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Preface

The papers in this volume were presented at the 5th International Conference on
Algorithmic Aspects in Information and Management (AAIM 2009), held June
15-17, 2009, in San Francisco, California. The topics cover mostly algorithmic
applications in information management and management science.

A total of 41 papers were submitted to the conference. After an on-line paper
review process, the Program Committee accepted 25 papers to be presented.
The international Program Committee included Tetsuo Asano, Marshall Bern,
Daniel Bienstock, Danny Z. Chen, Camil Demetrescu, Lisa Fleischer, Rudolf
Fleischer, Martin Frer, Andrew Goldberg, Mordecai Golin, Monika Henzinger,
Seok-Hee Hong, Ming-Yang Kao, Xiang-Yang Li, Mohammad Mahdian, Tom
McCormick, Junfeng Pan, Rong Pan, Panos Pardalos, Tomasz Radzik, Rajeev
Raman, Martin Scholz, Robert Schreiber, Dou Shen, Xiaodong Wu, Jinhui Xu,
Qiang Yang, Huaming Zhang, Yunhong Zhou and Binhai Zhu. It is expected that
many of the accepted papers will appear in a more complete form in scientific
journals.

The submitted papers are from Algeria, Argentina, Australia, Chile, China,
Czech Republic, Denmark, France, Germany, Hong Kong, India, Iran, Israel,
Japan, Taiwan, UK and USA. Each paper was evaluated by at least three Pro-
gram Committee members (four is also common), assisted in some cases by
subreferees (listed in the proceedings). In addition to selected papers, the con-
ference also included two invited presentations by Andrei Broder and Edward
Chang.

We thank all the people who made this meeting possible: the authors for sub-
mitting papers, the Program Committee members for their excellent work, and
the two invited speakers. Finally, we thank the Organizing Committee members
whose hard work make this conference possible.

June 2009 Andrew Goldberg
Yunhong Zhou
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Algorithmic Challenge in Online Advertising

Andrei Z. Broder

Yahoo! Research
2821 Mission College Blvd.
Santa Clara, CA 95054, USA

Computational advertising is an emerging new scientific sub-discipline, at the
intersection of large scale search and text analysis, information retrieval, sta-
tistical modeling, machine learning, classification, optimization, and microeco-
nomics. The central challenge of computational advertising is to find the ”best
match” between a given user in a given context and a suitable advertisement.
The context could be a user entering a query in a search engine (”sponsored
search”) , a user reading a web page (”content match” and ”display ads”), a
user watching a movie on a portable device, and so on. The information about
the user can vary from scarily detailed to practically nil. The number of poten-
tial advertisements might be in the billions. Thus, depending on the definition
of ”best match” this challenge leads to a variety of massive optimization and
search problems, with complicated constraints.

This talk will give an introduction to this area focusing mostly on the algo-
rithmic challenges encountered in practice.

A. Goldberg and Y. Zhou (Eds.): AAIM 2009, LNCS 5564, p. 1, 2009.
© Springer-Verlag Berlin Heidelberg 2009



Parallel Algorithms for Collaborative Filtering

Edward Y. Chang'-?

! Google Beijing Research, Beijing 100084, China
2 University of California, Santa Barbara, CA 93106, USA
edchang@google.com

Collaborative filtering has been widely used to predict the interests of a user.
Given a users past activities, collaborative filtering predicts the users future
preferences. This talk presents techniques and discoveries of our recent paral-
lelization effort on collaborative filtering algorithms. In particular, parallel asso-
ciation mining and parallel latent Dirichlet allocation will be presented and their
pros and cons analyzed. Some counter-intuitive results will also be presented to
stimulate future parallel optimization research.

A. Goldberg and Y. Zhou (Eds.): AAIM 2009, LNCS 5564, p. 2, 2009.
© Springer-Verlag Berlin Heidelberg 2009



On the Approximability of Some Haplotyping
Problems*

John Abraham', Zhixiang Chen', Richard Fowler!, Bin Fu', and Binhai Zhu?

! Department of Computer Science, University of Texas-American, Edinburg, TX
78739-2999, USA
{jabraham, chen,fowler,binfu}@panam.edu
2 Department of Computer Science, Montana State University, Bozeman, MT
59717-3880, USA

bhz@cs.montana.edu

Abstract. In this paper, we study several versions of optimization prob-
lems related to haplotype reconstruction/identification. The input to the
first problem is a set C1 of haplotypes, a set C2 of haplotypes, and a set
G of genotypes. The objective is to select the minimum number of hap-
lotypes from C3 so that together with haplotypes in C; they resolve all
(or the maximum number of) genotypes in G. We show that this prob-
lem has a factor-O(log n) polynomial time approximation. We also show
that this problem does not admit any approximation with a factor bet-
ter than O(logn) unless P=NP. For the corresponding reconstruction
problem, i.e., when C3 is not given, the same approximability results
hold.

The other versions of the haplotype identification problem are based
on single individual haplotyping, including the well-known Minimum
Fragment Removal (MFR) and Minimum SNP Removal (MSR), which
have both shown to be APX-hard previously. We show in this paper that
MFR has a polynomial time O(log n)-factor approximation. We also con-
sider Maximum Fragment Identification (MFI), which is the complemen-
tary version of MFR; and Maximum SNP Identification (MSI), which is
the complementary version of MSR. We show that, for any positive con-
stant ¢ < 1, neither MFI nor MSI has a factor-n'™¢ polynomial time
approximation algorithm unless P=NP.

1 Introduction

Haplotype inference and identification is an important problem in computational
biology. For instance, human haplotype data are crucial in identifying certain
diseases. In diploid organisms (such as human) there are two (usually not identi-
cal) copies of each chromosome. Consequently we can collect the conflated data
from two corresponding regions (genotype), relatively easily. On the other hand,
for complex diseases which are affected by more than a single gene, it is more
informative to have haplotype data, i.e., those data from exactly one copy of a

* This research is partially supported by NSF Career Award 0845376.

A. Goldberg and Y. Zhou (Eds.): AAIM 2009, LNCS 5564, pp. 3-[I4 2009.
© Springer-Verlag Berlin Heidelberg 2009
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chromosome. It is known that genotype data are much easier and cheaper to
collect compared with haplotype data, and nowadays it is possible to obtain
haplotype data directly from experiments [6].

Most part of genomes between two humans are identical. The sites of genomes
that makes the difference among human population are Single Nucleotide Poly-
morphisms (SNPs). The values of a set of SNPs on a particular chromosome copy
define a haplotype. Haplotyping an individual consists of determining a pair of
haplotypes, one for each copy of a given chromosome.

The problem of haplotyping a population has been widely studied with various
objective functions. The haplotyping problem seeks to determine the optimal
pair of haplotypes, which can be derived from data which may have inconsistence.
Many versions of this problem have been proven to be NP-hard. This problem
has been studied in a series of papers [12425T9/4UT6IT8I22] in recent years.
The problem of haplotyping a population has been studies in [BJ9ITT]. There are
several versions of haplotyping problems, like they have to fit a perfect phylogeny.
Our first set of problems are mostly following the principle of haplotype inference
with mazimum parsimony [TO/T2IT4ITEI26]. While the second set of problems
focus on single individual haplotyping problems, which have been studied before
in [T7T9/1].

In this paper, we study several versions of optimization problems related to
haplotype reconstruction/identification. We first study the Single-Side Haplo-
type Identification problem. The input to the problem is a set C; of haplotypes,
a set Cy of haplotypes, and a set G of genotypes. The objective is to select the
minimum number of haplotypes from Cy so that together with haplotypes in C4
they resolve all (or the maximum number of) genotypes in G. The background
of this model is that we assume that the haplotypes in C is already known and
may be from one of the ancestors for the genomes of a group of descendants.

We show that this problem has a factor-O(log n) polynomial time approxima-
tion. We also show that this problem does not admit any approximation with a
factor better than O(logn) unless P=NP.

The Single-Side Haplotype Reconstruction problem is also studied. It is sim-
ilar to the Single-Side Haplotype Identification problem, but the input does not
contain the candidate set C2. We obtain a factor-O(logn) polynomial time ap-
proximation, and also an {2(logn) approximation lower bound as those for the
Single-Side Haplotype Identification problem.

Secondly, we study some other versions of the single individual haplotyping
problems and derive strong inapproximability results. In these problems, the hap-
lotype of an individual is determined directly using incomplete and/or imperfect
fragments of sequencing data. So the input for these problems is a matrix, each
row representing a fragment. The known versions of this problem include Mini-
mum Fragment Removal (MFR), which has a complementary version Maximum
Fragment Identification (MFI); and Minimum SNP Removal (MSR), which has
a complementary version Maximum SNP Identification (MSI). MFR and MSR
have already been shown to be APX-hard [I]. We show that MFR has a factor-
O(logn) polynomial time approximation. On the other hand, for any positive
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constant € < 1, neither MFI nor MSI has a factor-n! ~¢ polynomial time approx-
imation unless P=NP.

This paper is organized as follows. In Section 2, we present some necessary
definitions. In Section 3, we present the approximability results for single-side
haplotype reconstruction/identification. In Section 4, we present the approxima-
bility results for several versions of the single individual haplotyping problem.
In Section 5, we conclude the paper with several open problems.

2 Preliminaries

We define necessary concepts in this section. Throughout this paper we assume
that all the haplotypes and genotypes are within a fixed block.

Suppose that we are given some local chromosomes each of m linked SNPs.
A genotype is a sequence ¢ = ¢192 - - gm such that g; denotes the genotype
at locus ¢ and g; = 0,1 or 2 denotes that this locus is homozygous wild type,
homozygous mutant or heterozygous, respectively. A (complete) haplotype is a
binary (0 or 1) sequence of length m. Two haplotypes h; = hi1hia- - hiy and
ho = hathos - - hay, resolve a genotype g = g192- - gm if and only if g; =2
implies that hy; = 0 and ho; = 1, or hy; = 1 and hg; = 0; g; = 1 implies that
hli = hgi = 1; and g; = 0 implies that hli = hgi = 07 for 1 S 7 S m. Example,
g = 02120 is resolved by h; = 00110 and he = 01100.

For two sets of haplotypes C, C’, and a set of genotypes G, we say C and C’
resolve G if for every g € G, there exist ¢ € C and ¢ € C’ such that ¢ and ¢
resolve g.

Definition 1

— The Single-Side Haplotype Identification problem can be formally de-
fined as follows:
INPUT: A set Cy of |Cy] haplotypes, another set Cy of |C2| haplotypes, a set
G of |G| genotypes, and an integer k.
QUESTION: find a least size subset C) C Cy, |Ch| < k, such that C1 and
CY resolve all (or the mazimum number of) genotypes in G?2. We also use
SSHI problem to represent Single-Side Haplotype Identification problem.

— For an integer d > 1, a d-SSHI problem is a SSHI problem Ci,Cy and G
with each haplotype in Cy resolving at most d genotypes in G.

— The Single-Side Haplotype Reconstruction problem can be formally
defined as follows:
INPUT: A set Cy of |C1| haplotypes, a set G of |G| genotypes, and an integer k.
QUESTION: find a least size set CY of haplotypes, |Cy| < k, such that Cy and
CY resolve all (or the mazimum number of) genotypes in G?2. We also use
SSHR problem to represent Single-Side Haplotype Reconstruction problem.

— For an integer d > 1, a d-SSHR problem is a SSHR problem Ci and G with
each haplotype in the solution resolving at most d genotypes in G.
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For a minimization (maximization) problem I7, an algorithm .4 provides a per-
formance guarantee a for 11 if for every instance of II with optimal solution value
OPT the solution value returned by A is at most ax OPT (at least OPT/«).
Usually we simply say that A is a factor-a approximation for IT. Throughout this
paper, we are only interested in approximation algorithms running in polynomial
time.

We will show in Section 3 that both SSHI and SSHR are NP-complete; in
fact, there are no polynomial time approximation with a factor o(logn), unless
P=NP.

For single individual haplotyping, one needs to determine the haplotype of an
individual by working directly on (usually incomplete and/or imperfect) frag-
ments of sequencing data. In this case, a haplotype can be written as a string
over the alphabet {A,B,-} with “-” meaning lack of information or uncertainty
about the nucleotide at that site. For human, being a diploid organism, each
has two copies of each chromosome, one each from the individual’s father and
mother. So the problem is even more complicated.

Given a matrix M of haplotype fragments (rows), each column represents a
SNP site and each cell of the matrix denotes the choice of nucleotide seen at that
SNP site on that fragment. A cell of M can have a value A or B when the data is
complete and error-free; otherwise, it can have a hole, denoted by -. Two rows iy
and ig of M conflict if there exists a column j such that M|[iq, j] # M[is, j] and
MTiy, ], M iz, j] € {A,B}. M is feasible if and only if the rows of M can be par-
titioned into two groups such that rows in each group are mutually conflict-free.

Among the following problems, MFR and MSR were first studied in [T7JT9/1].
Readers are referred to [4I3] for some other problems on single individual
haplotyping.

Definition 2

— MFR (Minimum Fragment Removal): Given a SNP matriz, remove the min-
imum number of fragments (rows) so that the resulting matriz is feasible.

— MSR (Minimum SNP Removal): Given a SNP matriz, remove the minimum
number of SNPs (columns) so that the resulting matriz is feasible.

— MFI (Mazimum Fragment Identification): Given a SNP matriz, select the
mazimum number of fragments (rows) so that the resulting matriz is feasible.

— MSI (Mazimum SNP Identification): Given a SNP matriz, select the mawi-
mum number of SNPs (columns) so that the resulting matriz is feasible.

MFR and MSR were both shown to be APX-hard, with restricted versions (i.e.,
when there is no gap, or sequences of “-” between non-hole values) being polyno-
mially solvable [I]. We show that MFR admits a factor-O(logn) approximation.
For MFI and MSI, which can be thought of as the complementary versions of
MFR and MSR, we show much stronger inapproximability results, i.e., they
cannot be approximated with a factor n¢ for any constant 0 < e < 1.
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3 Approximability for Single-Side Haplotype
Identification /Reconstruction

In this section, we cover the first set of problems on haplotype identification and
reconstruction.

Theorem 1. There exists a factor-O(logn) polynomial time approximation for
the Single-Side Haplotype Identification problem.

Proof. We convert this problem into the set cover problem. The O(log n)-factor
approximation algorithm for the set cover problem [2[T5]20] brings an O(log n)-
factor approximation for the Single-Side Haplotype Identification problem.

Assume that Cq, Co and G are the three input sets for the Single-Side Hap-
lotype Identification problem (see definition [Il). A set cover problem is derived
as follows.

Let S = G. For each h; € Cs, let S; be the set of all g; € G such that h; and A’
resolve g; for some h' € Cy. The input of the set cover problem is S, S, -+, Sm,
where m = |Cs].

It is easy to see that if the Single-Side Haplotype Identification problem with
input Ci,C%, and G has a solution C4 C Cs with size |C5| if and only if the
set cover problem with input S,Si,---,Sy,, has a solution of |C}| sets from
Sy, S

Since the set cover problem has an O(logn)-factor polynomial time approx-
imation, we have an O(logn)-factor approximate algorithm for the Single-Side
Haplotype Identification problem. a

Theorem 2. There is no factor-o(logn) polynomial time approximation for the
Single-Side Haplotype Identification problem unless P=NP.

Proof. We prove this theorem by showing that Set Cover can be reduced to
SSHI. Tt is known that Set Cover cannot be approximated with a factor-o(logn)
polynomial time approximation [23].

Assume that X, S1,---, S, with (S; C X for i =1,---,m) are the input for

Set Cover, which seeks to find a least number of sets among Sy, - - -, Sy, to cover
the elements in the base set X. A SSHI instance can be constructed as follows:
Assume that X contains n elements ey, ---,e,. G contains g1, - -, g,, where

gi = (22)17100(22)" "2 for i = 1,---,n. Cy contains fi,- -, fm, such that each f;
corresponds to a subset S;, and f; = a1by - - - apb,0 with a;b; = 01 for x; € S; and
ajb; = 00 for z; € S;. For Cy, each set S; adds |S;| sequences h;1,---,h; g, to
it. Assume that S; = {e;,, -, e;, }. Then h; ; = a1b1 - - - anb, 1, where a;b; = 10
for e; & S, aby = 11 for e, € S; with ¢ # j, and a;b; = 00 for e; € S;.

Note that each h; ; can only combine with f; to resolve some g;. We have the
following example based on the above construction.

Input for Set Cover:

X = {xla T2,T3,T4,Ts5, x6}
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S1 = {z1,z3}
So = {x1, 72,23}
Sz = {xo, w3}
Sy = {xs, w5}
S5 = {4, 26}

The derived SSHI instance:

g1 = 0022222222222
g2 =22 00 22 2222222
gs = 222200 2222222
gs =2222220022222
gs = 2222222200 22 2
ge = 22 22 22 22 2200 2

fi=0001000101010
h11=0010111010101
hi2=1110001010101

f2=0000010100010
he1 =0010101011101
hoo =1100101011101
ha3 =1111 101000 10 1

f3=0100000101010
h3; =1000111010101
h32 =1011001010101

fa=0101000100010
h4s1 =1010001011101
h4o =1001 11100010 1

f5=0101010001000
hs; =1010100010 111
hso =101010111000 1

Assume that S;,,---,95;, be the optimal solution for the set cover problem.
Then we have that the subset C5 = {f;,, -+, fi.} of C2 such that C; and Cj
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resolve G. On the other hand, if a subset {fj,,---, fj.} of C2 is an optimal
solution for the SSHI problem, then S;,,---,S;, can cover the set S.
Therefore, for every integer k > 1, there exists C4 C Cy with |C4| = k such
that Cy and C} resolve G if and only if there exists S’ C S, with |S’| = k, which
covers elements in X.
With respect to the above example, we have
C1 = {h11, haz, ha1, haa, has, har, hag, hat, has, hsy, hsa}, Co = { f1, fo, f3, fa, f5},
and G = {g1, 92, 93, 94, g5, g6 }. The optimal solution is { fa, f4, f5}- O

Theorem 3. There exists a polynomial time algorithm for the 2-SSHI problem.

Proof. This problem can be converted into 2-set cover problem, which has a
polynomial time solution via the polynomial time algorithm for the matching
problem. a

Theorem 4. There exists a %—factor polynomial time approximation for the 3-
SSHI problem.

Proof. By Duh and Fiirer’s algorithm [7], we have a 3-factor approximate al-
gorithm for the 3-set cover problem. Therefore, there is a %—factor approximate

algorithm for the 3-SSHI problem. O
We next sketch how the above results for SSHI can hold for SSHR.

Theorem 5. There exists a factor-O(logn) polynomial time approximation for
the SSHR problem.

Proof. We convert the SSHR problem into an instance of SSHI and use the
approximation algorithm for SSHI to solve the SSHR problem. Assume that
the input of the SSHR problem is a set of C; of haplotypes, and a set G of
genotypes. We construct the set Cy to contain all haplotypes i such that there
exists a haplotype A’ € C; and a genotype g € G, and together with h’, h resolves
g. It is easy to see that Cy contains at most |C1]|G| haplotypes.

The newly constructed SSHI instance has input C,Cs and G. It is easy to see
that the optimal solution of two problems are the same. By Theorem [I] we have
a factor-O(logn) polynomial time approximation for the SSHR problem. O

Theorem 6. There is no o(logn)-factor polynomial time approzimation for the
SSHR problem unless P=NP.

Proof. The proof follows from that of Theorem [2 Assume that X, S1,---,Sn
with (S; € X for i = 1,---,m) are the input of a set cover problem P. We
construct another SSHR instance @ such that P has a solution of k subsets iff
@ has a solution of k haplotypes. @ is constructed as that in Theorem [2] with
(' containing the same set of h; ; and G containing the same set of genotypes.
We do not construct those f; (1 <i<m),ie., Cy=0.

Assume that a haplotype f and h; ; resolves some genotype g;. For the pair 00
in h; ;, the corresponding pair in f has to be 00 since each g; has exactly one 00
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pair. For the pair 11 in h; ;, the corresponding pair in f has to be 00 so that they
can handle a 22 pair in g;. For the pair 10 in h; ;, the corresponding pair in f has
to be 01. Therefore, f must correspond to the f; constructed in Theorem [2] via
set S;. Therefore, any solution should be selected from {fi,- -, fim}, otherwise,
it is impossible to match those h; ; to resolve genotypes in G. g

Theorem 7. There exists a polynomial time algorithm for 2-SSHR.

Proof. This problem can be converted into 2-set cover problem, which has a
polynomial time solution via the polynomial time algorithm for the matching
problem. a

Theorem 8. There exists a %—factor polynomial time approximation for 3-SSHR.

Proof. By Duh and Fiirer’s algorithm [7], we have a %—factor approximate al-
gorithm for the 3-set cover problem. Therefore, there is a %—factor approximate
algorithm for the 3-SSHR problem. O

4 Approximability for Some Single Individual
Haplotyping Problems

In this section we show some lower and upper bounds for the approximation of
some single individual haplotyping problems by reducing some other well known
problems to them.

Define 2-Disjoint-Clique as the problem of deciding whether an undirected
graph contains two disjoint cliques of total size (number of vertices) at least ko,
for a given ko > 0. We show with the following lemma that 2-Disjoint-Clique is
just as hard as Clique, even to approximate.

Lemma 1. 2-Disjoint-Clique is NP-complete; moreover, for any constant € > 0,
there is no polynomial time n'~¢-factor polynomial time approzimation for it
unless P=NP.

Proof. We reduce Clique to 2-Disjoint-Clique. It is known that Clique cannot
be approximated with a factor-n'~¢ polynomial time approximation [I3]. Let
G = (V, E) be an undirected graph which is the input to Clique. We construct
G’ as two copies of G, with vertices and edges relabelled. It is easy to see that
G has a clique of size k iff G’ has two disjoint cliques of size 2k. Therefore, the
lemma follows. O

Theorem 9. For any constant ¢ > 0, there is no factor-n*~¢ polynomial time
approzimation for the MFI problem unless P=NP.

Proof. We reduce the 2-Disjoint-Clique problem to MFI. Assume that G =
(V, E) is an undirected graph. We construct a SNP matrix M as follows. Each
fragment (row) corresponds to a vertex of G. Each column checks whether two
vertices of G do not define an edge in E. So, each column of M is indexed by
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a pair (u,v) of vertices in G and each row is indexed by a vertex w of G. For
two vertices u and v with u < v, put A at row u and B at row v in the column
(u, v). All the remaining positions of column (u,v) hold the character —. By this
construction, if there is no edge between w and v, the corresponding rows (i.e.,
row u and row v in M) will conflict. Then it is easy to see that there are two
disjoint cliques of size k in G iff there are k rows of M which define a feasible
sub-matrix. O

Theorem 10. For any constant € > 0, there is no factor-n® polynomial time
approzimation for the MSI problem unless P=NP.

Proof. We reduce the Independent Set problem to MSI. Note that Independent
Set is the complementary version of Clique, so the inapproximability results
for the two problems are similar [I3]. The actual reduction is similar to that
in [1]. Assume that G = (V, E) is an undirected graph. The matrix M is of size
(2|E|+1) x |V|. Each vertex of G corresponds to a column in M. For each edge
e; = (u,v) in E, row ¢ and row 2¢ has character A at column u, row i has A at
column v, and row 2¢ has B at column v. The special row 2|F| + 1 contains B
at every position. It is easy to see that there are k independent vertices in G iff
M has k columns which define a feasible matrix.

Assume that C' is a set of columns selected from the matrix M such that the
resulting matrix formed by the columns of C' is feasible. For every edge (u,v) in
E, it is impossible that both columns v and v are in C. Otherwise, the matrix
formed by C'is not feasible. Thus, C' induces a set of independent set of vertices
in the graph G.

Let I be a set of independent vertices in G. Then we claim that the sub-matrix
M’ formed by the set of columns with indices from I is feasible. For two rows
¢ and 2i, with e; = (u,v), as (u,v) is in E, one of u and v will not be in I.
(Otherwise, due to the B’s in the last row, there is no way to make the resulting
sub-matrix feasible.) Assume that u is in I, we can then put row ¢ and 2¢ into
different groups. Thus, the resulting matrix M’ is feasible. O

We next show that MFR admits a factor-O(logn) polynomial time approxima-
tion. This can be done through the MVDB problem.

Minimum Vertex-Deletion Bipartite Subgraph Problem (MVDB): Given an
undirected graph G = (V, E), find a minimum size subset V' C V such that
G — V' is a bipartite graph.

Theorem 11. The two problems MFR and MVDB are equivalent in terms of
polynomial time approximation. In other words, it can be expressed in the fol-
lowing two facts:

(1) if there exists a polynomial time f(n,m)-factor approzimation algorithm
for MVDB with an input graph of n wvertices and m edges, then there exists
another polynomial time f(n, O(n?))-approzimation for MFR with an input ma-
triz of n fragments and m SNPs, where f(n,m) is nondecreasing function from
N x N to N for both variables.

(2) if there exists a polynomial time g(n, m)-factor approzimation algorithm
for MFR with an input matriz of n fragments and m SNPs, then there exists
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another polynomial time g(n, m)-approzimation for MVDB with an input graph
of n vertices and m edges, where g(n,m) is nondecreasing function from n x N
to N for both variables.

Proof. We first prove part (1). Assume that A is an approximation algorithm
for MVDB with approximation ratio f(n,m) for a graph with n vertices and m
edges. We will convert A into another approximation algorithm for MFR.

Let M be an n x m SNP matrix for the MFR problem. A graph G = (V, E)
is constructed as follows. Each row of M has a vertex in V. For every two rows
u and v of M, put an edge (u,v) in E if there is a conflict between row u and v.
Therefore, the graph G has n vertices and at most O(n?) edges. Since A is an
approximation algorithm for the MVDB problem, we obtain an polynomial time
approximation algorithm for MFR with an approximation ratio f(n,O(n?)).

Now we show part (2). Let A’ be a polynomial time approximation for MFR
with approximation ratio g(n,m) for every input matrix of n rows and m
columns. We convert A’ into an approximation for the MVDB problem. Let
G = (V, E) be an input for the MVDB problem. We construct an instance M for
the MFR problem. The matrix M has |V| rows and |F| columns. Each column
is indexed by an edge (u,v) in E and each row is indexed by a vertex u in V.
For each edge (u,v) € F, the column of M with index (u,v) has entry A at row
u, entry B at row v and hole — at all of the remaining entries.

Assume that V/ C V is a subset of vertices in V such that G—V"’ is a bipartite
graph. We can also remove those rows in M with the index from V' and make
the remaining matrix feasible.

On the other hand, assume that R is the subset of rows in M such that
removing those rows in R makes the remaining matrix feasible. We can also
remove the subset V' of vertices, which correspond to the indexes of rows in R,
and make the resulting graph G — V'’ bipartite. Therefore, the approximation
A’ for MFR is converted into another approximation algorithm for MVDB with
approximation g(n,m). O

Corollary 1. There ezists a factor-O(logn) polynomial time approximation for
the MFR problem, where n is the number of rows in the input SNP matriz.

Proof. 1t is known that there exists a polynomial time O(logn)-factor approxi-
mation algorithm for the MVDB problem [§]. It follows from Theorem [I] that
there is a factor-O(logn) polynomial time approximation for MFR. O

Since MVDB is APX-hard [21], Theorem [Tl also implies that MFR is APX-hard,
which was shown in [I] using a different reduction.

5 Conclusion

In this paper we study two classes of problems related to haplotyping. For the
first set of problems, we investigate single-side haplotype identification and re-
construction. This is related to haplotype inference with maximum parsimony.
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We show tight approximability bounds for the two problems Single-Side Hap-
lotype Inference and Single-Side Haplotype Reconstruction. Another interesting
problem is to decide whether the 3-SSHR. problem is NP-complete.

For the second set of problems on single individual haplotyping, we investigate
variants of the well-known APX-hard problems MFR and MSR, we show that
there exists a polynomial time O(logn)-factor approximation algorithm for the
MFR problem. And for the complementary versions of MFR and MSR; namely,
MFI and MSI, we show much stronger in approximability results (i.e., they
cannot be approximated with a factor-n® polynomial time approximation, unless
P=NP). An interesting problem is to find whether there exists a factor-O(logn)
polynomial time approximation for the MSR problems.
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Abstract. We study restricted improvement cycles (ri-cycles) in finite
positional n-person games with perfect information modeled by directed
graphs (digraphs) that may contain cycles. We obtain criteria of re-
stricted improvement acyclicity (ri-acyclicity) in two cases: for n = 2
and for acyclic digraphs. We provide several examples that outline the
limits of these criteria and show that, essentially, there are no other ri-
acyclic cases. We also discuss connections between ri-acyclicity and some
open problems related to Nash-solvability.

Keywords: Positional game, game form, improvement cycle, restric-
ted improvement cycle, restricted acyclicity, Nash equilibrium,
Nash-solvability.

1 Main Concepts and Results

1.1 Games in Normal Form

Game Forms and Utility Functions. Given a set of players I = {1,...,n}
and a set of strategies X; for each i € I, let X = [[,.; Xi.

A vector z = (z;,1 € I) € X is called a strategy profile or situation.

Furthermore, let A be a set of outcomes. A mapping g : X — A is called a
game form. In this paper, we restrict ourselves to finite game forms, that is, we
assume that sets I, A and X are finite.

Then, let u : I x A — R be a utility function. Standardly, the value u(i, a) (or
u;(a)) is interpreted as the payoff to player ¢ € I in case of the outcome a € A.
In figures, the notation a <; b means u;(a) < u;(b).

Sometimes, it is convenient to exclude ties. Accordingly, u is called a preference
profile if the mapping u; is injective for each ¢ € I; in other words, u; defines a
complete order over A describing the preferences of player i € I.

A pair (g,u) is called a game in normal form.
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partially supported also by DIMACS, Center for Discrete Mathematics and Theoret-
ical Computer Science, Rutgers University, and by Graduate School of Information
Science and Technology, University of Tokyo.

A. Goldberg and Y. Zhou (Eds.): AAIM 2009, LNCS 5564, pp. 15-28 2009.
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Improvement Cycles and Acyclicity. In a game (g,u), an improvement
cycle (im-cycle) is defined as a sequence of k strategy profiles {z!,... , 2%} C X
such that 27 and 27*! coincide in all coordinates but one i = i(j) and, moreover,
wi(27F1) > w;(27), that is, player i makes profit by substituting strategy xf“
for xf, this holds for all j =1, ...,k and, standardly, we assume that k+1 = 1.

A game (g,u) is called im-acyclic if it has no im-cycles. A game form g is
called im-acyclic if for each u the corresponding game (g, u) is im-acyclic.

We call 27! an improvement with respect to a7 for player i = i(j). We call
it a best reply (BR) improvement if player ¢ can get no strictly better result
provided all other players keep their strategies. Correspondingly, we introduce
the concepts of a BR im-cycle and BR im-acyclicity. Obviously, im-acyclicity
implies BR im-acyclicity but not vice versa.

Nash Equilibria and Acyclicity. Given a game (g, u), a strategy profile z € X
is called a Nash equilibrium (NE) if u;(x) > u;(2’) for each i € I, whenever
a; = x; for all j € I'\ {i}. In other words, z is a NE if no player can get a
strictly better result by substituting a new strategy (z} for x;) when all other
players keep their old strategies. Conversely, if « is not a NE then there is a
player who can improve his strategy. In particular, he can choose a best reply.
Hence, a NE-free game (g, u) has a BR im-cycle. Let us remark that the last
statement holds only for finite games, while the converse statement is not true
at all.

A game (g,u) is called Nash-solvable if it has a NE. A game form g is called
Nash-solvable if for each u the corresponding game (g, u) has a NE.

The main motivation for the study of im-acyclicity is to prove the existence of
Nash equlibria. In addition, im-acyclicity leads to a natural algorithm for com-
puting such equilibria: iteratively perform improvement steps until an equlibrium
is reached.

1.2 Positional Games with Perfect Information

Games in Positional Form. Let G = (V, E) be a finite directed graph (di-
graph) whose vertices v € V' and directed edges e € E are called positions and
moves, respectively. The edge e = (v',v”) is a move from position v’ to v”. Let
out(v) and in(v) deno