
www.cambridge.org/9780521782401

DIRECT NUMERICAL SIMULATIONS
OF GAS–LIQUID MULTIPHASE FLOWS

Accurately predicting the behavior of multiphase flows is a problem of immense
industrial and scientific interest. Using modern computers, researchers can now
study the dynamics in great detail, and computer simulations are yielding unprece-
dented insight. This book provides a comprehensive introduction to direct numer-
ical simulations of multiphase flows for researchers and graduate students.

After a brief overview of the context and history, the authors review the gov-
erning equations. A particular emphasis is placed on the “one-fluid” formulation,
where a single set of equations is used to describe the entire flow field and in-
terface terms are included as singularity distributions. Several applications are
discussed, such as atomization, droplet impact, breakup and collision, and bubbly
flows, showing how direct numerical simulations have helped researchers advance
both our understanding and our ability to make predictions. The final chapter
gives an overview of recent studies of flows with relatively complex physics, such
as mass transfer and chemical reactions, solidification, and boiling, and includes
extensive references to current work.

G R ÉT A R T R Y G G V A S O N is the Viola D. Hank Professor of Aerospace and
Mechanical Engineering at the University of Notre Dame, Indiana.

R U B E N S C A R D O V E L L I is an Associate Professor in the Dipartimento di Inge-
gneria Energetica, Nucleare e del Controllo Ambientale (DIENCA) of the Univer-
sità degli Studi di Bologna.

S T ÉP H A N E Z A L E S K I is a Professor of Mechanics at the Université Pierre et
Marie Curie (UPMC) in Paris and Head of the Jean Le Rond d’Alembert Institute
(CNRS UMR 7190).

DIRECT NUMERICAL SIMULATIONS
OF GAS–LIQUID MULTIPHASE FLOWS

GRÉTAR TRYGGVASON
University of Notre Dame, Indiana

RUBEN SCARDOVELLI
Università degli Studi di Bologna

STÉPHANE ZALESKI
Université Pierre et Marie Curie, Paris 6

C A M B R I D G E U N I V E R S I T Y P R E S S

Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521782401

C© Cambridge University Press 2011

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-78240-1 Hardback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.

http://www.cambridge.org/9780521782401
http://www.cambridge.org

Contents

Preface page ix

1 Introduction 1
1.1 Examples of multiphase flows 3
1.2 Computational modeling 7
1.3 Looking ahead 18

2 Fluid mechanics with interfaces 21
2.1 General principles 21
2.2 Basic equations 22
2.3 Interfaces: description and definitions 30
2.4 Fluid mechanics with interfaces 36
2.5 Fluid mechanics with interfaces: the one-fluid formulation 41
2.6 Nondimensional numbers 42
2.7 Thin films, intermolecular forces, and contact lines 44
2.8 Notes 47

3 Numerical solutions of the Navier–Stokes equations 50
3.1 Time integration 51
3.2 Spatial discretization 55
3.3 Discretization of the advection terms 59
3.4 The viscous terms 61
3.5 The pressure equation 64
3.6 Velocity boundary conditions 69
3.7 Outflow boundary conditions 70
3.8 Adaptive mesh refinement 71
3.9 Summary 72
3.10 Postscript: conservative versus non-conservative form 73

4 Advecting a fluid interface 75
4.1 Notations 76

v

vi Contents

4.2 Advecting the color function 77
4.3 The volume-of-fluid (VOF) method 81
4.4 Front tracking 84
4.5 The level-set method 87
4.6 Phase-field methods 90
4.7 The CIP method 91
4.8 Summary 93

5 The volume-of-fluid method 95
5.1 Basic properties 95
5.2 Interface reconstruction 98
5.3 Tests of reconstruction methods 106
5.4 Interface advection 108
5.5 Tests of reconstruction and advection methods 122
5.6 Hybrid methods 128

6 Advecting marker points: front tracking 133
6.1 The structure of the front 134
6.2 Restructuring the fronts 143
6.3 The front-grid communications 145
6.4 Advection of the front 150
6.5 Constructing the marker function 152
6.6 Changes in the front topology 158
6.7 Notes 160

7 Surface tension 161
7.1 Computing surface tension from marker functions 161
7.2 Computing the surface tension of a tracked front 168
7.3 Testing the surface tension methods 177
7.4 More sophisticated surface tension methods 181
7.5 Conclusion on numerical methods 186

8 Disperse bubbly flows 187
8.1 Introduction 187
8.2 Homogeneous bubbly flows 189
8.3 Bubbly flows in vertical channels 194
8.4 Discussion 201

9 Atomization and breakup 204
9.1 Introduction 204
9.2 Thread, sheet, and rim breakup 205
9.3 High-speed jets 214
9.4 Atomization simulations 219

Contents vii

10 Droplet collision, impact, and splashing 228
10.1 Introduction 228
10.2 Early simulations 229
10.3 Low-velocity impacts and collisions 229
10.4 More complex slow impacts 232
10.5 Corolla, crowns, and splashing impacts 235

11 Extensions 243
11.1 Additional fields and surface physics 243
11.2 Imbedded boundaries 256
11.3 Multiscale issues 266
11.4 Summary 269

Appendix A Interfaces: description and definitions 270
A.1 Two-dimensional geometry 270
A.2 Three-dimensional geometry 272
A.3 Axisymmetric geometry 274
A.4 Differentiation and integration on surfaces 275

Appendix B Distributions concentrated on the interface 279
B.1 A simple example 281

Appendix C Cube-chopping algorithm 284
C.1 Two-dimensional problem 285
C.2 Three-dimensional problem 286

Appendix D The dynamics of liquid sheets: linearized theory 288
D.1 Flow configuration 288
D.2 Inviscid results 288
D.3 Viscous theory for the Kelvin–Helmholtz instability 293

References 295
Index 322

Preface

Progress is usually a sequence of events where advances in one field open up new
opportunities in another, which in turn makes it possible to push yet another field
forward, and so on. Thus, the development of fast and powerful computers has
led to the development of new numerical methods for direct numerical simula-
tions (DNS) of multiphase flows that have produced detailed studies and improved
knowledge of multiphase flows. While the origin of DNS of multiphase flows goes
back to the beginning of computational fluid dynamics in the early sixties, it is
only in the last decade and a half that the field has taken off. We, the authors of
this book, have had the privilege of being among the pioneers in the development
of these methods and among the first researchers to apply DNS to study relatively
complex multiphase flows. We have also had the opportunity to follow the progress
of others closely, as participants in numerous meetings, as visitors to many labo-
ratories, and as editors of scientific journals such as the Journal of Computational
Physics and the International Journal of Multiphase Flows. To us, the state of the
art can be summarized by two observations:

• Even though there are superficial differences between the various approaches
being pursued for DNS of multiphase flows, the similarities and commonalities
of the approaches are considerably greater than the differences.

• As methods become more sophisticated and the problems of interest become
more complex, the barrier that must be overcome by a new investigator wishing
to do DNS of multiphase flows keeps increasing.

This book is an attempt to address both issues.
The development of numerical methods for flows containing a sharp interface,

as fluids consisting of two or more immiscible components inherently do, is cur-
rently a “hot” topic and significant progress has been made by a number of groups.
Indeed, for a while there was hardly an issue of the Journal of Computational
Physics that did not contain one or more papers describing such methods. In the
present book we have elected to focus mostly on two specific classes of methods:
volume of fluid (VOF) and front-tracking methods. This choice reflects our own
background, as well as the fact that both types of method have been very successful
and are responsible for some of the most significant new insights into multiphase
flow dynamics that DNS has revealed. Furthermore, as emphasized by the first
bullet point, the similarities in the different approaches are sufficiently great that

ix

x Preface

a reader of the present book would most likely find it relatively easy to switch to
other methods capable of capturing the interface, such as level set and phase field.

The goal of DNS of multiphase flows is the understanding of the behavior and
properties of such flows. We believe that while the development of numerical
methods is important, it is in their applications where the most significant rewards
are to be found. Thus, we include in the book several chapters where we describe
the use of DNS to understand specific systems and what has been learned up to now.
This is inherently a somewhat biased sample (since we elected to talk about studies
that we know well – our own!), but we feel that the importance of these chapters
goes beyond the specific topics treated. We furthermore firmly believe that the
methods that we describe here have now reached sufficient maturity so that they
can be used to probe the mysteries of a large number of complex flows. Therefore,
the application of existing methods to problems that they are suited for and the
development of new numerical methods for more complex flows, such as those
described in the final chapter, are among the most exciting immediate directions
for DNS of multiphase flows.

Our work has benefitted from the efforts of many colleagues and friends. First
and foremost we thank our students, postdoctoral researchers and visitors for the
many and significant contributions they have made to the work presented here. GT
would like to thank his students, Drs. D. Yu, M. Song, S.O. Unverdi, E. Ervin,
M.R. Nobari, C.H.H. Chang, Y.-J. Jan, S. Nas, M. Saeed, A. Esmaeeli, F. Tounsi,
D. Juric, N.C. Suresh, J. Han, J. Che, B. Bunner, N. Al-Rawahi, W. Tauber, M.
Stock, S. Biswas, and S. Thomas, as well as the following visitors and postdoctoral
researchers: S. Homma, J. Wells, A. Fernandez, and J. Lu. RS would like to thank
his students, Drs. E. Aulisa, L. Campioni, A. Cervone, and V. Marra, as well as
his collaborators S. Manservisi, P. Yecko, and G. Zanetti. SZ would like to thank
his students, Drs. B. Lafaurie, F.-X. Keller, J. Li, D. Gueyffier, S. Popinet, A.
Leboissetier, L. Duchemin, O. Devauchelle, A. Bagué, and G. Agbaglah, as well
as his collaborators, visitors, and postdoctoral researchers, G. Zanetti, A. Nadim,
J.-M. Fullana, C. Josserand, P. Yecko, M. and Y. Renardy, E. Lopez-Pages, T.
Boeck, P. Ray, D. Fuster, G. Tomar, and J. Hoepffner. SZ would also like to thank
his trusted friends and mentors, Y. Pomeau, D.H. Rothman, and E.A. Spiegel, for
their invaluable advice. We also thank Ms. Victoria Tsengué Ingoba for reading the
complete book twice and pointing out numerous typos and mistakes. Any errors,
omissions, and ambiguities are, of course, the fault of the authors alone.

And last, but certainly not least, we would like to thank our families for unerring
support, acceptance of long working hours, and tolerance of (what sometimes must
have seemed) obscure priorities.

Grétar Tryggvason
Ruben Scardovelli

Stéphane Zaleski

1

Introduction

Gas–liquid multiphase flows play an essential role in the workings of Nature and
the enterprises of mankind. Our everyday encounter with liquids is nearly always
at a free surface, such as when drinking, washing, rinsing, and cooking. Similarly,
such flows are in abundance in industrial applications: heat transfer by boiling is
the preferred mode in both conventional and nuclear power plants, and bubble-
driven circulation systems are used in metal processing operations such as steel
making, ladle metallurgy, and the secondary refining of aluminum and copper. A
significant fraction of the energy needs of mankind is met by burning liquid fuel,
and a liquid must evaporate before it burns. In almost all cases the liquid is there-
fore atomized to generate a large number of small droplets and, hence, a large
surface area. Indeed, except for drag (including pressure drops in pipes) and mix-
ing of gaseous fuels, we would not be far off to assert that nearly all industrial
applications of fluids involve a multiphase flow of one sort or another. Sometimes,
one of the phases is a solid, such as in slurries and fluidized beds, but in a large
number of applications one phase is a liquid and the other is a gas. Of natural gas–
liquid multiphase flows, rain is perhaps the experience that first comes to mind, but
bubbles and droplets play a major role in the exchange of heat and mass between
the oceans and the atmosphere and in volcanic explosions. Living organisms are
essentially large and complex multiphase systems.

Understanding the dynamics of gas–liquid multiphase flows is of critical engi-
neering and scientific importance and the literature is extensive. From a mathe-
matical point of view, multiphase flow problems are notoriously difficult and much
of what we know has been obtained by experimentation and scaling analysis. Not
only are the equations, governing the fluid flow in both phases, highly nonlinear,
but the position of the phase boundary must generally be found as a part of the so-
lution. Exact analytical solutions, therefore, exist only for the simplest problems,
such as the steady-state motion of bubbles and droplets in Stokes flow, linear invis-
cid waves, and small oscillations of bubbles and droplets. Experimental studies of

1

2 Introduction

Fig. 1.1. A picture of many buoyant bubbles rising in an otherwise quiescent liquid pool.
The average bubble diameter is about 2.2 mm and the void fraction is approximately 0.75%.
From Bröder and Sommerfeld (2007). Reproduced with permission.

multiphase flows are not easy either. For many flows of practical interest the length
scales are small, the time scales are short, and optical access to much of the flow is
limited. The need for numerical solutions of the governing equations has, therefore,
been felt by the multiphase research community since the origin of computational
fluid dynamics, in the late fifties and early sixties. Although much has been accom-
plished, simulations of multiphase flows have remained far behind homogeneous
flows where direct numerical simulations (DNS) have become a standard tool in
turbulence research.

In this book we use DNS to mean simulations of unsteady flow containing a
non-trivial range of scales, where the governing equations are solved using suffi-
ciently fine grids so that all continuum time- and length-scales are fully resolved.
We believe that this conforms reasonably well with commonly accepted usage,
although we recognize that there are exceptions. Some authors feel that DNS
refers exclusively to fully resolved simulations of turbulent flows, while others
seem to use DNS for any computation of fluid flow that does not include a turbu-
lence model. Our definition falls somewhere in the middle. We also note that some
authors, especially in the field of atomization – which is of some importance in this
book – refer to unresolved simulations without a turbulence model as LES. We also

1.1 Examples of multiphase flows 3

Fig. 1.2. A photograph of an atomization experiment performed with coaxial water and
air jets reproduced from Villermaux et al. (2004). Reproduced with permission. Copyright
American Physical Society.

prefer to call such computations DNS, especially as a continuous effort is made in
such simulations to check the results as the grid is refined. While it is not surpris-
ing that DNS of multiphase flows lags behind homogeneous flows, considering the
added difficulty, the situation is certainly not due to lack of effort. However, in the
last decade and a half or so, these efforts have started to pay off and rather signifi-
cant progress has been accomplished on many fronts. It is now possible to do DNS
for a large number of fairly complex systems and DNS are starting to yield infor-
mation that are likely to be unobtainable in any other way. This book is an effort
to assess the state of the art, to review how we came to where we are, and to pro-
vide the foundation for further progress, involving even more complex multiphase
flows.

1.1 Examples of multiphase flows

Since this is a book about numerical simulations, it seems appropriate to start by
showing a few “real” systems. The following examples are picked somewhat ran-
domly, but give some insight into the kind of systems that can be examined by
direct numerical simulations.

Bubbles are found in a large number of industrial applications. For example,
they carry vapor away from hot surfaces in boiling heat transfer, disperse gases
and provide stirring in various chemical processing systems, and also affect the
propagation of sound in the ocean. To design systems that involve bubbly flows it
is necessary to understand how the collective rise velocity of many bubbles depends

4 Introduction

Fig. 1.3. The splash generated when a droplet hits a free surface. From A. Davidhazy.
Rochester Institute of Technology. Reproduced with permission.

on the void fraction and the bubble size distribution, how bubbles disperse and how
they stir up the fluid. Figure 1.1 is a picture of air bubbles rising through water in
a small bubble column. The average bubble diameter is about 2.2 mm and the
void fraction is approximately 0.75%. At these parameters the bubbles rise with an
average velocity of roughly 0.27 m/s, but since the bubbles are not all of the same
size they will generally rise with different velocities.

To generate sprays for combustion, coating and painting, irrigation, humidifi-
cation, and a large number of other applications, a liquid jet must be atomized.
Predicting the rate of atomization and the resulting droplet size distribution, as
well as droplet velocity, is critical to the successful design of such processes. In
Fig. 1.2, a liquid jet is ejected from a nozzle of diameter 8 mm with a velocity of
0.6 m/s. To accelerate its breakup, the jet is injected into a co-flowing air stream,
with a velocity of 35 m/s. Initially, the shear between the air and the liquid leads
to large axisymmetric waves, but as the waves move downstream the air pulls long
filaments from the crest of the wave. The filaments then break into droplets by a
capillary instability. See Marmottant and Villermaux (2001) and Villermaux et al.
(2004) for details.

Droplets impacting solid or liquid surfaces generally splash, often disrupting the
surface significantly. Rain droplets falling on the ground often result in soil erosion,

1.1 Examples of multiphase flows 5

Fig. 1.4. Massive cavitation near the maximum thickness of an airfoil. The flow is from
the left to right. In addition to volume change due to phase change, the compressibility of
the bubbles is often important (see Section 11.1.5). From Kermeen (1956). Reproduced
with permission.

for example. But droplet impact can also help to increase the heat transfer, such as
in quenching and spray cooling, and rain often greatly enhances the mixing at the
ocean surface. Figure 1.3 shows the splash created when a droplet of a diameter of
about 3 mm, released from nearly 0.5 m above the surface, impacts a liquid layer a
little over a droplet-diameter deep. The impact of the droplet creates a liquid crater
and a rim that often breaks into droplets. As the crater collapses, air bubbles are
sometimes trapped in the liquid.

While bubbles are often generated by air injection into a pool of liquid or are
formed by entrainment at a free surface, such as when waves break, they also fre-
quently form when a liquid changes phase into vapor. Such a phase change is
often nucleated at a solid surface and can take place either by heating the liquid
above the saturation temperature, as in boiling, or by lowering the pressure below
the vapor pressure, as in cavitation. Figure 1.4 shows massive cavitation near the
maximum thickness of an airfoil submerged in water. The chord of the airfoil is
7.6 cm, the flow speed is 13.7 m/s from left to right, and the increase in the liquid
velocity as it passes over the leading edge of the airfoil leads to a drop in pressure
that is sufficiently large so that the liquid “boils.” As the vapor bubbles move into
regions of higher pressure at the back of the airfoil, they collapse. However, resid-
ual gases, dissolved in the liquid, diffuse into the bubbles during their existence,
leaving traces that are visible after the vapor has condensed.

6 Introduction

Fig. 1.5. Microstructure of an aluminum–silicon alloy. From D. Apelian, Worcester Poly-
technic Institute. Reproduced with permission.

In many multiphase systems one phase is a solid. Suspensions of solid particles
in liquids or gases are common and the definition of multiphase flows is sometimes
extended to cover flows through or over complex stationary solids, such as packed
beds, porous media, forests, and cities. The main difference between gas–liquid
multiphase flows and solid–gas or solid–liquid multiphase flows is usually that the
interface maintains its shape in the latter cases, even though the location of the
solid may change. In some instances, however, that is not the case. Flexible solids
can change their shape in response to fluid flow, and during solidification or ero-
sion the boundary can evolve, sometimes into shapes that are just as convoluted
as encountered for gas–liquid systems. When a metal alloy solidifies, the solute is
initially rejected by the solid phase. This leads to constitutional undercooling and
an instability of the solidification front. The solute-rich phase eventually solidifies,
but with a very different composition than the material that first became solid. The
size, shape, and composition of the resulting microstructures determine the prop-
erties of the material, and those are usually sensitively dependent on the various
process parameters. A representative micrograph of an Al–Si alloy prepared by
metallographic techniques and etching to reveal phase boundaries and interfaces is
shown in Fig. 1.5. The light gray phase is almost pure aluminum and solidifies
first, but constitutional undercooling leads to dendritic structures of a size on the
order of a few tens of micrometers.

Living systems provide an abundance of multiphase flow examples. Suspended
blood cells and aerosol in pulmonary flow are obvious examples at the “body”

1.2 Computational modeling 7

Fig. 1.6. A school of yellow-tailed goatfish (Mulloidichthys flavolineatus) near the North-
west Hawaiian Islands. Since self-propelled bodies develop a thrust-producing wake, their
collective dynamics is likely to differ significantly from rising or falling bodies. From the
NOAA Photo Library.

scale, as are the motion of organs and even complete individuals. But even more
complex systems, such as the motion of a flock of birds through air and a school
of fish through water, are also multiphase flows. Figure 1.6 show a large number
of yellow-tailed goatfish swimming together and coordinating their movement. An
understanding of the motion of both a single fish and the collective motion of a
large school may have implication for population control and harvesting, as well
as the construction of mechanical swimming and flying devices.

1.2 Computational modeling

Computations of multifluid (two different fluids) and multiphase (same fluid, dif-
ferent phases) flows are nearly as old as computations of constant-density flows.
As for such flows, a number of different approaches have been tried and a number
of simplifications used. In this section we will attempt to give a brief but compre-
hensive overview of the major efforts to simulate multi-fluid flows. We make no
attempt to cite every paper, but hope to mention all major developments.

1.2.1 Simple flows (Re = 0 and Re = ∞)

In the limit of either very large or very small viscosity (as measured by the Reynolds
number, see Section 2.2.6), it is sometimes possible to simplify considerably the

8 Introduction

flow description by either ignoring inertia completely (Stokes flow) or by ignoring
viscous effects completely (inviscid flow). For inviscid flows it is usually further
necessary to assume that the flow is irrotational, except at fluid interfaces. Most
success has been achieved for disperse flows of undeformable spheres where, in
both these limits, it is possible to reduce the governing equations to a system of cou-
pled ordinary differential equations (ODEs) for the particle positions. For Stokes
flow the main developer was Brady and his collaborators (see Brady and Bossis
(1988) for a review of early work) who have investigated extensively the proper-
ties of suspensions of particles in shear flows, among other problems. For inviscid
flows, Sangani and Didwania (1993) and Smereka (1993) simulated the motion
of spherical bubbles in a periodic box and observed that the bubbles tended to
form horizontal clusters, particularly when the variance of the bubble velocity was
small.

For both Stokes flows and inviscid potential flows, problems with deformable
boundaries can be simulated with boundary integral techniques. One of the earli-
est attempts was due to Birkhoff (1954), where the evolution of the interface be-
tween a heavy fluid initially on top of a lighter one (the Rayleigh–Taylor instability)
was followed by a method tracking the interface between two inviscid and irrota-
tional fluids. Both the method and the problem later became a staple of multiphase
flow simulations. A boundary integral method for water waves was presented by
Longuet-Higgins and Cokelet (1976) and used to examine breaking waves. This
paper had enormous influence and was followed by a large number of very suc-
cessful extensions and applications, particularly for water waves (e.g. Vinje and
Brevig, 1981; Baker et al., 1982; Schultz et al., 1994). Other applications include
the evolution of the Rayleigh–Taylor instability (Baker et al., 1980), the growth and
collapse of cavitation bubbles (Blake and Gibson, 1981; Robinson et al., 2001), the
generation of bubbles and droplets due to the coalescence of bubbles with a free
surface (Oguz and Prosperetti, 1990; Boulton-Stone and Blake, 1993), the forma-
tion of bubbles and droplets from an orifice (Oguz and Prosperetti, 1993), and the
interactions of vortical flows with a free surface (Yu and Tryggvason, 1990), just
to name a few. All boundary integral (or boundary element, when the integration is
element based) methods for inviscid flows are based on following the evolution of
the strength of surface singularities in time by integrating a Bernoulli-type equa-
tion. The surface singularities give one velocity component and Green’s second
theorem yields the other, thus allowing the position of the surface to be advanced
in time. Different surface singularities allow for a large number of different meth-
ods (some that can only deal with a free surface and others that are suited for
two-fluid problems), and different implementations multiply the possibilities even
further. For an extensive discussion and recent progress, see Hou et al. (2001).
Although continuous improvements are being made and new applications continue

1.2 Computational modeling 9

Fig. 1.7. A Stokes flow simulation of the breakup of a droplet in a linear shear flow. The
barely visible line behind the numerical results is the outline of a drop traced from an
experimental photograph. Reprinted with permission from Cristini et al. (1998). Copyright
2005, American Institute of Physics.

to appear, two-dimensional boundary integral techniques for inviscid flows are by
now – more than 30 years after the publication of the paper by Longuet-Higgins
and Cokelet – a fairly mature technology. Fully three-dimensional computations
are, however, still rare. Chahine and Duraiswami (1992) computed the interac-
tions of a few inviscid cavitation bubbles and Xue et al. (2001) have simulated a
three-dimensional breaking wave. While the potential flow assumption has led to
many spectacular successes, particularly for short-time transient flows, its inherent
limitations are many. The lack of a small-scale dissipative mechanism makes those
models susceptible to singularity formation and the absence of dissipation usu-
ally makes them unsuitable for the predictions of the long-time evolution of any
system.

The key to the reformulation of inviscid interface problems with irrotational
flow in terms of a boundary integral is the linearity of the potential equation.
In the opposite limit, where inertia effects can be ignored and the flow is domi-
nated by viscous dissipation, the Navier–Stokes equations become linear (the so-
called Stokes flow limit) and it is also possible to recast the governing equations
as an integral equation on a moving surface. Boundary integral simulations of un-
steady two-fluid Stokes problems originated with Youngren and Acrivos (1976)
and Rallison and Acrivos (1978), who simulated the deformation of a bubble and
a droplet, respectively, in an extensional flow. Subsequently, several authors have

10 Introduction

investigated a number of problems. Pozrikidis and collaborators have examined
several aspects of suspensions of droplets, starting with a study by
Zhou and Pozrikidis (1993) of the suspension of a few two-dimensional droplets in
a channel. Simulations of fully three-dimensional suspensions have been done by
Loewenberg and Hinch (1996) and Zinchenko and Davis (2000). The method has
been described in detail in the book by Pozrikidis (1992), and Pozrikidis (2001)
gives a very complete summary of the various applications. An example of a com-
putation of the breakup of a very viscous droplet in a linear shear flow, using a
method that adaptively refines the surface grid as the droplet deforms, is shown in
Fig. 1.7.

In addition to inviscid flows and Stokes flows, boundary integral methods have
been used by a number of authors to examine two-dimensional, two-fluid flows in
Hele–Shaw cells. Although the flow is completely viscous, away from the interface
it is a potential flow. The interface can be represented by the singularities used for
inviscid flows (de Josselin de Jong, 1960), but the evolution equation for the singu-
larity strength is different. This was used by Tryggvason and Aref (1983, 1985) to
examine the Saffman–Taylor instability, where an interface separating two fluids of
different viscosity deforms if the less viscous fluid is displacing the more viscous
one. They used a fixed grid to solve for the normal velocity component (instead of
Green’s theorem), but Green’s theorem was subsequently used by several authors
to develop boundary integral methods for interfaces in Hele–Shaw cells. See, for
example, DeGregoria and Schwartz (1985), Meiburg and Homsy (1988), and the
review by Hou et al. (2001).

Under the heading of simple flows we should also mention simulations of the
motion of solid particles, in the limit where the fluid motion can be neglected and
the dynamics is governed only by the inertia of the particles. Several authors have
followed the motion of a large number of particles that interact only when they
collide with each other. Here, it is also sufficient to solve a system of ODEs for
the particle motion. Simulations of this kind are usually called “granular dynam-
ics.” For an early discussion, see Louge (1994); a more recent one can be found
in Pöschel and Schwage (2005), for example. While these methods have been
enormously successful in simulating certain types of solid–gas multiphase flows,
they are limited to a very small class of problems. One could, however, argue
that simulations of the motion of particles interacting through a potential, such as
simulations of the gravitational interactions of planets or galaxies and molecular
dynamics, also fall into this class. Discussing such methods and their applications
would enlarge the scope of the present work enormously, and so we will confine
our coverage by simply suggesting that the interested reader consults the appropri-
ate references, such as Schlick (2002) for molecular simulations and Hockney and
Eastwood (1981) for astrophysical and other systems.

1.2 Computational modeling 11

Fig. 1.8. The beginning of computational studies of multiphase flows. The evolution of
the nonlinear Rayleigh–Taylor instability, computed using the two-fluid MAC method.
Reprinted with permission from Daly (1969b). Copyright 2005, American Institute of
Physics.

1.2.2 Finite Reynolds number flows

For intermediate Reynolds numbers it is necessary to solve the full Navier–Stokes
equations. Nearly 10 years after Birkhoff’s effort to simulate the inviscid Rayleigh–
Taylor problem by a boundary integral technique, the marker-and-cell (MAC)
method was developed at Los Alamos by Harlow and collaborators. In the MAC
method the fluid is identified by marker particles distributed throughout the fluid
region and the governing equations solved on a regular grid that covers both the
fluid-filled and the empty part of the domain. The method was introduced in Har-
low and Welch (1965) and two sample computations of the so-called dam breaking
problem were shown in that first paper. Several papers quickly followed: Harlow
and Welch (1966) examined the Rayleigh–Taylor problem (Fig. 1.8) and Harlow
and Shannon (1967) studied the splash when a droplet hits a liquid surface. As
originally implemented, the MAC method assumed a free surface, so there was
only one fluid involved. This required boundary conditions to be applied at the
surface and the fluid in the rest of the domain to be completely passive. The Los
Alamos group realized, however, that the same methodology could be applied to
two-fluid problems. Daly (1969b) computed the evolution of the Rayleigh–Taylor
instability for finite density ratios and Daly and Pracht (1968) examined the ini-
tial motion of density currents. Surface tension was then added by Daly (1969a)
and the method again used to examine the Rayleigh–Taylor instability. The MAC
method quickly attracted a small group of followers that used it to study several
problems: Chan and Street (1970) applied it to free-surface waves, Foote (1973)

12 Introduction

and Foote (1975) simulated the oscillations of an axisymmetric droplet and the col-
lision of a droplet with a rigid wall, respectively, and Chapman and Plesset (1972)
and Mitchell and Hammitt (1973) followed the collapse of a cavitation bubble.
While the Los Alamos group did a number of computations of various problems
in the sixties and early seventies and Harlow described the basic idea in a Scien-
tific American article (Harlow and Fromm, 1965), the enormous potential of this
newfound tool did not, for the most part, capture the fancy of the fluid mechan-
ics research community. Although the MAC method was designed specifically for
multifluid problems (hence the M for markers!), it was also the first method to
successfully solve the Navier–Stokes equation using the primitive variables (ve-
locity and pressure). The staggered grid used was a novelty, and today it is a com-
mon practice to refer to any method using a projection-based time integration on a
staggered grid as a MAC method (see Chapter 3).

The next generation of methods for multifluid flows evolved gradually from the
MAC method. It was already clear in the Harlow and Welch (1965) paper that the
marker particles could cause inaccuracies, and of the many algorithmic ideas ex-
plored by the Los Alamos group, the replacement of the particles by a marker func-
tion soon became the most popular alternative. Thus, the volume-of-fluid (VOF)
method was born. VOF was first discussed in a refereed journal article by Hirt and
Nichols (1981), but the method originated earlier (DeBar, 1974; Noh and Wood-
ward, 1976). The basic problem with advecting a marker function is the numerical
diffusion resulting from working with a cell-averaged marker function (see Chap-
ter 4). To prevent the marker function from continuing to diffuse, the interface is
“reconstructed” in the VOF method in such a way that the marker does not start to
flow into a new cell until the current cell is full. The one-dimensional implemen-
tation of this idea is essentially trivial, and in the early implementation of VOF the
interface in each cell was simply assumed to be a vertical plane for advection in
the horizontal direction and a horizontal plane for advection in the vertical direc-
tion. This relatively crude reconstruction often led to large amount of “floatsam
and jetsam” (small unphysical droplets that break away from the interface) that
degraded the accuracy of the computation. To improve the representation, Youngs
(1982), Ashgriz and Poo (1991), and others introduced more complex reconstruc-
tions of the interface, representing it with a line (two dimensions) or a plane (three
dimensions) that could be oriented arbitrarily in such a way as to best fit the in-
terface. This increased the complexity of the method considerably, but resulted in
greatly improved advection of the marker function. Even with higher order rep-
resentation of the fluid interface in each cell, the accurate computation of surface
tension remained a major problem. In his simulations of surface tension effects
on the Rayleigh–Taylor instability, using the MAC method, Daly (1969b) intro-
duced explicit surface markers for this purpose. However, the premise behind the

1.2 Computational modeling 13

Fig. 1.9. Computation of a splashing drop using an advanced VOF method. Reprinted
from Rieber and Frohn (1999) with permission from Elsevier.

development of the VOF method was to get away from using any kind of surface
marker so that the surface tension had to be obtained from the marker function in-
stead. This was achieved by Brackbill et al. (1992), who showed that the curvature
(and hence surface tension) could be computed by taking the discrete divergence
of the marker function. A “conservative” version of this “continuum surface force”
method was developed by Lafaurie et al. (1994). The VOF method has been ex-
tended in various ways by a number of authors. In addition to better ways to
reconstruct the interface (Rider and Kothe, 1998; Scardovelli and Zaleski, 2000;
Aulisa et al., 2007) and compute the surface tension (Renardy and Renardy, 2002;
Popinet, 2009), more advanced advection schemes for the momentum equation and
better solvers for the pressure equation have been introduced (see Rudman (1997),
for example). Other refinements include the use of sub-cells to keep the interface
as sharp as possible (Chen et al., 1997a). VOF methods are in widespread use to-
day, and many commercial codes include VOF to track interfaces and free surfaces.
Figure 1.9 shows one example of a computation of the splash made when a liquid
droplet hits a free surface, done by a modern VOF method. We will discuss the use
of VOF extensively in later chapters.

The basic ideas behind the MAC and the VOF methods gave rise to several
new approaches in the early nineties. Unverdi and Tryggvason (1992) introduced
a front-tracking method for multifluid flows where the interface was marked by
connected marker points. The markers are used to advect the material properties
(such as density and viscosity) and to compute surface tension, but the rest of the
computations are done on a fixed grid as in the VOF method. Although using

14 Introduction

connected markers to update the material function was new, marker particles had
already been used by Daly (1969a), who used them to evaluate surface tension in
simulations with the MAC method, in the immersed-boundary method of Peskin
(1977) for one-dimensional elastic fibers in homogeneous viscous fluids and in the
vortex-in-cell method of Tryggvason and Aref (1983) for two-fluid interfaces in
a Hele–Shaw cell, for example. The front-tracking method of Unverdi and Tryg-
gvason (1992) has been very successful for simulations of finite Reynolds number
flows of immiscible fluids and Tryggvason and collaborators have used it to explore
a large number of problems.

The early nineties also saw the introduction of the level-set, the CIP, and the
phase-field methods to track fluid interfaces on stationary grids. The level-set
method was introduced by Osher and Sethian (1988), but its first use to track fluid
interfaces appears to be in the work of Sussman et al. (1994) and Chang et al.
(1996), who used it to simulate the rise of bubbles and the fall of droplets in two
dimensions. An axisymmetric version was used subsequently by Sussman and
Smereka (1997) to examine the behavior of bubbles and droplets. Unlike the VOF
method, where a discontinuous marker function is advected with the flow, in the
level-set method a continuous level-set function is used. The interface is then iden-
tified with the zero contour of the level-set function. To reconstruct the material
properties of the flow (density and viscosity, for example) a marker function is con-
structed from the level-set function. The marker function is given a smooth transi-
tion zone from one fluid to the next, thus increasing the regularity of the interface
over the VOF method where the interface is confined to only one grid space. How-
ever, this mapping from the level-set function to the marker function requires the
level-set function to maintain the same shape near the interface and to deal with this
problem, Sussman et al. (1994) introduced a reinitialization procedure where the
level-set function is adjusted in such a way that its value is equal to the shortest dis-
tance to the interface at all times. This step was critical in making level-sets work
for fluid-dynamics simulations. Surface tension is found in the same way as in the
continuous surface force technique introduced for VOF methods by Brackbill et al.
(1992). The early implementation of the level-set method did not conserve mass
very well, and a number of improvements and extensions followed its original in-
troduction. Sussman et al. (1998) and Sussman and Fatemi (1999) introduced ways
to improved mass conservation, Sussman et al. (1999) coupled level-set tracking
with adaptive grid refinement and a hybrid VOF/level-set method was developed
by Sussman and Puckett (2000), for example.

The constrained interpolated propagation (CIP) method introduced by Takewaki
et al. (1985) has been particularly popular with Japanese authors, who have applied
it to a wide variety of multiphase problems. In the CIP method, the transition from
one fluid to another is described by a cubic polynomial. Both the marker function

1.2 Computational modeling 15

and its derivative are then updated to advect the interface. In addition to simulat-
ing two-fluid problems, the method has been used for a number of more complex
applications, such as those involving floating solids; see Yabe et al. (2001).

In the phase-field method the governing equations are modified in such a way
that the dynamics of the smoothed region between the different fluids is described
in a thermodynamically consistent way. In actual implementations the thickness
of the transition is, however, much larger than it is in real systems and the net
effect of the modification is to provide an “antidiffusive” term that keeps the inter-
face reasonably sharp. While superficially there are considerable similarities be-
tween phase-field and level-set methods, the fundamental ideas behind the methods
are very different. In the level-set method the smoothness of the phase boundary
is completely artificial and introduced for numerical reasons only. In phase-field
methods, on the other hand, the transition zone is real, although it is made much
thicker than it should be for numerical reasons. It is not clear, at the time of this
writing, whether keeping the correct thermodynamic conditions in an artificially
thick interface has any advantages over methods that start with a completely sharp
interface. The key drawback seems to be that since the propagation and proper-
ties of the interface depend sensitively on the dynamics in the transition zone, it
must be well resolved. For the motion of two immiscible fluids, that are well de-
scribed by assuming a sharp interface, this adds a resolution requirement that is
more stringent than for other “one-fluid” methods. The phase-field approach was
originally introduced to model solidification (see Kobayashi (1992, 1993)) and has
found widespread use in such simulations. With the exception of the modeling of
solidification in the presence of flows (Beckermann et al., 1999; Tonhardt and Am-
berg, 1998), its use for fluid dynamic simulations is relatively limited (Jacqmin,
1999; Jamet et al., 2001). The main appeal of the phase-field methods appears to
be for problems where small-scale physics must be accounted for and it is difficult
to do so in the sharp interface limit.

In the “one-fluid” methods described above, where a single set of governing
equations is used to describe the fluid motion in both fluids, the fluid motion is
mostly computed on regular structured grids and the main difference between the
various methods is how a marker function is advected (and how surface tension is
found). The thickness of the interface varies from one cell in VOF methods to a few
cells in level-set and front-tracking methods, but once the marker function has been
found, the specific scheme for the interface advection is essentially irrelevant for
the rest of the computations. While these methods have been enormously success-
ful, their accuracy is generally somewhat limited. There have, therefore, recently
been several attempts to generate methods that retain most of the advantages of
these methods but treat the interface as “fully sharp.” The origin of these attempts
can be traced to the work of Glimm and collaborators (Glimm et al., 1981; Glimm

16 Introduction

and McBryan, 1985; Chern et al., 1986), who used grids that were modified locally
near an interface in such a way that the interface coincided with a cell boundary,
and more recent “cut-cell” methods for the inclusion of complex bodies in simu-
lations of inviscid flows (Quirk, 1994; Powell, 1998). In their modern incarnation,
sharp interface methods include the ghost fluid method, the immersed-interface
method and the method of Udaykumar et al. (2001). In the “ghost fluid” method
introduced by Fedkiw et al. (1999) the interface is marked by advecting a level-
set function, but to find numerical approximations to derivatives near the interface,
where the finite difference stencil involves values from the other side of the inter-
face, fictitious values are assigned to those grid points. The values are obtained by
extrapolation, and a few different possibilities for doing so are discussed by Glimm
et al. (2001), for example. The “immersed-interface” method of Lee and LeVeque
(2003), on the other hand, is based on modifying the numerical approximations
near the interface by explicitly incorporating the jump across the interface into the
finite difference equations. While this is easily done for relatively simple jump con-
ditions, it becomes more involved for complex situations. Lee and LeVeque (2003)
thus found it necessary to limit their development to fluids with the same viscosity.
In the method of Udaykumar et al. (2001), complex solid boundaries are repre-
sented on a regular grid by merging cells near the interface and using polynomial
fitting to find field values at the interface. This method, which is related to the “cut-
cell” methods used for inviscid compressible flows (Powell, 1998), has so far only
been implemented for solids and fluids, including solidification (Yang and Udayku-
mar, 2005), but there seems to be no reason why the method cannot be used for mul-
tifluid problems. For an extension to three dimensions, see Marella et al. (2005).

While the original “one-fluid” methods require essentially no modification of
the flow solver near the interface (except allowing for variable density and viscos-
ity), the sharp interface methods all require localized modifications of the basic
scheme. This results in considerably more complex numerical schemes, but is also
likely to improve the accuracy. That may be important for extreme values of the
governing parameters, such as large differences between the material properties of
the different fluids and low viscosities. The sharp interface approach may also be
required for flows with very complex interface physics. However, methods based
on a straightforward implementation of the “one-fluid” formulation of the govern-
ing equations, coupled with advanced schemes to advect the interface (or marker
function), have already demonstrated their usefulness for a large range of prob-
lems, and it is likely that their simplicity will ensure that they will continue to be
widely used.

In addition to the development of more accurate implementations of the “one-
fluid” approach, many investigators have pursued extension of the basic schemes
to problems that are more complex than the flow of two immiscible liquids. More

1.2 Computational modeling 17

Fig. 1.10. The interaction of two falling spheres. The spheres are shown at four different
times, going from left to right. Reprinted from Hu et al. (2001), with permission from
Elsevier.

complex physics has been incorporated to simulate contaminated interfaces, mass
transfer and chemical reactions, electrorheological effects, boiling, solidification,
and the interaction of solid bodies with a free surface or a fluid interface. We
will briefly review such advanced applications at the very end of the book, in
Chapter 11.

While methods based on the “one-fluid” approach were being developed, other
techniques were also explored. Hirt et al. (1970) describe one of the earliest use of
structured, boundary-fitted Lagrangian grids. In this approach a logically rectangu-
lar structured grid is used, but the grid points move with the fluid velocity, thus de-
forming the grid. This approach is particularly well suited when the interface topol-
ogy is relatively simple and no unexpected interface configurations develop. In a
related approach, a grid line is aligned with the fluid interface, but the grid away
from the interface is generated using standard grid-generation techniques, such as
conformal mapping, or other more advanced elliptic grid-generation schemes. The
method was used by Ryskin and Leal (1984) to compute the steady rise of buoyant,
deformable, axisymmetric bubbles. They assumed that the fluid inside the bubble
could be neglected, but Dandy and Leal (1989) and Kang and Leal (1987) ex-
tended the method to two-fluid problems and unsteady flows. Several authors have
used this approach to examine relatively simple problems, such as the steady-state
motion of single particles or moderate deformation of free surfaces. Fully three-
dimensional simulations are relatively rare (see, though, Takagi et al. (1997)), and
it is probably fair to say that it is unlikely that this approach will be the method of
choice for very complex problems such as the three-dimensional unsteady motion
of several particles.

18 Introduction

A much more general approach to continuously represent a fluid interface by a
grid line is to use fully unstructured grids. This allows grid points to be inserted
and deleted as needed and distorted grid cells to be reshaped. While the grid was
moved with the fluid velocity in some of the early applications of this method, the
more modern approach is either to move only the interface points or to move the
interior nodes with a velocity different from the fluid velocity, in such a way that
the grid distortion is reduced but adequate resolution is still maintained. A large
number of methods have been developed that fall into this general category, but we
will only reference a few examples. Oran and Boris (1987) simulated the breakup
of a two-dimensional drop; Shopov et al. (1990) examined the initial deformation
of a buoyant bubble; Feng et al. (1994, 1995) and Hu (1996) computed the unsteady
two-dimensional motion of several particles and Fukai et al. (1995) followed the
collision of a single axisymmetric droplet with a wall. Although this appears to
be a fairly complex approach, Johnson and Tezduyar (1997) and Hu et al. (2001)
have produced very impressive results for the three-dimensional unsteady motion
of many spherical particles. Figure 1.10 shows an example of a simulation done
using the arbitrary-Lagrangian–Eulerian method of Hu et al. (2001). Here, two
solid spheres are initially falling in-line (left frame). Since the trailing sphere is
sheltered from the flow by the leading one, it catches up and “kisses” the leading
one. The in-line configuration is unstable and the spheres “tumble” (two middle
frames). After tumbling, the spheres drift apart (right frame).

The most recent addition to the collection of methods to simulate finite Reynolds
number multiphase flows is the lattice–Boltzmann method (LBM). It is now clear
that LBM can be used to obtain results of accuracy comparable to more conven-
tional methods. It is still not clear, however, whether the LBM is significantly
faster or simpler than other methods (as sometimes claimed), but most likely these
methods are here to stay. For a discussion see, for example, Shan and Chen (1993)
and Sankaranarayanan et al. (2002). A comparison of results obtained by the LBM
method and the front-tracking method of Unverdi and Tryggvason (1992) can be
found in Sankaranarayanan et al. (2003). We will not discuss LBM in this book,
but refer the reader to Rothman and Zaleski (1997) and Chapter 6 in Prosperetti
and Tryggvason (2007).

1.3 Looking ahead

Direct numerical simulations of multiphase flows have come a long way in the last
decade and a half or so. It is now possible to simulate accurately the evolution of
disperse flows of several hundred bubbles, droplets, and particles for sufficiently
long times so that reliable values can be obtained for various statistical quanti-
ties. Similarly, major progress has been achieved in the development of methods

1.3 Looking ahead 19

for more complex flows, including those where a liquid solidifies or evaporates.
Simulations of large systems undergoing boiling and solidification are therefore
within reach.

Much remains to be done, however, and it is probably fair to say that the use
of direct numerical simulations of multiphase flows for research and design is still
in the embryonic state. The possibility of computing the evolution of complex
multiphase flows – such as churn-turbulent bubbly flow undergoing boiling, or the
breakup of a jet into evaporating droplets – will transform our understanding of
flows of enormous economic significance. Currently, control of most multiphase
flow processes is fairly rudimentary and almost exclusively based on intuition and
empirical observations. Industries that deal primarily with multiphase flows are,
however, multibillion dollar operations, and the savings realized if atomizers for
spray generation, bubble injectors in bubble columns, and inserts into pipes to
break up droplets, just to name a few examples, could be improved by just a little
bit would add up to a substantial amount of money. Reliable predictions would
also reduce the design cost significantly for situations such as space vehicles and
habitats where experimental investigations are expensive. And, as the possibilities
of manipulating flows at the very smallest scales by either stationary or free flow-
ing microelectromechanical devices become more realistic, the need to predict the
effect of such manipulations becomes critical.

While speculating about the long-term impact of any new technology is a dan-
gerous thing – and we will simply state that the impact of direct numerical simula-
tions of multiphase flows will without doubt be significant – it is easier to predict
the near future. Apart from the obvious prediction that computers will continue
to become faster and more available, we expect that the development of numer-
ical methods will focus mainly on flows with complex physics. Although some
progress has already been achieved for flows with variable surface tension, flows
coupled to temperature and electric fields, and flows with phase change, simula-
tions of such systems are still far from being commonplace. In addition to the need
to solve a large number of equations, coupled systems generally possess much
larger ranges of length and time scales than simple two-fluid systems. Thus, the in-
corporation of implicit time-integrators for stiff systems and adaptive gridding will
become even more important. It is also likely, as more and more complex problems
are dealt with, that the differences between direct numerical simulations – where
everything is resolved fully – and simulations where the smallest scales are mod-
eled will become blurred. Simulations of atomization where the evolution of thin
films are computed by “subgrid” models and very small droplets are included as
point particles are relatively obvious examples of such simulations (for a discussion
of the point-particle approximation, see Chapter 9 in Prosperetti and Tryggvason
(2007), for example). Other examples include possible couplings of continuum

20 Introduction

approaches such as those described in this book with microscopic simulations of
moving contact lines, kinetics effects at a solidifying interface, and reactions in
thin flames. Simulations of non-Newtonian fluids, where the microstructure has
to be modeled in such a way that the molecular structure is accounted for in some
way, also fall under this category.

In addition to the development of more powerful numerical methods, it is in-
creasingly critical to deal with the “human” aspect of large-scale numerical sim-
ulations. The physical problems that we must deal with and the computational
tools that are available are rapidly becoming very complex. The difficulty of de-
veloping fully parallelized software to solve the continuum equations (fluid flow,
mass and heat transfer, etc.), where three-dimensional interfaces must be handled
and the grids must be dynamically adapted, is putting such simulations beyond the
reach of a single graduate student. In the future these simulations may even be
beyond the capacity of small research groups. It is becoming very difficult for a
graduate student to learn everything that they need to know and make significant
new progress in 4 to 5 years. Lowering the “knowledge barrier” and ensuring that
new investigators can enter the field of direct numerical simulations of multiphase
flow may well become as important as improving the efficiency and accuracy of
the numerical methods. The present book is an attempt to ease the entry of new
researchers into this field.

2

Fluid mechanics with interfaces

The equations governing multiphase flows, where a sharp interface separates im-
miscible fluids or phases, are presented in this chapter. We first derive the equations
for flows without interfaces, in a relatively standard manner. Then we discuss the
mathematical representation of a moving interface and the appropriate jump con-
ditions needed to couple the equations across the interfaces. Finally, we introduce
the so-called “one-fluid” approach, where the interface is introduced as a singular
distribution in equations written for the whole flow field. The “one-fluid” form of
the equations plays a fundamental rôle for the numerical methods discussed in the
rest of the book.

2.1 General principles

The derivation of the governing equations is based on three general principles:
the continuum hypothesis, the hypothesis of sharp interfaces, and the neglect of
intermolecular forces. The assumption that fluids can be treated as a continuum
is usually an excellent approximation. Real fluids are, of course, made of atoms
or molecules. To understand the continuum hypothesis, consider the density or
amount of mass per unit volume. If this amount were measured in a box of suffi-
ciently small dimensions �, it would be a wildly fluctuating quantity (see Batchelor
(1970), for a detailed discussion). However, as the box side � increases, the density
becomes ever smoother, until it is well approximated by a smooth function ρ . For
liquids in ambient conditions this happens for � above a few tens of nanometers
(1 nm = 10−9 m). In some cases, such as in dilute gases, the discrete nature of
matter may be felt over much larger length scales. For dilute gases, the average
distance between molecular collisions, or the mean free path �mfp, is the impor-
tant length scale. The gas obeys the Navier–Stokes equations for scales � � �mfp.
Molecular simulations, where the motion of many individual molecules is followed
for sufficiently long times so that meaningful averages can be computed, show that

21

22 Fluid mechanics with interfaces

the fluid behaves as a continuum for a surprisingly small number of molecules. Ko-
plik et al. (1988) found, for example, that under realistic pressure and temperature
a few hundred molecules in a channel resulted in a Poiseuille flow that agreed with
the predictions of continuum theory.

Beyond the continuum hypothesis, for multiphase flows we shall make the as-
sumption of sharp interfaces. Interfaces separate different fluids, such as air and
water, oil and vinegar, or any other pair of immiscible fluids and different thermo-
dynamic phases, such as solid and liquid or vapor and liquid. The properties of the
fluids, including their equation of state, density, viscosity and heat conductivity,
generally change across the interface. The transition from one phase to another oc-
curs on very small scales, as described above. For continuum scales we may safely
assume that interfaces have vanishing thickness.

We also impose certain restrictions on the type of forces that are taken into ac-
count. Long-range forces between fluid particles, such as electromagnetic forces
in charged fluids, shall not be considered. Intermolecular forces, such as van der
Waals forces that play an important rôle in interface physics, are modelled by re-
taining their most important effect: capillarity. This effect, also called surface
tension, amounts to a stress concentrated at the sharp interfaces.

The three assumptions above also reflect the fact that it would be nearly im-
possible, with the current state of the art, to describe complex droplet and bubble
interactions while keeping the microscopic physics. For instance, simulating phys-
ical phenomena from the nanometer to the centimeter scale would require 107 grid
points in every direction, an extravagant requirement for any type of computa-
tion, even with the use of cleverly employed adaptive mesh refinement, at least at
present.

Beyond the three assumptions above, we mostly deal with incompressible flows
in this book, although in the present chapter we derive the equations initially for
general flow situations.

2.2 Basic equations

Expressing the basic principles of conservation of mass, momentum, and energy
mathematically leads to the governing equations for fluid flow. In addition to the
general conservation principles, we also need constitutive assumptions about the
specific nature of each fluid. Here we will work only with Newtonian fluids.

2.2.1 Mass conservation

The principle of conservation of mass states that mass cannot be created or de-
stroyed. Therefore, if we consider a volume V , fixed in space, then the mass inside
this volume can only change if mass flows in or out through its boundary S. The

2.2 Basic equations 23

Fig. 2.1. A stationary control volume V . The surface is denoted by S.

flow out of V , through a surface element ds, is ρu · n ds where n is the outward
normal, ρ is the density, and u is the velocity. The notation is shown in Fig. 2.1.
Stated in integral form, the principle of mass conservation is

d
dt

∫
V

ρ dv = −
∮

S
ρu ·n ds. (2.1)

Here, the left-hand side is the rate of change of mass in the volume V and the
right-hand side represents the net flow through its boundary S. Since the volume is
fixed in space, we can take the derivative inside the integral and, by applying the
divergence theorem to the integral of the fluxes through the boundary, we have∫

V

[
∂ρ
∂ t

+∇ · (ρu)
]

dv = 0. (2.2)

This relation must hold for any arbitrary volume, no matter how small, and that
can only be true if the quantity inside the square brackets is zero. The partial
differential equation expressing conservation of mass is therefore

∂ρ
∂ t

+∇ · (ρu) = 0. (2.3)

By using the definition of the substantial derivative

D()
Dt

=
∂ ()
∂ t

+u ·∇(), (2.4)

and expanding the divergence, ∇ · (ρu) = u ·∇ρ + ρ∇ ·u, the continuity equation
can be rewritten in convective form as

Dρ
Dt

= −ρ∇ ·u, (2.5)

24 Fluid mechanics with interfaces

emphasizing that the density of a material particle can only change if the fluid is
compressed or expanded (∇ ·u �= 0).

2.2.2 Momentum conservation

The equation of motion is derived by using the momentum-conservation principle,
stating that the rate of change of fluid momentum in the fixed volume V is the
difference in momentum flux across the boundary S plus the net forces acting on
the volume. Therefore,

d
dt

∫
V

ρu dv = −
∮

S
ρu(u ·n) ds+

∫
V

f dv+
∮

S
n ·T ds. (2.6)

The first term on the right-hand side is the momentum flux through the boundary
of V and the next term is the total body force on V . Frequently, the force per unit
volume f is only the gravitational force, f = ρg. The last term is the total surface
force. Here, the tensor T is a symmetric stress tensor constructed in such a way
that n ·T ds is the force on a surface element ds with a normal n.

By the same argument as applied to the mass conservation equation, Equation
(2.6) must be valid at every point in the fluid, so that

∂ρu
∂ t

= −∇ · (ρuu)+ f+∇ ·T. (2.7)

Here we denote with ab, whose i jth component is aib j, the dyadic product of the
two vectors a and b; hence, uu has components uiu j. The nonlinear advection term
can be written as

∇ · (ρuu) = ρu ·∇u+u∇ · (ρu), (2.8)

and using the definition of the substantial derivative and the continuity equation we
can rewrite Equation (2.7) as

ρ
Du
Dt

= f+∇ ·T. (2.9)

This is Cauchy’s equation of motion and is valid for any continuous medium. For
fluids like water, oil, and air (as well as many others that are generally referred to
as Newtonian fluids) the stress may be assumed to be a linear function of the rate
of strain

T = (−p+λ∇ ·u)I+2µS. (2.10)

Here, I is the unit tensor, p the pressure, µ the viscosity, and S = 1
2(∇u + ∇uT) is

the rate-of-strain or deformation tensor whose components are

Si j =
1
2

(∂ui

∂x j
+

∂u j

∂xi

)
. (2.11)

2.2 Basic equations 25

λ is the second coefficient of viscosity, and if Stokes’ hypothesis is assumed to
hold, then λ = −(2/3)µ .1 Substituting the expression for the stress tensor into
Cauchy’s equation of motion results in

ρ
Du
Dt

= f−∇p+∇(λ ∇ ·u)+∇ · (2µS), (2.12)

which is the Navier–Stokes equation for fluid flow.

2.2.3 Energy conservation

In integral form the conservation of energy principle, as applied to a control volume
V fixed in space, is

d
dt

∫
V

ρ
(

e+
1
2

u2
)

dv (2.13)

= −
∮

S
ρ
(

e+
1
2

u2
)

u ·n ds+
∫

V
u · f dv+

∮
S

n · (u ·T) ds−
∮

S
q ·n ds.

Here, u2 = u ·u and e is the total internal energy per unit mass. The left-hand side
is the rate of change of the internal and kinetic energy, the first term on the right-
hand side is the flow of internal and kinetic energy across the boundary, the second
term represents the work done by body forces, the third term is the work done by
the stresses at the boundary (pressure and viscous shear), and q in the fourth term
is the heat-flux vector. This equation can be simplified by using the momentum
equation. Taking the dot product of the velocity with Equation (2.9) gives

ρ
∂ u2/2

∂ t
= −ρu ·∇u2/2+u · f+u · (∇ ·T) (2.14)

for the mechanical energy. After using this equation to cancel terms in (2.13)
and applying the same arguments as before, we obtain the convective form of the
energy equation:

ρ
De
Dt

−T : ∇u+∇ ·q = 0. (2.15)

Here we denote with A : B = ∑i ∑ j Ai jB ji the scalar product of the two tensors A
and B.

This equation needs to be supplemented by constitutive equations for the specific
fluids we are considering. We will assume that the flux of heat is proportional to
the gradient of the temperature T , so that

q = −k∇T. (2.16)

1 In several texts the discussion is based on the bulk viscosity κ = 2/3µ +λ . Stokes’ hypothesis is that the bulk
viscosity vanishes.

26 Fluid mechanics with interfaces

This is called Fourier’s law and k is the thermal conductivity. Using Fourier’s law,
assuming a Newtonian fluid, so that the stress tensor is given by Equation (2.10),
and that radiative heat transfer is negligible, then the energy equation takes the
form

ρ
De
Dt

+ p∇ ·u = Φ+∇ · k∇T, (2.17)

where Φ = λ (∇ ·u)2 + 2µS : S is called the dissipation function. It can be shown
that Φ, which represents the rate at which work is converted into heat, is always
greater or equal to zero.

In general we also need an equation of state giving, say, pressure as a function
of density and internal energy

p = p(e,ρ), (2.18)

as well as equations for the transport coefficients µ , λ , and k as functions of the
state of the fluid.

The governing equations are summarized in Panels 2.1 to 2.3. The integral form
obtained by applying the conservation principles directly to a small control volume
is shown in Panel 2.1. While usually not very convenient for analytical work, the
integral form is the starting point for finite-volume numerical methods. In Panel
2.2 we show the differential form obtained directly by assuming that the integral
laws hold at a point. This form can be used for finite difference numerical methods
and usually leads to discretizations that are essentially identical to those obtained
by the finite-volume method. In Panel 2.3 we have regrouped the terms to obtain
the convective or the non-conservative form of the equations. This is the form
usually shown in textbooks and is often used as a starting point for finite difference
methods.

2.2.4 Incompressible flow

For an important class of flows the density of each fluid particle does not change
as it moves. This is generally the case when the maximum or characteristic flow
velocity U is much smaller than the velocity of sound cs, or equivalently when
the Mach number Ma = U/cs is much smaller than unity. The equation for the
evolution of the density is then

Dρ
Dt

=
∂ρ
∂ t

+u ·∇ρ = 0, (2.19)

and the mass conservation equation, Equation (2.5), becomes

∇ ·u = 0. (2.20)

2.2 Basic equations 27

d
dt

∫
V

ρ dv+
∮

S
ρu ·nds = 0,

d
dt

∫
V

ρ u dv =
∫

V
f dv+

∮
S

(
n ·T−ρu(u ·n)

)
ds,

d
dt

∫
V

ρ
(

e+
1
2

u2
)

dv =
∫

V
u · f dv+

∮
S

n ·
(

u ·T−ρ
(

e+
1
2

u2
)

u−q
)

ds.

Panel 2.1. The equations of fluid motion in integral form. The flux terms have been moved
under the same surface integral as the stress terms.

∂ρ
∂ t

+∇ · (ρu) = 0,

∂ρu
∂ t

= f+∇ · (T−ρuu),

∂
∂ t

ρ
(

e+
1
2

u2
)

= −∇ ·
(

ρ
(

e+
1
2

u2
)

u−T ·u+q
)

+u · f.

Panel 2.2. The equations of fluid motion in conservative form.

Dρ
Dt

+ρ∇ ·u = 0,

ρ
Du
Dt

= f+∇ ·T,

ρ
De
Dt

= T : ∇u−∇ ·q.

Panel 2.3. The equations of fluid motion in convective or non-conservative form.

Equation (2.20) states that the volume of any fluid element cannot be changed and
these flows are therefore referred to as incompressible flows. If we integrate this
equation over a finite volume V with boundary S and use the divergence theorem
(or expand the divergence in (2.2) and use Equation (2.3)), we find that the integral

28 Fluid mechanics with interfaces

form of the mass conservation equation for incompressible flows is∮
S

u ·n ds = 0, (2.21)

stating that inflow balances outflow.
Notice that there is no requirement that the density is the same everywhere, for

incompressible flows. The density of a material particle can vary from one particle
to the next one, but the density of each particle must stay constant. When the
density is not the same everywhere its value at any given point in space can change
with time as material particles of different density are advected with the flow. In
this case the density field must be updated using Equation (2.19). If the density is
constant everywhere, then this is, of course, not necessary.

The pressure plays a special rôle for incompressible flows. Instead of being a
thermodynamic function of (say) density and temperature, it is determined solely
by the velocity field and will take on whatever value is necessary to make the flow
divergence free. It is sometimes convenient – and we will use this extensively –
to think of the pressure as projecting the velocity field into the space of incom-
pressible functions. That is, we imagine the velocity first being predicted by (2.12)
without the pressure, then we find the pressure necessary to enforce incompress-
ibility and correct the velocity field. Notice that for incompressible flow it is not
necessary to solve the energy equation to find the velocity and the pressure, un-
less the material properties are functions of the temperature. Thus, the flow field
is found by solving the momentum equation, Equation (2.12), along with the in-
compressibility condition, Equation (2.20) or (2.21). The governing equations for
incompressible, Newtonian flows in convective form are summarized in Panel 2.4.
The total derivative in the momentum equation in Panel 2.4 can be written in sev-
eral different ways, all of which are equivalent analytically but that generally lead
to slightly different numerical approximations. The most common ones are

Du
Dt

=
∂u
∂ t

+∇ · (uu) =
∂ u
∂ t

+u ·∇u =
∂ u
∂ t

+
1
2

∇(u ·u)−u× (∇×u). (2.22)

We will usually work with the second form, but we note that the third one is very
commonly used as well. For compressible flows the fully conservative form of
the momentum equations is usually used, but as discussed at the end of Chapter 3,
doing so for incompressible flow with a density that changes abruptly can lead to
certain numerical difficulties.

The special case of incompressible fluids with constant density and viscosity is
of considerable importance. By writing the deformation tensor in component form
it is easily shown that ∇ ·(∇u+∇uT) = ∇2u and the momentum equation becomes

∂ u
∂ t

+u ·∇u = −∇p
ρ

+
f
ρ

+ν∇2u, (2.23)

2.2 Basic equations 29

∇ ·u = 0,

ρ
Du
Dt

= −∇p+ f+∇ ·µ(∇u+∇uT).

Panel 2.4. The equations of fluid motion for incompressible Newtonian flow in convective
form.

where ν = µ/ρ is the kinematic viscosity.

2.2.5 Boundary conditions

One of the major difficulties in numerical simulations of fluid flows is the correct
implementation of the boundary conditions. In principle the conditions at bound-
aries are well defined. For viscous, incompressible fluids we require the fluid to
stick to the wall so the fluid velocity there is equal to the wall velocity:

u = Uwall. (2.24)

This equation includes both the normal and the tangential components of the ve-
locity. For inviscid flows, where viscous stresses are absent and the fluid can slip
freely at the wall, only the normal velocity is equal to that of the wall. In some
cases, for instance for flow in very small channels, it is useful to introduce a slip
boundary condition for the tangential velocity component ut:

ut −Uwall = β
∂ ut

∂n
. (2.25)

Here, β is a slip coefficient, with the dimensions of a (small) length, and ∂/∂ n is
the derivative in the direction normal to the wall. The slip length is the distance at
which the velocity would vanish if extrapolated inside the wall (Fig. 2.2).

Frequently, we are interested in simulating a fluid domain with in- and out-flow
boundaries, or we are interested in simulating only a part of a larger fluid-filled do-
main. In those cases it is necessary to specify in- and out-flow boundary conditions.
For inflow boundaries the velocity is usually given. Realistic outflow boundaries,
on the other hand, pose a challenge that unfortunately does not have a simple solu-
tion. Similar difficulties are faced by the experimentalist who must carefully design
their wind tunnel to provide uniform inlet velocity and outlet conditions that have
minimal influence on the upstream flow. While it is probably easier to implement
uniform inlet conditions computationally than in experiments, the outlet flow is
more problematic, since the solution often available to the experimentalist, simply
making the wind tunnel long enough, usually requires an extensive number of grid

30 Fluid mechanics with interfaces

n

solidb

Fig. 2.2. In some models the fluid is allowed to slip on the solid surface. The velocity
vanishes at some distance β inside the solid, called the slip length. This model is useful
when dealing with triple lines (contact lines) involving two fluids and a solid.

points. The goal is generally to truncate the domain using boundary conditions
that make it “appear” longer. Conditions on the rate of change of the velocity, such
as imposing a zero gradient on the velocity field, usually can be used if the out-
flow boundary is sufficiently far from the region of interest. Once the boundary
conditions for the velocity have been specified, conditions for the pressure can be
derived at both in- and out-flow boundaries.

In many cases computations are done in domains that are periodic in one or
more coordinate directions. If we assume that the x direction is periodic, then
the boundary conditions for the velocity are found from u(x,y,z) = u(x + L,y,z),
where L is the length of the period. Boundary conditions for pressure and other
variables are found in the same way, and similar formulae apply when the domain
is periodic in y and/or z. For theoretical work, periodic boundaries are often very
attractive, since it is not necessary to deal with the often difficult task of specifying
appropriate in- and out-flow boundary conditions. The only new consideration is
that if the domain is periodic in the direction of gravity, then it is necessary to
add a body force equal to ρavg, where ρav is the average density of the whole
domain, to prevent a uniform acceleration of the fluid. This force gives rise to a
hydrostatic pressure gradient, but since it results in the conservation of momentum
in the domain – not the average velocity – it does not correspond exactly to a
container with a rigid bottom.

2.3 Interfaces: description and definitions

Following the motion of a deformable interface separating different fluids or phases
is at the center of accurate predictions of multiphase flows. Describing the interface
location and how it moves can be accomplished in several ways. The simplest case

2.3 Interfaces: description and definitions 31

h(x,t)

y

x

Fig. 2.3. A simple way to parameterize an interface is through the equation y = h(x). How-
ever, overhangs in the curve may make the height function h multivalued. Other definitions
then become necessary.

is when the location of the interface can be described by a single-valued function
of one (in two dimensions) or two (in three dimensions) coordinates. For a thin
liquid layer, we can, for example, write

y = h(x) (two dimensions); z = h(x,y) (three dimensions). (2.26)

This situation is sketched in Fig. 2.3, which also shows the limitation of this ap-
proach: if part of the interface “overhangs,” h becomes a multivalued function.
While there are many situations, particularly for thin films, where Equation (2.26)
is the most convenient description, we generally need a more sophisticated way to
describe the interface.

To handle interfaces of arbitrary shape we can parameterize the interface by
introducing a coordinate u in two dimensions, such that the location of the interface
is given by

x(u) =
(

x(u),y(u)
)
. (2.27)

Figure 2.4 shows a closed contour separating fluid “1” from fluid “2,” described
in this way. For a curve in two dimensions, described by Equation (2.27), dx/du
yields a vector tangent to the curve. Although u can be any parameterization of
the curve, the simplest case is when u is taken to be the arc length s, where ds2 =
dx2 + dy2. The tangent vector t = dx/ds is then the unit tangent and |dx/ds| = 1.
The unit normal n is perpendicular to the curve, such that t ·n = 0. The orientation
of the normal is arbitrary, and one should take the most convenient one depending
on the problem. For a closed curve it is customary to let the normal point outwards.

32 Fluid mechanics with interfaces

Fluid 2

tFluid 1

u
n

x(u)=(x(u),y(u))
x

y

Fig. 2.4. A parameterization of the interface. The coordinate u follows the interface.

However, later on we will use the convention that the normal points from one of
the fluids to the other. For instance, for an air–water mixture, water may be taken
as the reference fluid, air being the other fluid. The normal then points from water
to air. We usually label the reference fluid as fluid 1 and the other as fluid 2, and
the normal points from 1 to 2.

Consider the case when the normal points outwards and the parameterization fol-
lows the curve in the trigonometric (anticlockwise) direction as in Fig. 2.4. Then,
if the tangent vector is given by t = (t1, t2), the normal is given by n = (t2,−t1).
The length of the unit tangent is by definition constant; so, as we move along the
curve, the change of the unit tangent vector must be in the normal direction. The
magnitude of the change of the tangent vector, with respect to the arc length s, is
the curvature of the interface. We therefore have

dt
ds

= κn. (2.28)

Similarly, it can be shown that

dn
ds

= −κt. (2.29)

The two previous equations are known as an instance of the Frenet–Serret formu-
lae. The sign of the curvature may be a vexing question. It depends on one’s choice
of normal orientation, as shown on Fig. 2.5. With our previous conventions, for a
closed circle of radius R, the curvature is negative and equal to −1/R.

By taking the dot product of these equations with the normal and the tangent,
respectively, the curvature is found to be

κ = n · dt
ds

= −t · dn
ds

. (2.30)

2.3 Interfaces: description and definitions 33

n

n

k > 0k < 0

Fig. 2.5. The sign of the curvature depends on one’s choice for the orientation of the nor-
mal. If the curve folds towards the normal the curvature is positive.

x(u,v)=(x(u,v), y(u,v), z(u,v)

p

t

xu

xv

n

v=constu=const

dA

Fig. 2.6. A small surface element. The surface is parameterized by u and v. p is a vector
perpendicular to the edge of the element but tangent to the surface.

In Appendix A we examine the properties of a two-dimensional curve in more
detail and work out the above expressions in component form.

For an interface in three-dimensional space we need two independent coordi-
nates, u and v, and the interface is described by

x(u,v) =
(

x(u,v),y(u,v),z(u,v)
)
, (2.31)

as shown in Fig. 2.6. The geometry of three-dimensional surfaces is an elaborate
subject and we will only need a few specific results. To avoid cluttering the discus-
sion unnecessarily we have gathered some of the more pertinent elements of the
theory in Appendix A and here we simply quote the results that we need.

In addition to knowing the location of the interface, we frequently need to com-
pute the normal to the interface, tangent vectors, and the mean curvature. Differ-
entiating x(u,v) with respect to the surface coordinates yields two vectors tangent
to the surface. We will use the shorthand

xu =
∂x
∂u

and xv =
∂ x
∂v

. (2.32)

With xu and xv both tangent to the interface, we can find the unit normal by taking

34 Fluid mechanics with interfaces

the cross product of the tangent vectors and dividing by the length of the product:

n =
xu ×xv

|xu ×xv|
. (2.33)

In Appendix A it is shown that the mean curvature can be found by taking the
surface divergence of the normal vector:

κ = −∇S ·n. (2.34)

Here, ∇S denotes the surface divergence, defined in Appendix A. However, as also
shown in the appendix, if we define a normal field that extends off the interface,
then the curvature can be found by taking the usual divergence of this extended
normal field:

κ = −∇ ·n. (2.35)

We will also use the fact that the curvature can be found as the integral, along the
edges of an infinitesimal surface element of area δA, of the interface tangent vector
p perpendicular to the edge of the surface element (see Fig. 2.6 and a derivation in
Appendix A):

κn = lim
δA→0

1
δA

∮
p dl. (2.36)

Here, the vector p = t×n is tangent to the surface and perpendicular to both the
normal vector n and the vector t tangent to the edge of the surface element. Thus,
p “pulls” on the boundary of the surface element.

Instead of identifying the interface by explicitly specifying the location of every
point on the interface, the interface can also be given by a marker function defined
in the whole domain. Such marker functions can take many forms. We can, for
example, use the characteristic function, defined as a discontinuous function by

H(x) =
{

1 if inside a closed interface;
0 if outside a closed interface.

(2.37)

Alternatively, we may decide that H = 1 for fluid “1” and H = 0 for fluid “2.” With
H given, the interface is identified with the sharp change from one value to the
other (Fig. 2.7). H can be constructed in different ways, but for our purpose it is
convenient to express it in terms of an integral over the product of one-dimensional
δ -functions. For a two-dimensional domain:

H(x,y) =
∫

V
δ (x− x′)δ (y− y′) dv′. (2.38)

2.3 Interfaces: description and definitions 35

Fig. 2.7. A step function identifying the region occupied by a specific fluid.

Here, the integration is over the region bounded by the contour S and dv′ = dx′ dy′

(Fig. 2.7). Obviously, H = 1 if the point (x,y) is inside the contour, where it will
coincide with (x′,y′) during the integration, and zero if it is outside and will never
be equal to (x′,y′) .

The properties of the step function are discussed in more detail in Appendix B,
where we show that the gradient of H is given by

∇H(x,y) = −
∫

S
δ (x− x′)δ (y− y′)n′ ds′ = −δ (n)n, (2.39)

where n is the coordinate normal to the interface in a local coordinate system
aligned with the interface. We can also define a surface distribution δS(x) = δ (n),
and write

∇H = −δSn. (2.40)

In addition, the interface can be described by a smooth function F , if the in-
terface is identified with a particular value of the function, say F = 0 (Fig. 2.8).
Obviously, F < 0 on one side of the interface and F > 0 on the other. One usually
takes the reference fluid (fluid “1”) to be in the F > 0 region. Taking F > 0 inside
the closed surface, the normal points outwards and is found by

n = − ∇F
|∇F| (2.41)

and the curvature is given by

κ = −∇ ·n = ∇ ·
(

∇F
|∇F|

)
. (2.42)

36 Fluid mechanics with interfaces

Fig. 2.8. The identification of an interface by a level-set function.

The representation of the interface as a contour with a specific value is used in
level-set methods.

The motion of the interface S is determined by the normal velocity V (u,v, t), for
each point on S. This velocity may be that of the fluid itself, or may be different
due to, for example, evaporation or condensation. In parametric form:

V (u,v, t) = n · ∂
∂ t

x(u,v, t). (2.43)

To update the location of S, we note that there is no need to specify a tangential ve-
locity, although from a physical point of view the interface is made of fluid particles
that travel at some tangential as well as normal velocity. The fact that the motion of
the interface is determined only by the normal velocity at the interface can be seen
by considering the interface as a level-set function F . Since the function moves
with the fluid velocity, its motion is described by

DF
Dt

=
∂ F
∂ t

+u ·∇F = 0. (2.44)

The normal to the interface is given by (2.41), so we can rewrite the above equation
as

∂F
∂ t

−u ·n|∇F| = ∂F
∂ t

−V |∇F| = 0, (2.45)

which involves only the normal velocity V = u ·n.

2.4 Fluid mechanics with interfaces

Consider the incompressible flow of two immiscible fluids filling a given domain.
The domain may be decomposed into any number of subdomains filled with the

2.4 Fluid mechanics with interfaces 37

n V

u2

u1

dV

dS

S

Fig. 2.9. A thin control volume δV with boundary δ S including a portion of the interface
S. The thickness of the control volume is taken to be zero, so no accumulation takes place.

individual phases. In any subdomain the usual Navier–Stokes equations hold, and
here we derive the interface conditions that allow us to couple the fluid motion in
the different fluids, across the interface. These conditions are, for the most part,
derived using mass and momentum conservation. In one case (for surface tension)
it is necessary to introduce additional physics.

2.4.1 Mass conservation and velocity conditions

To derive the jump conditions for the normal velocity, we apply the conservation
principle used in Section 2.2.1 to the control volume shown in Fig. 2.9. Since its
thickness is taken to be zero, there can be no accumulation of mass inside it, so the
mass flux into the control volume must be equal to the flow out. If the velocity on
one side of the interface is u1 and on the other it is u2 and the normal velocity of the
interface is V , then the inflow is u1 ·n−V and the outflow is u2 ·n−V . Denoting
the mass flow across the interface by ṁ, we have

ρ1(u1 ·n−V) = ρ2(u2 ·n−V) = ṁ . (2.46)

This is simply the Rankine–Hugoniot condition. If there is no change of phase,
ṁ = 0. For incompressible flows this condition must hold for arbitrary density
ratios and we therefore have

V = u1 ·n = u2 ·n. (2.47)

Mass conservation places no restriction on the tangential velocity components.
Indeed, inviscid fluids are usually assumed to slip at the interface. For very low
viscosity and rarefied gases it is possible that finite slip is the appropriate interface
condition, but for viscous fluid under normal operating conditions it is an experi-
mentally observed fact – like the no-slip boundary conditions at solid walls – that
no slip takes place. It is also possible to argue that if the sharp interface is assumed
to come about by taking the limit of a finite interface zone as its thickness goes

38 Fluid mechanics with interfaces

to zero, then anything but no slip would result in infinitely high stresses if the in-
terface zone consists of a fluid with a finite viscosity. Thus, if there is no phase
change and the fluids are incompressible, the interfacial condition for viscous fluid
is simply u1 = u2, or

[u]S = 0, (2.48)

where we have used the jump notation, i.e. the notation [x]S = x2 − x1.

2.4.2 Surface tension

From a molecular point of view, surface tension arises because the interface is not
an optimal region thermodynamically: the molecules “prefer” to be at the gas or
the liquid density, which minimizes the free energy. The non-optimal conditions
near the interface result in an excess energy

dEσ = σ ds, (2.49)

where ds is an infinitesimal interface or surface area and σ is a material prop-
erty, usually referred to as the surface tension coefficient or simply surface tension.
From a mechanical point of view, however, surface tension is simply a force per
unit length acting perpendicularly on any line segment in the surface. If p is a
vector perpendicular to the line segment, the “pull” is simply σp per unit length.
These points of view are equivalent: to stretch the surface one has to pull on it.
Suppose that we pull in the x direction and that the surface has extension L in the
other direction. Stretching it increases the area by ds = L dx, at the expense of a
work σL dx = σ ds increasing as much the interfacial free energy.

By arguments that are exactly analogous to the introduction of the stress tensor
for a three-dimensional continuum (see Aris (1962), for example), it can be shown
that the force on the edge of a small surface element can be written as Tσ

S ·p, where
Tσ

S is the surface tension tensor and p is a vector normal to the edge of the element,
in the tangent plane to the surface. Since

Tσ
S ·p = σp = σIS ·p (2.50)

we find that Tσ
S = σIS, where IS is the surface identity tensor.

The surface tension tensor was defined above in terms of the surface identity
tensor. Frequently, it is more convenient to work with the full three-dimensional
operator and use the fact that IS is the tangential projection of the three-dimensional
identity tensor I. Thus, IS = (I−nn) and

Tσ
S = σ(I−nn). (2.51)

Using that n = t1 × t2, where t1 and t2 are orthonormal tangent vectors to the

2.4 Fluid mechanics with interfaces 39

surface, the surface tension tensor can also be written as

Tσ
S = σ(t1t1 + t2t2). (2.52)

The force on a surface element of area S, bounded by a contour C, is the integral of
the “pull” on its edges:

δFσ =
∮

C
Tσ

S ·p dl =
∫

S
∇S ·Tσ

S ds. (2.53)

Taking the limit of Equation (2.53) as the surface area shrinks to a point, we define
the surface force per unit area as

fσ = ∇ ·Tσ
S = ∇ ·σIS = σ∇S · IS + IS ·∇Sσ . (2.54)

The first term can be shown to be σκn and the second term is simply ∇Sσ . Thus,

fσ = σκn+∇Sσ , (2.55)

where the last term, the surface gradient of σ , is obviously zero for constant surface
tension.

2.4.3 Momentum conservation with interfaces

Applying the conservation of momentum principle to the control volume in Fig.
2.9, moving with the interface S, we obtain

0 = −
∮

δS
ρu(u ·n−V)ds+

∮
δS

n ·T ds+
∫

S
fσ ds. (2.56)

Notice that the integration is around the edges of the control volume δV for the
first two terms and along the interface for the last term. The first term on the right-
hand side is zero for incompressible flows in the absence of phase change, since the
control volume is moving with the fluid velocity. As the thickness of the control
volume approaches zero, the boundary coincides with the interface, and by inte-
grating the stresses first on one side and then on the other, the second term yields
the jump in T across the interface. Since the results hold for any control volume
that includes the interface, they must be valid at any interface point, resulting in

− [T]S ·n = σκn+∇Sσ . (2.57)

This condition may be split into a normal and tangential stress condition, using
Equation (2.55) for fσ , yielding the boxed jump conditions in Panel 2.5.

40 Fluid mechanics with interfaces

[u]S = 0,

− [−p+2µn ·S ·n]S = σκ ,

−
[
2µt(k) ·S ·n

]
S
= t(k) ·∇Sσ ,

∇ ·u = 0,

ρ
Du
Dt

= −∇p+ f+ µ∇2u.

Panel 2.5. The jump conditions and the partial differential equations for a Newtonian,
incompressible fluid, without evaporation or condensation. The last two equations apply
in the bulk of each phase. The first three are jump conditions on the interface S. There,
the t(k) are two unit tangent vectors. In the two-dimensional flow case there is a single
tangent vector. Together with boundary conditions on walls or entry and exit conditions,
these equations form a complete set for flows with interfaces.

(−p+2µn ·S ·n)|S = −pfree +σκ ,

2µ t(k) ·S ·n
∣∣∣
S
= t(k) ·∇Sσ ,

∇ ·u = 0,

ρ
Du
Dt

= −∇p+ f+ µ∇2u.

Panel 2.6. The boundary conditions and the partial differential equations for a Newtonian,
incompressible fluid with a free surface. In this example the pressure just outside the free
surface is set to pfree.

2.4.4 Free-surface flow

Free-surface flow is a limiting case of flows with interfaces, in which the treatment
of one of the fluids is simplified. For air–water flow, for instance, we can sometimes
assume that the pressure pfree in the air is a constant, or depends only on time, and
that the viscous stresses in the air are negligible. The jump conditions then become
boundary conditions for the liquid domain, as shown in Panel 2.6. In the case of
constant σ , the tangential stresses vanish and

t(k) ·S ·n
∣∣∣
S
= 0. (2.58)

2.5 One-fluid formulation 41

This is a purely kinematic condition: it does not involve material properties at all.
For this reason it has interesting consequences. The vorticity vector is defined in
general as ∇× u and its study reveals interesting aspects of the dynamics of the
flow. In two dimensions, we note ω = (∇×u) · ez, its only non-zero component.
Then on the free surface

ω = 2κq, (2.59)

where q = (u · u)1/2 is the norm of the velocity, as shown in Batchelor (1970).
This implies that a large vorticity will be seen on the free surface in regions of
high velocity and high curvature. This is were the departure from the hypothesis
of irrotational flow will be the most pronounced. Moreover, the vorticity is also
seen in these regions for two-phase flows with a strong density and viscosity con-
trast, since these flows resemble free-surface flows. Numerical simulations show
characteristic patches of vorticity in the regions of high curvature.

2.5 Fluid mechanics with interfaces: the one-fluid formulation

In contrast to the approach described in Section 2.4, where we wrote the governing
equations separately for each phase and used jump conditions to couple the solu-
tions at the fluid interface, it is possible to write one set of governing equations
for the whole flow domain occupied by the various phases, without resorting to
jump conditions. The various phases are treated as one fluid with variable material
properties that change abruptly at the phase boundary. To account for the “extra”
forces at the phase boundary, however, it is necessary to add singular terms (δ -
functions) to the equations. These singular terms are the counterpart of the jump
conditions of the preceding section, and it can be shown that both formulations are
equivalent.

This form of the equations is often referred to as the “one-fluid” approach. Since
the solution can change discontinuously across the interface, we must either inter-
pret the governing equations in a weak sense where they are satisfied only in an
integral sense, or admit solutions that include generalized functions, such as delta
functions and step functions. The latter approach is taken here. The “one-fluid”
formulation is the starting point for several numerical methods based on the use of
fixed grids, as we will see in later chapters.

The derivation of the “one-fluid” equations is exactly the same as before (Sec-
tion 2.2), except that we need to add the surface tension as a body force to the
momentum equation. The mass conservation equation for the total mass has no
source terms. For reacting flows, the conservation equation for each species may
have localized source terms, and for flows with phase change (Chapter 11), we
shall see that a localized volume source emerges naturally at the phase boundary.

42 Fluid mechanics with interfaces

For a control volume including an interface, the surface tension force is given by
fσ integrated over S, the part of the surface enclosed in the control volume. Just as
we use the divergence theorem to convert surface integrals to volume integrals, we
use Equation (B.9) to transform the surface integral∫

S
fσ ds =

∫
V

fσ δS dv, (2.60)

where δS = δS(x− xs). Adding this force to the integral form of the momentum
equation, Equation (2.6), and applying the same arguments as before – that the in-
tegral can only be zero for all possible control volumes if the integrand is zero – we
obtain the “one-fluid” version of the Navier–Stokes equation for incompressible,
Newtonian flows with sharp interfaces:

ρ
∂u
∂ t

+ρ∇ ·uu = −∇p+ f+∇ ·µ [∇u+(∇u)T]+ fσ δS. (2.61)

We emphasize that this equation holds for the whole flow field, even if the den-
sity field ρ and the viscosity field µ change discontinuously. For constant surface
tension, the surface force is

fσ δS = σκnδS. (2.62)

For completeness, we observe that the last term can be written in several differ-
ent, but equivalent forms:

fσ δS =
∫

fσ δ (x−xs) dA and σκnδS =
∫

σκnδ (x−xs) dA, (2.63)

where we have used that δ (x−xs) = δ (x− xs)δ (y− ys)δ (z− zs). Notice also that
it is possible to add an arbitrary constant to the surface tension term, replacing σκ
by (σκ + ∆po). The constant ∆po is balanced exactly by a change in the pressure
jump across the interface, and since the flow on either side of the interface is driven
by the pressure gradient – not the absolute value of the pressure – adding the con-
stant has no effect on the flow. Jan (1994) used this observation to subtract the
average pressure inside a bubble to reduce the pressure jump across the interface
in his computations of the motion of clean and contaminated axisymmetric and
two-dimensional bubbles.

2.6 Nondimensional numbers

The dynamics of multifluid and multiphase flows is governed by a variety of nondi-
mensional numbers, depending on the exact situation driving the flow. Those in-
clude the Reynolds number, usually defined based on the properties of one of the
fluids, using an external length scale L and velocity U :

Re =
ρLU

µ
=

LU
ν

. (2.64)

2.6 Nondimensional numbers 43

Re represents the ratio of inertial to viscous forces. If we construct a velocity scale
by
√

(∆ρ/ρ)gL, then the square of the Reynolds number becomes the Galileo
number:

N =
gρ∆ρL3

µ2 . (2.65)

When this number is large, gravity is balanced by inertia and turbulent dissipation;
when it is small, gravity and viscous forces balance. The ratio of inertia to surface
tension gives the Weber number, defined by

We =
ρLU2

σ
, (2.66)

and the ratio of viscous to capillary stresses yields the capillary number, given by

Ca =
µU
σ

. (2.67)

Eliminating the velocity U between the Reynolds and Weber numbers gives the
Ohnesorge number:

Oh =
µ√
ρσL

. (2.68)

This number compares viscous forces with capillary forces. A rather surprising
fact is that there are two numbers (Ca and Oh) that perform this comparison, but
in one case the forces are estimated using a characteristic velocity, for instance for
an advancing contact line, while in the other case the forces are estimated using
a characteristic length, for instance the radius of an oscillating droplet or bubble.
We sometimes also work with the Laplace number, defined by La = 1/Oh2. The
combination

Eo =
∆ρgL2

σ
(2.69)

defines the Eötvös number, sometimes also called the Bond number, which com-
pares gravity with capillary forces. The Morton number is given by

Mo =
∆ρgµ4

ρ2σ 3 . (2.70)

The Morton number has the attractive property that, for a given g, it depends only
on the fluid properties. Working in standard (Earth) gravity, with gas–liquid flows
so that the density difference is not small, the Morton number may again be used
to compare viscous with capillary forces. For gas–water flows or gas–liquid–metal
flows, it is usually extremely small, as are the other measures of the comparison
between viscosity and surface tension. This makes these flows particularly difficult

44 Fluid mechanics with interfaces

to simulate. When inertia and gravity are the important forces, such as for surface
waves, we often work with the Froude number:

Fr =
U2

gL
. (2.71)

The numbers listed here are the most common ones for two-fluid flows. For sys-
tems with more complex physics, such as heat or mass transfer, phase change and
chemical reactions, additional numbers must be defined.

2.7 Thin films, intermolecular forces, and contact lines

Topology changes in multiphase flows (such as when two droplets coalesce into
one, or one droplet breaks into two) take place when thin films rupture and thin
threads snap. Thin threads appear to be, by far, the easiest to deal with. There
are good reasons to believe that the Navier–Stokes equations describe how their
diameter becomes zero in a finite time, and simulations suggest that the overall
results are relatively insensitive to how they are treated. For thin films, on the other
hand, it is necessary to include additional physics. While including molecular
effects cannot, in principle, be done in the framework of continuum mechanics
and sharp interfaces, it is arguable that mesoscopic scales, only moderately larger
than the microscopic scale, may still be described by continuum mechanics. We
give a very elementary introduction to this kind of modeling in this section. More
developments on breakup are given in Chapter 9.

2.7.1 Disjoining pressure and forces between interfaces

When two interfaces are less than a few hundred nanometers apart, intermolecular
forces are significant. Those may be modeled as an additional singular force on the
interface. The force fI per unit area of the interface, directed away from the other
interface, is often taken to be given by

fI = −Ah−3, (2.72)

where A is the Hamaker constant and h is the distance between the two interfaces;
see Fig. 2.10. For two parallel interfaces the surface force in Equation (2.60) then
takes the form

fσ δS = −Ah−3nδS +σκnδS +∇SσδS, (2.73)

where n is the normal oriented away from the reference phase. Such forces are
expected both for a free film (Fig. 2.10) and for a solid-bounded film (Fig. 2.11).

2.7 Thin films, intermolecular forces, and contact lines 45

n

h

Fig. 2.10. A thin film of thickness h may be subject to intermolecular forces, creating an
effective attraction or repulsion between the two interfaces.

Π (h)

Fig. 2.11. A film near a solid wall. Positive disjoining pressure will result in the film being
broken.

The equivalent of the normal stress condition on a free surface (Laplace’s law in
the static case) is now

(−p+2µn ·S ·n)|S = −pfree +σκ −Ah−3. (2.74)

In the static case the viscous terms may be neglected and

p = pfree −σκ +Ah−3, (2.75)

so the pressure is increased or decreased depending on the sign of A. Thus, Π(h) =
−Ah−3 is called the disjoining pressure. When A > 0 the disjoining pressure is
negative and the interfaces attract each other. On the other hand, when A < 0 the
disjoining pressure is positive and the interfaces repel each other. The value of A
depends on the fluid, but values in the region of 10−20 J are common. It is well
known that when A > 0 the film breaks, as for pure water, while when A < 0 the
film is stable, as for water contaminated with surfactants. Indeed, positive A tends
to increase the pressure in narrow regions and forces the fluid to flow out of them.
Thus, a catastrophic instability occurs and the film ruptures.

In principle, Equation (2.74) can be used when solving the Navier–Stokes equa-
tion for the macroscopic flow evolution. However, the range of scales that must be
resolved is enormous, and this has seldom been achieved in the literature.

46 Fluid mechanics with interfaces

U

q

Fig. 2.12. An advancing contact line in the partially wetting (0 < θ < π) case.

2.7.2 Contact line statics and dynamics

The interface separating two fluids may meet a solid boundary at a contact line
(Fig. 2.12). In the absence of motion, the contact line angle θ is fixed by the
capillary properties of the substrate and the two fluids. Consider a liquid and a
gas on a solid surface. The liquid–gas surface energy per unit area is the capillary
tension σ . For the liquid–solid and the gas–solid interfaces we respectively have
energies per unit area σls and σgs. Moving the contact point by a small distance
δx along the solid surface results in a gain of energy σgsδx on one side and a loss
(σls + σ cosθeq)δx on the other side. Equating these energies yields the famous
Young–Laplace relation

σgs = σls +σ cosθeq, (2.76)

where θeq is the equilibrium value of the contact angle. When θ > θeq, it is en-
ergetically favorable to displace the contact line to the right, and the reverse for
θ < θeq.

However, in experiments it is found that the situation is more complicated: the
contact angle exhibits a hysteresis. The interface does not move in some range of
values θa < θ < θr, where θa is the advancing contact angle and θr is the receding
contact angle. For instance, a droplet skidding on a window may at times stop:
the contact line is then pinned by surface heterogeneity in an equilibrium position
between the advancing and receding angles.

When the contact line moves, the energy gained is both surface energy and any
potential energy due to the external forces moving the fluid: gravity or inertia. The
energy lost is dissipated by viscosity. The balance of dissipation and energy gained
does not lead simply to a law for the contact line motion. The difficulty comes
from a famous property of the viscous dissipation: the dissipation per unit volume
is singular near the contact line. Consider a perfect wedge of fluid near the contact
line, so that the height function is

h(x, t) = θ(xc − x) (2.77)

2.8 Notes 47

for small θ , where xc is the contact line position. Consider a steadily advancing
contact line at velocity U . The velocity on the wall should be u = 0, so the horizon-
tal component should be u = 0. On the other hand, near the interface the velocity
should be of order U to advance the interface, so that velocity gradients are of order

∂u
∂y

∼ U
h

. (2.78)

Moreover, the energy dissipated up to a distance a from the contact line is

ε =
∫ xc+a

xc

∫ h(x,t)

0
µ
(

∂ u
∂ y

)2

dy dx. (2.79)

Using (2.77) and the estimate (2.78) for the velocity gradient, this becomes

ε =
∫ a

0
µ

U2

θx
dx, (2.80)

which diverges logarithmically near x = 0. This divergence leads to a paradox:
in the framework of continuum mechanics, any motion of the contact line would
dissipate infinite energy and thus the contact line cannot move. One way out of the
paradox is to use partial-slip boundary conditions, such as Equation (2.25). This
cuts off the divergence and the dissipation becomes

ε =
µU2

θ
ln
(a

β

)
. (2.81)

2.8 Notes

2.8.1 Fluid and interface mechanics

A derivation or even a textbook presentation of the equations governing fluid in-
terfaces is not the primary purpose of this monograph. The interested reader may
consult basic fluid mechanics treatises such as Batchelor (1970), who devotes am-
ple space to issues involving interfaces, and for a more systematic description of
interface geometry the reader is referred to Weatherburn (1927), as well as other
references, such as Aris (1962).

While the constitutive assumption given by Equation (2.49) allows for variable
surface tension, due to contaminants or temperature variations, for example, we
have excluded any stresses due to surface shear or dilation. More complex consti-
tutive equations can be introduced to account for such effects; see Scriven (1960),
Aris (1962), and Edwards et al. (1961) for discussions.

48 Fluid mechanics with interfaces

2.8.2 Thin films and contact lines

Intermolecular forces, our Equation (2.72), can be modeled in a variety of ways,
depending on the polar nature of the interface, on electric charges, and on the
presence of large molecules on the interface. Other forms of the disjoining pressure
may be found in Oron et al. (1997), which also provides a general introduction to
the dynamics of thin films. The thin-film equations are in general of the form

∂h
∂ t

=
∂
∂x

[
f (h)

∂ h
∂ x

+g(h)
∂ 3h
∂x3 + k(h)

]
, (2.82)

where f (h), g(h), and k(h) are some functions dependent on the exact problem
being solved. For Hamaker’s law and surface tension on a solid substrate (Equation
(2.74)) the film breaks, forming a self-similar solution for the thickness h that goes
to zero as t1/5 (Lister and Zhang, 1999).

The slip-length condition (2.25) first appeared in Navier (1823) in the very paper
that gave the viscous flow equations. It acquired renewed interest as Huh and
Scriven (1971) proposed it to remove the contact line dissipation paradox. The
contact line paradoxes are discussed in detail in Dussan (1979) and issues related to
static and dynamic wetting in general are discussed in de Gennes (1985), de Gennes
et al. (2003), Oron et al. (1997), Pomeau (2002), and Bonn et al. (2009).

Experimental observations yield a mobility relation of the form

θ(a) = f (Ca ,a/β , . . .), (2.83)

relating the velocity of the contact line to the apparent contact angle θ(a) at a
distance a from the contact line. The length β is some microscopic scale, for
instance the slip length in Equation (2.25). The theoretical form of the function f
is still debated. For a perfectly wetting fluid (θeq = 0) and small angles, several
approximations and theories (Bonn et al., 2009) yield

θ (a) � [9Ca ln(a/β)]1/3. (2.84)

The logarithmic dependence may be seen as arising from the logarithmic singu-
larity in Equation (2.81). This equation was justified by the Navier slip condition
(2.25), but other microscopic theories have been proposed. A generalized Navier
slip model has been proposed by Shikmurzaev (1997), who also noticed that the
Navier slip, while removing the dissipation singularity, did not remove a singu-
larity in the pressure. Intermolecular forces have also been invoked (Hervet and
de Gennes, 1984; de Gennes, 1985), as well as phase-field (or Cahn–Hilliard, or
second gradient, or diffuse interface) models (Pomeau, 2002) or interface relax-
ation theories (Blake and Shikmurzaev, 2002). For a recent discussion, see Bonn
et al. (2009).

2.8 Notes 49

In computational studies it is natural to fix the contact angle in the first cell near
the wall. The grid size (assuming a square grid ∆x = ∆y) is the minimum distance
from the tip that is “seen” by the numerical method. Thus, an expression useful as
a sort of “effective boundary condition” for numerics should be of the form

θnum = f (Ca ,∆x/β , . . .), (2.85)

as, for example, discussed in Afkhami et al. (2009). However, this approach has
not often been used and many authors have instead fixed the dynamic contact angle
in the numerical method without dependence on the grid size, or have tried to use
a grid scale smaller than the slip length to avoid the grid dependence.

3

Numerical solutions of the Navier–Stokes equations

The one-field formulation of the Navier–Stokes equations described in Chapter
2, where a single set of equations is used to describe the motion of all the flu-
ids present, allows us to use numerical methods developed for single-phase flows.
There are, however, two complications: the material properties (usually density
and viscosity) generally vary from one fluid to the other and to set these proper-
ties we must construct an indicator function that identifies each fluid. We must
usually also find the surface tension at the interface. The advection of the indi-
cator function is the topic of Chapters 4 to 6 and finding the surface tension will
be dealt with in Chapter 7. In this chapter we discuss numerical methods to solve
the Navier–Stokes equations, allowing for variable density and viscosity. We will
use the finite-volume method and limit the presentation to regular Cartesian grids.
Since the multiphase flows considered in this book all involve relatively low veloc-
ities, we will assume incompressible flows.

For any numerical solution of the time-dependent Navier–Stokes equations it is
necessary to decide:

(i) how the grid points, where the various discrete approximations are stored,
are arranged;

(ii) how the velocity field is integrated in time;
(iii) how the advection and the viscous terms are discretized;
(iv) how the pressure equation, resulting from the incompressibility condition,

is solved; and
(v) how boundary conditions are implemented.

These tasks can be accomplished in a variety of ways, but the approach outlined
here has been widely used for multiphase flow simulations and results in a reason-
ably accurate and robust numerical method.

The governing equations are the Navier–Stokes equations for incompressible,
Newtonian flow (Panel 2.4) including the incompressibility condition (Equation

50

3.1 Time integration 51

(2.20) or (2.21), derived in the previous chapter. As discussed there, the equations
can be written in a number of equivalent forms. So, to keep the discussion as
general as possible, we will write the momentum equation symbolically as

ρ
∂ u
∂ t

+ρA = −∇p+D+ f, (3.1)

where A = ∇ · (uu) is the advection term, D = ∇ ·µ(∇u+∇uT) the diffusion term,
and f denotes all other forces, such as gravity and surface tension. Although we
have selected a specific form for the advection term here, obviously any of the
forms shown in Equation (2.22) could be used instead.

3.1 Time integration

For incompressible flows, where the pressure must be adjusted to give a divergence-
free velocity field at the end of each time-step, the governing equations are usually
solved by the so-called projection method. In this method, a temporary velocity
field is first found by ignoring the pressure gradient. This velocity field is gener-
ally not divergence free and in the second step the velocity is corrected by adding
the appropriate pressure gradient. Formally, the second step is a projection onto a
space of divergence-free velocity fields. Hence the name. Although it is likely that
the early MAC method for incompressible flows was programmed in exactly this
way, the concept was introduced by Chorin (1968) and Yanenko (1971).

The integration in time is usually done using a second-order (or higher) method,
but for simplicity we start by describing a first-order method. A few different
ways of achieving second-order accuracy are then outlined. Using a first-order,
explicit, forward-in-time discretization of the time derivative, the momentum equa-
tion, Equation (3.1), becomes

un+1 −un

∆t
+An

h =
1

ρn

(
−∇h p+Dn

h + fn
)
. (3.2)

Here, ∆t is the size of the time step. The superscript n denotes a quantity evaluated
at the beginning of the step and n + 1 identifies the end of the step. We have
introduced the notation Ah and Dh for numerical approximations of the advection
and diffusion terms, respectively and ∇h stands for a numerical approximation of
the gradient or the divergence operators. The velocity at the end of the time step
must be divergence free:

∇h ·u
n+1 = 0. (3.3)

Since the momentum equation includes a time derivative for the velocity field, it
can be used to find the velocity at the next time step, once the pressure is known.

52 Numerical solutions of Navier–Stokes equations

The continuity equation, however, is a condition that must be satisfied by the veloc-
ity at the end of the step, and although the pressure must be adjusted in such a way
that it is satisfied, there is no explicit equation for the pressure in the formulation
described by Equations (3.2) and (3.3). It is necessary, therefore, to devise a strat-
egy to solve the equations in the right order, where all the pieces of information are
available when they are needed. This is where the projection method comes in. The
momentum equation, (3.2), is split into two parts: the first is a predictor step, where
a temporary velocity field (u∗) is found by ignoring the effect of the pressure:

u∗ −un

∆t
= −An

h +
1

ρn

(
Dn

h + fn
)
. (3.4)

In the second step, the projection step, the pressure gradient is added to yield the
final velocity at the new time step:

un+1 −u∗

∆t
= − 1

ρn
∇h p. (3.5)

Adding those two equations yields exactly Equation (3.2).
To find the pressure, such that the velocity at the new time step is divergence

free, we take the divergence of (3.5) and use (3.3) to eliminate un+1, resulting in a
Poisson equation for the pressure:

∇h ·
(

1
ρn ∇h p

)
=

1
∆t

∇h ·u∗. (3.6)

Once the pressure has been found, Equation (3.5) can be used to find the projected
velocity at time n+1.

The scheme described above is completely explicit and the time step must, there-
fore, be small enough to ensure stability. The advection term A and the diffu-
sion term D both impose restrictions on ∆t. The diffusion term is almost always
discretized using second-order, centered, finite-difference approximations, which
require

µ∆t
ρh2 ≤ 1

4
(3.7)

for two-dimensional flow. In three dimensions, the right-hand side is replaced by
1/6. Here, h is the smallest grid spacing (∆x, ∆y, or ∆z). If we use a second-
order centered approximation for the advection terms, the explicit approximation
in Equation (3.4) results in a scheme that is unstable in the absence of diffusion.
The scheme is stabilized by the viscous terms, if ∆t is limited by

(u ·u)
ρ∆t
µ

≤ 2. (3.8)

Notice that this condition does not involve the grid spacing h.

3.1 Time integration 53

Temporal and spatial discretizations that result in explicit but stable schemes for
the advection terms (see below) are usually subject to the Courant, Friedrichs, and
Lewy (CFL) condition

umax∆t
h

≤ 1, (3.9)

where umax is the maximum velocity. Equation (3.9) states that ∆t must be suf-
ficiently small so that a material point travels less than one grid spacing during a
time step. This condition is derived using one-dimensional flow. For multidimen-
sional schemes the limitation can be more restrictive, but advanced methods for the
advection terms are frequently applied using splitting – where advection in each
spatial direction is done sequentially – and then the one-dimensional limitations
hold.

The time-integration scheme outlined by Equations (3.4), (3.5) and (3.6) is only
first order, as already observed. The simplest way to generate a higher order
method for the integration in time is by a second-order predictor–corrector method
where the first-order explicit method described above is used to find a temporary
velocity utmp. The temporary velocity is then used to compute an approximate
right-hand side (RHS) of Equation (3.2) at time n + 1 so that a second-order ap-
proximation for the new velocity can be found by the trapezoidal rule

un+1 −un

∆t
=

1
2

(
RHSn +RHStmp

)
. (3.10)

Here, RHSn is computed using un and RHStmp is found using utmp. For actual pro-
gramming, it is easier to take two first-order steps and then average un and un+2.
Doing this is easily shown to be equivalent to the above scheme and makes it par-
ticularly simple to extend a first-order scheme to second order. This method is
generally subject to the same stability limits as the first-order explicit method and
is, in particular, subject to the diffusion limitation imposed by Equation (3.7). For
low Reynolds numbers, explicit treatment of the viscous terms results in impracti-
cally small time steps and it is better to treat those terms implicitly.

A large number of methods have been developed to solve the Navier–Stokes
equations with second-order accuracy in time. Many of the most popular versions
treat the viscous terms implicitly and the advection terms explicitly. We outline be-
low the method of Kim and Moin (1985), extended to flows with variable material
properties. The Kim and Moin method is a two-step projection method where in the
first step the advection terms are computed explicitly using an Adams–Bashforth
scheme and half of the viscous terms are implicit in the temporary velocity:

u∗ −un

∆t
= −
(3

2
An

h −
1
2

An−1
h

)
+

1
2ρn

(
Dn

h +D∗
h

)
. (3.11)

54 Numerical solutions of Navier–Stokes equations

In the second step the velocity is corrected by adding the gradient of a pressure-like
variable Φ:

un+1 −u∗

∆t
= −∇Φ

ρn . (3.12)

An equation for Φ is derived by combining (3.12) and (3.3), resulting in an equation
that looks like (3.6) but with p replaced by Φ. To see exactly what Φ is we add
Equations (3.11) and (3.12), yielding

un+1 −un

∆t
= −
(3

2
An

h −
1
2

An−1
h

)
+

1
ρn

[1
2
(Dn

h +Dn+1
h)+

1
2
(D∗

h −Dn+1
h)−∇Φ

]
.

Here, we have added and subtracted Dn+1
h to allow a comparison with an Adams–

Bashforth/Crank–Nicholson method, where the viscous terms are evaluated using
the velocities at the new time un+1 instead of the temporary velocities u∗. From
this we see that Φ is related to p by

1
2
(D∗ −Dn+1)−∇Φ = −∇p. (3.13)

Kim and Moin used a staggered grid, second-order spatial differences, and solved
(3.11), which is implicit, by splitting.

The projection method is not the only way of integrating the Navier–Stokes
equations in time. Essentially any standard method to solve the Navier–Stokes
equations for homogeneous flows, such as the artificial compressibility method of
Chorin (1967), the SIMPLE method of Patankar (1980), the PISO method of Issa
(1985), and many others, can be adapted to multiphase flows, when the one-fluid
formulation is used.

For flows where there are strong capillary effects, additional stability restrictions
may apply. Usually, those are taken to be analogous to the CFL conditions and a
capillary wave is allowed to move only one grid spacing during time ∆t. The phase
velocity of a capillary wave is

c =

(
σk

ρ1 +ρ2

)1/2

, (3.14)

where k is the wavenumber. The smallest resolved wave has k = π/h, and using
this wavenumber and replacing umax in equation (3.9) by c, we find that the time
step is limited by

∆t ≤
[

(ρ1 +ρ2)h
3

πσ

]1/2

. (3.15)

3.2 Spatial discretization 55

3.2 Spatial discretization

To discretize the momentum equations, we use the finite-volume approach, where
the conservation principles of mass and momentum are applied to a small control
volume. While the governing equations in integral form, as shown in Panel 2.1, are
often taken as the starting point for the derivation of the discrete approximations,
we can also simply integrate the differential form, as in Panel 2.4, over the control
volume. In either case, the velocity at the center of the control volume uc, is
approximated by the average value

uc =
1
V

∫
V

u(x) dv. (3.16)

Here, V is the volume of the control volume and, for a two-dimensional rectangular
control volume, V = ∆x∆y. To find numerical approximations for the advection and
the diffusion terms, we first define the average value over a control volume

Ac =
1
V

∫
V

∇ · (uu) dv =
1
V

∮
S

u(u ·n) ds (3.17)

and

Dc =
1
V

∫
V

∇ ·Tv dv =
1
V

∮
S

n ·Tv ds, (3.18)

where Tv is the viscous stress tensor for incompressible flow:

Tv = µ [∇hu+(∇hu)T]. (3.19)

Here, we have used the divergence theorem to rewrite the volume integrals as sur-
face integrals over the boundary S of a control volume. Numerical approximations
for these terms, Ah and Dh, are obtained by evaluating the integrals numerically.
The average value of the pressure gradient is

(∇p)c =
1
V

∫
V

∇p dv =
1
V

∮
S

pn ds (3.20)

and the average value of the body force is

fc =
1
V

∫
V

f(x) dv. (3.21)

The continuity equation is approximated in the integral form (Equation (2.21))
at time n+1 by evaluating ∮

S
un+1 ·n ds = 0. (3.22)

Before we derive discrete approximations to the Navier–Stokes equations by
approximating the integrals above, we have to decide what the control volumes
look like and where the various variables, or rather the discrete approximations

56 Numerical solutions of Navier–Stokes equations

pi–1,j+1 pi,j+1 pi+1,j+1

pi–1,j pi,j pi+1,j

pi–1,j–1 pi,j–1 pi+1,j–1

ui–1/2,j+1 ui+1/2,j+1

ui–1/2 ,j ui+1/2,j

ui–1/2,j–1 ui+1/2,j–1

vi–1,j+1/2

vi–1, j–1/2

vi,j+1/2

vi, j–1/2

vi+1,j+1/2

vi+1,j–1/2

Fig. 3.1. The notation used for a standard staggered MAC mesh. The pressure is assumed
to be known at the center of the control volume outlined by a thick solid line. The hor-
izontal velocity components u are stored at the middle of the left and right edges of this
control volume and the vertical velocity components v are stored at the middle of the top
and bottom edges.

to these variables, are located with respect to each other. Generally, the discrete
variables are put at the nodes of a regular grid, and while it may seem most natural
to store the pressure, the velocity, and the material properties of the fluid at the
same grid node (usually referred to as collocated grids), experience shows that
for incompressible flows it is simpler to use a staggered grid where each of these
variables is located on a separate grid. This is especially true if the grid lines are
straight. For simplicity, we shall limit the discussion in the rest of this chapter to
two-dimensional flows. The extension to three dimensions is straightforward, but
makes the exposition more cumbersome.

The staggered grid was introduced by Harlow and Welch (1965) for the MAC
method and has been used extensively in computational fluid mechanics ever since.
Fig. 3.1 shows the structure of the grid and the location of each variable for two-
dimensional flow. The starting point is a control volume around the pressure points
(outlined by a thick line). The rôle of pressure for incompressible flows is to force
the divergence of the velocity field to be zero: the pressure must be raised if there is
a net inflow into this control volume and lowered if there is net outflow. For the
computation of the net flow in or out of the control volume around the pressure
node we need the horizontal velocity components u at the vertical boundaries and
the vertical velocity components v on the horizontal boundaries. It is natural to
locate the velocity components at the middle of the boundaries, where we need
them, and the grid for the horizontal velocity is therefore displaced half a mesh to
the right from the pressure node and the vertical velocity grid is displaced half a
mesh upward (see Fig. 3.2). It is customary to identify the pressure nodes by the
indices (i, j) and to refer to the location of the u-velocity component by (i+1/2, j)

3.2 Spatial discretization 57

pi–1,j+1 pi,j+1 pi+1,j+1

pi–1,j pi,j pi+1,j

pi–1,j–1 pi,j–1 pi+1,j–1

ui–1/2,j+1 ui+1/2,j+1

ui–1/2,j ui+1/2,j

ui–1/2,j–1 ui+1/2,j–1

vi–1,j+1/2

vi–1,j–1/2

vi,j+1/2

vi,j–1/2

vi+1,j+1/2

vi+1,j–1/2

pi–1,j+1 pi,j+1 pi+1,j+1

pi–1,j pi,j pi+1,j

pi–1,j–1 pi,j–1 pi+1,j–1

ui–1/2,j+1 ui+1/2,j+1

ui–1/2,j ui+1/2,j

ui–1/2,j–1 ui+1/2,j–1

vi–1,j+1/2

vi–1,j–1/2

vi,j+1/2

vi,j–1/2

vi+1,j+1/2

vi+1,j–1/2

Fig. 3.2. The control volumes for the u and the v velocity components are displaced half
a grid cell to the right (horizontal velocities) and up (vertical velocities). Here the indices
show the location of the stored quantities. Thus, half indices indicate those variables stored
at the edges of the pressure control volumes.

and the location of the v-velocity component by (i, j +1/2). In an actual computer
code the grids are, of course, simply shifted and each component referenced by an
integer. The density and other material properties are usually stored at the pressure
nodes.

On the staggered grid shown in Fig. 3.1, the discrete form of the continuity
equation is obtained by writing the integral in Equation (3.22) for each side of the
control volume

0 =
1

∆x∆y

∮
S

un+1 ·n ds (3.23)

=
1

∆x∆y

{∫
i+1/2, j

un+1 dy−
∫

i−1/2, j
un+1 dy+

∫
i, j+1/2

vn+1dx

−
∫

i, j−1/2
vn+1 dx

}
,

and then by approximating the integrals by the midpoint rule:

1
∆x∆y

[(
un+1

i+1/2, j −un+1
i−1/2, j

)
∆y+

(
vn+1

i, j+1/2 − vn+1
i, j−1/2

)
∆x
]

= 0. (3.24)

Rewriting this equation slightly, the final result is

un+1
i+1/2, j −un+1

i−1/2, j

∆x
+

vn+1
i, j+1/2 − vn+1

i, j−1/2

∆y
= 0, (3.25)

which could also have been obtained by discretizing Equation (3.3) with finite
differences.

58 Numerical solutions of Navier–Stokes equations

Using the grid in Fig. 3.2 and the notation introduced above, the discrete ap-
proximations for the x and the y component of the predicted velocities (Equation
(3.4)) are

u∗i+1/2, j = un
i+1/2, j +∆t

{(
−Ax
)n

i+1/2, j +(fbx)
n
i+1/2, j (3.26)

+
1

1
2(ρn

i+1, j +ρn
i, j)

[(
Dx
)n

i+1/2, j +(fσx)n
i+1/2, j

]}
and

v∗i, j+1/2 = vn
i, j+1/2 +∆t

{(
−Ay
)n

i, j+1/2 +(fby)
n
i, j+1/2 (3.27)

+
1

1
2(ρn

i, j+1 +ρn
i, j)

[
(Dy
)n

i, j+1/2 +(fσy)n
i, j+1/2

]}
.

The equations for the projected velocities (Equation (3.5)) are

un+1
i+1/2, j = u∗i+1/2, j −

∆t
1
2(ρn

i+1, j +ρn
i, j)

pi+1, j − pi, j

∆x
(3.28)

and

vn+1
i, j+1/2 = v∗i, j+1/2 −

∆t
1
2(ρn

i, j+1 +ρn
i, j)

pi, j+1 − pi, j

∆y
. (3.29)

We note that some of the variables in the equations above, such as the density, are at
locations where they are not defined. For those values, we use linear interpolation
(by taking the average).

There are three main reasons why the staggered grid is so widely used instead
of collocated grids where all the variables are located at the same point. One is
accuracy. Since the pressure gradient is computed as the difference between adja-
cent points, versus points two ∆x or ∆y apart when a collocated grid is used, the
mesh is in effect finer. However, since other derivatives are evaluated using grid
points further apart the results are not as accurate as if a twice as fine collocated
grid were used. The second reason is that it is relatively simple to produce con-
servative methods when working on a staggered grid. The third, and perhaps the
most important advantage of a staggered grid, is that it results in a tighter coupling
between the variables than if they were all located at the same grid node. The conti-
nuity equation, when written on a collocated grid, links every other grid point and
it is possible to satisfy continuity exactly, yet have highly fluctuating velocities.
Although there are ways to overcome this problem for collocated grids (see Rhie
and Chow (1983), for example) the staggered grid provides a simpler approach.

3.3 Discretization of the advection terms 59

3.3 Discretization of the advection terms

In the original MAC method, centered differencing was used for all spatial vari-
ables and the time integration was done by the simple explicit first-order projection
method described above. Later implementations used first-order upwind or the so-
called donor-cell method for the advection terms. Here, we will first present the
second-order centered scheme and then discuss other alternatives.

The discrete approximation of the x-component of the advection term is found
by approximating the integral in Equation (3.17) by the midpoint rule:

(Ax)i+1/2, j =
1

∆x∆y

{[
(uu)i+1, j − (uu)i, j

]
∆y

+
[
(uv)i+1/2, j+1/2 − (uv)i+1/2, j−1/2

]
∆x
}

; (3.30)

and the y-component is approximated by

(Ay)i, j+1/2 =
1

∆x∆y

{[
(uv)i+1/2, j+1/2 − (uv)i−1/2, j+1/2

]
∆y

+
[
(vv)i, j+1 − (vv)i, j

]
∆x
}
. (3.31)

The velocities are given at the center of the respective control volumes (Fig. 3.2),
but the momentum fluxes in (3.30) and (3.31) are computed at the boundaries of the
control volumes. The different way of finding the velocities for the momentum-flux
calculations differentiates between the different numerical schemes.

In the centered, second-order scheme, the velocities at the boundaries of the ve-
locity control volumes are found by linear interpolation and the momentum fluxes
computed using these interpolated values. The x-component at (i+1/2, j) is then

(Ax)
n
i+1/2, j =

1
∆x

[(un
i+3/2, j +un

i+1/2, j

2

)2
−
(un

i+1/2, j +un
i−1/2, j

2

)2
]

+
1

∆y

[(un
i+1/2, j+1 +un

i+1/2, j

2

)(vn
i+1, j+1/2 + vn

i, j+1/2

2

)
−
(un

i+1/2, j +un
i+1/2, j−1

2

)(vn
i+1, j−1/2 + vn

i, j−1/2

2

)]
. (3.32)

60 Numerical solutions of Navier–Stokes equations

The y-component, at the (i, j +1/2) point, is

(Ay)
n
i, j+1/2 =

1
∆x

[(un
i+1/2, j +un

i+1/2, j+1

2

)(vn
i, j+1/2 + vn

i+1, j+1/2

2

)
−
(un

i−1/2, j+1 +un
i−1/2, j

2

)(vn
i, j+1/2 + vn

i−1, j+1/2

2

)]

+
1

∆y

[(vn
i, j+3/2 + vn

i, j+1/2

2

)2
−
(vn

i, j+1/2 + vn
i, j−1/2

2

)2
]
. (3.33)

The centered second-order scheme is more accurate than any non-centered sec-
ond-order scheme and usually gives the best results for fully resolved flows. How-
ever, it has two serious shortcomings. The first problem is that for flows that are not
fully resolved it can produce unphysical oscillations that can degrade the quality of
the results. The second problem is that the centered second-order scheme is uncon-
ditionally unstable for inviscid flows when used in combination with the explicit
forward-in-time integration given by Equation (3.2). It is only the addition of the
diffusion terms that makes the scheme stable, and if diffusion is small, the time-
step must be small. At high Reynolds numbers this usually results in excessively
small time steps.

The velocity at the boundaries of the velocity control volumes ui, j, for example,
can be found in many other ways. Each approach leads to a new scheme whose
properties are different from other schemes. The simplest way to generate a robust
scheme that is stable in the limit of zero viscosity is to use upwinding to find the
edge velocity:

ui, j =

{
ui−1/2, j, if 1

2(ui−1/2, j +ui+1/2, j) > 0;

ui+1/2, j, if 1
2(ui−1/2, j +ui+1/2, j) < 0.

(3.34)

While very robust, upwinding is only first-order accurate and leads to excessive
numerical diffusion, as we will see in Chapter 4. The accuracy is improved signif-
icantly by using a third-order upwind-biased polynomial:

ui, j =

{
(1/8)

(
3ui+1/2, j +6ui−1/2, j −ui−3/2, j

)
, if 1

2(ui−1/2, j +ui+1/2, j) > 0;

(1/8)
(
3ui−1/2, j +6ui+1/2, j −ui+3/2, j

)
, if 1

2(ui−1/2, j +ui+1/2, j) < 0.

(3.35)
This is the so-called QUICK (quadratic upstream interpolation for convective kine-
matics) scheme of Leonard (1979). QUICK and its variants are not completely free
of “wiggles” for steep-enough gradients, but they are much more robust than the
centered difference scheme and much more accurate than the first-order upwind
method. Even more robust, the ENO (essentially non-oscillating) scheme of Shu
and Osher (1989) has been used by a number of authors. In this scheme the edge

3.4 The viscous terms 61

value is extrapolated from the known values at the center of the control volumes by

ui, j =

⎧⎨⎩ui−1/2, j + si

(
∆x
2

)
, if 1

2(ui−1/2, j +ui+1/2, j) > 0;

ui+1/2, j − si+1

(
∆x
2

)
, if 1

2(ui−1/2, j +ui+1/2, j) < 0.
(3.36)

The slope si is the smallest (in terms of absolute value) of

s+
i = (ui+1/2, j −ui−1/2, j)/∆x,

s−i = (ui−1/2, j −ui−3/2, j)/∆x. (3.37)

This selection of the slopes in the second-order ENO scheme is the same as that
used in the MINMOD limiter (Sweby, 1984). A variant of this approach, the Bell–
Colella–Glaz (BCG; Bell et al., 1989) scheme (see also Martin (1998)) is used in
the Gerris code (see Popinet (2003, 2008, 2009)) used for several of the simula-
tions shown in this book. While the edge velocities found using either QUICK or
ENO can be used with the conservative discretization in Equation (2.1), they are
also often used with a discretization of the non-conservative version of the advec-
tion terms (Panel 2.4). Both QUICK and ENO greatly improve the robustness of
the computation of the advection terms for low viscosities, while yielding accuracy
that is comparable to the centered difference scheme for viscosities where both give
reliable results.

3.4 The viscous terms

We approximate the integral of the viscous fluxes (Equation (3.18)) at the bound-
aries of the velocity control volumes shown on Fig. 3.3 by the midpoint rule. This
results in

(Dx)
n
i+1/2, j =

T v,xx
i+1, j

−T v,xx
i, j

∆x
+

T v,xy
i+1/2, j+1/2

−T v,xy
i+1/2, j−1/2

∆y
(3.38)

and

(Dy)
n
i, j+1/2 =

T v,xy
i+1/2, j+1/2

−T v,xy
i−1/2, j+1/2

∆x
+

T v,yy
i, j+1

−T v,yy
i, j

∆y
. (3.39)

The velocity derivatives that appear in the viscous stress tension Tv are found using
the standard second-order centered differences, resulting in

T v,xx
i, j = 2µn

i, j

un
i+1/2, j −un

i−1/2, j

∆x
,

T v,xy
i+1/2, j+1/2

= µn
i+1/2, j+1/2

(un
i+1/2, j+1 −un

i+1/2, j

∆y
+

vn
i+1, j+1/2 − vn

i, j+1/2

∆x

)
,

T v,yy
i, j = 2µn

i, j

vn
i, j+1/2 − vn

i, j−1/2

∆y
. (3.40)

62 Numerical solutions of Navier–Stokes equations

Fig. 3.3. Computation of the viscous stresses on the staggered grid. A control volume for
the horizontal velocity ui+1/2, j is drawn. The components T xy and T xx must be found at

locations (i, j) and (i+1/2, j +1/2) respectively. An interface cutting the control volume
is represented. Gray shading indicates the location of fluid 1 in the control volume.

In the equations in (3.40) we account for the fact that the viscosity coefficient
µ may be space dependent. If the viscosity is constant in each fluid, but changes
discontinuously across the interface, then it is, in principle, given by

µ(x) = µ1H(x)+ µ2[1−H(x)], (3.41)

where H is the Heaviside function defined in Section 2.3. In many cases we set the
viscosity using this equation, with H replaced by a marker function approximating
it. In a VOF method, for instance, one would compute the viscosity at location
(i, j) as

µi, j = µ1Ci, j + µ2(1−Ci, j), (3.42)

where the VOF color function Ci, j approximates H(x). In other methods, typically
front-tracking or level-set methods, one would first construct a smooth indicator
function and then use it as an approximation for H. For small viscosity differences
this approach generally works well. However, for larger differences this approach
can result in an error, since a discontinuous viscosity implies, by virtue of the equa-
tions in Panel 2.5, a discontinuous velocity derivative, so that the approximation of
the derivatives in (3.40) is not consistent.

For higher accuracy we need to do something else. One option is to use one-
sided approximations of the velocity derivatives that use only the data on a given
side of the interface. A few authors have implemented this idea. Another option is

3.4 The viscous terms 63

ui+1/2,j+1

Ti+1/2, j+1/2 u

ui+1/2,j

Ti+1/2,j–1/2

u I
h

ui+1/2,j–1

Fig. 3.4. A simple two-phase parallel shear flow with a horizontal interface. Because of
the viscosity jump, the velocity gradient is discontinuous.

to use harmonic means as advocated by Patankar (1980) in the relatively simpler
case of heat diffusion, or by Coward et al. (1997) for viscous shear flows. To ex-
plain the idea behind the harmonic mean we consider the simple two-phase parallel
shear flow of Fig. 3.4. For simplicity the interface is assumed to be horizontal. We
need to compute the shear stress at points (i+1/2, j−1/2) and (i+1/2, j +1/2).
The horizontal velocity is given at levels j−1, j, and j +1. Because the region be-
tween the two levels j−1 and j is completely filled with a single phase, say fluid
1, the stress located at the intermediate level j−1/2 can easily be computed to be

τ j−1/2 = µ1

u j −uj−1

∆y
, (3.43)

where we use the compact notation τ j−1/2 = T v,xy
i+1/2, j−1/2

and u j = ui+1/2, j. On the

other hand, the stress at level j+1/2 must be computed using an effective viscosity
µi+1/2, j+1/2, so that

τ j+1/2 = µi+1/2, j+1/2

uj+1 −u j

∆y
. (3.44)

What it the correct value of µi+1/2, j+1/2? First, we notice that in a shear flow the
stress is not only continuous, but constant: τ j−1/2 = τ j+1/2 = τ . Second, it is useful
to introduce the velocity uI = u(yI) on the interface at yI = y j + h, where h is the
height of the interface above the grid line j. Then

τ = µ2

u j+1 −uI

∆y−h
= µ1

uI −u j

h
. (3.45)

64 Numerical solutions of Navier–Stokes equations

Hence,

u j+1 −uj = uj+1 −uI +uI −uj = τ
∆y−h

µ2
+ τ

h
µ1

(3.46)

and using (3.44)

µi+1/2, j+1/2 =
τ∆y

u j+1 −uj
= ∆y

(
h
µ1

+
∆y−h

µ2

)−1

. (3.47)

Notice that h/∆y is the fraction of phase 1 in the control volume centered around
(i+1/2, j +1/2) (see Fig. 3.4), so we can write it using a color function notation
Ci, j+1/2 = Ci+1, j+1/2 = Cj+1/2, where we are consistent with the hypothesis of a
horizontal interface and assume that there is no dependence on index i. Then the
mixed-cell viscosity becomes

µi+1/2, j+1/2 =
(

φ
µ1

+
1−φ

µ2

)−1

, (3.48)

a typical harmonic mean, where φ = Cj+1/2. However, the VOF color function
Ci, j is defined at pressure grid points (i, j) (see Chapter 5). Thus, we may use the
second-order approximation φ = h/∆y =Cj +Cj+1−1/2. The interface is actually
located between j and j+1, as we have assumed, whenever 1/2≤Cj +Cj+1 ≤ 3/2,
in other cases the single-phase formulas, for instance (3.43), must be used. An ex-
ample of the use of the harmonic mean is given in Chapter 9.

In general, the problem is more complex than the simple case above where the
interface is aligned both with the grid axis and the flow. The harmonic mean is not a
panacea; for instance, if the horizontal interface in Fig. 3.4 is replaced by a vertical
interface, the arithmetic mean (3.42) becomes exact. A consistent second-order
method for this problem has not yet been published.

In practice, interfaces tend to be aligned with the flow direction in a shear flow,
so the harmonic mean is more accurate. It may, however, be less robust: in flows
with large density differences, the arithmetic mean “favors” the largest viscosity,
while the harmonic mean “favors” the smallest viscosity. The arithmetic mean
thus displaces the “effective” interface from its true position towards the small
viscosity region. It thus creates a larger viscosity region around the interface, which
may have the effect of “protecting” the interface against its destruction by short-
wavelength physical or numerical instabilities.

In this section we have assumed that the viscous terms are computed explicitly.
For an implicit treatment, the superscript n must be replaced by n+1.

3.5 The pressure equation

To derive a discrete Poisson equation for the pressure, we substitute Equations
(3.28) and (3.29), for the corrected velocity components at the new time, into

3.5 The pressure equation 65

pi,j pi+1,j

vi,j+1/2

vi,j–1/2

vi+1,j+1/2

vi+1,j–1/2

ui+1/2,jUb,j = ui–1/2

Fig. 3.5. The pressure equation next to a vertical boundary is derived using the continuity
equation for a control volume where one side (the wall) has a given normal velocity.

Equation (3.25) for the continuity of the new velocities. This yields

1
∆x2

(
pi+1, j − pi, j

ρn
i+1, j +ρn

i, j

−
pi, j − pi−1, j

ρn
i, j +ρn

i−1, j

)
+

1
∆y2

(
pi, j+1 − pi, j

ρn
i, j+1 +ρn

i, j

−
pi, j − pi, j−1

ρn
i, j +ρn

i, j−1

)

=
1

2∆t

(u∗i+1/2, j −u∗i−1/2, j

∆x
+

v∗i, j+1/2 − v∗i, j−1/2

∆y

)
. (3.49)

The pressure equation must be solved using the appropriate boundary conditions
and the staggered mesh makes the derivation of the appropriate boundary condi-
tions particularly straightforward. Consider the vertical boundary in Fig. 3.5, on
the left side of the domain and passing through node (i− 1/2, j), where the hori-
zontal velocity is Ub, j. The continuity equation for the cell next to the boundary,
and surrounding the pressure node (i, j), is

un+1
i+1/2, j −Ub, j

∆x
+

vn+1
i, j+1/2 − vn+1

i, j−1/2

∆y
= 0. (3.50)

Since one of the velocities is known, we only substitute the equations for the cor-
rection velocities, (3.28) and (3.29), for the three unknown velocities, through the
top, bottom, and right edges. Thus, we have

1
∆x2

(
pi+1, j − pi, j

ρn
i+1, j +ρn

i, j

)
+

1
∆y2

(
pi, j+1 − pi, j

ρn
i, j+1 +ρn

i, j

−
pi, j − pi, j−1

ρn
i, j +ρn

i, j−1

)

=
1

2∆t

(u∗i+1/2, j −Ub, j

∆x
+

v∗i, j+1/2 − v∗i, j−1/2

∆y

)
(3.51)

for the pressure node next to the boundary. Similar equations are derived for the
pressure next to the other boundaries and for each corner point. Notice that it is not
necessary to impose any new conditions on the pressure at the boundaries and that
simply using incompressibility yields the correct boundary equations.

66 Numerical solutions of Navier–Stokes equations

Since the value of the pressure is not specified at the boundaries, Equations
(3.49) and (3.51) do not determine the pressure uniquely and we can add an ar-
bitrary constant to the solution. For many iterative techniques this constant is set
by the average value of the initial guess and the iteration can be carried out with-
out explicitly enforcing the constant. In other cases, the average pressure, or the
pressure at one point, must be specified.

We also note that when only inflow or no-through-flow boundary conditions are
used it must be verified that no net flow enters the domain, so that ∑ Ub ·n = 0,

where the sum is over boundary nodes. Otherwise the pressure solver will never
converge.

The boundary conditions given by Equation (3.51) apply to solid walls and
boundaries where the inflow is specified. For outflow boundaries, see
Section 3.7.

Solving the pressure Equation (3.49), with the appropriate boundary conditions,
(3.51), can be done in many ways. During code development and for preliminary
runs, it is usually more convenient to use a simple successive overrelaxation (SOR)
iteration method. To do so, Equation (3.49) is rearranged to isolate pi, j on the left-
hand side. The pressure is then updated iteratively by substituting on the right-hand
side the approximate values pα of the pressure from the previous iteration and by
taking a weighted average of the updated value and the pressure pα

i, j from the last
iteration to compute the new approximation pα+1

i, j :

pα+1
i, j (3.52)

= β

[
1

∆x2

(1
ρn

i+1, j +ρn
i, j

+
1

ρn
i, j +ρn

i−1, j

)
+

1
∆y2

(1
ρn

i, j+1 +ρn
i, j

+
1

ρn
i, j +ρn

i, j−1

)]−1

×
[

1
∆x2

(pα
i+1, j

ρn
i+1, j +ρn

i, j

+
pα

i−1, j

ρn
i, j +ρn

i−1, j

)
+

1
∆y2

(pα
i, j+1

ρn
i, j+1 +ρn

i, j

+
pα

i, j−1

ρn
i, j +ρn

i, j−1

)
+

1
2∆t

(u∗i+1/2, j −u∗i−1/2, j

∆x
+

v∗i, j+1/2 − v∗i, j−1/2

∆y

)]
+(1−β)pα

i, j.

Here, β is a relaxation parameter and for overrelaxation we must have β > 1. For
stability reasons we must also have β < 2. Taking β = 1.2−1.5 is usually a good
compromise between stability and accelerated convergence. pi, j is also isolated in
the same way in the pressure equations for boundary and corner points. Initially,
the pressure can be set to zero, but once the time integration has started, the value
of the pressure from the last time step usually provides a good first estimate. For
vector computers the SOR process needs to be modified slightly, resulting in the
so-called black and red SOR.

3.5 The pressure equation 67

The chief merit of the SOR iteration is its simplicity. The solution of the pres-
sure equation is generally the most time-consuming part of any simulation of in-
compressible flows, and the SOR converges too slowly for resource-intensive com-
putations. Thus, while we recommend the use of SOR during code development
(or when a small problem has to be solved infrequently), for production runs it is
necessary to use more advanced methods.

The development of efficient solution methods for elliptic equations is a highly
developed field, and a large number of methods have been proposed. Advanced
techniques include fast Poisson solvers based of the discrete fast Fourier transform
or cyclic reduction, multigrid methods, and advanced iterative Krylov-subspace
methods. Fast Poisson solvers were immensely popular in the eighties, in part due
to the freely available and popular routines in FISHPAK (Swarztrauber and Sweet,
1979), but these methods are limited to simple boundary conditions and separable
elliptic equations. They cannot, therefore, be used when the density changes, as in
Equation (3.49).

Multigrid methods, developed in the late eighties (Briggs, 1987; Wesseling,
1992), have been used by many authors to solve the pressure equation for mul-
tifluid flow simulations. The fundamental idea behind multigrid solvers is perhaps
best understood by looking at the iterative solution of the Poisson equation as an
explicit “pseudo” time integration of a diffusion equation to a steady-state solution.
To obtain convergence (steady state) as quickly as possible, we would like to use
the maximum allowable time step. Elementary analysis shows that the maximum
allowable time step is proportional to ∆x2 (or ∆y2), so more time steps must be used
for fine grids. If we write the difference between the initial conditions and the final
steady state as a Fourier series, it is easily seen that the decay rate is proportional to
the square of the wavenumber. The high-wavenumber components of the solution
die out quickly and the time needed to reach steady state is controlled by the decay
rate of the low-wavenumber modes. Thus, if we use a fine grid, we are forced to
take small steps to accurately resolve wavenumbers that do not exist after a few
steps! This suggests that the convergence rate can be improved considerably by
using a coarser grid, where large time steps can be used, for the slowly decaying
low-wavenumber modes. In multigrid methods we generally start on a fine grid and
iterate until the high-wavenumber components of the error have decayed and the
rate of convergence becomes slow. The approximate solution is then transferred to
a coarser grid and an equation for the correction iterated until the convergence rate
slows down. The process is repeated on coarser and coarser grids until the grid is
so coarse that the equations can be solved exactly. The corrections are then added
to the solution found on the finer grids and the equations iterated again to eliminate
errors introduced by the transfer between the grids. Once all the corrections have
been added to the results on the finer grids, we should only need a few iterations

68 Numerical solutions of Navier–Stokes equations

to converge fully. In practice, it is usually more efficient to adopt more complex
strategies where the solution is transferred more frequently between the coarse and
the fine grids.

Although multigrid methods have been used for a large number of simulations of
multiphase flows, it is often found that multigrid solvers have difficulty converging
for very high density ratios. Another option, therefore, is to use advanced Krylov
methods to solve the pressure equation. Moreover, several researchers have re-
cently been using a combination of advanced Krylov methods and multigrid, where
several multigrid iterations are used as a preconditioner for the Krylov method.
Krylov methods seek to minimize the residual iteratively using only the multipli-
cation of a matrix with a vector. The SOR method is an example of a stationary
Krylov method, but in nonstationary methods the search direction is determined
based on the current residual. Practical implementations of the Krylov methods
almost always involve the use of a preconditioner where the original operator is
replaced by a simpler operator that in some way preserves the properties of the
original operator. Early Krylov methods include the conjugate-gradient method,
but more recent methods are generally based on the generalized-minimal-residual
method (GMRES). For each iteration, GMRES requires the results from every pre-
vious iteration to produce a new approximation to the solution and the required
memory and work therefore increases with the number of iterations. Nevertheless,
it has been used succesfully in multiphase calculations (Francois et al., 2006). A
large number of methods have been developed to reduce the memory and work
requirement, but as of this writing it looks like there is no “best” method for all
problems. While it is possible that there is a method that is optimum for the rather
special situation that we are interested in – a Poisson equation with coefficients that
change discontinuously – the optimal method has yet to be discovered. Methods
that have been used successfully, however, include the bi-conjugate gradient sta-
bilized (BiCGSTAB) method of van der Vorst (1992, 2003), used for example by
Gerlach et al. (2006). Takahira et al. (2004) claim that density ratios as large as
1:10 000 may be reached using BiCGSTAB.

The ease by which the pressure equation is solved depends generally on the den-
sity jump. While an SOR method with a low enough overrelaxation parameter
always allows us to solve the pressure equation, it can be very slow and more ad-
vanced methods can fail to converge. Furthermore, small errors in the indicator
or marker function can lead to negative densities that in turn usually cause con-
vergence difficulties. These problems, however, are eliminated relatively easily by
minor filtering. For many problems, such as for bubbles, the exact density differ-
ence plays a relatively minor rôle, once it is large enough, and it is possible to speed
up the calculations by approximating the density of the bubbles by a value that is
much higher than the real one. For droplets subject to aerodynamic forces, as in

3.6 Velocity boundary conditions 69

pi–1,j pi,j pi+1,jui+1/2,jui–1/2,j

vi–1,j+1/2 vi,j+1/2 vi+1,j+1/2vbdry,j+1/2

pi–1,j+1 pi,j+1 pi+1,j+1ui–1/2,j+1 ui+1/2,j+1

Fig. 3.6. The tangential velocity at a boundary is enforced using ghost points outside the
computational domain. The velocity at a ghost point is specified so that linear interpolation
gives the desired tangent velocity at the wall.

atomization, droplet impact or wave-breaking problems, the exact density ratios
must be used, however.

3.6 Velocity boundary conditions

Although the treatment of the pressure boundary conditions, as well as the nor-
mal velocities, simplifies considerably on a staggered mesh, the tangential velocity
boundary conditions become a little more complicated. When vi, j+1/2 in Fig. 3.6
(next to a left boundary) is updated, the velocity at the node to the left, vi−1, j+1/2,
is needed. This node, however, is outside the boundary. The easiest way to imple-
ment the boundary conditions for the tangent velocity is by the use of ghost points.
The value of the tangential velocity at the ghost point is obtained by treating it
as a regular point and using the fact that for no-slip boundary conditions the fluid
velocity at the boundary is equal to the wall velocity. A linear interpolation gives

vbdry, j+1/2 =
1
2
(vi, j+1/2 + vi−1, j+1/2), (3.53)

where vbdry, j+1/2 is the tangential velocity of the wall. Solving for the velocity at
the ghost point yields

vi−1, j+1/2 = 2vbdry, j+1/2 − vi, j+1/2, no slip boundary. (3.54)

Full-slip boundary conditions are usually implemented by simply putting the
velocity at the ghost point equal to the velocity inside the domain. The deriva-
tive of the tangential velocity is then zero, assuming that we use a centered finite
difference approximation. For the situation shown in Fig. 3.6:

vi−1, j+1/2 = vi, j+1/2, full-slip boundary. (3.55)

70 Numerical solutions of Navier–Stokes equations

Outflow
boundary

pi,j

vi,j+1/2

vi,j−1/2

ui+1/2,jui−1/2

Fig. 3.7. At an outflow boundary it is generally desirable to apply conditions that disturb
the upstream flow as little as possible. If the outflow is perpendicular to the boundary,
assuming that the normal velocity is constant across the boundary results in reasonably
“soft” outflow conditions.

3.7 Outflow boundary conditions

Often, we would like to simulate only the part of a flow field that is of interest to us,
even though the domain is in reality much larger. In other cases, we are interested
in a region with in- and out-flow. While it is often realistic to specify the inflow
velocity exactly, the goal of the outflow boundary conditions is to let fluid leave
the computational domain in realistic ways.

The simplest situation arises if it is physically justifiable to specify the outflow
velocity at each grid point on the outflow boundary. Then the situation is exactly
the same as for the inflow boundaries described above and the implementation is
straightforward. This condition, however, is too restrictive in most cases.

Although we stop following the flow computationally at an outflow boundary,
the flow usually continues beyond it. To justify truncating the domain, we have
to assume that whatever the flow does downstream, it has little impact upstream
of the boundary. This usually implies that the downstream flow is smooth and
uniform. Thus, the outflow boundary conditions should constrain the outflow as
little as possible and let the fluid “flow freely” out of the domain.

One possibility is to assume that the streamlines at the outflow are perpendicular
to the boundary. If the outflow takes place at the right boundary of a rectangular
domain (Fig. 3.7), this means that v = 0 at the boundary.

From continuity it follows that ∂ u/∂x = 0 and for the grid shown in Fig. 3.7 the
velocity of the boundary is therefore

ui+1/2, j = ui−1/2, j. (3.56)

Thus, we can sometimes simply use (3.56) along with pi, j = constant and vi, j+1/2 =
0. This approach results in a relatively “soft” outflow condition and does not, in
particular, require the u velocity to be uniform across the outflow boundary. In

3.8 Adaptive mesh refinement 71

principle, u can even change sign, allowing some inflow. However, the location
of the outflow boundary will generally impact the computed solution if there is a
significant variation in the outflow velocity.

Many other boundary conditions have been proposed in the literature to account
for outflows in a physically plausible, yet computationally efficient way. A discus-
sion of outflow boundary conditions can be found in Wesseling (2001: section 6.5)
and in Johansson (1993), for example.

In many cases it is convenient to make one or more coordinate directions peri-
odic. If the domain is periodic in the x direction and the length of the period is
L, then a(x,y,z) = a(x±mL,y,z), where a is any variable and m is any positive
or negative integer. If the domain is discretized by N cells in the x direction and
we have one ghost grid point on either side, then the total number of grid points is
N + 2. If the ghost point on the left is given by i = 1 and the one on the right by
i = N + 2, then the value of a at these points is given by a(1, j,k) = a(N + 1, j,k)
and a(N +2, j,k) = a(2, j,k) respectively.

3.8 Adaptive mesh refinement

For many multiphase flow problems (as for single-phase flows) the resolution re-
quirements vary greatly from one point to another. Allocating computational re-
sources according to need can, at least in principle, result in significant savings
compared with using a single grid with equal size cells. In spite of major efforts
to develop fluid solvers based on unstructured, often arbitrarily shaped, control
volumes, several decades of experience have shown that, in terms of accuracy and
computational efficiency, it is hard to beat regular structured grids. The obvious so-
lution is to use structured grids with curved grid lines that remain logically rectan-
gular but whose grid lines can be pushed and pulled to regions of the computational
domain where they are needed. This obvious and attractive approach has been used
extensively for single-phase flow in complex domains (but less so for multiphase
flows; see Muradoglu and Kayaalp (2006) for an exception), but it is now under-
stood that, since the number of grid points in this approach is fixed, the achievable
adaptivity is limited and the method is only suitable for relatively simple problems.

Currently, the main choice for multiphase flows are techniques based on adding
grid points by refining a regular structured grid locally. A single grid cell is usually
split into four (in two dimensions) or eight (three dimensions) smaller cells, either
by embedding a patch of finer grid into the coarser grid or by splitting each cell
individually. In the latter case, which appears to be more popular, an octree data
structure (quadtree in two dimensions) is used to organize the grid and to trans-
fer information between cells. In most cases, the small cells can be split again,
for increased resolution. This approach to grid adaptivity is usually referred to

72 Numerical solutions of Navier–Stokes equations

Fig. 3.8. One example of the use of adaptive mesh refinement (AMR) with a VOF sim-
ulation of atomization. Computations using the Gerris code. Here the density ratio is
ρl/ρg = 28, the Weber number is Wel = 11 600 and the Reynolds number is Rel = 5800.
The jet diameter is 1/12 of the domain width and by using seven levels of grid refinement
it is possible to reduce the required number of grid cells from over a hundred million if a
uniformly fine grid is used to about three million cells.

as adaptive mesh refinement (AMR), although the name could be used for many
other strategies for local refinement of the grid. Early examples of the use of oc-
tree/quadtree AMR include front-tracking simulations of biological cells by Agre-
sar et al. (1998). More recent uses include simulations of underwater explosions
by Kadioglu and Sussman (2008), done by a level-set/VOF method and Hua and
Lou (2007) who used a front-tracking method in conjunction with a general pur-
pose AMR code (PARAMESH, see MacNeice et al. (2000)) to simulate the rise of
bubbles. In Fig. 3.8 we show one frame from a simulation of the atomization of a
fuel jet using the open-source flow solver Gerris (see Popinet (2003, 2008, 2009))
where a VOF interface-tracking scheme is coupled with an octree AMR. The use of
AMR for multiphase flow simulations involves essentially no major issues beyond
those encountered for single-phase flow simulations, and we refer the reader to the
already voluminous literature for more details.

3.9 Summary

In this chapter we have outlined a very standard numerical method to solve the
Navier–Stokes equations numerically for flows with variable density and viscosity.

3.10 Postscript: conservative versus non-conservative form 73

Combined with the techniques described in the next chapters to advect the phase
boundary (and, therefore, the density and viscosity fields) and to compute the sur-
face tension, this results in a method capable of simulating reasonably accurately
a wide variety of multifluid flows. The accuracy, robustness, and efficiency of the
method can, however, be improved in a number of ways, and we have indicated
briefly a few ways to do so.

While the equations presented in this chapter are reasonably complex, they gen-
erally do not result in a very lengthy code. More advanced treatment, particularly
of the advection terms, adds some complexity, but frequently it is not necessary to
start completely “from scratch” when developing a new code. The equations of this
chapter have been implemented by a large number of investigators and many codes
and code “snippets” are available as open source codes on the Internet. Using those
as a starting point can result in a considerably shorter development time.

3.10 Postscript: conservative versus non-conservative form

To gain some insight into the differences between the discretization of the conser-
vative and non-conservative form of the Navier–Stokes equations (Panel 2.2 versus
Panel 2.3) we will consider the uniform one-dimensional motion of a fluid with a
sharp density interface. The pressure gradient and the viscous terms can be taken
to be zero, so we only need to solve

∂ρu
∂ t

+
∂ρu2

∂ x
= 0 (3.57)

for the momentum and
∂ρ
∂ t

+
∂ρu
∂x

= 0 (3.58)

for the density. We assume a collocated grid, so that ui and ρi are given at the same
physical location. A simple forward in time, centered in space scheme1 for the
momentum equation lets us write

un+1
i =

1
ρn+1

i

[
ρn

i un
i −

∆t
2h

((ρu2)n
i+1 − (ρu2)n

i−1)
]
. (3.59)

The initial velocity field is constant, ui = U , so we can write this as

un+1
i =

U
ρn+1

i

[
ρn

i −
U∆t
2h

(ρn
i+1 −ρn

i−1)
]

(3.60)

and since the velocity should remain constant, the right-hand side should be U
which requires the term in parentheses to be equal to ρn+1

i . If we apply the same

1 This is actually an unstable scheme, but that is immaterial for the argument being made here.

74 Numerical solutions of Navier–Stokes equations

scheme to the advection equation for the density, we find that

ρn+1
i = ρn

i −
U∆t
2h

(ρn
i+1 −ρn

i−1), (3.61)

using that the velocity is constant. The right-hand side of this equation is exactly
the same as the bracket on the right-hand side of Equation (3.60), showing that the
velocity remains constant, as it should.

If the density, however, is advected in a different way, say by an upwind scheme,
such that

ρn+1
i = ρn

i −
U∆t

h
(ρn

i −ρn
i−1), (3.62)

then the same cancelation will obviously not take place and the velocity will not
remain exactly equal to U . While the error is generally small, it is not exactly
zero, particularly if the density jump is large. The same considerations hold for
a staggered grid. Equation (3.57) can, however, be written in a non-conservative
form as

∂ u
∂ t

+
∂u2

∂ x
= 0 (3.63)

using Equation (3.58). Any discretization of this form will preserve the constant
velocity.

For methods where the density is generated from a marker function that is ad-
vected differently from how the momentum is updated, we are likely to encounter
the situation described above and the non-conservative form of the equations is
therefore generally preferred. Another way to avoid the problem is to first advect
the density using a scheme consistent with the advection of the momentum and
then re-advect the density using the more sophisticated scheme at the end of the
time step.

4

Advecting a fluid interface

When the governing equations are solved on a fixed grid, using one set of equa-
tions for the whole flow field, the different fluids must be identified in some way.
This is generally done by using a marker function that takes different values in
the different fluids. Sometimes a material property, such as the fluid density for
incompressible fluids, can serve as a marker function, but here we shall assume
that the rôle of the marker function is only to identify the different fluids. As
the fluids move, and the boundary between the different fluids changes location,
the marker function must be updated. Updating the marker function accurately is
both critical for the success of simulations of multiphase flows and also surprisingly
difficult. In this chapter we discuss the difficulties with advecting the marker func-
tion directly and the various methods that have been developed to overcome these
difficulties.

The VOF method is the oldest method to advect a marker function and – af-
ter many improvements and innovations – continues to be widely used. Other
marker function methods include the level-set method, the phase-field method, and
the CIP method. Instead of advecting the marker function directly, the bound-
ary between the different fluids can also be tracked using marker points, and the
marker function then reconstructed from the location of the interface. Methods
using marker points are generally referred to as “front-tracking” methods to dis-
tinguish them from “front-capturing” methods, where the marker function is ad-
vected directly. In addition to the difference in the way the marker function is
updated, surface tension can be included in several different ways, as explained in
Chapter 7.

75

76 Advecting a fluid interface

4.1 Notations

To identify whether a given fluid i is present at a particular location x, we use a
Heaviside (step) function H, defined by

Hi(x) =
{

1, if x is in fluid i;
0, if x is not in fluid i.

(4.1)

For a two-fluid system, i = 1,2 and H2 = 1−H1, so it is sufficient to work with
H = H1. As the interface moves, the shape of the region occupied by each fluid
changes, but each fluid particle retains its identity. Thus, the material derivative
(following the motion of a fluid particle) of H is zero, or

DH
Dt

=
∂H
∂ t

+u ·∇H = 0. (4.2)

Once H is known, the material properties of each fluid can be found, and the
velocity updated as described in the last chapter. The accurate advection of H,
or numerical approximations to H, is the central topic of this and the next two
chapters.

When following the flow computationally, we have to work with an approxima-
tion of H. Several approximations are possible. The color function C is defined
as the average value of H in each computational cell. For a rectangular two-
dimensional cell

Ci, j =
1

∆x∆y

∫
V

H(x,y) dx dy. (4.3)

Cells away from the interface are either full, C = 1, or empty, C = 0, but if an
interface is located somewhere in a given cell, C for that cell has a fractional value.
Often, we shall find it useful to work with smoother versions of the color func-
tion, denoted here by the “indicator function” I. It is convenient to think of I as a
smoothed version of H, obtained by

I(x,y) =
∫

G(x− x′,y− y′)H(x′,y′) dx′ dy′, (4.4)

where G is a smoothing kernel. Here, we have assumed a two-dimensional domain.
In practice, I is obtained by smoothing the color function or by constructing a
smooth function directly from the location of the interface. Yet another possibility
is to give up any attempts to link the shape of the marker function to the step
function and simply use a smooth function F , where F > 0 in one fluid and F < 0 in
the other. The interface is therefore identified by the level-set F = 0. Various other
approximations to H are in common use, and while these are generally similar to
C and I described above, there are often minor differences in their properties, their
names, or their physical interpretation. With this in mind, we will use c for the

4.2 Advecting the color function 77

Fig. 4.1. Different representations of an interface on a grid. The solid line represents a step
function H, the shaded function is the color function Cj, and the dashed line is a smooth
indicator function I. The dash–dot line is a level-set function whose zero contour marks
the interface.

phase-field variable in Section 4.6 and f for the CIP marker function in Section
4.7.

Figure 4.1 shows a few different ways to identify the interface. The Heaviside
function H(x) is the discontinuous function shown by a solid line that changes
abruptly from H = 1 to H = 0 in cell j, exactly where the interface is located.
The color function Cj, the average value of the marker in each cell, is shown by
the shaded area, and the smooth approximation I(x) is shown by the dashed line.
Notice that H and C are identical everywhere except in the interface cell j, but that I
approaches a uniform value more slowly. The level-set function F(x), defined such
that |F| = d, where d is the distance from the interface, is shown by a dashed–dot
line. While H, I, and F obviously vary with x, Cj is inherently identified with cell j.
In the discussion below we will, however, sometimes talk about C as a continuous
function approximated by the Cj volumes in each cell.

4.2 Advecting the color function

It is perhaps somewhat counterintuitive that the seemingly simple problem of push-
ing a piecewise-constant function around by a prescribed velocity field, using the
linear first-order advection equation, should be one of the hard problems in com-
putational science. The difficulty is even more surprising given the deceptive sim-
plicity of the one-dimensional problem. Yet, the one-dimensional problem can
serve as both an introduction to the difficulties and as a motivation for the various
techniques that have been designed to overcome the difficulties. We shall there-
fore examine the one-dimensional problem in some detail here. To simplify our
task, we assume that the flow is incompressible so that the velocity is constant,

78 Advecting a fluid interface

u = U > 0. The advection of the color function is therefore governed by

∂C
∂ t

+
∂ F
∂x

= 0, (4.5)

where F = UC is the flux function. As the interface moves to the right, C flows
into cell j through the left boundary and out through the right boundary. For cell
j we denote the left and the right boundaries by j−1/2 and j +1/2, respectively,
and the fluxes by Fj−1/2 and Fj+1/2. If the value of C in cell j at time level n is

denoted by Cn
j and the value at the end of a time step ∆t by Cn+1

j , then we can write

Cn+1
j = Cn

j −
1

∆x

∫ t+∆t

t
(Fj+1/2 −Fj−1/2) dt. (4.6)

Or, in words, the change in Cj is the difference between what flows in and what
flows out of cell j. Here, Fj−1/2 = UCj−1/2 and Fj+1/2 = UCj+1/2, and the key
challenge is to accurately estimate Cj−1/2 and Cj+1/2.

If we take C in each cell to be a constant, then the integration of the fluxes over
time is simple. The value of C that crosses the j−1/2 boundary is simply the value
in the cell to the left, Cj−1, and the value of C crossing the j +1/2 boundary is Cj.
Thus, as long as we limit the size of each time step to ∆tU ≤ ∆x, we can update Cj
by

Cn+1
j = Cn

j −
U∆t
∆x

(Cj −Cj−1). (4.7)

In Fig. 4.2 we show the advection of C using this scheme. The initial condition is
a blob of constant C that should move to the right by a constant velocity without
changing its shape. The exact solution is shown at time t = 0, t = 140∆t, and
t = 280∆t, along with the solution advected using the scheme above (Equation
(4.7) using 200 equal-sized control volumes for a domain of length 1, blob width
of 20∆x, and ∆t = 0.5∆x). Obviously, scheme (4.7) does a terrible job. Even though
the blob has only moved twice its length it has diffused excessively and it continues
to diffuse as it moves further.

What went wrong? We used the exact fluxes, so the problem cannot be there.
The culprit is the assumption that the correct way to compute the flux of C is to
represent the distribution of C in each cell by the cell average Cj. Since C is sup-
posed to approximate H we do not want any C to flow out of cell j until it is full.
Thus, if cell j is initially half full, so the interface is in the middle, and we take a
time step ∆t = U∆x/4 so that the interface moves to the right boundary, then cell
j should be full and cell j + 1 should still be empty at the end of the step. The
problem, therefore, is that we computed the fluxes by assuming that C is equal to
its average, everywhere in each cell.

4.2 Advecting the color function 79

50 100 150 200
0.5

0

0.5

1

1.5

Fig. 4.2. Evolution of a slug of material using the first-order upwind method. The exact
solution shows the slug moving unchanged downstream (black line) but the solution found
using the upwind method (gray line) rapidly becomes excessively diffuse. The domain is
resolved by 200 equal-sized control volumes for a domain of length 1, blob width of 20∆x,
and ∆t = 0.5∆x. The solution is plotted at t = 0, t = 140∆t, and t = 280∆t.

The obvious solution to this smearing is to represent the distribution of the
marker in each cell by a higher order function that recognizes that it is distributed
over the cell in such a way that the left-hand side is full and the right-hand side is
empty. If the distribution in each cell is given by a linear function with slope s j, a
little bit of geometry, using Fig. 4.3, shows that during time interval ∆t the amount
that flows into cell j is [Cn

j−1 +(∆x−U∆t)s j−1/2]U∆t, and the amount that flows
out is [Cn

j +(∆x−U∆t)s j/2]U∆t. Thus, the amount of C in cell j at time n + 1 is
given by

Cn+1
j = (1−λ)Cn

j +λCn
j−1 −

∆x
2

(1−λ)λ (s j − s j−1) (4.8)

where λ =U∆t/∆x. The slope in each cell can be estimated in several ways. Define
the left and the right slopes for cell j by

s+
j =

Cn
j+1 −Cn

j

∆x
and s−j =

Cn
j −Cn

j−1

∆x
. (4.9)

The weighted average is

s j =
1−κ

2
s−j +

1+κ
2

s+
j , (4.10)

80 Advecting a fluid interface

j 1/2 j+1/2

U t
sj–1

sj

j 1 j+1 j

Fig. 4.3. The advection of a color function using a higher order scheme. The dark gray
area is the initial solution taking the value in each cell equal to the average cell value.
After the slopes in each cell have been constructed, using the values in adjacent cells, the
fluxes can be computed exactly by geometric considerations. The light gray area shows the
solution at the new time, before averaging.

where κ is an arbitrary constant. Different selections of κ give different schemes.
κ = 1, for example, gives the Lax–Wendroff scheme.

The advection of a blob using Equation (4.8) is plotted in Fig. 4.4 for κ =
−1, 0, +1, at the same times and using the same resolution and time step as in
Fig. 4.2. The good news is that the results are not as diffusive as for the first-order
upwind method (Equation (4.7) and Fig. 4.2), but the bad news is that the solutions
oscillate around the interface for all values of κ . Scheme (4.8), therefore, does not
really capture the sharp interface any better than the upwind scheme in Fig. 4.2.
Unfortunately, using a higher order function, such as a parabola, only produces
more oscillations.

This problem – the fact that using a first-order scheme to advect a discontinu-
ity results in excessive diffusion and that higher order methods yield oscillations –
has been the subject of extensive research by a large number of investigators. The
remedies are all similar in nature. The solution is advected by a high-order scheme
nearly everywhere, but around the discontinuity the solution is carefully modified
to eliminate oscillations. This smoothing amounts to adding artificial viscosity
and results in a formal reduction in the order of the scheme near the discontinuity.
Artificial viscosity was originally introduced by von Neuman (see Richtmyer and
Morton (1967)) to damp out oscillations around shocks for gas dynamics simula-
tions, but the modern way of looking at artificial viscosity originated with the high-
order Godunov method of van Leer (1979) and the flux-corrected transport method
(Boris and Book, 1973). While modern shock-capturing methods have reached a
high degree of sophistication and do, in particular, capture shocks in compressible
flows very well, they are usually not entirely satisfactory for the advection of a pas-
sive marker function, particularly for a long time. Shocks in compressible flows

4.3 The volume-of-fluid (VOF) method 81

50 100 150 200
0.5

0

0.5

1

1.5

Fig. 4.4. Evolution of a slug of material using higher order methods. The exact solution
is shown by a solid black line and the results by three different higher order methods are
shown by lines of different shades of gray. The solution is shown at the same times as in
Fig. 4.2 and all parameters are the same.

generally “want” to remain sharp1 and slight smoothing of the shock is immedi-
ately repaired. For a passive marker there is no inherent mechanism that sharpens
a smoothed interface and the flow does not “know” the difference between an ab-
solutely sharp interface and a smoother one. Thus, shocks are generally captured
better than contact discontinuities in simulations of compressible flows. For the
advection of a marker function, advanced monotonicity-preserving methods for
shock capturing work well for short times, but different approaches are needed for
longer times.

4.3 The volume-of-fluid (VOF) method

While high-order monotonicity-preserving methods have been a great success for
computations of flows with shocks, their success in solving Equation (4.5) is mixed
at best – although we should acknowledge that, for relatively short times, the best
of these methods do just fine. For the long time evolution of a marker function we

1 Since characteristics flow into the shock.

82 Advecting a fluid interface

Fig. 4.5. One-dimensional advection by the VOF method. Given the value of the color
function in the interface cell j, and the side where the full cell is, the location of the
interface can be found and the fluxes computed exactly.

have to step back, take a fresh look at the problem of advecting the color function
C, and seek a different way of doing so.

In one dimension, as depicted in Fig. 4.5, the answer is embarrassingly simple.
Cj is either 0 or 1, except in an interface cell, so the value of Cj in the interface cell
yields immediately the exact location of the interface. If Cj−1 = 1, Cj = 1/3, and
Cj+1 = 0 then the interface is ∆x/3 from the left boundary. If Cj = 1/2, then the
interface is in the middle of the cell, and so forth. If U ≥ 0, then the flux through
the left boundary is always U and we can compute exactly the flux through the right
boundary, since we know the exact location of the interface. If U∆t < (1−Cj)∆x,
then the flux is zero; and if U∆t > (1−Cj)∆x, then the flux is first zero and then U
after the interface reaches the right boundary. Thus,

∫ t+∆t

t
Fj+1/2 dt =

{
0, ∆t ≤ (1−Cj)∆x/U ;
(Cj −1)∆x+U∆t, ∆t > (1−Cj)∆x/U.

(4.11)

This expression was used to compute the exact motion of the blob in Figs. 4.2 and
4.4.

Thus, for one-dimensional problems the advection of the marker function is es-
sentially trivial. Not so in higher dimensions! The first attempt to extend the
advection described by Equation (4.11) to higher dimensions was the simple line
interface calculation, or SLIC, method of Noh and Woodward (1976). In this ap-
proach the marker function is advected by time splitting, where we advect first in
one coordinate direction and then in the other (assuming two-dimensional flow).
For advection in the horizontal direction, an interface cell is divided by a vertical
line into a full part and an empty part, with the decision of which side is empty
and which is full depending on the volume fraction in the cells to the left and the

4.3 The volume-of-fluid (VOF) method 83

a b

c d

Fig. 4.6. VOF reconstruction of the solution for advection in two dimensions. (a) The
original interface. (b) The original SLIC reconstruction. (c) The Hirt and Nichols recon-
struction. (d) PLIC reconstruction. Figure adapted from Rudman (1997).

right. Once the location of the interface has been determined, the time integration
of the fluxes is done using Equation (4.11). The interface is then advected in the
vertical direction by dividing the cell by a horizontal line into a full and an empty
part. In three dimensions this process obviously must also be repeated for the third
coordinate direction. Hirt and Nichols (1981) proposed a slightly different method
where the interface was still approximated by straight lines, parallel to the coor-
dinate axis, but the same orientation was used for the advection in the different
coordinate directions. To determine whether the interface should be horizontal or
vertical, Hirt and Nichols found the normal to the interface, using values of C in
the neighboring cells, and selected the orientation of the interface depending on
whether the normal was more closely aligned with the horizontal or the vertical
axis. Although perhaps more appealing than the original SLIC method, tests by
Rudman (1997) suggest that the Hirt and Nichols method is not significantly more
accurate. In addition to distorting the interfaces, both methods generally gener-
ate considerable amount of “floatsam” and “jetsam,” where pieces of the interface
break away in an unphysical way.

84 Advecting a fluid interface

Although the method of Hirt and Nichols perhaps did not improve significantly
on the SLIC approach, it nevertheless suggested that the key to improving the
behavior of the advection scheme was the reconstruction of the interface in each
cell, using the value of the marker function in each cell, along with the value in
the neighboring cells. In the piecewise linear interface calculation (PLIC) method
introduced by DeBar (1974) and Youngs (1982), the interface is approximated by
a straight-line segment in each cell, but the line can be oriented arbitrarily with
respect to the coordinate axis. The orientation of the line is determined by the nor-
mal to the interface, which is found by considering the value of C in both the cell
under consideration and in the adjacent cells. Once the interface in each cell has
been constructed, the fluxes from one cell to another are computed by geometric
considerations. The result of the advection generally depends on the accuracy of
the interface reconstruction; finding the normal accurately, therefore, becomes crit-
ical for PLIC methods. Several methods have been proposed to do so. Given C in
each cell and the normals, the exact location of the interface can be determined.
In two dimensions the line segment can cross any of two adjacent or opposite cell
faces, so there are two basic interface configurations. In three dimensions there are
many more possible configurations, adding considerably to the complexity of the
method.

Figure 4.6, adapted from Rudman (1997), shows the main difference between the
interface reconstruction using SLIC, the Hirt and Nichols VOF method, and PLIC.
While the linear reconstruction captures slowly varying sections of the interface
very well, it usually does less well for interfaces that are changing rapidly. Notice
that the line segments are not continuous across cell boundaries.

In the next chapter we discuss modern VOF methods in detail, and later in the
book we will show several examples of computations done using VOF methods.

4.4 Front tracking

Instead of advecting a marker function by reconstructing the location of the in-
terface in a partially full cell, for one-dimensional problems we can, of course,
simply use a marker point that is moved with the imposed velocity. If the inter-
face is located at xf, then the amount of Cj in the interface cell is given exactly by
Cj = (xf − x j−1/2)/∆x. We can also construct a smoother approximations to the
step function by setting the cell values as a function of the distance to the interface.
In one dimension both approaches are equally straightforward. For two- and three-
dimensional problems, we need to use many marker points that are connected to
represent a curve (in two dimensions) or a surface (in three dimensions). Figure
4.7 shows schematically the representation of an interface using connected marker
points, in two dimensions.

4.4 Front tracking 85

Fig. 4.7. When using a front-tracking method the fluid interface is represented by con-
nected marker particles that are advected by the fluid velocity, interpolated from the fixed
grid.

The use of connected marker points in simulations of the motion of a fluid inter-
face in viscous fluids goes back to Daly (1969b), who used the points to compute
surface tension in MAC simulations of the Rayleigh–Taylor instability. The use of
marker points to track shocks was discussed by Richtmyer and Morton (1967), who
appear to have introduced the term “front tracking,” but they neither showed nor
referenced any implementations. Glimm and collaborators (Glimm et al., 1981;
Glimm and McBryan, 1985; Chern et al., 1986) developed the preliminary ideas
of Richtmyer and Morton (1967) into a general methodology for flows with shocks
and interfaces.

Connected marker points can be used to track the boundary between different
fluids or phases in several different ways. In most cases, however, it is necessary to
decide how the front is represented and managed as it stretches and deforms; how
the interface is advanced in time; how the interface interacts with the underlying
grid used to solve the equations governing the fluid flow; and how the topology of
the interface is changed when fluid blobs merge and break apart. With the excep-
tion of two-dimensional flows, where any data structure can be made to work rel-
atively easily, essentially all front-tracking methods use triangulated unstructured
grids to represent the interface. This allows grid points to be added and deleted
as the grid stretches and compresses. Unstructured triangulated grids have been

86 Advecting a fluid interface

used extensively for finite element methods and for finite-volume computations of
inviscid flows in aerospace applications. Extensive literature is therefore available
for both the generation and management of such grids (see Thompson et al. (1998),
for example). For multiphase flow simulations, where the conservation equations
governing the fluid flow are solved on a fixed grid, the effort required to manage the
front is usually small compared with the overall effort required for the simulation.
Furthermore, the information carried by the grid is usually fairly simple and the
demand on grid quality is not as high as when the triangulated grid is used to solve
the full fluid equations. The ease of writing the front part of a simulation code
does, however, depend sensitively on using the most appropriate data structure for
the front.

The way in which the front interacts with the underlying fixed grid is what dis-
tinguishes between the various front-tracking methods. Several issues must be
decided, including how information is transmitted between the front and the grid
and how the update of variables next to the front is accomplished. The simplest
approach is to take the front to represent a smooth transition between the different
fluids. Since the interface is accounted for by singular source terms in the govern-
ing equations, this corresponds to approximating the singular functions by smooth
distributions on the fixed grid. The origin of this approach can be found in several
particle-in-cell methods for fluid flow and plasma simulations (Hockney and East-
wood, 1981; Birdsall and Langdon, 1985), the vortex-in-cell algorithm of Chris-
tiansen (1973), and the immersed-boundary method of Peskin (1977). Since the
rôle of the front is exclusively the advection of the marker function, this approach
is very much like a front-capturing method with a perfect (or nearly perfect) ad-
vection scheme. While information must be passed between the front and the grid,
the smoothing of the interface alleviates the need for any modification of the solu-
tion method for the fluid equations near the interface (except that the solver must
be written for material properties that vary spatially). For finite-Reynolds-number
multiphase flows, Unverdi and Tryggvason (1992) developed a method where the
front is used both to update the marker function and to include surface tension.
Their method has been used to study a wide variety of multiphase flows, and we
describe it in more detail in Chapter 6.

To avoid smoothing the interface, but still use a fixed grid for the solution of
the conservation equations, it is necessary to modify the numerical approximations
near the front. In Glimm’s front-tracking method, the field variables at the front
are extrapolated to grid points on the other side of the front, allowing the use of
regular finite-difference discretizations for grid points next to an interface. A sim-
ilar approach is used in the ghost-fluid method of Fedkiw et al. (1999), although
the interface tracking is done using a level-set method instead of connected marker
particles. As discussed by Glimm et al. (2001), the extrapolation can be done in

4.5 The level-set method 87

several different ways, but in all cases the contribution from the ghost points results
in the equivalent of source terms in the discrete governing equations. This is also
the case in the immersed-interface method of Lee and LeVeque (2003), where the
jump conditions at the front are incorporated directly into the numerical approxi-
mations for gradients evaluated near the front, on the fixed grid.

Another approach to keep the interface sharp is the modification of the fixed grid
near the front in such a way that the grid lines coincide with the interface. This
generally leads to irregularly shaped control volumes near the interface and often
involves merging some of the control volumes to eliminate very small ones. The
origin of this approach is the “cut cell” methods initially developed for aerospace
applications (see Powell (1998), for example) but its application to multiphase flow
simulations was originated by Udaykumar et al. (1997). See also Udaykumar et al.
(1999, 2001), Liu et al. (2005), and Marella et al. (2005). Since the jump condi-
tions can be imposed directly at the cell boundary, this method is, in many ways,
similar to using two separate grids for each phase. We do, however, mention it here
as most of the grid is left unchanged.

One of the main objections to the use of front-tracking methods is that changes
in topology, where fluid regions merge or break up, are not handled automati-
cally, as in methods where the marker function is advected directly. Changing the
connection of the front points can obviously be accomplished, but at the cost of
increased code complexity. When two interfaces come close together, the film be-
tween them can sometimes become very thin and rupture. However, it may or may
not be appropriate to fuse interfaces together when the film is of the order of one
grid spacing. In front tracking the interfaces never fuse together unless something
special is done, and sometimes the added level of control provided by the track-
ing is desirable. The question of how interfaces merge is still not a completely
resolved issue, as discussed in Chapter 2, and we will return to how to handle it
computationally at the end of Chapter 6.

4.5 The level-set method

In the level-set method the different fluid regions are identified by a smooth marker
function F(x, t), which is positive in one fluid and negative in the other. The bound-
ary between the fluids is identified by the F(x, t) = 0 level curve. The level-set
function moves with the fluid and, therefore, evolves according to

∂F
∂ t

+u ·∇F = 0. (4.12)

88 Advecting a fluid interface

The motion of the zero level-set curve depends only on the normal velocity com-
ponent. The normal can be found by

n = − ∇F
|∇F| . (4.13)

Substituting for ∇F in Equation (4.12) and using that u ·n = Vn results in

∂ F
∂ t

−V |∇F| = 0, (4.14)

which is an alternate expression for the advection of F .
Unlike the C function in the VOF method, the level-set marker function is smooth

and it can, therefore (at least in principle), be advected using any standard method
for hyperbolic equations. Most authors, however, have used high-order schemes,
such as the ENO method of Osher and Shu (1991).

To reconstruct the material properties of the flow (density and viscosity, for
example), a marker function is constructed from F

I(F) =

⎧⎨⎩
0, if F < −α∆x;
1
2(1+(F/α∆x)+ 1

π sin(πF/α∆x)), if |F | ≤ α∆x;
1, if F > α∆x.

(4.15)

Here, ∆x is the size of a grid cell and α is an empirical coefficient, often taken to
be equal to three, giving an interface thickness of about six cells. Thus, I changes
from zero to one over only a few cells, describing a smooth transition zone from
one fluid to the next. Once I has been constructed, the various material properties
can be assigned. Given I(x), we can generate a smoothed grid delta function at the
interface by taking its gradient:

δ = ∇I =
dI
dF

∇F. (4.16)

The mapping in Equation (4.15) requires the use of the values of F off the F = 0
contour (or level set). For the thickness of the transition zone to remain approx-
imately constant, F must have the same shape near the interface for all times. If
F is simply advected by the fluid, this is not usually the case. Where the interface
is stretched, the gradient of F becomes steeper, and where the interface is com-
pressed the gradient becomes smaller. To deal with this problem, Sussman et al.
(1994) introduced a reinitialization procedure where they modified F by solving

∂ F
∂τ

+ sgn(F0)(|∇F|−1) = 0 (4.17)

at each time step. Here, sgn is the sign function, F0 is the un-reinitialized level-set
function, and τ is a pseudo-time. Equation (4.17) is integrated to steady state, thus
enforcing |∇F| = 1. This makes F a distance function and ensures that the slope

4.5 The level-set method 89

near the interface is always the same. For slowly moving interfaces the level-set
function only needs to be reinitialized every once in a while, but for more rapidly
moving interfaces it may have to be reinitialized at every time step. The reini-
tialization can result in an artificial motion of the interface which can contribute
to poor mass conservation. Several improvements have therefore been proposed,
including approximating the sgn function using a smoother function. Peng et al.
(1999) proposed replacing sgn(F0) in Equation (4.17) by

S(F) =
F√

F2 + |∇F|2∆x2
(4.18)

and applying (4.17) at every time step. As long as the level-set function takes
large positive or negative values far away from the interface, the reconstruction
only needs to be done near the F = 0 contour. Since the solution to Equation
(4.17) propagates outward from the interface, where F is given, the solution is
first corrected there and it is usually sufficient to take only a few steps in pseudo-
time. The reconstruction of the level-set function as a distance function was critical
in making level sets work for fluid dynamics simulations. As Osher and Fedkiw
(2001) point out, reinitialization is still an active area of research.

For fluid dynamics problems the F function is generally advected by the fluid
velocity. In other applications, such as the motion of a solidification front, the
velocity is only defined at the interface and must be extended off the interface to
advect the level-set function. The extension of the velocities off the interface has
been the subject of several papers, including Chen et al. (1997b), who showed that
the velocity field known at the interface could be extended into the region around
the interface by using an upwind method to solve

∂ S
∂τ

+S(F)n ·∇S = 0 (4.19)

for each velocity component (taking S = u, v, or w). This process results in a
velocity field that is constant in a direction normal to the interface. As for the
reinitalization of the level-set function as a distance function (Equation (4.17)),
the velocity field only needs to be constructed in the neighborhood of the F = 0
contour.

The level-set method, at least in its original embodiment, has the appeal of sim-
plicity. For a fluid mechanics problem one only has to solve one additional partial
differential equation and there are essentially no additional complex steps, such
as the reconstruction of an interface in the VOF method or the addition of new
computational objects such as when front tracking is used. This simplicity has,
however, come at some cost, and early implementations had considerable problems
with mass conservation. While many of the early difficulties have been overcome,

90 Advecting a fluid interface

efforts to generate more accurate methods generally result in added complexity.
This has eroded the main appeal of level-set methods and made them more compa-
rable to other approaches, both in terms of complexity and performance.

For further discussions of the level-set method, the reader is referred to Sussman
et al. (1998), who proposed a way to improve the mass conservation, to Sussman
and Puckett (2000), who introduced a hybrid VOF/level-set method, sometimes
known by its acronym CLSVOF, and to Fedkiw et al. (1999), who developed a
“ghost fluid” method based on assigning fictious values to grid points on the other
side of a fluid discontinuity. For general reviews of the level-set method, see Osher
and Fedkiw (2002) and Sethian (2001).

4.6 Phase-field methods

In the phase-field method, the interface is kept relatively sharp by a modification
of the governing equations. The interface is assumed to be of a finite thickness
and described by thermodynamically consistent conservation laws. In actual im-
plementations, however, the thickness of the transition is much larger than it is in
real systems and it is not clear whether keeping the thermodynamic conditions cor-
rect in an artificially thick interface has any advantages over methods that model
the behavior in the transition zone in other ways. The phase-field approach has
found widespread use in simulation of solidification, but its use for fluid dynamic
simulations is more limited.

To update the phase function c, which identifies the different fluids, a nonlinear
diffusion term is added to the advection equation, resulting in the so-called Cahn–
Hilliard equation with advection. The diffusion term smears out an interface that
is becoming thinner due to straining but an antidiffusive part prevents the interface
from becoming too thick, such as if the interface is compressed. The Navier–
Stokes equations are also modified by adding a term that results in surface tension
in the interface zone. The key to the modification is the introduction of a free-
energy function, and by selecting the function in the proper way – including the
appropriate values for the various adjustable coefficients – it is possible to ensure
that the thickness of the interface remains of the same order as the grid spacing.

For a two-fluid system where the two fluids have similar densities (so the Boussi-
nesq approximation can be used) and same viscosity and mass diffusion coefficient,
Jacqmin (1999) solved

ρ0
Du
Dt

= −∇S + µ∇2u− c∇φ +gρ(c) (4.20)

for the fluid velocity and updated the phase-field variable by

Dc
Dt

= κ∇2φ . (4.21)

4.7 The CIP method 91

Here, κ is a diffusion coefficient and the potential φ is derived from the free energy
of the fluid by

φ = β
dψ(c)

dc
−α∇2c, (4.22)

where ψ(c) = (c+1/2)2(c−1/2)2. The coefficients α and β describe the relative
importance of the “gradient” energy and bulk energy density. It can be shown that
the thickness of the phase boundary is O(α/β) and surface tension is proportional
to
√

αβ . S is a pressure-like variable used to enforce incompressibility. For any
given grid spacing ∆x, we must select the appropriate diffusion coefficient κ as well
as α and β . For the ψ used above, Jacqmin (1999) showed that the surface tension
is σ =

√
αβ/18 and that the interface thickness ε , defined as the 90% variation

of c, is given by ε ≈ 4.164
√

α/β . Thus, if surface tension and interface thickness
are given (and we take ε to be equal to two or three grid spacings ∆x), then the
coefficients are determined. Jacqmin also showed that the diffusion coefficient for
the phase-field variable c must be selected such that κ = O(εδ), where δ < 2.
To advect c, Jacqmin introduced a fourth-order method that allowed the interface
thickness to be two or three grid spacings.

Jacqmin (1999) analyzed the method in some detail and showed examples of
computations of a two-dimensional Rayleigh–Taylor instability in the Boussinesq
limit. Other applications of the phase-field method to two-fluid simulations include
Jamet et al. (2001), who focused on phase-change problems, Verschueren et al.
(2001), who examined thermocapillary flow instabilities in a Hele–Shaw cell, and
Jacqmin (2000), who studied the contact-line dynamics of a diffuse fluid interface.
More recent progress can be found in Yang et al. (2006a) and Ding et al. (2007),
for example.

Results for two-fluid problems produced by the phase-field method suggest that
it is comparable to other methods that use a fixed grid to solve the one-field for-
mulation of the governing equations. The smoothing of the transition zone and the
use of front capturing (rather than explicit tracking) is likely to make the phase-
field method similar to the level-set approach. However, it is important to note that
the methods are derived based on fundamentally different assumptions and that the
phase-field method can, at least in principle, be used to study small-scale phenom-
ena, such as contact-line motion, for which tracking methods that start from the
sharp interface hypothesis are unsuitable.

4.7 The CIP method

The CIP method is designed to reduce dispersive error in the advection of a func-
tion f by fitting a cubic polynomial to the nodal values of f and its derivatives.

92 Advecting a fluid interface

While the initials CIP have stayed constant since the introduction of the method
(Takewaki et al., 1985; Takewaki and Yabe, 1987), the name of the method has
evolved. CIP initially stood for cubic interpolated pseudo-particle, then for cubic
interpolated propagation (Nakamura and Yabe, 1999), and most recently for the
constrained interpolation profile method (Yabe et al., 2001).

The fundamental idea of the CIP method is that, in addition to solving an advec-
tion equation for a conserved marker function f ,

∂ f
∂ t

+u
∂ f
∂x

= 0, (4.23)

we also solve an advection equation for the derivative of f , g = ∂ f /∂x. This
advection equation is easily constructed by differentiating Equation (4.23):

∂ g
∂ t

+u
∂g
∂x

= 0. (4.24)

Here, we have assumed that u is a constant, so the right-hand side of both equa-
tions is zero. If the velocity field is not constant, the advection equation for g can
be split into two parts that are treated sequentially. In the first part we solve the
advection part, assuming that the right-hand side is zero, and in the second part we
add the effect of the right-hand side. The discussion below applies to the first part.
Equations (4.23) and (4.24) state that f and its derivative g are advected without
change of shape. Thus, the solution at time t is simply the solution at t −∆t.

To advect f and g, we introduce a cubic polynomial, P(x) = ax3 +bx2 + cx +d
and determine the coefficients in such a way that P matches f and g at grid points
j and j−1 (for u > 0, when u < 0 we use points j and j +1). Taking x j−1 = 0 and
x j = ∆x, we easily find that

a j =
2

∆x3

(
f j−1 − f j

)
+

1
∆x2

(
g j−1 +gj

)
, (4.25)

b j =
3

∆x2

(
f j − f j−1

)
− 1

∆x

(
g j +2g j−1

)
,

c j = gj−1,

d j = f j−1.

The exact solution of Equations (4.23) and (4.24) can be found by simply trans-
lating the profiles, so that f (t,x) = f (t −∆t,x− u∆t) and g(t,x) = ∂ f (t −∆t,x−
u∆t)/∂x. Therefore, if ξ = u∆t, the values of f n+1

j and gn+1
j are

f n+1
j = a jξ

3 +b jξ
2 +gn

j−1ξ + f n
j−1, (4.26)

gn+1
j = 3a jξ

2 +2b jξ +gn
j−1.

Figure 4.8 shows the advection of a square hump by the CIP method described
above. The grid used, the initial conditions, and the time step are the same as in

4.8 Summary 93

50 100 150 200
0.5

0

0.5

1

1.5

Fig. 4.8. Advection by the CIP method. All parameters are the same as in Fig. 4.2.

Figs. 4.2 and 4.4. To generate the initial conditions for g, we took the deriva-
tive of the initial f using centered finite differences. Although the discontinuity
is preserved very well, small oscillations still appear. We note that the original
CIP method was not invented specifically for discontinuous solutions and that its
remarkably good performance in Fig. 4.8 is due to the very low dispersive error of
the method.

For multidimensional flows it is, of course, possible to use time splitting and
do the advection separately in each direction. More advanced implementations,
however, introduce a multidimensional polynomial that is then shifted with the
local velocity. For a discussion of the CIP method, see Yabe et al. (2001).

4.8 Summary

The use of a single set of governing equations to describe the flow of two or more
fluids separated by a common interface requires the accurate tracking of the inter-
face. This is usually done by advecting a marker function which takes one value
in one fluid and another value in the other fluid. Advecting the marker function
in such a way that it remains sharp at the interface is one of the most challenging
problems of modern computational fluid dynamics. Several methods have been
developed to do this, and here we have given a brief overview of some of the

94 Advecting a fluid interface

main alternatives. In the remainder of the book we will focus on two of those, the
VOF method and the front-tracking method of Unverdi and Tryggvason (1992).
The VOF method is the most widely used method to directly advect the marker
function. While early implementations may not have been able to capture inter-
faces accurately, major improvements have been made and these methods are now
capable of producing solutions comparable to the best of the more recent alterna-
tives. Although some of the alternatives, such as level sets, have gained popularity
because of their apparent simplicity, efforts to increase their accuracy generally
result in added complexity, thus reducing their appeal when compared with the
VOF method. The most advanced methods to directly advect a marker function
on a fixed grid are currently capable of producing solutions of a quality compa-
rable to early implementations of front-tracking methods. However, the accuracy
of front-tracking methods can also be improved, and it is probably fair to say that,
for comparable computational effort, the use of interface markers will always yield
superior results. Such methods are, however, more complex, and it is likely that
methods where the marker function is advected on a fixed grid will remain more
popular for the foreseeable future.

5

The volume-of-fluid method

In Chapter 4 we saw several families of methods for locating and advecting the
interface. Here, we focus on one of them: the VOF method. Historically, it was
used for free surface flows with only one “fluid,” although it is now routinely used
for two-fluid flows. In the VOF method the marker function is represented by the
fraction of a computational grid cell which is occupied by the fluid assumed to be
the reference phase.

A very large number (probably dozens) of VOF methods have been proposed.
When we choose the method we try to strike a balance between several qualities:
accuracy, simplicity and volume conservation.

5.1 Basic properties

The volume fraction or color function C is the discrete version of the characteristic
function H; see Equation (4.3). We will be considering only two-phase or free-
surface flows, so that the C data represent the fraction of each grid cell occupied by
the reference phase. Furthermore, we restrict our analysis to Cartesian grids with
square cells of side h = ∆x = ∆y.

The function C varies between the constant value one in full cells to zero in
empty cells, while mixed cells with an intermediate value of C define the transition
region where the interface is localized.

Low-order VOF methods do not need to specify the location of the interface
in the transition region, but a geometrical interpretation of these methods shows
that in two dimensions the interface line in each mixed cell is represented by a
segment parallel to one of the two coordinate axes. The interface is clearly not
continuous across the cell boundary, and the jump usually is of order h, O(h), as
seen in Fig. 5.1b. Higher order methods reconstruct the interface in various ways.
The standard one is the PLIC reconstruction, where the interface in each mixed
cell is represented by a segment perpendicular to the local gradient, m = −∇C, of

95

96 The volume-of-fluid method

0.0

0.2

0.7 1.0

0.8

0.02 0.1

1.0

1.0

VOF−SLIC RECONSTRUCTION VOF−PLIC RECONSTRUCTIONCOLOR FUNCTION

(c)(b)(a)

j−1

j+1

i+1ii−1

j
m

Fig. 5.1. The basic principle of the VOF methods: (a) a portion of the interface line and
the color function value in each cell; (b) the SLIC reconstruction, where each segment
is parallel to one coordinate axis; (c) a PLIC reconstruction with unconnected segments
across each cell; the normal vector m = −∇C is pointing outwards from the reference
phase.

the scalar function C (as in the previous chapters, we are assuming that the normal
vector is pointing outwards from the reference phase; the reader should be aware
that in many articles the opposite is true). However, there is still no requirement that
the interface be continuous at the cell boundary, but now the interface discontinuity
is usually much smaller and in general it is a function of the grid spacing h and of
the local interface curvature κ .

A VOF method proceeds in two steps:

(i) Reconstruction of the interface shape: from the knowledge of the volume
fraction in each cell, one has to build an approximation of the interface. The
problem is illustrated in Fig. 5.2. The key issue for a PLIC reconstruction
is to find the local normal vector.

(ii) Advection of the reconstructed interface in a given velocity field. This
amounts to exchanging reference phase volumes across the boundary of
neighboring cells.

We describe these two steps in the following sections. Several qualities are ex-
pected from a VOF method. It preserves mass in a natural way provided the ad-
vection method is adequate. Topology changes, such as those occuring during
reconnection or breakup, are implicit in the formulation. The extension from two-
dimensional to three-dimensional Cartesian geometry is relatively straightforward
(although less so than in a level-set method). The C data structure is a static matrix
on a fixed grid and does not require any dynamical adjustment, as opposed to a
marker approach. Furthermore, the algorithms are local, in the sense that only the
C values of the neighboring cells are needed to update the C value in a given cell.

5.1 Basic properties 97

(a) (b)

Fig. 5.2. Representing the color function as shaded squares of size proportional to the
fractional volumes helps to understand the reconstruction problem. (a) A well-behaved
distribution of the color function; it corresponds to a smooth circular arc. (b) A more
confused distribution.

For this reason, it is relatively simple to implement these algorithms in parallel, in
the framework of domain decomposition techniques.

Of all these qualities, the mass conservation is specific to the VOF technique. Let
us consider the multidimensional version of the advection equation for the marker
function H for an incompressible flow

∂H
∂ t

+∇ · (uH) = 0 . (5.1)

We first integrate this equation over the square cell (i, j) of side h of a Cartesian
two-dimensional grid and use the definition (4.3) of the color function C:

h2
∂Ci, j(t)

∂ t
+
∫

Γ
u ·nH(x, t)d l = 0 , (5.2)

where Γ is the cell boundary line and n the outgoing unit normal. Finally, we
integrate (5.2) in the time ∆t = tn+1 − tn to get

h2(Cn+1
i, j −Cn

i, j) = −(Φn
x:i+1/2, j −Φn

x:i−1/2, j)− (Φn
y:i, j+1/2 −Φn

y:i, j−1/2) , (5.3)

where the flux Φn
x:i+1/2, j denotes the reference phase area crossing the right side

of the cell in the time ∆t. By summing Equation (5.3) over all the grid cells with
appropriate boundary conditions, the internal fluxes cancel out in pairs and we get

∑
i j

Cn+1
i, j = ∑

i j

Cn
i, j, (5.4)

which leads to conservation of the total area. Notice that in writing expression
(5.3) we have implicitly assumed that the numerical algorithm does not generate
unphysical overshoots, C > 1, or undershoots, C < 0, in the volume fraction and
that it does not flux some area twice across the cell boundary. We will come back
to these issues later on in the chapter.

98 The volume-of-fluid method

5.2 Interface reconstruction

For PLIC methods the reconstruction is basically a two-step procedure. In any
given cell the normal m (the notation n is used for the unit normal, i.e. n =
m/|m|) is first determined from the knowledge of the color function in this cell
and in the neighboring ones. The equation of the interface segment is then written
as

m ·x = mx x+my y = α. (5.5)

Geometrically, the interface line (5.5) is moved along the normal direction, i.e. the
parameter α is adjusted, until the area under the interface equals h2Ci, j.

5.2.1 Convergence order of a reconstruction method

The numerical estimate of the integral of a given function f (x) geometrically re-
quires the evaluation of the area comprised between the graph of the function and
the coordinate x-axis. When we reconstruct an interface from the volume frac-
tion data we are actually solving the inverse problem: we know the area under the
interface line and we want to find the function.

To integrate a function y = f (x) we can subdivide the range a ≤ x ≤ b into n
equal subintervals of size h = ∆x = (b− a)/n. In particular, in the trapezoidal
rule we approximate the function with a piecewise linear interpolation and in each
subinterval the area under the function is given by the area of a right trapezoid, as
shown in Fig. 5.3. The truncation error in the evaluation of the area spanned by
the function, which is supposed to have continuous second derivatives, is propor-
tional to f ′′(ξ)h2, with a ≤ ξ ≤ b. Hence, the trapezoidal rule is a second-order
method, O(h2), and a straight line, by having a zero second derivative, is repro-
duced correctly. In Fig. 5.3 we see that the line arc is approximated differently
by the trapezoidal rule and a typical VOF-PLIC reconstruction. However, it is
reasonable to require that a second-order reconstruction algorithm should have a
similar truncation error. Reconstruction techniques that do not reproduce an ar-
bitrary straight line exactly are lower than second order, i.e. they are O(hn) with
n < 2. A method that approximates interfaces as circle arcs could be third order,
which is very high for a VOF method. In our opinion it is not practical to attempt
to develop VOF methods with polynomials of such an order, in particular in three
dimensions. However, partial use of second-order polynomials has proven useful,
in part in connection with surface tension (see Section 7.4.2).

5.2 Interface reconstruction 99

Fig. 5.3. A line cutting two grid cells (thick solid line). In the trapezoidal rule the piece-
wise linear approximation connects consecutive points on the line and it is continuous
across the cell boundary (dashed lines). The VOF-PLIC reconstruction is not continuous
across the cell boundary but satisfies the area conservation constraint (thin solid lines).
The dotted regions represent the area error for a VOF-PLIC reconstruction (left) and the
trapezoidal rule (right).

5.2.2 Evaluation of the interface unit normal

The choice of the method used to calculate the interface normal is independent of
the other steps: it can be based on a finite-difference approximation of the volume-
fraction gradient ∇C or satisfy some other minimizing criteria. All the algorithms
described in this section use a 3× 3 block of cells to determine the approximate
interface in the central cell of the block. In Fig. 5.1c this central cell is denoted by
the two indices (i, j).

5.2.2.1 Youngs’ finite-difference method

In this method, developed by Youngs (1984) and independently by Li (1995), the
normal m of (5.5) is estimated as a gradient,

m = −∇hC , (5.6)

with finite differences. We first evaluate the normal vector m at the four corners of
the central cell (i, j); for example, the components of m on the top-right corner are
given by

mx:i+1/2, j+1/2 = − 1
2h

(Ci+1, j+1 +Ci+1, j −Ci, j+1 −Ci, j) , (5.7)

my:i+1/2, j+1/2 = − 1
2h

(Ci+1, j+1 −Ci+1, j +Ci, j+1 −Ci, j) , (5.8)

and similarly for the other three corners. The cell-centered vector is finally ob-
tained by averaging the four cell-corner values

mi, j =
1
4
(mi+1/2, j+1/2 +mi+1/2, j−1/2 +mi−1/2, j+1/2 +mi−1/2, j−1/2) . (5.9)

100 The volume-of-fluid method

This finite-difference scheme does not reproduce any straight line exactly. This
may be shown by working out the expressions (5.7), (5.8), and (5.9) in a particular
case, for instance by considering the line y = 2x/3 + h in the 3× 3 block of cells
of side h with the origin in the bottom-left corner. The calculations are left to the
reader. However, the results of numerical tests on linear interfaces will point out
this weakness of the method.

5.2.2.2 Centered-columns difference method

In the same block of cells the volume fractions can be added column-wise along
the vertical direction to define the height function y = f (x), or row-wise for the
width function x = g(y). For example, the height yi−1 at the abscissa xi−1, placed
in the center of the column as shown in Fig. 5.4a, is given by the expression
hyi−1 = h2 ∑1

k=−1Ci−1, j+k, while in Fig. 5.4b the width x j+1 at the ordinate y j+1 is

hx j+1 = h2 ∑1
k=−1Ci+k, j+1. The height yi−1 is placed exactly on a linear interface

only if the straight line cuts the two vertical sides of the column (see again Fig.
5.4a,c for two different cases). We approximate the height function y = f (x) in the
central cell of the block with the linear equation

sgn(my)y = −mxx+α ′ (5.10)

and compute the slope of the straight line with a centered scheme, mx = mxc,

mxc = − 1
2h

(yi+1 − yi−1) = −1
2

1

∑
k=−1

(Ci+1, j+k −Ci−1, j+k) . (5.11)

Since my = −∂C/∂y, we compute the sign of the variation of C along the y-
direction with centered finite differences. We must calculate explicitly the sign
of my, because by adding C column-wise we lose information about which phase
is on the top or on the bottom of the block of cells.

We can also describe the interface line with the width function x = g(y) and
approximate it linearly with

sgn(mx)x = −myy+α ′′ (5.12)

and similarly compute my as

myc = − 1
2h

(x j+1 − x j−1) = −1
2

1

∑
k=−1

(Ci+k, j+1 −Ci+k, j−1) . (5.13)

It is evident from Fig. 5.4 that when a linear interface cuts two opposite sides of the
block of cells, one of the two representations gives the correct slope, mxc in case (a)
and myc in case (b). In case (c), where the interface cuts two consecutive sides, the
centered-columns scheme does not compute the correct slope. As a matter of fact,
a wider stencil with more columns or rows should be used; however, backward and

5.2 Interface reconstruction 101

forward difference schemes can also be considered, as discussed in the next section.
Since the centered-columns scheme cannot reconstruct any straight line exactly, it
is not second order. Furthermore, the interface shape is not actually known, so we
need a strategy to select one between the two numerically computed values myc and
mxc. To this aim we define a simple criterion based on the reconstruction of a linear
interface. We consider the two linear equations y = mx x + α ′ and x = my y + α ′′

and notice the following conditions between the two coefficients mx and my: |mx|=
|my| = 1 for a straight line with a 45-degree slope, |mx| = 1/|my| < 1 for the line
shown in Fig. 5.4a and |my| = 1/|mx| < 1 in Fig. 5.4b. Therefore, to reconstruct
exactly the straight line in the two cases (a) and (b), we must select the angular
coefficient with the minimum absolute value

|m∗| = min(|mxc|, |myc|) . (5.14)

In the centered-columns method, we have considered a centered scheme to com-
pute the angular coefficient, but one can also use forward or backward finite dif-
ferences, as in the efficient least-squares VOF interface reconstruction algorithm
(ELVIRA) method. A different criterion should be applied when we have two or
more estimates for the same angular coefficient, say mx. In Fig. 5.4c, yi−1 overes-
timates the local value of the height function and the absolute value of mxc, based
on the centered scheme, is smaller than the angular coefficient of the straight line.
Hence, if we have two different estimates for the same angular coefficient, say mx1
and mx2, we now choose

|m∗| = max(|mx1|, |mx2|) . (5.15)

With these two simple criteria we can reconstruct any linear interface, but they may
not be very efficient in the case of a curved interface. In the next section we discuss
a method that selects an optimal angular coefficient among a set of candidates by
minimizing an area error function.

5.2.2.3 The ELVIRA method

The ELVIRA method was introduced by Pilliod Jr. and Puckett (2004). We con-
sider again the height function y = f (x), and for the slope mx we compute the
centered scheme (5.11) and also the backward and forward estimates mxb and mxf,
which are given by the following expressions:

mxb = −1
h
(yi − yi−1) = −

1

∑
k=−1

(Ci, j+k −Ci−1, j+k) ,

(5.16)

mxf = −1
h
(yi+1 − yi) = −

1

∑
k=−1

(Ci+1, j+k −Ci, j+k) ,

102 The volume-of-fluid method

(a) (b) (c)

yi−1 yi+1

x j+1

x j−1

yi−1

yi yi+1

Fig. 5.4. In the centered-columns scheme, volume fractions are added column-wise,
heights yi−1 and yi+1, for case (a) and row-wise, widths x j−1 and x j+1, for case (b), to
get the correct slope of the linear interface. In case (c), an off-centered scheme, with
heights yi and yi+1, should be used.

and similarly we compute myb and myf for the angular coefficient my of the width
function (5.12). There are now six different choices and a criterion has to be de-
signed in order to select the “best” linear approximation. In the ELVIRA strategy
the choice is done by minimizing a measure of the error between the volume frac-
tions given by the true and approximate interfaces. For each of the six normal
vectors mn, with 1 ≤ n ≤ 6, the corresponding value of the line constant αn is first
determined by area conservation in the central cell. Then the approximate linear
interface is drawn across the whole 3× 3 block of cells, defining a new volume
fraction value C̃ in each of the surrounding eight cells. The normalized area in the
cell (k, l) under the line corresponding to the normal mn is h2C̃k,l(mn), and the area
error in L2 is

E(n) = h2
i+1

∑
k=i−1

j+1

∑
l= j−1

(C̃k,l(mn)−Ck,l)
2 (5.17)

and in L∞ it is

E(n) = h2max
∣∣(C̃k,l(mn)−Ck,l

∣∣ . (5.18)

The selected value of mn among the six angular coefficients is the one that mini-
mizes E. It is easy to verify that there is always at least one selection that repro-
duces correctly a straight line even when it cuts two consecutive sides of the block
of cells, as in Fig. 5.4c, since the line is constrained to go across two consecutive
rows or columns at least. For a tessellation of the plane with rectangular cells of
equal size, this algorithm requires a 3× 3 block of cells to reconstruct any linear
interface; however, a wider stencil is required when the cell size is not constant

5.2 Interface reconstruction 103

across the computational domain. The ELVIRA method has the drawback of being
relatively slow, especially in three dimensions, where the number of evaluations of
the predicted volume fractions C̃k,l,p(mn) becomes large.

5.2.2.4 The least-squares fit method

The least-squares fit class of methods introduced by Scardovelli and Zaleski (2003)
relies on the minimization of a distance functional starting from a preliminary
guess. The method is as follows:

(i) A “preliminary” reconstruction is performed in the whole domain, using
one of the fast methods for normal estimation, either Youngs’ finite-
difference or the centered-columns scheme. The value of α is also esti-
mated everywhere, yielding a segment in each cell.

(ii) A few points are selected in each cell; for example, at each end and in
the center of the segment. The rationale about this choice is that a good
linear approximation has to cut a curved interface twice in each cell, as in
Fig. 5.5a, and the fit will be in this way determined by points lying on both
sides of the interface. A set of np interface points (xi,yi) is then constructed.

(iii) One of the two functionals

I1 =
np

∑
i=1

[ωi (yi +mxi +α)2] or I2 =
np

∑
i=1

[ωi (xi +myi +α)2] (5.19)

is minimized, depending on the slope of the preliminary reconstruction.
The weights ωi can be a function of the distance from the central cell of
the block, but here are all equal to one. The resulting 2×2 linear algebraic
system is solved only for the angular coefficient m.

(iv) The value of α in the central cell is obtained from area conservation.

This technique can be applied iteratively by using the linear fit reconstruction as the
“preliminary” one, then any straight line is reconstructed exactly in a few iterations.
However, for most applications just one linear fit is sufficient, as shown in the
reconstruction accuracy tests of Section 5.3.2.

5.2.2.5 A short survey of other methods and extension to three dimensions

A detailed list and presentation of the VOF reconstruction algorithms developed
in the last several years would require several pages; thus, we conclude this sec-
tion with only a few remarks. An alternative approach to ELVIRA is the LVIRA
algorithm by Puckett (1991), where the number of candidates is not limited to six;
instead, a minimum, either local or absolute, of the area error, Equation (5.17) or
(5.18), is searched by changing the normal m. A smoother variation of the normal
along the interface line is obtained by López et al. (2004): they first reconstruct

104 The volume-of-fluid method

(b)(a)

Fig. 5.5. A schematic picture of the least-squares fit reconstruction. (a) The segment,
where a number of points are selected, is the preliminary reconstruction of the interface
line. (b) The set of points used in the least-squares fit is shown together with the line
resulting from the fit (dashed line). For clarity, only a subset of the 3×3 block is shown.

the interface with Youngs’ method, collect the midpoints of the segments in an
ordered list, and finally interpolate the points with a cubic spline as a function of
the arc length s. The local normal is found by differentiating the parametric curve
x = x(s), y = y(s). A reconstruction with two consecutive segments in each cell
has been implemented by Scardovelli and Zaleski (2003) to better represent high-
curvature regions.

Youngs’ and the centered-columns schemes can be directly extended to three
dimensions in Cartesian grids. A three-dimensional version of ELVIRA has been
implemented by Miller and Colella (2002) with the number of candidate normal
vectors varying from 72 to 144. To reduce the number of calculations, the min-
imization of the three-dimensional extension of the error function (5.17) is per-
formed with respect to the local height function, defined over columns of five cells,
and not directly the C data. As a matter of fact, a 3× 3× 3 block of cells is not
sufficient to compute with finite differences the normal components of an arbi-
trary plane and a wider stencil with 5× 5× 5 cells is usually adopted. The three-
dimensional version of the least-squares fit method has been carried out by Aulisa
et al. (2007).

5.2.3 Determination of α
Once the normal m has been calculated, the non-homogeneous term α of (5.5) is
determined by enforcing area conservation. With reference to Fig. 5.6, for a more
general rectangular cell, of sides ∆x and ∆y, it can be computed with an iterative
procedure that requires an estimate of α , the determination of the area A(α) of the
polygon ABFGD, and its comparison with the value ∆x∆yC, until the difference
between the two areas is below some prescribed tolerance. In other terms, we have

5.2 Interface reconstruction 105

D G

A
∆ x

y

H

F

C

B E x

xmα/

Fig. 5.6. The “cut area” is the gray region inside the rectangular cell ABCD and below the
straight line EH.

to find a zero of the nonlinear function

g(α) = A(α)−∆x∆yC (5.20)

with a root-finding algorithm. The area of ABFGD can be found by collecting
in counterclockwise order the coordinates (xi,yi) of its vertices and by using the
following formula for the area A of a n-sided polygon:

A =
1
2

n

∑
k=1

(xkyk+1 − xk+1yk) , (5.21)

where vertex n + 1 coincides with vertex 1. We describe an alternative approach
which is not iterative and that relies heavily on the symmetry of a Cartesian cell so
that, with proper mirror reflections about the coordinate axes, Equation (5.5) has
both coefficients mx and my positive, as shown in Fig. 5.6. In this case the area A
of the polygon ABFGD is given by the expression

A =
1

2mxmy

[
α2 −F2(α −mx ∆x)−F2(α −my ∆y)

]
, (5.22)

where F2(z) = z2 when z > 0 and zero otherwise. The three contributions to A
represent the areas of the similar triangles AEH, BEF and DGH. The expression
(5.22) is a quadratic function of α when the interface line cuts two consecutive
cell sides, then one of the two cut figures is a triangle, and it is linear when the
two intersections with the cell boundary are on opposite sides. Furthermore, it is
a continuous, strictly monotonically increasing function of α and it can be easily

106 The volume-of-fluid method

inverted. In Appendix C we discuss briefly both the direct problem – that is, to
find the cut area or the cut volume occupied by the reference phase given α and the
normal m – and the inverse relation for rectangular and right hexahedral cells.

5.3 Tests of reconstruction methods

We now examine the accuracy and convergence properties of the reconstruction
methods described in Section 5.2. We consider stationary interfaces, then no
advection is performed and there is no error due to time discretization.

5.3.1 Errors measurement and convergence rate

Let H(x, t) be the characteristic function associated with a given fluid body and
H̃h(x, t) its estimate associated with a partition of the plane with square cells of side
h and with a reconstruction method. A natural measure of the difference between
the exact and reconstructed interfaces is the error E in L1:

E =
1
B

∫ ∫
|H(x, t)− H̃h(x, t)|dx dy , (5.23)

where B is a normalization constant. If B = 1, then the error is given by the sum
of the areas comprised between the real and reconstructed interface lines inside
each mixed cell, as shown in Fig. 5.3; if B is the length L of the exact interface
line, then the error E can be envisioned as the width of a small ribbon along the
interface, representing the average displacement from the real interface; finally, B
can be equal to the total area A of the fluid body and E is not a dimensional number.
Similar error measures can be defined in L2 and L∞. The order of convergence O
of a reconstruction method can be numerically calculated by considering the errors
Eh, obtained with grid spacing h, and Eh/2 with h/2 and by using the following
definition:

O =
ln(Eh/Eh/2)

ln(h/(h/2))
=

ln(Eh/Eh/2)

ln(2)
. (5.24)

Clearly, it does not depend on the normalization constant B, but it is a function of
the fluid-body shape, its position, and orientation with respect to the grid lines and
obviously of the grid spacing h. The asymptotic order of convergence is found in
the limit as the grid spacing h goes to zero, h → 0, and it can only be extrapolated
numerically.

5.3.2 Reconstruction accuracy tests

We limit the number of tests to two configurations: a straight line and an ellipse.
In the first test we check how the reconstruction algorithms approximate a straight

5.3 Tests of reconstruction methods 107

Table 5.1. Reconstruction error and convergence rate in approximating a straight
line for different grid resolutions.

Grid Youngs Centered Linear fit-1st
E/O E/O E/O

10 × 10 8.21e-4 3.29e-5 1.78e-6
0.97 0.45 1.21

20 × 20 4.18e-4 2.40e-5 7.67e-7
1.01 0.65 0.81

40 × 40 2.07e-4 1.52e-5 4.36e-7
1.00 0.81 0.85

80 × 80 1.03e-4 8.62e-6 2.42e-7
1.00 1.05 1.08

160 × 160 5.16e-5 4.15e-6 1.14e-7
1.01 0.96 0.96

320 × 320 2.56e-5 2.13e-6 5.88e-8

line, since we expect a second-order method to reconstruct exactly any straight
line. In the second case we consider a curve with a smoothly varying curvature
and we address in particular the issue of the asymptotic convergence rate. We cal-
culate the error (5.23) with B = 1 by first finding the points where the exact and
reconstructed interface lines cross each other and the cell edges and then evaluate
the integrals between these points analytically. We average the error (5.23) over
many different cases to stabilize its value, since in some instances the error can be
rather small because of a fortuitous alignment of the interface with the grid lines.
We first consider 1000 different straight lines where we randomly position a point
of the line near the center (0.5,0.5) of a unit square with a random angle between
the interface line and the horizontal coordinate line. The results are presented in
Table 5.1 for different grid resolutions. The ELVIRA scheme reconstructs exactly
any straight line, the other three methods only for a limited number of slopes. In
the linear fit we have used the centered-columns scheme as a preliminary recon-
struction. If we apply it iteratively on top of the previous reconstruction, the error
decreases by several orders of magnitude at each iteration, so that at the second
iteration it is below machine accuracy. Both Youngs’ and the centered-columns
methods are roughly first order, even if the latter has a lower error.

The second interface line is an ellipse described by the equation x2/a2 +y2/b2 =
1, with a2 = 0.12 and b2 = 0.02, and the ratio between the maximum and minimum
radius of curvature is about 15. With a random number generator we position the
center of the ellipse near the central point of the unit box and choose the angle
between the major axis of the ellipse and the horizontal coordinate line. We now

108 The volume-of-fluid method

Table 5.2. Reconstruction error and convergence rate in approximating an ellipse
for different grid resolutions.

Grid Youngs Centered ELVIRA Linear fit-1st
E/O E/O E/O E/O

10 × 10 3.90e-3 4.25e-3 4.76e-3 3.30e-3
2.34 2.47 2.42 2.41

20 × 20 7.68e-4 7.65e-4 8.87e-4 6.23e-4
1.84 2.27 2.33 2.15

40 × 40 2.14e-4 1.59e-4 1.77e-4 1.41e-4
1.38 2.02 2.10 2.07

80 × 80 8.23e-5 3.93e-5 4.12e-5 3.41e-5
1.16 1.89 2.04 2.02

160 × 160 3.69e-5 1.06e-5 1.00e-5 8.36e-6
1.06 1.73 2.00 2.01

320 × 320 1.77e-5 3.20e-6 2.49e-6 2.07e-6

need 150 different cases to stabilize the results up to the third significant digit.
The results are presented in Table 5.2 for different grid resolutions. Youngs’ re-
construction is asymptotically a first-order method even if at very low resolution it
performs very well; in other words, when the local radius of curvature is compara-
ble to the grid spacing, it is competitive with the other methods. ELVIRA is clearly
second-order accurate. By considering that a grid resolution with 320× 320 cells
is indeed very high for a single fluid body with an elliptical shape, we can say that
for practical purposes the centered-columns scheme has a convergence rate inter-
mediate between 1 and 2, while the linear fit is second-order accurate without the
need of any further iteration.

5.4 Interface advection

In PLIC methods the interface is first reconstructed by a discontinuous piecewise
linear line and then advected in a given velocity field up to the next discrete time.
This evolution may be approximated with geometrical methods, by advecting the
end points of each segment of the interface, or with fluxing methods, by computing
the reference phase fluxes across the cell boundary.

In the geometrical approach, a deep insight on interface advection can be gained
by expressing one-dimensional advection schemes along the x-direction as differ-
ent mappings of the plane onto itself. The mappings possess the remarkable prop-
erty that the consistency condition 0 ≤ C ≤ 1 is satisfied after advection in each
grid cell.

5.4 Interface advection 109

5.4.1 Geometrical one-dimensional linear-mapping method

We discuss two different linear mappings. In the first one we advect in a given one-
dimensional velocity field each grid cell and then we mark out the deformed cells
in the original grid to update the volume fraction data; hence the name out-of-cell.
By contrast, in the onto-cell mapping we compute the area that will be advected
into each grid cell.

5.4.1.1 Operator splitting

In one-dimensional advection we follow the interface as it is advected by a dis-
cretized velocity field u(x). In two dimensions, one-dimensional advections in the
two directions are performed in sequence. To reduce possible asymmetries induced
by the splitting we can consider first a motion along the x-direction and then along
y on odd time steps and vice versa on even time steps. For three-dimensional Carte-
sian grids we need three one-dimensional sweeps and a more complex sequence of
sweep direction orders.

5.4.1.2 The out-of-cell explicit linear mapping T E

Consider the case in which we perform the advection along the x-axis first. In the
linear mapping method the reconstructed interface at time step n is mapped on the
interface at time tn+1 by a linearized velocity field. Each end point of the interface
segments is moved with an interpolated velocity. Consider the motion x(t) of a
particle in the velocity field u(x). The equation of motion is dx/dt = u(x). An
explicit first-order scheme for its integration is

x(tn+1) = x(tn)+u[x(tn)] (tn+1 − tn) . (5.25)

Before proceeding further, it is useful to rescale space and time in grid spacing
and time step units. Using dimensions of h and ∆t = tn+1 − tn, the new nondi-
mensional physical variables are x′ = x/h, t ′ = t/∆t, and u′ = u∆t/h. Notice that
the x-component of the velocity vector is now a CFL number. The grid cells are
mapped to unit squares and the origin of the local coordinate system is in the lower-
left corner. From now on, we drop the primes when using the cell nondimensional
variables; then:

x(tn+1) = x(tn)+u[x(tn)] . (5.26)

To complete the integration of the equation of motion we need an approximation of
u. We label with Σ the unit area of the cell (i, j) and consider a linear interpolation
of the u velocity between the two values ui−1/2, j, on the left edge of the MAC cell,
and ui+1/2, j, on its right edge:

u(x) = ui−1/2, j (1− x)+ui+1/2, j x . (5.27)

110 The volume-of-fluid method

Combining (5.26) and (5.27) we see that the updated position of the point x′ =
x(tn+1) is a function of the old coordinates{

x′ = bx+ui−1/2, j

y′ = y
, (5.28)

with b = 1 + ui+1/2, j − ui−1/2, j. The system (5.28) describes a linear mapping

x′ = T E
x (x). The mapping of the whole computational domain is piecewise linear,

each piece transforming a square cell Σ of the grid onto a rectangle Γx:

Γx = T E
x (Σ) . (5.29)

In Fig. 5.7 we show the case where the velocity field compresses the square, but
depending on the velocity values the square may also be expanded and shifted to
the left or to the right as well. Because the mapping is linear, straight lines are
transformed into straight lines and the reconstructed interface is easily advected
and then remapped onto the original mesh. In the case depicted in Fig. 5.7 the new
volume fraction in the central cell Σ is obtained by adding the three area contribu-
tions from the central and the two adjacent cells after their transformation by T E

x :

Cn+1
i, j = D+E +F . (5.30)

The three-dimensional extension is straightforward, except that D,E, and F are
now polyhedra obtained by cutting right hexahedra by the transported planar inter-
face elements. Their volume is computed by the technique described in Appendix
C. It is important to stress that the entire plane is partitionned in a tessellation
made of image rectangles such as Γx (Fig. 5.8). In other words, the Γx rectangles
do not overlap or leave empty space, which ensures that area is properly advected.
The method has the important feature that the updated volume fraction C satisfies
0 ≤C ≤ 1. This is because the volume fraction is computed as the sum of the three
areas D,E, and F .

It is now possible to construct a two-dimensional advection method with two
consecutive out-of-cell explicit linear mappings:

(i) reconstruct the interface at time step tn;
(ii) perform the advection along the x axis by using the mapping T E

x to move
the two interface end points in each cut cell;

(iii) from the updated position of the end points, compute the areas with the ex-
pressions given in Appendix C and update an intermediate volume fraction
field C∗:

C∗
i, j = Dx +Ex +Fx ; (5.31)

(iv) reconstruct the interface from the C∗ data;

5.4 Interface advection 111

(a)

(b)

i−1/2,ju u i+1/2,j

i−1 i i+1

Σ

FED

T

j

Γx

E
x

Fig. 5.7. (a) The horizontal one-dimensional mapping T E
x transforms the square cell Σ

onto the rectangle Γx, by transporting the cell edges with the one-dimensional flow. (b)
Three consecutive cells are transformed by the piecewise linear mapping T E

x onto three
rectangles, which are projected back to the original grid to calculate the three contributions
D,E, and F to the square cell Σ.

Fig. 5.8. The images of the square cells by the mapping T E
x form a tessellation of the

plane by rectangles (thick solid lines). These may be either expanded or compressed and
shifted to the left or to the right with respect to the original square cells (thin solid lines),
depending on the local value of the velocity field.

112 The volume-of-fluid method

(v) perform the advection along the y axis by using the mapping T E
y to compute

in a similar way

Cn+1
i, j = Dy +Ey +Fy . (5.32)

The extension to three dimensions requires three reconstructions and three one-
dimensional advections. This method has a major disadvantage: it does not pre-
serve volume and mass exactly. To achieve mass conservation it must be combined
with a different one-dimensional advection scheme.

5.4.1.3 The onto-cell implicit linear mapping T I

To construct this new mapping instead of the explicit method (5.26), we consider
an implicit first-order scheme to integrate the equation of motion

x(tn+1) = x(tn)+u[x(tn+1)] , (5.33)

but notice that the x-position at time tn+1 is calculated with the velocity field u at
time tn. By using (5.33) and (5.27) we find that the action of the mapping x′ = T I

x (x)
reads in components {

x′ = ax+aui−1/2, j

y′ = y
, (5.34)

where a = 1/(1−ui+1/2, j +ui−1/2, j). Consider now the pre-image Γx of the central

square Σ of Fig. 5.9 by T I
x ; then

Σ = T I
x (Γx) . (5.35)

We compute the new volume fraction in the central cell by considering the area of
the reference phase in Γx sent onto Σ

Cn+1
i, j = D+E +F , (5.36)

where the three area contributions are defined in Fig. 5.9. For clarity, we point out
a few differences between the two mappings T E

x and T I
x . In particular, the width

of the area D is ui−1/2, j in Fig. 5.7 and aui−1/2, j in Fig. 5.9. Furthermore, the
slope of the advected interface changes in a different way, since the coefficient of
the linear mapping is b for T E

x and a for T I
x . Finally, it is important to stress that,

as in the explicit mapping, the whole computational domain is partitionned in a
tessellation made of pre-image rectangles such as Γx. This ensures that no area is
“lost” or fluxed twice; however, the sequence of two consecutive onto-cell implicit
mappings in the x- and y-directions does not conserve the area.

5.4 Interface advection 113

(a)

(b)

u i+1/2,j

i−1/2,ju

i−1 i i+1

E

T

j

D

Σ

F

Γx

x
I

Fig. 5.9. (a) The horizontal one-dimensional mapping T I
x transforms the rectangle Γx onto

the square cell Σ by using the velocity at the cell sides. The velocity field u is the same
as Fig. 5.7. (b) The contributions to Γx of three consecutive cells are transformed by the
linear mapping T I

x onto D,E, and F of the central cell Σ.

5.4.1.4 Combined linear mapping

A remarkable conservation property is achieved when we combine the two map-
pings. Indeed, the mapping sequence T I

x followed by T E
y conserves area/mass ex-

actly. When the initial rectangle Γx is mapped onto Σ, the reference phase area
is compressed (or expanded) by the factor a = 1/(1− ui+1/2, j + ui−1/2, j). Then,
when Σ is mapped onto a new rectangle Γy, it is expanded (or compressed) by the
mapping T E

y , which reads {
x′ = x

y′ = by+ vi, j−1/2

, (5.37)

with b = 1+ vi, j+1/2 − vi, j−1/2. The combination of the two mappings leads to the
following two-dimensional advection scheme:

(i) reconstruct the interface at time step tn;
(ii) perform the advection along the x-axis by using the onto-cell mapping T I

x

and get the provisional scalar field C∗:

C∗
i, j = Dx +Ex +Fx ; (5.38)

(iii) reconstruct the interface from the C∗ data;

114 The volume-of-fluid method

(iv) perform the advection along the y-axis by using the out-of-cell mapping T E
y

and get

Cn+1
i, j = Dy +Ey +Fy . (5.39)

The area of Γy = T E
y (Σ) = T E

y T I
x (Γx) is the area of Γx multiplied by

ab =
1+ vi, j+1/2 − vi, j−1/2

1−ui+1/2, j +ui−1/2, j

, (5.40)

but for an incompressible flow the divergence-free condition on a staggered MAC
grid with square cells reads

ui+1/2, j −ui−1/2, j + vi, j+1/2 − vi, j−1/2 = 0; (5.41)

then ab = 1 and Γy = Γx. Thus, for an incompressible flow, the area is conserved
exactly and the consistency condition 0 ≤ C ≤ 1 is always satisfied. To minimize
asymmetries, the combined mapping T E

y T I
x at one time step should be alternated

with T E
x T I

y at the next time step. Finally, notice that if we consider the mapping
T I

y T E
x instead of T E

y T I
x , the velocity components of different cells appear in the two

coefficients a and b; then, (5.41) does not apply and the area is not conserved.
An extension to three dimensions has been proposed by Aulisa et al. (2007).

The velocity field u = (u,v,w) may be split in the three fields u1 = (u1,v1,0),
u2 = (u2,0,w2), u3 = (0,v3,w3), where each field ui is assumed to be incompress-
ible, ∇ ·ui = 0, and u1 +u2 +u3 = u. There are six scalar equations for the six un-
knowns (u1,v1,u2,w2,v3,w3), but only five of them are independent. For example,
if u1 and u2 satisfy ∇ ·u1 = ∇ ·u2 = 0, then u3 = u−u1−u2, but in this case ∇ ·u3 =
∇ · (u−u1 −u2) = 0 is automatically satisfied. Therefore, it is possible to exploit
this degree of freedom to specify one of the six unknowns and, starting from the
boundary where the velocity field is given, to compute on a staggered MAC grid the
velocity field components which are still unknown by solving the divergence-free
equations.

5.4.2 Related one-dimensional advection methods

The terminology we have employed in the previous section is not the most wide-
spread one. Instead, for historical reasons one often refers to Eulerian and La-
grangian methods. The two linear mappings have been naturally derived from an
explicit or implicit Lagrangian point of view. In Lagrangian methods, particles or
markers are transported in space by the velocity field. The velocity is defined at the
grid nodes and needs to be interpolated to the points where markers are located.
If a fixed grid is used, then a Lagrangian method requires the interface after its
advection to be projected back to the underlying grid to calculate local field values.

5.4 Interface advection 115

(a) (b)

u+

B

A

u+u− u−

+u ∆ t

Fig. 5.10. (a) In the Lagrangian method, the end points A and B of the interface segment
are advected by the flow. The local velocity may be interpolated linearly between the
velocities u− and u+ at the cell faces. (b) In the Eulerian method, the total area flux
through the right side of the cell is the area of the rectangle with width u+ ∆t, while the
reference phase flux is the shaded portion of this rectangle.

On the other hand, in Eulerian methods the field values are updated at the local
grid points or cells. For the volume fraction field this is performed by exchang-
ing area fluxes between adjacent cells. The difference between the two methods is
illustrated in Fig. 5.10.

5.4.2.1 One-dimensional advection equation for the volume fraction

We consider again the advection equation (5.1), for the marker function for an
incompressible flow:

∂H
∂ t

+∇ · (uH) = H ∇ ·u = 0 . (5.42)

For operator split schemes we consider the one-dimensional version of (5.42), in-
tegrate it over the square cell (i, j), and consider for the term ∂u/∂ x an average
value across the cell:

h2
∂Ci, j(t)

∂ t
+
∫

Γ
u ·nH(x, t)d l = h2Ci, j(t)

∂ u
∂ x

, (5.43)

where the term on the right-hand side represents a one-dimensional compression
or expansion that may differ from zero even if the multidimensional flow is incom-
pressible, as pointed out by Rider and Kothe (1998). We integrate this equation in
time, approximate the velocity derivative with a centered finite-difference scheme,
and use again nondimensional variables:

Cn+1
i j = Cn

i j − Φ̃i+1/2, j + Φ̃i−1/2, j +C̃i j(ui+1/2, j −ui−1/2, j) . (5.44)

116 The volume-of-fluid method

There are different choices for C̃i j, but once we have selected one we have to com-

pute properly the fluxes Φ̃i+1/2, j and Φ̃i−1/2, j. The geometrical method will help
us to calculate correctly the fluxes.

5.4.2.2 The Lagrangian explicit scheme

We set C̃i j = Cn
i j in (5.44), then the scheme is explicit and we get

Cn+1
i j = bCn

i j − Φ̃i+1/2, j + Φ̃i−1/2, j , (5.45)

where b = (1 + ui+1/2, j − ui−1/2, j) is the contraction/expansion coefficient of the
out-of-cell linear mapping (5.28). With reference to Fig. 5.7, where the cell area
Σ is mapped onto Γx, the term bCn

i j is the value of the area E. Therefore, the

two fluxes Φ̃ of (5.45) must be equal to the two areas D and F of Fig. 5.7. This
“Lagrangian” scheme for interface advection was first introduced by Li (1995).
If the two fluxes are not calculated after the interface line has been advected by
the mapping (5.28), minor inconsistencies may arise; see, for example, Rider and
Kothe (1998) and Puckett et al. (1997). They are usually seen as small unphysical
overshoots, C > 1, or undershoots, C < 0, in the volume fraction, but also as little
“holes” generated in the bulk of the reference phase or as some level of small debris
outside it, which are usually called “wisps.” These minor inconsistencies should
not be confused with the so-called “floatsam” and “jetsam,” which are bigger in
nature and mainly due to low-order reconstruction methods, such as SLIC, where
the interface discontinuity at the cell boundary is O(h).

5.4.2.3 The Eulerian implicit scheme

This scheme is equivalent to the onto-cell linear mapping. We set C̃i j = Cn+1
i j in

(5.44); the scheme is now implicit and we get

Cn+1
i j = a(Cn

i j − Φ̃i+1/2, j + Φ̃i−1/2, j) , (5.46)

where a = 1/(1−ui+1/2, j +ui−1/2, j) is the contraction/expansion coefficient of the
onto-cell linear mapping (5.34). Equation (5.46) and Fig. 5.9 suggest an alternative
way to update the volume fraction that does not require the mapping of the interface
segments that are inside the area Γx to the cell Σ. We calculate the volume fraction
contributions inside Γx that will be mapped to D, E, and F in Fig. 5.9, and we
multiply their sum by the coefficient a. This scheme is also called “Eulerian”
because the fluxes Φ̃ are calculated as in the simple fluxing scheme of Fig. 5.10b.

5.4.3 Unsplit methods

In this section we describe two simple unsplit methods and then discuss some of
the major issues that need to be addressed in the development of a Lagrangian or

5.4 Interface advection 117

an Eulerian unsplit method. Several other methods have been proposed, but they
are rather complex and their description is beyond the scope of this book.

5.4.3.1 A naive unsplit Eulerian advection

A naive (but easy to implement) Eulerian scheme which satisfies exactly the diverg-
ence-free condition (5.41) is as follows:

(i) Reconstruct the interface at time step tn.
(ii) Compute the reference phase fluxes leaving each grid cell. In the cell (i, j)

of Fig. 5.11, these are the two fluxes Φn
y:i, j+1/2 and Φn

x:i+1/2, j correspond-
ing to the shaded area inside the two rectangles of thickness vi, j+1/2 and
ui+1/2, j.

(iii) Update the volume fraction field as in Equation (5.3) (but with nondimen-
sional variables):

Cn+1
i, j = Cn

i, j − (Φn
x:i+1/2, j −Φn

x:i−1/2, j)− (Φn
y:i, j+1/2 −Φn

y:i, j−1/2) .

This scheme can be viewed as a concurrent split method and, as shown in equation
(5.4), it conserves mass to machine accuracy. However, this statement deserves
some comment, since the scheme may not satisfy in a few cells the consistency
condition: 0 ≤C ≤ 1. To see why, consider for instance the situation in Fig. 5.11
where the reference phase is located near the top-right corner of the cell and covers
a rectangular area of size δ =Cn

i, j = ui+1/2, j×vi, j+1/2. This area is fluxed out twice,
Φn

x:i+1/2, j = Φn
y:i, j+1/2 = δ , and if we assume that no reference phase is fluxed in

from the bottom and left cells, the volume fraction value at the next time step
becomes negative, Cn+1

i, j = −δ . Therefore some mass has to be removed or added
arbitrarily after advection: whenever C > 1 mass is removed or locally redistributed
to let C = 1 and similarly when C < 0. On the other hand, if Cn

i, j + Φn
x:i−1/2, j +

Φn
y:i, j−1/2 ≥ 2δ , then Cn+1

i, j ≥ 0, but still the same area is advected twice. The
concurrent split method has another defect: at each time step mass flows from the
cell (i, j) to the adjacent cells horizontally and vertically, but no mass is transferred
to the diagonal cell (i + 1, j + 1), as shown in Fig. 5.11. As a result if a smooth
interface is advected even by a simple divergence-free flow, such as a uniform
translation or a solid-body rotation, the interface line rapidly develops spurious
oscillations. In a dynamical situation these oscillations may become unstable and
give rise to numerical breakup of the interface.

5.4.3.2 Unsplit geometrical linear mapping method

The two linear mappings (5.34) and (5.37) can be applied without an intermediate
reconstruction and the method becomes unsplit by defining the combined mapping

118 The volume-of-fluid method

no area fluxed
into this celli, j+1/2

ui+1/2,j

area fluxed twice

v

i i+1

j+1

j

Fig. 5.11. In a concurrent split advection method, the rectangular area near the top-right
corner is fluxed simultaneously to the right and upwards; moreover, there is no flux in the
diagonal direction.

Πxy = T I
x ·T E

y : {
x′ = ax+aui−1/2, j

y′ = by+ vi, j−1/2

, (5.47)

where a = 1/(1− ui+1/2, j + ui−1/2, j) and b = (1 + vi, j+1/2 − vi, j−1/2). Because
the transformation is linear, it still transforms straight lines into straight lines and
allows an easy computation of the remapped interface.

The procedure is depicted in Fig. 5.12, and we remark the fact that the scheme
may require the application of the transformation to three consecutive interface
segments at most, since the pre-image of the central square in the implicit step
may contain a portion of the two lateral cells as well. In Fig. 5.13 we show the
unsplit mapping at work in a clockwise rotation. Only one reconstruction is needed
at each time step, but the fluxing algorithm is somewhat more complex. There is
still the need to alternate the starting sweep direction, namely Πxy with the dual
Πyx, otherwise one coordinate direction is always taken as the implicit one. With
some extra computations the scheme can be made more symmetric by a linear
combination of the two transformations within the same time step, Π = (Πxy +
Πyx)/2, as described by Aulisa et al. (2003b).

5.4.3.3 Unsplit Lagrangian methods

In a Lagrangian method we advect points along the characteristic lines in the time
step ∆t by solving the equation of motion dx/dt = u(x, t), where x is the point po-
sition and u the local velocity, usually obtained by interpolating the velocity field
defined at the grid points. In Fig. 5.14, the four vertices 1234 of the cell (i, j)

5.4 Interface advection 119

Γx

T
I

x

Σ

E
Ty

Γy

)c()b()a(

Fig. 5.12. A schematic view of the unsplit geometrical method: (a) initial configuration;
(b) mapping of the rectangle Γx onto the unit square Σ; (c) mapping of the unit square Σ
onto the rectangle Γy.

TTx
I

Ty
E

Fig. 5.13. The set of all mappings Πxy, one for each computational cell, may be viewed as
transforming an initial tessellation of rectangles aligned horizontally into the square grid
and then into another tessellation of rectangles aligned vertically. As an example, we show
the pre-image and the image rectangles in a solid body rotation of the plane, where u = ωy
and v = −ωx.

are advected, but alternatively only the vertices 12AB4 of the polygon containing
the reference phase could be advanced in the given velocity field. Second-order or
even higher order methods, including predictor–corrector or Runge–Kutta integra-
tion schemes, have been used in the literature to integrate the equation of motion.
Next we have to distribute the mass in the advected polygons onto the cells of the
fixed grid. This is a geometrical problem that requires for each of the four hatched
regions of the deformed cell (i, j) of Fig. 5.14 the calculation of the coordinates of
its vertices and that of its area by using Equation (5.21). By adding the contribu-
tions of all the grid cells, we update the volume-fraction field at the next discrete
time. In theory, the method should conserve the mass exactly because the flow is
incompressible; in practice, this is not true for several reasons:

120 The volume-of-fluid method

i i+1

j

j+1

B'

A'

A

B

2

4'

41

1'

2'

3

3'

Fig. 5.14. Unsplit Lagrangian advection. In this example the whole cell (i, j) is moved by
advecting its four vertices along the characteristic lines. The four hatched areas represent
the contribution of the advected cell to the updated value of the volume fraction in the four
cells of the fixed grid.

(i) The discrete velocity field computed by a flow solver is not exactly diver-
gence free.

(ii) The local velocities of the advected points are usually interpolated from the
grid-point values with numerical schemes that do not preserve the
divergence-free condition.

(iii) The numerical integration of the equation of motion is also affected by
errors.

(iv) A segment which is advected with a numerical scheme of order greater
than one is deformed into a continuous, piecewise differentiable curve. The
derivatives of the velocity field, and thus the slopes of the advected curve,
jump when crossing the cell boundary.

As a result, the area of the deformed cell after advection is not that of the starting
Cartesian cell. The area excess or defect can in principle be redistributed among
the four hatched areas of Fig. 5.14 with some “ad hoc” criteria, but in the process
there is no guarantee that the condition 0 ≤ C ≤ 1 is satisfied everywhere. This
may require another local redistribution algorithm to bring the volume-fraction
data within their meaningful range of variation.

5.4.3.4 Unsplit Eulerian methods

In an Eulerian method we compute the reference phase fluxes Φ through the cell
boundary. This is done geometrically by defining the material area that in the time

5.4 Interface advection 121

i+1/2, jui−1/2, ju

vi, j+1/2

i+1/2,j−1u
i,j−1/2v

i, j−3/2v

area
fluxed
twice

(b)(a)

2

1

2

1

3 3

4 4

Fig. 5.15. Unsplit Eulerian advection: Two different flux polygon constructions at a cell
side. (a) In the method by Rider and Kothe (1998), the velocity components on a staggered
MAC grid are used to determine the trapezoid 1–2–3–4. (b) In the scheme by López et al.
(2004), the velocity field is first interpolated to the cell vertices 1 and 2 to compute the
slope of sides 2–3 and 1–4. Enforcement of area conservation and spatial variation of the
velocity field determine the position and slope of side 3–4.

∆t will cross each cell side. In a split scheme the total fluid flux is given by the
rectangle of area u+ ∆t h shown in Fig. 5.10b, while the flux Φ is the gray portion
of this rectangle filled by the reference phase. Several unsplit methods have been
developed; here, we illustrate only two of them which approximate the fluid flux
through a cell side as a trapezoidal polygon. In the flux polygon proposed by
Rider and Kothe (1998), shown in Fig. 5.15a, the rectangular area of thickness
ui+1/2, j of the split algorithm has been changed to a trapezoid by including two
triangular areas to take into account the multidimensionality of the flow. The height
of the triangle added on the top cell side is vi, j+1/2; that of the triangle removed
from the bottom side is vi, j−1/2. As a result, the fluid area fluxing is not equal to
ui+1/2, j; hence, the total flux through the cell boundary may not satisfy the discrete
divergence-free condition of the flow (5.41) and the incoming material area in the
cell may be smaller or bigger than the outgoing one. Another problem with this
scheme is that some area may be fluxed twice (as shown in Fig. 5.15). To reduce
the negative effects of these issues the authors actually solve the two-dimensional
version of (5.42) and of its discrete form (5.44)

Cn+1
i j = Cn

i j − Φ̃i+1/2, j + Φ̃i−1/2, j − Φ̃i, j+1/2 + Φ̃i, j−1/2 +
Cn+1

i j +Cn
i j

2
∇ ·u ,

122 The volume-of-fluid method

where Φ̃i+1/2, j is the portion of the trapezoid 1234 of Fig. 5.15a which is occupied
by the reference phase and that in the time ∆t will flow through the right side 1–2
of the cell. In this scheme the term ∇ · u represents the net balance between the
incoming and outgoing fluid fluxes. Finally, the volume fraction is redistributed
locally whenever C > 1 or C < 0.

In the scheme proposed by López et al. (2004), the velocity field is first inter-
polated to the cell vertices 1 and 2 of Fig. 5.15b (for example, on a MAC grid
u1 = ui+1/2, j−1/2 = (ui+1/2, j + ui+1/2, j−1)/2) to define the direction of the sides
2–3 and 1–4 of the trapezoidal flux polygon. The slope of side 3–4 is given by(dx

dy

)
3−4

=
x2 − x1 − (u2 −u1)∆t

y2 − y1 − (v2 − v1)∆t
.

Side 3–4 is then moved parallel to this direction until the area of the trapezoid is
equal to ui+1/2, j ∆t h. By construction, no area is fluxed twice and the incoming
material area is always equal to the outgoing one as long as the discrete velocity
field is divergence free.

5.4.3.5 Redistribution algorithms

We have previously pointed out a number of inaccuracies in the integration scheme
that may cause undershoots, C < 0, or overshoots, C > 1, of the volume fraction
data. The easiest way to get around the problem is simply to ignore it. This is
conveniently done when the over/undershoots are rather small by letting

Ci, j = min(1,max(Ci, j,0)) .

On the other hand, if the total fluid volume must be conserved exactly, we need
to redistribute the C data locally as in the following algorithm proposed by Harvie
and Fletcher (2000). Suppose that Ci, j > 1, then define ε = Ci, j − 1 and look for
the maximum C value, strictly less than 1, in the cells (i′, j′) surrounding (i, j). Let
this value be Ci′, j′ < 1 and let CT = Ci′, j′ + ε , then redefine the C value in the two
cells (i′, j′) and (i, j) as

Ci′, j′ = min(CT,1) ; Ci, j = max(CT,1) .

If Ci, j ≤ 1 the procedure stops, otherwise the redistribution algorithm will search
for the next neighboring cell with the maximum C value. A similar procedure is
called when Ci, j < 0.

5.5 Tests of reconstruction and advection methods

Typical advection tests involve simple translations and solid body rotations and
they are particularly useful to evaluate the basic properties of different reconstruc-
tion and advection algorithms, since a fluid body immersed in these flows should

5.5 Tests of reconstruction and advection methods 123

0.0 1.00.80.60.40.2
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5.16. Translation test: three different circles are advected along a continuous, piece-
wise linear line. A portion of the computational grid with 80×80 cells is also shown.

preserve its form. More demanding tests involve flows with a nonuniform vorticity
field that deform and stretch a fluid body as it moves in the computational domain
to such an extent that the interface may break up or coalesce. In the following tests
we consider a circular fluid body at time t = 0 that returns to its initial position at
t = T , and we estimate the geometrical error E with an L1 norm defined as

E = ∑
i, j

h2|CT
i, j −C0

i, j| . (5.48)

In the next two tests, a simple translation and a more complex single vortex test,
we use the ELVIRA reconstruction algorithm and the unsplit geometrical advection
scheme that ensures an exact mass conservation.

5.5.1 Translation test

For this test we consider a unit square computational domain with 80×80 square
cells of side h = 1/80. Three circles with different radius r, r/h = 2.5,4,5.5,
are centered at point (0.5,0.9). The circles move along a continuous, piecewise
linear line as shown in Fig. 5.16, to remove the effects of possible favourable or
unfavourable alignments of the streamlines with the grid lines. A constant velocity
field is assumed along each straight section of the line and a constant CFL number,
based on the maximum velocity component of each section, is used in the whole
simulation. Figure 5.17 shows the initial reconstruction of the three circles with

124 The volume-of-fluid method

0.45 0.5 0.55

(a)

0.85

0.9

0.95

0.45 0.5 0.55

(b)

0.85

0.9

0.95

Fig. 5.17. Translation test of Fig. 5.16: (a) initial reconstruction of the three circles with a
different radius r, r/h = 2.5,4,5.5; (b) reconstruction at the end of the translation test with
CFL = 1 (solid segments) and CFL = 0.1 (dashed segments).

the ELVIRA and their final position with a value of the CFL number equal to 1
and 0.1. The initial and final reconstructions at CFL = 1 are rather good, but
at CFL = 0.1 the final configurations are rather distorted, in particular at small
radii. In actual dynamical simulations the CFL number is limited to a value smaller
than one because of the numerical stability of the discrete approximations of the
Navier–Stokes equations. Therefore, a ratio of at least 4 between the local radius of
curvature and the grid spacing can be considered as an indicative value for a well-
resolved two-phase flow simulation based on VOF methods with a single segment
reconstruction in each mixed cell.

The translation test is well suited to study the reconstruction error alone in mov-
ing conditions, since the fluxing areas are exact for this simple test. Notice that as
the fluid body is advected with CFL = 1, say along the x-direction, the C field is
simply shifted by one cell to the left or to the right, but its distribution does not
change. Hence, the error (5.48) is zero. As we lower the CFL number we need
more reconstructions to cover the same distance, and we add a small amount of
error to the simulation each time we reconstruct. As a result, we expect the error
(5.48) to increase with the number of time steps towards a saturation level, i.e.
the error remains bounded, when the interfaces for two consecutive time levels are
very close to each other. This behavior is shown in Fig. 5.18 for the circle with
r/h = 5.5 in the grid with 80× 80 cells, as a function of the Courant number and
the grid resolution. Notice that in the asymptotic region at a fixed CFL number the
convergence rate is about first order at the lowest resolution, and it slowly increases
towards second order with grid resolution.

5.5 Tests of reconstruction and advection methods 125

0 50 100 150 200 250
1/CFL

0.0e+00

5.0e-04

1.0e-03

1.5e-03

T
ra

ns
la

ti
on

 E
rr

or
 T

es
t

 40x40 cells
 80x80 cells
160x160 cells
320x320 cells

Fig. 5.18. Translation errors as a function of the CFL number and grid resolution, with the
ELVIRA reconstruction algorithm and the unsplit geometrical linear-mapping advection
method.

5.5.2 Vortex-in-a-box test

This test was introduced by Bell et al. (1989) and Rider and Kothe (1998) and is
particularly suited to study the combined performance of the reconstruction and
advection algorithms. The velocity field is determined by the stream function

ψ(x,y, t) =
1
π

cos(πt/T)sin2(πx)sin2(πy). (5.49)

The computational domain is a unit box partitioned with square cells of side h =
1/n, where n is the number of cells along each coordinate direction. The stream
function value is computed in the vertices of the cell and the values of the velocity
components on a staggered MAC grid are found by the centered finite-difference
approximation of u = ∂ψ/∂y and v = −∂ψ/∂x. The flow rotates in the clockwise
direction, as shown in Fig. 5.19, and the divergence-free condition of the velocity
field is satisfied to machine accuracy. The stream function ψ is modulated in time
by the factor cos(πt/T), where T is the period. A circular fluid body of radius
r = 0.15 and center at (0.5,0.75) is positioned in this flow at time t = 0 and it is
stretched and spirals around the center of the box. It reaches a maximum deforma-
tion at time t = T/2; then it returns to its initial position at t = T . In the results of
Fig. 5.20 we have considered the period T = 2 and CFL= 1 at the initial time. The
“exact” interface has been obtained by connecting with segments an ordered list of

126 The volume-of-fluid method

Fig. 5.19. Vortex-in-a-box velocity field.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.3 0.4 0.5 0.6 0.7

0.6

0.7

0.8

0.9

Fig. 5.20. Vortex-in-a-box test with period T = 2 and with CFL = 1 at the initial time.
The exact and reconstructed interfaces are given at t = T/2 (left) and t = T (right). In both
figures the dotted line is the “exact” interface described by interface markers, the dashed
segments reconstruct the interface on a 322 grid, and the solid segments on a 1282 grid.

interface markers that have been advected numerically along the flow streamlines
with a fourth-order Runge–Kutta integration scheme. The reconstruction and ad-
vection of the interface on a 322 grid cannot follow the interface shape correctly
when the local radius of curvature is comparable to the grid spacing. This clearly

5.5 Tests of reconstruction and advection methods 127

Table 5.3. The geometrical error E (5.48) and the order of convergence O (5.24)
for the vortex-in-a-box test with period T = 2, for different grid resolutions.

32×32 64×64 128×128

E 2.520e-3 6.224e-4 1.351e-4
O 2.018 2.203

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.3 0.4 0.5 0.6 0.7

0.5

0.6

0.7

0.8

0.9

Fig. 5.21. Vortex-in-a-box test with period T = 8 and with CFL= 1 at the initial time. The
exact and reconstructed interfaces are given at t = T/2 (left) and t = T (right). In both
figures the dotted line is the “exact” interface described by interface markers, the dashed
segments reconstruct the interface on a 322 grid, and the solid segments on a 1282 grid.

happens at t = T/2 near the head and the tail of the filament, which correspond
respectively to the bottom and top regions of the circle at the end of the simula-
tion, where most of the final error is found. As we increase the grid resolution
to n = 128, the error decreases and it can be seen only in a small area near the
tip of the tail, at the coarse resolution of Fig. 5.20. The geometrical error (5.48)
and the order of convergence (5.24) of the ELVIRA reconstruction combined with
the unsplit geometrical advection for T = 2 is given in Table 5.3 for different grid
resolutions. A second-order convergence rate is found for this set of data. As we
increase the period from T = 2 to T = 8 the reconstruction algorithm, which is
limited to a single segment per cell, cannot resolve a filament of the order of or
even thinner than the grid spacing h. The interface is progressively destroyed and
the algorithm acts effectively as a numerical surface tension by collecting small
debris into small rounded structures. The reconstructed interface at halftime and at
the end of the simulation is shown in Fig. 5.21 for the two resolutions n = 32,128.

128 The volume-of-fluid method

5.6 Hybrid methods

The VOF method has been recently coupled to other techniques in order to take
advantage of the strengths of each method. In this section we only review the way
in which the coupling can be done, but we do not discuss simulation results. We
first consider the coupling of VOF and level-set methods. In an incompressible
flow, the conservative form of the advection equation

∂G
∂ t

+∇ · (uG) = 0 (5.50)

can be integrated in time for both the color function, G = C, and the level-set func-
tion, G = F , with an operator split technique. A geometric approach is usually
used for the color function and high-order upwind and weighted ENO schemes
have been considered for the level-set function. After the advection step, the cou-
pling between the two scalar functions F and C occurs at two different instances.
First, when the interface is reconstructed, the interface normal m can be computed
directly as m = −∇F . Another interesting way to compute the normal vector was
suggested by Sussman and Puckett (2000). In the square cell of side h and center
(xi,y j) the interface is approximated as the linear function described by the equa-

tion F̃(x,y) = a(x−xi)+b(y−y j)+c = 0, then this straight line is extended to the
surrounding 3×3 block of cells, as in the ELVIRA reconstruction. The discretized
error function

Ei, j(a,b) =
i+1

∑
k=i−1

j+1

∑
l= j−1

ωk, l H ′
ε(Fk, l)

(
Fk, l − F̃(xk,yl)

)2
(5.51)

is minimized only with respect to a and b, since the value of the constant c comes
from area conservation. In expression (5.51), ωk, l represents a discrete weight, Fk, l
is the level-set value at (xk,yl), and H ′

ε(F) is a smoothed delta function with size
ε =

√
2h derived from the following smoothed Heaviside function Hε(F):

Hε(F) =

⎧⎪⎨⎪⎩
0, if F < ε ;
1
2

[
1+ F

ε + 1
π sin(πF

ε)
]
, if |F| ≤ ε ;

1, if F > ε .

(5.52)

The second exchange of information between the color function and the level-set
function occurs after the interface reconstruction when F is reinitialized to the
signed distance from the interface. In Fig. 5.22a the intersection point D between
the interface line and its normal through point A is inside the segment 1–2 and the
value of F at point A is the signed length of AD (if the normal m points outwards
from the reference phase, then F is positive in the region occupied by the reference
phase). If the point D is outside the interface segment 1–2, then it is necessary

5.6 Hybrid methods 129

(a)

A

D

2

1

(b)

A

1'

2'

Fig. 5.22. (a) The level-set function F at point A is initialized to the signed distance AD
from the interface segment 1–2. If the point D is outside the segment, the end points 1 and
2 are also considered. (b) In order to have a continuous function F it is also necessary to
consider parts of the cell boundary.

to consider also its end points and |F(A)| = min(|A− 1|, |A− 2|). The interface
reconstruction with the VOF method is, in general, not continuous across the cell
boundary and the calculation of the level-set function is actually somewhat more
complicated, since it is also necessary to consider portions of the cell boundary
in order to have F continuous, as shown in Fig. 5.22b. The level-set function is
usually reinitialized to the exact signed distance only inside a small ribbon centered
on the interface line with a thickness K ≤ 8h; outside this ribbon F is initialized
to a constant value, say |F| = (1 + K/2)h. With a few minor differences in its
implementation, this coupled technique has been used by many authors to study
a large number of physical problems. We mention only the extension to adaptive
unstructured triangular grids by Yang et al. (2006b). The advection equation for
F is solved with a finite element method, while an unsplit Lagrangian technique is
adopted for the color function C, similar in principle to that described in Section
5.4.3.3 and in Fig. 5.14, but with triangular grid cells. As before, at each time step
the level-set function is reinitialized in the nodes of the fixed grid to the signed
distance from the reconstructed interface, while the interface is reconstructed in
each advected cell with the normal m given by m = ∇F̃ . The function F̃ is a
quadratic fit to the values of the level-set function in the surrounding cells sharing at
least one vertex with the advected cell, F̃(x′,y′) = ax′2 +bx′y′+cy′2 +d x′+ey′+
g. In the last expression, the origin of the local Cartesian system of coordinates x′

and y′ is in the center of the advected cell where the normal m is computed, while
the coefficients a, b, c, d, e and g are determined by a least-squares method.

In the hybrid method by Aulisa et al. (2003a) the VOF method is coupled to a
front-tracking method. The interface is defined by a piecewise-linear, continuous
line obtained by connecting with segments an ordered set of grid intersection and

130 The volume-of-fluid method

α

i i+1

j

+1

1

2

3

45

6 7

1′

2′

3′4′
5′

7′
D

C

B

A

(a) α′

′6

j

+

+

1

2

3
4 1'

A

2'

B4' 3'

i i+1

j

j+1

(b)

E

F

Fig. 5.23. (a) Lagrangian advection of the whole cell (i, j) and its reference phase redis-
tribution in the neighboring cells. (b) Area conservation markers E,F replace markers 2′,3′

by conserving the area of the two polygons A2′3′B and AEFB.

area conservation markers. In each cell cut by the interface the reference phase is
bounded by a polygon. The vertices of the polygon are collected in counterclock-
wise order and in the example of Fig. 5.23a, to be compared with Fig. 5.14, there
are seven vertices: points 5,6,7 are cell vertices, points 1,4 are intersection mark-
ers, where the interface line cuts the grid lines, and points 2,3 are area conservation
markers. The coordinates (xi,yi) of these seven vertices are stored in normalized
form, i.e. 0 ≤ xi,yi ≤ 1, with respect to a local system of coordinates. The four
vertices α ,5,6,7 of the cut cell are then advected along the flow streamlines with
a fourth-order Runge–Kutta integration scheme to points α ′,5′,6′,7′. Given the
position of the advected vertices and the stored normalized coordinates, the posi-
tion of the points 1′,2′,3′,4′ is readily computed with a bilinear interpolation. The
polygon vertices are connected with straight lines and the intersections A,B,C, and
D with the grid lines are determined. Clearly, only the two points A,B are intersec-
tion markers. The reference phase inside the donor cell (i, j) can be displaced over
several neighboring acceptor cells after advection. The contribution to the volume
fraction of each acceptor cell is one of the four differently hatched regions of Fig.
5.23a, and its area can be easily computed from the coordinates of its vertices with
expression (5.21). As the simulation goes on, markers may locally concentrate or
spread apart; therefore, at each time step, markers are redistributed homogeneously
along the interface line, eventually by adding or removing a few of them. This sim-
ple geometrical procedure is illustrated in Fig. 5.23b, where the two inner points
2′,3′ are first replaced by E,F along the segment BA with |BF| = |EA| = |FE|/2.
The two new area conservation markers E,F are then equally displaced along the

5.6 Hybrid methods 131

(a)

j+1

i i+1

j

B

4

3

2

1

A i i+1

j

j+1

(b)

A

1'

2'

B

Fig. 5.24. (a) After the Lagrangian advection of the interface the area involved in the
redistribution algorithm is a small ribbon (shaded area) along the interface. (b) The area
conservation markers 1′,2′ replace the inner markers 1,2,3,4 by conserving the spanned
area. The color function is updated after the redistribution algorithm by collecting markers
and cell corners in couterclockwise order.

normal direction until the two polygons A2′3′B and AEFB have the same area.
In the first version of this hybrid method there was a strong coupling between the
Lagrangian advection of the reference phase and the color function C, as both full
and mixed cells are advected in the manner shown in Fig. 5.23a to update the C
data. This technique also presented some difficulty in the case of multiple intersec-
tions and of clustering of markers in the same cell, and a reduction algorithm was
implemented to limit their number.

In a more recent version of the method (Aulisa et al., 2004) the area conservation
constraint is applied on a small ribbon along the interface line, see Fig. 5.24a,b,
where the points A,1′,2′,B replace A,1,2,3,4,B by conserving the spanned area.
The new algorithm is much faster, as only mixed cells are involved in the La-
grangian advection, and more precise, as markers are added or removed locally
where this is needed, with no artificial removal of intersection markers. On the
other hand, the coupling is not as strong as before, since the color function is now
computed only at the end of the redistribution by collecting in couterclockwise or-
der all intersection and conservation markers and cell corners; see Fig. 5.24b. The
technique has been extended to three-dimensional Cartesian grids (Aulisa et al.,
2004) and to unstructured quadrangular grids (Aubert et al., 2006). Figure 5.25
shows how the method performs in the vortex-in-a-box test with a counterclock-
wise flow and should be compared with Fig. 5.21. However, with these new

132 The volume-of-fluid method

0

5

10

15

20

25

30

0 5 10 15 20 25 30
0

20

40

60

80

100

120

0 20 40 60 80 100 120

Fig. 5.25. Vortex-in-a-box test on a grid with 322 (left) and 1282 (right) cells. The period
is T = 16 and the rotation is counterclockwise.

features the method is basically a front-tracking method, which is the topic of the
next chapter.

6

Advecting marker points: front tracking

Instead of advecting a marker function identifying the different fluids directly,
as in the VOF method, the boundary between the fluids can be represented by
connected marker points that are moved by the fluid. This approach is usually
called front tracking, and in Chapter 4 we discussed the basic idea briefly and
gave a short historical overview. In this chapter we describe front tracking in more
detail.

The use of connected marker points to track the motion of a complex and de-
forming fluid interface can lead to several different methods, depending on the
details of the implementation. Generally, however, front tracking involves the
following considerations:

(i) The data structure used to describe the front. Although the use of marker
particles simplifies many aspects of the advection of a fluid interface, other
aspects become more complex. We use front to refer to the complete set
of computational objects used to represent the interface. In addition to the
marker points, the front often includes information about the connectivity
of the points, as well as a description of the physics at the interface. The
management of the front can be greatly simplified by the use of the ap-
propriate data structure. There is a fundamental difference in the level of
complexity between fronts in two dimensions and in three dimensions and,
in general, any data structure can be made to work reasonably efficiently in
two dimensions. For three-dimensional flows, the proper data structure can
determine the difference between success or failure.

(ii) The maintenance of a front as it is deformed, stretched, and compressed
by the flow. Generally, it is necessary to update the representation of the
front by adding or deleting front-objects dynamically. Sometimes it is also
necessary to reset the connectivity of the marker points and on occasion it

133

134 Advecting marker points: front tracking

is desirable to smooth the front. All these operations depend critically on
the flexibility of the data structure.

(iii) The front interaction with the fixed grid, where the equations governing the
fluid motion are solved. In most cases the front is moved by a velocity field
computed by solving the Navier–Stokes equations on a fixed grid and as the
front moves it is necessary to update the grid values of the fluid properties
on the fixed grid. Surface tension is usually also computed on the front and
must be added to the fluid equations on the fixed grid. The most widely used
way to accomplish this transfer of information between the moving front
and the fixed grid is by approximating the front by a smooth distribution
that can be represented on the fixed grid. The smoothing method, however,
is not the only approach to transfer information between the front and the
fixed fluid grid. The main alternatives are methods that attempt to maintain
a sharp interface by modifying the numerical approximations used near the
front – including extrapolating the field on one side of the front across it to
create “ghost” values there so that all variables can be updated using regular
stencils – and methods where the fixed grid is modified near the front. In
this chapter we focus on the first approach.

(iv) Topology changes. When two blobs of the same fluid coalesce or one fluid
blob breaks up into two or more blobs, the front must be restructured to
reflect the changes in the topology of the interface. This has long been
considered the main problem with explicit front-tracking, and we will end
the chapter with a short discussion of the main issues.

When the fluid interface is tracked by marker points we work with two grids: the
fixed grid, where the equations governing the fluid flow are solved, and the lower
dimensional grid that tracks the interface. In Fig. 6.1, where one frame from a
simulation of a buoyant bubble is shown, the unstructured triangulated front grid
is clearly visible. One cross-sectional plane of the regular structured fluid grid,
where the velocity field is plotted, is also shown. The front grid is used for the
accurate advection of the fluid interface and the computations of surface tension.
The evolution of the front is discussed in this chapter and the computation of the
surface tension is discussed in Chapter 7.

6.1 The structure of the front

The representation of a two-dimensional front by marker points is fairly simple,
and any data structure can generally be made to work efficiently. In three dimen-
sions, however, the representation of the front is more critical for the successful
implementation of the various operations required. Here, we first discuss briefly

6.1 The structure of the front 135

Fig. 6.1. Front-tracking simulation of a buoyant bubble. The bubble surface is tracked by
an unstructured triangular grid, but the fluid equations are solved on a regular structured
grid.

the representation of a two-dimensional front by an ordered array of points and
then we present a more general approach using unstructured grids.

6.1.1 Structured two-dimensional fronts

A two-dimensional interface can be represented by an ordered array of marker
points. The location of the points with respect to each other is given by their order,
and computation of point separation, for example, is straightforward. Figure 6.2
shows a two-dimensional front constructed in this way. The only information that
needs to be stored is the point coordinates

xi = (xi,yi), where i = 1, . . . ,N (6.1)

and N is the total number of points used to represent the interface. Since the
points are ordered, the points next to point i are points i± 1. If the simulations
include more than one interface, then it is necessary to include information about

136 Advecting marker points: front tracking

u

u

u
u

(x0,y0

(x1,y1

(x2,y2

(x3,y3

Fig. 6.2. The layout of an ordered string of material points used to represent a front in two
dimensions.

where one interface ends and another one begins, or to use separate arrays for each
interface.

To find the tangent to the front, or to insert a new point into the front, it is
necessary to make some assumptions about the shape of the interface between the
points. In preliminary work, or where a large number of points is used, linear
interpolation, where the front is assumed to consist of straight-line segments, can
be used. Linear interpolation, particularly when used to insert new points, may,
however, lead to poor mass conservation and curvature fluctuations that can be
undesirable if the surface tension is high. A higher order interpolation function is
therefore often preferable.

Generally it is desirable to use a relatively “local” interpolation function that
only depends on the points around the part of the curve where we are working.
A simple Legendre interpolation usually works well. By numbering the points as
shown in Fig. 6.2, an nth-order polynomial gives the position of any point on the
curve by

xn(u) =
n

∑
i=0

n

∏
j=0, j �=i

u−u j

ui −uj
xi. (6.2)

Here we have used an interpolation parameter u that takes integer values at each
marker point, as shown in the figure. For a curve going through four points
(u = [0,1,2,3]), this expression gives a cubic polynomial:

x3(u) = −1
6
(u−1)(u−2)(u−3)x0 +

1
2

u(u−2)(u−3)x1

− 1
2

u(u−1)(u−3)x2 +
1
6

u(u−1)(u−2)x3. (6.3)

The coordinates of the midpoint between points 1 and 2, at u = 3/2, are

x3(3/2) =
1
16

[
−x0 +9(x1 +x2)−x3

]
, (6.4)

6.1 The structure of the front 137

for example, and a tangent at u = 3/2 is easily found to be given by

t3(3/2) =
∂ x
∂ u

=
1

24

[
−x0 +27(x1 −x2)+x3

]
. (6.5)

Notice that t as computed by Equation (6.5) is not a unit tangent vector. The
superscript “3” on the left-hand side in Equations (6.3), (6.4), and (6.5) denotes
that we have used a third-order interpolation.

For two-dimensional fronts that do not stretch and deform much, the use of or-
dered points for the interface is particularly straightforward. The limitation of this
approach becomes apparent when the front deforms and some points move too
far apart and other parts of the front become crowded with points. To maintain
accuracy, points must either be added and deleted or redistributed to maintain ade-
quate resolution. Preventing the separation of the points from becoming too large
by adding new ones is obviously the most important consideration. Deletion of
points, however, is also important, both to reduce the total number of points and to
prevent the formation of small-scale “wiggles” that sometimes arise if an interface
is resolved much more finely than the underlying velocity field.

There are essentially two strategies available to maintain the resolution of a front
consisting of ordered points: redistribute the points evenly in arc length, or insert
(delete) points where the separation between the points becomes too large (small).
When the points are redistributed evenly we need an interpolation parameter that
represents the distance between the points. Ideally, this would be the arc length
of the curve, but since it is fairly involved to find the exact arc length, we usually
approximate it by straight-line segments between the points, so that

si =
i−1

∑
j=1

[
(x j+1 − x j)

2 +(y j+1 − y j)
2)
]1/2

(6.6)

is most frequently used. If the total length is sN then the distance between the
points is ∆s = sN/N, assuming a closed interface. The locations of the new points
are found by xnew

i = x(i∆s), using the interpolation function that we have selected,
such as (6.2). When points are inserted only as needed and other points stay put,
the new points are usually put halfway between the old points. For a Legendre
interpolation, a point between points 1 and 2 in Fig. 6.2 would be inserted at
the location given by Equation (6.4). Similarly, when the separation between two
points is so small that it is desirable to delete one of the points, the least disruptive
action is usually to merge the two points into one, at a location determined by
Equation (6.4). When points are added to or deleted from an ordered array, the
coordinates of points with higher indices must be shifted to maintain the ordering.
This can be tedious if many points are added or deleted at once.

138 Advecting marker points: front tracking

Start point

Pointer to
previous

Pointer to

Pointer to

Pointer to

End point

Fig. 6.3. The structure of a two-dimensional front. The points only “know” their coordi-
nates. The elements, on the other hand, carry all information about the structure of the
front, including pointers to the corner points and to the adjacent elements.

The representation of a curve in two dimensions is a highly developed subject
and much more accurate representations are easily constructed. When relatively
few points are used and high accuracy is required, a cubic spline polynomial, which
has continuous first and second derivatives everywhere, is frequently a good choice.
The polynomial is defined locally by

x(s) = ai s3 +bi s2 + ci s+di, (6.7)

where the coefficients in the intervals between each pair of marker points are deter-
mined by requiring the function and the first and second derivatives to be continu-
ous at the marker points. Usually, we choose the arc length (or an approximation,
such as Equation (6.6)) as the interpolation parameter and find a separate set of
coefficients for x(s) and y(s) by solving a system of tridiagonal linear equations.
A detailed discussion of cubic splines and other high-order interpolation functions
can be found in standard textbooks (Press et al., 1993; Hammerlin and Hoffmann,
1991). Although high-order interpolation functions have been used to compute
highly accurate solutions (Popinet and Zaleski, 1999), they are generally limited
to two-dimensional flows and relatively simple problems. We will, therefore, not
discuss them further here.

6.1.2 Unstructured fronts

The use of an ordered array to represent the front is generally impractical for three-
dimensional surfaces, unless they remain essentially flat. For fronts that repre-
sent complex interfaces it is better to use unstructured triangular grids where the
front consists of points connected by triangular elements. Although using a front

6.1 The structure of the front 139

First element
First element First ghost

Fig. 6.4. The linked-list connections for two-dimensional front elements. The front con-
sists of two interfaces and one set of ghosts elements. In principle the connections have no
relations to the physical ordering of the elements.

consisting of both points and elements is something of an overkill for the two-
dimensional case, it is easier to visualize the front structure when the elements
connect only two points. We therefore start by examining one particular imple-
mentation of an unstructured two-dimensional front. The key variables are shown
in Fig. 6.3. The front consists of points that are connected by elements. For
each point, the only information stored is its coordinates. The elements, on the
other hand, contain most of the front information. Each element knows about the
points that it is connected to, as well as the local structure of the front, including
its neighboring elements. The elements also contain information about the phys-
ical properties associated with the interface, such as the surface tension, change
in the value of the marker function across the front, and any other quantities that
are needed for a particular simulation. The elements are given a direction that de-
fines the “outside” and the “inside” of the interface. For a given interface, all the
elements must obviously have the same direction.

Since we need to add and delete front objects (points and elements) in the course
of a simulation, it is easiest to store the objects in a linked list. In a linked list
each object contains, in addition to its intrinsic properties such as coordinates for
the points and information about the front structure for the elements, a pointer to
the next object in the list. A linked list is particularly easily implemented as a
structure in C or C++. In programming languages that do not include structures it

140 Advecting marker points: front tracking

Element

Pointers to
Pointers to

Fig. 6.5. The structure of a three-dimensional front. The points only “know” their coor-
dinates. The elements, on the other hand, carry all information about the structure of the
front, including pointers to the corner points and to the adjacent elements.

is necessary to maintain a separate array for each variable that is associated with
the object, including the pointers to the next objects. Although the elegance of a
single structure is lost, the actual work involved is only marginally increased. The
order within the arrays is completely arbitrary, but one object must be designated
as the first object in the front. The total number of objects in the front is stored
and any operation involving the front is done by starting with the first object. The
pointer to the next object in the linked list is then used to move to the next object
and so on, until all the objects have been visited. The unused objects in the array
are also linked and a pointer to the first unused object is stored. The use of a linked
list makes the addition and removal of objects particularly simple, and while it is
not absolutely necessary to maintain a pointer to the previous object also (a doubly
linked list), deleting objects is simpler if we do.

The use of a linked list to store the front objects makes it particularly straight-
forward to manage more than one interface by simply adding pointers to the first
object (selected arbitrarily) of each interface. We note that, generally, there is no
need to treat physically distinct interfaces, such as those of two or more bubbles, as
distinct computational structures, even if their physical properties, such as surface
tension coefficients, are different. In some cases the interfaces may, however, re-
quire fundamentally different treatments, or we may want to introduce new fronts
for computational reasons. For interfaces intersecting an external boundary, we do,
for example, usually introduce ghost points and elements. In this case we put a
ghost point outside the boundary and connect it to the point on the wall by a ghost
element. These ghost objects are not included in the front that describes the fluid
interface, but the front element connected to the wall point sees the ghost element

6.1 The structure of the front 141

1

2

3

6

5

4
v

w

u

Element

u

u

w

w

v

v –1

 –1

 –1

Fig. 6.6. Barycentric coordinates for a three-dimensional element. The edges of element i
are defined by the u = 0, v = 0, and w = 0 lines.

as its neighbor. The ghost objects form a (usually small) linked list that allows us
to access them in the same way as the regular front objects. The position of the
ghost point is adjusted in such a way that the front tangent at the wall point has
the desired value. In Fig. 6.4 we show a two-dimensional front used to represent
two blobs of the same material and another blob whose properties are sufficiently
different so that it must be treated as a different interface. The second interface in-
tersects a domain boundary and the boundary conditions are enforced using ghost
elements.

Three-dimensional fronts are built in the same way as two-dimensional fronts,
except that three points are now connected by a triangular element. The points,
again, only know their coordinates, but the elements know about their corner points
and the elements that share their edges. Each element has an “outside” and an
“inside” and all elements on a given interface must be oriented in the same way.
The corners of each element and the edges are numbered counterclockwise (or
clockwise – it is the consistency that matters!) when viewed from the “outside.”
Figure 6.5 shows the key variables that are stored for a three-dimensional
front.

As for two-dimensional fronts, it is often necessary to assume the shape of the in-
terface between the points. And, as for two-dimensional fronts, linear interpolation
is sometimes acceptable. In most cases, however, more accuracy is necessary and
a higher order interpolation must be used. To generate an interpolation function,
using the three corner points of each element and the additional three corner points
of the elements that share its edges, we can use the barycentric coordinates (u,v,w)
defined in Fig. 6.6. The barycentric coordinate system is constructed locally for
each element by laying down grid lines that go through the corner points of the ele-
ment that we are considering and the elements that share an edge with that element.

142 Advecting marker points: front tracking

Splitting of Deletion of

Fig. 6.7. Adding and deleting front elements in two dimensions. Here an element is (a)
split by adding a point at the center of a long element and (b) a short element is deleted by
merging its endpoints.

In the figure, points 1, 2, and 3 define element i and points 4, 5, and 6 belong to the
adjacent elements. The edges of element i are given by the u = v = w = 0 lines.
Notice that the coordinates are not independent and we must have

u+ v+w = 1. (6.8)

Any interpolated quantity p is given by

p(u,v,w) =
1
2
(1−u)

[
−up5 +(1− v)p3 +(1−w)p2

]
+

1
2
(1− v)

[
(1−u)p3 − vp6 +(1−w)p1

]
+

1
2
(1−w) [(1−u)p2 +(1− v)p1 −wp4] (6.9)

where p1, p2, . . . are the values at the points. The centroid of the marked element
is at approximately u = v = w = 1/3, or

x(1/3,1/3,1/3) =
1
9

[
4(x1 +x2 +x3)− (x4 +x5 +x6)

]
, (6.10)

where we have taken p = x to be the point coordinates. The point halfway between
corner points 1 and 2 is given by u = v = 1/2 and w = 0 or

x(1/2,1/2,0) =
1
2
(x1 +x2)+

1
4

x3 −
1
8
(x5 +x6). (6.11)

The coordinates of the midpoints of the other edges are found in the same way.

6.2 Restructuring the fronts 143

6.2 Restructuring the fronts

In general, an interface will stretch and deform as a result of the fluid motion.
Stretching results in an increased separation of the marker points and eventually
it is necessary to insert new points to resolve the interface adequately. When the
interface is compressed, the points are crowded together, and although it is, in
principle, not necessary to remove points, in practice it is generally better to do so.
The refining of an unstructured grid is a highly developed subject, particularly for
aerospace applications (e.g. Thompson et al., 1998), but since the primary purpose
of a front identifying a fluid interface is to carry information (as opposed to pro-
viding a grid on which the conservation equations are solved) the restructuring can
be fairly simple.

For unstructured grids, where points are connected by elements, the size of an
element is directly related to the separation of the front points and thus determines
whether the grid must be refined or coarsened. Since the elements carry all con-
nectivity information, it is therefore easiest to work with them. Thus, the addition
or deletion of points is a result of splitting or removing elements. Figure 6.7 shows
schematically a simple restructuring for a two-dimensional unstructured front. In
(a) a large element is split by adding a point and in (b) an element is removed. The
new point can be put at the average location of the end points of the element that
is being split or removed, but (as for the structured fronts discussed above) this
generally results in poor mass conservation and artificial pressure perturbations for
high surface tension. It is better, therefore, to account for the curvature of the ele-
ment and use Equation (6.3) to determine the location of the new point. Once the
new point has been inserted, the various pointers are adjusted and the connectivity
in the linked list reset.

For three-dimensional flows, the restructuring operations are more complicated.
Not only can the addition and deletion of elements be done in a variety of ways,
but the detection of when an action is needed can also be based on several differ-
ent criteria. Figure 6.8 shows a relatively straightforward restructuring approach
based on splitting an edge of an element to refine the front and collapsing an edge
to coarsen it. The splitting of an edge results in the addition of one new front point
and two new front elements and the collapse of an edge removes one point and two
elements from the front. Sometimes it is also beneficial to reconnect the points by
swapping edges to make the elements better shaped, leaving the number of points
and elements unchanged. While the addition of elements is relatively straightfor-
ward, the deletion of elements can sometimes result in a mesh where two of the
neighboring elements share an edge. This results in a grid that is generally unac-
ceptable, since two of the points used for the interpolation described by Equation
(6.11) are now the same. In those cases it is usually best to leave the element

144 Advecting marker points: front tracking

Fig. 6.8. The restructuring of a three-dimensional front. To increase the resolution the long
edge of an element is split, thus adding one point and two new elements. To coarsen the
grid the short edge of two elements is collapsed, eliminating one point and two elements.
Element reshaping does not change the number of front objects.

under consideration untouched, or delete a different element. For relatively flat
interfaces, the reshaping of elements by edge swapping shown in Fig. 6.8 usually
results in improved fronts. In some cases, however, this is not the case. Consider,
for example, a narrow ridge described by long and narrow elements whose longest
edge runs parallel to the ridge. If the edges are swapped, then the edges will be
perpendicular to the ridge, converting a smooth ridge into a jagged one. In addi-
tion to sometimes resulting in undesirable results, we get a comparable reshaping
by the addition of elements, followed by element deletion. Explicit edge swapping,
therefore, is frequently not needed.

For two-dimensional flows, the length of an element determines when elements
are added or deleted. Usually, a minimum and a maximum element size is pre-
scribed and an action is taken if the size of an element exceeds these limits. The
limits are selected such that the resolution of the front is comparable to the fixed
grid used to resolve the flow. Generally, two to four elements per grid mesh is a
good rule of thumb. To determine whether it is necessary to add or delete an ele-
ment for a three-dimensional front, it is possible to use the size of each element,

6.3 The front-grid communications 145

the length of its edges, or its shape. The shape can be measured by the “aspect
ratio,” defined as the length of the perimeter squared divided by the area of the el-
ement, normalized by

√
3×12, which is the aspect ratio of an equilateral triangle.

Using the length of the edges and the aspect ratio to control the restructuring works
well: if the length of the longest edge is longer than a preset value, it is split and
two new elements added; if the shortest edge is shorter than a minimum value, it
is collapsed and two elements deleted. If the aspect ratio of an element is larger
than a minimum value and its shortest edge is larger than the minimum size, two
elements are also added. A minimum edge length of a third of the grid spacing,
a maximum length of a grid spacing, and a maximum normalized aspect ratio of
3/2 usually works well. When edge swapping is included, it is done based on the
aspect ratio.

Since the addition and deletion of elements (or front restructuring) generally
results in changes to the neighboring elements, it is best first to identify all the
elements that need to be modified and then do the modifications after all “bad”
elements have been found. When the number of elements requiring modification
is very large, sometimes it is worthwhile to examine the front again, after the first
round of updating has been done. The time needed for the management of the
front is generally a small fraction of the total time required for a multiphase flow
simulation, so iterating twice is not a major time sink.

6.3 The front-grid communications

Since the front is advected by the velocity field computed on a fixed grid, and the
location of the front specifies where the material properties of the fluid change, it is
necessary to transfer information from the fixed grid to the front and from the front
to the fixed grid. This can be done in a variety of ways. Here we discuss in detail
the methods where the interface marks a smooth transition zone between one fluid
and the other and no modification is required in the numerical approximations used
to solve the fluid flow for grid points next to the front. “Sharp” interface methods
where the flow solver is modified next to the front usually require a more elaborate
communication scheme and are not discussed here.

Before delving into the details of the different methods, we first need to address
a simple but extremely important operation. Namely, how to identify which grid
points are close to a given front point.

6.3.1 Locating the front on the fixed grid

When the fixed grid is structured and regular, locating the grid point closest to an
arbitrary front point is relatively straightforward. If we denote the total number of

146 Advecting marker points: front tracking

grid points in one direction by Nx, the total length by Lx, and we take the grid point
where i = 0 to correspond to x = 0, then the grid point to the left of front point xf
is given by:

i = FLOOR(xf ×Nx/Lx) (6.12)

where FLOOR stands for an operation rounding its operand down to its closest
integer value. If the left-hand side of the grid is denoted by i = 1, instead of 0, or
if the grids are staggered, small modifications are obviously needed.

In many cases we wish to simulate periodic domains where the front can move
out of the domain on one side and reappear in through the other side. This can
be done in a very simple way by recognizing that there is no need for the front to
occupy the same period as the fixed grid. All that is needed is to correctly identify
the grid point that corresponds to a given front position. A slight modification of
the operation above accomplishes this:

i = FLOOR
(
MOD(xf,Lx)×Nx/Lx

)
. (6.13)

Here, MOD(A,B) is an operation that gives the remainder after A has been divided
by B. For closed fronts, such as those representing the surface of a bubble or a
drop, nothing else needs to be changed. For periodic fronts, the end point in one
period is connected to the first point in the next period, but only one period is
actually computed. When computing the length of such elements, or a curve is
fitted through the end points, it is necessary, therefore, to correct for the positions
of the points in the next period.

The strategy for identifying the fixed grid point closest to a given front point
works also on irregular grids, as long as they are logically rectangular and can be
mapped into a rectangular domain where the grid lines are straight. In those cases
we simply store the mapped coordinates of each front point and use those when we
need to communicate between the fixed grid and the moving front.

While locating a grid point closest to a front point is easy, going the other way –
finding the front point closest to a given grid point – is much harder. Usually, it is
possible to avoid doing so altogether by always going from the front to the grid. If,
however, finding a front point closest to a given grid point is absolutely necessary,
the elementary way is to examine all front points and find the one closest to the
given grid point. For Nf front points it obviously takes O(Nf) operations to do so
for each point on the fixed grid. If we need to do this for every grid point (or most
of them) it is much cheaper first to loop over the front and generate a (usually short)
list of front points or elements closest to each grid point. When looking for front
points closest to a given grid point, the search can be limited to the local list.

6.3 The front-grid communications 147

Point l

Additional grid points used for the

Element e

Fig. 6.9. A front and a fixed grid. Here we represent the front using elements connecting
the front markers. Information is passed between the front points and the fixed grid.

6.3.2 Interpolation and smoothing

After the grid points that are closest to a given location on the front have been
identified, information can be passed between the front and the fixed grid. In the
smoothed interface approach, the transition zone between one fluid and the other
is assumed to be sufficiently smooth so that when variables available on the fixed
grid are needed on the front, they can simply be interpolated:

φ l
f = ∑

i j

wl
i, jφi, j. (6.14)

Here, φ l
f is a quantity on the front at location l, φi, j is the same quantity on the grid,

wl
i, j is the weight of each grid point with respect to location l, and the summation

is over the points on the fixed grid that are close to the front point. Figure 6.9
shows the location of the front with respect to the fixed grid. The velocity of a
front point is found in this way, for example, with φ denoting the different velocity
components.

The weights can be selected in several different ways, but are generally con-
strained to satisfy certain conditions. For interpolation it is reasonable to require

148 Advecting marker points: front tracking

that the interpolated front value is bounded by the grid values and that the front
value is the same as the grid value if a front point coincides with a grid point. The
weights must also sum up to one:

∑
i, j

wl
i, j = 1. (6.15)

In addition to interpolating the velocities and other quantities from the fixed grid,
it is often necessary to transfer quantities that exist on the front, such as surface
tension, to the fixed grid. Since the front represents a δ -function, the transfer
corresponds to the construction of an approximation to this δ -function on the fixed
grid. This “smoothing” can be done in several different ways, but in many cases
the transferred quantity is conserved and it is important to preserve the integrated
value when moving from the front to the fixed grid.1 The interface quantity φf is
usually expressed in units per unit area (or length in two dimensions), but the grid
value φi, j,(k) should be given in terms of units per unit volume. To ensure that the
total value is conserved in the smoothing, we must require that∫

∆s
φf(s) ds =

∫
∆v

φi, j,(k)(x) dv. (6.16)

where ∆s is the area (length in two dimensions) of the interface that is smoothed to
volume (area in two dimensions) ∆v. For two-dimensional flow, the discrete form
of the grid value is therefore given by

φi, j = ∑
l

φ l
f wl

i, j
∆sl

∆x∆y
, (6.17)

where ∆sl is the area of element l and ∆x and ∆y are the grid spacings.
Although it is not necessary to do so, the same weighting function is usually

used to interpolate values from the fixed grid to the front and to smooth front val-
ues onto the fixed grid. The number of grid points used in the interpolation depends
on the particular weighting function selected. Since the weights have a finite sup-
port, there is a relatively small number of front elements that contribute to the value
at each grid point. In actual implementations of the algorithm for transfer of quan-
tities from the front to the grid, the process generally involves looping over the
interface elements and adding the front quantity to the grid points that are near the
front.

The quality of the transfer of information between the front and the fixed grid
can depend on the interpolation weights selected. In early simulations using mov-
ing points and fixed grids the point value was occasionally simply assigned to the
nearest grid point, but this is generally too crude. Using the four nearest points

1 For the case when the transferred quantity is not conserved, see Chapter 7.

6.3 The front-grid communications 149

(i,j (i+1,j

(i,j (i+1,j

wi+1,j

xf

wi,j

wi,j+1wi+1,j+1

Fig. 6.10. The area weighting used to interpolate grid quantities to the front and to smooth
front information onto the grid.

for two-dimensional situations (eight in three-dimensions) often works well, but
smoother interpolation functions are sometimes needed.

In most cases the weighting functions are written as a product of one-dimensional
functions. In two dimensions, for example, the weight for the grid point (i, j) for
interpolation to xl

f = (xl
f,y

l
f) is written as

wl
i, j

(
xl

f

)
= d(rx) d(ry) (6.18)

where rx is the scaled distance between xl
f and the grid line located at xi and ry is

the scaled distance between yl
f and the grid line located at y j. Here, and in what

follows, we assume that the grid lines are all straight. If we assume a fixed grid
spacing ∆x and that i = 0 corresponds to x = 0, then rx = (xl

f − i∆x)/∆x. ry is given
by a similar expression. The simplest interpolation scheme is the area (volume)
weighting given by

d(r) =

⎧⎨⎩
1− r, 0 < r < 1,

1+ r, −1 < r < 0,

0, |r| ≥ 1 ,

(6.19)

The weights can be interpreted as the area fractions shown in Fig. 6.10.
Although area weighting works well in a large number of cases, sometimes it

is desirable to use smoother functions. Smoother weighting functions have been
developed in the context of at least three different applications: in the particle-in-
cell method (PIC) originated by Harlow (1964), in the immersed-boundary method
developed by Peskin (1977), and for vortex “blob” methods (see Nordmark (1991),
for example). Table 6.1 shows three commonly used smoothing functions. The first
two were introduced by Peskin and the third one, the cubic B-spline, has been used
in PIC simulations (Brackbill and Ruppel, 1986). While there is some difference

150 Advecting marker points: front tracking

Table 6.1. Smooth weighting functions for the transfer of information between
the front and the fixed grid.

1 d(r) =
{

(1/4)(1+ cos(πr/2)), |r| < 2
0, |r| ≥ 2 Peskin (1977)

2 d(r) =

{
d1(r), |r| ≤ 1
1/2−d1 (2−|r|) , 1 < |r| < 2
0, |r| ≥ 2

Peskin and McQueen (1989)

where d1(r) = 3−2|r|+
√

1+4|r|−4r2

8

3 d(r)=

⎧⎪⎪⎨⎪⎪⎩
2
3 −
(
|r|
)2

+ 1
2

(
|r|
)3

, 0 ≤ |r| ≤ 1

1
6

(
2−|r|

)3
, 1 ≤ |r| ≤ 2

0, otherwise

Brackbill and Ruppel (1986)

between results of multifluid simulations using area weighting and the smoother
distribution functions, the differences between the smoother ones are usually min-
imal. Although it is, at least in principle, desirable to have a grid approximation
that is as compact as possible, a very narrow support, obtained by using only a few
grid points close to the front, results in an increased grid effect. While area weight-
ing works very well in most cases, the functions proposed by Peskin are obviously
smoother and may sometimes yield better results. The area weighting, however,
involves only two grid points in each direction and, therefore, is more efficient, par-
ticularly in three dimensions, where it requires values from eight grid points versus
27 for Peskin’s interpolation functions. The compactness of the area weighting
also results in both higher efficiency and simpler treatment near the boundaries of
the computational domain, as compared with smoother distribution functions.

6.4 Advection of the front

Once the velocity of each front point has been found, its new position can be found
by integration. If a simple first-order explicit Euler integration is used, then the
new location of the points is given by

xn+1
f = xn

f +vn
f ∆t (6.20)

where xf is the front position, vf is the front velocity, and ∆t is the time step.
Superscript n denotes the current time and n + 1 denotes the end of the time step.
In practice, higher order integration is generally used.

Unlike the VOF method, where the new cell averages of the marker function are
found from the fluxes through the boundaries of the cells, advection of the marker

6.4 Advection of the front 151

Fig. 6.11. Accuracy test for the advection of a front. The circular front is advected in a
vortical flow where it is deformed. The flow is then reversed and the front is returned to its
original shape.

function by integrating the motion of interface points does not guarantee its conser-
vation. Accurate advection of the front points does, however, minimize this error.
In some cases, particularly for very long runs with many bubbles or drops where the
resolution of each particle is relatively low, the total mass change is unacceptably
high. In these cases the size of the bubbles can be corrected every few time steps.
Since the correction is very small at each time, the effect on the result is negligible.
The inaccuracy in the advection of the front is due to errors coming from the inter-
polation of the velocities and the integration scheme. Increasing the accuracy of the
front advection by using a higher order time-stepping method is straightforward.
The error due to the interpolation comes from the fact that although the discrete
velocity field may be divergence free (for incompressible flows), the interpolated
velocity field is not necessarily divergence free. An interpolation scheme that pro-
duces a divergence-free velocity at the front points has been developed by Peskin
and Printz (1993). The result, however, is a more complex pressure equation.

To test how well mass is conserved in actual simulations, we show in Fig. 6.11
the result of applying the test introduced by Bell et al. (1989). Here, a string of
marker particles is advected in a unit square by the following velocity field derived
from the stream function (5.49):

u = 2cos(πt/T)sin2(πx)sin(πy)cos(πy),

v = −2cos(πt/T)sin2(πy)sin(πx)cos(πx).

152 Advecting marker points: front tracking

At the end of the period T , which is taken as 8 here, the marker particles should
be exactly where they started, so the difference gives an indication of the accuracy
of the advection. The markers initially form a circle of radius 0.15, located at
(x,y) = (0.5,0.75). In Fig. 6.11, the original circle, the shape of the marker points
at the maximum deformation, and the circle after the flow field has been reversed
are shown for advection done using a second-order predictor–corrector scheme
with ∆t = 0.005. The velocity field is given on a 322 regular grid. Obviously, the
differences are barely visible. The VOF method, as Fig. 5.21 shows, needs a much
finer grid to produce results that are similar to those in Fig. 6.11.

Once the interface has been moved, the marker function is found as described
in Section 6.5 and the various material properties can be set as functions of the
marker function.

6.5 Constructing the marker function

When front tracking is used, the fluid properties, such as the density and viscos-
ity, are not advected directly; instead, the boundary between the different fluids is
moved. It is necessary, therefore, to reset these quantities at every time step. Gen-
erally, we first construct a marker function I(x) that is a constant in each fluid and
then use the marker function to set other properties. There are three main ways to
construct a marker function from the location of the interface:

(i) If the marker function is treated as a point value (rather than the average
in a cell) we can loop over the interface points and set the marker value
on the fixed grid as a function of the shortest normal distance from the
interface. Since the interface is usually restricted to move less than the size
of one fixed grid mesh, this update can be limited to the grid points in the
immediate neighborhood of the interface.

(ii) The gradient of the jump in the marker function across the interface can
be distributed onto the fixed grid and the marker function recovered by
integrating the gradient.

(iii) The front location can be used to construct the volume fraction of the cells
through which it crosses.

The first approach is fairly straightforward, but does have one major drawback:
when two interfaces are very close to each other, or when an interface folds back
on itself, such that two front segments are between the same two fixed grid points,
then the property value on the fixed grid depends on which interface segment is
being considered. Since this situation is fairly common, a more general method
is necessary and we will not discuss the first case further. The second approach is
fairly well developed and has been used extensively, so we shall describe it in some
detail. The same goes for the last procedure, although, as will become clear, it can
still be developed further, particularly for three-dimensional flows.

6.5 Constructing the marker function 153

I

y
i, j 1/ 2

Ii, j
Ii 1, j Ii+1, j

I

y
i, j +1/ 2

I

x i+1/ 2, j

I

x i 1/ 2, j

Fig. 6.12. The construction of a marker function from its gradient on a staggered grid.

6.5.1 Constructing the marker function from its gradient

To develop a method that sets the marker function correctly even when two inter-
faces lie close to each other, we use the fact that the front marks the jump in the
marker function and that this jump is translated into a steep gradient on the fixed
grid. If two interfaces are close to each other, the grid gradients simply cancel. The
gradient can be expressed as

∇I =
∫

∆Inδ (x−xf) ds. (6.21)

where ∆I is the jump in the value of the marker function across the interface (usu-
ally a constant for each interface). The grid value of the components of the gradient
are given by Equation (6.17) as described in the previous section:

(∇I)i, j = ∑
l

(∆In)lw
l
i, j

∆sl

∆x∆y
. (6.22)

Notice that the fixed grid can be different for the different components of the gradi-
ents. We can, in particular, use a staggered grid where the grid for the y component
is shifted half a cell width upward and the grid for the x component is shifted half
a cell to the right from grid point (i, j).

Once the grid-gradient field has been constructed, the marker field must be re-
covered. The simplest approach is to integrate the marker gradient directly from a
point where the marker is known. If we distribute the gradient on a staggered grid,
the x gradient is available at points (i− 1/2, j) and so on (see Fig. 6.12 for the
two-dimensional case) and if the marker at (i−1, j) is known, then

Ii, j = Ii−1, j +∆x
(∂ I

∂ x

)
i−1/2, j

. (6.23)

154 Advecting marker points: front tracking

By a repeated application of this equation we can construct the marker value every-
where, provided we start at a point where the marker field is known. Although this
operation only has to be performed at points near the front, since the marker away
from the front has not changed, we need to find a point from which to integrate.
The marker field can also depend slightly on the direction in which the integra-
tion is done, and errors can accumulate if we integrate over several grid points, so
that the value of the marker function on the other side of the interface may not be
correct.

To get a more symmetric expression for the marker at (i, j) we can integrate the
density gradient from the other three grid points, (i +1, j), (i, j +1), and (i, j−1),
and average the results. The results can be rearranged to obtain

Ii+1, j + Ii−1, j −2Ii, j

∆x2 +
Ii, j+1 + Ii, j−1 −2Ii, j

∆y2

=
(∂ I/∂x)i+1/2, j − (∂ I/∂x)i−1/2, j

∆x
+

(∂ I/∂y)i, j+1/2 − (∂ I/∂ y)i, j−1/2

∆y
, (6.24)

which needs to be solved for Ii, j. Notice that Equation (6.24) is a discretization of

∇2I = ∇ · (∇I), (6.25)

where the Laplacian has been approximated by the standard second-order centered
difference approximation and the divergence of the I gradient is found using the
values at the half-points that came directly from the front.

While Equation (6.24) can be solved by any standard Poisson equation solver, it
is usually not necessary to do that. The change in the marker function is confined to
the cells that the interface crosses through, so it is sufficient to solve for I in those
cells and their neighbors. The solution of Equation (6.24) in a narrow band around
the interface can be accomplished by a three-step process. First, the interface cells
are marked by looping over the front points and setting a flag for those cells through
which the interface crosses. A one-directional linked list of interface cells is then
generated by running through all the grid cells and linking marked cells. Finally,
the marker function is found by solving Equation (6.24) iteratively in the marked
cells, using the linked list to move from one marked cell to the next. The band
of cells containing the front is usually only a few cells across and the solution
generally converges rapidly. Since the interface moves, but no more than a cell
width, it is usually also necessary to flag points next to the cells that contain the
interface (see Fig. 6.13). To find the marker function near the boundary of the
computational domain, we note that since Equation (6.24) is derived from Equation
(6.23), the simplest way is not to include the wall direction for points next to the
boundary.

6.5 Constructing the marker function 155

Fig. 6.13. The solution of Equation (6.24) using a narrow band around the front. The
gradient has been smoothed onto the grid points marked by the black dots (assuming area
weighting), but the points marked by open circles are usually also included to account for
the motion of the front.

Figure 6.14 shows the construction of the marker field in a domain containing
a circular drop. The first frame on the left shows the marker function gradient in
the x-direction, after it has been distributed onto a 322 grid by the first distribution
function in Table 6.1. The second frame shows the gradient in the y-direction.
Finally, the marker function is recovered by solving Equation (6.24). We note
that since the gradient at the front is distributed to the fixed grid from discrete
front points, a large separation of the front points may result in some grid points
not being assigned the correct amount of front gradient and the gradient may be
slightly different than a gradient resulting from a dense distribution of front points.
This can result in slight over- and under-shoots near the interface, particularly for
compact distribution functions like the area weighting. If the marker function is
reconstructed by solving Equation (6.24) everywhere in the computational domain,
instead of only in a narrow band near the interface, we sometimes find a slight
drift in the mean value of the marker function. This can be corrected by a post-
processing step, if needed.

6.5.2 Construction of the volume fraction from the front location

Instead of reconstructing the indicator function from the location of the interface
by integrating the smoothed gradient as described in the previous section, it is pos-
sible to use the location of the interface to construct the volume fraction in each

156 Advecting marker points: front tracking

0

0.5

1

0

0.5

xy 0

0.5

1

0

0.5

1
200

100

0

100

200

xy

d
/d

y

0

0.5

1

0

0.5

xy

Fig. 6.14. The generation of a marker function (bottom) from the x and y gradients (top).

cell crossed by the interface. This, however, is not a completely trivial operation,
although with enough programming it is clear that it can be done – at least for
a two-dimensional flow and for an interface that crosses each cell at most once.
The goal, however, is a method that is completely general, that allows an arbi-
trary number of crossings of each cell by the interface, and that requires minimal
assumptions about the interface configuration in neighboring cells.

A front crossing a grid cell divides the cell into one or more regions where
the marker function has one value and one or more regions where the marker has
another value. In the following discussion we will take the value on the right of
the front to be unity and the value on the left to be zero. A front consisting of
straight-line segments along with the boundaries of the cell form a polygon, and
the area of the polygon divided by the total area of the cell is the volume fraction
in the cell under consideration. As Fig. 6.15 shows, the front can cross each cell
more than once and the front can cross through any boundary in any direction. If
the polygon is known, then the area is easily found. The area of any closed region
is given by

Area =
∫

Ω
dv =

∫
Ω

∇ ·A dv =
∮

A ·n ds, (6.26)

where we have introduced a vector A, with the property that ∇ ·A = 1, to allow us
to write the integral as a contour integral. Several choices are possible for A, the

6.5 Constructing the marker function 157

xi,yi xj,yj

xk,yk

Fig. 6.15. The construction of a marker function in a cut cell. Given the location of the
front, the volume fraction of the cell can be constructed as described in the text.

simplest being A = (x,0), A = (0,y), or A = (1/2)(x,y). These different choices,
using n = (−∂y/∂ s,∂x/∂ s), result in

Area =
∮

y
∂ x
∂ s

ds = −
∮

x
∂ y
∂ s

ds =
1
2

∮ (
y

∂x
∂ s

− x
∂y
∂ s

)
ds. (6.27)

If we assume that the interface consists of linear elements, then the integrals can
be evaluated using the midpoint rule:

Area =
1
2 ∑

i

(yi+1 + yi)(xi+1 − xi) = −1
2 ∑

i

(xi+1 + xi)(yi+1 − yi)

=
1
4 ∑

i

[
(yi+1 + yi)(xi+1 − xi)− (xi+1 + xi)(yi+1 − yi)

]
. (6.28)

The first expression in (6.28) is the sum of the areas below each element, the second
form is the sum of the areas to the left of the elements, and the last form is the
average of these areas.

The actual implementation of (6.28) into a general-purpose computer code is
only simple for ordered arrays of points in two dimensions that cross each cell only
once. In that case we can identify when the front enters a given grid cell and when
it leaves, thus allowing us to determine which parts of the cell boundary belong
to the polygon enclosed by the front and to compute the area. For interfaces that
cross multiple times, the identification of where the cells cross the cell boundaries
and in which order can become complex, as Fig. 6.15 shows. The problem of
identifying where the interface crosses the cell boundaries and in what order is
more complex when we work with an unstructured front and, of course, in three
dimensions. While the algorithmic complexities are significant, some progress
has been made, as discussed in the last chapter for the hybrid VOF–front-tracking
method and in Note 2 in Section 6.7. Instead of attempting to find the intersection

158 Advecting marker points: front tracking

of each triangular element with horizontal and vertical planes, we can divide each
element into much smaller elements and take each such sub-element to lie fully
within the cell where its centroid falls. This does obviously lead to a small error,
not only in the interface cell, but also in all cells below it; but as the size of the
sub-elements decreases, the error does also.

Once the volume fraction function has been constructed, the fluid properties can
be set as a function of the volume fraction. Usually, a linear relationship is used,
but sometimes it is better to use the harmonic mean for the viscosity, as discussed
in Chapter 3.

6.6 Changes in the front topology

In general, numerical simulations of multiphase flow must account for topology
changes of fluid interfaces when, for example, drops or bubbles coalesce or break
up. When the interface is explicitly tracked by connected marker points, such
changes must be accounted for by modifying the front in the appropriate way. The
complexity of this operation is often cited as the greatest disadvantage of front-
tracking methods. In methods that follow the interface by a marker function, topol-
ogy changes take place whenever two interfaces, or different parts of the same in-
terface, come closer than about one grid spacing. When front-tracking methods
are used, no change takes place unless it is explicitly done. While automatic coa-
lescence can be very convenient in some cases, particularly if the topology change
does not need to be treated accurately, this is also a serious weakness of such meth-
ods. Coalescence is usually strongly dependent on how quickly the fluid between
the coalescing parts drains, and simply connecting parts of the interface that are
close may give the incorrect solution.

Topology changes in multifluid flows can be divided into two broad classes:

• Films that rupture. If a large drop approaches another drop or a flat surface, the
fluid in between must be “squeezed” out before the drops are sufficiently close
so that the film becomes unstable to attractive forces that can rupture it.

• Threads that break. A long and thin cylinder of one fluid will generally break
by Rayleigh instability where one part of the cylinder becomes sufficiently thin
so that surface tension “pinches” it in two.

The exact mechanisms governing how threads snap and films break are still not
well understood. There are good reasons to believe that threads can become in-
finitely thin in a finite time and that their breaking is “almost” described by the
Navier–Stokes equations. Films, on the other hand, are generally believed to rup-
ture due to short-range attractive forces once they are a few hundred angstroms

6.6 Changes in the front topology 159

Fig. 6.16. The off-centered collision of two drops using a front-tracking method with a
topology-change algorithm that allows the drops to first coalesce and then break up again.
Time goes from left to right and the arrows in the first frame show the initial velocity of
the drops. Figure courtesy of Dr. S. Mortazavi.

thick. These forces are usually not included in the continuum description, as
discussed in Sections 2.8.2 and 9.2.2.

Accomplishing topology changes in a front-tracking code is a two-step process.
First, the part of the front that should undergo topology change must be identified
and then the actual change must be done. For simple problems, the region where
a change should take place is often obvious and no special search technique is
needed. In general, however, rupture or coalescence can take place anywhere and
it is necessary to search the whole front to find where two fronts or two parts of the
same front are close to each other. The simplest, but least efficient, way to conduct
this search is to compute the distance between the centroids of every front element.
For N front elements this is an O(N2) operation, but by dividing the computa-
tional domain into small subregions and looking only at the elements within each
region, the efficiency of the search can be increased considerably. Another way is
to use the fact that the grid gradients of the marker function due to close parallel
fronts cancel. Thus, if we first construct a marker function from the front using
the method described in Section 6.5 and then interpolate the marker function back
onto the front, a value significantly different from 0.5 (assuming that the marker
function takes the values 0 and 1) indicates that the front is close to another front.
Once close fronts have been identified, we must decide if a topology change should
take place. In principle, this should be determined based on whether a thread will
snap or a film will rupture. In practice, the thread and the film are underresolved,
and unless their evolution is accounted for by subgrid models of the type discussed
briefly in Section 11.3 we are unlikely to have an accurate estimate of the thick-
ness of the film or the diameter of the thread. In most front-tracking simulations
involving topology changes, rupture, therefore, has been initiated when fronts are

160 Advecting marker points: front tracking

less than a grid space apart. While this makes the results similar to what is seen
when the marker function is advected directly (by VOF or level-set methods), the
presence of the front makes it possible to change the rupture criteria and examine
how sensitive the solution is to its exact value.

For two-dimensional flows, where the interface is simply a string of connected
marker particles, the actual change in the topology of the interface is relatively
easy. For three-dimensional flows the challenges are considerably greater. Such
modifications are possible, however. Nobari and Tryggvason (1996) did, for ex-
ample, develop an algorithm to coalesce two colliding drops, but the method was
not very general and did not include the possibility of “pinching” thin threads (see
Fig. 10.1). A more general topology-change algorithm was presented by Du et al.
(2006) and implemented in the FronTier code. A different strategy was introduced
by Shin and Juric (2002), who chose to abandon any effort to modify the front di-
rectly and instead recreated it periodically from a level surface of the grid marker
function. This approach was used by Esmaeeli and Tryggvason (2004a) in their
simulations of three-dimensional film boiling. In Fig. 6.16 we show several frames
from a simulation of the collision of two drops that first coalesce and then break
apart again, done using a generalization of the algorithm used by Nobari and Tryg-
gvason (1996). Although topology changes are clearly possible in front-tracking
simulations of fully three-dimensional flows, it is still a relatively unexplored field,
and efficient and simple ways to do so would be desirable.

6.7 Notes

(1) Although the interpolation functions are usually constructed by a repeated mul-
tiplication of one-dimensional functions, it is also possible to use functions that
are inherently multidimensional. Many such functions have been introduced as
“blobs” for vortex methods where a singular point vortex is regularized by using a
smooth approximation to the delta function. Cortez and Minion (2000), for exam-
ple, used

φ(r) =
1
π

(2− r2)e−r2
(6.29)

and

φ (r) =
1

6π
(24−36r2 +12r4 − r6)e−r2

. (6.30)

(2) The construction of the volume fraction from the location of a front has recently
been addressed by Aulisa et al. (2003a, 2004). For an alternative approach to
construct the indicator function, see Ceniceros and Roma (2005).

7

Surface tension

The accurate computation of the surface tension is perhaps one of the most critical
aspects of any method designed to follow the motion of the boundary between
immiscible fluids for a long time. In methods based on the “one-fluid” formulation,
where a fixed grid is used to find the motion, surface tension is added as a body
force to the discrete version of the Navier–Stokes equations. Finding the surface
force depends on whether the fluid interface is tracked by a direct advection of a
marker function (VOF) or whether discrete points are used to mark the interface
(front tracking). Here, we describe how to find surface tension for both VOF and
front-tracking methods. At the end of the chapter we examine the performance of
the various methods and the challenges in computing surface tension accurately
and robustly.

7.1 Computing surface tension from marker functions

A marker function such as the color function C of the VOF method or the level-set
function F is a function that indicates (marks) where the interface is. A whole
family of methods for surface tension have been developed for the use of marker
functions; however, these methods may also be used in connection with front-
tracking methods. The standard approach is termed the continuous surface force
(CSF) method. We also describe a variant that conserves momentum exactly, the
continuous surface stress (CSS) method.

7.1.1 Continuous surface force method

For simplicity, we consider first the case where σ is constant. The surface tension
force added to the Navier–Stokes equations is then from (2.62)

fσ δS = σκnδS. (7.1)

161

162 Surface tension

In the CSF method, the δS distribution is approximated by |∇hC| (in what follows
the index h indicates a finite difference or numerical approximation). This ap-
proximation seems natural, since the color or marker function C approximates the
Heaviside function H and we have as in (2.40)

∇H = −δSn. (7.2)

Thus, we add to the velocity nodes, identified by the indices (i, j), the following
force fi, j:

fi, j = σκh|∇hC|nh, (7.3)

where κh is an approximation (to be found) of the local curvature and nh is an
approximation of the normal. As we shall see below, it is sometimes necessary
to smooth this approximation of the δ -function. However, a simple (apparently
even naive) method results without any smoothing. Using an elementary finite-
difference estimate of the normal similar to that in Section 5.2.2.1 yields

nh = − ∇hC

|∇hC| , (7.4)

with properly centered finite differences (see below), and thus

fi j = −σκh∇hC. (7.5)

This unsmoothed version allows a remarkable exact balance between pressure and
surface tension in a special case. On a spherical droplet or round cylinder, κ = κ0
is a constant. In the static case (u = 0 everywhere) without gravity, the pressure
forces balance exactly the surface tension around the droplet. The static equilib-
rium equation is

−∇p+ fσ δS = 0. (7.6)

Under the condition that κh is replaced by a constant κ0, the discretization of Equa-
tion (7.6) yields

−∇h p−σκ0∇hC = 0. (7.7)

Using indices:

−
pi+1, j − pi, j

∆x
− σκ0

∆x
(Ci+1, j −Ci, j) = 0, (7.8)

−
pi, j+1 − pi, j

∆y
− σκ0

∆y
(Ci, j+1 −Ci, j) = 0. (7.9)

This can be integrated to

pi, j = p2 −σκ0Ci, j, (7.10)

7.1 Computing surface tension from marker functions 163

where p2 is the pressure in the C = 0 region. Equation (7.10) approximates nicely
the continuum solution p(x) = p2 −σκ0H(x), yielding pi, j = p2 −σκ0 inside the
droplet and pi, j = p2 outside it as per Laplace’s law (recall that with the reference
phase, fluid “1,” inside the droplet and the normal pointing outwards the curvature
κ0 is negative; see Fig. 2.5). The three-dimensional case is just as simple.

An approximation for κ remains to be found. There are many suggestions, but a
particularly simple one is to use the curvature–divergence relation of Appendix A,
Equation (A.32), and obtain

fi j = σ(∇h ·n
h)∇hC, (7.11)

where nh is an approximation of the normal. Beyond VOF, a CSF method may be
constructed with any interface scheme. Any indicator function I, for instance the
level-set function, may be used instead of the color function C. This yields trivially
the normal

nh = − ∇hI

|∇hI| . (7.12)

It is often practical to use the density ρ to identify the different fluids. In that case
it is useful to notice that

ρ = ρ1H +ρ2(1−H) = ρ2 − [ρ]SH, (7.13)

where [ρ]S = ρ2 −ρ1 and thus

∇ρ = −[ρ]S∇H. (7.14)

A discretization of fσ δS is therefore

fi j = −σ
∇hρ
[ρ]S

∇h ·nh. (7.15)

Below is a detailed implementation of this naive CSF method. We need nh at the
faces of the cells and thus we compute a non-unit normal with components

mx:i+1/2, j = −
Ci+1, j −Ci, j

∆x
and my:i, j+1/2 = −

Ci, j+1 −Ci, j

∆y
. (7.16)

The components on faces where they are not available are found by interpolation,
as is standard in the MAC method. For example:

mx:i, j+1/2 =
1
4

(
mx:i+1/2, j +mx:i+1/2, j+1 +mx:i−1/2, j +mx:i−1/2, j+1

)
. (7.17)

The unit normal is computed as

ni+1/2, j =
mi+1/2, j

|mi+1/2, j|
, (7.18)

164 Surface tension

where

|mi+1/2, j| = (m2
x:i+1/2, j +m2

y:i+1/2, j)
1/2, (7.19)

|mi, j+1/2| = (m2
x:i, j+1/2 +m2

y:i, j+1/2)
1/2. (7.20)

These expressions cannot be used in cells where mi+1/2, j = 0, which will happen
at some distance from the interface. A simple workaround is to use

ni+1/2, j =
mi+1/2, j

|mi+1/2, j|+ εtiny
, (7.21)

where εtiny is a tiny floating-point number. Better methods would distinguish be-
tween cells where ∇C is nonzero and this computation of the normal makes sense,
and cells where ∇C = 0 and this computation of the unit normal has to be avoided.

Finally, the curvature in the cell center is computed as the discrete divergence of
the unit normal:

κi, j = −
[

1
∆x

(nx:i+1/2, j −nx:i−1/2, j)+
1

∆y
(ny:i, j+1/2 −ny:i, j−1/2)

]
. (7.22)

The face-centered values of the curvature are found as averages from the cell-
centered values. The surface tension is then computed at the cell faces as required
for the staggered grid:

fx:i+1/2, j = − σ
2∆x

(Ci+1, j −Ci, j)(κi+1, j +κi, j) (7.23)

fy:i, j+1/2 = − σ
2∆y

(Ci, j+1 −Ci, j)(κi, j+1 +κi, j). (7.24)

7.1.2 Continuous surface stress method

Instead of discretizing the force representation of the surface tension, Equation
(2.62), one may start from Equation (2.51):

fσ δS = ∇ ·Tσ
S δS = ∇ · [σ(I−nn)δS]. (7.25)

The expression is valid even when σ varies. The CSS is the discretization of (7.25)
without any smoothing:

fi j = ∇h · (T
σ
S |∇hC|) = ∇h · [σ(I−nhnh)|∇hC|], (7.26)

where nh is a properly centered numerical approximation of n. The advantage is
then that we have a conservative method, and that it is not necessary to compute
a curvature. A disadvantage, however, is that a simple static solution of the form
(7.10) cannot be found.

7.1 Computing surface tension from marker functions 165

Let us give the detailed implementation. The gradient of C is computed now on
cell corners

∂
∂ x

Ci+1/2, j+1/2 =
Ci+1, j −Ci, j +Ci+1, j+1 −Ci, j+1

2∆x
, (7.27)

∂
∂ y

Ci+1/2, j+1/2 =
Ci, j+1 −Ci, j +Ci+1, j+1 −Ci+1, j

2∆y
, (7.28)

with similar expressions for the other corners. The unit normal is computed as in
(7.18). Then the stress tensor at cell corners is

Tσ
S:i+1/2, j+1/2 = σ(I−ni+1/2, j+1/2ni+1/2, j+1/2)|∇hC|, (7.29)

where |∇hC| is computed from the components in Equations (7.27) and (7.28). We
want to compute the divergence of Tσ

S on cell faces; thus, we need the off-diagonal
component T σ

S:xy on cell corners and the diagonal components T σ
S:xx and T σ

S:yy on cell
centers. These are computed by averaging as in

T σ
S:xx:i, j =

1
4

(
T σ

S:xx:i+1/2, j+1/2 +T σ
S:xx:i−1/2, j+1/2 +T σ

S:xx:i+1/2, j−1/2 +T σ
S:xx:i−1/2, j−1/2

)
(7.30)

and

T σ
S:yy:i, j =

1
4

(
T σ

S:yy:i+1/2, j+1/2 +T σ
S:yy:i−1/2, j+1/2 +T σ

S:yy:i+1/2, j−1/2

+T σ
S:yy:i−1/2, j−1/2

)
. (7.31)

Then the surface tension at the cell faces is

fx:i+1/2, j =
1

∆x
(T σ

S:xx:i+1, j −T σ
S:xx:i, j)+

1
∆y

(T σ
S:xy:i+1/2, j+1/2 −T σ

S:xy:i+1/2, j−1/2), (7.32)

fy:i, j+1/2 =
1

∆y
(T σ

S:yy:i, j+1 −T σ
S:yy:i, j)

+
1

∆x
(T σ

S:xy:i+1/2, j+1/2 −T σ
S:xy:i−1/2, j+1/2). (7.33)

7.1.3 Direct addition and elementary smoothing in the VOF method

In the CSF and CSS methods described above, as well as in the proper representa-
tion of surface tension (PROST) method described later, components of the force
are computed directly at the velocity nodes and added at the predictor step. This
method, however, gives unsatisfactory results for CSF and CSS, as shown in the

166 Surface tension

tests in Section 7.3. A simple type of smoothing that somewhat improves the results
is performed by taking the first neighbor points. In two dimensions the smoothed
C is

C̃i, j =
1
2

Ci, j +
1
8
(Ci, j−1 +Ci, j+1 +Ci−1, j +Ci+1, j). (7.34)

This “five-point smoothing” will be used in the tests of CSF and CSS below.
In general, two approaches are used: either the force is first computed from the

raw interface data and then distributed, or the interface data are smoothed before
the force is computed. In both cases the force is then, in effect, distributed over a
zone around the interface with a thickness of a few grid cells. However, neither the
PROST method nor the pressure correction marker method (PCMM), discussed at
the end of this chapter, require smoothing.

7.1.4 Weighted distribution in the VOF method: kernel smoothing

In the CSF method, the expression |∇hC| was used to approximate the δ -function.
In order to smooth the spatial distribution of this approximation of the δ -function
we may convolute C with a smoothing kernel. The continuous version of smooth-
ing is the transformation

H̃(x) = (H ∗K)(x) =
∫

V
H(x′)K(x−x′;ε) dx′ , (7.35)

where K(x;ε) is an integration kernel of width ε verifying K → δS, when ε →
0. Because convolution and differentiation commute, smoothing a step function
with a kernel is the same as transferring a δ -function onto a grid using weighting
functions, as discussed in Chapter 6. Kernels are weighting functions and vice
versa.

Many kernels have been proposed for the CSF method. The one we used in the
tests of the CSF and CSS methods is

K8(x) = A(ε)
[

1−
(
|x|2
ε2

)]4

for |x| < ε (7.36)

and K8(x) = 0 for |x|> ε , where ε is the width of the filter and A(ε) is a normaliza-
tion constant. A graphical representation of the kernel action is shown on Figure
7.1. A discrete approximation of the kernel smoothing is

C̃i j = A(ε)∑
m

∑
l

Clm

[
1−

x2
il + y2

jm

ε2

]4

h2, (7.37)

where xil = xi − xl , y jm = y j − ym with obvious notations. The sum is over all l,m

7.1 Computing surface tension from marker functions 167

f
m,k

f
i,j

r

Ωe

Fig. 7.1. Smoothing of the color function by a kernel.

such that (xl,ym) is in the disk Ωε of radius ε . The normalization constant A(ε) is
chosen so that

A(ε)∑
m

∑
l

[
1−

x2
il + y2

jm

ε2

]4

h2 = 1. (7.38)

The derivatives of C needed in the CSF method may be computed by finite differ-
ences from the C̃ function, or directly from derivatives of the kernel. This second
method has been tested by us for the gradient ∇C̃ = (∂C̃/∂ x,∂C̃/∂y):

∂
∂x

C̃i j = −8A(ε)h2 ∑
m

∑
l

Clm

[
1−

x2
il + y2

jm

ε2

]3
xil

ε2 , (7.39)

∂
∂ y

C̃i j = −8A(ε)h2 ∑
m

∑
l

Clm

[
1−

x2
il + y2

jm

ε2

]3
y jm

ε2 . (7.40)

The smoothed approximation to the unit normal ñ follows without ambiguity. For
the numerically estimated curvature we may again either differentiate analytically
the kernel or use finite differences. The direct derivation of the kernel has been
found too imprecise; thus, we use again the curvature–divergence relation of Equa-
tion (A.32), and

κi, j = −
[

1
2h

(ñx:i+1, j − ñx:i−1, j)+
1

2h
(ñy:i, j+1 − ñy:i, j−1)

]
. (7.41)

The final result is located at cell centers. The curvature value at cell faces is ob-
tained by averaging. With this smoothing, the normal has been approximated in

168 Surface tension

a band of width ε around the surface S, but the curvature will be approximated
correctly only in a thinner band, say of thickness ε − 2. Thus, it is necessary to
construct an approximated δ -function which is narrower than ∇C̃. In our imple-
mentation we take

δ̃S:i, j = 6C̃i j(1−C̃i j)|∇C̃i j|. (7.42)

This expression is peaked in the center of the band. Provided C̃ is monotonic, it
satisfies the normalization condition∫ ε

−ε
δ̃S(n) dn =

∫ 1

0
6C̃(1−C̃) dC̃ = 1 (7.43)

where n is a coordinate perpendicular to the interface.

7.1.5 Axisymmetric interfaces

In addition to two- and three-dimensional geometries, we often examine problems
which can be assumed to exhibit axisymmetry. Although most of what has been
said about two-dimensional flows applies, there are important differences. Using
(A.24)

σκnδS = σ
(

κ1 +
r

cosθ

)
nδS, (7.44)

where r is the radial coordinate in cylindrical (r,φ ,z) coordinates and θ the angle
between the normal n and the z axis. This can be rewritten as

σκnδS = σ
(

∇2 ·n+
r
nz

)
nδS, (7.45)

where ∇2 = (∂r,∂z) is the two-dimensional gradient in the meridian plane. The
methods described in this chapter for two-dimensional geometries can then be
adapted to compute the axisymmetric force.

7.2 Computing the surface tension of a tracked front

When the front is represented by markers, the computation of the surface tension
is, for the most part, a matter of using the discrete points to approximate geometric
quantities. There are, however, a few different alternatives, and the transfer of the
surface force to the discrete Navier–Stokes equation on the fixed grid can also be
done in several ways.

We usually think of the net force due to surface tension as being proportional
to the curvature of the interface. However, we actually rarely need the pointwise

7.2 Computing the surface tension of a tracked front 169

value of the curvature. In most cases it is the total force on a small segment of the
front, ∆s, that is needed. Thus, the challenge is to find

δ fe =
∫

∆s
σκn ds, (7.46)

where σ is the surface tension coefficient, κ is the curvature for a two-dimensional
front and twice the mean curvature for a three-dimensional surface, n is the nor-
mal to the interface, and ∆s is the length of a surface element in two dimensions
and the area of an element in three dimensions. A conceptually straightforward
approach, where we find the curvature at a point on the front and multiply it by
the area associated with that point (the front segment) has two problems. It is,
first of all, relatively difficult to find a good numerical approximation to the cur-
vature, given that the front points are usually not evenly spaced and that the front
may not be perfectly represented. The second problem is that this approach does
not guarantee that the net force on a closed surface with constant surface tension
is zero, as it should be. This is analogous to the difference between the CSF and
the CSS method for finding surface tension in VOF methods, where the latter is
conservative and the former is not. Both difficulties can be overcome by rewriting
the integral over the front segment as a contour integral over the boundary of the
segment. It is intuitively obvious that it is possible to compute the force on the
segment by examining only the boundaries. Surface tension is, by its definition, a
force that pulls on the boundary of a segment cut out of a surface in a direction that
is normal to the boundary but tangent to the surface. For a flat interface (and con-
stant surface tension), the pull on the edges of a flat interface segment is, therefore,
balanced out and the net force is zero. When the interface is curved, the pulls on
the different edges of a surface segment do not exactly balance each other, resulting
in a net force normal to the element.

Although the concept is the same for two- and three-dimensional fronts, the
derivation and the numerical implementation is slightly different, so we will deal
with those two cases separately.

7.2.1 Two-dimensional interfaces

We start by examining the force on a short segment of the interface shown in Fig.
7.2. We take the segment belonging to point e to consist of half of the element
connecting points d and e plus half the element connecting e and f . If the points
are evenly spaced, point e is the midpoint of the segment. In the figure, the end
points of the segment are denoted by 1 and 2. Using the definition of the curvature
of a two-dimensional line (see Appendix A), κn = ∂ t/∂ s, we can write the force

170 Surface tension

t2

-t1 f =t2 1–t

Fig. 7.2. The two-dimensional curvature calculations.

as

δ fe =
∫

∆s
σκn ds = σ

∫
∆s

∂ t
∂ s

ds = σ(t2 − t1). (7.47)

Therefore, instead of having to find the curvature, we only need to find the tangents
of the end points of each segment. This formulation also makes the extension to
variable surface tension almost trivial. A simple expansion of the partial derivative
shows that

∂σ t
∂ s

= σ
∂ t
∂ s

+
∂σ
∂ s

t = σκn+
∂σ
∂ s

t, (7.48)

which is the usual expression accounting for both the normal and the tangential
force. Since

δ fe =
∫

∆s

∂σ t
∂ s

ds = (σ t)2 − (σ t)1, (7.49)

the force on each segment is computed by simply subtracting the product of the
surface tension coefficients and the tangents at the end points of each segments for
both constant and variable surface tension.

The accuracy and efficiency of the computations depends on how we find the
tangent vectors. Here, we will find the tangent vector at the middle of the front
elements and compute the force on an interface segment consisting of half the
element on one side of a front point and half the element on the other side. See
Fig. 7.2. We note, however, that we could just as well compute the force on each
front element by finding the tangents at the front points. In this case the resultant
would be stored at the element centroids.

The simplest approximation for the unit tangent at the center of each element is
given by

t =
x2 −x1

|x2 −x1|
=

x2 −x1√
(x2 − x1)2 +(y2 − y1)2

=
x2 −x1

∆s12
. (7.50)

7.2 Computing the surface tension of a tracked front 171

Area ∆

da

dl

Boundary

Fig. 7.3. The three-dimensional curvature calculations. The surface element ∆A is
bounded by the contour C.

This simple approximation usually works well enough, but if a higher order ap-
proximation is needed, Equation (6.5) can be used to find the tangent.

Equation (7.50) can be implemented for an unstructured front grid (where the
structure of the front is given by elements connecting the points) by looping over
the front elements and adding the positive tangent to the start point of each element
and the negative tangent to the end point.

7.2.2 Three-dimensional interfaces

For a three-dimensional interface, we use that the mean curvature of a surface can
be written as

κn = (n×∇)×n; (7.51)

see Equation (A.34). The force on a surface segment, therefore, is

δ fe = σ
∫

∆A
κn da = σ

∫
∆A

(n×∇)×n da = σ
∮

C
p dl, (7.52)

where we have used the Stokes theorem to convert the area integral into a line
integral along the edges of the segment. Here, p = t×n, where t is a vector tangent
to the edge of the element, n is a normal vector to the surface, ∆A is the element
and C is its boundary. See Fig. 7.3. The surface tension coefficient times p gives
the “pull” on the edge and the net “pull” on the segment is obtained by integrating
around its edges. If the segment is flat, the net force is zero, but if the segment is
curved, then the net force is normal to it, when the surface tension coefficient is
constant. As in two dimensions, this formulation ensures that the net force on a
closed surface is zero, as long as the force on the common edge of two segments is
the same. This formulation also extends to variable surface tension in an obvious

172 Surface tension

e

p1

∆s1

∆s2
xc

x1

x2

x3

x12

p2
x23

x31

x1

e

Fig. 7.4. The three-dimensional curvature calculations for front-tracking simulations.
Here, the curvature is computed at the nodes by adding up contributions from the adja-
cent elements.

way:

δ fe =
∮

C
σp dl. (7.53)

As in two dimensions, the surface segments can be selected in different ways,
but here we will work with a surface segment that consists of a third of all the
elements connected to a given front point. The surface segment for the point whose
coordinates are x1 is the cross-hatched area, bounded by a thick line, in the left
hand side of Fig. 7.4. Consider now one of the elements, denoted by e, in more
detail (right-hand side of Fig. 7.4). The area contributing to each point is found by
identifying the centroid of the element and drawing lines from the centroid to the
midpoints of the edges of the element that connect to the point in the middle. The
centroid of element e is at

xc =
1
3

(
x1 +x2 +x3

)
. (7.54)

The midpoints of the sides are

x12 =
1
2

(
x1 +x2

)
, x23 =

1
2

(
x2 +x3

)
, x13 =

1
2

(
x1 +x3

)
. (7.55)

7.2 Computing the surface tension of a tracked front 173

The normal to the element is found by

ne =
∆x12 ×∆x13

|∆x12 ×∆x13|
, (7.56)

where ∆x12 = (x1 − x2) and so on. Since the force on the side connecting x1 and
x12 is canceled by the force from the other element bordering that side, and the
same is true for the side connecting x1 and x31, we only need to consider the lines
connecting x12 to xc and xc to x31. The integral over the first line segment is∫

∆C
p dl = p1∆s1 = ne ×

xc −x12

∆s1
∆s1 = ne × (xc −x12) (7.57)

where ∆s1 = |x12 − xc|. The net contribution to the force on the area segment
surrounding point 1, from element e, is the integral over both line segments. Thus,
we can write

δ f1e = p1∆s1 +p2∆s2 = ne × (xc −x12)+ne × (x31 −xc) =
1
2

ne ×∆x32 (7.58)

using Equation (7.55). Thus, the force on a segment around point 1 from element
e can be found simply by computing half the “pull” on the edge connecting points
2 and 3. Element e, therefore, contributes the following forces to its three nodes:

δ f1e =
1
2

ne ×∆x32, δ f2e =
1
2

ne ×∆x13, δ f3e =
1
2

ne ×∆x21. (7.59)

As in two dimensions, the total force at each front point is the contribution from all
the elements connecting to the point. Unlike two dimensions, however, an arbitrary
number of elements can contribute to each node point.

The method described above works reasonably well, but if higher order approx-
imations are needed, the tangents must be found by differentiating the surfaces
obtained by fitting a larger number of points, as given by Equation (6.9).

7.2.3 Smoothing the surface tension on the fixed grid

After the surface force on a small segment of the interface δ fl has been found, it
has to be transferred to the stationary grid so that it can be included in the solution
of the Navier–Stokes equations. The most straightforward approach is to smooth
the force directly onto the grid, following the procedure outlined in Chapter 6. For
two-dimensional flows, this operation is shown in Fig. 7.5 and the force per unit
volume at grid point (i, j) is given by

fi, j = ∑
l

δ flw
l
i, j

∆sl

h2 . (7.60)

174 Surface tension

Point l

Additional grid points used for the

δfσ

Fig. 7.5. Distribution of the force in a marker method. For an interface tracked by a chain
of markers, the force on each element is computed as the difference between tangential
forces on each marker.

Here, δ fl is a discrete approximation to the total surface force on the element, as
computed on the front, and fi, j is an approximation to the surface tension per unit
volume on the fixed grid. ∆sl is the length of the surface segment l and the ∆sl/h2

factor is there to ensure that the total force is conserved. For three-dimensional
flow we multiply by ∆sl/h3, where ∆sl now is the area of the surface segment. The
different choices for the weighting functions wl

i, j were discussed in Chapter 6. The
forces are then added to the discrete Navier–Stokes equations to update the velocity
field. For staggered grids, the different components of the force are assigned to the
grid nodes where the corresponding velocity component is computed. Notice that
for programming purposes it is not necessary to add the forces from all the elements
adjacent to each point. The forces for each elements, Equation (7.59), could just
as well be transferred to the fixed grid as soon as they have been computed. That
does, however, increase the number of quantities that must be transferred.

Distributing the surface force to the fixed grid as described above is probably
the most natural way to add it to the discrete Navier–Stokes equations. It is, how-
ever, not the only way. In methods where the marker function is advected directly

7.2 Computing the surface tension of a tracked front 175

(such as VOF and level-set methods) the curvature and the normal vector are found
directly on the fixed grid. In front-tracking methods we reconstruct a marker func-
tion I, on the fixed grid from the location of the front, and we could therefore find
the surface tension directly from the marker function, just as in the VOF method.
The third possibility arises by recognizing that the surface force per unit area, as
given by Equation (7.1) consists of two parts: the surface tension coefficient times
the curvature σκ , and the normal to the interface times a delta function nδS. Each
part can, in principle, be computed either on the front and transferred to the grid,
or found directly on the grid from the marker function.

As discussed in the context of Equation (7.10), using a normal found from the
marker function on the fixed grid allows us to balance the discrete pressure gradient
exactly. This suggests that we should take the curvature from the front, where it
can presumably be found to a high degree of accuracy, but compute the normal on
the grid, as done for the VOF method. Thus, we rewrite Equation (7.1) at a given
gridpoint (i, j) as

fi, j = (σκ)i, j∇Ii, j. (7.61)

Here, ∇Ii, j is found by taking the numerical derivative of I(i, j) on the fixed grid,
using standard centered differences, and the challenge is to find (σκ)i, j at each grid
point, given that we know the force on the front.

In the method of Shin et al. (2005a), the force at each grid point is first found
by smoothing the surface force computed on the front, in the way described above
(Equation (7.60)). The gradient of the indicator function on the front, G = −∇I =
nδS, is then also distributed to the grid:

Gi, j = ∑
l

nlw
l
i, j

∆sl

h2 . (7.62)

If we knew the curvature at the fixed grid points, we could therefore also write the
surface force on the fixed grid as

fi, j = (σκ)i, jGi, j (7.63)

Taking the dot product of the force, given by Equation (7.63), and Gi, j we get

fi, j ·Gi, j = (σκ)i, jGi, j ·Gi, j. (7.64)

Thus,

(σκ)i, j =
fi, j ·Gi, j

Gi, j ·Gi, j
, (7.65)

and once we have (σκ)i, j, the surface force on the grid is given by Equation (7.61).

176 Surface tension

It is possible to obtain (σκ)i, j at each grid point in other ways. We can, in
particular, compute the curvature at each front point and distribute σκ from the
front to the fixed grid. Distributing a scalar quantity that is not conserved from a
front to the fixed grid is sometimes needed in other situations, and those can be
handled in a way similar to the one described below. The basic approach is to
assign to each grid point the weighted value of the scalar of front points located
nearby. The weighted contributions from the front points are added together at
each point on the fixed grids and the weights are added together separately. By
dividing the sum of the weighted scalars by the sum of the weights, we obtain a
value for the scalar at the grid point. For the surface tension, it seems reasonable to
weight the curvature by the length of each element, so that longer elements carry
more weight than shorter ones, as well as by weights wl

i, j that take into account
how close the front point is to a given grid point. In this case, the surface force at
each grid point is given by

(σκ)i, j =
∑l(σκ)lw

l
i, j(∆sl/h2)

∑l wl
i, j(∆sl/h2)

. (7.66)

To find the curvature at the front points, we can discretize Equation (A.3) or
its three-dimensional counterpart, or we can work with the net force on a small
surface segment. To do the latter, we approximate the integral of the surface force
over a small segment of the interface by the point value of σκ and the length of the
segment around the point

fe =
∫

∆s
σκn ds ≈ (σκn)e ∆s, (7.67)

then the dot product of fe with itself, at the point, gives

fe · fe = (σκ∆s)2
e ne ·ne = (σκ∆s)2

e . (7.68)

Thus,

(σκ∆s)e = ±
√

fe · fe. (7.69)

To recover the sign we need to look at the geometry again. In two dimensions we
can, for example, take the sign of the triple product fp × tp ·k = fxty − fytx, where
tp = (t1 + t2)/2 and k is the unit vector perpendicular to the two-dimensional plane
of the flow.

If we use the same scheme to distribute σκ to the fixed grid as used for the gra-
dient of the indicator function (area weighting, for example) we will end up with
a band of σκ values around the interface that is thinner than the band where the
gradient of the indicator function is nonzero. This can be fixed by using a different
smoothing scheme that distributes the front value to more grid points, or the band
can be made wider afterwards. To make the band wider – or to propagate the front

7.3 Testing the surface tension methods 177

value off the front – we can use several approaches, but one of the more straightfor-
ward ones is to give each point near the original band a value found by averaging
the value at the neighboring points inside the band. If the band needs to be made
even thicker, this “Laplacian” extension can be repeated as often as needed, possi-
bly until the front values have been extended to all points in the domain.

7.3 Testing the surface tension methods

Computing surface tension accurately for a wide range of governing parameters has
been one of the major challenges in developing methods for multiphase flows. Sur-
face tension has no counterpart in computations of homogeneous flows and testing,
and validating the various methods put forward is therefore of unique importance.
In this section we discuss a few such tests, first for stationary interfaces and then
for dynamic ones.

7.3.1 Static case: spurious currents

The most elementary test that every method to compute the surface tension must
pass is that it must predict correctly the pressure inside a stationary spherical (or
circular in two dimensions) droplet, as given by Laplace’s law. All the methods
described here obviously predict the average rise in pressure reasonably well. The
pressure does, however, generally not rise smoothly. As Fig. 7.6 shows, it exhibits
fluctuations that often manifest themselves as pressure spikes around the interface.
The pressure fluctuations result in velocity fluctuations that can, in extreme cases,
break the droplet apart. For a spherical or circular droplet in equilibrium the ve-
locity should, of course, be exactly zero and the velocities in Fig. 7.7 are generally
referred to as spurious or parasitic currents. The results in Figs. 7.6 and 7.7 were
computed using the CSS method with five-point smoothing (7.34), for which the
spurious effects are moderate. For front-tracking methods the currents are gener-
ally smaller, particularly if the surface tension is transferred to the fixed grid using
a smooth weighting function, such as those shown in Table 6.1. Many computa-
tions have been carried out where the spurious currents have been insignificant.
However, their presence limits the range of parameters that can be covered, and
considerable effort has been devoted to attempts to reduce or eliminate parasitic
currents.

The magnitude of the parasitic currents (and the pressure fluctuations) varies
wildly from method to method and as a function of the dimensionless numbers
governing each situation. For a stationary droplet, there are three dimensionless
numbers that characterize the flow: the Laplace number La = ρliqdσ/µ2

liq where d
is the droplet diameter, and the viscosity and density ratios µliq/µgas and ρliq/ρgas.

In Table 7.1 we show results from a study of parasitic currents for several test
cases, using a few different methods. The cases are in order of increasing difficulty.

178 Surface tension

"gnuplot.7000"

 0
 0.2

 0.4
 0.6

 0.8
 1

X axis

 0

 0.2

 0.4

 0.6

 0.8

 1

Y axis

-5
 0
 5

 10
 15
 20
 25
 30
 35
 40

P

Fig. 7.6. The pressure field for a cylindrical static droplet (case F, CSS method, no smooth-
ing). The diameter of the droplet contains 28 grid points.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 7.7. The parasitic currents generated by a cylindrical droplet (case F, CSS method,
no smoothing). The diameter of the droplet contains 28 grid points and the maximum
nondimensional velocities µU/σ are O(10−3).

Cases F and A have comparable and low Laplace number; cases B, C, and D are
increasingly close to the case of a small air bubble in water. The chosen Laplace
number (2× 106) corresponds to a d = 1.3 cm air bubble. The methods are the
CSS and CSF methods described previously, together with the elementary smooth-
ing (7.34) and the front-tracking method described in Section 7.2. The maximum
velocity on the computational grid U is taken in the long time limit, because the
parasitic currents often have long transients before settling to an equilibrium value.
Given in the table is the capillary number Ca = µliqU/σ . For small La , the con-
vergence to equilibrium is smooth; for large La, the capillary number Ca oscillates

7.3 Testing the surface tension methods 179

Table 7.1. Measurements of spurious currents. The capillary number Ca as
computed by three simple surface tension methods.

Ca

Case La ρliq/ρgas µliq/µgas D/h CSS CSF Front tracking

F 0.120 1 1 30 6×10−3 1.4×10−2 3.0×10−4

A 0.357 1 1 32 3×10−3 1.2×10−2 3.0×10−4

B 2×106 1 1 32 3×10−4 5.0×10−4 1.5×10−4

C 2×106 103 1 32 disintegrates 3.5×10−3 1.1×10−3

D 2×106 103 50 32 disintegrates 4.5×10−3 blows up

strongly. Most authors have performed tests at small La and for symmetric fluids,
but many applications are rather different.

The results of CSS and CSF with elementary smoothing (7.34) are much worse
than the front-tracking method for small La and the CSS method performs some-
what better than the CSF method. As La is increased, the situation changes. For
the CSS and CSF methods, the droplet tends to disintegrate under the action of
spurious currents when the smoothing described by Equation (7.34) is employed.
Without any smoothing, however, the droplet survives in a perturbed shape for the
CSF method. We thus report in Table 7.1 the results for CSS and CSF in cases F,
A, and B with the elementary smoothing given by Equation (7.34) and results of
CSF in the cases C and D without smoothing.

The results of more sophisticated methods, such as CSF with the kernel K8 given
by Equation (7.36), PROST, PCMM, and the height-function (HF), method are re-
ported in Table 7.2. These methods perform consistently better than the elementary
methods, but the performance of the CSF method with the K8 kernel is of the same
order of magnitude as that of the front-tracking method.

7.3.2 Dynamic case

Tests of rising bubbles and falling droplets show an interesting balance between
surface tension and the viscous and pressure stresses that tend to deform the bub-
ble and several authors have compared the steady deformation with experimental
observations and other computations, such as those of Ryskin and Leal (1984).
Generally the agreement is good. However, such tests are only partially dynamic:
there is flow but usually no interface oscillations.

180 Surface tension

Table 7.2. Measurements of spurious currents: the capillary number Ca as
computed by four advanced surface tension methods. We use the notation

r = ρliq/ρgas and m = µliq/µgas.

Ca

Case La r m D/h CSFK8 PROST PCMM HF

F 0.120 1 1 30 10−4 NA 10−6 NA
A 0.357 1 1 32 NA 6×10−5 NA NA
E 120–12 000 1 1 32 NA NA NA machine

accuracy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Fig. 7.8. The velocity (left) and pressure (right) for an oscillating droplet at nondimen-
sional time tσ/dµ = 9.0925. The computations are done using a front tracking on a 322

grid. The droplet is initially perturbed by 10% of its radius.

Capillary oscillations of drops and bubbles where the shape changes in time
usually provide a more stringent test, and in Fig. 7.8 we show one example of
a simulation of an oscillating drop. Analytical solutions exist for various situa-
tions where small-amplitude oscillations are superimposed on a “regular” interface
shape such as a sphere, a cylinder, or a flat plane, and it is interesting to compare
the numerical solutions with them. For a flat interface the standard ideal fluid solu-
tion gives surface oscillations of frequency ω2

0 = σk3/(ρ1 +ρ2), where k = 2π/λ
is the wavenumber. However, with viscosity ν , the frequency is shifted. The shift
can be rather large, since it is proportional to

√
ν . Moreover, viscous effects are

important in many applications and they have to be tested as well. One thus has
to find the viscous “normal-mode” solution. This solution is briefly discussed by
Chandrasekhar (1961), but even with that solution there are several difficulties, as

7.4 More sophisticated surface tension methods 181

listed below. We consider a wave of shape

h(x, t) = a(t)cos(kx). (7.70)

(i) Care must be taken to avoid box size effects. The height Lz of the box above
the interface must be large compared with the wavelength λ . Corrections
when kh is large are of the order tanh(kh)−1 in the inviscid limit.

(ii) Nonlinear effects will be important when a is not very small compared with
λ . They will introduce an error compared with the viscous normal-mode
solution.

(iii) The viscous normal-mode solution (Chandrasekhar, 1961) gives the evolu-
tion of the height h(x, t), the velocity field u(x, t), and the pressure for a
normal mode. To observe the normal mode, all fields must be initialized
at t = 0. If only the interface is initialized but the initial velocity is zero,
a different solution must be used. A solution for this case has been found
by Cortelezzi and Prosperetti (1981; Prosperetti, 1981). Both the normal-
mode solution and the Prosperetti solution are extremely complex. Their
description is rather lengthy, and so the interested reader is directed to the
references.

In Fig. 7.9 and in Table 7.3 we show the comparison of the observed evolution
and frequency of a planar capillary wave on a plane interface, compared with the
Prosperetti solution. The density and viscosity ratios are equal to one. Several
methods are compared, and the results are obtained from the literature: Gueyffier
et al. (1999) for CSS, Gerlach et al. (2006) for CSF/K8 and PROST, Popinet and
Zaleski (1999) for PCMM, and Popinet (2009) for the HF method. The PROST,
PCMM, and HF methods are defined below. In the CSS method, agreement with
the analytical solution is good, but there is no convergence beyond the 0.01 error
mark (A decrease of the error is seen again for 5122 grids, but no steady conver-
gence). Decreasing the solution amplitude helps but does not seem to improve
the error beyond 0.01. For PCMM the convergence is rapid at first then slower.
For both methods the results are worse when the density and viscosity ratios are
increased. The K8 and PROST methods give better results, especially at finer res-
olutions. The HF method gives the best results at almost all resolutions, and is
performing especially well at coarse resolution (eight points per wavelength).

7.4 More sophisticated surface tension methods

7.4.1 Direct addition with pressure correction

In the PCMM (Popinet and Zaleski, 1999), the force is computed from a marker
representation of the interface. The tangents are estimated at the boundary of a

182 Surface tension

Table 7.3. Relative error for a capillary wave. The Laplace number La is based on
the wavelength.

Method a0 8 16 32 64 128 La

VOF/CSS 5×10−3 — — 0.05 0.007 0.013 3000
VOF/CSFK8 10−2 0.45 0.24 0.1095 0.0456 — NA

PROST 10−2 0.30 0.082 0.0069 1.8×10−3 — NA
PCMM NA 0.30 0.08 0.013 0.01 0.007 3000

HF 10−2 0.16 0.028 0.0084 1.5×10−3 5.5×10−4 3000

0.0 5.0 10.0 15.0 20.0
τ

−0.0080

−0.0060

−0.0040

−0.0020

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

A
m

pl
it

ud
e

a

theory
simulation (64x64)

Fig. 7.9. Evolution of the absolute value of the amplitude of the wave versus non-
dimensional time τ = ω0t, comparing the analytical solution and the numerical simulation
for a box size 64×64. The density ratio is ρ1/ρ2 = 1.

control volume centered on a velocity node, for instance the horizontal velocity
node ui−1/2, j in Fig. 7.10. The horizontal projection of the tensile force exerted
by the two tangents is added directly, without smoothing, to the horizontal veloc-
ity node. As such, the method is too imprecise and it is necessary to correct the
expression of the pressure. The pressure integrated over the control volume is (in
two dimensions)

ex ·
∫

∇pdv = −
∫

AC
pds+

∫
DF

pds, (7.71)

where ex is a unit vector in the x-direction. Using the pressure at the nodes (i−1, j)
and (i, j) is too imprecise because the pressure jumps by a finite amount on the
interface. Two cases are to be considered: (i) the crossing point E on the right side

7.4 More sophisticated surface tension methods 183

A

B

C

D

E

F

F
B

p

p
i−1,j+1

p
i,j+1

i−1,j
p

i,j
u

i−1/2,j

F
E

Fig. 7.10. Distribution of the force in the PCMM.

of the cell is above the pressure node pi, j, as in Fig. 7.10, and (ii) the crossing point
E is below the pressure node. In the first case the approximation of the pressure
involves a pressure correction from the pressure node above:∫

DF
p ds = DEpi, j +EFpi, j+1. (7.72)

In the second case the pressure node below, pi, j−1, is used:∫
DF

p ds = DEpi, j−1 +EFpi, j. (7.73)

One of these two expressions replaces the usual centered approximation DFpi, j.
The pressure correction method has been implemented in two dimensions but not

in three dimensions. Implementations were performed both with a front-tracking
method (the above PCMM method) and also with a VOF reconstruction (Ashgriz
et al., 2005). However, it seems better adapted to a front-tracking method in which
the tangents at the boundary of the control volume may be computed accurately.

7.4.2 CSF method with better curvature: PROST

The CSF method may be improved by a better curvature calculation. Indeed, as we
saw in Section 7.1.1, an exact curvature calculation would yield an exact balance
between pressure and surface tension, eliminating parasitic currents. This is the
basis for the PROST method introduced by Renardy and Renardy (2002). Instead

184 Surface tension

of using expression (7.4), the curvature is computed by fitting a quadratic curve to
the color function Ci j in a 3×3 block. The equation for the quadratic curve is

a+b ·x+x ·C ·x = 0, (7.74)

where the parameters are the scalar a, the vector b and the symmetric matrix C.
Together they form a parameter vector q. The error to be minimized by the fit is
the difference between the color-function-defined area and the areas under a trial
quadratic curve. The normalized area in cell (i, j) is noted vi j(q). The error is then

E = ∑
i j

(vi j(q)−Ci j)
2, (7.75)

where the sum is over a 3×3 block of cells (a 3×3×3 block in three dimensions).
The best fit is obtained by a least-squares algorithm, available in standard numer-
ical packages. The computation of the curvature is straightforward once the best
quadratic curve has been identified. This is the so-called PROST method. PROST
gives good results, but it is computationally expensive because of the search for the
least-squares curve. Another way to obtain accurate curvatures is described in the
next section.

7.4.3 Numerical estimate of the curvature from the volume
fractions: the HF method

In Chapter 5 we introduced a local height function to calculate the normal vector.
We now extend this approach to the computation of the curvature in the following
way (Sussman, 2003; Cummins et al., 2005; Popinet, 2009):

(i) determine the coordinate direction of the maximal component of n;
(ii) sum the volume fractions along this direction to evaluate the height func-

tion;
(iii) compute the curvature with centered finite differences.

In the example of Fig. 7.11 we have |nx| > |ny| in the cell (i, j) and a 7×3 stencil
is then used to compute the horizontal width function x = g(y), in particular x j−1 =
h∑3

k=−3Ci+k, j−1. The curvature for this case is calculated as

κ =
gyy

(1+g2
y)3/2

, (7.76)

where the derivatives gy and gyy are estimated with central differences, gy = (x j+1−
x j−1)/2h and gyy = (x j+1−2x j +x j−1)/h2. With this choice of the sign in equation
(7.76) the curvature of the reconstructed interface line with the volume fraction dis-
tribution of Fig. 7.11 is negative, as in Fig. 2.5. Similar expressions hold for the

7.4 More sophisticated surface tension methods 185

i−3 i

j

j+1

j−1

n

i+3

j−1x

Fig. 7.11. A 7× 3 stencil is used to compute the horizontal height function x in the three
cells (i, j−1), (i, j), and (i, j +1) when |nx| > |ny|.

height y = f (x). There are situations where the height function is not within the
cell boundary; for example, for the cell (i+1, j) of Fig. 7.11. In this case it is more
accurate to calculate the local curvature by interpolating the curvature value of the
neighboring cells. Finally, since the height function is a one-dimensional integral
across the discontinuity of the Heaviside function, it is a more regular function
than the volume fraction C. Thus, it provides a better estimate of the local cur-
vature. For a comparison among different methods, we recall that in this chapter
we have also derived an expression for the curvature κ based on a finite-difference
approximation of the unit normal n and of its divergence in Section 7.1.1, while
in Section 7.1.4 the curvature is computed with a similar expression, but with the
unit normal ñ calculated from a convolution of the discontinuous function C with
the derivatives of the kernel (7.36). We compare the accuracy of curvature esti-
mates of these three methods by considering the L∞ error norm, defined as L∞ =
max |κ̃h − κ|, where κ̃h is our numerical approximation to the local value of the
curvature κ , on a circular interface. A circle with radius R = 0.15 and curvature
κ = 1/R = 6.6 is centered at (1/2,1/2). We subdivide the unit square compu-
tational domain with n2 square cells of side h = 1/n, with n = 32,64,128,256,
and in Fig. 7.12 we show the L∞ error norms for the interface curvature. We see
second-order convergence O(h2) for the HF method and an approximate O(h−1)
error for both the kernel convolution and the finite-difference method. In partic-
ular, we have assumed the value ε = 2h for the width of the filter in the kernel
(7.36). If the width ε is kept constant, i.e. it remains independent from the grid
resolution h, then second-order convergence is obtained, but the method becomes
computationally very expensive.

The HF method for the computation of curvature was applied by Popinet (2009)
for the computation of surface tension. When the VOF marker function is too
irregular to compute the curvature by the HF method, the code falls back on a
least-squares fit through the VOF reconstructions. The HF method gives very good

186 Surface tension

10
–3

10
–2

h

10
–3

10
–2

10
–1

10
0

10
1

10
2

er
ro

r
 n

or
m

s

height function
finite differences
kernel convolution
second order

Fig. 7.12. L∞ error norms for the curvature estimated along a circular interface with the
kernel-convoluted C data, a finite-difference scheme and the height function.

results for spurious currents, which decrease to machine accuracy provided the
droplet is left to relax to equilibrium over a sufficiently long time, and for capillary
oscillations (see Table 7.3).

7.5 Conclusion on numerical methods

Numerical methods for direct numerical simulations of multiphase flows have now
been developed to the point that they can be used to examine in detail fairly com-
plex problems. While further method development will certainly take place (as
more accuracy, efficiency, and robustness are always desirable), we believe that
the most exciting development in the next several years will be the use of these
methods to probe the mysteries of increasingly complex flows. Thus, we will now
change the focus and in the rest of the book we will present a few examples of how
DNS have been used to examine the dynamics of a few selected multiphase flows.

8

Disperse bubbly flows

8.1 Introduction

Understanding and predicting bubbly flows is of critical importance in a large num-
ber of industrial applications, including boiling heat transfer in power plants, var-
ious metallurgical processes, and in bubble columns in the chemical industry. In
bubble columns, used for partial oxidation of ethylene to acetaldehyde, isobutene
separation, wet oxidation of heavily polluted effluent, and the production of syn-
thetic fuels, for example, gas is injected at the bottom and, as the bubbles rise,
the gas diffuses into the liquid and reacts (Furusaki et al., 2001). Bubble columns
ranging from tens to hundreds of cubic meters are common in the chemical industry
and up to thousands of cubic meters in bioreactors, where longer process times are
needed. The absence of any moving parts and their relatively simple construction
makes bubble columns particularly attractive for large-scale operations (Deckwer,
1992). Their operation, however, is usually dependent on the size of the vessel
and the difficulty of scaling up small pilot models makes numerical predictions
important. Similar considerations apply to other bubble systems.

Computational modeling of industrial-size multiphase flow systems must by ne-
cessity rely on models of the average flow. Such models range from simple mix-
ture models to more sophisticated two-fluid models, where separate equations are
solved for the dispersed and the continuous phase. Since no attempt is made to re-
solve the unsteady motion of individual bubbles, closure relations are necessary for
the unresolved motion and the forces between the bubbles and the liquid. Closure
relations are usually determined through a combination of dimensional arguments
and correlation of experimental data. The situation is analogous to computations
of turbulent flows using the Reynolds-averaged Navier–Stokes equations, where
momentum transfer due to unsteady small-scale motion must be modeled. For de-
tails of two-fluid modeling, see Drew (1983), Ishii (1987), Zhang and Prosperetti

187

188 Disperse bubbly flows

(1994), Drew and Passman (1999), and Prosperetti and Tryggvason (2007), for
example.

For the turbulent motion of single-phase flows, direct numerical simulations
(DNS) – where the unsteady Navier–Stokes equations are solved on fine-enough
grids to fully resolve all flow scales – have had a major impact on closure model-
ing. The goals of DNS of multiphase flows are similar. In addition to information
about how the drift Reynolds number, velocity fluctuations, and bubble dispersion
change with the properties of the system, the computations should yield insight into
how bubbles interact, both with each other and the liquid. The simulations should
show whether there is a predominant microstructure and/or interaction mode, and
whether the flow forms structures that are much larger than the size of the dispersed
bubbles. Information about the microstructure is essential for the construction of
models of multiphase flows and can also help to identify what approximations can
be made.

The need for DNS to help with the construction of reliable closure models has
been recognized for a long time, but it is only recently that it has become possible
to simulate flows containing a large number of bubbles for a sufficiently long time
so that reliable average quantities can be obtained. Earlier simulations generally
examined either the motion of only one bubble (Ryskin and Leal, 1984), used sim-
plified potential flow models (Sangani and Didwania, 1993; Smereka, 1993), or
assumed point particles (e.g. Druzhinin and Elghobashi, 2001). While such sim-
plified models can yield useful information in limiting cases, for non-dilute bubbly
flows at intermediate Reynolds numbers it is necessary to solve the full unsteady
Navier–Stokes equations. In the rest of this chapter we will review the status of
two studies of disperse bubbly flows, both of which have been reported in several
papers. As numerical studies of disperse bubbly flows are a rapidly evolving field,
we warn the reader that these examples only serve as illustrations of what can be
(and has been) achieved using the types of method described in this book and that
you should consult the most recent literature for the current state of the art. The
first example is the buoyant rise of a homogeneous distribution of many bubbles in
an initially quiescent flow and the second example is the motion of buoyant bubbles
in vertical channels.

The rise of a single buoyant bubble is governed by four nondimensional num-
bers (see Clift et al. (1978)). Two of those are the ratios of the bubble density
and viscosity to the density and viscosity of the liquid, ρb/ρl and µb/µl (where
the subscript l denotes the liquid and b stands for the fluid inside the bubble), and
the other two can be selected in a number of ways. Usually, we use the Galileo
and the Eötvös number, N and Eo respectively; see Section 2.6. In the chemical
engineering literature, the Galileo number is often replaced by the Morton number,
since, for a given fluid and gravity acceleration, the Morton number is a constant.

8.2 Homogeneous bubbly flows 189

For flows with many bubbles, the void fraction α must also be specified, and of-
ten other nondimensional numbers are needed to describe the situation (the pipe
Reynolds number for flows in pipes and channels, for example).

The rise of a single buoyant bubble, as a function of N and Eo, is fairly well
understood (Clift et al., 1978). In the limit of low Eo (high surface tension or a
small bubble) a bubble remains spherical as it rises. As Eo increases, the value
of N determines what happens. For low N (high viscosity), the bubble remains
spherical. For higher N, the bubble first becomes ellipsoidal and then “skirted,”
in both cases rising steadily with a laminar wake. At even higher N the deformed
bubble rises unsteadily, either “wobbling” or along a spiral path. For very high
N and Eo the bubbles form a spherical cap bubble with a turbulent wake. Exactly
how the bubbles transition between the various rise modes is not completely under-
stood as of yet, and there is, for example, some evidence that a “wobbling” motion
may be a transient between a steady rectilinear rise and a rise along a spiral path
(Ellingsen and Risso, 2001). Real bubbles are also generally covered by surfac-
tants of poorly understood composition that influence the boundary conditions at
the fluid interface. This is a particularly severe problem for small air bubbles in
water and can make comparisons with experimental observations difficult. In this
chapter we consider only completely clean bubbles.

8.2 Homogeneous bubbly flows

Homogeneous bubbly flow, where many buoyant bubbles rise together in an ini-
tially quiescent fluid, is perhaps the simplest example of multiphase gas–liquid
flows. Such flows can be simulated using periodic domains where the bubbles in
each period interact freely but the configuration is repeated infinitely many times in
each coordinate direction. In the simplest case, there is only one bubble per period,
so the configuration of the bubble array does not change as it rises. While such reg-
ular arrays are unlikely to be seen in an experiment, they provide a useful reference
configuration for freely evolving arrays. As the number of bubbles in each period
is increased, the regular array becomes unstable and the bubbles generally rise un-
steadily, repeatedly undergoing close interactions with each other. The behavior is
statistically steady, however, and the average motion (averaged over long-enough
times) does not change. While the number of bubbles per period clearly influences
the average motion for a very small number of bubbles, the hope is that, once the
size of the system is large enough, information obtained by averaging over each
period will be representative of a truly homogeneous bubbly flow.

Extensive experimental studies have been done on homogeneous bubbly flows,
primarily to find how the average drift velocity of the bubbles (the velocity relative
to the liquid) depends on the void fraction. The classic reference for experimental

190 Disperse bubbly flows

correlations is Ishii and Zuber (1979), who used a large number of experimental
results, from a variety of sources, to construct correlations for the drift velocity of
bubbles, droplets, and solid particles for a wide variety of flow conditions. The Ishii
and Zuber correlations generally show a monotonic decrease in the drift velocity
with increasing void fraction. Experiments addressing the interaction of bubbles
with the liquid can be found in Lance and Bataille (1991), who examined bub-
bles injected into a turbulent flow, and in Cartellier and Rivière (2001) and Zenit
et al. (2001) for initially laminar flows. Cartellier and Rivière (2001) studied nearly
spherical bubbles at O(1) and O(10) Reynolds numbers and Zenit et al. (2001) ex-
perimented with nearly spherical bubbles at O(100) Reynolds numbers, attempting
to experimentally test the applicability of potential flow simulations, such as those
of Sangani and Didwania (1993) and Smereka (1993), to real flows. Although
some aspects of the theory were confirmed, the experiments showed that for the
most part the potential flow model is not applicable, even to experiments carefully
constructed to operate in the parameter range where the model was believed to
apply.

Tryggvason and coworkers have used the front-tracking method originally in-
troduced by Unverdi and Tryggvason (1992) to examine several aspects of homo-
geneous bubbly flows. Esmaeeli and Tryggvason (1998) examined a case where
the average rise Reynolds number (defined as Reb = ρlUbde/µl, where Ub is the
drift velocity of the bubble and de is the effective bubble diameter) of the bubbles
remained relatively small, 1–2, and Esmaeeli and Tryggvason (1999) looked at
another case where the Reynolds number is in the range 20–30. Most of the sim-
ulations were limited to two-dimensional flows, although a few three-dimensional
simulations with up to eight bubbles were also presented. The time averages of
the two-dimensional simulations were generally well converged, but exhibited a
dependency on the size of the system. This dependency was stronger for the low
Reynolds number case than for the moderate Reynolds number one. Although
many of the qualitative aspects of a few bubble interactions are captured by two-
dimensional simulations, the much stronger interactions between two-dimensional
bubbles can lead to quantitative differences. Esmaeeli and Tryggvason (1996) sim-
ulated the motion of a few hundred two-dimensional bubbles at O(1) Reynolds
number and showed that the bubble motion leads to an inverse energy cascade
where the flow structures continuously increase in size. This is similar to the evo-
lution of stirred two-dimensional turbulence, and although the same interaction
is not expected in three dimensions, the simulations demonstrated the importance
of examining large systems with many bubbles. Systems with a large number of
three-dimensional bubbles were examined by Bunner and Tryggvason (2002a,b),
who used a fully parallel version of the method used by Esmaeeli and Tryggva-
son. Their largest simulation followed the motion of over 200 three-dimensional

8.2 Homogeneous bubbly flows 191

Fig. 8.1. Left: one frame from a simulation of 216 nearly spherical buoyant bubbles.
Right: a close-up of the flow field around a few bubbles, from a simulation of 91 freely
evolving bubbles. The governing parameters are given in the text. From Bunner and Tryg-
gvason (2002a), 2002 c©Cambridge Journals, published by Cambridge University Press,
reproduced with permission.

buoyant bubbles per periodic domain for a relatively long time. The governing
parameters were selected such that the average rise Reynolds number was about
20–30 (comparable to Esmaeeli and Tryggvason (1999) but not identical), depend-
ing on the void fraction, and the deformation of the bubbles was small. Although
the motion of the individual bubbles was unsteady, the simulations were carried
out for a long-enough time so the average behavior of the system was well defined,
as in the two-dimensional simulations of Esmaeeli and Tryggvason.

The simulations of Esmaeeli and Tryggvason (1998, 1999) and Bunner and
Tryggvason (2002a,b) have resulted in a considerable amount of insight, as well
as data. The first question is obviously how large a system needs to be simulated
for the results to be representative of a homogeneous bubbly flow. Several sim-
ulations, starting with one bubble per period and going up to over 200 bubbles
showed that for many averaged quantities, such as the average bubble rise velocity
and the Reynolds stresses in the liquid, it was sufficient to consider only about 10
bubbles. The average fluctuation of the bubble velocities and the bubble disper-
sion converged much more slowly as the system size was increased. The bubble
interactions played an important rôle for all the cases considered, and there was
a significant difference between the rise velocity of a single bubble per period (a
regular array) and freely interacting bubbles. While freely evolving bubbles at low
Reynolds numbers rose faster than a regular array (in agreement with Stokes flow

192 Disperse bubbly flows

results), at higher Reynolds numbers the trend was reversed and the freely mov-
ing bubbles rose more slowly. For both the Reynolds number ranges studied, the
results showed that, for the nearly spherical bubbles, two-bubble interactions take
place by the “drafting, kissing, and tumbling” mechanism of Fortes et al. (1987),
where a bubble is drawn into the wake of a bubble in front of it, the bubbles collide,
followed by a “tumbling” where the vertical bubble pair changes its orientation to
horizontal, so the bubbles rise side by side. This is, of course, very different from
either a Stokes flow where two bubbles do not change their relative orientation
unless acted on by a third bubble, or the predictions of potential flow where two
bubbles, rising along a common vertical axis, are pushed apart, not drawn together.
Examination of the pair distribution function for the bubbles shows a preference
for horizontal alignment of bubble pairs, independent of system size, but the dis-
tribution of bubbles remains nearly uniform. The results of Bunner and Tryggva-
son (2002a), combined with the more limited results in Esmaeeli and Tryggvason
(1998, 1999), as well as the results of Esmaeeli and Tryggvason (2005) for even
higher Reynolds numbers, show that there is an increasing tendency for the bub-
bles to line up side by side as the rise Reynolds number increases. This suggests
a monotonic trend from the nearly no preference found by Ladd (1993) for Stokes
flow, toward the strong layer formation seen in the potential flow simulations of
Sangani and Didwania (1993) and Smereka (1993). The same trend was seen ex-
perimentally by Cartellier and Rivière (2001). Bunner and Tryggvason (2002b)
also examined the dispersion of the bubbles and found that the probability distribu-
tion of the bubble velocity fluctuations was approximately Gaussian. Thus, while
the dispersion was strongly anisotropic (the vertical dispersion was much larger
than the horizontal dispersion), it should be possible to describe bubble dispersion
as a diffusion process. The velocity fluctuations in the liquid phase were also ex-
amined and it was found that they scaled well with the void fraction times the slip
velocity squared, as predicted by potential flow models. Unlike in potential flows,
however, the velocity fluctuations were strongly anisotropic.

Since, for the most part, the number of bubbles in the simulations of Bunner and
Tryggvason (2002a,b) was relatively small, the question of whether larger scale
structures form is still open. Their results do, however, suggest that an initially
homogeneous systems of nearly spherical bubbles will remain so for a long time.
The energy spectrum for the largest simulation, in particular, quickly reached a
steady state, showing no growth of modes much longer than the bubble dimensions.

In Fig. 8.1, the bubble configuration at one time from a simulation of the motion
of 216 bubbles is shown on the left. The right-hand side shows a close-up of the
flow around a few bubbles from a different simulation with 91 bubbles, but with
all other governing parameters remaining the same. Here, N = 900, Eo = 1, and
the void fraction is 6%. For the larger simulation, a 2563 uniformly spaced grid

8.2 Homogeneous bubbly flows 193

Fig. 8.2. Two frames from simulations of 48 buoyant bubbles in periodic domains. The
left frame shows nearly spherical bubbles that have a tendency to line up into horizontal
“rafts,” whereas the more deformable bubbles on the right are more prone to form vertical
columns. The governing parameters are given in the text. Reprinted with permission from
Esmaeeli and Tryggvason (2005). Copyright 2005, American Institute of Physics.

was used, resulting in about 20 grid points per bubble diameter. Resolution tests,
using a smaller number of bubbles, indicated that, for the governing parameters
used here, this resolution yielded essentially fully converged solutions. For details,
see Bunner and Tryggvason (2002a).

In the studies discussed above, the bubbles remained nearly spherical. To exam-
ine what happened if the bubbles were more deformable, Bunner and Tryggvason
(2003) conducted two sets of simulations using 27 bubbles per periodic domain. In
one set the bubbles were spherical and in the other set the bubbles deformed into
ellipsoids. The rise Reynolds number of the bubbles generally was in the range
20–30, depending on the void fraction and the deformability of the bubbles. The
nearly spherical bubbles quickly reached a well-defined average rise velocity and
remained nearly uniformly distributed across the computational domain. The de-
formable bubbles initially behaved similarly, except that their velocity fluctuations
were larger. In some cases, however, the nearly uniform distribution changed to a
completely different state where the bubbles accumulated in vertical streams, ris-
ing much faster than when they were uniformly distributed. This behavior can be
explained by the dependency of the lift force that the bubbles experience on the
deformation of the bubbles. Suppose a large number of bubbles come together
for some reason. Since they look like a large bubble to the surrounding fluid, the
group will rise faster than a single bubble, drawing fluid with them. A spherical
bubble rising in the shear flow at the edge of this plume will experience a lift force
directed out from the plume. The lift force on a deformable bubble, on the other

194 Disperse bubbly flows

hand, is directed into the plume, as explained by Ervin and Tryggvason (1997).
Spherical bubbles, temporarily crowded together, will therefore disperse, but de-
formable bubbles will be drawn into the plume, further strengthening the bubble
stream (or “chimney”). Although streaming was not always seen in simulations
with deformable bubbles, it is likely that streaming would have taken place if the
computations had been carried out for a long-enough time or the number of bub-
bles had been larger. Simulations with the bubbles initially confined to a single
column showed that while the nearly spherical bubbles immediately dispersed, the
deformable bubbles stayed in the column and rose much faster than uniformly dis-
tributed bubbles. A similar study, but at a considerably higher Reynolds number,
was done by Esmaeeli and Tryggvason (2005), who considered 48 nearly spheri-
cal as well as more deformable bubbles. The simulations showed path oscillations
of the bubbles in both cases and shape oscillations of the deformable bubbles. At
quasi-steady state the distribution of the deformable bubbles was relatively uni-
form – although the pair distribution showed that the bubbles had a tendency to
stack up vertically – but the spherical bubbles were distributed nonuniformly as a
result of the formation of horizontal “rafts.” For both cases, however, the prob-
ability density function of the fluctuation velocities of the bubbles was found to
be approximately Gaussian. The temporal autocorrelation functions of the fluctu-
ation velocities showed that the horizontal components became uncorrelated faster
than the vertical component and the correlation time for the vertical autocorrelation
for deformable bubbles was at least two times larger than that for nearly spherical
ones. Figure 8.2 shows two frames from these simulations. The nearly spherical
bubbles are shown on the left and the more deformable ones on the right. In these
simulations, N = 8000 and α = 5.8%. For the nearly spherical bubbles Eo = 0.5,
resulting in an average rise Reynolds number of about Reb = 92, and for the de-
formable ones Eo = 4 and Reb = 78. The simulations were done using a 1923

uniform grid.

8.3 Bubbly flows in vertical channels

Bubbly flows in vertical pipes and channels are encountered in a wide variety of
industrial systems and have, therefore, been the subject of several studies. The best-
known early study is by Serizawa et al. (1975a,b), who examined experimentally
the void fraction distribution and the velocity profile in turbulent air–water bubbly
flows. Other experiments have been done by Wang et al. (1987), Liu and Bankoff
(1993), Liu (1997), Kashinsky and Randin (1999), So et al. (2002), Kitagawa et al.
(2004), and Guet et al. (2004), for example. The results show that for nearly spher-
ical bubbles the void fraction distribution and the velocity profile in the core of
the channel are relatively uniform and that a void fraction peak is generally found

8.3 Bubbly flows in vertical channels 195

near the wall for upflow but not for downflow. Sufficiently deformable bubbles,
on the other hand, show exactly the opposite behavior and migrate to the center
of the channel in upflow. A number of authors have also used two-fluid averaged
models to predict bubbly flows in vertical channels. See, for example, Lopez De
Bertodano et al. (1987, 1994), Kuo et al. (1997), Guet et al. (2005), and others.
The models generally reproduce the experimental results reasonably well, once the
free parameters have been adjusted.

While the flow is likely to be turbulent in most cases of practical interest, laminar
flow is an important limiting case that can be used to explore aspects of multiphase
flow modeling that do not depend on the specifics of the turbulence. This was
recognized by Antal et al. (1991), who developed a two-fluid model for such flows
and compared the model predictions with experimental results. The agreement
between the model and the experiments was good, although for upflow there was a
need to introduce a wall-repulsion force to keep the center of the bubbles at least a
bubble radius away from the walls, and the authors observed that the results showed
some dependency on the exact value of the lift coefficient used. The model of
Antal and collaborators has also been examined by Azpitarte and Buscaglia (2003).
Other studies of laminar flow include the experimental investigation by Song et al.
(2001), who considered flows with both uniform and nonuniform distribution of
bubble sizes, and Luo et al. (2003), who examined the motion of light particles.
Both studies were done for upflow and both found wall-peaking.

Lu et al. (2006) and Lu and Tryggvason (2006, 2007, 2008) have recently exam-
ined various aspects of bubbly flows in vertical channels, using DNS. The channel
is bounded by two walls and periodic in the spanwise and the streamwise direc-
tions. Gravity acts downward, so the bubbles rise due to buoyancy and an imposed
pressure gradient drives the flow either downward or upward. Initially, several
bubbles were distributed randomly in the channel and the flow was then simu-
lated for a long-enough time so that it reached an approximately steady state. At
steady state the wall shear balances the weight of the mixture and the imposed
pressure gradient. In addition to the wall shear, other averaged quantities, such as
the total flow rate, were monitored to ensure a steady state. By focusing on an
infinitely long and infinitely wide (or periodic) channel at steady state, the problem
is reduced to considering the various averaged properties versus the wall-normal
coordinate. This simplifies both the presentation of the results and modeling of the
average flow (Antal et al., 1991). To get these averages by DNS, it is of course
necessary to simulate fully three-dimensional channels.

Lu et al. (2006) focused on nearly spherical bubbles in laminar flows and found
that at steady state the flow always consisted of two well-defined regions, both for
upflow and downflow: a thin wall-layer and a homogeneous core, occupying most
of the channel. The formation of these regions is due to lift-induced lateral motion

196 Disperse bubbly flows

Fig. 8.3. The bubble distribution at one time for buoyant bubbles in laminar upflow (left)
and downflow (right) in a vertical channel. Isocontours of the vertical velocity are also
shown for a plane going through the center of the channel. Reprinted from Lu et al. (2006),
with permission from Elsevier.

of the bubbles. For a nearly spherical bubble, rising due to buoyancy in a vertical
shear, it is well known that the lift force pushes the bubble toward the side where
the liquid is moving faster with respect to the bubble. Thus, in upflow a bubble
near the wall is pushed toward the wall and in downflow the bubble is pushed away
from the wall. The weight of the bubble–liquid mixture and the imposed pressure
gradient must be balanced by a shear stress due to a velocity gradient. For upflow,
the mixture, on the average, must be sufficiently light so that the imposed pressure
gradient can push it upward. As bubbles are removed from the core, its average
density increases until the weight is balanced exactly by the pressure gradient.
The shear is then zero and the migration of the bubbles to the wall stops. For
downflow the opposite happens. Bubbles move into the core and make it more
buoyant, until its weight is balanced by the pressure gradient and further lateral
migration is stopped. Thus, in both cases the core is in hydrostatic equilibrium and
the velocity gradient is zero everywhere except in the wall layer. For upflow, where
the weight of the mixture in the core is increased by pushing bubbles to the wall,
the bubble-rich mixture in the wall layer is driven upward by the imposed pressure
gradient. For downflow, on the other hand, bubbles must be drawn away from the
wall to decrease the weight of the mixture in the core and the bubble-free wall
layer is driven downward by its weight and the imposed pressure gradient. This
distribution is stable in the sense that, if too many bubbles end up in the wall-layer
for upflow, the core slows down with respect to the wall layer, thus generating
shear that will drive the bubbles back out of the wall layer. Similarly, if too many
bubbles end up in the core for downflow, its velocity is reduced and bubbles are

8.3 Bubbly flows in vertical channels 197

driven back to the wall. Figure 8.3 shows the bubble distribution and the vertical
velocity at one time for both upflow and downflow.

The average void fraction is easily predicted given the considerations explained
above. For both upflow and downflow the void fraction in the core is such that the
weight of the mixture balances the imposed pressure gradient. For upflow, where
the wall layer is about a bubble diameter thick, the void fraction is determined by
how many bubbles must be removed from the core. For downflow, the thickness of
the bubble-free wall layer is given by how many bubbles must be added to the core.
Figure 8.4 (left frames) plots the average void fraction profile across the channel
along with the predictions of the model outlined above. Obviously, the agreement
is excellent. The shape of the void fraction profile in the wall layer for upflow is
different from the average, but the exact shape can also be obtained by assuming
that the bubbles are nearly spherical.

For downflow, where the wall layer is bubble free, the velocity profile is easily
found by integrating the Navier–Stokes equations for steady laminar, parallel flow
and the flow rate can be predicted analytically, with a fair degree of accuracy. For
upflow, on the other hand, the presence of the bubbles makes the situation more
complex and the velocity profile is not as easily found. Figure 8.4 (right frames)
shows the average velocity profile across the channel for upflow and downflow.
For downflow, the model predictions are also included. Since the velocity increase
across the wall layer determines the liquid velocity in the core of the channel, it is
critical for predicting the total flow rate. For a more detailed discussion of laminar
bubbly flows in a vertical channel, see Lu et al. (2006).

The discussion above suggests that the flow configuration is not dependent on
the flow being laminar and also not critically sensitive to the size of the bubbles, as
long as they remain nearly spherical. This is indeed the case. Lu and Tryggvason
(2006) studied bubbles in a turbulent downflow in some detail. The initial single-
phase turbulent flow was the same as that used in Lu et al. (2005a), and by continu-
ing the simulation of the single-phase turbulent flow it was confirmed that the code
preserved the statistics of the turbulent flow. The pressure gradient and the viscos-
ity used in the simulation resulted in a friction Reynolds number, using the friction
velocity u+ and the half-width of the channel H equal to Re+ = u+H/νl = 127.3.
The bulk Reynolds number, based on the bulk velocity of the flow without bubbles
and the width of the channel, was Re = Ub2H/νl = 3786. The number of bubbles
was in the range 18–72 with N = 7.29×10−7 and Eo = 0.3125. The computations
were done using grids with 192×160×96 points, uniformly spaced in the stream-
wise and the spanwise direction, but unevenly spaced and clustered near the wall
in the wall-normal direction. Lu and Tryggvason (2006) found that the lift force
drives nearly spherical bubbles away from the walls, as for the laminar flow case.
The velocity in the bubble-free wall layer is well described by the standard law

198 Disperse bubbly flows

Fig. 8.4. Left: the average void fraction profiles across the channel for the simulations
shown in Fig. 8.3 for upflow (top) and downflow (bottom). The dashed line is the results of
a simple analytical model. Right: the average liquid velocity across the channel for upflow
(top) and downflow (bottom). The open circles are the average bubble velocities. For
downflow, the dashed line shows the predictions of a simple analytical model. Reprinted
from Lu et al. (2006), with permission from Elsevier.

of the wall and the flow rate can, therefore, be found analytically, as for laminar
flow. Even for a very thin wall layer (less than 50 wall units thick) the turbulence
is sustained, but for thick wall layers the boundaries sometimes vary in time due
to meandering of the bubbly core. Figure 8.5 shows the average liquid velocity.
The velocity profile for turbulent liquid flow without bubbles is also shown. The
pressure gradient for the flow without bubbles is adjusted so that the total driving
force, the imposed pressure gradient and the weight of the mixture, is the same
for both flows. For turbulent flows, the velocity in the middle of the channel is
relatively uniform in the absence of bubbles, and since the main effect of adding
the bubbles is to make the velocity there completely uniform, adding the bubbles
causes surprisingly little change in the liquid velocity. The main increase in the
liquid velocity takes place in the bubble-free wall layer, where the velocity profile
remains nearly the same for the flows with and without bubbles. While the turbu-
lent velocity profile without bubbles is not completely as flat as it is after adding the
bubbles, the differences are small. Since the flow in the core of the channel is uni-
form, the turbulent Reynolds stresses there are zero and in the buffer layer these are
reduced. The increase of the velocity in the buffer layer and the wall region is also
cut short at the outer edge of the wall layer and replaced by the uniform velocity
characterizing the bubbly core. Simulations with bubbles of different sizes in the
same flow (Lu and Tryggvason, 2007) show that the bubble size has relatively little

8.3 Bubbly flows in vertical channels 199

Fig. 8.5. The average liquid velocity from a simulation of turbulent bubbly downflow in a
vertical channel. The velocity profile for flow without bubbles is also shown, along with
the average velocity of the bubbles. Reprinted with permission from Lu and Tryggvason
(2006). Copyright 2008, American Institute of Physics.

effect on the velocity profile, even for a polydisperse mixture. The rise velocity of
smaller bubbles is, of course, smaller than for larger bubbles, and this conclusion
obviously only holds as long as all the bubbles are nearly spherical. For details
about these studies, see Lu and Tryggvason (2006, 2007).

The distribution of bubbles in a vertical channel is determined by the lateral mi-
gration of bubbles due to lift. For nearly spherical bubbles, as discussed above, the
lift is toward the wall for upflow and away from the wall for downflow, thus creat-
ing exactly the correct motion to move the mixture toward hydrostatic equilibrium.
For deformable bubbles, the situation is quite different. In some cases deformation
can lead to a lift force in a direction opposite to that for a nearly spherical bub-
ble and in some cases deformation, particularly when the bubble rise is unsteady,
results in a lift force that is essentially zero. To examine the effect of bubble de-
formation in a turbulent upflow, Lu and Tryggvason (2008) simulated the motion
of 21 bubbles in a rectangular vertical channel, driven by a constant pressure gra-
dient. The initial turbulent flow was the same as for the investigation of bubbles
in turbulent downflow, but the surface tension was varied to give Eo = 0.45 for the
nearly spherical bubbles and Eo = 4.5 for the more deformable ones. The flow was
simulated using a finer grid than for downflow, or 256× 192× 128 points, with
unevenly distributed grid points in the wall-normal direction. In Fig. 8.6 we show
the bubble distribution and isocontours of the vertical velocity in the middle plane
of the channel at one time for both cases after the flow has reached an approximate
steady state. In the frame on the left the bubbles are nearly spherical, resulting
in a prominent wall peak in the bubble distribution. On the right the bubbles are
more deformable and, therefore, they stay in the middle of the channel. The void
fraction for the spherical bubbles is well predicted by the hydrostatic model, but
the deformable bubbles result in a void fraction that is highest in the center region

200 Disperse bubbly flows

Fig. 8.6. Two frames from simulations of turbulent bubbly upflow in a vertical channel.
The bubble distribution and isocontours of the vertical velocity in the middle plane of the
channel are shown. In the frame on the left the bubbles are nearly spherical, resulting in
a prominent wall peak in the bubble distribution. On the right the bubbles are much more
deformable and stay in the middle of the channel. Reprinted with permission from Lu and
Tryggvason (2008). Copyright 2008, American Institute of Physics.

of the channel and tapers off towards the walls. This difference in the void fraction
distribution, shown in Fig. 8.7, has profound implications for the average veloc-
ity, as seen in Fig. 8.8, where the average liquid velocity and the average bubble
velocity are plotted for both cases. For the nearly spherical bubbles there is a sig-
nificant reduction in the average velocity (and thus the flow rate) after the bubbles
are added, but the more deformable bubbles have a relatively minor impact on the
liquid velocity, once the total pressure gradient has been adjusted to account for
the reduction in average density of the mixture. The slip velocity of the bubbles is
smaller for the deformable bubbles, since their drag is higher, but they rise signifi-
cantly faster than the spherical ones since the liquid velocity is higher.

While the basic structure of bubbly flows in a vertical channel has been ob-
served experimentally before, the computational studies discussed here allowed us
to explore the dynamics in detail in a well-controlled and characterized situation.
Results for both laminar and turbulent flows show that the structure of the flow is
determined by the lift on the bubbles. At steady state the flow in the center of the
channel is in hydrostatic equilibrium for both upflow and downflow (as also found

8.4 Discussion 201

Fig. 8.7. The average void fraction versus the cross channel coordinate for the simulations
shown in Fig. 8.6, along with predictions of an analytical model. Reprinted with permis-
sion from Lu and Tryggvason (2008). Copyright 2008, American Institute of Physics.

by Azpitarte and Buscaglia (2003)), and the dynamics is well described by results
for homogeneous flows. The wall layer, however, is very different for upflow and
downflow. For downflow, where there are no bubbles near the wall, the flow is
particularly simple. In upflow, when the wall layer contains a large number of bub-
bles, the dynamics depends sensitively on both the number of bubbles and their
deformability.

8.4 Discussion

The simulations of bubbly flows discussed in this chapter are good examples of the
opportunities and challenges in applying DNS to understand complex multiphase
flows. Natural problems tend to have a large range of scales, and material proper-
ties can vary greatly. On the computer, however, it is easiest to work with problems
where the range of scales is small and the values of the material properties differ
by a modest amount. Thus, a compromise is generally needed between what is
desirable (real material properties and system size) and what is practical (or pos-
sible). For bubbly flows the limitations are many. First of all is system size. Real
industrial systems often involve a large number (often hundreds or thousands) of
bubbles interacting with complex flow structures. Second is viscosity. We are of-
ten interested in air bubbles in water, and even for small bubbles the rise Reynolds
number is in the hundreds. System size and Reynolds number are closely related.
As the Reynolds number increases, the number of grid points needed to resolve the
flow around each bubble increases and fewer bubbles can therefore be included. Of
considerably lesser practical importance – but often of a major significance when

202 Disperse bubbly flows

Fig. 8.8. The average liquid velocity versus the cross-channel coordinate for the simu-
lations shown in Fig. 8.6. Reprinted with permission from Lu and Tryggvason (2008).
Copyright 2008, American Institute of Physics.

talking to our experimental colleagues – is the density difference between the bub-
bles and the air and the surface tension for very small bubbles. For air bubbles in
water the density ratio is about 800 at normal temperature and pressure. Using this
ratio in a computation generally is difficult. Some methods simply will not work,
and for others the solution of the pressure equation takes a long time, compared
with cases where the density difference is smaller. The density inside the bubble
affects the evolution of the flow in two ways. First, the buoyancy force is directly
proportional to the density difference times the gravity acceleration and, second,
the inertia of each bubble is determined by its density. Of those, the first one is
more important. In many cases the buoyancy force is what drives the fluid (bubble
and liquid) motion and getting it right affects the rise velocity. The bubble inertia
is only important for unsteady bubble motion and usually it is the inertia of the
surrounding fluid that is much more important than the inertia of the bubble itself.

8.4 Discussion 203

Thus, what matters is the sum of the “added mass” and the mass of the bubble.
For a spherical bubble the added mass is half the mass of water displaced by the
bubble. Although at a first glance it might seem that the importance of the density
ratio is larger for the inertia than for the buoyancy force, one has to remember that
the total mass multiplies the acceleration, which itself depends on the density ra-
tio. Thus, buoyancy is what drives the system and inertia is a second-order effect.
These arguments are somewhat similar to those made in deriving the Boussinesq
approximation for low density differences, where the full difference is included for
the buoyancy term but the inertial terms are computed using the average density.
The difficulties with surface tension arise from the fact that very high values can
cause parasitic currents that dominate the flow (Chapter 7). Often, however, it is not
necessary to set the surface tension as high as it should be. For very small bubbles,
surface tension keeps the bubbles completely spherical. For high Reynolds num-
ber flows the bubbles are essentially spherical once the Eötvös number is about 0.1
and increasing the surface tension further (lowering Eo) causes no changes. Thus,
once the surface tension is sufficiently high so that the bubbles stay spherical, the
flow is independent of the exact value of the surface tension and there is no need to
increase it further. It is important to stress that the validity of these approximations
is specific to bubbly flows and that other systems will in general require different
considerations.

In spite of these limitations – which get less severe every year as better methods
are developed and computers get faster – DNS have already shown that they will
transform the way we study bubbly flows. The two examples discussed here are
only meant to demonstrate what can be done. For other simulations of bubbly flows
see, for example, Tomiyama et al. (1993, 2002), Takada et al. (2001), Kanai and
Miyata (2001), Kawamura and Kodama (2002), Sankaranarayanan et al. (2002),
van Sint Annaland et al. (2006), and Bothe et al. (2006). Similar studies have been
done for flows with suspended solid particles and the reader can consult Feng et al.
(1994, 1995), Hu (1996), Johnson and Tezduyar (1997), Choi and Joseph (2001),
and Pan et al. (2002) for an introduction to the literature. The immediate future will
see increasingly more complex systems being examined by DNS and the results
being used to help derive closure relations for computations of industrial systems
relying on equations describing the average flow field.

9

Atomization and breakup

Various applications and natural processes involve large deformations and eventual
breakup of liquid jets, layers, and droplets. When liquid masses fragment in a
small number of pieces one speaks of breakup. More intense phenomena where,
for instance, a liquid jet is broken into seemingly microscopic droplets are called
atomization, although the term is somewhat incorrect, since the individual pieces
are still far larger than atomic scales.

Nevertheless, atomization is a striking process in which finely divided sprays or
droplet clouds are produced. This is often based on the ejection of a high-speed
liquid jet from an atomizer nozzle. Many other configurations exist, such as sheets
ejected at high speed from diversely shaped nozzles, or colliding with each other.
As with many of the multiphase phenomena investigated in this book, atomization
offers a rich physical phenomenology which is still poorly understood. Consider-
able progress has been made in the development of methods for atomization simu-
lations during the last few years, and advances in hardware are making it possible
to conduct simulations of unprecedented complexity.

9.1 Introduction

There are many important motivations for the study of spray formation, droplet
breakup, and atomization. To take a first example from natural phenomena, spray
formation atop ocean waves occurs when sufficiently strong winds strip droplets
from the crests of the waves. Breaking waves also create bubbles that, when
bursting at the surface, create a very fine mist that can rise high into the atmo-
sphere. These various phenomena associated with ocean waves play an important
rôle in ocean–atmosphere exchanges and interactions and thus in climate-change
dynamics.

From the industrial point of view, engineers need to study and control spray
properties in various ways. In some cases, relatively narrow distributions of droplet
sizes are required to ensure uniform evaporation of the droplets. In other cases,

204

9.2 Thread, sheet, and rim breakup 205

large droplets are useful as they create mixing. On the other hand, for fire hoses,
atomization is to be avoided as much as possible in order to obtain longer coherent
jets.

A particulary important application is combustion. The initial atomization is the
most critical stage of burning liquid fuel. In the modeling of combustion of sprays
by computer codes such as KIVA (Amsden, 1993; Torres and Trujillo, 2006), where
the droplets are modeled as point particles, the initial atomization is the largest un-
known. The importance of the initial droplet generation has stimulated the inven-
tion of a large number of atomizers and a large body of literature devoted to the
study of such devices; see, for example, the books by Lefebvre (1989) and Bayvel
and Orzechowski (1993).

The full simulation of atomizing high-speed jets is an extremely complex calcu-
lation involving a wide range of length scales, some examples of which are shown
at the end of this chapter. Rather than aiming only at extremely massive simu-
lations of this sort, another option is to advance our fundamental understanding
of the process. For this purpose, researchers isolate some fundamental, simple
configurations and attempt to extract features that yield physical insight into the
mechanisms involved. One such configuration is a thin sheet of liquid suspended
in air. The sheet ends with a rim that may be destabilized in various ways. The
stability and other properties of this rim are analyzed in Section 9.2. Another ba-
sic flow configuration related to the aerodynamic instability of atomizing jet is the
two-phase mixing layer depicted in Fig. 9.9.

The study of such layers has been intense, theoretically, experimentally, and
more recently numerically as well. We sketch these various approaches in what
follows. The theoretical approach is based in part on the theory of small pertur-
bation of flows, or linear stability theory, and is itself rather complex. We devote
some time to this theory in Section 9.3, then discuss experimental and theoretical
findings. The ultimate objective is to fully simulate atomization from nozzles.

9.2 Thread, sheet, and rim breakup

9.2.1 The Plateau–Rayleigh jet instability

At relatively low velocity, a liquid stream exiting from a nozzle breaks into a se-
quence of droplets as everyday experience of water flowing from a faucet shows.

This observation was first made in the 19th century by Savart, using a stro-
boscopic technique (Eggers and Villermaux, 2008) and the instability was then
studied in a rigorous mathematical manner by Plateau (1873), who showed that
modulations of the jet radius of wavelength λ > 2πr, where r is the jet radius,
were unstable. Later, Rayleigh (1879) computed the growth rate, showing that the
maximum growth rate was obtained for λ/r � 9.01.

206 Atomization and breakup

Fig. 9.1. A numerical simulation of the Plateau–Rayleigh jet instability in both the linear
and nonlinear regimes (performed by the authors using the SURFER code, Zaleski et al.,
1992–2008).

9.2.2 Film and thread breakup

The Rayleigh analysis is linear – and is thus valid when the cylindrical shape is only
slightly perturbed. As the perturbations grow, however, the surface area is steadily
reduced and surface energy is transformed into kinetic energy and ultimately dissi-
pated into heat. Narrower regions or “necks” form between bulges on the thread or
jet. The thickness of the jet decreases continuously until it breaks, leaving some-
times a number of additional “satellite” droplets. The results of computations
performed with the SURFER code (Zaleski et al., 1992–2008) are displayed in
Fig. 9.1.

The final instants of the thinning of the neck were investigated using lubrication-
type equations by Eggers and Dupont (1994). These equations can be used for jets
or for free thin films. They relate the film thickness or thread radius h and the av-
erage velocity u through coupled equations. The x-direction is the axis of the jet or
the direction of flow in the film. The mass conservation equation can be easily de-
rived. The amount of mass in an elementary piece of sheet or thread is proportional
to hn, where n = 1 for a film and n = 2 for a thread. The variation in time of the mass
is thus proportional to nhn−1∂th . On the other hand, the mass flux is proportional
to hnu, where u is the velocity in the film or thread along the axial coordinate x.
The mass variation from fluxing is thus ∂ (hnu)/∂ x = nhn−1u(∂ h/∂x)+hn(∂u/∂ x).
Balancing the two mass-variation terms then leads to

∂ h
∂ t

+u
∂h
∂x

+
h
n

∂ u
∂ x

= 0. (9.1)

9.2 Thread, sheet, and rim breakup 207

Fig. 9.2. Thread breakup. The photograph of a pendant droplet experiment in which
water flows slowly from a nozzle is superposed with the result of a SURFER axisymmetric
simulation performed by Denis Gueyffier. On the left the droplet is shown immediately
after the first pinching. On the right the droplet is shown immediately after a second pinch-
ing. Reprinted and redrawn from Peregrine et al. (1990) and Gueyffier et al. (1999) with
permission from Elsevier.

The momentum equations are more complex. For thin films see Oron et al. (1997),
who derive

∂u
∂ t

+u
∂ u
∂ x

− 4µ
ρh

∂
∂ x

(
h

∂ u
∂x

)
+

σ
ρ

∂κ1

∂x
= 0, (9.2)

where, as in (A.4), but with sign reversed for convenience of rotation,

κ1 = − ∂ 2h/∂x2[
1+(∂h/∂x)2

]3/2
(9.3)

is the two-dimensional curvature for the thin film. For a thread the momentum
equation is (Eggers and Dupont, 1994)

∂ u
∂ t

+u
∂u
∂x

− 3µ
ρh2

∂
∂x

(
h2 ∂ u

∂ x

)
+

σ
ρ

∂
∂x

(κ1 +κ2) = 0, (9.4)

where the second curvature κ2 is obtained from (A.24)

κ2 =
1

h
[
1+(∂ h/∂x)2

]1/2
. (9.5)

Notice that the exact expression for the curvature κ2 is used instead of the first-
order approximation κ2 ∼ 1/h≡ 1/r. This has the advantage that the static solution
of the Navier–Stokes equations for the thread is also a static solution of Equation
(9.4). When the lubrication approximation is used to study the nonlinear regime,

208 Atomization and breakup

the breakup cannot be succesfully studied because just before and after breakup the
interface slope ∂ h/∂x becomes very large. Using the exact expression for the cur-
vature avoids the difficulty, although it is not clear what the exact asymptotic range
of validity of the equations is. Moreover, the validity of continuum mechanics with
sharp interfaces is lost at the breakup instant. We shall further discuss these issues
below.

A relatively simple and interesting regime is found when fluid inertia and sur-
face tension dominate. The third, viscous, term in Equation (9.2) or (9.4) is then
neglected. Keller and Miksis (1983) found in that case self-similar solutions that
become singular as time t approaches the breakup time tc. Length is found to scale
as [σ(tc − t)2/ρ]1/3 and velocity scales as [σ/ρ(tc− t)]1/3. A different regime was
found by Eggers (1993; Eggers and Dupont, 1994) when fluid inertia, viscosity, and
surface tension all contribute to the dynamics of breakup. A full numerical simula-
tion of the breakup using the VOF method was performed by Popinet (2009), who
was able to recover both scaling regimes.

It is interesting to note the finite-time breakup we just discussed can be rather
accurately described without much knowledge about molecular-scale phenomena.
It is generally believed that breakup occurs so “quickly” in a sense that adding
molecular-scale effects to the model would change the outcome very little. An
example of a full numerical simulation of breakup is shown in Fig. 9.2.

Interface topology may also change through the breakup of thin films, as “holes”
form in the thin liquid or gas layer (Fig. 9.3, see also Fig. 10.16). Without taking
intermolecular forces into account, film breakup occurs in infinite time. A sheet
parallel to the x-direction and caught in a straining flow of the type u = ωx,v =
−ωy would evolve with thickness h ∼ h0 exp[−ω(t− t0)], where h0 is the arbitrary
initial thickness at some arbitrary initial time t0 and it would thus reach molecular
scales hm at time t0 + ω−1| lnhm/h0| . The breakup time may thus become arbi-
trarily large, albeit in a logarithmic manner, as hm/h0 becomes small. Similarly,
in a numerical simulation where the interface evolution in time includes automatic
breakup or coalescence, varying the grid resolution ∆x leads to large variations in
the breakup time. However, in flows where large fluctuations of the strain rate ω
are observed, breakup may be relatively fast.

Moreover, in the case of thin films, attractive or repulsive forces between inter-
faces play an essential role in determining whether breakup will or will not oc-
cur. Small-scale forces and phenomena depend on the nature of intermolecular
forces. In many circumstances these forces are affected by the presence of surface-
active molecules. Perfectly clean water–air interfaces are difficult to manufacture
in the laboratory and large organic molecules are often present in sufficiently large
amounts to strongly affect interface dynamics. The surface properties affected are
both surface tension and the plasticity of the interface, which in extreme cases

9.2 Thread, sheet, and rim breakup 209

Fig. 9.3. Interface reconnection through sheet breakup. The computation of the final phase
of the reconnection requires the estimation of microscopic forces.

may behave as a solid membrane, thus slowing down considerably the drainage of
liquid from the film. The occurrence of such phenomena must be asserted on a
case-by-case basis.

9.2.3 The Taylor–Culick rim

When liquid masses are violently shattered one observes the appearance of liquid
sheets. These sheets end with a characteristic bulge or rim. The rim is created
by surface tension, and it is relatively easy to predict its radius R(t) and retraction
speed V (t) as a function of time for a sheet of constant thickness e. Conservation
of mass implies that the mass flux from the sheet accounts for the increase in the
mass M(t) per unit length of the rim:

dM
dt

= ρVe. (9.6)

Conservation of momentum with no air friction or gravity implies

ρ
dMV

dt
= 2σ . (9.7)

In these balances, liquid viscosity is not taken into account. It is clear that the
system has a characteristic length e, a characteristic time tc = (ρe3/σ)1/2, and a

210 Atomization and breakup

characteristic velocity Vc = (σ/ρe)1/2. It is easy to find a solution with steady
velocity that verifies Equations (9.6) and (9.7). This solution is

V =
(

2σ
ρe

)1/2

, M = ρVet. (9.8)

The rim may retract extremely fast. For a typical splash corona, with a thickness
about 100 µm and extending over l = 10 mm, the rim will retract in a time l/V =
8.45×10−3 s.

Viscosity does not affect the speed of the rim in our theory. This is because, if
we take a sufficiently large control volume, the fluid is almost at rest in the sheet
and no viscous stress is found on the boundary of the control volume. However,
it can be shown that viscous effects will create a new length scale lν = (νtc)1/2

(Brenner and Gueyffier, 1999) and that viscosity will affect the shape of the rim
through the Ohnesorge number

Oh = µ/(ρσe)1/2, (9.9)

then lν = Oh1/2e. When Oh is large, the rim is initially elongated with a variable
thickness and a length lν ; when Oh is small, the rim rapidly takes a circular shape.
Brenner and Gueyffier (1999) have solved numerically the lubrication equations
and observed various sheet shapes depending on Oh, shown on Fig. 9.4. At low
Ohnesorge number a series of capillary waves appears ahead of the receding rim,
leading to a “neck” region thinner than the undisturbed sheet thickness e. Song and
Tryggvason (1999) have performed full simulations of the receding rim using the
front-tracking method. An example of the results is shown in Fig. 9.5. The results
are similar to those obtained using the lubrication equations, but the resolution of
the Navier–Stokes equations allows the determination of the precise velocity field
in the liquid and gas phases, yielding, for instance, vorticity distributions, as shown
in Fig. 9.5.

The picture obtained by the simulations of Song and Tryggvason (1999) or Bren-
ner and Gueyffier (1999) is, however, misleading. Continuing the simulations after
dimensionless time t ′ = t/tc = 10 at low Oh, we find that as liquid continues to
accumulate in the rim, it becomes turbulent, as seen in Fig. 9.6. The turbulence
is due to the interaction of several vorticity patches inside the rim, such as the one
indicated by the dashed line in Fig. 9.5. The critical value for the onset of this
turbulence is somewhere around Oh � 0.07. This critical number is attained in
water for a film of thickness e � 3µm, and thicker films thus have turbulent rim
dynamics. In the turbulent regime, the neck thickness fluctuates strongly and may
get close to the grid size, leading to breakup and detachment of the rim.

9.2 Thread, sheet, and rim breakup 211

(a)

(b)

(c)

V

Neck

e

Fig. 9.4. Three rim shapes at various Ohnesorge numbers obtained using the model Equa-
tion (9.2): (a) Oh = 1.170×10−3, (b) Oh = 11.70, (c) Oh = 2.223×104. Reprinted with
permission from Brenner and Gueyffier (1999). Copyright 1999, American Institute of
Physics.

Fig. 9.5. Rim shapes obtained from front-tracking simulations at dimensionless time t′ =
6.53 for Oh = 0.0098 and ρg/ρl = 0.1. Upper half: vorticity contours; dashed lines show
negative vorticity. Lower half: stream function contours. Reprinted with permission from
Song and Tryggvason (1999). Copyright 1999, American Institute of Physics.

9.2.4 Rims leading to droplets and fingers

When thin sheets are realized experimentally, they exhibit rims that deform into
finger-like structures perpendicular to the rim that detach droplets. One way to
generate thin sheets is to pump fluid through a thin nozzle, as in the famous exper-
iment by Crapper et al. (1973). A photograph of the experiment showing the sheet
frontally and sideways is shown in Fig. 9.7. Sheets appear naturally in splash ex-
periments, as seen in Chapter 10, or in some regimes of atomization experiments
discussed later in this Chapter. Other ways to create thin sheets with rims is to
pierce a preexisting thin film with an impacting solid object, as done by Rayleigh
(1900), or to impact a jet on a small flat obstacle, as first done by Savart. A review

212 Atomization and breakup

x

 = 53.67

-10 0 10 20 30 40 50

 = 0.00

 = 8.94

 = 17.89

 = 26.83

 = 35.78

 = 44.72

 = 62.61

 = 71.55

Fig. 9.6. The rim computed using Gerris for Oh = 0.0045 and ρg/ρl = 0.1. Dimensionless
times τ = t ′ = t/tc are shown next to the simulation snapshots. The reference frame and
the domain of the simulation are translated to the right roughly with the rim velocity so that
the rim seems to move to the right by a lesser amount than it would in a reference frame
anchored to the sheet. Simulation performed by Leonardo Gordillo.

of Savart’s account of this experiment is given by Villermaux and Clanet (2002).
Although the mechanisms by which the rim breaks into droplets may differ in each
type of experiment, it is interesting to discuss simple ideas on how the rim deforms
into fingers or droplets.

One theory for the origin of droplets in various breakup and atomization phe-
nomena is that the Taylor–Culick rim detaches and then undergoes a Rayleigh jet
instability. This mechanism was suggested by Dombrowski and Johns (1963). It
requires, however, the neck in Fig. 9.4 to reach molecular lengths and does not
seem to be realized in experiments.

A completely different mode in which a rim may lead to droplets is the focusing
instability of wavefronts. A surface moving locally, normal to itself, at constant

9.2 Thread, sheet, and rim breakup 213

Fig. 9.7. A free sheet experiment. Reproduced with permission from Crapper et al. (1973).
Copyright 1973, Cambridge University Press.

Fig. 9.8. A possible mechanism for droplet formation, involving an initially deformed
bulging end rim.

velocity behaves as a wavefront. When the surface is moving in the direction of its
center of curvature, it generally focuses at this point, then self-intersects, forming
a so-called “kinematic singularity,” put forward by Yarin and Weiss (1995) in the
context of splash corollas. However, simulations show that the formation of a
droplet by this mechanism requires very large initial deformations of the rim to
yield significant amounts of mass in the fingers. Thus, it seems unlikely that this is
the main mechanism responsible for the breakup of rims.

Another mechanism is the destabilization of a bulging rim, which is similar to
that of an isolated cylinder in the Plateau–Rayleigh instability of Section 9.2.1,
but here the rim is attached to the sheet. An example is shown in Fig. 9.8. The
instability requires that the wavelength of the perturbation of the rim satisfies λ �
e. Indeed, if the thickness of the sheet e is too large then the radius R(t) of the rim
grows too rapidly. It then becomes quickly of the order λ/π , and above the ratio

214 Atomization and breakup

R/λ = 1/π the Plateau–Rayleigh instability is suppressed. In the calculations of
Fig. 9.8, λ/e = 130.

An analytical stability theory describing the various instability modes of a
Taylor–Culick end rim attached to a sheet has been proposed by Roisman et al.
(2006).

9.3 High-speed jets

9.3.1 Structure of the atomizing jet

As the velocity of the jet increases beyond the Plateau–Rayleigh regime of Section
9.2.1, a complex sequence of events occurs. The intact length of the jet increases,
then decreases again, and the jet eventually both develops a large-scale, quasi-
helical instability and also forms small ligaments, sheets, and droplets. The differ-
ent regimes through which the jet passes are called the dripping regime, first wind-
induced regime, second wind-induced regime, and finally atomization regime. The
last regime is the one in which small-scale structures develop of size � much smaller
than the jet diameter (� � D). It is the most challenging from the point of view of
technology and numerical simulations.

The global structure of the flow, as seen in experimental photographs, shows a
diverse and complex mixture of liquid masses. The dense central region is called
the liquid core. It is surrounded by various structures, either sheet-like or finger-
like, that grow downstream and eventually produce detached droplets. This char-
acterizes the fiber or membrane breakup. The nature of the instability and the
characteristic scales depend on the parameter regime and on the flow inside the
nozzle. The boundary layer size in the gas and the liquid upstream of the nozzle,
as well as the turbulence level, are particularly important parameters.

In various regions of the flow the detached droplets can collide and possibly
coalesce or be caught in a rapid shear or accelerating flow and suffer a further
breakup, called secondary atomization.

The important dimensionless numbers are the Weber numbers based on liquid
or gas properties and the diameter D of the liquid nozzle Wei = ρiU

2
i D/σ , where

i = l or g, the Reynolds numbers Rei = ρiUiD/µi, also based on the liquid jet
diameter, and for coaxial jets the momentum flux ratio M = ρgU2

g /(ρlU
2
l). Two

additional numbers are the density and viscosity ratios, r = ρg/ρl and m = µg/µl
respectively.

Experiments show that the core or “potential cone” length L of the liquid near
the axis that is not disturbed by instability decreases when M increases. For large
Ug/Ul a good approximation is L/D � 6/

√
M, where D is the jet diameter. For

the single jet atomizer the liquid core length is close to L/D � 6(ρl/ρg)1/2, a re-
sult already proposed by Taylor (1963). These results may be explained using the

9.3 High-speed jets 215

gas

Ug

U
l

l

g
δ

δ liquid

Fig. 9.9. A mixing layer behind a splitter plate is used to model the flow near the exit
of the nozzle in a co-flowing atomizer. Upstream, the flow has two boundary layers of
thickness δg and δl. Downstream, the boundary layers rearrange and the liquid boundary
layer reverses. The size of the boundary layers upstream is exaggerated.

concept of a two-phase mixing layer; see Fig. 9.9. In a mixing layer, boundary
layers of thickness δi (i = l or g) play an important rôle in the flow stability proper-
ties. Dimensionless numbers may alternately be defined based not on the liquid jet
diameter as before, but on the boundary layer sizes. We note these new numbers
with an asterix: We∗i = ρi(Ui −Uint)

2δi/σ and Re∗i = ρi|Ui −Uint|δi/µi, where Uint
is the fluid velocity on the interface.

9.3.2 Mechanisms of droplet formation

One of the most difficult conceptual issues in atomization is understanding the
physical mechanisms that lead to atomization. Several such mechanisms have been
proposed and confirmed experimentally. The three most important ones are the
effect of upstream liquid turbulence, the stability of idealized liquid jets or sheets,
and cavitation in the liquid.

The liquid-turbulence theory explains droplet formation as a consequence of the
deformation of the interface by strong vortices in the liquid. Vortices of size �,
comparable to the nozzle diameter D, have a kinetic energy ρl�

3U2
l . To deform

the interface into a ligament or filament of size � they must create a surface energy
σ�2, which leads to a ligament size � � DWe−1

l . More complicated dependencies
are obtained if � � D, in which case smaller vortices may have less energy. This
mechanism requires Rel to be sufficiently large for turbulence to be well developed
in the liquid.

216 Atomization and breakup

The stability theory instead assumes an idealized flow out of the nozzle. For
example, the flow may be modeled as the mixing layer profile of Fig. 9.9. The
growth of small perturbations leads to waves observed at the liquid surface. Further
destabilization of two-dimensional waves, or direct growth of three-dimensional
perturbations, then leads to the ligaments observed in Fig. 1.2. The earliest stability
theories are related to the Kelvin–Helmholtz theory of a single-phase mixing layer.

Cavitation mechanisms arise when regions of very low pressure are present up-
stream of the nozzle, leading to the growth of vapor bubbles or sheets in the liquid.
These bubbles may nucleate in low- or negative-pressure regions or preexist as
small-size bubble seeds. The appearance of cavitation marks an important change
in the jet shape and is expected at very high speed when the pressure variations
ahead of the nozzle are large.

It is reasonable to assume that the various theories apply in different regions of
parameter space. High liquid Reynolds number would lead to liquid-turbulence
effects, while high gas Weber number leads to aerodynamic effects. This is one of
the features of the Hopfinger diagram of Fig. 9.10.

9.3.3 Stability theory

Stability theory is rather complex and comes in many flavors. The simplest, but
not necessarily the most applicable theory, retains the effects of surface tension
and inertia, but not of viscosity.

9.3.3.1 Elementary Kelvin–Helmholtz analysis

Here, the dynamics is linearized assuming a perturbation of the interface of small
amplitude h1 leading to modes with exponential growth. The interface height is
written as

h = h0 +h1 exp(st + iωt + ikx) , (9.10)

where the growth rate s and the frequency ω depend on the wavenumber k and
the physical parameters of the problem. Expressions for the velocity and pres-
sure exhibit exponential growth at the same growth rate and frequency. Calcula-
tions are easiest if one considers a flow with a sharp velocity profile, as shown
in Fig. 9.11(a), where the sharp profile is marked “KH”. In the single-phase case
ρg = ρl it is found (see Appendix D for detailed calculations) that the growth rate
is

s =
k
2
|Ug −Ul|. (9.11)

9.3 High-speed jets 217

Fig. 9.10. A diagram of the various atomization regimes, as a function of the liquid
Reynolds number Re = Rel and the gas Weber number We = Weg. The “atomization”
regime corresponds to the liquid-turbulence-dominated regime, the “Oh” regime to the
dominance of liquid viscosity, and thus large Ohnesorge number Oh. The aerodynamic
regimes are to the right of the diagram. Reproduced from Lasheras and Hopfinger (2000),
with permission from Annual Reviews, Inc.

For the two-phase case the more complex expression (D.21) holds. In the limit
ρg � ρl however, it reduces to

s �
(

ρg

ρl

)1/2

k|Ug −Ul|. (9.12)

Both expressions predict an indefinitely large growth rate as the wavenumber in-
creases. This situation is physically not meaningful, as perturbations of small
height h1 would lead to very large deformations of the flow at arbitrary small times.
The time evolution of the problem would thus be unbounded and indeterministic,
except for very smooth initial conditions. This situation is called an “ill-posed
problem in the sense of Hadamard” in mathematics and, interestingly, it also arises
in averaged models of two-phase flow (Prosperetti, 2007), albeit for reasons unre-
lated to the Kelvin–Helmholtz instability.

218 Atomization and breakup

Taking into account viscosity or surface tension damps the growth of the Kelvin–
Helmholtz instability at high wavenumbers. The effect of surface tension is the
easiest to calculate. For ρg � ρl the wavelength of maximum growth is given by
λm = 3πDWe−1

1 (see Appendix D). The effect of viscosity may be also estimated in
a rather simple but inconsistent way by introducing piecewise linear boundary lay-
ers in the base flow of the stability analysis, and keeping the inviscid equations for
the stability analysis (see Appendix D). The result is the wavelength of maximum
growth λm ∼ (4π/3)(δgρg/ρl). This expression is not well verified experimentally.
It is thus necessary to turn to a consistent inclusion of viscosity in the analysis.

9.3.3.2 Orr–Sommerfeld analysis

By keeping viscosity in order to improve physical realism, the relevant equations
for the flow are the Navier–Stokes equations.

One obvious effect of viscosity is that it removes the sharp velocity jump. So-
lutions of the Navier–Stokes equations cannot sustain jumps in velocity, which are
replaced by boundary layers of the type shown in Fig. 9.11(a), with thickness δg

and δl. Recall that the velocity at the interface is denoted Uint.
The parameters are connected by the tangential stress condition (2.57). In the

absence of any surface tension gradient these conditions read for a parallel flow
u(z, t)

µg
∂u
∂ z

∣∣∣∣
g
= µl

∂u
∂ z

∣∣∣∣
l

(9.13)

and hence

µg
|Ug −Uint|

δg
= µl

|Ul −Uint|
δl

, (9.14)

from which follows the next relation between the dimensionless numbers defined
in Section 9.3.1:

Re∗g
Re∗l

m2

n2r
= 1 , (9.15)

where n = δg/δl is the ratio of boundary-layer sizes. Moreover, the boundary-
layer size is not arbitrary but results from viscous diffusion effects. For instance, a
temporal instability set up δi ∼ (νit)

1/2 leads to

n ∼ (m/r)1/2. (9.16)

One interesting result for typical values of fluid densities and viscosities is that the
velocity jump in the liquid is much smaller than in the gas, |Ul −Uint| � |Ug −
Uint|, which is equivalent to saying that the vorticity present at the trailing edge

9.4 Atomization simulations 219

of the separating plate has been mostly diffused into the gas. This is visible in
Fig. 9.12(a).

The full linearized Navier–Stokes equations are the Orr–Sommerfeld equations,
given in Appendix D. Here, we only discuss some relevant results. A complex
structure of modes is found; however, some of them may be interpreted in a simple
way. One branch of modes converges asymptotically to inviscid solutions; how-
ever, this convergence is rather slow for the relatively small Weber and Reynolds
numbers relevant for atomization. Another mode is connected to the stability of
very viscous shear layers. For this mode, the analysis of the behavior for large
Reg and Rel shows that the wavenumber km of the maximum growth rate scales as√

Re∗g, while the maximum growth rate scales as km|Ug−Ul| (Boeck et al., 2007) .
This observed scaling with Re ∗

g is caused by an unstable mode described by
Hooper and Boyd (1983). The physical mechanism producing this mode was later
explained by Hinch (1984). To recognize the contributions of these authors, this
mode is referred to as the H-mode.

As shown on Fig. 9.13, agreement is obtained between the prediction of Orr–
Sommerfeld stability theory and numerical computations using the SURFER code
(Zaleski et al., 1992–2008) in the “temporal setup” case, i.e. in the case where
periodic boundary conditions, discussed in Section 3.7, are used.

In the particular case shown in Fig. 9.13, the quality of the agreement depends
on which type of average is used for viscosity in mixed cells, whether arithmetic
or harmonic. It may also depend on subtle details of the initialization, as the initial
perturbation is small and may be corrupted by numerical errors.

9.4 Atomization simulations

9.4.1 Two-dimensional, temporal simulations

Using the method described in this book, relatively low-resolution (here, low res-
olution means a 128× 128 grid) simulations of a two-layer configuration may be
performed in a very short time. The flow configuration at the initial time follows
the description in Fig. 9.11a with periodic boundary conditions in the horizontal
direction. Periodic simulations correspond to the “temporal” version of stability
theory. A typical result is shown in Fig. 9.11b.

With finer resolution the ligaments are stretched much longer (Fig. 9.14, on a
512×512 grid).

9.4.2 Two-dimensional spatially developing simulations

A more realistic result is obtained when entry conditions are imposed that mimic
the flow at the exit of the nozzle. One way to represent entry conditions is to specify

220 Atomization and breakup

KH

gas

liquid

g

l

BL

)a(

δ

δ

)b(

Fig. 9.11. (a) Setup of the “temporal” mixing layer problem. The profile marked “BL” is
a realistic profile with boundary layers evolving in a mixing layer. Profile “KH” is a sharp
profile used for ease of calculation and setup. The instability may be triggered by an array
of vortices in the liquid layer in the bottom. (b) Simulation at low (128×128) resolution.
The ligament is shown at t = 8.4 just after breakup. Reprinted with permission from Boeck
et al. (2007).

(a) (b)

Fig. 9.12. (a) Typical high-resolution simulation. The colors indicate the vorticity. (b)
Detail of simulation showing the end rim and a “Kelvin–Helmholtz roller” trapped below
the sheet. See plate section for color version.

an entry profile for the velocity, setting u(0,y, t) = uentry(y) as a boundary condi-
tion. As an example, we show in Fig. 9.15 the results of a simulation in which
the profile uentry was flat with value Ul with the exception of two linear boundary
layers each about 10% of the diameter. Parameters are Ul = 300m/s, Ug = 0, µl =
6×10−3 Pas, µg = 1.7×10−5 Pas, D = 0.2mm, ρg = 20kg/m3,ρl = 1000kg/m3,

9.4 Atomization simulations 221

1

0.01
h l

0.0001

le-06
0 5 10 15 20 25 30

arithmetic mean, h=1/512
harmonic mean, h=1/512

35 40

Fig. 9.13. Amplitude growth for the arithmetic and harmonic mean of the viscosity with
small initial amplitude. The harmonic mean result is very close to linear theory even at
small amplitudes, while the arithmetic mean is close to linear theory only when the in-
terface height is larger than one grid size. Reprinted with permission from Boeck et al.
(2007).

Fig. 9.14. Three stages of ligament formation and elongation on a 512×512 grid, at higher
Reynolds number, Reg = 4000, and Weg = 500, r = 0.1, at times (a) t = 4, (b) t = 4.8, (c)
t = 9.76. Reprinted with permission from Boeck et al. (2007).

222 Atomization and breakup

Fig. 9.15. The spatial development of an atomizing jet simulated in two dimensions using
SURFER (obtained by Leboissetier (2002)). The color scheme represents the vorticity
levels in the liquid. The vorticity in the gas is masked in the three figures on the left.
A very strong coherent structure is seen in the gas region in the last figure on the right.
Parameters are given in the text. See plate section for color version.

and domain size 2× 8mm2, which leads to the following dimensionless parame-
ters based on the boundary-layer size: Re∗g = 7060, Re∗l = 850, r = 2.3× 10−2,
m = 2.83× 10−3, We∗g = 1500, and We∗l = 6.38× 104. Based on jet diameter,
the dimensionless numbers are now Reg = 70600, Rel = 8500, Weg = 15000,
and Wel = 6.38× 105. The smallest cell size in the simulation is ∆x = 2µm, so
∆x/D = 10−2.

The outcome of this simulation depends strongly on the amount of turbulence
injected at the entrance. This turbulence was injected as small vortices of random
orientation and of two sizes. The large vortices had a size matching the jet radius,
the small ones the boundary layers. Leboissetier (2002) has shown that without the
injection of these small vortices there is very little atomization. However, the sim-
ulation has an enormous Reg and is not sufficiently well resolved to avoid a large
numerical viscosity effect. Thus the relative jet stability observed in the absence of
perturbation at the inlet is an artifact for these conditions.

A more realistic alternative to the specification of entry profiles is to simulate the
flow inside the nozzle. This is what is done in Fig. 9.16. In this case the velocity

9.4 Atomization simulations 223

Fig. 9.16. Simulation in two dimensions of coflowing liquid and gas jets including the
flow inside the nozzle. Governing parameters are given in the text. As in Fig. 9.15, large
coherent structures are seen in the gas phase. Simulation carried out by Daniel Fuster.
Reprinted from Fuster et al. (2009b) with permission from Elsevier.

profile near the injection was almost flat. Therefore, boundary layers are almost
nonexistent. Moreover, the Reynolds and Weber numbers were much smaller. Pa-
rameters of the simulation are Ul = 20m/s, Ug = 100m/s, ρg = 2kg/m3, ρl =
20kg/m3, µg = 10−4 Pas, µl = 10−3 Pas, σ = 0.03N/m, liquid injector radius R =
4× 10−4 m, separator plate width e = 80µm, which leads to these dimensionless
numbers: m = 0.005, r = 0.1, Re∗l = 80, Re∗g = 145, We∗l = 48.5, and We∗g = 19.4.
The smallest cell size in the simulation is ∆x = 7µm, so ∆x/D = 0.88×10−2 and
∆x/e = 0.088. Because there is no boundary layer, the dimensionless numbers are
constructed using the separator plate width as length scale. The instability and the
formation of waves are then obtained without the addition of noise. Well-developed
waves are seen very close to the nozzle exit, in agreement with experimental ob-
servations (Raynal, 1997).

The observed instabilities were compared with linear theory and experiments
in Fuster et al. (2009a,b). It was found that, for moderate momentum ratios M,
linear theory and simulations agree, but that for large momentum ratios

224 Atomization and breakup

(M ∼ 16) and air–water conditions (Fuster et al., 2009a) a difference is found
between linear theory and experiments, while simulations agree rather well with
experiments. This is explained by large nonlinear effects immediately after the
separator plate.

9.4.3 Three-dimensional calculations

There are two competing viewpoints on the three-dimensional instability. In the
direct mechanism, transient-growth theory is used to predict the algebraic non-
exponential growth of a three-dimensional perturbation (Yecko and Zaleski, 2005);
this point of view has not yet been tested, either experimentally or numerically. In
the second point of view, as one moves downstream, the three-dimensional insta-
bility develops as a secondary instability on top of the two-dimensional structure
previously formed. There are several different mechanisms for the secondary in-
stability in the literature. The simplest idea is that two-dimensional instabilities
create thin sheets with end rims, as discussed in Section 9.2.3. The rims may then
lead to droplets through the mechanisms discussed in Section 9.2.4.

Other mechanisms involve three-dimensional instabilities that arise before the
sheets are fully formed; for instance, the two different types of “Rayleigh–Taylor”
instabilites discussed by Marmottant and Villermaux (2002) and Ben Rayana et al.
(2006).

Full three-dimensional numerical simulations are arguably the best hope for re-
solving these issues. In Fig. 9.17 we show a numerical simulation of the temporal
development of the three-dimensional structure in a shear layer. The simulation
is initialized with a horizontal velocity jump (without boundary layers). The ini-
tial condition contains a small two-dimensional perturbation of the interface of the
form h(x,y, t) = h0 + ε cos(kx + φ(y)), where ε is a small parameter. The phase
φ has a small modulation in the third dimension φ(y) = acos(kyy), where a is an-
other small parameter. Interestingly, the simulation shows an exponential growth
of the three-dimensional perturbation, before the rim is fully formed, showing that
at least in this case the capillary effects in the rim are not relevant. The perturbation
seems to grow because of the areodynamic pressure exerted by the air flow on the
liquid sheet. Another striking effect is the eventual formation of several holes in
the sheet. The holes cause the appearance of a typical “fish-bone” patterns, with
lateral liquid cylinders branching from the side of the main ligament. In a sense the
holes are not realistic, because they are expected to occur in reality when the sheet
thickness reaches molecular length scales, while in the simulation they occur when
the sheet thickness becomes as small as the grid spacing. However, experimental

9.4 Atomization simulations 225

Fig. 9.17. The development of the Kelvin–Helmholtz instability simulated in three dimen-
sions (obtained by Jie Li; see Li (1996)).

photographs show the fish-bone pattern in some cases, which seems to indicate that
hole formation may also represent what happens in reality.

Simulations of three-dimensional spatially developing jets show similar liga-
ment and droplet formation. A simulation of a coaxial jet at relatively low velocity
is shown in Fig. 9.18 together with the adaptive grid used to generate it. Param-
eters are the same as for Fig. 9.16, except that the small separator plate near the
injection has a smaller thickness e = 50µm and the grid is coarser: the smallest
cell size in the simulation is ∆x = 15.6µm, so ∆x/D � 2× 10−2 and ∆x/e � 0.3.
Some turbulence is added near the inlet to generate the instability; however, the

226 Atomization and breakup

Fig. 9.18. The spatial development of coflowing atomizing jets simulated using Gerris in
three dimensions. Gerris uses an adaptive oct-tree mesh which is also shown in the figure.
Parameters are given in the text. Reprinted from Fuster et al. (2009b) with permission from
Elsevier.

turbulence level is not as high as in the real experiments. It should be noted that
the waves grow downstream much more slowly than in the case with the nozzle
shown in Fig. 9.16. This constrast is currently being investigated, and may be due
to the presence of the separator plate, of boundary layers of various size, and to
the effect of the momentum ratio M. As the waves become nonlinear, ligaments
reminiscent of Fig. 1.2 are seen.

A simulation of a diesel-fuel jet discharging in high-pressure still air at relatively
higher velocity is shown in Fig. 9.19. In this case there is again no boundary layer
and there is no separator plate either, so the Reynolds and
Weber numbers are based on the injector diameter D. The parameters are Reg =
Rel = 1.2× 104, r = m = 3.59× 10−2, Weg = 823, and Wel = 2.2× 104. The
smallest cell is such that ∆x/D = 2.3× 10−2. The Reynolds and Weber numbers
are thus considerably higher than in the previous case, albeit not as high as in
the two-dimensional diesel-jet case of Fig. 9.15. As in the latter case, consid-
erable amounts of ligaments and droplets are produced. It is possible to distin-
guish sheets, especially near the tip. These sheets are broken by holes, producing
numerous fish-bone-like patterns and ligaments. The ligaments then break into
droplets. These types of simulation are both more realistic than the Leboissetier
simulation of Fig. 9.15 because they are three-dimensional, and also better re-
solved because of the lower Reynolds and Weber numbers. The Gerris code used
in the three-dimensional case also has lower numerical viscosity. These types of
simulation are getting close to what is required for the ultimate goal of atomiza-
tion simulations: predicting the droplet size. The results of simulations such as
the one in Fig. 9.19 may be analyzed to produce probability distribution func-
tions (PDFs) of droplet size. It is generally found that these distributions agree
qualitatively with experimentally determined PDFs (Fuster et al., 2009b). How-
ever, when a simulation is repeated with a finer grid, the PDF is shifted towards
smaller droplet sizes: using a smaller ∆x results in smaller droplets, as can be

9.4 Atomization simulations 227

(a)

(b) (c)

Fig. 9.19. The spatial development of a high-speed atomizing jet simulated using Gerris.
Parameters are given in the text. (a) A view of the jet development near dimensionless
time Ut/D ∼ 6. (b) A zoom of the top-right region, showing how the sheet near the tip of
the jet breaks into filaments and droplets. (c) A zoom of the bottom-right region, showing
droplets and ligaments on the side of the jet. Simulation obtained by Anne Bagué and
Stéphane Popinet.

expected when simulations are somewhat underresolved. However, this is a prob-
lem on the verge of being solved, with a combination of faster computers, better
codes, and a clever use of adaptive mesh refinement.

10

Droplet collision, impact, and splashing

Droplet collisions and impacts are so spectacular that they have come to symbol-
ize the beauty and fascination of fluid mechanics. Although simulations of two-
dimensional and axisymmetric systems go back to the early times of two-phase
flow simulation, those of fully three-dimensional configurations have become pos-
sible only recently. It remains difficult, however, to perform realistic simulations
of laboratory experiments.

10.1 Introduction

Droplet impacts are of major industrial interest. In what is perhaps the most sig-
nificant application, fuel droplets impact on the walls of pipes and combustion
chambers. There they may spread and form thin films or shatter into a spray of
smaller droplets. Impacts also have an obvious relevance to ink-jet printing and
spray coating. In other industrial processes, droplet impacts are of interest in met-
allurgy (Liow et al., 1996; Bierbrauer, 1995) and gas-injection processes. High-
speed droplet impacts may damage turbines operating with multiphase flows. In
hypothetical severe nuclear reactor accidents, molten-core debris may impact on
containment walls, splashing at very large velocity. In agriculture, impacts are re-
lated to the effect of rain on soil erosion (Farmer, 1973), or the spread of pesticides
as they are sprayed on plants. Rain also influences air–sea interactions, enhanc-
ing the gas exchange and perhaps damping sea waves (Sainsbury and Cheeseman,
1950; Tsimplis and Thorpe, 1989). Droplet breakup, atomization, impacts, and
splashes also cause the accumulation of charge in droplets, as shown by the 1905
Nobel physics laureate Philip Lenard following the work of Hertz (Lenard, 1892).
Meteorite and planetary impacts, as well as very high-speed impacts of metals, e.g.
bullets, may be described as fluid-mechanical phenomena because the energy of
the impact is such that inertia is much larger than the plastic and elastic stresses
in the materials (see for instance O’Keefe and Ahrens (1986)). Droplet splash-
ing is thus a model of impacts on planetary bodies, resulting for instance in moon

228

10.2 Early simulations 229

craters. The central peak in moon craters is probably a remnant of the so-called
Worthington jet in droplet splashes that we describe below.

At another extreme in spatial scales, droplet collisions are a model for the colli-
sion of atom nuclei (Menchaca-Rocha et al., 2000).

A remarkable early work on droplet impact, including spectacular photographs
of impacting fluid droplets or solid bodies, was performed by Worthington (1908).
It was Edgerton (1987), however, who took high-speed photographs that acquired
extraordinary fame. Since then, a considerable literature on collisions and impacts
has accumulated. Simultaneously with the engineering and natural science studies,
a lot of work on splashes has been motivated by the need for graphics, since the
early high-speed movies shot in the 1930s in preparation for the Disney animation
Fantasia (Michel Ledoux, personal communication) to current work on computer
graphics (Foster and Fedkiw, 2001; Bargteil et al., 2006).

In the remainder of this chapter we focus on numerical work and cite theoretical
and experimental work when relevant. Further information on experimental work
may be found in the reviews by Rein (1993) and Yarin (2006).

10.2 Early simulations

The first simulations of droplet collision, impact, and splashing were performed
by Harlow and Shannon (1967), who used the original MAC method, i.e. a stag-
gered grid with bulk marker particles, and ignored viscosity and surface tension.
Foote (1975) also used the MAC method, but included both surface tension and vis-
cosity. His results for the evolution of rebounding droplets, at low Reynolds and
Weber numbers, were compared with experimental observations by Bradley and
Stow (1978), who found good agreement, but made the controversial observation
that “this complicated treatment gives little insight into the physical processes in-
volved.” Obviously, just as in experimental measurements, the amount of insight
gained should depend on the ability of the physicist to extract it from their sim-
ulation tools. Another approach has been pioneered by Fukai et al. (1995), who
used a moving finite-element method and examined the effects of wetting. Foote’s
results were apparently overlooked by Fukai et al., who concluded, after a review
of previous investigations, that fixed-mesh techniques like the MAC method are
not well suited for this problem! Foote’s results and those presented here do not
support that conclusion.

10.3 Low-velocity impacts and collisions

The outcomes of droplet–droplet impacts and droplets impacting on walls and solid
films are often similar, so we shall treat them together in this section. At relatively
low speed the outcomes of a head-on collision of two droplets can be: (a) a bounce

230 Droplet collision, impact, and splashing

Fig. 10.1. Simulation of a head-on droplet–droplet collision. Parameters are given in the
text. The nondimensional time based on initial velocity and droplet diameter is noted
in each frame. Reprinted with permission from Nobari et al. (1996). Copyright 1996,
American Institute of Physics.

without any coalescence, (b) merging of the droplets, (c) a partial merging followed
by the separation of the droplets, and (d) shattering or breakup in more than two
droplets, which occurs at the highest velocities. Head-on collisions of two droplets
of the same size are not too different from the collision of one droplet with a flat
wall if free-slip boundary conditions are assumed at the wall and wetting effects are
ignored. As a matter of fact, in the impact of a droplet on dry walls, similar regimes
are found: (a) bounce back, (b) deposition, i.e. spreading of the droplet on the
wall, and (c) breakup or splash together with the production of a spray of smaller
droplets. Furthermore, a number of these regimes are also observed in impacts on
wet walls and deep fluid pools. However, when the thickness of the film is large
compared with the radius of the droplet, a deep crater is formed, and in some cases
a bubble is entrained as the crater closes. This bubble formation is called “regular
entrainment,” following Pumphrey and Elmore (1990). Regular entrainment is an
intermediate regime: if the droplet velocity is either too small or too large, the

10.3 Low-velocity impacts and collisions 231

bubble does not form, as discussed in Prosperetti and Og̃uz (1993). The closing of
the crater is often accompanied by thin, rapidly rising vertical jets (Morton et al.,
2000). When the velocity of impact is increased beyond the regular entrainment
regime, a thick jet (the “Worthington jet”) forms from which one or several droplets
pinch off. The height of the jet and the number of detaching droplets increases with
the velocity of impact.

For impact on deep pools, many authors have studied the formation of vortex
rings. In their early work, Thomson and Newall (1885) found the paradoxical result
that vortex rings form at relatively low impact velocities, but that at higher velocity
the impact leads to a splash, as there is relatively little penetration of the vorticity.

The relevant parameters for these various regimes are the Reynolds, Weber, and
Ohnesorge numbers:

We =
ρU2D

σ
, Re =

ρUD
µ

, Oh =
We1/2

Re
=

µ
(σρD)1/2

, (10.1)

where D is the droplet diameter and U the impacting droplet velocity. In this chap-
ter we use ρ and µ for the properties of the impacting liquid droplet and ρa and
µa for the properties of the ambient gas or carrier fluid. For ordinary laboratory
impacts, gravity may be neglected compared with inertia, surface tension, and vis-
cosity. However, for the study of regular bubble entrainment and crater evolution,
gravity is relevant and is measured by the Froude number:

Fr =
U2

gD
. (10.2)

Other numbers are sometimes needed, such as the dimensionless roughness of the
surface, wettability characteristics, diameter-to-film-height ratio.

Computations of head-on collisions of pairs of droplets were carried out by No-
bari et al. (1996) using the front-tracking method to follow the interface and the
method of Section 7.2 to compute surface tension, which ensures that the net cap-
illary force on a drop is zero. Results are shown on Fig. 10.1, in which Re = 96,
ρ/ρa = 15, µ/µa = 350, and different Weber numbers are used. Computations
were done on a uniform grid with 64× 256 grid points in the radial and axial di-
rections, respectively. The simulations show a characteristic jet, or “impact foot,”
spreading sidewise as the droplets are pressed against each other. It is seen that as
the Weber number increases this jet becomes increasingly thinner. As the colliding
or impacting droplets flatten, they eventually reach a maximum radius Rmax, then
recede and often bounce back. Many scalings have been proposed in the literature
for the maximum radial extent. For example, if a simple balance is made between
the initial kinetic energy, K = πρU2D3/12, and the final surface energy of the
“pancake,” ES = 2πσR2

max, then the maximum radius scales as Rmax ∼ DWe1/2.

232 Droplet collision, impact, and splashing

Other scalings have been proposed in the literature by Roisman et al. (2002) and
Chandra and Avedisian (1991). They are often contradictory and only partially cor-
related to the experimental results, as the data are either too scattered or obtained
over insufficient ranges of magnitude of the Reynolds and Weber numbers. This
state of affairs demonstrates one of the uses of direct numerical simulations: ana-
lyzing the precise mechanism leading to a given scaling is easier when the output
data of a large series of simulations can be represented and scaled to attempt to
verify a given scaling theory.

Numerical simulations may thus help us to resolve the issue of the scaling of the
maximum radius after impact. However, it must be noted that scaling theories are
derived at asymptotically large values of Re and We and, thus, in regimes where
droplet shattering, crown formation, and splashing are observed, which is the topic
of Section 10.5.2.

10.4 More complex slow impacts

At ambient air pressure, droplets collision always leads at least to partial coales-
cence (higher air pressure may trigger a rebound). The thin air film separating the
two droplets, or the droplet and the liquid pool, ruptures and the two droplets form
one connected liquid mass. The expulsion of air from the thin air film could consis-
tently be modeled only if the simulation is refined until the grid size is smaller than
the length scale of the relevant microscopic physics, which is somewhere between
1 and 10 nm.

This represents a costly simulation. Present-day simulations on workstations
using adaptive grid refinement reach the 100 µm scale for typical droplets in three-
dimensional simulations (Nikolopoulos et al., 2007) and the 10 µm scale in two-
dimensional simulations (see Fig. 10.8 below). To reach 10 nm would require a
103 to 104 decrease in the grid spacing h. This is a tall order even if adaptive mesh
refinement and massive parallelism are used.

Researchers have instead used one of two strategies. In front-tracking methods,
the interface is reconnected at a prescribed time that seems physically reasonable.
This was done for instance in the simulation of the three-dimensional impact shown
in Fig. 10.2. In VOF and level-set methods instead, reconnection occurs automati-
cally when interfaces are closer than one or two grid spacings. (Using a smoothed
surface-tension method such as the one of Section 7.1.4 may increase this range.)
Despite the crudeness of these procedures, realistic results are often obtained.

An example is off-axis droplet impacts. These are defined by a nonzero impact
parameter I, defined as follows. The droplets move on parallel axes before colli-
sion. If the distance between the axes is χ, then I = χ/D. For nonzero I the four
collision outcomes described in Section 10.3 all occur, together with an additional

10.4 More complex slow impacts 233

Fig. 10.2. Simulations of three-dimensional droplet collision using the front-tracking
method. The initial conditions are shown on the top, and the results are then shown every
0.42 dimensionless time units. Time t = 0 is the time at which the initial spheres would
touch if unperturbed, so the time of the first snapshot on top of the series of pictures is
negative. The thin air film between the droplets is ruptured at t = 0.46 in both cases, but
the impact parameter is different in the two runs. On the left I = 0.5, while on the right
I = 0.88. The droplets stay coalesced in the first case, but they will separate again in the
second case. Reprinted from Nobari and Tryggvason (1996) by permission of the Ameri-
can Institute of Aeronautics and Astronautics, Inc.

one: grazing collisions in which the droplets temporarily coalesce and then stretch
to form an elongated object that may break again in two or more droplets. An
example of such a collision is shown in Fig. 10.2.

Another type of more complex impact is obtained when droplets impact on deep
pools. An example of a simulation of such an impact is shown in Fig. 10.3. As the
droplet touches the liquid surface, it creates a crater visible on the first frame of the
sequence, at time t = 8.6.

After the initial formation of the crater, capillary waves progress on the sides of
the crater until they meet on the axis, around time t = 10.1. At that time, just before

234 Droplet collision, impact, and splashing

Fig. 10.3. Simulations of droplet impact on a deep pool compared with experiments.
Reprinted with permission from Morton et al. (2000). Copyright 2000, American Insti-
tute of Physics.

Fig. 10.4. Bursting of a bubble at a free surface. (a) Sketches by MacIntyre (1972) done
after experimental photographs. Copyright 1972, American Geophysical Union. (b) Direct
numerical simulation. Reprinted with permission from Duchemin et al. (2002). Copyright
2002, American Institute of Physics.

the trapping of the bubble, the crater assumes a remarkable conical shape. It is in-
teresting to notice that this form is reminiscent of several other fluid phenomena
were crater-like interfaces form. One of them is the crater formed after the break
of a bubble near the water surface, shown in Fig. 10.4. The bottom of the crater ex-
hibits the kind of capillary self-similarity in shape discussed in Section 9.2.2. The
self-similar crater appears just at the transition between a regime where a bubble
forms below the crater and one in which it does not form at all. This feature is sim-
ilar to both bubble break and impact craters, as well as to a third form of crater, the
crater formed when a layer of liquid is submitted to an oscillating vertical motion,
generating the so-called Faraday waves. When the waves reach a critical amplitude

10.5 Corolla, crowns, and splashing impacts 235

0.3

0.2

0.1

0

–0.1
–0.2 –0.1 0 0.1 0.2

Fig. 10.5. The formation of a self-similar conical crater. For a well-defined bubble shape, a
bubble bursting at a free surface will show a self-similar crater. Reprinted with permission
from Duchemin et al. (2002). Copyright 2002, American Institute of Physics.

a self-similar crater forms again (Zeff et al., 2000). The self-similarity of the crater
is made evident when distances (both vertical and horizontal) are scaled by the
length (σ/ρ)1/3(t − t0)

2/3, as shown in Fig. 10.5.

10.5 Corolla, crowns, and splashing impacts

When the impact velocity is high enough, droplet impact yields two characteristic
phenomena. The liquid rises around the impact point through a circular, approxi-
mately vertical and expanding sheet, called a “corolla.” In some cases the corolla
sprouts fingers at its tip and becomes a beautiful crown or “corona,” as in Fig.
1.3. Finally, droplets may be ejected from the crown, characterizing a shattering
or splashing impact. Splashing impacts on deep pools, thin films, and dry surfaces
are rather different, but share a few common characteristics. In this section we
shall focus on splashing impacts on thin films, which have been the most studied
impacts numerically.

10.5.1 Impacts on thin liquid layers

Figure 10.6 shows the initial conditions for the simulations described in this section
using the VOF method and the CSF surface-tension scheme. A typical axisymmet-
ric simulation is shown in Fig. 10.7. The dimensionless parameters are Re = 1000,
We = 8000, ρ/ρa = 500, and µ/µa = 20. They correspond to a droplet of diame-
ter D = 6mm, with a realistic surface tension coefficient σ = 0.065N/m, density
ρ = 103 kg/m3, and viscosity µ = 57cP (obtained for instance by using a mixture
of glycerine and water), impacting on a thin liquid layer, H/D = 0.15, with a ve-
locity U = 8.95m/s. The ambient fluid properties, however, are not realistic, as a
larger gas density and viscosity have been taken to stabilize the calculation. The

236 Droplet collision, impact, and splashing

Lz

Lx

liquid

liquid

D
gas

H

U

Fig. 10.6. The initial conditions for a splash on a thin liquid layer. This setup is used for
simulations of axisymmetric and fully three-dimensional systems.

Fig. 10.7. Impact of a droplet on a thin liquid layer, at low resolution D/∆x = 102. Di-
mensionless times are: (a) t = 0.05, (b) t = 0.1375, (c) t = 1.225.

relatively large Weber number was selected by Josserand and Zaleski (2003) in or-
der to investigate the effect of viscosity while keeping the effect of surface tension
rather moderate.

The results for a resolution, D/∆x, of 102 grid points per diameter are shown
in Fig. 10.7. The droplet is launched slightly above the liquid layer. Time is
made dimensionless by t = t ′U/D and time t = 0 is the time at which the droplet
would touch the layer if both were to stay undeformed. As is usual in VOF cal-
culations, reconnection occurs quickly. A few air bubbles are trapped below the
impacting droplet. Only some time after the impact does a jet form, as shown in
Fig. 10.7(b). At an even later time a vertical corolla forms; see Fig. 10.7(c). A few
droplets detach from the tip of the corolla. As in the case of the thin sheets dis-
cussed in Section 9.4.1, such topology changes occur because of the relatively low
resolution.

Indeed, simulations at higher resolution show a completely different picture.
Figs. 10.8(a) and 10.8(b) show the results at the same time as in the previously
described calculation. It is seen that jet formation occurs much earlier than at
moderate resolution. Moreover, a detailed analysis of the simulation shows that

10.5 Corolla, crowns, and splashing impacts 237

Fig. 10.8. Impact of a droplet on a thin liquid layer at high resolution D/∆x = 804. Di-
mensionless times are: (a) t = 0.05, (b) t = 0.1375, (c) t = 0.3475.

Fig. 10.9. Impact of a droplet on a thin layer at lower Re = 100. Dimensionless times are
t = 0.7 and t = 1.5. Resolution is D/∆x = 102, as in Fig. 10.7. Reprinted with permission
from Josserand and Zaleski (2003). Copyright 2003, American Institute of Physics.

jet formation is preceded by a phase in which a thin gas layer survives between
the impact droplet and the liquid layer. Part of this gas layer can still be seen in
Fig. 10.8(a). The shape of that gas layer is similar to that of the droplet boundary
obtained analytically in the potential flow theory of Purvis and Smith (2005). As
the jet forms, it has a thickness of about two grid points, which suggests that at
these Reynolds and Weber numbers even thinner jets may form even earlier in
even higher resolution computations.

However, as liquid viscosity is increased, jets are seen to form later and to have
rounder tips, as in Fig. 10.9 for Re = 100. Eventually, for high-enough viscosity,
no jet is seen, as in the Re = 40 case of Fig. 10.10. A scaling theory was proposed
by Josserand and Zaleski (2003) that assumes a matching between an inner viscous
region and an outer region of potential flow, as shown in Fig. 10.11. The theory
locates the base of the jet in the vicinity of the point of intersection of a suppos-
edly undeformed droplet shape with the undeformed-layer surface, at a distance
rJ(t

′) ∼
√

DUt ′ from the axis of symmetry. This agrees well with experimental
observations of the position of the base of the jet or corolla (Yarin, 2006). The

238 Droplet collision, impact, and splashing

Fig. 10.10. Impact of a droplet on a thin layer at yet lower Re = 40. Dimensionless times
are t = 0.5 and t = 1.5. Resolution as in Fig. 10.9. Reprinted with permission from
Josserand and Zaleski (2003). Copyright 2003, American Institute of Physics.

Fig. 10.11. Jet formation or prompt splash at early impact times. Vorticity is generated in
the inner region. (a) Far from the jet base the drop surface and the layer surface are almost
undeformed, as shown in this schematic drawing. The point at distance rJ is the imaginary
intersection of the layer surface and the droplet surface at time t, assuming that both are
underformed. The width of the inner region, the thickness of the jet, and the distance rJ all
scale like

√
t in the theory. (b) An actual simulation of jet formation. The picture is a small

detail of the simulation shown in Fig. 10.13b. Notice that the picture has more dots in the
highly curved regions of the interfaces. This is because one dot is generated in each cell,
and cells are refined when curvature or vorticity is high.

inner viscous region is assumed to grow by diffusion and thus has size
√

νt ′. This
is also assumed to be the size of the jet when it forms. The theory of Josserand
and Zaleski (2003) then predicts the velocity of the jet. The details of the theory
are relatively lengthy, but the final result is that it predicts that a corolla will form
when

We 1/2Re 1/4 > Kc , (10.3)

where Kc is a dimensionless number. The Kc number for the transition depends
on the H/D ratio. We note that Rioboo et al. (2003) observe a transition from

10.5 Corolla, crowns, and splashing impacts 239

Fig. 10.12. Detail of a spiralling corolla after impact of a glycerine droplet (Re ∼ 1900,
We ∼ 2200, ρ/ρa ∼ 840, µ/µa = 940) at dimensionless time t = 0.343. Reprinted with
permission from Thoroddsen (2002).

deposition to corolla formation at We 1/2Re 1/4 � 40 for H/D > 0.08. The correla-
tion (10.3) was previously stated, in the case of impacts on dry surfaces, by Stow
and Hadfield (1981) in the form of the dimensional condition UD3/5 > KS, which
yields (10.3) when dimensionless numbers are used.

These results compare qualitatively with the experiments by Thoroddsen (2002),
who also sees very thin corollas emerging from the droplet base just after impact.
As time evolves, spiralling corollas may also develop. An example is shown in
Fig. 10.12 for a droplet of diameter D = 6.5mm, with surface tension coefficient
σ = 0.065N/m, viscosity µ = 16cP = 16× 10−3 kg/(ms) impacting on a thin
liquid layer with a velocity U = 4.65m/s. The photograph is at t ′ = 0.480µs,
which corresponds to a dimensionless time t = 0.343, which is close to the value
t = 0.347 of Fig. 10.8(c). A simulation in conditions even more similar to those
of Fig. 10.12 is shown in Fig. 10.13. As in our computations, the droplet is
more viscous than water. In the case of water-droplet impacts, the corolla also
forms very early, but it is immediately deformed into a complex spray (Thoroddsen,
2002). This raises the issue of destabilization of the axisymmetric corolla into
three-dimensional structures, which we discuss in the next section.

10.5.2 Three-dimensional impacts

Three-dimensional impacts can be simulated using the same techniques and the
same set up as for the two-dimensional case in the previous section. This poses no
special difficulty except that the required computational power increases greatly.

As in the axisymmetric case, a jet first forms at the base of the droplet. The jet is
immediately destabilized into a non-axisymmetric structure. To analyze its nature

240 Droplet collision, impact, and splashing

Fig. 10.13. Two simulations of jet formation in conditions similar to those of the
Thoroddsen (2002) experiment. The oct-tree, VOF, Gerris code has been used. Param-
eters are D = 6.3mm, U = 4.65m/s, ρ/ρa = 775, σ = 0.072N/m, which corresponds
to We = 1892. In the most refined cells, D/∆x = 6144. The thickness of the underlying
liquid layer, D/10, is smaller than in the experiment. In (a) µ/µa = 54 and Re = 29295
and in (b) µ/µa = 1729 and Re = 915. Figure courtesy of Pascal Ray, CNRS.

we excite the instability by adding a small perturbation to the droplet surface. In
spherical coordinates the surface of the perturbed spheroid at the initial time is

r(θ ,φ) = D/2+ r1 sin(θ)cos(Nφ). (10.4)

In the simulation of Fig. 10.14 the initial wavenumber of the perturbation is N = 4
and its initial amplitude is r1/D = 5×10−3, which is barely visible in the image of
the droplet at the given resolution.

At early times the perturbation reverses itself in the jetting corolla. This reversal
is schematically explained in Fig. 10.15. As a result, the distance of the tip of the
corolla to the vertical axis of the splash expands as

rtip(φ) = r0 −At cos(Nφ), (10.5)

where r0 is the average distance to the axis.
As time evolves, nonlinear effects cause the fingers to crowd together and merge,

so the wavelength between fingers increases and the number of fingers decreases.
In addition, irregularities in the numerical approximation cause the separation of
unphysical tiny droplets, as seen in Fig. 10.14 at the dimensionless time t = 1.406.

These fingers and the droplets appear at relatively early times compared with
the dimensionless time at which the splash crown is seen in Fig. 1.3. This kind of
splash is thus called a “prompt” splash. It is likely that the prompt splash arises
from a perturbation amplified by the sudden rearrangement of the fluid velocity on

10.5 Corolla, crowns, and splashing impacts 241

Fig. 10.14. Fall of a glycerine droplet on a thin water layer. Parameters are Re = 600,
We = 443, ρ/ρa = 1000, µ/µa = 94.11, D/∆x = 26, and H/D = 0.31. Only one-quarter
of the droplet is computed and the rest is reconstructed by symmetry. The whole computa-
tional domain has nz = 128 points in the vertical direction (nz = Lz/h, h is the constant grid
spacing) and nx = ny = 256 points in the two horizontal directions (nx = Lx/h). Results are
shown at dimensionless times: (a) t = 0, (b) t = 1.406, (c) t = 2.812, (d) t = 8.438; (e) is
a zoom of jet and droplet formation in frame (b).

heavy

Ut
light

Fig. 10.15. When an interface undergoes a sudden acceleration that is oriented from the
heavy to the light fluid, the so-called Richtmyer–Meshkov instability occurs and small
wavy perturbations of the interface height reverse themselves and then grow. Another
characteristic of the Richtmyer–Meshkov instability is that perturbations grow linearly in
time, instead of the exponential growth observed, for instance, in the Rayleigh–Taylor
instability.

impact, in a manner similar to the Richtmyer–Meshkov instability (Gueyffier and
Zaleski, 1998). The Richtmyer–Meshkov instability is the phenomenon by which
a perturbation of a flat interface is amplified when the interface is suddenly acceler-
ated in a direction pointing from the heavy phase into the light phase (Richtmyer,
1960). The reversal of the waves on the interface and the linear dependence on
time in (10.5) is characteristic of this instability.

The splashing events appearing at later times, when the corolla has risen much
higher than the initial droplet diameter, are called “corona” or crown splashes. This

242 Droplet collision, impact, and splashing

Fig. 10.16. Left: Impact of a droplet in conditions similar to Fig. 10.14 except r1/D =
5× 10−3, at t = 9.842 obtained by the authors using the SURFER code. Right: Exper-
imental photograph from an oblique impact. Reprinted with permission from Roisman
et al. (2006). Copyright 2006, American Institute of Physics.

is the situation obtained in the VOF simulation of Rieber and Frohn (1999) shown
in Fig. 1.9. However, there is a catch in this type of crown splash simulation: the
corolla may become too thin to maintain its integrity and breaks just before the
stage shown in Fig. 1.9. The break often occurs right behind the rim; and as shown
in Section 9.2.3, this is where low-viscosity rim necks are the thinnest. A cylinder
detaches from the rim as in Fig. 10.7c. It is then quite naturally subject to the
Plateau–Rayleigh jet instability. An example of a simulation with a hole behind
the rim is shown on the left picture in Fig. 10.16. Can a real corolla break in this
fashion? Recent experimental photographs have indeed shown corollas with holes,
as for instance on the right image in Fig. 10.16.

In the absence of hole formation in the corolla, the mechanism for finger forma-
tion at the tip of the corolla at the late stage of crown formation may be related to
the rim-to-finger mechanism discussed in Section 9.2.4. There are thus two stages
in the destabilization of the corolla: at early stages the Richtmyer–Meshkov insta-
bility dominates, while at late stages various rim instabilities may take over. For
impacts at high Weber and Reynolds numbers the two stages are separated by or-
ders of magnitude of length and time scales. (Fig. 10.14d is at a nondimensional
time of order 10, while we observed the jet in Fig. 10.8 to form at t � 0.03.) It is
thus not clear what influence the initial Richtmyer–Meshkov instability may have
on the late-stage rim instability leading to crown formation. It is not even clear that
the low-viscosity (e.g. water) splashes result from an instability, i.e. the growth of
an initially small perturbation of a well-defined structure. Rather than an instability
development, one may have a complex structure made of fingers and droplets. The
objects in the structure would continuously change scale between the early and late
stages. The ability to see this picture in simulations depends on the level of grid re-
finement, allowing us to see ever smaller structures, and the numerical dissipation
of the code, filtering unresolved small-scale phenomena.

11

Extensions

Direct numerical simulations of multiphase flows are a rapidly growing field. In ad-
dition to continuous development of new and better numerical techniques and more
extensive studies of the problems discussed so far in this Book, researchers are in-
creasingly looking at new and more complex physical problems. In this chapter
we examine briefly a few such extensions. We do not attempt to give an exhaustive
list of all new applications of methods based on the “one-fluid” formulation of the
fluid equations, but we hope that this introduction to the literature will be useful
for our readers.

11.1 Additional fields and surface physics

Broadly speaking, new physics consists of new field equations, new surface effects,
or both. Adding a new field is the simplest extension, but new fields often add new
time- and length-scales. Mass transfer in liquids, for example, can lead to bound-
ary layers that are much thinner than those resulting from either heat transfer or
fluid motion. Resolving these boundary layers may introduce much more stringent
resolution requirements than those necessary for the same problem in the absence
of mass transfer.

The simplest new physics is probably heat transfer, where an advection/diffusion
equation is solved for the temperature, and many authors have already studied mul-
tifluid problems involving heat transfer. The main complication is that large varia-
tions in the thermal conductivity across an interface can require fine grids and often
it is better to use the harmonic mean of the conductivities at grid points where it is
not defined, in the same way as for large differences in the viscosity (see Section
3.4). Given the relative simplicity of adding heat transfer, here we will focus on
other effects.

243

244 Extensions

11.1.1 Thermocapillary motion

The simplest extension of a “pure” heat transfer multifluid problem is to consider
temperature-dependent surface tension. Surface tension usually decreases with in-
creasing temperature and the nonuniform surface tension at the interface causes
stresses that are transmitted to the fluids by viscous forces. Thus, bubbles and drops
immersed in a liquid with a temperature gradient will move toward the hot region.
Although often negligible under terrestrial conditions, thermocapillary forces can
dominate in space, where buoyancy is absent (or greatly reduced). For material
processing in microgravity, thermocapillary effects can be used to remove gas bub-
bles in melts before solidification, for example, and thermocapillary migration can
also be important in the design of two-phase heat exchangers for space applica-
tions, since bubbles collecting on a heated surface can act as an insulator. For
background information about thermocapillary motion of bubbles and drops, in-
cluding experimental and analytical studies, see, for example, Subramanian and
Balasubramaniam (2001).

The extension of methods based on the “one-fluid” formulation to handle vari-
able surface tension is straightforward. The temperature is interpolated to the in-
terface and surface tension is set as a given function of the temperature. (Nas and
Tryggvason, 2003; Nas et al., 2006) used a front-tracking method to simulate the
motion of both a single drop and several interacting ones in both two- and three-
dimensional domains. Similar computations have been done by Wang et al. (2004)
and Gao et al. (2008). For computations of thermocapillary motion using the VOF
method, see Bassano and Castagnolo (2003), for example.

11.1.2 Electrohydrodynamics

An electric field applied to a multifluid system, where an interface separates im-
miscible fluids, results in a force on the interface, due both to the migration of
free charges to the interface and the dielectric mismatch between the fluids. For
perfect dielectrics and conductors the force acts perpendicular to the surface, but
in the general case the force will also have a tangential component, inducing fluid
motion through viscous stresses. For general reviews of the electrohydrodynamics
of multiphase flows, see Melcher and Taylor (1969), Arp et al. (1980), and Saville
(1997).

The effect of an electric field is easily added to the methods described in this
book. By using the leaky dielectric approximation of Taylor (1966) we must solve
one Poisson equation for the electric potential and then find the force on the inter-
face using the divergence of the Maxwell stress tensor. A front-tracking method
was developed by Fernandez et al. (2005), who used it to examine the behavior of
a suspension of many two-dimensional drops in a channel, in the presence of flow.

11.1 Additional fields and surface physics 245

Fig. 11.1. One frame from a simulation of the effect of an electric field on a suspension
of drops in a channel. The domain is a channel bounded by rigid top and bottom walls
and periodic in the horizontal directions. Here, the drops are less conductive than the sus-
pending fluid and the shear is relatively weak. Reprinted with permission from Fernandez
(2008b). Copyright 2008, American Institute of Physics.

This study was subsequently extended in Fernandez (2008a,b) to cover a larger
range of governing parameters and three-dimensional drops. Figure 11.1 shows
one frame from a simulation of the effect of an electric field on a suspension of
drops, taken from Fernandez (2008b). For the parameters used here the drops form
long chains that span the height of the channel, as positive charges on one end of
a drop attract negative charges on the other end of another drop. Hua et al. (2008)
also used a front-tracking method to examine the effect of electric fields on the de-
formation of a drop. A combined VOF/level-set method was developed by Tomar
et al. (2007), who emphasized the importance of using the harmonic mean when
interpolating the electric properties for large differences in these values. These
methods have been used to examine the effects of an electric field on film boiling
by Tomar et al. (2005) and Welch and Biswas (2007).

We note that electric fields can also change the value of the surface tension at
the interface between electrolytes (Davies and Rideal, 1966). Simulations of such
flows would be nearly identical to those where surface tension depends on the
temperature and will not be discussed here.

246 Extensions

11.1.3 Mass transfer and chemical reactions

For many practical multiphase flow applications, the ultimate interest is in chem-
ical reactions facilitated by the flow. The purpose of atomizing a liquid fuel is to
burn it, and bubble columns are first and foremost chemical reactors. Thus, a full
understanding of these processes requires us to solve not just for the fluid flow, but
also for mass transfer and chemical reactions. Extensions of the methods described
in this book to do so have just started. Simulations of mass transfer only can be
found in Davidson and Rudman (2002), Yang and Maoa (2005), and Wanga et al.
(2008), for example.

Reactions in gas–liquid and liquid–liquid multiphase systems can take place in-
side either phase or at the interface, may require suspended catalytic particles, and
the products may form another phase. Several processes are usually involved, in-
cluding mass transfer through the surface, adsorption and/or desorption to and from
the surface, diffusion of species in the bulk phases, and penetration of reactants
into catalytic particles (Ranade, 2001). Often, however, such as in the Fischer–
Tropsch production of synthetic fuel and the catalytic hydrogenation of nitroarenes
in bubble columns, the desorption and the penetration of the reactants into catalytic
particles is fast and the diffusion of the gases in the liquid is the rate-limiting step.
In those cases, particularly when the reactions take place close to the bubbles and,
thus, depend sensitively on the mixing there, we would expect DNS to be particu-
larly useful in providing insights into the overall process.

Khinast et al. (2003) showed that for stationary bubbles the results of chemical
reactions are strongly dependent on the details of the flow in their wakes. For large
and deformable bubbles with a stationary wake, for example, undesirable interme-
diate species can be trapped for a long time. This study was extended to many
freely moving bubbles by Koynov et al. (2005), who showed that the sensitivity
observed for a single stationary bubble carries over to flows with many freely mov-
ing bubbles but that the exact dependency on the governing parameters is even
more complex. An examination of a specific system, the catalytic hydrogenation
of nitroarenes described by Radl et al. (2008), further confirms the sensitivity of
the overall process to the details of the flow. In this study the chemistry was taken
to consist of two overall reactions with effective, measured, reaction rates. Other
parameters were also taken to be representative of reasonable operating conditions.
Since the mass transfer is slow and the reactions are fast, compared with the time
scales of the flow, a finer grid was used for the mass transfer and the reactions
(than for the fluid flow) and the study was limited to a two-dimensional system.
The results showed that there was a significant difference between the selectivity
computed numerically and simple film theories, when there was a prominent wake
behind each bubble. The main challenge in the hydrogenation of nitroarenes is

11.1 Additional fields and surface physics 247

Fig. 11.2. Results from simulations of the catalytic hydrogenation of nitroarenes. The
hydrogen (frames a and b) and hydroxylamine (frames c and d) concentration profiles
are shown for one time for two simulations. In frames (a) and (c) the reaction rates are
relatively slow, compared with the mass transfer, but in frames (b) and (d) the reaction is
relatively fast. Reprinted from Radl et al. (2008), with permission from Elsevier. See plate
section for color version.

that hydroxylamines form quickly but the final hydrogenation to arylamine is slow.
Thus, there is a possibility of undesirable accumulation of hydroxylamines. The
detailed process is very sensitive to the mixing caused by the bubbles and it is, in
particular, important to mix the hydroxylamines with the liquid so they can react
with dissolved hydrogen. A closed wake behind the bubbles is particularly undesir-
able, since hydroxylamines that form there have no hydrogen to react with. Figure
11.2, from Radl et al. (2008), shows snapshots of hydrogen and hydroxylamine
concentration profiles around large bubble clusters for two different ratios of reac-
tions rates to mass transfer. For relatively slow reactions (a), there is a significant
amount of unreacted hydrogen present in the bulk phase, but for faster reactions
(b), the dissolved hydrogen gas is consumed near the bubbles and the bulk con-
centration of hydrogen is nearly zero. Similarly, the bulk concentrations of the
intermediate species (hydroxylamine) is much smaller in the case of faster reac-
tions (compare frame c with a). Other investigations of reactive bubble systems
can be found in Bothe et al. (2003), where a VOF method is used.

In some cases mass transfer can have a profound effect on the flow, even in the
absence of chemical reactions. Early experiments on the rise of a bubble showed
that the measured rise velocity was in better agreement with analytical solutions for
the motion of a solid than the Hadamard (1911) and Rybczynski (1911) solution
for a bubble. It is now well understood that the discrepancy is due to impurities in

248 Extensions

the fluids, usually called “surface-active agents,” “contaminants,” or “surfactants”
that make the bubble surface immobile. The observed behavior of many surfactants
is well described by the surface-tension-gradient model proposed by Frumkin and
Levich (1947), where surface tension depends on the concentration of surfactants
and uneven concentration will lead to surface forces. Surface tension is gener-
ally reduced by an increase in the surfactant concentration, resulting in forces that
move the fluid in such a way that the surfactant distribution becomes more uni-
form. Forces due to the fluid motion can, however, counter the effect of the surface
tension, sometimes leading to a nonuniform steady-state surfactant distribution.
Generally, we assume that the surface tension depends on the surfactant concentra-
tion and that the relationship is a given, experimentally measured, function. In the
simplest case the surfactant is immiscible and stays on the surface. It is then ad-
vected by the surface material points, and if surface diffusion is neglected the total
surfactant on a given surface element is a constant. Thus, changes in the surfactant
concentration are inversely proportional to surface area; see Jan (1994), James and
Lowengrub (2004), Drumright-Clarke and Renardy (2004), and Lee and Pozrikidis
(2006). In the general case, however, surfactant is absorbed and desorbed at the in-
terface and diffused into the liquid phase, posing a much more challenging mass
transfer problem. Initial efforts to solve the fully coupled case can be found in
Zhang et al. (2006), Muradoglu and Tryggvason (2008), and Tasoglu et al. (2008).

11.1.4 Boiling

So far, we have considered only incompressible flows of two or more immiscible
fluids. For many important multiphase systems it is also necessary to consider
phase changes. Boiling, in particular, is one of the most efficient ways of removing
heat from solid surfaces and, therefore, is commonly used in energy generation and
the cooling of hot surfaces. The large volume change and the high temperatures
involved can make the consequences of design or operational errors catastrophic,
and accurate predictions are highly desirable.

Boiling is usually initiated at a hot surface, although vapor bubbles sometimes
also start at suspended nuclei away from surfaces (homogeneous boiling). Boiling
at a hot surface is usually referred to as nucleate boiling when vapor bubbles are
formed at well-defined nucleation sites (small crevices that are slightly hotter than
the rest of the surface) and the vapor bubbles break away from the surface as they
form. At higher heat-transfer rates the bubbles coalesce, covering the hot surface
with a vapor film, and the process is referred to as film boiling. Vapor bubbles
usually break off from the layer, but vaporization at the liquid–vapor interface re-
plenishes the layer. Generally, film boiling is undesirable, since the vapor layer acts
as an insulator, lowering the heat-transfer rate and increasing the temperature of the

11.1 Additional fields and surface physics 249

hot surface. Fluid flow can have a significant influence on the vapor formation and
the heat transfer rate. If the liquid is initially stagnant, we usually talk about pool
boiling, but if the liquid is flowing, the process is called flow or forced-convection
boiling.

Although boiling involves a liquid turning into vapor as heat is added, boiling
can also take place when the system pressure is lowered. However, this situation is
usually treated separately as cavitation, as discussed below. Condensation involves
the same physical processes as boiling, except that vapor is turned into liquid as
heat is removed. Although it is often assumed in modeling that the fluid consists of
one pure material, both boiling and condensation can be modified when the liquid
consists of a mixtures of fluids with different boiling points and by the presence
of noncondensable gases in the vapor phase. When the pressure of the vapor in
the gaseous stage is only a small fraction of the total pressure, so that the local ex-
pansion of the liquid as it changes phase is dynamically insignificant, we generally
talk about evaporation rather then boiling. For introductions to boiling, see Dhir
(1998) and Carey (2007).

Early computations of boiling relied on a number of simplifications, such as
those of Lee and Nydahl (1989), who assumed that a vapor bubble remained hemi-
spherical as it grew. More advanced computations started with Welch (1995), who
simulated a fully deformable, two-dimensional bubble using moving triangular
grids. He was, however, only able to follow the bubble for a relatively short time
due to the distortion of the grids. Son and Dhir (1997) used a moving body-fitted
coordinate system to simulate film boiling for both two-dimensional and axisym-
metric flows, but were subject to similar limitations as Welch. The limitation to
modest deformation of the phase boundary was overcome by Juric and Tryggvason
(1998), who developed a front-tracking method for two-dimensional problems, and
by Son and Dhir (1998) who used a level-set method to follow the phase bound-
ary in axisymmetric geometries. Several authors have now developed methods
suitable for film boiling and other situations that do not involve a nucleation site.
Those include the front-tracking method of Esmaeeli and Tryggvason (2004a), the
VOF methods of Welch and Wilson (2000) and Agarwal et al. (2004), the level-set
method presented by Gibou et al. (2007), and the combined level-set/VOF method
developed by Tomar et al. (2005). Several studies of film boiling have been done
using these methods (e.g. Esmaeeli and Tryggvason, 2004b,c; Tomar et al., 2008,
2009). For nucleate boiling, where the challenges are greater, progress has been
slower, but a few authors have already reported such studies (Son et al., 1999, 2002;
Shin et al., 2005b; Mukherjee and Dhir, 2004; Mukherjee and Kandlikar, 2007).

To simulate boiling flows we need to extend the approach presented in the earlier
chapters of this book. We need to solve the energy equation, in addition to the
momentum and mass conservation equation; we need to specify the temperature at

250 Extensions

the phase boundary; we need to compute the rate at which liquid is converted into
vapor and vice versa; and we need to account for the volume change accompanying
the phase change.

In general, the energy equation must be solved to find the temperature distribu-
tion in the vapor and the liquid, although it is sometimes possible to ignore the
vapor by assuming that it is at the saturation temperature (Son and Dhir, 1998).
The energy equation can be written in the “one-field” form, in the same way as the
momentum equation, by adding a source term q̇ to account for the release of latent
heat at the phase boundary:

∂
∂ t

(ρcT)+∇ ·ρcT u = ∇ · k∇T − q̇δ (n). (11.1)

The energy equation can be solved directly as written, smoothing the source term
onto the fixed grid (Juric and Tryggvason, 1998; Esmaeeli and Tryggvason, 2004b),
or it can be solved by imposing the interface temperature explicitly by modifying
the numerical approximation near the interface. For large differences between the
densities of the vapor and the liquid, the latter approach seems preferable.

The interface temperature must be specified. For a large number of situations of
interest it is reasonable to assume thermodynamic equilibrium, where the temper-
ature is continuous across the phase boundary. Since length scales resulting from
the flow are considerably larger than those resulting from the thermodynamic con-
ditions, it is usually also a good approximation to assume that the temperature at
the phase boundary be equal to the saturation temperature at system pressure.

The heat source in Equation (11.1) is given by

q̇ = k
∂T
∂n

∣∣∣
v
− k

∂ T
∂ n

∣∣∣
l
, (11.2)

where the subscript v stands for the vapor and l denotes the liquid, so the tem-
perature gradients at the phase boundary must be estimated. That is easily done
using the “normal probe” technique introduced by Udaykumar et al. (1999). In
this approach we draw a line segment normal to the interface and interpolate the
temperature at the end of the segment (usually about one and a half grid spacings or
so away from the interface). This temperature, along with the given interface tem-
perature, is then used to find the temperature gradient and the heat source. Once
the heat source is found, the rate at which liquid is converted into vapor is given by
ṁ = q̇/hlv, where hlv is the latent heat.

The conversion of liquid to vapor or vice versa is generally accompanied by a
significant change in volume. We assume that the density in each phase is constant
and the only volume expansion takes place at the interface. To find the divergence
of the total velocity field at the phase boundary, we write u = uvH + ul(1−H),

11.1 Additional fields and surface physics 251

where the velocity in each phase is assumed to have a smooth incompressible ex-
tension into the other phase. Taking the divergence, and using ∇ ·uv = ∇ ·ul = 0,
yields

∇ ·u = (uv −ul)δ (n), (11.3)

where uv = uv · n and ul = ul · n are the normal velocities on either side of the
interface. To find the jump in the normal velocity across the interface, we use the
Rankine–Hugoniot condition (2.46):

ρv(uv −V) = ρl(ul −V) = ṁ. (11.4)

The volume expansion per unit interface area is found by eliminating V :

uv −ul = ṁ
(1

ρv
− 1

ρl

)
. (11.5)

Inserting the expression for the velocity difference across the phase boundary and
the heat source into Equation (11.3) results in

∇ ·u = ṁ
(1

ρv
− 1

ρl

)
δ (n). (11.6)

The normal velocity V of the phase boundary is found to be

V =
1
2
(uv +ul)−

ṁ
2

(
1
ρv

+
1
ρl

)
. (11.7)

Thus, this velocity is the sum of the average fluid velocity (the first term) and the
relative motion of the interface as the fluid changes phase.

Most authors have neglected density variations in the vapor and the liquid, which
could lead to buoyancy-driven currents. These are, however, easily taken into ac-
count by the Boussinesq approximation. Thermocapillary effects are usually also
neglected, but as long as the interface temperature can be assumed to be constant,
this is likely to be a good approximation. In any case, thermocapillary effects are
easily included. In the energy equation, viscous dissipation and interface stretching
terms are usually small compared with the latent heat and are neglected.

Direct numerical simulations of boiling flows are still very new and only a
few situations have been examined in any details. We will show two examples
here. Figure 11.3 shows three frames from a simulation of film boiling in a two-
dimensional domain. An initially quiescent liquid pool rests on a hot, horizontal
surface and the heat flux rate is sufficiently high so that the wall is blanketed by a
thin vapor film. As the liquid evaporates, the liquid–vapor interface becomes un-
stable and bubbles are periodically released from the layer. The bubbles rise to the
surface of the pool, break through the surface, and release the vapor. Initially, both
the vapor and the liquid are at saturation temperature, and the bottom wall is kept

252 Extensions

Fig. 11.3. Simulation of two-dimensional film boiling. A vapor layer blankets a hot wall
and as the liquid evaporates, the liquid–vapor interface becomes unstable and bubbles are
periodically released from the layer. The two phase boundaries are shown. Figure courtesy
of Professor A. Esmaeeli.

at a constant temperature which is higher than the saturation temperature. The do-
main is periodic in the horizontal direction, it has a no-slip/no-through-flow wall at
the bottom, and an open boundary at the top. The domain is resolved by a 64×160
grid, but the horizontal grid lines are unevenly spaced to resolve accurately the thin
vapor film. For details, see Esmaeeli and Tryggvason (2004b,c).

The wall heat-transfer rate is usually given in terms of the Nusselt number,
Nu = λ/(Tw −Tsat)∂T/∂ y|y=0, and in Fig. 11.4 the time-average Nusselt num-
ber is plotted versus the Jacob number (the nondimensional wall superheat), as
computed by several simulations of film boiling. In addition, the predictions of
two correlations of experimental results (Berenson, 1961; Klimenko, 1981) are in-
cluded. Although the correlations are based on fully three-dimensional flows, the
results overall are reasonably good. Welch and Wilson (2000) found a similar trend
when they compared their two-dimensional results with Berenson’s correlation.

11.1 Additional fields and surface physics 253

Fig. 11.4. The Nusselt number Nu versus nondimensional wall superheat Jacob number
Ja from simulations of two-dimensional film boiling. Predictions of two experimental
correlations (Berenson, 1961; Klimenko, 1981) are also shown. Reprinted from Esmaeeli
and Tryggvason (2004c), with permission from Elsevier.

While film boiling seems to be reasonably well under control, nucleate boiling
is of considerably more interest. A few authors have started to address nucleate
boiling, as discussed above, but some development appears to be still needed be-
fore such simulations become routine. Several new issues must be addressed. First
of all, the location of the nucleation site(s) must be specified. For simulations of
the formation of a single bubble at a specific site (or a few bubbles) this is gen-
erally straightforward (experimentally this is achieved by generating an artificial
site), but for real materials the nucleation site distribution is generally dependent
on the surface finish, and sites become active and inactive depending on the su-
perheat. Second, the formation of a vapor bubble usually affects the temperature
distribution in the solid and, at least in principle, it is necessary to solve the en-
ergy equation there. For film boiling, on the other hand, specifying the surface
temperature or the heat flux is generally a reasonable approximation. So far, most
simulations of nucleate boiling have been done ignoring the variability of the solid
temperature, although it should not be difficult to include it. The third major is-
sue is that the initial bubble is very small and it is difficult, even with adaptive
grid refinement, to capture the initial stage. Thus, placing a finite-size bubble
at the nucleation site, particularly when simulating the repeated release of bub-
bles from a specific site, is generally approximate at best. The fourth major issue

254 Extensions

Fig. 11.5. Three frames from a simulation of nucleate boiling from four nucleation sites,
computed on a 64× 64× 96 uniform grid. The liquid is saturated water at atmospheric
pressure. Figure courtesy of Dr. J. Lu.

is the inclusion of the so-called microlayer, left behind on the wall as the bub-
ble expands and the apparent contact line moves away from the nucleation site.
The evaporation of the microlayer is generally believed to contribute to the initial
growth rate, but exactly how much as a function of the governing parameters is
not completely understood. Since the microlayer is much thinner than any other
length scale in the computations, Son et al. (1999) developed a thin-film model of
the microlayer that they used as a subgrid model in their study of the nucleation
bubble.

Figure 11.5 shows three frames from a simulation of the generation of vapor
bubbles during the boiling of saturated water at atmospheric pressure. The bubbles
are released from four nucleation sites and, as they leave, small bubbles are inserted
at the nucleation sites. In this particular simulation no microlayer model was used
and the resolution is relatively modest. Nevertheless, it suggests that direct numer-
ical simulations of relatively complex boiling systems are poised to contribute in
major ways to our understanding of boiling and our ability to predict the behavior
of such systems.

11.1.5 Cavitation

Although cavitation can be treated as a special case of boiling, it is often sufficient
to use a simpler model where the pressure in a cavitation bubble is taken to be
either equal to the vapor pressure at system temperature or given by the ideal gas
law. Early computations of the collapse of a vapor bubble were done by Chapman

11.1 Additional fields and surface physics 255

Fig. 11.6. One frame from a simulation of the propagation of a pressure wave into a do-
main initially containing several bubbles. The domain is open at the top, has a rigid bottom,
and is periodic in the horizontal directions. Reprinted with permission from Delale et al.
(2005). Copyright 2005, American Institute of Physics.

and Plesset (1972) and Mitchell and Hammitt (1973), using the MAC method.
More recent studies include Yu et al. (1995), who examined the effect of fluid
shear on the collapse of a vapor bubble near a wall, Popinet and Zaleski (2002),
who examined the effect of viscosity on the collapse of a single bubble, and the
simulation of shock propagation in a liquid containing many bubbles by Delale
et al. (2005). Figure 11.6 shows one frame from a simulation of the propagation
of a pressure wave into a fluid region initially containing several bubbles. The
pressure inside the bubbles is equal to the vapor pressure and initially the pressure
in the liquid is the same. At time zero the pressure at the top is increased, causing
the bubbles there to collapse. As the bubbles near the top collapse, the pressure
increases there, leading to a collapse of the bubbles deeper in the domain, and so
on. Since the collapse takes a finite time and bubbles do not start to collapse until
the bubbles above them have collapsed, the pressure wave travels downward with a
finite speed. The speed and the overall shock behavior agree well with theoretical
predictions. See Delale et al. (2005) for details.

256 Extensions

11.2 Imbedded boundaries

It is perhaps a little bit of a stretch to classify flows over stationary solid objects
as multiphase flows. However, in a development that has paralleled the progress
made for fluid interfaces, the use of fixed regular meshes to handle complex solid
boundaries has seen a significant comeback in recent years. In this section we will
give a very brief introduction to the fundamental ideas, starting with the immersed
boundary method of Peskin for elastic moving boundaries and then discussing the
incorporation of complex solid boundaries.

11.2.1 The immersed boundary method of Peskin

The original immersed boundary method was designed specifically to model the
motion of the heart. Peskin (1977) presented computations for a two-dimensional
case and Peskin and McQueen (1989) extended the method to fully three-
dimensional flows. The method is very similar to the front-tracking method de-
scribed in Chapters 3 and 6, with the exception that the fluid properties (density
and viscosity) are constant everywhere and the imbedded elastic solids (used to
represent the heart walls) consist of bundles of fibers modeled as one-dimensional
strings of marker points, in both two and three dimensions. Since they undergo
only finite stretching, no redistribution of the marker points is necessary. The rep-
resentation of the fibers, therefore, is considerably simpler than a front representing
a fluid interface, which is discretized using unstructured meshes that must be up-
dated as the interface deforms. Peskin and collaborators spent considerable effort
on the accurate modeling of the fiber structure of the heart, but most of the early
computations were done using a first-order time integration on collocated grids.
A version using a higher order time integration method was presented by Lai and
Peskin (2000). Peskin’s work has stimulated a number of other simulations of bi-
ological systems using either the immersed boundary method directly or similar
computational approaches. A review of some of those applications can be found
in Peskin (2002), where the method is also discussed in detail. An example of the
use of the immersed boundary method can be found in Fauci and Dillon (2006),
where the biofluidmechanics of reproduction is reviewed. Other applications of the
method are also listed there.

The original immersed boundary method predates much of the development of
“one-fluid” methods for multiphase flows. While many of the difficulties encoun-
tered with multifluid and multiphase flows are absent when the fluid is homoge-
neous and the deformation of the immersed boundary is small, the basic “philoso-
phy” adopted there has had a major impact on current work. Indeed, it is probably
fair to rank Peskin’s immersed-boundary method second only to the MAC and the
VOF method in its impact on current “one-field” methods.

11.2 Imbedded boundaries 257

11.2.2 Solid boundaries

Approximating complex solid boundaries on rectangular structured grids by block-
ing out some cells was introduced at the beginning of numerical simulations of
fluid flows. Rectangular boundaries aligned with the grid lines were obviously
done first (Harlow and Welch, 1965), but techniques to include curved boundaries
soon emerged. Viecelli (1969), for example, approximated curved boundaries by
the closest cell edges and applied a pressure to the boundary so that the normal
velocity component had the correct value. Since resolution was generally low, and
since this approach offers only moderate opportunities to control the local reso-
lution, using a rectangular grid with embedded boundaries quickly gave way to
more involved approaches, such as body-fitted grids and unstructured grids, where
it is possible to align a grid line with the boundary and to control the local resolu-
tion. However, just as regular structured grids eventually emerged as the method
of choice for fluid interfaces, it has become clear that such grids offer many advan-
tages for complex geometries. The primary reason is the simplicity by which very
complex boundaries can be incorporated and the efficiency of numerical schemes
based on regular structured grids.

Consider a fluid domain containing one or more solid bodies of arbitrary shape.
If we use a regular grid to discretize the full domain, some of the grid points will
fall in the fluid region and others will be inside the solid. To identify the solid and
the fluid regions, we construct a marker function I such that

I(x) =

{
1 inside the fluid,

0 inside the solid.
(11.8)

The velocity field, everywhere in the computational domain, can now be written as

u(x) = I(x)uf(x)+
(
1− I(x)

)
uS(x), (11.9)

where uf is the velocity in the fluid and uS is the velocity in the solid. The fluid
velocity is governed by the Navier–Stokes equations for homogeneous fluids:

∂uf

∂ t
+∇h ·ufuf = −∇h p

ρ
+ν∇2

huf, (11.10)

and for a stationary body, or one moving with a prescribed velocity, uS is given.
Below, we first describe a very simple way to include a solid region in simula-

tions based on the methods described in Chapter 3, and then we discuss the various
challenges and approaches in more detail. If we solve for the flow field using a
first-order, forward-in-time projection method, then the predicted fluid velocity is
given by

u∗
f = un +∆t

(
−∇h ·u

nun +ν∇2
hun
)
. (11.11)

258 Extensions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 11.7. The steady-state velocity around a circular cylinder at a Reynolds number of 60,
computed on a 60×120 grid, stretched in such a way that the cylinder is resolved by about
25 grid points across its diameter. The stream function is shown in the top of the figure and
the vorticity in the bottom half.

Here, we use un instead of un
f on the right-hand side, since un = un

f in the fluid
region. This velocity is then corrected by adding a pressure gradient:

un+1
f = u∗

f −∆t∇p. (11.12)

The pressure gradient should make the final velocity,

un+1 = Iun+1
f +(1− I)un+1

S , (11.13)

divergence free, or ∇ ·un+1 = 0. However,

∇ ·un+1 = ∇ · Iun+1
f +∇ · (1− I)un+1

S (11.14)

= I∇ ·un+1
f + I∇ ·un+1

S +(un+1
f −un+1

S) ·∇I,

where the last two terms are zero since the velocity in the solid is constant and the
normal velocity is continuous at the solid surface. Thus, it is sufficient to find the
pressure by considering only ∇ ·un+1

f = 0, which gives the same pressure equation
as for a flow without a solid body:

∇2 p =
∆t
ρ

∇h ·u
∗, (11.15)

where u∗ is the predicted velocity in the whole domain, computed using (11.11).
This makes it particularly simple to extend a code written for fluid flow to in-

clude solids. We simply need to put the velocity inside the solids equal to un+1
S at

the end of the time step. Figure 11.7 shows an example of flow around a stationary
cylinder computed using this approach.

11.2 Imbedded boundaries 259

Generally, I is taken to have a smooth transition from zero to one in a narrow
zone around the surface of the solid. The exact shape of the transition zone can
have some impact on the quality of the solution. A very thin zone leads to a jagged
velocity field near the body and too thick a zone results in a loss of accuracy.
Some authors have also found that using an asymmetric I yields better results (see
Beckermann et al. (1999) in the context of a phase-field method and Al-Rawahi
and Tryggvason (2002) who used front tracking).

A more formal way of including a stationary immersed solid was introduced by
Goldstein et al. (1993), who added a force fS to the Navier–Stokes equations that
was adjusted in such a way that the velocity in the solid region remained zero.
The force was computed by a feedback mechanism where the weighted difference
between the computed velocity and the desired velocity in the solid, as well as
the time integral of the difference (the displacement), was added to the force. The
weights were adjusted to get as rapid convergence as possible, without making the
system unduly stiff. The feedback mechanism was improved by Saiki and Biringen
(1996), who used a more sophisticated control algorithm to compute the feedback.
Another approach to compute the forces was suggested by Lai and Peskin (2000),
who represented the surface by points that they connected to fixed points by a linear
spring. The boundary points could thus move a little, but as their displacement
becomes larger, so does the force pulling them back to their original position. In
the language of Goldstein et al. (1993), the force was therefore proportional to the
displacement only.

The feedback forcing is actually a roundabout way to impose the velocity in the
solid. Suppose we use first-order forward differences for the time derivative. The
semi-discrete form of Equation (11.10), with the force added, is then

un+1 = un +∆t
(
−∇h ·uu+ν∇2

hu− ∇h p

ρ
− fS

)
. (11.16)

The challenge is to find fS such that un+1 = uS. This is simpler than it seems. Since
we already know uS, we are implicitly including fS when we set the velocity in the
solid to its desired value. There is, therefore, no need to compute the force explic-
itly and (after a somewhat convoluted detour) we are back to the simple method
outlined at the beginning of the chapter!

The convergence rate of the straightforward immersed boundary method is at
best first order. To get second-order accuracy we need to treat the velocities near
the boundary more accurately. There are a few ways to do so. In the method intro-
duced by Fadlun et al. (2000) the velocities at grid points in the fluid, immediately
adjacent to the solid, are found by linear interpolation between the velocity at the
solid surface (zero for stationary bodies) and the velocities further inside the fluid.
Figure 11.8 shows this interpolation in more detail. The grid points marked by a

260 Extensions

Fig. 11.8. Interpolation of the velocity for points near the solid boundary.

solid circle have all their neighbors inside the fluid, as do grid points further away
from the solid. The points marked by open circles, on the other hand, have at least
one neighbor inside the solid. Thus, after the velocity field has been updated by
solving the Navier–Stokes equations for points marked by a solid circle, the veloc-
ities at the open circles are interpolated. The interpolation can be done in a number
of ways. The simplest way, used by Fadlun et al. (2000), is to interpolate along
each grid line (as done for point A). For boundaries that are approximately aligned
with the grid this approach is straightforward, but for arbitrary boundaries the in-
terpolation direction can be ambiguous. For point B, for example, we could just as
well interpolate along the vertical grid line instead of the horizontal one. To remove
this ambiguity, Gilmanov et al. (2003) suggested a modified procedure where we
draw a line normal to the boundary, through point B, and find the velocity at the
first point where this line crosses a grid line (point C). The velocity at C is found
by linear interpolation between the nearest grid points and the velocity at point B
is then found by linear interpolation between the velocity at C and the velocity at
the boundary. Similarly, the velocity at D is found by interpolating between E and
the solid surface. Minor variations of this approach are obviously possible, but as
several authors have shown, determining the velocities at points near the boundary
by interpolation improves the accuracy of the results.

By interpolating the velocity at the grid points next to the boundaries, we discard
the Navier–Stokes equations for those points and, therefore, do not strictly conserve
mass and momentum. Thus, Kim et al. (2001) suggested that instead of finding the
velocity by interpolation between the surface velocity and the fluid velocity where
it is known, we should set the velocity at points inside the body in such a way that

11.2 Imbedded boundaries 261

the interpolated velocity at the body surface had the correct value. We will not
pursue the various improvements and variants that have been proposed to represent
arbitrary solid regions on regular structured grids, but point the reader to the review
by Mittal and Iaccarino (2005) for a more complete discussion.

The approach outlined above has been extended to freely moving solids by sev-
eral authors. The simplest version is to use the Navier–Stokes equations with a
variable density and assign the solids their correct density and a relatively high vis-
cosity. The velocity field is updated as described in Chapter 3, except that at the
end of each time step the velocity field inside each solid is updated by

un+1
S = un+1

Sc + r×Ωn+1
S . (11.17)

Here, uSc is the centroid velocity of the solid body, ΩS is the angular velocity, and
r = x− xn+1

c is the distance to any point inside the solid from the centroid of the
body xn+1

c . To find un+1
Sc and Ωn+1

S we can proceed in several ways. In the simplest
approach we first advance the location and orientation of the solid body, using
un

Sc and Ωn
S, update I, and then compute the average translational and rotational

velocities inside the solid body at n+1 by averaging the velocity found in the first
step:

MS un+1
Sc =

∫
(1− I)ρu dv and IS Ωn+1

S =
∫

(1− I)r×ρu dv, (11.18)

where MS is the mass of the solid and IS is the moment of inertia tensor. The ac-
curacy of the flow near the surface can be increased by the interpolation technique
described above for stationary bodies.

For freely moving solids that can collide with each other (or a solid wall), the
motion is stopped as the solids come in contact and stresses build up in the body.
The pressure in the fluid generally also increases near the contact point, but unlike
for the collision of drops, where the pressure rise is sufficient to arrest the motion
of the drops, for solids that are modeled as nondeformable bodies (and where the
stress inside is usually not computed) it is necessary to add a short-range force to
prevent the solids from interpenetrating each other (or a wall).

Several other possibilities exist to enforce a rigid body motion in a solid repre-
sented on a fixed grid. In their fictitious boundary method, Glowinski et al. (2001)
enforced a zero deformation tensor by an iterative technique, and Kajishima and
Takiguchi (2002) and Yabe et al. (2001) averaged the acceleration of the solid at
time n to predict the velocity in the solid at n + 1, for example. For elastic solids,
the deformation must be computed by the appropriate strain–stress relationship; see
Yabe et al. (2001) for a brief discussion. Methods that represent arbitrary solids
on fixed Cartesian grids are often referred to as immersed boundary methods, thus
extending Peskin’s original terminology significantly.

262 Extensions

11.2.3 Solidification

The solidification of liquids is important in natural processes, such as magma
dynamics and lava flow, as well for the formation and dynamics of sea ice and
glaciers. Similarly, solidification is of enormous importance in the processing of
materials, since a large fraction of all materials used by mankind (metals, polymers,
concrete, glasses, and so on) is usually in the liquid phase at some point.

When a material in its liquid state is cooled down to a sufficiently low tempera-
ture, parts of the material start to solidify. The solidification usually begins at the
container boundary or around a seed of solid material present in the melt. As more
heat is removed, the solid region grows, until all the melt has become solid. The
process is determined by the transport of heat from the melt, which is needed to
lower the temperature to the solidification temperature and to conduct latent heat
released during the solidification away from the phase boundary. The phase bound-
ary must remain at the solidification temperature and when heat is removed, latent
heat is released by moving the boundary. The rate of release of latent heat, there-
fore, determines the velocity of the phase boundary. The challenge for numerical
simulations is to accurately predict the temperature distribution in the material and
the motion of the phase boundary.

In many situations the interface is unstable, and often the melt is a mixture of ma-
terials with different solidification temperatures, leading to both a complex phase
boundary and a solid consisting of regions with a different composition. The pre-
diction of how the microstructure of alloys depends on the details of how the so-
lidification took place is one of the most challenging problems in metallurgy. It
has been known for thousands of years that the various process parameters (such
as heating and cooling rates and history) have a profound effect on the properties
of the final product. While experience has allowed practitioners to tailor their pro-
cesses for a desirable outcome, a detailed understanding is limited. Experimental
investigations are usually difficult. The harsh thermal and chemical environments
and limited optical access in directional solidification furnaces do, for example,
make it nearly impossible to observe or measure the transient temperature and so-
lute distribution. In addition to determining the composition of the microstructure,
uneven solidification can lead to residual stresses, “freckles,” and voids.

For solidification it is necessary to solve the energy equation for the temperature
and, for the solidification of a binary alloy, an equation for the solute concentration.
For solidification the volume change is usually small and can often be neglected.
The whole domain, containing both the melt and the solid, can therefore be taken
to be incompressible. If the effect of the fluid flow can be neglected, the energy
equation (and the species equation if appropriate) is sufficient to describe the dy-
namics. When fluid flow is included, the full Navier–Stokes equations must be

11.2 Imbedded boundaries 263

solved and the solid part included in the way described earlier in this chapter. For
a pure material the solution strategy is very similar to boiling, except that we can
usually ignore the volume expansion. We note that while the volume change at the
interface can often by ignored, sometimes volume change in the melt can lead to
convective currents. This can be included by the Boussinesq approximation, where
a β (T −To) term (here, β is the expansion coefficient) is added to the momentum
equation.

In addition to the energy equation, we need interface conditions for the tem-
perature. For a large number of situations of interest it is reasonable to assume
thermodynamic equilibrium, where the temperature is continuous across the phase
boundary. The interface temperature TS is therefore equal to the temperature in
the material on either side. The interface temperature can be found by thermo-
dynamic considerations, leading to what is usually referred to as the Gibbs (or
Gibbs–Thompson) condition. For a derivation see, for example, Alexiades and
Solomon (1993). In its simplest form, the temperature is equal to the equilibrium
solidification temperature Tm. Local conditions can, however, increase or decrease
the interface temperature and the local Gibbs conditions are usually taken to be

TS = Tm −Tm
σκ
L

+mCL −
V
η

. (11.19)

Here, σ is the surface tension, κ the curvature, m the slope of the liquidus line, L
is the latent heat, and CL the solute concentration in the liquid next to the interface.
Furthermore, V is the normal solidification velocity and η the kinetic mobility. The
surface tension and the kinetic mobility are generally anisotropic, depending on
the crystalline structure of the material. In principle, these need to be determined
experimentally for each material, but in numerical work simple analytical relations
are generally used. The microstructure resulting from an unstable interface usually
depends strongly on the specific form of the anisotropy. The inclusion of other
interfacial phenomena can lead to the addition of other terms.

The energy equation (along with the solute and fluid equations when needed) can
be solved for both the solid and the melt using a single regular structured grid in the
same way as described earlier in this book. Once the temperature distribution has
been updated, the heat source at the interface and, therefore, the normal velocity
can be determined. While determining the temperature next to the interface is
subject to the same considerations as for boiling, it is generally found that, since
the properties of the solid and the melt are more similar than for a liquid and its
vapor, computing the temperature accurately is easier.

Solidification can be examined at many different scales and different questions
are important at the different scales. At the largest scale, when the purpose is first
and foremost to predict the cooling and solidification time of the various parts of

264 Extensions

an object, and the details of the microstructures cannot be resolved, the enthalpy
method is usually the method of choice. In its original form the enthalpy method
included the transition from liquid to solid as a constant-temperature “mushy zone”
where enthalpy changed gradually from the value in the solid to the value in the
liquid. No attempt is made to account for the details of the microstructure, and
when fluid flow is included the “mushy zone” is modeled as a porous material
whose porosity changes from zero to unity as one goes from the liquid to the solid.
For a background of the enthalpy method, see Alexiades and Solomon (1993);
examples of computations using the enthalpy method can be found in Swaminathan
and Voller (1993), Shyy and Rao (1994), and Shyy et al. (1996).

In some cases the solidification front is stable and remains essentially planar. In
this case the simulation is relatively straightforward and no empirical input for the
mushy zone is needed. Several authors have, for example, simulated in this way
the rapid solidification of hot droplets impacting a cold solid surface (important for
various spray and net-shape forming processes); see, for example, Pasandideh-Fard
et al. (2002) and Che et al. (2004).

The most challenging problem in solidification, at least of those where it is rea-
sonable to work with a continuum model, is the formation of microstructures. Mi-
crostructures generally arise through an instability of a planar or spherical inter-
face where a protrusion of the interface reaches into melt that has properties that
are more favorable for solidification than the melt next to the interface (it can be
colder or its solute concentration can be lower). The protrusion, therefore, grows
faster than the rest of the interface, leading to cellular or dendritic microstructures.
For alloys, the composition of the solid that forms first is generally different from
what is formed later, so the solidification history is preserved in the composition of
the final part. The solidification of pure material can also lead to microstructures,
where an initially regularly shaped interface undergoes an instability leading to a
more complex structure. In the case of a pure material, the microstructures are,
however, transient, and once the melt has solidified, all traces of the irregular inter-
face shape are lost. Nevertheless, transient microstructures of pure material have
often been studied as a proxy for the more complex alloy problem. For extensive
reviews of the early literature on computations of solidification, see Wheeler et al.
(1995), for example, as well as the comprehensive review of methods for alloy
solidification and morphological stability theory by Coriell and McFadden (1993).

Numerical simulations are already helping us understand how alloys solidify
and what conditions lead to specific microstructures. Early computations of the
large-amplitude evolution include Ungar and Brown (1985), who used a boundary-
conforming finite-element method to examine cellular solidification. Sethian and
Strain (1992), using a level-set method, and Wheeler et al. (1993), using a phase-
field method, simulated the growth of dendrites. Simulations of the growth of

11.2 Imbedded boundaries 265

dendrites in a pure material, in the absence of flow, have now become relatively
routine; see, for example, Udaykumar et al. (1999), Kobayashi (1993), Schmidt
(1996), and Karma and Rappel (1997, 1998). Methods for alloy solidification have
also been developed, and the reader is referred to the literature for the current status.
Recent references include the phase-field simulations by Cha et al. (2005), Nestler
(2005), and Plapp (2007), as well as Tan and Zabaras (2007), who used a level-set
method.

It is now well established experimentally that fluid flow can have a significant
impact on the growth of microstructures (see Glicksman et al. (1986), for example),
and although most simulations have focused on microstructure formation in the ab-
sence of flow, some progress has also been made for the coupled problem. Some of
the first such simulations include the phase-field simulations of Tonhardt and Am-
berg (1998) and Beckermann et al. (1999) and the front-tracking computations of
Shin and Juric (2000) and Al-Rawahi and Tryggvason (2002), for two-dimensional
problems. Simulations of three-dimensional systems include Jeong et al. (2001),
Boettinger et al. (2002), and Lu et al. (2005b), all of whom use phase–field meth-
ods, and the front-tracking simulations of Al-Rawahi and Tryggvason (2004).

Figure 11.9 shows one frame from a simulation of the growth of one three-
dimensional dendrite from Al-Rawahi and Tryggvason (2004). In addition to the
dendrite, the temperature and the velocity vectors in a plane cutting through the
center of the domain are shown. The domain is a cube resolved by a 2563 grid.
A uniform inflow is specified on the left boundary, the top and bottom boundaries
are periodic, and all gradients are set to zero at the outlet boundary. Initially a
small spherical solid, perturbed slightly, is placed in the center of the domain. The
incoming flow is slightly undercooled and, as latent heat is released at the phase
boundary, the flow sweeps it from the front to the back. This results in a thin
thermal boundary layer at the tip of the upstream growing arm and in a relatively
uniform temperature in the wake. The growth rate of the upstream arm is there-
fore enhanced and the growth of the downstream arm is reduced. Growth of side
branches is also suppressed on the downstream side. Although the same qualita-
tive trend is seen in simulations of two-dimensional systems, the wake structure
is significantly different in two and three dimensions. In two dimensions the fluid
must flow around the tip of the dendrites growing perpendicular to the flow direc-
tion, whereas in three dimensions the fluid can flow around the side of the side
branches. This results in a much larger wake for the two-dimensional dendrite. In
addition to increasing the growth rate of the dendrite growing into the flow, the
flow reduces the radius of the tip, in agreement with the experimental observations
of Lee et al. (1993).

Computations of solidification are already important for the planning of casting,
for example. However, such simulations generally rely on empirical

266 Extensions

Fig. 11.9. The large-amplitude stage of a growing dendrite. In the liquid a dark area in-
dicates a subcooled liquid. The light gray area is warmer. Reprinted from Al-Rawahi and
Tryggvason (2004), with permission from Elsevier.

approximations to capture the behavior of unresolved processes and, thus, do not
accurately predict the resulting microstructure. The use of numerical simulations
to understand microstructure formation and how it depends on the process parame-
ters holds the promise of revolutionizing material processing. The incorporation of
such an understanding into computations of industrial systems, through appropriate
subgrid models, could have significant economic implications as well.

11.3 Multiscale issues

In spite of the enormous information and understanding that DNS are providing for
relatively complex flows, real systems provide challenges that still limit the range
of situations that can be simulated, even when we limit our studies to systems
well described by continuum theories. The problem is, as one might expect, one
of scale. Generally, the smallest length scale of the flow has to be resolved by
O(10) grid points, and as the number of available grid points increases, the range
of scales that can be resolved increases. Current computer power makes it possible
to simulate two-fluid systems in domains resolved by several hundred grid points
in each spatial direction (for thousands of time steps) and simulations of systems
resolved by over 10003 grid points are on the horizon. Such simulations will make

11.3 Multiscale issues 267

it possible to resolve length scales whose ratios span over two orders of magnitude.
However, this is often not enough. Starting with simulations where what we might
call the dominant small scales (see below) are fully resolved, it is frequently found
that multiphase flows also can generate features much smaller than the dominant
flow scales, consisting of very thin films, filaments, and drops.

The “natural” or “dominant” small scales in many multiphase systems are set by
the balance of surface tension and viscosity and/or inertia. For the breakup of a jet,
for example, this scale determines the average droplet size. In most cases, this scale
corresponds to roughly where the appropriately chosen nondimensional numbers,
such as Weber, Capillary, Ohnsorge, and Reynolds numbers, are O(1) (and the key
word here is obviously “appropriately”). Smaller scales are, however, easily gen-
erated. Consider, for example, the relatively tame problem of the collision of two
droplets that are a few hundred micrometers in diameter. As the drops collide, they
deform and trap air in a thin film between them. The air drains out of the film and if
the drops stay in contact long enough, the film ruptures. It is generally believed that
the film thickness must get down to a few hundred angstroms before it ruptures. If
the drops are 500 µm in diameter, say, the range of scales, from the thickness of the
film to the diameter of the drop, is O(104). In principle, local, adaptive, grid refine-
ment can be used to allocate the computational resources where they are needed
and while doing so helps resolve small-scale features; this increases the complexity
of the computations significantly and usually results in greatly increased computa-
tional time. Furthermore, adaptive grid refinement works best when the refinement
is modest and often the range of scales is so large to make it impractical, or at least
prohibitively expensive. For very simple situations, such as the head-on collision of
two drops, it may be possible to capture this range by carefully exploiting the sym-
metry of the problem and allocating the resolution judiciously. However, for more
complex systems, including several drops moving arbitrarily, such simulations are
essentially impossible at the present time.

In many cases the structure of the small-scale features is relatively simple. Vis-
cous effects usually dominate over inertia and surface tension effects are suffi-
ciently strong to keep the geometry simple. Thus, the flow can be described analyti-
cally and by using the analytical solution it is possible to avoid resolving the small-
scale features. This approach is perhaps best demonstrated by the point-particle
approximations. For drops that are much smaller than the smallest flow scales
(and whose Stokes number is much less than unity) several investigators have car-
ried out simulations where the flow away from the particles is fully resolved, but
the particles are approximated as point particles. Although the flow around the
particle is not resolved by the computational grid, there are good reasons to be-
lieve that the accuracy of these models can be very high, and when the Reynolds
number of the particle is low enough, analytical results for the forces between the

268 Extensions

Thin film

Small drop

Fig. 11.10. Multiscale issues in multiphase flows and their classification according to E
and Engquist (2003). While modeling “isolated defects” such as very thin films and drops
is necessary to carry out the computations, the results are often intended to help develop a
constitutive model of the flow.

particle and the fluid eliminate any empirical adjustments. Simulations of multi-
phase flows containing small bubbles, drops, or particles that are approximated as
point particles go back many years (see Chapter 9 in Prosperetti and Tryggvason
(2007) for a review), but it is only recently that researchers have started to use such
models in simulations where “most” of the flow is captured fully using the tech-
niques described in this book. Examples include computations of bubbles in slurry
bubble reactors by Deen et al. (2004), where small catalytic particles are included
as point particles, but the larger bubbles are fully resolved, and simulations of at-
omization by Tomar et al. (2010), where very small droplets are replaced by point
particles. Thin films offer another obvious opportunity to include analytical (or
quasi-anaytical) models of small-scale features. Studies of thin films have a long
history, and model equations have been developed for a wide range of conditions.
Little has been done so far, however, to incorporate these models into simulations
of the larger scale motion. See, however, the study of Davis et al. (1989), where
a thin-film model was coupled with a boundary integral computation to examine
the collision of drops, the microlayer model of Son and Dhir (1998) for nucleate
boiling, and Ge and Fan (2006), who examined the film boiling of drops colliding
with hot particles.

11.4 Summary 269

As we go to smaller and smaller scales, we eventually reach a point where it
is no longer fully justified to assume that the usual continuum hypothesis is accu-
rate. It is then necessary either to change the modeling approach completely by,
for example, using molecular simulations or possibly something like the dissipa-
tive particle dynamics approach, or to work with modified continuum formulations
(such as phase-field models) designed to account for small-scale effects. See Nie
et al. (2004) and Werder et al. (2005) for recent attempts to couple molecular dy-
namics with continuum simulations.

We end this section by noting that multiphase problems exhibit a wide range
of multiscale issues, many of which have only recently been addressed in a more
general setting. E and Engquist (2003) have, for example, classified multiscale
problems into type A, dealing with isolated defects, and type B, constitutive mod-
eling based on the microscopic models. The discussion above clearly involves type
A problems, whereas the studies described in Chapter 8, where the goal is to un-
derstand the collective dynamics of large bubbly systems, is a type B problem. We
show this schematically in the sketch in Fig. 11.10, which depicts bubbly flow in
an inclined channel.

11.4 Summary

Multiphase flows play a major rôle in the workings of Nature and the enterprises
of Man. They are important for energy production, manufacturing and chemical
processes, wastewater treatment, agriculture, and many others processes critical
for our current way of living. Considering the importance of such flows, it is not
surprising that the origins of DNS of multiphase flows go back to the very begin-
ning of computational fluid dynamics. However, progress was initially slow, and it
is only recently that increased computer power and algorithmic development have
allowed DNS to start to transform multiphase flow research. As the use of DNS
for multiphase flow studies has increased and it has been applied to an increasing
number of problems, it has become clear that in many situations it is necessary to
examine problems that involve increasingly complex physics. In this chapter we
have discussed a few extensions of the basic methodology presented earlier in this
book to incorporate added physical complexity. The topics covered have not been
discussed in any depth, nor is the list of topics complete. We hope, however, that
this chapter has shown the reader that while much has been accomplished in DNS
of multiphase flows, it remains an active field of research with major opportunities
to make significant contributions towards the solution of important problems.

Appendix A

Interfaces: description and definitions

Following the motion of deformable interfaces separating different fluids or phases
is at the center of accurate predictions of multiphase flows. In this section we intro-
duce the basic mathematical notation used to describe their geometry and motion.
The geometry of surfaces in three-dimensional space is a complex subject and the
topic of several books. For the purpose of this book, however, we only need rela-
tively elementary concepts and we can, in particular, leave out the introduction of
the Christoffel symbols. While essential for more advanced treatment of curved
spaces, their introduction involves considerable overhead that may not be of a cen-
tral interest to many readers of this book. Our treatment will follow closely the
presentation by Weatherburn (1927).

In three-dimensional space, the interface is a surface which separates the two
fluid phases and in two dimensions it is a line. We start with lines and then move
on to surfaces.

A.1 Two-dimensional geometry

The coordinates of a curve in two dimensions can be described by a vector function

x(u) = (x(u),y(u)), (A.1)

where u is a monotonically increasing scalar used to parameterize the curve. The
vector dx/du is tangent to the curve, and to obtain a unit tangent vector dx/ds,
where s is the arc length, it is necessary to normalize dx/du. The arc length is
defined by ds2 = dx2 + dy2, and since dx/du = (dx/ds)(ds/du) = t(ds/du), we
can write t = (dx/du)/(ds/du). From the definition of s, we have that ds/du =
[(dx/du)2 +(dy/du)2]1/2. Introducing the shorthand notation

xu = dx/du, xuu = d2x/du2, yu = dy/du, and yuu = d2y/du2,

270

A.1 Two-dimensional geometry 271

then

t =
(xu,yu)

(x2
u + y2

u)1/2
and n =

(−yu,xu)
(x2

u + y2
u)1/2

. (A.2)

Here, we orient n so that (t,n) forms a right basis. The rate of change of the tangent
vector with arc length is

dt/ds = (d2x/du2)(du/ds)2,

so the curvature is given by

κ = n · dt
ds

=
xuyuu − yuxuu

(x2
u + y2

u)3/2
. (A.3)

When the interface is described by a height function y = h(x), then x = u, and
xu = 1, xuu = 0, yu = dh/dx, and yuu = d2h/dx2. Equation (A.3) becomes

κ =
d2h
dx2

[
1+
(

dh
dx

)2
]−3/2

, (A.4)

and the tangent and the normal vectors are

t =
(1,dh/dx)[

1+(dh/dx)2
]1/2

and n =
(−dh/dx,1)[

1+(dh/dx)2
]1/2

. (A.5)

As an example of the use of the expressions derived above, consider an ellipse.
We can describe it as a parametric curve by

x = acosu , y = bsinu . (A.6)

The tangent and the normal vectors are easily found to be

t =
(−asinu,bcosu)

(a2 sin2 u+b2 cos2 u)1/2
, n =

(bcosu,asinu)
(a2 sin2 u+b2 cos2 u)1/2

. (A.7)

We reversed n with respect to (A.2) so that it is now oriented outwards, and the
tangent is also reversed. (This still agrees with the formulae above if we change u
into −u.) The curvature is

κ = − ab

(a2 sin2 u+b2 cos2 u)3/2
. (A.8)

Notice that if a = b, then κ = −1/b, as in Chapter 2.
The ellipse can also be described in the Monge form by

y = ±b(1− x2/a2)1/2 . (A.9)

272 Interfaces: description and definitions

The tangent and the normal vectors of the upper part are now

t =
(−a(a2 − x2)1/2,bx)√

a4 +(b2 −a2)x2
, n =

(bx,a(a2 − x2)1/2)√
a4 +(b2 −a2)x2

. (A.10)

Expression (A.1) results in

κ =
−a4b

[a4 +(b2 −a2)x2]3/2
. (A.11)

A.2 Three-dimensional geometry

While the concepts introduced for interfaces in two-dimensional space carry over
to three dimensions, the technical details become more involved. As in two dimen-
sions, the interface can by defined using a vector function

x(u,v) =
(

x(u,v),y(u,v),z(u,v)
)
, (A.12)

where u and v are surface coordinates parameterizing the interface. See Fig. A.1.
An arbitrary displacement in the surface can be written

dx =
∂x
∂u

du+
∂x
∂ v

dv = xu du+xv dv . (A.13)

The length is

ds2 = dx ·dx
= xu ·xu du2 +2xu ·xv dudv+xv ·xv dv2

= E du2 +2F dudv+Gdv2
(A.14)

where we have followed Weatherburn (1927) and introduced the following notation

E = xu ·xu; F = xu ·xv; G = xv ·xv; H = |xu ×xv|. (A.15)

It is easily shown that H2 = EG−F2. These quantities, as well as the second-order
quantities

L = n ·xuu, M = n ·xuv, and N = n ·xvv, (A.16)

play a fundamental rôle in the theory of curved surfaces. The tangent vectors are
orthogonal when F = 0 and orthonormal when in addition E = G = 1. It is not pos-
sible in general to have an orthonormal coordinate system adapted to an arbitrary
interface. However, for some definitions we shall find it useful to think in terms of
a locally orthonormal system; that is, a system for which E = G = 1 and F = 0 for
a given point on the interface.

Quantifying the curvature of a surface in three dimensions is as important as
for a two-dimensional curve. Since we have already introduced the curvature of
a curve, it is natural to ask whether we can use the curvature of a curve, in the
surface, to measure the curvature. Generally the answer is no: different curves
have different curvatures. Furthermore, the normal to a curve lying in a surface

A.2 Three-dimensional geometry 273

x(u,v)=(x(u,v), y(u,v), z(u,v)

p

t

xu

xv

n

v=const

u=const

Fig. A.1. Surface coordinates.

is generally different than the normal to the surface (a curve in a plane usually
will have a normal in the plane, thus perpendicular to a normal to the plane!).
Some curves, however, may have a normal that coincides with the normal of the
surface and it seems reasonable to attempt to use such curves to measure or quantify
the curvature of a surface. For a curve, the rate of change of a normal vector
with arc length (Equation (2.29)) can be written as dn = −κdx (since t = dx/ds),
relating a small displacement along the curve to the change in the normal. A small
displacement on the surface is dx = xu du + xv dv and the change in the normal
is dn = nu du + nv dv, where the subscript denotes differentiation. We now ask
whether there are directions such that the change in the normal is related to the
displacement along the surface by the same relationship that holds for a line. If
that is true, we can write

nu du+nv dv = −κ(xu du+xv dv)

or

(κxu +nu)du+(κxv +nv)dv = 0. (A.17)

Taking the dot product of this equation with xu and xv respectively, yields

(κE −L)du+(κF −M)dv = 0,

(κF −M)du+(κG−N)dv = 0.
(A.18)

Eliminating du and dv gives a quadratic equation for κ :

H2κ2 − (EN −2FM +GL)κ +(LN −M2)2 = 0, (A.19)

and solving this equation gives the two principal curvatures. It can be shown that
the principal curvatures are unique and are sufficient to describe the curvature of
the surface. We are rarely concerned with the individual principal curvatures, but
instead work with the first curvature or the mean curvature, defined as the sum of
the principal curvatures:

κ = κ1 +κ2. (A.20)

274 Interfaces: description and definitions

Adding up the solutions of (A.19) gives

κ =
1

H2 (EN −2FM +GL). (A.21)

Sometimes the mean curvature is defined as the average of the principal curvatures.
It obviously differs from the definition given here only by a factor of 1/2.

The second (or total, or Gauss) curvature is the product of the principal curva-
tures and can be shown to be

κGauss = κ1κ2 =
(LN −M2)2

H2 . (A.22)

Once the curvatures have been found, the principal directions can be found by
solving for du/dv:

du
dv

= −κiF −M
κiE −L

, (A.23)

obtained from the first of the equations in (A.18), with i = 1 and i = 2 giving the
two different directions. This is, however, rarely needed. For a surface given by
the Monge parameterization

z = z(x,y) ,

we find that

xu = (1,0,zx) and xv = (0,1,zy)

and

E = 1+ z2
x , F = zxzy, G = 1+ z2

y , H2 = 1+ z2
x + z2

y .

The unit normal is

n =
xu ×xv

H
=

(−zx,−zy,1)√
1+ z2

x + z2
y

and the curvature is

κ =
zxx(1+ z2

y)−2zxzyzxy + zyy(1+ z2
y)

(1+ z2
x + z2

y)3/2
.

A.3 Axisymmetric geometry

In axisymmetric geometry, the interface may be conveniently represented in cylin-
drical or spherical coordinates. Here, we consider the cylindrical coordinates r,z
and φ and apply the previous definitions to an interface defined by z = z(r). The
surface coordinates are u = r, v = φ , and dx = rdφ eφ + (dr/cosθ)t, where θ
is the angle of the normal n with the z axis. Thus, ds2 = r2dφ 2 + dr2/cos2 θ .

A.4 Differentiation and integration on surfaces 275

Then E = r2,F = 0,G = 1/cos2 θ , and H = r/cosθ . Differentiating, we find
L = −r sinθ , M = 0, and

N =
1

cos2 θ
sinθ

r
∂ t
∂θ

·n.

It is readily seen that (sinθ/r)(∂ t/∂θ) = ∂ t/∂ s, then N = κ1/cos2 θ , where κ1 is
the curvature of the curve z = z(r) in the meridian half-plane (r,z). Finally, using
(A.21), we get

κ = κ1 +
1
R

, (A.24)

where R = r/sinθ is the distance to the axis along the normal. It is readily verified
that this expression works for a sphere.

A.4 Differentiation and integration on surfaces

We shall frequently find it useful to define the surface gradient and surface di-
vergence. To find the gradient of a scalar function φ , we shall use the fact that the
gradient must necessarily be perpendicular to level curves of φ . For a displacement
along a level curve (δu,δv), the change in φ is zero, so dφ = φuδu+φvδv = 0, or

δ u/δv = −φv/φu. (A.25)

The displacement along the interface is

δ x = xuδu+xvδ v.

Consider now another displacement (du,dv) for which

dx = xu du+xv dv.

If these displacements are orthogonal, then dx ·δ x = 0, or

xu ·xu duδu+xu ·xv(duδv+δudv)+xv ·xv dvδ v = 0 .

Introducing the notation defined by Equation (A.15) and by using (A.25), this can
be written as

(Fφu −Eφv)du+(Gφu −Fφv)dv = 0.

Thus, the vector (Fφu−Eφv,Gφu−Fφv) is perpendicular to (du,dv), or parallel to
(δu,δv), along the φ = constant level curve. The vector (−b,a) is perpendicular
to the vector (a,b) and, therefore, the gradient of φ is given by

∇sφ =
1

H2

(
G

∂φ
∂ u

−F
∂φ
∂v

,E
∂φ
∂v

−F
∂φ
∂ u

)
, (A.26)

276 Interfaces: description and definitions

where we have divided by H2 to ensure dφ = ∇sφ · dx. Similarly, the surface
divergence of a vector is defined by

∇s ·F =
1

H2 xu ·
(

G
∂F
∂u

−F
∂ F
∂v

)
+

1
H2 xv ·

(
E

∂ F
∂ v

−F
∂ F
∂ u

)
. (A.27)

Notice that if the coordinate system is orthonormal, such that F = 0 and H = EG =
1, then this expression reduces to the familiar form ∇s = t1∂/∂ξ1 +t2∂/∂ξ2, where
the ts’ are unit tangent vectors and the ξ s’ are the coordinates in the orthonormal
system.

Applying the divergence to the normal vector results in

∇s ·n =
1

H2 xu · (Gnu −Fnv)+
1

H2 xv · (Env −Fnu). (A.28)

Differentiating the relation n ·xu = 0 yields nu ·xu +n ·xuu = 0. Similar results are
obtained differentiating n ·xv = 0 with respect to first v and then u. Thus:

nu ·xu = −n ·xuu = −L,

nv ·xu = nu ·xv = −n ·xuv = −M,

nv ·xv = −n ·xvv = −N.

(A.29)

Using these relations allows us to write

∇s ·n = − 1
H2 (EN −2FM +GL) = −κ . (A.30)

An arbitrary vector F can be decomposed into a component normal to a surface
and a component that is tangent to the surface. The normal component is given
by Fn = (n ·F)n and the tangent component is found by subtracting the normal
component from the original vector. The tangential component is therefore

Fs = F− (n ·F)n = (I−nn) ·F, (A.31)

where we have introduced the unit tensor I whose components are given by Ii j =
δi j. The relation (n ·F)n = (nn) ·F is easily verified by writing it out in component
form, (niFi)n j = (nin j)Fi. When applied to the gradient operator, we have ∇s() =
(I−nn) ·∇(). This can be used to show that the normal component of the gradient
of the normal vector is zero. Thus, curvature can be found by either taking the
surface divergence or the divergence of the normal vector. We leave it to the reader
to show that

∇ ·n = −κ . (A.32)

The use of this expression is easily demonstrated by applying it to a circle at
the origin, identified as the f = 0 contour of the function f (x,y) = x2 + y2 −R2.

A.4 Differentiation and integration on surfaces 277

The gradient is ∇ f = (2x,2y) and the normal vector is given by n = ∇ f /|∇ f | =
(x,y)/

√
x2 + y2. The divergence of the normal is then

∇ ·n =
y2

(x2 + y2)3/2
+

x2

(x2 + y2)3/2
=

1
R

, (A.33)

where we have used that R =
√

x2 + y2 when f = 0. We leave it to the reader to
compute the mean curvature for an ellipse and other simple shapes.

We will, on occasion, need the following relationship:

(n×∇)×n = κn, (A.34)

which is easily proven if we work in index notation. The ith component of the
left-hand side is (nj∇kεi jk)nlεmil =−n j∇knlεi jkεiml =−n j∇knl(δ jmδkl −δ jlδkm) =
−nm∇lnl + nl∇mnl = −nm(nl)l + nl(nl)m. The first term on the right-hand side
is κnm and the last term is zero, since nl(nl)m = (nlnl)m − nl(nl)m, showing that
nl(nl)m = (1/2)(nlnl)m = 0, since nlnl = 1.

Similarly, we can show that

∇s · Is = κn. (A.35)

When a surface is discretized, or when deriving equations for physical processes
taking place at an interface, we frequently have to work with integrals over a finite
surface area. Several relations can be derived allowing us to transform between
area integrals and contour integrals along the perimeter of the surface element.
We shall not go through the detailed derivation here, but state that the divergence
theorem for a curved surface takes the form∫

A
∇s ·Fda =

∮
C

F ·pdl −
∫

A
κF ·nda, (A.36)

where p = t× n is a vector in the surface, perpendicular to the boundary of the
surface element (see Fig. A.1) and C is the curve bounding the area A.

Putting F = c, where c is a constant vector, the first term is identically zero and
we have

c ·
(∮

C
pdl −

∫
A

κ nda
)

= 0. (A.37)

Since c is arbitrary and the above identity always holds, we must have∮
C

pdl =
∫

A
κnda. (A.38)

Applying this expression to an infinitesimal small area δA around a point on
the surface and taking the limit, we obtain an alternative expression for the mean
curvature:

κn = lim
δA→0

1
δA

∮
pdl. (A.39)

278 Interfaces: description and definitions

We also find that, for a closed surface, we must have∫
A

κnda = 0, (A.40)

which has important consequences for the total surface force. Applying the diver-
gence theorem (A.36) to the vector F× c, where c is a again an arbitrary constant,
yields ∫

A
∇s ×Fda =

∮
C

p×Fdl −
∫

A
κn×Fda. (A.41)

Other relations are easily derived by selecting F differently.

Appendix B

Distributions concentrated on the interface

The step function H, where H = 1 in one fluid and H = 0 everywhere else, intro-
duced in Section 2.3 plays a fundamental rôle in our discussion of the “one fluid”
approach. H can be constructed in different ways, but for our purpose it is con-
venient to express it in terms of an integral over the product of one-dimensional
δ -functions:

H(x,y) =
∫

V
δ (x− x′)δ (y− y′)dv′. (B.1)

Here, the integration is over the region V bounded by the surface S and dv′ = dx′dy′;
see Fig. 2.7. Obviously, H = 1 if the point (x,y) is inside the contour, where it will
coincide with (x′,y′) during the integration, and H = 0 if it is outside and will never
be equal to (x′,y′). To simplify the discussion slightly we will consider a two-
dimensional domain here; the extension to three dimensions is straightforward.

The interface is located where the gradient of the step function ∇H(x,y) is non-
zero. Since the gradient of Equation (B.1) is taken with respect to the unprimed
variables, the gradient operator can be put under the integral sign:

∇H =
∫

V
∇
[
δ (x− x′)δ (y− y′)

]
dv′. (B.2)

The gradient with respect to the unprimed variables can be replaced by the gradient
with respect to the primed variables:

∇H = −
∫

V
∇′ [δ (x− x′)δ (y− y′)

]
dv′, (B.3)

where the prime on the gradient symbol denotes the gradient with respect to the
primed variables. The resulting area (or volume in three dimensions) integral can
then be transformed into a line (surface) integral by a variation of the divergence

279

280 Distributions on the interface

theorem for gradients:

∇H = −
∮

S
δ (x− x′)δ (y− y′)n′ds′. (B.4)

Although we have assumed that the area occupied by the marked fluid is finite so
that S is a closed contour, the contribution of most of the integral is zero, so we can
replace it by one over a part of the contour and drop the circle on the integral:

∇H = −
∫

S
δ (x− x′)δ (y− y′)n′ ds′. (B.5)

By introducing local coordinates, tangent s and normal n to the interface we can
write

δ (x− x′)δ (y− y′) = δ (s)δ (n) (B.6)

and evaluate the integral

−
∫

S
δ (x− x′)δ (y− y′)n′ ds′ = −

∫
S

δ (s)δ (n)n′ds′ = −δ (n)n. (B.7)

We shall frequently find it useful to define a function δS, which is concentrated
on the interface just as the Dirac δ -function is concentrated on a point. By using
a locally orthonormal coordinate system ξ1,ξ2,n, where n is as usual the coor-
dinate normal to the interface, this is exactly the δ (n) introduced above. Thus,
we set

δS(x) = δ (n), (B.8)

where δ is the ordinary Dirac distribution. The function δS has the property of
changing volume integrals into surface integrals. For an arbitrary function f ,∫

V
δS(x) f (x)dv =

∫
S

f (x)ds, (B.9)

and the gradient of the characteristic function H is related to the surface distribution
δS by

∇H = −δSn. (B.10)

For computations with generalized functions we usually smooth the function
onto a regular fixed grid. To do the smoothing it is useful to recall that a δ -
function can be defined as the limit of a smooth peaked function when the “width”
of the peak goes to zero, as shown in Fig. B.1. Thus, for example, we can
write

δ (x) = lim
ε→0

ε
π(x2 + ε2)

or δ (x) = lim
ε→0

e−x2/4ε

2
√

πε
. (B.11)

B.1 A simple example 281

–1 –0.5 0 0.5 1
0

1

2

3

4

5

6

7

8

9

10

=0.001

=0.005

=0.02

e

e

e

Fig. B.1. The delta function as a limit of a smooth function, as ε → 0.

When the delta function is represented on a fixed grid, we stop the limiting process
at a finite value of the width parameter, in the same way as finite-difference approx-
imations can be obtained from the definition of the derivative. Since the δ -function
is the derivative of the step function, the step function can be obtained by integra-
tion of the δ -function (or, if we pick a smoothed form for the step function, we can
obtain the δ -function by differentiation). On a discrete grid, these operations can,
of course, be done numerically.

Figure B.2 shows a circular cylinder represented by a two-dimensional step func-
tion, where we have smoothed the transition from one to zero over a few grid
spacings. Differentiating this function results in a smooth approximation to the
δ -function.

B.1 A simple example

We will use a simple one-dimensional example below to show how jump conditions
can be incorporated into the governing equation as a singular source term. Consider
the advection of a quantity f (a color or a species tracer) with uniform velocity Uo.
The flow comes from the left and initially f = 0. At xs, however, f is injected. The
traditional way of solving this problem is to write the governing equation separately
before and after xs and couple them together with jump conditions at xs. Thus, we
have

∂ f
∂ t

+Uo
∂ f
∂ x

= 0 for x < xs and x > xs . (B.12)

282 Distributions on the interface

Fig. B.2. Smoothed circle.

Fig. B.3. The approximation of a discontinuity by a smooth transition zone for a simple
one-dimensional advection. The discontinuous solution and two smooth approximations
are shown.

At xs we have [Uo f] = q, where q is the injection rate of f . For this simple problem
the solution is, of course, trivial: f = 0 to the left of xs and f = q/Uo to the right
of xs.

We can, however, also write this equation for the whole domain as

∂ f
∂ t

+Uo
∂ f
∂x

= qδ (x− xs). (B.13)

To show that the two formulations are equivalent, we write

f (t,x) = f1(t,x)H1(x− xs)+ f2(t,x)H2(x− xs), (B.14)

where H1 = 1 to the left of xs and H1 = 0 to the right of xs, and further H2 = 1−H1.

B.1 A simple example 283

Substituting into (B.13) yields

H1

(∂ f1

∂ t
+Uo

∂ f1

∂ x

)
+H2

(∂ f2

∂ t
+Uo

∂ f2

∂x

)
+Uo(f2 − f1)δ = qδ , (B.15)

since ∂H2/∂ x =−∂ H1/∂ x = δ . Gathering the terms, we recover the original equa-
tions, including the jump condition q = Uo(f2 − f1) = [Uo f].

When the δ -function is approximated by a smoother function, the discontinuity
becomes a transition zone of finite width, as shown in Fig. B.3.

Appendix C

Cube-chopping algorithm

We consider the geometrical problem of a planar interface that intersects a right
hexahedron of sides ∆x1, ∆x2, ∆x3 and volume V0 = ∆x1 ∆x2 ∆x3. The plane is
described by the equation

m ·x = m1x1 +m2x2 +m3x3 = α , (C.1)

where the normal m is pointing outside the volume to be computed and the three
coefficients mi are known and positive. In the direct problem we compute the
volume of the cell which is below a planar interface with the following expression:

V = h3C =
1

6m1m2m3

[
α3 −

3

∑
i=1

F3(α −mi h)+
3

∑
i=1

F3(α −αmax +mi h)

]
, (C.2)

with αmax = ∑3
i=1 mi ∆xi and Fn(z) = zn when z > 0 and zero otherwise. Geometri-

cally, and with reference to Fig. C.1, the first term (α3/6m1m2m3) is the volume of
the right tetrahedron under the triangle AEH. The first sum subtracts the volumes
of the tetrahedra under the two triangles CEG and BFH, when the vertices E and
H move beyond the cell faces. Finally, the second sum adds back the volume of
the tetrahedron under the triangle DFG, when the line EH is completely outside
the cell. Furthermore, we notice that all the right tetrahedra and triangles involved
in the computation are similar. The function V varies from the value zero, when
α = 0, to V0, when α = αmax. In two dimensions the previous relation simplifies
to

A =
1

2m1m2

[
α2 −

2

∑
i=1

F2(α −mi ∆xi)

]
. (C.3)

Let us assume for the moment that ∆xi = 1 and ∑3
i=1 mi = 1, then αmax = 1 and the

function V = V (α) has the following properties:

284

C.1 Two-dimensional problem 285

C

D

F
G

E

x

H

B

A

x

x

3

1

2

m

Fig. C.1. The “cut volume” is the gray region inside the right hexahedrical cell and below
the planar interface ABCD.

(i) V is a continuous, one-to-one, monotonically increasing function of α with
continuous first derivative;

(ii) both V and α vary in the range [0,1] and there is an odd symmetry with respect
to the point (V,α) = (1/2,1/2), and then the analysis can be restricted to the
range [0,1/2];

(iii) the relation V =V (α) is invariant with respect to a permutation of the indices,
so we need to consider only the case m1 ≤ m2 ≤ m3 in three dimensions and
m1 ≤ m2 in two dimensions;

(iv) in three dimensions the limit m1 → 0 is smooth and relation (C.2) becomes
(C.3).

With some straightforward algebra the following expressions for the direct and
inverse functions are readily computed (see Scardovelli and Zaleski, 2000, for more
details).

C.1 Two-dimensional problem

Let m1 + m2 = 1 (m1 ≤ m2) and A1 = m1/(2m2), then the analytical expressions
for the direct and inverse problem are respectively

A =
α2

2m1m2
, for: 0 ≤ α < m1 ,

A =
α
m2

−A1 , for: m1 ≤ α ≤ 1/2 ,

286 Cube-chopping

α =
√

2m1m2A , for: 0 ≤ A < A1 ,

α = m2A+
m1

2
, for: A1 ≤ A ≤ 1/2 .

C.2 Three-dimensional problem

Let m1 +m2 +m3 = 1 (m1 ≤ m2 ≤ m3) and m̃ = min(m12,m3), where m12 = m1 +
m2, then there are four consecutive ranges and the formulas for the direct problem
are

V =
α3

6m1m2m3
, for: 0 ≤ α < m1 ,

V =
α(α −m1)

2m2m3
+V1 , for: m1 ≤ α < m2 ,

V =
α2(3m12 −α)+m2

1(m1 −3α)+m2
2(m2 −3α)

6m1m2m3
, for: m2 ≤ α < m̃ .

For the fourth interval there are two possible cases, one for m̃ = m3 < m12 and the
other for m̃ = m12 < m3:

V =
α2(3−2α)+∑3

i=1 m2
i (mi −3α)

6m1m2m3
, for: m3 ≤ α ≤ 1/2 ,

V =
2α −m12

2m3
, for: m12 ≤ α ≤ 1/2 .

The formulas for the inverse problem are

α = 3
√

6m1m2m3V , for: 0 ≤ V < V1 ,

α =
1
2

[
m1 +

√
m2

1 +8m2m3(V −V1)
]
, for: V1 ≤ V < V2 ,

P(α) = a′3 α3 +a′2 α2 +a′1 α +a′0 = 0 , for: V2 ≤ V < V3 .

Again, there are two cases in the fourth interval, one for V3 = V31 < V32 and the
other for V3 = V32 < V31:

P(α) = a′′3 α3 +a′′2 α2 +a′′1 α +a′′0 = 0 , for: V31 ≤ V ≤ 1/2 ,

α = m3V +
m12

2
, for: V32 ≤ V ≤ 1/2 .

In the previous relations V1 = m2
1/(max(6m2m3,ε)) is an approximation of the

actual value m2
1/6m2m3. This is because the limit for V1 as m1,m2 → 0 is zero;

however, numerically, we need to avoid that the denominator of V1 becomes zero,
so ε is an arbitrary small number. The other limiting values of the range of validity
of each relation are given by the following expressions: V2 = V1 +(m2 −m1)/2m3,

C.2 Three-dimensional problem 287

V31 = [m2
3(3m12 −m3)+ m2

1(m1 − 3m3)+ m2
2(m2 − 3m3)]/(6m1m2m3), and V32 =

m12/2m3. The coefficients of the two cubic polynomials are: a′3 = −1, a′2 = 3m12,
a′1 = −3(m2

1 + m2
2), a′0 = m3

1 + m3
2 −6m1m2m3V , a′′3 = −2, a′′2 = 3, a′′1 = −3(m2

1 +
m2

2 +m2
3), and a′′0 = m3

1 +m3
2 +m3

3 −6m1m2m3V .
In the third and fourth regions, when V31 ≤ V ≤ 1/2, there is the need to find

the roots of the cubic polynomial P(α). An analytical solution can be easily found
following Abramowitz and Stegun (1964). With a3 = 1, the discriminant ∆ =
p3

0 + q2
0 is negative, and P(α) has three real roots (α1,α2,α3). However, only α2

satisfies the requirement that P(α) is an increasing function of α :

α2 =
√

−p0 (
√

3 sinθ − cosθ)− a2

3
,

where we have set p0 = a1/3 − (a2/3)2, q0 = (a1a2 − 3a0)/6 − (a2/3)3, and

cos(3θ) = q0 /
√

−p3
0.

We can now generalize the problem to rectangular grids and negative mi. We
divide expression (C.2) by the cell volume V0 and obtain the following expression
for the volume fraction C = V/V0:

C =
1

6Π3
i=1(mi∆xi)

[
α3 −

3

∑
i=1

F3(α −mi∆xi)+
3

∑
i=1

F3(α −αmax +mi∆xi)

]
.

(C.4)

If we normalize the plane equation in order to have αmax = ∑3
i=1 mi∆xi = 1, we are

back to the equation examined in the previous discussion and the results obtained
can be extended to a right hexahedron as well.

If one or more of the mi are negative, the geometry can be mapped to the standard
case with the linear transformation x′i = ∆xi−xi, which describes a mirror reflection
of the figure with respect to the plane xi = ∆xi/2. After the calculation of C or α
the configuration is brought back to its actual position with similar reflections.

Finally, it is often required to calculate the volume cut by the same linear in-
terface in a right hexahedron that is different from the grid cell; for example, to
compute fluxes across the cell boundary. In this case with the linear transforma-
tions x′i = xi−x0i we translate the origin of the local coordinate system to the vertex
x0 of the right hexahedron, where all sides ∆x′i are positive.

Appendix D

The dynamics of liquid sheets: linearized theory

In this appendix we summarize some theoretical results for the motion of super-
posed liquid layers. The layers may be almost at rest, as a layer of gas above
a layer of water, or be in shearing motion. In the first case we find many clas-
sical instabilities and oscillations, such as water waves, capillary waves, and the
Rayleigh–Taylor instability. In the second case we find the Kelvin–Helmholtz
instability.

D.1 Flow configuration

We consider two superposed horizontal fluid layers. Each phase n (n = 1,2) has
constant density and viscosity, ρn and µn respectively, and a uniform horizontal
velocity Un. In two dimensions the interface height is given by y = h(x, t) and in
the unperturbed state h(x, t) = ho = 0. We assume that phase 2 is located above the
interface, where y > 0, and phase 1 is below the interface, where y < 0. If U1 �= U2,
see Fig. D.1(a), there is a discontinuity in the velocity which may be maintained
in the inviscid approximation, µn = 0, that we consider first. Consider now a small
perturbation of wavelength λ . Since the unperturbed state does not depend on the
x coordinate and time t, we can write any physical quantity q as the sum of its
unperturbed value q0 and the small perturbation q′ evolving as

q′(x,y, t) = q1(y)exp
{

i
[
k(x− ct)+ϕ

]}
, (D.1)

where ϕ is an arbitrary phase, the wavenumber k = 2π/λ , and c = cr + ici the
complex wave speed, with γ = kci the growth rate and ω = kcr the frequency.

D.2 Inviscid results

D.2.1 The general dispersion relation

The inviscid Euler equation is obtained by letting µ = 0 in the Navier–Stokes equa-
tion, (2.12):

ρ
Du
Dt

= ρg−∇p. (D.2)

288

D.2 Inviscid results 289

(b)

δ

U

(a)

2

δ1

1

U2
(c)

Fig. D.1. The initial or base flows discussed in this section. (a) The simplest profile: sharp
velocity jump. (b) A piecewise linear flow with two boundary layers used in early studies.
(c) A smooth boundary layers profile, used for comparisons with linear theory and in most
full simulations.

Furthermore, we consider an incompressible flow, ∇ · u = 0, and the evolution
equation for the density, Dρ/Dt = 0, as the density is different in the two fluids
(see Equations (2.20) and (2.19)). We also need to consider the equation for the
motion of the interface y = h(x, t). We now consider a perturbed two-dimensional
flow in the x,y plane and linearize the variables u, ρ , p, and h around the steady-
state profile. For example, the velocity field for phase n is

u = (u,v) = u0 +u′ = (Un,0)+(u′,v′), (D.3)

where u′ and v′ are given by (D.1). The interface perturbation h′(x, t) does not
depend on y as in (D.1), since it represents the perturbation of a line, y = h0 = 0,
and not of a two-dimensional field. We linearize the motion equations around the
base flow and drop the subscript n to get

ρ0
∂u′

∂ t
+U

∂ u′

∂x
= −∂ p′

∂ x
, (D.4)

ρ0
∂ v′

∂ t
+U

∂ v′

∂x
= −∂ p′

∂ y
−ρ ′g, (D.5)

∂ u′

∂x
+

∂ v′

∂y
= 0, (D.6)

∂ρ ′

∂ t
+U

∂ρ ′

∂ x
= −v′

∂ρ0

∂ y
, (D.7)

v′S =
Dh′

Dt
=

∂h′

∂ t
+U

∂ h′

∂x
. (D.8)

290 Dynamics of liquid sheets

Because of (D.1), ∂/∂x → (ik), ∂/∂ t → (−ikc) and let ∂/∂ y → D, then we solve
(D.4), (D.6), and (D.7), respectively, for p′, u′, and ρ ′ and substitute the results in
(D.5) to get

−k3ρ0(U − c)v1 +D
[
ρ0k(U − c)Dv1 −ρ0k(DU)v1

]
= gk

Dρ0

U − c
v1, (D.9)

where we have simplified the term exp[ik(x− ct)] on both sides. The interface
evolution equation, (D.8), can be written as

h′ = − iv′S
k(U − c)

. (D.10)

Away from the interface, the differential equation (D.9) becomes

(D2 − k2)v1(y) = 0. (D.11)

The solutions of this equation that satisfy the boundary conditions v1 → 0 as
|y| → ∞ and the uniqueness of the normal displacement h′ of the interface at y = 0
are

v1(y) = Ak(U2 − c)exp(−ky) (D.12)

for y > 0 and

v1(y) = Ak(U1 − c)exp(ky) (D.13)

for y < 0, where A is a constant. From there, pressure amplitude p1 and the inter-
face h′ may be found by some simple algebra. The dispersion relation c = c(k) is
then found by writing the second jump condition of Panel 2.5, without the viscous
terms, where we also need the linearized expression of the interface curvature:

κ =
∂ 2h′

∂ x2 . (D.14)

After some straightforward algebra we get

ρ2k2(U2 − c)2 +ρ1k2(U1 − c)2 = gk(ρ1 −ρ2)+σk3. (D.15)

We let ρp = (ρ1 +ρ2) and ρm = (ρ1 −ρ2) and solve the quadratic equation (D.15)
for the complex wave speed c as a function of the wavenumber k:

c(k) =
1
ρp

(ρ1U1 +ρ2U2)±
[

ρm

ρp

g
k

+
σk
ρp

− ρ1ρ2

ρ2
p

(U1 −U2)
2

]1/2

. (D.16)

D.2 Inviscid results 291

D.2.2 Capillary–gravity waves

In the absence of horizontal motion, U1 = U2 = 0. Then the result is the dispersion
relation for capillary–gravity waves:

c(k) =
[

ρm

ρp

g
k

+
σk
ρp

]1/2

. (D.17)

For small k, i.e. large wavelengths, the gravity waves dominate the flow, while
for large k or small wavelength the capillary waves dominate the flow. For air and
water, the transition occurs around the famed capillary length lc =

√
σ/(ρwaterg)

which is about 2.7 mm.

D.2.3 The Kelvin–Helmholtz instability

In the absence of gravity and capillarity we get the frequency

ω(k) =
k

ρp
(ρ1U1 +ρ2U2) (D.18)

and the growth rate

γ(k) =
k

ρp
(ρ1ρ2)

1/2|U1 −U2|. (D.19)

(There is, of course, also a solution with negative γ which has no physical interest.)
The solution grows exponentially as exp(γt) and any initial perturbation of the in-
terface is amplified. The instability so characterized is called the Kelvin–Helmholtz
instability.

For large values of the ratio ρ1/ρ2, as for a liquid–gas mixing layer, the expres-
sion of the growth rate simplifies to

γ(k) = k

(
ρ2

ρ1

)1/2

|U1 −U2|. (D.20)

Gravity, viscosity, or capillarity introduces a radical change in the growth rate curve
γ(k). Instead of growing indefinitely with k, the growth rate reaches a maximum
and then decreases. Expression (D.16) shows that when surface tension and gravity
are included the growth rate is zero over some “cutoff” wavenumber kc. For in-
stance, with surface tension, but with no gravity or viscosity, there is a real growth
rate given by

γ(k) =

[
ρ1ρ2k2

ρ2
p

(U1 −U2)
2 − σk3

ρp

]1/2

, (D.21)

292 Dynamics of liquid sheets

when

k < kc =
ρ1ρ2(U1 −U2)

2

ρpσ
. (D.22)

When surface tension dominates and ρ1 � ρ2, one has kc � ρ2(U1 −U2)
2/σ . It is

convenient to define the Weber number based on the wavelength λ as

W̃e(λ) =
ρ2λ (U1 −U2)

2

σ
. (D.23)

Instability occurs for all wavelengths such that λ > 2π/kc or W̃e > 2π . The
wavenumber of maximum growth rate is proportional to the cutoff wavenumber;
indeed, from (D.21) one finds that maximum γ is obtained for km = 2kc/3 or
W̃e = 3π . In order to further apply these results it is useful to define a Weber
number based on some predefined length scale D, for instance the diameter of the
jet or droplet, so that WeD = ρ2D(U1−U2)

2/σ . The predicted wavelength of max-
imum instability is then

λm = 3πDWe−1
D . (D.24)

D.2.4 Effect of thick boundary layers in the inviscid framework

Fluid viscosity causes the diffusion of velocity and changes the discontinuous base
flow of Fig. D.1(a) into a profile connecting a gas and a liquid boundary layer of
thickness δg and δl as in Fig. D.1(c). Viscous effects can be introduced in two
ways: either by recomputing the stability problem in a simplified way using the
same inviscid equations (D.2) but with a base flow U(y) incorporating the boundary
layers; or in a consistent way by also including the viscous effects in the flow
equations. We describe the consistent approach in the next section and concentrate
here on the inviscid framework.

When the boundary layers are modeled as piecewise linear profiles (see Fig.
D.1(b)) the inviscid equations can still be solved in closed analytical form (Viller-
maux, 1998). The resulting growth rate γ(k) still has a single maximum. In the
case Ug �Ul, ρg � ρl and δl = 0, the maximum growth rate is attained for

km ∼ 1.5

(
ρg

ρl

)1/2 1
δ g

, γ(km) ∼ ρg

ρl

Ug

δg
, (D.25)

and thus

λm ∼ 4π
3

(
ρl

ρg

)1/2

δg. (D.26)

However, these results are not a good approximation of the full viscous solution
even at large Reynolds numbers, for reasons that are discussed below.

D.3 Viscous theory for the Kelvin–Helmholtz instability 293

D.3 Viscous theory for the Kelvin–Helmholtz instability

Although the theory described in Section D.2.4 is attractive by its simplicity, it is
not realistic enough to allow quantitative predictions. By introducing viscosity we
need consistently to consider the Navier–Stokes equations.

Just as for the Euler equation (D.2), the Navier–Stokes equations can be lin-
earized to obtain the so-called Orr–Sommerfeld equations. The linear stability
problem will be formulated here in two dimensions, i.e. we assume perturbations
about the basic flow in the form of a streamfunction ψ1 for the liquid and ψ2 for
the gas. Length, velocity, and time are made nondimensional using the gas veloc-
ity and gas boundary layer width. Then, Re = Ugδg/νg and We = ρgU2

g δg/σ . The
streamwise and cross-stream velocity components u and v are defined by

u =
∂ψ
∂ y

, v = −∂ψ
∂x

(D.27)

in both phases. Linearization about the basic velocity profile of Fig. D.1(c) implies
that the solutions are exponentials in the time and streamwise coordinates, i.e.

ψ1(x,y, t) = exp(ik(x− ct))φ1(y) (y < 0), (D.28)

ψ2(x,y, t) = exp(ik(x− ct))φ2(y) (y > 0). (D.29)

With this Ansatz, we obtain an eigenvalue problem for complex ordinary differ-
ential equations in φ1 and φ2, which are coupled at the interface. The problem
depends on the real wavenumber k as parameter, and the complex eigenvalues c
determine the phase velocity and growth rate of the modes.

The differential equations are (Boeck and Zaleski, 2005)

(U2 − c)
(
D2 − k2)φ2 −D2U2φ2 =

1
ikRe

(
D2 − k2)2 φ2, (D.30)

(U1 − c)
(
D2 − k2)φ1 −D2U1φ1 =

r
m

1
ikRe

(
D2 − k2)2 φ1, (D.31)

where D once again denotes the derivative with respect to y, r = ρg/ρl, and m =
µg/µl. The boundary conditions at the interface are the continuity of the normal
and tangential velocity, which yield

φ1 = φ2, (D.32)

Dφ1 +DU1
φ1

c
= Dφ2 +DU2

φ2

c
, (D.33)

294 Dynamics of liquid sheets

as well as the continuity of the normal and tangential stress, which give

− k2

cWe
φ2 = −1

r
(cDφ1 +φ1DU1)−

1
m

1
ikRe

(
D3 −3k2D

)
φ1 + cDφ2 +φ2DU2

+
1

ikRe

(
D3 −3k2D

)
φ2, (D.34)

m

(
D2 + k2 +

1
c

D2U2

)
φ2 =

(
D2 + k2 +

1
c

D2U1

)
φ1. (D.35)

These equations may be solved numerically, for instance using a Chebyshev poly-
nomial method (Yecko et al., 2002; Gordillo and Perez-Saborid, 2005). The results
are discussed in Chapter 9.

References

Abramowitz, M. and Stegun, I. (eds.) (1964). Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables. National Bureau of
Standards Applied Mathematics Series 55. US Government Printing Office,
Washington, DC.

Afkhami, S., Zaleski, S., and Bussmann, M. (2009). A mesh-dependent model for
applying dynamic contact angles to VOF simulations. J. Comput. Phys., 228:
5370–5389.

Agarwal, D., Welch, S.W.J., Biswas, G., and Durst, F. (2004). Planar simulation of
bubble growth in film boiling in near-critical water using a variant of the VOF
method. ASME J. Heat Transfer, 126: 329–338.

Agresar, G., Linderman, J.J., Tryggvason, G., and Powell. K.G. (1998). An adap-
tive, Cartesian, front-tracking method for the motion, deformation and adhesion
of circulating cells. J. Comput. Phys., 43: 346–380.

Al-Rawahi, N. and Tryggvason, G. (2002). Numerical simulation of dendritic so-
lidification with convection: two-dimensional geometry. J. Comput. Phys., 180:
471–496.

Al-Rawahi, N. and Tryggvason, G. (2004). Numerical simulation of dendritic so-
lidification with convection: Three-dimensional flow. J. Comput. Phys., 194:
677–696.

Alexiades, V. and Solomon, A.D. (1993). Mathematical Modeling of Melting and
Freezing Processes. Hemisphere.

Amsden, A.A. (1993). KIVA-3: a KIVA program with block-structured mesh for
complex geometries. Technical report, LA-12503-MS, Los Alamos National
Lab., NM.

Antal, S.P., Lahey, R.T., and Flaherty, J.E. (1991). Analysis of phase distribution

295

296 References

in fully developed laminar bubbly two-phase flows. Int. J. Multiphase Flow, 15:
635–652.

Aris, R. (1962). Vectors, Tensors and Basic Equations of Fluid Mechanics. Dover.
Arp, P.A., Foister, R.T., and Mason, S.G. (1980). Some electrohydrodynamic ef-

fects in fluid dispersions. Adv. Colloid Interface Sci., 12: 295–356.
Ashgriz, N. and Poo, J.Y. (1991). FLAIR: flux line-segment model for advection

and interface reconstruction. J. Comput. Phys., 93: 449–468.
Ashgriz, N., Shirani, E., and Mostaghini, J. (2005). Interface pressure calculation

based on conservation of momentum for front capturing methods. J. Comput.
Phys., 203: 154–175.

Aubert, F., Aulisa, E., Manservisi, S., and Scardovelli, R. (2006). Interface track-
ing with dynamically-redistributed surface markers in unstructured quadrangular
grids. Comput. Fluids, 35: 1332–1343.

Aulisa, E., Manservisi, S., and Scardovelli, R. (2003a). A mixed markers and
volume-of-fluid method for the reconstruction and advection of interfaces in
two-phase and free-boundary flows. J. Comput. Phys., 188: 611–639.

Aulisa, E., Manservisi, S., Scardovelli, R., and Zaleski, S. (2003b). A geometrical
area-preserving volume of fluid advection method. J. Comput. Phys., 192: 355–
364.

Aulisa, E., Manservisi, S., and Scardovelli, R. (2004). A surface marker algo-
rithm coupled to an area-preserving marker redistribution method for three-
dimensional interface tracking. J. Comput. Phys., 197: 555–584.

Aulisa, E., Manservisi, S., Scardovelli, R., and Zaleski, S. (2007). Interface recon-
struction with least-squares fit and split advection in three-dimensional Cartesian
geometry. J. Comput. Phys., 225: 2301–2319.

Azpitarte, O.E. and Buscaglia, G.C. (2003). Analytical and numerical evaluation of
two-fluid model solutions for laminar fully developed bubbly two-phase flows.
Chem. Eng. Sci., 58: 3765–3776.

Baker, G.R., Meiron, D.I., and Orszag, S.A. (1980). Vortex simulation of the
Rayleigh–Taylor instability. Phys. Fluids, 23: 1485–1490.

Baker, G.R., Meiron, D.I., and Orszag, S.A. (1982). Generalized vortex methods
for free surface flows problems. J. Fluid Mech., 123: 477.

Bargteil, A.W., Goktekin, T.G., O’Brien, J.F., and Strain, J.A. (2006). A semi-
Lagrangian contouring method for fluid simulation. ACM Trans. Graphics
(TOG), 25(1): 19–38.

Bassano, E. and Castagnolo, D. (2003). Marangoni migration of a methanol drop
in cyclohexane matrix in a closed cavity. Microgravity Sci. Technol., XIV(1):
20–33.

Batchelor, G.K. (1970). An Introduction to Fluid Dynamics. Cambridge University
Press.

References 297

Bayvel, L. and Orzechowski, Z. (1993). Liquid Atomization. Taylor and Francis.
Beckermann, C., Diepers, H.-J., Steinbach, I., Karma, A., and Tong, X. (1999).

Modeling melt convection in phase-field simulations of solidification. J. Com-
put. Phys., 154: 468–496.

Bell, J.B., Colella, P., and Glaz, H.M. (1989). A second-order projection method
for the incompressible Navier–Stokes equations. J. Comput. Phys., 85: 257–283.

Ben Rayana, F., Cartellier, A., and Hopfinger, E. (2006). Assisted atomization
of a liquid layer: investigation of the parameters affecting the mean drop size
prediction. In Proc. ICLASS 2006, Aug. 27–Sept.1, Kyoto Japan. Academic
Publication and Printings. (ISBN 4-9902774-1-4).

Berenson, P.J. (1961). Film boiling heat transfer from a horizontal surface. J. Heat
Transfer, 83: 351–358.

Bierbrauer, F. (1995). Water drop impact on galvanised steel surfaces. In Proc.
The Splash and Free Surface Workshop (ed. J.-L. Liow and P. Schwarz), The
University of Melbourne, Melbourne, Australia.

Birdsall, C.K. and Langdon, A.B. (1985). Plasma Physics via Computer Simula-
tion. McGraw-Hill.

Birkhoff, G. (1954). Taylor instability and laminar mixing. Rep. LA-1862; appen-
dices in Rep. LA-1927, Los Alamos Scientific Laboratory (unpublished).

Blake, J.R. and Gibson, D.C. (1981). Growth and collapse of a vapour cavity near
a free surface. J. Fluid Mech., 111: 123–140.

Blake, T.D. and Shikmurzaev, Y. (2002). Dynamic wetting by liquids of different
viscosity. J. Colloid Interface Sci., 253: 196–202.

Boeck, T. and Zaleski, S. (2005). Viscous versus inviscid instability of two-phase
mixing layers with continuous velocity profile. Phys. Fluids, 17: 032106.

Boeck, T., Li, J., López-Pagés, E., Yecko, P., and Zaleski, S. (2007). Ligament
formation in sheared liquid–gas layers. Theor. Comput. Fluid Dyn., 21: 59–76.

Boettinger, W.J., Warren, J.A., Beckermann, C., and Karma, A. (2002). Phase field
simulations of solidification. Annu. Rev. Mater. Res., 32: 163–194.

Bonn, D., Eggers, J., Indekeu, J., Meunier, J., and Rolley, E. (2009). Wetting and
spreading. Rev. Mod. Phys., 81: 739–805.

Boris, J.P. and Book, D.L. (1973). Flux-corrected transport. I. SHASTA, a fluid
transport algorithm that works. J. Comput. Phys., 11: 38–69.

Bothe, D., Koebe, M., Wielage, K., and Warnecke, H.J. (2003). FEDSM2003-
45155: VOF-simulations of mass transfer from single bubbles and bubble chains
rising in aqueous solutions. In Proc. 2003 ASME Joint U.S.–European Fluids
Eng. Conf., Honolulu, USA.

Bothe, D., Schmidtke, M., and Warnecke, H.-J. (2006). VOF-simulation of the
lift force for single bubbles in a simple shear flow. Chem. Eng. Technol., 29:
1048–1053.

298 References

Boulton-Stone, J.M. and Blake, J.R. (1993). Gas-bubbles bursting at a free-surface.
J. Fluid Mech., 254: 437–466.

Brackbill, J.U. and Ruppel, H.M. (1986). FLIP: a method for adaptively zoned,
particle-in-cell calculations in two dimensions. J. Comput. Phys., 65: 314–343.

Brackbill, J.U., Kothe, D.B., and Zemach, C. (1992). A continuum method for
modeling surface tension. J. Comput. Phys., 100: 335–354.

Bradley, S.G. and Stow, C.D. (1978). Collision between liquid drops. Phil. Trans.
R. Soc. Lond. A, 287: 635.

Brady, J.F. and Bossis, G. (1988). Stokesian dynamics. Annu. Rev. Fluid Mech.,
20: 111–157.

Brenner, M. and Gueyffier, D. (1999). On the bursting of viscous films. Phys.
Fluids, 11: 737–739.

Briggs, W.L. (1987). A Multigrid Tutorial. SIAM Books, Philadelphia.
Bröder, D. and Sommerfeld, M. (2007). Planar shadow image velocimetry for the

analysis of the hydrodynamics in bubbly flows. Meas. Sci. Technol., 18: 2513–
2528.

Bunner, B. and Tryggvason, G. (2002a). Dynamics of homogeneous bubbly flows.
Part 1. Rise velocity and microstructure of the bubbles. J. Fluid Mech., 466:
17–52.

Bunner, B. and Tryggvason, G. (2002b). Dynamics of homogeneous bubbly flows.
Part 2. Velocity fluctuations. J. Fluid Mech., 466: 53–84.

Bunner, B. and Tryggvason, G. (2003). Effect of bubble deformation on the stabil-
ity and properties of bubbly flows. J. Fluid Mech., 495: 77–118.

Carey, V.P. (2007). Liquid Vapor Phase Change Phenomena: An Introduction to
the Thermophysics of Vaporization and Condensation Processes in Heat Trans-
fer Equipment, 2nd edition, Taylor & Francis.

Cartellier, A. and Rivière, N. (2001). Bubble-induced agitation and microstructure
in uniform bubbly flows at small to moderate particle. Phys. Fluids, 13: 2165–
2181.

Ceniceros, H.D. and Roma, A.M. (2005). A multi-phase flow method with a fast,
geometry-based fluid indicator. J. Comput. Phys., 205: 391–400.

Cha, P.-H., Yeon, D.-H., and Yoon, J.-K. (2005). Phase-field model for multicom-
ponent alloy solidification. J. Cryst. Growth, 274: 281–293.

Chahine, G.L. and Duraiswami, R. (1992). Dynamic interactions in a multibubble
cloud. ASME J. Fluids Eng., 114(4): 680–686.

Chan, R.K.-C. and Street, R.L. (1970). A computer study of finite-amplitude water
waves. J. Comput. Phys., 6: 68–94.

Chandra, S. and Avedisian, C.T. (1991). On the collision of a droplet with a solid
surface. Proc. R. Soc. London, Ser. A: Math. Phys. Sci., 432(1884): 13–41.

References 299

Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability. Oxford
University Press.

Chang, Y.C., Hou, T.Y., Merriman, B., and Osher, S. (1996). Temporal evolution
of periodic disturbances in two-layer Couette flow. J. Comput. Phys., 124: 449–
464.

Chapman, R.B. and Plesset, M.S. (1972). Nonlinear effects in the collapse of a
nearly spherical cavity in a liquid. Trans. ASME, J. Basic Eng., 94: 142.

Che, J., Ceccio, S.L., and Tryggvason, G. (2004). Computations of structures
formed by the solidification of impinging molten metal drops. J. Appl. Math.
Model., 28: 127–144.

Chen, S., Johnson, D.B., Raad, P.E., and Fadda, D. (1997a). The surface marker
and micro cell method. Int. J. Numer. Meth. Fluids, 25: 749–778.

Chen, S., Merriman, B., Osher, S., and Smereka, P. (1997b). A simple level set
method for solving Stefan problems. J. Comput. Phys., 135: 8–29.

Chern, I.-L., Glimm, J., McBryan, O., Plohr, B., and Yaniv, S. (1986). Front track-
ing for gas dynamics. J. Comput. Phys., 62: 83–110.

Choi, H.G. and Joseph, D.D. (2001). Fluidization by lift of 300 circular particles
in plane Poiseuille flow by direct numerical simulation. J. Fluid Mech., 438:
101–128.

Chorin, A.J. (1968). Numerical solutions of the Navier–Stokes equations. Math.
Comput., 22: 745–762.

Chorin, A.J. (1967). A numerical method for solving incompressible viscous flow
problems. J. Comput. Phys., 2: 12.

Christiansen, J.P. (1973). Numerical simulation of hydrodynamics by the method
of point vortices. J. Comput. Phys., 13: 363–379.

Clift, R., Grace, J.R., and Weber, M.E. (1978). Bubbles, Drops, and Particles.
Academic Press.

Coriell, S.R. and McFadden, G.B. (1993). Morphological stability. In Handbook
of Crystal Growth, vol. 1B (ed. D.T.J. Hurle), Elsevier, pp. 785–857.

Cortelezzi, L. and Prosperetti, A. (1981). Small amplitude waves on the surface of
a layer of a viscous liquid. Q. Appl. Math., 38: 375–388.

Cortez, R. and Minion, M. (2000). The blob projection method for immersed
boundary problems. J. Comput. Phys., 161: 428–453.

Coward, A.V., Renardy, Y.Y., Renardy, M., and Richards, J.R. (1997). Temporal
evolution of periodic disturbances in two-layer Couette flow. J. Comput. Phys.,
132: 346–361.

Crapper, G.D., Dombrowski, N., Jepson, W.P., and Pyott, G.A.D. (1973). A note
on the growth of Kelvin–Helmholtz waves on thin liquid sheets. J. Fluid. Mech.,
57: 671–672.

300 References

Cristini, V., Bławzdziewicz, J., and Loewenberg, M. (1998). Drop breakup in three-
dimensional viscous flows. Phys. Fluids., 10: 1781–1784.

Cummins, S.J., Francois, M.M., and Kothe, D.B. (2005). Estimating curvature
from volume fractions. Comput. Struct., 83: 425–434.

Daly, B.J. (1969a). A technique for including surface tension effects in hydrody-
namic calculations. J. Comput. Phys., 4: 97–117.

Daly, B.J. (1969b). Numerical study of the effect of surface tension on interface
instability. Phys. Fluids, 12: 1340–1354.

Daly, B.J. and Pracht, W.E. (1968). Numerical study of density-current surges.
Phys. Fluids, 11: 15–30.

Dandy, D.S. and Leal, G.L. (1989). Buoyancy-driven motion of a deformable drop
through a quiescent liquid at intermediate Reynolds numbers. J. Fluid Mech.,
208: 161–192.

Davidson, M.R. and Rudman, M. (2002). Volume-of-fluid calculation of heat or
mass transfer across deforming interfaces in two-fluid flow. Numer. Heat Trans-
fer Part B Fund., 41: 291–308.

Davies, J.T. and Rideal, E.K. (1966). Interfacial Phenomena. Academic Press.
Davis, R.H., Schonberg, J.A., and Rallison, J.M. (1989). The lubrication force

between two viscous drops. Phys. Fluids A: Fluid Dyn., 1: 77–81.
de Gennes, P.G. (1985). Wetting: statics and dynamics. Rev. Mod. Phys., 57:

827–863.
de Gennes, P.G., Quere, D., and Brochard, F. (2003). Capillarity and Wetting

Phenomena: Drops, Bubbles, Pearls, Waves. Springer Verlag.
de Josselin de Jong, G. (1960). Singularity distribution for the analysis of multiple-

fluid flow through porous media. J. Geophys. Res., 65: 3739–3758.
DeBar, R. (1974). Fundamentals of the KRAKEN code. Technical Report UCIR-

760, LLNL.
Deckwer, W.-D. (1992). Bubble Column Reactors. Wiley.
Deen, N.G., van Sint Annaland, M., and Kuipers, J.A.M. (2004). Multi-scale mod-

eling of dispersed gas–liquid two-phase flow. Chem. Eng. Sci., 59: 1853–1861.
DeGregoria, A.J. and Schwartz, L.W. (1985). Finger breakup in Hele–Shaw cells.

Phys. Fluids, 28: 2313.
Delale, C.F., Nas, S., and Tryggvason, G. (2005). Direct numerical simulations of

shock propagation in bubbly liquids. Phys. Fluids, 17: 121705.
Dhir, V.K. (1998). Boiling heat transfer. Annu. Rev. Fluid Mech., 30: 365–401.
Ding, H., Spelt, P.D.M., and Shu, C. (2007). Diffuse interface model for incom-

pressible two-phase flows with large density ratios. J. Comput. Phys., 226:
2078–2095.

Dombrowski, N. and Johns, W.R. (1963). The aerodynamic instability and disin-
tegration of viscous liquid sheets. Chem. Eng. Sci., 18: 203–214.

References 301

Drew, D.A. (1983). Mathematical modeling of two-phase flow. Annu. Rev. Fluid
Mech., 15: 261–291.

Drew, D.A. and Passman, S.L. (1999). Theory of Multicomponent Fluids. Springer.
Drumright-Clarke, M.A. and Renardy, Y. (2004). The effect of insoluble surfactant

at dilute concentration on drop breakup under shear with inertia. Phys. Fluids,
16: 14–21.

Druzhinin, O.A. and Elghobashi, S.E. (2001). Direct numerical simulation of a
three-dimensional spatially-developing bubble-laden mixing layer with two-way
coupling. J. Fluid Mech., 429: 23–61.

Du, J., Fix, B., Glimm, J., Jia, X., Li, X., Li, Y., and Wu, L. (2006). A simple
package for front tracking. J. Comput. Phys., 213: 613–628.

Duchemin, L., Popinet, S., Josserand, C., and Zaleski, S. (2002). Jet formation in
bubbles bursting at a free surface. Phys. Fluids, 14(9): 3000–3008.

Dussan, V.E.B. (1979). On the spreading of liquid on solid surfaces: static and
dynamic contact lines. Annu. Rev. Fluid Mech., 11: 371–400.

E, W. and Engquist, B. (2003). The heterogeneous multiscale methods. Commun.
Math. Sci., 1: 87–133.

Edgerton, H. (1987). Stopping Time. Harry N. Abrams, New York.
Edwards, D.A., Brenner, H., and Wasan, D.T. (1961). Interfacial Transport Pro-

cesses and Rheology. Butterworth.
Eggers, J. (1993). Universal pinching of 3D axisymmetric free-surface flow. Phys.

Rev. Lett., 71: 3458–3461.
Eggers, J. and Dupont, T.D. (1994). Drop formation in a one-dimensional approx-

imation of the Navier–Stokes equation. J. Fluid Mech., 262: 205–221.
Eggers, J. and Villermaux, E. (2008). Physics of liquid jets. Rep. Prog. Phys., 71:

036601.
Ellingsen, K. and Risso, F. (2001). On the rise of an ellipsoidal bubble in water:

oscillatory paths and liquid-induced velocity. J. Fluid Mech., 440: 235–268.
Ervin, E.A. and Tryggvason, G. (1997). The rise of bubbles in a vertical shear flow.

ASME J. Fluid Eng., 119: 443–449.
Esmaeeli, A. and Tryggvason, G. (1996). An inverse energy cascade in two-

dimensional, low Reynolds number bubbly flows. J. Fluid Mech., 314: 315–330.
Esmaeeli, A. and Tryggvason, G. (1998). Direct numerical simulations of bubbly

flows. Part I. Low Reynolds number arrays. J. Fluid Mech., 377: 313–345.
Esmaeeli, A. and Tryggvason, G. (1999). Direct numerical simulations of bubbly

flows. Part II. Moderate Reynolds number arrays. J. Fluid Mech., 385: 325–358.
Esmaeeli, A. and Tryggvason, G. (2004a). A front tracking method for computa-

tions of boiling in complex geometries. Int. J. Multiphase Flow, 30: 1037–1050.
Esmaeeli, A. and Tryggvason, G. (2004b). Computations of film boiling. Part I:

numerical method. Int. J. Heat Mass Transfer, 47: 5451–5461.

302 References

Esmaeeli, A. and Tryggvason, G. (2004c). Computations of film boiling. Part II:
multi-mode film boiling. Int. J. Heat Mass Transfer, 47: 5463–5476.

Esmaeeli, A. and Tryggvason, G. (2005). A direct numerical simulation study
of the buoyant rise of bubbles at O(100) Reynolds number. Phys. Fluids, 17:
093303.

Fadlun, E.A., Verzicco, R., Orlandi, P., and Mohd-Yusof, J. (2000). Combined
immersed-boundary finite-difference methods for three-dimensional complex
flow simulations. J. Comput. Phys., 161: 35–60.

Farmer, E.E. (1973). Relative detachability of soil particles by simulated rainfall.
Soil Sci. Soc. Am. J., 37: 629–633.

Fauci, L.J. and Dillon, R. (2006). Biofluidmechanics of reproduction. Annu. Rev.
Fluid Mech., 38: 371–394.

Fedkiw, R., Aslam, T., Merriman, B., and Osher, S. (1999). A non-oscillatory
Eulerian approach to interfaces in multimaterial flows (the ghost fluid method).
J. Comput. Phys., 152: 457–492.

Feng, J., Hu, H.H., and Joseph, D.D. (1994). Direct simulation of initial value
problems for the motion of solid bodies in a Newtonian fluid. Part 1. Sedimation.
J. Fluid Mech., 261: 95–134.

Feng, J., Hu, H.H., and Joseph, D.D. (1995). Direct simulation of initial value
problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette
and Poiseuille flows. J. Fluid Mech., 277: 271–301.

Fernandez, A. (2008a). Response of an emulsion of leaky dielectric drops im-
mersed in a simple shear flow: drops more conductive than the suspending fluid.
Phys. Fluids, 20: 043303.

Fernandez, A. (2008b). Response of an emulsion of leaky dielectric drops im-
mersed in a simple shear flow: drops less conductive than the suspending fluid.
Phys. Fluids, 20: 043304.

Fernandez, A., Che, J., Ceccio, S.L., and Tryggvason, G. (2005). The effects
of electrostatic forces on the distribution of drops in a channel flow – two-
dimensional oblate drops. Phys. Fluids, 17: 093302.

Foote, G.B. (1973). A numerical method for studying liquid drop behavior: simple
oscillations. J. Comput. Phys., 11: 507–530.

Foote, G.B. (1975). The water drop rebound problem: dynamics of collision. J.
Atmos. Sci., 32: 390–402.

Fortes, A., Joseph, D.D., and Lundgren, T. (1987). Nonlinear mechanics of flu-
idization of beds of spherical particles. J. Fluid Mech., 177: 467–483.

Foster, N. and Fedkiw, R. (2001). Practical animation of liquids. In Proc. 28th
Annual Conf. on Computer Graphics and Interactive Techniques. ACM Press,
New York, NY, pp. 23–30.

References 303

Francois, M.M., Cummins, S.J., Dendy, E.D., Kothe, D.B., Sicilian, J.M., and
Williams, M.W. (2006). A balanced-force algorithm for continuous and sharp
interfacial surface tension models within a volume tracking framework. J. Com-
put. Phys., 213(1): 141–173.

Frumkin, A. and Levich, V.G. (1947). O vliyanii poverkhnostno-aktivnikh veshestv
na dvizhenie na granitse zhidkikh sred. Zh. Fiz. Khim., 21: 1183–1204.

Fukai, J., Shiiba, Y., Yamamoto, T., Miyatake, O., Poulikakos, D., Megaridis, C.M.,
and Zhao, Z. (1995). Wetting effects on the spreading of a liquid droplet collid-
ing with a flat surface: experiment and modeling. Phys. Fluids, 7: 236–247.

Furusaki, S., Fan, L.-S., and Garside, J. (2001). The Expanding World of Chemical
Engineering (2nd edition). Taylor and Francis.

Fuster, D., Agbaglah, G., Josserand, C., Popinet, S., and Zaleski, S. (2009a). Nu-
merical simulation of droplets, bubbles and waves: state of the art. Fluid Dyn.
Res. 41: 065001.

Fuster, D., Bagué, A., Boeck, T., Le Moyne, L., Leboissetier, A., Popinet, S.,
Ray, P., Scardovelli, R., and Zaleski, S. (2009b). Simulation of primary at-
omization with an octree adaptive mesh refinement and VOF method. Int. J.
Multiphase Flow, 35: 550–565.

Gao, P., Yin, Z., and Hu, W. (2008). Thermocapillary motion of droplets at large
Marangoni numbers. Adv. Space Res., 41(12): 2101–2106.

Ge, Y. and Fan, L.-S. (2006). Three-dimensional direct numerical simulation for
film-boiling contact of moving particle and liquid droplet. Phys. Fluids, 18:
117104.

Gerlach, D., Tomar, G., Biswas, G., and Durst, F. (2006). Comparison of volume-
of-fluid methods for surface tension-dominant two-phase flows. Int. J. Heat
Mass Transfer, 49: 740–754.

Gibou, F., Chen, L., Nguyen, D., and Banerjee, S. (2007). A level set based sharp
interface method for the multiphase incompressible Navier–Stokes equations
with phase change. J. Comput. Phys., 222: 536–555.

Gilmanov, A., Sotiropoulos, F., and Balaras, E. (2003). A general reconstruction
algorithm for simulating flows with complex 3D immersed boundaries on Carte-
sian grids. J. Comput. Phys., 191: 660–669.

Glicksman, M.E., Coriell, S.R., and McFadden, G.B. (1986). Interaction of flows
with the crystal–melt interface. Annu. Rev. Fluid Mech., 18: 307–335.

Glimm, J. and McBryan, O. (1985). A computational model for interfaces. Adv.
Appl. Math., 6: 422–435.

Glimm, J., Marchesin, D., and McBryan, O. (1981). A numerical method for two
phase flow with an unstable interface. J. Comput. Phys, 39: 179–200.

Glimm, J., Grove, J.W., Li, X.L., Oh, W., and Sharp, D.H. (2001). A critical
analysis of Rayleigh–Taylor growth rates. J. Comput. Phys., 169: 652–677.

304 References

Glowinski, R., Pan, T.W., Helsa, T.I., Joseph, D.D., and Periaux, J. (2001). A
fictitious domain approach to the direct numerical simulation of incompressible
viscous flow past moving rigid bodies: application to particulate flow. J. Comput.
Phys., 169: 363–426.

Goldstein, D., Handler, R., and Sirovich, L. (1993). Modeling a no-slip flow bound-
ary with an external force field. J. Comput. Phys., 105: 354–366.

Gordillo, J.M. and Perez-Saborid, M. (2005). On the first wind atomization regime.
J. Fluid. Mech, 541: 1–20.

Guet, S., Ooms, G., Oliemans, R.V.A., and Mudde, R.F. (2004). Bubble size effect
on low liquid input drift-flux parameters. Chem. Eng. Sci., 59: 3315–3329.

Guet, S., Ooms, G., and Oliemans, R.V.A. (2005). Simplified two-fluid model for
gas-lift efficiency predictions. AIChe J., 51: 1885–1896.

Gueyffier, D. and Zaleski, S. (1998). Formation de digitations lors de l’impact
d’une goutte sur un film liquide. C. R. Acad. Sci. Paris sér. II b, 326: 839–844.

Gueyffier, D., Nadim, A., Li, J., Scardovelli, R., and Zaleski, S. (1999). Vol-
ume of fluid interface tracking with smoothed surface stress methods for three-
dimensional flows. J. Comput. Phys., 152: 423–456.

Hadamard, J. (1911). Mouvement permanent lent d’une sphere liquide et visqueuse
dans un liquide visqueux. C. R. Acad. Sci. Paris, 152: 1735–1738.

Hammerlin, G. and Hoffmann, K.-H. (1991). Numerical Mathematics. Springer.
Harlow, F.H. (1964). The particle-in-cell computing method for fluid dynamics.

Methods Comput. Phys., 3: 319–343.
Harlow, F.H. and Fromm, J.E. (1965). Computer experiments in fluid dynamics.

Sci. Am., 212: 104.
Harlow, F.H. and Shannon, J.P. (1967). The splash of a liquid drop. J. Appl. Phys.,

38: 3855–3866.
Harlow, F.H. and Welch, J.E. (1965). Numerical calculation of time-dependent

viscous incompressible flow of fluid with a free surface. Phys. Fluids, 8: 2182–
2189.

Harlow, F.H. and Welch, J.E. (1966). Numerical study of large-amplitude free-
surface motions. Phys. Fluids, 9: 842–851.

Harvie, D.J.E. and Fletcher, D.F. (2000). A new volume of fluid advection algo-
rithm: the Stream scheme. J. Comput. Phys., 162: 1.

Hervet, H. and de Gennes, P.G. (1984). Dynamique du mouillage: films
précurseurs sur solide ‘sec’. C. R. Acad. Sci. Paris, Ser. II, 299: 499–503.

Hinch, E.J. (1984). A note on the mechanism of the instability at the interface
between two shearing fluids. J. Fluid Mech., 144: 463–465.

Hirt, C.W. and Nichols, B.D. (1981). Volume of fluid (VOF) method for the dy-
namics of free boundaries. J. Comput. Phys., 39: 201–226.

References 305

Hirt, C.W., Cook, J.L., and Butler, T.D. (1970). A Lagrangian method for calcu-
lating the dynamics of an incompressible fluid with a free surface. J. Comput.
Phys., 5: 103–124.

Hockney, R.W. and Eastwood, J.W. (1981). Computer Simulation Using Particles.
McGraw-Hill.

Hooper, A.P. and Boyd, W.G.C. (1983). Shear-flow instability at the interface
between two viscous fluids. J. Fluid Mech., 128: 507–528.

Hou, T.Y., Lowengrub, J.S., and Shelley, M.J. (2001). Boundary integral methods
for multicomponent fluids and multiphase materials. J. Comput. Phys., 169:
302–362.

Hu, H.H. (1996). Direct simulation of flows of solid–liquid mixtures. Int. J. Mul-
tiphase Flow, 22: 335–352.

Hu, H.H., Patankar, N.A., and Zhu, M.Y. (2001). Direct numerical simulations of
fluid-solid systems using arbitrary-Lagrangian–Eularian techniques. J. Comput.
Phys., 169: 427–462.

Hua, J. and Lou, J. (2007). Numerical simulation of bubble rising in viscous liquid.
J. Comput. Phys., 222: 769–795.

Hua, J., Lim, L.K., and Wang, C.-H. (2008). Numerical simulation of deforma-
tion/motion of a drop suspended in viscous liquids under influence of steady
electric fields. Phys. Fluids, 20: 113302.

Huh, C. and Scriven, L. (1971). Hydrodynamic model of steady movement of a
solid/liquid/fluid contact line. J. Coll. Interf. Sci, 35: 85.

Ishii, M. (1987). Interfacial Area Modeling, Vol. 3, McGraw-Hill, Chapter 3,
pp. 31–62.

Ishii, M. and Zuber, N. (1979). Drag coefficient and relative velocity in bubbly,
droplet or particulate flows. AIChE J., 25: 843–855.

Issa, R.I. (1985). Solution of the implicitly discretised fluid flow equations by
operator-splitting. J. Comput. Phys., 62: 40–65.

Jacqmin, D. (1999). Calculation of two-phase Navier–Stokes flows using phase-
field modeling. J. Comput. Phys., 155: 96–127.

Jacqmin, D. (2000). Contact-line dynamics of a diffuse fluid interface. J. Fluid
Mech., 402: 57–88.

James, A.J. and Lowengrub, J. (2004). A surfactant-conserving volume-of-fluid
method for interfacial flows with insoluble surfactant. J. Comput. Phys., 201:
685–722.

Jamet, D., Lebaigue, O., Coutris, N., and Delhaye, J.M. (2001). Feasibility of using
the second gradient theory for the direct numerical simulations of liquid–vapor
flows with phase-change. J. Comput. Phys., 169: 624–651.

Jan, Y.-J. (1994). Computational studies of bubble dynamics. PhD thesis, The
University of Michigan.

306 References

Jeong, J.-H., Goldenfield, N., and Dantzig, J.A. (2001). Phase field model for
three-dimensional dendritic growth with fluid flow. Phys. Rev. E, 64: 041602.

Johansson, B.C.V. (1993). Boundary conditions for open boundaries for the in-
compressible Navier–Stokes equation. J. Comput. Phys., 105: 233–251.

Johnson, A. A. and Tezduyar, T.E. (1997). 3D simulation of fluid–particle interac-
tions with the number of particles reaching 100. Comput. Methods Appl. Mech.
Eng., 145: 301–321.

Josserand, C. and Zaleski, S. (2003). Droplet splashing on a thin liquid film. Phys.
Fluids, 15: 1650–1657.

Juric, D. and Tryggvason, G. (1998). Computations of boiling flows. Int. J. Multi-
phase Flow, 24: 387–410.

Kadioglu, S.Y. and Sussman, M. (2008). Adaptive solution techniques for simulat-
ing underwater explosions and implosions. J. Comput. Phys., 227: 2083–2104.

Kajishima, T. and Takiguchi, S. (2002). Interaction between particle clusters and
fluid turbulence. Int. J. Heat Fluid Flow, 23: 639–646.

Kanai, A. and Miyata, H. (2001). Direct numerical simulation of wall turbulent
flows with microbubbles. Int. J. Numer. Methods Fluids, 35: 593–615.

Kang, I.S. and Leal, L.G. (1987). Numerical solution of axisymmetric, unsteady
free-boundary problems at finite Reynolds number. I. Finite-difference scheme
and its applications to the deformation of a bubble in a uniaxial straining flow.
Phys. Fluids, 30: 1929–1940.

Karma, A. and Rappel, W.J. (1997). Phase-field simulation of three-dimensional
dendrites: is microscopic solvability theory correct? J. Cryst. Growth, 174:
54–64.

Karma, A. and Rappel, W.-J. (1998). Quantitative phase-field modeling of den-
dritic growth in two and three dimensions. Phys. Rev. E, 57: 4323–4349.

Kashinsky, O.N. and Randin, V.V. (1999). Downward bubbly gas–liquid flow in a
vertical pipe. Int. J. Multiphase Flow, 25: 109–138.

Kawamura, T. and Kodama, Y. (2002). Numerical simulation method to resolve
interactions between bubbles and turbulence. Int. J. Heat Fluid Flow, 23: 627–
638.

Keller, J.B. and Miksis, M.J. (1983). Surface tension driven flows. SIAM J. Appl.
Math., 43(2): 268–277.

Kermeen, R.W. (1956). Water tunnel tests of NACA 4412 and Walchner profile
7 hydrofoils in non-cavitating and cavitating flows. Technical report, California
Institute of Technology Hydro. Lab. Rep. 47-5.

Khinast, J.G., Koynov, A.A., and Leib, T.M. (2003). Reactive mass transfer at gas–
liquid interfaces: impact of micro-scale fluid dynamics on yield and selectivity
of liquid-phase cyclohexane oxidation. Chem. Eng. Sci., 58: 3961–3971.

References 307

Kim, J. and Moin, P. (1985). Application of a fractional step method to incom-
pressible Navier–Stokes equations. J. Comput. Phys., 59: 308–323.

Kim, J., Kim, D., and Choi, H. (2001). An immersed-boundary finite-volume
method for simulations of flow in complex geometries. J. Comput. Phys., 171:
132–150.

Kitagawa, A., Sugiyama, K., and Murai, Y. (2004). Experimental detection of
bubble–bubble interactions in a wall-sliding bubble swarm. Int. J. Multiphase
Flow, 30: 1213–1234.

Klimenko, V.V. (1981). Film boiling on a horizontal plate – new correlation. Int.
J. Heat Mass Transfer, 24: 69–79.

Kobayashi, R. (1992). Simulations of three-dimensional dendrites. In Pattern For-
mation in Complex Dissipative Systems (ed. S. Kai). World Scientific, Singapore,
pp. 121–128.

Kobayashi, R. (1993). Modeling and numerical simulations of dendritic crystal-
growth. Phys. D, 63: 410–423.

Koplik, J., Banavar, J.R., and Willemsen, J.F. (1988). Molecular dynamics of
Poiseuille flow and moving contact lines. Phys. Rev. Lett., 60: 1282–1285.

Koynov, A., Khinast, J.G., and Tryggvason, G. (2005). Mass transfer and chemical
reactions in bubble swarms with dynamic interfaces. AIChE. J., 51: 2786–2800.

Kuo, T.C., Pan, C., and Chieng, C.C. (1997). Eulerian–Lagrangian computations
on phase distribution of two-phase bubbly flows. Int. J. Numer. Methods Fluids,
24: 579–593.

Ladd, A.J.C. (1993). Dynamical simulations of sedimenting spheres. Phys. Fluids
A, 5: 299–310.

Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S., and Zanetti, G. (1994). Mod-
elling merging and fragmentation in multiphase flows with SURFER. J. Comput.
Phys., 113: 134–147.

Lai, M.-C. and Peskin, C.S. (2000). An immersed boundary method with formal
second order accuracy and reduced numerical viscosity. J. Comput. Phys., 160:
705–719.

Lance, M. and Bataille, J. (1991). Turbulence in the liquid phase of a uniform
bubbly air–water flow. J. Fluid Mech., 222: 95–118.

Lasheras, J.C. and Hopfinger, E.J. (2000). Liquid jet instability and atomization in
a coaxial gas stream. Annu. Rev. Fluid Mech., 32: 275–308.

Leboissetier, A. (2002). Simulation numérique directe de l’atomisation primaire
d’un jet liquide à haute vitesse. Technical report, Université de Paris 6. Thèse
de doctorat.

Lee, J. and Pozrikidis, C. (2006). Effect of surfactants on the deformation of drops
and bubbles in Navier–Stokes flow. Comput. Fluids, 35: 43–60.

308 References

Lee, L. and LeVeque, R.J. (2003). An immersed interface method for incompress-
ible Navier–Stokes equations. SIAM J. Sci. Comput., 25: 832–856. .

Lee, R.C. and Nydahl, J.E. (1989). Numerical calculations of bubble growth in
nucleate boiling from inception through departure. J. Heat Transfer, 111: 474–
479.

Lee, Y.-W., Ananth, R., and Gill, W.N. (1993). Selection of length scale in uncon-
strained dendritic growth with convection in the melt. J. Cryst. Growth, 132:
226–230.

Lefebvre, A.H. (1989). Atomization and Sprays. Taylor and Francis.
Lenard, P. (1892). Über die Electricität der Wasserfälle. Ann. Phys., 46: 584–636.
Leonard, B.P. (1979). A stable and accurate convective modelling procedure based

on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng., 19:
59–98.

Li, J. (1995). Calcul d’interface affine par morceaux (Piecewise linear interface
calculation). C. R. Acad. Sci. Paris, Sér. IIb (Paris), 320: 391–396.

Li, J. (1996). Résolution numérique de l’équation de Navier–Stokes avec recon-
nection d’interfaces. Méthode de suivi de volume et application à l’atomisation.
Technical report, Université de Paris 6. Thèse de doctorat.

Liow, J.L., Morton, D.E., Guerra, E., and Gray, N.B. (1996). Dynamics of splash
formation in gas injected systems. In The Howard Worner Int. Symp. on Injection
in Pyrometallurgy, Melbourne, pp. 175–190.

Lister, J. and Zhang, W.W. (1999). Similarity solutions for van der Waals rupture
of a thin film on a solid substrate. Phys. Fluids, 11: 2454–2462.

Liu, H., Krishnan, S., Marella, S., and Udaykumar, H.S. (2005). Sharp interface
Cartesian grid method II: a technique for simulating droplet interactions with
surfaces of arbitrary shape. J. Comput. Phys., 210: 32–54.

Liu, T.J. (1997). Investigation of the wall shear stress in vertical bubbly flow under
different bubble size conditions. Int. J. Multiphase Flow, 23: 1085–1109.

Liu, T.J. and Bankoff, S.G. (1993). Structure of air-water bubbly flow in a vertical
pipe – I. Liquid mean velocity and turbulence measurements. Int. J. Heat Mass
Transfer, 36: 1049–1060.

Loewenberg, M. and Hinch, E.J. (1996). Numerical simulation of a concentrated
emulsion in shear flow. J. Fluid Mech., 321: 395–419.

Longuet-Higgins, M.S. and Cokelet, E.D. (1976). The deformation of steep surface
waves on water. Proc. R. Soc. London Ser. A, 358: 1.

López, J., Hernandez, J., Gómez, P., and Faura, F. (2004). A volume of fluid
method based on multidimensional advection and spline interface reconstruc-
tion. J. Comput. Phys., 195: 718–742.

Lopez De Bertodano, M., Lahey, R.T., Jr., and Jones, O.C. (1987). Development
of a k–ε model for bubbly two-phase flow. J. Fluids Eng., 13: 327–343.

References 309

Lopez De Bertodano, M., Lahey, R.T., Jr., and Jones, O.C. (1994). Phase distri-
bution in bubbly two-phase flow in vertical ducts. Int. J. Multiphase Flow, 20:
805–818.

Louge, M.Y. (1994). Computer simulations of rapid granular flows of spheres
interacting with a flat, frictional boundary. Phys. Fluids, 6: 2253–2269.

Lu, J. and Tryggvason, G. (2006). Numerical study of turbulent bubbly downflows
in a vertical channel. Phys. Fluids, 18: 103302.

Lu, J. and Tryggvason, G. (2007). Effect of bubble size in turbulent bubbly down-
flow in a vertical channel. Chem. Eng. Sci., 62: 3008–3018.

Lu, J. and Tryggvason, G. (2008). Effect of bubble deformability in turbulent
bubbly upflow in a vertical channel. Phys. Fluids, 20: 040701.

Lu, J., Fernandez, A., and Tryggvason, G. (2005a). The effect of bubbles on the
wall shear in a turbulent channel flow. Phys. Fluids, 17: 095102.

Lu, J., Biswas, S., and Tryggvason, G. (2006). A DNS study of laminar bubbly
flows in a vertical channel. Int. J. Multiphase Flow, 32: 643–660.

Lu, Y., Beckermann, C., and Ramirez, J.C. (2005b). Three-dimensional phase
field simulations of the effect of convection on free dendritic growth. J. Cryst.
Growth, 280: 320–334.

Luo, R., Pan, X.H., and Yang, X.Y. (2003). Laminar light particle and liquid two-
phase flows in a vertical pipe. Int. J. Multiphase Flow, 29: 603–620.

MacIntyre, F. (1972). Flow patterns in breaking bubbles. J. Geophys. Res., 77(27):
5211–5228.

MacNeice, P., Olson, K.M., Mobarry, C., de Fainchtein, R., and Packer, C. (2000).
PARAMESH: a parallel adaptive mesh refinement community toolkit. Comput.
Phys. Commun., 126: 330–354.

Marella, S., Krishnan, S., Liu, H., and Udaykumar, H.S. (2005). Sharp interface
Cartesian grid method I: an easily implemented technique for 3D moving bound-
ary computations. J. Comput. Phys., 214: 1–31.

Marmottant, P. and Villermaux, E. (2001). Ligament mediated drop formation.
Phys. Fluids, 13: S7.

Marmottant, P. and Villermaux, E. (2002). Atomisation primaire dans les jets coax-
iaux. Combustion (Rev. des Sci. Tech. Combustion), 2: 89–126.

Martin, D.F. (1998). An adaptive cell-centered projection method for the
incompressible Euler equations. PhD thesis, University of California,
Berkeley.

Meiburg, E. and Homsy, G.M. (1988). Nonlinear unstable viscous fingers in Hele–
Shaw flows. II. Numerical simulation. Phys. Fluids, 31: 429.

Melcher, J.R. and Taylor, G.I. (1969). Electrohydrodynamics: a review of the role
of interfacial shear stresses. Annu. Rev. Fluid Mech., 1: 111–146.

310 References

Menchaca-Rocha, A., Huidobro, F., Martinez-Davalos, A., Michaelian, K.,
Perez, A., Rodriguez, V., and Cârjan, N. (2000). Coalescence and fragmenta-
tion of colliding mercury drops. J. Fluid Mech., 346: 291–318.

Miller, G.H. and Colella, P. (2002). A conservative three-dimensional Eulerian
method for coupled solid–fluid shock capturing. J. Comput. Phys., 183: 26–82.

Mitchell, T.M. and Hammitt, F.H. (1973). Asymmetric cavitation bubble collapse.
Trans. ASME, J. Fluids Eng., 95: 29.

Mittal, R. and Iaccarino, G. (2005). Immersed boundary methods. Annu. Rev. Fluid
Mech., 37: 239–261.

Morton, D., Rudman, M., and Jong-Leng, L. (2000). An investigation of the flow
regimes resulting from splashing drops. Phys. Fluids, 12(4): 747–763.

Mukherjee, A. and Dhir, V.K. (2004). Study of lateral merger of vapor bubbles
during nucleate pool boiling. J. Heat Transfer, 126: 1023–1039.

Mukherjee, A. and Kandlikar, S.G. (2007). Numerical study of single bubbles with
dynamic contact angle during nucleate pool boiling. Int. J. Heat Mass Transfer,
50: 127–138.

Muradoglu, M. and Kayaalp, A.D. (2006). An auxiliary grid method for com-
putations of multiphase flows in complex geometries. J. Comput. Phys., 214:
858–877.

Muradoglu, M. and Tryggvason, G. (2008). A front-tracking method for com-
putation of interfacial flows with soluble surfactants. J. Comput. Phys., 227:
2238–2262.

Nakamura, T. and Yabe, T. (1999). Cubic interpolated propagation scheme for
solving the hyper-dimensional Vlasov–Poisson equation in phase space. Com-
put. Phys. Commun., 120: 122.

Nas, S. and Tryggvason, G. (2003). Thermocapillary interaction of two bubbles or
drops. Int. J. Multiphase Flow, 29: 1117–1135.

Nas, S., Muradoglu, M., and Tryggvason, G. (2006). Pattern formation of drops in
thermocapillary migration. Int. J. Heat Mass Transfer, 49: 2265–2276.

Navier, C.L. (1823). Sur les lois du mouvement des fluides. Mém. Acado. Sci.
France, 6: 389–440 (appeared in 1827).

Nestler, B. (2005). A 3D parallel simulator for crystal growth and solidification in
complex alloy systems. J. Cryst. Growth, 275: 273–278.

Nie, X.B., Chen, S.Y., E, W.N., and Robbins, M.O. (2004). A continuum and
molecular dynamics hybrid method for micro-and nano-fluid flow. J. Fluid
Mech., 500: 55–64.

Nikolopoulos, N., Theodorakakos, A., and Bergeles, G. (2007). Three-dimensional
numerical investigation of a droplet impinging normally onto a wall film. J.
Comput. Phys., 227: 1428–1469.

References 311

Nobari, M.R. and Tryggvason, G. (1996). Numerical simulations of three-
dimensional drop collisions. AIAA J., 34: 750–755.

Nobari, M.R., Jan, Y.-J., and Tryggvason, G. (1996). Head-on collision of drops –
a numerical investigation. Phys. Fluids, 8: 29–42.

Noh, W.F. and Woodward, P. (1976). SLIC (simple line interface calculation). In
Proceedings, Fifth International Conference on Fluid Dynamics (eds. A.I. van
de Vooren and P.J. Zandbergen), Lecture Notes in Physics, volume 59. Berlin,
Springer, Berlin, pp. 330–340.

Nordmark, H.O. (1991). High-order vortex methods with regridding. J. Comput.
Phys., 97: 366.

Oguz, H. and Prosperetti, A. (1990). Bubble entrainment by the impact of drops
on liquid surfaces. J. Fluid Mech., 219: 143–179.

Oguz, H. and Prosperetti, A. (1993). Dynamics of bubble growth and detachment
from a needle. J. Fluid Mech., 257: 111–145.

O’Keefe, J.D. and Ahrens, T.J. (1986). Oblique impact: a process for obtaining
meteorite samples from other planets. Science, 234(4774): 346.

Oran, E.S. and Boris, J.P. (1987). Numerical Simulation of Reactive Flow. Elsevier.
Oron, A., Davis, S.H., and Bankoff, S.G. (1997). Long-scale evolution of thin

films. Rev. Mod. Phys., 69: 931–980.
Osher, S. and Fedkiw, R. (2002). Level Set Methods and Dynamic Implicit Sur-

faces. Springer.
Osher, S. and Fedkiw, R.P. (2001). Level set methods: an overview and some

recent results. J. Comput. Phys., 169: 463–502.
Osher, S. and Sethian, J. (1988). Fronts propagating with curvature-dependent

speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys.,
79: 12–49.

Osher, S. and Shu, C.-W. (1991). High-order essentially nonsocillatory schemes
for Hamilton–Jacobi equations. SIAM J. Numer. Anal., 28: 907–922.

Pan, T.W., Joseph, D.D., Bai, R., Glowinski, R., and Sarin, V. (2002). Fluidization
of 1204 spheres: simulation and experiment. J. Fluid Mech., 451: 169–191.

Pasandideh-Fard, M., Chandra, S., and Mostaghimi, J. (2002). A three-dimensional
model of droplet impact and solidification. Int. J. Heat Mass Transfer, 45: 2229–
2242.

Patankar, S.V. (1980). Numerical Heat Transfer and Fluid Flow. Taylor and
Francis.

Peng, D., Merriman, B., Zhao, H., Osher, S., and Kang, M. (1999). A PDE based
fast local level set method. J. Comput. Phys., 155: 410–438.

Peregrine, D.H., Shoker, G., and Symon, A. (1990). The bifurcation of liquid
bridges. J. Fluid. Mech., 212: 25–39.

312 References

Peskin, C.S. (1977). Numerical analysis of blood flow in the heart. J. Comput.
Phys., 25: 220.

Peskin, C.S. (2002). The immersed boundary method. Acta Numer., 11: 479–517.
Peskin, C.S. and McQueen, D.M. (1989). A three-dimensional computational

method for blood flow in the heart I. Immersed elastic fibers in a viscous in-
compressible fluid. J. Comput. Phys., 81: 372–405.

Peskin, C.S. and Printz, B.F. (1993). Improved volume conservation in the compu-
tation of flows with immersed boundaries. J. Comput. Phys., 105: 33–46.

Pilliod, J.E., Jr. and Puckett, E.G. (2004). Second-order accurate volume-of-fluid
algorithms for tracking material interfaces. J. Comput. Phys., 199: 465–502.

Plapp, M. (2007). Three-dimensional phase-field simulations of directional solidi-
fication. J. Cryst. Growth, 303: 49–57.

Plateau, J. (1873). Statique Expérimentale et Théorique des Liquide. Gauthier-
Villars.

Pomeau, Y. (2002). Recent progress in contact line dynamics: a review. C. R.
Acad. Sci. Paris, Sér. IIb, (Paris). Méc., 330: 207–222.

Popinet, S. (2003). Gerris: a tree-based adaptive solver for the incompressible
Euler equations in complex geometries. J. Comput. Phys., 190: 572–600.

Popinet, S. (2008). The Gerris flow solver. http://gfs.sf.net.
Popinet, S. (2009). An accurate adaptive solver for surface-tension-driven interfa-

cial flows. J. Comput. Phys., 228: 5838–5866.
Popinet, S. and Zaleski, S. (1999). A front-tracking algorithm for accurate repre-

sentation of surface tension. Int. J. Numer. Methods Fluids, 30: 775–793.
Popinet, S. and Zaleski, S. (2002). Bubble collapse near a solid boundary: a nu-

merical study of the influence of viscosity. J. Fluid Mech., 464: 137–163.
Pöschel, T. and Schwage, T. (2005). Computational Granular Dynamics: Models

and Algorithms. Springer.
Powell, K. (1998). Solution of the Euler equations on solution-adaptive Carte-

sian grids. In Computational Fluid Dynamics Reviews, (eds. M. Hafez, and K.
Oshima), volume 1. World Scientific, pp. 65–92.

Pozrikidis, C. (1992). Integral and Singularity Methods for Linearized Viscous
Flow. Cambridge University Press.

Pozrikidis, C. (2001). Interfacial dynamics for Stokes flow. J. Comput. Phys., 169:
250–301.

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. (1993). Numeri-
cal Recipes in C: The Art of Scientific Computing. Cambridge University Press.

Prosperetti, A. (1981). Motion of two superposed viscous fluids. Phys. Fluids, 24:
1217–1223.

Prosperetti, A. (2007). Averaged Equations for Multiphase Flow. Cambridge Uni-
versity Press, pp. 237–281.

References 313

Prosperetti, A. and Og̃uz, H.N. (1993). The impact of drops on liquid surfaces and
the underwater noise of rain. Annu. Rev. Fluid Mech., 25: 577–602.

Prosperetti, A. and Tryggvason, G. (2007). Computational Methods for Multiphase
Flow. Cambridge University Press.

Puckett, E.G. (1991). A volume-of-fluid interface tracking algorithm with applica-
tions to computing shock wave refraction. In Proceedings of the 4th Int. Symp.
on Computational Fluid Dynamics, Davis, CA (ed. H. Dwyer) pp. 933–938.

Puckett, E.G., Almgren, A.S., Bell, J.B., Marcus, D.L., and Rider, W.J. (1997).
A high-order projection method for tracking fluid interfaces in variable density
incompressible flows. J. Comput. Phys., 130: 269–282.

Pumphrey, H.C. and Elmore, P.A. (1990). The entrainment of bubbles by drop
impacts. J. Fluid Mech., 220: 539–567.

Purvis, R. and Smith, F.T. (2005). Droplet impact on water layers: post-impact
analysis and computations. Phil. Trans. R. Soc. A, 363: 1209–1221.

Quirk, J.J. (1994). An alternative to unstructured grids for computing gas dynamic
flows around arbitrarily complex two-dimensional bodies. Comput. Fluids, 23:
125–142.

Radl, S., Koynov, A., Tryggvason, G., and Khinast, J.G. (2008). DNS-based
prediction of the selectivity of fast multiphase reactions: hydrogenation of ni-
troarenes. Chem. Eng. Sci., 63: 3279–3291.

Rallison, J.M. and Acrivos, A. (1978). A numerical study of the deformation and
burst of a viscous drop in an extensional flow. J. Fluid Mech., 89: 191–200.

Ranade, V. (2001). Computational Flow Modeling for Chemical Reactor Engi-
neering. Academic Press.

Rayleigh, J.W. Strutt, Baron. (1879). On the capillary phenomena of jets. Proc. R.
Soc. London, 29: 71–97.

Rayleigh, J.W. Strutt, Baron. (1900). Scientific Papers. Cambridge University
Press.

Raynal, L. (1997). PhD thesis, Universite Joseph Fourier, Grenoble.
Rein, M. (1993). Phenomena of liquid drop impact on solid and liquid surfaces.

Fluid Dyn. Res., 12(2): 61–93.
Renardy, Y. and Renardy, M. (2002). PROST: a parabolic reconstruction of surface

tension for the volume-of-fluid method. J. Comput. Phys., 183: 400–421.
Rhie, C.M. and Chow, W.L. (1983). Numerical study of the turbulent flow past an

airfoil with trailing edge separation. AIAA J., 21(11): 1525–1532.
Richtmyer, R.D. and Morton, K.W. (1967). Difference Methods for Initial Value

Problems. Interscience, New York.
Richtmyer, R.D. (1960). Taylor instability in shock acceleration of compressible

fluids. Commun. Pure Appl. Math., 13: 297–319.

314 References

Rider, W.J. and Kothe, D.B. (1998). Reconstructing volume tracking. J. Comput.
Phys., 141: 112–152.

Rieber, M. and Frohn, A. (1999). A numerical study on the mechanism of splash-
ing. Int. J. Heat Fluid Flow, 20(5): 455–461.

Rioboo, R., Bauthier, C., Conti, J., Voué, M., and De Coninck, J. (2003). Exper-
imental investigation of splash and crown formation during single drop impact
on wetted surfaces. Exp. Fluids, 35(6): 648–652.

Robinson, P.B., Blake, J.R., Kodama, T., Shima, A., and Tomita, Y. (2001). Interac-
tion of cavitation bubbles with a free surface. J. Appl. Phys., 89(12): 8225–8237.

Roisman, I.V., Rioboo, R., and Tropea, C. (2002). Normal impact of a liquid drop
on a dry surface: model for spreading and receding. Proc. R. Soc. Lond. Ser. A,
458(2022): 1411–1430.

Roisman, I.V., Horvat, K., and Tropea, C. (2006). Spray impact: rim transverse
instability initiating fingering and splash, and description of a secondary spray.
Phys. Fluids, 18(10): 102104–102104.

Rothman, D.H. and Zaleski, S. (1997). Lattice-Gas Cellular Automata: Simple
Models of Complex Hydrodynamics. Cambridge University Press.

Rudman, M. (1997). Volume-tracking methods for interfacial flow calculations.
Int. J. Numer. Methods Fluids, 24: 671–691.

Rybczynski, W. (1911). Über die fortschreitende Bewegung einer flüssigen Kugel
in einem zähen Medium. Bull. Acad. Sci. Crac., A: 40–46.

Ryskin, G. and Leal, L.G. (1984). Numerical solution of free-boundary problems
in fluid mechanics. Part 2. Buoyancy-driven motion of a gas bubble through a
quiescent liquid. J. Fluid Mech., 148: 19–35.

Saiki, E.M. and Biringen, S. (1996). Numerical simulation of a cylinder in uniform
flow: application of a virtual boundary method. J. Comput. Phys., 123: 450–465.

Sainsbury, G.L. and Cheeseman, I.C. (1950). Effect of rain in calming the sea.
Nature, 166(4210): 79.

Sangani, A.S. and Didwania, A.K. (1993). Dynamic simulations of flows of bubbly
liquids at large Reynolds numbers. J. Fluid Mech., 250: 307–337.

Sankaranarayanan, K., Shan, X., Kevrekidis, I.G., and Sundaresan, S. (2002).
Analysis of drag and virtual mass forces in bubbly suspensions using an implicit
formulation of the lattice Boltzmann method. J. Fluid Mech., 452: 61–96.

Sankaranarayanan, K., Kevrekidis, I.G., Sundaresan, S., Lu, J., and Tryggvason, G.
(2003). A comparative study of lattice Boltzmann and front-tracking finite-
difference methods for bubble simulations. Int. J. Multiphase Flow, 29: 109–
116.

Saville, D.A. (1997). Electrohydrodynamics: the Taylor–Melcher leaky dielectric
model. Annu. Rev. Fluid Mech., 29: 27–64.

References 315

Scardovelli, R. and Zaleski, S. (2000). Analytical relations connection linear inter-
faces and volume fractions in rectangular grids. J. Comput. Phys., 164: 228–237.

Scardovelli, R. and Zaleski, S. (2003). Interface reconstruction with least-square
fit and split Lagrangian–Eulerian advection. Int J. Numer. Methods Fluids, 41:
251–274.

Schlick, T. (2002). Molecular Modeling and Simulation. Springer.
Schmidt, A. (1996). Computations of three dimensional dendrites with finite ele-

ments. J. Comput. Phys., 126: 293–312.
Schultz, W.W., Huh, J., and Griffin, O.M. (1994). Potential-energy in steep and

breaking waves. J. Fluid Mech, 278: 201–228.
Scriven, L.E. (1960). The Marangoni effects. Chem. Eng. Sci., 12: 98–108.
Serizawa, A., Kataoka, I., and Michiyoshi, I. (1975a). Turbulence structure of air–

water bubbly flow – II. Local properties. Int. J. Multiphase Flow, 2: 235–246.
Serizawa, A., Kataoka, I., and Michiyoshi, I. (1975b). Turbulence structure of

air–water bubbly flow – III. Transport properties. Int. J. Multiphase Flow, 2:
247–259.

Sethian, J.A. (2001). Evolution, implementation, and application of level set and
fast marching methods for advancing fronts. J. Comput. Phys., 169: 503–555.

Sethian, J.A. and Strain, J. (1992). Crystal growth and dendritic solidification. J.
Comput. Phys., 98: 231–253.

Shan, X.W. and Chen, H.D. (1993). Lattice Boltzmann model for simulationg flows
with multiple phases and components. Phys. Rev. E, 47: 1815–1819.

Shikmurzaev, Y.D. (1997). Moving contact lines in liquid/liquid/solid systems. J.
Fluid Mech., 334: 211–249.

Shin, S. and Juric, D. (2002). Modeling three-dimensional multiphase flow using
a level contour reconstruction method for front tracking without connectivity. J.
Comput. Phys, 180: 427–470.

Shin, S., Abdel-Khalik, S.I., Daru, V., and Juric, D. (2005a). Accurate representa-
tion of surface tension using the level contour reconstruction method. J. Comput.
Phys., 203: 493–516.

Shin, S., Abdel-Khalik, S.I., and Juric, D. (2005b). Direct three-dimensional nu-
merical simulation of nucleate boiling using the level contour reconstruction
method. Int. J. Multiphase Flow, 31: 1231–1242.

Shin, S.W. and Juric, D. (2000). Computation of microstructure in solidification
with fluid convection. J. Mech. Behav. Mater., 11: 313.

Shopov, P.J., Minev, P.D., Bazhekov, I.B., and Zapryanov, Z.D. (1990). Interaction
of a deformable bubble with a rigid wall at moderate Reynolds numbers. J. Fluid
Mech., 219: 241–271.

Shu, C.W. and Osher, S. (1989). Efficient implementation of essentially non-
oscillatory shock capturing schemes, II. J. Comput. Phys., 83: 32–78.

316 References

Shyy, W. and Rao, M.M. (1994). Enthalpy based formulations for phase-change
problems with application to g-jitter. Microgravity Sci. Technol., 7: 41–49.

Shyy, W., Udaykumar, H.S., Rao, M., and Smith, R. (1996). Computational Fluid
Dynamics with Moving Boundaries. Taylor and Francis.

Smereka, P. (1993). On the motion of bubbles in a periodic box. J. Fluid Mech.,
254: 79–112.

So, S., Morikita, H., Takagi, S., and Matsumoto, Y. (2002). Laser doppler ve-
locimetry measurement of turbulent bubbly channel flow. Exp. Fluids, 33: 135–
142.

Son, G. and Dhir, V.K. (1997). Numerical simulation of saturated film boiling on
a horizontal surface. J. Heat Transfer, 119: 525–533.

Son, G. and Dhir, V.K. (1998). Numerical simulation of film boiling near critical
pressures with a level set method. J. Heat Transfer, 120: 183–192.

Son, G., Dhir, V.K., and Ramanujapu, N. (1999). Dynamics and heat transfer
associated with a single bubble during nucleate boiling on a horizontal surface.
J. Heat Transfer, 121: 623–631.

Son, G., Ramanujapu, N., and Dhir, V.K. (2002). Numerical simulation of bubble
merger process on a single nucleation site during pool nucleate boiling. ASME
J. Heat Transfer, 124: 51–62.

Song, M. and Tryggvason, G. (1999). The formation of a thick border on an ini-
tially stationary fluid sheet. Phys. Fluids, 11: 2487–2493.

Song, Q., Luo, R., Yang, X.Y., and Wang, Z. (2001). Phase distributions for upward
laminar dilute bubbly flows with non-uniform bubble sizes in a vertical pipe. Int.
J. Multiphase Flow, 27: 379–390.

Stow, C.D. and Hadfield, M.G. (1981). An experimental investigation of fluid flow
resulting from the impact of a water drop with an unyielding dry surface. Proc.
R. Soc. Lond. Ser. A, 373(1755): 419–441.

Subramanian, R.S. and Balasubramaniam, R. (2001). The Motion of Bubbles and
Drops in Reduced Gravity. Cambridge University Press.

Sussman, M. (2003). A second order coupled level set and volume-of-fluid method
for computing growth and collapse of vapor bubbles. J. Comput. Phys., 187:
110–136.

Sussman, M. and Fatemi, E. (1999). An efficient, interface preserving level set re-
distancing algorithm and its application to interfacial incompressible fluid flow.
SIAM J. Sci. Comput., 20(4): 1165–1191.

Sussman, M. and Puckett, E.G. (2000). A coupled level set and volume-of-fluid
method for computing 3D and axisymmetric incompressible two-phase flows. J.
Comput. Phys., 162: 301–337.

Sussman, M. and Smereka, P. (1997). Axisymmetric free boundary problems. J.
Fluid Mech., 341: 269–294.

References 317

Sussman, M., Smereka, P., and Osher, S. (1994). A level set approach for com-
puting solutions to incompressible two-phase flows. J. Comput. Phys., 114:
146–159.

Sussman, M., Fatemi, E., Smereka, P., and Osher, S. (1998). An improved level set
method for incompressible two-phase flows. Comput. Fluids, 27: 663–680.

Sussman, M., Almgren, A.S., Bell, J.B., Colella, P., Howell, L.H., and Welcome,
M.L. (1999). An adaptive level set approach for incompressible two-phase flows.
J. Comput. Phys., 148: 81–124.

Swaminathan, C.R. and Voller, V.R. (1993). On the enthalpy method. Int. J. Numer.
Methods Heat Fluid Flow, 3: 233–244.

Swarztrauber, P.N. and Sweet, R.A. (1979). Algorithm 541: efficient Fortran sub-
programs for the solution of separable elliptic partial differential equations [D3].
ACM Trans. Math. Software, 5(3): 352–364.

Sweby, P.K. (1984). High-resolution schemes using flux limiters for hyperbolic
conservation-laws. SIAM J. Numer. Anal., 21: 995–1011.

Takada, N., Misawa, M., Tomiyama, A., and Hosokawai, S. (2001). Simulation of
bubble motion under gravity by lattice Boltzmann method. J. Nucl. Sci. Technol.,
38: 330–341.

Takagi, S., Matsumoto, Y., and Huang, H. (1997). Numerical analysis of a single
rising bubble using boundary-fitted coordinate system. JSME Int. J., Ser. B, 40:
42–50.

Takahira, H., Horiuchi, T., and Banerjee, S. (2004). An improved three-
dimensional level set method for gas–liquid two-phase flows. J. Fluids Eng.,
126: 578.

Takewaki, H. and Yabe, T. (1987). The cubic-interpolated pseudo particle (CIP)
method: application to nonlinear and multi-dimensional hyperbolic equations.
J. Comput. Phys., 70: 355–372.

Takewaki, H., Nishiguchi, A., and Yabe, T. (1985). Cubic interpolated pseudo-
particle method (CIP) for solving hyperbolic-type equations. J. Comput. Phys.,
61: 261–268.

Tan, L. and Zabaras, N. (2007). A level set simulation of dendritic solidification of
multi-component alloys. J. Comput. Phys., 221: 9–40.

Tasoglu, S., Demirci, U., and Muradoglu, M. (2008). The effect of soluble sur-
factant on the transient motion of a buoyancy-driven bubble. Phys. Fluids, 20:
040805.

Taylor, G.I. (1963). Generation of Ripples by Wind Blowing over a Viscous Liquid.
Cambridge University Press, Cambridge, UK, pp. 244–254.

Taylor, G.I. (1966). Studies in electrohydrodynamics. I. The circulation produced
in a drop by electrical field. Proc. R. Soc. Lond. Ser. A, 291: 159–166.

318 References

Thompson, J.F., Soni, B.K., and Weatherill, N.P. (1998). Handbook of Grid Gen-
eration. CRC Press.

Thomson, J.J. and Newall, H.F. (1885). On the formation of vortex rings by drops
falling into liquids, and some allied phenomena. Proc. R. Soc. Lond., 39: 417–
436.

Thoroddsen, S.T. (2002). The ejecta sheet generated by the impact of a drop. J.
Fluid Mech., 451: 373–381.

Tomar, G., Biswas, G., Sharma, A., and Agrawal, A. (2005). Numerical simulation
of bubble growth in film boiling using a coupled level-set and volume-of-fluid
method. Phys. Fluids, 17: 112103.

Tomar, G., Gerlach, D., Biswas, G., Alleborn, N., Sharma, A., Durst, F., S.W.J.
Welch, and Delgado, A. (2007). Two-phase electrohydrodynamic simulations
using a volume-of-fluid approach. J. Comput. Phys., 227: 1267–1285.

Tomar, G., Biswas, G., Sharma, A., and Welch, S.W.J. (2008). Multi-mode analysis
of bubble growth in saturated film boiling. Phys. Fluids, 20: 092101.

Tomar, G., Biswas, G., Sharma, A., and Welch, S.W.J. (2009). Influence of electric
field on saturated film boiling. Phys. Fluids, 21: 032107.

Tomar, G., Fuster, D., Zaleski, S., and Popinet, S. (2010). Multiscale simulations
of primary atomization using Gerris. Comput. Fluids, 39(10): 1864–1874.

Tomiyama, A., Zun, I., Sou, A., and Sakaguchi, T. (1993). Numerical analysis of
bubble motion with the VOF method. Nucl. Eng. Des., 141: 69–82.

Tomiyama, A., Tamai, H., Zun, I., and Hosokawa, S. (2002). Transverse migration
of single bubbles in simple shear flows. Chem. Eng. Sci., 57: 1849–1858.

Tonhardt, R. and Amberg, G. (1998). Phase-field simulations of dendritic growth
in a shear flow. J. Cryst. Growth, 194: 406–425.

Torres, D.J and Trujillo, M.F. (2006). KIVA-4: an unstructured ALE code for
compressible gas flow with sprays. J. Comput. Phys., 219(2): 943–975.

Tryggvason, G. and Aref, H. (1983). Numerical experiments on Hele–Shaw flow
with a sharp interface. J. Fluid Mech., 136: 1–30.

Tryggvason, G. and Aref, H. (1985). Finger interaction mechanisms in stratified
Hele–Shaw flow. J. Fluid Mech., 154: 284–301.

Tsimplis, M. and Thorpe, S.A. (1989). Wave damping by rain. Nature, 342(6252):
893–895.

Udaykumar, H.S., Kan, H.C., Shyy, W., and Tran-Son-Tay, R. (1997). Multiphase
dynamics in arbitrary geometries on fixed Cartesian grids. J. Comput. Phys.,
137: 366–405.

Udaykumar, H.S., Mittal, R., and Shyy, W. (1999). Computation of solid–liquid
phase fronts in the sharp interface limit on fixed grids. J. Comput. Phys., 153:
535–574.

References 319

Udaykumar, H.S., Mittal, R., Rampunggoon, P., and Khanna, A. (2001). A sharp
interface Cartesian grid method for simulating flows with complex moving
boundaries. J. Comput. Phys., 174: 345–380.

Ungar, L.H. and Brown, R.A. (1985). Cellular interface morphologies in direc-
tional solidification. IV. The formation of deep cells. Phys. Rev. B, 31: 5931–
5940.

Unverdi, S.O. and Tryggvason, G. (1992). A front-tracking method for viscous,
incompressible, multi-fluid flows. J. Comput. Phys., 100: 25–37.

van der Vorst, H.A. (1992). Bi-CGSTAB: a fast and smoothly converging variant
of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat.
Comput., 13: 631.

van der Vorst, H.A. (2003). Iterative Krylov Methods for Large Linear Systems.
Cambridge University Press.

van Leer, B. (1979). Towards the ultimate conservative difference scheme. V. A
second-order sequel to Godunov’s method. J. Comput. Phys., 32: 101–136.

van Sint Annaland, M., Dijkhuizen, W., Deen, N.G., and Kuipers, J.A.M. (2006).
Numerical simulation of gas bubbles behaviour using a 3D front tracking
method. AIChE J., 52: 99–110.

Verschueren, M., van de Vosse, F.N., and Meijer, H.E.H. (2001). Diffuse-interface
modelling of thermo-capillary flow instabilities in a Hele–Shaw cell. J. Fluid
Mech., 434: 153–166.

Viecelli, J.A. (1969). A method for including arbitrary external boundaries in the
MAC incompressible fluid computing technique. J. Comput. Phys., 4: 543–551.

Villermaux, E. (1998). On the role of viscosity in shear instabilities. Phys. Fluids,
10(2): 368–373.

Villermaux, E. and Clanet, C. (2002). Life of a flapping liquid sheet. J. Fluid
Mech., 462: 341–363.

Villermaux, E., Marmottant, Ph., and Duplat, J. (2004). Ligament-mediated spray
formation. Phys. Rev. Lett., 92(7): 074501.

Vinje, T. and Brevig, P. (1981). Numerical simulations of breaking waves. Adv.
Water Resources, 4: 77–82.

Wang, S.K., Lee, S.J., Jones, O.C., Jr. and Lahey, R.T. Jr. (1987). 3-D turbulence
structure and phase distribution in bubbly two-phase flows. Int. J. Multiphase
Flow, 13: 327–343.

Wang, Y., Lu, X., Zhuang, L., Tang, Z., and Hu, W. (2004). Numerical simulation
of drop Marangoni migration under microgravity. Acta Astronaut., 54: 325–335.

Wanga, J., Lua, P., Wanga, Z., Chao, C., and Maoa, Z.-S. (2008). Numerical sim-
ulation of unsteady mass transfer by the level set method. Chem. Eng. Sci., 63:
3141–3151.

320 References

Weatherburn, C.E. (1927). Differential Geometry of Three Dimensions, Vol. I.
Cambridge University Press, Cambridge.

Welch, S.W.J. (1995). Local simulation of two-phase flows including interface
tracking with mass transfer. J. Comput. Phys., 121: 142–154.

Welch, S.W.J. and Biswas, G. (2007). Direct simulation of film boiling including
electrohydrodynamic forces. Phys. Fluids, 19: 012106.

Welch, S.W.J. and Wilson, J. (2000). A volume of fluid based method for fluid
flows with phase change. J. Comput. Phys., 160: 662–682.

Werder, T., Walther, J.H., and Koumoutsakos, P. (2005). Hybrid atomistic-
continuum method for the simulation of dense fluid flow. J. Comput. Phys.,
205: 373–390.

Wesseling, P. (1992). An Introduction to Multigrid Methods. Wiley, New York.
Wesseling, P. (2001). Principles of Computational Fluid Dynamics. Springer-

Verlag Berlin.
Wheeler, A.A., Murray, B.T., and Schaefer, R.J. (1993). Computations of dendrites

using a phase-field model. Phys. D, 66: 243–262.
Wheeler, A.A., Ahmad, N.A., Boettinger, W.J., Braun, R.J., McFadden, G.B., and

Murray, B.T. (1995). Recent development in phase-field models of solidification.
Adv. Space Res., 16: 163–172.

Worthington, A.M. (1908). A Study of Splashes. Longmans, Green and Co.,
London.

Xue, M., Xu, H.B., Liu, Y.M., and Yue, D.K.P. (2001). Computations of fully
nonlinear three-dimensional wave–wave and wave–body interactions. Part 1.
Dynamics of steep three-dimensional waves. J. Fluid Mech., 438: 11–39.

Yabe, T., Xiao, F., and Utsumi, T. (2001). The constrained interpolation profile
(CIP) method for multi-phase analysis. J. Comput. Phys., 169: 556–593.

Yanenko, N.N. (1971). The Method of Fractional Steps for Solving Multidimen-
sional Problems of Mathematical Physics in Several Variables. Springer-Verlag,
Berlin.

Yang, C. and Maoa, Z.-S. (2005). Numerical simulation of interphase mass transfer
with the level set approach. Chem. Eng. Sci., 60: 2643–2660.

Yang, X., Feng, J.J., Liu, C., and Shen, J. (2006a). Numerical simulations of
jet pinching-off and drop formation using an energetic variational phase-field
method. J. Comput. Phys., 218(1): 417–428.

Yang, X., James, A.J., Lowengrub, J., Zheng, X., and Cristini, V. (2006b). An
adaptive coupled level-set/volume-of-fluid interface capturing method for un-
structured triangular grids. J. Comput. Phys., 217: 364–394.

Yang, Y. and Udaykumar, H.S. (2005). Sharp interface Cartesian grid method III:
solidification of pure materials and binary solutions. J. Comput. Phys., 210:
55–74.

References 321

Yarin, A.L. (2006). Drop impact dynamics: splashing, spreading, receding, bounc-
ing. Annu. Rev. Fluid Mech., 38: 159–192.

Yarin, A.L. and Weiss, D.A. (1995). Impact of drops on solid surfaces: self-similar
capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid
Mech., 283: 141–173.

Yecko, P. and Zaleski, S. (2005). Transient growth in two-phase mixing layers. J.
Fluid Mech., 528: 43–52.

Yecko, P., Zaleski, S., and Fullana, J.-M. (2002). Viscous modes in two-phase
mixing layers. Phys.Fluids, 14: 4115–4122.

Youngren, G.K. and Acrivos, A. (1976). On the shape of a gas bubble in a viscous
extensional flow. J. Fluid Mech., 76: 433.

Youngs, D.L. (1982). Time dependent multimaterial flow with large fluid distor-
tion. In Numerical Methods for Fluid Dynamics (eds. K.M. Morton and M.J.
Baines) Academic Press, New York, pp. 27–39.

Youngs, D.L. (1984). An interface tracking method for a 3D Eulerian hydrody-
namics code. Technical report, AWRE. Technical Report 44/92/35.

Yu, D. and Tryggvason, G. (1990). The free surface signature of unsteady, two-
dimensional vortex flows. J. Fluid Mech., 218: 547–572.

Yu, P.-W., Ceccio, S.L., and Tryggvason, G. (1995). The collapse of a cavitation
bubble in shear flows – a numerical study. Phys. Fluids, 7: 2608–2616.

Zaleski, S., Zanetti, G., Scardovelli, R., et al. (1992–2008). SURFER code. The
code is covered by the GNU Public Licence and may be downloaded from
http://www.lmm.jussieu.fr/∼zaleski.

Zeff, B.W., Kleber, B., Fineberg, J., and Lathrop, D.P. (2000). Singularity dynamics
in curvature collapse and jet eruption on a fluid surface. Nature, 403: 401–404.

Zenit, R., Koch, D.L., and Sangani, A.S. (2001). Measurements of the average
properties of a suspension of bubbles rising in a vertical channel. J. Fluid Mech.,
429: 307–342.

Zhang, D.Z. and Prosperetti, A. (1994). Ensemble phase-averaged equations for
bubbly flows. Phys. Fluids, 6: 2956–2970.

Zhang, J., Eckmann, D.M., and Ayyaswamy, P.S. (2006). A front tracking method
for a deformable intravascular bubble in a tube with soluble surfactant transport.
J. Comput. Phys., 214: 366–396.

Zhou, H. and Pozrikidis, C. (1993). The flow of ordered and random suspensions
of two-dimensional drops in a channel. J. Fluid Mech., 255: 103–127.

Zinchenko, A.Z. and Davis, R.H. (2000). An efficient algorithm for hydrodynami-
cal interaction of many deformable drops. J. Comput. Phys, 157: 539–587.

Index

added mass, 203
advection term

definition, 51
discretization, 59, 61

AMR (adaptive mesh refinement), 19, 22, 71, 72, 225,
227, 232

analytical solutions, 1, 180, 181, 198, 201, 214, 285,
287, 292

atomization, 3, 4, 19, 72, 204, 205, 211, 212, 214,
215, 219, 222, 226, 228

co-flowing, 4, 215
effect of nozzle, 214, 219, 222, 223

bad elements
in front tracking, 145

Berenson’s correlation, 252
Bi-Conjugate Gradient STABilized method, 68
BiCGSTAB method, 68
boiling, 248

pool, 251
convection, 249
film, 248, 249, 251, 252
flow, 249
nucleate, 254
pool, 249

Bond number, 43
boundary condition, 29, 30, 37, 40, 50, 67, 69, 71,

141, 189
for free surface, 40
no slip, 37, 69
outflow, 29, 30, 66, 70
partial slip, 47
periodic, 30, 71, 146, 189, 191, 195, 219

boundary integral method, 8–11
breakup of droplet

in linear shear flow, 9, 10
under impact or collision, 228, 230

breakup of rim, 205, 210, 211
breakup of thin threads, 158, 206–208
bubble columns, 19, 187
bubbles

rising, 2, 4, 179, 189, 193, 196
small, 203

bubbly flows
homogeneous, 189–191

buoyancy, 203

capillary number, 43
CFL (Courant, Friedrichs, and Lewy) condition, 53,

54, 109
CFL number in VOF method, 109, 123–125
CIP (constrained interpolated propagation) method,

14, 75, 77, 91–93
closure relations, 187, 203
CLSVOF (coupled level-set volume-of-fluid) method,

128
coalescence, 8, 158, 159, 230, 232, 233
coherent structures, 223
collocated grid, 56, 58, 73
color function, 76–78, 80, 82, 95–98, 128, 129, 131,

161, 167, 184
combustion, 4, 205, 228
complex physics, 17, 19
craters, 5, 229–231, 233–235
crown splash, see droplet impact
CSF (continuous surface force) method, 13, 14, 161,

162
CSS (continuous surface stress) method, 161,

164–166, 169, 177–179, 181
curvature

computed from height function, 184–186, 271
computing in front tracking, 169–171, 175, 176
computing in VOF, 163, 164, 167, 168, 184–186
definition, 32
expression for, 34, 35, 276
Gauss, 274
in axisymmetric geometry, 275
mean

definition, 33, 34, 169, 273, 274, 277
total, 274

data structure
in front tracking, 85, 86, 133, 134

dendrites, 264, 265
dendritic structure, 6, 264
density ratio, 202

322

Index 323

disjoining pressure, 44, 45, 48
DNS (direct numerical simulation), 2, 3, 18, 19, 188,

195, 201, 203, 251
drafting, kissing, and tumbling, 18, 192
drop, see droplet
droplet formation, 213, 215, 225
droplet impact

corolla, 213, 235, 236, 238–242
crown splash, 232, 235, 240–242
jet formation, 236
prompt splash, 240

Eötvös number, 43, 188
small, 203

electrohydrodynamics, 244
energy conservation, 25
ENO (essentially non-oscillating) scheme, 60, 61, 88

Fantasia (Disney animation), 229
Faraday waves, 234
Finite-volume method, 26, 50, 55, 86
fishbone patterns, 226
floatsam and jetsam, 12, 83, 116
flux-corrected transport method, 80
Fourier’s law, 26
free surface, 1, 8, 11

boundary condition at, 40, 45
bubble bursting at, 204, 234, 235

front capturing method, 91
front-grid communications, 145–148

weighting functions, 148
front-tracking volume-of-fluid method, 129
Froude number, 44

Galileo number, 43, 188
gas–liquid flows, 1, 6, 189, 291
Gerris code, 61
Gibbs–Thompson condition, 263
GMRES method, 68
Godunov method, 80
grid generation, 17

H-mode, 219
Hamaker’s constant, 44, 45
heat transfer, 243
Heaviside or step function, 35, 41, 76, 77, 279
height-function method, 179, 181, 184
human aspect, 20
hybrid methods, 128

CLSVOF, see CLSVOF (coupled level-set
volume-of-fluid) method

front-tracking VOF, see front-tracking
volume-of-fluid method

immersed-boundary method, 14, 86, 149
indicator function, 68, 76, 77
industrial applications, 1, 3, 187
inertia, 203
interface

geometrical description, 30, 31, 47, 270
intermolecular forces, 21, 22, 44, 45, 48, 208

jump conditions, 37, 39, 40
jump notation, 38

kinematic singularity, 213
kinematic viscosity, 29
Krylov method, 68

Lagrangian grids, 17
Laplace number, 43
Laplace’s law, 45, 163, 177
large-scale structures

in atomization, 214
in bubbly flows, 192

LBM (lattice–Boltzmann method), 18
level-set method, 14, 15, 75, 86, 87, 89, 90, 96, 128,

175, 232, 264
lift force, 193, 196, 197, 199
linked list, 139–141, 143, 154
liquid fuel, 205
living systems, 1, 6
low Reynolds numbers, 53, 190
lubrication approximation, 206, 207, 210

MAC (marker-and-cell) method, 11–14, 51, 56, 59,
85, 109, 114, 121, 122, 125, 163, 229

marker function, 12–16, 34, 68, 74–77, 80–82, 84,
86–88, 92–94, 97, 115, 133, 139, 150, 152–158,
161, 162, 174, 175

marker particle (in front tracking), 14, 85, 86, 133,
151, 152

marker particle (in volume), 12, 229
mass conservation, 14, 22–24, 26, 28, 37, 41, 89, 90,

97, 112, 123, 136, 143, 206, 249
in VOF, 97, 112, 123

mean curvature, see curvature
microstructure, 6, 20, 188, 262–265
mixing layer, 205, 215, 216, 220, 291

stability theory, 216
Kelvin–Helmholtz, 216, 288
Orr–Sommerfeld, 218
transient-growth theory, 224

momentum conservation, 24
with interfaces, 39

moon craters, 228
central peak, 229

Morton number, 43, 188
multigrid methods, 67
multigrid solvers, 67

Navier–Stokes equations, 11, 21
definition, 25

Newtonian fluids, 22, 26, 28, 29, 40, 42
definition, 24

non-Newtonian fluids, 20
nonuniform surface tension, 244
nucleate boiling, 253
Nusselt number, 252

oceans, 1, 3, 5, 204
Ohnesorge number, 43, 210, 231
one-fluid approach, 15–17, 21, 41, 42, 54, 161

324 Index

PDF (probability distribution functions), 226
phase change, 5, 19, 37–39, 41, 91, 248
phase-field method, 15, 48, 90, 91, 264, 265
Plateau–Rayleigh jet instability (capillary instability),

4, 205, 206, 213, 214, 242
Poisson equation, 52, 64
potential flow

in droplet impact, 237
potential flow simulations

in bubbly flows, 188, 190, 192
pressure equation, 52, 64
pressure solver, 66
projection method, 12, 38, 51–53, 59
PROST (proper representation of surface tension)

method, 165, 166, 179, 181, 183, 184

QUICK (quadratic upstream interpolation for
convective kinematics) scheme, 60, 61

rain, 1, 4, 5, 228
Rayleigh–Taylor instability, 8, 11, 12, 85, 91

in atomization, 224
redistribution

in VOF, 120, 122, 130
of markers in front tracking, 137

reinitialization
in level-set method, 14, 88, 89

Reynolds number, 42
Richtmyer–Meshkov instability

in droplet impact, 241, 242
rim, 205, 209, 210, 212–214

Saffman–Taylor instability, 10
self-similar solutions, 48, 208, 234, 235
sharp interface limit, 15, 16, 21, 22, 34, 37, 42, 44, 73,

80, 81, 91, 93
singular terms, 41
SLIC (simple line interface calculation) method,

82–84, 96, 116
SOR (successive over-relaxation) method, 66–68
spheres

falling, 18
splash, 4, 5, 11, 13, 210, 211, 213, 228, 230, 231, 240

prompt, 240
spray formation, 204
staggered grid (MAC grid), 12, 54, 56–58, 65, 69, 74,

114, 121, 125, 146, 153, 174
step function

approximation in front tracking, 84, 166
surface geometry

curvature, see curvature
principal directions, 274

surface tension, 203
axisymmetry, 168
computed from marker functions, 161–167, 184,

185

computed in front tracking, 168, 169, 171–177
definition, 22, 38
force (definition), 42

surface tension tensor, 38, 39, 164
surfactants

in bubble dynamics, 189
suspensions, 6, 8, 10

Taylor–Culick rim, see rim
thermocapillary motion, 244
thin films, 19, 31, 44, 48, 206–208, 228

splashing on, 235
time integration, 51, 53
topology change, 8, 44, 158, 159, 230, 232, 236

in front tracking, 87, 134, 158, 159
in VOF, 96

unit normal
definition, 31–33

unstructured grids, 18, 85
in front-tracking method, 135, 143
in VOF, 131

viscous terms
discretization, 61, 64
harmonic mean, 63, 64, 221

VOF (volume-of-fluid) method, 12–15, 72, 81, 83, 84,
88–90, 94–98, 103, 124, 128, 129, 150, 161, 163,
165, 166, 169, 175, 182–184, 236, 242, 249

advection, 108
Eulerian implicit, 115, 116
Lagrangian explicit, 115, 116
unsplit, 116

normal evaluation
centered columns method, 100
ELVIRA, 101–104, 107, 108, 123–125, 127, 128
least-squares fit method, 103
Youngs’ method, 99, 103, 104, 107, 108

reconstruction, 12, 83, 84, 95–99, 101, 103, 104,
106–108, 112, 116, 122–129, 183

wisps, 116
volume change, 248, 262, 263
volume expansion, 250, 251
volume fraction

in front tracking, 155
volume source at the interface, 41
vortex-in-a-box test, 123, 125–127, 131, 132, 151,

152

wall layer
in bubbly flow, 196, 201

Weber number, 43
weighted ENO scheme, 128
wetting, 46, 48, 229, 230
wisps, 116
Worthington jet, 229

)b()a(

Fig. 9.12. (a) Typical high-resolution simulation. The colors indicate the vorticity. (b)
Detail of simulation showing the end rim and a “Kelvin–Helmholtz roller” trapped below
the sheet.

Fig. 9.15. The spatial development of an atomizing jet simulated in two dimensions using
SURFER (obtained by Leboissetier (2002)). The color scheme represents the vorticity
levels in the liquid. The vorticity in the gas is masked in the three figures on the left.
A very strong coherent structure is seen in the gas region in the last figure on the right.
Parameters are given in the text.

Fig. 11.2. Results from simulations of the catalytic hydrogenation of nitroarenes. The
hydrogen (frames a and b) and hydroxylamine (frames c and d) concentration profiles
are shown for one time for two simulations. In frames (a) and (c) the reaction rates are
relatively slow, compared with the mass transfer, but in frames (b) and (d) the reaction is
relatively fast. Reprinted from Radl et al. (2008), with permission from Elsevier.

	DIRECT NUMERICAL SIMULATIONS OF GAS–LIQUID MULTIPHASE FLOWS
	Title
	Copyright
	Contents
	Preface
	1 Introduction
	1.1 Examples of multiphase flows
	1.2 Computational modeling
	1.2.1 Simple flows (Re = 0 and Re = ∞)
	1.2.2 Finite Reynolds number flows

	1.3 Looking ahead

	2 Fluid mechanics with interfaces
	2.1 General principles
	2.2 Basic equations
	2.2.1 Mass conservation
	2.2.2 Momentum conservation
	2.2.3 Energy conservation
	2.2.4 Incompressible flow
	2.2.5 Boundary conditions

	2.3 Interfaces: description and definitions
	2.4 Fluid mechanics with interfaces
	2.4.1 Mass conservation and velocity conditions
	2.4.2 Surface tension
	2.4.3 Momentum conservation with interfaces
	2.4.4 Free-surface flow

	2.5 Fluid mechanics with interfaces: the one-fluid formulation
	2.6 Nondimensional numbers
	2.7 Thin films, intermolecular forces, and contact lines
	2.7.1 Disjoining pressure and forces between interfaces
	2.7.2 Contact line statics and dynamics

	2.8 Notes
	2.8.1 Fluid and interface mechanics
	2.8.2 Thin films and contact lines

	3 Numerical solutions of the Navier–Stokes equations
	3.1 Time integration
	3.2 Spatial discretization
	3.3 Discretization of the advection terms
	3.4 The viscous terms
	3.5 The pressure equation
	3.6 Velocity boundary conditions
	3.7 Outflow boundary conditions
	3.8 Adaptive mesh refinement
	3.9 Summary
	3.10 Postscript: conservative versus non-conservative form

	4
Advecting a fluid interface
	4.1 Notations
	4.2 Advecting the color function
	4.3 The volume-of-fluid (VOF) method
	4.4 Front tracking
	4.5 The level-set method
	4.6 Phase-field methods
	4.7 The CIP method
	4.8 Summary

	5 The volume-of-fluid method
	5.1 Basic properties
	5.2 Interface reconstruction
	5.2.1 Convergence order of a reconstruction method
	5.2.2 Evaluation of the interface unit normal
	5.2.3 Determination of α

	5.3 Tests of reconstruction methods
	5.3.1 Errors measurement and convergence rate
	5.3.2 Reconstruction accuracy tests

	5.4 Interface advection
	5.4.1 Geometrical one-dimensional linear-mapping method
	5.4.2 Related one-dimensional advection methods
	5.4.3 Unsplit methods

	5.5 Tests of reconstruction and advection methods
	5.5.1 Translation test
	5.5.2 Vortex-in-a-box test

	5.6 Hybrid methods

	6 Advecting marker points: front tracking
	6.1 The structure of the front
	6.1.1 Structured two-dimensional fronts
	6.1.2 Unstructured fronts

	6.2 Restructuring the fronts
	6.3 The front-grid communications
	6.3.1 Locating the front on the fixed grid
	6.3.2 Interpolation and smoothing

	6.4 Advection of the front
	6.5 Constructing the marker function
	6.5.1 Constructing the marker function from its gradient
	6.5.2 Construction of the volume fraction from the front location

	6.6 Changes in the front topology
	6.7 Notes

	7 Surface tension
	7.1 Computing surface tension from marker functions
	7.1.1 Continuous surface force method
	7.1.2 Continuous surface stress method
	7.1.3 Direct addition and elementary smoothing in the VOF method
	7.1.4 Weighted distribution in the VOF method: kernel smoothing
	7.1.5 Axisymmetric interfaces

	7.2 Computing the surface tension of a tracked front
	7.2.1 Two-dimensional interfaces
	7.2.2 Three-dimensional interfaces
	7.2.3 Smoothing the surface tension on the fixed grid

	7.3 Testing the surface tension methods
	7.3.1 Static case: spurious currents
	7.3.2 Dynamic case

	7.4 More sophisticated surface tension methods
	7.4.1 Direct addition with pressure correction
	7.4.2 CSF method with better curvature: PROST
	7.4.3 Numerical estimate of the curvature from the volume fractions: the HF method

	7.5 Conclusion on numerical methods

	8 Disperse bubbly flows
	8.1 Introduction
	8.2 Homogeneous bubbly flows
	8.3 Bubbly flows in vertical channels
	8.4 Discussion

	9 Atomization and breakup
	9.1 Introduction
	9.2 Thread, sheet, and rim breakup
	9.2.1 The Plateau–Rayleigh jet instability
	9.2.2 Film and thread breakup
	9.2.3 The Taylor–Culick rim
	9.2.4 Rims leading to droplets and fingers

	9.3 High-speed jets
	9.3.1 Structure of the atomizing jet
	9.3.2 Mechanisms of droplet formation
	9.3.3 Stability theory
	9.3.3.1 Elementary Kelvin–Helmholtz analysis
	9.3.3.2 Orr–Sommerfeld analysis

	9.4 Atomization simulations
	9.4.1 Two-dimensional, temporal simulations
	9.4.2 Two-dimensional spatially developing simulations
	9.4.3 Three-dimensional calculations

	10 Droplet collision, impact, and splashing
	10.1 Introduction
	10.2 Early simulations
	10.3 Low-velocity impacts and collisions
	10.4 More complex slow impacts
	10.5 Corolla, crowns, and splashing impacts
	10.5.1 Impacts on thin liquid layers
	10.5.2 Three-dimensional impacts

	11 Extensions
	11.1 Additional fields and surface physics
	11.1.1 Thermocapillary motion
	11.1.2 Electrohydrodynamics
	11.1.3 Mass transfer and chemical reactions
	11.1.4 Boiling
	11.1.5 Cavitation

	11.2 Imbedded boundaries
	11.2.1 The immersed boundary method of Peskin
	11.2.2 Solid boundaries
	11.2.3 Solidification

	11.3 Multiscale issues
	11.4 Summary

	Appendix A Interfaces: description and definitions
	A.1 Two-dimensional geometry
	A.2 Three-dimensional geometry
	A.3 Axisymmetric geometry
	A.4 Differentiation and integration on surfaces

	Appendix B Distributions concentrated on the interface
	B.1 A simple example

	Appendix C Cube-chopping algorithm
	C.1 Two-dimensional problem
	C.2 Three-dimensional problem

	Appendix D The dynamics of liquid sheets: linearized theory
	D.1 Flow configuration
	D.2 Inviscid results
	D.2.1 The general dispersion relation
	D.2.2 Capillary–gravity waves
	D.2.3 The Kelvin–Helmholtz instability
	D.2.4 Effect of thick boundary layers in the inviscid framework

	D.3 Viscous theory for the Kelvin–Helmholtz instability

	References
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.30000
 0.30000
 0.30000
 0.30000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.30000
 0.30000
 0.30000
 0.30000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d002000650069006e0065006e00200042006500720069006300680074002000fc00620065007200200064006900650020005000440046002f0058002d00310061002d004b006f006d007000610074006900620069006c0069007400e4007400200065007200680061006c00740065006e00200075006e00640020005000440046002d0044006f006b0075006d0065006e007400650020006e00750072002000640061006e006e0020007a0075002000650072007300740065006c006c0065006e002c002000770065006e006e0020007300690065002000fc0062006500720020006400690065007300650020004b006f006d007000610074006900620069006c0069007400e400740020007600650072006600fc00670065006e002e0020005000440046002f00580020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020007a0075006d002000410075007300740061007500730063006800200076006f006e0020006400690067006900740061006c0065006e00200044007200750063006b0076006f0072006c006100670065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200034002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064002700e900760061006c0075006500720020006c006100200063006f006e0066006f0072006d0069007400e9002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d0031006100200065007400200064006500200063006f006e0064006900740069006f006e006e006500720020006c0061002000700072006f00640075006300740069006f006e00200064006500200064006f00630075006d0065006e007400730020005000440046002000e000200063006500740074006500200063006f006e0066006f0072006d0069007400e9002e0020005000440046002f0058002000650073007400200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200065006e0020007300610076006f0069007200200070006c0075007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020005000440046002f0058002d00310061002c00200063006f006e00730075006c00740065007a0020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e00200034002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF005000440046002f0058002d0031006100206e9662e0306e30ec30dd30fc30c87528304a30883073658766f84f5c62107528306b4f7f75283057307e30593002005000440046002f00580020306f30b030e930d530a330c330af002030b330f330c630f330c4590963db306b304a3051308b002000490053004f00206a196e96306730593002005000440046002f0058002d0031006100206e9662e0306e658766f84f5c6210306b306430443066306f0020004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430024f5c62103057305f00200050004400460020306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200034002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f007300200050004400460020006500200065006d0069007400690072002000720065006c0061007400f300720069006f007300200073006f00620072006500200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061002e0020005000440046002f0058002000e900200075006d0020007000610064007200e3006f002000640061002000490053004f00200070006100720061002000740072006f0063006100200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000550073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200034002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c00200061007400200072006100700070006f007200740065007200650020006f006d0020006f0076006500720068006f006c00640065006c007300650020006100660020005000440046002f0058002d003100610020006f00670020006b0075006e002000700072006f0064007500630065007200650020005000440046002d0064006f006b0075006d0065006e007400650072002c002000680076006900730020006400650020006f0076006500720068006f006c0064006500720020007300740061006e00640061007200640065006e002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e0067002000610066002000670072006100660069006b0069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006f0076006500720068006f006c0064006500720020005000440046002f0058002d00310061002c002000660069006e00640065007200200064007500200069002000620072007500670065007200760065006a006c00650064006e0069006e00670065006e002000740069006c0020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d00200064006500200063006f006d007000610074006900620069006c006900740065006900740020006d006500740020005000440046002f0058002d0031006100200074006500200063006f006e00740072006f006c006500720065006e00200065006e00200061006c006c00650065006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000740065002000700072006f006400750063006500720065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e002e0020005000440046002f0058002000690073002000650065006e002000490053004f002d007300740061006e0064006100610072006400200076006f006f00720020006800650074002000750069007400770069007300730065006c0065006e002000760061006e002000670072006100660069007300630068006500200069006e0068006f00750064002e002000520061006100640070006c0065006500670020006400650020006700650062007200750069006b00650072007300680061006e0064006c0065006900640069006e0067002000760061006e0020004100630072006f00620061007400200076006f006f00720020006d00650065007200200069006e0066006f0072006d00610074006900650020006f00760065007200200068006500740020006d0061006b0065006e002000760061006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e0020006d006500740020005000440046002f0058002d00310061002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200034002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e00650073002000700061007200610020007200650061006c0069007a0061007200200075006e00200069006e0066006f0072006d006500200073006f0062007200650020006c006100200063006f006d007000610074006900620069006c006900640061006400200063006f006e0020005000440046002f0058002d0031006100200079002000670065006e006500720061007200200064006f00630075006d0065006e0074006f007300200050004400460020007300f3006c006f00200073006900200073006f006e00200063006f006d00700061007400690062006c00650073002e0020005000440046002f005800200065007300200075006e002000650073007400e1006e006400610072002000490053004f0020007000610072006100200065006c00200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200061006300650072006300610020006400650020006300f3006d006f00200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006d00e400e4007200690074007400e400e40020005000440046002f0058002d00310061002d00790068007400650065006e0073006f0070006900760075007500640065006e0020006a00610020006c0075006f00640061002000730065006e0020006d0075006b006100690073006900610020005000440046002d0061007300690061006b00690072006a006f006a0061002e0020005000440046002f00580020006f006e002000490053004f002d007300740061006e006400610072006400690073006f006900740075002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e0020006500730069007400790073006d0075006f0074006f002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0061007300690061006b00690072006a006f006a0065006e0020006c0075006f006e006e00690073007400610020006f006e002000410064006f006200650020004100630072006f0062006100740020002d006b00e400790074007400f6006f0070007000610061007300730061002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200034002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000760065007200690066006900630061007200650020006c006100200063006f006e0066006f0072006d0069007400e0002000610020005000440046002f0058002d0031006100200065002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200073006f006c006f00200069006e0020006300610073006f00200064006900200063006f006e0066006f0072006d0069007400e0002e0020005000440046002f0058002000e800200075006e006f0020007300740061006e0064006100720064002000490053004f00200070006500720020006c006f0020007300630061006d00620069006f00200064006900200063006f006e00740065006e00750074006f0020006700720061006600690063006f002e002000500065007200200075006c0074006500720069006f0072006900200069006e0066006f0072006d0061007a0069006f006e0069002000730075006c006c006100200063007200650061007a0069006f006e006500200064006900200064006f00630075006d0065006e00740069002000500044004600200063006f006e0066006f0072006d0069002000610020005000440046002f0058002d00310061002c00200063006f006e00730075006c00740061007200650020006c0061002000470075006900640061002000640065006c006c0027007500740065006e007400650020006400690020004100630072006f006200610074002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200034002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e500200072006100700070006f007200740065007200650020006f006d0020005000440046002f0058002d00310061002d006b006f006d007000610074006900620069006c00690074006500740020006f00670020006c0061006700650020005000440046002d0064006f006b0075006d0065006e00740065007200200062006100720065002000680076006900730020006b006f006d007000610074006900620065006c002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e006400610072006400200066006f00720020006700720061006600690073006b00200069006e006e0068006f006c006400730075007400760065006b0073006c0069006e0067002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006b0061006e002000640075002000730065002000690020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e006400200065006e00640061007300740020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200072006100700070006f007200740065007200610020006f006d0020005000440046002f0058002d00310061002d007300740061006e00640061007200640020006f0063006800200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a00650072002000640065006e006e00610020007300740061006e0064006100720064002e0020005000440046002f0058002000e4007200200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e0020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d002000680075007200200064007500200073006b00610070006100720020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a006500720020005000440046002f0058002d0031006100200068006900740074006100720020006400750020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e0020006600f600720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Cambridge University Press - Distiller version 6 job options for Press quality - 16-Feb-05)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

