures introduced at the same time, the RISC philosophy did not do much
for worst-case run-time estimation.

Two further performance enhancing features are a high degree of inter-
nal parallelism in the execution of instructions, including the pipelining con-
cept, and caching. Should new processors explicitly dedicated to embedded
real-time applications be designed, these features ought to be used only with
extreme precaution — if at all.

Independent Parallel Operation of Internal Components and Pipelining

In order to exploit fully inherent parallelism of operations, the internal units of
processors are becoming more and more autonomous, resulting in their highly
asynchronous and independent operation. There is no more microprogrammed
control unit that would sequentially invoke certain units with known response
times, as was the case for 8-bit and early 16-bit microprocessor families. It
was common to have execution times of each instruction, or at least minimum
and maximum figures, listed in manuals. This is no longer possible, since
the execution times mainly depend on the sequence of instructions within a
program. Moreover, to utilise the parallelism of internal processing units, the
programs are analysed and instructions are executed out of order, utilising
certain heuristics and speculations.

3.1 Undesirable Properties of Conventional Hardware Architectures 63

64 3 Undesirable Properties of Conventional Hardware Architectures

By this approach, the average performance of processors is increased. How-
ever, the complex task remains to analyse corresponding sequences of ma-
chine code instructions in order to determine their execution times, especially
bearing in mind that the microprocessor vendors do not supply explicit and
in-depth information about instruction execution. Also, for the time being,
verification of such complex processors is impossible. Thus, it is questionable
if they can be permitted to be employed in extremely critical applications.

The most common way to improve a processor’s throughput by exploiting
instruction-level parallelism is pipelining. Apart from the fact that by using a
pipeline the execution times largely depend on the sequence of instructions,
there are other effects that jeopardise the predictability of program elabo-
ration. In particular, the well-known pipeline breaking caused by run-time
decisions (conditional branching) based on sophisticated prediction methods
is difficult to be assessed in advance.

Various techniques are used to cope with the pipeline breaking problem
due to the dependence of instruction-flow control on the results generated
by previous instructions. One of the oldest and most common techniques is
the delayed branch, i.e., the instruction immediately following a conditional
branch instruction is always executed. It is a responsibility of the compiler
to place an instruction there, which needs to be executed in any case, or,
if impossible, to insert a no-operation instruction. Thus, if branches appear
frequently in a program, which is the most realistic presumption, the principle
of delayed-branch pipelining provides for predictable operation, but little gain
in performance, since a lot of idle instructions needs to be inserted.

Another measure to improve the performance of pipelines is branch pre-
diction: guessing ahead of time whether a branch instruction is going to be
successful and whether the jump will be performed or not. If the guess is cor-
rect, then the pipeline will remain intact and fully utilised. If the guess turns
out to be wrong, then some steps must be discarded and the pipeline will be
less efficient. Statistically, it is possible to predict correctly with a probability
of 90%.

There are two main approaches to branch prediction. In static branch pre-
diction, one of the alternatives is selected always to be tried first. Which
alternative that will be can be determined off-line by the compiler or directly
using some heuristics (e.g., branching backwards is more frequent in the case
of loops, thus more probable and always guessed first; as branching forward,
however, is used to leave loops, it is more probable that such jump will not
happen and, thus, the subsequent instruction is tried). This approach yields
shorter delay times if the guess is wrong. For dynamic branch prediction, a
monitor observes and compares the behaviour of branch instructions in the
past. The more frequently taken alternatives will be tried first in the future.
This solution requires additional hardware resources, and may produce longer
stalls in the pipeline if the alternative taken first is wrong. More sophisti-
cated architectures utilise higher levels of parallelism. In the case of a branch
instruction, the pipeline splits, and both the target and the next subsequent

instructions are elaborated. The pipeline of the instruction not taken is simply
discarded.

Based on detailed information about instruction execution and pipeline
prediction mechanisms which are, unfortunately, often proprietary, execution
times could be predicted by complex machine code analysers or other ap-
proaches, e.g., simulation of system behaviour. Owing to its complexity, a
processor with pipelined operation is also very difficult to verify. Thus, it
is recommendable either to prevent pipeline breaking, or to renounce fully
pipelining in the eventual design of processors dedicated to embedded real-
time applications.

Another problem, which is particularly relevant for real-time systems,
arises, when a task is pre-empted. Since one program’s execution is then dis-
continued and another one started, the pipeline is discarded, and the new
target address is fetched into the pipeline(s).

Caching

Fetching data from off-processor sources represents a traditional bottleneck,
especially in the von Neumann architecture. To copy with it, cache memories
were introduced: a copy of the data read or written over the system bus is
saved in the cache in order to have the data available when needed again in
the near future.

Caches can be used for both program code and data. If programs consist
of relatively short loops, caches yield rather good results. In the case of long
loops or longer straightforward sections of programs, however, cache data need
to be partly overwritten. That means that code will have to be re-loaded from
program memory. This similarly holds for data caches that will be overwritten
if there are a lot of data involved. Since the difference between the times to
access data in memory and in caches is significant, program execution times
thus depend greatly on whether instructions or data can be found in a cache
or not. This effect cannot be neglected in timing analysis of software running
on sophisticated target architectures. Knowing the behaviour of the compiler,
and/or the generated object code, it should be possible by a sophisticated
analyser to estimate whether data will be found in a cache or not.

Cache hits or misses depend on how programs and data are mapped to
memory. Dependencies can relate to a whole process or even several process
executions. This makes simulation or tracing particularly difficult, as users
cannot anticipate the effects of address mapping in compilers and linkers and,
therefore, cannot provide the necessary simulation patterns to test critical
cases. Even the most sophisticated analyses would fail in the case of multipro-
gramming, where caches are filled with new contents on every context-switch.
Cache misses can be reduced if future data access patterns are analysed. A
block that is found to be used again in the future should not be written back
by the cache replacement strategy. This approach, however, requires complex
data and program flow analyses of the applications.

3.1 Undesirable Properties of Conventional Hardware Architectures 65

66 3 Undesirable Properties of Conventional Hardware Architectures

Thus, to predict worst-case execution times, it is safest to take into account
the time required to fetch instructions from memory via the system bus. This
means that the effect of caches is renounced. In the design of new architectures
for embedded real-time applications it is, thus, not reasonable to employ the
cache mechanism at all.

Registers

Traditionally, processors perform operations on data in registers. Early proces-
sors only had a few registers or accumulators, some of which were dedicated to
specific operations, resulting in a lot of data moving between the registers, and
between them and memory. Later, technological advances provided enough
space for register files, i.e., larger groups of fast accessible common-purpose
registers. These could be utilised even by high-level language programming
through specific data types declarations. The use of register files is convenient
for real-time applications, since the times for data access are deterministic.
However, if an application requires more data space than available in a regis-
ter file, the latter must (at least partly) be used for temporary data storage
for processor functions, e.g., arithmetic operations.

Further, when re-entrancy is required, variables cannot be statically
mapped onto registers, but have to be kept dynamically on a stack in main
memory. Also, to achieve compatibility with previous processor versions, often
compilers may renounce the use of available register sets for direct variable
storage (unless explicitly required), and keep their variables in memory. Thus,
a lot of unproductive moving of data between registers and storage must be
performed. Although behavioural predictability (apart of the caching effects
discussed above) is not necessarily endangered, differents kinds of on-chip tem-
porary data storage should be used to present the mentioned inconveniences.

In hardware technology, there is the unfortunate situation that processor
speed increases by 60% per year, while data latency improves only by 7%.
Thus, dozens of processor cycles are needed to supply operation arguments
from memory. Expensive off-chip and on-chip static memory caches, that are
supposed to deal with this problem, have already been criticised above. On
the other hand, technological advances allow for large memories to be im-
plemented directly on processor chips. In the design of novel processors for
embedded real-time application, this possibility should be explored. It is in
line with the idea of an “Intelligent RAM” (IRAM) [90], i.e., a processor
surrounded by vast areas of on-chip DRAM where both data and program
memories could be accommodated.

When data are available on-chip in significant amounts, there are no more
delays caused by their transfer on external buses. Thus, direct access from
the processing units to the data is enabled, possibly even supported by mul-
tiple data paths for parallel access to two or more operands. As another con-
sequence, caches with their above-mentioned problems become superfluous.
Further, the number of processor pins could be drastically reduced, since only
small I/O spaces need to be addressed by a few address and data lines.

3.1.2 System Architectures

Direct Memory Access

Since general processors are ineffective in transferring blocks of data word
by word under program control, direct memory access (DMA) techniques
were designed as another measure to improve the performance of computer
systems. With respect to the delays caused by DMA transfers, there are two
general modes of DMA operation, viz., cycle stealing and burst mode. A DMA
controller operating in the cycle stealing mode is literally stealing bus cycles
from the processor. Thus, during a DMA cycle in cycle stealing mode, the
processor cannot access the bus and has to wait. An advantage of this mode
is that the processor has control over the bus (at least) every second cycle, and
can react to exceptional situations by stopping the DMA transfer if necessary.
A drawback is that bus arbitration takes its time, which means that this
overhead needs to be taken into account. In the early days of microprocessing,
cycle stealing directly speeded up operation, since data processing was the
bottleneck due to low processor performance and low clock frequencies in
comparison with the bus bandwidth. In the meantime, however, the situation
has changed: we experience immense increases in processing power, while the
data transfer over buses is more or less unchanged and essentially limited by
the laws of physics.

In burst mode, the processor is stopped completely until a DMA transfer is
completed. Although the processor has no control over its system during such
a delay, this mode appears to be more appropriate when predictability is the
main goal. If block length and data transfer initiation instant are known at
compile time, the delay can be calculated and considered in estimating a pro-
gram execution time. The same prediction would be much more complicated
for the cycle stealing mode. Furthermore, block transfer is also faster, because
bus arbitration needs to be carried out only once. However, precautions have
to be taken to enable a processor, whose operation was suspended for DMA
operation, to react in the case of catastrophic events.

Virtual Addressing

To cope with a limited amount of memory available in computer systems,
virtual addressing techniques have been developed. If there is not enough
room in main storage, blocks of the memory are kept on disk and only the
ones of actually executing programs are resident in physical memory. Once
a part is not needed any more, it is swept back to disk and replaced with
those of the newly started programs. Using this technique, data access times
are very much dependent on whether requested items are already in memory
or pages have to be loaded first. To determine this beforehand, a complex
program analyser would be necessary. Even then, restrictions would have to be
imposed. For instance, register-indirect addressing modes should only access
data in the same page, which is difficult to assure when using a high-level

3.1 Undesirable Properties of Conventional Hardware Architectures 67

68 3 Undesirable Properties of Conventional Hardware Architectures

programming language. It has to be noted, however, that due to the advances
in solid-state technology, in most cases it is easy to provide enough memory
for virtually any needs of embedded applications. Thus, it can be concluded
that virtual addressing is obsolete and should be renounced for hard real-time
applications.

Data Transfer Protocols

Data transfer also deserves some attention. In this paragraph microcomputer
buses are considered. Data transfer in local area networks will be discussed
later in Section 3.5.

As already noted, the lowest-level physical speed on computer buses is lim-
ited by physics. There are some hundred data lines running close to each other,
with signal frequencies of several hundred Megahertz and all their negative
effects such as capacitive losses, crosstalk, resonating, reflected and standing
(stationary) waves.

At higher levels, data transfer is controlled by transfer protocols, which
provide for communication and synchronisation between sender and receiver.
There are two classes of protocols, synchronous and asynchronous ones. By
synchronous protocols, all units operate with the same clock, which is also
transmitted or synchronised over the bus. In the early days of microprocessors,
this was the only feasible way due to its simplicity. Later, it was noticed that
due to very diverse operating speeds of different units on a bus, it was not
optimal and that more flexible ways of synchronisation were needed. This
was provided by asynchronous data transfer based on handshaking between a
master and slaves in communication. No common clock is needed any more,
and each unit operates at its own speed. Also, adaptation to new units in a
system is transparent. A considerable amount of time is, however, lost to the
handshaking protocol.

Later, due to technological advances, the situation changed in favour of the
synchronous protocols again: the speeds of the units became comparable.For
this reason, the more effective synchronous protocols found their way into
RISC processors.

By definition, synchronous data transfer protocols ensure predictable data
transfer times, whereas the behaviour of the asynchronous ones is very difficult
to control, especially in shared-bus systems. Thus, synchronous communica-
tion provides an easy way to guarantee realistic data transfer times. Similar
conclusions hold for local area network protocols, which should be based on
synchronous time-driven protocols.

3.2 Top-layer Architecture: An Asymmetrical Multiprocessor System 69

3.2 Top-layer Architecture: An Asymmetrical
Multiprocessor System

An important issue to be pointed out when discussing temporal behaviour of
embedded real-time systems is the use of signals from the environment and
other events that interrupt normal program flow as the method of invoking
processes that need to respond to signals from the process environment. This
approach is widely used and appreciated, since, unlike polling (interrogation
of environment variables) and busy waiting, it offers best processor utilisation
and is problem-oriented.

process environment

embedded
control
system

proc. signals

proc.
inputs

proc.
outputs

computer
peripherals

int.

Fig. 3.1. Interrupt concept

In Figure 3.1, the control application running in the control system is
interfering with the process environment through process inputs and outputs.
The data exchange is controlled by and, thus, synchronised with the program:
its duration and delays are considered in the estimation of the worst-case
execution time. On the other hand, events reported from the environment
to the control system by signals (interrupts) occur sporadically, and are not
synchronised with program execution. Usually, immediate attention of the
control system is required. This has been common practice in programming
microprocessor-based control applications. There are at least two problems
originating from this practice:

1. Interrupt servicing is an event-driven approach. Unlike the state-driven
one, there is always a danger of missing an event, if, e.g., the interrupts
are masked for some reason. If such an event changes the state of the
system, that could represent a serious error. If, on the other hand, in the
case of state observation a change is missed, this will probably be noticed
during the next poll. For detailed elaboration cf. [71].

70 3 Undesirable Properties of Conventional Hardware Architectures

2. More severe, however, is that interrupt or exception servicing necessarily
delays the execution of the running task. It is beyond the control of the
scheduler or the task itself, so it cannot be taken into account during
schedulability analysis. If the feasibility of a schedule has been proven, it
may not hold any more after a non-anticipated and non-predictable delay
due to a sporadic interrupt.

Thus, it is necessary to introduce an architectural measure in order to deal
with signals from the process environment, which request service by the con-
trol system.

In this section a possible solution will be shown, based on a distributed
asymmetrical multiprocessor architecture. The original idea was created in
the late 1980s; similar approaches can be found in a number of contributions
[47, 108, 79, 103, 22]. It is not the purpose of this section to propose an
ultimate solution to the problem of designing a consistent real-time processor
architecture, but to launch some ideas for further elaboration.

3.2.1 Concept

As is common in engineering, there are always many possible system designs
fulfilling a given set of demands — provided the problem is solvable with
available technology. To derive such an appropriate architecture, we start off
with a basic reasoning.

First, homogenous symmetric multiprocessing, where a task may be dis-
patched to run on any of the processors, is not realistic in process control.
At least in the case of front-end processors with process interfaces usually
physically wired to sensors and actuators establishing the contact to the en-
vironment, it is natural to implement either single-processor systems or ded-
icated multiprocessors acting as separate units. Further, tasks may require
specific processor features like signal processing or floating-point arithmetic
co-processing which are not always available at all processing nodes. Thus,
asymmetrical multiprocessor architectures with dedicated processors for spe-
cialised task processing are more reasonable.

The above reasoning advocates against dynamic mapping of tasks onto
more uniform processors in order to utilise better them. Scheduling of such sys-
tems would be possible (e.g., using the least laxity first strategy) but schedu-
lability analysis would be much more complex. As shown in Figures 2.10 and
2.11, the context-switching overhead is much higher than that caused by the
earliest deadline first approach; the latter, however, does not support dynamic
multiprocessor scheduling in a feasible way. If, however, certain tasks do not
require any specific processing or other facilities, their ability to be statically
re-mapped onto different processors may greatly enhance system robustness:
if a processing node fails, the system can be re-configured by mapping the
tasks on the remaining nodes. In this event, re-scheduling is necessary. The
problem of doing that seamlessly remains an open issue.

3.2 Top-layer Architecture: An Asymmetrical Multiprocessor System 71

Further, let us consider an analogy from another field, where systems cop-
ing with real-time conditions have long been developed and used. The example
system consists of a manager and his secretary. The duties of the secretary
are the reception of mail and telephone calls, the elimination of unimportant
chores, and the minimisation of interruptions to the manager’s work by visi-
tors and callers. Furthermore, she schedules the manager’s work by arranging
the files in the sequence in which they are to be deatl with, and through the ad-
ministration of his meeting appointments. Thus, the manager’s work becomes
less hectic — i.e., the work’s “real-time conditions” are eased — and more
productive because he can perform his tasks with less frequent interruptions
in a more sequential and organised manner.

By taking patterns from this and related models, we now define the overall
structure of a computer designed to meet the requirements of real-time oper-
ation. In the classical computer architecture, the operating system is running
on the same processor(s) as the application software. In response to any oc-
curring event, the context is switched, system services are performed, and
schedules determined. Although it is very likely that the recent event was of
lower importance and the same process will be resumed, a lot of performance
is wasted by superfluous overheads. This suggests employing a “secretary”,
i.e., a parallel processor, to carry out operating system services. Such an
asymmetrical architecture turns out to be advantageous since, by dedicating
a multi-layer processor to the real-time operating system kernel, the user task
processors are relieved from any administrative overhead.

process environment

OS
kernel
processor

signals

proc.
inputs

proc.
outputs

computer
peripherals

schedule
OS interface

in
te

rn
al

ev
en

ts

event reaction

primary reaction

secondary reaction

task
processor(s)

int

Fig. 3.2. Conceptual diagram of the asymmetrical multiprocessor architecture

The asymmetrical concept is displayed in Figure 3.2. It has been presented
and elaborated in detail earlier [47]. The computer system to be employed
in hard real-time applications is organised hierarchically. The basic system

72 3 Undesirable Properties of Conventional Hardware Architectures

consists of two dissimilar processors, the task processor and the operating
system kernel processor, which are fully separated from each other.

The task processor is usually a classical von Neumann processor executing
control-application tasks. It acquires sensor information from the controlled
environment, and controls it by actuation output generated. The task proces-
sor also executes a small part of operating system tasks. There is a dispatcher
responding to re-scheduling requests, and certain functions that interface to
user tasks. Specifically, the operating system tasks on this processor are mainly
outer supervisor-shell services, such as data exchange with peripherals and file
management (if required), provided in the form of independent tasks or sub-
routines called by the user tasks. An example of such a processor and its
design guidelines were elaborated in [16, 17]. Being the creative part, the task
processor corresponds with the manager in the above analogy.

On the second processor, the dedicated operating system kernel processor,
which is clearly and physically separated from the outer-layer tasks, operat-
ing system kernel routines are running. This co-processor houses the system
functions event, time and task management, communication and synchroni-
sation. Although important and actually controlling the operation of the task
processor, these functions are routine ones and would impose an unnecessary
burden to the latter; thus, the kernel processor corresponds to the manager’s
secretary.

If necessary, this concept can easily be extended to multiple task proces-
sors, each one executing its own task set, but being controlled by a single
operating system kernel co-processor.

The operation of the whole system is shown in Figure 3.2: the external
process and the peripherals are controlled by the task processor via I/O data
communication. To prevent delaying task execution by immediate event han-
dling, they are fed into the lowest, the event reaction layer of the operating
system kernel processor. This way, the task processor is only interrupted by
the kernel processor if an event is relevant and a context-switch is really neces-
sary. As events, all sources requiring attention by execution of service routines
are considered. These are external events, which originate in the environment
and are transmitted as signals, temporal events, or events generated by the
task processor, like synchronisation or explicit software events.

The migration of event handling to a parallel processor is the most im-
portant feature of this approach allowing for temporal predictability of ap-
plication task programs and their run-time schedulability analysis. While the
task processor(s) execute task programs, event administration, scheduling,
and schedulability analyses are carried out in parallel without producing any
delays. All this is done upon the run-times, deadlines and other information
on tasks kept in Task Control Blocks (TCB). Their system parts reside in the
operating system kernel processor, while the contexts, containing the initial
states of application program and the states of pre-empted tasks, are stored
in the task processor(s).

3.2 Top-layer Architecture: An Asymmetrical Multiprocessor System 73

Communication Between Task Processors and Operating System
Kernel Processor

Communication and connection links, over which the operating system ker-
nel processor and the task processors communicate with each other, can be
implemented in different ways. When choosing a suitable implementation, it
is important that the traffic on the link from a task processor to the kernel
processor is not influenced by links connecting other task processors and is,
thus, not non-deterministically delayed in a case of demands occurring with
high frequency.

For instance, in an early implementation [18], the authors used a trans-
puter as kernel processor, and its serial point-to-point links to communicate
with the task processors. This way, independence of links was inherently as-
sured by separate link interfaces on the transputer. However, the number of
task processors was limited to those of links, i.e., four. Communication was
implemented in form of two serial bus lines, the data and the sync line. Data
on the data line were confirmed by the transmitter with a strobe on the sync
line. Each partner could transmit a packet of data if the bus was idle, which
was represented by high state of the sync line. The partner wanting to pre-
vent communication forced the sync line low, thus disabling the initiation of
transmission by the other partner.

Through the connection links, the task processors request certain services
and provide different information on one hand, and the kernel processor re-
quests context-switches and delivers required information on the other. In the
communication protocol, the task processors have the ability to postpone com-
munication with the kernel processor for a short time while executing tasks
are inside of non-pre-emptable critical regions.

When the kernel processor requests tasking operations such as task initi-
ation or pre-emption, they are performed by a small operating system kernel
counterpart, a task dispatcher, which is running on the task processor(s), and
which also administrates the application part of the tasks’ states kept (mainly
their current contexts) in the application parts of the task control blocks.

3.2.2 Operating System Kernel Processor

The functions of the kernel processor are, in short: (1) to receive and recognise
all kinds of events, and to react to them by changing task states, and (2) to
provide other operating system support to task processors. In Figure 3.3, the
functions and communications between the layers of the operating system
kernel and task processors are summarised.

The operating system kernel processor provides support for the following
functions:

74 3 Undesirable Properties of Conventional Hardware Architectures

task processor

secondary reaction
layer

primary reaction layer

event
reaction

layer

explicit tasking
operations request

synchronisation
operations

table of events
in the last cycle

synchroni−
sation

timing and
periodic

schedules

task state
changes

commands

scheduling
request

system
state inquiries

and replies

timer

events (signals) from process environment

dispatcher

inter−task
communication

software
signals

system
part

signal
event

schedules

context
storage

debug module
(programmable

simulation
of events)

communi−
cation

scheduler

task
control
block
(TCB)

operating system
kernel processor

Fig. 3.3. Functional units of operating system kernel processor

3.2 Top-layer Architecture: An Asymmetrical Multiprocessor System 75

Task scheduling. The kernel processor’s essential function is scheduling of
tasks to be run on the task processors. For this, the paradigm earliest-
deadline-first is employed. Upon any event in the environment and in the
system, the task execution schedules for all task processors are generated.
At the same time, schedulability analyses are performed to verify whether
the schedules are feasible, considering the remaining execution times of
all previously scheduled tasks and newly arrived ones, together with their
resource requirements and other limitations. If feasibility cannot be ac-
knowledged, fault-tolerance measures must resolve the situation, possibly
by re-configurating the tasks in the sense of graceful degradation, or by
other suitable means.

System state access. Tasks may request information about the system state
(e.g., time or state of synchronisers), which is made available through
monadic operations in form of system calls.

Explicit task control commands. A task, running on a task processor, may
need to perform certain tasking operation, like activation, termination
or resumption of another task, scheduled for certain events or combi-
nations thereof. To allow for this, tasking commands can be submitted
to the kernel processor. Moreover, a task can also trigger certain events
synchronously to its execution. Tasking operations may be scheduled as
response to this kind of software signals.

Synchronisation. A further function of the kernel processor is task synchro-
nisation, for which it provides the adequate operating system kernel rou-
tines with synchronisers and waiting queues. Having exclusive access to
the synchronisation primitives, it can perform atomic actions upon them,
thus preventing race conditions. By managing the waiting tasks’ queues,
it can supervise the corresponding operations upon tasks like suspension
and resumption. It can also periodically check the temporal bounds of
suspended tasks, and perform the actions related to time-out conditions,
cf. Section 2.3.6.

Inter-task communication. While the communication itself is implementa-
tion-dependent and will be elaborated later, there may be events triggered
by communication, like, e.g., arrival of messages, that need to be super-
vised by the operating system kernel.

The kernel processor consists of the three hierarchical layers detailed be-
low. Through their asynchronism and their loose coupling by data tables,
this functional decomposition also suggests their parallel operation and the
technical implementation of the operating system kernel processor as, e.g.,
application specific integrated circuits.

Event Reaction Layer

On this layer, events of all kinds are recognised and forwarded in a uniform
way to the primary reaction layer. The events are either received from other
sources, or generated based on observation of certain system data structures.

76 3 Undesirable Properties of Conventional Hardware Architectures

Apart from that, the layer also performs certain low-level functions like timing
and start-up initialisation:

Handling of time. A hardware timer/counter-based high-resolution clock is
maintained, giving pace to the entire system. Considering the fact that in
the case of malfunction this can present a serious potential central point
of failure, the implementation must be adequate; here it is referred to the
details of a proposed implementation by low-level system re-configuration
(see description on page 95).

External events (signals). When events from the environment are signalled,
they are latched together with the times of their occurrence (“time-
stamps”), and made available to the primary reaction layer. The times-
tamps provide information necessary for the scheduler to establish their
deadlines: the response time of a task must be counted from the instant
of occurrence of the initiating event. Another important related feature
is monitoring of event overrides: if an event appears before its previous
instance has been handled by the primary reaction layer (i.e., transformed
into a task state change command), this violation is reported to the pri-
mary reaction layer in the table of events. Where applicable, the same
holds for all other kinds of events. Timestamps and override information
is kept for all events and not only external ones.

Time events. If there are tasks that have been delayed or put in periodic
execution, their schedules are kept in tables accessible by the event reac-
tion layer; their waiting times are decreased and, upon expiration, events
are generated.

Synchronisation events. On changes of synchroniser states, the correspond-
ing waiting queues are scanned and events triggered, e.g., when a condition
for a task to resume to the ready state is fulfilled.

Communication events. Similarly, events may be triggered on certain state
changes in communication, e.g., when a message arrives.

Programmed events. There is the possibility that a task may trigger a soft-
ware event (in a form of a “software interrupt”), upon which an operation
may be scheduled.

Programmable event generator. For software simulation purposes, a sepa-
rate programmable interrupt generator is provided.

Application-specific events. Sources of such events may be introduced if nec-
essary.

To summarise, in this layer basic administration is performed, and all kinds
of events are brought into a common format. Together with their arrival times,
they are forwarded to the primary reaction layer in a table of events that oc-
curred after the last servicing. This table also keeps track of possible overrides
of non-serviced events, i.e., if an event happens before its last occurrence is
served.

3.2 Top-layer Architecture: An Asymmetrical Multiprocessor System 77

Primary Reaction Layer

The purpose of this layer is to map events to operation requests. The according
commands to change task states are issued and forwarded to the secondary
reaction layer. The layer functions in a way similar to a programmable logic
controller, i.e., as a cyclic executive performing only one task. Within every
cycle the possible sources (either internally generated time events, changes of
synchronisers, or external events) represented by the event reaction layer in
the form of table elements are polled.

In the applications, tasks and tasking operations are connected to certain
events by language constructs. It is the function of the primary reaction layer
to map and to trigger the appropriate tasking operation by putting task into
certain states. For example, a task activation may be triggered by a hardware
signal from the process environment, or a periodically executing task may be
terminated after a specified number of repetitions.

In summary, the primary reaction layer converts the event-driven asyn-
chronous operation of the event reaction layer into periodic state observation.

Secondary Reaction Layer

This layer performs the higher levels of the operating system kernel. It provides
an interface by communication routines that receive and transmit messages
to and from the task processor(s). By those, tasks running on task proces-
sors are requesting services from the operating service kernel routines. These
are related to tasking, synchronisation, communication, and other commands;
the kernel processor responds to these requests by performing the services or
providing replies. In addition, as its most important function, the secondary
reaction layer performs scheduling algorithms in reaction to events handled
by the event reaction layer and interpreted by the primary reaction layer. By
specific messages, requests for pre-emptions and dispatching are submitted to
the task processors.

In safety-related environments, establishing and checking initial configura-
tions is necessary. This is another task of the operating system kernel proces-
sor. After power-on, the initial auto-diagnostics protocol is started. All units
perform self-check procedures and gather, in a recursive way, information on
the subordinate units they are responsible for. So, e.g., task processors check
for availability and correctness of the peripheral interfaces needed, and the
kernel processor verifies functioning of the primary and event reaction layers.
Self-checking can be carried out on the level of hardware (e.g., voltage level
check, power consumption, boundary scan features), or by software (running
diagnostic procedures like memory tests or loop-back mode testing of com-
munication systems.)

After its self-check, the secondary reaction layer establishes communication
with the task processors, and by polling verifies their presence and flawless-
ness. The redundant components are detected and, based on this information,

78 3 Undesirable Properties of Conventional Hardware Architectures

the initial configuration is selected from a predefined set. If certain compo-
nents are missing from the beginning, the objectives may be modified and the
application runs in a degraded mode. During this phase all necessary initial-
isation actions, like synchronisation of the clocks, are performed Finally, the
system data structures needed by the event and primary reaction layers are
created and initialised, and the application is started.

3.2.3 Task Processor

In the task processor(s), the application processes are executed without over-
head due to operating system functions. They interact with the controlled
process by their inputs and outputs via peripheral interfaces, synchronously
to program execution. No process signals or other asynchronous events are
handled directly by the task processor. Thus, its operation is deterministic
and provides for predictability of task execution. The latter is initiated by the
kernel processor, and is only pre-empted if necessary, to assure meeting the
deadlines of processes, according to the scheduling policy.

The processors used in embedded systems for task program execution
are usually general-purpose microprocessors, microcontrollers or digital sig-
nal processors. Except for the most simple ones, they do not exhibit temporal
predictability, which is the pre-condition for microscopic (or layer-by-layer)
predictability. The reasons have already been dealt with in detail in Sec-
tion 3.1. In summary, they are due to employing processors developed for
non-real-time applications. Their design and the optimisation guidelines used
are based on statistical average performance and not on their worst-case be-
haviour. Actually, there exist virtually no high-performance processors that
would provide deterministic or bounded worst-case temporal behaviour. This
unfortunate situation led us to experiment with a possible hypothetical archi-
tecture that should be suitable for embedded real-time applications. Without
going too deeply into computer architecture, or even microelectronics, we have
set the following goals:

• To explore which features should guide the design of an architecture char-
acterised by deterministic instruction processing,

• To exploit the technological advances, most notably the immense number
of transistors on a chip, and

• To support parallel execution of control and data processing instructions,
exploiting the natural parallelism.

The resulting hypothetical processor architecture was elaborated in detail in
[16, 17]; it is outlined below.

As suggested in Figure 3.4, functionally, the task processor is divided into
the task control and the data processing units, residing on the same chip. Pro-
gram and data memories are separated in the form of the Harvard architecture.
The control unit accesses the program memory, only, and the data processing
unit only the data memory. Instructions of different kinds are executed at

3.2 Top-layer Architecture: An Asymmetrical Multiprocessor System 79

the most appropriate places. Flow-control instructions are processed close to
program memory, where the program counter is also located. To the data pro-
cessing unit, only instructions dealing with data are sent in a straightforward
instruction stream, without any program addresses, thus reducing the number
of data transfers. Process data are exclusively handled in the data processing
unit from where external sources are accessed.

F

ALU(s)

control unit

data processing
instruction decoder

external data
access

local memory

dual−port
RAM

sync
 control unit

 instr. pre−decoder
control flow instruction decoder
 instruction sequencer

program
ROM

dispatcher

(to operating system kernel processor)

TCB
tables

(context
storage)

subroutine
return address

stack

data m
em

ory address space

data processing
unit

task control unit

schedule other
OS functions

PC

process environment

Fig. 3.4. Structure of the task processor

Task Control Unit

This unit’s function is to execute task programs, which are kept in ROM for
safety reasons to make self-modification of code impossible. From this program

80 3 Undesirable Properties of Conventional Hardware Architectures

memory instructions are fetched and pre-decoded to distinguish between flow-
control and data processing instructions.

Only the program-flow-control instructions, which have an impact on the
program counter, only, are executed here. To allow for conditional branches,
a status flag (F) is accessible from the ALU of the data processing unit.

For the administration of subroutine return addresses a stack is provided.
Because of the pre-emptivity of tasks, strictly nested operation is not assured.
Thus, each task needs a separate stack; its stack pointer is kept in its TCB. The
amount of stack memory, however, is limited, because recursion is not allowed,
and asynchronous events are not handled here. Thus, the depth of procedure
nesting and the stack memory necessary can easily be determined in advance
by the compiler; also, by the latter, initial stack pointers are calculated and
stored into the TCBs.

The data processing instructions are forwarded to the data processing unit.
While they are being executed there, the synchronisation line indicates the
busy state, preventing the task control unit to send further data processing in-
structions. However, flow-control instructions can be executed in parallel. This
distribution of instruction execution minimises unproductive data transport.
The program counter (PC) is exclusively administered in the task control unit,
also eliminating the need for program address transmissions. This way, the in-
herent parallelism is utilised, yielding similar effects as pipelining, however in
fully deterministic way.

Data Processing Unit

The data processing instructions forwarded by the task control unit are de-
coded and executed here. For that purpose, the necessary arithmetic and logic
units are provided, addressing data in the unit’s data memory address space.
The latter consists of two parts, local memory and external data access space.
Instead of registers, the local memory appropriately supports the variable con-
cept of high-level programming languages. Since advances in technology allow
for a large number of transistors per dye, part of them should be used to im-
plement local storage. It keeps all local variables and constants as occurring in
high-level language programs. Each task has its own statically defined portion
of the local memory.

To prevent problems with dynamic allocation of data storage, recursion
should not be allowed; in the very rare cases that it occurs in process control
applications it can easily be substituted by iterations. Thus, variables can be
statically mapped onto locations in local memory.

Constants can be handled in several ways. Standard constants like 0 and
1 are statically implemented, and available to all programs at specific dedi-
cated addresses, as is common in RISC microprocessors. Other constants can
be stated in the processing instructions (equivalent to the addressing mode
immediate): this part of an instruction is interpreted as a literal and used as
operand. As another possibility, the compiler could substitute numeric con-

3.2 Top-layer Architecture: An Asymmetrical Multiprocessor System 81

stants by variables in local memory. Adequate values are loaded into those
variables at initialisation time.

To enable dyadic operations, special design of the local storage (synchro-
nised dual-port access) allows for fully synchronous reading of two different
locations. In writing a single location is always accessed and at different in-
stants than reading thus no conflicts are possible.

The memory locations of the external data access space are accessible via
a special portion of the data memory address space. By external data, global
common memory and memory-mapped peripheral interfaces are meant. There
are various different possibilities for implementation; the two most character-
istic ones are indirect addressing in global memory, and distributed replicated
shared memory.

Indirectly addressed global memory locations and peripheral device reg-
isters are automatically accessed via pointers in local memory. When the
dedicated portion of the data memory address space is accessed, the contents
of the local memory read from the addressed location represents the address
of the operand in global data storage. These data are automatically fetched
via external memory access and output to the ALU instead of the local mem-
ory contents. Except for the longer access time, the operation in the data
processing unit is exactly the same as in direct addressing mode.

Distributed replicated shared memory is a portion of local memory, being
a replica of a part of distributed global memory. Each task processor needing
access to a certain global address space maintains its own copy of it, which
is transparently updated by background mechanisms. On the other hand,
if a processor changes the contents of its copy, the change is replicated in
all copies. There is the problem of conflicts when more than one processor
wants to change the same memory location; these conflicts must be solved by
appropriate implementation measures.

To perform arithmetic and Boolean operations , an ALU is provided. The
main requirement for its design is temporal determinism of operation. The
basic arithmetic operations on integer and 32-bit floating-point numbers need
to be provided. For floating-point implementation, the IEEE P754 and P854
standards were followed, including their exception handling.

In some applications, the transfer of run-time information between the
task control and the data processing units could be useful (e.g., to provide
some system state information). For that purpose, optionally, a register for
data-communication between the two units may be foreseen. Although useful,
the implementation of such register implies, however, a data move instruc-
tion between the register and local memory, which has been avoided so far.
Instead, the task control unit could provide this information as part of the
data processing instruction (i.e., in form of a literal constant in immediate
addressing).

82 3 Undesirable Properties of Conventional Hardware Architectures

Instruction set

The architecture proposed above is simple and clear and, thus, promises easier
verification than complex state-of-the-art processors. In order also to keep low
the complexity of the control units of both task control and data processing
units, a reduced instruction set appears to be the only reasonable choice. A
further motivation is the possibility of the processor’s implementation in ASIC
technologies for which low complexity would be convenient.

Following the separation of instruction processing units, the instruction
set is divided into flow-control and data processing instructions. The former
are conditional and un-conditional branches, subroutine calls and returns, and
the wait instruction, by which the processor’s characteristic of time-awarenes
is emphasised. Instruction sequencing is delayed for either a specified period of
time, or until an event being awaited by the kernel processor occurs, whichever
comes first. If the continuation signal from the kernel processor is received
before the period expires, a branch is performed, else the program continues
execution of the next subsequent instruction. This way, worst-case time-bound
waiting for events can easily and effectively be implemented.

The three-operand data processing instructions perform basic arithmetic
and Boolean operations on both integer and floating-point operands, depend-
ing on the arithmetic/logic units implemented. Addressing of two source and
one destination operand by a single instruction renders registers superfluous
and minimises unnecessary data transfers.

There are basically two data addressing modes, absolute and indirect. The
absolute addressing mode refers to operands residing in local memory. By the
indirect addressing mode, an operand is accessed in external storage via a
pointer in local memory containing its physical address.

3.3 Implementation of Architectural Models

In this section, a brief history of ten years of implementing several variations
of the above architecture is given. To represent the evolution of the ideas,
three steps in the development are shown, together with their advantages and
drawbacks that led to the respective next solution.

At this place, it should be noted that the model as described in the previ-
ous section is to be considered as a logical one only. For instance, the commu-
nication lines between task- and kernel processors (see Figures 3.3 and 3.4)
represent logical communications of data, operating system routines calls,
schedules, context-switching requests, etc. All these communications are im-
plemented in the form of simple protocols on the data that are physically
transmitted between the different units in the system. This transmission can
proceed either on point-to-point connections or on a local bus, as will be shown
below.

3.3 Implementation of Architectural Models 83

Most of the units of the kernel- and task processors are implemented in
software running on microprocessors. In some cases, hardware implementa-
tions are feasible, i.e., the prototypes on field programmable gate arrays and,
possibly, in other ASIC technologies later. In this section, however, this will
not be dealt with in detail.

3.3.1 Centralised Asymmetrical Multiprocessor Model

Let us start with an obvious implementation that, in a straightforward way,
follows from the above architecture. It should be noted in advance that it may
not represent the best solution. The implementation is shown in Figure 3.5.
It uses several processors of possibly different types and performances, which
implement the kernel- and task processors (and even intelligent peripheral in-
terfaces, if necessary). Task processors are connected to the kernel processor
by point-to-point links. This prevents possible collisions in task-kernel proces-
sor communication, which would jeopardise the predictability of the system’s
operation.

.....
task

processor
1

task
processor

2

task
processor

n

sec.reaction
prim. reaction
event reaction

KERNEL PROC.

...p1 p1 p1 ...p2 p2 p2 ...pn pn pn

process environment

events

process inputs and outputs

point−to−point communication

...

...

1 2 i 1 2 j 1 2 k

Fig. 3.5. Direct implementation of the asymmetrical multiprocessor model

84 3 Undesirable Properties of Conventional Hardware Architectures

Each task processor controls its set of intelligent peripheral interfaces in
a master-slave mode: a peripheral interface is addressed by, and responds
to, requests from the task processor. This way, there can be no collision on
the local peripheral bus. The peripheral devices include a certain amount of
intelligence; instead of being fully passive, they may perform some simple
peripheral functions to relieve the processor from routine work, to provide
some fault-tolerance features, and to be able to carry out some time-related
operations.

Tasks are statically mapped onto the task processors. Since the peripheral
interfaces are physically connected to them, this seems to be a reasonable
choice. Further, the most suitable scheduling strategy, earliest-deadline-first,
is not feasible when dynamically allocating tasks to different processors.

In the mid-1990s such an implementation was attempted in a prototype
project [18]. It was built around a transputer as secondary (and simple pri-
mary) reaction layer, providing enough processing power for the rather com-
plex operating system kernel with scheduling and schedulability analysis. For
the event reaction layer (at that time called hardware layer), a Motorola
microcontroller, enhanced by a Xilinx FPGA functioning as external event
concentrator, was used. The transputer’s four 20Mb/s serial links with very
simple data transmission protocols were ideal for point-to-point connections
to task processors. The latter were implemented with Motorola microcon-
trollers with CPU32 kernel. Each of them controlled a network of simple but,
to a certain extent, intelligent peripheral interfaces, being capable of perform-
ing autonomous peripheral operations with temporal functions. They were
connected using the simple I2C communication (or Motorola’s M-bus). The
concept of distributed peripherals was adequate for process control interfaces.
However, events still had to be transmitted on parallel connections from their
origin in the process environment to the microcontroller performing the func-
tions of the event reaction layer.

Since this was a serious drawback, in the next version all peripheral in-
terfaces were residing on a common local bus which was connected to the
secondary reaction layer of the kernel processor; see Figure 3.6. Task proces-
sors now communicated with their peripherals via operating system service
calls, which presented somewhat more overheads. However, as there was no
need to transmit very long messages from the task processors to the periph-
erals and vice versa due to the nature of process data, this was not a serious
problem. Further, there was no danger of collisions on the local network, be-
cause it was controlled by the operating system service routines. Events in
the environment were now observed by peripheral devices, providing for even
more flexibility and more complex expressability of conditions that may trig-
ger them. For each event, a bit in a special event message was transmitted to
the kernel processor.

Communication was carried through cyclically using a dedicated non-
standard protocol which, in an interesting way, to a high extent resembled
the time-triggered protocols that emerged a number of years later. The kernel

3.3 Implementation of Architectural Models 85

.....
task

processor
1

task
processor

2

task
processor

n

sec.reaction
prim. reaction
event reaction

KERNEL PROC.

p1 p1 p1 p2 p2 p2 ...pn pn pn

process environment

events

process inputs and outputs

point−to−point communication

local bus

bu
s

in
te

rf.

1 2 i 1 2 j 1 2 k......

Fig. 3.6. Implementation of the asymmetrical multiprocessor model with peripher-
als on a local bus

processor periodically issued a reference message upon which the peripheral
interfaces could synchronise their clocks. Then, the event messages were trans-
mitted; if an event occured, the corresponding bit was set. An event message
was a word accessible by all peripheral interfaces that could submit event ser-
vice calls by connecting the data line to ground during its dedicated time slot.
This message was received and decoded in the bus interface of the kernel pro-
cessor, and events were forwarded to the event reaction layer. Event messages
were followed by messages addressed to specific peripheral interfaces.

The implementation of the distributed peripheral interfaces had some
other advantages in comparison with the centralised one. It is more flexi-
ble and allows for dynamic re-configuration of peripheral interfaces in case
of failure. Also, it is possible to re-map tasks on task processors, since the
peripherals are no longer physically attached to the latter. However, due to
the selected scheduling policy, it was still not possible to do it dynamically
during operation, but only upon system-reconfiguration in a case of failure.

Regarding fault tolerance, both implementations exhibited a serious draw-
back, viz., a central point of failure: the kernel processor was implemented on

86 3 Undesirable Properties of Conventional Hardware Architectures

a dedicated processor and could not be re-mapped in a case of failure. Fur-
ther, the implementation was inflexible with regard to the number of task
processors and their reconfigurability. Redundant resources other than pe-
ripheral interfaces could not be shared among the logical units to cope with
failures. As a conclusion, although it was proven feasible, this implementa-
tion is not realistic. It conflicts with the common guidelines for implementing
control applications, one of them being flexibility through fully distributed
implementation.

3.3.2 Distributed Multiprocessor Model

The latter solution of the asymmetrical multiprocessor model where all pe-
ripheral interfaces are gathered on the same local network led to the general
solution with the task processors also connected by the same local network
see Figure 3.7. The obvious advantages of this solution are better flexibility,
support for dynamic re-configuration, and fault tolerance:

• Task mapped to the task processors may be re-configured in case of a
failure. Once this happens, the task set is again statically defined for the
next period of time. True dynamic mapping of tasks on the task processors
during operation, however, would be difficult because of the scheduling
policy employed.

• There is a possibility for redundant units on the network in hot stand-by
mode to be switched over in case of failure. These units simply access the
input data from the network instead of the failed units and provide the
results to the same users. The availability of redundant resources (task pro-
cessors and peripheral interfaces) can be checked during the initialisation
phase (see description of kernel processor).

• A central point of failure, as introduced by the centralised kernel processor,
can be avoided by redundant resources available as stand-by units on the
local bus.

By employing local-bus communication, a serious drawback has been in-
troduced: problems with collisions on the network. Task processors operate
asynchronously and could, thus, require services of the operating system ker-
nel processor in the same instants. This, however, is a well-known problem of
distributed embedded systems, operating in real time. It has been solved in
different ways; the one we used — time-triggered communication — will be
described in more detail later in this chapter.

3.4 Intelligent Peripheral Interfaces for Increased
Dependability and Functionality

In this section, so far the operating system kernel and the task processors
have been dealt with. Further components to be elaborated are peripheral in-
terfaces. This subsection describes a suggestion to amend them with a certain

3.4 Intelligent Peripheral Interfaces for Increased Dependability and Functionality 87

.....
task

processor
1

task
processor

2

task
processor

n

sec.reaction
prim. reaction
event reaction

KERNEL PROC.

p1 p1 p1 p2 p2 p2 ...pn pn pn

process environment

events

process inputs and outputs

local bus

1 2 i 1 2 j 1 2 k
......

bu
s

in
te

rf.

Fig. 3.7. Fully distributed implementation of the asymmetrical multiprocessor
model

amount of processing capability. This way, a number of goals can be achieved:

Distribution of processing tasks. Data are processed locally in the parts
where they are located or acquired. Thus, the main task processor’s load
is reduced, inherent parallelism in data processing is utilised.

Reduction of complexity of the application programs. Thus, they become
less error-prone and more easily verifiable. Input data from the process
environment are pre-elaborated, task processors receive higher-level infor-
mation.

Reduction in data transfer. Not all raw data must be transmitted but only
high-level information, which is normally less bulky.

Better tolerance to faults that originate in peripheral data acquisition and
transfer in the distributed system architecture. The idea is to deal with the
faults and resolve them, if possible at the lowest level in order to prevent
the higher-level mechanisms to have to employ more costly measures.

88 3 Undesirable Properties of Conventional Hardware Architectures

De-coupling of peripheral devices from the task processor allows for asyn-
chronism of peripheral operations; thus, they can be synchronised with
the process environment.

To implement the intelligent peripheral interfaces, instead of passive
memory-mapped peripheral interfaces as common in generic process control
computers, we propose to employ independent units, which enhance system
performance and robustness, and support consistent programming of tempo-
ral features. The process input and output interfaces are spatially distributed
over the controlled process environment, close to the sources of data and ac-
tuators, respectively. To this end, simple microcontrollers were added to the
peripheral interfaces. They can be pre-programmed to perform certain func-
tions, thus relieving the general-purpose processor from detailed control of the
peripheral interfaces, or from performing sequences of routine I/O operations.
The required intelligence may also be implemented by application-specific in-
tegrated circuits. Such hardware-based automata are much easier to verify in
a well-established way. Also, in certain cases, performance could be improved
this way.

3.4.1 Higher-level Functions of the Intelligent Peripheral
Interfaces

There are many ways to utilise the processing facilities of the peripheral inter-
faces. The most obvious is, instead of only acquiring sensor data or outputting
actuator control data, to perform specific functions on data read from, or to
generate data to be sent to the peripherals by higher-level commands. As an
example, let us consider a disk controller: the processor may not control the
disk in terms of input and output bits, but issues commands that are processed
by the controller and converted into the low-level data exchange with the ac-
tual device. By analysing typical control applications, common I/O functions
could be identified and provided as a standard library. These simple routines
could be thoroughly (possibly formally) verified, contributing to the enhance-
ment of system robustness. Their behaviour may be simple enough even to
allow for safety-licensing. This feature alone would greatly enhance the safety
of applications. Further, knowing exactly the functioning of the controlled pe-
ripheral devices, their parameters, their static and dynamic behaviour, and
possible jeopardies, diagnostics could be very precise.

One of the simple functions to be migrated from task processors to intel-
ligent peripheral interfaces is to poll the state of controlled system variables
in order to synchronise controlled and controlling systems. Whenever pos-
sible, this technique is preferred to interrupts, because, first, the overhead
of interrupt administration causes unpredictable delays and considerably re-
duces overall system performance, and second, state observation is much more
fault-tolerant than event observation [72]. This was one of the basic ideas that
motivated our work in this domain.

3.4 Intelligent Peripheral Interfaces for Increased Dependability and Functionality 89

Further, the amount of data to be exchanged between task processors
and peripheral interfaces through serial buses could possibly be reduced. It is
most likely that the specific higher-level command itself will contain inherent
information and will thus need to transfer less data than the detailed exchange
between an actual peripheral device and its low-level interface. Sometimes,
the same or very similar data sequences need to be transmitted. Further,
there may, e.g., be static pre-defined texts to be output in response to specific
events. In the course of this, certain data can be pre-stored and programs pre-
installed. When a task processor needs to send a message to the environment,
only its index is communicated, but not the entire message.

Another possible function is recognition of pre-defined system states upon
which certain actions need to be carried through. If the events result from
state variable changes of the controlled system, relatively complex functions
must be implemented in the environment to generate them. Sometimes, this
may not be convenient or feasible. Instead, peripheral interfaces, which are
observing the state variables anyway, may recognise such events and report
signals to the operating system kernel processor as already described above.

3.4.2 Enhancing Fault Tolerance

Built-in local intelligence has an even more important effect, namely provision
of enhanced fault tolerance. It is obvious that the best way to deal with faults
is to prevent them from happening [9] in the first place. In this sense, the
role of the measures described here is most important. If faults are detected
and (possibly) dealt with at the lowest level, the rest of the system may not
even be aware of them and, thus, does not need to react. As an example,
pre-programmed functions can well support the fault tolerance of peripheral
interfaces by self-diagnostics, self-check at initialisation time, and integrity
checking during operation. In case of unsuccessful initialisation, the super-
visory system can scan for alternative or redundant subunits. These units
may be diverse, implemented with different technologies, have different per-
formance, but still perform roughly the same functions and are controlled by
the same commands.

If irregular behaviour is detected during operation, a system can be re-
configured dynamically using redundant devices. Different units with similar
functionality can be selected to replace the failed ones in a transparent way:
the task processors are not aware who is performing the requested peripheral
operations. If necessary, performance can be degraded gracefully, preserving
essential integrity and safety.

Lately, instead of costly redundancy, reconfiguration of the resources re-
maining sound after incidents is finding more appreciation as another ap-
proach to assure fault tolerance. In a case of failure, the remaining intact
components are re-arranged in a system with reduced performance, that may
either continue to run the application at a lower-level mode, or be able to
bring it into a safe state. Intelligence in peripheral interfaces is very useful

90 3 Undesirable Properties of Conventional Hardware Architectures

in this sense; it may perform the reconfiguration locally without the need to
disturb the rest of the system.

In the case of a non-recoverable error, or a failure of a task processor,
the fail-safe property can be guaranteed by controlled and smooth driving of
the controlled process into a safe state. This can be achieved by peripheral
interfaces possessing enough intelligence to recognise faulty behaviour of task
processors or other catastrophic states, and to put the devices they control
into safe failing states.

To cope with transient system overloads when specified deadlines cannot
be met due to exceptional irregular situations, system performance can also be
gracefully degraded using peripheral interfaces. For instance, if a peripheral
unit periodically outputting data to the environment does not receive the
actual data on time, it can either repeat the last data item if this is adequate,
or even predict the new one by extrapolation from preceding valid values. If
the problems persist, the faults should not be tolerated any more; instead, a
fail-safe shut-down should be performed.

In a similar way, an intelligent peripheral unit can deal with possible tran-
sient irregular output or input values. Since it is directly connected to the
environment, it is in the best position to resolve such conflicts. Faulty inputs
or outputs may be recognised based on the known physical properties of the
controlled devices. The temperature of a large mass of a fluid, for instance,
cannot change very fast; if the readings are such, a problem in data acquisition
is recognised. Further, if a reading, following a row of regular ones, is totally
out of logical bounds, it may be ignored as a transient error. In such a case, like
above, the last reading may be repeated, or, time and performance permitting,
a replacement calculated by extrapolation. Another example are unreasonable
absolute values of physical entities (e.g., temperature below 0K).

3.4.3 Support for Programmed Temporal Functions

The intelligence added to peripheral interfaces can consistently support exact
timing of input and output operations. This is very important for the stability
of control systems and, thus, should comprehensively be supported by high-
level programming languages and operating systems used in process control.
In this subsection we show how temporal operations can be supported by
intelligent peripheral interfaces.

One of the most serious problems in automation and regulation applica-
tions is jitter in both input and output process data. Due to the sequential
nature of computer control systems it is not possible to read multi-variable
input data or send corresponding output data simultaneously, causing the re-
actions of controlled systems to deviate from theoretical expectations. In our
architecture the peripheral interfaces can be requested to perform I/O opera-
tions at exact time instants and, thus, in a fully simultaneous and synchronised
fashion. This way, jitter can be eliminated at source.

3.4 Intelligent Peripheral Interfaces for Increased Dependability and Functionality 91

The problem and its solution are presented in Figure 3.8. Sequentially read-
ing process inputs may have the consequence that the values of the not yet
read inputs change, and the state of the system is not acquired correctly. Simi-
lar for outputs: the set ones may already have effects before all are performed.
This problem is solved if all inputs are read at the same instant, requested in
advance by the processor, in a “sample-and-hold” manner. They are then read
by the processor as the data are needed. On the output side, vice versa, data
are output to the peripheral units, by which the actual output is performed
simultaneously. The implementation is based on the fact that the peripheral
units know the actual time. This information is maintained by the bus com-
munication protocol (see Section 3.5). Correspondingly, commands issued by
task processors include specifications of the time instants when operations are
to be carried through.

process control
functions,

generate outputs

ac
qu

ire
 a

nd
 re

ad
 in

pu
t 1

pe
rfo

rm
 o

ut
pu

t m

pe
rfo

rm
 o

ut
pu

t 1

pe
rfo

rm
 o

ut
pu

t 2
pe

rfo
rm

 o
ut

pu
t 3

...

t

acquire input n

acquire input 1
acquire input 2
acquire input 3...

ac
qu

ire
 a

nd
 re

ad
 in

pu
t n

ac
qu

ire
 a

nd
 re

ad
 in

pu
t 3

ac
qu

ire
 a

nd
 re

ad
 in

pu
t 2

...

read input units,
process control

functions, generate
and send output

data to peripherals

perform output m

perform output 1
perform output 2
perform output 3...

sequential approach

distributed synchronous approach with intl. peripherals

t

broadcast command
and time instant

to acquire inputs

broadcast command
and time instant
to perform output

simultaneous action
 of all outputs

simultaneous action
 of all inputs

Fig. 3.8. Cause of jitter and its prevention by asynchronously operating intelligent
peripheral interfaces

To produce an output at a desired instant, the task processor sends the
corresponding clock value along with the output command well ahead of time.
The peripheral interface addressed will actually perform the operation exactly
at that instant. This would not be achievable by the task processor itself: due
to task scheduling and various other delays, it is impossible to schedule any
action in a task for a precise instant of time. Similarly, on input, a general

92 3 Undesirable Properties of Conventional Hardware Architectures

processor can request an interface to read data at a certain future instant.
Alternatively, input values can be acquired continuously and autonomously,
time-stamped, and stored by a peripheral interface. Further, the data may be
observed, and when certain anticipated events occur, only the current values
can be time-stamped and stored to be read by the general processor later.

This solution is more general than, e.g., the Sync and Freeze features
Profibus [93]. These controls freeze the physical input and output data exist-
ing on one or more slaves simultaneously, like taking a snapshot. The selected
slave(s) will stay in the frozen state until a cancellation is issued. In both
Profibus and our system, the master has control over the exact instant of
receiving or sending process data. However, in the case of Profibus, the mas-
ter has explicitly to request the action at the very moment when it is to
be performed, whereas our peripheral interfaces themselves administer their
schedules.

Case Study: A/D Conversion

As an example, let us consider an implementation of an intelligent analogue-to-
digital converter. In certain technologies, the time needed to convert analogue
signals may depend on their values. Since the conversion times can, in general,
not be neglected, special care must be taken to deal with them. One solution is
to convert signals cyclicly, i.e., A/D converters work continuously by triggering
new conversions with their own “READY” signals. The results of the most
recently completed conversions are stored with stamps of their acquisition
times in a circular buffer, overwriting the oldest stored values. Given suitable
conversion frequencies, the latest values can be considered valid, and can be
reported to task processor, without any delay.

Before using this type of analogue data acquisition, it should be carefully
checked whether the jitter introduced this way is harmful. If so, and if ana-
logue data of specified time instants are required, more accurate values can
be calculated from the stored data and their time-stamps by interpolation (or
even extrapolation) carried out by the built-in processing facility.

Another possibility is to request a conversion at a certain instant. At this
moment, the input value is sampled, then converted and stored until it is read
by the task processor.

The digital value resulting from a conversion represents a certain physical
quantity. Its true absolute value is related to the reading. It may be convenient
if the peripheral interface, after conversion, also calculates the actual value
according to a characteristic function given in an appropriate form. This value
is then sent to the task processor as a response to its demand. Knowing
the properties of the physical quantity measured, the results can be further
evaluated. If any expectations are violated, corrective measures may be taken:
the reading may be discarded, and a substitute value estimated.

3.5 Adequate Data Transfer 93

3.4.4 Programming Peripheral Interfaces

In Chapter 4, an object-oriented high-level real-time language [114] will be
presented in detail. Here, it is briefly mentioned how the language accommo-
dates the access to peripheral interfaces. The code produced runs on the task
processors. The language is not meant for programming peripheral interfaces
themselves. As mentioned before, the peripheral interfaces are simple; their
functions are specified, programmed and verified separately.

Using the paradigm of object-orientation, each type of peripheral inter-
face can be considered a class, derived from a generic periphery class, and
particular interfaces its instances. Their specifics, such as identification codes,
must be described adequately (e.g., by declarations). A simple inheritance
scheme can be used to expand or modify characteristics of similar peripheral
interfaces. Methods of the classes invoke pre-defined functions or procedures
residing in the peripheral interfaces. They can either access the actual hard-
ware registers, only, or perform certain functions. Remote procedure calls
and/or parameter passing are system-dependent and physically implemented
by system software. Apart from the methods, properties are specified in the
classes, which are pseudo-variables and which can represent actual registers of
the peripheral interfaces, or can implicitly be implemented by methods. Prop-
erties can be time-stamped, i.e., methods to access them can be programmed
to be activated at certain time instants.

3.5 Adequate Data Transfer

Data transfer in hardware architectures to be employed in embedded sys-
tems operating in hard real-time mode could introduce further sources of
non-determinism. Generally, messages transmitted can be delayed by other
messages, in some cases even indefinitely long. Together with the messages,
task execution can also be delayed, jeopardising the feasibility of schedules and
that deadlines are met. This was the rationale behind the evolution of data
transfer capabilities as foreseen in the three stages of hardware architectures
shown in Figures 3.5, 3.6 and 3.7, respectively.

In the first model (Figure 3.5), point-to-point communications between
the kernel- and the task processors were used. In this way, messages from the
different task processors could not interfere, and no delay could occur. Con-
nections between the kernel- and the task processors were implemented using
Inmos transputer links, i.e., fast and simple serial connections. The choice
was obvious, since the kernel processor was implemented using a transputer.
Peripherals were connected to their respective task processors via serial lo-
cal buses (at that time, Philips’ I2C or Motorola’s M-Bus was employed.)
Since the peripheral devices always worked in the slave mode, they could
never initiate message transfers. Thus, the latter were controlled by the task
processors, resulting in no collisions. The drawback of this architecture is a

94 3 Undesirable Properties of Conventional Hardware Architectures

non-flexible structure with limited possibilities for reconfiguration because of
the wired connections between the processors, and between peripherals and
task processors.

In the second implementation (Figure 3.6), the point-to-point communi-
cation between the kernel- and task processors is retained, with its advantage
of non-colliding data transfer. However, instead of being connected by local
buses to the task processors, all peripherals reside together on the common
local bus driven by the kernel processor, so that

• Events from sources directly wired to the kernel processor can now be
transmitted by messages on the common local bus.

• Task processors may now share use of the peripherals, allowing for better
flexibility and even for a homogenous multiprocessor structure, although
adequate mapping and scheduling in such systems are serious problems.

• Fault tolerance is improved by redundant peripherals that may also be
shared among the task processors.

Since the peripherals still behave as slaves, it is the exclusive responsibility of
the kernel processor to manage traffic, thus avoiding collisions.

In the third case (Figure 3.7), all units reside at the same local bus. It is
now used for both communication between kernel- and task processors and for
peripheral interfaces access. There is a danger of collisions that may lead to
non-predictable delays. To prevent it, a time-triggered protocol is employed,
which is detailed below.

3.5.1 Real-time Communication

In distributed control systems, a set of processing elements, sensors, actuators,
and plant components is interconnected through some means of communica-
tion. There is a number of implementations of such solutions already used in
real-world control applications (e.g., Controller Area Network – CAN). For
fault-tolerant control systems, even during maximum busload, timely trans-
mission of all safety-related messages must be guaranteed. Occasionally, sev-
eral messages may be produced to be transmitted at the same time. Hence,
some messages will be delayed.

Traditionally, message collisions on a bus are resolved using priority-based
algorithms: the message with the highest priority assigned is transmitted first.
Such an approach is employed in the widely used CAN protocol. The main
problem with priority-based protocols is the impossibility to predict and guar-
antee worst-case transmission times. Because of dynamic message arrival and
transfer times, it may happen that a low-priority message is blocked indefi-
nitely long by higher-priority ones. As a last resort, some sort of a bus guardian
must be used to prevent too frequent high-priority messages (possibly as con-
sequence of an error) blocking the low-priority ones. Protocols with random
collision resolution (like standard Ethernet) are not sensitive to wrong prior-

3.5 Adequate Data Transfer 95

ity assignment. However, the danger of long and non-deterministic blocking
of messages still remains, and is only depending on chance.

In the last five years, a lot of effort has been devoted to introduce real-time
capabilities into Ethernet. [39] Convenience of Ethernet networks, existence
of good infrastructure and devices, and the widespread TCP/IP protocol let
it appear attractive to employ Ethernet also in industrial process control en-
vironments. There already exist more than ten different solutions, e.g., Ether-
CAT, ModBus/TCP, Ethernet-Powerlink, SERCOS III, PROFINET, ETH-
ERNET/IP, or VARAN. As an example, let us consider a protocol proposed
by Hoang, Jonsson, Hagström, and Kallerdahl [55], providing enhancements
to full-duplex switched Ethernet in order to be able to give throughput and
delay guarantees. The switch and the end-nodes control real-time traffic by
earliest-deadline-first scheduling on the frame level. In the proposed solution,
there are no modifications to the Ethernet network interface card, which al-
lows the real-time nodes to be interconnected with existing Ethernet networks.
Although there are standardisation efforts already on their way, at the mo-
ment, it looks like that there will be one standard document IEC 61784-2
specifying at least ten different and mostly incompatible technical solutions
for Real-Time Ethernet. This situation is unfortunate to the user, who would
like to have a single, adequate and usable real-time Ethernet protocol.

3.5.2 Time-triggered Communication

Recently, the so-called time-triggered approach is becoming increasingly pop-
ular. In the aerospace industry, time-triggered applications are state-of-the-art
already today. Time-triggered automotive applications are becoming part of
the next product generation. By this approach, message transfers are sched-
uled at design time instead of at run-time. In general, each message gets its
unique and statically defined access slot within pre-defined and globally syn-
chronised time-frames. Systems run with pre-determined timetables.

There are several competing time-triggered solutions to control buses. A
number of them are based on the CAN bus protocol as network data layer
because of its simple and inexpensive infrastructure. One of such approaches
is Time-Triggered CAN (TTCAN) [64]. A good description, which the part
below is based on, is given in [43].

In TTCAN, one of the nodes on the CAN bus is designated as the time-
master. It periodically generates administrative reference messages marking
the beginnings of the basic cycles; see Figure 3.9. The nodes that need to
exchange messages detect the reference message and wait for their designated
time window, within which they send or receive a message. Since broadcasting
the reference messages is under the control of the time-master, it represents
a potential risk. If this node fails, communication stops representing a central
point of system failure. To solve this problem, time-triggered protocols allow
for several potential time-master nodes to co-exist in a system. One of them is
the current time-master that starts sending the reference messages at system

96 3 Undesirable Properties of Conventional Hardware Architectures

start-up. If the current time-master fails, another time-master becomes the
current one after arbitration. The role of time-master can be combined with
the role of other entities that may represent a single point of failure. For
example, the node acting as time-master may also house the kernel processor
in a non-distributed configuration. Thus, if the time-master node fails, its
role is transferred to another one together with the functionality as kernel
processor.

reference
message

excl.
window

arbitrating
window

free
window

excl.
window

excl.
window

excl.
window

reference
message

basic cycle

time
time windows for messages

Fig. 3.9. Basic cycle of TTCAN

There are three different kinds of time windows:

Exclusive Time Windows within which periodic messages between nodes
are transmitted as scheduled in the pre-determined timetables,

Arbitrating Time Windows within which sporadic messages and, possibly,
competing soft real-time messages are transmitted after arbitration using
a specifically defined protocol, and

Free Time Windows for future extensions.

Different messages may require to be transferred more or less frequently. For
that reason, several different basic cycles with the same distribution and du-
ration of transmission columns may be bundled together in sequence; see
Figure 3.10.

The sequence of basic cycles and of transmission columns for a specific
application is defined in a system matrix. It is composed at a design time
based on transmission needs of communicating partners. Its composition must
comply with the requirements, and should at the same time maximise the
number and the length of arbitration- and free slots. In complex cases this task
is not trivial, and may even require certain artificial intelligence approaches
(see, e.g., [115, 40]). From the system matrix, the information for triggering
the data transfers is acquired. For instance, Tx Trigger starts transfer of a
message. It consists of the transmission column’s number, window type, cycle
offset (if there are several different basic cycles in the sequence), and of the
repeat factor, which counts how many times in the bundle the message is
transmitted.

Any TTCAN controller maintains its local time counter, which is incre-
mented each Network Time Unit. (NTU) Another timer is necessary to achieve

3.5 Adequate Data Transfer 97

transmission columns

reference
message

message
A

arbitrating
window

free
window

msg.
B

message
D

msg.
B

basic cycle 0

reference
message

message
A

message
M

msg.
R

msg.
R

message
N

msg.
B

basic cycle 1

reference
message

message
A

arbitrating
window

msg.
T

arb.
win.

message
D

msg.
B

basic cycle 2

reference
message

message
A

message
M

free
window

msg.
U

message
P

msg.
B

basic cycle 3

time

time

time

time

Fig. 3.10. Sequence of different basic cycles

cycle-based sending/receiving of the messages and to synchronise to the cycle
time of the time-master in a TTCAN network. According to the synchronised
timers, specific transmit/receive triggers generate the actual transfers. Ref-
erence messages are not always issued periodically. In some applications it
can be advantageous to trigger the transmission of a reference message by
an event external to the bus; see Figure 3.11. In this case, the application
has to signal to all other bus members that the next reference message will
be delayed. This is done in the reference message preceding this event syn-
chronisation by setting a specific control bit, the Next is Gap bit. In order to
avoid non-deterministic delays, for any application the maximum length of
the gap must be defined. The next reference message is then postponed until
the external event occurs, or for the time gap, whichever occurs first.

There are two levels of extension in TTCAN. At level 1, a time-triggered
functionality is guaranteed by reference messages of the single time-master. In
this model, the existing CAN infrastructure can be used. Only the high-level
protocols must be adapted, what can be done in software. For fault tolerance,
several redundant time-masters can be employed. At extension level 2, a glob-
ally synchronised time-base is established, and a continuous drift correction
among the CAN controllers is implemented. This extension requires specific
hardware devices. A similar approach is used by the Time-Triggered Proto-

98 3 Undesirable Properties of Conventional Hardware Architectures

reference
message

msg.
A

msg.
D

msg.
C

reference
message

basic cycle

time gap

reference
message

msg.
A

msg.
D

msg.
C

basic cycle

external
event

basic cycle

max. time gap()

Next_is_Gap bit set

Time gap is requested after the next cycle

Fig. 3.11. Synchronisation of the basic cycle with external event

col (TTP and TTP/C) [45], which can achieve much higher data rates than
TTCAN. Compatibility with CAN is implemented at several levels. Apart
from the CAN-TTP-Gateway solutions, a CAN emulation layer can be used
on top of TTP: the registers of a CAN controller module are emulated allow-
ing to re-use existing software. As a drawback, the TTP solutions with higher
data rates require specialised hardware. Other solutions try to combine the
best properties of both the priority-based and the time-triggered approach.
One of such protocols is FlexRay [5], which permits the co-existence of both
prioritised and time-triggered messages on the same network. At this time, it
is still not sure which approach and which solutions will prevail in the future.

3.5.3 Fault Tolerance in Communication

When fault-tolerant behaviour is required, other issues emerge. A single com-
munication bus represents a single point of failure in a system; thus some
kind of communication redundancy is needed. As an obvious solution, triple-
modular redundancy, a fault-tolerance measure widely used in other domains,
would mean that buses should be triplicated in order to detect faulty be-
haviour of one. Triple- or n-modular redundancy, however, has disadvantages,
the most obvious being cost. One purpose of redundancy, viz., to detect the
faulty replica, could in some cases also be accomplished with other means.
Instead of redundant devices, a simpler mechanism based on monitoring can
be used to detect faults. Moreover, usually the existing bus control protocols
already include some sort of error detection that can easily be improved with
additional dedicated hardware.

Instead of using three or more buses, a reasonable degree of fault-tolerant
behaviour could be achieved with only two. Since it can be expected that a
system will operate without a failure most of the time, it would be a waste of
resources if secondary buses would be used only as back-ups. Thus, as long as
no error is detected by the monitoring system, both buses should be used for
data transfer. When, however, a fault is detected on one bus, communication

3.5 Adequate Data Transfer 99

is switched to the other one. The bus remaining operational must handle all
necessary traffic, perhaps by gracefully degrading the performance, and/or
eliminating some non-critical messages altogether.

There are several possible scenarios regarding how to utilise multiple com-
munication channels. The most obvious is load-balancing with the bus-load
dynamically equally shared among them. This way, shorter transmission and
reaction times can be achieved. Dynamic load-sharing, however, increases
complexity and is, thus, less safe. In simpler cases, different communication
scenarios can be prepared in advance. When there are no faults, certain mes-
sages can be mapped onto certain buses. For example, one bus is dedicated
to the safety-critical messages (by using fault-tolerant protocols with lower
throughput), and the other to less important messages (using, e.g., priority-
based scheduling). Another example is to transmit system messages on one
bus and application messages on the other.

In case of faults, communication channels can easily be reconfigured if
messages are prioritised. Then the frequencies of the less important messages
can be reduced, or these messages can be eliminated completely. For time-
triggered operation, when a bus fails a new time schedule must be applied to
the remaining bus(ses). There must be a set of different timetables prepared
in advance for each failure mode. The numbers of possible timetables expo-
nentially increase with the number of redundant buses, and each combination
must be elaborated in advance at design time. Another difficulty of time-
triggered operation on several buses represents the global synchronisation of
the time-frames.

Not only the faults on the communication channels need to be considered
in a fault-tolerant communication system. Faults in processing units, sensors
and actuators can have important impact and must be handled by the com-
munication infrastructure. For example, if an actuator fails, the messages sent
to it may be re-routed to a redundant one. This can be implemented by con-
sidering all redundant resources of the same type as a single device. Each
message for the actuator is sent to all operational replicas, but only one (or,
in certain cases, all) of them are then responsible to perform a certain action.
On the other hand, each replica of the same sensorial resource can provide
a message to the system at the same time. Each receiver then decides which
message is used for further computation. In this case, it is important that a
sending device can automatically detect if it operates properly. It must send
an appropriate status (e.g., invalid value; fail-safe approach) or remain silent
(fail-silent approach). Of course, this sort of redundancy decreases the usable
throughput of a bus. However, it also reduces the need for additional buses
and arbitration hardware. If a processing unit fails, the whole system must be
reconfigured and the message channels may be re-routed, so that they can be
served by a spare unit.

When custom-built components are used, fault-detection can be built in,
and performed by the components themselves by means of appropriate hard-
ware and software. However, in the case of the Commercial Off-The-Shelf

100 3 Undesirable Properties of Conventional Hardware Architectures

(COTS) and special plant components, this is usually not possible. Then flex-
ible monitoring systems should be integrated into communication subsystems
to monitor the signal- and data-flows between components, sensors and actu-
ators. In simple situations, monitors can detect out-of-range values. In more
complex implementations, they can monitor the dynamics of the signals, the
mapping between inputs and outputs, temporal restrictions, etc. Such systems
also monitor the behaviour of the buses and are able to switch between them.
In Figure 3.12, a possible implementation of such a gateway between non-
fault-tolerant communication protocols and/or buses and fault-tolerant ones
is given. Further, it is shown that not always all devices need to be connected
to both buses: in case of failure a certain functionality may be renounced,
like a sensor, an actuator, or even a processing unit (e.g., S2 and PU2 in the
figure). If the bus is not operational any more, after reconfiguration the units
are simply ignored.

bus1

bus2

Proc.1 Proc.2

S1 S2 A

cots
Proc.3

G

Proc.x – processing unit, Sx – sensor, A – actuator, G – NFT-FT gateway

Fig. 3.12. Employing a COTS processing unit in a FT bus architecture

3.5.4 Distributed Data Access: Distributed Replicated Shared
Memory

In process control applications, control functions are implemented in the form
of function blocks that communicate with each other, read data from sensors,
and produce signals for the actuators. Function blocks are generalisations of
control algorithms in the form of programs. They may be implemented as
tasks in asynchronous multiprogramming environments, or just as subpro-
grams or routines. In distributed control applications, both function blocks
and peripherals are mapped onto the hardware architectures. To access data
it is necessary to know on which processing node a specific function block
resides, or where and how to address a specific I/O device.

When designing a control application on a distributed control system, the
notions of nodes, messages, timetables, etc. are usually not transparent from
the application designer’s point of view, who is dealing with logical issues,

3.5 Adequate Data Transfer 101

such as tasks and variables. In order to relieve him or her from application
details, mapping between views is helpful. To allow for this, in this section
a specific approach called distributed shared memory model is introduced to
isolate control applications from the issues of hardware implementation.

To achieve this isolation, the underlying communication system is only
exposed as a set of data containers called memory cells. Two processes use
the same cells to communicate with each other regardless of their locations
(i.e., on which processing nodes the processes actually run, on the same or on
different nodes). The same mechanism is used for the communication between
control applications and sensors or actuators. Thus, shared memory cells serve
as sources or sinks of the virtual communication links between application,
hardware platform, and environment.

An example is shown in Figure 3.13. The application logically consists of
three function blocks, two process inputs and two outputs, which all commu-
nicate with each other. For instance, FB2 receives information from Input1:
the latter writes information into memory cell MC4, where it is available to
FB2. FB2 and FB3 communicate with each other in both directions using
MC3 and MC7. They both send data to FB1 via MC2 and MC6, respectively.
In turn, FB1 controls Outputs1 and 2 via memory cells MC1 and MC5.

MC4 MC8

FB1

FB2 FB3

Output 1

Input 1 Input 2

Output 2

FB2
memory
cells set

FB1
memory
cells set

FB3
memory
cells set

MC1
MC2
MC3

MC5
MC6
MC7

Shared
 memory
 cells

Fig. 3.13. Model of data transfer among function blocks and peripherals

Partners in communication access their memory cells in their usual mem-
ory address space. If communicating units reside on the same node, the same

102 3 Undesirable Properties of Conventional Hardware Architectures

cells in the form of memory locations are shared among them. If, however,
they are running on different nodes, data written to a cell are transparently
distributed through the system by means of TTCAN messages. Each com-
municating node accesses its own set of memory cells, which in Figure 3.13
is represented by a dashed rounded rectangle. FB1, for example, only needs
to “see” memory cells MC1, 2, 5, and 6, Input1 can only access MC4, etc.
Cross-sections of rectangles represent communication cells.

Process data acquisition is a sensitive part of process control. In order to
prevent faults in further processing, it is reasonable to detect faulty input data
at the very beginning. For that purpose, each data cell can be associated with
a validation routine, which may perform different kinds of testing and vali-
dation of data. The same routine can be used for mapping between different
data domains used by the application and the peripherals. Because data are
indirectly transferred between control applications and peripherals, desired
data transformations can be applied. Control applications usually deal with
abstract representations of certain physical quantities from the environment
(e.g., temperature represented in Kelvin). On the other hand, acquisition and
actuation of these quantities are performed by simple input/output devices
(e.g., A/D converter connected to a temperature sensor). These devices use
their own kinds of data representation. To simplify the development of control
applications, system software can transform between different value domains
in transparent ways; see Figure 3.14.

In the example, voltage provided by a temperature sensor is first converted
into an integer and then transformed into a floating-point value appropriate
to the application. To allow for this, a memory cell is associated with two
transformation functions. The first is applied when data are written to, and
the second is applied when data are read from the cell. If, for some reason,
the temperature sensor must be replaced with one of different type, only the
transformation functions need to be updated accordingly. These functions may
be implemented either in software or in firmware of ASIC – programmable
hardware devices (FPGA, SOC, etc.) The latter option is less flexible, but
safer.

sensor A/D application+k1
*k2

0..5V 0..127 253K..373K

Temp
{253K..373K}

Fig. 3.14. Mapping of domains between the A/D converter and application-related
floating-point units

In addition to actual application data, memory cells may also contain
some other attributes that can be provided by the applications (e.g., quality
of information generated by a producer) or the systems software (e.g., time-

3.5 Adequate Data Transfer 103

stamp when data has been generated). System software can also monitor when
data in cells actually change, and signal this to control application, etc.

When both source and destination peers for communication reside on the
same processing node, simple memory transfer of data within common global
memory can be used. On the other hand, when communication spans over two
or more nodes, the data written into a cell in one node must be transparently
distributed to all appropriate nodes in the system by means of some sort of
transparent data transfer in the background.

FB1

FB2 FB3

Output 1

Input 1 Input 2

Output 2

MC1
MC2
MC3

MC5
MC6
MC7

Shared
 memory
 cells

Proc 1

Proc 2

Per 2

Per 1

MC4 MC8

Fig. 3.15. Mapping of function blocks and I/O to processors and peripheral units

In Figure 3.15, following the above example, function block FB1 is running
on processor Proc1, while FB2 and FB3 are mapped onto Proc2. Inputs1 and
2 come from peripheral unit Per1, Outputs1 and 2 reside on Per2. While FB2
and FB3 can communicate via MC3 and MC7 using common global memory,
for the data transfer between FB1 and FB2 via MC2, and between FB1 and
FB3 via MC6, a communication mechanism is necessary. The same holds for
the transfer of all I/O data.

The implementation architecture of the approach of distributed replicated
shared memory cells is depicted in Figure 3.16. Function blocks running on
a certain processor only need access to a certain subset of memory cells.
Each processor keeps its own replica which is periodically updated among
partners sharing the same cells. Application software running on a processor
accesses its subset of memory cells residing in its local memory. To allow for
virtually simultaneous access from application software, and updating from
the distributed shared memory system, local memory is implemented in a
dual-port technology. Hardware support takes care of rare conflict situations,
when requests from both sides arrive simultaneously. Local memory cells are
cyclically updated with other replicas by underlying firmware. The values are

104 3 Undesirable Properties of Conventional Hardware Architectures

taken from the messages periodically transmitted over a bus. These messages
are generated by the producers of the information for the relevant memory
cells.

As the means of communication, the TTCAN protocol mentioned earlier
is most suitable. Contents of the memory cells are generated by producers
and contained in messages. If the contents of a cell changes, the value of the
memory cell is overwritten on all nodes on which it is present by a firmware-
implemented mechanism. It runs transparently on the processing and periph-
eral units in a system, connected by the TTCAN bus. The mechanism is
triggered (and thus synchronised) by the basic cycle’s reference messages.

Fault Tolerance in Data Transfer

Apart from the fault tolerance offered by the TTCAN protocol, as mentioned
in Section 3.5.3, the proposed transfer mechanism of distributed replicated
shared memory inherently contains further important features, enabling easy
reconfiguration.

An example is shown in Figure 3.17. For better overview, the memory cells
are not shown and are supposed to be included in the function blocks. In nor-
mal fault-free mode, Driver1 from the peripheral unit reads Sensor1 values,
possibly doing some processing on them, checking their bounds and, finally,
generating messages, in synchrony with the TTCAN schedule and timing. FB2
running on Proc.2 takes in this information, does some further calculations,
and sends the results over the message M11 to FB1 on Proc.1. Data-flow
is shown by dashed arrows. Assuming that Proc.2 is more error-prone than
Proc.1, the designer may consider preparing an alternative function block,
FB2’, which can, to a certain extent, replace FB2 in case of failure of the
latter. It runs on the more robust, but less powerful Proc.1. Thus, it should

Communication subsystem

Distributed shared memory system

Application
software

memory
cells subset

firmware

Application
software

memory
cells subset

firmware

Application
software

memory
cells subset

firmware

memory
cells subset

firmware

... ...
I/O

drivers

memory
cells subset

firmware

I/O
drivers

process and system
peripheralsProc.1 Proc.nProc.2

Fig. 3.16. Architecture of the distributed shared memory approach

3.5 Adequate Data Transfer 105

FB 1

FB 2’

Proc.1

FB 2

Proc.2

Driver 1

Driver 2

Per.

sensor 1

sensor 2

RM M11 M12 M13 ...

FB 1

FB 2’

Proc.1

FB 2

Proc.2

Driver 1

Driver 2

Per.

sensor 1

sensor 2

RM M11 M12 M13 ...

N
or

m
al

 m
od

e
M

od
e

w
ith

 fa
ul

ty

P
ro

c.
2

an
d

se
ns

or
 1

Fig. 3.17. Reconfiguration in the case of a unit failure

be supposed that the performance of FB2’ is more modest, and the function-
ality must be degraded gracefully. The function block is pre-loaded on Proc.1.
A further assumption is that Sensor1 may also fail, and back-up Sensor2 is
prepared to replace it. In case of failure of Proc.2 or/and Sensor1, the system
is re-configured. Instead of the faulty Sensor1, Sensor2 will generate input
values. These are, instead of the faulty FB2, now read by FB2’. This function
block also supplies the data to FB1.

By using the shared memory model, it is also possible to perform a sim-
ple and unified kind of tracing, logging, and diagnostics of important state
variables used by control applications. Because information written to a cell
is transparently distributed to all system nodes, it is possible to have a ded-
icated monitoring node that acquires the current system state, saves it and,
possibly, evaluates its plausibility.

4

Programming of Embedded Systems

Similar to the development in other domains of embedded systems, in practice
control applications are often programmed by improper means. For a num-
ber of pragmatic reasons, the same methods, techniques, and programming
languages as for general-purpose desktop applications are employed. One of
the reasons for this is common knowledge of programming: the languages and
methods learned can do the job to a certain extent, so most practitioners use
them with little concern about the rather specific circumstances of embedded
systems.

There is, however, a number of aspects of building embedded computer
systems that differentiate them from the development of traditional computer
applications. In addition to the requirements that can be found there, em-
bedded systems necessitate many kinds of interdisciplinary requirements to
be fulfilled. Below, some characteristic groups of them are enumerated. The
most important issues will be discussed in more detail later.

Consideration of time. There are several inherent temporal characteristics
of control systems. One is reaction time, i.e., the time interval between the
moment when a particular condition occurs, and the moment when the control
system starts to react upon it. Another characteristic is task execution time,
i.e., the time needed to perform a specific task. It depends on the capabilities
of the hardware platform and the system software of the control system (such
as speed of the microprocessor, throughput of the communication infrastruc-
ture, or latency of tasking operations).

Based on these characteristics, two parameters are usually set and included
into the system requirements for each task in a control system: its deadline
and its execution time. The deadline is a property of the system as a whole
and must be met — at least for hard real-time tasks — even in worst-case sce-
narios. Whether or not the deadline will be met depends on the time needed
for the system to detect the task triggering conditions, the time the system
software needs to react on it, and the execution time, i.e., the time the control
application spends performing the appropriate actions. In addition, of course,

108 4 Programming of Embedded Systems

the load all other tasks impose on the system must be considered. The ex-
ecution time of a task is important for the scheduling algorithm employed
and for schedulability analysis. Usually, only the worst-case execution time is
relevant.

Another temporal characteristic of a control system is how frequently a
certain task-triggering condition will occur in the system. This characteristic is
important for schedulability analysis. For example, an air-conditioning system
will probably have a relatively long time between two successive requests
for changes of the temperature regulated. In contrast, for a radar tracking
system, the target’s position may change very frequently. It is also important
to examine the distribution of event occurrence, i.e., whether events occur
periodically or sporadically. Periodic events with long intervals are much easier
to deal with by control systems than sporadic ones with high frequencies of
occurrences.

Consideration of other non-functional requirements. Usually, there are
some other requirements specific to the application domain set for a control
application that cannot always be expressed in the program code. These re-
quirements are commonly also safety-related features of the system and must
be dealt with consistently. For example, in a radiation device for cancer treat-
ment, it must be assured that a maximum dosage of radiation will not be
exceeded; or for an elevator, the maximum acceleration allowed is limited.

A control system usually has no provision to measure directly such quan-
tities; even if it has, there must exist some other means to assure that safety
is retained even in the case that the control system fails. Coming back to
the cancer-treatment example, there must exist an independent device that
measures the current level of ionisation exposure and raises alert in case of a
possible overdose. Similarly, the elevator must have a mechanical emergency
braking system to be engaged if the acceleration is too high.

Dynamic system behaviour and distributed computing. Almost all appli-
cations of embedded systems consist of certain numbers of autonomous as-
signments that must be executed in parallel, communicate with each other,
and synchronise their execution. In distributed control systems, these assign-
ments may be executed on different processing units. All this requires explicit
support for modeling and programming parallel activities.

Diverse target platforms. Desktop computer applications are currently be-
ing executed on only around a dozen hardware platforms. Moreover, there are
just a couple of major processor vendors for this kind of platforms. On the
other hand, there exist a vast number of different platforms and processors
for embedded systems, and also a variety of input/output devices for them.
For these reasons, it is very difficult to build a universal embedded control
application that can be used on various kinds of targets. Usually, software
libraries for the platforms are missing, and programmers must deal with each
individual component of hardware separately. Therefore, it is wise to separate

109

the algorithmic part of an application from the device driver routines. Some
of the operating systems for embedded systems include a so-called Hardware
Abstraction Layer. This additional layer virtualises the use of input/output
devices and microprocessor platforms, however at the expense of efficiency
and speed.

Limited resources. There is high pressure on the producers of embedded
systems to reduce the expenses of building controlled systems to a minimum.
Usually, sacrifices are necessary with respect to the amount of available mem-
ory and others hardware resources, e.g., to achieve low power consumption. A
lower-performance microprocessor causes longer execution times and, there-
fore, increases the likelihood of system overload or deadline misses. Lower
memory capacity limits the size of program code and data structures. These
shortcomings introduce another level of complexity to system designers and
programmers, viz., how to find solutions complying with the limited assets.
Code must often be optimised by hand, the complexity of algorithms must be
reduced, or the accuracy of results must be degraded. If power consumption
is an issue, another kind of measure must be taken that puts the hardware
components currently not in use into stand-by mode. There is little support to
deal with these circumstances. A good compiler can effectively optimise the
amount of space used; usually, however, there is a trade-off with execution
time. Moreover, virtually no tools available can help if the power supply is
limited. Therefore, all this requires good knowledge of the components used
and experienced programmers.

Low-level access to hardware. A typical control system interacts with the
systems controlled and the environment through various sets of sensors and
actuators. In contrast to typical desktop applications, which work with a well-
known and limited set of I/O devices, different and usually solution-specific
hardware components are required. To use them properly, in-depth knowledge
of them is usually required allowing to influence them on low levels.

Fault tolerance and safety criticality. The vast majority of control systems
must be considered safety critical, i.e., a fault in (at least a part of) an appli-
cation can lead to situations where relatively large material losses may occur
or even human safety may be endangered. Another important aspect is in
many cases the availability required of a control system, such that production
does not stop even if there is a fault. Therefore, embedded systems must be
robust enough and must react to faults both in the plants controlled and in
their own hardware and software in a controlled manner. Here, distributed
architectures of embedded systems guarantee more flexibility in dealing with
faults. If a component fails, the functionalities lost can be replaced by re-
dundant resources from other nodes, possibly with no degradation in system
performance.

Long exploitation time. Embedded systems are intended for use during long
times without upgrades and with as little maintenance as possible. A large

110 4 Programming of Embedded Systems

number of control systems are physically implanted into controlled devices,
or they are placed in isolated and hazardous environment where they are
not easily accessible. Another reason for long exploitation is the expensive
development. To build a dependable control system and to prove formally
that it will work within specifications all the time is time-consuming and
costly. When something is changed, the validation and certification processes
must be repeated. As an example, the control systems of the Space Shuttle
are almost the same as were already used in the mid-1970s [111]. The Space
Shuttle has APA-101S computers (five of them for redundancy) running at
about 1.2 MIPS, and equipped with a few megabytes of ferrite core memory
featuring resistance to radiation. The entire control software for the Shuttle
is less than 1 MB in size.

On the other hand, software upgrades are in some cases not so uncommon
anymore. It has been observed, for instance, that the ignition control software
in certain cars has been upgraded for better fuel consumption and, thus, higher
energy efficiency. The following example illustrates that software upgrades can
be used to overcome flaws in the hardware. When the main antenna of the
Galileo spacecraft did not deploy fully, the mission was in jeopardy [14]. There
was no possibility for any repairs. With software upgrades providing better
data compression algorithms, however, it was possible to regain many of its
capabilities.

Holistic approach to develop all system components. In developing stand-
alone computer systems, developers usually focus on the software using some
off-the-shelf operating system, supporting libraries, a commercial database,
etc. For embedded systems, however, it is usually necessary to develop not only
the software but also the hardware, and sometimes even the operating sys-
tem. Advances in technology mean that parts of the software algorithms can
actually be implemented in hardware (e.g., by means of field programmable
gate arrays). To obtain satisfactory results, all components of such control
systems must be designed in a holistic way. This methodology is also essential
if temporal predictability and dependability are decisive issues.

Human factors. Application developers of embedded systems are usually
control, electrical or mechanical engineers. They have a broad knowledge in
their problem domains, are skilled in designing control applications, but often
have limited knowledge of computer engineering and computer science. Since
they are usually swamped with work and do not have much time to learn
further tools and methods, the means offered to them for application design
should be problem-oriented, user-friendly, and not too complicated to learn.
The design results must be easily understandable, surveyable, and verifiable
with reasonable effort.

This is probably also the reason why formal methods and sophisticated
abstract design approaches are not widely accepted in these communities.
Instead, strict specification and verification should be integrated into the de-

4.1 Properties Desired of Control Systems Development 111

sign process in a problem-oriented way, without imposing too much additional
work on often already overloaded application designers.

4.1 Properties Desired of Control Systems Development

Based on the particularities discussed in the previous section, some elements
can be identified that should be part of a programming infrastructure for em-
bedded control systems. Most of the commercially available development tools
lack, however, at least some of them. To cope with this situation, programmers
can apply sets of formal organisation rules that mimic the desired properties
indirectly. For example, one of these features is explicit task declaration. In-
stead of being a construct inherent to the programming language, most devel-
opment environments provide task creation by system software calls, only. By
declaring appropriate macros and/or routine wrappers, the particularities of
system calls can be concealed. If code is ported to a platform with a different
operating system, only the wrappers must be modified. Some development
tools even allow implementation of custom-made development environments
through a set of well-defined application interfaces. Some features that greatly
enhance the suitability of a programming language for embedded applications
will be discussed below.

4.1.1 Support for Time and Timing Operations

It is paradoxical that the notion of time, being the most characteristic fea-
ture of real-time systems, is largely neglected in most programming languages
for embedded applications. Development tools and programming languages
should explicitly include support for different presentations of time and oper-
ators to be used with temporal data types. Moreover, the temporal behaviour
of the applications themselves (execution time, deadlines, etc.) should also be
definable and observable.

The majority of programming environments treats time as integer or
floating-point values. For example, the data type clock t used in the time.h
library of the ANSI C language is actually an integer. The sizes and precisions
of the data types representing temporal quantities should depend on the types
of applications. A control system with short reaction times, for instance, re-
quires very detailed and accurate representations, while, on the other hand,
in some slower processes the time quantum can be larger.

Temporal Data Types

There are two different aspects of temporal values. The first one denotes a
specific, absolute instant (point in time, e.g., “at noon” or “8:00 hours”), and
the second one represents a relative time passed, a duration (time interval, e.g.,
“5 s”). For this purpose, some programming languages (the most characteristic

112 4 Programming of Embedded Systems

example is PEARL [29]) introduce two data types, CLOCK and DURATION,
which represent these two aspects of time, respectively. Further, a set of well-
defined arithmetical operations is defined for the temporal data types, as listed
in Table 4.1. For example, to compute the duration between two absolute
points in time, their values are simply subtracted. A time interval is always a
non-negative quantity.

Table 4.1. Result types of arithmetical operations on temporal data

numeric * duration = duration

duration / numeric = duration

duration + duration = duration

duration - duration = duration

clock + duration = clock

duration + clock = clock

clock - duration = clock

clock - clock = duration

At the implementation level, temporal quantities must be represented by
generic data types and, finally, mapped onto physical memory. Relative time
intervals are typically represented as integers expressing a number of basic
time units (e.g., milliseconds). However, for programming convenience, other
time units can be used within the applications, which are then internally
converted into the basic ones. For absolute time, representations are more
complicated and possible in different ways. One is to pack absolute time into
a structure comprising different time parts as is shown in Figure 4.1.

absolute_time struct {

int year,

int month,

int day,

int hour,

int minute,

int second,

int millisecond

}

Fig. 4.1. Structural representation of absolute time

On one hand, this representation facilitates the conversion of the internal
representation to a form understandable by humans and vice-versa, whereas
on the other hand it renders the implementation of temporal operations very
difficult. For example, if a variable of this type is incremented by 1 min, a
lot of testing and calculation must be performed. So, if after incrementing
the number of minutes exceeds 59, the hours must also be increased, then

4.1 Properties Desired of Control Systems Development 113

perhaps the days, etc. The system software must also consider the number
of days in months and leap years. In addition, to increase the precision of
temporal variables, further elements must be added to the structure.

DDDD.FFFFFFF} }

number
of days

fraction
of a day

Fig. 4.2. Representation of absolute temporal values with Julian day numbers

Another form of representing temporal values is to use floating-point num-
bers in a form resembling the Julian date (Figure 4.2). The Julian day or
Julian day number (JDN) is the integer number of days that have elapsed
since noon of the Julian calendar’s day 0, viz., Monday, 1 January 4713 BC.
Negative values can also be used. As an example, noon of 3 April 2007 carries
the Julian Day Number (JDN) 2454193 and is divisible by 7, because it was
also a Monday. The fractional part of the JDN gives the time of day as a dec-
imal fraction of one day, with 0.5 representing midnight. Typically, a 64-bit
floating point (double precision) variable can represent an epoch expressed
as Julian date to about 1 ms precision. For details about fractional values
see Table 4.2. For computer implementation and use in technical systems, the
traditional JDN is usually slightly adapted in order to save memory space.
The time origin is thus changed, e.g., to 1 January 1900 in Linux. Also, the
fraction usually starts with midnight instead of noon for practical reasons.

Table 4.2. The decimal parts of a Julian date

0.1 = 2.4 h or 144 min or 8640 s
0.01 = 0.24 h or 14.4 min or 864 s

0.001 = 0.024 h or 1.44 min or 86.4 s
0.0001 = 0.0024 h or 0.144 min or 8.64 s

0.00001 = 0.00024 h or 0.0144 min or 0.864 s

With this representation, the transformation of time into a form read-
able to humans becomes more complicated. It does not present a problem,
however, since this is carried out by a compiler when programming and by
a user interface at run-time. Temporal arithmetic is highly facilitated as ba-
sic floating-point operations are employed. For example, to increase a time
variable by 1 min the value 1

24×60 = 6.944̇ × 10−4 must be added.
The granularity of temporal values depends on the precision of floating-

point numbers. Single precision floating-point numbers yield about seven deci-
mal places. That means that the granularity is up to 1

100 of a day (five decimal
places are needed to represent the number of days). This is more than 14 min

114 4 Programming of Embedded Systems

and, therefore, not suitable for most cases. Double precision floating-point
numbers already provide 15 decimal places with a granularity of less than
1μs. This is probably sufficient for most applications.

A drawback of this representation is that it is not suitable for simple
processing elements without floating-point support. Once a quantisation of
time (e.g., 1 ms) is defined meeting the time constants of a process, however,
elapsing basic time units can be counted in integer variables. In other words,
the JDN is multiplied by a factor such that only the integer part remains.
The absolute time can then be interpreted as number of basic units having
elapsed since a pre-defined time origin. Then integer arithmetic may be used
and, knowing the JDN of the origin, it is easy to calculate the absolute time
of any instant.

Access to Current Time

To control temporal behaviour (e.g., to schedule an operation in the future, or
to measure time), a control application must also have access to a clock. Such
a time source is usually implemented as a counter (also called timer) that
counts some basic clock units, realised as relative or absolute time variable.
If the time source is only used locally within the control application, the
relative notion of time is usually sufficient. In the simplest case, the current
time may be represented by a number of basic time units (or ticks) passed
from the start-up of the system: Most programming environments include
a system function like TICKS that returns this value. A platform may also
provide several independent timers with possibly different time units that can
be run or stopped.

In addition to measuring the relative time passing, absolute time is often
needed to allow temporal synchronisation with events outside of a control
system. A typical example is an automatic heating system to be switched
on and off at specific hours during a day. In the program, the absolute time
is available through system functions like NOW or DATE. A hardware clock is
typically used for implementation, which is usually battery-powered to allow
for keeping the time even during periods of system shut-down or failure. The
clock must only be set once. As an alternative, the absolute time can also be
implemented by software. Then an interrupt routine is triggered periodically
to increment the seconds, minutes, etc. accordingly. Such a clock must be
re-set, however, on any system re-start.

For simple control applications, clock accuracies are not so important and
small drifts can be tolerated. If higher accuracies are required, time informa-
tion can be obtained from (or periodically synchronised to) external sources
of precise time such as GPS or terrestrial radio stations for time, e.g., DCF 77
[94].

In distributed control systems, additional measures may be taken to assure
that the nodal clocks are co-ordinated. This can be achieved in several ways.
Global time can be provided from a single system node. This unnecessarily

4.1 Properties Desired of Control Systems Development 115

increases the communication load, however, and introduces a potential central
point of failure. A better solution is to integrate the clock source and/or clock
synchronisation into the communication infrastructure (e.g., synchronisation
by reference messages in basic cycles in TTCAN, see Section 3.5.2, Figure 3.9).

Using counters to measure time bears the danger of hidden errors. The first
kind of error may occur if counters of too small a size are used. Figure 4.3
shows an example of a delay function. The local variable t is set to a relative
time in the future according to the delay desired. Then a loop is performed
until this time is reached. The function ticks returns the number of basic time
units elapsed since system start. An error may occur, however, if the timer’s
value is close to its maximum. When the counter reaches its maximum, it re-
sets to zero and starts counting again. If it is accessed twice, prior to and after
the turnover, the comparison (and other arithmetic operations) will produce
wrong results. In the case of the example given, the loop will be finished
prematurely. Furthermore, if the range of variable t is larger than the values
provided by the function ticks (e.g., if ticks uses a 16-bit timer and variable
t can accept 32-bit values), the situation can emerge that t becomes larger
than the function’s value and, as the consequence, the loop will never end.
Such errors may not occur during application testing. Considering that control
systems are often run continuously for long times, however, this may happen
later in real use.

void delay(int ms)

{

int t;

t = ticks() + ms*TICKS_PER_MS;

while (ticks()<t) { /* void */ };

}

Fig. 4.3. Example of a delay function

For illustration, in Table 4.3 the maximum time intervals that can be
achieved with different timer sizes are given for the basic time unit 1 ms.
Obviously, 32 bits are not enough for continuously running applications. On
the other hand, 64 bits are far more than enough, and the implementation of
a corresponding temporal arithmetic is rather complex and slow, especially
on simple microprocessors. A typical approach to extend the timer size is to
use additional variables and software routines. Then, an interrupt routine is
triggered when the counter reaches its maximum value and a time variable is
incremented accordingly.

Timers with register size of double-words or even greater may give rise
to another kind of errors. For example, suppose that a timer can hold 32-bit
values. Except on microprocessors with word length of 32-bit or more, reading
such a value cannot be performed by a single microprocessor instruction.

116 4 Programming of Embedded Systems

Table 4.3. Time delays achieved by counters of different lengths

8 bits: 256 ms ∼= 0.25 s
16 bits: 65,536 ms ∼= 1 min
32 bits: ≈ 1190 h ∼= 50 days
64 bits: ≈ 584,942,400 years

Assume that the 32-bit variable current time is updated periodically within
an interrupt routine on every tick of a timer. After the first (lower) part of
the variable is read by the main program, an interrupt may occur during
which current time is incremented. At a certain instant, the word’s lower
part may overflow and, thus, be reset, and a one carried to the higher part,
i.e., both halves of the timer variable need be updated. After the interrupt,
the second half of the timer variable is read. If the initial value of the timer
was, e.g., 0x0000f f f f, the result of the assignment will be 0x0001f f f f instead
of 0x00010000. To avoid this problem, reading the timer variable must be
placed within a critical section during which interrupts are disabled.

Explicit Declaration of Temporal Requirements

In real-time systems, it should a priori be proven that the temporal require-
ments will be met. The latter are usually defined in off-site documentation.
To support automatic schedulability analysis and task scheduling, however,
it would be more appropriate to include these specifications in the code. For
example, for temporal analysis and for EDF scheduling, the deadlines of a
task must be known in advance. An obvious way to achieve this would be to
provide in the code an additional attribute for task creation/declaration. If
this approach is not applicable due to syntax limitations, strictly formatted
information in form of comments ignored by a compiler, but treated by an
execution time analyser, can be defined and used for this purpose (see the
next section). In addition to task deadlines, some further temporal attributes
should be defined like, e.g., minimum time between two occurrences of some
signal.

4.1.2 Explicit Representation of Control System Entities

Traditionally, embedded control systems deal with special kinds of objects
that are not common to other kinds of applications, viz., tasks, synchronisers,
signals, etc. Such entities are usually realised inside operating systems and
system software, only. To increase the readability of application code and to
support a problem-oriented way of thinking, however, it would be helpful if
these objects were expressed explicitly within the programming environment.

4.1 Properties Desired of Control Systems Development 117

Representation of Tasks and Tasking Operations

Asynchronous dynamic embedded control systems need to support parallel
elaboration of independent activities. To realise the simultaneity requirements,
the concepts of tasks, processes, and threads are introduced into application
development, representing the basic entities of concurrency. They are usually
executed under control of an operating system. In some implementations, how-
ever, no operating system is used and the implementation of parallel execution
is under control of the application programmers.

Different authors and vendors use different naming conventions for the
same concepts. The term process usually represents a functional unit that
may invoke tasks or threads. The latter are more or less synonyms. In general,
processes are executables with separate memory spaces, while tasks or threads
may share common same memory spaces. Here, the general term task is used
to denote the unit of concurrency.

Common programming languages make only limited provisions for the
declaration of tasks. Usually (like in C and Java), tasking operations and
synchronisations are implemented as operating systems calls using one of the
predefined tasking models. Examples for the use of system functions to handle
tasks (or, in this case, threads) according to the POSIX standard are shown
in Figure 4.4

pthread_create(thread_handle,thread_attr,start_routine,argument)

pthread_exit (status)

pthread_yield

Fig. 4.4. Examples of task handling in POSIX

Routine pthread create creates a new thread and prepares it for execu-
tion. Typically, threads are first created in the initialisation phase of program
execution. Once created, threads become independent entities and may create
other threads during their execution. The first parameter is a thread handle
returned by the creation routine and used in subsequent systems calls. The
second parameter is a set of thread attributes which can be used to specify the
thread’s behaviour (e.g., its priority, pre-reserved size of stack, or scheduling
policy). The next parameter points to a routine used as a primary execution
body of the thread. It is possible that several threads use the same routine,
but each thread instance has its own stack. The last parameter is an op-
tional user-defined argument that may be passed to start routine. Routine
pthread exit is used to explicitly leave the thread. Typically, it is called after
a thread has completed its work and its existence is no longer required. The
programmer may optionally specify a termination status. The pthread yield
routine forces the calling thread to relinquish processor use, and to wait in
the ready queue before it is scheduled again.

118 4 Programming of Embedded Systems

However, to support the development of embedded systems better, the
entities of concurrency should be declared explicitly (e.g., like tasks in Ada or
PEARL). An example of a task declaration in PEARL is shown in Figure 4.5.
The portrayed task has priority 10.

SomethingToDo: TASK PRIORITY 10;

do something...

END;

Fig. 4.5. Example of a task declaration in the programming language PEARL

If temporal circumstances must be analysed a priori , all instances of tasks
and their scheduling conditions must be known in advance, and dynamic cre-
ation of tasks is not possible. This approach also provides for better under-
standing of the code, and supports an engineering way of thinking. In a pro-
gramming environment without explicit task declarations, this can only be
achieved if all tasks are created at the start-up of an application.

After a task is instantiated, it can be scheduled for execution. Tasks can be
executed periodically or upon occurrences of signals or events. During execu-
tion, a task can be suspended until a certain continuation condition is met, or
until some shared resource becomes available; an example will be shown in the
next section. Again, in simpler programming environments, this is initiated by
systems calls for which some appropriate data structures are used. For exam-
ple, to implement threads periodically executed in a pure POSIX routine, the
programmer must either allocate a system timer and bind it to thread execu-
tion, or implement an infinite loop with an appropriate delay within any cycle.
PEARL is one of the few programming languages providing explicit tasking
operations. Some examples for tasking operations and scheduling conditions
are shown in Figure 4.6.

In the first example, the task is activated periodically every hour until a
certain absolute time. In the second, the task is activated asynchronously by
an external event, viz., when a push-button is pressed, after a delay of 100 ms.
The third example starts a periodic task activation beginning at 6:30 hours
every 2 min for a time interval of 15 min. The example with the RESUME
statement suspends the execution of the current task for 5s. The next two
statements suspend the mentioned task, and schedule its continuation after
10 min, respectively. A TERMINATE statement prematurely ends the execution
of specified tasks. A PREVENT statement annihilates the schedules for all task-
ing operations with respect to a specified task. For example, by this a periodic
task will not be activated anymore. In contrast to task termination, however,
PREVENT does not affect the execution of tasks already started.

4.1 Properties Desired of Control Systems Development 119

EVERY 1 HRS UNTIL 12:00 ACTIVATE SomethingToDo;

WHEN ButtonPressed AFTER 0.1 SEC ACTIVATE ButtonIsPressed;

AT 6:30 EVERY 2 MIN DURING 15 MIN ACTIVATE Wake_me_up;

AFTER 5 SEC RESUME;

SUSPEND SomethingToDo;

AFTER 10 MIN CONTINUE SomethingToDo;

TERMINATE SomethingToDo;

PREVENT SomethingToDo;

Fig. 4.6. Some tasking operations in the programming language PEARL

4.1.3 Explicit Representation of Other Control System Entities

In addition to tasks, other items typical for embedded systems should be
dealt with explicitly by the programming environment. Examples for them are
signals and synchronisation mechanisms. In reality, availability and use greatly
depend on capabilities of the underlying operating system. Different operating
systems provide different kinds of synchronisers. For example, POSIX knows
three kinds of synchronisers: semaphores, mutexes, and condition variables,
each with its own set of system routines. A set of semaphore functions is
shown in Figure 4.7 for illustration,.

int sem_init(sem_t *sem, int pshared, unsigned int value);

int sem_wait(sem_t *sem); /* P(sem), wait(sem) */

int sem_post(sem_t *sem); /* V(sem), signal(sem) */

Fig. 4.7. Basic system functions for semaphore operations in POSIX

An example for the opposite approach is the programming language
PEARL which allows one to declare explicitly semaphores and bolts (synchro-
nisers with both exclusive and sharing locking capabilities) (see Figure 4.8)
and treat them within the language.

To prevent difficulties that may occur with task synchronisation, corre-
sponding mechanisms should be structured, i.e., it must be clear where a
section for mutually exclusive use starts and where it ends. A scenario, where
a synchroniser is locked in one task and then unlocked in another, produces
complex behavioural patterns and may lead to deadlocks. The same holds

120 4 Programming of Embedded Systems

DECLARE sem SEMA PRESET(1); ! Declare and preset a semaphore

...

REQUEST sem; ! P(sem)

...

RELEASE sem; ! V(sem)

Fig. 4.8. Basic semaphore operations in PEARL

if within a single task a synchroniser is locked in one control structure and
unlocked in another.

if (SomeCondition)

wait(Semaphore);

...

if (SomeOtherCondition)

signal(Semaphore);

Fig. 4.9. Example of ambiguous use of synchronisers

In Figure 4.9 a scenario with unsafe handling of synchronisation mech-
anisms is illustrated. According to the conditions of if-statements, two er-
roneous scenarios are possible: the synchroniser is locked (wait successful),
but never unlocked (missing signal), and the synchroniser is only unlocked
(no wait). With structured synchronisation constructs such as monitors (see
Section 2.3.4) it is possible to prevent deadlocks, because the sequences of
lock and unlock operations are always in order and deterministic. In the case
of synchronisation mechanisms with unstructured syntax, it is usually left to
the programmer to assure this in the code.

4.1.4 Support for Temporal Predictability

The ultimate goal in programming hard real-time control systems is to as-
sure that all activities will be terminated within predefined periods of time
and to assure this a priori . In this sense, all parts of control applications
— including program code — must behave deterministically in time. Conse-
quently, execution times of all programming constructs must be deterministic
and easily predictable. For example, synchronisation mechanisms usually in-
clude statements for locking with indefinite durations. In real-time systems,
such statements must be temporally guarded not to take more than allocated
amounts of time. Similarly, there can be no statement in a temporally critical
tasks that waits for a user intervention an indefinite long period of time.

The temporal behaviour of some other programming elements, like dy-
namic data structures or recursion, is difficult to predict. This is because their

4.1 Properties Desired of Control Systems Development 121

actual complexity depends on current data values and cannot realistically be
determined in advance. With reasonable effort, dynamic data structures can
be transformed into static ones, and recursive algorithms can be implemented
in an iterative manner. For the same reason, databases, expert systems, and
similar programming tools should be avoided, unless they are specifically de-
signed for use in hard real-time tasks. Further, some other features, such as
unrestricted use of GOTO statements, make proper temporal analysis impos-
sible.

Assurance of temporal predictability must be integrated into the develop-
ment tools. For example, a compiler should notify programmers when tempo-
rally unsafe features are used. Temporal analysis can generally not be carried
out by hand; it requires proper software tools performing the analysis auto-
matically. More details about this topic will be given in the next section.

4.1.5 Support for Low-level Interaction with Special-purpose
Hardware Devices

In typical desktop applications, the diversity of hardware components is lim-
ited and the programming environments provide high-level access to them. In
contrast, in embedded systems there is a tight correlation between the hard-
ware and software parts of control applications. A vast number of different
hardware components is used, which are not generally recognised by the sys-
tem software. Thus, only low-level interaction is possible. In general, all hard-
ware devices are directly accessible through some sorts of input/output inter-
faces, through which control applications interact with hardware devices (e.g.,
a temperature sensor’s analogue output is directly attached to an analogue-
to-digital converter, whose register is, in turn, accessible by the processor).

Input/output interfaces expose themselves to programmers through sets of
control, status, and data registers that are (at least in simpler cases) mapped
into the memory spaces of processors. To be able to perform adequate data
handling, programming environments must support direct access to these reg-
isters (i.e., direct access to some memory locations). Not all programming
languages allow this kind of interaction. In Modula-2, however, a variable can
be associated with an absolute address using the MAKEADR operator:

VAR AD [MAKEADR(0B800H)] : Integer;

Some programming languages provide limited capabilities to extend the
handling of hardware registers by automatically generating low-level device
drivers. For example, in PEARL it is possible to declare a hardware register
as an input/output device, and use similar input/output statements as with
any other device supported by the operating system.

As another example, in ANSI C it is not possible to associate a variable
to an absolute memory location, but to set a value of a pointer to refer-
ence a specific memory location. Status and control registers usually consist

122 4 Programming of Embedded Systems

of separate bits or groups thereof, that can be accessed individually. There-
fore, it is beneficial for programmers if such fields can be declared explicitly.
In Figure 4.10, an example of low-level access to an A/D converter in the
programming language C is demonstrated. Here, ADCON is a control/status
register consisting of several bit fields described by the data type adcon t.
The bit fields are used to allow access to individual sections of the register.
The union is used, however, to access the register as a whole. The register is
mapped to memory location 1234 (hexadecimal). For convenience, the macro
ADCON is defined that simplifies programming and improves readability of
the code by inherently resolving all typecasting.

typedef union {

struct {

ADON unsigned int:1; /* 1: enable A/D converter */

unsigned int:1; /* unused */

GODONE unsigned int: 1; /* (write)1: start conversion,

(read) 1: converting, 0: finished */

CHS unsigned int:3; /* input channel */

ADCS unsigned int:2; /* clock source for the conversion */

};

content unsignedchar;

} adcon_t;

#define ADCON *((adcon_t *) 0x1234)

...

/* initialisation */

ADCON.content= 0xC1;

/* start of A/D conversion */

ADCON.GODONE= 1;

/* waiting for A/D conversion to be finished */

while(ADCON.GODONE==1)

{ /* wait */ };

Fig. 4.10. Example of direct access to register of an A/D converter in ANSI C

Caution must be taken in accessing the registers of input/output interfaces.
In contrast to basic program variables, their contents may change indepen-
dently of program code execution. In the previous example, the GODONE bit of
the ADCON register is reset to zero when A/D conversion finishes. Difficulties
arise if optimisation is used during code compilation. Analysing the code, the
compiler may assume that the GODONE bit is set to one permanently. Because
of that, the condition in the subsequent while loop would always be true, and

4.1 Properties Desired of Control Systems Development 123

the loop would be executed for ever. Consequently, the loop’s condition test-
ing may be eliminated from the generated code by an optimising compiler. To
avoid this, the variables that may change their values asynchronously must be
specially marked. In most programming languages, such variables are marked
with the “volatile” attribute.

Another scenario where program code interacts with hardware on a low
level are interrupt service routines (ISR). Interrupts are a part of a mechanism
provided by the majority of processor architectures to allow efficient super-
vision of input/output devices. Interrupt signals are generated by peripheral
interfaces (or other hardware devices, e.g., timers). They signal to processors
that some events occurred, which need attention. When an interrupt occurs,
the processor temporally stops to execute the current application, saves its
context, and starts an interrupt service routine. Each interrupt source may
have a separate interrupt service routine. Based on the discussion in Sec-
tion 3.2, for easier temporal predictability and better fault tolerance, it is
wise to prevent interrupts altogether and to use polling techniques instead.
Interrupt service routines also strongly depend on the hardware devices used.
Sometimes, however, it is not necessary to write them, e.g., when very short
reaction times upon external events are required, or when special-purpose
hardware is used to which software support has no direct access.

Interrupt service routines have a similar structure as procedures, but with-
out parameters. When an ISR terminates, however, a different return mech-
anism than for normal procedures must be used, because the processor must
restore the register context saved at the start. Therefore, an additional at-
tribute is needed to indicate this to the compiler. In the language C, an ISR
is usually declared as:

interrupt isr() {
...

}

In practice, however, the syntax of ISRs is an extension to the standard
and not all compilers support it. Another mechanism to implement ISRs is
to write a standard procedure and to call an appropriate system function,
that creates a wrapper around the code and provides for all particularities
of interrupt handling. In POSIX, e.g., this is implemented with the system
routine posix intr associate(). Another possibility is to write an ISR in
assembly code and to link it with the main application. If neither possibility
applies, an appropriate device driver must be implemented or provided to be
integrated into the operating system.

Interrupt service routines run in privileged modes. Any error that occurs
in them may have catastrophic consequences to system operation. Therefore,
ISRs must be well verified and tested. Moreover, they should be as short
as possible to minimise the delays caused to the applications interrupted. If
longer servicing is required, it can be split in two parts. The first part is a

124 4 Programming of Embedded Systems

short IST scheduling the second part in form of a task, which carries out the
actual servicing. The task is executed under the normal tasking mechanism.

Another approach to low-level interaction with the hardware is by insert-
ing portions of assembly code. Most programming environments for embedded
systems allow one to insert parts of code written in the native assembly lan-
guage of the respective microprocessor. Again, this is usually an extension to
the syntax of the language used, and is handled differently in different tools. By
this, programmers can interact with the hardware directly, and have full con-
trol over execution. However, the code inserted is implementation-dependent
and difficult to maintain.

4.1.6 Support for Overload Prevention

Theoretically, if formal schedulability analysis can be performed, deadlines of
tasks should always be met. In real situations, however, not all circumstances
of system execution can be predicted with sufficient confidence. In addition,
hardware failures or transient increases in the occurrence frequencies of in-
put signals can result in deadline violations. With some additional support
provided by the applications, deadline misses can be prevented.

Any time a new task becomes ready, the operating system re-schedules all
tasks in the system and analyses schedulability at run-time. Using a proper
scheduling policy (e.g., earliest deadline first), the operating system can thus
predict possible timing errors that are going to happen in the future. If such
an overload situation is detected, newly arrived tasks with longer execution
times can be replaced by shorter ones to satisfy all deadline conditions.

As deadline prevention is under control of the operating system, all possible
execution alternatives for tasks must be known to the latter in advance. To this
end, all alternative implementations of a task must be declared. Unfortunately,
no commercially available development environment supports this approach.
A prototype solution will be demonstrated in Section 4.3.2.

If a deadline is violated because a sporadic event is firing more frequently
than anticipated, two other measures can be applied:

• If the event originates from a hardware interrupt, the interrupt can be
prevented from occurring by manipulating the associated device control
registers, or

• Interrupts can be prevented altogether and replaced by periodic polling of
data.

4.1.7 Support for Handling Faults and Exceptions

To provide for general fault tolerance, the techniques described in Section 1.3.3
should be applied. This kind of fault management is usually employed sep-
arately from direct application programming, because failures of processing
nodes, plant components, or other hardware components must be handled

4.1 Properties Desired of Control Systems Development 125

globally. There are certain other situations, however, where faults can (and
should) be handled by the applications. Such situations are failures within
certain subsystems, exclusively controlled by application programs, which, if
handled locally, must not always be reported to the outside, thus relieving the
global systems from servicing them.

Typical examples for this are faults induced by software errors. If not han-
dled properly, these faults may result in chaotic behaviour of the applications.
In the case of desktop applications, their negative consequences are, in general,
relatively harmless. On the other hand, for safety-critical control applications,
such faults could result in unacceptable losses.

Apart of software errors, applications may also deal with faults on locally
attached hardware devices (e.g., a fault of a sensor directly attached to a
processing node) either by handling them directly or by notifying higher-level
fault-management systems.

In real-time systems, a delay in the delivery of results must also be con-
sidered as fault. As such, it may as well be handled within applications.

Handling of faults with appropriate service software constitutes one of the
most severe threats to temporal determinism. Thus, dealing with exceptions
has to be elaborated very thoughtfully in real-time environments.

An exception is an exceptional event, an action, or a condition in the
execution of a program that changes its normal flow. A closer examination of
the possible sources of exceptions in embedded systems leads to the following
classification into three categories: preventable, avoidable, and catastrophic
exceptions.

Preventable Exceptions

The best way to handle exceptions is to prevent them from occurring in the
first place — as far as this is possible. Exceptions are preventable by imposing
certain restrictions on the use of potentially dangerous system features. Some
features, which could trigger exceptions as consequences of irregular situation
are presented below.

Memory-related exceptions. When using reference pointers and dynamic
data structures, address error exceptions may be triggered in numerous situ-
ations, e.g., by referencing non-existing or system-protected parts of memory
(because of applying a not initialised or NULL reference). Further, when a new
portion of memory needs to be allocated for some dynamic data structure, it
is possible that no free memory space is available. Similarly, unlimited use of
recursion can cause stack overflow. And even if no errors occur, the temporal
behaviour of these features is difficult to predict. Hence, languages for pro-
gramming high-integrity applications usually prohibit these features (see, e.g.,
MISRA-C [84]). If not imposed by the compiler, memory-related exceptions
can be prevented by proper programming and discipline. All memory needed
for the execution of an application should be allocated during initialisation.
The use of stacks must be analysed and enough memory space allocated for

126 4 Programming of Embedded Systems

them to accommodate both parameter passing and memory allocation for
local variables.

In modern microprocessor systems virtual addressing provides for virtually
unlimited memory space for any application. The secondary (mass) storage
devices are used to handle pieces of data or program memory that momen-
tarily cannot reside in main memory. Unbounded delays are introduced when
swapping between main and mass storage occurs. Considering the current
capacities of memory chips, there is no more need for virtual addressing in
embedded systems. By renouncing it, related faults and temporal uncertainty
are prevented.

Peripheral-device-access-related exceptions. Invalid device addressing and
access conflicts can be prevented by only using statically mapped I/O devices
known at compile-time, which must be declared and should be checked by
the compiler. A good example for this is the specification of configurations in
the so-called “system parts” of PEARL programs where all hardware devices
used in the algorithmic parts of applications must be defined. It allows for
system configurations to be verified at initialisation time. In case of device
loss or auto-test failure, start-up can be aborted.

Data-related exceptions. The exceptions of this group are caused by data
illegal for some operations (e.g., square root of a negative argument). Similarly,
range overflow or underflow in arithmetic operations may occur when the
result of an operation is too large or too small, or when high-precision data
is mapped into small-precision variables. Yet another source of data-related
exceptions are situations when array indices exceed their bounds because of
declaration/run-time value mismatches.

To prevent undesirable events of the latter group, various measures can be
taken. The obvious possibility is to implement strict type checking in the lan-
guage used, so that possible irregular operations can be detected and reported
already at compile-time. An example for this approach is the exception-free
language NewSpeak [25] supported by an appropriate safe architecture. The
main characteristic of NewSpeak is strict definition of data types. In an assign-
ment statement, for example, the data type of the variable on the left-hand
side must include all possible values that may be produced by the expression
on the right. However, since strict type checking may become very complex
and, thus, often impractical, the principle of extending the IEEE standard
for binary floating-point arithmetic [15] should be employed: the input and
output data types are extended by two “irregular” values representing “signed
infinity” to accommodate overflows and underflows, and “undefined (not-a-
number — NaN)” to formalise the results of invalid operations. The latter
is used when a non-recoverable problem occurs in a calculation. Thus, the
generated irregular results do not raise exceptions, but are propagated to
subsequent or to higher-level blocks, which may be able to handle them.

As the last links in propagation chains of such irregular values, intelligent
I/O interfaces should react to them in predefined ways. For instance, instead
of an “infinite” analogue value, the maximum possible voltage may be gener-

4.1 Properties Desired of Control Systems Development 127

ated by an intelligent D/A converter as result of a certain control algorithm.
Precautions should be taken, however, if such a value persists for a longer
time, indicating that the controlled system is not responding, and that the
infinite value is likely to be a consequence of a computing error.

Avoidable Exceptions

There are situations where unusual (or irregular) events cannot be prevented
from occurring, but it is known in advance that they might occur, and it is
possible to detect their occurrence. People tend to deal with unwanted events
as exceptions. It is, however, irrelevant whether they are unwanted or not. If
they can be anticipated during the design phase, they should be included into
the specifications to be handled adequately.

Thus, dealing with them becomes part of the application software. Com-
mon examples of this kind of events are tasking errors, e.g., activating a non-
existent task. Such exceptions can be avoided by prophylactic run-time checks
before entering critical operations. Many tasking errors are also avoidable by
using monadic operations to interrogate current system states.

Errors in I/O devices also fall into this class. Intelligent, fault-tolerant and
self-checking peripheral devices shall be able to recognise own malfunction.
They shall have as much intelligence as possible to reasonably react in sit-
uations of conflict. In case of recoverable errors, they should try to recover
locally. If stand-by redundancy is available, it can be switched over to re-
dundant units. The temporal behaviour of these actions, however, must be
deterministic. For calculations of execution times, worst-case values have to
be taken into account.

Coping with Catastrophic Exceptions

Unfortunately, in industrial embedded systems situations often occur which
can be neither anticipated nor avoided. These are situations when “the im-
possible happens” [9], when programs do not follow their specifications due to
hardware failures, residual software errors, or wrong specifications. For exam-
ple, failure of a part of data memory could cause a change of a value, which
was declared to be a constant. It is also possible that the behaviour of the
environment was not estimated realistically, and is requesting more frequent
service than originally specified resulting in system overloads.

According to a reference study in the domain of non-preventable excep-
tions [23], exceptional situations can be dealt with by programmed exception
handling, and by default exception handling based on automatic backward or
forward recovery using recovery blocks. Since programmed exception handling
should be included in the requirements of embedded hard real-time systems,
it can, thus, be treated as normal functionality.

The principle of backward recovery is to return to a previous, consistent
system state after an inconsistency is detected by consistency tests called
post-conditions. This can be performed in two ways, viz.,

128 4 Programming of Embedded Systems

• By the operating system recording the current context before a program
is run, and restoring it after unsuccessful termination, or

• By recovery blocks inside the context of tasks whose syntax reads as shown
in Figure 4.11, where P0, P1, etc. are alternatives which are tried consecu-
tively until either consistency is ensured by meeting the post-condition,
or the segment failure is executed. Each alternative should independently
be capable to ensure consistent results.

ensure post by P0

else by P1

else by . . .

else failure

Fig. 4.11. Principle of recovery blocks

For embedded systems, a severe problem arises if there are any actions
triggered, like commencing a peripheral process, which cause an irreversible
change of a failed alternative’s initial state, rendering backward recovery gen-
erally impossible. Therefore, no physical control outputs should be generated
inside the alternatives which may require backward recovery in case of fail-
ure. Then, only forward recovery is possible, bringing the system to a certain
predefined, safe and stable state.

The alternatives of backward recovery should contain diversely designed
and coded programs to cope with specification errors, and to eliminate pos-
sible implementation problems or residual software errors. They may employ
alternative design solutions or redundant hardware resources, when problems
are expected. A further possibility is to assert gradually less restrictive pre-
and/or post-conditions and, thus, to degrade performance gracefully in the
case of exceptional situations.

The technique of forward error recovery tries to obtain a consistent state
from partly inconsistent data. Which data are usable can be determined by
consistency tests, error assumptions, or with the help of independent external
sources.

Lower-level Exceptions

Exception handling is a mechanism to deal with exceptions in the program-
ming language both syntactically and semantically. Exceptions that may occur
should be anticipated in specific parts of code, and dealt with by using ap-
propriate handlers, i.e., parts of code that are executed only when exceptions
occur. Simpler programming languages do not provide for exception handling
at all, or include it in a non-structured way like if any kind of exceptions

4.1 Properties Desired of Control Systems Development 129

occurs anywhere in a program block that includes an on error statement,
execution is transferred to a labeled statement:

on error goto exception-handler-label
Modern programming languages implement structural exception handling

where code of one exception handler can be nested inside that of another one.
If an exception occurs, it is first handled by the innermost exception handler.
If it cannot be handled at that level, the next outer exception handler is called.
Only at the end, if no exception handler can deal with a specific exception, it
is dealt with by the operating system.

The sources of exceptions can be classified into different categories, e.g.,
arithmetic or I/O exceptions. These classes can further be refined into more
and more detailed ones until specific exceptions, e.g., division by zero in the
class of arithmetic exceptions, can be expressed. In this way, programmers
can deal with different classes of exceptions individually, both generally for
entire exception categories and specifically for individual exceptions. Usually,
programmers may define new classes of exceptions and invoke the exceptions
by software.

try

program-code

catch (exception-class-1)

exception handler for exception-class-1

catch (exception-class-2)

exception handler for exception-class-2

finally

final block statements

end

Fig. 4.12. General form of structured exception handling

The most general form of exception handling is shown in Figure 4.12.
If an exception occurs in the program code following the try clause, which
is being protected, one of the exception handlers is executed. Based on the
exception’s kind, the first exception handler matching the exception’s class is
called. Exception handlers should be arranged from the most specific to the
most general one. The statements of the finally block are executed regardless
of whether an exception has occurred or not. This can be used to re-arrange
some resources allocated within the basic programming block, which may not
be needed anymore, because the program block terminated or an exception
occurred.

130 4 Programming of Embedded Systems

4.1.8 Support for Hardware/Software Co-implementation

Not all parts of control applications are necessarily implemented in software.
For reasons of decreasing response times or of improving temporal predictabil-
ity, verifiability, and fault tolerance it is common to use hardware solutions like
System-on-Chip (SoC) and Field Programmable Gate Arrays (FPGA). How-
ever, no commercially available development tools currently allow for large-
scale complex hardware/software co-design and implementation. The decision
as to which parts of applications are to be implemented in software and which
ones in hardware is left to designers and programmers. Then each part is de-
veloped separately. As application code functions of operating systems and
other system software can be implemented in hardware as in the hardware
architecture described above.

There are several hardware description languages (HDL), primarily used to
describe electronic circuits formally. With such languages a circuit’s operation,
design and organisation are described. Tools based on them perform tests to
verify operation by means of simulation. The semantics of the languages also
include explicit notations to express timing and concurrency.

An example of a programming language that has been devised to de-
scribe both the software and the hardware parts of systems is SystemC [20].
It provides hardware-oriented constructs within the context of C++ as a class
library implemented in standard C++. Programs written in SystemC can be
translated either to standard C (for the software components) or to a hardware
description language (for the hardware components).

An example of how a programming language can be extended to define
various parameters of distributed control applications to be run on an archi-
tecture similar to the one of Section 3.3.1 was given in [19]. The specification
language is based on PEARL for Distributed Systems [30] and is, actually,
more a specification than a programming language. Indispensable to spec-
ify the behaviour of distributed systems, it contains language constructs to
describe

• Hardware configurations,
• Software configurations,
• Communication configurations and their characteristics (peripheral and

process connections, physical and logical connections, transmission proto-
cols), as well as

• Both conditions and methods of carrying out dynamic reconfigurations in
cases of failure.

In contrast, the language contains only a few executable constructs in the
classical sense, viz., just to exchange messages. The example in Figure 4.13
demonstrates how a hardware configuration can be specified using the pro-
posed notation.

Processing nodes are defined in the STATIONS section. For each process-
ing node, its type, amount of physical memory available, devices connected,

4.1 Properties Desired of Control Systems Development 131

ARCHITECTURE;

STATIONS;
NAME: TP0;
PROCTYPE: M68307 AT 16 MHZ;
WORKSTORE:

SIZE 128*1024;
SPACE ’00000’B4-’1FFFF’B4 READONLY WAITCYCLES 6;
SPACE ’20000’B4-’3FFFF’B4 READWRITE WAITCYCLES 2;

DEVICE I2CTP0: PERIPHERAL;
STATEID: (NORMAL, CRITICAL);

STATEND;

CONFIGURATION;
COLLECTION TP0NORMAL

MODULES (
TP01 IMPORTS (FOO1, FOO2) FROM LIBRARY

EXPORTS (INITTP0),
TP02 IMPORTS (FOO1, FOO2) FROM LIBRARY

EXPORTS (CALCULATE),
LIBRARY EXPORTS (FOO1, FOO2));

TASKS (
INITTP0 ON START DEADLINE 2000,
MAINTP0 EVERY 0.1 SEC DEADLINE 1000);

PORTS (TPLINK0);
LOAD NORMALTP0 TO TP0;
CONNECT TPLINK0<->KPLINK0;

COLLECTION TP0CRITICAL
...

COLLECTION TP1NORMAL
...

CONFEND;

NET;
TPLINK0<->KPLINK0;
TPLINK1<->KPLINK1;
TPLINK2<->KPLINK2;

NETEND;

KERNELPROCESSOR;
NAME: KP0;
SCHEDULING EDF;
TICK 0.01 SEC;
MAXTASKS 50;
MAXSEMA 32;
MAXEVENT 31;
MAXEVENTQUEUE 256;
MAXSCHEDULES 64;

KERNELPEND;

PERIPHERALS;
NAME: AD1;
INTERFACES (

ADSTART OUT BIT(1) I2C ADDR 102,
ADDATA IN FIXED(7) I2C ADDR 103);

CONNECT AD1<->I2CTP0;

PERIPHEREND;

Fig. 4.13. Example system and hardware specification expressed in a high-level
programming language

132 4 Programming of Embedded Systems

and possible operation modes are described. The attributes needed for execu-
tion time analysis are also defined. In the CONFIGURATION section, all possible
software collections are defined. Collections are the basic units of applica-
tions that are loaded to different processing elements during execution. Each
collection consists of a set of software modules and their interfaces. Further,
a set of tasks with scheduling policies and deadlines is defined. Finally, in-
termodule connection links and a loading scenario are declared. Physical in-
terconnections between processing elements are described in the NET section.
The KERNELPROCESSOR section defines the properties of operating system and
system software (here, an architecture with central kernel processor is ex-
plained). In the PERIPHERALS section, various input/output peripheral inter-
face (together with their physical characteristics) used by the application are
defined.

4.1.9 Other Capabilities

There are other properties desired of programming environments that do not
only apply to embedded control system applications. Programming environ-
ments should, for instance, be user- and problem-oriented, should support
re-usability and the development of large-scale applications, or should have
efficient debugging capabilities.

4.2 Time Modeling and Analysis

Time is obviously one of the most important aspects of real-time systems,
where it manifests itself in several ways. On one hand, time is an integral
part of system specifications. There are response deadlines and maximum
frequencies of event occurrence. On the other hand, there are temporal system
properties which are needed to satisfy these specifications.

For real-time systems it is imperative that overall system capabilities allow
one to fulfil all predefined requirements. In multiprogramming environments,
the main requirement can be expressed as schedulability, i.e., the ability to
find a schedule such that each task will meet its deadline [108]. A necessary
pre-condition for this is temporal predictability of execution times, i.e., the
capability to estimate correctly their worst-case values. In theory, it is possible
to observe various other aspects of time, e.g., minimum or average execution
time. For obvious reasons, however, only maximum or worst-case execution
time (WCET) is relevant for hard real-time systems.

There is a host of contributions to the field of WCET analysis, e.g., [66,
69, 95, 86, 89, 88], and later [46, 7]. Most of them are based on supplying some
additional knowledge about programs to analysers in order to achieve better
estimation of run-times. Although yielding good results, which are close to the
actual values, these solutions do not appear to be sufficiently practical, yet,
as too many factors influence the overall execution times of any application:

4.2 Time Modeling and Analysis 133

Temporal determinism and predictability of application code. To enable exe-
cution time analysis, no time-critical code section may take indefinitely
long to execute (e.g., infinite loops, or waiting for operator input). Further-
more, to allow for realistic code analysis, some programming constructs
are undesirable. For example, unbounded recursion, unbounded loops, dy-
namic data structures, etc. are very difficult, if not impossible, to evaluate
properly.

Capability of processing elements to execute application code. In general,
faster processors can execute tasks in shorter time. More sophisticated pro-
cessors making use of caches, massive parallel execution of instructions,
etc., also yield shorter average execution times. The very same architec-
tural features, however, also render the estimation of worst-case execution
times very difficult.

Capabilities provided by operating systems. An operating system on which an
application is executed always imposes some limitations: minimum quan-
tum of time, precision of activation instants of tasks, granularity of timers
and their maximum intervals, etc. Tasks scheduling and synchronisation
operations also cause unpredictability in timing, and introduce additional
increases in execution times. Other operating system services, like mem-
ory management or file system handling, further contribute to temporal
uncertainty, which is very difficult to evaluate.

Capabilities provided by communication infrastructure. In distributed sys-
tems, the communication channels always introduce some kind of delays,
and may produce jitter in system behaviour. Furthermore, the typical and
most commonly used communication protocols do not guarantee upper
bounds for the delivery times of data, which makes them unsuitable for
hard real-time implementations.

In conclusion, worst-case execution times can properly be estimated only if
all components of control systems (i.e., hardware, system software, and ap-
plication code) behave temporally predictable. With modern microcomputer
architectures, this turns out to be very complicated. Too pessimistic eval-
uations could characterise systems as unfeasible, and require unreasonable
and unnecessary effort to improve their performance. On the other hand, too
optimistic estimations could cause deadline violations when applications are
executed in real systems.

There are several stages in the development of control systems when timing
analyses should be performed. First, the timing properties of specifications are
evaluated, then those of hardware architecture and application source code.
When hardware and operating system are available, the executable product
from the source code can be evaluated. Each step produces more and more
realistic results. It is important to detect any potential problems as soon as
possible in the design. The earlier inconsistencies are detected, the easier and
cheaper they can be corrected.

134 4 Programming of Embedded Systems

The basic idea behind the WCET analysis of a task is, first, to evaluate
or estimate the maximum execution time of the atomic elements contained.
Sequences of such elements form basic blocks. Then, knowing the structure
of the task, it is possible to derive recursively the execution time of its entire
code by combining the basic blocks in hierarchical compound blocks. There
are three basic ways basic blocks can be combined into compound blocks:
sequence, alternative, and iteration.

In the first example (Figure 4.14), the compound block (CB) consists of
two basic blocks (B1 and B2). First, the block B1 and then the block B2
is executed. The arrows represent entry and exit points of the blocks. The
WCET analysis starts by evaluating the execution times of the atomic blocks
(e.g., adding the execution times of subsequent instructions). Then, the total
WCET of the compound block is the combination (sum) of the WCETs of B1
and B2:

tm(CB) = tm(B1) + tm(B2)

The expression tm in this and the following equations represents the maximum
(worst-case) execution time.

B1B1

B2B2

CBCB

Fig. 4.14. Example of the sequential combination of basic blocks

In the second example (Figure 4.15), the compound block also consists
of two atomic blocks. Here, however, either B1 or B2 is executed, but not
both. After the WCET analysis of the atomic blocks, the total WCET of the
compound block equals the greater one of the worst-case execution times of
blocks B1 and B2:

tm(CB) = max{tm(B1), tm(B2)}

The same is true, if alternatively, both B1 and B1 are executed in parallel.
The next example (Figure 4.16) shows a loop-back data flow. The inner

block (BL) is the loop body, which is executed several times before the CB
finishes. Here, it is necessary to know the maximum possible number of the
inner block’s repetitions. It does not matter if sometimes (or even in most

4.2 Time Modeling and Analysis 135

B1B1 B2B2

CBCB

Fig. 4.15. Example of a compound block with alternatives

cases) the loop is finished earlier, since the worst case is of interest, only.
Then the WCET of the compound block is the product of that of the inner
block and the maximum number of iterations:

tm(CB) = tm(BL) × im(BL)

Here, im denotes the maximum number of block iterations.

BLBL

CBCB

Fig. 4.16. Example of a compound block with a loop

4.2.1 Execution Time Analysis of Specifications

The first estimation of a control system’s timing conditions can be derived
from its specifications. Since the implementation details of the final system
are not known at that stage, the actual task execution times cannot be de-
termined, yet. At best, experience from similar, already finished projects can
be used. Nevertheless, based on the tasks’ activation conditions and dead-
lines, it can be assessed if the specifications are plausible, and whether there
are potential bottlenecks that could result in deadline misses. It would be
very helpful if some kind of formal notation were used for specifications. If a

136 4 Programming of Embedded Systems

formalised pseudo-code is used to assert temporal information, for instance,
techniques for source code examination (described in the next section) can be
employed.

In control engineering praxis, formalised functional models are frequently
used to portray control systems. These models consist of sets of function
blocks, each taking several inputs and producing outputs. The blocks’ func-
tionalities are usually defined by means of mathematical functions. Owing
to their simplicity, it is relatively easy to estimate the execution times of
individual function blocks, and then derive the execution times of tasks con-
structed out of them. Later in development, these function blocks are directly
translated into appropriate code segments, and techniques of analysing the ex-
ecution time of program code can be used to improve the earlier estimations.
Near the end of the design phase, when the hardware platform is constructed,
the code blocks’ execution times can directly be measured, and the timing
analyses further refined.

4.2.2 Execution Time Analysis of Source Code

Execution times can be more precisely estimated when application source
code is evaluated. For this a kind of pre-processor is needed that takes an
application’s original source files as inputs, extracts the information relevant
for timing analysis, and employs a method of WCET analysis. To enable this,
some limitations must be imposed on the program structure. These limita-
tions will be explored in Section 4.2.6. Here, some basic strategies for WCET
analysis of source code are described. The same techniques can be used with
any kind of application description that uses a program notation (e.g., with
machine code instructions).

Expressions

Expressions are atomic elements of source code. Some examples for expressions
are variable accesses, constants, mathematical and logical terms. Estimating
their execution times is straightforward if the execution times of the operators
are known for specific processors. However, several factors cause difficulties in
the evaluation. First, an expression can be modified by a compiler perform-
ing different optimisation techniques. Multiplication by a factor of two, for
example, can be replaced by a much faster addition:

a × 2 ⇒ a + a

On simpler processors, multiplication takes much more time than addition.
If a microprocessor does not implement multiplication, it is carried out by
software routines. Second, modern microprocessor architectures utilise parallel
execution of instructions to a high degree. In most cases, this yields much
shorter execution times. Further, some operators are data-dependent, i.e.,

4.2 Time Modeling and Analysis 137

the execution times depend on the operands’ current values, which are not
known at the time of analysis.

All of these (and other) causes usually have relatively little influence on
the accuracy of the execution time estimate for a specific expression. If the
expression is a part of frequently executed code (e.g., inside a loop), however,
the accumulated error can be significant. Therefore, if realistic execution time
analysis from source code is a goal, simpler processor architectures need to be
employed.

Assignment Statement

One of the simplest statements in any computer language is the assignment:

sa ::= l--value ’=’ r--value

Execution time analysis considers here the time to evaluate the expression on
the right side, the time needed to calculate the target address of the left side
(e.g., if it is a structure or array reference), and the time needed to transfer
the calculated value to the target.

Function or Procedure Calls

A procedure call requires evaluation of the parameters, transfer of the latter
to the procedure, and invoking the procedure’s code:

sp ::= call proc (p1, p2, ..., pn)

Therefore, the corresponding execution time can be calculated by adding the
execution times of the mentioned activities. In addition, care must be taken
for different kinds of parameter transfer (i.e., transfer by value or transfer by
reference), the mechanism of parameter transfer into the procedure (i.e., by
stack, by register, or a combination of both), the housekeeping of memory
implied by the call (i.e., by caller or by callee), etc. In case of a function call,
the function’s result is part of an expression, and the call’s execution time is
added to the one of the expression.

Another situation arises when system routines are called (e.g., operating
system routines). Then, execution time analysers have no access to the source
code. Therefore, the execution times of such routines must be determined
separately. Besides that, some system calls may lead to diverse execution
times.

Sequence of Statements

ss ::= s1 ; s2 ; .. ; sn

The most fundamental compound structure in programming languages is the
sequence of statements. It represents a linear flow of code. Since the statements
are executed one after the other, the total WCET of a sequence is the sum of
each individual statement’s worst-case execution time:

138 4 Programming of Embedded Systems

tm(ss) =
∑

i=1..n

(tm(si))

Even in this simple case, however, some difficulties can arise if there is a de-
pendency between the execution times of subsequent statements (e.g., shorter
execution time of one statement may yield longer execution time of the sub-
sequent one, and vice versa). In automatic WCET analysis, the worst es-
timations of both statements are taken. This usually happens due to data
dependency between the statements. Practical example of this scenario will
be given later.

Alternative Statements

All programming languages allow some sort of decision points where one of
several alternative routes through a code is selected based on some condition.
The most basic form of alternatives is the if-statement:

sif ::= if condition expression then sthen else selse

First, the condition is evaluated. Then, based on its value, one of the two
alternatives is executed. At first glance, the execution time equals the execu-
tion time of the longer alternative. For accurate estimation, however, the time
needed to evaluate the condition must also be taken into account. This exe-
cution time is often much greater than that of the statement block following,
as it may, for example, include a call to a complex function:

tm(sif) = tm(condition expression) + max{tm(sthen), tm(selse)}
Other forms of alternatives (e.g., the switch statement) are evaluated in a

similar way, except that more alternatives are to be considered:

scase ::= expression of
alternative1 : s1 ;
alternative2 : s2 ;
. . .
alternativen : sn ;

end case

tm(scase) = tm(expression) + maxi=1..n{tm(si)}
For precise analysis, the hidden administration time due to the jumps between
the alternatives must also be considered.

Iteration

In general, the maximum execution time of a loop is equal to the execution
time of the loop body multiplied by the maximum number of loop iterations.
Therefore, the basic prerequisite to evaluate a loop’s WCET is to know the
maximum number of iterations in advance. For the for-loop statement with
constant bounds:

4.2 Time Modeling and Analysis 139

sfor ::= for id = lower bound to upper bound do
sbody

end for

the WCET can easily be calculated as

tm(sfor) = tm(sbody) ∗ max{upper bound − lower bound + 1, 0}
In case of an error, when the upper bound is less than the lower one, the
number of iterations is zero.

In general, there is no direct possibility to deduce the maximum number of
iterations directly from the loop condition, e.g., when the bounds are expressed
by run-time variables. In this case, the maximum number of repetitions must
be specified by the programmer in the source code. Ideally, this can be achieved
by extending the syntax of the loop statement:

for id=lb expr to ub expr with maxloop constant expression do . . .

Existing compilers, however, do not know such an extension of the program-
ming language syntax as an option. Therefore, a specially constructed com-
ment can be inserted into program code, so that execution time analysers can
extract the information required from the comment and use it for evaluation:

for id= lb expr to ub expr do /*WCET:maxloop constant expression*/. . .

In programming languages that allow one to define macros (e.g., C/C++), a
special dummy macro-declarations can be used:

�define WCET MAXLOOP(X)

Then, much more readable code can be written, e.g.:

for id=lb expr to ub expr do WCET MAXLOOP(constant expression). . .

These macros are evaluated by execution time analysers, but eliminated from
the final code by a pre-processor.

Again, for precise analysis, the hidden administration time for loop prepa-
ration and index maintenance needs to be added. In addition, sometimes com-
pilers considerably re-arrange the code loops. For example, the invariant part
of the code (i.e., the part not directly nor indirectly dependent on the loop
counter), is removed from the loop body. Compilers may also unfold a couple
of iterations into a sequence of statements, etc.

Other kinds of loops (e.g., while or do-while statements) must also be
bounded with maximum numbers of iterations.

The premature ending of a loop has no influence on the loop’s maximum
execution time. Further, there is no guarantee that the loop will not exceed
the declared number of iterations. Therefore, care must be taken by the pro-
grammer or designer to assure compliance with the declarations. One possi-
ble solution to this problem is to use an additional counter. The counter is
set to the maximum number of iterations prior to a loop’s execution, and is
decremented upon each repetition of the loop. If the counter turns zero, an
exception is raised, as demonstrated by the code snippet in Figure 4.17.

140 4 Programming of Embedded Systems

guard count := 100;

for i=a to b /* WCET:maxloop 100 */ do

decrement(guard count);

if guard count≤0 then

raise ExceptionLoopExceedMaxIterations;

end if;

. . .
end for;

Fig. 4.17. Raising exception on overflow of maximum iteration count

Parallel Execution

Some programming languages include syntactic elements for parallel execution
of code parts on more basic levels; see Figure 4.18.

in parallel do

s1;
s2;

. . .
sn;

end in parallel;

Fig. 4.18. Programming of parallel parts of code

From the semantics point of view, all statements si are executed in parallel.
Each statement can be a compound one. It is presumed that there is no
time-dependency between them. In reality, however, if only a single processor
is available, only one alternative is executed at any time. If time slicing is
used to mimic parallel execution, this means that the total execution time
of the block is equal to the sum of the statements’ execution times plus the
overhead produced by the time slicing policy. Even in distributed execution
environments with several processing elements, it is not practical to execute
tightly related code on several processors in parallel.

4.2.3 Execution Time Analysis of Executable Code

The main difficulty in estimating worst-case execution time from source code
is that compilers may re-arrange code for optimisation or other reasons. Be-
cause of this, the information collected by an automatic analyser could not
be complete and correct. The complete picture of the actual execution of an
application is contained in its executable code, only. Here, the application is
represented as a stream of actual microprocessor instructions. If the execution
times for the instructions were known, it would be easy to calculate the code’s
execution times.

4.2 Time Modeling and Analysis 141

By converting source code into microprocessor instructions, however, the
information on program structure is lost. It is very difficult, if not impossible,
to deduce the loops and alternatives in an original application from its machine
code alone. Fortunately, during compilation, most compilers may also generate
additional information about the composition of the code and, thus, retain
structural information. They may associate specific addresses in the machine
code with corresponding line numbers of the source code, they can gather
information about the physical memory location of global and local variables,
etc. This information is usually employed for debugging, but it may also be
used for execution time analysis. Execution time analysers evaluate source
code and extract the information about its program structure. After source
code is compiled into machine code, analysers locate the specific application
constructs in the compiled code and perform execution time analysis. The
techniques for execution time analysis are similar to those used on the source
code level, but more straightforward due to the simplicity of machine code
instructions.

Nevertheless, there are some obstacles to implement this approach. First, a
deep knowledge about machine instructions and their behaviour on the micro-
processor is required. As stated above, modern microprocessor architectures
can optimise instruction execution by executing them in parallel using differ-
ent pipelining techniques. For this reason, the microprocessor manufacturers
usually state only typical execution times of machine instructions. The next
obstacle is that compilers may still re-arrange code in such a way that source
code cannot be related one-to-one to machine code anymore. This can usually
be avoided by turning off optimisation. After WCET analysis optimisation
may be re-enabled. It is expected that optimised code will eventually be exe-
cuted faster than non-optimised code, which means that the estimated execu-
tion times cannot be shorter than the actual ones. Executable code is usually
stored in intermediate (re-locatable) form. Only during loading into main
memory does the code assume its final form. Since this process is straightfor-
ward, it can easily be considered during execution time analysis.

4.2.4 Execution Time Analysis of Hardware Components

In embedded control systems, frequent interaction with hardware is common.
It causes delays to program execution, and must be considered in the execution
time of tasks. On distributed platforms, execution times are significantly in-
fluenced by the delays introduced by the communication infrastructure. Here,
execution times must be evaluated on a case-by-case basis; there is no com-
mon method to evaluate them. If a target hardware is not yet built, the
components’ technical specifications can be studied. Manufacturers of hard-
ware components usually give timing specifications for their products. Instead
of maximum execution times, however, often typical or minimum execution
times are only stated.

142 4 Programming of Embedded Systems

4.2.5 Direct Measurement of Execution Times

As discussed above, there are many obstacles in obtaining accurate and re-
alistic execution times from static analysis of code. In most cases, execution
time estimations turn out to be either too pessimistic when source code is
executed, or too optimistic when machine code was analysed. In the first
case, the cause is lack of knowledge of what code is actually produced for a
specific statement. In the second case, the execution times supplied by the
processor manufacturer for individual instructions usually apply for ideal sit-
uations, when instructions are already in cache and neither stall in pipelines
nor collisions on address and data buses are considered. It is, therefore, ob-
vious that realistic and accurate execution times can only be determined by
direct measurements on target (or equivalent) hardware platforms.

For this, a variety of measurement tools like software profilers, logic anal-
ysers, or dedicated measurement devices can be employed. A profiler is a
software tool that is mainly used to identify bottlenecks in code. It modifies
code analysed by inserting special assertion instructions at all entry and exit
points of procedures and tasks. Any time these points are reached, the addi-
tional code is executed. It records the current time and the execution points’
identifications. After a run, the execution history is analysed and the actual
execution times are gathered.

The additional code introduces additional delays into program execution.
To avoid significant interferences, the measurement points should be placed
carefully. In case of WCET analysis, the problem of finding bottlenecks in code
is not so relevant, because only task execution times are to be observed. To
minimise interferences for tasks the insertions, only producing physical signals
observable from the outside, should be placed at their entry and exit points.
Logic analysers can observe these signals and record the durations between
them. The process is very tedious and requires much human intervention.

The most straightforward way to determine execution times is by auto-
mated measurement of hardware behaviour under control of a WCET anal-
yser: the piece of code analysed is automatically furnished with signal gen-
erators triggering the measurement. Then it is run and its execution time
measured with a dedicated device as depicted in Figure 4.19. It consists of
a high-resolution timer, which is started and stopped by writing into a reg-
ister. The device needs to be connected to the processor bus and placed in
the system memory address space. The instructions called probes, that access
the register at the assigned address, start and stop the timer. The impact of
the additional instructions to the total execution time of an analysed piece of
code is negligible.

Best results in WCET estimation are achieved by integrating an analyser
into a compiler. This approach allows both static analysis of application code
by combining both source and machine code analysis, and proper direct mea-
surement of execution times. As part of the compilation process, the latter

4.2 Time Modeling and Analysis 143

address bus

data bus re
gi

st
er

tim
ermicroprocessor

Fig. 4.19. Dedicated hardware device to measure execution time

gathers the internal structure of an application, which can be directly utilised
by a timing analyser. This way, basic blocks are isolated.

A WCET analyser automatically loads the application code corresponding
to the basic blocks onto the target hardware, instruments it with probes and
runs it. The timer automatically records the execution time elapsed. These re-
sults are acquired by the analyser. Technically, this can be carried through by
a real-time debugging support as already available in a number of microcon-
trollers. An example is the standardised JTAG Boundary Scan Mechanism
[61]. A correspondingly equipped processor has dedicated hardware connec-
tors via which it is possible to access its registers, control its behaviour, start
or stop execution, set breakpoints, and even load or view memory contents.
Debugging with the help of the JTAG mechanism is non-intrusive and does
not influence the timing behaviour of code execution. Another similar example
is the Background Debugging Mode (BDM) implemented in some Motorola
microcontrollers.

This way, the analyser measures realistic execution times of basic block,
which are then used in calculating the execution times of compound blocks
as shown in the formulae of the previous section. In a recursive mode, finally
the execution time of a complete program can be calculated.

Sometimes, better results are expected from directly subjecting compound
blocks to measurement. Then some arrangements must be made; for example,
all loops must artificially be re-arranged to execute the maximum numbers of
times; all conditional jumps must be set to run always the longest alternatives,
and so on. Furthermore, because tasks are analysed in isolation from each
other, some system calls must be replaced by appropriate delays.

As a final note, even if direct measurement of execution times yields the
best results, this must not be the only approach to temporal analysis. It is
usually too late to begin with this at the final development stages. Moreover,
measuring control applications requires that the applications already exist and
that they can be run on hardware platforms at least similar to the final ones.

144 4 Programming of Embedded Systems

4.2.6 Programming Language Support for Temporal Predictability

Bounding Program Execution Times

The primary pre-requisite for execution time analysis is that the execu-
tion time of any statement is temporally bounded. Commands with non-
deterministic execution times ought to be forbidden. If this should be impos-
sible in specific cases, the corresponding program blocks must be temporally
guarded, and time-out alternatives must be defined explicitly. An example is
human intervention. An application may need the operator to enter a param-
eter for some control loop. The reaction time of the human operator cannot
properly be predicted. The operator may even not reply at all and, thus, pro-
long the waiting indefinitely. It is a common sense that such kind of task
cannot really be regarded as a hard real-time one.

There is a set of instructions common in multitasking embedded systems
whose execution may take indefinite amounts of time, such as operating sys-
tems commands that are used for mutually exclusive access to resources or for
task synchronisation. For example, critical sections are usually dealt with by
some sort of locking mechanisms. Traditionally, waiting for synchronisation
may take indefinitely long because of current conditions in a system: due to
an error the locking synchroniser object may never be released, another task
may always have precedence, or there may be a deadlock situation. In the end,
of course, the deadline of the current task will be missed and the task will fail.
The best way to prevent such situations is to employ appropriate structured
synchronisation mechanisms. An example of them was shown in Figure 2.21
on Page 59.

Alternatively, locking mechanisms may be extended. For instance, instead
of the lock command (e.g., performing “wait for a semaphore”) a trylock
function may be used that tries to lock the synchroniser. If locking is possible,
the function locks the synchronisation object; if not, an alternative statement
sequence is executed. Another solution is to endow the lock with a timeout
conditions. If locking is not successful during a predefined time interval, the
lock statement has failed and the alternative set of statement is executed. All
three cases are presented in Figure 4.20. In (a), the traditional lock/unlock
mechanism is shown. By analyser instructions included in comments as de-
scribed earlier, it is possible to assert an expected waiting time for WCET
determination, but there is no guarantee that the given constraint will actu-
ally be meet. In (b), the trylock function is used to execute two alternative
blocks of statements depending on whether the lock was successful or not.
Similarly, it can be used for condition checking, e.g., to re-try locking several
times within a while-loop statement with the trylock term as exit condition.
In (c), the lock statement is incorporated in a try-catch block. If locking is not
successful within a predefined time interval, the timeout exception is raised
to be handled by the exception handling mechanism.

4.2 Time Modeling and Analysis 145

(a) (b) (c)
lock sync-object if trylock sync-object then try
... /*the lock was successful*/ lock sync-object with time-exp
unlock sync-object ... /* the lock was successful*/

unlock ...
else unlock sync-object

/*the lock was unsuccessful*/ catch
... on timeout

end if; /*the lock was unsuccessful*/
...

end try;

Fig. 4.20. Three examples of lock/unlock mechanisms: (a) with indefinite waiting
when lock is not successful, (b) with trylock mechanism, and (c) and with timeout
condition

In all cases described above, the lock statement was followed by an unlock
statement. This is not strictly necessary. For example, one task can lock a
synchronisation object and another may unlock it. However, it is always better
to use a structured form of locking. This way, the time during which a task is
within a critical section can be determined, and it can be taken into account
in course of schedulability analysis.

Bounding Loop Iterations

To perform execution time analysis, the maximum number of repetitions of
iteration statements must be known. For this, one of the techniques described
in Section 4.2.2 (i.e., extending the syntax of the loop statement or including
compiler and analyser instructions in strictly defined comments) should be
used declaring constant compile-time expressions to restrict the number of
loop iterations. Programmers must also assure that the limits set will actu-
ally never be violated. As the most secure method, only for-loops with fixed
numbers of iterations (with potential earlier exits) should be allowed.

Renouncing or Bounding Recursion

For similar reasons as in the case of loops, the use of recursion can cause
temporally unpredictable behaviour. Similar syntactic constructs as for loops
can be used to limit recursions. Some forms of recursion, however, are dif-
ficult to analyse automatically, e.g., a procedure may call another one and
this recursively calls the former one. Furthermore, unbounded recursion can
result in severe memory management problems at run-time. Any procedure
call (recursive or not) makes use of stack memory. Even in systems with an
abundance of memory available, recursion may cause stack overflow. As a
solution, recursion should be converted into iteration which is, theoretically,
always possible.

Preventing Dynamic Data Structures and Memory Management

The use of dynamic data structures is highly data dependent at run-time.
For example, the execution times of search algorithms on graphs represented

146 4 Programming of Embedded Systems

by dynamic data structures depend on the number of graph nodes. Dynamic
memory allocation algorithms are already by themselves data dependent. Fur-
ther, successive allocation and de-allocation of memory can generate memory
fragmentation, i.e., a large number of small free memory blocks emerges, but
none of the chunks is large enough to suit larger memory requests.

Several modern programming languages (e.g., Java) employ memory man-
agement strategies where allocated memory is not (or cannot be) freed even
if the associated structure is out of scope and destroyed. Only when there is
not enough memory available (or periodically), a so-called garbage collector is
invoked trying to reclaim and pack together the free memory available. This
strategy causes occasional non-deterministic actions that cannot be predicted
during timing analysis. Consequently, one should rely on static data struc-
tures, only, with a priori observed memory requirements. For example, data
arrays with fixed dimensions can be used to represent graphs. The search algo-
rithms on graphs may still be used, however, as the number of array elements
is limited, so is the maximum number of steps performed by an algorithm.

Prohibiting GOTO Statements

The execution times of GOTO statements per se can easily be determined.
The use of them, however, can result in unstructured and hardly manageable
code, which cannot be analysed automatically. Jumps that commit early exit
from inner blocks (e.g., EXIT or RETURN), and branches that immediately
initiate the next iterations of loops are allowed. Such statements eventually
reduce total execute time while leaving worst-case situations unchanged.

Explicit Assertion of Execution Time

Frequently, because of the nature of a program, blind automatic estimation
may yield very pessimistic execution times. An example for this is shown in
Figure 4.21, where the execution times of two subsequent loops should not be
added. If the first loop is executed more often, the second loop is executed
less times, and vice versa. To resolve this problem, additional information
about program execution should be specified by the programmer. This can
be achieved by adding new constructs (pragmas) to the language syntax as
proposed earlier. Thus, in the example it can be noted that the sum of the
repetitions of both loops is constant (here always 100).

Since constructs as mentioned above require complex analysis and are not
feasible for all situations, it is often more appropriate to set execution times
explicitly. Based on trustworthy measurement, detailed analysis of program
behaviour, experience, re-use, etc., an execution time may explicitly be as-
serted by the system developer, and execution time analysis is overridden. To
guarantee that the actual execution time will not be longer than declared,
however, the pertaining block must be guarded by time-out control, and a
time-out action must be specified, as shown in Figure 4.22.

4.2 Time Modeling and Analysis 147

for i=1 to 100-n with maxloop 100 do

...

end for;

for i=100-n+1 to 100 with maxloop 100 do

...

end for;

Fig. 4.21. Sequence of two loops where automatic execution time analysis yields
too pessimistic results

try

with timeout time-exp do

...

end with;

catch

on timeout

...

end try;

Fig. 4.22. Guarding of a block with time-out control

Use of Mass Storage Devices, Expert System Libraries and Data Bases

Mass storage and asynchronous input/output devices as used in conventional
computer systems are not suitable for embedded hard real-time systems. There
is, for instance, a huge difference between minimum and maximum access
times for magnetic disk storage leading to unrealistic estimations of execution
times. Similarly, all software algorithms and methods with a wide variety of
execution times should also be prevented by incorporating the utilisation of
expert systems, machine-learning strategies, heuristic methods, sophisticated
data bases, etc. into soft real-time tasks.

4.2.7 Schedulability Analysis

Schedulability analysis is a process of formally verifying whether a control
system will meet its specified timing requirements under any circumstances.
It is based on given deadlines, execution times of tasks, and other timing spec-
ifications. In general, schedulability analysis is a problem whose complexity
grows exponentially with the conditions of task execution. To be able to prove
feasibility, usually some additional constraints must be imposed on system be-
haviour. For example, assume that a system is to perform a task scheduled for
an external event (i.e., it is activated any time the external even occurs). If
the time period between two occurrences of the external event is long enough,
the system can perform the corresponding task easily. However, if the period
between the event occurrences is decreased, a new event may arrive before the

148 4 Programming of Embedded Systems

previous one is processed. If there are other tasks with higher priority in the
system, the danger of overrun is even higher.

It is, however, often unreasonable to assume that the period of an event’s
repetition can be arbitrarily short. For example, if an event is based on
data from a temperature sensor, the process of reading sensor data includes
analogue-to-digital conversion that takes some time. Furthermore, it is un-
reasonable to check inputs too frequently which exhibit high persistence for
physical reasons (such as temperature of a large mass). Schedulability analysis
can render good results only on the basis of reasonable estimations.

Another difficulty in schedulability analysis originates from the assumption
that each event (synchronous or asynchronous) may arrive at any time. If
time is considered as a continuous quantity, the number of possible scenarios
of event arrivals is infinite, and analysis becomes very difficult. A common
solution to this problem is to discretise time. Now, changes (or reactions)
may happen only between two time units. By this, the number of possible
combinations to be observed is still large, but (hopefully) manageable.

All assumptions made for schedulability analysis must also be assured in
real system behaviour. For instance, the assumption that an event will occur
with a specified maximum frequency, only, must be supported by hardware
means. In particular, the observation of discrete time must be established.
This execution model is used by the architecture proposed in Section 3.2. The
same model is employed in programmable logic controllers, where reading
of inputs, execution of control algorithms, and setting of outputs occur in
statically defined constant cycles.

An example of a programming language that models the execution of ap-
plications with discrete time units is Real-Time Euclid [50, 69], defining the
basic time unit by

RealTimeUnit(time in seconds)
In any time unit, only one activity may be executed. If the task ends earlier,

the rest of the time slot is wasted. Real-Time Euclid was designed specially
to support schedulability analysis, as a prototype laboratory language. It in-
cludes other properties to enable temporally predictable execution (e.g., it
has no dynamic data structures nor recursion, loops are bounded, blocking
time of synchronisation is maximised). For a priori schedulability analysis, a
method called frame superimposition is utilised: after every non-interruptible
task segment all combinations of successive continuations of possible non-
interruptible task segment are taken in consideration. It is demanded that all
deadlines are met — even in the most unlikely case. Evidently, the method’s
complexity is NP complete and the results are extremely pessimistic. Thus,
this analysis is suitable for simple cases, only. Nevertheless, the schedulability
of asynchronous task sets can be proven.

4.3 Object-orientation and Embedded Systems 149

4.3 Object-orientation and Embedded Systems

In the 1990s, the paradigm of object-orientation became more and more popu-
lar, although its concepts were first introduced in the 1960s into programming
languages like Simula and Smalltalk. From the object-oriented (OO) approach
it is expected to improve quality and efficiency of building software applica-
tions by incorporating several programming concepts. The first concept, mod-
ularity, groups together related data structures and operations on them into
a single entity, called class. This is similar to the technique structuring pro-
grams into separate modules. A module can maintain a set of data elements
and a set of operations which are (usually) related to this data. While there
can exist only one module of a kind within an application, a single class may
be used to instantiate several data elements (or objects) that share the same
characteristics.

Another aspect of classes is that they can be considered as natural ex-
tensions of classical compound data structures. A compound data structure
comprises a set of data elements representing related pieces of information.
Based on a structure definition, several data entities (e.g., variables) can be in-
stantiated, which share the same internal structure but own individual copies
of data values. Access to the individual data elements within an entity is only
possible through references to them. In addition to data elements, classes also
define sets of operations (called methods) that may be used upon them. Ana-
logue to accessing data elements, these operations can be executed on the
objects instantiated by a class, only

Modularity also provides for another important programming technique,
viz., information hiding or encapsulation. For the user of a program module
or class it is only important to know which data elements and which methods
are available. Knowledge of the methods’ actual implementation is usually
not necessary. In programming modules, information hiding is achieved by
dividing modules into interface and implementation parts. In class definitions
this is achieved by marking some class elements as private and the others as
public. The former can be accessed only inside the implementation of class
methods.

Another important concept characterising the OO approach is inheritance.
It allows to extend the functionality of a class by adding additional data ele-
ments and/or additional methods in the course of defining a new class. At the
same time, the derived class keeps (inherits) all functionality of the base class.
This approach significantly enhances code re-usability. Programmers do not
need to have the source code of the original classes’ definition and implemen-
tation; instead, a compiled version of the class definition from some program
library can be used. If necessary, the derived class may replace (override) some
functionality of the base class (i.e., the implementation of a specific operation
is replaced by a new one). Now, when such a method is called in an object,
the code actually executed depends on the class from which it was instanti-

150 4 Programming of Embedded Systems

ated. This property is called polymorphism and represents another important
concept of OO programming.

Some programming languages support multiple inheritances, i.e., a derived
class inherits properties from more than one base class. Its class definition
may also define special kinds of methods, constructors and destructors. The
former are executed automatically when the object is instantiated, and are
used to initialise its data structures. The latter are called immediately before
the object is destroyed or when it leaves scope.

4.3.1 Difficulties of Introducing Object-orientation to Embedded
Real-time Systems

There are several obstacles to the utilisation of object-orientation in embedded
real-time systems. For example, the use of polymorphic methods may render
proper execution time analysis difficult. Since the decision which code will
be used when calling a method is only resolved at run-time, a priori WCET
analysis is lacking important information. One solution to this problem is to
consider always the implementation with the longest execution time which,
however, may yield too pessimistic estimations.

Another difficulty is merging the OO approach with parallel activities in
real-time systems. For example, two method calls of the same object could be
executed at the same time by two different tasks. Both of them may arbitrarily
change the data values in the objects in an uncontrolled way. The basic OO
approach does not provide a proper solution. Therefore, inside the methods
a synchronisation mechanism must usually be provided by the programmer.
One approach would be to implement the objects in a way similar to monitors
(i.e., only one method of an object can be executed at any time). However,
the standard programming languages do not provide for this.

A further important issue for successfully applying the OO paradigm in
the real-time systems domain are human factors. Application developers of
embedded systems are usually engineers with broad knowledge in a problem
domain, but with limited knowledge on object-oriented software development.
This methodology is mainly used by computer specialists, and requires differ-
ent approaches and a different way of thinking. Even when an object-oriented
programming language is employed by the engineers, often the features of
object-orientation are omitted.

4.3.2 Integration of Objects into Distributed Embedded Systems

In object-oriented design, system elements are considered as objects, collected
in classes. In embedded systems development, traditionally the structured ap-
proach is used. It may be beneficial, however, to represent traditional elements
of real-time systems as objects, thus introducing the object-oriented approach.

4.3 Object-orientation and Embedded Systems 151

Task Considered as Object

When implemented in programming languages, tasks are often considered as
a special kind of procedures. As was noted previously, in many programming
languages tasks are not supported explicitly; instead, operating system calls
are used. On the other hand, objects are traditionally considered as extension
to static data types (like structures in C++). Data elements of these struc-
tures are upgraded with local procedures (methods). Objects do not have
direct control over their execution. If parallel execution, synchronisation etc.
is required, operating system calls must be used.

One possibility to implement a task as an object is to construct a so-called
wrapper class around system routines. For example, based on the POSIX
standard introduced previously, a class Thread can be specified as shown in
Figure 4.23.

class Thread

{

private:

int thread_handle;

Run()

{

exit_status = Execute();

pthread_exit(exit_status);

}

public:

Thread(thread_attributes) /* constructor */

{

...

pthread_create(thread_handle,thread_attributes,

AddressOf(Run),...);

...

}

virtual int Execute() { return 0 };

}

Fig. 4.23. Specification of the thread in POSIX

The class Thread has a constructor that creates, during object instantia-
tion, a POSIX thread using given attributes. The result of the call, a thread
handle, is assigned to a private variable and can be used in subsequent system
calls. The body of the thread is defined with virtual function Execute. It re-
turns the thread’s exit status. This function is called indirectly by supporting
method Run which is passed as an actual parameter with the POSIX thread
creation. By this, it is possible to implicitly perform pthread exit (and any
other clean-up activities) when the thread code is finished. To use this class, a

152 4 Programming of Embedded Systems

new class must de derived and the Execute routine overridden with the actual
code; see Figure 4.24.

MyThread class(Thread)

{

public:

override int Execute()

{

...

}

}

Fig. 4.24. Overriding of a virtual routine with actual code

A better solution would be if operating systems treated tasks as objects.
Then, all particularities of task handling would be integrated as class proper-
ties. A hypothetical example for this reads as shown in Figure 4.25

Task class {

private:

t_context TaskContext;

...

protected:

public:

Thread(t_duration Deadline); /* constructor */

virtual void Activate(t_schedule Schedule);

virtual void Terminate();

virtual void Suspend();

...

virtual void Execute() { };

};

Fig. 4.25. Hypothetical example of a task as object

Task declarations have several private variables (e.g., internal context, cur-
rent state) and several private methods. They all serve the needs of the op-
erating system and are used as primitives for other method implementations.
Traditional tasking operations (e.g., Activate, Terminate, etc.) are defined
as public methods. In addition, some task properties may be interesting to
programmers. They are available through several public functions. Actual ex-
ecution of these methods depends on the specific implementation of a control
system. In a single processor system, methods are executed directly by the
operating system. On a distributed system with a separate kernel processor,

4.3 Object-orientation and Embedded Systems 153

each command is translated into a message and sent to the kernel processor
through the communication network.

For application developers, only the public parts of class interfaces are im-
portant. Most public methods are declared as virtual. By their re-implementa-
tion, additional logic may be provided. Similar to the previous example, the
main body of a task is not known in advance and must be overridden as
illustrated in Figure 4.26.

MyTaskType class(Task)

{

public:

override void Execute()

{

...

}

}

/* declaration of the task */

MyTaskType MyTask(10 MS);

/* task activation */

MyTask.Activate(NOW);

Fig. 4.26. Overriding of a routine with actual code, again

The real advantage of the object-oriented approach becomes effective when
general tasks are classified into different groups. For example, many tasks
in real-time systems are periodic, with their operation triggered in regular
intervals. For this group of tasks a new class can be derived from the general
one; see Figure 4.27

PeriodicTask class(Task) {

private:

t_duration period;

...

public:

...

virtual PeriodicTask(t_duration Period); /* constructor */

...

};

Fig. 4.27. Deriving a new class for a group of tasks

154 4 Programming of Embedded Systems

Tasks of this class have an additional property: the activation period. Sev-
eral methods of the general task class are simplified or hidden. With this
classification of tasks, programming code can be more expressive.

Other Elements of Real-time Systems as Objects

Similar to tasks, other real-time constructs can be represented as objects, as
shown in Figure 4.28 for semaphores.

Semaphore class {

private:

...

public:

void Semaphore(int InitialCount); /* constructor */

void Signal();

void Wait();

}

/* declaration of the semaphore */

Semaphore S(1);

/* usage of semaphore */

S.Wait();

...

S.Signal();

Fig. 4.28. Semaphore as an object

Again, the method implementations are hidden. Semaphores and similar
programming constructs are well defined, and there is usually no need to
derive new classes from them.

As in the case of tasks, classes can be better utilised if similar compo-
nents can be arranged into consistent groups. The most likely candidates for
grouping are hardware components. There is a wide range of input/output
devices and similar components with corresponding methods to access and
control them. Here programming particularities are combined with construc-
tion specifications. Some properties of these objects are only used in hardware
implementation (e.g., an interrupt number or addresses of registers in periph-
eral interfaces). These properties can be marked as specification attributes and
are eliminated by the compiler. For example, a class for a general memory-
mapped I/O device can be declared as shown in Figure 4.29.

Prevention and Handling of Deadline Violations

As discussed above, even if formal schedulability analysis is performed prop-
erly, sometimes task deadlines may not be meet due to transient system over-
loads, hardware failures, etc. In some cases, the operating system can detect

4.3 Object-orientation and Embedded Systems 155

MMIODevice class {

public:

virtual void MMIODevice(int PhysicalAddress); /*Constructor*/

virtual void SetValue(int Value);

virtual int GetValue();

}

/* declaration of the devices */

MMIODevice AD(0xCCCC001);

MMIODevice DA(0xCCCC003);

/* usage of the devices */

ad_val = AD.GetValue();

...

DA.SetValue(da_val);

Fig. 4.29. I/O Device as an object

such a situation early enough to be able to deal with it. If such an error is de-
tected, some tasks can be replaced with alternatives having shorter execution
times.

Since deadline prevention is under the control of the operating system,
it must know all possible execution alternatives of the application tasks in
advance. Here, object-oriented representation of tasks can be utilised. In ad-
dition to a task’s main execution procedure, as shown in Figure 4.30 several
alternative procedures can be declared.

SafeTask class(Task) {

public:

...

virtual void MainExecutive();

virtual void AlternativeExecutive1();

virtual void AlternativeExecutive2();

};

Fig. 4.30. Alternative implementations of task’s main execution procedure

In this example, two additional procedures are provided to prevent dead-
line violations. During WCET analysis, the execution times of all three al-
ternatives are determined. The operating system must be aware of the alter-
natives (e.g., by using different tasking primitives inside the SafeTask class
declaration). During normal operation, MainExecutive is executed. If an im-
minent deadline miss is detected, the operating system uses the alternatives’
execution times to determine if a different task body can feasibly be executed.

156 4 Programming of Embedded Systems

Software Redundancy

To increase the reliability of and to cope with catastrophic failures in dis-
tributed systems, redundancy is employed. With this, a failure in one system
part does not jeopardise correct system operation as a whole. It is essential for
safety critical-systems to have redundant hardware components (i.e., sensors,
actuators, communication channels, processor boards etc.).

Redundancy in slightly modified form can also be applied to software.
In distributed systems, routines can be run on several processors in parallel.
Even if there is an error on one of the processors, the results from the others
can be used. Furthermore, to counteract logical errors introduced by flawed
specifications, diverse implementations of one routine may be used and run at
the same time. At the end, results from different replicas are compared and
the best one is used in further computation. The alternative routines can be
implemented with the object-oriented approach in a similar way as were the
diverse tasks earlier in this chapter.

Trying to implement this feature, however, several difficulties are encoun-
tered. For obvious reasons, the alternative routines cannot directly change
internal system states (i.e., output devices, shared variables etc.). Only pure
program functions (i.e., procedures without physical effects) can be used ef-
fectively. These problems are even more pronounced when objects are consid-
ered. Any object owns a set of internal variables. When several copies of the
methods of a specific object are executed, these variables cannot be changed
simultaneously unless each method has its own copy. If communication chan-
nels are slow, this is too time-consuming. Using a copy of the object as a whole
seems to be the only feasible approach. The same or similar objects should
run on separate processors. Direct modification of shared variables and states
of input/output devices is forbidden. All results must be forwarded to a sepa-
rate task that compares them and selects from them the final result to change
the system state or to send appropriate commands to peripherals. This kind
of redundancy is hard to automate. Usually it is under direct control of the
developer. Also temporal analysis of such systems is quite complex.

4.4 Survey of Programming Languages for Embedded
Systems

At the dawn of computerised process control, only assembly languages were
used, supporting rather simple processors, and optimising the utilisation of
limited memory and the access to low-level peripherals. While assembly lan-
guages are still useful in building real-time applications with tight timing
or memory constraints on basic microcontrollers, high-level general-purpose
programming languages prevail as means for programming. They boost pro-
ductivity, introduce programming discipline, and foster the use of rigorous

4.4 Survey of Programming Languages for Embedded Systems 157

methods. Some high-level programming languages have been adapted to pro-
gram embedded real-time systems. In most cases, however, real-time function-
ality is available to programmers only through operating system calls. This
category of programming languages is referred to as real-time implementation
languages. Relatively early in the 1960s, special-purpose real-time program-
ming languages emerged. It is interesting to note that they are still not widely
used in spite of their advantages and of the problems caused by using imple-
mentation languages to program embedded systems. In this survey, selected
languages will briefly be discussed. A more comprehensive survey on languages
for real-time programming can be found in [49, 50, 11, 21].

One of the languages including most of the properties desired for develop-
ing real-time programs is Real-Time Euclid [69, 50], which was briefly intro-
duced in Section 4.2.7. Its objective is to produce temporally deterministic and
predictable code in order to support schedulability analysis. This language is,
unfortunately, only of academic importance as a prototype, proposing solu-
tions to open issues of real-time programming. No compiler for this language
is commercially available.

In large-scale embedded systems for automation of industrial processes,
implementations on the basis of programmable logic controllers (PLC) prevail,
which use a different programming paradigm than traditional programming
languages. Their programming will be briefly dealt with at the end of this
survey.

4.4.1 Assembly Language

Assembly languages provide for the most direct interaction with hardware and
the most transparent temporal behaviour. On the other hand, they lack any
other property needed for programming real-time systems or for any kind of
large-scale programming. They are unstructured, hard to learn, ineffective for
human use, and error-prone. The programs are not portable. For tasking and
synchronisation they are fully dependent on operating system calls.

However, programming in assembly languages cannot always be avoided.
For certain microcontrollers and for most custom-built hardware systems no
high-level language compilers are available. Furthermore, for devices with lim-
ited processing capabilities and limited resources, the use of high-level pro-
gramming languages is not feasible, because it often yields inefficient code.
With the availability of memory and processing speed becoming much less
restrictive on most platforms for embedded systems, however, the use of as-
sembly languages should be discouraged.

Nevertheless, assembly languages can still provide for low-level hardware
access to input/output interfaces, implementation of interrupt routines, or
management of devices with direct memory access. Assembly code is still
used in those parts of control applications where tight timing constraints need
to be met, and to remove bottlenecks in programs. Some compilers of high-
level languages allow insertion of fragments of assembly code directly into

158 4 Programming of Embedded Systems

application source text. If this is not supported, routines written in assembly
code can be compiled separately and linked to other object code later.

4.4.2 General-purpose Programming Languages

FORTRAN is the earliest commercially successful high-level programming
language developed in the 1950s [4], and is especially useful and still popu-
lar for programming in technical fields. As such, it was the obvious choice
for use in process control. Several versions of FORTRAN exist; each new
version introduced new syntactic and semantic elements into the language,
maintaining backward compatibility. There is a large code basis for embed-
ded systems written in FORTRAN still running today, especially for military
purposes. Nowadays, FORTRAN is used as a development language for some
applications because of its advantages with respect to human productivity. In
embedded systems applications, it was in most cases replaced by C.

Compilers for FORTRAN are known to produce very efficient code due to
the language’s straightforward syntax and semantics. However, FORTRAN
requires interfacing with assembly code to support real-time functionality like
interrupt handling, low-level input/output device interactions, or scheduling.
The first versions of FORTRAN did not even include bit-manipulation rou-
tines.

In the 1970s, Industrial Real-Time FORTRAN (IRTF) [70] was devel-
oped. Apart from providing for process, device, and I/O control, it also in-
cluded a set of bit-manipulation functions, which were eventually incorpo-
rated into Military Standard ANSI X3.9-1978 for FORTRAN MIL-STD-1753
for FORTRAN-77, and later into FORTRAN-90.

The programming language C was introduced in the early 1970s to im-
plement system software instead of assembly language. Today it is one of the
most popular programming languages for embedded systems. It requires a
simple compiler and only small run-time support. In 1990, the programming
language C was standardised as ANSI C, and most C code written these days
is based on this standard.

On the other hand, C is not very suitable to develop dependable and real-
time applications. It has weak type checking, no checking of array bounds,
lacks structured exception handling, its memory management is under pro-
grammer control, its support for dealing with time is limited, for tasking
and synchronisation operations it relies on operating systems, etc. Because of
these limitations of C, several new dialects and extensions emerged to make
it more suitable for dependable real-time applications. For example, the Cy-
clone programming language was devised to avoid buffer overflows and other
vulnerabilities of standard C.

Another approach to cope with the limitations of C was to define a set of
guidelines and rules for safe programming that do not extend the syntax of
the language. One of the most well-known examples for this is MISRA C [84],
a software development standard conceived by the Motor Industry Software

4.4 Survey of Programming Languages for Embedded Systems 159

Reliability Association for the implementation of reliable embedded systems
programmed in ANSI C. Some rules of MISRA C can be checked by a compiler;
other more general ones influence the development process as a whole.

Several dialects of C attempt to introduce object-orientation into the lan-
guage. One of them, “C with Classes”, became C++, a widely used general-
purpose programming language today. Besides stricter type checking and
structured exception handling, however, C++ does not introduce enhance-
ments valuable for embedded real-time applications. Therefore, similar to C,
many dialects of C++ have been introduced to make it more suitable in the
field. One example is Embedded C++ [33] that preserves the basic features
of object-orientation in C++ while renouncing some others not desirable for
embedded systems like multiple inheritance, virtual base classes, or templates.
The language is, however, oriented at 32-bit RISC processors, and falls behind
by not offering exception handling.

Java was introduced in the early 1990s with the original goal of making
object-oriented programming suitable for embedded systems. Java is simi-
lar to C++, but introduces some restrictions that are to make applications
more reliable. For instance, pointers are replaced by implicit references to ob-
jects, all references are type-checked, and array references are subject to strict
boundary checking. The main feature of Java is platform independence. Java
code is first translated into an intermediate code for a hypothetical “Java
Virtual Machine” (JVM). This code is then interpreted on the target system.
Alternatively, prior to its first execution, intermediate code can be translated
into the native object code of the target processor.

The most distinctive property of the Java programming language is its
automatic memory management. Any time an object is created, an adequate
amount of memory is allocated. When the object turns obsolete, however,
this part of memory is not freed automatically. It remains inaccessible or
“garbage”. Only when there is no more free memory, or periodically, a so-called
“garbage-collector” is called which collects any unused memory references, and
frees and defragments memory. This automatic memory management is the
main reason why standard Java is only conditionally appropriate for hard
real-time applications. It is undetermined at what time the garbage collector
is executed, and how much time it needs to finish its work. Moreover, the
following characteristics render Java unsuitable for real-time programming: it
does not support direct access to low-level input/output peripherals, memory
access is restricted in some implementations to a set of resources managed
by the execution environment (so-called “sandbox”), and there are no direct
provisions for real-time tasking and synchronisation.

Because of these limitations, different extensions to standard Java were in-
troduced to support real-time programming. The most widely used extension
is based on the so-called Real-Time Specification for Java (RTSJ) [96], which
is no syntactic extension to Java, but a set of programming interfaces (classes)
and behavioural specifications that allow standard Java programs to be run
in a real-time fashion. An RTSJ application is compiled with a standard Java

160 4 Programming of Embedded Systems

compiler and executes on a special RTSJ virtual machine. The main objective
of RTSJ is to be backward compatible and independent of particular develop-
ment environments. Its highest priority is predictable execution. To this end,
it defines seven “areas of enhancement” where the specification of standard
Java is extended. The first one considers automatic memory management. By
RTSJ, a program is allowed to allocate memory outside the control of the
standard garbage-collected heap. Further, RTSJ introduces a class for real-
time tasks and supporting classes for enhanced scheduling, synchronisation,
and resource sharing. The scheduling policy is not restricted to any particu-
lar implementation, and can be adjusted to the actual operating system used
by the target system. Additional classes implement interrupt and signal han-
dling, etc. Finally, the class “RawMemoryAccess” allows one to access memory
directly.

4.4.3 Special-purpose Real-time Programming Languages

HAL/S is a high-level programming language introduced by NASA in the late
1960s to meet real-time programming needs and to replace programming in
assembly languages. In contrast to other languages, the HAL/S notation uses
subscripts and superscripts to make the language more readable for engineers.
It includes TASK program blocks, and simple priority-based scheduling con-
structs like SCHEDULE, WAIT and TERMINATE. With the SCHEDULE
statement a task activation can be scheduled either periodically or upon ar-
rival of an interrupt. One of the objectives of HAL/S was high reliability. A
program should produce correct results on all possible inputs. For this, cer-
tain high-order language constructs (like GOTOs) are eliminated from the
language or formally restricted, memory requirements of applications can be
determined a priori , etc. HAL/S was used to program the on-board comput-
ers of the Space Shuttle and some other spacecraft. In the mid-1980s, however,
NASA gradually replaced HAL/S by Ada.

JOVIAL was developed for large-scale real-time programming in the late
1950s [99]. It was mainly used to write software for the electronics of military
aircraft. In 1973, it was standardised as MIL-STD-1589, and later revised
with MIL-STD-1589C. Today, it is mainly used to update and maintain older
application programs embedded in on-board avionics, tactical and strategic
missiles, ammunition, and space systems [68]. From JOVIAL programs code
is generated for a 16-bit microprocessor standardised in MIL-STD-1750A. It
can, however, be used for other target platforms as well. JOVIAL supports
straightforward compilation. It allows inserts of assembly code and direct
access to hardware. For distributed computing, JOVIAL uses a common run-
time repository (so-called communication pool or COMMPOL) which can
contain shared variables, records or tables. On the other hand, it has only
rudimentary support for parallel execution and exception handling.

Modula-2 was developed in the early 1980s as the successor to the pro-
gramming language Modula that was never released as a commercial product

4.4 Survey of Programming Languages for Embedded Systems 161

[116, 85]. It is based on the programming language Pascal, is well structured,
and imposes strict type checking. The name is derived from the fact that
Modula supports partitioning of applications into modules with separate defi-
nition and implementation parts. This facilitates large-scale programming and
better machine-independence (i.e., the hardware specific part of a code is in-
corporated in the implementation part of a module; for a new target system
only this part is replaced by a new one while its interface remains unchanged).

The original Modula includes the concept of processes and their synchro-
nisation with signals. This is replaced in Modula-2 by the lower-level notion
of so-called coroutines, which are autonomous parts of code similar to tasks.
Parallel execution of them, however, is under control of the programmer, who
must explicitly transfer the program flow from one coroutine to another. For
other system facilities, operating system calls must be used.

To eliminate some drawbacks of Modula-2, Modula-3 was introduced in the
late 1980s, but was never widely used. Among other features, Modula-3 offers
properly structured exception handling, objects, and automatic garbage col-
lection (a concept later taken over by Java). Instead of coroutines, lightweight
threads are provided.

PORTAL was developed in the mid-1970s for the implementation of real-
time process-control applications [98]. It has many features of programming
languages well-suited for the development of dependable real-time systems.
Nevertheless, its commercial usage today is very limited. Similar to Modula,
its syntax is based on the programming language Pascal. For parallel activities,
PORTAL offers processes, semaphores, and monitors. Waiting for synchroni-
sation can be limited with timeout clauses. To avoid memory overflows, the
compiler checks maximum stack length for each process, taking all routine calls
into account. Memory is then allocated for all processes in advance. PORTAL
allows direct access to the hardware. Interrupts are inherently transformed
into signals that can serve as activation conditions for specific processes. As
a drawback, PORTAL lacks structured exception handling.

Ada is a procedural programming language that was designed under a
contract of the United States Department of Defense during the early 1980s
[1]. The main intention was to replace diverse programming languages used in
different military embedded real-time applications by a single one. For this, a
series of requirements documents was prepared which eventually evolved into
the Ada83 specification. This includes a rich set of features, which requires, as
a drawback, a powerful compiler and extensive system software support. Con-
sequently, the early Ada applications were not well suited for platforms with
limited processing resources. A later version of Ada (Ada95, [65, 2]) changed
this. Instead of a large number of features, only a set of core features must
be implemented by Ada compiler. Development systems may implement ad-
ditional sets of features defined by so-called annexes. For example, Annex D
defines features for real-time systems, Annex E features for distributed sys-
tems, and Annex H security and safety features. With further annexes, Ada95

162 4 Programming of Embedded Systems

broadens its usage for other kinds of applications (system programming, in-
formation systems).

Ada is a structured and strongly typed language. It uses packages to par-
tition applications into modules. Comparable to Modula, each package has a
public interface part and a protected implementation part. Parallel activities
are supported by the task concept. Similar to packages, the specifications and
implementations of tasks are separated. For synchronisation, the rendezvous
mechanism (see Section 2.3.5) is used. Ada allows structured low-level access
to input/output interfaces, and has structured exception handling. On the
other hand, the features provided for embedded real-time systems are some-
what limited: there are only simple tasking operations, just priority-based
scheduling, and rather rudimentary time-related operations.

PEARL (Process and Experiment Automation Real-time Language) [29,
30, 92] is a high-level language which allows one to write multitasking and real-
time programs in a comfortable and widely hardware-independent way. Since
the language syntax explicitly states most particularities of real-time systems,
it is better suited for real-time programming than Ada. Therefore, examples
expressed in PEARL syntax are used throughout this book. There are four
standardised versions of PEARL. The last one, PEARL90, was introduced in
1998.

A program in PEARL consists of a so-called “system part” and several
“problem parts”. The system part isolates particularities of the hardware
platform from the algorithm, which is defined in the problem parts. This
allows for better hardware independence. On a new platform, only the system
part must be replaced. To support time, PEARL explicitly defines two time
related-data types, CLOCK for time instants and DURATION for time intervals,
with corresponding arithmetic operators. It allows both high-level and low-
level interaction with input-output devices by using so-called data stations (or
DATIONs). Data stations represent virtual input/output devices, and consti-
tute a uniform approach to communicate with various hardware components.

To model parallel activities, PEARL employs the task concept. Its support
for tasking operations is very rich. Tasks can be scheduled for activation upon
a wide range of temporal conditions, or on occurrences of interrupts. For
synchronisation, general semaphores and bolts are used. PEARL is problem-
oriented and can easily be used by engineers. The written code resembles plain
natural language.

A specialised version of the language, PEARL for Distributed Systems [30],
is virtually the only standardised programming language suitable to program
distributed systems. It allows one to describe physical platform topologies, and
supports the declaration of different hardware and software configurations.
Which configuration will be used depends on a system’s current operation
mode. This directly supports different re-configuration scenarios for different
cases of faults.

As drawbacks, PEARL lacks properly structured exception handling, uses
unstructured synchronisation mechanisms, implies priority-based scheduling,

4.4 Survey of Programming Languages for Embedded Systems 163

and has limited provision for temporal predictability. A number of sugges-
tions to improve the language has been made. In [109, 51] several extensions
of PEARL have been proposed to support different levels of dependability.
Propositions to extend the PEARL syntax with object-oriented facilities were
described in [42, 113].

4.4.4 Languages for Programmable Logic Controllers

Programmable logic controllers or PLCs are dedicated microcomputers mainly
used in the automation of industrial processes. They are meant to operate in
harsh conditions. A PLC application executes in a cyclic fashion: first, the
inputs are acquired, then processing is performed and, finally, the outputs are
produced — all within a single cycle. After that, execution pauses until the
start of the next cycle. In 1993, the international standard IEC 61131-3 [56]
took effect defining four different but equivalent programming languages for
PLCs: ladder diagrams, function block diagrams, instruction list, and struc-
tured text. Programming of PLC applications in these languages is problem-
oriented, and portrays the control engineering way of thinking.

Because of their simple execution model, PLCs operate in real time; the
reaction time is bound to the period of one execution cycle. On the other hand,
because of this execution model, more complex control applications may not
be implemented with PLCs. It is possible to skip execution of any function
block in a specific execution cycle. Therefore, it is possible to implement some
rudimentary timing conditions, e.g., a function block may be executed every
second, third, etc. execution cycle.

The paradigm of PLCs and its execution model is widely used in con-
trol engineering. Applications are described as sets of interconnected function
blocks, which are executed in cyclic fashion. Each function block is described
either mathematically or by some simple programming code. Applications can
be simulated and the results analysed on their host systems. One of the widely
used development tools for this kind of applications is Simulink R©.

Part II

Implementation

Case Studies on the Implementation of Design
Guidelines for Embedded Control Systems

In Part 1 of this book, guidelines to design embedded systems have been
given. Starting with the concepts of real-time operation and principles of
fault tolerance, ranging over matters of tasking including synchronisation and
scheduling, more specific topics were elaborated, namely, architectural and
programming issues. The intention of Part 2 is to show how the above guide-
lines can be used in practical implementations.

During the last 15 years, several laboratory prototypes have been imple-
mented, tested and evaluated. The prototypes were based on different hard-
ware platforms, starting with the first one dating back to the early 1990s.
It was based on diverse microprocessor boards built around, for that time
relatively powerful, INMOS transputers T425 and Motorola microcontrollers
MC68306 and MC68307. The implementation was presented in [18]. Its inter-
esting characteristic are point-to-point connections between the kernel- and
task processors based on the simple transputer’s serial links. Peripheral inter-
faces resided at a serial local bus driven with the I2C protocol. The architec-
ture of this platform has briefly been presented in Section 3.3.1 and is sketched
in Figure 3.5. The platform was renounced due to technological advances and
insufficient flexibility. From this prototype, several others evolved, featuring
more flexible distributed control and gradually improved fault tolerance.

The latest hardware platform is, in more detail, presented in Chapter 5
of this part. It has been designed in the course of a research project [62, 82],
carried out within the European Union’s 5th Framework Programme. Its pur-
pose was to provide a platform to verify and validate concepts for improving
fault detection and fault tolerance in process control which emerged from the
research. After the project ended, it has been realised that the platform is gen-
eral and flexible enough to be used in further research on generic asynchronous
multitasking systems for distributed control.

How this platform is employed in the design and implementation of a
fault-tolerant distributed embedded system is described in Chapter 6. It is
shown how certain fault detection and fault-tolerance measures as introduced
in Section 1.3.3 are implemented. The distributed homogenous asymmetri-

168

cal embedded system features full dynamic multitasking with deadline-driven
scheduling. To prevent too long latencies in response to events, some critical
parts have been implemented in firmware using hardware/software co-design
principles.

Finally, in Chapter 7 a consistent implementation of an embedded real-
time system, based on a novel and patented operation paradigm, will be de-
scribed, that was devised and elaborated by a jointly supervised doctoral
student at Fernuniversität in Hagen, Dr.-Ing. Martin Skambraks.

5

Hardware Platform

In order to support higher-level studies of control systems’ capabilities for
fault detection, fault isolation, and fault tolerance, it was required that at the
lower level the platform itself exhibited these properties, too. For this reason,
first, the existing designs for distributed embedded systems have been studied
and proper guidelines set. Then, the architecture has been devised and the
prototype implemented.

5.1 Architecture

The architecture of the platform is shown in Figure 5.1. To start with, it was
decided to employ the time-triggered CAN protocol (TTCAN [64]; see also
Section 3.5.2) as communication infrastructure. To enhance fault tolerance,
the communication system was duplicated. In the normal situation, in which
the system is expected to be most of the time, the communication load is
shared among the two buses. Utilising the fault detection built into the pro-
tocol, a communication fault can be recognised. In this case, communication
is re-routed to the bus remaining intact. Most likely, because of the degraded
performance, it is necessary to reduce the amount of data to be transmitted.

This communication system connects processing units and peripheral in-
terfaces. For implementation, the latter may be grouped into peripheral units;
then they require only one (dual) TTCAN bus interface. If they are, however,
geographically distributed, or very safety-sensitive, each one may require its
own. (There is also possibility of attaching a peripheral interface directly to
a processing unit; see S2 in Figure 5.1; this way, however, the fault-tolerance
measures given below are not directly applicable.) The processing and pe-
ripheral units communicate with each other using the principle of distributed
replicated shared memory (Section 3.5.4) as middleware, which provides fur-
ther fault-tolerance measures.

Apart from these main architectural features, the processing units are
connected with further communication means for programming, debugging,

170 5 Hardware Platform

P
1

P
2

P
3

P
4

P
5

P
6

S
1

S
2

A
2

A
3

S
4

A
1

S
5

du
al

TT

C
A

N
bu

s

ho
st

P
C

hu
b

pe
rip

he
ra

l u
ni

t

P
n
−

pr
oc

es
so

r u
ni

ts
S

n
−

se
ns

or
s

A
n
−

ac
tu

at
or

s

et
he

rn
et

 c
on

ne
ct

io
ns

di
re

ct
lin

k

Fig. 5.1. Architecture of the hardware platform

5.2 Communication Module Used in Processing and Peripheral Units 171

monitoring and diagnostics. For this purpose, a high capacity TCP/IP net-
work is employed. This communication, however, is not fault-tolerant and may
not be temporally predictable. In fact, in the final application it is not needed
any more. The same holds for the host personal computer that communicates
with the distributed embedded platform either by the TCP/IP network, or
is connected to one of the nodes, over which it accesses all the others by
TTCAN.

5.2 Communication Module Used in Processing and
Peripheral Units

To support the TTCAN data transfer protocol, a communication module has
been designed and implemented. Technically, it has the form of a piggy-back
(or daughter-board) unit plugged into, and attached with screws onto the
main-boards of either processing or peripheral modules. The implementation
of the communication module and its use in processing and peripheral units
are shown in Figures 5.2 and 5.4, respectively.

The physical interface with the two TTCAN buses is implemented with two
chips, Bosch TTCAN EC rev. 2.0. The maximum size of a single message as
defined by the CAN standard is eight bytes, and the maximum communication
speed is limited to 1 Mbps. Figure 5.3 shows a photograph of the interface
taken from the side of the key elements FPGA and TTCAN interfaces.

The main part of the communication module, however, is an FPGA chip
(Xilinx’s Spartan-IIe). Its basic low-level function is to provide an interface
between the processing or peripheral units and the communication interfaces
connected to the TTCAN communication channels. On start-up, the commu-
nication parameters of the TTCAN protocol interfaces are initialised, together
with the TTCAN system matrix containing the time-tables of the messages.
This is done by sending data, stored in on-board memory, in a stream to the
TTCAN interfaces. In case a re-configuration is needed, the communication
interfaces are re-initialised by new parameters. This way, the processors are
relieved from routine overhead work.

Further, in the FPGA the distributed shared memory is implemented.
During operation, the FPGA supplies the contents of the messages for each
basic cycle to both interfaces and acquires the received data from them. The
memory cells are kept in data storage registers residing in the FPGAs, and
are accessible from the processor bus on one side, and the bus interface on
the other. When a processor writes a value into a cell, by the firmware in the
FPGA it is transparently put into a TTCAN message, which will be transmit-
ted on the network in the next basic cycle. When, on the other hand, a new
message is received, the contents are written into the shared memory cells. Not
all messages are of interest to all communicating nodes; the FPGA selects the
ones to be observed. While writing data into memory cells, certain transforma-
tions according to pre-defined functions or operations like time-stamping may

172 5 Hardware Platform

D
at

a
E

E
P

R
O

M
51

2k
bi

t

C
on

fig
ur

at
io

n
Fl

as
h

S
P

R
O

M
2M

bi
t

D
31

..D
0

A
21

..A
2

FP
G

A

JT
A

G

C
trl

 In

C
trl

 O
ut

cl
k

TT
C

A
N

 1

TT
C

A
N

 2

C
S

1

C
S

0

V
cc

 (3
,3

V
, 5

V
)

C
S

2,
3

os
c.

D
C

/D
C

V
C

C
(3

,3
V

,5
V

)

E
xt

er
na

l a
ux

. c
on

ne
ct

or

4x
de

bu
g

Fig. 5.2. Processing unit with communication module (sketch of the DSP experi-
mental kit by Texas Instruments)

5.2 Communication Module Used in Processing and Peripheral Units 173

Fig. 5.3. Communication module

be transparently performed within the FPGA. This is particularly interesting
in the case of simple peripheral interfaces not capable of such operations.

Beside the processors and the peripheral units, Commercial Off-The-Shelf
(COTS) components not having provisions for the specific fault-tolerant com-
munication can be attached to the FPGA and can, thus, be employed in the
system. Apart of the FPGA’s configuration flash PROM, there is also data
memory in form of a 512 kbit EEPROM attached to the FPGA chip. Its
purpose is to contain different data which will be used, e.g., for automatic
(re-) initialisation of the communication interfaces and other functions to be
performed directly within the firmware. The daughter-board also provides an
interface to the outside world over a boundary scan connector (JTAG1). The
processing units have their JTAG ports connected in a daisy chain. During
the development and debugging phases, a PC can load configuration data into
a module, or it can perform some monitoring functions. To allow for further
extensions, an additional external connector was prepared.

Processing units are based on the digital signal processor (DSP)
TMS320C6711 of Texas instruments. The experimental board C6711DSK
Starter Kit [63] was used, which has the possibility of adding daughter-boards
by exhibiting the complete processor bus on two outside connectors where a
communication module is plugged in (Figure 5.2). For programming the board
in ANSI C, Code Composer Studio V2.1 by Texas Instruments was used.

1 Acronym for Joint Test Action Group; often meaning IEEE 1149.1 standard “Test
Access Port and Boundary-Scan Architecture” for test access ports, originally
used to test printed circuit boards by boundary scan.

174 5 Hardware Platform

D
at

a
E

E
P

R
O

M
51

2k
bi

t

C
on

fig
ur

at
io

n
Fl

as
h

S
P

R
O

M
2M

bi
t

FP
G

A

JT
A

G

cl
k

TT
C

A
N

 1

TT
C

A
N

 2

C
S

1

C
S

0

V
cc

 (3
,3

V
, 5

V
)

C
S

2,
3

os
c.

D
C

/D
C

V
C

C
(3

,3
V

,5
V

)

E
xt

er
na

l a
ux

. c
on

ne
ct

or

4x
de

bu
g

os
c

25
M

D
A

4.
.7

D
A

0.
.3

A
D

4.
.7

A
D

0.
.3

lo
gi

c
in

pu
ts

lo
gi

c
ou

tp
ut

s

lo
gi

c
in

pu
ts

lo
gi

c
ou

tp
ut

s

P
IC

m
ic

ro
co

nt
r.

10
M

8x

sp
i1

sp
i2

sp
i3

sp
i4

sp
i5

sp
i6

sp
i7

sp
i8

sp
i9

di
g.

in
p.

di
g.

ou
tp

.

4 4 4 4 8 8

8 8 8 8

8x

81
 d

ig
ita

l
I/O

 li
ne

s

Fig. 5.4. Processing unit with communication module

5.3 Fault Tolerance of the Hardware Platform 175

Similarly, the peripheral units were designed in form of a main-board into
which a communication module is plugged in as daughter-board (Figure 5.4).
On the experimental peripheral units, a number of analogue-to-digital and
digital-to-analogue converters is provided together with pure binary inputs
and outputs in different technologies. Such peripheral I/O allows for quick
prototyping of process control applications. Apart from that, there is also a
simple microcontroller from the PIC R©series (Microchip) to emulate intelligent
peripheral interfaces.

Fig. 5.5. The prototype

The photograph of the prototype in Figure 5.5 shows three stacked pro-
cessing units with communication modules, connected by two clearly visible
CAN bus cables (the lowest board is detached) with the universal peripheral
unit (on the right).

5.3 Fault Tolerance of the Hardware Platform

There are a number of features, introduced by the use of the FPGA, that
enhance the system’s fault tolerance. It will be shown here how certain prin-

176 5 Hardware Platform

ciples of fault detection presented in Section 1.3.3 can be employed by the
communication module.

In the firmware, some fault detection and isolation functions have been
implemented. For instance, data written to a shared memory cell and later
broadcast on TTCAN to other replicae, can be checked for certain specified
properties and/or behaviour. Plausibility of data values is easily checked by
comparing their values with pre-loaded boundaries. Also, dynamics of signal
behaviour can be monitored by comparing previous values with new ones; in
case of abnormal changes a fault may be suspected. For extremely critical
applications, the technique of checking pairs may be used to detect faults.
Several (possibly diverse) sensors may acquire process information and send
it in separate messages. The FPGA then performs checks whether the data
received match sufficiently. Also, to cope with disturbances on the buses, the
data redundancy principle can be employed: data may be transmitted in more
than one TTCAN message and on both buses, and the conformity is checked
by the FPGA.

Further, if there is a probability of communication errors, loop-back test-
ing may be implemented where information is transmitted back and forth,
and verified transparently by the firmware. A node may even be designated
the function of a bus monitor and verify the general behaviour of data on the
buses. Distributed shared memory inherently supports fault tolerance by re-
configuration. If a unit fails, another one may notice the absence of reasonable
data in a message and copes with the situation. This is directly implemented
in the FPGA. Last but not least, for the complexity of programmed systems,
it is difficult to prove their correctness. Since FPGAs are not based on sequen-
tial software, and since their functions are simpler and more loosely coupled,
they could be verified more rigorously with the usual hardware design and
verification means.

5.4 System Software of the Experimental Platform

To support adequately execution of application programs on the hardware
platform, appropriate system software has been developed. It resides on each
processing unit and is executed in close co-operation of both hardware and
firmware as described above. On the peripheral nodes, all required system
software functionality is performed by the hardware.

The system software can be divided into several modules or layers: sys-
tem support layer, communication layer, distributed shared memory layer,
and application support layer (Figure 5.6). The system support layer pro-
vides an interface to hardware and firmware on one side, and the application
software on the other, including the basic operating system kernel functions.
The communication layer integrates support for the distributed shared mem-
ory mechanism described earlier (Section 3.5.4). The development support
module is used for debugging and diagnostics.

5.4 System Software of the Experimental Platform 177

System
 support layer

Resource and fault
management Control application

Application support layer

Micro kernel

Device drivers

DSM layer

Communication layer

Hardware

D
ev

el
op

m
en

t s
up

po
rt

Fig. 5.6. Conceptual organisation of experimental platform’s system software

System support layer. This layer provides the basic functionality of the
system. It communicates directly with the hardware, and (indirectly) through
sensors and actuators with the environment. On the other hand, it is also
responsible for smooth execution of applications. It consists of a microkernel,
device drivers, and a set of initialisation routines. The microkernel performs
basic operations, as can be found in any operating system, however on a
considerably reduced scale. Some of these operations are memory allocation,
task scheduling, and process synchronisation. In the applications, for which
the platform is designed, only simple memory allocation functions are needed.
For temporal predictability and simplicity, e.g., support for virtual memory
management has not been included. Most of the memory needed is allocated
during initialisation.

The early IFATIS version of the system software executes the application
code periodically as a single task and synchronously with the communica-
tion subsystem, and simulates the tasking operations inside the application.
The resource- and fault-management routines are compiled together with an
application. Later, most of the microkernel functionality has been migrated
to the firmware; see Section 6.3. Proper support for multitasking has been
added using the concept of Fault-Tolerant Cells described in Section 6.1. It
employs earliest-deadline-first (EDF) scheduling implemented with dedicated
hardware components that also perform run-time schedulability analysis of
the set of ready tasks in a fraction of the time needed by software routines.
Resource monitoring and fault-management has also been put in separate
modules and implemented mainly in firmware.

For inter-task synchronisation, the microkernel includes static semaphore
objects. In its first version, they have been implemented with low-level BIOS
routines that came with the processor board. This kind of synchronisation,
however, is limited to the tasks on the same processing board. Later, util-
ising the shared memory mechanism, inter-module task synchronisation has
been implemented. Also, the synchronisation routines of the BIOS have been
replaced with more efficient ones.

178 5 Hardware Platform

The device drivers on the peripheral units are pre-programmed, and exe-
cuted by firmware (i.e., as discrete logic circuits in FPGAs) and/or by simple
microcontrollers. The functionality of the microcontrollers implemented by
separate chips in the first version was later migrated into the FPGAs. Be-
cause of its simplicity, only a few percents of the FPGAs’ logical blocks were
necessary.

At system start-up, routines are run to initialise the hardware and basic
internal data structures, to prepare the communication infrastructure, etc. As
a part of initialisation, a set of self-diagnostic routines is executed to detect
possible failures in the hardware. System initialisation is based on the configu-
ration tables provided by the application development tool. The tables include
general information about each node (e.g., ID, type and priority), informa-
tion about integrated peripherals, principal attributes for the communication
infrastructure, and so on.

Communication layer. Communication functions perform all communica-
tion between modules of the system. The timetables for the TTCAN protocol
are provided in advance by the development tool. A timetable consists of a
sequence of slots used to transmit individual messages. A message represents
a piece of information that is transferred between different processing nodes,
sensors and actuators. The communication routines write to and read from
slots. In the first version of the system software, a small amount of com-
munication bandwidth was set aside for debugging messages. Later, TCP/IP
communication links were used for this purpose.

Distributed shared memory layer. Tightly integrated with the communica-
tion layer is the subsystem that implements the distributed shared memory
model. It serves as middleware, and allows for independent virtual communi-
cation links between source and destination of any message. When both peers
reside on the same node, communication is performed as memory-to-memory
transfer. When intra-module communication is required, the TTCAN com-
munication protocol is used.

Application support layer. This layer allows control applications to interact
with the hardware by a set of pre-defined API routines. System interface
routines are used by applications to invoke services of the system software.
Generally, all functionality of the underlying system software can be used by
applications if needed. However, it is expected that most of these routines will
mainly be used by the resource and fault-tolerance management modules. The
routines are integrated into the object library and are linked to the control
applications. The interface to the system routines is provided by means of C
header files.

Support for development, testing and diagnostics. The hardware platform
provides an experimental test-bed for different higher-level approaches to deal
with faults in control systems. To this end, adequate system support for testing
and diagnostics has been implemented. It can be used for monitoring and
setting values of shared memory cells and certain global variables in control
applications. The changing of information can be monitored and recorded

5.4 System Software of the Experimental Platform 179

during a selected period of time. Then, data can be downloaded and analysed
off-line. In the early hardware implementation, the debugging routines on
a dedicated processing node communicated with the development platform
through a JTAG port. If required, the commands were relayed to other nodes
in the system by means of the communication subsystem.

On each node a simple software routine accepts diagnostic messages, per-
forms the operations requested, and returns information to the requesting
nodes. A message represents a single command, containing command code,
recipient node identification, and eight bits of data. The development and di-
agnostics support system implements three commands to read memory loca-
tions in processing nodes (GET LONG, GET WORD, GET BYTE), and three
commands to write into such memory locations (PUT LONG, PUT WORD,

PUT BYTE). Each of them includes local memory address, and data in case
of write operations. As reply, the same message is sent back by the receiv-
ing node, with the new data in case of read operations. These commands
can be used for basic memory read/write operations, loading of programs,
etc. Since the messages require absolute addresses, an additional command
(GET STRUCT) is used by the development system to acquire the start ad-
dresses of all mandatory data structures on the nodes. Beside the messages
mentioned there are several for off-line data acquisition and monitoring. Cur-
rently, there are 24 different system commands implemented on the processing
nodes and used by the development platform. A set of commands is reserved
for user applications. These messages are processed independently of system
software by a procedure written in C code.

The overhead for diagnostics should not interfere with normal system op-
eration. In particular, the transmission of the debugging messages should be
performed independently from normal inter-node communication. Therefore,
all diagnostic messages are considered as sporadic messages with low impor-
tance, and are transmitted in the arbitration message slots described in Sec-
tion 3.5.2.

The development support and diagnostics module was used during de-
velopment to load application code from the development system onto the
processing nodes. For this purpose, a simple loader was implemented. The
compiler creates object files in common object file format (COFF). The ob-
ject files are then read by the loader, prepared for execution, and put into
memory. When an application has become stable, the code is pre-loaded into
the EEPROMs.

The TTCAN communication protocol is not suitable for fast transfer of
large amounts of data. The maximum size of a CAN message is eight bytes,
with the transmission speed limited to 1 Mbps. Although some tricks were
utilised (e.g., an unused part of the message ID was employed to carry the
command code), the loading of program code and debugging were slow. Conse-
quently, an alternative solution has been implemented. A dedicated Ethernet
hardware communication module has been added to each node, which allows
TCP/IP communications with the development platform. In control appli-

180 5 Hardware Platform

cations, these modules cannot be used for process data transfer for several
reasons, the most important being that the basic TCP/IP communication
protocol lacks temporal predictability.

6

Implementation of a Fault-tolerant Distributed
Embedded System

In this chapter it is shown how the platform has been employed in the imple-
mentation of an intelligent re-configurable fault-tolerant control system within
the research project [62].

The project’s major goal was to establish a framework of intelligent fault-
tolerant control technology, providing engineers and scientists with advanced
methods to address fault-tolerance problems in complex control systems in a
systematic way. It was intended to build a basis for the development of user-
specified tools and systems in all kinds of industrial sectors. The project’s
second goal was to develop a novel methodology and a software tool for inte-
grated design of real-time, multilevel fault-tolerant control systems. The final
goal of practical prototype implementation is to customise the results results
for automotive systems, a water-treatment process, and for constructing a
fault-tolerant control platform for robotic systems.

Besides enhancing the quality and robustness of process components, us-
ing hardware redundancy is a traditional way to improve process reliability
and availability, which has been extended to the use of software redundancy
during the last decades. Due to the fixed structure and high demands for
hardware and software resources, the applicability of redundancy strategies is
usually limited to some special technical processes, or to parts of key system
components like central computing unit or bus system. Evidently more flexible
and effective are the fault-tolerance strategies with fault accommodation or
system and/or controller reconfiguration. In a fault-tolerant control system,
early fault detection and isolation plays a key role.

The objectives of a part of the project which was entitled “Fault Detection
and Isolation – Fault Tolerance in Computer Systems” were (1) to analyse
the standards and guidelines, and the needs of control engineers in order to
detect and isolate faults from the point of view of computer control systems,
(2) to develop software modules aiming at designing hardware and software
architectures appropriate for fault detection and isolation, and providing high
system integrity employing fault tolerance, and (3) to implement a prototype

182 6 Implementation of a Fault-tolerant Distributed Embedded System

computer control system platform to evaluate and validate these principles.
The resulting hardware platform has been described in detail in Chapter 5.

After conclusion of the project, further generalisations have been made in
order to make the scheme for fault detection and tolerance universal and more
flexible. Below, the resulting model and an implementation for distributed con-
trol systems are described. They are based on the existing hardware platform
and on the guidelines that emerged from the project.

6.1 Generalised Model of Fault-tolerant Real-time
Control Systems

In the control community, the most widely used technique to describe a control
system is based on logical function blocks. This approach is also supported by
most generic and custom design tools for control applications. Each function
block can have several inputs, performs some function, and produces a number
of outputs. Several function blocks can be combined in different topologies,
each function block can be decomposed into more primitive blocks, etc. This
method is used both for theoretical system analysis and to design and im-
plement control applications. Moreover, this model-based approach becomes
more and more popular for dealing with all kinds of computer systems. There
are further benefits of using function blocks. When designing distributed sys-
tems, the innermost function blocks represent basic units of allocation to
processing elements. A composite function block, on the other hand, can be
executed in distributed fashion. Furthermore, on the top (system or context)
level an entire control system — distributed or not — can be considered as a
single function block.

A generalised model of a control system needs to take fault tolerance and
real-time issues into account that are typically not integrated in the traditional
development methods for control applications. The model to be presented has
been designed for easy implementability on diverse hardware and for match-
ing well general distributed architectures. It supports hardware/software co-
design, and allows for a smooth transition from logical to physical architecture.
Its basic idea is to combine control functions (composed of function blocks)
with a monitoring function and reconfiguration capabilities, and to include the
notion of system resources. The monitoring function supervises the behaviour
of input and output signals, and intermediate system states. As a result, the
so-called Fault-Tolerant Cell (FTC) is introduced; see Figure 6.1. An FTC
combines both the algorithmic part of a control application and all resources
needed to perform the task given. The algorithmic part is represented by a
set of function blocks. In addition, an FTC also encloses the fault tolerance
and temporal features of the encapsulated blocks.

On the context level, an entire control system is considered as a single
global FTC that contains all hardware resources and program code. Its objec-
tives are expressed generally (e.g., “control a chemical process”). This FTC

6.1 Generalised Model of Fault-tolerant Real-time Control Systems 183

executive
input
data

mapping
and pre−

evaluation

output
data

mapping
and post−
evaluation

MRMC − Monitoring, reconfiguration and mode control

Local resources

controlled process

configuration control signals
status signals

data paths

Fig. 6.1. Structure of a fault-tolerant cell

can be decomposed into a set of more primitive FTCs that perform a number
of subtasks of the primary objective. Instead of running the control appli-
cation code, the global FTC is managing its subblocks. Each subblock owns
a subset of resources and a part of program code allocated to the superior
block. On this level, the objectives are more specific (e.g., “maintain the tem-
perature of a mixture”). This decomposition can be applied recursively, i.e.,
FTCs can be decomposed hierarchically. On the lowest level of the hierarchy,
application code of control functions is executed. Since a specific objective can
be accomplished in different ways, it is not necessary that all subblocks are
active at a specific point in time. Selecting alternative function blocks and/or
alternative FTCs also provides for both fault tolerance and timeliness.

The internal configuration of an FTC at a specific instant is selected by
configuration control signals provided by higher levels in the FTC hierarchy,
or by the operator on the top-most level. Each configuration also inherently
defines certain parameters about how the given objective or task should be
performed (e.g., execution deadline, or accuracy of results). In the case of
hard real-time tasks these parameters are firm. For soft real-time tasks, some
of them can be given in ranges, or by some fuzzy rules. This allows for bet-
ter flexibility in cases that only limited resources are available or of transient
overloads. If there are not enough local resources available to perform a se-
lected configuration, or if the required execution parameters cannot be met,
appropriate status information is generated to the upper levels in the FTC
hierarchy and, eventually, to the operator. Consequently, at an upper level,
alternative scenarios can be chosen, the general objective can be degraded, or
the system can be shut down in a controlled manner. If an FTC can handle
hardware, software, and timing faults locally, a higher level of hierarchy is not
notified.

184 6 Implementation of a Fault-tolerant Distributed Embedded System

Different topologies of FTC interconnections can be implemented (e.g.,
centralised control, master-slave or various multilayer organisations). On hier-
archically different levels, usually control configuration and status information
is exchanged between FTCs, only. On the same level, FTCs mostly commu-
nicate by passing data from outputs to inputs of other FTCs.

The internal structure of FTCs is shown in Figure 6.1 In general, any
FTC acquires some input information, processes it, and produces outputs.
The inputs are read either from sensors in local resources, from operators, or
from other FTCs. Similarly, the outputs drive actuators or constitute input
data for other FTCs. Traditionally, sensors, actuators, and other resources
are not considered to be parts of function blocks, as is the case for FTCs.
For instance, an FTC measures temperature instead of just reading a sensor.
Since the corresponding sensor is part of the FTC’s local resources, in case of
a fault the temperature may be determined in an alternative way, if possible
without the need to notify the superior FTC. A conversion function (e.g., from
an acquired raw integer to a physically correct floating-point temperature
value) may be defined within the FTC, together with bounds and/or other
plausibility control. For an alternative sensor, a different function may apply.
Similarly, FTCs influence the plant through changing some physical properties
(e.g., by heating the liquid in a tank, or by increasing/decreasing fuel flow).
This approach allows for a higher degree of flexibility and for better fault
tolerance.

A Fault-Tolerant Cell is composed of:
Local resources. Any FTC is associated with a set of resources: processing

capabilities, input/output interfaces, sensors and actuators, etc. Some of the
resources are available exclusively to a single FTC, and some can be shared
among several FTCs. For example, more than one FTC can be executed on
a single processing element, or sensor data can be read by several FTCs. An
actuator, however, will most likely be associated with one single FTC, only.
A set of resources available can change during local or global reconfiguration
of a system. The resources allocated to a specific FTC are available in all its
subblocks as well. There can be no resources locally assigned to a subblock,
which are not part its superior block, too. Therefore, the FTC on the context
level owns all resources of the control system.

Monitoring, reconfiguration and mode control (MRMC). This module
manages the FTC. Based on external configuration control signals, the MRMC
allocates and configures available resources and other components of the FTC
to perform a requested task. According to the configuration selected, the pro-
grams performing the control algorithm are invoked. The MRMC also mon-
itors all associated resources and traces any malfunctions in them. If a fault
is detected by MRMC during the execution of the FTC’s executive, first, the
MRMC tries to deal with it locally by using redundant or alternative com-
ponents, by reconfiguring the local subblocks, etc. If a fault cannot be dealt
with locally, the MRMC immediately notifies the superior entity by means of
appropriate status information.

6.2 Implementation of Logical Structures on the Hardware Platform 185

Input data mapping and pre-evaluation. This module receives all input
data signals needed by the FTC to perform a given task. The inputs originate
either from the local resources or from external information paths. It maps
external data values into the data domain used by the FTC. For example, it
can map integer values produced by an A/D converter into a floating-point
quantity that represents the actual control parameter. The module can check
the plausibility of input data and inform the MRMC if anomalies are detected.
It also serves as a multiplexer if alternative information sources for some input
exist. For instance, several redundant sensors may be allocated to the FTC.
After start-up, one of them serves as actual data input. If this sensor fails, the
MRMC can transparently switch to the next available one without the need
to restart the primary control function. In some cases, if no alternative for
some input is available, the MRMC can activate an auxiliary module that will
provide the missing information by an approximation based on other sensorial
inputs. This information is then delivered to the same data input as if it came
from the sensor. Not all input data needs mapping and probably not every
signal is tested.

Output data mapping and post-evaluation. This module takes the values
produced by the cell and converts them into a form appropriate for use by
other FTCs or local output devices. A floating-point quantity, for instance,
that represents opening of a throttle in percent must be converted into an
appropriate integer value to be used by the D/A converter in the throttle
actuator. Again, output signals can be checked for any anomalies and the
MRMC can be notified. Similar to the input data mapping module, this one
may also utilise redundant actuator elements.

Executive. The executive performs the FTC control functions according
to the configuration parameters set by the MRMC. On non-leaf levels of the
block hierarchy, the executive consists of several subordinate FTCs. Here,
the MRMC controls which subordinate FTCs should be activated, and how
they interact with each other. On the elementary level, the executive executes
program code of control functions on the processing element, some dedicated
hardware component, etc., which are part of the local resources. In either case,
the executive also provides some information to the MRMC if required. As
noted before, sometimes the MRMC should know if subordinate FTCs cannot
execute their tasks within required deadlines, or if subordinate FTCs do not
have the capability to perform the tasks at all.

6.2 Implementation of Logical Structures on the
Hardware Platform

As previously discussed, a control system as a whole can be portrayed by a
single global FTC. All resources and control functions are allocated to this
FTC, and its MRMC monitors and manages the control application. However,
it is not likely that a complex application is executed as a single executable

186 6 Implementation of a Fault-tolerant Distributed Embedded System

program. Therefore, the executive of the global FTC is decomposed into sev-
eral composite (e.g., FTC1 in Figure 6.2) or elementary FTCs. Both can be
mapped onto one or several processing units, and one or more peripheral de-
vices can be associated with them (e.g., FTC3 and FTC7). It is also possible
that several FTCs share a single processing unit (e.g., FTC5 and FTC6). This
is particularly convenient in a case of tightly coupled partial processes where
communication delays may introduce jitter.

P1
P2

P3

P4 P5 P6

S1

S2

A2 A3

S4 A1 S5

FTC2

FTC3

FTC4

FTC5 FTC7 FTC8

Global FTC
composite FTC1

FTC6

Fig. 6.2. An example of mapping different FTCs onto the distributed hardware
architecture

To provide for the necessary system integrity, a mapping is not permanent
and can be reconfigured in the case of faults. Control functions, as well as mon-
itoring and other blocks of FTCs must be executed on the resources that are
proven faultless. Reconfiguration is managed by higher-level MRMCs based
on the status information received over the communication network from the
subordinate FTCs. Alternative or redundant resources are employed, if avail-
able, or the system’s performance is degraded gracefully in order to survive
the situation. However, the set of all possible system configurations is static
and known in advance. This set is prepared and analysed for temporal prop-
erties off-line during the development phase concerning potential faults and
considering required deadlines. Of course, this can represent a very complex
task, and should be supported by appropriate development tools. Particular
attention must be paid to the implementation of the global and local MRMCs,
which is not explicitly shown in this scheme.

Global MRMC (G-MRMC) monitors and controls the fault-tolerance be-
haviour of a control system as a whole, based on the status information pro-
vided by other MRMCs and the operator. Possible implementations of G-
MRMC are:

6.3 Partial Implementation in Firmware 187

Centralised G-MRMC. The basic implementation is a single centralised G-
MRMC. Status and control information is transferred to and from the
G-MRMC over the communication infrastructure. A single G-MRMC also
represents, however, a central point of failure, requiring a fault-tolerant
implementation: when the node executing the G-MRMC fails, its functions
must be passed to any other processing unit. To allow for that, several
nodes execute the same G-MRMC code in parallel, but only one replica
generates the system’s reconfiguration control information.

Distributed G-MRMC. If, as in the present case, the communication protocol
is based on the message broadcasting mechanism, this is a better solution
to implement the G-MRMC. All messages sent from a node can be received
by all other nodes in the system. Thus, the status information messages
can be processed and reacted upon by any node locally. Therefore, there is
no need to transmit any control information for reconfiguration. Moreover,
only the status information relevant for a specific processing unit must
be processed. This approach may simplify implementation, but has the
drawback of increased workload on every processing node.

Lower-level MRMCs monitor and control the fault-tolerance behaviour
of their executives. Since it is possible to allocate a single FTC to several
processing units, similar considerations related to fault tolerance arise as for
the G-MRMC. However, the same solutions apply, and the distributed MRMC
can be implemented on all associated nodes.

Based on the current operation mode, the MRMCs of the elementary FTCs
active on a particular processing unit also determine the set of executives
that must be executed on this processing node, and its timing constraints.
Similarly, these MRMCs also reconfigure other resources of the node (e.g.,
locally connected sensors and actuators, communication data paths, or pre-
and post-evaluations).

6.3 Partial Implementation in Firmware

Executing MRMCs, microkernel, communication subsystems, etc., takes a cer-
tain amount of a processing unit’s capacity away from the application pro-
grams. Further, the complexity of the temporal analysis is increased and, in
the case of improper design, temporal predictability may be jeopardised. This
overhead can be reduced if additional processing facilities in form of dedi-
cated hardware are employed, whose functions are defined by corresponding
firmware. It resides at the system bus of the processing and peripheral nodes
to allow them to access its dual-port memory cells. Network interfaces are con-
nected as well. This hardware provides some low-level functionality, enhanced
fault tolerance, modularity, and increased performance, and implements fault-
tolerant inter-module communication using the approach of distributed repli-
cated shared memory. It can also perform parts of control applications (thus

188 6 Implementation of a Fault-tolerant Distributed Embedded System

supporting software-hardware co-design), and serve as a gateway to Com-
mercial Off-The-Shelf devices, which do not comply with the fault-tolerance
requirements. For its realisation, a FPGA device has been employed, which
implements a number of hardware modules on a single chip, running in par-
allel and independently of each other. The outline is shown in Figure 6.3 (cf.
also Figures 5.2-5.4). In the following subsections, implementations of three
main modules will be presented.

TTCAN
interface

1

TTCAN
interface

2

C
om

m
un

ic
at

io
n

su
pp

or
t m

od
ul

e

D
ua

l T
TC

A
N

 b
us

 Processing
unit

Distributed
shared
memory

cells

FPGA

sy
st

em
 b

us

Support
for DSM

Kernel
control

data

control

data

Fig. 6.3. Firmware-implemented communication support module

6.3.1 Communication Support Module

A time-triggered bus requires the periodical attention of a controller; if it were
run by a processing unit, it would influence the unit’s performance (although
the delay would probably be predictable). Instead, this module controls all
communication hardware interfaces. It handles buffering of input and output
data, and monitors proper operation of the communication buses. Due to the
relative complexity of the communication chips used in the platform, a so-
lution with digital circuits was not possible; instead a simple microprocessor
was implemented in firmware. It manages TTCAN interface chips, and trans-
ports data between them and the registers of the distributed shared memory;
see Figure 6.3. This is carried out transparently and in parallel with program
execution in the main processor.

The microprocessor mimics the architecture of the 8-bit Microchip PIC R©

microcontrollers [83] and uses the same instruction set. This enables one to
use any existing compiler for this family of microcontrollers. It consumes a
very small amount of FPGA resources – theoretically it would be possible to

6.3 Partial Implementation in Firmware 189

implement several microprocessors of this kind in a single FPGA device. In
addition to its primary role of supporting inter-module communication, the
microprocessor performs some other tasks not possible by simple hardware
logic.

6.3.2 Supporting Middleware for Distributed Shared Memory

This module extends the communication support and handles the access to the
shared memory cells on one hand and their replication over the communication
module on the other. It implements simple data mapping and evaluation, and
detects when data in the memory cells are changed potentially triggering some
tasking operations.

To detect if a value is in its valid range, logic comparators are used. The
logical scheme for this is given in Figure 6.4.

Upper
bound

Lower
bound

S
ha

re
d

m
em

or
y

re
gi

st
er >1 Out of

bounds

comp

comp

Fig. 6.4. Range checking of transmitted values

For integer quantities the implementation of the evaluation logic is straight-
forward. Consumption of FPGA resources can be reduced if only a coarse
comparison is performed. In this case, several most significant bits of the data
are taken into account. Another simplification is possible if only non-negative
values are allowed, and data is only limited by an upper bound. Further, some
resources can be saved if pre-defined constants are used instead of registers
to represent a lower and/or upper bound. However, the reduction achievable
by this approach is minimal and reduces the flexibility to use the circuit for
different cases.

On the other hand, for floating-point values, the extensive amount of sil-
icon needed for implementation may be prohibitive. The comparison of two
floating-point values requires equalisation of their exponents, subtraction, and
normalisation of the results. This is much more effectively performed by the

190 6 Implementation of a Fault-tolerant Distributed Embedded System

arithmetic unit of the main processor. Therefore, evaluation tests should be
performed by the software. There is an exception to this rule if only the rela-
tive magnitude of floating-point values is observed. In this case, the exponents
of the numbers can be evaluated independently of their mantissas, which can
be implemented with basic integer logic.

One of the ideas that have been tested in this context is automatic gener-
ation of evaluation logic in FPGAs. Based on the data types and magnitudes
of data provided by specifications, the appropriate VHDL code should be
generated automatically where possible.

6.3.3 Kernel Processor

To implement (partially) the kernel processor’s functionality, a dedicated pro-
cessing unit specialised to provide operating system functions has been im-
plemented in firmware. By this co-processor approach, maximum benefits can
be achieved, particularly in the area of distributed systems [81].

The most time-consuming function of the microkernel is to establish which
task must be executed next, considering remaining execution times and dead-
lines. With dedicated hardware this can be executed in only a fraction of the
time that would otherwise be needed by the main processor. However, due
to limited memory available in the FPGA device, only the most essential in-
formation about tasks can be stored inside it. The full contexts of the tasks
must be kept in the main processor’s memory. The same hardware logic can
also detect any deadline violation. Although the EDF scheduling algorithm
has been employed, any feasible scheduling mechanism can be implemented.

Determination of the next task to be executed. According to the EDF schedul-
ing policy, the task with the nearest deadline must be executed first. The most
simple method to determine this is by sorting the tasks by their deadlines.
Since deadlines are fixed, there is no need to check the conditions continu-
ously. The situation changes only when a new task becomes active or when a
task terminates. This is in contrast to some other scheduling policies where
task priorities are changing constantly (e.g., least-laxity-first). As tasks may
change their states within specific system routines, re-scheduling can be in-
tegrated into them. The hardware implementation is a matter of realising a
minimum function that compares deadlines of ready tasks and finds the small-
est (nearest) one. This can be presented by the algorithm shown in Figure 6.5.

Should the set of ready tasks be empty (n = 0), the resulting task’s index
is 0, meaning that no task is scheduled.

This code can easily be translated into VHDL. Since integer arithmetic is
preferable for common VHDL solutions, the deadlines should be represented
as integer values (i.e., as numbers of milliseconds from a specific point in time;
for details cf. Page 114).

Scheduling of the ready tasks and feasibility check. For real-time systems it
is very important to determine whether the current set of active tasks is

6.3 Partial Implementation in Firmware 191

min task index = 0

min deadline = ∞
for i=1 to n do

if taskinfo[i].deadline < min deadline then

min deadline = taskinfo[i].deadline

min task index = i

end if

end for

Fig. 6.5. Sorting ready tasks

schedulable, i.e., if all its members will meet their deadlines. For EDF this
is determined by Equation 2.3 on Page 42. This equation, however, contains
relative response times. On the other hand, the deadline of a task, from which
its response time may be derived, is set to some absolute time instant when the
task becomes ready. To simplify implementation, Equation 2.3 is converted
into a form employing absolute deadlines by adding the current time t:

zk ≥ t +
k∑

i=1

li, k = 1, .., n (6.1)

This equation states that the sum of the remaining execution times li of all
tasks Ti scheduled to run before, and including Tk, added to the current time,
must be less or equal to the absolute time of deadline zk of task Tk (the
cumulative workload to be performed prior and during execution of task Tk

must be completed before its deadline). The tasks are sorted by their ascending
deadlines. Again, the condition determined by the formula is static, and must
be re-evaluated only when one or more of the tasks change their states.

The schedulability check can be converted into a form with a double nested
loop, cf. Figure 6.6

The innermost loop is used to determine the (next) task with the mini-
mum deadline. This determines the order of task execution. Then feasibility
is tested by first adding the remaining execution time of the current task to
the cumulative execution time and comparing it to the task’s deadline. With
slight adaptation this algorithm can easily be translated into VHDL code.
The drawback of this approach is its speed. Implemented with VHDL, for N
tasks the execution requires N2/2 iterations of the innermost loop, and each
iteration requires several clock cycles.

Another solution more appropriate for hardware implementation is to per-
form all operations of the algorithm’s loop in parallel with pure hardware logic.
The idea is to keep the ordered list of tasks in a shiftable hardware queue,
sorted by their deadlines. The queue elements queue can synchronously be
shifted to the right, and the parameters of all queue items can synchronously
be compared with a value. In each step one task from the unordered set of
ready tasks is considered: its deadline is simultaneously compared with the

192 6 Implementation of a Fault-tolerant Distributed Embedded System

cumulative finish time = current time

for i=1 to n do

for j=i+1 to n do

if taskinfo[j].deadline < taskinfo[i].deadline then

swap(taskinfo[i],taskinfo[j])

end if

end for

cumulative finish time = cumulative finish time

+taskinfo[i].remaining exec time

if cumulative finish time > taskinfo[i].deadline then

raise deadline violation error

end if

end for

Fig. 6.6. Schedulability check

ones of the tasks already in the queue. This way, its position in the list is
determined. Then, the tasks with later deadlines are, like in a shift register,
shifted one place, and the parameters of the scheduled task are stored in the
gap emptied. To test feasible schedulability, additional synchronous logic is
implemented to maintain cumulative execution time.

Since tasks are sorted in ascending order of their deadlines, the remaining
execution time of the task Tk influences only the schedulability conditions
of itself and the tasks behind it. Therefore, it must only be considered in
the feasibility check of the tasks kept in queue elements that are shifted in
the course of storing task Tk. For the check, the remaining execution time
of Tk must be added to the cumulative execution times of all subsequent
elements, which can be done in the third execution cycle. To convert relative
execution times into the form of absolute time, the current absolute time at
the instant of scheduling is added to cumulative relative execution time of the
first task in the list when this cell is loaded. After summation, the cumulative
times are compared with the deadlines of the queue elements; those items are
marked which will cause deadline violations. To summarise, the processing
steps mentioned constitute the following algorithm:

Step 0: Invalidate all elements in the list. This step is carried out only once.
Then, for each active task execute the next four steps.

Step 1: Compare the deadlines of all elements already in the ordered list with
the current one, and mark elements whose deadline is greater than the
current one.

Step 2: Shift all marked elements one place towards the end of the list, and fill
the gap with the values of the current task. Update (set) the mark of the
last element in the list to be included in the next step. Set the cumulative
execution time of the element being updated to the cumulative execution
time from the previous cell. If the first element in the list is updated, set
the cumulative execution time to the current time of the system instead.

6.3 Partial Implementation in Firmware 193

Step 3: Add the remaining execution time of the current task to all marked
elements.

Step 4: Compare the cumulative execution times with the corresponding
deadlines and find elements whose deadlines will be violated.

The logical scheme of a single list element is shown in the Figure 6.7.

+

Cur_TID

TID_in

Cur_DL

DL_in

ExT_In

Cur_ExT

TID_out

DL_out

shift mark

ExT_out

Deadline violation

DL
reg

ExT
reg

TID
reg

M
U
X

M
U
X

M
U
X

comp

comp

Fig. 6.7. Element in the list representing a task schedule

Each evaluation element contains registers to keep a task’s ID, its dead-
line, and cumulative execution time, and Cur TID, Cur DL, Cur ExT repre-
sent task ID, deadline, and remaining execution time of the task currently
being evaluated. In the first step of the algorithm, the upper comparator in
Figure 6.7 compares the value of the deadline register with the deadline of
the evaluated task and sets the shift mark flag, if the former is lower. The
inputs and outputs denoted by the in and out suffixes are used to transport
(shift) values from one element to the subsequent one during the second step.
The multiplexers MUX determine which values will be stored into the element’s
registers. They can either be inserted from the task currently evaluated, or
shifted from the outputs of the previous element. If the shift mark is not set,
the values of the registers remain unchanged. The summation unit is used in
Step 3 to calculate new cumulative execution times. The deadline violation
signal is set in Step 4 if the cumulative execution time register in the element
exceeds the value in the deadline register (i.e., the condition of Equation 6.1
is not met).

194 6 Implementation of a Fault-tolerant Distributed Embedded System

Deadline violation>1

Cur_TID
Cur_DL
Cur_ExT

0

0
Current

time

etc.

Fig. 6.8. Queue of the task list elements

By coupling several elements in sequence, a list of arbitrary length can be
constructed, as shown in Figure 6.8. In the first element, the value 0 is shifted
in as an ID of a non-existing task, and also as its initial deadline. Further,
the current time is added to the execution times of tasks. Deadline violation
signals from all cells are disjunctively combined for common error diagnostics.

According to all this, the algorithm’s total execution time is 4 × N clock
cycles plus one for the preparation of the data structure. The drawback of this
approach is to require a lot of hardware resources (i.e., each element needs
two comparators, one adder, and several registers).

Early detection of potential deadline violations. Equation 6.1 for feasible
EDF schedulability is valid only if the estimated execution times are accu-
rate. For some reasons it is, however, possible that a task’s actual execution
time is larger than estimated, which would jeopardise the schedulability of all
subsequent tasks. To prevent this, a watchdog timer can be implemented that
monitors and limits the actual execution times of tasks. Any time a task is
run or continued, the watchdog timer is set to its (remaining) execution time.
If the watchdog timer runs out before the task is finished, an error signal is
generated.

Event generation. Activation, continuation and other tasking operations
are associated with a variety of conditions depending on time, internal or
external signals, or combinations of these, see e.g., Figure 4.6. When a con-
dition is fulfilled, the appropriate event is generated, and the current set of
tasks must be re-scheduled. The generation of such events can relatively easily
be implemented with FPGA devices.

Time events may be generated only once or periodically, during a certain
interval of time or perpetually. In addition, the activation of a task may be
delayed for a specified amount of time, or until some external event occurs.
Thus, the most obvious devices to support timed activations are timers, which
are based on counting clock ticks. The logic for full support of time event
generation may be implemented as presented in Figure 6.9.

6.3 Partial Implementation in Firmware 195

Q

E >1

&
Q

E

Q

E

Time
event

Period

Duration

Delay
clock

start

external
event reg

counter

counter

counter

Fig. 6.9. Event generation logic

The Period timer periodically generates time events by loading a pre-set
value and decrementing it at every tick of the clock. It is enabled according to
the values of the Delay and Duration timers. The Delay timer starts counting,
the Duration timer stops it after a pre-determined amount of time. Delay and
Duration times are executed only once (i.e., they are pre-set with specified
values and stop counting when they expire). Instead of the Delay timer, an
external event signal may be used. For aperiodic timing events, the Duration
timer is pre-set in such a way that the Period timer triggers only once.

Events may also be generated upon arrival of new data, upon changes of
data, upon data reaching specific values, etc. To implement this, triggering
logic is integrated into data evaluation logic.

6.3.4 Implementation of Monitoring, Reconfiguration and Mode
Control Unit

By implementing the global and other Monitoring, reconfiguration and mode
control units (MRMCs) in firmware, their overhead is eliminated. Most of the
MRMCs’ functionality is rather primitive, so that it can be expressed with
Boolean functions easily implementable with simple logic, which enables or
disables different parts of the firmware.

Similarly, for the parts of system software that cannot be implemented
in firmware, appropriate status information is generated. For more complex
Boolean functions, the FPGA’s dedicated memory blocks can be utilised as
look-up tables. In this case, the address lines of the memory are used as in-
puts and data lines as outputs. The contents of the memory correspond to the
truth-table of the Boolean function being implemented. Memory blocks can
usually be configured with different widths for addresses and data to accom-
modate for different numbers of input and output variables. Due to resource
constraints, however, only a limited number of MRMCs can be implemented.

196 6 Implementation of a Fault-tolerant Distributed Embedded System

6.4 Programming of the FTCs

The MATLAB R©/Simulink R©suite is one of the most widely used software pack-
ages in academia and industry to model dynamic systems. It provides broad
support for design, test and simulation of control applications. There are,
however, several limitations for building distributed control applications. To
cope with them and to provide support for experimenting with different fault-
tolerance methods, the toolset has been expanded. One of the features offered
by MATLAB R©/Simulink R©is automatic generation of high-level language pro-
gram code from Simulink R©models, that can be customised for virtually any
hardware platform. This is performed by the Real-Time Workshop R©package.
The generated standard ANSI C code is customised to accommodate specific
compilers, input and output devices, memory models, communication modes,
and other characteristics that applications may require. It is then compiled
using ordinary compilers to produce runable code to be finally loaded onto
a platform. It is also possible to directly connect Simulink R©models and code
executing on a target platform. In the so-called external mode, Real-Time
Workshop R©establishes a communications link between a model running in
Simulink R©and code executing on the target system.

6.4.1 Extensions to MATLAB R©/Simulink R©Function Block Library

To meet the model-based approach used in the research project [62], a specific
programming tool based on TNI’s ControlBuild R©[110] was developed. Apart
from model-based programming of control applications for the project’s hard-
ware platform, the goal was to support the middleware concept of shared
memory cells. To this end, some new function blocks were introduced into the
Simulink R©library. For these blocks, both code for simulation and for execu-
tion on the target was provided.

Node info block. On this distributed platform, application programs are stat-
ically mapped onto different nodes in the network. For each configuration,
mapping is pre-defined by the designer. Thus, the application model must be
divided into subsystems corresponding to specific, possibly diverse processing
nodes that have certain properties. To describe their hardware characteristics
(e.g., ID, node number, priority, node being master or slave in communication)
the node info block has been introduced. The information from this block is
integrated with the code generated for the corresponding subsystem.

System status block. The information about the current execution mode of
the system is provided in yet another block. It can be used by applications to
determine the current system state, and to switch on and off different appli-
cation subsystems by means of different enable signals. This block has only
a single output, whose actual value is provided by the system software. No
additional parameters are required.

6.4 Programming of the FTCs 197

Working with shared memory. To implement the shared memory model de-
scribed above, two additional function blocks were added to the Simulink R©

library: one to read from and one to write into a specific memory cell which, in
MATLAB R©/Simulink R©, is defined as a variable. The custom dialog window is
used to define specific parameters: type of data to be sent or received, shared
memory slot identifier, fault-tolerance options (e.g., whether the same data
should be sent over both TTCAN channels), how frequently the data should
be updated, etc.

Some of the memory blocks are used for communication with the periph-
eral devices. For these blocks, some additional parameters must be set. In
addition to hardware-specific parameters, two valid value intervals can be de-
fined. The first interval defines the expected range of the values produced by
an application, and the second one defines the range of the values expected
by the hardware device. By these intervals, for example, the values can au-
tomatically be scaled into appropriate ranges for A/D or D/A conversion.
An application can directly work with abstract physical values independent
of the digital ones produced by hardware. A given range also represents the
minimum and maximum values of the data; it serves as some sort of limiter
and can be used for data validation. As a shortcoming, only linear automatic
transformation can be described at this time. More complex transformations
can be implemented in C code and added to applications.

To support fault tolerance, it is possible that more than one function block
produces the data for some specific memory cell, however, not at the same
time. Thus, there can be more than one output memory block with the same
ID. To assure that only one replica actually produces the value, the sending
block has an additional enable signal, which is used to enable and disable data
transmission in different operation modes.

6.4.2 Generation of Time Schedules for the TTCAN
Communication Protocol

In time-triggered communication, appropriate time-schedules must be calcu-
lated for the messages. In the project, an external tool was implemented for
this purpose. Its input information is acquired from the applications as de-
scribed in the development tool, scanning for the blocks working with variables
in the form of shared memory cells. To do this, an additional script was in-
corporated into the MATLAB R©/Simulink R©toolset. The script identifies all
nodes in a system, all corresponding memory cells, the direction of the in-
formation flow, etc. The resulting information on all communication paths is
written into a specially formatted file, which is read by the external tool for
timetable generation. This tool determines the optimum cycle time and the
maximum number of lines in the system matrix. Then, the message allocation
process tries to determine the optimum message position within the matrix

198 6 Implementation of a Fault-tolerant Distributed Embedded System

and the number of columns in the matrix. At the end, the tool tries to opti-
mally re-distribute the remaining free time (i.e., to keep empty message slots
together). Based on the schedules obtained, appropriate tables are generated
(in form of C header files) and added to the generated application code. The
tables serve to initialise the TTCAN communication subsystem. For better
understanding of the results, a simple graphical output in Hypertext Mark-up
Language (HTML) is also generated. An example is shown in Figure 6.10.

Fig. 6.10. An example of a TTCAN system matrix

The TTCAN standard requires some limitations concerning the matrix
dimensions and the timing of the columns to be considered. Usually several
different schedules can be found for a given message set. The best schedule is
identified by some form of cost function. A possible example of such a func-
tion measures the total jitter present in the matrix. Owing to the scheduling
problem’s high complexity and all the restrictions imposed by the TTCAN
standard, the common search methods are slow and difficult to use. Evolu-
tionary computing with genetic algorithms proved to be a viable alternative.
In contrast to greedy search or any hill-climbing algorithm, the search through
the solution space is guided by the laws of selection and survival of the fittest.
The search is, therefore, more immune to the local minima problem. With the
genetic algorithms approach the optimisation criteria can be extended to in-
clude other aspects of the schedules with minimum time impact. For example,

6.4 Programming of the FTCs 199

in order to increase bus bandwidth and to improve fault tolerance, multiple
overlapping schedules are highly significant for the IFATIS platform.

6.4.3 Development Process

The process proposed for building fault-tolerant control applications by using
the solutions described above is shown in Figure 6.11. First, to develop a con-
trol application the model-based approach and the MATLAB R©/Simulink R©

toolset is used without considering the target platform. The resulting model is
tested and validated by means of all practices common in the control domain.
Later, the model must be prepared for execution in a distributed environ-
ment. As mentioned above, to model an application’s distributed execution
on several processing nodes, the model is divided into submodels. Since all
code will be pre-loaded onto the processing nodes prior to execution, all pos-
sible execution modes of the system must be considered, i.e., control logic
for all different working modes and the decision logic must be put into each
subsystem using appropriate Simulink R©blocks.

MATLAB /Simulink

Real−time
Workshop

Timetable
Generator

ANSI C
Compiler

IFATIS
Platform

(monitor, debugger)

MATLAB /Simulink
Target files

main.c
model.c
model.h ...

ttcan1.h
ttcan2.h

ANSI C source code

Loadable object code

R

R R

R

Fig. 6.11. Application development process using the extended MATLABR©/
SimulinkR©toolset with additional software

To simplify this, each subsystem can be further divided into several smaller
ones representing the model of execution in different execution modes. For the
decision logic it is most useful if stateflow diagrams are used. Then, shared
memory blocks are used to describe the connections between the different
subsystems. After that, the application can be simulated and validated again
as a distributed system. Sampling effects due to latencies introduced by the

200 6 Implementation of a Fault-tolerant Distributed Embedded System

TTCAN bus can also be simulated accurately. Once the results of testing are
satisfactory, the specific blocks are augmented with more detailed implementa-
tion attributes. Then code is generated and joined with the communication-
schedule tables produced in parallel. After compilation, the object code is
loaded into the target. Finally, additional tests are performed by using test-
ing and diagnostic tools directly on the target.

7

Asynchronous Real-time Execution with
Runtime State Restoration

by Martin Skambraks

This chapter presents the architectural concept of a safety-related programm-
able electronic system (PES) which combines the benefits, but eliminates the
drawbacks of synchronous and asynchronous programming. Thereby, this con-
cept achieves a high degree of fault tolerance through state restoration from
redundant PES instances. The PES architecture designed has two key charac-
teristics, namely, task-oriented real-time execution without asynchronous in-
terrupts and state restoration at runtime.

7.1 Design Objectives

For ease of understanding, the initial objectives that were pursued in the
design of the PES concept are to be clarified. They can be subdivided into
three categories:
Design for simplicity. Design simplicity prevents engineering errors and, later,

eases safety-licensing [78]. That is why one key intention was to strive
for minimum complexity by following design for simplicity as a major
development guideline. Consequently, minimising design complexity was
regarded with higher priority than increasing computational performance.
This strategy was pursued not only to lower the cost of safety-licensing,
but also to make the application of formal verification methods practically
feasible with reasonable effort.

Combining the advantages of synchronous and asynchronous programming.
A second objective was to combine the advantages of synchronous and
asynchronous programming. Synchronous programming leads to inher-
ently simple PES architecture and temporal behaviour, but its cyclic op-
erating principle limits the field of application. On the other hand, asyn-
chronous programming has a less restricted field of application and is
more problem-oriented, but leads to a much more complex PES architec-
ture and temporal behaviour.

202 7 Asynchronous Real-time Execution with Runtime State Restoration

Combining the advantages of both concepts arises from the idea to fol-
low the task paradigm of asynchronous programming, but to fragment
task execution into discrete cycles of constant length. As for synchronous
programming, cyclic execution leads to simple temporal behaviour, but
organising application software in independent tasks results in a less re-
stricted field of application. Furthermore, the task paradigm provides a
more problem-oriented programming style, since the semantic gaps are
prevented that arise, e.g., from mapping time limits of a problem specifi-
cation to the major cycles of a synchronously operating system.

Unified concept for safety functions. The third objective was to minimise sys-
tem complexity by integrating a unified concept for safety functions. The
fundamental idea is that PESs are configured redundantly, and that each
PES instance outputs a Serial Data Stream (SDS) which provides full
information about the internal processing. These SDSs were intended to
support non-intrusive monitoring and recording of process activities, er-
ror detection, and state restoration at runtime. The latter means that, if
a PES is in a faulty state due to a transient hardware fault, the SDSs
of redundant PESs enable one to copy the internal state and to resume
processing at runtime.

Dedicated hardware structures were considered as means to achieve reason-
able performance with a minimum of architectural complexity. In other words,
a lower architectural complexity was intended to be reached at the cost of a
higher number of logic gates. As a result, two fundamental design ideas have
been devised: task-oriented real-time execution without asynchronous inter-
rupts and runtime state restoration through serial data streams.

7.2 Task-oriented Real-time Execution Without
Asynchronous Interrupts

The real-time execution concept introduced here combines the advantages of
synchronous and asynchronous programming. This is realised by quantising
time into discrete Execution Cycles of fixed duration. Additionally, the tasks
of application software are each partitioned into a number of Execution Blocks.
These blocks have the following characteristics.

• Each Execution Block is completely executable within a single Execution
Cycle.

• The execution of a block is neither interruptible nor pre-emptable.
• The content of the processor registers is lost at the end of any cycle. Thus,

data exchange between blocks is only possible via the data memory.
• The Execution Blocks of a task are indexed for identification.
• The Execution Blocks of a task do not need to be executed in consecutive

order. At the end of an Execution Block, a pointer is generated which
identifies the task’s block to be executed next.

7.2 Task-oriented Real-time Execution Without Asynchronous Interrupts 203

Task administration and task execution are carried out by two strictly sep-
arated units. This allows one to implement the Task Administration Unit
(TAU), which is responsible for task state transitions and processor schedul-
ing, in the form of dedicated logic circuitry. The Execution Blocks are pro-
cessed by the Application Processing Unit (APU), which is based on a conven-
tional microprocessor. Due to its beneficial characteristics in terms of safety
and security, a processor with the Harvard architecture is preferable.

7.2.1 Operating Principle

The Execution Cycles consist of two phases, Execution Phase and Adminis-
tration Phase. At the begin of the Execution Phase, the TAU outputs the ID
of the Execution Block that needs to be processed. Then the APU processes
this Execution Block and – after the block has been completed – outputs a
pointer to the task’s next block. This pointer is read by the task administration
functions. If the executed block was a task’s last one, i.e., a task’s execution
has been completed, a distinct pointer value informs about it. The administra-
tion functions, which are executed during the Administration Phase, comprise
task state control and processor scheduling. At the end of the Administration
Phase, the identifier of the Execution Block that needs to be processed in the
next cycle is output. Figure 7.1 illustrates this operating principle.

Obviously, the cycle length affects the minimum feasible response time.
Hence, a short cycle duration is desirable. On the other hand, the shorter
the cycle time the lower is the percentage of time actually spent for task
execution, since the time needed for task administration is independent of the
cycle duration. Hence, minimising the execution time of the administration
algorithms is crucial to realise acceptable real-time performance.

That is why the task administration is preferably implemented in form of a
digital logic circuitry. This allows one to speed up execution without algorith-
mic techniques that lower the computational effort but increase architectural
complexity. Additionally, it enables special custom-built opportunities to ac-
cess the task administration data like, e.g., hard-wired linkage to a digital logic
circuit. The latter is essential to integrate the concept of state restoration at
runtime introduced later in this chapter.

The task administration follows the scheduling concept of the real-time
programming language PEARL [29]; see Section 4.1.2. It provides the most
general form of task activation schedules [50]. The hardware implementation of
the task administration inherently supports such activation plans. Therefore,
each task is assigned a set of parameters, which facilitates configuration for
various different activation conditions, e.g., delayed activation on occurrence
of an asynchronous event signal.

Most real-time systems follow the approach of rate-monotonic, fixed-
priority scheduling. This ‘timeless’ scheduling policy is merely advantageous
for systems that do not provide explicit support for timing constraints, such as

204 7 Asynchronous Real-time Execution with Runtime State Restoration

Task
Administration
Unit
(TAU)

Application
Processing

Unit
(APU)

IDs of Task and
Execution Block to process

Synchronous begin of Execution Cycles

Task−Execution:
− Processing the Execution Block identified by

the IDs submitted
− In case this block does not complete this

task’s execution, the block that needs to be
executed next is determined

Either task completion notification or
ID of task’s next Execution Block

E
xe

cu
tio

n
P

ha
se

A
dm

in
is

tra
tio

n
P

ha
se

Task−Administration:
− For the task just processed: storing the new

ID of task’s next Execution Block in Task List
− Control of task−states (reading event inputs,

checking activation characteristics, inducing
state transitions)

− Computation of deadlines
− Determination of the activated task that

needs to be executed in the next cycle, i.e.
that has the closest deadline

Begin

End

Output

Input

Begin

End

Input

Output

Fig. 7.1. Operating principle: time is quantised into Execution Cycles and tasks
are processed in discrete Execution Blocks

periods and deadlines [12]. Thus, rate-monotonic scheduling is actually inad-
equate for safety-related systems, for which hard real-time constraints always
must be specified exactly. That is why the proposed PES architecture applies
the EDF algorithm. Implementing the task administration functions as logic
circuit eliminates the differences between rate-monotonic and EDF scheduling
in terms of computing time.

The demand for fast execution of the administration algorithms leads to
the idea of implementing them in form of a digital logic circuit that executes
these kernel algorithms for all tasks in parallel. Unfortunately, even a simpli-
fied form of the general task activation plan mentioned above requires, under
EDF scheduling, at least two comparisons and two additions of time values
per task. Considering the facts that typical real-time applications consist of
10-50 tasks, and that an appropriate binary representation of absolute time
values requires at least 24 bits, it is obvious that the hardware expense for
such an implementation as a digital circuit is unacceptably high.

For this reason, the hardware architecture of the task administration com-
bines parallel and sequential processing. The kernel algorithms are structured
in a way as to allow for parallel processing of the operations related to a
single task, whereas all tasks are sequentially subjected to these operations.
Figure 7.2 illustrates this processing pattern. It shows the main parts of the

7.2 Task-oriented Real-time Execution Without Asynchronous Interrupts 205

Task Administration Unit (TAU), viz., the Task List Memory (TLM) and the
Task Parameter Administration (TPA).

: Latch for temporary
 storage within
 Execution Interval

[]

IDs of Task and Block to Execute

Load TPA
Input Registers

Read TPA
Output Registers

1.

2.

3.

Task Parameter Administration (TPA)

UTC−Time

ID of task’s next Execution Block

from APU

to APUAsynchronous Event Signals
RTOS algorithms implemented
 as combinational logic circuitry

Input and output registers to store
one task’s parameter set

Task List Memory (TLM)

Contains for each task a set of
 parameters that describe its current state,

its execution characteristics and
its activation conditions

Operations related to one task
are executed in parallel;

the task with the closest deadline
is sequentially determined

Sequential Task Administration (STA) :
 3−phase process for each task

[]

[]

[]

[]

[]

[]

Fig. 7.2. TLM and TPA closely co-operating during Sequential Task Administration
(STA)

Sequential Task Administration

The TLM administrates a Task List, which contains for each task a set of
parameters such as its current state, its execution characteristics, and its Ac-
tivation Plan. The task list has a static size, i.e., all tasks a certain application
consists of must be registered at set-up time. Thus, in conformance with the
requirements of IEC 61508 for SIL 4 applications, dynamic instantiation of
tasks is not supported. Instead, the activation characteristics of a task can be
modified.

The TLM co-operates closely with the TPA while sequentially processing
all tasks within each Execution Cycle. During this Sequential Task Adminis-
tration (STA), a three-phase process is initiated for each task:

1. First, the TLM is accessed and the task’s entire parameter set is trans-
ferred to dedicated input registers of the TPA.

2. Then, the TPA processes the task data and outputs an updated param-
eter set. This is achieved by purely combinational logic within one clock
cycle.

3. During the last phase, the updated task data are transferred back from
the TPA to the TLM.

This way, the TPA carries out the following operations in the course of STA:

206 7 Asynchronous Real-time Execution with Runtime State Restoration

1. Checking the activation characteristics,
2. Inducing task state transitions,
3. Computing deadlines,
4. Generating updated task parameters,
5. Determining the task with the earliest deadline, and
6. Identifying the Execution Block that needs to be processed next.

The first four operations are separately executable for each task. Therefore,
they are performed in parallel by a combinational digital circuit. The fifth
item requires to compare the deadlines of all activated tasks. This is carried
out sequentially, while the identifier and deadline of the most urgent task is
temporarily stored within the iterations of the three-phase process. The ID of
the Execution Block that needs to be processed in the subsequent Execution
Cycle is output at the next Execution Cycle’s begin.

7.2.2 Priority Inheritance Protocol

One of the problems to be solved when designing a real-time task execution
mechanism is the priority inversion problem connected with resource sharing
(cf. also Section 2.2.1). The problem arises when a lower priority task seizes
a resource and is pre-empted by a higher priority task who also requests the
same resource. The latter task thus attains the same (low) priority of the
former one which is blocking the resource.

The problem can be prevented by the Priority Inheritance Protocol (PIP)
method. Realising mutually exclusive access to shared resources requires to
associate each resource with a binary semaphore (see Section 2.3.2), and to
provide the two basic semaphore operations ‘Request’ and ‘Release’.

The PIP can be directly implemented together with the two semaphore
operations. For this, the Request operation must include mechanisms for pri-
ority inheritance and the Release operation for restoring the original priority.
Both operations must be non-interruptible, since inconsistencies like, e.g., a
semaphore is released but the original priority has not yet been restored are
unacceptable. Furthermore, the scheduling algorithm has to be executed after-
wards to take the updated priorities, i.e., deadlines in case of EDF scheduling,
into account. This demand for non-interrupted execution followed by running
the scheduling algorithm can easily be combined with the proposed cyclic
operating principle. In fact, integrating the PIP is straightforward.

The PIP requires semaphores to be requested in a nested fashion to avoid
deadlocks [106]. For this, the semaphores are ordered by identification num-
bers. A semaphore m′ is said to be of higher order than semaphore m if it
has the higher identification number, i.e., m′ > m. If a task requires multiple
resources at the same time, the associated semaphores must be requested in
decreasing order and released vice versa .

7.2 Task-oriented Real-time Execution Without Asynchronous Interrupts 207

Semaphore Parameters

In order to implement the PIP into the proposed PES architecture, the fol-
lowing parameters must be administrated for each semaphore m:
SState(m): This variable stores the state of semaphore m. The state is

either free or occupied.
SState(m) = {free | occupied}

STask(m): While semaphore m is in the state occupied, this parameter
stores the number of the task holding semaphore m.

SDeadline(m): While task i holds semaphore m, this parameter stores
the deadline that is restored when the task i releases the
semaphore. The parameter is represented by an absolute
time value. At the moment a semaphore m is assigned to
a task, SDeadline(m) is assigned the current deadline of
that task. Subsequently, SDeadline(m) is only modified if
semaphore m inherits a deadline d and the associated task
STask(m) also holds an higher-order semaphore m′ that has
the inherited deadline d, too. This ensures that the dead-
line d is restored when semaphore m is released, which is
required since semaphore m′ is still held by SDeadline(m).

SNxtLwr(m): While task i holds semaphore m, this parameter indicates
the next lower-order semaphore that task i requested, in-
dependent of the fact whether task i has assigned that
semaphore or is blocked by it. In case the task holding
semaphore m does not hold any lower-order semaphore, a
special value informs about it.
SNxtLwr(m) = {no lower order sema requested |#j}, j ≤
m

SBlocked(m) While semaphore m is in the state occupied, this set con-
tains the numbers of all tasks blocked by it.
SBlocked(m) = {i : (task i is blocked by semaphore m) ∧ i �=
STask(m)}

The formal description of the Request and Release operations requires one
further parameter:
L(i) is a set that contains the numbers of all semaphores that task

i holds. As long as a task holds no semaphore, the parameter
is an empty set {}. Any time a task is assigned a semaphore
m, the number of that semaphore is added to the set (L(i) :=
L(i)∪{m}). When a task releases semaphore m, its number
is removed from the set (L(i) :=L(i)\{m}). The number of
the lowest-order semaphore held by a task is min{L(i)}.

The information about the semaphores that a task has already requested when
performing a Request or Release operation is implicitly given by the program
code, i.e., min{L(i)} does not require one to search for a minimum number

208 7 Asynchronous Real-time Execution with Runtime State Restoration

Request(m) :

if (L(i) �= {}) then

SNxtLwr(min{L(i)}) := m;

end if;

if (SState(m) = free) then

SState(m) := occupied;
STask(m) := i;
SDeadline(m) := PDeadline(i);
SNxtLwr(m) := no lower order sema requested;
L(i) := L(i) ∪ m;

else

SBlocked(m) := SBlocked(m) ∪ {i}
PDeadline(STask(m)) := min {PDeadline(STask(m)), PDeadline(i)};
m′ := m;

m′′ := SNxtLwr(m);
while (m′′ �= no lower order sema requested) do

PDeadline(STask(m′′)) := min {PDeadline(STask(m′′)), PDeadline(i)};
if (STask(m′) = STask(m′′)) then

SDeadline(m
′′) := min {SDeadline(m

′′), PDeadline(i)};
end if;

m′ := m′′;
m′′ := SNxtLwr(m

′′);
end while;

suspend(i);
end if;

return;

Fig. 7.3. Pseudo-code of the Request operation

in a set – the number of the lowest-order semaphore held by a task is known
at compilation time. Hence, the set L(i) does not need to be handled by the
program code it is only necessary for the subsequent pseudo-code descriptions
of the two commands.

Request Operation

Figure 7.3 shows the pseudo-code of the Request algorithm. Its first action
depends on whether the requesting task i already holds a semaphore, i.e., the
set L(i) is not empty. If this is the case, the parameter SNxtLwr of the lowest
semaphore held by task i is assigned m, i.e., SNxtLwr(min{L(i)}) :=m. Then,
the algorithm checks whether semaphore m is already held by another task.

If the semaphore is available, i.e., SState(m)= free, its state is transferred
to occupied and the parameter STask(m), which indicates the holding task, is
set to i. Additionally, the parameter SDeadline(m), which stores the deadline
that is restored after release, is set to the current deadline of task i, and the
parameter SNxtLwr(m), which points to the next lower-order semaphore held
by task i, is assigned to indicate that task i has no lower-order semaphore

7.2 Task-oriented Real-time Execution Without Asynchronous Interrupts 209

requested. The line L(i) := L(i)∪m indicates that m now belongs to the set
of semaphores held by task i.

If the semaphore is already allocated, i.e., SState(m) �= free, the number
of the requesting task is added to the set of tasks blocked by semaphore m,
i.e., SBlocked(m) := SBlocked(m)∪{i}. Then, the algorithm checks whether
the deadline of the requesting task is closer than the deadline of the task
holding m, i.e., PDeadline(i)<PDeadline(STask(m)). If this is the case, the task
holding m inherits the deadline from the task requesting that semaphore, i.e.,
PDeadline(STask(m)) :=min{PDeadline(STask(m)), PDeadline(i)}.

After that, the algorithm checks whether transitive priority inheritance is
necessary. For this, a while loop is applied to follow the chain of semaphores
defined by the pointers SNxtLwr(m) until a semaphore m(x) is reached, whose
pointer SNxtLwr(m(x)) indicates that the holding task STask(m(x)) has no
lower-order semaphore requested. For each of the semaphores that belong to
that chain, the algorithm checks whether the deadline of the task holding it is
closer than the deadline of the requesting task i. If so, the task holding that
particular semaphore inherits the deadline from task i.

Further action is necessary if a task holds more than one semaphore of
the chain. This is the case if semaphore m′′ inherits the deadline PDeadline(i)
and the associated task STask(m′′) also holds a higher-order semaphore m′

that has already inherited deadline PDeadline(i). In this case, the condition
STask(m′) = STask(m′′) is valid. Hence, if the deadline PDeadline(i) is closer
than SDeadline(m′′) of the lower-order semaphore m′′, then SDeadline(m′′)
is also assigned PDeadline(i). This ensures that the deadline PDeadline(i) is
restored when semaphore m′′ is released, which is required, since – at that
moment – semaphore m′ is still held by the task that just released m′′.

The command suspend(i) is the last to be executed if semaphore m has
already been allocated at the time of request. This command, which submits
a suspend operation to the task administration, has to be the last command
of an Execution Block. The rest of the Request algorithm is part of the next
Execution Block. Hence, task i is suspended before the Request algorithm
completes. Task i will return to the calling program part after semaphore m
has been released and assigned to task i.

Release Operation

The pseudo-code of the Release operation is depicted in Figure 7.4.
When task i releases semaphore m, the semaphore does not belong any-

more to the set of semaphores held by the task i, i.e., L(i) := L(i)\{m}. If
task i holds another semaphore with a higher order than m, i.e., L(i) �= {},
the pointer SNxtLwr of the lowest-order semaphore min{L(i)} is set to a value
indicating that task i has no lower order semaphore requested.

Then the algorithm replaces the current deadline of the releasing task i by
the value of SDeadline(m), i.e., PDeadline(i) :=SDeadline(m). If task i does not
hold a higher-order semaphore that inherited a deadline d, this ensures that

210 7 Asynchronous Real-time Execution with Runtime State Restoration

Release(m) :

L(i) := L(i)\{m};
if (L(i) �= {}) then

SNxtLwr(min{L(i)}) := no lower order sema requested;
end if;

PDeadline(i) := SDeadline(m);
if (SBlocked(m) = {}) then

SState(m) := free;
else

i′ : PDeadline(i
′) = min {PDeadline(k) : k ∈ SBlocked(m)};

SBlocked(m) := SBlocked(m)\{i′}
if (L(i′) �= {}) then

SNxtLwr(min{L(i′)}) := m;

end if;

SState(m) := occupied;
STask(m) := i′;
SDeadline(m) := PDeadline(i

′);
SNxtLwr(m) := no lower order sema requested;
L(i′) := L(i′) ∪ m;

continue(i);
end if;

return;

Fig. 7.4. Pseudo-code of the Release operation

the original deadline is restored. Otherwise, the assignment restores the dead-
line d, which has been copied to SDeadline(m) due to transitive inheritance.

If the set of tasks blocked by m is empty, i.e., SBlocked(m) = {}, the
semaphore state is transferred to free. Otherwise, the release algorithm deter-
mines the task i′ of SBlocked(m) with the closest deadline and removes that
task from the set of tasks blocked by m, i.e., SBlocked(m) :=SBlocked(m)\{i′}.

If task i′ already holds a semaphore, i.e., the set L(i′) is not empty, the
parameter SNxtLwr of the lowest semaphore held by task i′ is assigned m, i.e.,
SNxtLwr(min{L(i′)}) :=m.

The subsequent five assignments equal the branch for SState(m) = free
of the Request algorithm. Since semaphore m is still in the state occupied,
the transfer to this state is not really necessary. Nevertheless, the pseudo-code
contains the state assignment SState(m) :=occupied for clarity. The parameter
STask(m) is set to i′, the parameter SDeadline(m) is set to the current deadline
of task i′, and the parameter SNxtLwr(m) is assigned a value indicating that
task i has no lower-order semaphore requested. The line L(i′) := L(i′)∪m
indicates that m now belongs to the set of semaphores held by task i′.

Finally, a continue(i′) operation is submitted to the task administration
before the system returns to the calling program part of task i.

7.2 Task-oriented Real-time Execution Without Asynchronous Interrupts 211

Integration into the Cyclic Operating Style

Both algorithms must be executed without interruptions and, hence, they
must be implementable into one Execution Block (except the commands that
follow the suspend(i) operation of the Request algorithm, which must be
implemented in a succeeding Execution Block). This defines a minimum length
for the Execution Blocks.

As already mentioned, the syntax min{L(i)} is only used to formally de-
scribe these algorithms, i.e., the lowest-order semaphore held by task i is
known at compilation time and does not need to be searched. A significant
number of computation steps is caused by the while-loop of the Request algo-
rithm, and – in terms of the Release algorithm – by the search for the blocked
task with the closest deadline. Typically, resources are shared by a few tasks
and transitive priority inheritance is possible via a limited number of tasks,
only. This limits the computational load caused by the while-loop and the
search for the closest deadline. Consequently, this characteristic is valuable to
define the minimum length of the Execution Blocks.

7.2.3 Aspects of Safety Licensing

Following the task concept of asynchronous programming but operating in
discrete cycles similar to the synchronous approach provides a very problem-
oriented programming style, since semantic gaps, e.g., from mapping time lim-
its of a problem specification to the major cycles of a synchronously operating
system, are prevented from arising. Unlike synchronous programming, the pro-
posed concept does not restrict the realisation of process-dependent program
flows and, thus, is applicable to a large field of applications. Some significant
characteristics in terms of safety licensing are compliance with IEC 61508,
simple temporal behaviour and low effort for verification.

Compliance with IEC 61508

The operating principle renders the use of asynchronous interrupts superflu-
ous. Additionally, the hardware-implemented task administration physically
restricts the task activation to one instance at a time, and does not support
dynamic instantiation of tasks. In comparison to conventional task-oriented
real-time systems, this provides a higher conformity with the safety standard
IEC 61508, which restricts the use of interrupts and prohibits dynamic in-
stantiation of objects for applications of highest safety criticality.

Handling of interrupts and multiple activation instances of tasks as well
as dynamic task instantiation involves dynamic memory usage, e.g., stack
memory. Although the associated algorithms are, in general, not difficult to
implement, their formal verification tends to be very intricate. In particular,
formal proofs that no memory overrun can occur are complex and, hence, the
confidence required for SIL 3 and SIL 4 applications is difficult to achieve –

212 7 Asynchronous Real-time Execution with Runtime State Restoration

if not impossible. Actually, this is why IEC 61508 highly recommends that
these methods are not used. Thus, the higher compliance with IEC 61508 is
closely related to lower efforts for formal verification.

Simple Temporal Behaviour

The task processing in discrete Execution Cycles makes further distinction be-
tween interruptible and non-interruptible program sections superfluous. This
not only has a positive effect on feasibility analysis; it also lowers the tem-
poral behaviour’s complexity in general. The minimum feasible response time
can be computed by simply adding the maximum release jitter and the cy-
cle duration. Moreover, the WCET of a task can very easily be obtained by
counting the Execution Blocks that must be processed following the longest
path of a task instance. Furthermore, during fragmentation of program code
into Execution Blocks, the performance gain due to cache-memory structures
can the taken into consideration by assuming an empty cache at any cycle’s
beginning.

For conventional task-oriented real-time systems, determining the mini-
mum feasible response time or a task’s WCET is far more complex, since
all potential interruptions must be taken into consideration. Not only is the
maximum delay due to context switches difficult to analyse, but also their
influence on performance due to changes of cache-memory content. Of course,
the worst-case scenario is – theoretically – determinable, since the maximum
number of interruptions is given by the task execution characteristics, e.g., the
tasks’ activation frequencies. However, the algorithms that search and inves-
tigate the worst-case scenario have significant complexity, in particular, since
these algorithms must take the concurrent behaviour of all tasks as well as an
asynchronously running real-time operating system into account. As a result,
formal verification of these algorithms takes enormous effort – if it is possible
at all.

The complexity of these algorithms can be reduced at the price of per-
formance. For instance, performance gains due to cache memories become
determinable by setting up non-interruptible code sections, but this approach
has a negative impact on feasibility analysis.

In contrast to the algorithms that investigate worst-case scenarios in con-
ventional systems, the algorithms splitting the program code of a task into
Execution Blocks operate on a single task, i.e., they do not need to take con-
currency of all tasks into account. Hence, these algorithms have lower com-
plexity and are easier to verify, although the fragmentation of program code
also requires to investigate worst-case execution times.

Low Effort for Formal Verification

Implementing the task administration functions as digital logic circuitry al-
lows one to accelerate their execution through parallelism and pipelining. As

7.2 Task-oriented Real-time Execution Without Asynchronous Interrupts 213

a result, they can be completely executed within any Execution Cycle with-
out causing unreasonably high computational load or unacceptable response
times. In other words, there is no need to decrease the minimum feasible
response time by splitting the kernel functions into multiple layers, or by han-
dling lists of activated and suspended task as conventional real-time operating
systems frequently do, cf. those introduced in [50, 75]. That is why the pro-
posed concept leads to a particularly low architectural complexity, which, in
turn, eases formal verification.

7.2.4 Fragmentation of Program Code

The considered operating principle requires one to divide the program code
of a task into fragments that are completely executable within an Execution
Cycle. These code fragments are called Execution Blocks. Each one has a
unique identification number assigned, and at the end of a block a pointer to
the next Execution Block is generated. As Figure 7.5 illustrates, this concept
allows arbitrary program flows.

On its left side, the figure presents a typical task algorithm in the form of
a program flowchart. The subdivision into Execution Blocks is illustrated in
the middle. Sequential program parts are simply split into a number of code
fragments that are executable within an Execution Cycle. An example for
this is command block 2, which is divided into five Execution Blocks. Loops
and conditional branches are realised by pointer alternatives at the end of an
Execution Block. As visible in the figure, command block 1 is implemented
together with conditional branch 1 in four Execution Blocks, and the last block
realises the branch by pointing to two alternative successor blocks. In case a
loop or a conditional branch can be completely executed within one Execution
Cycle, it is implemented in one Execution Block. As an example, command
block 4 and conditional branch 3 are integrated into one single Execution
block. The right part of Figure 7.5 presents two possible paths through the
program code.

This operating style leads to three questions:

• How does the concept restrict software development?
• How can a task’s program code automatically be divided into Execution

Blocks?
• How does fragmentation affect computing performance?

Restrictions to Software Development

As the example of Figure 7.5 shows, fragmented task execution in discrete
cycles facilitates conditional branches and loops. In analogy to the command
cycle of a microprocessor, an Execution Block can be considered to be a huge
macrocommand which consists of a number of small commands. Hence, the op-
erating style provides Turing-completeness just like any other microprocessor
(here, indefinitely enlargeable storage is assumed, as it is usually done when a

214 7 Asynchronous Real-time Execution with Runtime State Restoration

Program Flow Chart
of a Task

Subdivision into
Execution Blocks

Arbitrary program
paths possible

Each block has
a unique ID

At a block’s end
the ID of the next
block is computed

Begin

Conditional
Branch 2

End

Command
Block 1

Command
Block 2

Command
Block 3

Command
Block 4

Command
Block 5

Conditional
Branch 1

Begin

End

1

5

10

2

6

11

3

7

12

15

13

16

4

8
9

14

Begin Begin

End

End

1 1

5

10

10

10

10

2 2

6

11

11

11

11

3 3

7

12

12

12

12

15

13

13

13

13

16

4 4

8
9

14

Conditional
Branch 3

Fig. 7.5. The operating principle facilitates arbitrary program flows

physical system is declared to be Turing-complete). Consequently, the system
can perform any calculation that any other computer is capable of, provided
enough memory is available. In other words, the cyclic operating style does
not restrict the software development in general, it just affects performance.
All conventional programming paradigms like, e.g., While-loops, For-loops,
If-Then-Else-structures, Case-structures and procedure calls are applicable.
This is also true for higher-order paradigms that can be constructed with the
help of the former ones, like, e.g., exception handling.

The realisation of conditional branches, which are the underlying technique
for While-loops, For-loops, If-Then-Else-structures and Case-Structures, has
already been illustrated in the example above. That is why only the imple-
mentation of procedure calls needs further explanation. The dynamic, unfore-
seeable processor assignment of the execution concept does not facilitate the
use of a single stack memory accessed by processor functions like Push and
Pop. Instead, a separate stack for each task would be necessary to ensure data

7.2 Task-oriented Real-time Execution Without Asynchronous Interrupts 215

consistency. Of course, this form of independent stack handling could be re-
alised by software or dedicated hardware. However, since pointers (i.e., stack
pointers) and dynamic variables (i.e., stack memories) are common sources
for design faults and – what is even worse – most difficult to formally verify,
the safety standard IEC 61508 forbids their use in applications that belong to
the safety classes SIL 3 and SIL 4. That is why stack memory handling has
been considered inappropriate for the proposed safety-related real-time PES.

Procedure calls can be realised without stack memory simply by storing
the jump-back address, at which a program must be continued after com-
pletion of a procedure, in predefined memory cells. The ‘return’ command is
replaced by an unconditional jump to this temporarily stored address. Ob-
viously, a programming paradigm only poorly supported by this technique
is recursive procedure invocation, since it requires to reserve for each task
as many memory cells for the storage of jump-back addresses as procedure
instances can occur simultaneously. However, like pointers and dynamic vari-
ables, recursion is a common source for failures, difficult to (formally) verify
and – as a consequence – IEC 61508 forbids its use in SIL 3 and SIL 4 appli-
cations. Hence, poor support of recursion can be considered an insignificant
restriction, and it is sufficient to arrange for the storage of just one jump-back
address for each task that calls a procedure.

Automatic Division into Execution Blocks

The fragmentation into Execution Blocks can automatically be performed by
compiler software and, hence, the cyclic execution concept imposes no spe-
cial constraints on source code. In other words, the software developer can
write the program code of any task as for conventional real-time program-
ming languages like Ada or PEARL. Of course, the EDF scheduling policy
affects programming, since timing constraints must be specified instead of
task priorities.

The automatic fragmentation method introduced below founds on the ma-
chine code produced by a compiler. Furthermore, the fragmentation bases on
the approach that the context of all processor registers is saved at an Exe-
cution Block’s end and restored at a block’s begin. Of course, taking code
fragmentation into account already during compilation would provide more
opportunities for code optimisation, especially if the temporal storage of the
processor register content would be restricted to the values that are used
later on. This topic has been considered interesting for future research, but
here we assume compilation and fragmentation to be separate. The automatic
fragmentation operates as follows.

During an initial program code analysis, all jump destinations are identi-
fied and labeled. Then, the program code is sequentially divided into Execu-
tion blocks, starting at the top of the program. Thereby, all commands are
processed step by step. As long as the program code is a straight order of
commands, it is just split into appropriate code fragments. Special action is

216 7 Asynchronous Real-time Execution with Runtime State Restoration

necessary when one of the previously labeled jump destinations, a program
branch, or a procedure’s end is reached:

• A jump destination can be the jump-back address of a For- or a While-loop,
the address of a procedure’s first command, the address for program con-
tinuation after a procedure’s completion, or one of the jump alternatives of
a conditional branch. The latter can be the rejoining point of multiple pro-
gram paths, i.e., the address of the first command that must be executed
after two (or more) program paths rejoined. For each jump destination, a
new Execution Block is created whose first command is the one to which
the jump destination points. Subsequently, the automatic fragmentation
links these blocks’ identifiers with their respective jump destination labels.

• A program branch is a conditional jump. It can be the foot point of a For-
or a While-loop. Both path alternatives of a conditional jump are han-
dled as jump destinations. The automatic fragmentation processes both
branches successively, up to the point where they merge again. This point
is denoted by a jump destination that both branches eventually reach. A
program branch terminates an Execution Block and the pointer to the next
Execution Block is used for the branching. In dependence on the actual
program flow, this pointer is set to one of the jump destination labels.

• A procedure’s end terminates an Execution Block. The pointer to the next
Execution Block is set to the jump-back identifier which has been stored
upon calling. The jump-back identifier points to the Execution Block that
must be executed when the procedure has been completed. Thus, the first
command of this block is the one that sequences the procedure call.

After the entire program code has been processed, the automatic fragmenta-
tion replaces the labels of the jump destinations by the corresponding Execu-
tion Block identifiers.

The algorithm described so far potentially causes an unnecessary high
percentage of idle processing. For example, a program branch is transferred
to at least three Execution Blocks, even if the conditional jump and both
branches could be executed within one block. Hence, only a small fraction
of the blocks is used for actual program code processing and the rest of the
blocks’ available execution time is filled with idle processing. That is why
the automatic fragmentation ends with an optimising phase, which merges
program fragments that fit into one Execution Block.

The optimisation founds on an analysis of all branches. For any branch,
the point is determined at which its alternative program paths merge again.
In case even the longest path of a branch can be processed within one Exe-
cution Cycle, the branch and its paths are integrated in a single Execution
Block. The optimisation also combines all Execution Blocks of a loop into one
block, provided even the maximum iteration number can be completed within
one Execution Block. Once a loop or a branch has been merged to a single
Execution Block, the optimiser tries to merge it with preceding or consecutive

7.2 Task-oriented Real-time Execution Without Asynchronous Interrupts 217

blocks. This optimisation procedure is carried out iteratively until no further
blocks can be merged.

Figure 7.6 illustrates the optimisation. The program flow example of the
figure contains a loop with two alternative branches. The initial fragmentation,
which creates one Execution Block for each jump destination, returns four
blocks. In its first step, the optimisation discovers that the two alternative
branches fit into one block. After the associated Execution Blocks (2 and 3)
have been merged to one Block (23), the optimisation checks whether this
new block can be merged with the preceding and the succeeding blocks. Since
this is possible, the initial four blocks can be merged to one block.

Depending on the size of a procedure, it might be beneficial to replace a
procedure call, which always instantiates at least two Execution Blocks, by
its source code. As Figure 7.7 shows, this allows one to integrate a proce-
dure in the calling block. Especially for short procedures this can result in a
considerable reduction of Execution Blocks. However, the gain in computing
performance – which results from the lower number of blocks that must be
processed for task completion – is paid for by an increased demand for pro-
gram memory, since multiple instances of a procedure must be stored. That
is why the optimising algorithm merges procedures with their calling blocks
only if it results in a shorter WCET.

Figure 7.7 illustrates the merging. The figure contains a program flow ex-
ample with two calls of the same procedure. The initial fragmentation contains
only one instance of this procedure, which consumes one Execution Block (5).
During the subsequent optimising steps, the procedure calls are replaced by
the procedure’s source code. Thus, the source code is implemented twice, de-
picted by the notation 5a and 5b. As a result, the number of Execution Blocks
that needs to be processed on the longest program path, i.e., the WCET, is
reduced.

Influence on Computing Performance

There is no doubt that the real-time execution concept described strongly
limits the achievable computing performance. However, in terms of safety-
related systems, computing performance is a minor issue in comparison with
safety.

Let C be the computing power of the embedded processor itself. Then, the
influence of the execution principle can be modeled by the equation

C′ = C × tExec − tStore − tRestore

tCycle
× (1 − pidle) , (7.1)

where tRestore and tStore are the amounts of processor time needed to restore
and store the processor register content at the begin and the end of an Ex-
ecution Block, respectively. The average percentage to which the Execution
Blocks cause idle processing is denoted by pidle. This average is computed
for the longest program path, as this reflects the worst-case scenario with the

218 7 Asynchronous Real-time Execution with Runtime State Restoration

Program Flow Chart
of a Task

Initial
Fragmentation

Optimising Steps

1. Step 2. Step 3. Step
Begin

Conditional
Branch 2

End

Command
Block 2

Command
Block 3

Command
Block 4

Command
Block 1

Conditional
Branch 1

End

1

2 3

4

Begin

End

1

2 3

4

Begin

End

1 2 3

4

Begin

End

1 2 3 4

Begin

Fig. 7.6. To increase performance, automatic fragmentation tries to combine Exe-
cution Blocks during a final optimisation stage

Program Flow Chart
of a Task

Initial
Fragmentation

Optimising Steps

1. Step 2. Step
Begin

End

Command
Block 2

Command
Block 3

Command
Block 4

Command
Block 5

Command
Block 1

Call of
Procedure

´Test´

Call of
Procedure

´Test´

Conditional
Branch 1

End

End

1

2 3

Test

Test

4

6

5

Begin

Test

1

2 3 5a

4 5b 6

End

Begin

1 2 3 5a

4 5b 6

End

Begin

Fig. 7.7. During optimisation, procedure calls might be replaced by their source
code. This can reduce the number of Execution Blocks that needs to be processed
on the longest program path

7.2 Task-oriented Real-time Execution Without Asynchronous Interrupts 219

longest execution time. Obviously, pidle strongly depends on the cycle dura-
tion tCycle. The longer tCycle, the more often the Execution Blocks must be
filled up with idle processing. On the other hand, a shorter cycle duration
causes higher overhead for storage and restoration of the register content.
The type of processor and compiler is also assumed to have a considerable
influence on pidle, since a more extensive instruction set can provide higher
computational power within the same amount of clock cycles. In any case,
pidle is less than 50%, because the added processing times of any two succes-
sive Execution Blocks must exceed at least the processing time granted to one
block. Otherwise, these two blocks could be merged in one block.
Asynchronous Programming:

A direct comparison of the performance achievable with conventional task-
oriented real-time systems is problematic, as these can provide higher per-
formance on average, but feasibility analysis restricts their usage. Feasibil-
ity analysis requires one to take all possible context switches into account,
which not only require one to store and restore the processor register con-
tent, but also affect the performance gain due to architectural features
such as cache memories or superscalar processing and, hence, make it dif-
ficult to compute WCETs. Sometimes the performance gain due to such
architectural features is even totally annihilated during feasibility analy-
sis. Moreover, execution interdependencies requiring mutual exclusion are
often difficult to discover and frequently unknown. As a consequence, the
worst-case scenarios assumed are frequently over-pessimistic, i.e., they po-
tentially contain more context switches than actually possible.
As a result, there is a huge discrepancy between assumed and real worst-
case scenarios, but only the latter is relevant for hard real-time systems.
The situation improves only slightly by dividing program code into in-
terruptible and non-interruptible segments, since this causes release jitter
which, in turn, has a negative impact on feasibility.
Assume a system of the considered architecture with the cycle period
tCycle. A conventional system with a comparable minimum achievable re-
sponse time would require a fine granularity of non-interruptible program
segments with the maximum segment length tCycle. Adding the fact that
this system would have to execute the real-time operating system kernel
algorithms on the processor instead of taking advantage of a dedicated
hardware, we assume that – in terms of worst-case feasibility – the at-
tainable computing performance is for both systems nearly identically
affected by task administration and context switches. Thus, together with
the rather pessimistic assumption that pidle is 50% on the longest pro-
gram paths (i.e., in the worst-case scenario), it can be stated that the
cyclic operating principle provides at least 50% of the performance of a
conventional system. Using highly sophisticated algorithms for code frag-
mentation, we assume that the performance can be increased to a level
above 70%.

220 7 Asynchronous Real-time Execution with Runtime State Restoration

Synchronous Programming:
In the case of synchronous programming, feasibility is implicitly anal-
ysed when an execution schedule is defined. The WCETs of the scheduled
blocks are easy to compute. Since their execution cannot be interrupted,
there are no unforeseeable context switches, and the performance gain due
to architectural features like cache memories or superscalar processing is
easy to predict. The schedule of a frame must guarantee, however, that all
its scheduled blocks complete within the minor cycle time Tminor. Thus,
the WCETs of a frame’s scheduled blocks must be taken into account as
a whole – even if it is unlikely that all processes consume their WCETs
simultaneously, i.e., within the same cycle. Together with the fact that
aperiodic actions must be realised by cyclic polling, this potentially causes
considerable idle processing. The WCET of an aperiodic action must be
taken into account for every polling cycle, even if it occurs only rarely
(This is why aperiodic actions are often handled by periodic servers, an
approach that eliminates the advantage of simple temporal behaviour).
The longer the minor cycle period is, the smaller number of frames can
fall between two polling instances for a given maximum response time. As
a consequence, the performance loss associated with polling is larger the
longer the minor cycle period.
Assume a system of the considered architecture with the cycle period
tCycle. A synchronous system with a comparable minimum achievable re-
sponse time would require a minor cycle length of tCycle. Thus, the WCET
of any block scheduled must be shorter than tCycle, and the granularity
of code fragmentation is similar for both operating policies.
In summary, comparing the computing performance of synchronous pro-
gramming and the considered approach is difficult – and it may depend on
the application which operating principle is more advantageous. It cannot
be claimed that synchronous programming clearly provides higher per-
formance. Most likely, systems with identical cycle periods will provide
nearly the same performance. If the minor cycle period of a synchronous
system is larger than the execution cycles of the considered approach, a
performance gain is achieved due to less fragmentation and better usage
of architectural acceleration features. This gain is compensated, however,
by the drawback of cyclic polling, which potentially causes more idle pro-
cessing for larger periods Tminor.

7.3 State Restoration at Runtime

This section introduces the concept of state restoration at runtime, which is
applied to tolerate spontaneous hardware failures. This safety function, which
can be considered as a form of forward recovery (see also Section 4.1.7), en-
ables a redundant configuration of PESs to bring a failed PES back on line by
equalising its internal state with that of its running counterparts. Thus, redun-

7.3 State Restoration at Runtime 221

dancy attrition due to transient processing faults is prevented. The technique
also increases robustness against permanent failures, since it enables one to
replace error-affected PESs without the need to interrupt on-going processing.
The concept of cyclically operating real-time execution described in the pre-
vious section aims to prevent design faults by simplifying both architecture
and operating principle. In order to guarantee safe and reliable operation,
these strategies must be integrated into a holistic concept, which also takes
spontaneous hardware failures into account and does not jeopardise simplicity.

Part 3 of the safety standard IEC 61508 recommends various techniques
to reduce the influence of spontaneous hardware failures. Some of these tech-
niques are, e.g., the use of multiple processing units combined with majority
voting (IEC 61508-3, Table A.2), double-RAM with hardware or software com-
parison and read/write test (IEC 61508-3, Table A.6), and RAM-monitoring
with a modified Hamming code or other Error Detection/Correction Codes
(IEC 61508-3, Table A.6). Unfortunately, none of the techniques recommended
covers all possible sources of failures and, as a consequence, several techniques
usually need to be combined to attain a required degree of fault tolerance. This
potentially increases system complexity and, therefore, somehow contradicts
the major design guideline simplicity.

This is the reason why a rather exceptional but more holistic approach has
been devised. Instead of processing redundant information inside each PES,
the PES itself is designed to be redundantly configured. Each PES instance
outputs a Serial Data Stream (SDS), which continuously informs about its in-
ternal processing. These data streams, which are organised in Transfer Cycles
that match the Execution Cycles, allow one to determine the internal states
of the PESs exactly. Within a redundant configuration of PESs, the SDSs are
exchanged to serve three safety functions:
Non-intrusive Monitoring and Recording of Process Activities. The SDS tech-

nique enables to monitor and record process activities with external de-
vices. Since these recording devices are not part of the PES itself, they do
not necessarily need to fulfill the same high safety requirements.

Detection of Processing Errors. Each PES can detect processing errors by
comparing its SDS with the SDSs of its redundant counterparts.

Forward Recovery at Runtime. If a PES is affected by a transient hardware
fault or even completely replaced, the SDSs of the redundant PESs en-
able to copy the internal state and to re-join the redundant processing at
runtime.

All PESs synchronise their operation to the same global time reference UTC.
This ensures that the SDSs of redundant PES instances are identical, provided
no instance is impaired due to processing errors. The fact that the SDSs of
properly operating, redundant PESs are identical enables one to determine the
correct SDS values simply by majority voting. For this, each PES includes a
Majority Voter, which compares the SDSs of all redundant PES instances –
including the PES’s own SDS. The majority voter uses only valid streams to

222 7 Asynchronous Real-time Execution with Runtime State Restoration

determine the majority. An SDS is denoted as ‘invalid’ if, e.g., the associated
PES is in ‘Error State’ or if the reception fails. The majority value generated
by the voter is used for state restoration and to detect processing errors, i.e.,
a PES’s state is considered to be erroneous if its own SDS differs from the
majority.

The SDS concept renders the employment of further fault tolerance mea-
sures inside a PES superfluous. Certainly, applying redundancy inside each
PES could further increase the degree of fault tolerance, but, since redun-
dancy attrition due to transient processing faults is prevented, this gain is
also easily attainable by increasing the number of redundant PES instances.
The latter approach has the advantage that it does not increase architectural
complexity.

7.3.1 State Restoration at Runtime and Associated Problems

State restoration at runtime requires a redundant configuration of uniformly
operating PESs. Each PES must be able to:

• Detect processing errors by comparing its own results with the results of
its redundant counterparts,

• Drop out of redundant operation in case of processing errors,
• Copy the internal state of the redundant units at runtime, and
• Re-join redundant operation when state equivalence has been reached.

In the literature, such restoration techniques are frequently called ‘forward
recovery’ or ‘roll-forward recovery’. These terms are something of a misnomer,
since the literal opposite ‘backward recovery’ refers to the re-start at special
recovery points which have been stored in process history. In analogy, forward
recovery could be misinterpreted as a re-start at distinct future points. This
would require an estimation of future process behaviour, which is certainly
impossible. That is why the phrase ‘state restoration at runtime’ is used here.

In general, the state of a PES is defined by the content of all its storage el-
ements, e.g., registers, latches, and memory blocks. Consequently, a change of
a storage element’s content equals a change of the PES’s state. Nevertheless,
the term State Change is avoided in this chapter as it is open to misinter-
pretation. The term suggests that there exists an explicit model of a finite
state machine, which is not the case. Such models are usually created at the
application level, since a model on the hardware level of a PES would have
an inappropriate extension. That is why the term Data Modification is used
instead.

In the sequel, the state of a PES is regarded to be only defined by those
storage elements that can – either directly or indirectly – influence future pro-
cessing. These storage elements, which can comprise multiple memory blocks
as well as single flip-flops, are thought to be organised in a single set of data
words, and each data word has a unique address for identification. Hence, the
information about a data modification that needs to be exchanged between

7.3 State Restoration at Runtime 223

redundant PESs for state restoration includes the new data value and the
address. Subsequently, the main problems in state restoration at runtime are
outlined.

Dependence of Computing Performance on Transfer Bandwidth

The HiQuad architecture [54] applied by HIMA is an example of a PES ar-
chitecture that supports state restoration at runtime. As Figure 7.8 shows,
it has a 2oo4D architecture, which means that at least 2 out of 4 redundant
processing units must return equal results to maintain operation. The ‘D’
in the notion 2oo4D indicates that extensive diagnostics are applied in the
spatially distributed nodes to detect processing errors. As typical for 2oo4 ar-
chitectures, the HiQuad architecture is built of two processing units that are
configured locally redundant in one rack, and two of such racks are installed
spatially distributed. Most modern fault-tolerant control systems for highly
safety-critical applications have such a 2oo4 or 2oo4D architecture. This is
because of the lower ratio of hardware costs to failure improbability in com-
parison to a 2oo3 architecture. Provided multiple processing errors do not
occur simultaneously, both kinds of architectures can detect any processing
failure by majority voting, but a 2oo3 architecture requires spatial distribu-
tion of three racks. Figure 7.8 also shows that redundancy must be provided
throughout the entire system, from the sensors via communication interfaces
and processing units to the actors.

mP : Microprocessor
DPR : Dual−Port−RAM
CL : Communication Link

Redundant Sensors

Redundant Actors

Redundant Fieldbus

2oo4D

Communication
Link

Processing Unit 1

mP1 mP2

1oo2

Diagnostics

D
P

R

Diagnostics

Processing Unit 2

1oo2

mP2mP1

D
P

R

Fig. 7.8. The HiQuad-Architecture of HIMA [54]

In the HiQuad architecture, four processors are arranged in pairs of two
physically separated units. Besides the two processors, each unit contains a

224 7 Asynchronous Real-time Execution with Runtime State Restoration

dual-port RAM and extensive diagnostic logic to detect processing errors. The
dual-port RAMs of these two units are connected via a communication link. If
a unit is replaced, this communication link is used to copy the internal state at
runtime. Obviously, the transfer bandwidth of this communication link must
equal at least the frequency of write accesses to the dual-port RAMs. This
points to the major problem of state restoration at runtime.

On the one hand, the redundant processing units must be installed spa-
tially distributed in order to prevent common cause failures. As an example,
to prevent a small fire simultaneously destroying all control units of a power
plant, they should be installed in separate buildings. This demand for spa-
tial distance between redundant units implies that the transfer bandwidth
between them is limited. On the other hand, there is a high communication
demand between the redundant units. This is because re-starting or replacing
a PES unit without interrupting the on-going process requires one to equalise
the unit’s internal state to that of the redundant counterparts at runtime.
Unfortunately, while a PES copies the internal state from its running counter-
parts, the latter continuously change their internal states. This aggravates the
situation, since frequently changed data words might need to be transferred
multiple times. Hence, the major problem associated with state restoration at
runtime can be formulated as:

The capability for state restoration at runtime causes the attainable
computing performance to be strongly dependent on the available
transfer bandwidth.

Hence, an important question is how to minimise the required transfer band-
width.

Organising Software in Cyclically Processable Fragments

If we analyse the execution of a typical real-time application, we discover that
a huge fraction of the data stored in the data memory represents intermediate
values, which are irrelevant in terms of state restoration as long as the asso-
ciated final data values are copied within the restoration process. Because of
this, the required transfer bandwidth can be reduced through cyclic opera-
tion: intermediate values within a processing cycle are not considered for state
restoration, only the final results at a cycle’s end are copied. The drawback
of this operating principle is that data changes can only be transferred after
a processing cycle has been completed. Figure 7.9 illustrates this.

The figure shows that only a fraction of the cycle time is used for actual
program execution. After program execution, the remaining cycle time is spent
transferring the latest data changes. This concept transfers only RAM data
modified at least once. In order to transfer RAM data that are not modified,
the complete RAM content can be transferred in consecutive fragments. It is
most beneficial to transfer these fragments during actual program execution.
Otherwise, the transfer medium would remain unused during that period.

7.3 State Restoration at Runtime 225

Task
Processing:

Program execution Determination of
modified data words

Data
Transfer:

Processing Cycle

Transfer of a data memory fragment
(Entire memory content transferred

 in consecutive cycles)

Transfer of latest data changes

Fig. 7.9. Cyclic software execution can provide higher computing performance for
a given transfer bandwidth

Of course, the restriction to cyclic software execution has a negative im-
pact on computing performance. Processing inside each PES, however, is less
restricted as the feasible transfer bandwidth. That means the computing per-
formance inside each PES can easily be increased through a higher clock
frequency, a higher data word width, or other architectural features (e.g.,
instruction pre-fetching or pipelining). Increasing the transfer bandwidth is
more costly, especially since the data exchange must suffice real-time demands.

There is another fact that makes cyclic software execution the more ap-
propriate approach in terms of state restoration. Certainly even the best syn-
chronisation mechanisms cannot prevent small synchronisation deviations be-
tween redundant PES instances. Additionally, the transfer of data from one
PES to another always involves a delay. The use of fibre optics can decrease
the actual transfer latency so that it becomes negligible, but the conventional
circuitry needed for the coupling to fibre optics and for applying Error De-
tection/Correction Codes still causes significant delays. In the case of cyclic
software execution, these synchronisation deviations and transfer delays must
be taken into account only once for every cycle, i.e., a new cycle cannot be-
gin before all redundant PESs received and evaluated the transferred data
of the previous cycle. A non-cyclic mode of operation requires to consider
these delays in any processing step (actually, cyclic processing cannot be cir-
cumvented, since these processing steps represent an instruction cycle of the
processor). This clearly limits the maximum clock frequency.

As major drawback, the cyclic execution principle requires one to organise
software in cyclically processable fragments. Most contemporary systems, like,
e.g., the HiQuad system of HIMA, solve this problem by following the classical
operating principle of PLCs. Nevertheless, it can be stated that:

Cyclic software execution can provide higher computing performance
for a given transfer bandwidth, but raises the problem of organising
the software in cyclically processable fragments.

Obviously, a short cycle duration is desirable, since the minimum feasible
response time is directly connected with it.

226 7 Asynchronous Real-time Execution with Runtime State Restoration

7.3.2 Classification of State Changes

The problems associated with state restoration at runtime have already been
solved for many applications. RAID controllers, for instance, can restore the
data of replaced hard disks in the background by using the periods between
disk accesses for copying [91]. During the copying process, state changes of
the source disks can be taken directly into account by forwarding the corre-
sponding write accesses to the replaced disk.

Unfortunately, state restoration of real-time systems is more complex.
Since they must be capable of handling several simultaneous events concur-
rently, the data modifications important for copying the internal state are of
two different classes: Program-controlled and Event-controlled Data Modifica-
tions (PDMs and EDMs).

The PDMs comprise all data modifications the application software in-
duces during program execution. The volume of PDMs can be bounded, e.g.,
by restricting the number of write accesses permitted within a specified time-
frame. Appropriate compiler directives are easily realisable. Of course, the
restriction to a number allowing continuous transfer of information about
PDMs, which comprises the new data values as well as their memory ad-
dresses, strongly limits the computing performance achievable. The latter,
however, is not of major concern in terms of safety, and the high bandwidths
of modern transfer technologies allow for performance more than sufficient for
most highly safety-critical applications.

Limiting the volume of EDMs by an upper bound is more complex. Since
digital systems always operate in discrete time steps, several events can fall
within one clock cycle and, thus, occur virtually simultaneously. Moreover, a
single event can cause – in comparison with the program-controlled situation
– a relatively large number of data modifications within an extremely short
period of time. For example, in principle it is possible that a single event
activates all tasks of an application at once. In this case, storing the activa-
tion time for each task would result in a huge amount of EDMs. Obviously,
restricting the frequency of write accesses would have a strong negative effect
on real-time performance, e.g., it would limit the minimum realisable response
time. Thus, the capability to transfer all information about EDMs at runtime
necessitates a trade-off between restricting the frequency of EDMs to a volume
that allows for acceptable real-time performance and the transfer bandwidth
required. To sum up:

Restricting the frequency of PDMs affects only the computing per-
formance, whereas restricting the frequency of EDMs has a negative
impact on the real-time performance.

That is why in task-oriented real-time PESs, which must provide both prac-
ticable computing performance and very short response times, sophisticated
methods need to be applied to enable state restoration at runtime.

7.3 State Restoration at Runtime 227

7.3.3 State Restoration with Modification Bits

Section 7.3.1 showed why it is beneficial to combine the capability for state
restoration at runtime with a cyclic operating principle. This allows a higher
computing performance for a given transfer bandwidth. Hence, the concept for
task-oriented real-time execution introduced in the previous chapter, which is
based on a cyclic operating principle, is perfectly suited for state restoration
at runtime.

Obviously, a short cycle duration is desirable, since the shorter the cycle
time the shorter is the minimum realisable response time. If the information
about a cycle’s data modifications is transferred immediately, i.e., the asso-
ciated data values and addresses are transferred at the cycle’s end, there are
two facts that render minimising the cycle duration problematic:

• Immediate transfer of a cycle’s Program-controlled Data Modifications
(PDMs) requires one to limit the number of PDMs that Execution Blocks
are allowed to perform within a processing cycle. Appropriate directives
are easy to implement in the compiler software that fragments application
programs into Execution Blocks. The PDM limit has, however, a nega-
tive impact on computing performance, since it represents an additional
restriction for the size of program code fragments.

• Unfortunately, the minimum number of Event-controlled Data Modifica-
tions (EDMs) is independent of the cycle duration, i.e., the minimum
number of data modifications that can occur within a cycle and that must
be considered for state restoration does not depend on the cycle length.
This number results from a worst-case scenario, e.g., all tasks are activated
within the same cycle, causing several new activation time values at once.
The capability for immediate transfer of this number of EDMs necessitates
a certain amount of data bits to be transferred any cycle. Consequently,
the computing efficiency, i.e., the ratio of time spent for actual program
execution and time spent for data transfer, decreases with decreasing cycle
durations.

These problems are prevented by the use of Modification Bits, which is the
underlying principle of the approach to state restoration proposed in [10].
Every data word is assigned a Modification Bit, which signals whether the data
word has been modified. This bit is set when the data word’s value is changed;
it is reset when the new value has been transferred to the redundant PESs.
Instead of transferring information about data modifications immediately, i.e.,
within the cycle they occurred in, the values and addresses of a fixed amount
of data words are transferred at the end of any cycle. Obviously, the transfer
includes only those data words whose Modification Bits are set.

This technique has the advantage that the transfer bandwidth available
does not need to suffice the maximum number of data modifications within
a cycle. In other words, the approach does not necessitate exchange at any
cycle’s end as many data bits as the transfer of the information about a cy-
cle’s data modifications would require in the worst case. Instead, the average

228 7 Asynchronous Real-time Execution with Runtime State Restoration

m x TCycle

TCycle m xTI Cycle m xTCycleII

t

Program
Execution

Data
Transfer 4 5 6 1 2 3 4 5 6 7 8 9 1 2 3

Transfer of the content
of all storing elements in

mI consecutive fragments

Transfer of
information about

 n data modificationsII

Actual
program

execution

Transfer of
the content of
n data wordsI

mI mI

Fig. 7.10. The state restoration process consists of two phases: phase I ensures that
the content of all storage elements is copied at least once; phase II endures until all
recent data modifications have been transferred at a cycle’s end

frequency of data modifications defines the amount of data that must be ex-
changed any cycle to enable state restoration. As a drawback, the technique
increases the effort to determine the maximum duration of the state restora-
tion process, or – what means the same, but has practical benefits – to prove
that state restoration will complete within a given time frame. This is be-
cause it is necessary to know for every data word its maximum number of
value changes within a given time frame. This is not easy to determine for
real-time systems that follow the approach of asynchronous programming.

If the maximum frequencies of value changes are known, the amount of
data to be transferred any cycle is computable. The calculation depends on
how data words are handled whose values are not changed within the specified
time frame. One approach would be to set the Modification Bits of all data
words at the begin of the restoration process. Thus, they will be copied at least
once. In this approach, the transfer medium remains unused during actual
program execution, since the information on modified data is only available
after it. That is why better performance is provided by the policy depicted in
Figure 7.9, which uses the transfer medium during actual program execution
to transfer the content of all storage elements in consecutive fragments. This
approach does not add the handling of non-modified data words to the transfer
after actual program execution and, thus, requires less data to be restored by
the Modification Bit scheme.

In order to prove that state restoration completes within m cycles, the
state restoration process is divided into two phases. Figure 7.10 illustrates the
subsequent description:
Phase I. The first phase ensures that the content of all storage elements is

copied at least once. If α is the number of data words into which the
storage elements are organised, and nI is the number of data words whose
content is transferred during actual program execution of a cycle, then
phase I endures

mI =
⌈

α

nI

⌉
(7.2)

7.3 State Restoration at Runtime 229

cycles. Thus, after mI consecutive cycles, all data words have been copied
at least once, and the Modification Bit scheme needs to keep track of data
modifications, only.

Phase II. The second phase, which endures mII =(m−mI) cycles, keeps track
of on-going data modifications until state restoration completes. For this,
there must be at least one cycle within phase II after which all data
modifications since the begin of phase I have been transferred.
This is the case if the number of data modifications whose information is
transferred at any cycle’s end equals

nII ≥ 1
mII

× (α + β) , (7.3)

with

β =
α∑

i=1

⌊
mII × TCycle

Pi

⌋
. (7.4)

In the latter equation, Pi is the minimum period between two value
changes of the i-th data word. The formula results from the fact that
every data word i is changed at most one time more than period Pi com-
pletely fits in mII cycles. The quantity nII does not necessarily need to be
an integer number. Since it is possible to transfer the information about a
data modification within a number of consecutive cycles, nII can be any
rational number.

Equation 7.3 allows one to illustrate the reduction of the bandwidth require-
ments in an example. Consider a set of three data words with the value change
periods p1 = 2 × TCycle, p2 = 3 × TCycle, and p3 = 6 × TCycle. The number of
cycles granted for state restoration be 100. In the case of immediate transfer,
information about three data modifications would need to be transferred at
each cycle’s end, since all three data words could change their values simulta-
neously. Applying Equation 7.3 yields that information about only 1.02 data
modifications needs to be transferred at the end of each cycle.

The major drawback of this state restoration policy is that the handling
of the Modification Bits causes additional computing effort. This makes a
software-based implementation as presented in [10] inefficient. In particular,
the search for data words with set Modification Bits strongly restricts the
achievable performance, since – in the worst case – all Modification Bits must
be evaluated. This problem can be solved by implementing the TAU in form
of a dedicated logic circuitry. As shown in [101], this allows one to identify the
data words with set Modification Bits in parallel to program code execution.

7.3.4 Concept of State Restoration

The concept of task-oriented real-time execution without asynchronous inter-
rupts described above enables a straightforward implementation of the mod-
ification bit scheme for state restoration at runtime. Since it already founds

230 7 Asynchronous Real-time Execution with Runtime State Restoration

on a cyclic operating principle, it is just necessary to add the administration
of Modification Bits, and to lengthen the cycle duration for the transfer of a
fixed amount of modified data words. The strict separation of task adminis-
tration and task execution implies that the associated data are also handled
separately:

• The Task Administration Unit’s (TAU) data relevant for state restoration
comprise the Task List Memory (TLM) and the ID of the Execution Block
to be executed in the subsequent cycle. The latter consists of a few bits,
only, and is transferred at the end of any cycle. Hence, only the TLM needs
to be restored following the modification bit scheme.
For this, each data word of the TLM is assigned a Modification Bit, and a
dedicated digital circuitry, which is described in [101], administrates these
Modification Bits during Sequential Task Administration (STA). The cir-
cuit enables access to the modified data words directly after completion of
STA, i.e., it is not necessary to search for data words with set Modification
Bits.

• Since the content of the processor registers is lost at the end of any Ex-
ecution Cycle, only the data memory of the Application Processing Unit
(APU) is relevant for state restoration. As for the TLM of the TAU, to
every data word of the memory a Modification Bit is assigned. A dedicated
circuitry, which is described in [101], administrates these Modification Bits
and enables access to the modified data words directly after completion of
an Execution Block, i.e., there is no additional delay for the determination
of modified data words.

The immediate access to data words with set Modification Bits enables the
transfer scheme described in the sequel.

Transfer Schedule for Serial Data Streams

As described at the begin of this section, the state restoration data are trans-
ferred via Serial Data Streams (SDSs), which are exchanged between redun-
dant PES instances. Figure 7.11 shows the transfer schedule of these SDSs.
The SDSs’ Transfer Cycles correspond to the PESs’ Execution Cycles, except
that they are shorter by a small idle gap. At the beginning of any Trans-
fer Cycle, the SDSs transfer information about asynchronous events detected
during the previous cycle. This does not serve actual state restoration, but is
necessary to ensure identical processing of redundant instances. Due to sig-
nal delays, asynchronous events may not be detected simultaneously by all
redundant units. Additionally, there might be slight synchronisation devia-
tions between their internal clocks. Hence, an asynchronous event that occurs
shortly before a cycle’s end might not be detected by all PESs in the current
cycle; some PESs may detect it in the subsequent one. The event information
transferred by the SDSs enables one to shift an event signal to the next cycle
if it has not been detected by all redundant units. After the event information,

7.3 State Restoration at Runtime 231

the SDSs transfer a fragment of the data contained in the TLM and the APU
data memory. This is done in a way that the entire content of the TLM and
the APU data memory is transferred in mI consecutive cycles.

Application
Processing
Unit (APU)

Execution Cycle

Execution Phase Administration Phase

Task
Administration

 Unit (TAU)

Serial Data
Stream (SDS)

Processing of one
Execution Block

STA

Transfer of information
modified data words

about n nII II / ’

Transfer of nI
TLM and APU data memory

data words

Transfer of information about
asynchronous events

No delay for the determination of modified
data words due to dedicated circuitry

Transfer of additional
control information

Idle
gap

Transfer Cycle

Fig. 7.11. Transfer schedule of Serial Data Streams in relation to Execution Cycles

Immediately after the APU has completed an Execution Block, the SDSs
start to transfer information about nII data modifications. Since this trans-
fer starts before task administration finishes, at first only recent changes in
the APU data memory are handled. Information about modifications of the
TLM are transferred after task administration has been completed. The fact
that at most n′

II data modifications in the TLM are transferred, any cycle
is compensated by the fact that TLM modifications are handled with higher
priority than modifications of APU data memory. This means that the latter
are only transferred if no TLM modifications need to be transferred, i.e., all
Modification Bits associated to data words of the TLM are in the reset state.

At the end of any transfer cycle, additional control information is trans-
ferred via SDSs. This comprises the ID of the Execution Block to be executed
in the next cycle as well as the binary information whether all recent data
modifications have been transferred. A restarted PES uses this binary infor-
mation to identify the end of the state restoration process. Figure 7.11 also
shows a small gap between a transfer cycle’s end and the beginning of the
next cycle. This idle gap is necessary to compensate for small synchronisation
deviations between redundant PES instances. The gap ensures that the PES,
whose internal clock runs ahead most, does not start a new Execution Cycle
before it completely received the SDS of the PES, whose clock lags behind
most.

State Restoration Process

In order to verify the correctness of received SDSs by majority voting, not
only the internal task processing of all redundant PESs must be identical, but

232 7 Asynchronous Real-time Execution with Runtime State Restoration

also the state restoration data transferred. This is why states are restored in
synchrony with the global time standard Universal Time Co-ordinated (UTC)
at certain UTC-synchronous instants, which coincide with a cycle’s beginning,
all Modification Bits are reset. Thus, assuming that the internal task process-
ing – which is also in reference to UTC – of all redundant PESs is identical, the
modification bits will also be handled in an identical way from that moment
on. These UTC-synchronous instants which, e.g., can match the begin of UTC
minutes, are subsequently called Restoration Synchronisation Instants (RSIs).
Obviously, state restoration must be completed between two such RSIs. There
are always m cycles between two RSIs. Figure 7.12 illustrates the subsequent
description of the state restoration process.

m x tCycle m x tCycle

Cycle Cycle t

TPU

Faulty State
Detected

PES rejoins
processing

Waiting for next RSI
to start

state restoration process

Fragmented transfer
of Task List and
 data memory

Waiting for cycle that
ends with all Modification

Bits being reset

TAU

SDS

tCycle

RSIRSI RSI

m x tI Cycle Cyclem x tI m x tII m x tII

Fig. 7.12. State restoration process

Assume a PES assesses its state to be faulty, e.g., because its own SDS
deviates from the other SDSs’ majority. In this case, the PES re-starts itself
and initiates state restoration. For this, it must wait for the next RSI, before
the state restoration process can begin. In the worst case, the last RSI has
just occurred, and the PES must wait for m cycles, where m×TCycle is the
period between two RSIs.

At the moment of the next RSI, which coincides with a cycle’s begin, all
Modification Bits are reset and the state restoration process begins. During
the subsequent mI cycles, the entire content of the TLM and the APU data
memory is transferred in consecutive fragments. Even if one of these mI cycles
ends with all Modification Bits being in reset state, i.e., all recent data mod-
ifications of the running PESs have been copied, the re-started PES cannot
re-join the redundant processing at the subsequent cycle’s beginning. This is
because – so far – some data words might have neither been covered by the
fragmented transfer in consecutive cycles nor by the Modification Bit scheme.

When the last of the mI cycles has elapsed, all data words of the TLM and
the APU data memory have been copied to the re-started PES at least once.

7.3 State Restoration at Runtime 233

Furthermore, the Modification Bit scheme kept track of all data modifications
that happened since the last RSI. Hence, during the remaining mII cycles be-
fore the next RSI, the PES just needs to wait for a cycle that ends with all
Modification Bits being in reset state, i.e., with all recent data modifications
of the running PESs being copied. As soon as such a cycle occurs, the state
restoration is complete, and the re-started PES can re-join the redundant
processing in the subsequent cycle. As will be explained below, the fulfill-
ment of two conditions similar to Equation 7.3 ensures that state restoration
completes within these mII cycles in any case.

Since a re-started PES must wait m cycles in the worst case before the
state restoration process begins, and this process endures at most m cycles,
the worst-case duration of state restoration is 2×m cycles. In other words, the
time elapsing from the detection of a PES’s faulty state until the end of the
restoration process is at most

tStateRestoration = 2 × m × TCycle . (7.5)

7.3.5 Influence on Program Code Fragmentation and Performance
Aspects

Obviously, the capability for state restoration at runtime causes the frequency
of data modifications to be another feasibility criterion. Appropriate feasibility
conditions have been derived and can be found in [101]. Besides the real-time
check for temporal feasibility, it is necessary to verify that the state restoration
process completes even in the worst-case scenario. This arises when all tasks
simultaneously execute the program paths inducing the highest numbers of
data modifications.

As a consequence, there are two dimensions in optimising program code
fragmentation. The first focuses on the number of Execution Blocks that must
be processed on the longest program path of a task. Since this number corre-
sponds to the WCET, its minimisation is an optimisation criterion aiming for
temporal feasibility (cf. Section 7.2.4). The second dimension focuses on the
worst-case number of data modifications, i.e., the number that arises on the
program path with the highest number of data modifications. Reducing the
amount of data that must be passed from one Execution Block to the next
is an optimisation criterion that aims for feasibility of the state restoration
process.

The program path causing the WCET is not necessarily the same as the
one that gives rise to the highest number of data modifications. Nevertheless,
the two optimisation dimensions are not contradictory. In fact, the associ-
ated optimisation strategies are very similar. On the fragmentation level, the
WCET is implicitly minimised by aiming for high block utilisation, i.e., a
low percentage of idle processing. As discussed in Section 7.2.4, a high block
utilisation can be achieved by starting from the finest possible block granu-
larity followed by an optimised merging of code fragments. Instead of solely

234 7 Asynchronous Real-time Execution with Runtime State Restoration

minimising idle processing, this merging can also be carried out with the ob-
jective of processing intermediate values in as few blocks as possible. This
lowers the number of intermediate values that must be exchanged between
Execution Blocks via the data memory and, hence, reduces the number of
data modifications. Nevertheless, there are scenarios in which improvements
in one dimension negatively affect the other.

Obviously, the computing performance achievable depends strongly on the
quality of the code fragmentation algorithm. This makes it difficult to discuss
performance aspects without referring to a sophisticated algorithm. A practi-
cal approach is to discuss computing performance in comparison with existing
systems.

• Comparison with the HiQuad-Architecture of HIMA
The programmable electronic systems H41q/H51, which are manufactured
by HIMA, use the HiQuad architecture described in Section 7.3.1 to sup-
port state restoration at runtime. They also operate in a cyclic fashion, and
are programmed in accordance with the programming paradigm defined
by IEC 61131. Unfortunately, the system descriptions provided by HIMA
do not explain the state restoration strategy applied. Of course, if they
had implemented a sophisticated restoration scheme, they would probably
not publish its details. Even a patent protection, which would require a
detailed publication, might not prevent competitors from copying, since it
is difficult to prove that an integrated circuit internally applies a certain
technique. Nevertheless, if HIMA applied a certain technique, we assume
that they would at least mention it in their advertising brochures.
That is why we assume that the data modifications of a cycle are simply
transferred at its end. Probably, implementing a special state restoration
technique has been considered unnecessary, since it only increases perfor-
mance, and performance is not the major design criterion for such systems.
In other words, the associated performance gain does not justify the higher
effort for safety licensing. The systems follow the approach of synchronous
programming, and execute the same program code in any cycle. Conse-
quently, nearly the same data words are modified in any cycle. This makes
the Modification Bit technique inefficient.
The synchronous programming style is, however, very inflexible and its
field of application is limited to simple control tasks. Thus, the perfor-
mance advantage of the PES concept described here is the higher flexibility
that task-oriented real-time execution in discrete cycles provides.

• Comparison with the approach of [10]
The approach presented in [10] is also based on Modification Bits. The
major difference to the PES concept shown here is that the Modification
Bits are administrated by software – after actual program execution. This
causes a significant delay, since – in the worst case – the entire data mem-
ory must be searched for set Modification Bits.
The described concept prevents this delay through dedicated circuitry. Un-

7.3 State Restoration at Runtime 235

like the software-based solution, this circuitry allows one to use the transfer
medium during actual program execution for a fragmented transfer of the
entire data memory. Thus, the Modification Bit scheme must only cover
the data words modified during the restoration process; unchanged data
words are covered by the fragmented transfer. To realise this efficiently,
all Modification Bits are reset at UTC-synchronous instants, whereas the
concept of [10] sets all Modification Bits whenever a processing error is de-
tected. Obviously this reduces the amount of data that must be transferred
after actual program execution and, hence, higher computing performance
is achievable for a given transfer bandwidth. The UTC-synchronisation
has the additional advantage that the redundant systems need no further
synchronisation to proceed with state restoration.

In summary, the discussion showed that the described PES concept – in par-
ticular its state restoration technique – has valuable performance advantages
over existing state restoration concepts. Further information about the con-
cept can be found in [101].

8

Epilogue

Pervading areas and carrying out control functions which were only recently
unthinkable, embedded programmable electronic systems have found their way
into safety-critical applications. In the general public, however, awareness is
rising of the inherent safety problems associated with computerised systems,
and particularly with software. Taking the high and fast increasing complexity
of control software into account, it is obvious that the problem of software
dependability will likewise multiply.

There has always existed a mismatch between the design objectives for
generic universal computing on one hand and for embedded control systems
on the other. Practically all sophisticated dynamic and “virtual” features de-
vised in the so-called “high technology” world of computers to match obsolete
approaches from the past and aiming to enhance the average performance of
computers must be considered harmful for embedded systems. Thus, inappro-
priate categories, such as probabilistic and statistical terms or fairness, and
optimality criteria, such as minimisation of average reaction time, must be
replaced by recognising the constraints imposed by the real world, i.e., by the
notion of resource adequacy.

Embedded systems have to meet timing conditions. Although guidelines
for proper design and implementation of embedded control systems operating
in real-time environments have been known for a long time, in practice ad hoc
approaches still prevail to a large extent. This is due to the fact that the notion
of time has long been — and is still mostly being — ignored as a category in
computer science. There, time is reduced to predecessor-successor relations,
and is abstracted away even in parallel systems. In standard programming en-
vironments, no absolute time specifications are possible, the timing of actions
is left implicit, and there are no time-based synchronisation schemes.

The prevailing methods and techniques for assessing embedded systems
are based on testing, and the assessment quality achieved with them mainly
depends on the designers’ experience and intuition. It is almost never proven
at design time that such a system will meet its temporal requirements in any
situation that it may encounter. Although this situation was identified sev-

238 8 Epilogue

eral decades ago, it has not been improved because there are no modern and
powerful processors with easily predictable behaviour, nor compilers for lan-
guages that would prevent writing software with unpredictable runtimes. As
a result of all of this, commercial off-the-shelf control computers are generally
not suitable for safety-critical applications.

Against the background outlined above, it is the objective of this book to
promote adequate and consistent design of embedded control systems with
dependability and, particularly, safety requirements, of the least demanding
safety integrity level SIL 1, by presenting contributions aiming to improve
both functional and temporal correctness in a holistic manner on the basis
of a unified concept for safety functions. It is the aim to reach the state
where computer-based systems can be constructed with a sufficient degree
of confidence in their dependability. To this end, semantic gaps are to be
prevented from arising, difficulties are to be prevented by design instead of
handling them upon occurrence, and strict specification and verification are
to be integrated into the design process in a problem-oriented way, without
imposing too much additional effort on often already overloaded application
designers.

In striving to meet this objective, certain peculiarities of embedded systems
need to be observed, namely that it is often necessary to develop not only their
software but also their hardware, and sometimes even their operating systems,
and that optimum processor utilisation is not so relevant for them, as costs
have to be seen in the framework of the external processes controlled, and
with regard to the latters’ safety requirements. Further, instead of increasing
processing power, technological advances should be utilised to free chip space
for accommodating application-oriented on-chip resources. It has also to be
kept in mind that developers need to convince official bodies that they have
identified and dealt with all relevant hazards, as safety of control systems
needs to be established by certification.

Towards eliminating the shortcomings of current practice and achieving
the objectives mentioned above, the following contributions were made in this
book.

Predictability of temporal behaviour was identified as the ultimate prop-
erty of embedded real-time systems. It was suggested that one base this on a
comprehensive utilisation of an adequate notion of time, viz., Universal Time
Co-ordinated, for providing programming language support for temporal pre-
dictability and, if realistic determination of execution time by source code
analysis is a goal, for devising simpler processor architectures.

Actually, simplicity is a means to realise dependability, which is the fun-
damental requirement for safety-related systems. Simplicity turned out to be
a design principle fundamental to fight complexity and to create confidence.
Design simplicity prevents engineering errors and, later, eases safety licensing.
It is much more appropriate to find simple solutions, which are transparent
and understandable and, thus, inherently safer. Such adequate solutions are
characterised by simple, inherently safe programming, are best on the specifi-

239

cation level, re-use already licensed application-oriented modules, use graph-
ics instead of text, and rigorous — but not necessarily formal — verification
methods understandable by non-experts such as judges. The more safety-
critical a function, the simpler the related software and its verification ought
to be. It was advocated to use adequate programming methods, languages and
tools as well as problem-oriented instead of primitive implementation-oriented
scheduling methods.

Designers tend to deal with unwanted events as exceptions. It is, however,
irrelevant whether they are unwanted or not. If they can be anticipated during
the design phase, they should be included in the specifications to be handled
adequately. To this end, the aspects of reconfiguring computer control systems
with special emphasis on the support of methods for higher-level control sys-
tem reconfiguration, and of recovery were considered in detail. With respect
to the latter, only forward recovery is possible for real-time systems, to bring
them into certain predefined, safe, and stable states.

To ease the provision of fault tolerance, a case was made for distributed
asymmetrical multiprocessor architectures with dedicated processors. It was
shown how to solve problems with appropriate approaches, e.g., jitter was fully
eliminated by hardware support. Moreover, it was shown that the schedulabil-
ity of tasks can always be ensured by employing feasible scheduling policies.
Traditional elements of real-time systems were represented as objects, thus
introducing object orientation to the design of embedded systems.

In the previous chapter, a consistent architectural concept for safety-
related programmable electronic systems based on a novel and patented op-
eration paradigm was presented, which combines the benefits, but eliminates
the drawbacks of synchronous and asynchronous programming. It features
task-oriented real-time execution without the need for asynchronous inter-
rupts, and a high degree of fault tolerance by the ability for state restoration
at runtime from redundant system instances as a form of forward recovery,
thus enabling one to employ control software structured in the form of tasks
even for applications having to meet the requirements of safety integrity level
SIL 3.

References

1. Ada83 Language Reference Manual,
http://www.adahome.com/lrm/83/rm/rm83html/, 1983.

2. Ada95 Reference Manual, http://www.adahome.com/rm95/, 1995.
3. ANSI/ISAS84.01: Application of safety instrumented systems for the process

industry. American National Standards Institute, 1996.
4. John Backus. Specifications for the IBM Mathematical FORmula TRANslating

system, FORTRAN. Technical report, IBM Corporation, New York, NY: IBM
Corporation, 1954.

5. R. Belchner. Flexray requirements specification (draft). Version 1.9.7.
http://flexray-group.com, 2001.

6. M. Ben-Ari. Principles of Concurrent Programming. Prentice-Hall, 1982.
7. Guillem Bernat, Antoine Colin, and Stefan M. Petters. WCET analysis of

probabilistic hard real-time systems. In RTSS, Real-Time Systems Symposium,
Austin, TX, USA, December 2002. IEEE.

8. Enrico Bini, Giorgio C. Buttazzo, and Giuseppe M. Buttazzo. Rate monotonic
analysis: The hyperbolic bound. IEEE Transactions on Computers, 52(7):933–
924, July 2003.

9. Andrew P. Black. Exception handling: The case against. Technical Report
Technical Report TR 82-01-02, Department Of Computer Science, University
of Washington, May 1983. (originally submitted as a PhD thesis, University
of Oxford, January 1982).

10. A. Bondavalli, F. Di Giandomenico, F. Grandoni, D. Powell, and C. Rabéjac.
State restoration in a COTS-based N-modular architecture. In 1st IEEE Int.
Symposium on Object-oriented Real-time distributed Computing (ISORC ’98),
pages 174–183, Kyoto, Japan, April 20 - 22 1998.

11. Alan Burns and Andy Wellings. Real-Time Systems and Programming Lan-
guages. Second Edition. Addison-Wesley Publishing Company, 1996.

12. Giorgio C. Buttazzo. Rate monotonic vs. EDF: Judgment day. Real-Time
Systems, 29(1):5–26, January 2005.

13. Anton Cervin. Integrated Control and Real-Time Scheduling. ISRN
LUTFD2/TFRT-1065-SE. PhD thesis, Department of Automatic Control,
Lund University, Sweden, 2003.

14. K.-M. Cheung, M. Belongie, and K. Tong. End-to-end system consideration of
the Galileo image compression system. Technical report, Telecommunications
and Data Acquisition Progress Report, April–June 1996.

242 References

15. W.J. Cody, J.T. Coonen, D.M. Gay, K. Hanson, D. Hough, W. Kahan,
J. Palmer R. Karpinski, F.N. Bis, and D. Stevenson. A proposed radix- and
word-length-independent standard for floating-point arithmetic. IEEE Micro,
4(4):86–100, August 1984.

16. Matjaž Colnarič. Predictability of Temporal Behaviour of Hard Real-Time Sys-
tems. PhD thesis, University of Maribor, June 1992.

17. Matjaž Colnarič and Wolfgang A. Halang. Architectural support for pre-
dictability in hard real-time systems. Control Engineering Practice, 1(1):51–59,
February 1993. ISSN 0967–0661.

18. Matjaž Colnarič, Domen Verber, Roman Gumzej, and Wolfgang A. Halang.
Implementation of embedded hard real-time systems. International Journal of
Real-Time Systems, 14(3):293–310, May 1998.

19. Matjaž Colnarič, Domen Verber, and Wolfgang A. Halang. A Real-Time Pro-
gramming Language as a Means to Express Specifications. In WRTP’96, Pro-
ceedings of IFAC Workshop on Real-Time Programming, Gramado, RS, Brazil,
November 1996.

20. SystemC Community. OSCI SystemC TLM 2.0 – Draft 1.
http://www.systemc.org/web/sitedocs/tlm 2 0.html, February 2007.

21. James E. Cooling. Software Engineering for Real-Time Systems. Addison
Wesley, 2003.

22. James E. Cooling and P. Tweedale. Task scheduler co-processor for hard real-
time systems. Microprocessors and Microsystems, 20(9):553–566, 1997.

23. Flaviu Cristian. Exception handling and software fault tolerance. IEEE Trans-
actions on Computers, 31(6):531–540, June 1982.

24. Flaviu Cristian. Correct and robust programs. IEEE Transactions on Software
Engineering, 10(2):163–174, March 1984.

25. L. F. Currie. High-integrity Software, chapter Newspeak - a reliable program-
ming language, pages 122–158. Computer Systems Series. Pitman, 1989.

26. Michael L. Dertouzos. Control robotics: The procedural control of physical
processes. In Proceedings of IFIP Congress, pages 807–813, 1974.

27. DIN 44 300 A2: Informationsverarbeitung. Berlin–Cologne, 1972.
28. DIN 66 201 Part 1: Prozessrechensysteme. Berlin–Cologne, 1981.
29. DIN 66 253: Programming language PEARL, Part 1: Basic PEARL. Berlin,

1981.
30. DIN 66 253: Programming language PEARL, Part 3: PEARL for distributed

systems. Berlin, 1989.
31. DINVVDE 0801: Grundsätze für Rechner in Systemen mit Sicherheitsauf-

gaben (Principles for using computers in safety-related systems). VDE Verlag,
1990.

32. DINV19250: Leittechnik - Grundlegende Sicherheitsbetrachtungen für MSR-
Schutzeinrichtungen (Control technology; Fundamental safety aspects for mea-
surement and control equipment). VDE Verlag, 1994.

33. Embedded C++ Technical Committee. The Embedded C++ specification.
http://www.caravan.net/ec2plus/language.html, October 1999.

34. EN 50126: Railway applications – The specification and demonstration of
dependability, reliability, availability, maintainability and safety (RAMS).
Comité Européen de Nomalisation Electrotechnique, 1999.

35. EN 50128: Railway applications – Software for railway control and protection
systems. Comité Européen de Nomalisation Electrotechnique, 2002.

References 243

36. EN 50129: Railway applications – Safety related electronic systems for sig-
nalling. Comité Européen de Nomalisation Electrotechnique, 2002.

37. EN 954: Safety of machinery – Safety-related parts of control systems. Comité
Européen de Nomalisation Electrotechnique, 1996.

38. EUROCAE-ED-12B: Software considerations in airborne systems and equip-
ment certification. (european equivalent to the US standard RTCA DO-178B).
European Organisation for Civil Aviation Equipment., 1992.

39. Max Felser. Real-time Ethernet – industry prospective. Proceedings of the
IEEE, 93(6), June 2006.

40. J. Fonseca, F. Coutinho, and J. Barreiros. Scheduling for a TTCAN network
with a stochastic optimization algorithm. In Proceedings 8th International
CAN Conference, Las Vegas, Nv., 2002.

41. T. Fredrickson. Relationship of EN 954-1 and IEC61508 standards. Safety
Users Group., 2002.

42. Alceu H. Frigeri, Carlos E. Pereira, and Wolfgang A. Halang. An object-
oriented extension to PEARL 90. In Proc. 1st IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, Kyoto, pages 265–274,
Los Alamitos, 1998. IEEE Computer Society Press.

43. Thomas Führer, Bernd Müller, Werner Dieterle, Florian Hartwich, Robert
Hugel, and Michael Walther. Time triggered communication on CAN. Tech-
nical report, Robert Bosch GmbH, http://www.can.bosch.com/, 2000.

44. Mohammed G. Gouda, Yi-Wu Han, E. Douglas Jensen, Wesley D. Johnson, and
Richard Y. Kain. Distributed data processing technology, Vol. IV, Applications
of DDP technology to BMD: Architectures and algorithms, Chapter 3, Radar
scheduling: Section 1, The scheduling problem. Technical report, Honeywell
Systems and Research Center, Minneapolis, MN, Sepember 1977.

45. TTA Group. Time-triggered protocol (TTP/C), version 1.0.
http://www.ttagroup.org/ttp/specification.htm, 2001.

46. Jan Gustafsson. Analyzing Execution-Time of Object-Oriented Programs Using
Abstract Interpretation. PhD thesis, Mälardalen University, May 2000.

47. Wolfgang A. Halang. Parallel administration of events in real-time systems.
Microprocessing and Microprogramming, 24:687–692, 1988.

48. Wolfgang A. Halang and Alceu H. Frigeri. Methods and languages for safety
related real-time programming. Technical report, Fernuniversität Hagen, Re-
port on research project F 1636 funded by Bundesanstalt für Arbeitschutz und
Arbeitsmedizin, Dortmund, Germany, 1999.

49. Wolfgang A. Halang and Alexander D. Stoyenko. Comparative evaluation of
high level real time programming languages. Real-Time Systems, 2(4):365–382,
December 1990.

50. Wolfgang A. Halang and Alexander D. Stoyenko. Constructing Predictable
Real-Time Systems. Kluwer Academic Publishers, Boston–Dordrecht–London,
1991.

51. Wolfgang A. Halang and Janusz Zalewski. Programming languages for use in
safety-related applications. Annual Reviews in Control, Elsevier, 27(1), 2003.

52. Les Hatton. Safer C: Developing for High-Integrity and Safety-Critical Sys-
tems. McGraw-Hill, 1995.

53. Philippe Hilsenkopf. Nuclear power plant I&C and dependability issues. Invited
talk. In Proceedings of WRTP97, Lyon, France, 1997. IFAC.

54. HIMA. Product information: H41q/H51q safety systems. www.hima.com, 2006.

244 References

55. Hoai Hoang, Magnus Jonsson, Ulrik Hagström, and Anders Kallerdahl.
Switched real-time ethernet with earliest deadline first scheduling - protocols
and traffic handling. In Proceedings of the International Parallel and Dis-
tributed Processing Symposium (IPDPS 2002). IEEE Computer Society, 2002.

56. IEC 1131-3: Programmable controllers, part 3: Programming languages. Inter-
national Electrotechnical Commission, Geneva, 1992.

57. IEC60880: Software for computers in the safety systems of nuclear power sta-
tions. International Electrotechnical Commission., 1987.

58. IEC 61508: Functional safety of electrical/electronic programmable electronic
systems: Generic aspects. part 1: General requirements. International Elec-
trotechnical Commission, Geneva, 1992.

59. IEC61511: Functional safety: Safety instrumented systems for the process in-
dustry sector. International Electrotechnical Commission, Geneva, 2003.

60. IEC61513: Nuclear power plants – instrumentation and control for systems
important to safety – general requirements for systems. International Elec-
trotechnical Commission, Geneva, 2002.

61. 1149.1 IEEE. Test Access Port & Boundary Scan Architecture. IEEE, New
York, 1990.

62. IFATIS. Intelligent Fault Tolerant Control in Integrated Systems. IST-2001-
32122; http://ifatis.uni-duisburg.de/, 2002-2004.

63. Texas Instruments. C6711 DSP Starter Kit (DSK).
http://focus.ti.com/docs/toolsw/folders/print/tmds320006711.html,
2001.

64. ISO/CD 11898-4: Road vehicles - controller area network (CAN) - part 4: Time
triggered communication. ISO/TC 22/SC 3/WG 1/TF 6, 2004.

65. ISO/IEC/ANSI 8652:1995: Information Technology – Programming Languages
– Ada. International Electrotechnical Commission, Geneva, 1995.

66. Farnam Jahanian and Aloysius Ka-Lau Mok. Safety analysis of timing prop-
erties in real-time systems. IEEE Transactions on Software Engineering,
12(9):890–904, September 1986.

67. E. Douglas Jensen. Real-time for the real world. section: Time/utility func-
tions. http://www.real-time.org/timeutilityfunctions.htm, 2005.

68. JOVIAL Program Office, http://www.jovial.hill.af.mil/. JOVIAL Sup
port, 2006.

69. Eugene Kligerman and Alexander D. Stoyenko. Real-time euclid: a language
for reliable real-time systems. IEEE Trans. Softw. Eng., 12(9):941–949, 1986.

70. Wilfried Kneis. Draft standard industrial real-time FORTRAN. ACM SIG-
PLAN Notices, 16(7):45–60, October 1981.

71. Hermann Kopetz. Time-triggered versus event-triggered systems. In Proc.
International Workshop on Operating Systems in the 90s and Beyond, volume
563 of Lecture Notes in Computer Science, pages 87–101, Berlin, 1992. Springer
Verlag.

72. Hermann Kopetz, A. Damm, Ch. Koza, M. Mulazzani, W. Schwabl, Ch. Senft,
and R. Zainlinger. Distributed fault-tolerant real-time systems: The MARS
approach. IEEE Micro, 9(1):25–40, February 1989.

73. H. Krebs and U. Haspel. Ein Verfahren zur Software-Verifikation. Regelung-
stechnische Praxis rtp, 26:73 – 78, 1984.

74. J. Labetoulle. Real-time scheduling in a multiprocessor environment. technical
report. Technical report, IRIA Laboria, Rocquencourt, 1976.

References 245

75. Jean J. Labrosse. Microc/OS-II: The Real-Time Kernel. CMP Books, Berkeley,
1998.

76. Harold W. Lawson. Cy-Clone: An approach to the engineering of resource
adequate cyclic real-time systems. Real-Time Systems, Kluwer Academic Pub-
lishers, 4(1):55–83, 1992.

77. Harold W. Lawson. Systems engineering of a successful train control system.
Invited talk. In Proceedings of WRTP2000, Mallorca, Spain, 2000. IFAC.

78. David Liddell. Simple design makes reliable computers. In Michel Banâtre and
Peter A. Lee, editors, Hardware and Software Architectures for Fault Tolerance,
pages 91–94, no address, 1993. Springer.

79. Lennart Lindh. Utilization of Hardware Parallelism in Realizing Real-Time
Kernels. PhD thesis, Royal Institute of Technology, Sweden, 1989.

80. C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a
hard real-time environment. Journal of the ACM, 20(1):46–61, 1973.

81. Mike J. Livesey and Colin Allison. A dynamically configurable co-processor
for microkernels. In EUROMICRO ’94 - Workshop on Parallel and Distributed
Processing, Malaga, Spain, 1994.

82. Uwe Maier and Matjaž Colnarič. Some basic ideas for intelligent fault tol-
erant control systems design. In Proceedings of 15th IFAC World Congress,
Barcelona, Spain, July 2002.

83. Microchip. 8-bit PICR©Microcontrollers. http://www.microchip.com/, 2006.
84. MISRA-C. Guidelines for the use of the c language in critical systems.

http://www.misra.org.uk, October 2004.
85. Modula-2 reference. http://www.modula2.org/reference/index.php, 2007.
86. Aloysius K. Mok, P. Amerasinghe, M. Chen, and K. Tantisirivat. Evaluating

tight execution time bounds of programs by annotations. In Proc. of the 6th
IEEE RTOSS, pages 74–80, May 1989.

87. Jaroslav Nadrchal. Architectures of parallel computers.
http://www.fzu.cz/activities/schools/epsschool13/presentations/-

parallel architecture.pdf. In Summer School on Computer Techniques in
Physics, 2002.

88. Chang Yun Park. Predicting program execution times by analyzing static and
dynamic program paths. Real-Time Systems, 5(1):31–62, 1993.

89. Chang Yun Park and Alan C. Shaw. Experiments with a program timing tool
based on source-level timing schema. IEEE Computer, 24(5):48–57, 1991.

90. D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, and K. Yelick. A case for intelligent RAM: IRAM. IEEE Micro,
17(2), April 1997.

91. David A. Patterson, Garth A. Gibson, and Randy H. Katz. A case for redun-
dant arrays of inexpensive disks (RAID). In SIGMOD Conference, pages 109–
116, 1988.

92. PEARL, Process and Experiment Automation Realtime Language,
http://www.irt.uni-hannover.de/pearl/pearl-gb.html, 2006.

93. ProfiBus. System technical description. PROFIBUS brochure – order-no. 4.002.
Technical report, http://www.profibus.com/, 1999.

94. PTB. Time and Standard Frequency Station DCF77 (Germany).
http://www.ee.udel.edu/∼mills/ntp/dcf77.html. Technical report,
Physikalisch-Technische Bundesanstalt (PTB) Lab 1.21, Braunschweig,
February 1984.

246 References

95. Peter P. Puschner and Christian Koza. Calculating the maximum execution
time of real-time programs. Real-Time Systems, 1(2):159–176, 1989.

96. Real-Time for Java Expert Group. Real-Time Specification for Java, 2nd Edi-
tion. http://www.rtsj.org/specjavadoc/book index.html, March 2005.

97. H. Rzehak. Real-time operating systems: Can theoretical solutions match with
practical needs. In W. A. Halang and A. D. Stoyenko, editors, Real-Time
Computing, pages 47–63. Springer, Berlin, Heidelberg, 1994.

98. R. Schild and H. Lienhard. Real-time programming in PORTAL. ACM Sigplan
Notices, 15(4):79–92, 1980.

99. Jules I. Schwartz. The development of JOVIAL. ACM SIGPLAN Notices,
13(8), August 1978.

100. Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE Trans. Computers,
39(9):1175–1185, 1990.

101. M. Skambraks. A Safety-Licensable PES Architecture for Task-Oriented
Real-Time Execution without Asynchronous Interrupts. VDI Verlag GmbH,
Düsseldorf, 2006.

102. D. J. Smith and K. G. Simpson. Functional Safety. Butterworth-Heinemann,
Oxford, 2001.

103. Jack Stankovic and Krithi Ramamritham. The SPRING kernel: A new
paradigm for real-time systems. IEEE Software, 8(3):62–72, 1991.

104. John A. Stankovic. Misconceptions about real-time computing. IEEE Com-
puter, 21(10):10–19, October 1988.

105. John A. Stankovic and Krithi Ramamritham. Editorial: What is predictability
for real-time systems. Real-Time Systems, 2(4):246–254, November 1990.

106. John A. Stankovic, Marco Spuri, Krithi Ramamritham, and Giorgo C. But-
tazzo. Deadline Scheduling for Real-Time Systems. Kluwer Academic Publish-
ers, 1998.

107. Neil Storey. Safety Critical Computer Systems. Addison Wesley, 1996.
108. Alexander Stoyenko. A Real-Time Language With A Schedulability Analyzer.

PhD thesis, University of Toronto, December 1987.
109. Alexander D. Stoyenko and Wolfgang A. Halang. Extending PEARL for in-

dustrial real-time applications. IEEE Software, 10(4), 1993.
110. TNI. ControlBuild, PLC programming and virtual commissionning desktop

for control engineers, 2006.
111. James E. Tomayko. Computers in Space: Journeys With Nasa. Alpha Books,

March 1994.
112. Wilfredo Torres-Pomales. Software fault tolerance: A tutorial. Report, NASA

Langley Research Center, 2000.
113. Domen Verber. Object Orientation in Hard Real-Time System Development.

PhD thesis, University of Maribor, Slovenia, 1999.
114. Domen Verber. Object Orientation in Hard Real-Time Systems Development.

In Slovene, with extended abstract in English. PhD thesis, University of Mari-
bor, October 1999.

115. Domen Verber and Matej Šprogar. Generation of optimal timetables for time-
triggered CAN communication protocol. In Proceedings of WRTP2004, Istan-
bul, 2004. IFAC, Elsevier.

116. Niklaus Wirth. Programming in Modula-2, 3rd ed. Springer Verlag, Berlin,
1985.

Index

Abbreviations

2oo3: two-out-of-three, triple modular
redundancy

ALU: Arithmetic/Logic Unit

APU: Application Processing Unit

ASIC: Application–Specific Inte-
grated Circuits

BDM: Background Debugging Mode

CAN: Controller Area Network

DCF77: Longwave time signal and
standard-frequency radio station
(D:Deutschland, C:long wawe, F:
Frankfurt, 77: 77.5 kHz)

DMA: Direct Memory Access

DSP: Digital Signal Processor

EDF: Earliest Deadline First
Scheduling Algorithm

EDM: Event-controlled Data
Modifications

ETA: Event Tree Analysis

FB: Function Block

FDI: Fault Detection and Isolation

FMEA: Failure Modes and Effects
Analysis

FPGA: Field–Programmable Gate
Array

FTA: Fault Tree Analysis

FTC: Fault-Tolerant Cell

G-MRMC: Global Monitoring,
Reconfiguration and Mode
Control

HAL: High Level Assembly Language

HAZOP: Hazard and Operability
Studies

HDL: Hardware Description
Languages

HTML: Hypertext Mark-up Language

I/O: Input / Output (devices)

IEC: International Electrotechnical
Commission

IFATIS: Intelligent Fault Tolerant
Control in Integrated Systems; EU
5th FW research project

IRAM: Intelligent RAM

ISR: Interrupt Service Routine

JDN: Julian Day Number

JTAG: Joint Test Action Group
(IEEE 1149.1: Standard Test
Access Port and Boundary-Scan
Architecture

LLF: Least Laxity First scheduling
algorithm

M PEARL: Mehrrechner PEARL
(PEARL for Distributed Systems)

MC: Memory Cell

MIPS: Mega Instructions Per Second

MISRA: Motor Industry Software
Reliability Association

MRMC: Monitoring, Reconfiguration
and Mode Control

NMR: N-Modular Redundancy

NTU: Network Time Unit

OO: Object-Oriented

PCP: Priority Ceiling Protocol

248 Index

PDM: Program-controlled Data
Modifications

PEARL: Process and Experiment
Automation Real-time Language

PES: Programmable Electronic
System

PIP: Priority Inheritance Protocol
PLA: Programmable Logic Array

(similar to PAL)
PLC: Programmable Logic Controller
POSIX: Portable Operating System

Interface
RISC: Reduced Instruction Set

Computers
RM: Rate-Monotonic Priority

Assignment
RSI: Restoration Synchronisation

Instant
RTSJ: Real-Time Specification for

Java
SDS: Serial Data Stream
SIL: Safety Integrity Levels
SOC: System On Chip
STA: Sequential Task Administration
TAS: Test And Set instruction
TAU: Task Administration Unit
TCB: Task Control Block
TLM: Task List Memory
TMR: Triple Modular Redundancy
TPA: Task Parameter Administration
TTCAN: Time-Triggered Controller

Area Network
TTP: Time-Triggered Protocol
UTC: Universal Time Co-ordinated
UTC: Universal Time Coordinated
VHDL: Verilog Hardware Definition

Language
WCET: Worst-Case Execution Time

Ada, 57, 118, 161
ASIC, 83, 102
assembly language, 157
asymmetrical multiprocessor architec-

ture, 69–86
inter-processor communication, 73
OS kernel processor, 73
task processor, 78

bolts, 54

busy waiting, 51

C, ANSI, Misra, C++, 125, 158, 173
cache, 65
centralised asymmetrical multiproces-

sor, 83
communication module, 171
complexity, 11, 61
context-switching, 32
critical section, 51
current time access, 114
Cy-Clone, 32
cyclic executive, 30, 202

DCF 77, 114
deadline, 34, 39, 107, 154
deadlock, 119, 120
direct memory access (DMA), 67
distributed multiprocessor model, 86
distributed replicated shared memory,

81, 100, 171, 189, 197
diverse back-translation, 20
dynamic data structures, 145

embedded systems, 3
exception, 30, 70, 81, 124–129, 139,

144
avoidable, 127
catastrophic, 127
handling lower-level, 128
preventable, 125

execution time, 107, 132
direct measurement, 142

fault, 21, 125
classification, 21
detection, 23, 77, 176, 181
management, 22

fault tolerance, 23–28, 89, 109, 124, 176
in communication, 98
in data transfer, 104
measures, 23
reconfiguration, 25
redundance, 24, 223
software, 27

fault tree analysis, 23
fault-tolerance, 175, 181

hardware, 26
fault-tolerant cell (FTC), 182, 196

Index 249

feasibly executable task set, 34
FORTRAN, real-time, industrial, 158
FPGA, 84, 130, 171, 178, 188, 190

garbage-collection, 159
Global MRMC (G-MRMC), 186

HAL/S, 160
hard real-time, 7
hardware description language (HDL),

130
hardware/software co-implementation,

130
hazard, 22

I/O interface, 70, 78, 83, 87–93, 121,
126, 132, 154, 167, 169, 175, 184

IFATIS, 167, 177, 181
intelligent peripheral interface, 86
interrupt servicing, 69, 123, 211

Java, JVM, 159
jitter, 49, 90, 212
JOVIAL, 160
JTAG, 143, 173, 179
Julian day number (JDN), 113

memory management, 145
microkernel, 177
middleware, 178, 189
Modula-2, 121, 161
Monitoring, reconfiguration and mode

control (MRMC), 184, 195
monitors, 55, 120
MRMC, 184
multitasking, 29–58
mutual exclusion, mutex, 51, 119

N-version programming, 27

object-orientation, 149–155
overload prevention, 109, 124

PEARL, 112, 118, 162, 203
PEARL for Distributed Systems

(M PEARL), 130, 162
pipelining, 64
platform, 167, 169, 185
point-to-point communication, 73, 94
PORTAL, 161

POSIX, 117, 119, 123, 151
pre-emption, 32, 35, 41, 80
predictability, 9, 132, 144
priority inheritance, 36, 206
priority inversion, 36, 206
process, technical, 6
programmable logic controller (PLC),

31, 163
prototype, 167, 169

real-time
characteristics, 4, 9
classification, 7
definition, 7, 9
design guidelines, 10
example, 5, 7
hard-soft, 7
mismatch of design objectives, 10, 61,

62
properties, 5, 9

real-time Ethernet, 95
reconfiguration, 26, 89, 176, 181, 184
recovery

block, 27
forward, backward, 27, 222

recursion, 145
redundance, 23, 24, 89, 98, 127, 156,

176, 181, 223
example, 13
hardware, software, 25

rendezvous, 56
resource adequacy, 34
RISC architectures, 63, 80

safety integrity levels, 5, 19, 205, 215
safety licensing, 211
safety-licensing, 5, 11, 15, 18, 88, 201
scheduling, 33–50, 77

algorithm, 34
deadline, 34
earliest deadline first, EDF, 39–46,

190, 203
feasibility, 34, 38, 41, 51, 93, 190
fixed priorities, 35
least laxity first, LLF, 40
methods, 35–50

deadline-driven, 39–58
priority based, 35

rate-monotonic, 37, 46, 203

250 Index

resource constraints, 42, 49
schedulability, 34, 48, 132
schedulability analysis, 147, 190
strategy, 34

semaphores, 53, 119, 154, 207
soft real-time, 7
Space Shuttle, 12, 110, 160
spin lock, 52
spinning, 52
synchronisation, 31, 34, 50–58, 119,

177
bolts, 54
busy waiting, 51
critical section, 51
deadlock, 54
livelock, 52
monitors, 55
mutual exclusion, 51
printer server example, 53
rendezvous, 56
semaphores, 53
starvation, 54

SystemC, 130

task, 6, 29, 117
state transition diagram, 32
scheduling, 33
state transitions, 32

states, 32, 51
synchronisation, 34

task control block (TCB), 32, 72
task management system, 29

asynchronous multitasking, 32
cyclic executive, 30
dynamic, 30
static, 29

tasking operations, 117–118, 152
temporal data types, 111
test-and-set operation, 51
thread, 117
time, 11
time-driven communication protocol,

68, 95
time-triggered CAN (TTCAN), 95,

115, 171, 188, 197
transputer, 73, 84, 93, 167

Universal Time Co-ordinated (UTC),
11

verification and validation, 12, 61
VHDL, 190, 191
virtual addressing techniques, 67

worst-case execution time (WCET), 29,
132–143, 212

