Akhil Sahai
Felix Wu (Eds.)

(s &
[~
N
(28
Va'
)
>
e

Utility Computing

15th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management, DSOM 2004
Davis, CA, USA, November 2004, Proceedings

IFIP TC6

@_ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3278

This page intentionally left blank

Akhil Sahai Felix Wu (Eds.)
Utility Computing

15th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management, DSOM 2004

Davis, CA, USA, November 15-17, 2004
Proceedings

Springer

eBook ISBN: 3-540-30184-4
Print ISBN: 3-540-23631-7

©2005 Springer Science + Business Media, Inc.
Print ©2004 International Federation for Information Processing.
Laxenburg

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://ebooks.springerlink.com
and the Springer Global Website Online at: http://www.springeronline.com

Preface

This volume of the Lecture Notes in Computer Science series contains all the
papers accepted for presentation at the 13th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management (DSOM 2004), which was
held at the University of California, Davis during November 15-17, 2004.

DSOM 2004 was the fifteenth workshop in a series of annual workshops and it
followed in the footsteps of highly successful previous meetings, the most recent
of which were held in Heidelberg, Germany (DSOM 2003), Montreal, Canada
(DSOM 2002), Nancy, France (DSOM 2001), and Austin, USA (DSOM 2000).
The goal of the DSOM workshops is to bring together researchers in the areas of
networks, systems, and services management, from both industry and academia,
to discuss recent advances and foster future growth in this field. In contrast
to the larger management symposia, such as IM (Integrated Management) and
NOMS (Network Operations and Management Symposium), the DSOM work-
shops are organized as single-track programs in order to stimulate interaction
among participants.

The focus of DSOM 2004 was ‘“Management Issues in Utility Computing.”
Increasingly there is a trend now towards managing large infrastructures and
services within utility models where resources can be obtained on demand. Such
a trend is being driven by the desire to consolidate infrastructures within en-
terprises and across enterprises using third-party infrastructure providers and
networked infrastructures like Grid and PlanetLab. The intent in these initia-
tives is to create systems that provide automated provisioning, configuration,
and lifecycle management of a wide variety of infrastructure resources and ser-
vices, on demand. The papers presented at the workshop address the underlying
technologies that are key to the success of the utility computing paradigm.

This year we received about 110 high-quality papers of which 21 long papers
were selected for the 7 long paper sessions and 4 short papers were selected for
the short paper session. The technical sessions covered the topics ‘“Management
Architectures,” “SLA and Business Objective Driven Management,” ‘“Policy-
Based Management,” “Automated Management,” “Analysis and Reasoning in
Management,” “Trust and Security,” and “Implementation, Instrumentation,
Experience.”

This workshop owed its success to all the members of the technical program
committee, who did an excellent job of encouraging their colleagues in the field
to submit a total of 110 high-quality papers, and who devoted a lot of their
time to help create an outstanding technical program. We thank them profusely.
We would like to thank Hewlett-Packard and HP Laboratories, the DSOM 2004
Corporate Patron.

September 2004 Akhil Sahai,
Felix Wu

This page intentionally left blank

DSOM 2004

November 15-17, 2004, Davis, California, USA

Sponsored by
Hewlett-Packard
IFIP

in cooperation with

IEEE Computer Society
Computer Science Department, University of California, Davis

Program Chairs
Akhil Sahai, Hewlett-Packard, Palo Alto, California, USA

Felix Wu, University of California at Davis, USA

Program Committee

Anerousis, NiIkoS «...ovvvviiin. IBM T.J. Watson Research Center, USA
Boutaba, Raouf University of Waterloo, Canada
Brunner, Marcuscoiiiiiiii e NEC Europe, Germany
Burgess, Markoonnnn, University College Oslo, Norway
Cherkaoui, Omar Université du Québec 4 Montréal, Canada
Clemm, Alexander e e Cisco, California, USA
Feridun, Metincooiiiiniiiiiiiii e, IBM Research, Switzerland
Festor, OINVIErccovviiiiiiin i, LORIA-INRIA, France
Geihs, Kurt ... e TU Berlin, Germany
Gentzsch,Wolfgangooiiiiiiaat Sun Microsystems, USA
Hegering, Heinz-Gerd Institut fiir Informatik der LMU, Germany
Hellerstein, Joseph IBM T.J. Watson Research Center, USA
Jakobson, Gabeciiiiiiiiiiiia, Smart Solutions Consulting, USA
Kaiser, Gailccoiviiiiiiii i Columbia University, USA
Kar, Gautam IBM T.J. Watson Research Center, USA
Kawamura, Ryutaro NTT Cyber Solutions Labs, Japan
Keller, Alexanderc.... IBM T.J. Watson Research Center, USA
Lala, Jaynarayancociiiiiiiiiiiiiiii e Raytheon, USA
Lewis,Lundyccooiiiiiiiiiiat, Lundy Lewis Associates, USA
Liotta, ANtONIOc..oirrrriierrennnnnnns University of Surrey, UK
Lupu, Emilo Imperial College London, UK
Lutfiyya,Hanan University of Western Ontario, Canada
Martin-Flatin, J.P. .. CERN, Switzerland
Maughan, Douglascoiiiiiiiiii DHS/HSARPA,USA

Mazumdar, Subrata Avaya Labs Research, Avaya, USA

VIII Organization

Nogueira, Jose Federal University of Minas Gerais, Brazil
Pavlou, Georgecoiiiiiiiiiiiiiiii, University of Surrey, UK
Pras, Aiko ... University of Twente, The Netherlands
Quittek, Juergen ...l NEC Europe, Germany
Raz, Danny i Technion, Israel
Rodosek, Gabi Dreo Leibniz Supercomputing Center, Germany
Schoenwaelder, Juergen International University Bremen, Germany
Sethi, Adarshpal University of Delaware, USA
Singhal, Sharado il Hewlett-Packard Labs, USA
Sloman, MOITiSvvuiiiiiiiiii i, Imperial College London, UK
Stadler, Rolf i KTH, Sweden
State, Radu ..ot LORIA-INRIA, France
Stiller, Burkhard UniBW Munich, Germany & ETH Zurich, Switzerland
Torsten, Brauncoooinio.... University of Bern, Switzerland
Tutschku, Kurto ol University of Wuerzburg, Germany
Wang, Yi-Min ...ttt Microsoft Research, USA
Becker, Carlos Westphall Federal University of Santa Catarina, Brazil

Yoshiaki, Kirha ... i NEC, Japan

Table of Contents

Management Architecture

Requirements on Quality Specification Posed by Service Orientation. 1
Markus Garschhammer, Harald Roelle

Automating the Provisioning of Application Services
with the BPELAWS Workflow Languageoooiinn... 15
Alexander Keller, Remi Badonnel

HiFi+: A Monitoring Virtual Machine
for Autonomic Distributed Management 28
Ehab Al-Shaer, Bin Zhang

SLA Based Management

Defining Reusable Business-Level QoS Policies for DiffServ 40
André Beller, Edgard Jamhour, Marcelo Pellenz

Policy Driven Business Performance Management 52
Jun-Jang Jeng, Henry Chang, Kumar Bhaskaran

Business Driven Prioritization of Service Incidents 64
Claudio Bartolini, Mathias Sallé

Policy Based Management

A Case-Based Reasoning Approach for Automated Management
in Policy-Based Networksooiiiiiniiii it iiiaienann 76
Nancy Samaan, Ahmed Karmouch

An Analysis Method for the Improvement of Reliability
and Performance in Policy-Based Management Systems 88
Naoto Maeda, Toshio Tonouchi

Policy-Based Resource Assignment

in Utility Computing Environmentsc..coviiieiniiiianan, 100
Cipriano A. Santos, Akhil Sahai, Xiaoyun Zhu, Dirk Beyer,
Vijay Machiraju, Sharad Singhal

Automated Management

Failure Recovery in Distributed Environments
with Advance Reservation Management Systems 112
Lars-Olof Burchard, Barry Linnert

X Table of Contents

Autonomous Management of Clustered Server Systems Using JINI 124
Chul Lee, Seung Ho Lim, Sang Soek Lim, Kyu Ho Park

Event-Driven Management Automation in the ALBM Cluster System ... 135
Dugki Min, Eunmi Choi

Analysis and Reasoning

A Formal Validation Model for the Netconf Protocol 147
Sylvain Hallé, Rudy Deca, Omar Cherkaoui, Roger Villemaire,
Daniel Puche

Using Object-Oriented Constraint Satisfaction

for Automated Configuration Generation.ccuveniennenn.. 159
Tim Hinrich, Nathaniel Love, Charles Petrie, Lyle Ramshaw,
Akhil Sahai, Sharad Singhal

Problem Determination Using Dependency Graphs

and Run-Time Behavior Models i, 171
Manoj K. Agarwal, Karen Appleby, Manish Gupta, Gautam Kar,
Anindya Neogi, Anca Sailer

Trust and Security

Role-Based Access Control for XML Enabled Management Gateways 183
V. Cridlig, O. Festor, R. State

Spotting Intrusion Scenarios from Firewall Logs

Through a Case-Based Reasoning Approach 196
Fdbio Elias Locatelli, Luciano Paschoal Gaspary,
Cristina Melchiors, Samir Lohmann, Fabiane Dillenburg

A Reputation Management and Selection Advisor Schemes
for Peer-to-Peer Systemst e 208
Loubna Mekouar, Youssef Iraqi, Raouf Boutaba

Implementation, Instrumentation, Experience

Using Process Restarts to Improve Dynamic Provisioning 220
Raquel V. Lopes, Walfredo Cirne, Francisco V. Brasileiro

Server Support Approach to Zero Configuration In-Home Networking.... 232
Kiyohito Yoshihara, Takeshi Kouyama, Masayuki Nishikawa,
Hiroki Horiuchi

Rule-Based CIM Query Facility for Dependency Resolution 245
Shinji Nakadai, Masato Kudo, Koichi Konishi

Table of Contents XI

Short Papers

Work in Progress: Availability-Aware Self-Configuration
N AUtONOMIC SYSIEIMS « & v vt et i sttt et ae it iea i eiaeenans 257
David M. Chess, Vibhore Kumar, Alla Segal, lan Whalley

ABHA: A Framework for Autonomic Job Recovery.................... 259
Charles Earl, Emilio Remolina, Jim Ong, John Brown,
Chris Kuszmaul, Brad Stone

Can ISPs and Overlay Networks Form a Synergistic Co-existence? 263
Ram Keralapura, Nina Taft, Gianluca lannaccone, Chen-Nee Chuah

Simplifying Correlation Rule Creation

for Effective Systems MONItOIiNgo oo viiiiinin i 266
C. Araujo, A. Biazetti, A. Bussani, J. Dinger, M. Feridun,
A. Tanner

Author IndexX ... 269

This page intentionally left blank

Requirements on Quality Specification Posed by Service
Orientation

Markus Garschhammer and Harald Roelle

Munich Network Management Team
University of Munich
Oettingenstr. 67
D-80538 Munich, Germany

{markus .garschammer, harald.roelle}@ifi.lmu.de

Abstract. As service orientation is gaining more and more momentum, the need
for common concepts regarding Quality of Service (QoS) and its specification
emerges. In recent years numerous approaches to specifying QoS were developed
for special subjects like multimedia applications or middleware for distributed
systems. However, a survey of existing approaches regarding their contribution to
service oriented QoS specification is still missing.

In this paper we present a strictly service oriented, comprehensible classification
scheme for QoS specification languages. The scheme is based on the MNM
Service Model and the newly introduced LAL-brick which aggregates the
dimensions Life cycle, Aspect and Layer of a QoS specification. Using the
terminology of the MNM Service Model and the graphical notation of the
LAL-brick we are able to classify existing approaches to QoS specification.
Furthermore we derive requirements for future specification concepts applicable
in service oriented environments.

Keywords: QoS specification, service orientation, classification scheme

1 Introduction

In recent years Telco and IT industries have been shifting their business from monolithic
realizations to the composition of products by outsourcing, which results in creating
business critical value chains. This trend has had its impact on IT management and
paved the way for concepts subsumed under the term service (oriented) management.
Now, that relations involved in providing a service are crossing organizational bound-
aries, unambiguous specifications of interfaces are more important than ever before. In
federated environments they are a fundament for rapid and successful negotiation as
well as for smooth operation. Here, not only functional aspects have to be addressed,
but quality is also an important issue.

In the context of service management, the technical term Quality of Service (QoS)
is now perceived in its original sense. Prior to the era of service orientation, the term
QoS was mainly referred to as some more or less well defined technical criterion on
the network layer. Nowadays, QoS is regaining its original meaning of describing a
service’s quality in terms which are intrinsic to the service itself. Furthermore, QoS now

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 1-14, 2004.
© IFIP International Federation for Information Processing 2004

2 M. Garschhammer and H. Roelle

reflects the demand for customer orientation, as QoS should be expressed in a way that
customers understand, and not in the way a provider’s implementation dictates it.

In the past, a number of QoS specification concepts and languages have been pro-
posed. Unfortunately, when applied to real world scenarios in a service oriented way,
each shows weaknesses in different situations. For example, considering negotiations
between a customer and a provider, some are well suited regarding customer orienta-
tion, as they are easily understood by the customer. But they are of only limited use for
the provider’s feasibility and implementation concerns. Other specification techniques
suffer from the inverse problem.

Apparently there is room for improvement in service oriented specification of service
quality. This paper contributes to the field by introducing a classification scheme for
quality specification techniques which is strictly service oriented. This is accomplished
by considering e.g. the service life cycle, different roles and types of functionality. By
applying the classification scheme to representative examples of quality specification
techniques, the current status in the field is outlined. To contribute to the advancement of
service orientation, we derive requirements for next generation specification techniques
by two ways: First we analyze today’s works’ flaws and second we deduce requirements
from our classification scheme.

The paper is organized as follows. In the next section (Sec. 2) the classification
scheme for QoS specification languages and concepts is introduced. Application to typi-
cal examples of QoS specification techniques is discussed in Sec. 3. Using these results,
the following section (Sec. 4) identifies requirements for future quality specification
approaches. Section 5 concludes the paper and gives an outlook on further work.

2 Classification Scheme

In this section a classification scheme for quality specification concepts and languages
is developed. In doing so, the paradigm of service orientation is strictly followed. Mul-
tiple aspects of services are covered, functional aspects of a specification as well as its
expressiveness in relation to service properties.

In order to develop the classification, the MNM Service Model [GHH*02,GHK*01]
is used as the foundation for the classification. Itis a bottom—up developed model which
defines a common terminology in generic service management, specifies atomic roles
and denotes the major building blocks a service is composed of. Doing so, it offers a
generic view on the building blocks rather than a specification for direct implementation.
As the MNM Service Model is a generic model, which is not focusing a certain scenario,
it serves well as a starting point for our classification, in respect to develop a model
where completeness, generic applicability and scenario independency is ensured.

The second ingredient for our classification is the set of common concepts that can
be found in various quality specification schemes. This set was derived from the survey
of Jin and Nahrstedt [JN04] and is an enhancement of the taxonomy presented there.

2.1 The MNM Service Model as a Map for Specification Concepts

The MNM Service Model offers two major views (Service and Realization View) which
group a service’s building blocks into different domains, according to their roles and

Requirements on Quality Specification Posed by Service Orientation 3

related responsibilities. Figure 1 combines the two views. One major characteristic of
the model is the so called Side Independent Part'. Beside the service itself, it depicts
additional building blocks which should be specified independently from realization
details on either the provider side and the customer side.

The MNM Service Model decomposes the specification of a service’s quality in
two parts. The first part describes quality relevant properties of a service (class QoS
Parameters in Fig. 1). The second part poses constraints on those specified properties
which have to be met by the provider and are agreed upon in an service agreement.

For both parts, relevant properties of the system have to be defined in an unambiguous
manner.

customer side

implements reatizes]

concludes

N L . 4 MAnzges
(sanace |mp1emanta'l|on —I 29

Irsarvlce impl

SUD-SETVICE
management clien

provider side

4manages

AManages

vy

servics | ¢ uses <o len g TaM
client usar 5 : | clignt

Fig. 1. Reference Points located in combined view of the MNM Service Model

QoS parameters may be specified against different reference points. Thus, even
when they bear the same name, they may have different semantics. For example, a delay
specification could be measured at the user’s client or inside the service implementa-
tion, which results in different QoS parameters. In fact, our extension of the taxonomy
presented in [JNO4] describes such possible reference points for quality specification.

! In the following, parts of the model will be printed in italics

4 M. Garschhammer and H. Roelle

By locating the reference points in the MNM Service Model characteristics of these
reference points can be identified. First of all, the model’s part where the reference
point is located, enables us to identify the affected roles. Furthermore, this allows us
to draw conclusions on dependencies to other parts of a service. Thus we can identify
typical properties of reference points, like limitations regarding portability to different
realizations or the applicability in situations, when service chains come into play.

The following paragraphs first describe those reference points. In each paragraph’s
second part the reference point is located in the MNM Service Model as depicted in Fig.
1. By this, basic characteristics of specification techniques using the respective reference
point can be pointed out later on by simply marking the corresponding reference point
in the MNM Service Model.

Flow/Communication. Most of today’s common QoS parameters, such as throughput
or delay, are measured and thus specified from a communications point of view. Quality
related properties of a service are derived from properties of a data stream or, in general,
aflow. Constraints on the quality of a service are simply mapped onto constraints of the
flow (e.g. “the transmission delay must not exceed 10ms”). So the quality of a service
is only implicitly defined by properties of the communication it induces. This definition
is therefore at the risk of being too coarse in respect to the service’s functionality.
However, this way of expressing quality is widespread because properties of a flow can
be easily derived in real world scenarios. A typical example would be an ATM based
video conferencing service where its properties are described as ATM QoS parameters.

In the MNM Service Model a communication flow in general can be observed be-
tween a client and the corresponding service access point (SAP). This relation exists
between the service client and service access point (when accessing the service’s us-
age functionality) as well as between the customer service management (CSM) client
and the customer service management (CSM) access point (when accessing the man-
agement functionality). Hence, a quality specification has to be applied not only to the
usage functionality but also to the management side.

As can be seen in Fig. 1, the relation between the service client and the service access
point crosses the boundary between the customer side and the side independent part of
the model (the same applies for the management side). Any analysis of flows depend
on the service clients, thus, it cannot be implementation independent. In consequence,
specifications using the technique of flow analysis depend on a client’s implementation
aswell.

Method/API Invocation. Another technique to derive quality relevant properties of
a service is motivated by object oriented (OO) design, programming and middleware
architectures. Here, quality is specified as properties of amethod invocation, e.g. the time
it takes a method for encoding a video frame to finish. Constraints on these properties
can be posed as easily as in the former case. This method of quality measurement and
description requires the interception of method invocations. As this is naturally done in
component oriented middleware, this technique is mostly used there.

Method invocation may occur at almost any functional component of the MNM
Service Model. However, the invocation interception concept used in OO environments

Requirements on Quality Specification Posed by Service Orientation 5

or middlewares can be mapped best to the service’s access points where methods in the
sense of service (management) functions can be invoked. The idea of interception of
method invocations is therefore depicted in Fig. 1 at the service access point and the
customer service management (CSM) access point. As this concept only uses blocks of
the model which are located in the side independent part, it does not depend on any
implementation, neither on the customer nor on the provider side.

Code Injection. The idea of code injection is to directly integrate constraints on quality
into a service’s implementation—into its executable code. Steps of execution monitored
by injected code yield service properties (such as processing time or memory consump-
tion). Constraints on these properties are inferred by directly coding conditional actions
to be executed when a constraint is satisfied or violated. For example, information on
memory usage during the decoding of a video stream is measured. If it exceeds a cer-
tain value, a less memory consuming but also worse performing decoding method is
used. This procedure automatically assures a certain quality, in this case a guaranteed
maximum amount of memory used.

The MNM Service Model divides a service’s implementation into three parts: sub-
service client, service logic and resources. The service logic orchestrates resources and
subservices to implement the service’s usage functionality as a whole. The idea of code
injection, in the sense of the service model, is to enhance the service logic with inserted
code to automatically derive properties of the running service. Observation of these
properties and reaction to changes are directly coupled. As the Service Model distin-
guishes between a service’s usage functionality and its management functionality, this
concept is shown in both the service logic and the service management logic. As one
can easily see, the idea of code injection depends directly on a service’s implementation
by a provider. It is therefore an instrument for providers to assure a certain quality, but
obviously should not be used in service negotiation when customer and provider need
to establish a common understanding of a service’s quality parameters.

Resource Parameters. Quality relevant properties of a service can also be derived
from the parameters of resources the service is realized with. For this purpose, resource
parameters can be aggregated in various ways.

However, details of the gathering and aggregation process have to be defined after
service deployment, because relevant details of concrete resources used are unknown
before deployment. Even worse, the specification may have to be adapted on a service
instance basis because different service instances might use different resources, whose
concrete characteristics might be needed for specification. Constraints on these resource
oriented properties can be posed at various aggregation levels, but their derivation from
constraints posed on the service itself is not a trivial task.

In the MNM Service Model, information about resources can be directly gathered
from the resources, but can also be obtained via the class basic management functionality.
When specifying quality aspects of the management functionality the basic management
Sfunctionality itself is targeted in a QoS specification. As the location of both resources
and basic management functionality inside the provider’s domain illustrates, even with
a suitable aggregation method, this concept of specification can only express quality that

6 M. Garschhammer and H. Roelle

directly depends on the provider’s own implementation. As most services realized today
depend on subservices, this specification can be used for basic services only.

By introducing the various reference points, locating them in the MNM Service Model
and by identifying their basic properties and limitations, the first part of our classification
scheme is now explained. While up to here our analysis focused mostly on functional
aspects of the MNM Service Model’s views, additional non—functional aspects have to
be regarded for a comprehensive classification of quality specification techniques. This
will be carried out in the next section.

2.2 Dimensions Covered by Quality Specifications — The LAL-Brick

Apart from its decompositions into functional building blocks and related roles, as de-
scribed with the MNM Service Model, a service can also be described in another view,
which focuses on non—functional properties of a service. As shown in the following para-
graphs, we describe this non-functional view using a three dimensional brick, depicted
in Fig. 2. The brick’s three dimensions are Life cycle, Aspect, Layer and is therefore
called the LAL-brick from here on. The axes of the brick, its dimensions, can be marked
with typical properties. A tiny cube is attached to each property and as the dimensions
are independent from each other, all tiny cubes together form the brick. The dimensions
and their properties are described in the following.

user |

” deinstallation /
o

provisioning o

" negotiation /

application |

resources
e ; ki

—alayer of abstraction—=—

information management functionality
-4—— service aspect —————»—

Fig. 2. Dimensions of quality specification arranged in a brick

Approaches to specify QoS can easily be depicted in the brick by simply marking
the cubes corresponding to the properties this specification approach fulfills. Different
“marking patterns” of different approaches explicitely visualize their classification.

Requirements on Quality Specification Posed by Service Orientation 7

Life Cycle. The process traversed by a service — when seen as an object of management
—1is called the life cycle. This process can be split up into different phases. According to
[GHH*02] it begins with the negotiation phase where customer and provider determine
a service’s functionality, its QoS and suitable accounting schemes. In the next phase,
the provisioning phase, the provider implements the service using its own resources and
subservices he buys (then acting in the role of a customer). When the implementation is
completed, the usage phase begins with users actually using the service. The life cycle
ends with the deinstallation of the service.

The mapping of the reference points on the MNM Service Model already suggested
that the service life cycle is a relevant dimension in quality specification. For example,
as explained above, specification schemes based on resource parameters have a strong
relation to the finalization of the provisioning phase, while using method/API invocation
as reference points, quality specification could be fully done in the negotiation phase.
Thus, concepts and methodologies dealing with service should be aware of the life
cycle and ensure reusability of results they deliver to other phases. At least they should
explicitly denote which phase they cover or were designed for.

Aspects of a Service. The notion of a service not only defines a set of functions accessible
to a user. In an integrated view it also defines how the management of a service is
accomplished by the customer (see Fig. 1). As shown above, independently from the type
of reference points used in a specification mechanism, management functionality must be
targeted as well as a service’s usage functionality. Of course, when a service is specified,
the content it delivers or the information it deals with are defined. In consequence, this
information might be subject to quality considerations as well. From now on, we use
the notion of aspects of a service to denote the triple of function, management and
information.

Layer of abstraction. When concepts or methodologies dealing with services are pre-
sented, different layers of abstraction can be recognized. Some ideas focus on the re-
sources that a service is built upon, some describe a service from an application’s point
of view. At last, the service can be described from an user’s point of view (as of [JNO4]).

Service orientation demands concepts spanning all three layers of abstraction denoted
above, so providers, customers and users can use them. At least, mappings between the
different layers should exist so that an integrated concept could be built up out of ideas
only spanning one layer of abstraction.

2.3 Comprehensible, Service Oriented Classification Scheme

The set of reference points marked within the MNM Service Model in conjunction
with the LAL-brick now delivers a comprehensive classification scheme for approaches
specifying QoS. It should be emphasized that reference points are not exclusive to each
other. This means, that a concrete quality specification mechanism might use several
types of reference points. Section 3.4 shows an example for this.

The MNM Service Model and the LAL-brick offer different views on the specifica-
tion of QoS. The Service Model, used as a map to visualize different reference points,

8 M. Garschhammer and H. Roelle

focuses on functional aspects, whereas the LAL-brick gives an easy to use scheme
to denote non-functional properties of specification techniques. Together, both views
offer the possibility of a comprehensive classification of existing approaches in QoS
specification, as will be shown in the following section.

3 The Classification Scheme Applied - State of the Art in QoS
Specification by Example

After presenting a comprehensive and service oriented classification scheme in the previ-
ous section, we will now discuss typical representatives of specification languages. Each
specification language realizes one of the approaches denoted in Sec. 2. We do not give
a full survey on QoS specification languages and techniques here. But we demonstrate
the application of our classification scheme to existing approaches in order to derive
requirements on a service oriented QoS specification in the following Sec. 4.

3.1 QUAL - A Calculation Language

In her professorial dissertation [DR02a] Dreo introduces QUAL as part of “a Frame-
work for IT Service Management”. The approach of QUAL as such is also presented
in [DRO2b]. The key concept of QUAL is to aggregate quality parameters of devices
(named as quality of device, QoD) to basic quality parameters which themselves can be
aggregated to service relevant QoS parameters. The aggregation process is based upon
dependency graphs which describe service and device interdependencies.

As QoD is gathered on the resource level, QUAL obviously uses resource parameters.
Although QUAL can express higher level quality parameters at the application level,
they always depend on the on the QoD gathered from the resources. Thus, resource
parameters are the only reference point directly used in QUAL, as application level QoS
is specified through aggregation.

QUAL covers a wide range of abstraction from resource to service oriented quality
parameters. However, QUAL does not directly address the specification of user—oriented
QoS. In our classification scheme, it therefore covers the two lower abstraction layers,
resource layer and application layer. QUAL focuses on the functionality aspect, the
management aspect and the information aspect are not explicitly mentioned.

As QUAL is based on resource parameters, its application is restricted to the usage
phase of the life cycle where these parameters are available. Even though QUAL covers
only the usage phase, it is highly dependent on specifications and decisions made in
the negotiation and provisioning phase. This results from the fact, that aggregation of
quality parameters is based on dependency graphs which have to be determined before
QUAL is applied.

3.2 QDL - QoS Description Language

QDL [PJS*00] is an extension to the interface description language (IDL) [ITU97] which
is used to specify functional interfaces in CORBA [CORO04]. Itis the description language
used in the QuO (Quality of Service for CORBA Objects) framework introduced in

Requirements on Quality Specification Posed by Service Orientation 9

[ZBS97]. The key concept of QuO is to enhance the CORBA middleware concepts
with QoS mechanisms. For this purpose, additional facilities are added to the CORBA
runtime to ensure a specified quality. The desired quality is determined in QDL and its
sublanguages.

Based on QDL statements, extra code is generated in the QuO framework which is
joined with the functional code when the corresponding object files are linked together.
Thus, QDL uses code injection as a reference point for the specification of QoS. By
using CORBA as an implementation basis, QuO and QDL abstract from real resources
and specify QoS at the application layer of abstraction. Naturally the CORBA based
approach limits the expressiveness of QDL and prevents the specification of user—level
QoS.

QDL only covers the of aspect of functionality and does not mention any possibilities
to extend its approach to the other aspects management and information. QDL, together
with the supporting framework QuO, covers the life cycle phases provisioning and usage.
The reason for this is, that code executed in the usage phase is automatically generated
from specifications laid down in the provisioning phase, when a service is realized
according to customer’s needs.

3.3 QML - Quality Modeling Language

The Quality Modeling Language QML [FK98] was developed at HP-Labs, another, quite
similar approach was presented in a thesis [Aag0l]. QML separates the specification of
(desired) quality from its assurance or implementation respectively. As specifications are
bound to abstract method definitions of the considered application, QML uses method
invocation as the reference point. The authors of QML also propose a corresponding
runtime engine that could be used to implement the specifications made in QML.

Thus, the system as a whole (QML and its runtime engine) offers support for the
whole service life cycle: As specifications made in QML are independent of an imple-
mentation, they could be easily used in the negotiation phase. Provisioning and usage
phase are supported by the runtime engine QRR (QoS Runtime Representation) which
unfortunately has not been implemented yet.

Obviously, due to their binding to abstract methods, specifications in QML are made
atthe application level of abstraction. As long as resources are encapsulated in an (object
oriented) interface, QML specifications might be used at the resource level as well.
However, this possible extension is not mentioned by the authors of QML. A distinction
of different aspects of QoS is not made either. QML, like all the other specification
languages introduced so far, definitely focuses on the aspect of functionality.

34 QUAL - Quality Assurance Language

The quality assurance language was introduced in [Flo96] as part of QoSME the QoS
Management Environment. Although equal in names, QUAL by Florissi and QUAL
introduced at the very beginning of Sec. 3 follow quite different approaches. QoSME~
QUAL specifies quality in relation to communication properties observable at a so called
port. So, it uses a flow of communication as reference point. QoSME also provides a
runtime engine to ensure the specifications made in QUAL. As this engine is directly

10 M. Garschhammer and H. Roelle

woven into an application's executable code, Q0SME uses the concept of code injection
as well. Even though this is only done for the assurance and not for the specification of
QoS, it leads to a form of specification closely related to the executable code.

QUAL statements are not very meaningful without a specific implementation in
mind. Thus, QUAL cannot be used during the negotiation of a service, where an imple-
mentation is not yet existent. However, QUAL supports the provisioning phase by QoS
specification directly attached to the code to be executed later. Together with the runtime
system of QoSME, QUAL also supports the usage phase.

QUAL claims to specify QoS at the application layer of abstraction but does neither
mention nor address the other abstraction layers (resources and user). Because QUAL
analyzes communication flows, it primarily covers the aspect of functionality, but could
in some sense also be related to the aspect of information when the content of flows is
examined.

application

resources

—-layer of abstraction ==

information management functionality
~4———— service aspect ———

Fig. 3. Approaches marked in the LAL-brick

3.5 The Big Picture

To conclude our presentation of existing approaches we again show the LAL-brick
in Fig. 3. In this figure, the parts covered by the reviewed specification languages are
marked. Possible extensions of existing approaches, as mentioned above, are spotted,
whereas the parts exactly matched are marked dark grey.

As one can easily observe, huge parts of the LAL-brick are not covered at all.
Requirements for future specification languages resulting from this “gap” are discussed
in the next section.

Requirements on Quality Specification Posed by Service Orientation 11

4 Directions and Requirements for Future Research

As the previous section shows, current work has deficiencies regarding extensive service
orientation capabilities. By summing up the flaws and comparing it to the classification
scheme, this identifies new requirements which should be met by the next steps in the
field. The classification scheme of Sec. 2, which consists of the set of reference points
on the one hand, and of the LAL-brick on the other hand, is used here again.

As a service oriented, generic and comprehensive solution for QoS specification
technique is required, a full coverage of the LAL-brick should be achieved. Therefore,
the still missing cubes in the LAL-brick are investigated. Additionally, in conjunction
with the MNM Service Model as generic reference, the individual limitations of the
reference points, induce additional requirements.

Side independency. Following the MNM Service Model, QoS should be described in a
side independent manner. As already explained in Sec. 2.1, side dependency is influenced
by the actual set of reference point used. A number of specification schemes suffer from
the problem, that they exclusively focus on reference points which import realization de-
pendency by design. Namely, justusing Code Injection or Resource Parameters induces
dependencies on the provider’s realization of a service. In case of Code Injection, using
a middleware architecture mitigates the dependencies from specific resources, but be-
ing specific on this middleware persists. Relying solely on Resource Parameters is even
more problematic as only provider—internal resources, but not the subservices purchased
by the provider are reflected. Additionally, side independency is not only desirable in
the relation to customers. With quality specification being driven by a provider’s imple-
mentation, when it comes to outsourcing, it will be difficult for the provider to create
comprehensible bid invitations for subproviders.

Consequently, quality specification languages should support specification tech-
niques which are independent from implementation details. As pointed out, this is not
only required for customer orientation, but also aids providers in outsourcing processes.
Additionally, in the LAL-brick, side independency is a first step towards the coverage
of the user layer of abstraction.

Life cycle span. Regarding the LAL-brick, the previous section has shown that not
all quality specification techniques are qualified to cover a service’s full life cycle. As
quality specification is already needed in the beginning (the negotiation phase), a quality
description mechanism should try to cover the whole life cycle.

Especially the ability to reuse specification results should be addressed. This is
desirable, as it would help providers in estimating feasibility of a customer’s demands
during the negotiation phase. Second, it would aid providers in realizing services, as
agreed quality could be more smoothly implemented during the provisioning phase.
Third, for the usage phase, a life cycle spanning approach could help in measurement of
quality characteristics. As a minimum requirement, specification techniques at the very
least should point out which phase of the life cycle they were designed for.

12 M. Garschhammer and H. Roelle

Management functionality subject to quality. As the MNM Service Model points
out, management functionality is a vital part of any service, a point also reflected in
the design of the LAL-brick. In fact, management functionality not only reports and
manipulates quality aspects, but is also subject to quality considerations itself. This is
even more important, as quality of management functionality can have influence on a
service’s usage quality.

For this, an example are situations when a main service is composed of subservices.
Reporting of QoS from a subservice is part of its customer service management (CSM)
functionality. When this reporting functionality has deficiencies, quality degradation
from the subservice might not be determined by the main service. As a consequence
its own usage functionality might be affected without being noticed, because quality
degradations of the involved subservice are not noticed as the reporting functionality is
degraded.

However, in current work the topic of applying quality to management functionality is
not addressed. Although one can suppose that some tasks are similar to specifying quality
of usage functionality, further research is needed. Atleast, specification techniques must
be able to cope with the fact that in case of management functionality a different role
(namely the customer instead of the user) is involved.

Awareness of Quality of Information (Qol). As the LAL-brick shows, a service’s
content may be a quality aspect, here referred to as the information aspect. Taking
a web—based news service as an example, up—to—dateness of messages is, without a
doubt, a quality criterion of the service. Dividing quality aspects of functionality (here:
e.g. reachability of the service) from information quality (here: e.g. up-to—dateness
and trustability of news) can aid over the whole service life cycle. During negotiation
and deployment, service agreements with customers and subcontractors will be more
accurate, outsourcing decisions gain a clearer basis. Naturally, technical infrastructure
might influence the Qol. Regarding the news service, a certain up—to—dateness might
require a different content management system or a faster communication infrastructure
to subcontractors delivering news content. In the usage phase, e.g. in fault situations,
root causes might be easier to find.

One might argue that this starts to involve high level semantics, a field which is
hard to cope with. Nevertheless, separating quality aspects of a service’s content from
its functionality in fact already took place in some research areas. Context sensitive
services are dealing with “Quality of Context” [HKLPR03,BKS03], for example the
accuracy of location coordinates or temperature readings. Speaking in the terminology
introduced by this paper, these are quality aspects of information. Future research in
service management should be aware of this separation, should try to develop a generic
approach and should try to invent techniques and mechanisms to incorporate and support
Quality of Information (Qol).

It should be pointed out here that it would be unrealistic to demand or predict one single
approach which is capable to span the whole LAL-brick and which can fulfill all of the
requirements posed here. Instead, multiple approaches for different slices of the LAL—
brick are more likely. But what should definitely be approached, is the interoperability

Requirements on Quality Specification Posed by Service Orientation 13

between approaches and standards covering parts of the LAL—brick. These questions on
interoperability are also subject for further research.

5 Conclusion and Outlook

In this paper a classification scheme for quality specification mechanisms and languages
is presented. The classification emphasizes service orientation and consists of two parts.
First a set of reference points is given, denoting the place in the MNM Service Model
which is used to define quality properties of a service and on which later quality con-
straints are built upon. The second part of the classification scheme, called the LAL—
brick, defines the dimensions along which quality description schemes can be classified.
The classification scheme is applied to typical examples of current approaches in QoS
specification. By this, the current state of the art in the field is outlined.

In the last part of the paper, observations of the classification scheme’s application
in conjunction with basic properties of the scheme itself are used to identify basic
requirements and directions for future research in the field. Among others, one of the
basic directions here is the awareness of the service life cycle. Additionally, a service
content, or more abstract, the information it deals with, is also subject to quality (Quality
of Information, Qol), which has to be separated from the quality of a service’s usage
and management functionality.

Further directions in our work include a specification scheme which focuses on the
ability to reuse specification properties from preceding life cycle phases. Our second
focus is targeted on the MNM Service Model. According to the results of this paper, it
needs extensions regarding Qol, by that broadening its applicability to mobile and context
aware service scenarios. Looking even further, approaches which claim the software
development life cycle to be vital for quality specification (like [FK98,ZBS97]) must be
investigated more precisely and eventually incorporated with the presented work.

Acknowledgment. The authors wish to thank the members of the Munich Network
Management (MNM) Team for helpful discussions and valuable comments on previous
versions of this paper. The MNM Team directed by Prof. Dr. Heinz-Gerd Hegering is a
group of researchers of the University of Munich, the Munich University of Technology,
and the Leibniz Supercomputing Center of the Bavarian Academy of Sciences. Its web—
server is located at http://wwwmnmteam.ifi.lmu.de/.

References

[Aag01] J. @ Aagedal. Quality of Service Support in Development of Distributed Systems.
Dr. scient. thesis, Department of Informatics, Faculty of Mathematics and Natural
Sciences, University of Oslo, March 2001.

[BKSO03] T. Buchholz, A. Kiipper, and M. Schiffers. Quality of Context Information: What
it is and why we need it. In Proceedings of the 10th HP-OVUA Workshop, volume
2003, Geneva, Switzerland, July 2003.

[COR0O4] Common object request broker architecture (corba/iiop). Specification version
3.0.2, OMG, March 2004.

14 M. Garschhammer and H. Roelle

[DRO02a]

[DRO2b]

[FK98]

[Flo96]

[GHH*02]

[GHK™01]

[HAN99]

[HKLPRO3]

[ITU97]

[JNO4]

[PIST00]

[ZBS97]

G. Dreo Rodosek. A Framework for IT Service Management. Habilitation, Lud-
wig-Maximilians-Universitidt Miinchen, June 2002.

G. Dreo Rodosek. Quality Aspects in IT Service Management. In M. Feridun,
P. Kropf, and G. Babin, editors, Proceedings of the 13th IFIP/IEEE International
Workshop on Distributed Systems: Operations & Management (DSOM 2002), Lec-
ture Notes in Computer Science (LNCS) 2506, pages 82-93, Montreal, Canada,
October 2002. IFIP/IEEE, Springer.

Svend Frglund and Jari Koistinen. Qml: A language for quality of service spec-
ification. Report hpl-98-10, Software Technology Laboratory, Hewlett-Packard
Company, September 1998.

Patricia Gomes Soares Florissi. QoSME: QoS Management Environment. Phd
thesis, Columbia University, 1996.

M. Garschhammer, R. Hauck, H.-G. Hegering, B. Kempter, I. Radisic, H. Roelle,
and H. Schmidt. A Case-Driven Methodology for Applying the MNM Service
Model. In R. Stadler and M. Ulema, editors, Proceedings of the 8th International
IFIP/IEEE Network Operations and Management Symposium(NOMS2002),pages
697-710, Florence, Italy, April 2002. IFIP/IEEE, IEEE Publishing.

M. Garschhammer, R. Hauck, B. Kempter, 1. Radisic, H. Roelle, and H. Schmidt.
The MNM Service Model — Refined Views on Generic Service Management.
Journal of Communications and Networks, 3(4):297-306, December 2001.

H.-G. Hegering, S. Abeck, and B. Neumair. Integrated Management of Networked
Systems — Concepts, Architectures and their Operational Application. Morgan
Kaufmann Publishers, ISBN 1-55860-571-1, 1999.

H.-G. Hegering, A. Kiipper, C. Linnhoff-Popien, and H. Reiser. Management Chal-
lenges of Context—Aware Services in Ubiquitous Environments. In Self~Managing
Distributed Systems, 14th IFIP/IEEE International Workshop on Distributed Sys-
tems: Operations and Management, DSOM 2003, Heidelberg, Germany, October
2003, Proceedings, number LNCS 2867, pages 246-259, Heidelberg, Germany,
October 2003. Springer.

Open Distributed Processing — Interface Definition Language. Draft Recommen-
dation X.920, ITU, November 1997.

Jingwen Jin and Klara Nahrstedt. QoS Specification Languages for Distributed
Multimedia Applications: A Survey and Taxonomy. In /[EEE Multimedia Magazine,
to apear 2004.

P Pal, Loyall J., R. Schantz, J. Zinky, R. Shapiro, and J. Megquier. Using QDL to
Specity QoS Aware Distributed (QuO) Application Configuration. In Proceedings
of ISORC 2000, The Third IEEE International Symposium on Object-Oriented
Real-time Distributed Computing, Newport Beach, CA., March 2000.

J. Zinky, D. Bakken, and R. Schantz. Architectural Support for Quality of Service
for CORBA Objects. In Theory and Practice of Object Systems, January 1997.

Automating the Provisioning of Application
Services with the BPEL4WS Workflow Language

Alexander Keller' and Remi Badonnel**
! IBM T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598, USA
alexk@us.ibm.com
2 LORIA-INRIA Lorraine
615, rue du Jardin Botanique - B.P. 101, 54600 Villers Les Nancy Cedex, France

remi.badonnel@loria.fr

Abstract. We describe the architecture and implementation of a novel
workflow-driven provisioning system for application services, such as
multi-tiered e-Commerce systems. These services need to be dynami-
cally provisioned to accomodate rapid changes in the workload patterns.
This, in turn, requires a highly automated service provisioning process,
for which we were able to leverage a general-purpose workflow language
and its execution engine. We have successfully integrated a workflow-
based change management system with a commercial service provision-
ing system that allows the execution of automatically generated change
plans as well as the monitoring of their execution.

1 Introduction and Problem Statement

The extremely high rate of change in emerging service provider environments
based on Grid and Web Services technologies requires an increasingly auto-
mated service provisioning process. By provisioning, we mean the process of
deploying, installing and configuring application services. A promising, system-
atic approach to this problem is based upon the adoption of Change Manage-
ment [5]. An important prerequisite for automated Change Management is the
ability of a service provisioning system to interpret and execute change plans
(described in a general-purpose workflow language) that have been generated
by a Change Management System. This requires adding new workflows ““on-the-
fly” to provisioning systems, i.e., without writing new program code and without
human intervention. Second, the workflows should contain temporal constraints,
which specify deadlines or maximum allowable durations for each of the activities
within a workflow. Finally, once the workflows are executed by a provisioning
system, the system should be able to check their status to determine if an activity
has completed and, if yes, whether it was successful or not.

This paper describes our approach to addressing these requirements and its
implementation. It enables a provisioning system to understand and execute

* Work done while the author was an intern at the IBM T.J. Watson Research Center

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 15-27, 2004.
© IFIP International Federation for Information Processing 2004

16 A. Keller and R. Badonnel

change plans specified in the Business Process Execution Language for Web Ser-
vices (BPEL4WS) [1], an open workflow language standard, as a means to apply
change management concepts and to automate provisioning tasks significantly.
In addition, our system is capable of providing feedback from the provisioning
system back to the change manager, so that the latter can monitor how well the
execution of the change plan proceeds, and perform adjustments if needed.
The paper is structured as follows: Section 2 gives an overview of typical
service provisioning systems, such as IBM Tivoli Intelligent Orchestrator (TIO),
and describes related work. Our approach for integrating CHAMPS, a Change
Manager developed at IBM Research, with TIO and a workflow engine capable
of understanding BPEL4WS, is discussed in section 3; we present the proof-of-
concept implementation in section 4. Section 5 concludes the paper and presents
the lessons we learned during this work as well as issues for further research.

2 Towards Automated Service Provisioning

The importance of automating the provisioning of services is underscored by a
recent study [9] showing that operator errors account for the largest fraction
of failures of Internet services and hence properly managing changes is critical
to availability. Today, however, service provisioning systems are isolated from
the change management process: They typically come with their own, propri-
etary workflow/scripting language, thus making it hard for a change manager
to formulate reusable change plans that can be understood by different provi-
sioning systems. Our goal is to tie provisiong systems into the change manage-
ment process. By leveraging the Web Services technology and a standardized,
general-purpose workflow language for expressing change plans and demonstrat-
ing the feasibility of integrating a common-off-the-shelf workflow engine with a
commercial provisioning system, our approach is applicable to a wide range of
provisioning scenarios.

2.1 Provisioning Systems: State of the Art

Typical provisioning systems, such as Tivoli Intelligent Orchestrator (TIO) [4]
provide an administrator with a runtime environment for defining and subse-
quently executing provisioning scripts. Figure 1 depicts the sequence of steps
for provisioning a web site that uses the IBM HTTP Server (IHS), a variation
of the Apache Web Server. In this example, 10 actions need to be carried out
by the provisioning system, which can be summarized as follows: Copying the
install image of the HTTP server into a temporary directory on a target system,
launching the installation, updating the httpd.conf configuration file, installing
the web site content (HTML pages, pictures etc.), starting the HTTP server,
and performing cleanup tasks once the installation has been completed success-
fully. In TIO, such a provisioning workflow consists of a sequence of operations;
these are pre-defined activities that can be adapted and customized by an ad-
ministrator, as well as aggregated into new workflows. For every operation, an

Automating the Provisioning of Application Services 17

kControl Version 2.5 build UBS5_3 Logged in as: internal use ThinkControl @Help @ Logaff i

Transitions: Generic Install IHS+WebSite

i] Workflow: ﬁ(imm Install IHS *WebSite Logical Operation: none I
: Description: Generic Install IHS+WebSite

Mapped (o 0
| scp%%TCServ. (® RetumCode
‘camara’ @& RetumResult

500000 .

i
)
i

' Shinkeahtrol'

Fig. 1. Steps for Provisioning an HTTP Server from a Service Provisioning System

administrator can specify what steps need to be taken if the operation fails, such
as undoing the installation or notifying the administrator. Provisioning systems
that require such fine-grained definitions of provisioning workflows expect an
administrator to have a detailed understanding of the steps involved in setting
up the provisioning of complex, multi-tiered systems. However, the lack of know-
ledge about the structure of a distributed system and the dependencies between
its fine-grained components often tend to make an administrator overly prudent
when designing workflows, e.g., by not exploiting the potential for concurrent
execution of provisioning workflows, thus resulting in inefficiencies.

Another example of a commercial service provisiong system is given in [3].
It describes a workflow-based service provisiong system for an Ethernet-to-the-
Home/Business (ETTx) environment, consisting of a policy engine, a service
builder, an activation engine and a workflow engine. The (proprietary) workflow
engine orchestrates the execution flow of the business process, whereas the ac-
tual provisioning steps are executed by a custom-built activation engine. Our
approach, in contrast, lets a common-off-the-shelf workflow engine orchestrate
the actual provisioning process. Indeed, there has been interest in using work-
flow technologies to coordinate large scale efforts such as change management
[7], and to automate the construction of a Change Plan [8]. However, no current

18 A. Keller and R. Badonnel

provisioning system is able to understand change plans that leverage the full
potential of typical general-purpose workflow languages, such as the concurrent
execution of tasks and the evaluation of transition conditions to determine if the
next task in a workflow can be started.

2.2 Related Work

In addition to the products described above, service provisioning and change
management have received considerable attention in both academia and indus-
try. A constraint satisfaction-based approach to dynamic service creation and
resource provisioning in data centers is described in [10]. Whenever a policy
manager finds a match between an incoming request and a set of resource type
definitions, the task-to-resource assignment is treated as a constraint satisfaction
problem, which takes the service classes as well as the technical capabilities of the
managed resources into account, but does not perform additional optimization.
The output is consumed by a deployment system.

STRIDER [12] is a change and configuration management system targeted at
detecting and fixing errors in shared persistent configuration stores (such as the
Windows Registry). To do so, it follows an elaborate three-step process to analyse
the state of configuration parameters, finds similar, valid configurations and
subsequently narrows down the range of results to the most likely configuration.
Since it deals with (re)setting configuration parameters and does not perform
software deployment, the system does not make assumptions about the order in
which provisioning steps need to be carried out.

Finally, the Workflakes system, described in [11], provides workflow-driven
orchestration of adaptation and reconfiguration tasks for a variety of managed
resources. Workflakes focuses on an adaptation controller for systems and ser-
vices, where workflows describe the dynamic adaptation loop. Our work sup-
ports a change management approach, where dynamically generated workflows
(describing change plans) are executed by a provisioning system.

3 Integrating Change Management and Provisioning

3.1 The CHAMPS Change Manager

The CHAMPS system is a Change Manager for CHAnge Management with
Planning and Scheduling [6]. CHAMPS consists of two major components: The
Task Graph Builder breaks down an incoming request for change into its
elementary steps and determines the order in which they have to be carried out.
This Task Graph is a workflow, expressed in BPEL4WS, consisting of tasks
and precedence constraints that link these tasks together.

In a second step, multiple task graphs (representing the various requests for
change that are serviced by the change manager at a given point in time) are con-
sumed by the Planner & Scheduler. Its purpose is to assign tasks to available
resources, according to additional monetary and technical constraints, such as

Automating the Provisioning of Application Services 19

Service Level Agreements (SLAs) and Policies. To do so, it computes (according
to various administrator-defined criteria) a Change Plan that includes dead-
lines and maximizes the degree of parallelism for tasks according to precedence
and location constraints expressed in the Task Graphs. Again, the BPEL4AWS
workflow language is used to express the Change Plan. Figures 5, 7 and 8 in
section 4 contain various examples of instructions specified in a Change Plan.

3.2 Integration Architecture

Once the Change Plan has been computed by the Planner & Scheduler, it is
input to the Provisioning System, which retrieves the required software pack-
ages from a Package Repository, and rolls out the requested changes to the
targets in the order specified in the plan. An important part of this process is
the ability of the provisioning system to keep track of how well the roll-out of
changes progresses on the targets, and to feed this status information back into
the Planner & Scheduler. Being aware of the current status of the provisioning
process enables the Planner & Scheduler to track the actual progress against the
plan and perform on-line plan adjustment (by re-computing the change plan) in
case the process runs behind schedule. In addition, such a feedback mechanism
can be used to gain an understanding on how long it takes to complete a task.

Our architecture,
depicted in figure 2,
aims at integrating the
provisioning system 4
with CHAMPS to
execute the change
plans in a data center
environment compris-
ing resources such as
server pools, servers,

CHAMPS
System

Workflow Status

A & T
General-purpose |
Workflow

software products, — -

switches, and firewalls. Package | Deployment

In section 2.1, we repository Engine

noted that current -
provisioning SyStemS Instal!ahy Yﬂnligumﬁan
do not execute work- Targets

flows in parallel and
often do not take
temporal and loca-
tion constraints into
account. The deploy-
ment engine of the provisioning system allows us to perform a variety of
management operations on managed resources. While these operations are
grouped into a single sequence on the graphical user interface (cf. figure 1), a
WSDL interface exists that allows the programmatic invocation of individual

Fig. 2. Architecture for extending a Provisioning System
with a Workflow Engine

20 A. Keller and R. Badonnel

operations from an application outside of the provisioning system by means of
SOAP' messages. We exploit this feature by feeding the Change Plans created
by the CHAMPS Planner & Scheduler into a general-purpose workflow engine
and invoke individual operations directly from there. More specifically, we use
the BPWS4J workflow engine [2] that is able to execute workflows and business
processes specified using BPEL4AWS. A BPEL4AWS workflow describes Web
Services interactions and may comprise parallel execution (so-called flows),
sequences, conditional branching, time-out mechanisms, as well as error and
compensation handling.

By doing so, we can execute provisioning tasks defined in change plans con-
currently. The architecture of the extended provisioning system (depicted in
figure 2) is consequently composed of two sub-systems: the BPWS4J workflow
engine and the deployment engine of the provisioning system. The former inter-
acts with the CHAMPS system (cf. section 3.1), as follows: First, the workflow
engine inputs the change plan provided by CHAMPS and starts each provi-
sioning operation by directly invoking the deployment engine. These invocations
are performed either in parallel or sequentially, according to the change plan.
In a second step, the deployment engine is invoked by the workflow engine
and performs the provisioning operations. It reports the status of each operation
execution back to the workflow engine. This status information is used by the
workflow engine to check if the workflow constraints defined in the plan (such
as deadlines) are met. Figure 2 also shows that status feedback happens at two
stages:

First, the interactions between the deployment engine and the workflow en-
gine (i.e., the invocations of provisioning operations and the assessment of their
execution). A major advantage of using a workflow engine for our purposes is the
fact that it automatically performs state-checking, i.e., it determines whether all
conditions are met to move from one activity in a workflow to the next. Conse-
quently, there is no need for us to develop additional program logic that would
perform such checks, as these conditions are specified in the temporal constraints
(so-called links) that connect the activities in a workflow.

The second status feedback loop comprises the interactions between the work-
flow engine and the CHAMPS Planner & Scheduler, i.e., submitting the change
plan and receiving status feedback from the workflow engine. This is needed to
perform plan adjustments in case the roll-out of changes runs behind schedule.

4 Prototype Implementation

The implementation of our prototype demonstrates the invocation of the TIO
deployment engine from the BPWS4J engine, based on the change plans submit-
ted by the CHAMPS system (see figure 3). More specifically, the implementation
addresses the following aspects:

First, one needs to create Web Services Description Language (WSDL) [13]
wrappers for the existing TIO invocation interface. Making TIO appear as a (set

' Simple Object Access Protocol.

Automating the Provisioning of Application Services 21

of) Web Service(s) is a necessary step to providing a seamless integration with the
BPWS4J workflow engine, as every BPEL4AWS invoke operation refers to a Web
Service. The WSDL wrappers define the allowable set of change management
operations that can be used in change plans.

Once this is done, one
can invoke the operations c_';.’i.'é. —
defined in the WSDL in- i g
terfaces by submitting a BPWS4J Workflow Engine

BPELAWS workflow (cor- :
responding to a change
plan) to the workflow en- /I/Z’% mee

. . Changs Plan
gine, which allows the ex-

ecution of several opera- s ==TF 4
: : ; RequestiD poquest getStatus Sﬂ:’s
tions in parallel. Ly | e o -
Third, the deployment y ¥

engine needs to monitor I i <>
the execution status of Fhe Tivoli Intelligent Orchestrator § Database
change plans to determine Deployment Engine £
whether they are still run- -

. Installation Configuration
ning, completed success-
fully, or completed with e T

an error. This is important

because the workflow en- Fig. 3. Integrating the TIO Provisioning System with

gine depends on this infor- he CHAMPS Change Manager
mation to determine if all

the preconditions are satisfied before the next activity can be triggered.

Finally, a change plan may specify deadlines (e.g., task X must be finished
by 8pm) that need to be enforced. The workflow engine must therefore be able
to send an event back to the CHAMPS Planner & Scheduler if a provisioning
activity takes longer than initially planned. The Planner & Scheduler would
then decide if the provisioning process should be abandoned (and rolled back to
a previous state), or continued despite the delay. In the following four sections,
we will discuss how we addressed each of these aspects in more detail.

4.1 WSDL Wrappers for Logical Operations

To facilitate the invocation of provisioning operations from the outside, TIO
can represent each individual operation or sequence of operations as a so-called
logical operation. In TIO, each resource is treated as a component (i.e., Software,
Operating Systems, Switches, Servers, etc.) that provides an (extensible) set of
logical operations. Typically, the TIO component dealing with software provides
logical operations such as Software.deploy, Software.install, Software.start, while
its switch component provides Switch.createVLAN, Switch.turnPortOn etc. For
example, the logical operation Software.install can be used to implement the
IBM HTTP Server (IHS) install operation in the TIO sequence depicted in

22 A. Keller and R. Badonnel

figure 1. In addition, the use of logical operations ensures that the TIO database
gets updated with execution status information.

A first part of our work consists in providing WSDL interfaces to facilitate
the invocation of these logical operations using server IP addresses, software
identifiers, or device serial numbers as inputs. As an example, we have created
the following WSDL interface to perform the logical operations (Software. Install,
Software.Start, etc.) on the software component:

‘g . 1 <7xml version="1.0" encoding="UTF-8"7>
) The hstmg deplCted 2 <definitions name="SoftwareComponent">
in Figure 4 shows the 3 <message name="installRequest">

it _ 4 <part name="softwareName" type="xsd:string"/>
WSDL deflnltlon. of SOf ! 5 <part name="deviceIP" type="xsd:string"/>
wareComponent.install 6 </message>
(lines 1()_17) that wraps 7 <message name="installResponse">
8

. . <part name="requestID" type="xsd:int"/>
the TIO logical operation 9 </§essa\ge> 9 Ape=

Software.install. 1t uses 10 <portType name="SoftwareComponent">
the software name and 11 <operation name="install"

12 parameterOrder="softwareName deviceIP">
server [P address as - -
N . 13 <input message="tns:installRequest
inputs (definition of the 14 name="installRequest"/>
input message install- 15 <output message="tns:installResponse"
16 name="installResponse"/>

Request, lines 3-6) and
returns a request ID
(definition of the output
message installResponse,
lines 7-9). This approach
can be generalized to Fig. 4. Software Component WSDL interface

accomodate other resources, such as switches, server pools or VLAN:S.

17 </operation>

18 ' ;)portTypv
19 </definitions>

4.2 Invoking Logical Operations Concurrently

The BPWS4J workflow engine [2] allows us to invoke several logical operations
simultaneously through the above WSDL interfaces. As mentioned in section
3.1, the CHAMPS system uses the BPEL4WS [1] workflow language to describe
change plans: the invocations of logical operations are done through our WSDL
interfaces and by using the invoke construct of BPELAWS; parallel and sequen-
tial execution paths map to the flow and sequence structured activities.

The deployment engine is driven by the workflow engine and thus able to
execute tasks concurrently, such as the installation of the IHS server and the
deployment of the web site content (HTML pages, pictures etc.). An example,
briefly mentioned in section 2.1, is given in figure 5. It depicts a part of the change
plan, defined in BPEL4WS and rendered in the BPWS4J workflow editor, for
the simultaneous installation and configuration of two websites with different
content, along with THS servers on two different systems running Linux: The
website with the name WSLA (together with the HTTP server) is to be provi-
sioned on the system ‘cuda’ having the IP address 9.2.9.64 (dashed lines in the
figure), while the system ‘charger’ with the IP address 9.2.9.63 will host another
HTTP server and the website DSOM2003 (dotted lines in the figure).

Automating the Provisioning of Application Services

23

One can see
that using the
BPELAWS flow
construct yields
the advantage
of decoupling
the provisioning
processes on a

i

T‘Fv Business Process: ChangePlanProcess

= 2 sequence: Business Process

- T Sequence: Begioning of the change plan
: Sequence: Change plan

-2 Flow: Peralle execution

-

- 5 Saquence: 5eq 1 - Provisioning of IS, Linux, V20l 4+ Wabisibe. WLA on CuGa (9.2.9.64)

" E Sequence: Step | - Deployment of IHS Linux,Val on 9.2.9.64
I E Sequence: Step 2 - Installation of [HS.Linux, V20 on 9.2.9.64

- % Sequence: Step 3 - Deployment f WSLA WebSte on 9.2.9.64
Fi- 0% Sequence: Step 4 - Instalation of WebSite. WSLA 00 9.2.0.64

per-system basis:
if the provi-
sioning process
on one system
encounters a
problem, the

s § T o T TSt T

..

i ﬁ Sequance: Deployment of IH5.Linux V20 on 9.2.9.63
- =E Sequence: Step 2 - Installation of IHS.Linux.¥20 on 9.2.9.63

B E Sequence: Step 3 - Deployment of WebSike.DS0MZ003 an 9.2.9,63

- Step4- of WiebSke.05(n9.2.9.63
B D e Sio 5 BRUHS LR A M .29
quence: End of the change plan

provisioning
of the second
system remains

Fig. 5. Concurrent Provisioning of 2 Websites

unaffected by this and continues. Concurrent invocations of the change manage-
ment operations can be carried out because the invocation of a logical operation
on the provisioning system through its WSDL interface is non-blocking.

4.3 Monitoring the Execution of Change Plans

In addition to tasks that can
be carried out in parallel, a
Change Plan contains tempo-
ral constraints between vari-
ous tasks that need to be taken
into account as well. As an
example, every invoke oper-
ation within a sequence can
only start if its predecessor has
finished. To retrieve the exe-
cution status of a logical op-
eration from the provisioning
system, we have created a sec-
ond set of WSDL interfaces
(listed below). This informa-
tion is needed by the workflow
engine to determine if a task

1 <?7xml version="1.0" encoding="UTF-8"7>
2 <definitions name="Request">

3 <message name="getStatusRequest">

4 <part name="requestID" type="xsd:int"/>
6 </message>

6 <message name="getStatusResponse">

7 <part name="startTime" type="xsd:date"/>
8 <part name="status" type="xsd:string"/>
9 </message>

10 <portType name="Request">

11 <operation name="getStatus"
12 parameterOrder="requestID">

13 <input message="tns:getStatusRequest"
14 name="getStatusRequest"/>

15 <output message="tns:getStatusResponse"
16 name="getStatusResponse"/>

17 </operation>
18 </portType>
19 </definitions>

Fig. 6. WSDL interface for Status Monitoring

within a sequence is still running, or whether it can proceed with the execution
of the next task. As an example, in figure 6, the operation Request.getStatus
(lines 11-17) returns the start time and the status of an execution (definition of
the getStatusResponse message, lines 6-8) from a request ID (definition of the

getStatusRequest, lines 3-5).

24 A. Keller and R. Badonnel

To determine : E Sequence: Step 2 - Installation of IHS.Linux.v20 on 9.2.9.64
the execution

status of a lo-
gical operation,
the workflow - L Seauence: Wak process

engine periodi- 8 assignment: Definition of variables

“.-fh=f] assignment: Definition of the parameters
e ii Invoke: Invocation of the method SoftwareComponent.install

cally invokes - [42] whie: wait unti status=completed

the mOIlitOI‘il’lg l—"I E Sequence: Invocation of the method RequestComponent. getStatus
WSDL interface. i 1rwoke: InvokeRequeststatus

An example of (¥ wa: Period

how this can
be expressed in
BPELAWS is Fig. 7. Monitoring Task Execution Status

depicted in figure 7. First, the change management operation Installation of
IHS on 9.2.9.64 is invoked through the WSDL interface corresponding to the
appropriate Software.install logical operation. In a second step, the request ID
returned by the invocation is used to check periodically (through the monitor-
ing WSDL interface implementing the method RequestComponent.getStatus)
the status of the running logical operation, until it completes. If this is the
case, the next change management operation of the workflow is started. Our
implementation distinguishes between 3 states for an executing workflow: in
progress, completed (with success), and failed (the return message includes an
error code). If an error occurs during the execution of a logical operation, the
workflow engine returns an error message back to the CHAMPS Planner &
Scheduler, which then needs to determine how to proceed further. This may
involve rolling back and subsequently retrying the operation, or bringing the
target system(s) back to a well-defined state.

By using the WSDL monitoring interface, we are able to enforce temporal
constraints defined in Change Plans such as: the logical operation X must be
finished before the logical operation Y can start, or the logical operation X must
not start before the logical operation Y has started. For a detailed discussion of
the various temporal constraints in Change Plans, the reader is referrred to [6].

4.4 Enforcing Deadlines and Durations

An additional requirement is the enforcement of deadlines for change manage-
ment operations that are given in a Change Plan. To do so, the workflow engine
needs to understand what these deadlines are and notify the CHAMPS Planner
& Scheduler in case a change management operation runs behind schedule. The
Planner & Scheduler would then decide if the change management operation
should be abandoned (and roll back the system to a known state), or if it should
continue despite the delay.

Yet again, we are able to exploit the features of the BPEL4WS language to
specify time constraints on the provisioning workflow. Activities corresponding
to invocations of logical operations can be grouped together by means of the scope
structured activity. An event handler is then attached to a scope activity, which

Automating the Provisioning of Application Services 25

may contain one or more alarms. Each alarm is defined by both a constraint
and an escape activity, which is performed when the constraint is violated. This
mechanism works for single activities as well.

We use ';E} Scope: Scope for the time out
alarms to define - 28 sequence: Instalaton of the Test Software o 9.2..60
time constraints W e s

(the BPWS4J ? , _
. r rI Irwoke: Invocation of the method SoftwareComponent.install
workflow engine 3

comprises a
timer) so that
we can specify

deadlines (“must == E Sequence: Send an slarm to the Planner n Scheduler
be finished by -B=48 assignment: Definition of parameters
2
8PM”) as well : ?;I Invoke: Invocation of the Planner n Scheduler Web Service

as impose limits
on the duration
of an activity
(“must take less than 45 minutes”). The escape activities allow us to notify the
CHAMPS system whenever an activity violates its time constraints. In figure 8,
we place an activity (a software installation) within a scope and define the time
constraint duration < 5 min. If the duration exceeds the time period defined
in the change plan, the escape activity attached to the alarm invokes a WSDL
method of the CHAMPS Planner & Scheduler to report the violation. Note that
a notification does not mean that the change plan is automatically aborted.
Instead, the Planner & Scheduler will determine how to proceed, according to
the overall system state, other (competing) change plans, as well as penalties
specified in Service Level Agreements or general Policies. It will then decide
if the current change plan can continue, if it has to be cancelled, or if a new
change plan must be generated later.

Fig. 8. Enforcing Deadlines and Durations

5 Conclusion and Outlook

We have presented a novel approach for integrating a change manager with
a service provisioning system to facilitate the workflow-based provisioning of
application services. Our work was motivated by the extremely high rate of
change in emerging e-Commerce environments and the need for integrating ser-
vice provisioning into the change management process. By using a standardized,
general-purpose workflow language for expressing change plans and demonstrat-
ing the feasibility of integrating a common-off-the-shelf workflow engine with a
commercial provisioning system, our approach is applicable to a wide range of
provisioning scenarios.

Our prototype demonstrates that change plans, generated by the CHAMPS
change management system, can be executed by the TIO deployment engine
and that the BPEL4WS workflow language can be used effectively to describe
change plans. While this advantage is likely to apply to other workflow languages

26 A. Keller and R. Badonnel

as well, BPEL4AWS has the additional benefit that it is specifically targeted at
Web Services. Second, the use of a workflow engine yields the advantage that
the task of checking the execution status of activities in a distributed system (to
decide if the next activity in a workflow can start) can be completely offloaded
to the workflow engine. Finally, we are able to achieve a very high degree of
parallelism for a set of tasks: In the running example we used throughout this
paper, provisioning a single website (server software and web content) took 185
seconds on average, whereas provisioning additional websites added less than 5%
of overhead in terms of provisioning time per site.

While these initial results are encouraging, there are several areas of further
work: As an example, we are currently working on extending our approach to
address the deployment of more complex multi-tiered application systems in-
volving Web Application Servers and Database Management Systems. Further
promising research topics are advanced error-handling and rollback facilities, and
the automated service composition and aggregation.

References

1. Business Process Execution Language for Web Services Version 1.1. Sec-
ond Public Draft Release, BEA Systems, International Business Machines
Corp., Microsoft Corp., SAP AG, Siebel Systems, May 2003. http://www-
106.ibm.com/developerworks/library/ws-bpel/.

2. Business Process Execution Language for Web Services JavaTM Run Time
(BPWS4J). http://www.alphaworks.ibm.com/tech/bpws4;j.

3. M. Cheung, A. Clemm, G. Lin, and A. Rayes. Applying a Service-on-Demand
Policy Management Framework to an ETTx Environment. In R. Boutaba and
S.-B. Kim, editors, Proceedings of the Application Sessions of the 9th IEEE/IFIP
Network Operations and Management Symposium (NOMS’2004), pages 101 — 114,
Seoul, Korea, April 2004. IEEE Publishing.

4. E. Manoel et al. Provisioning On Demand: Introducing IBM Tivoli Intelligent
ThinkDynamic Orchestrator. IBM Corporation, International Technical Support
Organization, Research Triangle Park, NC 27709-2195, December 2003. IBM Red-
book, Order Number: SG24-8888-00.

5. IT Infrastructure Library. ITIL Service Support, June 2000.

6. A. Keller, J.L. Hellerstein, J.L. Wolf, K.-L. Wu, and V. Krishnan. The CHAMPS
System: Change Management with Planning and Scheduling. In R. Boutaba and
S.-B. Kim, editors, Proceedings of the 9th IEEE/IFIP Network Operations and
Management Symposium (NOMS’2004), pages 395 — 408, Seoul, Korea, April 2004.
IEEE Publishing.

7. F. Maurer and B. Dellen. Merging Project Planning and Web-Enabled Dynamic
Workflow Technologies. IEEE Internet Computing, May 2000.

8. J.A. Nilsson and A.U. Ranerup. Elaborate change management: Improvisational
introduction of groupware in public sector. In Proceedings of the 34th Annual
Hawaii International Conference on System Sciences, 2001.

9. D. Oppenheimer, A. Ganapathi, and D.A. Patterson. Why do internet services
fail, and what can be done about it? In Proceedings of the 4th Usenix Symposium
on Internet Technologies and Systems, Seattle, WA, USA, March 2003. USENIX
Association.

Automating the Provisioning of Application Services 27

10. A. Sahai, S. Singhal, V. Machiraju, and R. Joshi. Automated Policy-Based Re-

11

13.

source Construction in Utility Computing Environments. In R. Boutaba and S.-B.
Kim, editors, Proceedings of the 9th IEEE/IFIP Network Operations and Manage-
ment Symposium (NOMS’2004), pages 381 — 393, Seoul, Korea, April 2004. IEEE
Publishing.

G. Valetto and G. Kaiser. Using Process Technology to control and coordinate
Software Adaptation. In L. Dillon and W. Tichy, editors, Proceedings of the 25th
International Conference of Software Engineering (ICSE 2003), pages 262 — 272,
Portland, OR, USA, May 2003. IEEE Computer Society.

Y-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H.J. Wang abd C. Yuan, and
Z. Zhang. STRIDER: A Black-box, State-based Approach to Change and Config-
uration Management and Support. In Proceedings of the 17th Large Installation
Systems Administration Conference (LISA 2003), pages 159 — 172, San Diego, CA,
USA, October 2003. USENIX Association.

Web Services Description Language (WSDL) 1.1. W3C Note, Ariba, International
Business Machines Corp., Microsoft Corp., March 2001.

http://www.w3 .org/TR/wsdl.

HiFi+: A Monitoring Virtual Machine for
Autonomic Distributed Management

Ehab Al-Shaer and Bin Zhang

School of Computer Science, Telecommunications and Information Systems
DePaul University, USA
{ehab, bzhang}ecs.depaul .edu

Abstract. Autonomic distributed management enables for deploying
self-directed monitoring and control tasks that track dynamic network
problems such as performance degradation and security threats. In this
paper, we present a monitoring virtual machine interface (HiFi+) that
enables users to define and deploy distributed autonomic management
tasks using simple Java programs. HiFi+ provides a generic expressive
and flexible language to define distributed event monitoring and corre-
lation tasks in large-scale networks.

1 Introduction

The continuing increase in size and complexity and dynamic state changing prop-
erties of modern enterprise network increases the challenges on network monitor-
ing and management system. Next-generation distributed management systems
need not only monitor the network events but also dynamically track the net-
work behaviors and update the monitoring tasks accordingly at run-time. This
is important to keep up with significant changes in the network and perform
recovery/protection actions appropriately in order to maintain the reliability
and the integrity of the network services. Traditional network monitoring and
management systems lack expressive language interfaces that enable distributed
monitoring, correlation and control (actions). In addition, many of the existing
management systems are static and lack the ability to dynamically update the
monitoring tasks based on analyzed events. In request-based monitoring sys-
tems, the managers have to initiate large number of monitoring tasks in order to
track events that might overload the monitoring agents and cause events delay
or dropping. Next-generation monitoring systems must allow for defining com-
plex monitoring actions or programs, instead of monitoring requests, in order to
analyze the received events and initiate customized monitoring or management
programs dynamically. For example, it will be more efficient to use a general
traffic monitoring task for detecting network security vulnerability and initiate
customized/specialized monitoring tasks when misbehaving (suspicions) traffic
exits in order to closely track particular clients.

In this paper we present a monitoring virtual machine HiFi+ that explic-
itly addresses these challenges and provides a generic interface for multi-purpose

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 28-39, 2004.
© IFIP International Federation for Information Processing 2004

HiFi+: A Monitoring Virtual Machine 29

monitoring applications. HiFi+ system supports dynamic and automatic cus-
tomization of monitoring and management operations as a response to the
change in the network behavior. This is achieved though programmable monitor-
ing interfaces (agents) that can reconfigure their monitoring tasks and execute
appropriate actions on the fly based on the use’s request and the information col-
lected from the network. HiFi+ employs a hierarchical event filtering approach
that distributes the monitoring load and limits event propagation. The main con-
tribution of this work is providing a Java-based monitoring language that can
be used to define a dynamic monitoring and control tasks for any distributed
management application. It also incorporates many advanced monitoring tech-
niques such as hierarchical filtering and correlation, programmable actions and
imperative and declarative interfaces.

This paper is organized as follow. In section 2, we introduce our expressive
monitoring language. Section 3 gives application example. In section 4, we com-
pare our work with related works. Section 5 gives the conclusion and identifies
the future work.

2 HiFi+ Expressive Language Components

In this section, we present the three components of HiFi+ monitoring language:
(1) Event Interface that describes the network or system behavior, (2) Filter
Interface that describes monitoring and correlation tasks, and (3) Action Inter-
face that describes the control tasks[2,3]. HiFi+ is an object-oriented language
implemented in Java. Users can use the event and filters interfaces to define the
network behavior pattern to be detected and the action interface to perform the
appropriate operation.

2.1 Event Definition Interface

An event is a significant occurrence in the system or network that is represented
by a notification message. A notification message typically contains information
that captures event characteristics such as event type, event source, event values,
event generation time, and state changes. Event signaling is the process of gener-
ating and reporting an event notification. The HiFi+ Event interface allows users
to use standard events like SNMP traps as well as defining a customized event
specification. Figure 1 shows the class hierarchy of Event Definition Interface.

In HiFi+, although events can be in different formats, all types of events
share the same interface and can be accessed and manipulated in the same way.
For example, the special SNMPTrap event with fixed format encapsulates all
the information in an SNMP trap message and these information can still be
accessed by the general event function like getAttributeValue(). The HiFiEvent
event format is the general event type which can be used to construct customized
events. The HiFievent event can be divided into two parts: the event body and
event id. The event id can be a string or an integer which stand for the event
name or type. The event body is the container of the real information.

30 E. Al-Shaer and B. Zhang

Event
-eventiD
-eventBody
+setEventid()
+gatEventid()
+setEventBody()

+getEventSody()
+eetAtiributeValue()

+getAttributeValue()
+delAttribute()
AN l? AN |

SNMPTrop Informtrap HiFiEvent

-evilD
-eviSody
P

EventBody EventiD
-id
fsetatributeValue() +equalTo()
f-petAttributeValue() L+ lessThan()

|-addAtiribute() +greatarThan()
[-delAttribute() 5 ﬁ

G HiFil OcteStr N3z

~getFixAttribute()
+5etFi i

|+setVarAtiribute()
|+getVarAttribute()

-+setAttributeValue()
L+ getattributeValue()
+addAttribute()
+delattribute()
[1 - 1’
FixAttribute
VarAttribute
|+getModuleName() —
+setModuleName()]
+getFuncName() +getAttributeValue(}
+setFunchame() i
+getReportMade() oute()
+gatReportMode()

Fig. 1. Event Definition Interface Classes

Two types of event body are extended from the basic event body class:
the general event body and HiFiEvent body. HiFiEvent body mainly has
two parts: the fix attributes and the variable attributes. Both of these two
parts are composed by a set of predicates. Each predicate has an attribute
name, the value of that attribute and the relation between them. For example,
bandwidthUsage > 0.8 is an event predicate which means the value of band-
widthUsage attribute is larger than 0.8. The fixed attributes define the common
attributes shared by all event types. From this part, we can get the informa-
tion about the event source, generated time and signaling type. When event is
created, the system automatically inserts the current time in the timestamp at-
tribute of the event. The variable attributes allows user to define any additional
general attributes that might reveal more information. For example, suppose we
want to monitor the system load of the Web server neptune. We can define the
format of the event generated by neptune as follows:

Event systemLoad = new HiFiEvent("systemLoad, "Neptune, loadMonitor,
senderThread", "cpuUsage = Any");

HiFi+: A Monitoring Virtual Machine 31

Fitter
-ex : EvemExpression
- : FiterExpression
-action
-filteriD
+setEventExprassion()
+getEventExpression{)
+getFiterExpression()
+getFiterExpression()
+setaction()
+gethction() 1 -
1
1 ' 2 ' = L
— .mom;:xu
+SetEX() . getFX()
+getEX()
i ? 3 4§ °_| i ? 1 ;v—l .
E FiiterOperator| e
L -AND
eventName 3:0 oR CeftAttriute
-NOT -relation
- -BEFORE -rightAttribute
i -AFTER e
-NOT R L. -
Sverii> | 09—
Ba LeftAttr AtiriRelation Rightatte
-eventName HessThan v
greaterTran
| acquat |value
-name

Fig. 2. Filter Definition Interface Classes

2.2 Filter Definition Interface

In HiFi+ monitoring virtual machine, users describe their monitoring demands
by defining “filters” and submit them to the monitoring system at run time[2].
Figure 2 shows the filter classes hierarchy. A filter is a set of predicates where each
predicate is defined as a Boolean valued expression that returns true or false.
Predicates are joined by logical operators such as “AND” and “OR” to form
an expression[3]. In HiFi+ language, the filter is composed by four components:
filter ID, event expression which specifies the relation between the interesting
events, filter expression which specifies the relations or the matching values of
different attributes, and action object name. The action object will be loaded
and executed by the monitoring agent if both the event and filter expressions are
true. The event and filter expressions define the correlation pattern requested by
consumers. Consumers may add, modify or delete filters on the fly. The filters
are inserted into the monitoring system through filter subscription procedure[2].
The monitoring agent can reconfigure itself by updating their internal filtering
representation. This feature is highly significant to provide dynamic features of
programmable monitoring virtual machine.

Every filter has a filter id that is unique in the monitoring system. To illus-
trate the expressive power of the filter abstraction to define monitoring tasks,
we will next show some examples. Assume we want to monitor the performance
of our web server neptune and accept new connections only if the service time

32 E. Al-Shaer and B. Zhang

of the existing clients is acceptable. Therefore, if the simultaneous connections
exceed a certain threshold and the connected clients experience unacceptable
performance drop, then we need neptune to refuse more service requests. In this
example, we need to monitor not only the system load of neptune, but also the
performance drop in the client side. Assume neptune will send out systemLoad
event periodically or when load is significantly increased as defined in the previ-
ous example. We are interested in events that reflect high increase of CPU Load
(assuming 80%). The filter for this requirement can be defined like this:

Filter systemLoadFilter = new Filter("systemLoadFilter", "systemLoad",
"systemLoad.cpuUsage > 0.8 AND systemLoad.machine = neptune",
"systemLoadAction")

The four parameters transferred to the filter constructor are filter ID, event
expression, filter expression, and action class name. Suppose the web client will
send out performaceDrop event if it experience long response time from a web
server. The performaceDrop event format can be defined like this:

Event performaceDrop = new HiFiEvent("performaceDrop", "Any, webClient,
senderThread", "responseTime = Any, server = Any")

The long response time experienced by web client can be caused by network
congestion and packets drop or server load exceed its capacity. If only one web
client complains about the long response time, it’s hard to decide it’s the server or
the network causes this problem. If we receive multiple performanceDrop events
come from different web clients, we have more confidence to suspect that the
long response time may be caused by server overload. So the filter should keep
a counter for how many clients have sent out performanceDrop events. When
the counter value is larger than threshold (assuming 5), the filter will send out
serverOverloadAlert event. We can define event and filter for this task like this:

Event server0OverloadAlert = new HiFiEvent ("serverOverloadAlert”, "Any,
performanceDropFilter, Any", "server = Any")

Filter performceDropFilter = new Filter("performaceDropFilter",
"performanceDrop", performanceDrop.responseTime > 120 AND
performanceDrop.server = neptune", "performanceDropAction")

The counter updating and the event creation are implemented in the action
and not shown in the filter definition. Suppose if we receive the serverOver-
loadAlert event in ten seconds after receive systemLoad event, we can get the
conclusion that the server has been overloaded. The filter for this task can be
defined as follow:

Filter serverQOverloadFilter = new Filter("server(OverloadFilter",
"serverOverloadAlert AND systemLoad", "systemLoad.timeStamp -
server(OverloadAlert.timeStamp < 10000", "serverOverloadAction")

HiFi+: A Monitoring Virtual Machine 33

2.3 Action Definition Interface

Actions describe the tasks to be performed when the desired event pattern (cor-
relation or composition) is detected. In this part, we support programmable
management interface. Users can write a Java program to perform any action
to respond to detected network conditions. If the event and filter expressions in
filter evaluate true, the monitoring agents load and execute the corresponding
action programs.

Supporting customized action is one of the major objectives of HiFi+ mon-
itoring virtual machine. The action class allows users to define monitoring task
that can dynamically be updated. It provides a set of API to allow users to
create their own action implementation which extended from action abstract
class. The users can also execute scripts or binary files that will be loaded
on-demand into the monitoring agents. The action class supports five differ-
ent action types: (1) activating/adding a new filter to the monitoring system or
deactivating/removing an existing filter from the system, (2) modifying the filter
expression of an existing filter to accommodate changes in the monitoring envi-
ronment, (3) forwarding the receiving event to agents, (4) creating new events
as a summary of previous event reports, and (5) executing a shell or binary
program. The action class is actually a Java program extends “Action” abstract
class, and thereby all standard Java as well as HiFi+ API can be used in an
extended action class. This offers great flexibility to customize the monitoring
system.

The action interface also provides ‘“‘virtual registers” that the action devel-
oper can use to store event information history. The user can dynamically create
and update registers in the action program, and these registers will be used lo-
cally and globally by the monitoring agents during the monitoring operations.
Figure 3 shows the classes hierarchy of the action interface. To implement an
action program in HiFi+ system, user defined actions must extend the action
class and override the perform Action () method to specify his action implemen-
tation. When action class is loaded and executed by the monitoring agent, the
performAction() method will be invoked with three arguments: EventManager,
FilterManager, and ActionManager. The EventManager has the methods by
which the user can access and analyze the received events, create and forward
events. The FilterManager lets the user activate (addFilter()) and deactivate
(delFilter()) filters in the system or update the filter expression (modifyFX()).
The actionManager allows users to execute script or binary file and create or
update virtual register (create/get/check/deleteRegister()).

The action class provides rich event management functions that have a sig-
nificant impact on the language expressiveness. Events can be retrieved based
on its time-order, event type, event name, value of event attribute and so on. For
Example, users can get all events sent by host neptune by invoking the follow-
ing function: getAnyEventQueue(“machine=Neptune”). On the other hand, we
can use getEventQueue(“systemLoad”, “machine = Neptune”) method to find all
the systemLoad events sent by neptune. In addition, event queues can be sorted
based on a specific attribute value.

34 E. Al-Shaer and B. Zhang

Action
+performAction()
1
EventManager A
addFilter() E;T = ? Ry
+delFilter() i 3
e 0 +getEventinstance() HgetRegister()
«nodlyFXm() +forwardEvent() L-deleteRegister()
+getEventQueue() +checkRegister()
+getAnyEventQueus()
+createEvent() -
EventQueue bk =
roort0 [-getValue()
+getEvent() [+setValue()
+addEvent()
+delEvent()
+caculateAvg()
+getMaxValueEvent()
+getMinValusEvent()
+size()
+getFirstEvent()
+gellastEvent()

Fig. 3. Action Definition Interface Classes

Now, let’s us show example of action programs using HiFi+ virtual machine
language. In the web server performance monitoring example discussed in section
2.2, we didn’t define the action programs for those filters. The action program
for performanceDropFilter filter is a good example to show how to use virtual
register.

1 public class performanceDropAction extend Action{
2 public void performAction(EventManager EM, FilterManager FM,
ActionaManager AM){

3 Register reg;

4 if(reg = AM.createRegister("hostCounter") !=void)

5 reg.setValue(1);

6 else{

7 reg = AM.getRegister("hostCounter");

8 String host =
EM.getLastEvent ("performanceDrop") .getEventAttribute("machine");

9 if (EM.getEventQueue("systemLoad", "machine ="+host).size()==1){

10 reg.increaseValue();

11 if (reg.getValue() >=5){

12 AM.deleteRegister ("hostCounter");

13 Event evt =
EM. createEvent ("serverOverloadAlert", "server =neptune");

14 EM.forwardEvent (evt);}}}

15 }

16 }

HiFi+: A Monitoring Virtual Machine 35

In this action, we extract the IP addresses of the web clients and compare it
with other events and update the counter. The counter should be kept outside
the action program in virtual register so it can be referenced by next round
execution. When receive first performanceDrop event, we use the action manager
to create a virtual register to store the counter (line 4). Then we initialize the
counter (line 5). For the following events, we use the action manager get the
register (line 7). Then in line 8, we get the IP address for the web client who
sends the performanceDrop event. We search all the received events to find the
events come from the same host with the last received event and put these events
in an event queue (line 9). If the event queue size equal one, that mean this is
the first time that web client send out performanceDrop event. Then we increase
the counter (line 10). When the register value is equal or larger than 5, we delete
the register and create and forward the serverOverloadAlert event (line 11-14).

3 Application of HiFi+ in Distributed Intrusion
Detection

In this section, we will show an example of how HiFi+ can be used in intrusion
detection systems (IDS) to detect DDoS attack. DDoS attacks usually launch
number of aggressive traffic streams (e.g., UDP, ICMP and TCP-SYN) from
different sources to a particular server. This example shows how HiFi+ can be
used to support IDS devices in deploying security (signature-based or anomaly-
based) monitoring tasks efficiently. In [10], a proposal for an attack signature was
presented to detect DDoS by observing the number of new source IP addresses
(not seen during a time window) in the traffic going to a particular server. We
here will implement a variation of this technique using HiFi+ interfaces.

We will, first, monitor the load of the target servers using systemLoadFilter
filter. If any of these filters indicates that the system load of a server goes beyond
a specific threshold, then the diffSrcCheckFilter filter will be activated in order
to monitor all new tcp connections initiated to this target server. The diffSrc-
CheckFilter filter receives and filters all rcpSyn events that represent TCP-SYN
packets destined (i.e., destination IP) to the target server. The tcpSyn events
can be generated by network-based intrusion detection system (IDS). As the
diffSrcCheckFilter filter keeps track of tcpSyn events, it calculates the number
of different IP sources seen within a one-second time windows. If the number of
different IP sources is larger than a specified threshold, then the diffSrcChcekAc-
tion will create diffSrcExceedThr event. Here we need point out the difference
between our approach and the approach proposed in[10] is that we don’t need
keep the history of IP source for every server which makes our approach suitable
for large-scale network with many target servers. Finally, we use the DDosFil-
ter filter to correlate the systemLoad and diffSrcExceedThr events. Only when
these two events occur within a close time window from each other and they
are both related to the same server, then we can conclude the server is under
DDOS attack. Let us assume that the DDOS signature will be defined like this:
if the CPU usage on a server increases beyond the 0.6 and within one second we

36 E. Al-Shaer and B. Zhang

detect that there are more than 100 different IP source addresses starting tcp
connections to that server, we will report DDOS attack. The events and filters
used in this monitoring task can be defined as follows:

Event tcpSyn = new HiFiEvent("tcpSyn", "Any, Any, Any",
"sourceIP = Any, destinationIP = Any")

Event diffSrcExceedThr = new HiFiEvent ("diffSrcExceedThr", " Any,
diffSrcCheckFilter, Any", "targetIP = Any")

Event systemLoad = new HiFiEvent ("systemLoad", "Any, loadMonitor,
senderThread", "cpuUsage = Any, diffSrcThr = 100");

Filter systemLoadFilter = new Filter("systemLoadFilter", "systemLoad",
"systemLoad.cpuUsage > 0.6 OR systemLoad.cpuUsage <0.3",
"systemLoadAction")

Filter diffSrcCheckFilter = new Filter("diffSrcCheckFilter", "tcpSyn",
“"tcpSyn.destinationIP =Any", "diffSrcChcekAction")

Filter DDosFilter = new Filter("DDosFiler", "diffSrcExceedThr AND
systemLoad", "diffSrcExceedThr.targetIP = systemLoad.machine AND
systemLoad.timeStamp - diffSrcExceedThr.timeStamp < 1000","DDosAction')

Next, let us look at the action programs for systemLoadFilter filter. This action
has three tasks: (1) activating the diffSrcCheckFilter filter to detect DDoS attack
if the system load is beyond a threshold, (2) forward the systemLoad event, and
(3) deactivate (or deleting) the diffSrcChekcFilter filter if the system load drops
below the threshold because the DDoS investigation is not needed any more. In
this action program we dynamically change filter expression of diffSrcCheckFilter
filter. The original filter expression will check tcpSyn event for any server to find
if there are more than threshold different IP want to connect to that server.
After the filter expression is updated, the filter checks only the 7cpSyn events
with the destination IP of the suspect target server.

public class systemlLoadAction extend Action {
public void performAction(EventManager EM, FilterManager FM,
ActionaManager AM){
Event evt = EM.getLastEvent("systemLoad");
float load = evt.getAttributeValue("cpuUsage");
if (load > 0.8){
String target = evt.getAttributeValue("machine");
FM.modifyFX("diffSrcCheckFilter", "tcpSyn.destionationIP =" +
target);
FM.addFilter ("diffSrcCheckFilter");
EM.forward(ent);}
if(load < 0.3)FM.delFilter("diffSrcCheckFilter");}
}

HiFi+: A Monitoring Virtual Machine 37

Next, let us look at the action program of the diffSrcCheckFilter filter below.
In line 4, we get the time stamp for last rcpSyn event. This event triggers the
execution of action program, so the destination IP must equal the target server.
We get the time t2 which is 1 second before last event in line 5. Then we delete
the outdated or irrelevant events whose time stamps are less than t2 or whose
IP destinations are different than the target server (line 7). We then get the
rest of tcpSyn events and put them in an event queue (line 8) and create a set
to store the source IP addresses (line 9). In lines 10-13, we go through every
event in the queue and putting the source IP in source IP set. Then we get the
threshold for different source IP in line 14. In lines 15-18, we check the size of
the source IP set. If the size is larger than threshold, we create and forward the
diffSrcExceedThr event.

1 public class diffSrcCheckFilter extend Action {
2 public void performAction(EventManager EM, FilterManager FM,
ActionaManager AM){

3 Event evt = = EM.getLastEvent("tcpSyn");
4 int t1 = evt.getEventAttribute("timeStamp");
5 int t2 = t1 - 1000;
6 String targetIP = evt.getEventAttribute("destinationIP");
7 EM.deleteEvent ("tcpSyn", "tcpSyn.timeStamp < " + t2 + " OR
tcpSyn.destinationIP != " + targetIP);
8 EventQueue queue= EM.getEventQueue("tcpSyn");
9 Set IpSource = new HashSet();
10 for (int i=0; i < = queue.size(); i++){
11 String sourcelP =
(queue.getEvent (i)) .getAttributeValue("sourceIP");
12 IpSource.add(sourcelIP);
13 }
14 int threshold =
EM.getLastEvent ("systemLoad") .getEventAttribute ("diffSrcThr");
15 if (IpSource.size()> threshold){
16 Event evt = EM.createEvent("diffSrcExceedThr,", "targetIP
=’’+ targetIp);
17 EM.forwardEvent (evt);}
18 }

Finally, let’s look at the action program for DDosFilter. It just create and forward
the DDosAlert event.

public class DDosAction extend Action {
public void performAction(EventManager EM, FilterManager FM,
ActionaManager AM){
EM.createEvent ("DDosAlert");}

38 E. Al-Shaer and B. Zhang
4 Related Works

Numbers of monitoring and management approaches based on event filtering
have been proposed in [1,6,7,8]. Many of these approaches focus on event filtering
techniques such as performance and scalability. But less attention was given to
provide flexible programming interfaces as described in this paper.

Hierarchy filtering-based monitoring and management system (HiFi) was in-
troduced in [2,3]. HiFi employs an active management framework based on pro-
grammable monitoring agents and event-filtter-action recursive model. This work
is an extension of HiFi system to provide an expressive and imperative language
based on Java. The user can get benefit from the new API by implementing
really complex action programs using known programming language.

A general event filtering model has been discussed in [5]. But this approach
can filter the primitive events based on attribute values only, thereby doesn’t sup-
port event correlation. SIENA, a distributed event notification service has been
described in[4]. The programming interface of SIENA mainly provides functions
for the user to subscribe, unsubscribe, publish and advertise events. It doesn’t
provide functions for the user to aggregate and processing events.

High-level language for event management is described in READY event no-
tification system [6]. In READY, matching expressions are used to define the
event pattern. The matching expression and actions in READY have same ab-
straction level similarity with filter and action in HiFi+. But the action types in
READY are limited, only assignment, notify and announce action are supported.
HiFi+ approach allows the user define complex action to trace and analyze the
event history, modify the monitoring tasks dynamically, aggregate information
to generate new meaningful events or even execute scripts and binary files.

Java Management Extensions (JMX)[11] is a framework for instrumentation
and management of Java based resources. JMX focuses on providing a universal
management standard, so the management application will not rely on fixed
information model and communication protocol. HiFi+ focuses on supplying
users a flexible and expressive programming interface to define the monitoring
tasks and appropriate actions.

The Meta monitoring system[9] is a collection of tools used for constructing
distributed application management software. But in Meta, sensors (a function
that returns program state and environment values) are static programs that
are linked with the monitored application prior to its execution. This reduces
the dynamism and the flexibility of the monitoring system. Unlike in HiFi+, the
monitoring agent can dynamically be configured and updated.

5 Conclusion and Future Works

In this paper, we present flexible monitoring programming interfaces for dis-
tributed management systems. The presented framework, called HiFi+ virtual
monitoring machine, enables users to expressively define events formats, net-
work pattern or behaviors to be monitored and the management actions using

HiFi+: A Monitoring Virtual Machine 39

simple Java-based filter-action programs. Filters can implement intelligent mon-
itoring tasks that go, beyond just fetching the information, to correlate events,
investigate problems, and initiate appropriate management actions. The HiFi+
virtual monitoring machine provides unified interfaces for distributed monitoring
regardless of the application domain. We show examples of using HiFi+ in secu-
rity and performance management applications; however, many other examples
can be similarly developed.

Our future research work includes important enhancements in the language
interfaces and the system architecture such as integrating more event operators,
implanting safe-guard for infinite loops, improving the virtual registers abstrac-
tion, developing topology-aware agents’ distribution.

References

1. S. Alexander, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie: High Speed and Robust
Event Correlation. IEEE Communication Magazine, pages 433-450, May 1996.

2. Ehab Al-Shaer: Active Management Framework for Distributed Multimedia Sys-
tems. Journal of Network and Systems Management (JNSM), March 2000.

3. Ehab Al-Shaer, Hussein Abdel-Wahab, and Kurt Maly: HiFi: A New Monitor-
ing Architecture for Distributed System Management. Proceedings of Interna-
tional Conference on Distributed Computing Systems (ICDCS’99), pages 171-178,
Austin, TX, May1999.

4. Antonio Carzaniga, David S. Rosenblum Alexander L. Wolf: Design and evaluation
of a wide-area event notification service. ACM Transactions on Computer Systems
(TOCS), Volume 19, Issue 3, August 2001

5. P. Th. Eugster, P.Felber, R. Guerraouil, S. B. Handurukande: Event Systems: How
to Have Your Cake and Eat It Too. 22nd International Conference on Distributed
Computing Systems Workshops (ICDCSW ’02), July, 2002.

6. Robert E. Gruber, Balachander Krishnamurthy and Euthimios Panagos: High-level
constructs in the READY event notification system. Proceedings of the 8th ACM
SIGOPS European workshop on Support for composing distributed applications
1998, Sintra, Portugal.

7. Boris Gruschke: A New Approach for Event Correlation based on Dependency
Graphs. Proceedings of the 5th Workshop of the Open View, University Association:
OVUA’98, Rennes, France, April 1998.

8. Mads Haahr and Rene Meier and Paddy Nixon and Vinny Cahill: Filtering and
Scalability in the ECO Distributed Event Model. International Symposium on
Software Engineering for Parallel and Distributed Systems (PDSE 2000)

9. K. Marzullo, R. Cooper, M. D. Wood, and K. P. Birman: Tools for distributed
Application Management. IEEE Computer, vol. 24, August 1991.

10. Peng, C. Leckie and R. Kotagiri: Protection from Distributed Denial of Service
Attack Using History-based IP Filtering. Proceedings of ICC 2003, Anchorage,
Alaska, USA, May 2003.

11. Sun Microsystems: Java Management Extensions (JMX).
http://java.sun.com/products/JavaManagement/index.jsp

Defining Reusable Business-Level QoS Policies for
DiffServ

André Beller, Edgard Jamhour, and Marcelo Pellenz

Pontificia Universidade Catdlica do Parana - PUCPR, PPGIA
Curitiba, PR, Brazil
abeller@ig.com.br, {jamhour, marcelo}e@ppgia.pucpr.br

Abstract. This paper proposes a PBNM (Policy Based Network Management)
framework for automating the process of generating and distributing DiffServ
configuration to network devices. The framework is based on IETF standards,
and proposes a new business level policy model for simplifying the process of
defining QoS policies. The framework is defined in three layers: a business
level policy model (based on a IETF PCIM extension), a device independent
policy model (based on a IETF QPIM extension) and a device dependent policy
model (based on the IETF diffserv PIB definition). The paper illustrates the use
of the framework by mapping the information models to XML documents. The
XML mapped information model supports the reuse of rules, conditions and
network information by using XPointer references.

1 Introduction

Policy Based Network Management (PBNM) plays an important role for managing
QoS in IP-based networks. [1,2,8]. Recent IETF publications have defined the
elements for building a generic, device independent framework for QoS management.
An important element in this framework is QPIM (Policy QoS Information Model)
[6]. QPIM is an information model that permits to describe device independent
configuration policies. By defining a model that is not-device dependent, QPIM
permits to “re-use” QoS configuration, i.e., configuration policy concerning similar
devices can be defined only once. QPIM configuration is expressed in terms of
“policies” assigned to “device interfaces”, and does not take into account business
level elements, such as users, applications, network topology and time constraints.
The RFC 3644 that defines QPIM, points that a complete QoS management tool
should include a higher level policy model that could generate the QPIM
configuration based on business goals, network topology and QoS methodology
(diffserv or intserv) [6].

In this context, this paper proposes a PBNM framework for automating the process
of generating and distributing Differentiated Services (diffserv) configuration to
network devices. The framework proposes a new business level policy model for
simplifying the process of defining QoS policies. The idea of introducing a business
level model for QoS management is not new [3,4,5]. However, the proposal presented
in this paper differs from the similar works found in the literature because the

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 40-51, 2004.
© IF1P International Federation for Information Processing 2004

Defining Reusable Business-Level QoS Policies for DiffServ 41

business level polices are fully integrated with the IETF standards. By taking
advantage of the recent IETF publications concerning QoS provisioning, the
framework defines all the elements required for generating and distributing diffserv
configuration to network devices.

This paper is structured as follows. Section 2 review some related works that also
proposes business level models for QoS management. Section 3 presents the overview
of our proposal. Section 4 presents the business level policy model, defined as a
PCIM extension and fully integrated with QPIM. Section 5 describe the QPIM based
configuration model, and the process adopted for transforming the business level
policies into configuration policies. Section 6 presents XML mapping strategy and
examples for illustrating the use of the proposed model. Finally, the conclusion
resumes the important aspects of this work and points to future developments.

2 Related Works and Discussion

This section will review some important works that address the issue of defining a
business level QoS policy model. Verma [3] et al. proposes a tool for managing
diffserv configuration in enterprise networks. The work defines the elements for
building a QoS management tool, permitting to transform business level policies into
device configuration information. The proposal adopts the concept of translating
business level policies based on SLAs (Service Level Agreements) into device
configuration. Verma [4] present an extension of this work, introducing more details
concerning the business level model and a configuration distributor based on the IETF
framework. The business level policy is described by statements with the syntax: “a
user (or group of users) accessing an application (or group of applications) in a server
(or group of servers) in a specific period of time must receive a specific service
class”. The service class is defined in terms of “response time” (i.e., a round-trip
delay of packets). An important concept developed in [4] refers to the strategy
adopted for distributing the configuration to the network devices and servers. The
strategy assumes a diffserv topology. For network devices (e.g., routers), a
configuration policy is relevant only if the shortest-path between the source and
destination IP includes the router. For servers, a configuration policy is relevant if the
server IP is included in the source or destination IP ranges defined by the policy. As
explained in the next sections, we adopt a similar strategy in our framework.

The Solaris Bandwidth Manager, implemented by Sun [7], proposes a business
level QoS model for enterprise networks that closely follows the semantics of the
IETF PCIM/PCIMe [12,13]. In the proposed model, a packet flow that satisfies some
conditions receives a predefined service class defined in terms of bandwidth
percentage and traffic priority. The Sun’s approach adopts the PDP/PEP
implementation framework [2], extending the enforcement points to network devices
(routers and switches) and servers. The communication between the PDP and the PEP
is implemented through a set of proprietary APIs.

There are also attempts of proposing a standard model for representing business
level policies. According to the IETF terminology, a SLS (Service Level
Specification) represents a subset of a SLA (Service Level Agreement) that refers to
traffic characterization and treatment [8]. There was two attempts of defining a

42 A. Beller, E. Jamhour, and M. Pellenz

standard SLS model published by IETF as Internet drafts: TEQUILA [9] and
AQUILA [10]. TEQUILA (Traffic Engineering for Quality of Service in the Internet,
at Large Scale) define a SLS in terms of six main attributes: Scope, Flow Identifier,
Performance, Traffic Conformance, Excess Treatment, Service Schedule and
Reliability. AQUILA (Adaptative Resource Control for QoS Using an IP-based
Layered Architecture) adopts the concept of predefined SLS types, based on the
generic SLS definitions proposed by TEQUILA. A predefined SLS type fixes values
(or range of values) for a subset of parameters in the generic SLS. According to [10],
the mapping process between the generic SLS and the concrete QoS mechanisms can
be very complex if the user can freely select and combine the parameters. Therefore,
the use of predefined types simplifies the negotiation between customers and network
administrators.

The proposal described in this paper has several similarities with the works
reviewed in this section. However, the strategy for defining the policy model and the
implementation framework differs in some important aspects. Considering the
vendors efforts to follow the recent IETF standards, translating business level policies
to a diffserv PIB [11], and distributing the configuration information using the COPS-
PR [5] protocol is certainly a logical approach for a QoS management tool. None of
the works reviewed in this section follows this approach altogether. In [3,4], even
though some CIM and PCIM [8] concepts are mentioned, the proposal follows its
own approach for representing policies, servers, clients and QoS configuration
parameters. In [7], the policy model follows a closer PCIM extension, but the policy
distribution and enforcement follows a proprietary approach where neither the PIB
structure, nor the COPS protocol is adopted. The TEQUILA project offers some
attempts of defining standard representations for SLS agreements. However, as
pointed by AQUILA, the mapping between a generic SLS definition to QoS
mechanisms can be very complex. AQUILA tries to solve the problem by proposing a
set of predefined SLS types. This paper also follows the AQUILA strategy of
adopting predefined SLS types. However, instead of using the generic TEQUILA
template, our work represent SLS types as predefined actions described in terms of
device-independent QPIM configuration policies. Because configurations described in
terms of QPIM are easily translated to diffserv PIB instances, this strategy
significantly simplifies the process of mapping the business level policies to QoS
mechanisms in network devices.

3 Proposal

Fig. 1 presents an overview of our proposed framework (the explanation in this
section follows the numbers in the arrows in the figure). The core of framework is the
business level policy model (BLPM). The BLPM is defined as a PCIM extension and
it is described in details in section 4. BLPM business rules semantics accommodates
most of the elements proposed in [3,4 and 7], but all elements (group of users, group
of applications and group of servers) are described in terms of standard CIM elements
(1). Also, the service classes are defined are in terms of QPIM configuration, or more
precisely, QPIM actions, as explained in the next section (2). The business level
policy information (3) is “compiled” to a Configuration Level Policy Model (CLPM)

Defining Reusable Business-Level QoS Policies for DiffServ 43

information (4) by the Business Level Policy Compiler (BLPC). The CLPM and the
transformations implemented by the BLPC are discussed in section 5. Note that the
CLPM repository is pointed as both, input and output of the BLPC module. The
CLPM is defined as a combination of QPIM and PCIM/PCIMe classes. The CLPM
offers classes for describing both elements in a device configuration: conditions
(traffic characterization) and actions. Actions correspond to the configuration of QoS
mechanisms such as congestion control and bandwidth allocation, and correspond to
predefined QPIM compound actions (i.e., a manager, when creating business level
policies, assigns a service level to a SLS by pointing to a predefined group of QPIM
actions). The conditions, by the other hand, are generated from the business level
definitions (users, applications, and servers). Therefore, a new set of CLPM
configuration is created by the BLPC module during an “off-line” compilation
process.

9. Device-
dependent protocol
(e.g. SNMP)
egac
1 (legacy
Devices)

I.;gac; t Configuration Level
el 9 .COPS-FR Policy Model (CLPM)

(QPIM-based)

—
Enabled
foutse 8 .COPS-

=
- 4. Traffic 3. Palicy.
TOPSPR PR reponier : and lm tematon
il f
" PDP Host configuration A
B Enabled mappng [i Level Policy Compil
Switch l (BLPC)

Device Level Policy Compile

5! Device capabilities|
7. Device- (DLPC)

(supplied by the
PEP)

configuration

Fig. 1. Framework overview.

The CLPM device-independent configuration (6) is transformed into a device-
specific configuration (7) by the Device Level Policy Compiler (DLPC). The DLPC
“existence” is conceptually defined by the IETF framework, in the provisioning
approach. The device-dependent configuration is expressed in terms of a diffserv PIB,
which general structure is defined by the IETF [11]. Because network devices can
support different mechanisms for implementing diffserv actions, the DLPC must also
receive the “device capabilities” as an input parameter. Device capabilities can be
“optionally” transmitted by the PEP through the COPS-PR protocol [5] when the
provisioning information is requested to the PDP. The process of configuring network
devices consists in transmitting the PIB using the COPS-PR protocol. Two situations
can be considered. (i) COPS-PR enabled Network devices capable of directly
accepting the PIB information as configuration (i.e., all necessary translation from the
PIB to vendor-specific commands are implemented internally by the device). (ii)
Legacy devices, where a programmable host is required to act as PEP, converting the
PIB information to vendor-specific commands using a configuration protocol, such as
SNMP. The DLPC module and the PIB generation is not discussed in this paper.

44 A. Beller, E. Jamhour, and M. Pellenz

4 Business Level QoS Policy Model

The strategy used for describing the business level policies can be expressed as: “user
(or group of users) accessing an application (or group of applications) in a server (or
group of servers), in a given period of time, must receive a predefined service level”.
Fig. 2 presents the UML diagram of the proposed business level policy model. The
policy model is derived from the PCIM/PCIMe model [12,13] by creating a new set
of specialized classes. Basically, the PCIM/PCIMe model permits to create policies as
a group of rules. Each rule has conditions and actions. If the conditions are satisfied,
then the corresponding actions must be executed. There are many details concerning
how conditions are grouped and evaluated. For a more detailed discussion about
extending PCIM model, please, refer to [14].

In our proposal, the PredefinedSLSAction refers to a predefined QPIM compound
policy action (see Fig. 3). For example, a QoS specialist can create predefined QPIM
compound actions defining a Gold, Silver and Bronze service levels (this example is
illustrated in the section 6). Then, in the business level policy model, the
administrator only makes a reference to the predefined service description using the
PredefinedSLSName attribute of the PredefinedSLSAction class. The conditions of the
SLSPolicyRule permit to define “who” will receive the service level and “when” the
service will be available. Considering the diffserv approach, the “who” policy
information must be used for defining: (i) the filtering rules used by the device for
classifying the traffic. This information is used for completing the QPIM
configuration (as explained next). (i) which devices must receive the pre-defined
service level configuration. This information is used by the PDP for selecting which
policies must be provisioned in a given device.

In the business level policy model the “who” information is represented by the
CompoundTargetPolicyCondition class. This class defines users/applications/servers
semantic and it is composed by three CompoundPolicyCondition extensions:
CompoundServerPolicyCondition, CompoundApplicationPolicyCondition and
CompoundUserPolicyCondition. In our model, compound conditions have been
choosen for supporting information reuse. A compound condition permits defining
objects in terms of logical expressions. These logical expressions are formed by
SimplePolicyConditions, which follow the semantics “variable” match “value”,
defined by PCIMe. The variables refer to already defined CIM objects
(PolicyExplicitVariable), permitting to create policies that reuse CIM information.
Therefore, compound conditions can be used for representing group of users, group of
applications and group of servers that can be reused in several business policies.

CompoundServerPolicyCondition — refers to one or more CIM
UnitaryComputerSystem objects, permitting to retrieve the correponding server IP
addresses through the associated = RemoteServiceAccessPoint objects.
CompoundUserPolicyCondition refers to one or more CIM Person objects, permitting
to retrieve the correponding user’s host IP addresses or host names also through the
associated RemoteServiceAccessPoint objects. Finally, CompoundApplicationPolicy
Condition points to one or more CIM ApplicationSystem or InstalledProduct objects
permitting to retrieve the application’s protocol and port information trough the
associated SoftwareFeatures and ServiceAccessPoint objects.

Defining Reusable Business-Level QoS Policies for DiffServ 45

- 'O PolicySetComponent

PolicyTimePeriodCondition |= = mm m =
. W T T [_policyset__kK}—— PolicyGroup K]
¥) &
aliditPeriod | Ay
b} PolicyRule |<}—fj: SLSPolicyRule i
E-d ComponndPDlicndndmunI cyR P_ i
f ,] Tl
1 “ TargetPalicy 7" stsPoicyActionin |
I B | i _ SLSPoicyRue [
———— -.01 o o
: CUPCInCTPC] e o] 1
- ST
f Jooraen] - ? . ?
: 1_) CSPCINETRC | Rumowe&urvlcekmw:?olnt |
! — i : System Model CIM 2.8 :' |-
: PCINPC prre _E.“E"._""JJT & 2 = _:
{ L ort- User Model CIM 2.8 (@ = ——— ——
1
e SImnlePollchonition S PolicyValue] ication Model CIM 1§"
. % . 1
K sad . [echesmson: =)
PCInPC: PolicyConditionlnPalicy Condition h CIM objects pointed by explicit variables
CUPCInCTPC: G wlserPaolicy { TargetPalicy Condition
CSPCINCTPE: C olicyCondition! dTargetPolicyCondition
CAPCINCTPB: Comp icatii icy it poundT argetPolicy Condition

Fig. 2. The PCIM/PCIMe-based business level QoS Policy Model (extended classes are shown
in gray). In the proposed model, a policy is represented by a SLSPolicyGroup instance. A
SLSPolicyGroup contains one or more SLSPolicyRule instances (associated by the
PolicySetComponent). When the conditions of a SLSPolicyRule are satisfied, then the
corresponding PredefinedSLSActions must be executed.

S Configuration Level QoS Policy Model

Our proposal adopts the strategy of representing SLS predefined actions using the
QPIM model. The QPIM model is a PCIM/PCIMe extension, and aims to offer a
device independent approach for modeling the configuration of intserv and diffserv
devices. Because our work addresses only the diffserv methodology, only the diffserv
elements of QPIM will be presented and discussed. For diffserv, QPIM should offer
elements for representing both, traffic profile, used by QoS mechanisms to classify
the traffic, and QoS actions, used by the QoS mechanisms to adequate the output
traffic to the specified levels. In fact, the RFC 3644 [6] does not present the complete
model. Instead, it presents only the new classes that are related to QoS actions. The
RFC merely suggests that developers must combine the QPIM elements with
PCIM/PCIMe for creating a complete configuration model. Fig. 3 presents our
approach for using the QPIM extensions.

A device configuration is expressed by a ConfigPolicyGroup instance. Note in Fig.
3 that this class is associated to a PolicyRole collection. This association permits to
assign “roles” for the configuration. According to IETF, roles are used by the PDP to
decide which configuration must be transmitted to a given PEP (i.e., a network device
interface). During the provisioning initialization, a PEP informs the roles assigned to
the device interfaces, and the PDP will consider all the ConfigPolicyGroup instances
that match these roles. In our approach a ConfigPolicyGroup instance is dynamically
created as a result of the Business Policy Level (BPL) compilation. Therefore, the

46 A. Beller, E. Jamhour, and M. Pellenz

BPL compiler must also determine which roles are assigned to the configuration. This
is determined by the association between the PolicyRoleCollection and the CIM
Network class. The BPL compiler assures that all business policies including users or
servers with IP addresses belonging to the network subnet associated to a given
PolicyRoleCollection will generate configuration policies with the same roles of this
collection.

PolicyValidityPeriod e
I [ire 5
lpom:rConauloi: | PoticyT]
-SubnetNumber
{ -SubnetM:sk
PackelF illerConditionlnCaonfigPalicy Rule i :
_ = !
PackanIIerom‘lltJun 1 [Wetwork]
ConfigQoSActi ¥ PolicySetinRoleCollection : 1
FmerLulefPackelConmtlon CompoundPolicyAction 1 l
Flrlelst _ : PolicyRaole : String i
() > e —————— -
T
| 1
l IPHeadersFliter] |_ Policy I L PollcyA H .m.-l
FE PolicyValue

QoSPolicyTrfProf

QoSPolicyBandWidthAction

[QoSPolicyTokenBuchetTricProf |

QoSCongestionControlAction|

CQoSPolicy TricProf InAdmisslonAction

CoSPolicyPoliceAction

QPIM GoFolicy Confi lon, QoSPalicyE Actien, QoSPolicy

Fig. 3. The configuration policy model, including PCIM/PCIMe and QPIM classes. The QPIM
classes are highlighted in the figure by a grey rectangle. We have introduced two new classes:
ConfigPolicyGroup and ConfigPolicyRule. The other classes are defined by PCIM/PCIMe,
CIM Policy and CIM Network.

A ConfigPolicyGroup instance aggregates one or more ConfigPolicyRule
instances. In our approach, each ConfigPolicyRule instance is associated to
PacketFilterCondition instances and to CompoundPolicyAction instances.
PacketFilterConditions are used for defining the rules classifying the traffic that will
benefit from the QoS service level defined by the CompoundPolicyAction. The
PacketFilterConditions are defined by the BPL compiler considering the “who”
information in the BPL model. The CompoundPolicyAction instance is a pre-defined
SLS QoS action, which is simply pointed by the BPL compiler by matching the
attribute PredefinedSLSName in the BPL model with the name attribute of the
CompoundPolicyAction. The actions included in the CompoundPolicyAction are
defined by QPIM [6]. An example of QPIM configuration is presented in the
section 6.

6 XML Mapping and Examples

The proposed framework have been implemented using XML for mapping all
information model related to the business level policy model, configuration policy

Defining Reusable Business-Level QoS Policies for DiffServ 47

model and CIM information. The strategy adopted for mapping the information
models into XML is inspired by the LDAP mapping guidelines proposed by IETF and
DTMF, and can be summarized as follows: (i) for the structural classes the mapping is
one-for-one, information model classes and their properties map to XML elements
and their attributes. (ii) for the relationship classes two different mappings are used: If
the relationship does not involve information reuse, a superior-subordinate
relationship is established by XML parent-child relationship, the association class is
not represented and its attributes are included in the child element. If the relationship
involves reusable information, the association class maps to a XML child node, which
includes a XPointer reference [15] attribute that points to a specific reusable object. In
this case, if the relationship is an association, the parent node corresponds to the
antecedent class and the child node points to the dependent class. If the relationship is
an aggregation, the parent node corresponds to the group component and the child
node points to the part component class.

SLSPolicyGroup l ; 1

CompoundApplicationConditios
SimpleCondition SimpleCondition
ExplicilPolicyVariabls ExpiicilPolicyVariabla
PolicyVakwe PolicyValue
| PredefinedSLSAction | i
[; a1
PolicyTimePeriodCondifion

CompoundTargetCondition
ReusableCompoundUserCondition | | | | SimpleCondition
ReusableCompoundServerCondition ExplicitPolicyVanable

icationCondition Policy Value

Fig. 4. Business level XML mapping structure. In the <SLSPolicyRule> element the conditions
are defined by <CompoundTargetPolicyCondition> elements that point to user, application and
server compositions stored in a <ReusablePolicyContainer>. The mapping supports the reuse
of CompoundPolicyConditions and PolicyTimePeriodConditions. The simple conditions are
based on the ExplicitPolicyVariable semantics, which permits to make references to elements
described in terms of CIM objects. In our approach, simple conditions are not reusable.

In our implementation, XML was preferred as an alternative to LDAP, due to the
considerable availability of development tools and recent support introduced in
commercial relational databases. However, the information model discussed in this
paper can also be mapped to LDAP or to a hybrid combination between LDAP and
XML. Fig. 4 illustrates XML mapping structure, and the strategy adopted for
supporting information reuse in the business level policy repository. Fig. 5 presents
and example of a business level policy model (BLPM) mapped in XML. Fig. 6
illustrates the compound conditions representing users, applications and servers.

Fig. 7 illustrates the strategy adopted for mapping the configuration level
information model. Fig. 8 illustrates an example of configuration policy generated by
the BLPC. The corresponding predefined SLS compound action is illustrated in Fig.
9, and the reusable QPIM actions and associations are illustrated in Fig. 10.

48 A. Beller, E. Jamhour, and M. Pellenz

<PolicyContainer Name="BusinessLevelPolicy">
<SLSPolicyGroup SLSType="Olimpic" PolicyDecisionStrategy="2">
<!—Silver Rule -->
<SLSPolicyRule Name="SilverRule" Enabled="1" ConditionListType="1" ExecutionStrategy="2" Priority="2">
<CompoundTargetPolicyCondition ConditionListType="1" GroupNumber="1" ConditionNegated=""false">
<CompoundUserPolicyConditionInCompoundTargetPolicyCondition GroupNumber="1
ConditionNegated="false" Par itions.xml#f
<CompoundApplicationPolicyConditionInCompoundTargetPolicyCondition ...>
<CompoundServerPolicy ConditionInCompoundTargetPolicyCondition ... />
</CompoundTargetCondition>
<PredefinedSLSPolicyAction PredefinedSLSName="Silver" />
<PolicyRuleValidity Period PartComponent="./Validity.xml#
xpointer(//Policy TimePeriodCondition[@Name="Period1)" />
</SLSPolicyRule>
</-- Gold Rule and Bronze Rule >
</SLSPolicyGroup>
</PolicyContainer>

Fig. 5. Example of business level policy in XML. The SLSType attribute in the
<SLSPolicyGroup> indicates the predefined set of reusable service types adopted in the model.
In this case, the “Olimpic” indicates three service levels (SLS), named “Bronze”, “Silver” and
“Gold”. Only the service level corresponding to “Silver” is detailed in the figure by the
corresponding <SLSPolicyRule> element. The < CompoundTargetPolicyCondition> defines the
conditions for receiving the “Silver” pre-defined SLS action. The XPointer expression assigned
to the PartComponent attributes follows the syntax “reusable-info-repository
URI#xpointer(“XPath expression for selected nodes in the repository”).

<V CompoundConditions.xml -->
<ReusablePolicyContainer Name="CompoundUserCondition">
<CompoundUserPolicyCondition Name="CommercialManager" ConditionListType="1">
<SimplePolicyCondition GroupNumber="1" ConditionNegated="false">
<PolicyExplicitVariable ModelClass="Person" ModelProperty="BusinessCategory" />
<PolicyStringValue StringList="Manager" />
</SimplePolicyCondition>
<SimplePolicyCondition GroupNumber="1" ConditionNegated="false">
<PolicyExplicitVariable ModelClass="Person" ModelProperty="0U" />
<PolicyStringValue StringList="CommercialDepartment" />
</SimplePolicyCondition>
</CompoundUserPolicyCondition>
</ReusablePolicyContainer>

<ReusablePolicyContainer Name="CompoundApplicationCondition"=> ...
</ReusablePolicyContainer>

<ReusablePolicyContainer Name="CompoundServerCondition"> ...
</ReusablePolicyContainer>

Fig. 6. Example of reusable compound conditions. The “CommercialManager”
<CompoundUserCondition> selects the users matching “BusinessCategory = Manager” AND
“OU = CommercialDepartment” .

7 Conclusion

This work contributes for defining a complete framework for QoS diffserv
management that is in according with recent IETF standards. This work proposes a
new business level model and completes the QPIM model with classes required for

Defining Reusable Business-Level QoS Policies for DiffServ 49

defining filtering conditions for diffserv configuration. An important point with
respect to the implementation of CIM/PCIM-based frameworks concerns the strategy
adopted for mapping class associations to XML or LDAP. Because the directives
published by IETF and DTMF offers several possibilities for mapping the information
model classes, retrieving information from a repository requires a previous knowledge
of how the information classes have been mapped to a specific repository schema.

'

Reusable PolicyContainer

ReusablePolicyContainer

SimplePolicyAction
Fonlafyli /e CompoundPolicyAction Poalicyl mplicitVariable
ConfigPolicyRules Reusable SimplePoli PolicyValue
PacketFillerCondition Reusable QoS

Reusable CompoundPolicyActions
‘eriodConditions

Reusable Policy TimeP,

Y H
Reusable QoSPolicyPHBACtion
Reusable

QoSPolicyBandWidthAction |

[

XPointer reference

XPointer reference

QoSPolicyAdmissionAction
Reusable ConformAction

Reusable ExcesdAction 11
Reusable ViolatedAction
ReusablePolicyTokenB: rafProfil

Reusable PolicyContainer

| PolicyTimePeriodCondition

Reusable PolicyContainer

I % 4

Fig. 7. Configuration Level XML Mapping Structure. A <ConfigPolicyGroup> groups the
<ConfigPolicyRules> corresponding to the configuration of devices with “similar role” in the
network. The PacketFilerCondition is generated by the BLPC, and it is not reusable. The
<CompoundPolicyActions> and <PolicyTimePeriodConditions>, however, are reusable
information pointed by XPointer references. Note the <CompoundPolicyAction> also points to
reusable QPIM actions.

<PolicyContainer Name="ConfigPolicy">
<ConfigPolicyGroup ConfigName="OlimpicConfigQoSCt ial" PolicyDecisi
<ConfigPolicyRule Enabled="1" ConditionList Type="1" Priority="2">
<PacketFilterCondition FilterEvaluation="4" GroupNumber="2" ConditionNegated="false">
<IPHeadersFilter IsNegated="False" HdrIPVersion="4" HdrSrcAddress="0.0.0.0" HdrSrcMask="0"
HdrDestAddress="10.0.4.1" HdrDestMask="24" Direction="3"/>
</PacketFilterCondition>
<l .. other PacketFilterConditions >
<PolicyRuleValidityPeriod ParttComponent="./Time.xml#
xpointer(//PolicyTimePeriodCondition[@Name=Period1T)" />
<ConfigQoSActionInConfigPolicyRule PartComponent="./QoSOlimpic.xml#
xpointer(//CompoundPolicyAction[@name="SilverAction')" />
</ConfigPolicyRule>
</ConfigPolicyGroup>
<l-- ... other ConfigPolicyGroups -->
</PolicyContainer>

Strategy="1">

Fig. 8. Configuration policy generated by the BPL compiler. In this example, each
<ConfigPolicyGroup> represents the configuration of the devices in a specific subnet in a
enterprise diffserv network. Only the configuration policy corresponding to the Silver service
level in the Commercial subnet is detailed in the figure.

50 A. Beller, E. Jamhour, and M. Pellenz

<ReusablePolicyContainer Name="OlimpicQoSSpecification"
<CompoundPolicyAction Name="B Action” Seqy dActions="1"
ExecutionStrategy="2"> ... </CompoundPolicyAction>
<CompoundPolicyAction Name="SilverAction" SequencedActions="1" ExecutionStrategy="2">
<PolicyActionInPolicyAction ActionOrder="1" PartComponent=
"/QPIMAction.xml#xpointer(//QoSPolicyPolice Action[@Name=" PoliceSilverFlow T)"/>
<PolicyActionInPolicyAction ActionOrder="2" PartComponent=
" JQPIMAction.xml#xpointer(//QoSPolicyCongestionControl Action[@Name="SilverQueueClass)" />
<PolicyActionInPolicyAction ActionOrder="3" PartComponent=
"/ QPIMAction.xml#xpointer(//QoSPolicyBandwidthAction[@Name="SilverBWClassT)" />
</CompoundPolicyAction>
<CompoundPolicyAction name="GoldAction" SequencedActions="1" ExecutionStrategy="2">...
</CompoundPolicyAction>
</ReusablePolicyContainer>

Fig. 9. Example of reusable pre-defined QPIM compound actions. The compound
“SilverAction” points to a set of reusable QPIM actions, which must be executed in a
predefined order.

<ReusablePolicyContainer name="QPIMAction">
<QoSPolicyPoliceAction Name="PoliceSilverFlow" gpAdmissionScope="0">
<QoSPolicy TrfcProflnAdmissionAction Dependent="./QPIMAction. xml#
xpointer(//QoSPolicyTokenBucketTrfcProf[@Name="Silver TBFlow'])" />
<PolicyConformAction Dependent="./ QPIMAction.xml #
xpointer(//SimplePolicyAction[@Name="SilverDSCPFlowConform'])" />
<PolicyExceedAction ... />
<PolicyViolateAction ... />
</QoSPolicyPoliceAction>
<QoSPolicyCongestionControlAction Name="SilverQueueClass" qpQueueSizeUnits="1" qpQueueSize="15"
qpDropMethod="3" qpDropThresholdUnits="0" gpMinThresholdValue="30" gpMaxThresholdValue="45" />
<QoSPolicyBandwidthAction Name="SilverBWClass" gpBandwidthUnits="1" gpMinBandwidth="25" />
<SimplePolicyAction Name="SilverDSCPFlowConform">
<PolicyDSCPVariable Name="PolicyDSCPVariable" />
<PolicylntegerValue IntegerList="AF21" />
</SimplePolicyAction>
<SimplePolicyAction Name="SilverDSCPFlowExceed">... </SimplePolicyAction>
<SimplePolicyAction Name="SilverDSCPFlowViolate">... </SimplePolicyAction™>

</ReusablePolicyContainer>

<ReusablePolicyContainer name="TokenBucket">
<QoSPolicyTokenBucketTrfcProf Name="SilverTBFlow"
qpTBRate="256" qpTBNormalBurst="64" qpTBExcessBurst="32" />
<!-- other traffic profiles -->
</ReusablePolicyContainer>

Fig. 10. Example of reusable pre-defined QPIM actions.

That poses an important obstacle for building “out-of-the box” frameworks that could
reuse existent CIM/PCIM information. This is certainly a point that should be
addressed by IETF and DMTF. Future works includes extending the business level
policy model for supporting more elaborated policies rules and the development of a
graphical tool for generating the business level policies.

Defining Reusable Business-Level QoS Policies for DiffServ 51

References

10.

12.

13.

14.

Ponnappan, A.; Yang, L.; Pillai, R.; Braun, P. “A Policy Based QoS Management System
for the IntServ/DiffServ Based Internet”. Proceedings of the Third International Workshop
on Policies for Distributed Systems and Networks (POLICY.02). IEEE, 2002 .

Yavatkar, R., Pendarakis, D.; Guerin, R. A Framework for Policy-Based Admission
Control, RFC2753, Jan. 2000.

D. Verma, M. Beigi and R. Jennings, “Policy Based SLA Management in Enterprise
Networks”, Proceedings of Policy Workshop 2001.

D. Verma, “Simplifying Network Administration using Policy based Management”, IEEE
Network Magazine, March 2002.

Chan K.; Seligson, J.; Durham, D.; Gai, S.; McCloghrie, K.; Herzog, S.; Reichmeyer, F;
Yavatkar, R.; Smith, A.; “COPS Usage for Policy Provisioning (COPS-PR)”, IETF RFC
3084, Mar. 2001.

Snir, Y.; Ramberg, Y.; Strassner, J.; Cohen, R.; Moore, B.; “Policy Quality of Service
(QoS) Information Model”, IETF RFC 3644, Nov. 2003.

Kakadia, D.; “Enterprise QoS Based Systems & Network Management”, Sun
Microsystems White Paper, Article #8934, Volume 60, Issue 1, SysAdmin Section,
February 4, 2003.

J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog, A. Huynh, M. Carlson, J.
Perry, S. Waldbusser; “Terminology for Policy-Based Management”, IETF RFC 3198,
Nov. 2001.

D. Goderis, D. Griffin, C. Jacquenet, G. Pavlou; “Attributes of a Service Level
Specification (SLS) Template”, IETF draft, October 2003.

S. Salsano, F. Ricciato, M. Winter, G. Eichler, A. Thomas, F. Fuenfstueck, T. Ziegler, C.
Brandauer; “Definition and usage of SLSs in the AQUILA consortium”, IETF draft, Nov.
2000 (expired).

K. Chan, R. Sahita, S. Hahn, K. McCloghrie, ‘“Differentiated Services Quality of Service
Policy Information Base”, IETF RFC 3317, Mar. 2003.

B. Moore, E. Elleson, J. Strasser, A. Weterinen: Policy Core Information Model. IETF
RFC 3060, February 2001.

B. Moore, E. Elleson, J. Strasser, A. Weterinen: Policy Core Information Model
Extensions. IETF RFC 3460, February 2001.

Nabhen, R., Jamhour, E., Maziero C. “Policy-Based Framework for RBAC”, Proceedings
for the fourteenth IFIP/IEEE International Workshop on Distributed Systems: Operations
& Management, October, Germany, Feb. 2003, pg. 181-193.

W3C, XPointer Framework, W3C Recommendation, 25 March 2003.

Policy Driven Business Performance Management

Jun-Jang Jeng, Henry Chang, and Kumar Bhaskaran

IBM T.J. Watson Research Center
New York 10598, U.S.A.
{jjjeng, hychang, bha}@us.ibm.com

Abstract. Business performance management (BPM) has emerged as a critical
discipline to enable enterprise to manage their business solutions in an on de-
mand fashion. BPM applications promote an adaptive means by emphasizing
the ability to monitor and control both business processes and IT events. How-
ever, most BPM processes and architectures are usually linear and rigid; and
once done, will be very hard to change. Hence, it does not help enterprise to
create adaptive monitoring and control applications for business solutions.
There is an urgent need of adaptive BPM framework to be used as a platform of
developing BPM applications. This paper presents a policy based BPM frame-
work to help enterprise to achieve on demand monitoring and control frame-
work for business solutions.

1 Introduction

Business performance management (BPM) has emerged as a critical discipline to
enable enterprise to manage their business solutions in an on demand fashion. BPM
applications promote an adaptive strategy by emphasizing the ability to monitor and
control both business processes and IT events. By coordinating the business and IT
events within an integrated framework, decision makers can quickly and efficiently
align IT and human resources based on the current business climate and overall mar-
ket conditions. Business executives can leverage the results of core business process
execution to speed business transformation, and IT executives can leverage business
views of the IT infrastructure to recommend IT-specific actions that can drive com-
petitive advantage.

However, most BPM processes and architectures are usually linear and rigid; and
once done, will be very hard to change. To change the requirements of BPM is some-
times like building a completely new application, which costs time and money. Some
enterprises attempt to increase the flexibility and agility of business by introducing
dynamic workflows and intelligent rules. However, this kind of systems is hard to be
modeled, deployed and maintained. In the BPM domain, business analytics are com-
monly incorporated in business monitoring and management systems in order to un-
derstand the business operations in a deeper sense,. Nevertheless, most functions
provided business analytics are performed in batch mode — unable to resolve business
situations and exceptions in a timely fashion. How to run analytics in a continuous
sense is a challenge. In general, it is extremely difficult to model, integrate and de

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 52-63, 2004.
© IFIP International Federation for Information Processing 2004

Policy Driven Business Performance Management 53

ploy monitoring & control capabilities into larger scale business solutions such as
supply chain management.

This paper presents a policy based BPM framework to address the above issues. A
BPM system is a system for sensing environmental stimulus, interpreting perceived
data, adjudicating the data to be business situations, and making decisions about how
to respond the situations. A BPM system takes monitored data from target business
solutions (e.g. business events), invokes BPM services and renders actions back to
target business solutions. In general, there are five representative categories of serv-
ices in a BPM system: Sense, Detect, Analyze, Decide and Effect. “Sense” is the stage
when a BPM system interacts with business solutions and provides data extraction,
transformation, and loading capabilities for the sake of preparing qualified data that is
to be further monitored and analyzed. “Detect” is the stage of detecting business
situations and/or exception occurring in the business solutions. “Analyze” is the stage
when a BPM system performs business analytics such as risk-based analysis of re-
solving business exceptions. “Decide” is the stage when a decision maker will make
decision about what to respond to business situations. A decision maker can be either
human or software agent. “Effect” is the stage when a BPM system carries out actions
for the purpose of enforcing the decisions made by decision makers. Actions can be
of many forms. The simplest kind of action is alerting interested parties about the
decisions. More complicated ones may be involved sophisticated process invocation.

As a motivating example for this paper, we want to show a BPM system for man-
aging business solution that we built for some microelectronics manufacturer [1]. It
comprises a suite of event-driven, decision management applications that enable
proactive management of business disruptions in real time. The system’s ability to
identify potential out of tolerance situations, whether to unexpected fluctuations in
supply and demand, or emerging customer, partner, and supplier needs, is enabled by
analytical exception detection agents. These agents utilize standardized or configur-
able measurements to observe business events; for example to ensure that enterprise
revenue goals are being accomplished. The BPM policies are managed pro-actively.
Alert messages inform business process owners in advance if a new trend is emerging
and actions must be taken. Finally, this system provides a suite of domain-dependent
optimization, performance prediction, and risk assessment agents that make exception
management even more effective. The agents adopt existing cost structures and busi-
ness process flexibility, and recommend optimized business policies and actions that
drive business performance to higher levels of productivity, efficiency, and financial
predictability. The following scenario illustrates a scenario how the business line man-
ager utilizes the BPM system.

¢ The BPM system receives events from various source systems from the supply
chain. Some of these events impact the inventory levels or revenue metrics for the
manufactured modules (such as “orderplaced” or “order cancelled” events). The
BPM system continuously updates the actual revenue, the revenue outlook and
inventory levels.

e Whether the progression of the accrued revenue is normal or below target is de-
termined by the BPM system using a wineglass model [2]. In the case where the

54 J.-J. Jeng, H. Chang, and K. Bhaskaran

revenue is below target, the system automatically detects such a sifuation and is-
sues an alert showing the current sales quantities of some selected saleable part
numbers in the nth week are out of their bands.

¢ The BPM system recommends adjusting the planned demand quantities and
safety stock requirements for the nth week. As next step, it invokes a demand
planning module and inventory planning module to analyse demand quantities
and safety stock requirements for the nth week.

e It further recommends altering the daily build plan in order to optimally match
new daily demand statements, thus high serviceability, and minimize manufac-
turing and inventory costs. By doing so, it also shows the effects and risks of all
suggested alternatives for changing the build plan.

e Finally, the business line manager looks at the suggestions of the BPM system
and makes a final decision for improving the build plan.

e The BPM system immediately revises the actual build plan in the ERP system
(action) and continues the monitoring of the performance indicators with the up-
dated build plan.

This paper is organized as follows. Section 1 introduced the BPM concept and a
motivating example. Section 2 describes the concepts and lifecycle of BPM policies.
Section 3 presents the policy-driven architecture for BPM. The related work is given
in Section 5. Finally, Section 6 concludes this paper and discusses the future endeav-
our.

2 Defining BPM Policies

A BPM system is meant to be a platform for adaptive enterprise information systems
in that the system behavior can be altered without modifying the mechanisms of the
system itself. A BPM policy aims to govern and constrain the behavior of the BPM
net and its constituent services. It usually provides policy rules for how the BPM
system should behave in response to emergent situations [3]. As an example, a policy
of supply chain inventory may impose limits on the range of inventory levels for the
manufacturing process based upon the revenue target of the enterprise. Relevant poli-
cies can be devised and applied to different aspects of business solutions. Examples
include role-based authorization to manage target business solutions and resources,
the scope of managed business solutions and resources, and service-level agreements.
Every BPM policy has its own lifecycle. The lifecycle of a policy consists of six basic
life-stages as shown in Figure 1. They are: policy definition, policy activation, policy
passivation, policy deployment and configuration, policy enforcement and policy
termination.

Policy Definition is the phase that a policy is created, browsed and validated. Corre-
sponding definitional tools such as editor, browsers and policy verifiers can be used
by business analysts to input the different policies that are to be effective in the BPM

Policy Driven Business Performance Management 55

system. Policy Deployment & Configuration configures and deploys a policy into
target system and configures the system correspondingly. Policy Enforcement is the
stage when a policy is being enforced to govern and constrain the behavior of target
systems. Policy Activation is the phase when a policy is loaded into target system and
waiting for further execution. Policy Passivation is the phase when a policy is put to
persistent storage without any active activity. Policy Termination is the phase when a
policy ceases to exist in the system.

Policy Definition

Lot Bindig = —
Policy Enforcement I ’r

[i o2

Mokifeasion W asdation

Folicy Deployment Policy — Policy L Policy
& Configumati Activation |— Passivati Terminat

Fig. 1. Policy Lifecycle.

Potentially, a policy can be bound to BPM services at two points of its lifecycle:
(1) policy deployment & configuration: this type of binding is called early binding
between policy and mechanism since it is realized at the build time; and (2) policy
enforcement: this type of binding is, on the other hand, called late binding between
policy and mechanism since this binding is realized at the run time when policy is
being executed.

The BPM policies are specified using Ponder-like expressions [11] as follows. In
this syntax, every word in bold is a token in the language and optional elements are
specified with square brackets []. The policy with name “policyName” will be trig-
gered when the events specified in “event-specification” are generated and captured
by the BPM system. The event can be primitive event and compound event what
composed from primitive event using event operator [6]. The keyword subject refers
to the service that will act as the policy enforcer, and the scope phrase indicates the
scope in that this policy will be applied. The “do-when” pattern signifies the actions
to be enforced based on the pre-defined constraints.

policy policyName[(<type>argName[, <type> argName]*)]
on event-specification;

subject [<type >] domain-Scope-Expression;

[scope [<type >] domain-Scope-Expression;]

do action-list;

[when constraint-Expression ;]

The following segment shows the policy of detecting the out-of-bound revenue
situation based on (a) given upper- and lower-bounds; and (b) predicted revenue
performance. A metric event carrying the context object of the MDBPM system

56 J.-J. Jeng, H. Chang, and K. Bhaskaran

(noted as MDBPMContext) acts as an input to this policy. Some of the data referred
by this policy are parameterized as input parameters: (1) upperBound is the upper
bound of the revenue performance; (2) lowerBound is the lower bound of the revenue
performance; (3) ActionPlanningService indicates the service to receive the detected
situation; (4) LOBManager is the manager who will get notified when the situation is
eventually detected.

policy senseOutOfBoundRevenueSituation(
int upperBound,
int lowerBound,
ActionPlanningSexvice aps,
LOBManager 1lob)
on MetricEvent (MDBPMContext context);

subject PolicyManager; // the policy controller
target SituationDetectionService;//the policy enforcer
do {

// mnotify action planning service
notify(aps, “OutOfBoundRevenueSituation”,context);
// notify LOB manager
notify(lob, “OutOfBoundRevenueSituation”,context):;
}
// situation detection rule
when context.revenue > upperBound \/ context.revenue <
lowerBound ;

The following policy shows what needs to be actually done when the aforemen-
tioned situation occurs. This policy is triggered by a situation event carrying the MD
context object MDBPMContext. The do clause defines an action by concatenating
three other actions: (1) invoke the demand planning service to create a demand plan
based on input situation object; (2) invoke the inventory planning service to create an
inventory plan based on the demand plan; (3) notify the LOB manager about the
recommended inventory plan. The execution strategy (as an input parameter) is
DO_ALL_IN_SEQUENCE meaning every action indicated in do clause needs to be
executed with indicated sequence.

policy respondOutOfBoundRevenueSituation (
DemandPlanningService dps,
InventoryPlanningService ips,
LOBManager lob,
ExecutionStraegy DO_ALL_IN_SEQUENCE)
on SituationEvent (MDBPMContext context);

subject PolicyManager;

target ActionPlanningService;

do {
// invoke demand planning service
demandPlan = invoke(dps, demandPlan, context);
// invoke inventory planning service
inventoryPlan = invoke(ips, demandPlan, context);
notify(lob, inventoryPlan, context); //notify LOB

manager

}

Policy Driven Business Performance Management 57

3 Policy Architecture

This section shows a realization of policy-driven BPM architecture. Two fundamental
notions are presented here: BPM ring and BPM net.

BPM Rings

The BPM cycle is realized into BPM ring. A BPM ring represents a scalable mecha-
nism of realizing real-time BPM capabilities at various levels of granularity (e.g.
business organization, enterprise, value-net). A BPM ring consists of nodes and links.
A BPM node is a basic service that enables transformation from input data to output
data based on its capabilities and the pre-defined policies. A BPM link transmits data
with specific types from one node to another node. A BPM node can have multiple
instances of input and output links. Therefore, it can process multiple input requests
concurrently. The number of BPM nodes in a BPM ring is subject to the actual re-
quirements. BPM rings are policy-driven and dynamic. The BPM policy as men-
tioned in previous section is used to govern the information exchange and control
signaling among BPM nodes. BPM rings can be used as a simple modeling vehicle of
integrating BPM capabilities at various organizational levels, e.g., strategic, opera-
tional and execution.

BPM rings provide the means of building highly configurable and adaptive inte-
gration platform for BPM solutions. In our example, we have come up with 5 typical
BPM service nodes in a BPM ring: (1) event processing service that takes raw data
and produce qualified data to be further processed; (2) metric generation service that
receives the qualified data and produced metrics; (3) situation detection service that
analyzes incoming metrics and raise situations if needed; (4) action planning service
that is triggered by situations and creates an action plan in order to resolve the situa-
tion; and (5) action rendering service that takes a group of actions from action plan-
ning service and actually renders them to the target business solutions. A BPM serv-
ice node can process multiple input data requests based on the functionality to which
it is aimed. Each service realizes grid specification and developed upon OGSA code
base.

Implementation-wise, the BPM ring architecture is a physical star and a data
processing ring. The BPM ring nodes are connected to a dispatching module called a
Multi Node Access Unit (MNAU). Normally several MNAUS are connected in one
BPM node while BPM links connect those MNAUS to the BPM nodes. This makes up
the physical star. The control flow is rendered from one BPM node to the other
through the MNAUSs and each connected BPM links. The control flows of BPM ring
realized by control tokens. Each BPM node on a BPM ring acts as both a data trans-
former and a repeater, receiving a series of data from one node and passing them on
to the next. During this transformation/repeating process, if a ring node notices that it
is the destination of the control flow (coded in the token), each data is copied into
BPM data repository and the final data stream is altered slightly to let other ring
nodes know that the control token was received. The control token is sent to each ring
node in a specific order, known as the ring order. This ring order never changes un-

58 J.-J. Jeng, H. Chang, and K. Bhaskaran

less another ring node joins or leaves the ring. Once the token reaches the last node in
the ring, it is sent back to the first node. This method of token passing allows each
node to view the token and regenerate it along the way.

A BPM node is triggered when it receives a control token. This token gives the
ring node permission to transform and transmit data. If there are more than one token
residing within a BPM node. They will be queued up in local repository and will be
processed in a first-come-first-serve fashion. However, some preemptive policies can
be defined. One node on the network is the leader, and makes sure that the ring oper-
ates properly. This leader is called the BPM ring Leader. It performs several impor-
tant functions including control token timing, making sure that control tokens and
data don’t circle the ring endlessly, and other maintenance duties. All nodes have the
built-in capability to be the BPM ring Leader, and when there is no monitor on a ring,
all the BPM nodes use special procedures to select one.

BPM Nets

Figure 2 illustrates a potential structure of BPM net formed by BPM rings and the
interactions among them.

BPM Net

O mumie - : T -
o= LI g
B e Buginass Solutions l

Fig. 2. BPM Net and BPM Rings.

Multiple BPM rings form a BPM net in that each BPM ring becomes a node and
interactions among BPM rings constitute the links. While BPM rings capture the
monitoring and control patterns of specific business situations (or exceptions), BPM
net represents the pattern of communicating autonomous BPM rings in order to cap-
ture a global behavior of monitoring and control across business solution. Hence, a
BPM net realizes the BPM capabilities for a business organization (enterprise). BPM
rings collaborate with one another and aggregate into higher granularities. The struc-
ture of BPM nets can represent contractual bindings between business organizations
(enterprises) and typically result in information exchange between business organiza-
tions (enterprises).

Policy Driven Business Performance Management 59

Formal BPM Net Model

A key goal of BPM net is to provide ubiquitous BPM services for target business
solutions. Furthermore, the BPM net, is a dynamic and open environment where the
availability and state of these services and resources are constantly changing. The
primary focus of the BPM net model presented in this paper is to automatically create
BPM policies (when possible) from the set of available services to satisfy dynami-
cally defined monitoring and control objectives, policies and constraints. In the BPM
net model, BPM services and policies can he dynamically defined. The pool of cur-
rently available BPM services is represented as a graph where the node represents
services and the links, can be modeled as potential interactions.

To define BPM net, we need to define the relation, called subsumption, among
BPM rings. For two messages M; and M,, we define that M1 is subsumed by M2,
(noted by M1 = M3), if and only if for every argument a in the output message of

M1, there is always an argument b in the input message of M2 such that either they
have the same type or the type of a is the subtype of the type of b. Formally,

M: C M2 & Vae MiOutput_Arg
(3 be MaInput_Arg s.t. (type(a) = type(b)) v substype(a,b)) '

Similarly, for two services S1 and S2, we say that S1 is subsumed by S2 if for
every message M1 in S1, there is a message M2 such that M1 is subsumed by M2.
Formally, $1 C S2 < VM1 € S1 (3 Mz2e Sz2s.t. Mi C M»).

The formal definitions of BPM ring and BPM net are as follows:

1) A BPMring Ry= (S, Cy) where, S is a set of service nodes and Cy a set of serv-
ice connection.

a) Service set Sk={Sk1,5k2, ... ,Skm } Where ny is the number of functional
stages in the ring Ry;

b) Connection set Ci={ck.12, k23, ... ,Ckaxtm} WhEre cyi1; connects sy and
sgi. The data output of s; is the input of cx;1; and the input of sy; is the
outputof cgjj-

2) A BPM net is a structure based on a service graph N(B, X, ®) where B is the
business solution that the BPM Net monitors and controls, X a set of BPM rings,
and @ a set of potential interactions among rings.

a) The target business solutions B = {P, E} where P is set of probes that emit
monitored data to BPM net and E a set of effectors that received control di-
rectives from the BPM net.

b) The set of rings £ ={R;} where each of R; is associated with an order set of
contextual data {Context(R;)}.

c) The set of potential interactions among rings ® = { L¢x.q.y } Such that R;,
R; € R and x-th service of R; connects to y-th service of R;. Each connection

60 J.-J. Jeng, H. Chang, and K. Bhaskaran

is associated with a utility function to calculate the cost value
Cost(Lax.6.y))-

3) In the net graph, N(B, Z, @), the available services are nodes and interactions are
edges. The edges { Lax.g.y } are created at runtime when one of the following

conditions hold

a) Both Sx and Sg,y belong to the same ring, i.e., i =j and y = x+1.
b) Sax is subsumed by Sy, ie., $Si.xE Sj.y
4) The initial service S of the ultimate BPM net is the service that can consume the
output generate by the probes of the business solution P, hence, S0 & 7,

5) The final service Sy of the of the ultimate BPM net is the service that produce the
output to be consumed by the effectors of the business solution E, hence,

ELC S

6) The chosen services from BPM net at run time form an execution path {S,, S’i,
S’ ..., S¢} in N(B, £, @)

7) The costs of Sg and S¢ represent the costs of instrumentation of the target business
solution. Assume the total cost of monitoring and controlling business solution B
is constrained by a given value CostBound then we have the following relation
for the final execution path:

Cost(Sinitiat) + Cost(Ssinat) + Z" Cost(S,)V< CostBound
i=1

The subsumption relationships among services can be used to generate candidate
BPM services for the ultimate BPM net. The constraints among services are given by
the users including the total execution cost of monitoring and controlling target busi-
ness solutions. We single out the cost of the instrumentation of target business solu-
tion, which make it ready to be monitored and controlled by BPM net because of the
high variability of such cost for different solutions. For the BPM net, the candidate
execution paths can be generated from Sq to Sy.

BPM Capabilities

The execution paths generated from BPM net based on constrains and goals defined
in the BPM requirement actually manifest the capabilities of a BPM system on
monitoring and controlling business solutions. As described in previous section, BPM
policies are applied to multiple levels of emprise abstraction: strategy, operation,
execution, and implementation. Each layer consists of corresponding BPM rings that
are specialized in monitoring and controlling specific layer of enterprise resources.

Policy Driven Business Performance Management 61

Vertical BPM Capability
Enterprise : .

Strategic
@r Organization

Strategic
BPM Capability

Fig. 3. BPM Capeabilities.

Figure 3 illustrates the distribution of BPM rings in different enterprise layers. BPM
capabilities can be defined either horizontally or vertically. Horizontal BPM capabil-
ity is an execution path that consists of BPM rings exclusively of a specific layer, e.g.
the strategic BPM capability. On the other hand, the vertical BPM capability is an
execution path which contains the BPM rings across different layers. In the diagram,
it is also indicated that some BPM rings are for processing external events and some
for internal events among BPM rings.

Discussion

We have applied the concepts of BPM policies into real customer scenarios such as
the one described in Section 1. A policy-driven BPM system makes it adaptive to
monitor and control business solutions, which is particularly useful for the domain
with high volatility of monitoring and control requirements. Crystallization of BPM
policies into BPM rings and BPM net increases the modularity and reusability of
BPM policies and consequently the system behavior. Formalization of BPM nets
allows the dynamic formation of service execution and hence makes BPM system on
demand monitoring and control system. The formal model of BPM nets also allows
us to optimize the execution of BPM nets based on given constraints and cost bounds.
Usually, the monitoring and control applications for specific business solution such as
supply chain management systems are defined in an ad-hoc and static manner. A
BPM solution is bound with a set of services at design time, which realizes the early
binding of BPM policies with the underlying policy architecture. However, in an on-
demand environment, the binding is not possible until the policies are discovered and
enforced at run time. There are benefits and disadvantages on either approach. Early
bindings facilitate the analysts to perform the policy impact at design time and hence
imply an efficient implementation at run time. On the other hand, late bindings enable
high flexibility of policy bindings with the policy architecture such as execution
paths. Therefore, more adaptive BPM functionality can be enabled via policies.

62 J.-J. Jeng, H. Chang, and K. Bhaskaran

4 Related Work

The policy-driven management model is recognized as an appropriate model for man-
aging distributed systems [7][8]. This model has the advantages of enabling the auto-
mated management and facilitating the dynamic behaviors of a large scale distributed
system. Policy works in standard bodies such as focus more on defining frameworks
for traditional IT systems. Minsky and Ungureanu [9] described a mechanism called
law-governed interaction (LGI), which is designed to satisfy three principles: (1) co-
ordination policy needs to be coordinated; (2) the enforcement needs to be decentral-
ized; and (3) coordination policies need to be formulated. LGI uses decentralized
controllers co-located with agents. The framework provides a coordination and control
mechanism for a heterogeneous distributed system. Verma et al. [10] proposes a pol-
icy service for resource allocation in the Grid environment. Due to the nature of Grid
computing, virtualization has been greatly used for defining policy services in the
paper. However, in contrast to their work, the BPM is aimed for providing policy
framework for business activities instead of a service for system domain.

The Ponder Language [11] and Policy Framework for Management of Distributed
Systems [12] address the implementation of managing network systems based on
policies. Traditional grid based frameworks for enterprise [13] focus on distributed
supercomputing, in which schedulers make decisions about where to perform compu-
tational tasks. Typically, schedulers are based on simple policies such as round-robin
due to the lack of a feedback infrastructure reporting load conditions back to schedul-
ers. However, the BPM system is governed by the BPM policies (BPM nets) that are a
mode sophisticated policy than OGSA policy. ACE [14] presents a framework ena-
bling dynamic and autonomic composition of grid services. A The formal model of
BPM nets has similar merits to their approach. However, our framework is aimed for
composing monitoring and control systems for business solutions.

5 Conclusion

In this paper, we have described an approach of building an adaptive BPM policy
architecture for managing business solutions. The system is designed, keeping in mind
the need for multi-level of abstraction, various types of services, and different types of
collaboration so that not only can BPM chores be quickly assembled and executed,
but the configuration data can be deployed to the system dynamically. The dynamic
interactions among services are captured in the BPM net in response to business
situations that are detected from the set of observed or simulated metrics in the target
business solutions. The BPM net model allows the composition of BPM services and
resources using policies. We have defined a formal model for such purpose. Much
more work remains to be done toward realizing complete and full implementation of
BPM net. The future works include: automating the derivation of configuration model
based on BPM policies, defining dynamic resource model and relations using onto-
logical approach, applying model-driven approach into the development of BPM
applications, and developing BPM policy and configuration tools.

Policy Driven Business Performance Management 63

References

1 G. Lin, S. Buckley, M.Ettl, K. Wang. Intelligent Business Activity Management — Sense
and Respond Value Net Optimization. To appear in: C. An, H. Fromm (eds.) Advances in
Supply Chain Management. Kluwer (2004).

2 L.S.Y. Wu, J.RM. Hosking, and J.M. Doll, “Business Planning Under Uncertainty: Will
We Attain Our Goal?,” IBM Research Report RC 16120, Sep. 24, 1990, Reissued with
corrections Feb. 20, 2002.

3 “Business Process Execution Language for Web Services Version 1.1,”
http://www-106.ibm.com/developerworks/library/ws-bpel/

4 “Web Service Notification,”
http://www-106.ibm.com/developerworks/library/specification/ws-notification/ March,
2004.

5 “Open Grid Services Architecture,” http://www.globus.org/ogsa/

6 H. Li, JJ. Jeng, “Managing Business Relationship in E-Services Using Business Com-
mitments”, Proceedings of Third International Workshop, TES 2002, Hong Kong, China,
August 23-24, 2002, LNCS 2444, pages 107-117.

7 The IETF Policy Framework Working Group: Charter available at the URL
http://www.ietf.org/html.charters/policy-charter.html

8 Distributed Management Task Force Policy Working Group, Charter available at URL
http://www.dmtf.org/about/working/sla.php.

9 N.H. Minsky and V. Ungureanu, “Law-Governed Interaction: A Coordination and Con-
trol Mechanism for Heterogenous Distributed Systems,” ACM Transaction on Software
Engineering and Methodology, Vol. 9, No. 3, July, 2000, Pages 273-305.

10 N. Damianou, N. Dulay, E. Lupu, M. and Sloman, M., “The Ponder Policy Specification
Language”, Proceedings of the Policy Workshop 2001, HP Labs, Bristol, UK, Springer-
Verlag, 29-31 January 2001,
http://www.doc.ic.ac.uk/~mss/Papers/Ponder-Policy01VS5.pdf

11 N. Damianou, “A Policy Framework for Management of Distributed Systems”, PhD
Thesis, Faculty of Engineering of the University of London, London, England, 2002,
http://www-dse.doc.ic.ac.uk/Research/policies/ponder/thesis-ncd.pdf

12 D. Verma, “A Policy Service for Grid Computing,” M. Parashar (Ed.): GRID 2002,
LNCS 2536, pp. 243-255, 2002.

13 Helal, S. et al, The Internet Enterprise, In Proceedings of the 2002 Symposium on Appli-
cation and the Internet (SAINT2002).

14 R. Medeiros, et. al “Autonomic Service Adaptation in ICENI Using Ontological Annota-

tion,” in the Proceedings of the Fourth International Workshop on Grid Computing
(GRID 2003), pages 10-17, Phoenix, Arizona, November 17, 2004.

Business Driven Prioritization of Service Incidents

Claudio Bartolini and Mathias Sallé

HP Laboratories
1501 Page Mill Rd
Palo Alto, CA 94304
USA

{claudio.bartolini, mathias.salle}@hp.com

Abstract. As a result of its increasing role in the enterprise, the Information
Technology (IT) function is changing, morphing from a technology provider
into a strategic partner. Key to this change is its ability to deliver business value
by aligning and supporting the business objectives of the enterprise. IT Man-
agement frameworks such as ITIL (IT Infrastructure Library, [3]) provide best
practices and processes that support the IT function in this transition. In this pa-
per, we focus on one of the various cross-domain processes documented in ITIL
involving the service level, incident, problem and change management proc-
esses and present a theoretical framework for the prioritization of service inci-
dents based on their impact on the ability of IT to align with business objec-
tives. We then describe the design of a prototype system that we have
developed based on our theoretical framework and present how that solution for
incident prioritization integrates with other IT management software products
of the HP Openview™ management suite.

1 Introduction

Nowadays, organizations are continuously refocusing their strategy and operations in
order to successfully face the challenges of an increasingly competitive business cli-
mate. In this context, Information Technology (IT) has become the backbone of busi-
nesses to the point where it would be impossible for many to function (let alone suc-
ceed) without it. As a result of its increasing role in the enterprise, the IT function is
changing, morphing from a technology provider into a strategic partner.

To support this radical transformation, various IT frameworks have been devel-
oped to provide guidelines and best practices to the IT industry [1]. In essence, these
frameworks address either the domain of IT Governance (CobiT [2]) or the domain of
IT Management (ITIL [3], HP ITSM, Microsoft MOF). Whereas the domain of IT
Management focuses on the efficient and effective supply of IT services and products,
and the management of IT operations, IT Governance is mostly concerned setting the
goals and the objectives for meeting present and future business challenges. Most im-
portantly, the IT function needs to leverage both domains to ensure that IT decisions
are made on the basis of value contribution. In other words, it is of fundamental im-
portance that the selection among various alternative IT related management options

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 64-75, 2004.
© IFIP International Federation for Information Processing 2004

Business Driven Prioritization of Service Incidents 65

that are available to a decision maker at any point in time is made in a way that opti-
mizes the alignment with the business objectives of the organization.

By propagating business objectives and their relative importance from the IT Gov-
ernance to the IT Operations and Management as suggested in [1], it is possible to
integrate them into the decision support tools used by the various IT functions in-
volved in the different ITIL domains.

In this paper, we focus our attention on a particular process of the ITIL Service
Support domain, namely Incident Management and we present a theoretical frame-
work for the prioritization of service incidents based on their impact on the ability of
IT to align with business objectives. We then describe the design of a prototype sys-
tem that we have developed based on our theoretical framework and present how that
solution for incident prioritization integrates with other IT management software
products of the HP Openview™ management suite.

The structure of the paper is as follows. In section 2 we recall the definition of the
ITIL reference model, with particular attention to the sub-domains of service level
management and incident management. In section 3 and 4, we give a formal defini-
tion of the problem of incident prioritization driven by business objectives. In section
5, we describe the architecture of a solution for incident prioritization that integrates a
prototype that we have developed with some software tools of the HP Openview™
management suite. Finally, we discuss related work and move on to the conclusion.

2 The ITIL Service, Incident, and Problem Management
Sub-domain

The Information Technology Infrastructure Library (ITIL) [3] consists of an inter-
related set of best practices and processes for lowering the cost, while improving the
quality of IT services delivered to users. It is organized around five key domains:
business perspective, application management, service delivery, service support, and
infrastructure management.

The work presented in this paper focuses on one of the various cross-domain proc-
esses documented in ITIL involving the service level, incident, problem and change
management processes. In particular, we focus on the early steps of that process link-
ing both service level and incident management.

As defined in ITIL [3], Service Level Management ensures continual identifica-
tion, monitoring and reviewing of the optimally agreed levels of IT services as re-
quired by the business. Most targets set in a Service Level Agreement (SLA) are sub-
ject to direct financial penalties or indirect financial repercussions if not met. It is
therefore critical for this management process to flag when service levels are pro-
jected to be violated in order for an IT organization to take proactive actions to ad-
dress the issue. To this extent, ITIL defines an incident as a deviation from the (ex-

66 C. Bartolini and M. Sallé

pected) standard operation of a system or a service that causes, or may cause an inter-
ruption to, or a reduction in, the quality of the service. The objective of Incident
Management is to provide continuity by restoring the service in the quickest way
possible by whatever means necessary (temporary fixes or workarounds).

Incident priorities and escalation procedures are defined as part of the Service
Level Management process and are key to ensure that the most important incident are
addressed appropriately.

Example of incidents may be degradation in the quality of the service according to
some measure of quality of service; unavailability of a service; a hardware failure; the
detection of a virus.

3 An Approach to Incident Prioritization Driven by Business
Objectives

In the incident management process it is of fundamental importance to classify, pri-
oritize and escalate incidents [3]. Priority of an incident is usually calculated through
evaluation of impact and urgency. However, these measures usually refer to the IT
domain. The central claim of our work is that in order to achieve the strategic align-
ment between business and IT that is the necessary condition for IT to provide value,
the enterprise needs to drive incident prioritization from its business objectives. This
starts from evaluating the impact that an incident has at the business level, and its ur-
gency in terms of the cost to the business of not dealing with it in a timely fashion.

In this section we describe the underlying method that our system follows to derive
prioritization values for various incidents. In the development and the deployment of
the system, we follow the principle that the cost of modeling should be kept low; so
that it is easily offset the benefit obtained from the prioritization of the incidents. In
this work we restrict the application domain of our tool, although the general tech-
niques that we present are more widely applicable. We only consider incidents gener-
ated on detection of service level degradation or violation.

3.1 Calculating the Business Impact of Incidents
Figure 1 depicts an impact tree which shows how an incident can impact multiple

services and in turn multiple Service Level Agreements defined over those services,
hence multiple businesses, organizations, etc.

Business Driven Prioritization of Service Incidents 67

SLA1 SLAn SLA1 SLAn SLA1 SLA N

\

Service 1 Service 2 Service n

07

Incident

Fig. 1. Impact Tree

In order to assign a priority level to an incident, we start by computing a business
impact value for it (which we will refer to in the following simply as impact value). In
general, the impact value of an incident is a function of the time that it takes to get to
resolution. We take into account the urgency of dealing with the incident based on
how its impact is expected to vary with time. Once the impact values of the various
incidents have been computed we prioritize the incidents based on their impact, ur-
gency and on a measure of the expected time of resolution for the incidents.

Among the SLA related business indicators that we take into consideration, there
are some quantitative ones such as Projected cost of violation of the impacted SLAs,
Profit Generated by Impacted Customers and also some quantitative ones such as
Total Customer Experience defined through the Number of violations experienced by
impacted customers, etc. Our method requires the definition of impact contribution
maps over business indicators. Impact contribution maps let us express how much the
expected value of each indicator contributes to the total impact of an incident. Be-
cause of the assumption that we made above on the normalization of the impact val-
ues, all that matters is the shape of the function for any given indicator, regardless of
affine transformations. The relative importance among the indicators is going to be
adjusted with weights, as it will be clear in the following. As an aside, it should be
said here that in order to work with the probabilistic nature of our decision support
system, impact contribution maps need to behave like Von Neumann-Morgenstern [4]
utility functions, being the calculated impact essentially a measure of the (negative)
utility derived from the occurrence of the incident at the business level. Defined this
way, impact contribution maps are guaranteed to preserve the preferences of the user
among the expected outcomes as a consequence of the incident occurrence. Examples
of impact contribution maps are presented in figure 2 and 3.

Figure 2 presents an impact contribution map for the projected cost of violation of
an SLA impacted by an incident (measured in dollars, or any other currency). Its
meaning is that to a higher projected cost of violation corresponds a higher contribu-
tion to the total impact for given indicator. The convexity of the curve symbolizes that
the growth rate of the impact slows down as the projected cost of violation grows.

Figure 3 indicates the impact contribution of an incident on the basis of the gener-
ated profit by the impacted customers, measured in currency over a given time period

68 C. Bartolini and M. Sallé

(say dollars/year)". It can be noted that three definite regions of profit are defined that
correspond to a low, medium and high contribution to the impact. This is equivalent
to classifying customers in three categories according to their historical profitability
and using that information to prioritize among incidents that impact them so that most
profitable customers are ultimately kept happier.

impact mpact
contibution Ip Sorbonk
A
1

Proft
o ost of 0, 8,
Violation

0 = Pr

Fig. 2. Impact contribution map for the pro- Fig. 3. Impact contribution map for the
jected cost of violation of an impacted SLA profit generated by the impacted customer

By comparing these two example indicators, we can already see that in the cost of
violation example, the value of the impact exhibits a dependency on time. For exam-
ple, for an SLA guaranteeing a minimum average availability, the longer a system is
down, the higher is the likelihood of violating the SLA due to the incident that caused
the system downtime. On the other hand, in the customer profitability, there is no
such dependency on time, because the values of profitability of the customers are av-
eraged out over a previous history time window and independent of the urgency that
is assigned to the incident.

Once all the contributions to the impact are known for a given incident, the infor-
mation that has been so obtained needs to be integrated over the impact tree, in order
to get to an overall impact contribution for each business indicator. For example, in
the case of the projected cost of violation of the SLAs, we need to navigate the impact
tree and average all the contributions to the impact for all the impacted SLAs. In the
next section we are going to walk the reader through an example that will make
clearer how this calculation is performed.

The relative contribution of the various business indicators is taken into account by
means of a weight that is associated to each business indicator. The formulation of the
incident impact is as follows. For a set of n business indicators, we define If, ¢), j =
I..n as the contribution to the impact of the j* indicator for the incident i. ¢ is the
weight representing the relative contribution of each indicator to the total impact. The
total impact I(i,¢) is given by:

1G,0) =) @;1;G,1) where) w; =1 6}
~ &

! This measure is supposed to be available through an implemented Customer Relationship
Management (CRM) system

Business Driven Prioritization of Service Incidents 69

The method described thus far has a very wide applicability. However, at this level
of generality, one needs to rely on propagation of information from the operation
level to the level of the business indicators, which is a difficult problem to solve in the
general case.

In our prototype, the propagation of information from operational metrics to busi-
ness objectives follows an impact tree similar to the one represented in Fig. 1. We

first determine the services impacted by the incident; thence we collate the impacted
SLAs.

3.2 Prioritization of Incidents Based on Impact and Urgency

Once the business impact of the incidents has been computed, we are faced with the
problem of prioritizing them so as to minimize the total impact on the business. Our
system requires the use of a priority scheme. Together with the definition of a set of
priority levels that are used to classify the incidents (defined by the ITIL guidelines
for incident management), we require the user to express constraints on what are the
acceptable distributions of incidents into priority levels. For any priority level the us-
ers can either force the incidents to be classified according to some predefined distri-
bution (e.g. 25%-30% high, 40%-50% medium, 25%-30% low), or define a minimum
and maximum number of incidents to be assigned to each priority level. Our method
finally requires an expected time of resolution for the incidents that are assigned to a
certain priority level, necessary to cope with the business indicators whose contribu-
tion to the total impact depends on the time of resolution of the incidents.

The Incident Prioritization Problem

We here present a mathematical formulation of the incident prioritization problem
as an instance of the assignment problem. The assignment problem is an integer opti-
mization problem that is well studied in the operation research literature and for
which very efficient algorithms have been developed.

Suppose we are required to prioritize between n incidents i;..i, into m priority lev-
els p;..pm- We introduce a variable xy,j=1..m, k=1..n that assumes the value xy=1 if
the k™ incident is assigned to the j* priority level and x3=0 otherwise.

By observing that the expected impact of each incident can be calculated depend-
ing on what priority level it is assigned to, if # is the expected time of completion for
incidents assigned to priority level j, then obviously the impact of assigning the ¥* in-
cident to the f" priority level is Iiy#;).

The next thing to be noticed is that the constraints that the user imposes on the dis-
tribution of the incidents into priority levels can be trivially translated into minimum
and maximum capacity constraints for the priority levels. For example, when dealing
with n=10 incidents, the requirement that at least 40% of the incidents will be as-

n
signed medium priority (assume that is priority level p,) would read: Zka 24
k=1

70 C. Bartolini and M. Sallé

In general we assign a minimum (¢;) and maximum (C;) capacity constraint for a
priority level that are symbolized as

n x _ @
;xijcj and ;xjkscj Vi=1.m

In order to express the importance of dealing with the most impactful incidents
earlier, we introduce a time discount factor A, O<A<1. Introducing time discount gives
the desirable property of returning a sensible prioritization of incidents even in cases
where the impact of the incidents does not depend on time for any indicator.

The mathematical formulation of the incident prioritization problem (IPP) be-
comes:

o oma (3)
PPy min 33 e MG, 1) x4
k=l
n n ' 4)
st Z_‘;xjk 2c, and ngk <Cy Vi=l.m
m &)
Y xp=1 Vk=l.n
=
xp=00rl Vi=l.mk=1.n (6)

The solution of this problem will yield the optimal assignment of priorities to the
incidents.

4 A Practical Example of Incident Management Driven by
Business Objectives

We now apply the general method to an example that we have modeled in a demon-
stration of our prototype.

Suppose that our system is used to prioritize incidents based on three business in-
dicators: the projected cost of violation of the impacted SLAs, the profit generated by
the impacted customers and a measure of the customer experience seen through the
number of service violations experienced by the impacted customers.

Let’s explore more in detail what the definition of each business indicator means.

Projected cost of violation of the impacted SLAs

Our system computes the projected cost of violation through the likelihood of vio-
lation that the incident entails for impacted SLAs. For some SLAs there will be cer-
tainty of violation, whereas for others (such as service degradation) a value of likeli-
hood depends on the entity of the impact of the incident on the service. In general, as

Business Driven Prioritization of Service Incidents 71

we noted above, the likelihood of violation is also dependent on the time that it will
take before the incident is resolved.

In the implementation of our prototype we derive the likelihood of violation from a
function that is modeled a priori by looking at the historically significance of a certain
value of availability to violating the SLAs in a short successive time frame. More so-
phisticated methods might be used here; however our system is agnostic with respect
to how the likelihood is obtained.

Profit generated by the impacted customer

This is a simpler criterion that would result in prioritizing the incidents according
to the relative importance that the customers have on the business, based on the profit
that was generated by each customer in a given time period up to the date. If this indi-
cator was used in isolation, it would result in dealing with incidents that impact the
most profitable customers first. The value of the profit generated by each customer is
supposed to be extracted by an existing CRM system, which Openview OVSD gives
an opportunity to integrate with.

Number of violations experienced by the impacted customer

We use this indicator as a measure of the customer experience, which is a kind of
more qualitative criterion, although our system must necessarily reduce the qualitative
criteria down to measurable quantitative indicators. Therefore in our example, the
third business indicator that is used is a sum of the number of violations that have
been experienced by the customers with which the SLAs were contracted that are im-
pacted by the incidents. For simplicity of expression, we will consider here all cus-
tomers being equal, but weights might be added to the computation that would reflect
the relative importance of each customer.

Let us now describe the impact contribution functions for an incident i

(—v(s,i,t)) (7)
i,(,s5,v(s,i,1))=1-e © ,Vse SLAs(i)

Equation (7) is the impact contribution to the incident i of the projected cost of
SLA violation. v(s,i,t) is the projected cost of violation for an SLA s impacted by the
incident { when the incident is expected to be resolved within a time interval ¢. The
value of the cost of violation is calculated by taking into account the likelihood of
violation as described above.

0 if 0<pla<p ®
i(c,p(e)=3a if B, <pc)<p,.Yee Customersi)
1 else

Equation (8) represents the contribution due to the customer generated profit. p(c)
is the profit that customer ¢ yielded in the time period considered.

)y &)
i(c,n(c))=1-e 7 ,Vce Customers(@i)

72 C. Bartolini and M. Sallé

Finally, equation (9) is the contribution due to the number of violation for a given
customer in a given time period, represented as n(c).

The equations hold for a certain choice of the parameters &, £, and ¥- obviously
dimensioned in dollars, dollars and number of violations respectively — We have car-
ried out some experiments to get to a sensible choice of parameters that we will not
discuss here as they fall outside the scope of this paper.

The contribution to the total impact of an incident for a given business indicator is
computed by averaging all the contributions of each impacted customer and SLA re-
spectively. The averaging weights zexpress the relative importance of each customer
and SLA for computing the total impact contribution of each business indicator.
Without loss of generality, in this example, they might be considered uniform.

1,G,0= Y7, i,(,5v(s,i,t)) where Y 7, =1 (10)
seSLAs(i) se SLAs(i)
I,G,H= Y&, i (c,p(c) where Y7, =1 (11)
ceCustomers(i) ce Customers(i)
I,G= Y @, ile,n(c) where .7, =1 (12)
ceCustomers(i) ce Customers(i)

Finally, the calculation of the total impact of an incident i necessary for assigning a
priority is carried out through the formula (1), which in this case becomes:

16,0 =0, ,6.0+a0l,0,0+a (0 (13)
where @, + @, + @ =1

for a certain choice of the relative importance given to the three business indica-
tors, expressed through the weights @},, @ and .

5 An Incident Prioritization Solution

We have built a prototype system that embodies the method described in the previous
sections, which we will refer to as the MBO prototype in the following. MBO is an
acronym for Management by Business Objectives, which relates to the more general
problem of taking into account business related considerations in the management of
IT. In this section, we present a solution for incident prioritization that integrates our
prototype with commercially available tools of the HP Openview™ management
suite. We begin by briefly describing the features of the Openview components that
we used in the integrated solution, and then we present the architecture of the solu-
tion, with particular regard to the modifications to the Openview incident handling
mechanisms that were necessary for the solution to work.

Business Driven Prioritization of Service Incidents 73

Overview of the Openview Components Integrated in the Solution

The natural point of integration for our prototype is with the service level manage-
ment capability of Openview Service Desk (OVSD). OVSD is the tool that falls more
squarely in the domains of service level management, incident management and
problem management. It allows a user to define a hierarchical service structure with
multi-tiered SLA capabilities to describe the relationship between a higher level busi-
ness service and the supporting operation management service.

OVSD was an excellent starting point for us because it provides most of the links
necessary to build the impact tree that we use as the basis of our incident prioritization
method. Our MBO prototype complements OVSD by helping the IT personnel faced
with the incident prioritization problem with support for their decision based on data
and models that are readily available through OVSD.

HP OpenView Internet Services (OVIS) provides monitoring capabilities that are
necessary to service level management, as monitoring of availability and response
time, along with notifications and resolutions of outages and slowdowns. It builds on
a highly scalable and extensible architecture that allows programmers to build probes
for a wide variety of data sources.

Architecture of the Incident Prioritization Solution

Figure 4 presents the architecture of the integration of the MBO prototype with Open-
view Service Desk (OVSD). OVSD receives data feeds from sources as diverse as
OpenView Internet Services (OVIS), OpenView Transaction Analyzer (OVTA) and
other data feeders. Aside from its reporting activity, the OVSD internal machinery
that has to do with service level management -- referred to as OVSD-SLM -- can be
summarized in a three step process. The first step is compliance checking during
which OVSD-SLM seeks to assess whether current measurements comply with ex-
isting service level objectives (SLO). This compliance phase uses service level
agreements contained in the Configuration Management Database (CMDB) from
which are extracted SLOs. Multiple compliance thresholds can be defined for each
SLO such as violation and jeopardy thresholds. This allows for proactive manage-
ment of degradation of service. The second step is Degradation and Violation Detec-
tion during which it is detected that a particular metric associated with an SLO has
either reported values that are violating that SLO or meet a jeopardy threshold. In
both cases, this leads to the next phase, Incident Generation, which reports the viola-
tion or degradation as an incident.

At that stage, it is needed to characterize the incident from a business perspective.
This is done (step 1) using the MBO prototype prioritization engine. To compute the
relative importance of the incident from the business point of view and to prioritize it,
the MBO engine fetches (step 2) all the open incidents from the CMDB and extracts
the one that have not yet been handled, along with their related SLAs and penalties.

74 C. Bartolini and M. Sallé

Finally, once the priorities are computed (step 3), the MBO engine updates (step 4) all
the incidents with their new priorities.

3. Allocate Priorities

Prioritization

4. Update
Incidents

2. Get recorded incidents and SLA/
Penaty Information

3
Othar
ovTA ovis
_ Faeders|

Fig. 4. Integrating SLM with MBO.

For the prioritization solution to work, we had to modify the OVSD-SLM incident
handling mechanism so that the MBO prioritization engine is automatically notified
on SLA compliance of jeopardy alarms.

6 Related Work

Most of the management software vendors today (such as HP, IBM, Peregrine sys-
tems to cite a few) make commercially available tools that are addressed at helping IT
managers with incident prioritization. None of them however deals with the problem
of driving the prioritization from the business objectives as we do in this work.

One of the few works in the IT management literature that touch on incident man-
agement is [5]. However, the aim of this work is quite different from ours, as it con-
centrates on the development of a specific criteria catalog for evaluating Incident
Management for which it provides a methodology.

In any case, we believe that the most innovative aspect of the work here presented
is driving incident prioritization from business objectives. From this point of view,
among other very valuable works that we cannot review here for space reasons, the
most notable in our opinion is [6]. They present a business-objectives-based utility
computing SLA management system. The business objective(s) that they consider is
the minimization of the exposed business impact of service level violation, for which
we presented a solution in [7]. However, in this work we go far beyond just using im-
pact of service level violations. We provide a comprehensive framework and a
method for incident prioritization that takes into account strategic business objectives
such as total customer experience thereby going a long way towards the much needed
alignment of IT and business objectives.

Business Driven Prioritization of Service Incidents 75

7 Conclusion

We have shown in this paper that it is possible to integrate the business objectives de-
fined by IT Governance into the decision making process that occurs within the IT
Operations and Management functions. We focused our attention on Incident Man-
agement and we presented a theoretical framework for the prioritization of service in-
cidents based on their business impact and urgency. We also described the design of a
prototype system that we have developed based on our theoretical framework and
presented how that solution for incident prioritization integrates with other I'T man-
agement software products of the HP Openview™ management suite. We finally
would like to thank Issam Aib for his very valuable comments.

References

1. M.Sallg, “IT Service Management and IT Governance: Review, Comparative Analysis and
their Impact on Utility Computing”, HP Labs Technical Report HPL-2004-98, 2004.

2. IT Governance Institute (ITGI), “Control Objectives for Information and related Technol-
ogy (CobiT) 3rd Edition”, 2002. Information Systems Audit and Control Association.

3. Office of Government Commerce (OGC), editor. “The IT Infrastructure Library (ITIL)”
The Stationary Office, Norwich, UK, 2000.

4. J. Von Neumann, O. Morgenstern, “Theory of Games and Economic Behavior”, Princeton
University Press, 1944.

5. M. Brenner, I. Radisic, and M. Schollmeyer, “A Criteria Catalog Based Methodology for
Analyzing Service Management Processes” In Proc.13th IFIP/IEEE International Work-
shop on Distributed Systems: Operations & Management (DSOM 2002), 2004.

6. M.J.Buco, R.N.Chang, L.Z.Luan, C.Ward, J.L.Wolf, and P.S.Yu, “Utility computing SLA
management based upon business objectives”, in IBM Systems Journal, Vol. 43, No. 1,
2004

7. M.Sallé and C.Bartolini , “Management by Contract”, In Proc. 2004 IEEE/IFIP Network
Operations and Management Symposium (NOMS 2004), Seoul, Korea, April 2004

A Case-Based Reasoning Approach for
Automated Management in Policy-Based
Networks

Nancy Samaan and Ahmed Karmouch

School of Information Technology & Engineering (SITE), University of Ottawa,
161 Louis Pasteur St. Ottawa, ON, Canada K1N-6N5

{nsamaan, karmouch}@site.uottawa.ca

Abstract. Policy-based networking technologies have been introduced
as a promising solution to the problem of management of QoS-enabled
networks. However, the potentials of these technologies have not been
fully exploited yet. This paper proposes a novel policy-based architec-
ture for autonomous self-adaptable network management. The proposed
framework utilizes case-based reasoning (CBR) paradigms for online cre-
ation and adaptation of policies. The contribution of this work is two fold;
the first is a novel guided automated derivation of network level policies
from high-level business objectives. The second contribution is allowing
for automated network level policy refinement to dynamically adapt the
management system to changing requirements of the underlying environ-
ment while keeping with the originally imposed business objectives. We
show how automated policy creation and adaptation can enhance the
network services by making network components behavior more respon-
sive and customizable to users’ and applications requirements.

1 Introduction

Policies have been introduced as efficient tools for managing QoS-enabled net-
works. It has been widely supported by standards organizations such as the IETF
and DMTF to address the needs of QoS traffic management. Policies are sets of
rules that guide the behavior of network components. In current systems, policies
are defined by users, administrators, or operators. Once defined, these policies
are translated and stored in a policy repository. Policies are then retrieved and
enforced as needed.

Despite the recent research advances in the area of policy-based network
management, e.g., [1, 2, 3], existing policy frameworks are faced with various
challenges. Current networking systems, characterized with increasingly grow-
ing sizes and services, are becoming extremely complex to manage. Hence, an
increasing burden is put on network administrators to be able to manage such
networks. Furthermore, static policy configurations built a-priori by administra-
tors into network devices usually lack the flexibility required by wired/wireless
networks environments and may not be sufficient to handle different changes in
the underlying environments. On the other hand, in current systems, network

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 76-87, 2004.
© IFIP International Federation for Information Processing 2004

A Case-Based Reasoning Approach for Automated Management 71

reconfiguration in response to users’ requests for service customization can only
be performed manually by a network operator. This results in significant delays
ranging from minutes to days. In summary, the traditional policy-based man-
agement approach based on Condition-Action notion poses a major difficulty of
acquiring necessary management knowledge from administrators, while it lacks
the ability to deal with unexpected faults. Further, once policies are built into
the network, there is no possibility to learn from gained experience. These chal-
lenges along with current advances in hardware/software network technologies
and emerging multi-services networks necessitate the existence of robust self-
learning and adaptable management systems.

This paper proposes a novel approach to autonomous self-adaptable policy-
based networks. The proposed work utilizes case-based reasoning (CBR)
paradigms [4] for on-line selection, creation and adaptation of policies to dynam-
ically reconfigure network components behaviors to meet immediate demands of
the environment based on previously gained experiences. In general, a CBR sys-
tem [4] is a system that solves current problems by adapting to or reusing the
used solutions to solve past problems. It carries out the reasoning with knowl-
edge that has been acquired by experience. This acquired experience is stored
in a case-base memory and used for knowledge acquisition. The CBR systems
analyze and obtain solutions through algorithms of comparison and adaptation
of problems to a determined situation.

In the proposed approach, policies are presented as cases. Each case (pol-
icy) consists of policy objectives, constraints, conditions and actions. Hence, the
network behavior is controlled through defining a set of applicable cases. The
key idea is that the network status is maintained in terms of sets of constraints
and objectives. A better network behavior can than be formed on the basis of
previous experiences gained from old cases that have been applied before. The
network behavior is adapted by using knowledge of the network monitored re-
sources and users’ requirements to continuously change these sets of constraints
and objectives. Given these new sets, the goal is to redesign these cases such
that they can operate to achieve the network desired performance. A reason-
ing engine uses CBR adaptation techniques, such as null adaptation, parameter
substitution and transformation [4] to reach this goal.

The remainder of this paper is organized as follows. In section 2 related
work and existing approaches for QoS management and policy adaptation are
briefly discussed. The necessary background for case-based reasoning paradigms
is introduced in Section 3. The proposed policy-based management framework
is described in section 4. Finally, section 5 concludes the paper.

2 Related Work and Motivation

Existing frameworks that have been developed to support QoS management
mainly fall into one of two categories [5]; reservation-based and adaptation-
based Systems. Although adaptation seems to provide a more promising solu-
tion for network management, existing adaptation techniques still have certain
limitations. For example, many QoS-based adaptive systems use indications of
QoS failure to initiate adaptation actions. Consequently, adaptation may fail in

78 N. Samaan and A. Karmouch

many cases such as in the case of a QoS failure resulting from a congested link.
Moreover, these techniques usually lack an essential degree of flexibility to build
upon past experiences gained from the impact of previously pursued adaptation
strategies on system behavior.

Policy-based network management has been introduced as a promising solu-
tion to the problem of managing QoS-enabled networks. However, static policy
configurations built a-priori into network devices lack the flexibility and may
not be sufficient to handle different changes in these underlying environments.
Various research trends, e.g. [6], have highlighted the notion of policy adapta-
tion and the central role that it can play in QoS management in policy-enabled
networks. This notion of policy adaptation is becoming even more crucial as the
managed systems become more complicated.

In [7], Granville et al. proposed an architecture to support standard policy
replacement strategies on policy-based networks. They introduced the notion of
policy of policies (PoP). PoPs, acting as meta-policies, are defined to coordinate
the deployment of network policies. The definition of PoP requires references to
every possible policy that may be deployed besides the identification of events
that can trigger a policy replacement. Although their work follows the concepts
of policies automation, it puts a burden on the network administrator to define
both the standard policies and the PoPs. Planning policies in the existence of
PoPs is a complex task. Moreover, reaching an adequate policy replacement
strategy requires a complex analysis process. The administrator still has to check
which policies deployment strategies were successful and which strategies failed
to achieve their goals and manually update these strategies.

In [8] a genetic algorithm based architecture for QoS control in an active
service network has been introduced. Users are allowed to specify their require-
ments in terms of loss rate and latency and then policies are used to adapt the
queue length of the network routers to accommodate these requirements. The
proposed work has the advantage that it is benefits from learning for adaptation.

Agents are used in [9] to represent active policies. The proposed architec-
ture has a hyper-knowledge space, which is a loosely connected set of different
agent groups which function as a pluggable or dynamically expandable part of
the hyper-knowledge space. Active policies, which are agents themselves, can
communicate with agents in the hyper-knowledge space to implement policies
and retrieve information from agents. The architecture takes advantage of in-
telligent agents features such as the run-time negotiation of QoS requirements.
However, an active policy by itself has to be created by the administrator, and
once deployed to the network it remains static through its life-cycle.

In [6] a framework for adaptive management of Differentiated Services using
the Ponder language [10] has been proposed. The framework provides the admin-
istrator with the flexibility to define rules at different levels. Policy adaptation is
enforced by other policies, specified in the same Ponder policy notation. A goal-
based approach to policy refinement has been introduced in [11] where low level
actions are selected to satisfy a high-level goal using inference and event-calculus.
In contrast to existing approaches, the proposed framework takes advantage of
availability of previous experience gained from previously applied policies and
their behavior to make decisions concerning the creation of future policies. An-

A Case-Based Reasoning Approach for Automated Management 79

other approach has been presented in [12] which attach a description of the
system behavior, in terms of resource utilization, such as network bandwidth
and response time, to each specified rule.

3 CaseBased Reasoning Paradigms

Case-Based Reasoning (CBR) is a problem solving and learning paradigm that
has received considerable attention over the last few years [4, 13]. It has been
successfully applied in different domains such as e-commerce [14] and automated
help desks [15]. CBR relies on experiences gained from previously solved prob-
lems to solve a new problem. In CBR past experiences are referred to as cases.
A case is a contextualized piece of knowledge representing an experience that
teaches a lesson fundamental to achieving the goals of the reasoner. A case is usu-
ally described by a set of attributes, also often referred to as features. Cases that
are considered to be useful for future problem solving are stored in a memory-like
construct called the case-base memory. In broad terms a CBR reasoning cycle
consists of four basic steps; namely: case retrieval, reuse, revision and retain-
ment. A new problem is solved by retrieving one or more previously experienced
cases, reusing the case in one way or another, revising the solution based on
reusing a previous case, and retaining the new experience by incorporating it
into the existing case-base memory.

Compared to rule-based systems, CBR does not require causal models or a
deep understanding of a domain, and therefore, it can be used in domains that
are poorly defined, where information is incomplete, contradictory, or where it
is difficult to get sufficient domain knowledge. Moreover, it is usually easier for
experts to provide cases rather than to provide precise rules, and cases in general
seem to be a rather uncomplicated and familiar problem representation scheme
for domain experts. CBR can handle the incompleteness of the knowledge to
which the reasoner has access by adding subsequent cases that describe situa-
tions previously unaccounted for. Furthermore, using cases helps in capturing
knowledge that might be too difficult to capture in a general model, thus allow-
ing reasoning when complete knowledge is not available. Finally, cases represent
knowledge at an operational level; they explicitly state how a task was carried
out or how a piece of knowledge was applied or what particular strategies for
accomplishing a goal were used.

4 Case-Based Policy Management Architecture

As shown in Figure 1, the main component of the proposed architecture is the
case-based policy-composer (CBPC) which is responsible for translating higher-
level business policies into lower-level network policies and for continuously
adapting the network behavior through the online refinement of network policies
in the policy repository. The CBPC relies on two different sources of knowledge
for reaching decisions concerning policies changes. It continuously receives an up-
dated view of different business-level objectives, service-level agreements (SLAs)
with customers along with the underlying network topology and constraints.

80 N. Samaan and A. Karmouch

The second source of information is provided by a set of monitoring agents [16]
responsible for monitoring network resources based on the monitoring policies
specified by the CBPC. Once obtained, the CBPC is then responsible for analyz-
ing these knowledge to reach decisions concerning the adaptation and creation of
different sets of policies; namely: admission, provisioning, routing and monitor-
ing policies, based on previously gained experiences. The main focus of the work
presented in this paper is the automated generation and refinement of admission
and provisioning policies for differentiated-services operated networks [17].

Case-Based

Palicy 2
Composer TR

b
Policies .~
manager

Monitoring
Policies
k manager J

Fig. 1. Policy Management Architecture.

A detailed description of the functionalities of the CBPC is shown in Figure
2. The key idea in the proposed work is that policies are presented as cases.
Hence, the terms case and policy will be used interchangeably throughout the
rest of the paper. Each case (policy) consists of problem domain, describing the
case’s constraints and objectives, and a solution domain, describing the actions
that must be taken under and which conditions to reach the specified objectives.
A new policy generation/adaptation is triggered as a result of either changes
in the supplied business and SLAs requirements or through objective violation
indicated by information obtained from monitoring agents. The CBPC starts
by deriving target objectives and constraints to represent the problem of new
case. In the second step, the retrieval step, the CBPC uses a similarity measure
to find previously existing cases in the policy repository with objectives and
constraints that best match the target ones. Using a set of adaptation operators,
the solutions of these retrieved cases are adapted, in the third step, to form
the solution of the new target case. Once assembled, the new case (policy) is
dispatched at the network level. A refinement step is carried-out to evaluate the
behavior of dispatched policy. The case is repeatedly refined and dispatched until
the target objectives are met. Finally, the new case is retained for future use in
the case-base memory. The following sections provide a detailed description of
these steps to illustrate the life cycle of policies creation and adaptation.

A Case-Based Reasoning Approach for Automated Management 81

G
| Mew problem tation New Case
Mew problem EEEEE | | Objectives I Constraints 1

Monitoring information

Fig. 2. Functionalities of the CBPC.

4.1 Step 1: Policy Representation and Construction

In policy-based management systems, one starts with a business-level specifi-
cation of some objective (e.g., users from department A get Gold services) and
ends up with a network-level mechanism that is the actual implementation of this
objective (e.g., a classifier configuration for admission control and a queue con-
figuration for per-hop-behavior treatment). The general structure of the CBPC
reflects and maintains this relation between the specification of objectives and
the final mechanisms passing via network-level policies through a four-level hier-
archical representation of cases as shown in Figure 3. The solution of a layer 7 is
mapped as the objectives of new subcases in the lower layer i 4+ 1. For example,
at the highest level, abstract cases represent different business objectives and
the corresponding solution is a set of finer grain network level solutions. Each of
these solutions is considered an objective for a lower level case and so forth.

: Case Bl Cosp BL

Business Level Business Policy| « + | Business Policy
[

Network szEl | Cast e Case o

Abstract Level Service A ! Senvice B «ve | Service M
H <7 =
Casea Gaseb Castci
Network hazk
Finer Level Treatment for 4 | Admission Trealment for e

e) [

Fig. 3. General Case Hierarchy.

82 N. Samaan and A. Karmouch

When a new business objective specification is posed, one or more abstract
cases are retrieved and their solution is adapted to fit the specifications of the
new objective. The result is a high-level description of the target solution. This
high-level solution is further refined by retrieving and adapting more specific
cases at each level, each solving some subproblem of the target. Eventually,
concrete cases are selected and an actual set of policies can be produced. In
this way, the CBPC builds up an overall solution in an iterative manner. The
evolving solution forms an emergent abstraction hierarchy as high-level solution
parts (from the abstract cases) are refined to produce a set of detailed policies.

Figure 4 shows a general case template, where each case A; consists of a
problem description part P; and a corresponding solution S;, i.e., 4; = (P;, S;).
Furthermore, P; is composed of a set of objectives O; and imposed constraints
CN;,while S; is a set of solution steps §5;;, where §S;; = (R;;,Cyj, Aij, Tij).
R;; is a set of roles, Cj; is a set of conditions, A;; is the set of corresponding
actions and T3; is the life-time of solution step 5S;;.

I
Objectives (O,
C rai N,
T i =

__ Roles(R)

caoe'l.lfeTlmei E |

Fig. 4. Policy representation as a case.

4.2 Step 2: Policies Retrieval

During retrieval, the target objectives of the new case are matched against the
described objectives of cases in the case memory and a measure of similarity is
computed. The result is a ranking of cases according to their similarity to the
target, allowing one or more best-matching cases to be selected. The similarity
of a case A; in the case-base memory to a target case A is calculated through
the similarity measure defined as

- 1
] AaA’L' = fc—_'v ij i + c(eng, cn;
sim() \/fjwj o \/zj: (35, 045)w; ;f (Chk, enix)cwr,
1)

A Case-Based Reasoning Approach for Automated Management 83

where for each objective 0;; € O;, w; is a numeric weight representing the impor-
tance of o0;;. Similarly, for each constraint cny, € C'N;, cwy, is a numeric weight
representing the influence of en;x. fo(x;,y;) is a local measure of similarity, de-
fined as follows,

0 if z; is symbolic and x; # y;
fC(wiayj) ={1 if z; is symbolic and z; = y; @)
L——lf,:;gfi if z; and y; are numeric

where range; is the allowable range for z; and y;, used to normalize the similarity
distance between the two features.

The number of retrieved cases depends on a preselected similarity threshold
8, such that a similar case A; is retrieved iff sim(4, A;) > .

4.3 Step 3: Policy Adaptation

Each of the retrieved cases in the previous stage undergoes a sequence of adap-
tation steps to meet the objectives of the target case. This stage can be referred
to as partial adaptation. During this stage after applying a set of adaptation
operators, some of the candidate cases are gradually eliminated if they failed
to meet any of the target objectives. The remaining cases are then fed into the
second stage for an overall adaptation to come up with a unified solution for the
target case. Partial and overall adaptation steps are described next.

Partial adaptation. Different operators are used to adapt each of the retrieved
cases separately. In the following, each of these operators is described.

— Al: Null adaptation. This is the simplest type of adaptation, which in-
volves directly applying the solution from the most similar retrieved case to
the target case. Null adaptation occurs when an exact match is found or
when the match is not exact but the differences between the input and the
target cases are known by the CBPC to be insignificant and, therefore, can
be directly changed. A simple example to illustrate such a situation occurs
in replacing an IP address in a classification policy, or a users’ domain in a
business-level policy. Figure 5 shows an example of a case adaptation using
null adaptation.

— A2: Parameter adjustment adaptation. A structural adaptation tech-
nique that compares specified parameters of the retrieved cases and target
case to modify the solution in an appropriate direction based on the param-
eter values in all retrieved cases. In this operator, the administrator defines
a set of formulae or configuration methods according to the nature of each
parameter. Figure 6 gives an example of a congestion policy adaptation using
parameter adjustment operations based on two retrieved cases.

In general, most parameters adjustments can be obtained as the average
value of all recommended values from all retrieved cases as follows

— 1
P; = T (Pji—) (3)

84 N. Samaan and A. Karmouch

Fig. 5. An example of null adaptation.

where P; is the new parameter value in the i** solution step §8;, in the target
case. k is the number of retrieved cases, and &; and o;; are the values of related
objectives in the target case, A, and the retrieved case, 4;, respectively.

Fig. 6. Example of case adaptation using parameter Adjustment.

— A3: Adaptation by reinstantiation. This type of adaptation is selected

when the old and new problems are structurally similar, but differ in ei-
ther one or more of their constraints. In this case, reinstantiation involves
replacing one or more of the old actions with a new action that is used to
instantiate features of an old solution with new features.
For example, if the retrieved and target cases differ in a constraint concerning
the availability of applicable mechanisms at the lowest level of the hierar-
chy, then the mechanism in the old solution is replaced with an equivalent
mechanism in the target case that implements the same objective.

A Case-Based Reasoning Approach for Automated Management 85

4,: Shape to prefile all Gold class flows and drop when queus is full.
Ay: Femark all silver class flows to lower class when out of profile
AT Shape to profile all Gold class services and remark to lower class when full

Fig. 7. A simplified example of an overall adaptation.

— A4: Adaptation by heuristics. This adaptation involves the utilization
of a set of predefined rules set by the administrator for the purpose of case
adaptation. For example, the adaptation of an admission control case can
be based on the heuristic that a behavior aggregate classifier (BA) is used
at edge routers connecting to other domains while a multiple field (MF)
classifier is used for edge routers connected to users’ hosts. Another example
of a heuristic rule is that each objective in a case that includes a bandwidth
allocation implies that a classifier and a queue should be allocated to the
traffic class defined by the objective’s conditions. Hence, once a bandwidth
allocation policy is specified as a case objective, at least one classification
and one scheduling action must exist as solution steps for this case.

Overall adaptation. In the case where none of the retrieved cases met the
objectives of the target case after the application of one or more partial adapta-
tion operations, an overall adaptation is performed using two or more partially
adapted cases to generate the target solution. Figure 7 shows a simplified oper-
ation of an overall adaptation in response to changes in a dynamic SLA. In the
Figure, two retrieved SLA policies were used to generate the required policies of
a new SLA based on an overall adaptation of these two cases.

4.4 Step 4: Policy Refinement

When a new case is produced and dispatched, it has to go through a repeated
cycle of evaluation and refinement before it can be finally stored in the case-
base memory. As shown in Figure 8, at each refinement step i, the difference
between the case’s original objectives and QoS measurements obtained from the

86 N. Samaan and A. Karmouch

A=(P, S)
P=(0;,CN;)

5,= 85,

§S, =(Ry,Cy, A;,T))

11 B8 gpu0ns,

40={do,,40,..}

Fig. 8. Case Refinement.

monitoring agents, AO;, of the leaf cases is calculated and used to perform a
solution refinement AS; through one or more parameter adjustment operations,
described above. This cycle can be repeated several times until either the case
objectives are met, i.e., AQ; = 0, or the CBPC fails to perform any further adap-
tation. If the refinement is successful, the next step, case retainment, is carried
out. Otherwise, if the refinement failed at the lower-level cases, it propagates to
the next higher-level.

4.5 Step 5: Policy Retainment

The final step in the case life cycle is learning. Newly solved problems are learnt
by packaging their objectives and solutions together as new cases, and adding
them to the case memory. There are a number of issues associated with this
type of learning, mainly the increasing size of the memory. However, often it is
not necessary to learn an entire new case if only a small part of its solution or
objectives is novel. Significant redundancy is eliminated by benefiting from the
hierarchical representation of cases. Since learning can operate at a finer level of
granularity as parts of different policies can be treated as separate cases.

5 Conclusions

In this paper we presented a novel framework for autonomous self- learning
and adaptive policy-based network management. The proposed work utilized
case-based reasoning paradigms for on-line selection, creation and adaptation
of policies. The framework base policy creation and adaptation decisions on
previously gained experiences of the management history. The main advantage
of the proposed work is that it creates a dynamic environment where the network
components are self-adaptable in response to changes in business and users’
objectives. In addition, it frees up specialized administrators to other design and
development tasks. In future work, we plan to evaluate our work through the
implementation of the proposed architecture.

A Case-Based Reasoning Approach for Automated Management 87

References

L

10.

11.

12.

13.

14.

15.

16.

17.

G. Valérie, D. Sandrine, K. Brigitte, D. Gladys and H. Eric, ‘“Policy-Based Quality
of Service and Security Management for Multimedia Services on IP networks in
the RTIPA project”, in MMNS 2002, Santa Barbara, USA, Oct. 2002.

. P. Flegkas, P. Trimintzios and G. Pavlou, “A Policy-Based Qualifty of Service

Management System for IP DiffServ Networks”, IEEE Network, Special Issue on
Policy-Based Networking, pp. 50-56, Mar./Apr. 2002.

. L. Lymberopoulos, E. Lupu and M. Sloman, “QoS Policy Specification - A Mapping

from Ponder to the IETF Policy Information Model”, in 3rd Mexican Intl Confin
Computing Science (ENCOI), Sept. 2001.

. Janet Kolodner, Case-based reasoning, Morgan Kaufmann Publishers Inc., 1993.
. C. Aurrecoechea, T. Campbell, A. and L. Hauw, “A Survey of QoS Architec-

tures”, ACM/Springer Verlag Multimedia Systems Journal, Special Issue on QoS
Architecture, vol. 6, n. 3, pp. 138-151, May. 1998.

. L. Lymberopoulos, E. Lupu and M. Sloman, “An Adaptive Policy Based Manage-

ment Framework for Differentiated Services Networks”, in IEEE 3rd Intl Wrkshp
on Policies for Distributed Systems and Networks (POLICY’02), Monterey, Cali-
fornia, pp. 147-158, Jun. 2002.

. Z. Granville, L., A. Faraco de Sa Coelho, G., M. Almeida and L. Tarouco, “An

Architecture for Automated Replacement of QoS Policies”, in 7th IEEE Syrap. on
Comput. and Comm. (ISCC’02), Italy, Jul. 2002.

. I. Marshall and C. Roadknight, “Provision of Quality of Service for Active Ser-

vices”, Computer Networks, vol. 36, n. 1, pp. 75-85, Jun. 2001.

. T. Hamada, P. Czezowski and T. Chujo, ‘“Policy-based Management for Enterprise

and Carrier IP Networking”, FUJITSU Sc and Tech Jrnl, vol. 36, n. 2, pp. 128-139,
Dec. 2000.

N. Damianou, E. Dulay and M. Sloman, “The Ponder Policy Specification Lan-
guage” , in IEEE 2nd Intl Wrkshp on Policies for Distributed Systems and Networks
(POLICY’01), Bristol, UK, pp. 18-39, Jan. 2001.

A. Bandara, E. Lupu, J. Moffet and A. Russo, “A Goal-based Approach to Policy
Refinement”, in Policy 2004), New York, USA, Jun. 2004.

S. Uttamchandaniand, C. Talcott and D. Pease, “Eos: An Approach of Using
Behavior Implications for Policy-based Self-management”, in [4th IFIP/IEEE
Intl Wrkshp on Distributed Systems: Operations and Management, DSOM 2003,
Heidelberg, Germany, October 20-22, pp. 16-27, 2003.

A. Aamodt and E. Plaza, “Case-based reasoning:Foundational issues, methodolog-
ical variations and system approaches”, Al Commu., vol. 7, pp. 39-59, 1994.

R. Bergmann and P. Cunningham, “Acquiring Customers’ Requirements in Elec-
tronic Commerce”, Artif. Intell. Rev., vol. 18, n. 3-4, pp. 163-193, 2002.

M. Goker and T. RothBerghofer, ‘“Development and Utilization of a Case-Based
Help-Desk Support System in a Corporate Environment”, in 3rd Intl Conf on
Case-Based Reasoning, ICCBR-99, Seeon Monastery, Germany, July, 1999.

N. Samaan and K. Karmouch, “An Evidence-Based Mobility Prediction Agent Ar-
chitecture”, in Mobile Agents for Telecommunication Applications, 5th Intl Wrk-
shp, MATA 2003, Marakech, Morocco, Oct. 2003.

S. Blake et al., “AN Architecture for Differentiated Services”, IETF RFC 2475,
Dec 1998.

An Analysis Method for the Improvement of Reliability
and Performance in Policy-Based Management Systems

Naoto Maeda and Toshio Tonouchi

NEC Corporation, 1753 Shimonumabe, Nakahara-ku, Kawasaki 211-8666, Japan
n-maeda@bp.jp.nec.com, tonouchi@cw.jp.nec.com

Abstract. Policy-based management shows good promise for application to semi-
automated distributed systems management. It is extremely difficult, however, to
create policies for controlling the behavior of managed distributed systems that are
sufficiently accurate to ensure good reliability. Further, when policy-based man-
agement technology is to be applied to actual systems, performance, in addition
to reliability, also becomes an important consideration. In this paper, we propose
a static analysis method for improving both the reliability and the performance of
policy-based management systems. With this method, all sets of policies whose
actions might possibly access the same target entity simultaneously are detected.
Such sets of policies could cause unexpected trouble in managed systems if their
policies were to be executed concurrently. Additionally the results of the static
analysis can be used in the optimization of policy processing, and we have devel-
oped an experimental system for such optimization. The results of experimental
use of this system show that an optimized system is as much as 1.47 times faster
than a non-optimized system.

1 Introduction

Policy-based management shows good promise for application to semi-automated dis-
tributed systems management. It enables system managers to efficiently and flexibly
manage complicated distributed systems, which are composed of a large number of
servers and networks. This results in dramatic reductions in system management costs.

The reliability and performance in the policy-based management systems are essen-
tial issues when applying this kind of technology to actual systems. Flaws in a manage-
ment system will degrade the reliability of the managed system, and poor performance
may offset the advantage initially gained by using a policy-based technology: the ability
to adjust rapidly to achanging situation.

Tool support is indispensable to managers who wish to create policies that are suf-
ficiently correct to ensure reliability. Such tools check the properties of given policies,
such as type-checking equipped with programming language compilers. Recently, meth-
ods for detecting and resolving policy conflicts have been studied actively[2,6,8,9,1 1].
Policy conflicts can be categorized into a number of different types, of which there are
two major groupings: modality conflicts and application specific conflicts[9,11]. Modal-
ity conflicts can be detected by purely syntactic analysis using the semantics of policy
specification languages[9]. Application specific conflicts, by way of contrast, are defined
by application semantics as the name suggests. As a way of providing a generic way to

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 88-99, 2004.
© TFIP International Federation for Information Processing 2004

An Analysis Method for the Improvement of Reliability and Performance 89

cope with application specific conflicts, approaches using constraint-based rules have
been proposed in [2,9].

In this paper, we propose a static analysis method for detecting all sets of policies
whose actions might possibly access the same target entity at the same time. We call
such sets of polices suspicious policy sets. The exact conditions for these sets will be
explained in section 3.2. A suspicious policy set could cause unexpected trouble in a
managed system if a policy run-time system were to execute' concurrently the policies
included in it. From the viewpoint of [9,11], we may regard the target of analysis as
application specific (O+, O+) conflicts, where “O+" is the abbreviation for “Positive
Obligation Policy”.

Our analysis method can also be used to optimize policy processing. This optimiza-
tion is based on the detection of suspicious policy sets. Policy processing is optimized
when policies may be executed concurrently so long as they do not comprise any com-
bination of policies found in any one of the previously detected suspicious sets. This
offers great advantages in efficiency over ordinary conservative policy processing, in
which individual policies are all executed sequentially, and it is just as safe.

In order to confirm the feasibility of our approach, we have also developed an experi-
mental system to measure its performance. As an experimental policy-based management
system, we employ a slightly modified PONDER[4] framework, and as the system to be
managed, we use the J2EE1.4 Application Server[14] provided by Sun Microsystems.
As interfaces to monitor and control the system, we use Java Management Extension
(IMX) interfaces[13]. Our experiments show that an optimized system is as much as
1.47 times faster than a non-optimized system.

The contributions of the work are as follows: (1) with our analysis method, it is
possible to statically detect suspicious policy sets, i.e., those that might cause unex-
pected trouble in a managed system, if their policies were to be executed concurrently,
thus ensuring improved reliability; and (2) it contributes to significant performance im-
provement in policy systems by making it possible to optimize policy processing. The
effectiveness of this second contribution is shown in our experimental results.

2 Problem Statement

Figure 1 depicts an example of a problem that could possibly be caused by concurrently
executing policies contained in a suspicious policy set. In order to quickly react to
problems, it is highly possible that there are multiple managers responsible for creating
and modifying policies. A management system is composed of a policy repository, Policy
Enforcement Point (PEP), Policy Decision Point (PDP) and an event monitor[12]. A
managed system consists of servers and network devices. We assume that managers
register their carelessly created policies in the policy repository, and the policies are
then deployed to the PEP and enabled. If (1) policies registered by different managers
were to be executed simultaneously owing to the occurrence of specified events, (2) there
were to be the same action target in the policies, and (3) actions to the target were to have
side-effects, that is, the actions may change the value of attributes defined in the target,

"In this paper, “execute a policy” means “execute the actions in the action clause of a policy”.

90 N. Maeda and T. Tonouchi

then the concurrent execution of the actions might possibly lead to problems. Although
problems of this kind are considered under Multiple Managers Conflictin [11], this work
does not present a way for detecting and resolving them.

Policy Repository Managed System
2 {Pi:e1, ¢, at} :'
—E—%.{PZ e2, c1, a2} 1
' =d| |
/.,[Ps:es‘cs.as}-»\) s [—
L]
o

(3) P2 and P3 are fired
¢ at the same time

1) Register
(1) Reg target Servers

" R
(Scool/
| RS |
[Scool)
" Network Devices

[(2) Event Notification

Event Monitor

Monitoring

L]
]
]
]
1
1
1
1
]
1
[}
]
]
L]
]
[}

Fig. 1. Example of a problem caused by executing policies concurrently

The problems caused by the concurrent execution of policies included in a suspicious
policy set are as follows: (1) if the policies were to be created without any considera-
tions to race conditions of resources, threads executing such policies might possibly
fall into deadlock; (2) if operations provided by a target were not to be implemented as
thread-safe, the concurrent access to the target might possibly make states of the target
inconsistent; (3) since a sequence of actions defined in a policy may be interleaved by
another sequence of actions, the concurrent execution of them could cause transactional
errors that might destroy the consistency of a managed system.

Our analysis introduced in the following section enables managers to ensure relia-
bility by eliminating the potential for unexpected problems that might be caused by the
concurrent execution of policies.

3 Analysis

In this section, we clarify what kind of policy specifications we assume for our analysis
method and then explain the method in detail.

3.1 Target Policy Specifications

As targets of our analysis method, we assume Event-Condition-Action (ECA) policy
specifications, such as PONDER[4]. An ECA policy is composed of an event clause, a
condition clause and an action clause. The event clause shows events to be accepted.
The condition clause is evaluated when a specified event occurs. If the condition holds,
actions in the action clause will be executed.

The essential function of our method is to detect overlapped targets in policies. The
accuracy of the detection depends on the characteristics of policy specifications. The

An Analysis Method for the Improvement of Reliability and Performance 91

most accurate information on a target is information on an instance that can be mapped
to an actual device or a software entity composing a managed system. However, it is
not pragmatic to expect the information on instances is available in policy definitions.
Actual targets of actions are often decided at run-time, such as a target defined as the
least loaded server in a managed system.

In contrast to the above case, if information on targets were not available in policy
definitions, it would be impossible to apply our method to such definitions. An example
of such an action clause is as follows:

ObjectName targetName= new ObjectName("name=logmanager,...") ;
Object[] params= makeParam("WARNING") ;

String[] signature= makeSignature(String.class.getName()) ;
mejb.invoke (targetName, "setLoglevel", params, signature) ;

In the above example, the action clause is written in Java programming language[1],
which invokes setLogLevel provided by a managed entity in the J2EE[14] application
server to change the log level to WARNING using JMX[13] interfaces. Information on
the target is embedded in the parameter for the method. In general, it is impossible to
analyze the exact value of parameters using program analysis techniques.

Therefore, we presume policy specifications in which targets are defined by class are
applied to our method. The concept of class is the same as that defined in object-oriented
languages, which define attributes and operations of a device or a software entity. In the
network management domain, CIM[5] is the most promising model to define classes of
managed entities. A rewrite of the above example using a class is as follows:

Target: Logmanager 1 ;
Action: 1.setLogLevel ("WARNING") ;

In the above example, the variable 1 belongs to class Logmanger and it is clear that the
target of action setLogLevel is class Logmanger. While the equivalence of instances
cannot be checked under our assumption, the equivalence of classes of targets can be
determined.

3.2 Analysis Method

The analysis method detects all suspicious policy sets, which meet three conditions:
(1) there is a shared target that appears in the action clause of policies contained in a
suspicious policy set; (2) there are one or more actions that have side-effects on the
shared target; (3) policies in a suspicious policy set might possibly be executed at the
same time.

The method consists of two parts. One is the analysis for the action clause, corre-
sponding to conditions 1 and 2, and the other is the analysis for the event clause and the
condition clause, corresponding to condition 3. The former detects all sets of policies
that are not assumed to be safe for the concurrent execution and the latter makes results
of the former analysis more precise by dividing or removing the suspicious policy set
containing policies that will not be executed at the same time.

The method is conservative, i.e. it detects all policy sets supposed to be unsafe,
although the detected sets might possibly include the sets that are safe for the concurrent
execution. Below, we will explain these two analyses.

92 N. Maeda and T. Tonouchi

Action Clause Analysis. In this analysis, all sets of policies meeting conditions 1 and
2 are detected. With the predicate logic, the conditions are formally defined as below:

C: set of all classes corresponding to managed entities in a managed system.

SP: set of policies (Suspicious Policy set).

targets(p). function that returns the set of all classes appearing in policy p.

actions(p, st): function that returns the set of all actions appearing in policy p and
defined in class st.

sideEffects(a): predicate that indicates the action a has side-effects.

Ast e C: {Vpe SP: st € targets(p) } A {3p € SP, Ja € actions(p, st) : sideEffects(a)}

The variable st expresses the Shared Target of polices in a suspicious policy set. With
this analysis, we detect all sets of the largest SP and the smallest SP for each class
appearing in policies. The smallest SP is the set that contains only one policy whose
actions have side-effects on the shared target. We regard the smallest set as a self conflict
that a policy contained in the set should not be executed with itself concurrently, since
it is possible that a policy may be executed twice at almost the same time if an event to
be accepted by the policy were to be notified twice virtually simultaneously. Notice that
the above logical expression is satisfied even in the case that there is only one action that
has side-effects on the shared target in a suspicious policy set SP. In this case, while the
race conditions of resources will not occur, the transactional errors mentioned in section
2 might possibly occur.

As mentioned before, whether targets are the same or not is determined by checking
the name of classes. All sets of the smallest SP can be created by, for all policies, making
a set containing only one policy whose actions have side-effects. How to obtain all sets
of the largest SP is as below:

1) collect the class name of targets appearing in the action clause of all policies.

2) for each previously collected class name ¢, make a set of polices whose action clause
contains the class name that is equal to c.

3) from the sets obtained above, remove all sets that contain only policies whose actions
do not have side-effects on the shared target.

In order to decide whether an action has side-effects or not, all actions defined in
classes must in advance be assigned one of 3 attributes: Write, Read and Unknown.
Write is assigned to the actions that may change the target entity states, i.e. have side-
effects. Read is assigned to the actions that do not have side-effects. Since the attributes
are supposed to be assigned manually, Unknown is used for the actions that are not
explicitly assigned an attribute. Unknown is treated as Write in this analysis.

These attributes can be included in class definitions or in other definitions separately
from class definitions. For instance, using the JMX[13], which is the standard specifica-
tion for monitoring and managing applications written in Java programming language,
attributes of actions (or methods) can be obtained by invoking
MBeanOperationInfo.getImpact ().

Event and Condition Clause Analysis. The problems mentioned in section 2 occur only
when multiple threads execute actions of policies concurrently. There are two issues that

An Analysis Method for the Improvement of Reliability and Performance 93

determine whether policies will actually be executed concurrently. One is the difference
between strategies that policy run-time systems employ to execute policies and the other
is how to analyze the event and the condition clause. Below, we will explain both of
these.

There are several strategies for executing policies. Whether policies are concurrently
executed by a policy run-time system depends on strategies. We categorized the strategies
into three types:

- Conservative Strategy: All the policies executions are serialized. Although the prob-
lems mentioned in section 2 will not occur, it involves deterioration of policy pro-
cessing performance. In section 4, we will introduce an application using the action
clause analysis to improve the performance of systems employing the strategy.

- Serialized Event Strategy: The execution of policies for incoming events is sus-
pended until all executions of policies triggered by the previous event have been
completed. Policies triggered by the same event will be executed concurrently. With
this strategy, we can detect the sets of policies that will not be executed concurrently
with the analysis for the event clause and the condition clause.

- Concurrent Strategy: Policies are executed concurrently. Therefore, managers have
to take into account the concurrent processing issues when writing policies. The
analysis for the event clause will not make sense, since all kinds of events may
possibly occur all the time. The analysis for the condition clause, however, will work
effectively. For instance, a policy in which only the temporal condition 10:00-17:00
holds will not be executed with one in which the temporal condition 18:00-21:00
holds’D

Thus the effectiveness of the analysis for the event clause and the condition clause
depends on strategies.

Next, we consider the analysis for the event clause. The event clause shows events to
be accepted. It contains a single event or an expression of composite events. Composite
events are combined by logical operators or operators that specify an order of event
occurrences[3].

In the event clause analysis, we focus on the events that may directly trigger an exe-
cution of policies. Since the event clause analysis is mainly used for systems employing
the serialized event strategy, whether polices can possibly be executed simultaneously
can be determined by checking whether the policies have the same direct trigger event.
Here, we will explain the direct trigger events in detail. In the case of a single event and
a composite event combined by the “OR” operator, direct trigger events are all events a
policy accepts, since the occurrence of these events might directly involve an execution
of the policy. In the case of the composite event “e; — ez”, which means that the event
ey occurs after the event ej, the direct trigger event is es. In the case of the “AND”
operator, “e; AND e3” is interpreted as “e; — e OR e5 — €17, so the direct trigger
events are both e; and es. In the other case, if we could make an automaton from the
event expression we would be able to obtain direct trigger events of policies. Such an
automaton may have a start state, final states, nodes to express states of the acceptance of
events and transitional labels corresponding to events. Events corresponding to labels to
the final states of an automaton can be regarded as direct trigger events. Thus, the poli-
cies that contain the same direct trigger event might possibly be executed concurrently.

94 N. Maeda and T. Tonouchi

These policy sets can be detected by a method similar to the action clause analysis. By
adapting the action clause analysis to result sets detected with this analysis for the event
clause, we can make suspicious policy sets more precise.

Next, we will consider the condition clause. There are two widely adopted conditions.
One is the temporal constraint used for specifying the duration a policy should be enabled,
such as 10:00-17:00. The other is to check whether a specified condition for a managed
system holds by retrieving states of managed entites when an event occurs.

By analyzing conditions for time constraints, policies that will not be executed at
the same time can be detected (only if there are no undefined variables in the condition
clause). Consider an example: {P;, P,, P3} is one of suspicious policy sets detected
with the action clause analysis. Then by analyzing the conditions of P, Ps and Ps, we
presume to obtain the result that neither Py and P, nor P and P3 will be executed at the
same time. We can make suspicious policy sets obtained with the action clause analysis
more precise as follows:

We know P; will not be executed with P,
{P1, P;, Ps} = {P1, P3}, {P», P3}
We know P, will not be executed with P;
{P1, P3}, { P, P3} = {Py, s}, { P2}, {Ps}

Since {P,}, {Ps} can be eliminated, we obtain the result set {Py, Ps}. Thus we can
refine results of the action clause analysis with the condition clause analysis.

In the case of conditions that check states of managed entities, it is almost impossible
to determine whether the conditions will not hold at the same time. Consider a condition
“x.CPU_LOAD > 90” and another condition “x.CPU_LOAD < 30”.If the variable x is
always bound to the same target, these conditions will not hold at the same time. In
most cases, however, the variable x might possibly be bound to different target entities.
Therefore, we do not deal with this kind of condition in this paper.

Thus, we have explained our analysis method that detects all suspicious policy sets.
The analysis for the action clause detects all sets of policies that should not be executed
concurrently, and the analysis for the event clause and the condition clause make the sets
more precise using information on whether policies are actually executed concurrently.

4 Optimization for Policy Processing Using Analysis

Here, we introduce the optimization of policy processing based on the detection of
suspicious policy sets and explain the implementation for the optimization.

4.1 Basic Idea

The conservative strategy mentioned in section 3.2 is highly advantageous over the con-
current strategy, in that managers are freed from complicated concurrent processing
issues when writing policies. However, this strategy has a problem in terms of perfor-
mance.

With our analysis, we aim to improve the performance of policy processing sys-
tems that employ the conservative strategy, retaining the advantage of the conservative
strategy. We will explain this idea using Figure 2.

An Analysis Method for the Improvement of Reliability and Performance 95

Policy Enforcer P
I
(Policy Processing Unit) .
ri
v i LY

Analysis Tool

output retrieve f e
A]
Analytical Result | cl2ss data '—— ' :
B 3 i

[

=K = '
k safly access the managed - H o '
output the result to monitor entities concurrently 1 :
for managers to check : Managed System :

Fig. 2. Overview of the System for Policy Processing Optimization

At first, a manager applies the action clause analysis to new policy descriptions to
be deployed into a policy enforcer and to deployed policies which can be retrieved from
a policy repository. Then, the analytical result that indicates suspicious policy sets is
reflected to a configuration of a policy processing unit in the policy enforcer. The policy
processing unit controls the executions of actions and concurrently executes policies so
long as they do not comprise any combination of policies found in any of the suspicious
policy sets shown in the analytical result.

4.2 Implementation

We have implemented an experimental system using the PONDER[4] framework devel-
oped at Imperial College and the J2EE application server[14] provided by Sun Microsys-
tems. The implementation of the experimental system can be divided into two parts, the
policy analysis and the run-time execution control.

Policy Analysis. Figure 3 shows the policy analysis part of the implementation. The
policies written in the PONDER policy specification language are compiled into the Java
classfiles and stored in an LDAP server called Domain Storage. The analysis component
in the figure applies the action clause analysis to policies stored in the LDAP server and
outputs the result into a file, which will be fed to the policy processing unit. In order
to check side-effects of actions, the analysis tool retrieves information on classes of the
targets and on attributes of the actions from the J2EE application server via the JMX
interfaces.

While targets are expressed in Domain Notation[9] in the PONDER framework , we
treat the domain name for targets as the name to be mapped to managed entities in a
J2EE application server. For instance, a target class “/J2EE/logmanager” is mapped
to the corresponding managed entity “Logmanager” in a server. The managed entities
in the J2EE applications are modeled in [15].

Run-time Execution Control. The run-time execution control is a policy run-time
system based on the PONDER framework, which is intended for use in the management

96 N. Maeda and T. Tonouchi

- ==

Pondar Polioy retrieve stored policy objects retrieve class data ¢ :
input Analysis Tool ll;'ia::fsgcmnt Application :
]
Ponder Editor/ | output : T]
H Cation SEerver
Compiler Analytical Result ' = d
v+ Managed System ;

- -

Fig. 3. Policy Analysis Part

of J2EE applications. While the framework employs the concurrent strategy, we have
modified the implementation of PONDER so as to execute policies sequentially, using a
waiting queue into which policies to be executed are put. This was a minor modification
and we have modified less than a hundred lines of the original source code in interpreting
the action clause and executing the actions defined in the clause. We have also added a
few new classes for the optimization.

Figure 4 shows the internal mechanism of the run-time execution control. There are
a policy enforcer that accepts events notified by a event monitor and a managed system.
The policy enforcer contains a policy processing unit that controls executions of the
action clause of policies with a waiting queue and a set named active policy set. We will
explain the mechanism using the example depicted in the figure.

Analytical Result
Policy Enforcer put fired P1 P4. PG
notify Policy Processing Unit L+ % po Pa'} }
ﬁl"e“_‘t 1= ~Deployed Polici Waitng Queue :
onitor .
e actions
Active Policy Set . performed Misssged
| a/ System
J

Fig. 4. Run-time Execution Control Part

The analytical result is fed to the policy processing unit beforehand, which shows
that neither P1, P4 and P6 nor P2 and P3 should be executed concurrently’. When an
event occurs and a policy is fired, the policy will be put into the waiting queue. The policy
processing unit dequeues a policy in the FIFO manner and put it into the active policy
set. The policy will remain in the set until the execution for it has been completed. If the
analytical result shows that a policy to be dequeued conflicts with any of the policies
in the active policy set, it will be skipped and the next policy will be dequeued. In the
figure, P1 and P5 are in the active policy set and P4 in the waiting queue conflicts with

2 The conflicts between the same policy are omitted for simplicity.

An Analysis Method for the Improvement of Reliability and Performance 97

P1 and P6 as shown in the result. Thus, P4 will be skipped and P3 will be dequeued to
be concurrently executed with P1 and P5 using the Java threads.

Thus, the optimized policy processing executes policies efficiently and safely us-
ing the analytical results. Using the implementation, the efficiency of optimized policy
processing over the sequential processing is presented in the following section.

4.3 Experiments

We have conducted experiments for comparing performance of the sequential policy
processing named the conservative strategy and the optimized policy processing. The
results show the optimized one is as much as 147 times faster than the sequential one
under the experimental environment.

We employ two PCs(CPU: Pentium4 3.0 GHz, Memory: 1.0GBytesOS: WidnowsXP
Pro). The implementation based on the latest version of the Ponder Toolkit(11 March
2003) is located at one PC. On the other PC, the J2EE1.4 Application Server Platform
Edition 8 is located. The PCs are connected by a 100base-T switch.

A total of 48 polices are deployed in the implementation. The definitions of the
policies are the same except the name of policy. The policy definition is as follows:

inst oblig /Policy/${PolicyName}{

on EventForExperiment() ;

subject /PMAs/PMA;

target t= /J2EE/logmanager;

do t.setLogLevel("","SEVERE") -> t.setLogLevel("","WARNING");
}

The action clause of the policy means that the operation “setLogLevel” of the managed
entity “logmanager” has to be invoked twice sequentially. The operation is used for
changing the grain of data to be logged.

We prepare an artificial analytical result that is only written for controlling the be-
havior of the optimized processing for the experiment. The result consists of 8 sets of
a suspicious policy set that contains 6 name of policies that should not be executed
concurrently. The name of a policy appears in the result exactly once, that is, a policy is
assumed to conflict with the other 5 policies and itself.

We put the 48 polices into the waiting queue randomly at first, then measured the
time to complete 100 iterations of the process that (1) make a copy of the original waiting
queue and (2) process all policies in the copy. The measurement was conducted 3 times
to check the variance of results. The results are shown in Table 1. The time described
in the table is the average of the 100 iterations of the process. The result shows the
optimized processing is as much as 147 times faster than the sequential one.

5 Related Work

Our analysis method is developed for detecting all sets of polices that should not be
executed concurrently. This type of problem between policies is classified as Multiple
Managers Conflictin [11], although how to detect them is not presented.

98 N. Maeda and T. Tonouchi

Table 1. Experimental Result

|| First |Second| Third [[Average
Sequential processing||951ms| 944ms |944ms|| 946ms
Optimized processing|{643ms| 645ms [643ms|| 643ms

The way of the detection and the resolution for Modality Conflict is proposed in [9].
It detects sets of polices of which subjects, targets and actions are overlapped. However,
it cannot detect the polices that should not be executed concurrently, since it is not
necessary for actions to be overlapped, although attributes of actions should be taken
into account.

In order to cope with the application specific conflicts, approaches of using con-
straints on polices are proposed in [2,9]. In particular [2] focuses on conflicts of actions
and presents formal semantics and notation to detect and resolve such conflicts. Although
they may allow managers to write constraints for the concurrent processing issues as
mentioned in section 2, how to implement an interpreter for these constraints is not
presented. We have focused on the concurrent processing issues and presented analysis
specific to them in detail, taking into account the strategies of the policy processing. In
addition to improve the reliability of the system, we have shown the analysis can be used
for improving policy processing performance.

The analysis assumes the action clause is written in the typed languages. As proposed
in [10], it is possible to assign type to the targets in the action clause which is written in
non-typed languages, by mapping the targets to the management model, such as CIM[5]
or the model of J2EE[15].

The idea of assigning attributes to operations for checking side-effects has been
commonly used in distributed systems. For instance, the distributed object system “Orca”
uses the attributed method of the distributed objects for keeping the consistency of
replicas of objects[7]. We have applied this idea to our analysis.

6 Summary and Future Work

In this paper, we have presented an analysis method for improving both reliability and
performance in policy-based management systems. It detects all set of policies whose
actions might possibly access the same target entity simultaneously. This information is
vital to managers, who naturally wish to ensure reliability by eliminating the potential for
unexpected problems that might be caused by the concurrent execution of combinations
of policies contained in any one of such suspiciouspolicy sets. The same information can
also be used to optimize policy processing, making it possible to execute concurrently
all policy combinations not included in any detected set.

Experimental testing of our analysis method shows that it can be used to execute
policies more efficiently than can be done with the conservative, sequential-execution
approach, and that it can do so just as safely. Results further indicate that an optimized
system is as much as 1.47 times faster than a conservative system.

An Analysis Method for the Improvement of Reliability and Performance 99

In our analysis, the equivalence of targets is checked at the class level, not at the
instance level. It will be a main cause of the false detection of the analysis. In order
to determine whether or not this approach is both accurate and effective, we intend to
continue our work by applying our analysis to use-case scenarios.

In this paper, we assume that there is one policy engine to execute policies in a
policy-based management system. In the case of multiple engines, we think our method
is still useful for managers to create policies, since using the method they can know
whether they should consider the concurrent processing issues or not. Improvement of
our method taking into account the multiple engines is also future work.

Acknowledgements. This work is supported by the Ministry of Public Management,
Home Affairs, Posts and Telecommunications.

References

1. Amnold, K. and Gosling, J.: The Java Programming Language, Second Edition, Addison-
Wesley (1998).
2. Chomicki, J., Lobo, J. and Naqvi, S.: Conflict resolusion using logic programming, IEEE
Trans. on Knowledge and Data Engineering, Vol.15, pp.245-250 (2003).
3. Damianou, N.: A Policy Framework for Management of Distributed Systems, PhD Thesis,
Imperial College, London, Feb (2002).
4. Damianou, N., Dulay, N., Lupu, E. and Sloman, M.: The Ponder Policy Specification Lan-
guage, In Proc. of Policy2001, Jan (2001).
5. DMTF: Common Information Model Spec.v2.2, June (1999).
6. Dunlop, N., Indulska, J. and Raymond, K.: Methods for Conflict Resolution in Policy-Based
Management Systems, In Proc. of EDOC2003, Sep (2003).
7. Hassen, B.S., Athanasiu, 1. and Bal, H.E.: A Flexible Operation Execution Model for Shared
Distributed Objects, In Proc. of OOPSLA 96, pp.30-50,(1996).
8. Fu, Z., Wu, S. F., Huang, H., Loh, K and Gong, F.: IPSec/VPN Security Policy: Correctness,
Conlflict Detection and Resolution, In Proc. of Policy2001, Jan (2001).
9. Lupu, E. and Sloman, M.: Conflicts in Policy-Based Distributed System Management, IEEE
Trans. on SE, Vol.25, No.6, Nov (1999).
10. Lymberopoulos, L., Lupu, E. and Sloman, M: Using CIM to Realize Policy Validation within
the Ponder Framework, DMTF 2003 Global Management Conference, Jun (2003).
11. Moffett, J. and Sloman, M.: Policy Conflict Analysis in Distributed System Management,
Journal of Organizational Computing, Vol.4, No.1 (1994).
12. Moore, B., Ellesson, E., Strassner, J. and Westerinen A.: Policy Core Information Model -
Version 1 Specification, IETF, RFC 3060, Feb (2001).
13. Sun Microsystems Inc: Java Management Extensions Instrumentation and Agent Spec.v1.2,
Oct (2002).
14. Sun Microsystems Inc: Java2 Platform, Enterprise Edition Specification, v1.4 Final Release,
Nov (2003).
15. Sun Microsystems Inc: Java2 Platform, Enterprise Edition Management Specification, Final
Release v1.0, June (2002).

Policy-Based Resource Assignment in Utility
Computing Environments

Cipriano A. Santos, Akhil Sahai, Xiaoyun Zhu, Dirk Beyer, Vijay Machiraju, and
Sharad Singhal

HP Laboratories, Palo-Alto, CA, USA

{psantos, asahai, xiaoyun, dbeyer, vijaym, sharad}e@ehpl.hp.com

Abstract. In utility computing environments, multiple users and applications
are served from the same resource pool. To maintain service level objectives
and maintain high levels of utilization in the resource pool, it is desirable that
resources be assigned in a manner consistent with operator policies, while
ensuring that shared resources (e.g., networks) within the pool do not become
bottlenecks. This paper addresses how operator policies (preferences) can be
included in the resource assignment problem as soft constraints. We provide the
problem formulation and use two examples of soft constraints to illustrate the
method. Experimental results demonstrate impact of policies on the solution.

1 Introduction

Resource assignment is the process of assigning specific resources from a resource
pool to applications such that their requirements can be met. This problem is
important when applications are provisioned within large resource pools (e.g. data
centers). In order to automate resource assignment, it is important to convert user
requests into specifications that detail the application requirements in terms of
resource types (e.g. servers) and the network bandwidth required between application
components. This application topology is then mapped to the physical topology of a
utility computing environment. The Resource Assignment Problem (RAP)
specification [1] describes this process. In RAP, applications are mapped to the
topology of a utility computing environment. While RAP accounts for constraints
imposed by server, storage and networking requirements during assignment, it does
not consider policies that may be desirable by operators, administrators or users. In
this paper we discuss how operator preferences (policies) may be incorporated as
logical constraints during resource assignment. We present formulations and
experimental results that deal with classes of users and resource flexing as examples
of policies that may be used during resource assignment.

Policies have been traditionally considered as event-action expressions that are
used to trigger control actions when certain events/conditions occur [2], [3]. These
policies have been applied in network and system management domain by triggering

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 100-111, 2004.
© IFIP International Federation for Information Processing 2004

Policy-Based Resource Assignment in Utility Computing Environments 101

control actions as a result of threshold-based or time-based events. Sahai et al. [4]
have formulated policies as hard constraints for automated resource construction.
Other related work [5]-[8] on constraint satisfaction approaches to policy also treats
policy as hard constraints.

In this paper, we describe policies as soft constraints for resource assignment. To
the best of our knowledge, earlier work on resource assignment [1], [9] has not
explored usage of soft constraints in resource-assignment. It is important to
emphasize that the assignment system may violate soft constraints to varying degrees
in order to ensure a technically feasible solution. In contrast, hard technological
constraints, such as capacity limits, cannot be violated during resource assignment
because their violation implies technological infeasibility.

The rest of this paper is organized as follows. In Section 2, we review the resource
assignment problem, and present the mathematical optimization approach to resource
assignment. Section 3 describes how policy can be incorporated in this problem as
soft constraints. It also presents the formulation for incorporating class-of-user
policies during resource assignment as well as for application flexing. Simulation
results using this approach are described in Section 4. We conclude with some
directions for future work in Section 5.

2 An Optimization Problem for Automated Resource Assignment

In [1], a resource assignment problem (RAP) for a large-scale computing utility, such
as an Internet data center, was defined as follows. Given the topology of a physical
network consisting of switches and servers with varying capabilities, and for a given
component-based distributed application with requirements for processing and
communication; decide which server from the physical network should be assigned to
each application component, such that the traffic-weighted average inter-server
distance is minimized, and the application’s processing and communication
requirements are satisfied without exceeding network capacity limits. This section
briefly reviews the models used to represent computing resources and applications.
The reader is referred to [1] for more details.

2.1 The RAP Models

Figure 1 shows an example of the physical network. The network consists of a set of
switches and a set of servers connected in a tree topology. The root of the tree is a
switching/routing device that connects the fabric to the Internet or other utility fabrics.
All the internal nodes are switches, and all the leaf nodes are servers. Note that the
notion of a “server” here is not restricted to a compute server. It includes other
devices such as firewalls, load balancers, network attached storage (NAS), VPN
gateways, or other such components. Each server is described by a set of attribute
values, such as processor type, processor speed, memory size, etc. A complete list of
parameters that characterize the network topology and resource capabilities is
available in [1].

102 C.A. Santos et al.

Fig. 1. Topology of a physical network

Figure 2 shows the component architecture of a distributed application, which is
represented by a directed graph G(C, L). Each node c€ C represents an application
component, and each directed edge ! =(c,c')e L is an ordered pair of component
nodes, representing communication from component ¢ to component c’. The
bandwidth requirement is characterized by a traffic matrix 7, where each element 7.
represents the amount of traffic from component ¢ to component ¢’. Each component
has a set of requirements on the attributes of the server that will be assigned to it.

Tiz

Fig. 2. A component-based distributed application architecture

2.2 A Mathematical Optimization Approach

The very large number of resources and inherent complexity of a computing utility
impose the need for an automated process for dealing with RAP. Two elements make
a decision problem: First there is the set of alternatives that can be followed — “like
knobs that can be turned.” Second, there is a description of what is “allowed”,
“valid”, or “feasible”. The task of the decision maker is to find a “setting of the
knobs” that is “feasible.” In many decision problems, not all feasible settings are of
equal desirability. If there is a way of quantifying the desirability of a setting, one can
ask to find the best of all feasible settings, which results in an optimization problem.
More formally, we model the RAP optimization problem with three elements:

Policy-Based Resource Assignment in Utility Computing Environments 103

® The decision variables describe the set of choices that can be made. An assignment
of values to all decision variables constitutes a candidate solution to the
optimization problem. In RAP, the decision variables represent which server in the
computing utility is assigned to each application component.

® The feasible region represents values that are allowed for the decision variables.

Typically not all possible combinations of values assigned to the decision variables

denote an assignment that meets all technical requirements. For example,

application components may have processing or communication requirements that
cannot be satisfied unless those components are assigned to specific servers. These
requirements are expressed using equality or inequality constraints.

® The objective function is a measure of goodness of a given assignment of values to
all decision variables, expressed as a parameterized function of these decision
variables. In [1], we chose a specific objective function for RAP that minimizes the
traffic-weighted inter-server distance. However, the formulation is flexible enough
to accommodate other choices of goodness measures, such as costs, or certain
utility functions.

We chose mathematical optimization as a technique to automate the resource
assignment process primarily for its expressive power and efficiency in traversing a
large and complex search space. Arriving at a solution that is mathematically optimal
within the model specified is a welcome side effect. Therefore, RAP was formulated
as a constrained optimization problem. We were not interested in developing our own
optimization technology, so we chose to use off-the-shelf optimization tools. Through
proper linearization of certain constraints in RAP, we derived a mixed integer
program (MIP) [10] formulation of the problem. Our prototype solver is implemented
in the GAMS language [11], which generates a MIP model that can be fed into the
CPLEX solver [12]. The latter either finds an optimal/sub-optimal solution that
denotes a technically feasible and desirable assignment of resources to applications,
or declares the problem as infeasible, which means there is no possible assignment of
resources to applications that can meet all the technical requirements.

A detailed description of the MIP formulation is presented in [1]. Note that the
model in [I] also contains a storage area network (SAN) in the utility fabric and
includes applications’ requirements on storage. In this paper, only policies and rules
that are directly related to server resources are considered. If necessary, policies for
storage resources can be easily incorporated in a fashion similar to those described
here.

3 Incorporating Policies in Resource Assignment

In addition to technical constraints described above, we need to include operator
policies and business rules during resource assignment. For example, it may be
important to consider application priority when resources are scarce, or components
migration policies during application flexing.

Operator policies and business rules are often expressed as logical statements that
are actually preferences. The operator would like these preferences to be true, as long
as other hard constraints are not violated. The set of operator policies for an

104 C.A. Santos et al.

assignment itself defines a feasible region of decision variables. Replacing the
feasible region of the original problem with the intersection of that region and the
feasible region defined by operator policies provides the region of all feasible
assignments that meet technical requirements and operator policies at the same time.
Because a wide variety of operator policies can be expressed by the decision region
formed by linear inequalities, they can be incorporated into the resource assignment
problem during mathematical optimization.

The concept of hard and soft constraints developed in the context of mathematical
programming provides a valuable tool to handle operator policies in the context of
assignment. Hard constraints are stated as inequalities in an optimization problem.
Any assignment that violates any of such constraints is identified as infeasible and not
a viable solution. In general, we consider that constraints imposed by the technology
are hard constraints that cannot be violated (i.e., their violation implies technical
infeasibility of the solution). On the other hand, constraints imposed by rules, policy,
or operator preferences are soft constraints that may be violated to varying degrees if
a solution is otherwise not possible. This is accomplished by introducing a variable v
that measures the degree of violation of a constraint. More formally, let a policy
constraint be given by

f(x)<b,

where x is the vector of decision variables, the function f (x) encapsulates the logic

of the constraint and the scalar b stands for a desirable threshold. In the above
formulation, the constraint is hard. Any valid assignment x must result in a function

value f(x) which is not larger than b. By introducing the violation variable v in the
form

f(x)Sb+v,

we see that for any choice of x, the variable v will have to take a value v = f(x)—b

which is at least as big as the amount by which the original constraint is violated.
Nonetheless, whatever the particular choice of x, the soft constraint can be satisfied.
This alone would render the new constraint meaningless. In order to compel the
optimization algorithm to find an assignment x that violates the constraint only as
much as necessary to find an otherwise feasible solution, we introduce a penalty into
the objective function that is proportionate to the violation itself by subtracting' the
term M -v . If M is a sufficiently large number, the search for the optimal solution
will attempt to minimize the violation of the constraint and only consider a violation
if there is no feasible solution that satisfies all constraints.

The typical operator/customer policies related to resource assignment in a utility
computing environment that can be handled by an optimization approach include the
following:
¢ Priority policies on classes of applications.

e Migration policies during application flexing.

! This assumes that our goal is maximizing the objective. If we want to minimize the objective
we simply add the same term.

Policy-Based Resource Assignment in Utility Computing Environments 105

® Policies for avoiding hot spots inside the resource pool, such as load balancing, or
assigning/migrating servers based on local thermal conditions.

¢ Policies for high availability, such as dictating redundant designs, or maintaining
buffer capacities in shared resources.

¢ Policies for improving resource utilization, such as allowing overbooking of
resources.
In what follows, we use the first two policies as examples to illustrate how these

policies can be incorporated into the original RAP MIP formulation. The other

policies can be dealt with in a similar fashion.

3.1 Policies on Classes of Applications

In a resource constrained environment it is useful to consider different classes of
applications, corresponding to different levels of service, which will be reflected in
terms of priorities during resource assignment. If resources are insufficient to satisfy
all applications, low priority applications are more likely to be rejected when making
assignment decisions. In this paper, we consider the following priority policy:

P1. Only assign an application with lower priority to the computing utility if its
assignment does not preclude the assignment of any application of higher priority.

While this policy has a very complex logical structure, it is easy to implement by

using soft constraints. Let the binary decision variable X, =1 indicate that

component ¢ is assigned to server s, otherwise X = 0. Let C(app) be the set of all

components of application app with |C(app)| denoting the number of components of
the respective application. Then the “hard constraint”
> x.,=1., ceClapp) @)
se§
implies that at an application component should be assigned to exactly one server. It
can be relaxed as follows:
me <1. ceC(app). (S1)
seS
The constraint (S1) means that each application component is either not assigned,
or is assigned to at most one server. To disallow partial assignment (where only some
of the application components are assigned) the following hard constraint is used:
> Yx., =[Clapp). @
ceC(app) seS
It simply says that the number of servers assigned to an application is equal to the
number of components required by the application. Now we introducing a binary

violation variable Vo 10 relax the hard constraint (H2) as follows,

Y Yx, z[Capp)|*(-v,,). ©

ceC(app) seS
It is easy to see from (S2) that,

106 C.A. Santos et al.

vappZI_(Z Zxc,s)/lc(app)l

ceCl(app) s€§

When all components of application app are placed on servers, V,,, 20. On the

aj
other hand, since Vo is binary, if any component of application app does not get a
server, in which case application app has to be rejected, V,,, =1. If the term

M
at a price of M

appV app 18 added onto the objective function, not assigning an application comes

By choosing the magnitude of M according to the

App * App
application’s priority in such a way that higher priority applications have penalties
that are larger than all potential penalties of lower priority applications combined, we
can force the optimal solution of the modified assignment problem to conform to
priority policy P1.

3.2 Migration Policies for Application Flexing

We use the term “application flexing” to refer to the process of adding additional
resources to or removing resources from running applications. In this section we
consider policies that are related to flexing applications. Of particular interest are
policies dictating whether or not a component of an application can be migrated to
accommodate changing resource requirements of the applications in the environment.

Let CP*** be the set of components of running applications that have been placed
on servers of the computing utility. Every component is currently placed on one
server. This assignment can be expressed as a component-server pair. Let ASSIGN be
the set of existing assignments, i.e.,

ASSIGN =/{(c, s) : component c is assigned to server s}.

. i laced
We denote the set of components that can be migrated as C™* < CP** and the set

laced mi| .
places _ C™® Let us consider

of components that cannot be migrated as C™™* =C
the following migration policy:

P2. If an application component is not migratable, it should remain on the server it
was placed on; if a component is migratable, migration should be avoided unless
feasible assignments meeting new application requirements can not be found
otherwise.

Prohibiting migration of the componentsin C nomE s accomplished by introducing
the following additional constraints: For each assignment, (c,s)€ ASSIGN ,
x,, =1 ceC™®,
For components that can be migrated, P1 states that migration should be avoided

unless necessary. This is incorporated by introducing a penalty 7™ in the objective
function for changing the assignment of an existing component. Thus, we add

Policy-Based Resource Assignment in Utility Computing Environments 107

mig (1 __
> rmd-x,)
(c,s);ASSIGN
ceC™8

to the objective function. It is easy to see that the penalty is incurred whenever a
component is moved away from its current server, i.e. when x, =0.

4 Simulation Results

In this section, we present simulation results of two resource assignment scenarios
that required the two policies described in Section 3, respectively. The first simulation
shows the use of priorities in assigning resources to applications when the available
resources are insufficient to meet the demands of all applications. The second
simulation demonstrates the impact of policies around mobility of application
components in an application flexing scenario.

4.1 Description of the Computing Utility

The computing utility considered in our simulations is based on a 125-server utility
data center [1] in HP Labs. The physical network has two layers of switches below
the root switch. We refer to the one switch that is directly connected to the root switch
as the edge switch (e/), and the four additional switches that are directly connected to
the edge switch as the rack switches (r] -rd)’. There are no direct connections between
the rack switches. All the 125 servers are either connected to the edge switch, or to a
rack switch. Table 1 describes the exact network topology of the utility.

Table 1. Network topology of the computing utility

Type of switch Edge Rack
Switch label el rl 2 r3 rd
No. of directly-connected servers 61 12 12 20 20

Among the 61 servers directly-connected to el, there are 15 high-end servers in
terms of their processing capacity. All the switches in the utility are non-blocking. As
a result, if all traffic of an application is contained within one switch, network
bandwidth is not an issue. If traffic has to traverse switches, inter-switch link
capacity, as we will see, can become a scarce resource.

2 Each switch has a hot standby for high availability. However, in the logical topology of the
network, only the primary switch is considered.

108 C.A. Santos et al.

4.2 Description of the Applications

In both simulations, we consider 10 applications that need to be hosted in the

computing utility. The application topology considered is a three-tier topology typical

of e-commerce applications. The resource requirements of the applications follow:

1. Application components do not share servers. Thus every application requires a
separate server for each of its components.

2. Each application contains a high-end component for its back-end component
(typically a database). Thus each application requires one high-end server.

3. The total amount of network bandwidth needed by each application can be
classified into three categories: High, Medium, and Low.

4. Based on the criticality of meeting the application’s resource demand, each
application belongs to one of the three priority classes: Platinum, Gold, and Silver.

Table 2. Resource requiredments of the 10 applications

Application number 1y 2f 3 4, 51 6] 71 8| 9] 10
Total no. of components 8 8| 10 5 7 8] 6| 10 5 6

High-end components 1 1 1 1 1 1l 1 1 1 1

Bandwidth requirements.| H| M| H| M| M| M| L| H| L] M
(Hi/ Med / Low)

Application priority Pl Pl G| P| Pl P| S| P| S| P
(Platinum/Gold/Silver)

These requirements are summarized in Table 2. Notice that, since a total of 73
servers are needed, not all applications can fit simultaneously on the 61 servers
directly connected to el. As a result, some applications will have to be allocated in a
way that traffic traverses switches creating potential network bottlenecks.

4.3 Policies on Classes of Applications

In the first simulation, we consider the problem of assigning resources to the 10
applications simultaneously. We compare two approaches for undertaking the
assignment: without any priority policies or with the priority policy P1 defined in
Section 3.1. The result of the comparison is illustrated in Fig. 3.

As we can see, when no priority policies are implemented, all the applications are
assigned resources from the computing utility except App8 — a platinum application.
This result is intuitive, because when priority levels of applications are ignored, the
RAP solver first tries to place the largest number of applications possible, second it
chooses those applications that minimize the traffic weighted inter-server distance as
described earlier. In our scenario, this results in excluding placement of App8 since it
requires a large number of servers and high bandwidth.

As explained in Section 3.1, when application priorities are enforced, the priority
policy P1 is incorporated into the RAP optimization problem using soft constraints,

Policy-Based Resource Assignment in Utility Computing Environments 109

ie., adding a penalty onto the objective function when the policy is violated. As
indicated by the third column in Fig. 3, the resulting assignment solution is different.
Now App3in the “Gold” class is not assigned while App8 in the “Platinum” class is.
This simulation demonstrates the impact of including the priority policy on the
resulting assignment solution. It also validates the value of the soft constraint
approach for incorporating priority policies into our RAP solver.

Application Assignments

‘ B NumApp [NoPriority M Priority

Fig. 3. Total number of applications, number of applications placed without priority, and
number of applications with priority policy P1 in each priority class

4.4 Migration Policies for Flexing Applications

In this simulation, we consider an application flexing scenario and demonstrate the
impact of the migration policy P2 we defined in Section 3.2. Consider the assignment
obtained using the priority policy in the last section. For this assignment, all servers
directly connected to the switch el are assigned to applications, including the 15 high-
end servers. However, the hosted nine applications together require only nine high-
end servers. As a result, six high-end servers are used to host components that could
have been hosted on a low-end server, and therefore, no high-end servers are currently
available for assignment.

Let us now assume that after a while of running the nine applications in the
computing utility, some applications’ resource demands change: App8 is requesting
one additional high-end server, while App10 is able to release three low-end
components that happen to be placed on low-end servers’. It is obvious that if no

3 The traffic requirements of the flexed applications have been adjusted accordingly in the
input data. Since both applications only use servers directly connected to the edge switch el,
the traffic of these two applications is not affecting the assignments described below.

110 C.A. Santos et al.

migration of application components is permissible, App8’s flexing request cannot be
satisfied, because even after the release of the servers no longer needed by App10
there are no more high-end servers available in the free pool.

On the other hand, treating all components as migratable and, in essence, solving a
new initial assignment problem for all nine applications currently admitted may
prescribe a new assignment that requires moving many components resulting in
severe disruption of service for many of the applications.

The solution lies in specifying sensible migration policies that can be taken into
account by the RAP solver. Let’s consider the following migration policy on top of
the formerly defined policy P2: existing low-end components can be migrated, while
existing high-end components have to stay put. This is reasonable because for
example, for a 3-tier Web application, the low-end components are Web servers and
application servers that are more likely to be migratable, while high-end components
can be database servers that are much harder to move.

As described in Section 3.2, the above migration policy was implemented by
adding both hard and soft constraints to the RAP MIP formulation. Table 3 shows the
resulting assignment of high-end and low-end servers to applications before and after
flexing. Only the applications affected by flexing are shown. All the other
assignments remain the same. As we can see, by incorporating the above migration
policy, the RAP solver finds an assignment for the flexed applications, where one
low-end component of Appl previously assigned to a high-end server is migrated to a
low-end server released by Appl0, and this freed high-end server is used to host the
additional high-end component of App 8.

Table 3. Server assignment to the applications affected by flexing

Applications Appl App8 Appl0
Servers Low-end | Hi-end | Low-end | Hi-end | Low-end | Hi-end
Before chuired 8 1 10 1 6 1
flexing | Assigned i 2 10 1 6 1
After |Required 8 1 10 2 6 1
flexing | Assigned 8 1 10 2 3 1

This simulation demonstrates that, by defining sensible migration policies based on
properties of application components and server technologies, we are able to
accommodate flexing requests that may otherwise be infeasible, thus increasing
resource utilization. At the same time, we minimize the disruption to applications that
are already running in the computing utility. In addition, the result verifies that using
a combination of hard and soft constraints in the optimization problem can be an
effective way of incorporating migration policies into the RAP optimization problem.

5 Conclusion and Future Work

In this paper, we demonstrate how operator policies can be included in a automated
resource assignment using mathematical optimization techniques. Mathematical

Policy-Based Resource Assignment in Utility Computing Environments 111

optimization is used because, as shown in [1], a simple heuristic leads to poor
application placements that can create fragmented computing resources and network
bottlenecks. Our simulation results on two resource assignment scenarios with
common policies encountered in a utility computing environment confirm that our
framework can not only address the resource assignment problem efficiently, but also
offers a unified approach to tackle quantitative and rule based problems.

As a final note, observe that policies and rules need to be defined precisely in a
way that helps to answer the quintessential question for resource assignment: Can
resource s be assigned to component ¢? Consequently, we require a data model for the
business rules and operator policies that allows expressing these rules and policies in
terms of the parameters and decision variables of the MIP formulation of the resource
assignment problem. In the future, we may develop a tool that directly writes
mathematical programming code, without the need of templates and associated data
models as shown in the examples of Section 3 and 4.

References

1. X. Zhu, C. Santos, J. Ward, D. Beyer and S. Singhal, “Resource assignment for large scale
computing utilities using mathematical programming,” HP Labs Technical Report, HPL-
2003-243, November 2003.
http://www.hpl.hp.com/techreports/2003/HPL.-2003-243R 1.html

2. N. Damianou, N. Dulay, E. Lupu, Morris Sloman, “The Ponder policy specification
language,” Proceedings of IEEE/IFIP Policy 2001, p18-38.

3. PARLAY Policy Management, http://www.parlay.org/specs

4. A. Sahai, S. Singhal, R. Joshi, V. Machiraju, “Automated policy-based resource
construction in utility computing environments,” HPL-2003-176, Proceedings of
IEEE/IFIP NOMS 2004.

5. A. Sahai, S. Singhal, R. Joshi, V. Machiraju, “Automated resource configuration
generation using policies,” Proceedings of IEEE/FIP Policy 2004.

6. P. van Hentenryck, Constraint Satisfaction in Logic Programming, The MIT Press,
Cambridge, Mass, 1989.

7. R. Raman, M. Livny, M. Solomon, “MatchMaking: Distributed Resource Management for
High Throughput Computing,” Proceedings of HPDC 98.

8. Object Constraint Language (OCL),
http://www-3.ibm.com/software/awdtools/library/standards/ocl.html#more

9. D. Menasce, V. Almeida, R. Riedi, R. Flavia, R. Fonseca and W. Meira Jr., “In Search of
Invariants for E-Business Workloads,” Proceedings of the 2™ ACM Conference on
Electronic Commerce, Minneapolis, Oct. 2000, pp. 56-65.

10. L.A. Wolsey, Integer Programming, Wiley, 1998.

11. GAMS, www.gams.com

12. CPLEX, www.ilog.com

Failure Recovery in Distributed Environments
with Advance Reservation Management Systems

Lars-Olof Burchard and Barry Linnert

Technische Universitaet Berlin, GERMANY {baron, linnert}ecs.tu-berlin.de

Abstract. Resource reservations in advance are a mature concept for
the allocation of various resources, particularly in grid environments.
Common grid toolkits such as Globus support advance reservations and
assign jobs to resources at admission time. While the allocation mecha-
nisms for advance reservations are available in current grid management
systems, in case of failures the advance reservation perspective demands
for strategies that support more than recovery ofjobs or applications that
are active at the time the resource failure occurs. Instead, also already
admitted, but not yet started applications are affected by the failure and
hence, need to be dealt with in an appropriate manner. In this paper,
we discuss the properties of advance reservations with respect to failure
recovery and outline a number of strategies applicable in such cases in
order to reduce the impact of resource failures and outages. It can be
shown that it pays to remap also affected but not yet started jobs to
alternative resources if available. Alike reserving in advance, this can be
considered as remapping in advance. In particular, a remapping strat-
egy that prefers requests that were allocated a long time ago, provides
a high fairness for clients as it implements similar functionality as ad-
vance reservations, while achieving the same performance as the other
strategies.

1 Introduction

Advance reservations are a way of allocating resources in distributed systems
before the resources are actually required, similar to flight or hotel booking.
This provides many advantages, such as improved admission probability for suf-
ficiently early reservations and reliable planning for clients and operators of the
resources. Grid computing in particular uses advance reservations, which besides
reliability of planning simplifies the co-allocation of very different resources and
resource types in a coordinated manner. For example, the resource management
integrated in the Globus toolkit [6] provides means for advance reservations
on top of various local resource management systems. Currently, grid research
moves its focus from the basic infrastructure that enables the allocation of re-
sources in a dynamic and distributed environment in a transparent way to more
advanced management systems that accept and process jobs consisting of numer-
ous sub-tasks and, e.g., provide guarantees for the completion of such jobs. In
this context, the introduction of service level agreements (SLA) provides flexible

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 112—-123, 2004.
© IFIP International Federation for Information Processing 2004

Failure Recovery in Distributed Environments 113

negotiation mechanisms for various applications. This demands for control over
each job and its required resources at any stage of the job’s life-time from the
request negotiation to the completion. An example for a resource management

framework covering these aspects is the virtual resource manager architecture
described in [3].

1. satellite
transmission

), =
2. bulk tr:

(non real-time)

© 3. data processing,
(filtering, database access, etc.)

Internet

4. streaming (real-time)

3. data processing
5. post-processing, visualization

Fig. 1. Example: grid application with time-dependent tasks.

Such an application is depicted in Figure 1. The job processed in the dis-
tributed environment consists of a number of sub-tasks which are executed one
after another in order to produce the final result, in this case the visualization of
the data. This includes network transmissions as well as parallel computations
on two cluster computers.

One important aspect in this context is the behavior of the management
system in case of failures. While current research mainly focused on recovery
mechanisms for those jobs that are already active, in advance reservation envi-
ronments it is also necessary to examine the impact of failures onto admitted
but not yet started jobs or sub-jobs. In contrast to the sophisticated and difficult
mechanisms needed to deal with failures for running jobs, e.g., checkpointing and
migration mechanisms, jobs not yet started can be dealt with in a transparent
manner by remapping those affected jobs to alternative resources.

In this paper, a framework for dealing with those jobs is presented which
includes strategies for selecting alternative resources and assigning inactive jobs.
Similar to the term reserving in advance, we refer to this approach as remapping
in advance, as those mechanisms perform the remapping ahead of the actual im-
pact of the failure. Besides the description of the failure recovery framework, we
show the success of our approach using simulations in a distributed environment.

The failure recovery strategies do not solely apply to actual failures of re-
sources, e.g., hardware failures of processors or network links, but can also be
used in a highly dynamic system, where resources are deliberately taken out of
the distributed system for maintenance or in order to use the resource for local
requests of high priority. Furthermore, the failure strategies are independent of

114 L.-O. Burchard and B. Linnert

the underlying resources, i.e., the mechanism is generic in the sense that it is
not restricted to a particular resource type such as parallel computers. Instead,
it is possible to apply the mechanisms to a wide range of resources as needed,
e.g., in grid environments.

The remainder of this document is organized as follows: firstly, related work
important for this paper is outlined. After that, the properties of the advance
reservation environment are presented and the impact on the failure recovery
mechanisms that must be applied. Furthermore, we introduce the notion of ex-
pected downtime which describes the estimated time of the failure and outline
a number of remapping strategies for affected jobs which can be adopted in a
flexible manner depending on the jobs properties. In Sec. 6, the strategies are
evaluated using extensive simulations. The paper is concluded with some final
remarks.

2 Related Work

Advance reservations are an important allocation strategy, widely used, e.g., in
grid toolkits such as Globus [4], as they provide simple means for co-allocations
of different resources. Besides flexible and easy support for co-allocations, ad-
vance reservations also have other advantages such as an increased admission
probability when reserving sufficiently early, and reliable planning for users and
operators. In contrast to the synchronous usage of several different resources,
where also queueing approaches are conceivable [1], advance reservations have a
particular advantage when time-dependent co-allocation is necessary, as shown
in Fig. 1. In [3], advance reservations have been identified also as essential for a
number of higher level services, such as SLAs.

In the context of grid computing, failure recovery mechanisms are partic-
ularly important as the distributed nature of the environment requires more
sophisticated mechanisms than needed in a setting with only few resources that
can be handled by a central management system. The focus of this paper is
on the requirements for dealing with failures and outages of resources that are
reserved in advance.

In general, failure detection and recovery mechanisms focus on the require-
ments to deal with applications that are already active. The Globus heartbeat
monitor HBM [6] provides mechanisms to notify applications or users of failures
occurring on the used resources. The recovery mechanisms described in this pa-
per can be initiated by the failure detection of the HBM. In [7], a framework
for handling failures in grid environments was presented, based on workflow
structure. The framework allows users to select different failure recovery mech-
anisms, such as simply restarting jobs, or - more sophisticated - checkpointing
and migration to other resources if supported by the application to be recovered.

In [2], the problem of failure recovery in advance reservation systems was
addressed in a similar manner for networks. One important difference is that in
contrast to the considerations in [2], jobs cannot be migrated and distributed

Failure Recovery in Distributed Environments 115

during run-time in the same way as network transmissions, where packets can
be transmitted on several paths in parallel.

Mechanisms as presented in this paper can be applied in distributed but
also in centralized management systems, such as the virtual resource manager
(VRM) described in [3]. Residing on top of local resource management systems,
the VRM framework supports quality-of-service guarantees and SLA negotiation
and with these mechanisms provides a larger variety and improved quality of the
services offered for users. In particular, when SLAs were negotiated, e.g., in order
to ensure job completion up to a certain deadline, failure recovery mechanisms
are essential in order to avoid breaching an SLA.

3 Application Environment

Advance reservations are requests for a certain amount of resources during a
specified period of time. In general, a reservation can be made for a fixed period
of time in the future, called book-ahead interval. The time between issuing a
request and the start time of the request is called reservation time. In contrast to
immediate reservations which are usually made without specifying the duration,
advance reservations require to define the stop time for a given request. This is
required to reliably perform admission control, i.e., to determine whether or not
sufficient resources can be guaranteed for the requested period.

Administrative Domain Controller
Administrative

Domain

RMS RMS RMS

Fig. 2. Outline of the VRM Architecture

The failure recovery mechanisms described here are integrated in the VRM
architecture [3] (see Fig. 2). The administrative domain controller (ADC) is
in charge of the resource management, e.g., resource selection, scheduling, and
failure recovery, of a domain consisting of one or more resource management
systems. Once a failure is notified to the ADC, the failure recovery searches for
alternative resources firstly within its own domain. If this is not successful, other
resources available via the grid interface are contacted in order to find a suitable
alternative location for a job.

116 L.-O. Burchard and B. Linnert

current time

Fig. 3. Active and inactive jobs in the advance reservation environment.

4 Expected Downtime

In advance reservation environments, knowledge is available not only about jobs
that are currently active, but also about those that are admitted but not yet
started (see Fig. 3). While in other environments, failure recovery strategies need
to be implemented only for active jobs, advance reservations require to consider
also the inactive ones. For this purpose, we introduce the notion of expected
downtime. This time represents an estimate of the actual duration of the failure
and is the basis for our failure recovery strategies.

expected downtime

7 T

failure time
detected

Fig. 4. Jobs within expected downtime (gray) are considered for remapping.

As depicted in Fig. 4, any job that is or becomes active during the expected
downtime period is considered for remapping. In contrast to those strategies
aiming at only recovering active jobs, e.g., using checkpointing and migration,
remapping of inactive jobs has the advantage of requiring much less efforts, since
this is done entirely within the management system. The emphasis in this paper
is on remapping inactive jobs.

5 Remapping Strategies

In the context of this study, jobs running at the moment the failure occurs are
considered to be not remappable. The reason is the difficulty to implement suit-
able recovery mechanisms, such as checkpointing and migration facilities. For
many resource types, such as cluster systems or parallel computers, such func-
tionality lacks completely or has to be implemented explicitly by the application.
However, our assumption is not crucial for the evaluation of our approach or the
success of the remapping strategies themselves.

Failure Recovery in Distributed Environments 117

| | | e
| | | | :
failure expected downtime job job
detection / notification calculation ordering remapping

Fig. 5. Timeline of the failure recovery process

In case, the failure of a specific resource system, e.g., a cluster, is notified,
the management system has to face different tasks to minimize the impact of
the failure, which means, as many affected jobs as possible have to be remapped
to alternative resources. The amount of affected jobs to be remapped is defined
by the time the failure occurred and the expected downtime. Therefore, at first
it is necessary to investigate the actual allocation of the local resource system
affected by the failure, which means all jobs that have a reservation for the time
span between failure and end of the expected downtime have to be processed.
Other jobs are not required to be taken into account. The temporal sequence of
events during the recovery process is depicted in Fig. 5.

For all jobs that must be remapped, alternative resources have to be found.
Hence, the resource management system must have information about all avail-
able resources which are able to run the affected jobs. Because grid environments
can provide different and heterogeneous resources, the management system has
to make sure that only computing systems feasible to deal with the jobs to be
remapped are considered during the recovery process.

Finding the alternative resources for a set jobs is a classical bin packing
problem [5]. In order to determine feasible resources, strategies such as gang-
matching have been developed [10]. Once the set of feasible resources has been
determined, the remapping mechanism determines the amount of unused ca-
pacity, e.g., compute nodes, on all alternative compute systems, e.g., cluster
computers. Then, the task is to maximize the success of the remapping accord-
ing to some optimization criterion, e.g., the amount of successfully remapped
jobs. Other optimization criteria are conceivable as well although not targeted
in this paper, e.g., minimizing the penalty to be paid for terminated jobs.

The bin packing problem discussed here deals with different bins of different,
but fixed size, to be filled with objects of fixed size. In our case these objects
are rectangles, symbolizing the reservations, fixed in height and width, and the
bins are defined by the expected downtime (width) and the amount of unused
resources on the potentially available alternative resource locations (height). This
means, we have to deal with a special case of the multidimensional bin packing
problem - a rectangle packing problem, which is NP-complete [8]. Hence, in this
paper heuristics are used in order to determine how jobs are remapped onto
alternative resources.

Because the reservations are fixed in time it is not possible to shift the jobs
to the future on the local system or alternative resources. This differs from
scheduling bin packing approaches using time as variable dimension. Thus, it is
essential to find free resources during the specific downtime interval, for example,
using the available resources within the grid (see Sec. 3). On the other hand, free
resources on any of the alternative systems may not be available for any request.

118 L.-O. Burchard and B. Linnert

Therefore, it the necessary to decide in which order jobs are being remapped to
unused resources.

Some assumptions can be made to motivate the decision for suitable remap-
ping heuristics, as outlined in the following.

First Come First Served (FCFS). In order to maximize the acceptance of
grid environments and advance reservation systems, a predictable behavior of
the system has to be assured — even in cases of failures. One opportunity is to
prefer reservations allocated a long time ago. This implements a similar mecha-
nism as advance reservations themselves, i.e., early reservations assure preferred
access to the requested resources. Hence, this remapping strategy, called first
come first served, matches best the users’ expectation of the behavior of the fail-
ure recovery mechanisms. For this purpose, the reservation time, i.e., the time
interval between allocation and resource usage (see Sec. 3), is stored with each
request.

Earliest First (EF). Since the problem of remapping all jobs afflicted by
the expected downtime is NP-complete, the search for free resources can last
a significant amount of time by itself. Furthermore, in distributed management
systems it is necessary to accommodate for the communication costs for status
checks and remapping requests (see Fig. 2). Therefore, the termination of jobs
due to the long lasting recovery process must be reduced. This is achieved by
the earliest first strategy, which orders job according to their start time.

Smallest Job First (SJF). The smallest job first strategy aims at reducing
the total number of terminated jobs resulting from insufficient amount of free
resources. In contrast to FCFS, this strategy may be preferred by operators
more than by users. This strategy orders jobs according to their total resource
consumption, i.e., the product resource usage x time, e.g., CPU hours.

Largest Job First (LJF). The largest job first strategy deals with the effect of
fragmentation of free resources on the grid environment. Using this strategy it is
likely to optimize the utilization of the whole environment. Many small requests
will not congest alternative resources.

Longest Remaining First (LRF). This strategy prefers jobs with long re-
maining run-time. Thus, jobs which utilize resources for a long period of time
will get higher remapping probability.

Shortest Remaining First (SRF). The counterpart of LRF is shortest re-
maining first, which gives priority to jobs with low remaining run-time. Thus,
more jobs are likely to be remapped successfully which may be the goal of oper-
ators.

In Fig. 6, an example of jobs to be remapped during the expected downtime
is shown. Using FCFS, the jobs are prioritized according to the time intervals
T1,T3,T3, i.€., the remapping order is Ja, J3, J1, whereas when using EF, only the
start time of the resource is of interest, i.e., the resulting order is Jy, Jo, Js.

Failure Recovery in Distributed Environments 119

expected downtime

Fig. 6. Example for job ordering and remapping.

6 Evaluation

All of the strategies previously described have their advantages and may be
chosen depending on the focus of operator or user perspectives. Simulations
were conducted in order to show how the different strategies perform in actual
grid environments.

6.1 Simulation Environment

The simulations were made assuming an infrastructure of several cluster and
parallel computers with homogeneous node setting, i.e., each job is capable of
running on any of the machines involved. The reason is, that although grid com-
puting in general implies a heterogeneous infrastructure, an alternative resource
used for remapping a job needs to be equipped such that the respective job is
runnable. Hence, it is sensible to simplify the infrastructure.

The simulations only serve the purpose of showing the general impact of fail-
ures and since according to [9] the actual distribution of job sizes, job durations
etc. do not impact the general quality of the results generated even when using
simple models, the simulations were made using a simple synthetic job and fail-
ure model. Each job was assumed to be reserved in advance with the reservation
time being exponentially distributed with a mean of 100 slots. Job durations
were uniformly distributed in the interval [250,750] and each job demanded for
a number of nodes being a power of 2, i.e., 2,4,8,... ,256 nodes with uniform
distribution. Each time a failure occurred, a resource was chosen randomly with
uniform distribution. The time between failures followed an exponential distribu-
tion with a mean of 250 slots. The hardware infrastructure consisted of different
parallel computers with varying number of compute nodes, in total there were
eight machines with different amount of nodes, i.e., 1024, 512, 256, 128, 96, and
16. Obviously, some jobs cannot be executed on any machine.

Each simulation run had a duration of 10,000 slots and the results presented
in the following sections each represent the average of 10,000 simulation runs.

In order to assess the performance of the different strategies, two metrics
were chosen that reflect both the amount of jobs that were affected but could
not be successfully remapped onto alternative resources and the reduction of the

120 L.-O. Burchard and B. Linnert

utilization that resulted from terminated jobs. The first metric is the termination
ratio, which is defined as follows:

14]
14’

with A being the set of affected jobs and A C A being the set of terminated
jobs. The second metric is called utilization loss rate, defined as

termination ratio :=

% yeat()el)
> jeat(@e(s)’

with ¢(7) denoting the duration of job j € A, and ¢(j) denoting the extend of
the resource usage of j. For example, when the resource in question is a cluster
computer, the amount of CPU hours lost due to a failure is captured by the
utilization loss ratio.

For the sake of simplicity, it was assumed that jobs can only be finished
completely or not at all. In certain cases, users may also be satisfied with a
reduced quality-of-service in the sense that even partial results or a reduced
number of nodes can be tolerated. However, as the emphasis in this paper is
on the general behavior of a management system using our failure recovery
strategies, this was not taken into account.

utilization loss ratio :=

6.2 Performance of the Remapping Strategies

In Fig. 7, the performance of the different strategies is depicted with respect
to termination ratio and utilization loss ratio. The general result is that, the
differences between the individual strategies is rather low. This means, it may
be possible to select a strategy that matches the expectations of operators or
users best.

While the strategies that prefer small or short jobs (SJF, SRF) achieve a low
termination ratio, the strategies which give high priority to long or large jobs
(LJF, LRF) achieve superior utilization loss ratio. The strategies related to the
time, i.e., EF and FCFS, range between the worst and the best, with EF being
near the best for both metrics.

SIF i SIF ,

2 sre i ® Sre I

g g |

2 UF g wur g

£ g £ I
& LRF & LRF

) E‘ |
B w | 8 FEF
FCFS FCFS

36 37 38 39 40 47 48 49 S0 51 s2
termination ratio (%) utilization loss ratio (56)

Fig. 7. Performance of the remapping strategies

Failure Recovery in Distributed Environments 121

6.3 Impact of the Downtime Estimation

The computation of the expected downtime is a crucial task in the whole failure
recovery process. This estimation can, e.g., be based on knowledge about the type
of the actual failure or statistics about previous failures. For example, replacing a
failed hardware part such as a processor or interconnect can strongly depend on
the time required for shipping the failed part which usually is known in advance.
However, as it can not be assured that the estimation is accurate, it is important
to study the impact of inaccurate downtime estimations on the termination ratio
and utilization loss ratio.

Two cases must be examined: an overestimation means that the actual failure
lasted shorter than expected, an underestimation means the actual failure lasted
longer than originally assumed.

42 g 60 b
§ -3 ‘E /
a0 g 55
: £
é 38 g 50
E ‘
=2
36 —T T T T 45 — T T T T T T T
-50 -40 -30 -20 -10 O 10 20 30 40 50 -50 -40 -30 -20 -10 O 10 20 30 40 50
downtime deviation (%) downtime deviation (%)

Fig. 8. Impact of inaccurate downtime estimation on the termination ratio and uti-
lization loss ratio

In Fig. 8, the influence of over- and underestimations is depicted for the
FCFS strategy as an example. It can be clearly observed, that with a positive
downtime deviation, i.e., the actual failure lasted longer than expected, both
the termination ratio and utilization loss ratio increase significantly. In contrast,
overestimations of the actual downtime do not show significant effects with re-
spect to both metrics.

The reason for this behavior is that with overestimations, the amount of
jobs that must be terminated does not differ from the case of an exact estima-
tion. Once the failure is removed, e.g., by replacing a failed hardware item, the
management system simply changes the status to running. No further actions
is required. In case of an underestimation, this is different. Once the end of the
estimated failure period is reached and the system is still not operable, the man-
agement needs to extend the estimated downtime period and then remap the
jobs within the extended downtime. Since at this time additional jobs may have
arrived and assigned to the set of alternative resources, it is more likely that
remapping is not successful.

While an overestimation of the actual downtime has no negative impact
on the job termination ratio, this is slightly different when investigating the
amount of jobs that can be accommodated by the distributed system and the

122 L.-O. Burchard and B. Linnert

514 € 155
& 51‘2‘% § _’5‘41'—‘-0—.‘
2 =
£ S v g
%“ 50,8 E

752 %

£ s06 = e
8 s04 % 75,1

50,2 — = 15

=50 -40 -30 -20 -10 0 10 20 30 40 50 -50 -40 -30 -20 -10 0 10 20 30 40 50
downtime devation (%) downtime deviation (%)

Fig. 9. Impact of inaccurate downtime estimation on the job blocking ratio and uti-
lization blocking ratio

achievable utilization. This is depicted in Fig. 9, showing the job blocking ratio
and utilization blocking ratio which capture the percentage of rejected jobs in
total and the utilization these jobs would have been generated. It can be seen
that both metrics decrease with increasing overestimation resulting from the
assumption that the downtime lasts longer and since jobs are not admitted to a
system which is failed, fewer jobs are admitted to the system. However, in this
case underestimations admit more jobs at the expense that fewer jobs actually
survive failures. Furthermore, the impact on the overall utilization depends on
the amount of failures and their duration. As failure situations can be considered
as exceptions, the actual impact of inaccurate downtime estimations remains low.

The results presented in this section show clearly, that the introduction of the
expected downtime, i.e., performing remapping in advance, is an effective mean
to reduce the amount of actually terminated jobs. Otherwise, the effect is similar
to an underestimation, i.e., termination ratio and utilization loss ratio increase
significantly. Although it is unrealistic that the actual downtime can always be
accurately predicted, it is useful to have at least any rough estimate in order to
increase the amount of successfully remapped jobs. Overestimations, although
reducing the amount of jobs that can be accommodated, do not harm the systems
performance with respect to the amount of terminated jobs. As indicated by the
performance results, the estimation of the downtime is more important than the
choice of the actual remapping strategy. In particular, an underestimation of
the downtime by only 10 percent leads to a worse performance than selecting a
different remapping algorithm.

7 Conclusion

In this paper, failure recovery strategies for advance reservation systems, e.g.,
several distributed parallel computers or grid environments, were presented. It
could be shown, that particularly remapping in advance, i.e., remapping inactive
but admitted jobs, is important to reduce the impact of failures. Furthermore,
remapping of inactive jobs does not interfere with running applications but can
instead be performed completely within the management system. The strategies
presented in this paper are generic, i.e., they can easily be applied to almost

Failure Recovery in Distributed Environments 123

any resource type and any resource management system, either centralized or
distributed. This is particularly important for next generation grid systems,
which essentially need to support higher level quality-of-service guarantees, e.g.,
specified by SLAs.

The results of the simulations showed, that the impact of a wrong downtime
estimation is much higher than the differences between the remapping strategies.
This means, the choice of the remapping strategy can be selected according to the
needs of the actual environment. Concluding, the remapping of jobs in advance
proved to be a useful approach for dealing with failures in advance reservation
systems.

References

1. Azzedin, F., M. Maheswaran, and N. Arnason. A Synchronous Co-Allocation Mech-
anism for Grid Computing Systems. Journal on Cluster Computing, 7(1):39-49,
January 2004.

2. Burchard, L.-O., and M. Droste-Franke. Fault Tolerance in Networks with an
Advance Reservation Service. In 1 Ith International Workshop on Quality of Service
(IWQoS), Monterey, USA, volume 2707 of Lecture Notes in Computer Science
(LNCS), pages 215-228. Springer, 2003.

3. Burchard, L.-O., M. Hovestadt, O. Kao, A. Keller, and B. Linnert. The Virtual
Resource Manager: An Architecture for SLA-aware Resource Management. In 4th
Intl. IEEE/ACM Intl. Symposium on Cluster Computing and the Grid (CCGrid),
Chicago, USA, 2004.

4. Foster, 1., C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A Dis-
tributed Resource Management Architecture that Supports Advance Reservations
and Co-Allocation. In 7th International Workshop on Quality of Service (IWQoS),
London, UK, pages 27-36, 1999.

5. Garey, M. and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., 1979.

6. The Globus Project. http://www.globus.org/.

7. Hwang, S. and C. Kesselman. Grid Workflow: A Flexible Failure Handling Frame-
work for the Grid. In 12th Intl. Symposium on High Performance Distributed
computing (HPDC), Seattle, USA, pages 126-138. IEEE, 2003.

8. Karp, R., M. Luby, and A. Marchetti-Spaccamela. A Probabilistic Analysis of
Multidimensional Bin Packing Problems. In 16th annual ACM Symposium on
Theory of Computing (STOC), pages 289-298. ACM Press, 1984.

9. Lo, V., J. Mache, and K. Windisch. A Comparative Study of Real Workload Traces
and Synthetic Workload Models for Parallel Job Scheduling. In 4th Workshop on
Job Scheduling Strategies for Parallel Processing, Orlando, USA, volume 1459 of
Lecture Notes in Computer Science (LNCS), pages 25-46. Springer, 1998.

10. Raman, R., M. Livny, and M. Solomon. Policy Driven Heterogeneous Resource
Co-Allocation with Gangmatching. In 12th Intl. Symposium on High Performance
Distributed Computing (HPDC), Seattle, USA, pages 80-90. IEEE, 2003.

Autonomous Management of Clustered Server Systems
Using JINI

Chul Lee, Seung Ho Lim, Sang Soek Lim, and Kyu Ho Park

Computer Engineering Research Laboratory, EECS
Korea Advnaced Institute of Science and Technology
{chullee,shlim,sslim}@ecore.kaist.ac.kr and kparkeee.kaist.ac.kr

Abstract. A framework for the autonomous management of clustered server sys-
tems called LAMA! (Large-scale system’s Autonomous Management Agent) is
proposed in this paper. LAMA is based on agents, which are distributed over the
nodes and built on JINI infrastructure. There are two classes of agents: a grand
LAMA and ordinary LAMAS. An ordinary LAMA abstracts an individual node
and performs node-wide configuration. The grand LAMA is responsible for moni-
toring and controlling all the ordinary ones. Using the discovery, join, lookup, and
distributed security operations of JINI, a node canjoin the clustered system without
secure administration. Also, a node’s failure can be detected automatically using
the lease interface of the JINI. Resource reallocation is performed dynamically by
a reallocation engine in the grand agent. The reallocation engine gathers the status
of remote nodes, predicts resource demands, and executes reallocation by access-
ing the ordinary agents. The proposed framework is verified on our own clustered
internet servers, called the CORE-Web server, for an audio-streaming service. The
nodes are dynamically reallocated satisfying the performance requirements.

1 Introduction

Server clustering techniques have been successfully used in building highly available
and scalable server systems. While the clustered servers have been enlarging the scale
of the service, management has become more complex, as well. It is notoriously dif-
fcult to manage all the machines, disks, and other hardware/software components in
the cluster. Such management requires skilled administrators whose roles are very im-
portant to maximize the uptime of the cluster system. For instance, configurations of
newly installed resources, optimization to get a well-tuned system, and recovery from
any failed resources have been performed thoroughly. These days, a self-managing sys-
tem is promising for its ability to automate the management of a large system, so that
the scalable and reliable administration can be achieved.

We have developed our own clustered internet server, called CORE-Web server in-
cluding a SAN-based shared file system[1], a volume manager[2], L-7 dispatchers[3][4],
and admission controllers [5][6]. The complexity of managing the servers led us to de-
velop a framework for autonomous management.

In order to relieve administrator’s burden, GUI-based management tools [7] may
be utilized. They made it easy to manage a set of clustered nodes with user-friendly

" This work is supported by NRL project, Ministry of Science and Technology, Korea

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 124-134, 2004.
© IFIP International Federation for Information Processing 2004

Autonomous Management of Clustered Server Systems Using JINI 125

interfaces; however, there are still more things to be automated, or to be more robust
against failures. Many researchers have studied about self-managing systems, which
includes self-configuration, self-optimization, self-healing, and self-protection [8][9].
The autonomous management will be gradually improved to help avoid manual config-
uration, so that humans would only be needed for physical installation or removal of
hardware.

Our goal is also to develop a self-managing CORE-Web server system, while adding
some attributes such as flexibility, generality, and security. To achieve our goals, we
have built an agent-based infrastructure for the autonomous management, using JINI
technology [10], since the JINI infrastructure provides quite useful features to build
a distributed system in a secure and flexible manner. Using discovery, join, lookup,
and distributed security a node can join to the clustered system without administration
securely, so thatanother node can access the newlyjoined nodes withoutknowing specific
network addresses. Also, a node’s failure can be detected using the lease interface of the
JINI. The leasing enforces each node to renew by a given expiration time, so that the
failed nodes can be detected using the expiration of the lease.

We named our autonomous agent as LAMA, which stands for a Large-Scale system’s
Autonomous Management Agent. LAMAS are implemented on top of JINI infrastructure.
Each agent, called LAMA, is spread over each node. During boot-up, the LAMA registers
its capabilities to the lookup service (LUS), located in the Grand LAMA, which is the
managing LAMA. Other agents might discover the LAMA simply by looking up the
LUS, so as to acquire the controls over the nodes.

Next section briefly describes previous works on autonomous management. We then
describe LAMA-based autonomous management for dynamic configuration in section
3. Using our CORE-Web server, we built a live audio streaming server, which provides
autonomous management.

2 Background

In order to automate the management of a large system, we employed part of off-the-shelf
technologies. A newly delivered bare-metal machine can be booted via remote booting
like PXES[11] or Etherboot[12]. Also, the node can be booted from a SAN storage.
After booting up and running a minimal set of software, we should tune and configure
parameters. Individual nodes should be configured for an application service so that
the node becomes a trusty component of the service. Many tools are released to enable
remote configuration management of a large system, like LCFG[13] and KickStart[14].

While such tools make it easy to manage diverse systems, individual nodes must be
able to optimize themselves. AutoTune agents[15] manage the performance of Apache
web server by controlling configuration parameters.

The GridWeaver project is aimed to enable autonomous reconfiguration of large
infrastructures, according to central policies[16]. Also, many researchers focus on the
dynamic reallocation of large infrastructure based on the Service Level Agreement (SLA)
like a data center[17][18].

The missing part is a methodology for a systematic development and integration
of an autonomous system. Also, important points of autonomous management are run-

126 C. Lee et al.

Reallocation Engine
Grand LAMA
| Grand LAMA
- Ooono ¢_r_}
- 0oono [status|| start || stop || set |
 OOoon LAM |_1_|_|_.J
' Ooooan
mr rﬁﬂm—ﬁ rs‘—%”ﬂm?n
H e Status] [Start] [Stop atus] [Start | [Stop
rmmmm e Web Server Adaptor Dlspaicher Adaptor
Clustered Nodes
Apphcatlon

Fig. 1. LAMA architecture

time optimization and adaptation, which are too hard for humans to perform. Our work
considers the issues.

3 LAMA Architecture

LAMA is an agent, which is in charge of managing each component in a system. There
are two types of LAMAs; ordinary LAMAs and a Grand LAMA. The ordinary LAMAs
perform node-wide configuration while residing at individual nodes. The Grand LAMA
is responsible for orchestrating all the ordinary ones. As shown in Figure 1, LAMA
is a kind of an adaptor that abstracts a node and provides simple control methods to
the Grand LAMA. The methods include Status, Start, Stop, and Set, through that a re-
allocation engine in Grand LAMA controls and monitors the nodes. LAMA abstracts
detail configurations of specific applications. Inside LAMA, there are several classes of
adaptors, and they enable legacy applications to be controlled by the Grand LAMA. For
example, a web server adaptor is plugged in to an Apache web server, then the adap-
tor returns the Apache’s status (status), runs up and down the processes (start/stop), or
manipulates the Apache’s configuration file (set). The adaptor doesn’t need any modi-
fication of the Apache web server. The Grand LAMA is then able to configure the web
server dynamically using four methods mentioned above.

We assumed that the management of a pool containing many nodes would be com-
plex, since the nodes’ joins and leaves (failures) might be frequent in a large scale
system. In a traditional way, we would have to manually register all the nodes to the pool
by specifying detailed network parameters. Also, we would required numerous manual
reconfigurations, upon changing the network configuration.

Autonomous Management of Clustered Server Systems Using JINI 127

Grand LAMA

LAMA Pool(LUS)

@Flegistralion

Jini Infrastructure

Fig.2. LAMA pool management

Lookup
LAMA Pool (LUS) [¢——@&— m;‘m"““
in Grand LAMA | ———F—»
a @ LAMA interface In-Grard LAMA
AMI RMI retum
LAMA

Fig. 3. LAMA in the JINI infrastructure

Our management system uses JINI infrastructure for building a pool without knowing
specific network configurations. Figure 2 describes how a LAMA pool is managed. When
a LAMA is booted, it discovers the pool (usually known as a Lookup Service or LUS in
JINI) and registers its interface automatically. The other modules, like a monitor and an
allocator of the Grand LAMA, get the interface to control and monitor the remote nodes.
The detailed operations of discovery, join, lookup, and distributed security in the JINI
infrastructure are described in Figure 3. A LAMA multicasts discovery messages to the
network, and the LAMA pool (LUS) in the Grand LAMA responds with a discovered
message only if the LAMA holds a correct key. Then, the LAMA can join the pool. The
reallocation engine in the Grand LAMA can access a LAMA via RMI after looking up
the LAMA. Also, the engine has to hold a correct key to invoke the LAMA methods. A

128 C. Lee et al.

Grand LAMA

Lookup Service (LUS)

Register (ITEM)
—"

ServiceItem {

iD,

Lookup (ITEM)
A

LAMA.class, Reallocation
LAMA
} aEEeibutes Bﬂg'l’lB
A—een] —_— .
Registration Matched
{ID, Lease} OQD ServiceItems
attributes = {Web server, ’m-ﬂﬂ"
Dispatcher, : public interface Lama {
Streaming server, .. }

H
H H
E public String status(String statusType) .
H public boolean start() i
i public boolean stopl) H
H i
H i
‘ s

ITEM = Serviceltem (NULL,
LAMA.class,
attributes}

public String set(String configiML)

Fig. 4. Lookup Service (LUS) for the management of a LAMA pool

malicious LAMA cannot discover the pool without a correct key, so that it cannot join
the pool. The key should be distributed to a identified componenet, when the component
is installed firt time. JINI’s lease interface makes the pool management robust to node
failure. Leasing enables a LAMA to be listed in the pool for a given period of time;
beyond that it has to renew its registration to avoid removal from the pool. JINI also
provides a distributed security model, and through that the codes for the management
can be distributed and executed in a secure way.

The operations of the lookup service (LUS) are shown in Figure 4. The LUS is
originally from the reference implementation of JINI LUS, called REGGIE[10]. The
LUS stores a set of Serviceltems, which have IDs, a LAMA interface class, and attributes.
A remote LAMA instantiates a Serviceltem, ITEM, and register it to the LUS. Then, the
ID and lease duration are returned. Lookup also uses an instance of Serviceltem, ITEM,
which specifies attributes of the needed LAMA. Attributes indicate the roles of a node;
a web server, a dispatcher, or a streaming server. By specifying the attributes as a web
server, a LAMA can be found, which is able to run a web server. If the attributes are not
specified, all the Serviceltem corresponding to LAMAs will be returned.

Our CORE-Web server, which is managed by the Grand LAMA and ordinary LAMA,
is shown in Figure 5. It includes a dispatcher, and back-end servers. The dispatcher
distributes clients’ requests over the backend servers, and then the back-end servers
respond to the requests through accessing a SAN-based shared storage. The solid lines
describe control paths between the Grand LAMA and LAMAs. The Grand LAMA
collects the status (L(t)) of the back-end servers from LAMASs. L(t) contains node-
wide status, like CPU utilization and network bandwidth. The Grand LAMA could
reallocate the nodes, by updating the control parameters of the dispatcher, D-CP, and
those of servers, S-CP. Each parameter includes start and stop to initiate and destroy the
server respectively. Set is for adjusting application specific attributes. D-CP has specific

Autonomous Management of Clustered Server Systems Using JINI 129

Server 1 /_\

Clients’ request

Dispatcher Server 2

Requests

Z2>»W0m

. GL Server 3
= Resource control path g

------------- - Client’s request path
Server 4

D-CP (Dispatcher’s Control P) \—/
Start, Stop GL G d LAMA
Set { : Gran S5-CP (Server’
- er’s Control Parameter)
Scheduling, Port, IP L: LAMA
Server slname (IP,weight,} Start, Stop,
Server s2name {IP,weight,} L(t) (Status, Load) Set{ sname,
Server s3name {IP,weight,} DocRoot,
e Status { mbps, cpu } RelayFrom}

Fig. 5. CORE-Web server and LAMA

Reallocation Engine in Grand LAMA

z = “ To Dispatcher (D-CF)
e B N I R ——» and
§ § R Tl To Server (S-CP)
=

Fig. 6. Resource reallocation engine in the Grand LAMA

attributes such as a list of the back-end servers including IP addresses, host names, and
weights for load-balancing. S-CP for a web server also has changeable attributes such as
a hostname (sname), a root path of contents like HTML documents (DocRoot), and the
address of an original source server (RelayFrom) in the case that the back-end servers
relay a live media streaming.

The operation of a resource reallocation engine in the Grand LAMA is described in
detail in Figure 6. The status of each node is gathered in the Grand LAMA. Therefore,
the monitor module keeps overall resource usages at time ¢. The future resource demand
is predicted using an autoregressive model. Also, the autoregressive model filters out
noises in the signal of the resource usage. Based on the predicted resource demand,
the allocation module adjusts the number of back-end servers in advance. This server
reallocation is executed through updating D-CP and S-CP.

A goal of the resource reallocation is to save resources while meeting constraints
on the application performance usually described in a Service Level Agreement (SLA).

130 C.Leeetal.

Therefore, a proper algorithm of the demand prediction should be deployed for the most
cost-effective resource allocation.

A threshold-based heuristic algorithm[18] is simple but reactive to a sudden change
in resource demands; however, it may cause unstable reallocation due to the high noise of
input workloads. Also, it is not easy to determine the proper upper and lower thresholds.

A forecast-based algorithm is usually based on an autoregressive model, which pre-
dicts the future resource demands. It can capture long-term trends or cyclic changes like
a time-of-day effect. Short-term forecasting may handle workload surges effectively,
when the time overhead of reallocation is high [17]; however, inaccuracy of forecasting
causes problems. We applied and compared both algorithms for the prediction in the
reallocation engine, and will present the result below.

4 Prototype: Audio Streaming Service

Our prototype system provides a live audio streaming service. At the beginning, only one
back-end node might be initiated as a streaming media server, such as icecast [19]. Upon
detecting load increases, more nodes should be allocated for the service. An idle node
could be chosen as an additional icecast server, and configured to relay the source streams
from the first initiated icecast server. In this case, the server-side control parameter (S-
CP) is RelayFrom, which describes the address of the original source server from which
the audio stream is relayed. Each LAMA registers its interface to the pool (LUS). Then,
the Grand LAMA composes a set of LAMAs dedicated to the audio streaming service,
by looking up LAMASs from LUS. It constantly monitors its under-managed LAMAs to
detect changing resource demands.

Resources can be measured with different metrics, according to the different aspects
of the specific applications. Three major aspects of resources are acceptable, such as the
CPU usage, network bandwidth, and disk storage. The performance of the application
is highly correlated with these three metrics. SAR [20] produces many statistics about
the system including the above metrics. Our LAMA measures resource utilization using
the SAR, and then sends the status to Grand LAMA.

The capacity of the live audio streaming service depends solely on a network band-
width, since it serves multiple users with only a single stream. When the source stream
is igniting at 128 kbps, our single node could serve less than 750 concurrent connections
reliably. With 750 concurrent connections, network utilization reached up-to 98%. With
over 750 connections, the average streaming rates decrease rapidly, and the icecast server
closes many connections, since server-side queues overflow due to the severe network
congestion.

We compared two prediction algorithms. In a threshold-based prediction, we simply
chose 90% as the upper threshold, and 80% as the lower threshold. The algorithm is
described in Algorithm 1. Even though icecast server could spend 98% of the network
bandwidth, we chose 90% as the upper threshold for reliable preparation, meaning that
when the overall network utilization over the distributed back-end servers exceeds 90%,
an additional back-end server is supplemented. When the utilization can be lower than
80% despite excepting one of back-end servers, the victim back-end server is released.
When the resource utilization decreases, excess resources should be released or yielded

Autonomous Management of Clustered Server Systems Using JINI 131

Algorithm 1 Reallocation algorithm for the threshold-based and AR-based prediction
N 4 <= The Number of allocated servers (1)
C' <= The network capacity of a node (100Mbps)
t <= The current time (0)
p <= Sampling period (2 seconds)
L;(t) < Network usuage of a node i at time ¢ in Mbps
ut <= Upper threshold (0.9)
It <= Lower threshold (0.8)
dcp: Dispatcher’s conrtrol parameters, a list of backend servers
scp: Server’s conrtrol parameters, RelayFrom
loop
SUM}, <= Sum of L;(t) forall ¢ {In case of AR, SU M, is a forecasted sum}
TC<«=N4-C
if SUMy > ut - TC then
Supplement an additional backend server X
Ng<=Na+1
dep<=dep+ X
X .scp <= The address of the original source server
else if SUMp < lt- (TC — C) then
Release a node V'

Na<=Nsa—-1
dep<=dep—V
end if
Sleep during p periods
t<=t+p
end loop

to other service in order to waste. Excess resources should be released gradually to avoid
a sacrifice of service qualities by abruptly closing innocent client’s open connections. In
this context, it is important to choose the lowest utilized victim for release. Otherwise,
some kinds of connection migration techniques should be devised. In our experiment,
we simply assumed that the rejected clients would request again by client-side programs,
so we did not consider the service distinction of releasing resources.

Also, we implemented a forecast-based prediction algorithm using an autoregressive
model, AR(1). Even though we can see a time-of-day effect in Figure 7, the workload is
more autocorrelated with short-term history within 30 minutes than the one-day-before
long-term one. We saw that long-term forecasting is much less accurate than short-
term forecasting. The period (around 30 minutes) that shows reasonable forecasting
accuracy, is enough to handle reallocation; therefore, we used a simple short-term (20
seconds ahead) forecasting of AR(1) model with a 40 seconds history. The reallocation
algorithm is similar to the threshold-based one, except using forecasted values rather
than a simple sum of network usage.

132 C. Lee et al.

of Clienls

1 . | PR EEFSEPRr R

500 PRI B Pt
1008 1008 10/09 1008 1010 10M0 1011
0000 1200 0000 7 d200., 0000 1200 00:00

Fig. 7. Time-of-day effects in real traces from a popular audio streaming service

5 Evaluation

We have investigated real traces from a popular audio streaming service. The patterns
of concurrent clients at October 9, 2003 are shown in Figure 7, and we can see the
time-of-day effect. The number of listeners increased rapidly at the beginning of the day
from 9 am.

We found that the steepest rate was 300 requests per minute, when we sampled traces
every 10 seconds in October, 2003; therefore, we synthesized a workload that generates
at the rate of 300 requests per minute for up to 3000 concurrent streams. The peak loads
were sustained for 3 minutes, and then we removed clients’ streams at 300 requests per
minute as well as increasing rates. For a 128Kbps media stream, approximately 132Kbps
bandwidth is required. The bandwidth includes client’s TCP ACK and TCP/IP headers,
so to follows the synthesized workload fully, more than 4 nodes are required, which are
connected to 100Mbps network.

We observed that discovery takes quite a long but unpredictable time from 2 seconds
to 20 seconds to discover the LAMA pool (LUS) since the JTNI-based LAMA multicasts
the discovery messages and waits for afew seconds until it gets discovery responses from
the available LUS. However, after the discovery was completed, consequent communi-
cation did not produce latency. The discovery would be done only at the beginning, so
that the unpredictable discovery time would not bother us.

The performance of the resource allocator is affected by monitoring intervals, and
also by allocation overhead. In our Grand LAMA, a monitoring interval is 2 seconds.
Allocation overhead was observed to be within 1 miniute.

The result of dynamic reallocation using threshold based reactive actions and pre-
diction based proactive actions is shown in Figure 8. Since there are many noises in the
monitored signal in the Figure 8-(a), the reactive reallocation shows resource cycling, in
Figure 8-(c). On the other hands, the forecasted bandwidth usage in Figure 8-(d) seems
to be filtered out. It shows a more stable resource reallocation than the reactive method.

Autonomous Management of Clustered Server Systems Using JINI 133

800 Mops T T T T 600 Mbps T T T T

500 Mbps. |- - 500 Mbps |- -

5 nodes

4 nodes

3 nodes

Allocated nodes

2 nodes

1 nodes

0 nodes. L - L L 0 nodes L . L L

00200 05:00 10:00 15:00 20:00 25:00 00:00 05:00 10:00 15:00 20:00 25:00
Tima (MM:SS) Time (MM:SS)
©

Fig. 8. Dynamic reallocation: (a) Network bandwidth usage observed by the Grand LAMA, (b)
Predicted network bandwidth using AR(1) model (c) Threshold-based reactive reallocation, (d)
AR(1) model based proactive reallocation

6 Conclusion

We have proposed a framework for the autonomous management of large-scale clustered
internet servers. Our autonomous management is based on distributed agents known
as LAMAs. We adopt JINI technology for a flexible agent, which means that static
configurations of networks are removed. LAMA utilized many features provided by
JINI infrastructure in building a spontaneous network securely.

Our prototype system provided autonomous management for streaming media ser-
vice. In order to adapt to the changing workload patterns, LAMA sent monitored statis-
tics on each node. The Grand LAMA gathered them, inferred resource utilization, made
decisions to demand or release resources.

The live audio streaming service is a simple example in which resources are rep-
resented only with network bandwidth. In the case of complex services including a
web application server, overall statistics on resource utilization would be required. One
challenging problem is inferring a system’s capacity without prior knowledge or hu-
man intervention. For this, it is required to estimate application performance, which is
a client’s perceived quality of service in the case of internet service. Also, it is highly
demanded to optimize resource allocation in a shared environment by multiple services
since they would compete for resources.

134

C. Lee et al.

References

L

10.
11.
12.
13.
14.
15.

16.

17.

18.

19.
20.

Joo Young Hwang, Chul Woo Ann, Se Jeong Park, and Kyu Ho Park: A Scalable Multi-Host
RAID-5 with Parity Consistency, IEICE Transactions on Information and Systems, E85-D 7
(2002) 1086-1092

. Seung Ho Lim, et. al.: Resource Volume Management for Shared File System in SAN Environ-

ment, Proceedings of 16 th International Conference on Parallel and Distributed Computing
Sytems, Reno, USA August (2003)

. Yang Hwan Cho, Chul Lee and Kyu Ho Park: Contents-based Web Dispatcher (CBWD),

Technical Report, EECS, KAIST, January (2001)

. Chul Lee and Kyu Ho Park: Kernel-level Implementation of Layer-7 Dispatcher (KID), Tech-

nical Report, EECS, KAIST, December (2002)

. Sang Seok Lim, Chul Lee, Chang Kyu Lee, and Kyu Ho Park: An Advanced Admission

Control Mechanism for a Cluser-based Web Server System, Proceedings of [IPDPS Workshop
on Internet Computing and E-Commerce (2002)

. Chul Lee, Sang Seok Lim, Joo Young Hwang, and Kyu Ho Park: A Ticket based Admis-

sion Controller(TBAC) for Users’ Fairness of Web Server, Proceedings of 3rd Interneational
Conference on Internet Computing (2002)

. Redhat: Linux Advanced Server, http://www.redhat.com/
. Jeffrey O. Kephart and David M. Chess: The Vision of Autonomic Computing, IEEE Com-

puter, January (2003)

M. Parashar: AutoMate: Enabling Autonomic Applications, Technical Report Rutgers Uni-
versity, November (2003)

Sun Microsystems: JINI Network Technology, http://wwws.sun.com/software/jini/

PXES: Linux thin client project, http://pxes.sourceforge.net/

Etherboot: Remote netowrk boot project, http://www.etherboot.org/

Paul Anderson: LCFG A large-scale UNIX configuration system, http://www.lcfg.org/
Redhat: Kickstart, http://www.redhat.com/

Y. Diao, J. L. Hellerstein, S. Parekh, J. P. Bigus: Managing Web server performance with
AutoTune agents, IBM Systems Journal Vol 42, No 1 136-149 (2003)

Paul Anderson and Patric Goldsack and Jim Paterson: SmartFrog meets LCFG: Autonomous
Reconfiguration with Central Policy Control Proceedings of LISA XVII USENIX San Diego,
USA (2003)

E. Lassettre, et.al.: Dynamic Surge Protection: An Approach to Handling Unexpected Work-
load Surges with Resource Actions that Have Lead Times, Proceedings of 14th IFIP/IEEE
Disitributed Systems: Operations and Management, (2003)

Abhishek Chandra, Weibo Gong, and Prashant J. Shenoy: Dynamic Resource Allocation for
Shared Data Centers Using Online Measurements, Proceedings of SIGMETRICS (2003)
icecast streaming media server: http://www.icecast.org

System Activity Reporter: http://perso.wanadoo.r/sebastien.godard

Event-Driven Management Automation in the
ALBM Cluster System

Dugki Min' and Eunmi Choi’

! School of Computer Science and Engineering, Konkuk. University,
Hwayang-dong, Kwangjin-gu, Seoul, 133-701, Korea
dkmin@konkuk.ac.kr
2 School of Business IT, Kookmin University,
Chongnung-dong, Songbuk-gu, Seoul, 136-702, Korea

emchoi@kockmin.ac.kr

Abstract. One of major concerns on using a large-scale cluster system is
manageability. The ALBM (Adaptive Load Balancing and Management)
cluster system is an active cluster system that is scalable, reliable and
manageable. We introduce the event-driven management automation by
using the ALBM active cluster system. This architecture is based on an
event management solution that is composed of event notification service,
event channel service and event rule engine. Critical system state changes
are generated as events and delivered to the event rule engine. Accord-
ing to the predefined management rules, some management actions are
performed when a specific condition is satisfied. This event-driven mech-
anism can be used to manage the system automatically without human
intervention. This event management solution can also be used for other
advance management purpose, such as event correlation, root cause anal-
ysis, trend analysis or capacity planning. In order to support the man-
agement automation possibility, the experimental results are presented
by comparing adaptive load balancing with non-adaptive load balancing
mechanism. The adaptive scheduling algorithm that uses the event man-
agement automation results in a better performance compared to the
non-adaptive ones for a realistic heavy-tailed workload.

1 Introduction

Future Internet services, such as Web Services[1] and ubiquitous services[2], be-
come more dynamic and various in clients population size and in service pattern,
due to their characteristics of dynamic integration. The unpredictable character-
istic of Internet services requires their service platform architecture to be scalable
and reliable. A cluster of distributed servers is a popular solution architecture
that is scalable and reliable as well as cost-effective: we are able to easily add
economical PC servers for more computing power and storages[3,4].

*** This work was supported by the Korea Science and Engineering Foundation
(KOSEF) under Grant No. R04-2003-000-10213-0. This work was also supported
by research program 2004 of Kookmin University in Korea.

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 135-146, 2004.
© IFIP International Federation for Information Processing 2004

136 D. Min and E. Choi

One of major concerns on using a large-scale cluster system is manageabil-
ity [5]. Internet service providers normally have a number of clusters consisting
in several tens of servers up to several hundreds of servers, which might have
heterogeneous platforms. Managing a huge number of distributed servers is not
an easy task. Even basic management operations such as monitoring resource
status, upgrading O.S. and deploying a new service, are tasks that takes lots
of efforts due to lack of global knowledge and controller, and the limitation of
networked computers. Therefore, a management tool is necessary to manage a
number of distributed clusters effectively.

The ALBM (Adaptive Load Balancing and Management) cluster system is an
active cluster system that is scalable, reliable and manageable[6]. We developed
this system for various research purposes, such as active traffic management,
content-based delivery, middleware services for distributed systems, and proac-
tive distributed system management. It is composed of L4/L7 active switches for
traffic distribution and management agents and station for cluster system man-
agement. This system provides a single point of management console that shows
system configuration as well as system states in real time. Using this consol, we
can monitor the status of all resources and also control services on distributed
nodes.

In this paper, we present an event-driven management automation architec-
ture that is used in the ALBM cluster. This architecture is based on an event
management solution that is composed of event notification service, event chan-
nel service and event rule engine. Critical system state changes are generated
as events and delivered to the event rule engine. According to the predefined
management rules, some management actions are performed when a specific
condition is satisfied. This event-driven mechanism can be used to manage the
system automatically without human intervention. This event management so-
lution can also be used for other advance management purpose, such as event
correlation, root cause analysis, trend analysis or capacity planning. In order
to support the management automation possibility, the experimental results are
presented by comparing adaptive load balancing with non-adaptive load balanc-
ing mechanism. The adaptive scheduling algorithm that uses the event manage-
ment automation results in a better performance compared to the non-adaptive
ones for a realistic heavy-tailed workload.

This paper is organized as follows. Section 2 describes the architecture of the
ALBM cluster system. In the next section, we present the event management
solution architecture. The event management solution is composed of three sub-
systems: event notification service, event channel service and event rule engine.
In section 4, an experimental result of performance is given to illustrate the
benefit of employing the event-drive management automation mechanism for
adaptive workload scheduling. We conclude in the last section.

Event-Driven Management Automation 137

2 The ALBM Active Cluster Architecture

As introduced in our previous research [6], the ALBM (Adaptive Load Balancing
and Management) active cluster system is composed of active switches, applica-
tion servers, and the management station.

The Traffic Manager (TM) is an active switch that customizes traffic packets
by controlling static or dynamic services. When client traffic arrives, the TM
routes the client packet to one of the servers according to its scheduling algo-
rithm and policy, performing network address translation on the packets flowing
through them. In order to decide traffic routing, it collects the status infor-
mation of collaborated servers periodically by contacting with the Node Agents
from servers. Our TM provides several scheduling choices, such as Round-Robin,
Least-Connected, Weighted, Response-time basis, and adaptive algorithms. Cur-
rently, our TM supports two types of L4 switching mechanisms: Direct Routing
(DR) and Network Address Translation (NAT).

In a server node, a Node Agent (NA) runs as a system-level service. The
NA takes two types of agent roles. First, it works as an agent for managing the
managed node. It monitors and controls the system elements or the application
service of the node, and collects the state and performance information on its
local management information basis. It interacts with the M-Station, giving
the local information and receiving administrative commands for management
purposes. Second, it works as an agent for clustering. Regarding membership
management, it sends heartbeat messages to one another. When there is any
change in membership, the membership convergence mechanism is initiated by
the master node. The master node is dynamically elected by members whenever
there is no master node or there exists inconsistent master information among
members. Besides, the NA provides L7 APIs to application services running on
the node. Using the L7 APIs, the application service can access information of
cluster configuration or the current states of cluster nodes to dynamically make
a decision. Also, the NA finds the dynamic information of application states
through the L7 APIs. This dynamic application information is used for system
operation, such as load balancing, and for other performance management. The
NA is implemented in Java to maximize portability and platform-independent
characteristics.

The Management Station (M-Station) with a Web-based console provides
a single point administration and the management environment of the entire
ALBM active cluster system. Communicating with NAs on managed nodes, it
monitors states of the system resources and application services of nodes and
controls them for various management purposes, such as creating a cluster or
stopping an application service. The major cluster administration task is the
management tool governed by human system administrators with the help of
the M-Station. By interacting with the master node of a cluster, the M-Station
collects the dynamic state or performance information of the cluster system
resources and application services. According to the management strategies and
policies determined by the human administrator, the M-Station takes proper

138 D. Min and E. Choi

management actions, such as alarming events or removing failed nodes. The
M-Station is implemented in Java.

2.1 Adaptive Load Balancing Mechanism

The adaptive scheduling algorithms in the ALBM active cluster system adjust
their schedules, taking into accounts of dynamic state information of servers and
applications collected from servers. The ALBM algorithm is as follows. By col-
lecting appropriate information of server states, the NAs customize and store the
data depending on the application architecture, machine types, and expectation
of a system manager. Each NA decides if the current state is overloaded or un-
derloaded by using upper or lower thresholds of resource utilization determined
by system configuration and load balancing policies of cluster management. Each
cluster has a coordinator that is in charge of any centralized task in the cluster.
We call the coordinator a Master NA, and only the Master NA communicates
with TM as the representative in order to control the incoming TMs traffic.
After collecting state data of all NAs in a cluster, the Master NA reports the
state changes to the TM. Thus, real-time performance data are transferred to
the M-Station, and the state data of servers are reported to the TM. By us-
ing the state information reported by Master NAs, the TM adjusts traffics of
incoming requests properly to balance server allocation. The TM does not allo-
cate requests to overloaded servers, until the overloaded server state is back to
a normal state. The scheduling algorithms are applied to the TM through the
control of M-Station.

3 Event Management Solution

In this section, we introduce the overall architecture of event management so-
lution: functionality and features of event notification service, event channel
service, and event rule engine.

3.1 Event-Driven Management Automation Architecture

Event-driven management automation architecture finds the root cause of faults
based on events occurred in several minutes and hours, and with the help of
the event rule engine it resolves the faulty situation so that the human system
administrator would not involve the system management manually. As shown
in Figure 1, the management automation architecture manages the system at
three levels in terms of management time: short-term, medium-term, and long
term managements. Short-term management concerns real-time monitoring and
immediate reaction. It monitors the system state changes, detecting system or
service faults. Critical events are notified and the predefined corresponding man-
agement actions are automatically performed in real time. Event notification
service and event rule engine are used at this level. Next, medium-term manage-
ment concerns management intervention based on hourly information. In this

Event-Driven Management Automation 139

level, event log accumulated in hours are analyzed to find event correlations and
root causes of faults. In this analysis process, high-level events are generated
and used by the event rule engine to perform management interventions auto-
matically or human-interactively. Long-term management automation concerns
analyzing and predicting the trend of system usage and capacity needed for the
future. This long-term management uses the historical log data of system states
and events over a couple of weeks and months.

1
1
Service Layer PR |
Z | Middleware Layer = 1 Event Rule| |Root Cause
& | System Layer. E Node ' Engine Analysis
=] Service I 3 = P
Network Layer t= hort/Mi Foid
I § Management Correlati
% Automation UHEEMoT,
Service Layer o I Ei —[
Z | Middleware Layer 1 2 AP TRR
g | Nose 18 Event Chanrel m
o | System Layer. 2. > g Service Lag
g | service I = L g
Network Layer @
I3
: ® Trend Event
Service Layer Actor : i 5
Z | Middleware Layer
& g Node Long-Term Canach
= Synanlaye g | Service I Management Plapr:qmg
Network Layer I Automation
Service Center | Management Center

Fig. 1. Event-Based Management Automation Architecture

Figure 1 shows the system architecture of management automation. The ar-
chitecture is decomposed into two subsystems. One is a service center that has a
number of clusters, each of which is composed of a number of distributed servers.
In each server, a NA(Node Agent) explained in Section 2 is running. It works as
a management agent, monitoring and controlling system elements or application
services on the node. The other is an event management center that manages the
overall system. In our system, the event management center is in the M-Station.
The event management center is composed of three event management solutions:
Event Notification Service for event delivery, Event Channel Service for event
asynchronous transmission, and Event Rule Engine for management automation.
In this section, we describe the architectures of three event management services
in detail.

140 D. Min and E. Choi

3.2 Event Notification Service

Figure 2 shows the architecture of event notification service. It consists of three
components: event communication infrastructure, event dissemination process,
and event client. The event communication infrastructure is a communication
infrastructure that facilitates transmitting events in various protocols and mes-
sage formats. In Figure 2, the CI stands for the Communication Infrastructure.
Determining a specific protocol and a message format to be used depends on
the application type. In our current implementation, we provide three network
protocols, i.e. TCP, UDP and a Reliable-UDP, and three message formats, i.e.
a payload format, java object serialization, and a XML format. An event client
is an event supplier that generates an event and sometimes becomes an event
consumer that consumes an event. The event dissemination process is a service
process that is shared by a number of event clients for disseminating events. The
event dissemination is performed based on subject-oriented processing. In other
words, an event supplier sends an event with a subject to an event dissemination
process without specifying its target event consumers. The event dissemination
process is responsible to deliver the subject-oriented event to appropriate target
event consumers listening to the subject. By employing this shared dissemina-
tion process, individual event client can reduce a burden of disseminating tasks
and thus improve the overall performance of event communication.

Host A

Ewvent Client

Cl
Event Ewvent
Dissemination Dissemination
Ewvent Client Process Process

Cl

Cl : Communication Infrastruchure

Fig. 2. Event Notification Service

Event Communication Infrastructure: Event communication infrastruc-
ture provides fundamental APIs of event transmission to event clients. Figure 3
(a) shows the structure of event communication infrastructure. Two main ob-
jects are Communication Object and DocFormat Object. Communication Object
(CO) provides a unified communication environment that hides an underlying
communication protocol and message format. The CO is implemented on top
of TCP/IP protocol. Our current implementation provides communication of
TCP, UDP and a reliable version of UDP. The DocFormat Object is used for
message formatting of a CO. The DocFormat Object is in charge of converting

Event-Driven Management Automation 141

an event object into a message format. The current version of DocFormat Ob-
ject supports three kinds of message formats: a XML format, a Payload format,
and an object serialization format. The lifecycle of Communication Object and
DocFormat Object is managed by the Communication Manager. The Configu-
rator is in charge of configuration management of all these components by using
configuration information stored in a XML file.

Event Dissemination Process: The event dissemination process disseminates
an event from an event supplier to multiple event consumers distributed in a
number of hosts. Figure 3 (b) shows the structure of the event dissemination
process that is composed of the following objects: Event Processor, Swappable
Event Handler, Disseminator, Knowledge Manager, Dissemination Reconfigura-
tor, Logger, Communication Infrastructure.

The Event Processor is the core object of the event dissemination process. It
receives an event from an event supplier through the CO and activates filtering
and dissemination logics. It also leaves log information. The Swappable Event
Handler judges whether its sending event has a meaningful message. In order to
judge the semantic of an event, a filtering logic is applied. A filter is implemented
as a swappable component so that new filters can be added later on demand of
future need. The Disseminator executes actual dissemination for a given event.
It decides the destinations of the given event according to the event subject,
and distributes the event to the target destinations. Dissemination information
and rules used in the Disseminator are managed by the Knowledge Manager.
This information can be changed by an administrator UI, or by the system
environment that is dynamically changed over times. The Dissemination Re-
Configurator is in charge of updating dissemination rules. The Logger records
logs during processing event dissemination.

Our event dissemination process has three major characteristics. First, a sup-
plier can disseminate events asynchronously. Asynchronous event dissemination
implies that an event supplier can sends the next event without blocking as soon
as it sends the previous event. It is because the event dissemination process
runs on a separate proc-ess that is independent of the supplier process. The
second characteristic is that a basic dissemination rule is based on the event
subjects. This is, an event is transmitted without specifying its destinations.
Where to be transmitted is decided by the dissemination process according to
the event subject and the system environmental knowledge. The last character-
istic is contents-based message filtering. During event handling, useless events
can be filtered according to predefined filtering rules. This filtering process needs
little computing power, but can reduce the wasted network bandwidth as well as
computing resources. The rate of saving depends on the correctness of filtering
rules and the situation of event generation.

3.3 Event Channel Service

The event notification service provides synchronous event communication: events
are delivered to the destinations in real-time. However, this synchronous event

142 D. Min and E. Choi

(a) Event Communication (b) Event Dissemination Process
Infrastructure

Fig. 3. Sub-components of Event Notification Service

communication is not useful when event consumers are not ready to receive.
Thus, we need another communication mechanism that transmits events asyn-
chronously. The Event Channel Service is such an asynchronous communication
service that delivers events in a stored-and-forward mechanism. The advantage
of using the event channel service is that event receivers can be decoupled from
the event senders. Thus, the event receivers independently subscribe a number of
event channels from which interesting events can be received. This event channel
service is more valuable when the distributed servers of the cluster system are
located over a number of network segments or some event receivers are available
discontinuously in nature, such as mobile devices.

The event channel service has the structure as shown in Figure 4. The main
components of this service are channels and its channel factory. A channel con-
tains an event queue where events are stored and subscribed. The channel de-
couples event suppliers from event consumers, such that events can be delivered
to whom subscribes the channel even though the event supplier does not know
about any information of event consumers, such as their existences and loca-
tions. The channel factory is a factory that can create various types of channels
according to QoS parameters. Each event consumer or event supplier accesses
a channel through its own proxy. A proxy decides the type of event delivery: a
push proxy delivers event in a push style and a pull proxy in a pull style. It also
has filters inside so that an event customer can filter out a specific type of events.
The proxies are created by Supplier Admin or ConsumerAdmin according to the
information of proxy QoS and management parameters.

3.4 Event Rule Engine

An event engine finds in real-time pre-defined event patterns among the gener-
ated event sequences and then it performs appropriate operations for the event
patterns detected according to the event rules. Our event engine is a rule-based
one that is different from the traditional rule-based engines[7] in two ways. First,

Event-Driven Management Automation 143

Push /

F Supplier Consumer Push
Supplier Consumer
: i
4+
Pull Supplier Consumer Pull
PullProxy PullProsy Consumer

Supplier \

Event Flow Creation

Fig. 4. Structure of Event Channel Service

its functionality can be expanded by loading hooking classes dynamically; each
event condition and action is defined as a hook class that is dynamically loaded,
compiled and integrated into as a part of the engine. Since we implement the
engine in a high-level object-oriented language, Java, we can develop new condi-
tions and actions easily in an object-oriented style. Another characteristic of our
rule-engine is that it uses an event-token method for finding matching rules. As a
conventional compiler searches a meaningful token in a collection of strings, this
approach checks only pre-defined event tokens instead of searching exhaustively.
An event token is specified in general BNF operators.

The event rule engine is composed of three packages: information package,
engine package, and parser package. The information package manages the in-
formation of the engine and its rules, shown in the Figure 5 (a). The Rulelnfo
defines one or more rules. A rule definition has rule name, priority, event token
name, condition code, and action code in Java. The rule definition is stored in a
XML file. The engine package, shown in Figure 5 (b), is the encore part of event
rule engine. The EventBuffer-Manager manages real-time events, and removes
old events after the expiration date. The RuleInfoManager manages the Rule-
Info explained above. The JavaCodeBuilder converts condition or action hook
classes into executable java objects when the engine initially starts. The Icompa-
rableCondition and IExeutableAction are the interfaces that the hook classes of
condition and action should implement, respectively. Finally, the parser package
organizes a parsing table by using rules defined in the information package, and
finds applicable rules by searching the occurring events in real time.

144 D. Min and E. Choi

[

(et |
RulelnfoManager E|:| IComparable Condition
RUEN RuleEngine

|ExecutableAction

Rulelnfo F—{Evemmnenl)et‘
[R—

—| ConditionDef | RuleinfoManager |

(a)InformationPackage (b) EnginePackage

Fig. 5. Event Rule Engine

3.5 Experimental Results

We perform experiments to illustrate the effect of applying event-driven man-
agement automation in the ALBM cluster system. In this purpose, we apply the
mechanism of event-driven management automation to the workload scheduling
process. In normal situation, request traffic is distributed to the servers according
to a general workload scheduling algorithm, such as Round-Robin (RR) or Least
Connection (LC) [8]. However, in overloaded situation NA generates an Over-
loaded event, and the event is delivered to the event rule engine in the M-Station
through the event notification service. According to the pre-defined event rule,
the overloaded server is removed from the scheduling server list. In our exper-
iments we employ the RR as a general scheduling algorithm. The event-driven
adaptive version of RR is called E-ARR (Event-driven Adaptive RR).

We make a realistic workload that is heavy-tailed. In literature, many re-
searchers have concluded that general Internet traffics follow heavy tail distri-
butions [9,10]. In order to make heavy-tailed e-commerce traffic, we mix an e-
commerce traffic provided by Web Bench tool[11] and a memory-intensive traffic
at the rate of 80% and 20%, respectively. The e-commerce traffic contains mixed
requests of text pages, image files, and CGI requests. The memory-intensive
traffic contains memory requests of random size and random duration. The ran-
dom size of memory is randomly generated from 3M, SMB, and 15MB and the
memory holding duration is a random number between 0 to 10 seconds.

The workload requests are generated by tens of client machines, which are
interconnected with a cluster of server nodes in the same network segment. Each
server has PIII-866MHz and 128 MB memory. Each client has the same system
configuration. The network bandwidth is 100MB. The number of connections
per client thread is 4. The total running time is 2 minutes, think time between
requests in a client is 10 seconds, and ramp-up time is 20 seconds.

Figure 6 and 7 show the experimental results of RR and E-ARR schedul-
ing algorithms. The E-ARR achieved about 30 requests per second at 15 client
threads; the RR achieved about 25 requests per second at 13 client threads

Event-Driven Management Automation 145

in Figure 6. The E-ARR results in about 20% better performances than non-
adaptive ones. For the same experiment, we present the throughput in Bytes
per second in Figure 7. With the help of event-driven management automation,
the adaptive mechanism could achieve better throughput by adjusting the load
scheduling dynamically. According to the feature of Web Bench Tool, the next
request from a client thread is generated after receiving the response of the pre-
vious request. That is, Web Bench Tool slows down sending requests, once the
server starts to respond late. Due to this feature, all scheduling algorithms reduce
their throughputs after reaching their peak performances. This makes points of
results in the figure meaningless just after the peak performance points.

| —a—RR —=—E-ARR |

30

20 \
15

10

#of Requests per sec

0 i i i i i i L L i L i i i L i ' 1
1 2 3 4 5 6 7 8 9 1011 12 1314 15 16 17 18
Client Threads

Fig. 6. Number of Requests per second of Event-driven Load Balancing

4 Conclusion

In this paper, we introduced the event-driven management automation by using
the ALBM active cluster system. On top of the architecture of the ALBM cluster
with its underlying components of the TM, and NAs, and M-Station introduced
in Section 2, the ALBM cluster system provides the event management solu-
tion. The event-driven management automation architecture, event notification
service, and event channel service, and event rule engine are introduced as the
management service involved.

To support the management automation processing, the experimental results
are presented by comparing adaptive load balancing with non-adaptive load
balancing mechanism. The adaptive scheduling algorithm that uses the event
management automation results in a better performance compared to the non-
adaptive ones for a realistic heavy-tailed workload.

146

Throughput Bytes per second)

D. Min and E. Choi

[—~—RR —=—E-ARR|

280000

200000

e s\
o el
-

50000

0 i i i i i L i L i L 1 1 : " L
1 2 3 4 5 8 7 8 9 1011 12 13 14 156 168 17 18
Client Threads

Fig. 7. Throughput (Bytes per second) of Event-driven Load Balancing

References

11.

. Patlak, C.; Bener, A.B.; Bingol, H.: Web service standards and real business sce-

nario challenges, Euromicro Conference, 2003. Proceedings. 29th (2003), 421 - 424

. YamazakiK.: Research directions for ubiquitous services, Applications and the In-

ternet, 2004. Proceedings. 2004 International Symposium on , 26-30 Jan. (2004)
12

. Trevor Schroeder, Steve Goddard, Byrav Tamamurthy: Scalable Web Server Clus-

tering Technologies. IEEE Network, May/June (2000) 38-45

. Rod Gamache, Rob Short, Mike Massa: Windows NT Clustering Service. IEEE

Computer, Oct. (1988) 55-62

. Valeria Cardellini, Emiliano Casaliccho, Michele Colajanni, Philip S. Yu: The State

of the Art in Locally Distributed Web-server Systems. IBM Research Report,
RC22209(W0110-048) October (2001) 1-54

Eunmi Choi, Dugki Min: A Proactive Management Framework in Active Clusters,
LNCS on IWAN, December (2003)

Appleby, K., Goldszmidt, G., Steinder, M., “Yemanja - a layered event correlation
engine for multi-domain server farms ”, Integrated Network Management Proceed-
ings, 2001 IEEE/IFIP International Symposium on , 2001 ,Page(s): 329 -344
Jeffray S. Chase: Server switching: yesterday and tomorrow. Internet Applications
(2001) 114-123

Martin F. Arlitt, Carey L. Williamson: Internet Web Servers: Workload Character-
ization and Performance Implications. IEEE/ACM Transactions on Networking,
Vol. 5, No. 5, October (1997) 631-645

Mor Harchol-Balter: Task Assignment with Unknown Duration. IEEE Distributed
Computing Systems, Proceedings. (2000) 214 7224

Web Bench Tool, http://www.etestinglabs.com

A Formal Validation Model for the Netconf
Protocol

Sylvain Hallé', Rudy Deca', Omar Cherkaoui', Roger Villemaire', and
Daniel Puche’

! Université du Québec 4 Montréal
{halle ,deca, cherkaoui.omar,villemaire. roger}@info .ugam.ca
% Cisco Systems, Inc.
dpuche@cisco.com

Abstract. Netconf is a protocol proposed by the IETF that defines a
set of operations for network configuration. One of the main issues of
Netconf is to define operations such as validate and commit, which cur-
rently lack a clear description and an information model. We propose in
this paper a model for validation based on XML schema trees. By using
an existing logical formalism called TQL, we express important depen-
dencies between parameters that appear in those information models,
and automatically check these dependencies on sample XML trees in
reasonable time. We illustrate our claim by showing different rules and
an example of validation on a Virtual Private Network.'

1 Introduction

The area of network services has significantly developed over the past few years.
New and more complex services are deployed into the networks and strain the
resources. Network management capabilities have been pushed to their limits
and have consequently become more complex and error-prone. The lack of a
centralised information base, heterogeneity of all kinds (management tools, con-
figuration modes, services, networks and devices) dependencies among service
components, increase of service complexity and undesired services interaction
are all possible causes of eventual configuration inconsistency.

Network management must constantly ensure the consistency of the network
configuration and of the deployed services. This task is difficult, since there is
no formal approach for ensuring the consistency of the network services, and
no adequate information model adapted to network configuration. Therefore,
adequate formalisms, information models and verification methods are required
that must capture the constraints and properties and ensure the integrity of the
network services.

The Netconf protocol [6] provides a framework for the network configuration
operations. Its validate operation checks syntactically and semantically the

We gratefully acknowledge the support of the National Sciences and Engineering
Research Council of Canada as well as Cisco Systems for their participation on the
Meta-CLI project.

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 147-158, 2004.
© IFIP International Federation for Information Processing 2004

148 S. Hallé et al.

configurations. However, since the work is in progress, this operation is still too
generic and not fully defined.

In this paper, we present an implementation of the Netconf validate capa-
bility that extends beyond simple syntax checking. From an XML Schema rep-
resenting a given device configuration, we extract a tree structure and express
validation rules in terms of these tree elements. By using an existing logical for-
malism called TQL [3], we express important, semantic dependencies between
parameters that appear in those information models, and automatically check
these dependencies against sample XML trees within reasonable delays. We il-
lustrate our claim by showing different rules and and validating some of them
on a sample Virtual Private Network configuration.

The network management community has proposed other approaches. Some
frameworks under development consist in enriching an UML model with a set
of constraints that can be resolved using policies. The Ponder language [9] is
an example of a policy-based system for service management describing OCL
constraints on a CIM model. The DMTF community as a whole is working on
using OCL in conjunction with CIM. However, object-oriented concepts like class
relationships are not sufficient for modelling dependencies between configuration
parameters in heterogeneous topologies, technologies and device types.

On a different level, [10] defines a meta-model for management information
that takes into account some basic semantic properties. [1] has also developed a
formal model for studying the integrity of Virtual Private Networks. However,
these approaches can be considered high-level, and ultimately need to be trans-
lated into concrete rules using device commands and parameters, in order to be
effectively applied on real networks.

In section 2, we give a brief overview of the Netconf protocol and the mod-
elling of XML configuration data in tree structures. Section 3 provides examples
of different syntactical and semantic constraints of typical network services, while
section 4 introduces the TQL tree logic and shows how these constraints become
logical validation rules. Section 5 presents the results of the validation of several
configuration rules referring to the Virtual Private Network service, and section
6 concludes and indicates further directions of research.

2 The Netconf Protocol

Netconf is a protocol currently under development aimed at defining a simple
mechanism through which a network device can be managed [6]. It originates
from the need for standardised mechanisms to manipulate the configuration of
a network device. In a typical Netconf session, XML-encoded remote procedure
calls (RPC) are sent by an application to a device, which in turn sends an RPC-
reply giving or acknowledging reception of a full or partial XML configuration
data set.

A Formal Validation Model for the Netconf Protocol 149
2.1 Netconf Capabilities

In order to achieve such standardised communication, the current Netconf draft
defines a set of basic operations that must be supported by devices:

— get-config: Retrieves all or part of a specified configuration from a source
in a given format

— edit-config: Loads all or part of a specified configuration to the specified
target configuration

— copy-config: Creates or replaces an entire configuration with the contents
of another configuration

— delete-config: Deletes a configuration datastore

— lock: Locks a configuration source

— unlock: Unlocks a configuration source

— get-all: Retrieves both configuration and device state information

— kill-session: Forces the termination of a Netconf session

Among other things, these base operations define a generic method enabling
an application to retrieve an XML-encoded configuration of a Netconf-enabled
device, apply modifications to it, send the updated configuration back to the
device and close its session. Alternate configuration data sets can also be copied
and protected from modifications. Figure 1 shows a typical RPC, and its reply
by the device.

This set of basic operations can be further extended by custom, user-defined
capabilities that may or may not be supported by a device. For example, version
2 of the Netconf draft proposes a command called validate, which consists in
checking a candidate configuration for syntactical and semantic errors before
effectively applying the configuration to the device.

The Netconf draft leaves a large margin in the definition of what validate
must do. A device advertising this capability must be at least able to make simple
syntax checking on the candidate configuration to be validated, thus preventing
the most trivial errors to pass undetected. However, semantic validation of the
configuration is left optional, but is equally important. For example, a simple
syntax parser will not complain in the case of a breach of the VPNs isolation
caused by address overlapping.

Moreover, although the draft currently defines the behaviour of the validation
capability, it leaves open the question of the actual implementation of this capa-
bility on a network device. At the moment, there exists no systematic procedure
for achieving such validation.

2.2 Modelling Configuration Data

One can remark from the example in figure 1 that the actual XML schema en-
coding the configuration data might depend on the device. Its format is specified
by the XML namespace of the config tag in both the RPC and its reply.

150 S. Hallé et al.

<rpc message-id="105" xmlns="http://ietf.org/netconf/base/1.0” >
<get-config>
<source>
<running/>
< /source>
<config xmlns="http://info.uqam.ca/schema/node-model” />
<format>xml</format>
< /get-config>
</rpe>

<rpe-reply message-id="105" xmlns="http://ietf.org/netconf/base/1.0” >
<config xmlns="http://info.uqam.ca/schema/node-model” >
<node>
<name>ip_address</name>
<value>10.0.0.0</value>
<child></child>
</node>

< /config>
< /rpe-reply>

Fig. 1. Typical Netconf RPC and reply by the device

We briefly describe here the generic XML schema we use in our approach.
All properties of a given configuration are described by hierarchically nested
attribute-value pairs.

The basic element of our schema is the configuration node, which implements
the concept of attribute-value pairs. A configuration node is in itself a small tree
having a fixed shape. Its main tag is named node, and it must contain three
children tags:

— name, that contains the character string of the name of the attribute
— value, that contains is the character string of the value of the attribute
— child, inside which can be nested as many other node structures as desired

For example, in figure 1, the boldface snippet of XML code inside the config
tag of the rpc-reply shows a sample encoding of an IP address using this
schema.

There is a direct correspondence between XML data and labelled trees. By
viewing each XML tag as a tree node, and each nested XML tag as a descendent
of the current node, we can infer a tree structure from any XML snippet. Figure
2 depicts the tree equivalent of the sample XML configuration code of figure 1.

The tree representation is a natural choice, since it reflects dependencies
among components, such as the parameters, statements and features. For more
information on the specific schema used in this work, we refer the reader to [8].

A Formal Validation Model for the Netconf Protocol 151

node

P

name value child

ip_address 10.0.0.0

Fig. 2. A simple configuration node

3 Service Configuration Integrity

In this section, we examine the possible configuration inconsistencies that the
validate capability could encounter and identify when performing verification
on a device’s candidate configuration. Our study is principally aimed at con-
straints arising from installation and management of network services.

A network service has a life cycle that starts from a customer’s demand,
and is followed by negotiation, provisioning and actual utilisation by the cus-
tomer. Many steps of this life cycle demand that configuration information on
one or more devices be manipulated. Configuration parameters can be created
or removed, and their values can be changed according to a goal.

However, these manipulations must ensure that the global conditions ruling
correct service operation and network integrity are fulfilled. Thus, the parameters
and commands of the configuration affected by a service are in specific and
precise dependencies. We present here two examples of dependencies, and deduce
from each a configuration rule that formalises them.

3.1 Acces List Example

The existence or the possible state of a parameter may depend on another such
parameter somewhere else in the configuration. As a simple example of this
situation, consider extended IP access lists. Some network devices use these lists
to match the packets that pass through an interface and decide whether to block
or let them pass, according to packet information. The configuration of these
extended IP access lists is variable. If the protocol used for packet matching is
TCP or UDP, the port information is mandatory. If the protocol used is different,
no port information is required.

Figure 3 shows two examples of access list entries, both of which are valid,
although the trees that represent them do not have the same structure.

This example leads us to the formulation of a rule related to the proper use
of access list entries:

Configuration Rule 1 [fthe protocol used in an access list is TCP or
UDP, then this access list must provide port information.

152 S. Hallé et al.

3.2 Virtual Private Network Example

The previous example is nearest to mere syntax checking. On the other end of
the scope, there are more complex situations that can be encountered, where the
parameters of several devices supporting the same service are interdependent.
An example is provided by the configuration of a Virtual Private Network (VPN)
service [11], [12], [13].

VPNs must ensure the connectivity, reachability, isolation and security of cus-
tomer sites over some shared public network. A VPN is a complex service that
consists of multiple sub-services and its implementation depends on the network
technology and topology. For instance, it can be provided at Layer 2 through vir-
tual circuits (Frame Relay or ATM) or at Layer 3 using the Internet (tunnelling,
IPsec, VLAN, encryption). The MPLS VPN uses MPLS for tunnelling, an IGP
protocol (OSPF, RIP, etc.) for connectivity between the sites and the provider
backbone, and BGP for route advertisement within the backbone. The BGP pro-
cess can be configured using the direct neighbour configuration method, which

<node> <node>
<name>protocol< /name> <name>>protocol< /name>
<value>tcp< /value> <value>icmp</value>
<child> <child>
<node> <node>
<name>source</name> <name>source</name>
<value>10.0.0.1< /value> <value>10.0.0.1< /value>
<child> <child>
<node> <node>
<name>wildcard</name> <name>wildcard</name>
<value>0.0.255.255< /value> <value>0.0.255.255< /value>
<child/> <child/>
</node> </node>
< /child> < /child>
</node> </node>
<node> < [child>
<name>operator</name> < /node>
<value>eq< /value>
<child>
<node>
<name>port</name>
<value>80< /value>
<child/>
< /node>
< /child>
</node>
< /child>
< /node>

Fig. 3. Excerpts of XML code for two access list entries

A Formal Validation Model for the Netconf Protocol 153

adds routing information necessary for the inter-connection on each provider
edge router (PE-router).

Among other requirements of this method, an interface on each PE-router
(for example, Loopback0), must have its IP address publicised into the BGP
processes of all the other PE-routers’ configurations using a neighbor com-
mand [11]. If one of these IP addresses changes the connectivity is lost and the
VPN service functioning is jeopardised. Thus,

Configuration Rule 2 /n a VPN, the IP address of the Loopback0
interface of every PE-router must be publicised as a neighbour in every
other PE-router.

4 Validating Network Service Integrity

As we have shown in section 2, each XML snippet can be put in correspondence
with a an equivalent labelled tree. Thus, configuration rules like those previously
described can be translated into constraints on trees.

For example, Configuration Rule 2 becomes the following Tree Rule:

Tree Rule 2 The value of the IP address of the interface Loopback0
in the PE router 1 is equal to the IP address value of a neighbor
component configured under the BGP process of any other PE router j.

This conversion has the advantage that many formalisms have been developed
in recent years [2], [7] that allow such description. Among them, the Tree Query
Logic (TQL) [3] is particularly noteworthy, as it supports both property and
query descriptions. Hence one can not only check if a property is true or false,
but also extract a subtree that makes that property true or false.

In the next section, we demonstrate this claim by showing how TQL can be
used to perform validation on tree structures.

4.1 Expressing Configuration Rules

One can loosely define TQL as a description language for trees. Following logical
conventions, we say that a tree ¢ matches a given TQL expression e, which we
write ¢ k= e, when e is true when it refers to t. We also say that e describes t.

TQL is an extension of the traditional first-order logic suitable for description
of tree-like structures. To allow branching, two operators are added: the edge ([
]) and the composition (}).

First, the edge construct allows expression of properties in a descendent node
of the current node. Thus, any TQL expression enclosed within square brackets
is meant to describe the subtree of a given node. For example, the expression
root [child] indicates that the root of the current tree is labelled “root”, and
that this root has only one child, labelled “child”.

Second, the composition operator juxtaposes two tree roots; hence, the ex-
pression node [name | value] describes a tree whose root is “node”, and whose

154 S. Hallé et al.

two children are the nodes “name” and “value”. Like other TQL operators, edge
and composition are supported at any level of recursion.
The tree depicted in figure 2 is described by the following TQL expression:

node|
namelip_address] |
value[10.0.0.0] |
child |

Remark the similarity between this TQL description and the XML code that
actually encodes this structure in figure 1. This similarity is not fortuitous: it is
in fact easy to see that edge and composition alone can describe any single XML
tree.

However, interesting properties do not apply on a single tree, but rather to
whole classes of trees. It is hence desirable to add the common logical operators
to the syntax, whose intuitive meaning is given in table 1.

Table 1. Some of the most common TQL operators

— T': matches any tree.

—A (negation): if a tree does not match A, then it matches ~ A

— AV B (disjunction): if a tree matches AV B, then either it matches A or it matches
B (or both)

A A B (conjunction): if a tree matches A A B, then it must match both A and B
% (label wildcard): % matches any label

. (existence of a child): .z matches any tree whose root has a child labelled z

I: (all children) : !z[P] matches a tree if and only if all children labelled z verify
property P

These operators allow us to express, for example, the fact that a given access
list entry has a port node if its protocol is TCP or UDP:

<rule xmlns="http://info.uqam.ca/config-rules/access-list” >
node|
name[protocol] |
value[TCP v UDP] |
child|
.node.child.node[.name[port]]]]]
\%
node|
name[protocol] |
value[- (TCP Vv UDP)] |
child]
</rule>

A Formal Validation Model for the Netconf Protocol 155

This rule stipulates that if the node defines a protocol whose value tag contains
either TCP or UDP, then there must be a child tag containing a port node.
On the contrary, if protocol is different from TCP and UDP, then the node
has an empty child tag. We can check that both XML trees in table 1 verifiy
the property. In the previous and all the following examples, the actual logical
connectors (and, or, and the like) recognised by TQL have been replaced by
their common symbols for improved clarity.

Notice that this rule is encapsulated inside an XML tag and is referenced in
a global namespace, allowing for a uniform hierarchical classification of possible
syntactical and semantic dependencies, and a better integration in Netconf’s
model. At the moment, we simply ignore this tag and submit the inside query
to the standard TQL tool.

It is even possible to extract the protocol name using the query:

node[.value[$P]]

which places into the variable $P the text inside the value tag for a given tree.

There are many other operators which further extend TQL’s rich seman-
tics [2], [3]. However, all of the interesting constraints we encountered in our
work are expressible by means of those mentioned in this section. For more
information related to TQL and its syntax, the reader is referred to [2] and [3].

4.2 The validate Operation

As there is a correspondence between XML and labelled trees, there is also a
correspondence between tree rules and TQL queries. For example, Tree Rule 2
becomes the TQL query shown in figure 4.

The first part of the query retrieves all tuples of values of device name and
ip address for the interface called Loopback0. These tuples are bound to the
variables $N and $A. The second part of the query makes a further selection
among these tuples, by keeping only those for which there exists a device whose
name is not $N where $A is not listed as a neighbour. If the remaining set is
empty, then all addresses are advertised as neighbours in all other devices, and
the property is verified.

As one can see from the previous example, TQL queries can quickly become
tedious to write and to manage. Fortunately, these queries can be automatically
verified on any XML file by a software tool downloadable from TQL’s site [15].
The tool loads an XML file and a set of TQL properties to be verified on that
structure. It then makes the required validations and outputs the results of each

query.

5 Results and Conclusions

As a concrete example of this method, we processed sample RPC-reply tags
for multiple devices with constraints taken from the MPLS VPN service. These
constraints have been checked in a different context in [§].

156

P1

P2

P3

P4

P5

S. Hallé et al.

<rule xmlns="http://info.ugam.ca/config-rules/vpn/neighbours-declaration” >

network|
.node[
.name[device_name] |
value[$N] |
.child.node[
.namefinterface_type] |
.value[loopback] |
.child.node[
.namefinterface_number] |
.value[0] |
.child.node[
.namelip_address] |
value[$A]]]]]
A
-node[
.name[device_name] |
.value[- $N]
N
- .child.node[
mame[bgp] |
.value[%] |
.child.node[
.name|[neighbor] |
.child.node[
.namelip_address] |

value[$A]]]]]]

</rule>

Fig. 4. TQL query for Tree Rule 2

If two sites belong to the same VPN, they must have similar route distin-
guisher and their mutually imported and exported route-targets must have
corresponding numbers.

The VRF name specified for the PE-CE connectivity and the VRF name
configured on the PE interface for the CE link must be consistent.

The VRF name used for the VPN connection to the customer site must be
configured on the PE router.

The interface of a PE router that is used by the BGP process for PE con-
nectivity, must be defined as BGP process neighbor in all of the other PE
routers of the provider.

The address family vpnv4 must activate and configure all of the BGP neigh-
bours for carrying only VPN IPv4 prefixes and advertising the extended
community attribute.

All these properties were translated into TQL queries, and then verified

against sample XML schema trees of sizes varying from about 400 to 40000

A Formal Validation Model for the Netconf Protocol 157

XML nodes. One query verified only P1 and had a size of 10 XML nodes; the
second query incorporated all the previous five rules and was 81 XML nodes
long. Table 2 shows validation time for these different settings.

Table 2. Validation time for different configuration and rule sizes

Configuration size|Query size|[Validation time (s)
413 10 0,04
413 81 0,24
1639 10 0,06
1639 81 0,47
3681 10 0,09
3681 81 0,84
6539 10 0,12
6539 81 1,29
10213 10 0,15
10213 81 1,87

40823 10 0,52
40823 81 7,03

All queries have been validated on an AMD Athlon 1400+ system running
on Red Hat Linux 9. Validation time for even the complete set of constraints is
quite reasonable and does not exceed 8 seconds for a configuration of more than
40000 nodes. As an indication, a device transmitting a configuration of this size
via an SSH connection in a Netconf rpc-reply tag would send more than 700
kilobytes of text.

For all these sets, TQL correctly validated the rules that were actually true,
and identified the different parts of the configurations that made some rules
false, if any.

6 Conclusions

We have shown in this paper a model for the validate capability proposed by
the current Netconf draft. Based on an existing logical formalism called TQL
that closely suits the XML nature of the protocol, this model extends beyond
simple syntax checking.

We stress the fact that the validation concept must not be limited simply
to mere syntax checking and should encompass semantic dependencies that ex-
press network functions and rules. Formalisms such as the Common Information
Model (CIM) [5] and Directory Enabled Networking (DEN) [14] could be further
exploited to this end.

The VPN case illustrated in the previous sections indicates that using a
subset of a query language like TQL is sufficient to handle complex semantic
dependencies between parameters on interdependent devices.

158 S. Hallé et al.

The results obtained suggest that this framework could be extended to model
most, if not all, such dependencies in device configurations. It is therefore a good
candidate as a template for a formal Netconf model of the validate capability.

References

1. Bush, R., Griffin, T.: Integrity for Virtual Private Routed Networks. Proc. IEEE
INFOCOM (2003)

2. Cardelli, L.: Describing semistructured data. SIGMOD Record, 30(4) (2001) 80-85
3. Cardelli, L., Ghelli, G.: TQL: A query language for semistructured data based on
the ambient logic. Mathematical Structures in Computer Science (to appear).

4. Deca, R., Cherkaoui, O., Puche, D.: A Validation Solution for Network Configura-
tion. Communications Networks and Services Research Conference (CNSR 2004),
Fredericton, N.B. (2004)

5. DSP111, DMTF white paper, Common Information Model core model, version 2.4,
August 30, 2000.

6. Enns, R.: NETCONF Configuration Protocol. Internet draft, Feb. 2004.
http://www .ietf.org/internet-drafts/draft-ietf-netconf-prot-02.txt

7. Gottlob G., Koch, C.: Monadic queries over tree-structured data. LICS’02 (2002)
189202

8. Hallé, S., Deca, R., Cherkaoui, O., Villemaire, R.: Automated Validation of Service
Configuration on Network Devices. Proc. MMNS 2004 (2004) (to appear).

9. Lymberopoulos, L., Lupu, E., Sloman, M.: Ponder Policy Implementation and
Validation in a CIM and Differentiated Services Framework. NOMS 2004 (2004)

10. Lopez de Vergara, J.E., Villagra, V.A., Berrocal, J.: Semantic Management: advan-
tages of using an ontology-based management information meta-model. HP-OVUA
2002 (2002)

11. Pepelnjak, 1., Guichard, J.: MPLS VPN Architectures, Cisco Press (2001)

12. Rosen, E., Rekhter, Y.: BGP/MPLS VPNs. RFC 2547 (1999)

13. Scott, C., Wolfe, P. Erwin, M.: Virtual Private Networks, O’Reilly (1998)

14. Strassner J., Baker F.: Directory Enabled Networks, Macmillan Technical Pub-
lishing (1999)

15. TQL web site, Universita di Pisa. http://tql.di.unipi.it/tql/

Using Object-Oriented Constraint Satisfaction for
Automated Configuration Generation

Tim Hinrich', Nathaniel Love', Charles Petrie', Lyle Ramshaw?,
Akhil Sahai’, and Sharad Singhal®

!Stanford University, CA, USA

HP Laboratories, Palo-Alto, CA, USA
asahai@hpl .hp.com

Abstract. In this paper, we describe an approach for automatically generating
configurations for complex applications. Automated generation of system con-
figurations is required to allow large-scale deployment of custom applications
within utility computing environments. Our approach models the configuration
management problem as an Object-Oriented Constraint Satisfaction Problem
(OOCSP) that can be solved efficiently using a resolution-based theorem-
prover. We outline the approach and discuss both the benefits of the approach
as well as its limitations, and highlight certain unresolved issues that require
further work. We demonstrate the viability of this approach using an e-
Commerce site as an example, and provide results on the complexity and time
required to solve for the configuration of such an application.

1 Introduction

Automated resource configuration has gained more importance with the advent of
utility computing initiatives such as HP’s Utility Data Centerproduct, IBM’s “on-
demand” computing initiative, Sun’s N1 vision, Microsoft’s DSI initiative and the
Grid initiative within the Global Grid Forum. All of these require large resource pools
that are apportioned to users on demand. Currently, the resources that are available to
these resource management systems are “raw” computing resources (servers, storage,
or network capacity) or simple clusters of machines. The user still has to manually
install and configure applications, or rely upon a managed service provider to obtain
pre-configured systems.

Creating custom environments is usually not possible because every user has dif-
ferent requirements. Managed service providers rely on a small set of pre-built (and
tested) application environments to meet user needs. However, this limits the ability of
users to ask for applications and resources that have been specially configured for
them. In our research, we are focusing on how complex application environments (for
example, an e-Commerce site) can be automatically “built-to-order” for users from
resources represented as hierarchies of objects. In order to create a custom solution
that satisfies user requirements, many different considerations have to be taken into
account. Typically, the underlying resources have technical constraints that need to be

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 159-170, 2004.
© IFIP International Federation for Information Processing 2004

160 T. Hinrich et al.

met in order for valid operations—not all operating systems will run on all processors,
and not all application servers will work with all databases. In addition, system op-
erators may impose constraints on how they desire such compositions to be created.
Finally, the users themselves have requirements on how they want the system to be-
have, and can specify these as arbitrary constraints in the same language the system
operators do. These rich and diverse constraints make automating the design, deploy-
ment and configuration of such complex environments a hard problem.

In the course of investigating this problem, we encountered a powerful formalism
able to model configuration management problems that are inherently object-
oriented: the Object-Oriented Constraint Satisfaction Problem (OOCSP). As noted
above, the utility computing environment is significantly complicated by allowing the
customers to arbitrarily constrain the systems produced—there are no set number of
dials they can adjust, they in fact have complete freedom to dictate all aspects of the
system configuration. In the case of these arbitrary object-oriented configuration
management problems, the OOCSP formalism offers a domain-independent method
for producing solutions. This paper explains the result of our work on two parallel
goals: solving utility computing instances with OOCSPs, and using utility computing
to investigate the capabilites of the formalism.

2 Problem Definition

A number of languages/standards [1] [2] exist which can be used to describe resource
configurations. Of these, the Common Information Model (CIM) of the Distributed
Management Task Force (DMTF) [3] is widely used in the industry to represent re-
source configurations. In CIM, the type model captures the resource types, and the
inheritance, aggregation, and association relationships that exist between them. A
cooresponding instance model describes the Instances of the classes with the attribute
values filled in. Typically, the resource types deal with a large number of classes,
because the models have to describe not only the “raw” resources, but also those that
can be composed out of those resource types.

When resources are combined to form other higher-level resources, a variety of
rules need to be followed. For example, when operating systems are loaded on a host,
it is necessary to validate that the processor architecture assumed by the operating
system is indeed the architecture of the host. Similarly, when an application tier is
composed from a group of servers, it may be necessary to ensure that all network
interfaces are configured to be on the same subnet or that the same version of the
application is loaded on all machines in the tier. To ensure correct behavior of a rea-
sonably complex application, several hundred such rules may be necessary. This is
further complicated by the fact that a large fraction of these rules are not inherent to
the resources, but depend on preferences (policies) provided by the system operator
or indeed, by the customer as part of the request itself.

The current CIM meta-model does not provide the capability to capture such rules.
To accommodate these rules, we have extended the CIM meta-model to associate
policies with the resource types. These policies capture the technical constraints and
choices made by the operators or administrators that need to be obeyed by every

Using Object-Oriented Constraint Satisfaction 161

instance of the associated class. By capturing the constraints on what is possible (or
permitted) for the values of the model attributes within an instance of policy that is
attached to the resource type (as opposed to within the model itself), it becomes pos-
sible to customize the configurations that are valid without constantly extending the
models. The users can request customization of particular resources from the avail-
able resource types by specifying additional constraints' on their attribute values and
on their arrangement in the system. These requests could be for instances of “raw”
resources or for composite resources. Our goal is to automatically generate a system
configuration by selecting the appropriate resource classes and assigning values to
their attributes so that all constraints specified in the underlying resource models are
satisfied.

3 A Running Example

We will start by describing a particular utility computing problem that will be used
for illustration throughout the paper. We will be using a more compact representation
[4] for MOF specifications and their associated constraints. In all that follows we
represent a constraint on a particular MOF specification by surrounding it with the
keyword satisfy and including it within the specification itself. The example in ques-
tion models a collection of hardware and software components that can be assembled
to build an e-Commerce site. The objects themselves can be defined hierarchically
with e-Commerce at the top. An e-Commerce site includes three tiers of servers, in-
cluding web, database, and applications servers; additional resources include a variety
of operating systems, software applications, computers, and networking components.
The class definitions in this environment contain the expected compositional con-
straints, like restricting mySQL to Linux servers. The example also contains mathe-
matical constraints—resources have cost attributes with values constrained to be the
sum of the costs of the objects contained within the resource. One portion of a class
definition from this example—the DatabaseServer class—appears below. It is the
compressed version of the example in Section 2.

class DatabaseServer

type: String;
server: Server;
swimage: Installedsoftware;

satisty (swImage.name == “Database”);

satisfy ((type == “Oracle”) v (type == “mySQL”));

satisfy ((type == “Oracle”) = (swImage.version == 9));

satisfy ((type == “mysQL”) = (server.osImage.name ==
“Linux")g;

' The terms policy, constraint, and rule are frequently used interchangeably. From this point
forward we will use only the term constraint.

162 T. Hinrich et al.

User requests in our example consist of a distinguished target class usually called
main, which contains a variable of type eCommercesite. Any,user require-
ments, appear, as,constraints on,that variable. For example, the request

main {
ecomm: eCommercesite;
satisfy (ecomm.tierl.numservers >= 10);
satisfy (ecomm.tps == 5000);

asks for an instance of an e-Commerce site with at least ten servers in tierl, support-
ing 5,000 transactions per second. A solution is simply an instance of an eCommerce-
site object, represented just as DatabaseServer is represented above. Thus generating
an e-Commerce configuration amounts to building an instance of the eCommercesite
class.

The full example includes around twenty of these class definitions, ranging in com-
plexity from an e-Commerce site down to specifications for a particular type of com-
puter. Snippets from this problem will show up repeatedly in what follows as illustra-
tion, but the principles illustrated will be applicable to a broad range of configuration
management problems.

4 Configuration Management as an OOCSP

As shown above, configuration management problems such as utility computing can
often be modeled as a hierarchy of class definitions with embedded constraints. Ab-
stracting away from the details of any particular problem can allow a more compre-
hensive understanding of not only the problem but also the possible routes for solu-
tion. Paltrinieri [10] outlines the notion of an Object-Oriented Constraint Satisfaction
Problem (OOCSP), which turns out to be a natural abstraction for a broad class of
configuration management problems. Similarly, Alloy [6] uses an object oriented
specification for describing and analyzing software models.

An OOCSP is defined by a set of class definitions, a set of enumerations, and a
distinguished target class, much like main in a JAVA program. Each class definition
includes an ordered set of variables, each with a declared type, and a set of constraints
on those variables; each class also has a name, a set of super classes, and a function
Dot (.) that gives access to its variables. An enumeration is simply a set of values;
declaring a variable as an enumeration forces the variable to be assigned to one of the
elements in that set. A solution to an OOCSP is an instance of the target class. In an
OOCSP, the constraints are embedded hierarchically so that if an object is an instance
of the target class (i.e. it satisfies all the constraints within the class) it includes in-
stances of all the target’s subclasses, which also satisfy all constraints within those
classes. In this view of the problem, the sources of the constraints—from customers,
administrators, or system designers—is no longer important, and any solution must
satisfy all constraints, regardless of origin. The production of constraints forms a user
interface problem that is outside the scope of this investigation.

The OOCSP for the e-Commerce example includes class definitions for eCommer-
cesite, DatabaseServer, Server, and InstalledSoftware among others. The class defini-

Using Object-Oriented Constraint Satisfaction 163

tions contain a set of variables, each with a declared type. DatabaseServer includes (in
order) a String variable type, a variable server of type Server, and a variable swI-
mage of type InstalledSoftware. One of the constraints requires the name component
of swImage to be “Database”. It has no superclasses, and the function Dot is defined
implicitly.

While it is clear how to declare variables within a class, many options exist for how
to the express constraints on those variables. In our examples we use standard logical
connectives, like v and =», to mean exactly the same thing they do in propositional
and first-order logic. We have formally defined the language chosen for representing
constraints both by giving a logician a particular vocabulary and by giving a grammar;
these definitions are virtually identical.

The constraint language includes all quantifier-free first-order formulas over the fol-
lowing vocabulary.

1. r is a relation constant iffr is the name of a class, equality or an inequality symbol
2. fis a function constant iff f is the binary Dot or a mathematical function

3. v is a variable iff v is declared as a variable or starts with a letter from the end of
the alphabet, e.g. X, y, z

4. c is an object constant iff ¢ is an atomic symbol and not one of the above

The constraints seen in the DatabaseServer example are typical and have been ex-
plained elsewhere. Two types of constraints that do not appear in our example de-
serve special mention. Consider the following snippet of a class definition.

x: DatabaseServer;

y: DatabaseServer;

X ==Y;
We define equality to be syntactic; two objects are equal exactly when all their prop-
erties are equal. That means that two objects that happen to have all the same proper-
ties are treated as essentially the same object. The exception to this interpretation of
equality is arithmetic. Not only is 7==7 satisfied, but so is 2*2==4, as one would hope,
even though syntactically 4 is different than 2*2.

The other type of notable constraint is more esoteric; consider the following.

X: Any;

y:Any;

satisfy (DatabaseServer(“Oracle”, x, y));
This constraint requires x and y to have values so that DatabaseServer(“‘Oracle”, X, y) is a
valid instance of DatabaseServer. These constraints become valuable when one wants
to define an object of arbitrary size, like a linked list:

class List {

data: Any;

tail: Any;

satisfy ((tail = nil) v List(tail.data,
ic:aﬂ .tail));

164 T. Hinrich et al.

This List class is recursively defined, with a base case given by the disjunct tail ==
nil; the recursive case is the second disjunct, which requires tail itself to be a List
object. Our constraint language allows us to define these complex objects and also
write constraints on those objects.

Given what it means to satisfy a constraint we can precisely describe what it means
for an object to be an instance of a particular class. An instance of a class T, is,an
ordered, set of objects,,one, for, each variable, such,, that (1) the
object assigned to a variable of type R is an instance of R and (2) the constraints of T
are satisfied. The base case for this recursive definition is the enumerations, which are
effectively objects without subcomponents. Objects are instances of an enumeration if
they are one of the values listed in that enumeration.

To illustrate, an instance of a DatabaseServer is an object with three components:
an instance of String, an instance of Server, and an instance of InstalledSoftware.
Those components must satisfy all the constraints in the DatabaseServer class. The
instance of Server must likewise include some number of components that together
satisfy all the constraints within Server. The same applies to InstalledSoftware.

This section has detailed how one can formulate configuration management prob-
lems as OOCSPs”. The next section confronts building a system to solve these con-
figuration management problems.

5 Solving Configuration Management Problems by Solving
OOCSPs

Our approach to solving configuration management problems is based on an OOCSP
solver. The two main components of the system communicate through the OOCSP
formalism. The first component includes a model of the utility computing environ-
ment at hand. It allows administrators to change and expand that model, and it allows
users to make requests for specific types of systems without worrying too much about
that model. The second component is an OOCSP solver based on a first-order resolu-
tion-style [12] theorem prover Epilog, provided by the Stanford Logic Group. It is
treated as a black box that takes an OOCSP as input and returns a solution if one
exists. The rest of this paper focuses on the design and implementation of the OOCSP
solver and discusses the benefits and drawbacks in the context of configuration man-
agement.

The architecture of the OOCSP solver can be broken down into four parts. Given a
set of class definitions, a set of enumerations, and a target class, a set of first-order
logical sentences is generated. Next, those logical sentences are converted to what is
known as clausal form, a requirement for all resolution-style theorem provers. Third,
a host of optimizations are run on the resulting clauses so that Epilog can more easily
find a solution. Lastly, Epilog is given the result of the third step and asked to find an
instantiation of the analog of the target class. If such a solution exists, Epilog returns
an object that represents that instantiation, which by necessity includes instantiations

2 We believe the notion of an OOCSP is equivalent to a Context Free Grammar in which each
production rule includes constraints that restrict when it can be applied.

Using Object-Oriented Constraint Satisfaction 165

of all subcomponents of the target class, instantiations of all the subcomponents’
subcomponents, and so on. Epilog also has the ability to return an arbitrary number of
solutions or even all solutions. Because the conversion to clausal form is mechanical
and the optimizations are Epilog-specific, we will discuss in detail only the translation
of an OOCSP to first-order logic, the results of which can be used by any first-order
theorem prover.
Consider the class definition for DatabaseServer. Recall we can represent an in-
stance of a class with a term, e.g.
Database-
server(“oracle”,server(...),Installedsoftware(...))
Notice this is intended to be an actual instance of a DatabaseServer object. It includes
a type, Oracle, and instances of the Server class and the InstalledSoftware class. To
define which objects are instances of DatabaseServer given our representation for
such instances we begin by requiring the arguments to the DatabaseServer term be of
the correct type.

DatabaseServer.instance(DatabaseServer(x, y, 2z)) «
string.instance(x) A
Server.instance(y) a
Installedsoftware.instance(z) A ...

But because a DatabaseServer cannot be composed of any String, any Server in-
stance, and any InstalledSoftware instance this sentence is incomplete. The missing
portion of the rule represents the constraints that appear within the DatabaseServer
class definition. These constraints can almost be copied directly from the original
class definition giving the sentence shown below.

DatabaseServer.instance(DatabaseServer(x, y, z)) &«
(string.instance(x) a
Server.instance(y) A
InstalledSsoftware.instance(z) A

z.name == “Database” A

((x == “oracle”) v (x == “mysSQL”)) A

((x == “oracle”) = (z.version == 9)) A

((x == “mysqQL”) = (y.osImage.name == “Linux”)))

Similar translations are done for all class definitions in the OOCSP.

Once these translations have been made for all classes and enumerations in the
OOCSP to first-order logic, the conversion to clausal form is entirely mechanical and
a standard step in theorem-proving. For any particular class definition these first two
steps operate independently of all the other class definitions; consequently, if an
OOCSP has been translated once to clausal form and changes are made to a few
classes, only those altered classes must undergo this transformation again.

Once the OOCSP has been converted into clausal form the result is a set of rules
that look very similar to the sentence defining DatabaseServer above. Several algo-
rithms are run on these rules as optimizations. These algorithms prune unnecessary
conjuncts, discard unusable rules, and manipulate rule bodies and heads to improve
efficiency in the final step. Doing all this involves reasoning about both syntactic
equality and the semantics of the object-oriented Dot function. These algorithms
greatly reduce the number and lengths of the rules, consequently reducing the search

166 T. Hinrich et al.

space without eliminating any possible solutions. Some of these optimizations are
global, which means that if any changes are made to the OOCSP those algorithms
must be run again. Because one of the optimizations pushes certain types of con-
straints down into the hierarchy, it is especially important to apply it once a new
query arrives.

The final step invokes Epilog by asking for an instantiation of the (translated) tar-
get class. If the target class were DatabaseServer, the query would ask for an instance
x such that DatabaseServer.instance(x) is entailed by the rules left after optimization,
i.e. X must be an instance of DatabaseServer. Moreover one can ask for an arbitrary
number of these instances or even all the instances.

6 Consequences of Our Approach

We have made many choices in modeling and solving problems in the configuration
management domain, both in how we represent a configuration management problem
as an OOCSP and in how we solve the resulting OOCSP. This section explores those
choices and their consequences.

6.1 Modeling Configuration Management Problems

The choice of the object-oriented paradigm is natural for configuration management--
coupling this idea with constraint satisfaction leads to easier maintenance and adapta-
tion of the problem so modeled. Our particular choice of language for expressing
these constraints has both benefits and drawbacks and our decision to define equality
syntactically may raise further questions.

Benefits

Modeling a configuration management problem as an OOCSP gives benefits similar
to those gained by writing software in an object-oriented language. Class definitions
encapsulate the data and the constraints on that data that must hold for an object to be
an instance of the class. One class can inherit the data and constraints of another,
allowing specializations of a more general class to be done efficiently. Configuration
management naturally involves reasoning about these hierarchically designed objects;
thus it is a natural fit with the object-oriented paradigm.

Modeling configuration management as a constraint satisfaction problem also has
merits, mostly because stating a CSP is done declaratively instead of imperatively.
Imperative programming requires explaining how a change in one of an object’s
fields must change the data in its other fields to ensure the object is still a valid in-
stance. Doing this declaratively requires only explaining what the relationship be-
tween the fields must be for an object to be a valid instance. How those relationships
are maintained is left unspecified. An imperative program describes a computational

Using Object-Oriented Constraint Satisfaction 167

process, while the declarative version describes the results of that computational pro-
cess.

Design configuration problems have previously been addressed in three primary
ways. The first is as a standard CSP problem. The OOCSP has the obvious advantage
that configuration problems are easier to formulate as a set of component classes and
constraints among them. In particular, a CSP requires the explicit enumeration of
every possible variable that could be assigned and the OOCSP does not.

Design configuration has also been attempted with expert systems [12] but domain
knowledge rules are too difficult to manage because of implicit control dependencies,
so the approach does not scale. The OOCSP has the advantage that the formalism is
clear and the ordering of the domain knowledge has no impact on the set of possible
solutions. A third approach has been to add search control as heuristics to a structure
of goals and constraints [8] [9], but this approach is more complex and slower than the
OOCSP approach.

Limitations

The choices outlined above do have drawbacks. In particular first-order logic is very
expressive, so using it as our constraint language comes at a cost: first-order logic is
fundamentally undecidable—there is no algorithm that can ensure it will always give
the correct answer and at the same time halt on all inputs. If there is a solution it will
be found in a finite amount of time; otherwise the algorithm may run forever. We
have not yet determined the decidability and complexity of the subset of first-order
logic we are using in our research. Simpler languages might lead immediately to
certain complexity bounds, but as mentioned above we are interested in solving
problems where we are selecting both the classes that need to be instantiated, as well
as the number of instances of those classes based on arbitrary constraints. We have
chosen to start with a language that is expressive enough to write such constraints and
a natural fit for the utility computing problem, but as currently written it may be too
expressive. We can restrict this language further if decidability or complexity become
practical issues for particular applications. Certain subclasses of OOCSPs are poly-
nomial, others are NP-Complete, and others even worse; our approach encompasses a
range of results, and the right balance between expressivity and computability must
be carefully considered when scaling to more complex utility computing instances.

6.2 Solving OOCSPs by Translation to First-Order Logic

Once a configuration problem has been modeled as an OOCSP, several options are
available for building a configuration that meets the requirements embedded in that
OOCSP. We have chosen to find such configurations by first translating the OOCSP
into first-order logic sentences and then invoking a resolution-based theorem prover.
To rehash the system’s architecture, the input to the system is an OOCSP. That input
is first translated into first-order logic, which is in turn translated to a form suitable
for resolution-style theorem provers; this form is then optimized for execution in
Epilog.

168 T. Hinrich et al.

Benefits

Translating an OOCSP into first order logic can be done very quickly, in time linearly
proportional to the number of class definitions. Both this translation and the one from
first-order logic to clausal form can be performed incrementally; each class definition
is translated independently of the others. The bulk of the optimization step can also be
run as each class is converted, but the global optimizations can be run only once the
user gives the system a particular query. These optimizations aggressively manipulate
the set of constraints so it is tailored for the query at hand.

Using Epilog as the reasoning engine provides capabilities common to first-order
theorem provers. Epilog can both produce one answer and all answers. More inter-
estingly it can produce a function that with each successive call returns a new solu-
tion, giving us the ability to walk through as much or as little of the search space as
needed to find the solution we desire. As we will discuss in Section 7, Epilog can at
times find solutions very rapidly.

Limitations

While the translation from an OOCSP into first-order logic requires time linearly
proportional to the size of the OOCSP, our use of a resolution-based theorem prover
requires those first-order sentences be converted into clausal form. There may be an
exponential increase in the number of sentences when doing this conversion; thus not
only the time but also the space requirements can become problematic.

Another source of discontent is the number of solutions found by Epilog. Many theo-
rem provers treat basic mathematics, addition, multiplication, inequality, etc., with
procedural attachments. This means that if one of the constraints requires X < 5, the
theorem prover will find solutions only in those branches of the search space where x
is bound to a number that happens to be less than five. If x is not assigned a value the
theorem prover will not arbitrarily choose one for it. Our theorem prover, Epilog, has
these same limitations.

Yet another problem with using first-order logic is derived from one of the benefits
mentioned in Section 6.1. It is as expressive as any programming language, i.e. first-
order logic is Turing complete. That means answering queries about a set of first-
order sentences is formally undecidable; if the query can be answered positively,
Epilog will halt. If the query cannot be answered positively Epilog may run forever.
This problem is common to all algorithms and systems that soundly and completely
answer queries about first-order sentences. But it seems undecidability may also be a
property of OOCSPs; our conversion to first order logic may not be overcomplicating
the problem of finding a solution at all. Theoretically our approach to solving
OOCSPs may turn out to be the right one; however, from a pragmatic standpoint
many OOCSPs will simply be hierarchical representations of CSPs, which means
such OOCSPs are decidable.

Using Object-Oriented Constraint Satisfaction 169

7 Experimental Results and Future Work

The OOCSP solver architecture is a fairly simple one, and for our running example
results are promising, even at this early stage. Translating the OOCSP with eighteen
classes into clausal form requires four to five minutes and results in about 1150 rules.
The optimization process finishes in five seconds and reduces the rule count to
around 620. Those eighteen class definitions and the user request allow for roughly
150 billion solutions; in other words, our example is under-constrained. That said,
Epilog finds the first solution in 0.064 seconds; it can find 39000 solutions in 147
seconds before filling 100 MB of memory, which is a rate of 1000 solutions every 3-4
seconds. If we avoid the memory problem by not storing any solutions but only
walking over them, it takes 114 seconds to find those same 39000 answers--the num-
ber of answers returned by Epilog is entirely up to the user. These are results for a
single example. More complicated examples are the subject of future work’.

The limitations discussed in Section 6 present a host of problems: possible unde-
cidability, exponential blowup when converting to clausal form, inexpressiveness of
syntactic equality, incompleteness of mathematical operators. Undecidability might
be dealt with by restricting the constraint language significantly. Clausal form is fun-
damental to using a resolution-based theorem prover; changing it to eliminate the
accompanying conversion cost would require building an entirely new system. Syn-
tactic equality, while less expressive than we might like, may be sufficient for solving
the class of problems we want to solve.

The system configuration problem, however, is not the only problem to be solved
when building an automatic configuration management service. In order to use one of
the configurations the system has produced, that configuration must be coupled with a
workflow—a structured set of activities—that will bring the configuration on line
[10]. We plan to use situation calculus [11], which has been explored and expanded
for 35 years. The convenient part is that an OOCSP is expressive enough to embed
these carefully crafted sentences. Thus one need only write the correct OOCSP to
produce both a configuration and a workflow. We are currently investigating this
idea.

8 Conclusion

In this paper, we have described an approach to automated configuration management
that relies on an Object-Oriented Constraint Satisfaction Problem (OOCSP) formula-
tion. By posing the problem as an OOCSP, we can specify system configuration in a
declarative form and apply well-understood techniques to rapidly search for a con-
figuration that meets all specified constraints. We discussed both the benefits and
limitations of this approach.

3 These statistics are for a 500 MHz PowerPC G4 processor with 1 GB of RAM and Epilog
running on MCL 5.0.

170

T. Hinrich et al.

References

1. Unified Modeling Language (UML) http://www.uml.org/

2. SmartFrog http://www.smartfrog.org/

3. CIM http://www.dmtf.org/standards/cim/

4. Sahai, S. Singhal, R. Joshi, V. Machiraju, “Automated Policy-Based Resource Construc-
tion in Utility Environments” Proceedings of the IEEE/IF1P NOMS, Seoul, Korea, Apr.
19-23, 2004

5. M. Paltrinieri, “Some Remarks on the Design of Constraint Satisfaction Problems,” Sec-
ond International Workshop on the Principles and Practice of Constraint Programming,
pp- 299-311, 1994.

6. Alloy http://sdg.lcs.mit.edu/alloy/

7. J. A. Robinson, “A machine-oriented logic based on the resolution principle,” Journal of
the Association for Computing Machinery, 12:23-41, 1965.

8. S. Mittal and A. Araya. “A Knowledge-Based Framework for Design,” Proceedings of the
Sth AAAIL 1986.

9. Petrie, “Context Maintenance,” Proceedings AAAI-91, pp. 288-295, 1991.

10. Sahai, S. Singhal, R. Joshi, V. Machiraju, “Automated Generation of Resource Configu-
rations through Policy,” to appear in Proceedings of the IEEE 5™ International Workshop
on Policies for Distributed Systems and Networks, YorkTown Heights, NY, June 7-9,
2004

11. J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of artifi-
cial intelligence. Machine Intelligence 4, pp. 463-502, 1969.

12 M. R. Hall, K. Kumaran, M. Peak, and J. S. Kaminski, “DESIGN: A Generic

Configuration Shell,” Proceedings 3rd International Conference on Industrial &
Engineering Applications of Al and Expert Systems, 1990.

Problem Determination Using Dependency Graphs and
Run-Time Behavior Models

Manoj K. Agarwal', Karen Appleby?, Manish Gupta', Gautam Kar’,
Anindya Neogi', and Anca Sailer’

' IBM India Research Laboratory,
New Delhi, India
{manojkag, gmanish, anindya neogi}@in.ibm.com
2IBM T.J. Watson Research Center, Hawthorne, NY, USA
{gkar, applebyk, ancas}e@us.ibm.com

Abstract. Key challenges in managing an I/T environment for e-business lie in
the area of root cause analysis, proactive problem prediction, and automated
problem remediation. Our approach as reported in this paper, utilizes two im-
portant concepts: dependency graphs and dynamic runtime performance char-
acteristics of resources that comprise an I/T environment to design algorithms
for rapid root cause identification in case of problems. In the event of a re-
ported problem, our approach uses the dependency information and the behav-
ior models to narrow down the root cause to a small set of resources that can be
individually tested, thus facilitating quick remediation and thus leading to re-
duced administrative costs.

1 Introduction

A recent survey on Total Cost of Operation (TCO) for cluster-based services [1] sug-
gests that a third to half of TCO, which in turn is 5-10 times the purchase price of the
system hardware and software, is spent in fixing problems or preparing for impending
problems in the system. Hence, the cost of problem determination and remediation
forms a substantial part of operational costs. Being able to perform timely and effi-
cient problem determination (PD) can contribute to a substantial reduction in system
administration costs. The primary theme of this paper is to show how automatic PD
can be performed using system dependency graphs and run-time performance models.

The scope of our approach is limited to typical e-business systems involving HTTP
servers, application servers, messaging servers, and databases. We have experimented
with benchmark storefront applications, such as TPC-W bookstore [2]. The range of
problems in distributed applications is very large, from sub-optimal use of resources,
violation of agreed levels of service (soft-faults), to hard failures, such as disk crash.
In a traditional management system, problem determination is related to the state of
components at system level (e.g., CPU, memory). Thus, a monitored system compo-
nent that fails, notifies the management service, which manually or automatically
detects and fixes the problem. However, when a transaction type “search for an item
in an electronic store” shows a slowdown and violates user SLA (in this paper, we do

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 171-182, 2004.
© IFIP International Federation for Information Processing 2004

172 M.K. Agarwal et al.

not distinguish between SLA and SLO (Service Level Objective)), it is often an
overwhelming and expensive task to figure out which of the many thousands of com-
ponents, supporting such a transaction, should be looked at for a possible root cause.
In this paper, we focus on the soft-faults within the e-business service provider do-
main. An approach towards tackling this complex area is combining the run-time
performance modeling of system components with the study of their dependencies.
The next section will provide a short summary of the notion of dependencies and
dependency graphs, reported in detail in previous publications [4].

The main thesis of this paper is that PD applications can use the knowledge pro-
vided by dependency graphs and resource performance models to quickly pinpoint the
root cause of SLA or performance problems that typically manifest themselves at the
user transaction level. The monitoring data, say response time, is collected from indi-
vidual components and compared against thresholds preset by a system administrator.
Each time the monitored metric exceeds the threshold, an alert event is sent to a cen-
tral problem determination engine, which correlates multiple such events to compute
the likely root cause. Thresholds are hard to preset, especially in the event of sudden
workload changes, and their use often results in spurious events. The primary contri-
bution of this paper is that, we dynamically construct response time baselines for each
component by observing its behavior. When an SLA monitor observes an end-to-end
transaction response time violation due to some degradation inside the system, the
individual components are automatically ranked in the order of the violation degree of
their current response time level with their constructed good behavior baseline and of
their dependency information. A system administrator can then scan the limited set of
ranked components and quickly determine the actual root cause through more detailed
examination of the individual components. The net gain here is that the administrator
would need to examine far fewer components for the actual root cause, than conven-
tional management approaches.

In this paper, we describe the creation of simple performance models using re-
sponse time measurement data from components, end-to-end SLA limits, and compo-
nent dependency graphs. We show how, given end-to-end SLA violations, these dy-
namic models, in combination with dependency graphs, can be used to rank the likely
root cause components.

The management system has an architecture designed in three tiers, as shown in
Fig. 1. The first tier consists of monitoring agents specific to server platforms. These
agents can interface with the monitoring APIs of the server platforms, extract compo-
nent-wise monitoring data and send them to the second tier. In the second tier, the
online mining engine (OME) performs dependency extraction (if required), weighs the
extracted dependencies, and stores them in a repository. The accurate dependency
data may be provided through transaction correlation instrumentation, such as ARM
[3]. Otherwise it is extracted by mining techniques in OME [4][5], from aggregate
monitoring data. A standardized object-oriented management data modeling technol-
ogy called Common Information Modeling (CIM) [6] is used when storing the de-
pendency information in a database. The third tier comprises management applica-
tions, for example the PD application to be described in this paper, which uses the
CIM dependency database.

Problem Determination Using Dependency Graphs 173

The rest of the paper is structured as follows: Section 2 provides a short back-
ground on dependency analysis and dependency graphs. Section 3 outlines some of
the more popular tools and approaches for performing PD to establish the relevance
of our work to this area. In Section 4 we describe our algorithms for resource behav-
ior modeling and we show how they can be used for PD in Section 5. Section 6 pres-
ents the prototype environment on which our PD technique is being applied and
tested. We conclude the paper in Section 7 with a summary and a discussion of our
on-going and future work in this domain.

Fig. 1. Management system architecture

2 Background

This section presents an overview of the general concept of dependencies as applied
to modeling relationships in a distributed environment.

Consider any two components in a distributed system, say A and B, where A, for
example, may be an application server, and B a database. In the general case, A is said
to be dependent on B, if B’s services are required for A to complete its own service.
One of the ways to record this information is by means of a directed graph, where A
and B are represented as nodes and the dependency information is represented by a
directed arc, from A to B, signifying that A is dependent on B. A is referred to as the
dependent and B as the antecedent. A weight may also be attached to the directed
edge from A to B, which may be interpreted in various ways, such as a quantitative
measure of the extent to which A depends on B or how much A may be affected by
the non-availability or poor performance of B, etc. Any dependency between A and B
that arises from an invocation of B from A may be synchronous or asynchronous.

There are different ways in which dependency information can be computed. Many
of these techniques require invasive instrumentation, such as the use of ARM [3]. The
algorithms that we have designed and implemented [5] do not require such invasive

174 M.K. Agarwal et al.

changes. Instead they infer dependency information by performing statistical correla-
tion on run time monitored data that is typically available in a system. Of course, this
approach is not as accurate as invasive techniques, but our experiments show that the
level of accuracy achieved is high enough for most management applications, such as
problem determination/root cause analysis, that can benefit by using the dependency
data. Here, accuracy is a measure of how well an algorithm does in extracting all
existing dependencies in a system. An additional consequence of a probabilistic algo-
rithm, such as ours, is that false dependencies may be recorded which could mislead a
PD application into identifying an erroneous root cause. We have devised a way of
minimizing such adverse effects by ensuring that our probabilistic algorithms attach
low weights to false dependencies. Thus, if all the antecedents of a dependent com-
ponent were ranked in order of descending weights in the dependency graph, a PD
application, while traversing this graph would be able to identify the root cause before
encountering a false dependency with low weight. A measure of how disruptive false
dependencies are in a weighted dependency graph is precision [4]. Simply stated, a
dependency graph with high precision is one where the false dependencies have been
assigned very low weights. In the next section we highlight some of the PD systems
that are available today and point out their relevance to our work.

3 Related Work

Problem Determination (PD) is the process of detecting misbehavior in a monitored
system and locating the problems responsible for the misbehavior. In the past, PD
techniques have mainly concentrated on network [7], and system [9] level fault man-
agement. With the emerging Internet based service frameworks such as e-commerce
sites, the PD challenge is how to pinpoint application performance root causes in
large dynamic distributed systems and distinguish between faults and their conse-
quences.

In a traditional management system, PD is related to the state of components at
system level (e.g., CPU, memory, queue length) [9]. In application performance
analysis, the starting point for choosing the metrics for detecting performance prob-
lems is the SLA. In our scenario, we consider a response time based SLA and char-
acterize the system components in terms of their response time to requests triggered
by user transactions. Our solution addresses the case of ARM enabled systems as
well as legacy systems, and relies on agents (both, ARM agents and native agents) to
collect monitoring data.

The classical approach to constructing models of the monitored components is one
that requires detailed knowledge of the system [11][12]. As such models are difficult
to build and validate. Most approaches use historical measurements and least-squares
regression to estimate the parameters of the system components [13]. Diao et al. use
the parameters in a linear model and the model generation is only conducted once for
a representative workload, experimentally showing that there is no need to rebuild the
model once the workload changes [14]. We generate the behavior characteristics of
the monitored components based on historical measurements and statistical tech-
niques, distinguishing between the good behavior model and the bad behavior model.

Problem Determination Using Dependency Graphs 175

Furthermore, while many efforts in the literature address behavior modeling of indi-
vidual components, e.g., Web Server [14], DB2 [15], we characterize the resources’
behavior keeping in mind the end-to-end PD of the application environment as a
whole.

Most PD techniques rely on alarms emitted by failed components to infer that a
problem occurred in the system [19]. Brodie ef al. discuss an alternate technique
using synthetic transactions to probe the system for possible problems [16]. Steinder
et al. review the existing approaches to fault localization and also presents the chal-
lenges of managing modern e-business environments [8]. The most common ap-
proaches to fault localization are Al techniques (e.g., rule-based, model-based, neural
networks, decision trees), model traversing techniques (e.g., dependency-based), and
fault propagation techniques (e.g., codebook-based, Bayesian networks, causality
graphs). Our solution falls in the category of model traversing techniques. Bagchi et
al. implement a PD technique based on fault injection, which may not be acceptable
in most e-business environments [17]. Chen ef al. instrument the system to trace re-
quest flows and perform data clustering to determine the root cause set [21]. Our
technique uses dynamic dependencies inferred from monitored data without any extra
instrumentation or fault injection.

4 Behavior Modeling Using Dependency Graphs

We assume an end-user SLA with an end-to-end response time threshold specified for
each transaction type. An SLA monitor typically measures the end-to-end response
time of a transaction, but it has no understanding of how the transaction is executed
by the distributed application on the e-business system. Hence, when an SLA limit for
a transaction type is exceeded, the monitor has no idea about the location of the bot-
tleneck within the system. In this section, we describe how one can construct dynamic
thresholds for the internal components by observing their response time behavior.

4.1 Monitoring

A threshold is an indicator of how well a resource is performing. In most manage-
ment systems today, thresholds are fixed, e.g., an administrator may set a threshold of
x seconds for the response time of a database service, meaning that if the response is
over x, it is assumed that the database has a problem and an alert should be issued.
We introduce the concept of dynamic thresholds, which can be changed and adjusted
on a regular basis through our behavior modeling, thus accommodating changes in
operating conditions, such as application load. The good behavior model or dynamic
threshold of a component is constructed based on two inputs: response time samples
obtained through the monitoring infrastructure and a resource dependency graph. A
typical real-life monitoring infrastructure provides only aggregate information, such
as average response time and access counts of components etc. In our earlier work
[4][5] we have shown how such aggregate monitoring information can be used to
construct aggregate dependency graphs. As shown in Fig. 2, an aggregate graph cap-

176 M.K. Agarwal et al.

tures the dependency of a transaction type on resources aggregated over multiple
transaction instances.

Our technique of dynamic threshold computation uses an aggregate monitoring in-
frastructure and aggregate dependency graphs. Such graphs may even have imperfec-
tions, such as false and/or missing dependencies. In an extended research report, we
show how our PD algorithm deals with such shortcomings [20]. Our dynamic thresh-
old computation technique currently uses data from HTTP Server logs, WAS Per-
formance Monitoring Infrastructure (PMI), and DB2 Snapshot API. We assume that
the same aggregate monitoring APIs have also been used for dependency graph con-
struction.

1. read response time BT for component C
. lookup graph to create T,
set of transactions that depend on (
2. if any element of T i= in “bad” state
1. bz&_avg[f] = abzd_;vg[t] + [1-)RT
bad N(C) = bad N(C) + 1

~

AP 5

else
good avg(C) = agoed avg(C) + (1-«)RT
4. if(bad W(C) > P)
compute severity(C) = bad avg(C) / good_avg(C)
5. when problem is diagnosed resest

had_H[CJ = bad__avg(t] =0

Fig. 2. Aggregate graph and model-builder logic

4.2 Behavior Modeling

The goal of behavior modeling is to construct a dynamic threshold of a component,
such that when an end-to-end problem is detected, the current response time samples
from the component may be compared with its dynamic threshold.

A transaction type can have two states, henceforth called “good” or “bad”, corre-
sponding to when they are below or above their SLA limits, respectively. Similarly,
each system component should also have a good state or a bad state depending on
whether they are the cause of a problem or are affected by a problem elsewhere. In a
traditional management system, a hard-coded threshold is configured on each indi-
vidual component. A component is in bad state if its response time is beyond the
threshold else it is in good state. Each component in bad state sends an event to a
central event correlation engine, which determines the likely root cause based on
some human generated script or expert rule base. This approach results in a large
number of events from various components. Besides, it is very difficult and error
prone for the system administrator to configure a threshold for a component without
extensive benchmarking experience.

Our management system uses average response time samples from the components
to build their bad or good state performance models. A key feature of our system is

Problem Determination Using Dependency Graphs 177

that it uses the dependency graph to classify response time samples from a component
into bad and good state, instead of hard-coded thresholds on individual components.
The classification rule states that if any parent transaction of a component is in bad
state when the response time sample is obtained, then the sample is classified as “bad”
and added to the bad behavior model of the component, otherwise it is added to its
good behavior model. The good behavior model is an average of the good response
time values and also serves as the dynamic threshold.

Fig. 2 shows the dependency graph of transactions T1 and T2. S1 sometimes ac-
cesses Q1 and sometimes Q2. When a response time sample from query Q2 is ob-
tained, the model-builder logic checks the current state of T1 as well as T2. Only the
SLA monitor can modify the state of T1 and T2. If T1 and T2 are in good state, the
sample is added to the good model of Q2. If either of them is bad because the fault
lies in any of the component in the sub-tree of the bad transaction, the sample is
added to the bad model of Q2. The problem determination logic is invoked after a
few samples of the bad model are obtained. Thereafter, the bad and good models of
each component are compared and the components are ranked as described in Section
5. In our current implementation, a good or bad model is simply the average of the
distribution of good or bad values, respectively. Fig. 2 shows the pseudo-code for the
model-builder logic.

The good model of a component is persistent across problem phases, i.e., it is never
forgotten and more samples make it more dependable for comparison against a bad
model. The bad model samples are typically unique to the particular type and instance
of the problem. Hence the bad models are forgotten after each problem is resolved.
We assume that problems are not overlapping, i.e., there is only one problem source
and independent problem phases do not overlap.

In our current implementation, the cumulative response time of a component ob-
tained from the monitoring infrastructure is used as the model variable. This response
time includes the response time of the child components. For example, the average
response time of S1 includes average response times of Q1 and Q2, as illustrated in
Fig. 2. Thus, if a bottleneck is created at Q1, Q1 as well as S1’s response time behav-
ior models are affected.

The cumulative time is effective in identifying a faulty path in the dependency
tree, but, in many cases, is not adequate in pinpointing the root-cause resource. We
are working on an enhanced approach, where the model variable can be changed to
capture the local time spent at a component, excluding the response time of the chil-
dren. This approach will be reported in a later paper.

5 Problem Determination

In this section we discuss how components may be ranked, so that a system adminis-
trator may investigate them in sequence to determine the actual bottleneck. In normal
mode of operation each component computes a dynamic threshold or a good behavior
model. When a problem occurs at a component, the dependent transactions are af-
fected and all components that are in the transaction’s sub-tree start computing a bad
behavior model. The components that do not build a bad behavior model in this

178 M.K. Agarwal et al.

phase, i.e., those that do not belong to a sub-tree of any affected transaction type, are
immediately filtered out. The next step is to rank all the components in the sub-tree of
an affected transaction.

Each component is assigned a severity value, which captures the factor by which
the bad model differs from the good behavior model or dynamic threshold of the
component. Since a model in the current implementation is a simple average of the
distribution of samples, a simple ratio of the bad model average to the dynamic
threshold represents the severity value. Fig. 5 shows a graph with severity values
computed per node when the problem is at Q2. For example, for component Q2, the
bad model is 105.2 times the dynamic threshold. The un-shaded nodes are not consid-
ered because they do not have a bad model and are assigned a default severity of 0.

The shaded components are sorted based on their severity value as shown in the
first ranking. Besides the root cause component, say Q2, the components that are on
the path from transaction T1 to Q2, such as S1 and S2, have high severity values
because we use the cumulative response time as the model variable and not the local
time spent at a component. Bad models are computed for other nodes in the subtree,
such as Q1 and Q3, but their bad model is very close to their good model because
they do not lie on the “bottleneck path”. Thus, in the first ranking we prune and order
the components in the subtree so that only nodes, which are on the “bottleneck path”
are clustered on top. However, this is not enough to assign the highest rank to the root
cause node. There is no guarantee that a parent of a root cause node, such as S1, is not
going to have higher severity value. For example, in the first ranking in Fig. 5, Q2
appears after S1.

It is possible to reorder the components further based on dependency relationship
and overcome the drawback of using the cumulative response time for modeling.
Given the severity values of the shaded nodes, we apply a standard 2-means cluster-
ing algorithm [18] to divide the set into “high severity set” and “low severity set”. In
our experience, the severity values of the affected and root cause components are
much higher than the unaffected components. For example, the components in Fig. 5
are divided into high severity set: {S1, S2, Q2} and low severity set: {Q1, Q3}. In the
second ranking, if a parent and child are both in the high severity set and the parent is
ranked higher than the child in the first ranking, then their rankings are swapped. The
assumption here is that the high severity of the parent has resulted from the high se-
verity of the child. The assumption holds if there is a single fault in the system and
the transactions are synchronous. Since S1 and Q2 are in the same set, they are reor-
dered and Q2 is picked as the highest rank. Thus a system administrator investigating
the components will first look at Q2 before any other component. The efficiency
of our technique is defined by the rank assigned to the root cause node.

=3 ,-_qft';" -"Si'_- 9.9 1. Sort all nodes in affected sub-graph using severity value
_ AT @@ 'ﬁ 2. Apply Z2-means clustering to divide nodes into
e - = “high severity” and “low severity” sets.
' 3. If A9B and both A and B are in “high severity set”,
and 4 is ranked higher than B, then swap the ranks of A and B.

T

Fig. 3. Ranking logic

Problem Determination Using Dependency Graphs 179

Building performance models and subsequent PD is unaffected by the presence of
the false dependencies or by the aggregate representation of dependency graphs. In

the interest of space, a complete proof is presented in an extended research report
[20].

6 Experimental Evaluation

In this section we present the experimental results to demonstrate the efficiency of our
PD technique using behavior models and dependency graphs.

The experimental setup is shown in Fig. 1. The OME is used to extract dependen-
cies between servlets and SQLs in the TPC-W application installed on WAS and
DB2. The TPC-W bookstore application is a typical electronic storefront application
[2] consisting of 14 servlets, 46 SQLs and a database of 10,000 books. The extracted
dependency graph is stored in the CIM database and used by the PD application. The
monitoring data is gathered through agents and used by the PD application to build
performance models. An SLA monitor (not shown in the figure) intercepts all HTTP
requests and responses at the HTTP server. These responses are then classified as
‘good’ or ‘bad’ based on the SLA definition. We set individual SLA thresholds for all
14 transaction types in the TPC-W application as our user level SLA definitions.
Problems are injected into the system through a problem injector program (not shown
in the figure), that periodically locks randomly chosen servlets on WAS or database
tables on DB2 with an on-off duty cycle for the injection period, to simulate higher
response times for the targeted servlets or tables. The TPC-W code is instrumented to
implement the servlet level problem injection. Once we lock the table or servlet, all
transactions based on that particular table or servlet slow down and we see an escala-
tion in the response times of the corresponding transactions at the user level and thus
violation of the SLAs. We have 10 tables in the DB2 holding data for the TPC-W
application and 14 servlets. Thus we can inject problems at 24 different locations in
the system. We log these injected problems in a separate log file as the ground truth.
We then use this ground truth information to compute the efficiency of our PD tech-
nique. The efficiency is measured in terms of average accuracy and average rank of
the root cause in the ordered list of probable components, where the averaging is
performed over multiple problem injections. Accuracy is the measure of finding an
injected problem in the list of probable root causes discovered by our PD algorithm.
The rank measure of the root cause is the position the root cause component occupies
in the ordered list of probable root causes. If the injected problem lies in the 2™ posi-
tion from the top of listed root causes, it is assigned rank n. The success of our PD
technique is determined by how close the average accuracy and the average rank of
the root cause are to 100% and rank 1, respectively.

180 M.K. Agarwal et al.

Table 1. Effect of dependency information with Table 2. Effect of dependency information

servlet and table level problems on table level problems

Graph Avg. | Avg | List Graph |Avg. Avg |%age

Load| Type |Acc (%)| Rankl| Size Load [Type |Rank1 |[Rank2 c:hng__t«,:=|
40| ARM 100 1.3 241 40 |ARM 24| 17| 20
Mining 100 1.1 2.7 Mining 2.1 16 24

Instant | 100 13| 55 finstant| 12| 1.2 0

80| ARM 10| 15| 32 80 _|ARM 14| 10| 28
Mining | 100]| 14| 4.0 E”""i“g Lt 13l 16

fnstant 100 15 7 1 Instant 2.0 1.1 45

120 ARM 100] 18] 37| | 120 ARM 18] 15, 16
Mining | 100| 16| 5.0 Mining | 12| 1.2 0

Instant 100 1.3 [105 instant | 1.3] 1.3 2

Dependency information used by the PD technique can be obtained by three
means. An accurate and precise graph may be obtained through ARM instrumenta-
tion. A graph with some false dependencies may be obtained through the online
mining techniques presented in [4][5]. We take a TPC-W bookstore graph with 100%
accuracy and 82% precision extracted at a load of 100 simultaneous customers. This
graph, labeled “mining” in Tables 1 and 2, is used as a more imprecise graph. Finally,
we also consider a bottom-line case in which historical dependency knowledge is not
used but classification is done based on instantaneous information. For example, in
the TPC-W application, transactions are synchronous. Thus if a component B occurs
when transaction A is active, we consider that as a dependency. This case, termed
“instant” in Table 1 and Table 2, contains all the possible dependencies including
much more spurious ones compared to “mined” graphs. We investigate the effect of
the quality of the dependency information on the efficiency of our PD technique. We
inject a set of problems sequentially over time with sufficient gaps between the prob-
lems so that the system recovers from one problem before experiencing another. We
also vary the system load to observe its effect on behavior modeling and PD. Load is
the number of simultaneous customers active in the system sending URL requests to
the TPC-W application. At the load of 120 customers, the load generator sends
around 300 URL requests/minute. We run these experiments over the duration of 2
hours each during which we inject randomly chosen 12 different problems out of set
of 24 problems. Each problem is injected 5 to 10 times and the average accuracy and
average rank are computed over all injected problems. Table 1 summarizes the results
of our experiments.

We see that accuracy of our PD algorithm is always 100%. It means that we can
always find the injected problem in our list of suspected root causes. There are total
60 different components (14 servlets and 46 SQLs). The last column “list size” shows
the average number of components selected for ranking, which decreases as the qual-
ity of the dependency information increases. Thus the quality of the dependency
information definitely helps in reducing the set of components that are considered
(the shaded nodes in Fig. 3). However, it does not impact the ranking to a significant
extent (see proof in [21]). The rank of the root cause, using this technique, in which

Problem Determination Using Dependency Graphs 181

all the components are sorted based on severity, lies between 1 and 2. This means that
the root cause is almost always the first or the second component in the ordered list.
Besides, the behavior modeling and PD based on the dynamic thresholds, is also not
heavily impacted by load. The average rank of the root cause in this approach in-
creases only marginally, as load increases.

We also investigate the application of dependency graph to improve the first
ranking. Here we inject problems only at table level so that we can observe the effect
of swapping ranks between servlets and antecedent SQLs. In Table 2, “Avg Rank2” is
the average rank of the root cause after applying the dependency information on the
first ranking. In most cases, the average rank of the root cause is improved in the
second ranking. In the cases where the percentage improvement is not significant
enough, their “Avg Rankl1” is already close to the minimum possible rank. More
experimentation is needed to find out the effect of load and graph type on the per-
centage improvement.

7 Conclusion

In this paper, we have presented our research in the area of Problem Determination
for large, distributed, multi-tier, transaction based e-business systems. The novelty of
our approach, as compared to others reported in the literature, is that we use a combi-
nation of resource dependency information and resource behavior models to facilitate
the rapid isolation of causes when user transactions manifest unacceptably slow re-
sponse time.

One of the drawbacks of our current approach is that, in some cases, when a user
transaction misbehaves, we are able to narrow down the root cause to a set of re-
sources that support the transaction, but may not be able to identify the offending
resource. This is because resource behavior models are inclusive, i.e., a dependent
resource’s model includes the effects of its antecedents. As ongoing work we are
looking at enhancing our approach to constructing models that better reflect the per-
formance of individual resources, thus providing a better framework for root-cause
analysis. One approach is to compute a resource’s good behavior by capturing its
individual contribution to a transaction’s end-to-end response time. In addition, we
are investigating how our technique can provide a reliable basis for problem predic-
tion, through the observation of trends in the variation of resource behavior. We are
extending our approach for proactive problem prediction, before the problem mani-
fests as a user level SLA violation.

References

1. Gillen A., Kusnetzky, McLaron S., The role of linux in reducing cost of enterprise com-
puting, IDC white paper, January 2002.

TPCW: Wisconsin University, http://www.ece.wisc.edu/~pharm/tpcw.shtml.

ARM: Application Response Measurement, www.opengroup.org/zsmanagement/arm.htm

@ N

182

4.

10.
11.
12.
13.
14.

15.

16.

17.

18.

19.

20.

21.

M.K. Agarwal et al.

M. Gupta, A. Neogi, M. Agarwal, G. Kar, Discovering dynamic dependencies in enter-
prise environments for problem determination, Proceedings of 14th IFIP/IEEE Interna-
tional Workshop on Distributed Systems: Operations and Management, October 2003.

M. K. Agarwal, M. Gupta, G. Kar, A. Neogi, A. Sailer, Mining activity data for dynamic
dependency discovery in e-business systems, under review for eTransactions on Network
and Service Management (€TNSM) Journal, Fall 2004.

CIM: Common Information Model, http://www.dmtf.org/standards/standard_cim.php.

R. Boutaba, J. Xiao, network management: state of the art, IFIP World Computer
Cogress2002,
http://www.ifip.tugraz.ac.at/TC6/events/WCC/WCC2002/papers/Boutaba.pdf

M. Steinder, A.S. Sethi, The present and future of event correlation: A need for end-to-
end service fault localization, Proc. SCI-2001, 5th World Multiconference on Systemics,
Cybernetics, and Informatics, Orlando, FL. (July 2001), pp. 124-129.

Y. Ding, C. Thornley, K. Newman, On correlating performance metrics, CMG 2001.

A. J. Thadhani, Interactive User Productivity, IBM System Journal, 20, p 407-423, 1981.
K. Ogata, Modern control engineering, Prentice Hall, 3rd Edition, 1997.

D. A. Menascé, D. Barbara, R. Dodge, Preserving QoS of e-commerce sites through self-
tuning: a performance model approach, Proceedings of the 3rd ACM conference on Elec-
tronic Commerce, 2001.

S. Parekh, N. Gandhi, J. L. Hellerstein, D. Tilbury, T. S. Jayram, J. Bigus, Using control
theory to achieve service level objectives in performance management, 2003.

Y. Diao, J. L. Hellerstein, S. Parekh, J. P. Bigus, Managing web server performance with
autoTune agents, IBM Systems Journal 2003.

Y. Diao, F. Eskesen, S. Froehlich, J. L. Hellerstein, L. F. Spainhower, M. Surendra, Ge-
neric online optimization of multiple configuration parameters with application to a data-
base server, DSOM 2003.

M. Brodie, 1. Rish, S. Ma, N. Odintsova, Active probing strategies for problem diagnosis
in distributed systems, in Proceedings of IJCAI 2003.

S. Bagchi, G. Kar, J. L. Hellerstein, Dependency analysis in distributed systems using
fault injection: application to problem determination in an e-commerce environment,
DSOM 2001.

C.M. Bishop, Neural networks for pattern recognition, Oxford, England: Oxford Univer-
sity Press, 1995.

K. Appleby, G. Goldszmidt, M. Steinder, Yemanja, A layered fault localization system for
multi-domain computing utilities, in IM 2001.

M. Agarwal, K. Appleby, M. Gupta, G. Kar, A. Neogi, A. Sailer, Problem determination
and prediction using dependency graphs and run-time behavior models, IBM Research
Report, RI04004.

M.Y. Chen, E. Kiciman, E. Fratkin, A. Fox, E. Brewer, Pinpoint: PD in large, dynamic
internet services, International Conference on Dependable Systems and Networks
(DSN’02), 2002.

Role-Based Access Control for XML Enabled
Management Gateways

V. Cridlig, O. Festor, and R. State

LORIA - INRIA Lorraine
615, rue du jardin botanique
54602 Villers-les-Nancy, France
{cridligv, festor, state}@loria.fr

Abstract. While security is often supported in standard management
frameworks, it has been insufficiently approached in most deployment
and research initiatives. In this paper we address the provisioning
of a security ‘“continuum” for management frameworks based on
XML/SNMP gateways. We provide an in depth security extension of
such a gateway using the Role Based Access Control paradigm and
show how to integrate our approach within a broader XML-based
management framework.

Keywords: management gateways, SNMP, XML-based management,
security, key management.

1 Introduction

Security needs in network management appeared when administrators realized
that malicious parties can use this vector to either get confidential information
like configuration and accounting data or even attack the network and the devices
through management operations. Integrity, authentication, privacy, replay and
access control are of major importance to the distributed management plane.
Network management data is sensitive and can compromise the security of the
whole network. For example, firewall tables, routing tables, routers’ configuration
can help attackers to discover network security holes and the network topology.
This is the reason why extending management protocols with security features
is crucial.

Security in distributed systems is usually built around five areas: authenti-
cation, integrity, confidentiality, availability and access control. Authentication
process gives warranties that a remote principal is the one he claims to be. In-
tegrity process assures that the transmitted data has not been altered during
transmission. Confidentiality includes encryption and decryption processes to
ensure that data cannot be read by a third party. Availability ensures that a ser-
vice is accessible over time. Access control, which can not be performed without
an authentication phase, allows to restrict access on data to some authorized
principals.

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 183-195, 2004.
© IFIP International Federation for Information Processing 2004

184 V. Cridlig, O. Festor, and R. State

These issues are even more important in a utility computing type of environ-
ment. Dynamic, on-demand usage of resources provided by a third party over
a well delimited time-interval requires a flexible management plane. Flexibility
in this case is related to the degree of configuration accessible to a resource
consumer while these resources are supporting his business.

The problem addressed in this paper is twofold: firstly, we consider how to
maintain the overall security level, when migrating from SNMP-based to XML-
based management. Such a migration can be assured with an XML/SNMP gate-
way (see [1] and [2]). The XML/SNMP gateways address the interoperability
among XML managers and SNMP agents and should not introduce security holes
but rather should establish a security continuum. In particular, a non-authorized
principal should not be able to manage agents either directly or through the gate-
way. These requirements suppose a mapping and a policy coherence maintenance
for the different security models involved in the whole architecture. The second
issue addressed by our paper concerns the security provisioning of a management
gateway required in dynamic utility computing environments, where on demand
resources must allow a temporary management session by a foreign manager.
A manual per device configuration is not scalable if the utilities are numerous.
A more realistic solution is to use a management gateway, which mediates the
access to the managed devices.

The remainder of this paper is organized as follows. In section 2, we summa-
rize the existing XML/SNMP gateways as well as the SNMPv3 functional archi-
tecture and its security modules, namely User Security Model (USM) and View-
based Access Control Model (VACM). In section 3, we propose an XML/SNMP
gateway extended with the desired security features. Section 4 concludes this
paper and opens perspectives to our work.

2 State of the Art

2.1 Existing XML/SNMP Gateways

Over the past few years, the eXtensible Markup Language (XML [3]) has proven
to be an excellent way to build interoperable applications. Many XML standards
and recommendations emerged mainly from the World Wide Web Consortium
(W3C [4]) in order to avoid proprietary solutions and then improve interoper-
ability. The advantages of XML-based techniques such as XML document trans-
mission and processing as well as embedded security are also recognized in the
management plane [2]. However, the large number of existing SNMP agents slows
down the XML-based management solutions deployment. Therefore, intermedi-
ate solutions using XML/SNMP gateways are required to provide a temporary
solution before a potential full and complete migration to XML-based manage-
ment solution.

XML/SNMP gateways allow managers to communicate with their agents us-
ing XML technologies even if the agents are solely SNMP compliant. The man-
agers can then benefit of XML tools to process and/or display XML documents

Role-Based Access Control for XML Enabled Management Gateways 185

conveniently, or to express complex relationships among managed services as in
[5]. The gateway is responsible for translating XML requests coming from the
managers to SNMP requests towards the agents. The mechanism is reversed for
the agents responses. Mapping XML to SNMP means translating both exchange
protocols and information models.

Yoon, Ju and Hong [6] proposed a full SNMP MIB (Management Information
Base) to XML Schema translation algorithm. The latter is based on the follow-
ing document structure conversion. A SNMP SMI (Structure of Management
Information) node becomes an XML Schema element, a node name becomes an
element name and clauses in node become attributes of the element. One impor-
tant topic (feature, component, ...) of the proposed approach is the SMI data
types translation. XML Schema provides an elegant way to define equivalent
data types using default data types and patterns. Note that all XML nodes have
an Object Identifier (OID) attribute corresponding to the MIB node location in
order to facilitate data retrieval. For a given MIB, this translator produces both
the XML Document Object Model (DOM) tree structure which is used to store
management data in the gateway and also to create XML documents and the
XML Schema file for validation.

Within the context of the gateway implementation, Yoon, Ju and Hong pro-
posed three approaches for the manager/gateway communication: a DOM-based
translation, an HTTP (Hypertext Transfer Protocol)-based translation and a
SOAP-based translation. These approaches, their advantages and drawbacks are
discussed in [1].

F. Strauss and T. Klie [2] also proposed a SMI MIB to XML Schema defini-
tions converter. Although this converter is also based on a model-level approach
(see [7]), their approach is quite different. Instead of using OIDs to process the
mapping, the latter is based on namespaces: each MIB module is translated into
an XML Schema and identified with a namespace to uniquely map data ele-
ments. This mapping is driven by the intention to produce an XML document
close to the XML philosophy (meaning both human and machine readable).
Both approaches (i.e. [6] and [2]) are elegant. A translator (mibdump) analyses
a whole MIB, creates the XML Schema, generates the associated set of SNMP
requests, collects the data from the agent and builds the valid (regarding the
XML Schema) XML document. However, mibdump can only collect data from
a single MIB.

We are working on the development of an enhanced gateway based on a
role based access control paradigm. This paper describes some of its features.
While being conceptually based on HTTP and XPath for manager to gateway
communications and DOM for data storage, we extend this architecture with
security modules to allow authentication, privacy and access control.

2.2 SNMPv3

The SNMPv3 (Simple Network Management Protocol [8,9,10]) functional archi-
tecture was designed to address potential security issues. To achieve this security

186 V. Cridlig, O. Festor, and R. State

challenge, this architecture integrates two subsystems. The first one, called se-
curity subsystem, consists in a privacy module, an authentication module which
provides both authentication and integrity and a timeliness module. It is imple-
mented with the User-based Security Model (USM [11]) by default. The second
one, implemented with the View-based Access Control Model (VACM [12]) is an
access control subsystem. These integrated security tools allow SNMP managers
to perform secure requests on SNMP agents.

USM authentication and confidentiality services are based on a shared secret
localized key paradigm. Each manager/agent pair uses a particular key pair
(one key per service). The security level required by the manager dictates the
message preparation or checking depending on whether the message is incoming
or outgoing.

VACM performs access control based on different mib tables storing access
policies. Authorization decision is based on input parameters like the object OID,
the operation to be performed, the requesting security name, the security model
and level. As every object of the MIB tree, VACM policies can be configured
remotely provided that the requester has sufficient rights to modify these tables.

3 The Proposed Security Framework

3.1 Motivation

The existing XML/SNMP gateways focused mainly on the operational part of
network management while security issues were not yet addressed. The appli-
cation of the XML/SNMP gateway to a real network management environment
requires the incorporation of additional security mechanisms, since its deploy-
ment without efficient security features provides major security breaches. The
major motivation for our work is to propose a coherent security framework for
SNMP/XML gateways, realizing a “security continuum”, i.e. assuring that se-
curity policies are independent of the underlying used management protocol
(native SNMP, SNMP/XML gateways, or native XML). We present here a se-
curity extension for the XML/SNMP gateways addressing the authentication,
confidentiality and authorization issues. These security services intend to provide
the ability to perform more sensitive configuration operation, which is one of the
shortcomings of SNMP [2]. Such a “security continuum” is essential if a manage-
ment gateway is used in a utility computing scenario. The sound configuration
of many devices at once in order to temporarily serve a third party manager
requires on the one hand to assure that only allowed operations are possible,
and on the second hand that the security configuration be fast. We propose an
access control enabled XML/SNMP gateway which meets these requirements.

3.2 Requirements

The gateway provides a unified security policy based on Role Based Access
Control (RBAC [13]). The access control module must be able to create sessions

Role-Based Access Control for XML Enabled Management Gateways 187

for users and map the access rights of each user on the SNMP agents on the
fly. This makes it possible to manage a unique centralized policy and deploy it
in a transparent way for users. Moreover authoring authorization policies with
RBAC is proven to be easy, scalable and less error-prone. A user creates an
RBAC policy on the gateway. Since this policy is mapped on the SNMP agents
VACM tables, no change is required within SNMPv3 architecture.

3.3 Functional Architecture

Our secure XML/SNMP gateway, depicted in figure 1 embeds an SSL layer
to allow secure communications between the managers and the gateway. This
layer is necessary to allow manager identification which is, in turn, necessary to
perform access control process. First, the manager initiates an encrypted SSL
session on the gateway. Then the manager is identified by filling an HTML form
with his login/password credentials.

Moreover, SNMPv3 new security features are difficult to use and suffer from
lack of scalability [14]. Therefore, our architecture uses an authorization model
(RBAC) different and therefore independent from the SNMPv3 one. RBAC al-
lows high level and scalable access control process and configuration. The RBAC
model consists in a set of users, roles, permissions (operations on resources) and
sessions. The originality of RBAC model is that permissions are not granted to
users but to roles, thus allowing an easy reconfiguration when a user changes his
activity. A role describes a job function within an organization. The permission
to role relationships illustrates that a role can perform a set of operations on
objects (privileges). In the same way, the user to role relationships describes
the available function a user is allowed to endorse in the organization. Lastly, a
session gathers for each user his set of currently activated role, on which behalf
he can interact with the system.

In this paper, we consider the NIST (National Institute of Standards and
Technologies) RBAC (Role-Based Access Control [13]) model which gathers the
most commonly admitted ideas and experience of previous RBAC models. This
standard provides a full description of all the features that should implement
an RBAC system. RBAC model allows the description of complex authorization
policies while reducing errors and costs of administration. Introduction of ad-
ministrative roles and role hierarchy made it possible to reduce considerably the
amount of associations representing permissions to users allocation.

Consequently, our architecture embeds an RBAC manager for authorization
decision process consisting in an RBAC system and an RBAC repository. In order
to still allow pure SNMPv3 configuration (i.e. direct manager/agent management
for SNMPv3-based managers), it must be possible to push authorization policies
onto the SNMP agents. Since RBAC and VACM models are different, a mapping
module, RBACToVACM translator, is also necessary.

The RBAC repository owns an authorization policy. This policy describes:

— the set of users who are allowed to interact with the system,
— the set of roles that can potentially be endorsed by users,

188 V. Cridlig, O. Festor, and R. State

!

Existing gateway ¢

1 SNMP Engine

)

Fig. 1. Secure gateway functional architecture

Secure Gateway

H
E | SSL |
L
"
L
- g > HTTP Engine 1
RBAC : E ¢
repository RBAC System : y
: parser
n
H reposito
k4 : P ry —_—
H 7 3
RBACtoVACM :
translator . \
L
]
: XPath
i . Interpreter
Security manager :
. Translator
'
"
Ll
H
.

— the set of scopes (objects) on which permissions are granted,

— the set of permissions which consist in an operation an a scope,

— the set of UAs (user assignment) which describe user to role association and
the set of PAs (permission assignment).

An example of such a policy is depicted in figure 2.c.
The RBAC system implements all the features needed to handle authoriza-
tion data and to process access evaluation. It is possible:

— to create, modify or delete the different RBAC elements (users, roles, per-
missions) in order to build policies according to our needs,

to manage (create and close) user sessions,

to add or remove active roles from a session,

to evaluate the access requests regarding the policy.

Moreover when a new role becomes active, it calls the RBACtoVACM translator
in order to update VACM policies on agents. Most of the features described here
are detailed in [13].

The RBACToVACM translator is responsible for mapping the gateway
RBAC policy on the agent VACM policy. Different XML documents are needed
to perform this mapping. We describe them in the mapping section.

3.4 Authorization

Linking RBAC to management data. The XML document depicted in
figure 2.c describes an RBAC policy scenario. Different existing languages such

Role-Based Access Control for XML Enabled Management Gateways 189

as XACML [15] Profile for RBAC or .NET MyServices Authorization language
[16] can model an RBAC policy. Although the first language is acknowledged to
be compliant with the NIST RBAC standard [13] and the second one is quite
elegant, we propose our own language which is as close as possible to the NIST
RBAC model and terminology while remaining as simple as possible for the
purpose of an XML/SNMP gateway prototype. The XML representation of the
RBAC model is of minor importance. We propose here to map a model, not a
particular XML representation of the model.

Each RBAC element is described independently and owns an identifier (Id)
attribute such that the user to role (UA) and permission to role (PA) assign-
ments can reference them. Users (here bob and alice) consist in a login and a
password. Roles are described with names. Scopes reference the XML manage-
ment data of the figure 2.a using XPath. XPath is quite simple and allows to
address powerfully a set of elements in an XML document. For instance, scope
sl designates all the ifEntry elements of the XML management data. This re-
lationships is shown with the first arrow. Each permission has a reference to a
scope and an operation. Only a subset of XPath possible expressions is allowed
in our access control policies since the vacmViewTreeFamilyTable can only con-
tain OIDs. For instance, an XPath expression referencing a particular attribute
value can not be mapped to VACM.

Note that the XML resources depicted in figure 2.a are conforming to the
XML Schema generated from the IF-MIB and partially depicted on figure 2.b.
For instance, ifPhysAddress structure is described (see the second arrow) in the
XML Schema. It is important to note that each element of the schema contains
the corresponding OID for data retrieval. This will be used for the mapping of
our RBAC policy on VACM tables as illustrated with the third arrow.

Mapping RBAC/VACM (one way mapping). In order to map dynamically
the RBAC policy on SNMP agents, we have to translate XML RBAC policy
into SNMP VACM tables. We provide, in this section an algorithm to map
RBAC users on USM users, RBAC roles on VACM groups, scopes on views,
and permissions to vacmAccessTable entries. The mapped access control has to
implement the initial policy behavior. Although sessions can not be expressed
in VACM, it can be simulated by mapping only the activated roles for a given
user. The VACM tables reflect the activated roles, permissions and users of the
RBAC model. The RBAC model is not fully mapped on the agent VACM tables,
i.e. permissions are loaded on agents on demand.

The different steps of the mapping algorithm are the following: first, we
create a group in the vacmSecurityToGroupTable for each user u; then, we add
an entry in the vacmAccessTable associated to three views. These views are
built in the vacmViewTreeFamilyTable and gather all objects allowed sorted by
“read”, “write” or “notify” access type.

Let us consider the example developed in figure 2.c. Our approach consists
in collecting all permissions associated to all active roles of a given user. A user-
specific group gathering all his active permissions can be created. The fourth

190 V. Cridlig, O. Festor, and R. State

<?xmi version="1.0" encoding="UTF-8"7>
<snmp-data xmins:IF-MIB="http:{'www.ibr.cs.lu-bs.de/
arbeitervsnmp-xmi-gwixsd/IF-MIB.xsd"> <xsd:element name="ifPhysAddress”
<context ipaddr="134.169.35.130" hostname= type="SNMPv2-TC:PhysAddress” minOccurs="0">
"134.169.35.130" port="161" caching="yes" <xsd:annotation>
community="public” time="2003-03-11T18:50:13"> <xsd:appinfo>
<IF-M'BifEntry ifindex="1"> < 2 <maxAccess>read-only</maxAccesss
<IF-1 1IB:ifDescr>First interface</IF-MIB:iiDescr> <status>current</status>
<IF- AIB:ifPhysAddress enc<="hex'>00:0C:F1:82:47:5E | — IO T2 2 el
</IF MIBifPhysAddress> </xsd:appinfo>
</IF- AIB:IfEntry=> <xsd:documentations [...] </xsd:documentation=
-3 <fxsd:annotation>
elcontats G) </xsdelement>
</snmp-data>
{a) XML management data m (b) XML Schema
\4/
< Tumi version="1.0'?> Security Model Usar Group
b usM > bob bobGroup
<users> </-- RBAC users --> USM alica aliceGroup
<user ld="u1" login="bob" password="bobpassphrase®/>
<user ld="u2" login="alice" password="alicepassphrase" vacmSecurity ToGroupTable
</userss> drniit i
<roles> <l-- RBAC roles >
<role Id="r1" name="sysAdmin"/>
<role Id="r2* name="netAdmin"/> S
</roles> 2
<scopes> <l-- RBAC scopes > Group jConbaxt mTw ::;ﬂl\r Read Wrila Motify
<scope |d="s1" path="MEntry" mibns="IF-MIB"/> == bobGroup usm | authPriv | Rvbob [wvbob |Nvbob
<scope ld="s2" path="/ifEntryffDescr’ mibns="IF-MIB"/> alicoGroup USM | authPriv | RValice [WValice [NValice
<scope |d="s3" path="interfaces/ifNumber" mibns="1F-MIB"/>
</scopes> L AccessTable
permissi <l-- RBAC permissions - : :
<permission ld="p1* scopeRef="s1" operation="read"/> 3 ok
<permission d="p2" scopeRel="s2" operation="write"/> i A
</permissions> ®_—
<UAs> <I-- RBAC user-role association —> ViewName oid — ype
<UA Id="ual" userRef="ul" roleRef="r1"/>
<UA ld="ua2" userRel="ul" roleRef="r2"/> RVbob | 136121221 ¥ Included
<UA ld="ua3" userRef="u2" roleRef="r2"/> Wihob | 1381212218 Inchudiad
</UAs> Wvalice | 1361212216 Included
<PAs> <!-- RBAC permission-role association --> vacmViewTreeFamilyTable
<l netAdmin can read <IF-MIB:ifEntry> element -->
<PA Id="pa1" permissionRel="p1" roleRef="r1"/> j
<PA |d="pa2" permissionRef="p2" roleRei="r2"/>
</PAs>
<AHs> <l-- ABAC role hierarchy >
</RHs>
<frbac= .
{c) RBAC policy (d) VACM tables

Fig. 2. RBAC/VACM mapping

arrow of figure 2.d illustrates that a new entry in the vacmSecurityToGroupTable
is created for each RBAC user (bob for instance) with USM as default security
model and a group reflecting the user SecuritName (bobGroup). Figure 3 shows
the pseudo-code algorithm of a role activation immediately after the login step.

Permissions are sorted by operation, thus building available views for that
user. The algorithm uses the XML Schema from the repository (figure 2.b) in
order to retrieve OIDs corresponding to a scope. Note that a scope contains an
XPath and mibns attribute bound to a particular MIB. The vacmAccessTable

Role-Based Access Control for XML Enabled Management Gateways 191

addActiveRole(user u, role r){
// Example: ("USM", "Bob", "Bobgroup")
AddSecurityToGroupTableEntry(USM, u.securityName,
u.securityName+"group");

// Example: (Bob, "", USM, authpriv, "", "RVBob", "WVBob", "NVBob")

AddVacmAccessEntry(u.securityName, "", USM, authpriv, "",
"RV"+u.securityName, "WV"+u.securityName,
"NV"+u.securityName) ;

Foreach permission p of r{
// Example: ("R"+"V"+"Bob","1.3.6.1.2.1.2.2.1.6","FF","included");
addVacmViewTreeFamilyEntry(p.operation+"V"+u.securityName,
p-get0id, mask, included);

Fig. 3. RBAC to VACM mapping algorithm

depicted in figure 2.d will contain one entry for each group. For instance, in order
to build the bob’s read view, we have to gather all bob’s active permissions whose
operation is read, retrieve the OID using the XML schema and then add the
corresponding entries in the vacmViewTreeFamilyTable to build a sophisticated
view.

BobGroup is the union of both SysAdmin and NetAdmin roles. Roles may
be associated to several shared permissions. Without separation of duty con-
straints, Bob can activate its two available roles at the same time in a session.
Consequently, Bob can read 1.3.6.1.2.1.2.2.1 and write in 1.3.6.1.2.1.2.2.1.6 sub-
tree. The result vacmViewTreeFamilyTable will have the entries shown in figure
2.d. Permissions are updated dynamically on the SNMP agents only when a user
requests to add or drop an active role. It is still possible to add separation of
duty constraints which are controlled on the gateway side: since the gateway is
the only entity which can set permissions on SNMP agents, the gateway can
deter a user from adding an active role depending on policy constraints.

This is the basic algorithm. There may be several identical entries in the
vacmViewTreeFamilyTable. We optimize also on the number of entries in the
vacmViewTreeFamilyTable when read access is allowed to both a tree and one
of its subtrees in the same view. Note that we use only USM associated with
AuthPriv security level because we chose the RBAC NIST standard which does
not describe contexts (do not confuse RBAC context and SNMP context which
is totally different). However it is possible to add new views for different security
levels. This RBAC context should be first described using the RBAC model as
described in [17]. This mapping algorithm serves as a base to introduce RBAC
module in the XML/SNMP gateway.

In order to improve the ease of use of the RBAC manager, it is very promising
to use XPath object addressing. XML DOM can then be used to translate XPath

192 V. Cridlig, O. Festor, and R. State

expression into OIDs and VACM views. It also makes it possible to perform
XML-level access control.

Access control process. Each manager (user in RBAC terminology) owns a
login / password. This login / password is a shared secret between the manager
and the gateway. These credentials (in fact the password) are used to generate the
SNMP keys for authentication and privacy. Consequently, both the manager and
the gateway are able to perform security requests since they know the manager’s
password. This way, a manager can manage SNMP agents without going through
the gateway provided that permissions are deployed on the managed agent.

Managers have a permanent RBAC session. A manager must explicitly close
an RBAC session. When this happens, all managed agents for that manager
should be reconfigured, i.e. all permissions for that manager should be deleted.
A manager can log out without closing its RBAC session, because his rights are
still valid on agents. Managers can activate and deactivate roles when needed.
If a manager logs out of the gateway without closing its RBAC session, the
gateway does not remove the access rights on the agent so that the manager can
still perform SNMPv3 requests on the agent without using the gateway. In our
approach, RBAC sessions are persistent. This avoids mapping RBAC on VACM
or removing VACM access rights each time a manager logs on or logs out of the
gateway. Hence a decreasing number of VACM requests.

When a manager activates a role on the gateway (for an agent), the gateway
updates permissions available on the agent VACM tables. In order to update
permissions on an agent, the RBAC system maps the RBAC permissions of all
active roles of this user.

When the gateway receives a request from a manager, it uses the login / pass-
word of this manager to generate the SNMP request so that the agent can know
the user performing the request and then control access. This is transparent to
the agent. The login / password of each manager is stored as part of the RBAC
model in the “user” object. To simplify the login / password management, the
gateway uses the same login / password for manager identification on the gate-
way and on the agents with SNMPv3. However, this is not a strong constraint.
This way, managers must remember a single login / password pair.

When a manager wants to access a new device through the gateway, the gate-
way creates an account for him (provided the user is in the RBAC model of that
group) on the agent by cloning itself. The user activates a role on the gateway.
The gateway maps the associated permissions on VACM tables of the agent.
Then, the user can start performing operations on the agent either through the
gateway using HTTP or directly on the agent using SNMPv3. In this way, newly
arrived devices are auto-configured for access control. The only requirement is
that the gateway must know a valid user login / password as a starting point on
each agent.

A special user should have particular rights to modify the RBAC policies
on the gateway (i.e. performing maintenance RBAC operations, like createPer-
mission(), addUser(), assignUser() with the NIST RBAC standard model). This

Role-Based Access Control for XML Enabled Management Gateways 193

user defines roles, users and permissions in a high level view. Mappings from this
RBAC level to the VACM level is transparent to the special user. Other users
can only open and close RBAC sessions, add active roles, drop active roles.

3.5 Authentication and Confidentiality

Each manager has his own account within the gateway so that he can log on
using his login/password credentials. In order to avoid sending these credentials
in the clear, the gateway and a manager first establish a secure session using
security mechanisms such as Secure Socket Layer (SSL [18]).

The manager password is also used to generate the SNMPv3 secret keys.
Since both the manager and the gateway know this password, both can generate
the keys needed to authenticate and encrypt the SNMPv3 messages. This way,
both can send SNMPv3 requests to a given agent. The advantage is that a
manager can still request an agent even if the gateway is down.

A bootstrap phase works as following: the gateway has a default account on
all SNMPv3 agents. When a manager needs to request an agent, the gateway
clones itself on the agent, thus creating a new SNMP account for this manager.
In net-snmp, a new account does not inherit the access rights of the account
from which it is cloned since no entry is added in the VACM tables: only the
credentials are duplicated. Therefore, there is no risk that a new user can have
the same permissions as the gateway. The gateway changes the remote password
of the manager according to the manager’s password in the local RBAC system.
Then the gateway grants access rights to the manager depending on the RBAC
policy and the active roles.

4 Conclusion and Future Work

The problem addressed in this paper is the lack of security introduced by the use
of XML/SNMP gateways. These gateways provide powerful means to manage
device and therefore should be protected with adapted security mechanisms.
We proposed some security extensions to an XML/SNMP gateway in order to
provide a high level of security and simplify the configuration task of SNMPv3
security managers.

The benefits of our approach are the following:

— security continuum for XML/SNMP gateways,

— uniform scalable access control policies for network management elements
using the RBAC model,

— on-demand access rights distribution from the gateway to the SNMP agents
using a RBAC to VACM mapping algorithm. Only needed access rights (not
all the RBAC policies) are mapped on agents VACM policies,

~ easy automated VACM configuration.

An early prototype has been implemented within our group. It extends the
servlet based SNMP/XML gateway (SXG) implemented by Jens Mueller. We de-
fined a simple XML Schema (http://www.loria.fr/~cridligv/download/rbac.xsd)

194 V. Cridlig, O. Festor, and R. State

modeling RBAC, which is also used to automatically generate Java classes. The
prototype is made of two separate parts, both secured with SSL and accessi-
ble after a login/password phase: while the first part is an web RBAC editor
used by a super user to setup authorization configuration, the second part is the
XML/SNMP gateway itself allowing management operation after an explicit role
activation request from the manager.

In the future, there is a great interest in applying an RBAC policy on the
gateway to a group of devices. Maintaining one policy for each device is not
scalable. Maintaining one policy for all devices is not flexible enough because
some devices are more sensitive than others and may implement different MIBs.
This justifies our approach to attach an RBAC model to each group of devices.
When an RBAC model changes, all devices belonging to that group are updated
at the access control level (i.e. VACM tables). Although we define several RBAC
models, the set of users remains the same for all of them. This way, a user
managing several groups of devices owns a single password. However, roles can
be different in two different models and a role can be bound to several RBAC
models.

When using the gateway, we can also consider that the access control is made
inside the gateway thus avoiding a request which would not be allowed. However
the current permissions are still mapped on agent to keep the RBAC model state
coherent with the VACM tables.

In a mobility context, we can imagine that different network domains host
different XML/SNMP gateways. When a device moves from one domain to an-
other one, the local gateway should have access rights to configure the visitor
device. Inter-gateways negotiations could be envisaged to allow the local gateway
to create SNMP accounts for the local managers to perform minimal operations.

References

1. Oh, Y.J., Ju, H.T., Choi, M.J., Hong, J.W.K.: Interaction Translation Methods for
XML/SNMP Gateway. In Feridun, M., Kropf, P.G., Babin, G., eds.: Proceedings
of the 13th IFIP/IEEE International Workshop on Distributed Systems: Opera-
tions and Management, DSOM 2002. Volume 2506 of Lecture Notes in Computer
Science., Springer (2002) 54-65

2. Strauss, F., Klie, T.: Towards XML Oriented Internet Management. In Goldszmidt,
G.S., Schonwilder, J., eds.: Proceedings of the Eighth IFIP/IEEE International
Symposium on Integrated Network Management (IM 2003). Volume 246 of IFIP
Conference Proceedings., Kluwer (2003) 505-518

3. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
Markup Language (XML) 1.0 (Third Edition). W3C Recommendation (2004)

4. W3C: World Wide Web Consortium (W3C). (http://www.w3.org)

5. Keller, A., Kar, G.: Determining Service Dependencies in Distributed Systems.
In: Proceedings of the IEEE International Conference on Communications (ICC
2001), IEEE (2001)

6. Yoon, J.H., Ju, H.T., Hong, JW.: Development of SNMP-XML Translator and
Gateway for XML-based Integrated Network Management. International Journal
of Network Management 13 (2003) 259-276

11.

12.

13.
14.

15.

16.
17.

18.

Role-Based Access Control for XML Enabled Management Gateways 195

Martin-Flatin, J.P.: Web-Based Management of IP Networks and Systems. Wiley
(2003)

Case, J., , Mundy, R., Partain, D., Stewart, B.: Introduction and Applica-
bility Statements for Internet Standard Management Framework. STD 62,
http://www.ietf.org/rfc/rfc3410.txt (2002)

Stallings, W.: Network Security Essentials. Prentice Hall (2nd edition 2002)
Subramanian, M.: Network Management, Principle and Practice. Addison Wesley
(1999)

Blumenthal, U., Wijnen, B.: User-based Security Model for version 3 of the Simple
Network Management Protocol (SNMPv3).

STD 62, http://www.ietf.org/rfc/rfc3414.txt (2002)

Blumenthal, U., Wijnen, B.: View-based Access Control Model (VACM) for the
Simple Network Management Protocol (SNMP).

STD 62, http://www.ietf.org/rfc/rfc3415.txt (2002)

Kuhn, R.: Role Based Access Control. NIST Standard Draft (2003)

Lee, H., Noh, B.: Design and Analysis of Role-Based Security Model in SNMPv3 for
Policy-Based Security Management. In: Proceedings of the International Confer-
ence on Wireless Communications Technologies and Network Applications, ICOIN
2002. Volume 2344 of Lecture Notes in Computer Science., Springer (2002) 430-441
Anderson, A.: XACML Profile for Role Based Access Control (RBAC). OASIS
Committee Draft (2004)

Microsoft: Ws-authorization. (http://msdn.microsoft.com/ws-security/)
Neumann, G., Strembeck, M.: An Approach to Engineer and Enforce Context Con-
straints in an RBAC Environment. In: Proceedings of the eighth ACM symposium
on Access control models and technologies, ACM Press (2003) 65-79

Freier, A., Karlton, P., Kocher, P.: The SSL Protocol Version 3.0. Technical report,
Netscape (1996)

Spotting Intrusion Scenarios from Firewall Logs
Through a Case-Based Reasoning Approach

Fébio Elias Locatelli, Luciano Paschoal Gaspary, Cristina Melchiors,
Samir Lohmann, and Fabiane Dillenburg

Programa Interdisciplicar de Pds-Graduagdo em Computacdo Aplicada (PIPCA)
Universidade do Vale do Rio dos Sinos (UNISINOS)
Av. Unisinos 950 — 93.022-000 — Sao Leopoldo — Brazil

paschoal@exatas.unisinos.br

Abstract. Despite neglected by most security managers due to the low avail-
ability of tools, the content analysis of firewall logs is fundamental (a) to meas-
ure and identify accesses to external and private networks, (b) to access the
historical growth of accesses volume and applications used, (c) to debug prob-
lems on the configuration of filtering rules and (d) to recognize suspicious
event sequences that indicate strategies used by intruders in attempt to obtain
non-authorized access to stations and services. This paper presents an approach
to classify, characterize and analyze events generated by firewalls. The pro-
posed approach explores the case-based reasoning technique, from the Artifi-
cial Intelligence field, to identify possible intrusion scenarios. The paper also
describes the validation of our approach carried out based on real logs gener-
ated along one week by the university firewall.

1 Introduction

The strategy of using a firewall as a border security mechanism allows the centraliza-
tion, in only one machine, of all the traffic coming from the Internet to the private
network and vice-versa. In this control point, any packet (HTTP, FTP, SMTP, SSH,
IMAP, POP3, and others) that comes in and out is inspected and can be accepted or
rejected, according to the established security rules.

In this context, firewalls store — for each successful or frustrated attempt — records
in log files. Some recorded data are: type of operation, source and destination net-
work addresses, local and remote ports, among others. Depending on the network size
and its traffic, the daily log can be greater than 1GB [7]. From the security manage-
ment point of view, this log is rich in information because it allows: (a) to measure
and identify the accesses to the private and external networks (e.g. most and least
required services, stations that use more or less bandwidth, main users); (b) to histori-
cally follow the growth of the accesses and the applications used; (c) to debug prob-
lems on filtering configuration rules; and (d) to recognize suspicious event sequences
that indicate strategies used by intruders trying to obtain improper access to stations
and services.

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 196207, 2004.
© IFIP International Federation for Information Processing 2004

Spotting Intrusion Scenarios from Firewall Logs 197

At the same time that the importance of these indicators is recognized, the growth
of information transiting every day between the private network and the Internet has
turned the manual control of the log files unviable. This paper presents an approach to
classify, characterize and analyze firewall events. The paper describes, yet, the vali-
dation of the approach based on real logs generated during one week by the university
firewall. The contributions of this work can be unfolded in two: (i) the approach al-
lows identification of sequences of actions executed from or to a determined service
or station through the grouping of related events; (ii) supported by the Artificial In-
telligence technique called case-based reasoning, the approach provides conditions so
that intrusion scenarios' can be modeled as cases; whenever similar sequences are
repeated, the approach is able to identify them and notify the manager.

The paper is organized as follows: section 2 describes related work. Section 3 pre-
sents the proposed approach to classify and characterize the firewall events, as well as
to identify automatically the intrusion scenarios. Section 4 describes the tool devel-
oped and section 5, the case study carried out to validate it. Finally, section 6 ends up
the paper with the final considerations and future work perspectives.

2 Related Work

A quantitative characterization of the intrusion activities performed in the global
Internet, based on firewall log analysis, was carried out by Yegneswaran in [9]. The
work involved the collection, during a four month period, of more than 1.600 firewall
and intrusion detection system logs distributed all over the world. The results enabled
to characterize different kinds of probes and their relation to viruses and worms dis-
semination. It is worthwhile mentioning the fact that this work was carried out in an
ad hoc way, without any tool support (this compromises a periodic, long-term analy-
sis). Besides, the approach is exclusively quantitative, what turns difficult the com-
prehension of some situations in which the events need to be analyzed closely to
confirm a suspicious activity.

Regarding event analysis, Artificial Intelligence techniques have been applied to
relate events generated by security systems [1,4,5]. Ning presents in [4] a method that
correlates prerequisites and consequences of alerts generated by intrusion detection
systems in order to determine the various attack stages. The authors claim that an
attack usually has different steps and it does not happen in isolation, that is, each
attack stage is prerequisite to the next. The method is hard to deploy in large scale.
First, prerequisites and consequences must be modeled as predicates, which is not an
easy task. Second, the cases database needs to be constantly updated, which requires
substantial work. Furthermore, the proposal is limited for not being effective to iden-
tify attacks where the relation of cause and consequence cannot be established. For
example, two attacks (Smurf and SYN flooding) launched almost at the same time
against the same target from two different locations would not be related (however
there exists a strong connection between them: same instant and same target).

! In this paper an intrusion scenario is defined as a sequence of suspicious activities that is
executed by an intruder in order to obtain non-authorized access to stations and services.

198 F.E. Locatelli et al.

The approaches described in [1,5] analyze alerts produced by spatially distributed
heterogeneous information security devices. They propose algorithms for aggregation
and correlation of intrusion-detection alerts. The first defines a unified data model for
intrusion-detection alerts and a set of rules to process the alerts. The detection algo-
rithm can detect (i) alerts that are reported by different probes but are related to the
same attack (duplicates) and (ii) alerts that are related and should occur together
(consequences). The second approach uses strategies as topology analysis, alert pri-
orization, and common attribute-based alert aggregation. An incident rank calculation
is performed using an adaptation of Bayes framework for belief propagation in trees.
These approaches tend not to cope well with the detection of intrusion scenarios that
differ (even slightly) from what has been previously defined as fusion and aggrega-
tion rules.

Other Atrtificial Intelligence techniques have been applied to event processing, es-
pecially in the context of intrusion detection systems. One of them is the case-based
reasoning paradigm (CBR). Schwartz presents in [6] a tool that applies this paradigm
to a variation of the intrusion detection system Snort, where each system signature is
mapped to a case. Other system that uses the CBR paradigm is presented by Esmaili
in [2]. It uses CBR to detect intrusions using the audit logs produced by the operating
system. The cases represent intrusion scenarios formed by operating system command
sequences that result in an unauthorized access.

3 Approach to Classify, Characterize, and Analyze Firewall Events

This section describes the approach proposed to classify, characterize and analyze
firewall events. It is structured in two independent and complementary parts. The
first, more quantitative, allows events stored by the firewall to be grouped based on
one or more aggregation elements (filters) defined by the security manager. The sec-
ond part proposes to analyze these events and identify, automatically, intrusion sce-
narios (supported by the case-based reasoning technique).

3.1 Event Classification and Characterization

As already mentioned in the Introduction, each event generated by a firewall stores
important information such as event type, source and destination addresses, local and
remote ports, and others. Since some of these information are repeated in more than
one type of event, it is possible to group events using one or more aggregation ele-
ments. This constitutes the central idea of the first part of the approach.

By grouping events that share common information, it becomes possible to per-
form a series of operations to (a) measure and identify accesses to external and pri-
vate networks, including malicious actions (port scanning and attempts to access
unauthorized services), (b) follow their evolution along the time, (c) debug filtering
rules configuration problems, among others. Figure 1 offers many examples in this
direction; some of them are commented below.

Spotting Intrusion Scenarios from Firewall Logs 199

Example 1. To determine the total data sent and received to FTP connections it is
necessary to group the events that belong to the statistical group (121) and that have
the field protocol with the value ftp (proto=ftp). This grouping results in the events 12
and 13 (see figure 1). The accounting of the amount of exchanged data is given by the
sum of the values associated to the fields sent and rcvd.

Example 2. Inconsistencies and errors in the configuration of filtering rules can be
detected with similar grouping. Consider that the organization’s security policy estab-
lishes that the FTP service, running in the station 10.200.160.161, must not be ac-
cessed by external hosts (IPs out of the range 10.200.160.X). The grouping presented
in example 1 highlights two events, 12 and 13, which confirms the violation of such
policy, since both accesses come from stations with network prefix 66.66.77.X.

Example 3. The identification of the hosts from where departed the major number
of port scans is obtained by grouping 347 events, which results in the sub-group
{1,2,3,4,5,6,7,8,9}. Four out of these events indicate probes departing from the sta-
tion 66.66.77.77 and five from the station 66.66.77.90.

Following the same reasoning, other aggregation elements (or a combination of
them) can be employed with the purpose of identifying, among the connections per-
formed through the firewall, maximums and minimums in respect to protocols used,
hosts and accessed ports, as well as quantity of hits referring to events such as port
scanning and access denied, and stations that suffer and launch more port scans.

Mar 01 05:15:38.751 Port Scan detected (66.66.77.77 -> 10.200.160.161: Protocol=TCP[SYN] Port 3526->73)
Mar 01 05:15:39.779 EEHi Port Scan detected (66.66.77.77 -> 10.200.160.161: Protocol=TCP[SYN] Port 3528->80)
Mar 01 05:15:39.821 Bl Port Scan detected (66.66.77.77 -> 10.200.180.161: Protocol=TCP[SYN] Port 3530->81)
Mar 01 05:15:39.842 EENj Port Scan detected (66.86.77.77 -> 10.200.160.161: Protocol=TCP[SYN] Port 3532->82)
Mar 01 05:16:55.121 Port Scan detected (66.66.77.90 -> 10.200.160.1: Protocol=TCP[SYN] Port 1316->80)
Mar 01 05:16:55.168 Port Sean detected (66.66.77.90 -> 10.200.160.2: Protocol=TCP[SYN] Port 1340->80)
Mar 01 05:15:55.187 Port Scan detected (66.66.77.90 -> 10.200.160.3: Protocol=TCP[SYN] Port 1352->80)
Mar 01 05:15:55.198 Port Scan detected (66.66.77.90 -> 10.200.160.4: Protocol=TCP[SYN] Port 1354->80)
Mar 01 05:15:55.210 Port Scan detected (66.66.77.90 - 10.200.160.5: Protocol=TCP[SYN] Port 1368->80)
Mar 01 06:01:07.074 201 10804cp[2772835081): Access denied for 66.66.77.77 to 10.200.160.161 |
Mar 01 06:12:08.963 201 1080/tcp[2772835081]: Access denied for 66.66.77.77 to 10.200.160.2
Mar 01 08:30:49.625 121 Statistics: sent=16721 revd=277 src=66.66.77.77/1278 dst=10.200.160.161/21 Brefe=p |

proto=ftp

: 8 o o ~ M ;M e W N =
Example 4
Example 5
Example 6

[
W rn

Fig. 1. Real event set extracted from a log and their relations

3.2 Automatic Event Analysis

In addition to a more quantitative analysis, where diverse accountings are possible,
our approach allows the automatic identification of intrusion scenarios based on the
observation of more elementary event groups. In figure 1 three suspicious behaviors
can be highlighted and are detailed bellow.

Example 4. The first consists of a vertical port scanning and it is composed of
events 1, 2, 3, and 4. This probe is characterized by scans coming from a single IP

200 F.E. Locatelli et al.

address to multiple ports of another IP address. Observe that four port scans were
launched, in less than one second, from the host 66.66.77.77 to the host
10.200.160.161.

Example 5. The second suspicious behavior comprehends a horizontal port scan-
ning and includes the events 5, 6, 7, 8, and 9. In this case, the probes depart from an
IP address to a single port of multiple IP addresses. As it can be observed in figure 1,
the probable invader 66.66.77.90 scanned port 80 of several different hosts searching
for one that had an HTTP server available.

Example 6. Finally, the third intrusion scenario corresponds to a probe followed by
a successful access, including the events 1, 2, 3, 4, 10, and 12. The station
10.200.160.161 suffered four scans (ports 79, 80, 81, and 82) and one unsuccessful
access attempt to the port 1080. Both the port scans and the access attempt departed
from the host 66.66.77.77 that, at last, obtained access to the station using the FTP
protocol (event 12); the elevated number of data sent indicates an upload to the target
station (10.200.160.161).

Due to the high number of firewall events, scenarios as the ones mentioned escape,
many times, unnoticed by the security manager. The second part of the approach,
detailed in this subsection, proposes the use of the case-based reasoning paradigm to
identify intrusion scenarios in an automatic way.

Case-based reasoning (CBR) [3] is an Artificial Intelligence paradigm that uses the
knowledge of previous experiences to propose a solution in new situations. The past
experiences are stored in a CBR system as cases. During the reasoning process for the
resolution of a new situation, it is compared to the cases stored in the knowledge base
and the most similar cases are used to propose solutions to the current problem.

The CBR paradigm has some advantages to other reasoning paradigms. One of
them concerns to the facility of knowledge acquisition, which is carried out searching
real experiences from past situations [2]. Other advantage is the possibility of obtain-
ing partial match between the new situation and the cases, allowing more flexibility in
domains where symptoms and problem conditions can have small variation when
occurring in real situations.

Case Structure. In our approach a case stored represents a possible intrusion scenario
or a suspicious activity that can be identified from the firewall events stored in the
log. The case structure is presented in figure 2a. As one can observe, a case is formed
by: (a) administrative part, with fields for identification and notes that are not used
during the reasoning process; (b) classificatory part, which contains a field used to
divide the log in parts (explained later on); and (c) descriptive part, which contains
the attributes used to match the cases.

The similarity between the events of the real log and the cases stored is calculated
by the presence of events with certain characteristics in the log; we call it a symptom.
In other words, a symptom is the representation of one or various suspicious events
that should be identified in the log so that the stored case can be considered similar to
the current situation.

A case can contain one or more symptoms, according to the characteristics of the
intrusion scenario or the suspicious activity being described. An example of case with
two symptoms is presented in figure 2b. The case modeled, simplified to facilitate the
description of the approach, suggests that an alarm should be generated whenever

Spotting Intrusion Scenarios from Firewall Logs 201

around five scans and a successful access are observed departing from the same
source station. Symptom S; represents PORT_SCANNING events, such as events 1
to 4 in figure 1, while symptom S, represents STATISTIC events, such as the event
12 in the same figure.

e U Casestctwre = 0 e
Administrative Part Administrative Part

= |d: * Id: Successful_Access_After_Scanning

= Desc_Notes: <text fiald> = Desc_Motes: Accesses io the internal network from an IP...
Classificatory Part Classificatory Part

* Classifier:]

< SAME_SOURCE_IP | SAME_DEST_IP | .. > Classifier; SAME_SOURCE_IP

Descriptive Part Descriptive Part

1. n symptoms

= Symptom: = Symptom Si:

= Relevance: Relevance: 1
<1i213s Min_Req_Similarity: PARTIAL_0.5

= Min_Req_Similarity: Min_Num_Events: 5

< TOTAL | PARTIAL_0.5 INO > Event_Attributes:
= Min_Num_Events: = Event_Type: PORT_SCANNING
<integer>
= Event_Attributes: = Sintoma S;:
= Date: * Relevance: 1
= Time: = Min_Req_Similarity: TOTAL
= Event_Type: = Min_Num_Events: 1
<ACCESS_DENIED | PORT_SCANNING | = Event_Attributes:
STATISTIC | PORT_NOT_ALLOWED I... > = Event_Type: STATISTIC
= Protocol:
<TCP[SYN] |HTTP |...>
= Source_|P_Address:
= Dest_IP_Address:
= Source_Port:
= Dest_Port:
(@) (b)

Fig. 2. Intrusion scenarios and suspicious activities modeled as cases

Parameters of the log events such as date, time, type of event, and source IP are
represented in a case as attributes of the event that composes the symptom. Not all the
attributes need to be defined (fulfilled); only the defined ones will be used to calculate
the similarities (presented later on). Considering case A illustrated in figure 2b, only
the attribute Event_Type is being used to identify the event that constitutes the symp-
tom S;. The same happens to the definition of the symptom S.

Reasoning Processes. The matching of log events with a stored case starts by the
separation of these events in parts. The criterion to be adopted in this separation is
determined by the field Classifier (see figure 2a). Each part is called current case and
is compared to the stored case in a separate way. Take as example the comparison of
the log events presented in figure 1 with the case A, figure 2b. Case A has as
classificatory attribute the use of a same source IP address (field Classifier equal to
SAME_SOURCE_IP). Thus, during the reasoning process the example log events are
divided in two different cases, one containing the events 1 to 4 and 10 to 12 (which
we will call current case 1) and the other containing events 5 to 9 (which we will call
current case 2 henceforth).

202 F.E. Locatelli et al.

After the separation of the log events in current cases, as explained above, each
current case must be compared to the stored case in order to calculate its similarity,
through a process called match between current case and stored case. This match is
done using the similarity of the current case events regarding each symptom present
in the stored case in a step called symptom matching. Back to case A and to the cur-
rent case 1 of the previous example, the similarity between them is calculated using
the similarity of case A symptoms, which are S; and S,. At last, the similarity of a
symptom is calculated based on the similarity of the current case events to the event
attributes of that symptom (Event Attributes). In the example, the similarity of Sy is
calculated using the similarity of each event of the current case 1 (events 1 to 4 and
10 to 12) to the event attributes of that symptom (field Event Type equal to PORT
SCANNING). These steps are explained below.

The similarity of a current case event to the event attributes of a symptom of the
stored case is calculated by the total sum of each attribute similarity defined in the
symptom, divided by the number of defined attributes. The approach allows the
similarity of event attributes to be partial or total. In the current version, only simi-
larities of event attributes that assume total (1) or no (0) match have been initially
modeled. Resuming the example of the current case 1 and case A, in the event simi-
larity calculation regarding symptom S;, there is only one defined attribute, which is
the Event_Type. The similarity of the events 1 to 4 results in 1 (100%), since these
events are of the PORT_SCANNING type, which is the same event type defined in
the attribute Event_Type. On the other hand, the similarity of the events 10 to 12
results in 0, because these events are not of PORT_SCANNING type. Considering
now the similarity of the symptom S,, there is also only one attribute defined (type of
event). In the calculation of similarity of each event of the current case 1 in respect to
the symptom S,, the events 1 to 4, 10 and 11 resultin 0, while the similarity of event
12 results in 1 (field Event_Type equal to STATISTIC).

After the calculation of the events similarity in respect to a symptom, they are or-
dered by their similarity. The n events with higher similarity are then used to match
the symptom, where n indicates the minimum number of events needed to have total
similarity to that symptom (modeled in the case as Min_Num_Events). The similarity
of the symptom is calculated by the sum of the similarity of these n events divided by
n. If the resulting similarity for a symptom is under the minimum similarity defined
for that symptom in the stored case (modeled by Min_Req_Similarity), the compari-
son of that current case with the stored case is interrupted, and the current case is
discarded. Recalling the previous example, the event ordering for symptom S; results
in {1, 2, 3, 4, 10, 12}. As for this symptom the minimum number of events to total
match is 5, its similarity will be calculated by (1 + 1 + 1 + 1+ 0)/5 = 0.8. Since the
minimum similarity defined in the case for symptom S, is 0.5, this symptom is ac-
cepted and the process continues, calculating the similarity of the other symptoms in
the case (S; in the example). Considering now symptom S, that has Min_Num_Events
equals to 1, the similarity is calculated by (1)/1 = 1. With similarity 1, S, is also ac-
cepted.

Finally, after matching all the symptoms in the stored case, the match of the cur-
rent case and the stored case is performed. This calculation is done considering the
symptom similarity and its relevance using the formula bellow; ns is the number of
symptoms of the stored case, r; is the relevance of symptom i and symptom_sim; is the

Spotting Intrusion Scenarios from Firewall Logs 203

similarity of symptom i. Referring once more the current case 1 and case A, the final
match degree will be ((1 x 0.8) + (1 x 1))/2 = 0.9, 90%. In this example, both symp-
toms have the same importance (Relevance), but assigning different weights can be
necessary in other situations.

ns
E i X symptom_sim;
=

ns
Zl Ti

When the similarity degree between the current case and a stored case is higher
than a predefined value, the current case is selected as suspicious, indicating a situa-
tion that should be reported to the security manager. When a case is selected, some
additional parameters are instantiated with data of the current case, in an adaptation
process, in order to be possible to provide the manager with a detailed view of the
identified problem. An example is the instantiation of the attribute source IP address
for the cases in which the classifier corresponds to SAME_SOURCE_IP, as in case A.
Using this instantiation, in the example of current case 1 commented during this sec-
tion, the suspicious attitude could be presented as Successful_Access_After_Scanning
detected to the source IP address 66.66.77.77.

In addition to the example described above we have modeled several other intru-
sion scenarios, including horizontal, vertical, coordinated, and stealth scans [9], IP
spoofing, suspect data uploads, web server attacks, and long-term suspect TCP con-
nections, to mention just a few. These scenarios enabled us to explore more function-
alities of the case structure such as alternatives, non-ordered lists of symptoms, and
time correlation between symptoms.

4 The SEFLA Tool

To validate the approach we have developed SEFLA (Symantec Enterprise Firewall
Log Analysis) tool. It was developed under GNU/Linux environment, using Perl and
PHP programming languages, the Apache web server and the MySQL database. Fig-
ure 3 illustrates the SEFLA architecture including its components and the interactions
among them. The parser module is responsible for processing the log files (1) and
inserting the main attributes of each event (e.g. type of operation, source and destina-
tion network addresses, local and remote ports, among others) in the database (2).
From any web browser the security manager interacts with the core of the tool that
was implemented in a set of PHP scripts (3, 4). This interaction allows (a) defining
processing configurations (e.g. history size in days and types of events to be ana-
lyzed), (b) retrieving reports, (c) querying and visualizing results, (d) watching alerts
for intrusion scenarios or suspicious activities and (e) verifying specific event details.
For such, the database is always queried or updated (5).

Each type of event is stored in a distinct table. Some attributes, for being common
for two or more events, are repeated in the corresponding tables. This scheme was
adopted in detriment of a normalized one because in the latter it would require an
average of six queries and seven insertions for each event to be inserted in the data-
base (compromising the performance of the processing phase).

204 F.E. Locatelli et al.

Fig. 3. SEFLA internal components

Through the web browser the security manager also includes, removes and updates
cases in the cases database (3, 4, 6), as well as configures functioning parameters for
the reasoning machine (3, 4, 9). The identification of intrusion scenarios is done
automatically after the tool populates the database with the current day log events
(parser module). The reasoning machine then searches in the database for events of
interest (8) and confronts them with the sample cases (7). Whenever a new suspicious
behavior is identified, the module includes an alarm in the database (8), which will
become visible to the security manager.

5 Case Study

The academic network of Universidade do Vale do Rio dos Sinos was used as a case
study, whose infrastructure has approximately 4.100 computers connected to it and
with Internet access. Log files were collected during a one week period from the
firewall located in the border of this network. SEFLA was populated with these logs
and through the analysis of the obtained reports it was possible to classify, character-
ize and analyze the events in order to determine the network use and identify intru-
sion scenarios and suspicious activities. The tool was installed in an IBM NetVista
station, with a 1.8GHz Intel Pentium4 processor, 256MB of RAM and GNU/Linux
operating system (Red Hat Linux 9.0 distribution) with a Linux kernel version 2.4.20.

Table 1 describes the profile of each log and its processing characteristics. The
largest logs are the ones generated between Monday and Friday. Given the total sum
of the size of all log files (13.05GB) and considering that from this volume 52.2% of
the events were processed, one can verify that the size of the log file was very re-
duced when inserted into the database (resulted in 22.4% of the original size). Be-
sides, the time needed to process the 13.05GB of log data was of 144.5 minutes (2
hours, 24 minutes and 30 seconds).

Spotting Intrusion Scenarios from Firewall Logs 205

Table 1. Log file sizes and processing time

LS PE PT ADS
28/09 0,69 1,30 8,1 0,15
29/09 2,53 3,84 28,7 0,72

30/09 2,55 3,79 28,4 1,27
01/10 2,37 3,52 24,0 1,82
02/10 | 228 3,58 23,6 231
03/10 1,93 3,10 22,6 2,75
04/10 | 0,70 1,40 9,1 2,92
Totals | 13,05 | 2053 | 1445 2,92

LS: Log Size (GB), PE: Processed Events (millions),
PT: Processing Time (minutes), ADS: Accumulated Database Size (GB)

Figure 4 illustrates some discoveries, more of quantitative nature, carried out with
SEFLA support. In (a) it is presented the data flow through the private and external
networks. As it is possible to observe, the HTTP protocol was the most used, fol-
lowed by TCP/1500 (used by a backup tool), FTP, SMTP, and HTTPS. The total
bytes transferred through the networks of more than 30GB from Monday to Friday is
another information that deserves to be emphasized. Regarding port scans, data from
the day with most occurrences of this event have been processed — in this case, Sun-
day (see figure 4b). The five stations from where departed the major number of
probes have the same network prefix (200.188.175.X). When such a hostile behavior
is identified, requests coming from this network addresses should be carefully ana-
lyzed (or blocked by the firewall). Figure 4c, in counterpart, highlights stations that
were most targeted for port scanning in the analyzed week. Still on the port scan
analysis, figure 4d illustrates the history of the most probed port. According to the
study performed about the logs, the destination port 135 represented 90% of the total
probes in the period of seven days. This port is commonly used under Windows plat-
form to start an RPC (Remote Procedure Call) connection with a remote computer.
The port scans observed are probably due to the worms W32.Blaster.Worm and
W32.Welchia.Worm released, respectively, in 11/Aug/2003 and 18/Aug/2003. These
worms are characterized for exploring an RPC vulnerability in the DCOM (Distrib-
uted Component Object Model) acting through the TCP port 135 to launch DoS at-
tacks [8].

Besides the analysis described above, the events collected by the firewall during
the week have also been analyzed from the point of view of automatic detection of
intrusion scenarios. One of the identified scenarios was the port scan (with similar
behavior to the examples 4 and 5), which repeated several times in the log. One in-
stance of this scenario corresponds to the probe represented by 24 port scan events
departing from the same source IP 200.226.212.151 to the same destination IP
200.188.160.130 observed on Sunday, 1:48am. This scenario was considered 100%
similar to the case Port_Scan, as its occurrence involved more than five events of the
port scan type originating from the same source IP address (symptom defined for this
case). Another scenario recognized in many occasions was the one which comprises
port scans and a successful access departing from the same source station as specified
in case Successful_Access_After_Scanning (figure 2b).

Gigab

206 F.E. Locatelli et al.

Bytes transferred between internal/ex iemal nets

Sun Mon Tue Wed Thu Fri

(@ fp-dat m 1500/cp @ smip M hiips lj_huél |

sat|

3354

Main probing sources on 28/09/2003

4960

| | 200.168.175.43
B 200.188.175.161

| [200.188.175.85

| [3200.188.175.162
[200.188.175.11
B 200.188.175.10

(a)

Port scanning history by destination host

Sun Mon Tue Wed Thu Fri

sm‘

B

Port scanning history for TCP port 135

Sun Mon Tue Wed Thu Fri Sat

mll
@

Fig. 4. Some of the information retrieved with the use of SEFLA

6 Conclusions and Future Work

Ensuring the safety of information kept by organizations is a basic requirement for
their operation, since the number of security incidents grows exponentially every
year. However, to protect organizations considering the quantity and the growing
complexity of the executed attacks, it is needed to provide the security manager with
techniques and tools that support the analysis of the evidences and, furthermore, al-
low the automatic identification of intrusion scenarios or suspicious activities. In this
context, we presented an approach, accompanied by a tool, for classification, charac-
terization and analysis of events generated by firewalls. It is worth mentioning that
our approach does not replace other tools, as the intrusion detection systems, and
must be used in conjunction with them.

The organization of the approach in two parts allows handling, in a satisfactory
way, both quantitative and qualitative information. On one side, the event grouping
mechanism based on one or more aggregation elements reveals network usage char-
acteristics and malicious activities. These can be used (a) to evaluate the accomplish-
ment of the security policy, (b) to control resource usage (reviewing current filtering
rules) and (c) to recognize sources and targets of hostile behaviors (aiming at their

Spotting Intrusion Scenarios from Firewall Logs 207

protection). On the other side, the second part of the approach - supported by the
case-based reasoning technique - provides the automatic recognition of event se-
quences that represent intrusion scenarios or suspicious activities. Here, more than
identifying and quantifying actions, one pursuits to recognize the strategies adopted
by intruders to obtain unauthorized access to stations, services and applications.

As it could be observed in section 5, even after the processing and storage of the
events in the database, the resulting base size is large (considering that it contains
events from only seven days). In order to obtain long-term statistics, the synthesis of
essential information about the older events is proposed as a future work (at the cost
of losing the possibility of detailing these events). Currently, we are working on the
evaluation of how much choices on values for Relevance and Min_Req_Similarity, for
example, influence the generation of high-level alerts. From this investigation we
expect to learn how to better determine weights for the different parameters in the
model.

References

1. Debar, H. and Wespi, A. (2001). Aggregation and correlation of intrusion-detection alerts.
Recent Advances in Intrusion Detection, 2212:85-103.

2. Esmaili, M. and et al (1996). Case-Based Reasoning for Intrusion Detection. Computer
Security Applications Conference, p. 214-223.

3. Kolodner, J. (1993). Case-Based Reasoning. Morgan Kaufmann.

4. Ning, P., Cui, Y., and Reeves, D. (2002). Analyzing Intensive Intrusion Alerts via Correla-
tion. Recent Advances in Intrusion Detection, 2516:74-94.

5. Porras, P. A., Fong, M. W. , and Valdes, A. (2002). A Mission-Impact-Based Approach to
INFOSEC Alarm Correlation. Recent Advances in Intrusion Detection, 2516:95-114.

6. Schwartz, D., Stoecklin, S., and Yilmaz, E. (2002). A Case-Based Approach to Network
Intrusion Detection. International Conference on Information Fusion, p. 1084-1089.

7. Symantec (2001). Symantec Enterprise Firewall, Symantec Enterprise VPN, and Veloci-

Raptor Firewall Appliance Reference Guide. Symantec.

. Symantec (2003). Symantec Security Response.

9. Yegneswaran, V., Barford, P., and Ulrich, J. (2003). Internet Intrusions: Global Character-
istics and Prevalence. ACM SIGMETRICS Performance Evaluation Review, 31(1):138-
147.

o]

A Reputation Management and Selection
Advisor Schemes for Peer-to-Peer Systems

Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba

University of Waterloo, Waterloo, Canada
{lmekouar, iraqi, rboutaba}ebbcr.uwaterloo.ca

Abstract. In this paper we propose a new and efficient reputation man-
agement scheme for partially decentralized peer-to-peer systems. The
reputation scheme helps to build trust between peers based on their past
experiences and the feedback from other peers. We also propose two
selection advisor algorithms for helping peers select the right peer to
download from. The simulation results show that the proposed schemes
are able to detect malicious peers and isolate them from the system,
hence reducing the amount of inauthentic uploads. Our approach also
allows to uniformly distribute the load between non malicious peers.

1 Introduction

1.1 Background

In a Peer-to-Peer (P2P) file sharing system, peers communicate directly with
each other to exchange information and share files. P2P systems can be divided
into several categories. Centralized P2P systems (e.g. Napster [1]), use a cen-
tralized control server to manage the system. These systems suffer from the
single point of failure, scalability and censorship problems. Decentralized P2P
systems try to distribute the control over several peers. They can be divided
into completely-decentralized and partially-decentralized systems. Completely-
decentralized systems (e.g. Gnutella [2]) have absolutely no hierarchical struc-
ture between the peers. In other words, all peers have exactly the same role.
In partially-decentralized systems (e.g. KaZaa [3], Morpheus [4] and Gnutella2
[5]), peers can have different roles. Some of the peers act as local central indexes
for files shared by local peers. These special peers are called “supernodes” or
“ultrapeers” and are assigned dynamically [6]. They can be replaced in case of
failure or malicious attack. Supernodes index the files shared by peers connected
to them, and proxy search requests on behalf of these peers. Queries are therefore
sent to supernodes, not to other peers. A supernode typically supports 300 to
500 peers depending on available resources [5]. Partially-decentralized systems
are the most popular in P2P systems.

In traditional P2P systems (i.e. without any reputation mechanism), the user
is given a list of peers that can provide the requested file. The user has then to
choose one peer from which the download will be performed. This process is
frustrating to the user as this later struggles to choose the right peer. After

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 208-219, 2004.
© IFIP International Federation for Information Processing 2004

A Reputation Management and Selection Advisor Schemes 209

the download has finished, the user has to check the received file for malicious
content (e.g. viruses') and that it actually corresponds to the requested file (i.e.
the requested content). If the file is not good, the user has to start the process
again. In traditional P2P systems, little information is given to the user to help
in the selection process.

In [8] it is stated that most of the shared content is provided by only 30%
of the peers. There should be a mechanism to reward these peers and encourage
other peers to share their content. At the same time, there should be a mechanism
to punish peers with malicious behavior (i.e. those that provide malicious content
or misleading filenames) or at least isolate them from the system.

Reputation-based P2P systems [9,10,11,12,13] were introduced to solve these
problems. These systems try to provide a reputation management system that
will evaluate the transactions performed by the peers and associate a reputation
value to these peers. The reputation values will be used as a selection criteria
between peers. These systems differ in the way they compute the reputation
values, and in the way they use these values. The following is the life cycle of a
peer in a reputation-based P2P system:

1. Send a request for a file

2. Receive a list of candidate peers that have the requested file
3. Select a peer or a set of peers based on a reputation metric
4. Download the file

5. Send a feedback and update the reputation data

1.2 Motivation and Contribution

Several reputation management systems have been proposed in the literature (cf.
Section 5). All of these have focused on the completely-decentralized P2P sys-
tems. Only KaZaa, a proprietary partially-decentralized P2P system, has intro-
duced basic reputation metric (called “participation level”) for rating peers. Note
that the proposed reputation management schemes for completely-decentralized
P2P systems cannot be applied in the case of partially-decentralized system as
this later relies on the supernodes for control messages exchange (i.e. no direct
management messages are allowed between peers.)

In this paper, we propose a reputation management system for partially-
decentralized P2P systems. This reputation mechanism will allow a more clear-
sighted management of peers and files. Our contribution is in step 3 and 5 of the
life cycle of a peer in a reputation-based P2P system (cf. section 1). The repu-
tation considered in this paper, is for trust (i.e. maliciousness of peers), based
on the accuracy and quality of the file received. Good reputation is obtained by
having consistent good behavior through several transactions. The reputation
criteria is used to distinguish between peers. The goal is to maximize the user
satisfaction and decrease the sharing of corrupted files.

The paper is organized as follows. In Section 2, we introduce the new rep-
utation management schemes proposed in this paper. Section 3, describes the

! such as the VBS.Gnutella Worm [7]

210 L. Mekouar, Y. Iraqi, and R. Boutaba

proposed selection advisor mechanisms. Section 4 presents the performance eval-
uation of the proposed schemes while Section 5 presents the related works. Fi-
nally, Section 6 concludes the paper.

2 Reputation Management

In this section, we introduce the new reputation management schemes. The
following notations will be used.

2.1 Notations and Assumptions

— Let P; denotes peer %

— Let D; ; be the units of downloads performed from peer P; by peer F;

— Let D; . denotes the units of downloads performed by peer P;

— Let D, ; denotes the units of uploads by peer £;

— Let AF be the appreciation of peer F; for downloadlng the file F from P;.
Let S’up(z) denotes the supernode of peer ¢

In this paper, we assume that supernodes are selected from a set of trusted
peers. This means that supernodes are trusted to manipulate the reputation
data. The mechanism used to do so is outside the scope of this paper and will
be addressed in the future. We also assume that the supernodes share a secret
key that will be used to digitally sign data. The reader is referred to [14] for a
survey on key management for secure group communication. We also assume the
use of public key encryption to provide integrity and confidentiality of message
exchanges.

2.2 The Reputation Management Scheme

After downloading a file F' from peer P;, peer P; will value this download. If
the file received corresponds to the requested file and has good quality, then
we set AF = 1. If not, we set AF. i; = —1. In this case, either the file has the
same t1tle as the requested file but different content, or that its quality is not
acceptable. Note that if we want to support different levels of appreciation, we
can set the appreciation as a real number between —1 and 1. Note also that a
null appreciation can be used, for example, if a faulty communication occurred
during the file transfer.

Each peer P; in the system has four values, called reputation data (REPp,),
stored by its supernode Sup(3):

L. D:* Appreciated downloads of peer P; from other peers,

2. D7 ,: Non-appreciated downloads of peer P; from other peers,
: Successful downloads by other peers from peer P;,

4. D:, ;+ Failed downloads by other peers from peer F;

A Reputation Management and Selection Advisor Schemes 211

D+ and D;, provide an idea about the health of the system (i.e. satisfaction

of the peers). D*,z and D_; provide an idea about the amount of uploads pro-
vided by the peer. They can for example help detect free riders. Keeping track
of D_; will also help detecting malicious peers (i.e. those peers who are pro-
viding corrupted files or misleading filenames). Note that we have the following
relationships:

D}, +D;, = D;. Vi

D}, + D, =D, Vi (1)

Keeping track of these values is important. They will be used as an indication

of the reputation and the satisfaction of the peers. Figure 1 depicts the steps
performed after receiving a file.

P, Supli Suplj P

AR

Update
D*.. D.

AF,

[Update
D*. D

Fig. 1. Reputation update steps

When receiving the appreciation (i.e. Af: ;) of peer P, its supernode Sup(i)
will update the values of D+ and D;,. The appreciation is then sent to the

supernode of peer P; to update the Values of D+. and D, ;. The way these
values are updated is explamed in the following two subsections 2.3 and 2.4.

When a peer P; joins the system for the first time, all values of its reputation
data REPp, are initialized to zero’. Based on the peer transactions of uploads
and downloads, these values are updated. Periodically, the supernode of peer
P; sends REPp, to the peer. The frequency is not too low to preserve accuracy
and not too high to avoid extra overhead. The peer will keep a copy of REPp,
to be used the next time the peer joins the system or if its supernode changes.
To prevent tempering with REPp,, the supernode digitally signs REPp,. The
reputation data can be used to compute important reputation parameters as
presented in section 3.

2.3 The Number Based Appreciation Scheme

In this first scheme, we will use the number of downloads as an indication of the

amount downloaded. This means that D, ; will indicate the number of uploads

% i.e. neutral reputation

212 L. Mekouar, Y. Iraqi, and R. Boutaba

by peer P;. In this case, after each download transaction by peer P; from peer
P;, Sup(i) will perform the following operation:

If Af; =1 then D}, + +, else D, ++.

and Sup(j) will perform the following operation:

IfAfj =1 then D:r)j++, else D, ++.

This scheme allows to rate peers according to the number of transactions
performed. However, since it does not take into consideration the size of the
downloads, this scheme makes no difference between peers who are uploading
large files and those who are uploading small files. This may rise a fairness issue
between the peers as uploading large files necessitates the dedication of more
resources. Also, some malicious peers may artificially increase their reputation
by uploading a large number of small files to a malicious partner.

2.4 The Size Based Appreciation Scheme

An alternative for the proposed algorithm is to take into consideration the size
of the download. Once the peer sends its appreciation, the size of the download
Size(F) (the amount, in Megabytes, downloaded by the peer P; from the peer
P;) is also sent’. The reputation data of P; and P; will be updated based on the
amount of data downloaded.

In this case, after each download transaction by peer P; from peer P;, Sup(i)
will perform the following operation:

If AF; =1 then D}, = Df, + Size(F),

else Dy, = D;, + Size(F).
and Sup(y) will perform the following operation:
If Af; =1 then D}, = D}, + Size(F),

else D . = D_; + Size(F).

If we want to include the content of files in the rating, it is possible to
attribute a coefficient for each file. For example, in the case that the file is rare,
the uploading peer could be rewarded by increasing its successful uploads with
more than just the size of the file. Eventually, instead of using the size of the
download, we can use the amount of resources dedicated by the uploading peer
to this download operation.

3 The Selection Advisor Algorithms

In this section we assume that peer P; has received a list of peers P; that have the
requested file. Peer P; has to use the reputation data of these peers to choose the
right peer to download from. Note that the selection operation can be performed
at the level of the supernode, i.e. the supernode can, for example, filter malicious
peers from the list given to peer F;.

The following is the life cycle of a peer P; in the proposed reputation-based
P2P system:

3 Alternatively the supernode can know the size of the file from the information re-
ceived as a response to the peer’s request.

A Reputation Management and Selection Advisor Schemes 213

1. Send a request for a file F to the supernode Sup(%)

2. Receive a list of candidate peers that have the requested file

3. Select a peer or a set of peers P; based on a reputation metric (The reputa-
tion algorithms are presented in the following subsections 3.1 and 3.2)

4. Download the file F

5. Send the feedback Af ;- Sup(i) and Sup(j) will update the reputation data
REPp, and REPp; respectively

The following subsections describe two alternative selection algorithms. Any-
one of these algorithms can be based on one of the appreciation schemes pre-
sented in section 2.3 and 2.4.

3.1 The Difference Based Algorithm

In this scheme, we compute the Difference-Based (DB) behavior of a peer P; as:
DB; =D}, - D_; (2)

This value gives an idea about the aggregate behavior of the peer. Note that the
reputation as defined in equation 2 can be negative. This reputation value gives
preference to peers who did more good uploads than bad ones.

3.2 The Real Behavior Based Algorithm

In the previous scheme, only the difference between D:"j and D_; is considered.
This may not be able to give a real idea about the behavior of the peers.

Example If peer P, and peer P; have the reputation data asfollows: D: 1 = 40,
D, ; = 20, Df o =20 and D_, = 0. Then according to Difference-Based repu-
tation (cf. equatlon 2) and the Number-Based Appreciation scheme (cf. section
2.3), we have DB; = 40 — 20 = 20 and DBy = 20 — 0 = 20. In this case, both
peers have the same reputation. However, from the user’s perspective, peer Pa
is more preferable than peer P;. Indeed, peer P has not uploaded any malicious
files.

To solve this problem, we propose to take into consideration not only the
difference between D ..; and D but also the sum of these values. In this scheme,
we compute the real behavior of a peer P; as:

-D,
RB_—D—‘FLL-{——D—_ML -—-—J——‘—"‘LlfD,J#O (3)

RB; otherwise

Note that the reputation as defined in equation 3 can vary from —1 to 1. If
we go back to the example, then we have RB; = (40 — 20)/60 = 1/3 and
RB> = (20 — 0)/20 = 1. The Real Behavior Based scheme will choose peer P.

When using this reputation scheme, the peer can choose the peer P; with
the maximum value of RB;.

214 L. Mekouar, Y. Iraqi, and R. Boutaba

In addition of being used as a selection criteria, the reputation data can
be used by the supernode to perform service differentiation. Periodically, the
supernode can check the reputation data of its peers and assign priorities to
them. Peers with high reputation will receive high priority while those with
lower reputation will receive a low priority. For example, by comparing the val-
ues of D, ; and D; . one can have a real characterization of the peer’s behavior.
If D;« >> D.,, then this peer can be considered as a free rider. Its supern-
ode can reduce or stop providing services to this peer. This will encourage and
motivate free riders to share more with others. In addition, the supernode can
enforce additional management policies to protect the system from malicious
peers. It is also possible to implement mechanisms to prevent malicious peers
from downloading in addition to prevent them from uploading.

4 Performance Evaluation

4.1 Simulated Algorithms

We will simulate the two selection advisor algorithms proposed in this paper
(cf. section 3.1 and 3.2) namely, the Difference-Based (DB) algorithm and the
Real-Behavior-Based (RB) algorithm. Both schemes will use the Size-Based Ap-
preciation Scheme proposed in section 2.4. We will compare the performance of
these two algorithms with the following two schemes.

In KaZaa [3], the peer participation level is computed as follows:

(uploaded/downloaded) x 100, i.e. using our notation (cf. section 2.1) the
participation level is (D, ;/D;) x 100. We will consider the scheme where each
peer uses the participation level of other peers as a selection criteria and we will
refer to it as the KaZaa-Based algorithm (KB).

We will also simulate a system without reputation management. This means
that the selection is done in a random way. We will refer to this algorithm
as the Random Way algorithm (RW). Table 1 presents the list of considered
algorithms.

Table 1.

Algorithm |Acronym
Difference-Based algorithm DB
Real-Behavior-Based algorithm|RB
KaZaa-Based algorithm KB
Random Way algorithm RW

A Reputation Management and Selection Advisor Schemes 215

4.2 Simulation Parameters

We use the following simulation parameters:

We simulate a system with 1000 peers.

The number of files is 1000.

File sizes are uniformly distributed between 10MB and 150MB.

At the beginning of the simulation, each peer has one of the files randomly
and each file has one owner.

As observed by [15], KaZaa files’ requests do not follow the Zipf’s law dis-
tribution. In our simulations, file requests follow the real life distribution
observed in [15]. This means that each peer can ask for a file with a Zipf
distribution over all the files that the peer does not already have. The Zipf
distribution parameter is chosen close to 1 as assumed in [15]

The probability of malicious peers is 50%. Recall that our goal is to assess
the capability of the selection algorithms to isolate the malicious peers.
The probability of a malicious peer to upload an inauthentic file is 80%
Only 80% of all peers with the requested file are found in each request.

We simulate 30000 requests. This means that each peer performs an average
of 30 requests. For this reason we do not specify a storage capacity limit.
The simulations were repeated 10 times over which the results are averaged.

4.3 Performance Parameters

In our simulations we will mainly focus on the following performance parameters:

1.

The peer satisfaction: computed as the difference of non-malicious downloads
and malicious ones over the sum of all the downloads performed by the peer.
Using our notation (cf. section 2.2) the peer satisfaction is:

(D;‘: . — D)/ (Df . + D;,). The peer satisfaction is averaged over all peers.

. The size of malicious uploads: computed as the sum of the size of all malicious

uploads performed by all peers during the simulation. Using our notation this
can be computed as: 3; D .

. Peer load share: we would hke to know the impact of the selection advisor

algorithm on the load distribution among the peers. The peer load share is
computed as the normalized load supported by the peer. This is computed
as the sum of all uploads performed by the peer over all the uploads in the
system.

4.4 Simulation Results

Figure 2 (a) depicts the peer satisfaction achieved by the four considered
schemes. The X axis represents the number of requests while the Y axis repre-
sents the peer satisfaction. Note that the maximum peer satisfaction that can
be achieved is 1. Note also that the peer satisfaction can be negative. According
to the figure, it is clear that the DB and RB schemes outperform the RW and
KB schemes in terms of peer satisfaction. The bad performance of KB can be

216 L. Mekouar, Y. Iraqi, and R. Boutaba

'

Fig. 2. (a) Peer Satisfaction, (b) Size of malicious uploads

explained by the fact that it does not distinguish between malicious and non-
malicious peers. As long as the peer has the highest participation level, it is
chosen regardless of its behavior. Our schemes (DB and RB) make the distinc-
tion and do not choose a peer if it is detected as malicious. The RW scheme
chooses peers randomly and hence the results observed from the simulations
(i.e. 20% satisfaction) can be explained as follows. With 50% malicious peers
and 80% probability to upload an inauthentic file, we can expect to have 60%
of authentic uploads and 40% inauthentic uploads in average. As the peer satis-
faction is computed as the difference of non-malicious downloads and malicious
ones over the sum of all the downloads performed by the peer. We can expect a
peer satisfaction of (60 — 40)/(60 + 40) = 20%.

Figure 2 (b) shows the size of malicious uploads, i.e. the size of inauthentic
file uploads. As in RW scheme peers are chosen randomly, we can expect to see a
steady increase of the size of malicious uploads. On the other hand, our proposed
schemes DB and RB can quickly detect malicious peers and avoid choosing them
for uploads. This isolates the malicious peers and controls the size of malicious
uploads. This, of course, results in using the network bandwidth more efficiently
and higher peer satisfaction as shown in figure 2 (a). In KB scheme, the peer with
the highest participation level is chosen. The chosen peer will see its participation
level increases according to the amount of the requested upload. This will further
increase the probability of being chosen again in the future. If the chosen peer
happens to be malicious, the size of malicious uploads will increase dramatically
as malicious peers are chosen again and again. This is reflected in figure 2 (b)
where KB has worse results than RW.

To investigate the distribution of loads between the peers for the considered
schemes, we plotted the normalized load supported by each peer in the simula-
tion. Figure 3 and 4 depict the results. Note that we organized the peers into
two categories, malicious peers from 1 to 500 and non malicious peers from 501
to 1000. As expected, the RW scheme distributes the load uniformly among the
peers (malicious and non malicious). The KB scheme does not distribute the

A Reputation Management and Selection Advisor Schemes 217

load uniformly. Instead, few peers are always chosen to upload the requested
files. In addition, the KB scheme cannot distinguish between malicious and non
malicious peers, and in this particular case, the malicious peer number 280 has
been chosen to perform most of the requested uploads.

Fig. 3. Peer load share for RW and KB

In figure 4 the results for the proposed schemes are presented. We can note
that in both schemes malicious peers are isolated from the system by not being
requested to perform uploads. This explains the fact that the normalized loads
of malicious peers (peers from 1 to 500) is very small. This also explains why the
load supported by non malicious peers is higher than the one in the RW and
KB scenarios. Indeed, since none of the malicious peers is involved in uploading
the requested files®, almost all the load (of the 30000 requests) is supported by
the non malicious peers.

Fig. 4. Peer load share for RB and DB

* after that these malicious peers are detected by the proposed schemes

218 L. Mekouar, Y. Iraqi, and R. Boutaba

According to the figure, we can observe that even if the two proposed schemes
DB and RB are able to detect malicious peers and isolate them from the system,
they do not distribute the load among non malicious peers in the same manner.
Indeed, the RB scheme distributes the load more uniformly among the non
malicious peers than the DB scheme. The DB scheme tends to concentrate the
load on a small number of peers. This can be explained by the way each scheme
computes the reputation of the peers. As explained in sections 3.1 and 3.2, the
DB scheme computes the reputation of a peer P; as shown in equation 2 based on
a difference between non malicious uploads and malicious ones. The RB scheme,
on the other hand, computes a ratio as shown in equation 3. The fact that DB is
based on a difference, makes it choose the peer with the highest difference. This
in turn will make this peer more likely to be chosen again in the future. This is
why, in figure 4, the load is not distributed uniformly.

The RB scheme, focuses on the ratio of the difference between non malicious
uploads and malicious ones over the sum of all uploads performed by the peer
(cf. eq. 3). This does not give any preference to peers with higher difference.
Since in our simulations we did not consider any free riders, we can expect to
have a uniform load distribution between the peers as depicted by figure 4. If
free riders are considered, the reputation mechanisms will not be affected since
reputation data is based on the uploads of peers. Obviously, the load distribution
will be different.

5 Related Works

eBay [16] uses the feedback profile for rating their members and establishing
the members’ reputation. Members rate their trading partners with a positive,
negative or neutral feedback, and explain briefly why. eBay suffers from the
single point of failure problem as it is based on a centralized server for reputation
management.

In [10], a distributed polling algorithm is used to allow a peer looking for
a resource to enquire about the reputation of offerers by polling other peers.
The polling is performed by broadcasting a message asking all other peers to
give their opinion about the reputation of the servants. In [11], the EigenTrust
algorithm assigns to each peer in the system a trust value. This value is based
on its past uploads and reflects the experiences of all peers with the peer.

The two previous schemes are reactive, They require reputations to be com-
puted on-demand which requires cooperation from a large number of peers in
performing computations. As this is performed for each peer having the requested
file with the cooperation of all other peers, this will introduce additional latency
and overhead. Most of the proposed reputation management schemes for com-
pletely decentralized P2P systems suffer from these drawbacks.

A Reputation Management and Selection Advisor Schemes 219

6 Conclusion

In this paper, we proposed a new reputation management scheme for partially
decentralized P2P systems. Our scheme is based on four simple values associated
to each peer and stored at the supernode level. We also propose two selection ad-
visor algorithms for assisting peers in selecting the right peer to download from.
Performance evaluation shows that our schemes are able to detect and isolate
malicious peers from the system. Our reputation management scheme is proac-
tive and has minimal overhead in terms of computation, infrastructure, storage
and message complexity. Furthermore, it does not require any synchronization
between the peers and no global voting is required. Our scheme is designed to re-
ward those who are practicing good P2P behavior, and punish those who are not.
Important aspects that we will investigate in future work include mechanisms
to give incentives for peers to provide appreciations after performing downloads,
and countermeasures for peers who provide faked values for appreciations.

References

1. A.Oram. In: Peer-to-Peer: Harnessing the Power of Disruptive Technologies.
O’Reilly Books (2001) 21-37
http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf.
http://www.kazaa.com/us/help/glossary.htm.
http://www.morphus.com/morphus.htm.

http://www.gnutella2.com/.

Androutsellis-Theotokis, S.: A Survey of Peer-to-Peer File Sharing Technologies.

Technical report, ELTRUN (2002)

http://www.commandsoftware.com/virus/gnutella.html.

8. Adar, E., Huberman, B.A.: Free Riding on Gnutella. Technical report, HP (2000)
http://www.hpl.hp.com/research/idl/papers/gnutella/.

9. Aberer, K., Despotovic, Z.: Managing Trust in a Peer-to-Peer Information System.
In: International Conference on Information and Knowledge Management. (2001)

10. Cornelli, F., Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.:
Choosing Reputable Servents in a P2P Network. In: The Eleventh International
World Wide Web Conference, Honolulu, Hawaii, USA (2002)

11. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The EigenTrust Algorithm for
Reputation Management in P2P Networks. In: the Twelfth International World
Wide Web Conference, Budapest, Hungary (2003)

12. Gupta, M., Judge, P., Ammar, M.: A Reputation System for Peer-to-Peer Net-
works. In: ACM 13th International Workshop on Network and Operating Systems
Support for Digital Audio and Video, Monterey, California, USA (2003)

13. Xiong, L., Liu, L.: PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer
Electronic Communities. IEEE Transactions on Knowledge and Data Engineering,
Special Issue on Peer-to-Peer Based Data Management (2004)

14. Rafaeli, S., Hutchison, D.: A Survey of Key Management for Secure Group Com-
munication. ACM Computing Surveys 35 (2003) 309-329

15. Gummadi, K., Dunn, R.J., Saroiu, S., Gribble, S.D., Levy, H.M., Zahorjan, J.:
Measurement, Modeling, and analysis of a Peer-to-Peer File Sharing Workload.
In: ACM Symposium on Operating Systems Principles, New York, USA (2003)

16. http://pages.ebay.com/help/feedback/reputation-ov.html.

A

~

Using Process Restarts to Improve Dynamic
Provisioning

Raquel V. Lopes, Walfredo Cirne, and Francisco V. Brasileiro

Universidade Federal de Campina Grande,
Coordenacao de Pés-graduagdo em Engenharia Elétrica
Departamento de Sistemas e Computagao
Av. Aprigio Veloso, 882 - 58.109-970, Campina Grande, PB, Brazil
Phone: +55 83 310 1433

{raquel,walfredo, fubica}e@dsc.ufcg.edu.br

Abstract. Load variations are unexpected perturbations that can
degrade performance or even cause unavailability of a system. There are
efforts that attempt to dynamically provide resources to accommodate
load fluctuations during the execution of applications. However, these
efforts do not consider the existence of software faults, whose effects
can influence the application behavior and its quality of service, and
may mislead a dynamic provisioning system. When trying to tackle
both problems simultaneously the fundamental issue to be addressed
is how to differentiate a saturated application from a faulty one. The
contributions of this paper are threefold. Firstly, we introduce the
idea of taking software faults into account when specifying a dynamic
provisioning scheme. Secondly, we define a simple algorithm that can
be used to distinguish saturated from faulty software. By implementing
this algorithm one is able to realize dynamic provisioning with restarts
into a full server infrastructure data center. Finally, we implement this
algorithm and experimentally demonstrate its efficacy.

Keywords: dynamic provisioning, software faults, restart, n-tier appli-
cations.

1 Introduction

The desire to accommodate load variations of long running applications is not
new. Traditionally, it has been made by overprovisioning the system [1,2]. Re-
cently, dynamic provisioning has emerged, suggesting that resources can be pro-
vided to an application on an on-demand basis [3,4,5,6,7,8,9,10,11]. Dynamic
provisioning is particularly relevant to applications whose workload vary widely
over time (i.e. where the cost of overprovisioning is greater). This is the case of
e-commerce applications, which typically are n-tier, long running applications
that cater for a large user community.

We have experimented with a dynamic provisioning scheme that targeted
a simple 2-tier application. To our surprise, we noticed that even when more

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 220-231, 2004.
© IFIP International Federation for Information Processing 2004

Using Process Restarts to Improve Dynamic Provisioning 221

resources had been provided, application quality of service (QoS) had still re-
mained low. Investigating further, we found out that the application failed due
to hard-to-fix software bugs such as Heisenbugs [12] and aging related bugs [13].
Thus, the real problem was that dynamic provisioning systems use functions
that relate system metrics (load, resource consumption, etc.) to the number of
machines to be provided to the application [5,6,14]. However, when software
faults occur, these functions may not reflect the reality anymore, since there
are components of the application that are up, consuming resources, processing
requests, but not performing according to their specifications anymore.

In fact, there is a close relationship between load and software faults. Satu-
rated' applications are more prone to failures [1]. They are more susceptible to
race conditions, garbage collector misbehavior, and so on, increasing the prob-
ability of occurrence of non-deterministic bugs, such as Heisenbugs. Because of
this close relationship, we argue that a management system must deal with both
of them in a combined fashion. This dual goal system must be able to decide
between add/release resources (dynamic allocation actions) and restart software
(software fault recovery).

The contributions of this paper are threefold. First, we introduce the impor-
tance of taking software faults into account when conceiving a dynamic provi-
sioning scheme. Second, we define a simple algorithm that can be used to differ-
entiate saturated from faulty software. Third, we implement this algorithm to
experimentally evaluate its efficacy in the context of a full server infrastructure
data center. Our results indicate that by taking into account both load variability
and software faults, we can improve the quality of service (QoS) and yet reduce
the resource consumption, compared to doing solely dynamic provisioning.

The remaining of the paper is structured in the following way. In the next
section we discuss related work. Next, in Section 3, we show a control system that
makes decision in order to identify the application status (saturated, faulty, op-
timal or underutilized) and act over an n-tier application. This system is named
Dynamic Allocation with Software Restart (DynAlloc-SR). Then, in Section 4,
we present some preliminary results obtained from experiments carried out to
measure DynAlloc-SR efficacy. Finally, we conclude the paper and point future
research directions in Section 5.

2 Related Work

Our research is related to two important areas: dynamic provisioning of resources
and usage of software reboots as a remedy for soft software bugs. In the following
we discuss related works in these areas and point out the novelty of our approach.

2.1 Autonomic Data Centers

Many research groups have been studying the issue of dynamic provisioning
of resources in data centers (DCs). For an autonomic DC to come to reality,

" The words saturated and overloaded are used interchangeably in this paper.

222 R.V. Lopes, W. Cirne, and F.V. Brasileiro

some problems must be solved. One of them is to know the optimal amount of
resources to give to an application on demand [3,5,6,14], which is our focus. Other
issues involve DC level decisions such as whether agents requests for resources
are going to be accepted, whether new applications are going to be accepted by
the DC and whether DC capacity is appropriate [3,8,9,10]. Finally, technologies
that enable rapid topology reconfiguration of virtual domains are needed [4,11].

In [5] authors present an algorithm that indicates the amount of machines
a clustered application needs to accommodate the current load. The algorithm
makes decisions based on CPU consumption and load. That work considers a
full server infrastructure, where each server runs the application of only one
customer at each time. A market-based approach that deals with the allocation
of CPU cycles among client applications in a DC is presented in [3]. CPU con-
sumption in servers is the monitored metric that must be maintained around a
set point. A dynamic provisioning mechanism based on applications models is
proposed in [6]. Application performance models relate application metrics to
resource metrics and can be used to predict the effect of allotments on the ap-
plication. Both [3] and [6] consider a shared server data center infrastructure, in
which different applications may share the same server. An approach for dynamic
surge protection is proposed in [14] to handle unexpected load surges. Resource
provisioning actions are based on short and long term load predictions. The au-
thors argue that this approach is more efficient than a control system based in
thresholds. Clearly, both have advantages and disadvantages. A dynamic surge
protection system is as good as the predictions it does. A threshold-based system
is as good as the threshold values configured. Finally, other researchers proposed
frameworks to help developers to write scalable clustered services [7,15]. Only
applications in development can benefit from these frameworks.

As [5] we consider a full server infrastructure. However, we monitor applica-
tion performance metrics instead of system consumption metrics, and act over
the system as soon as possible in order to maintain the average availability and
response times of the application around a set point. Our provisioning system is
based only on QoS threshold values. Load tendency is taken into account only
to reinforce a resource provisioning decision. Our approach needs neither appli-
cation performance models nor specific knowledge about the implementation of
the application. We also do not require modification in the application code nor
in the middleware. Finally, our provisioning approach is able to detect when the
degraded performance is due to data layer problems, in which case, actions in
the application or presentation layers do not take effect.

2.2 Recovering from Software Faults

Some software bugs can escape from all tests and may manifest themselves during
the application execution. Typically, they are Heisenbugs and aging related bugs.
Both are activated under certain conditions which are not easily reproducible.
Software rejuvenation has been proposed as a remedy against the software
aging phenomenon [16]. Rejuvenation is the proactive rollback of an application
to a clean status. Software aging can give signs before causing a failure. As a

Using Process Restarts to Improve Dynamic Provisioning 223

result, they can be treated proactively. A similar mechanism named restart has
been prescribed for Heisenbugs recovery, however, on a reactive basis [17,18].

Rejuvenation can be scheduled based on time (eg every Monday, at 4 a.m.),
on application metrics (eg memory utilization) or on the amount of work done (eg
after n requests processed) [16]. [19] and [20], for instance, try to define the best
moment to rejuvenate long running systems based on memory consumption. [19]
defines multiple levels of rejuvenation to cope with different levels of degradation.
[21] formally describes a framework that estimates epochs of rejuvenation. They
distinguish memory leakage and genuine increase on the level of memory used by
a leak function (each application may have its function) that models the leaking
process. The amount of leaked memory of some application can be studied by
using tools to detect application program errors [22]. However, these tools are
not able to detect leaks automatically during the execution of the application.
Methods to detect memory leaks still require human intervention.

The execution of micro-reboots is one technique proposed in [18] to im-
prove the availability of J2EE (Java 2 Platform, Enterprise Edition) applications
by reducing the recovering time. Candea et al consider any transient software
fault, not only Heisenbugs or aging related bugs. Their technique is application-
agnostic, however, it requires changes in the J2EE middleware.

Our restart approach is a simplification of the one presented in [18]. We per-
form reactive restarts when the application exhibits bad behavior. Our restarts
are always at the middleware level. We try to differentiate saturation and soft-
ware faults without requiring any knowledge of the application being managed
neither modification in the middleware that supports its execution. We name
our recovery method restart, not rejuvenation, because of its reactive nature.

3 Dynamic Provisioning with Software Restart

DynAlloc-SR is a closed-loop control system that controls n-tier applications
through dynamic provisioning and process restart. Its main components are
showed in Figure 1. The managed application is an n-tier Web based appli-
cation. Typically, an n-tier application is compounded of layers of machines
(workers). A worker of a layer executes specific pieces of the application. For
a 3-tier application, for example, there is the load balancer and workers that
execute presentation, application and data layer logic. A Service Level Agree-
ment (SLA) specifies high level QoS requirements that should be delivered to the
users of the application. It defines, for instance, response time and availability
thresholds. The decision layer is aware of the whole application health status.
Thus, it is the one who makes decisions and executes them by actuating over
the execution environment of the application. It can choose among four differ-
ent actions to execute: i) add workers; ii) remove workers; iii) restart a worker
software, and iv) do nothing. At the monitoring layer there are the components
that produce management information to the decision layer.

224 R.V. Lopes, W. Cirne, and F.V. Brasileiro

Declslon layer

Meonitoring layer

Fig. 1. DynAlloc-SR architecture

3.1 The Monitoring Layer

Monitoring components collect information from each active worker of the appli-
cation. Monitoring information collected from the load balancer (LB) is related
to the application as a whole because the LB is a central point on which the
application depends. We call it application level monitoring information. For the
other workers, monitoring information is called worker level information. These
two levels of information give insight about the health status of the application
and allow the detection of workers that are degrading the application QoS.

DynAlloc-SR gets monitoring information in two ways: (i) submitting probe
requests, and (ii) analyzing application logs. Probe requests are used to capture
the quality of the user experience. Success responses occur when the response
time is less than a threshold (specified in the SLA) and does not represent an
error. Logs provide information on load, response times and availability. Logs
can also be processed to obtain tendencies of such metrics.

Both ways of gathering information have pros and cons. Application logs
contain average response times and availability offered to the stream of real
users. Moreover, they are available for free, since they are produced regardless
of DynAlloc-SR and do not require modifications in the applications. However,
logs may miss certain failures. For example, opening TCP connections to a busy
server may fail, but the server will never know about it (and thus will not log any
event). This problem does not affect probe requests, since they are treated by the
application as a regular user request. On the other hand, probe requests bring
intrusiveness because they add to the application load. Hence, to be as close as
possible to the real user experience, and at the same time to be as unintrusive
as possible, we combine both methods to infer the quality of user experience.

Each probe sends requests to a specific worker (WorkerProbe - WP) or to
the load balancer (ApplicationProbe - AP) periodically. Some of these requests
depend only on the services of the layer of the worker in question and others
depend on services offered by other layers. Probes analyze the responses received
and suggest actions to the decision layer instead of sending raw monitoring data.

WPs can suggest actions such as doNothing, addWorkers, otherLLayerProb-
lem and restart. The action doNothing means that all responses received did
not exceeded the SLA threshold for response times and do not represent errors.

Using Process Restarts to Improve Dynamic Provisioning 225

HTTP (Hyper Text Transfer Protocol) probes, for instance, consider good re-
sponses those who carry response code 2xx. A probe proposes addWorkers when
at least one of the responses for the requests that do not depend on other layers’
services do not represent errors but are exceeding the response time threshold
specified in the SLA. A WP suggests restart when responses that represent er-
rors are received even for the requests that do not depend on another layers.
Finally, otherLayerProblem is proposed when all responses exceeding the SLA
response time threshold or representing errors depend on other layers services.

The AP sends requests to the LB. If all responses received do not represent
errors it proposes doNothing. Otherwise, it suggests addWorkers. The AP does
not suggest restart actions nor otherLayerProblem because it has no idea about
which worker may be degrading the QoS.

DynAlloc-SR also monitors other application metrics in the LB: availability
and response times offered to the real users and load tendency. All of them are
computed by processing logs. Availability and response times are well known
metrics that do not need extra explanations. The tendency metric informs if
the application is more or less loaded during a given monitoring interval in
comparison with the previous one.

3.2 The Decision Layer

The GlobalManager (GM) is the decision layer component that periodically
collects probes’ suggestions and other metrics (availability, idleness, etc.) from
monitoring layer components. Eventually, the GM can try to collect monitoring
information while probes/monitors are still collecting new information. In this
case, GM will use the last information collected. It correlates the information
received, makes decisions and actuates over the application. More specifically, it
correlates all monitoring metrics received and decides if the probes’ suggestions
must be applied.

In a first step, GM uses the application response times and availability com-
puted by analyzing logs and the WPs suggestions to discover if the LB is a source
of performance degradation. If response times or availability violates the SLA
thresholds and all WPs suggest doNothing then GM restarts the LB software.

Next, the GM separates WPs’ suggestions as well as the AP suggestion by
layer into sets. There are 4 sets for each layer: doNothing, addWorkers, restart
and otherLayerProblem. Probes’ suggestions are organized as elements of these
sets. A layer is considered overloaded if the cardinality of its addWorkers set
is greater than a minimum quorum. One layer receives resources only if it is
overloaded. We consider load balancing is fair among workers, thus, saturation
happens to a set of workers at the same time. The minimal quorum is a mecha-
nism to distinguish scenarios in which an increasing in capacity is actually needed
and scenarios in which some pieces of the application are degraded. If less than
the quorum has proposed an increase in capacity, the GM will restart the work-
ers that proposed addWorkers instead of increasing the layer capacity. To give
some time for the load to be rebalanced, the GM waits for some time before
adding new workers, even if all conditions for a new increasing are satisfied.

226 R.V. Lopes, W. Cirne, and F.V. Brasileiro

The status of a layer could be degraded due to problems in other layers. The
GM does not act over a layer if the cardinality of the otherLayerProblem set
is greater than a quorum. It follows the same minimal quorum reasoning as for
capacity increasing. If less than the quorum has proposed otherLayerProblem the
GM decides to restart the software of those who suggested otherLayerProblem.

The restart process does not depend on the layer status, but on individual
status of each worker. Thus, all restart suggestions are implemented by the GM
as soon as possible to avoid the worker to degrade even more along the time.

Workers of the data layer do not depend on services of other layers. If prob-
lems in this layer are detected the GM forwards monitoring information to a
database agent that can act over the database. A lot of new challenges are
involved in the dynamic provisioning of the data layer and some systems are
concerned with the load variability problem [23].

A worker is removed if DynAlloc-SR remains some period without the need
to act over the application and the majority of the load tendencies collected
during this period indicates load reduction. In this case, the load balancing stops
sending requests to the oldest worker and when this worker has no requests to
process it returns to the pool of free servers, as proposed in [5].

4 DynAlloc-SR Experimental Analysis

A prototype of DynAlloc-SR was implemented as well as a system named Dy-
nAlloc, which does not perform restarts. It increments the application capacity
as soon as any signal of QoS degradation is seen. We compared the average avail-
ability and response times of the managed application as well as the number of
machines used by each system in order to measure the efficacy of DynAlloc-SR.

4.1 DynAlloc-SR and DynAlloc Prototypes

Our prototypes were conceived to manage 2-tier applications. HTTP is used
between the client and the presentation layer. There is a WP sending requests
to each active worker of the presentation layer and an AP sending requests to the
LB. All probes analyze the responses received as described in 3.1. Following the
HTTP specification [24], only HTTP response codes 2xx are considered success.

A WP can suggest otherLayerProblem when it detects that the responses
were unsuccessful due to poor QoS of data layer components. Each WP sends
different kinds of requests to the probed worker: some that require data layer
access and others that do not require”. If only the DB queries have delivered
bad QoS, then the probe suggests otherLayerProblem.

The minimum quorum used by DynAlloc-SR is “majority”. We could have
used “all”, but reach unanimity in such an asynchronous distributed environ-
ment is very unlikely. When one probe suggests addWorkers, others may be still
waiting the workers’ replies.

2 We plan to send requests directly to DB workers using Java Database Connectivity.

Using Process Restarts to Improve Dynamic Provisioning 227

Currently, the database agent of the DynAlloc-SR prototype does nothing.
Thus we are not acting over the data layer for now.

DynAlloc-SR knows a pool of machines it can use. Each of these machines is
either an idle machine or is an active worker running pieces of the application.
When restarting a worker, DynAlloc-SR first verifies if there is an idle machine.
In this case it prepares one of them with the appropriate software, adds it to
the pool of active workers and only then stops the faulty worker and returns
it to the pool of idle machines. When the pool of idle machines is empty, the
rejuvenation action stops the faulty software and then restarts it in the same
machine. Since this operation takes some seconds, the number of active workers
is temporarily reduced by one during restart. Clearly, the first way of restart
is more efficient than the second. This is yet another advantage of combining
dynamic provisioning with software restart in the same system.

DynAlloc has the same monitors as DynAlloc-SR, however, its GM does not
take into account the minimal quorum. It increases the application capacity as
soon as some QoS degradation is perceived and ignores suggestions of restart.

4.2 Testbed

The managed application is a mock-up e-commerce application named xPet-
store’. In our experiments, after sometime running, we observed one of the
following flaws (in order of frequency of occurrence): EJBException, Applica-
tionDeadlockException or OutOfMemoryError.

The testbed consists of 5 application servers running JBoss 3.0.7 with Tomcat
4.29, one database server running MySQL, one LB running Apache 2.0.48 with
mod_jk, 3 load generators and a manager that executes either DynAlloc-SR or
DynAlloc. We start an experiment using 2 workers.

Obtaining actual logs from e-commerce companies is difficult because they
consider them sensitive data. Thus, we use synthetic e-commerce workloads gen-
erated by GEIST [25]. Three workload intensities have been used: the low load,
with 120 requests per minute (rpm) in average, the medium load with 320 rpm
and the high load with 520 rpm. Each workload lasts for around an hour and
presents one peak. Based on the study reported in [26] we assume that the
average number of requests per minute doubles during peaks.

DynAlloc-SR and DynAlloc availability and response times thresholds are
97% and 3 seconds respectively.

4.3 Experimental Results

We here present results obtained by running each experiment ten times. Aver-
age values of availability and response times measured during all experiments
are presented in Table 1. DynAlloc-SR yielded better average application avail-
ability and response times than DynAlloc. This is an indication that although

3 xPetstore is a re-implementation of Sun Microsystem PetStore, and can be found in
http://xpetstore.sourceforge.net/. Version 3.1.1 was used in our experiments.

228 R.V. Lopes, W. Cirne, and F.V. Brasileiro

very simple, DynAlloc-SR is able to make good choices when adding/releasing
resources and restarting software.

Table 1. Average availability and response times of xPetstore

DynAlloc-SR| DynAlloc
Availability 88.04% 77.99%
Response times| 49.65 sec. [136.37 sec.

Next we compare DynAlloc-SR and DynAlloc considering each load intensity
individually. These results are illustrated in Figures 2 and 3.

120.00%

100.00%

80.00%

B0.00%

Avaltabilityss

40.00%

20.00%

0.00%

Response imes (s}

medium

high

[=-e-—Dymaiiec-sm

98.41%

R.19%

73.63%

250.00

200.00

150.00

100.00

50.00

0.00 x

medium

tigh

[=- #--Dyranoc-sR

|-—s— Dymiitoe

38.27%

85.05%

50.65%

B.42

103.76

[E=—oymiiee

Load

15.47

157.02

126.62

Load

Fig. 2. Average availability Fig. 3. Average response times

In average, DynAlloc-SR yielded 0.13%, 7.14% and 22.9% better availability
than DynAlloc during the low, medium and high load experiments respectively.
As we can see, the availability gain increases considerably when the load in-
creases. The more intense is the load and the more saturated is the software,
the greater is the probability of failures due to software faults. This is because,
when load increases, the probability of race conditions, garbage collector misbe-
havior, acceleration of process aging, etc., also increases. This correlation makes
the differentiation between faulty and overloaded software difficult.

Response time gains did not follow the same crescent pattern. For low and
medium loads the gains were around 75%. For the higher load this gain was
smaller (54%). Investigating further, we found out that the LB reached its max-
imum allowed number of clients and became a bottleneck during high load exper-
iments. The Apache MaxClients directive limits the number of child processes
that can be created to serve requests. Any connection attempt over this limit is
queued, up to a number based on the ListenBacklog directive. Since DynAlloc-
SR cannot actuate over the capacity of the LB, the response times increased
and, thus, the gain around 75% was not achieved.

Using Process Restarts to Improve Dynamic Provisioning 229

These high gains may be an indicative of the fragility of the application and
its execution environment. It is likely that applications in production are more
robust than the one we used here and thus these gains may be overestimated.
However, applications will fail someday, and when this happens, a dynamic pro-
visioning with software restart will deliver better results than a dynamic provi-
sioning system that does not take software faults into account.

DynAlloc-SR also used less resources than DynAlloc. The mean number of
machines used by DynAlloc was 14.6% greater than the mean number of ma-
chines used by DynAlloc-SR. This is due to the fact that workers that needed
rejuvenation contributed very little to the application QoS, yet kept consuming
resources. When looking at the load variation, the mean number of machines
used by DynAlloc was 5.3%, 15.0% and 20.5% greater than the mean number
of machines used by DynAlloc-SR, for low, medium and higher loads, respec-
tively. We believe the raise from 5.3% to 15.0% in “resource saving” is due to
the greater number of software failures generated by a greater load. Interest-
ingly, however, this phenomena does not appear when we go from medium to
high load: the increase in “resource saving” is of five percent points (from 15%
to 20%). We believe that this is due to the maximum number of machines used.
The maximum number of machines used (5) is more than enough to process the
low load. However, when load increases DynAlloc tries to correct the degraded
performance of the application by adding more machines, always reaching the
maximum number of machines. If more machines were available, more machines
would be allocated to the application. If the total number of machines was higher
than 5, the “resource saving” for high load would likely be greater.

5 Conclusions and Future Works

We have shown that a dynamic provisioning system that takes into account soft-
ware faults is able to deliver better application QoS using less resources than a
similar dynamic allocation system that does not consider software faults. One of
the most complex duties of such a dual goal management system is to differen-
tiate saturated and faulty software. This is because aging related bugs produce
effects in the application and the execution environment that are similar to those
produced by load surges. Moreover, the probability of failure is proportional to
the load intensity being hold by the application, turning the relationship between
load and bugs still narrower. We here propose DynAlloc-SR, a control system
that copes not only with capacity adjustment, but also with software faults of
n-tier applications. DynAlloc-SR assumes that saturation is something that al-
ways happens simultaneously to a minimal quorum of workers of the same layer
while software faults do not follow this clustered pattern.

Our experimental results indicate the efficacy of DynAlloc-SR decision algo-
rithms. By combining a restart scheme with our dynamic allocation scheme, we
could increase the average application availability from 78% to 88%. Maybe this
improvement is overestimated due to the fragility of our demo application. How-
ever, even n-tier applications in production fail. When applications fail, dynamic

230 R.V. Lopes, W. Cirne, and F.V. Brasileiro

provisioning with software restart will deliver better results than a dynamic pro-
visioning system that does not take software faults into account. The dual goal
system also uses less resources than the dynamic allocation only system. DynAl-
loc used in average 15% more resources than DynAlloc-SR.

Our main goal here is not to propose a perfect dynamic provisioning algo-
rithm but to demonstrate the importance of treating software faults in conjunc-
tion with dynamic provisioning. However, we emphasize two important features
of our dynamic allocation scheme that, as far as we know, had not been applied
by other schemes. Firstly, we consider dependency relationships among n-tier
application layers. For instance, DynAlloc-SR does not try to add more ma-
chines in a layer L if another layer L’ on which layer L. depends presents poor
performance. Secondly, DynAlloc-SR uses probes to infer the application health
and do not depend on correct behavior of the application, since we do not use
specific functions that relates QoS metrics with number of machines.

Before we proceed with the study of a combined solution to the problems
of load variability and software faults, we plan to study deeper the interac-
tions among dynamic provisioning systems, rejuvenation schemes and degrada-
tion/failure phenomena due to transient software faults. Based on the interac-
tions discovered we hope to define new techniques in both areas (software faults
recovery and dynamic provisioning), which maximize/create positive interactions
or minimize/eliminate negative ones.

Acknowledgments. This work was (partially) developed in collaboration with
HP Brazil R&D and partially funded by CNPq/Brazil (grants 141655/2002-0,
302317/2003-1 and 300646/1996-8).

References

1. Gribble, S.D.: Robustness in complex systems. In: Proceedings of the Eighth
Workshop on Hot Topics in Operating Systems. (2001) 21-26

2. Ejasent: Utility computing: Solutions for the next generation IT infrastructure.
Technical report, Ejasent (2001)

3. Chase, J.S., Anderson, D.C., Thakar, P.N., Vahdat, A., Doyle, R.P.: Managing en-
ergy and server resources in hosting centres. In: Symposium on Operating Systems
Principles. (2001) 103-116

4. Appleby, K., et al: Oceano - sla based management of a computing utility. In: 7th
IFIP/IEEE International Symposium on Integrated Network Management. (2001)
855 —868

5. Ranjan, S., Rolia, J., Fu, H., Knightly, E.: Qos-driven server migration for internet
data centers. In: Proceedings of the International Workshop on Quality of Service.
(2002)

6. Doyle, R., Chase, J., Asad, O., Jen, W., Vahdat, A.: Model-based resource pro-
visioning in a web service utility. In: Proceedings of the USENIX Symposium on
Internet Technologies and Systems USITS 2003. (2003)

7. Fox, A., Gribble, S.D., Chawathe, Y., Brewer, E.A., Gauthier, P.: Cluster-based
scalable network services. In: Proceedings of the 6th ACM Symposium on Oper-
ating Systems Principles, ACM Press (1997) 78-91

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Using Process Restarts to Improve Dynamic Provisioning 231

. Rolia, J., Zhu, X., Arlitt, M.F.: Resource access management for a utility hosting

enterprise applications. In: Proceeding of the 2003 International Symposium on
Integrgated Management. (2003) 549-562

Rolia, J., Arlitt, M., Andrzejak, A., Zhu, X.: Statistical service assurancecs for
applications in utility grid environments. In: Proceedings of the Tenth IEEE/ACM
International Symposium on Modeling, Analysis and Simulation of Computer and
Telcommunication Systems. (2003) 247-256

Rolia, J., et al: Grids for enterprise applications. In Feitelson, D.G., Rudolph,
L., Schwiegelshohn, U., eds.: Job Scheduling Strategies for Parallel Processing.
Springer Verlag (2003) 129-147 Lect. Notes Comput. Sci. vol. 2862.

Rolia, J., Singhal, S., Friedrich, R.: Adaptive internet data centers. In: In SS-
GRR’00 Conference. (2000)

Gray, J.: Why do computers stop and what can be done about it? In: Symposium
on Reliability in Distributed Software and Database Systems. (1986)
Vaidyanathan, K., Trivedi, K.S.: Extended classification of software faults based on
aging. In: Proceedings of the 12th International Symposium on Software Reliability
Engineering. (2001)

Lassettre, E., et al: Dynamic surge protection: An approach to handling unexpected
workload surges with resource actions that have dead times. In: 14th IFIP/IEEE
International Workshop on Distributed Systems: Operations and Management.
Volume 2867 of Lecture Notes in Computer Science., Springer (2003) 82-92
Welsh, M., Culler, D., Brewer, E.: Seda: an architecture for well-conditioned, scal-
able internet services. In: Proceedings of the 8th ACM Symposium on Operating
Systems Principles, ACM Press (2001) 230-243

Huang, Y., Kintala, C., Kolettis, N., Fulton, N.D.: Software rejuvenation: Anal-
ysis, module and applications. In: Proceedings of the Twenty-Fifth International
Symposium on Fault-Tolerant Computing, IEEE Computer Society (1995) 381-390
Candea, G., Fox, A.: Recursive restartability: Turning the reboot sledgehammer
into a scalpel. In: Proceedings of the Eighth Workshop on Hot Topics in Operating
Systems. (2001) 125-132

Candea, G., Keyani, P., Kiciman, E., Zhang, S., Fox, A.: Jagr: An autonomous
self-recovering application server. In: 5th International Workshop on Active Mid-
dleware Services. (2003)

Hong, Y., Chen, D., Li, L., Trivedi, K.: Closed loop design for software rejuvena-
tion. In: Workshop on Self-Healing, Adaptive, and Self-Managed Systems. (2002)
Li, L., Vaidyanathan, K., Trivedi, K.S.: An approach for estimation of software
aging in a web server. In: International Symposium on Empirical Software Engi-
neering. (2002)

Bao, Y., Sun, X., Trivedi, K.S.: Adaptive software rejuvenation: Degradation model
and rejuvenation scheme. In: Proceedings of the 2003 International Conference on
Dependable Systems and Networks, IEEE Computer Society (2003) 241-248
Erickson, C.: Memory leak detection in embedded systems. Linux Lournal (2002)
Oracle: Oracle database 10g: A revolution in database technology. Technical report,
Oracle (2003)

Fielding, R., et al: Hypertext transfer protocol — http/1.1. Technical report, RFC
2616 (1999)

Kant, K., Tewari, V., Iyer, R.: Geist: A generator of e-commerce and internet server
traffic. In: Proceedings of the 2001 IEEE International Symposium on Performance
Analysis of Systems and Software, IEEE Computer Society (2001) 49-56

Arlitt, M., Krishnamurthy, D., Rolia, J.: Characterizing the scalability of a large
web-based shopping system. ACM Trans. Inter. Tech. 1 (2001) 44—69

Server Support Approach to
Zero Configuration In-Home Networking

Kiyohito Yoshihara', Takeshi Kouyama®, Masayuki Nishikawa®, and
and Hiroki Horiuchi'

! KDDI R&D Laboratories Inc., 2-1-15 Ohara Kamifukuoka-shi
Saitama 356-8502, JAPAN
{yosshy hr-horiuchi}ekddilabs.jp
2 KDDI Corporation, 3-10-10 Iidabashi Chiyoda-ku
Tokyo 102-8460, JAPAN

{ta-kouyama masa-n}ekddi.com

Abstract. This paper proposes a new server support approach to zero
configuration in-home networking. We show three technical issues for
zero configuration. Lack of a protocol or technique addressing all issues
simultaneously motivated us to design a new approach based on (1) a
two-stage autoconfiguration, (2) a UPnP and HTTP-based autoconfig-
uration, and (3) extended UPnP services. An elaborated flow for the
global Internet connection from scratch will be presented. The proposed
approach can obtain software and settings from remote servers, and up-
dates/configures for devices. We implemented a system based on the
proposed approach, and evaluated its total autoconfiguration time, and
the number of technical calls to a help desk during a field trial for five
months. We delivered a user-side configuration tool and an all-in-one
modem to approximately 230,000 new aDSL subscribers as part of the
trial system. Over 40 settings are properly configured for diverse devices
in 14 minutes and 10 seconds, while the ratio of the number of calls to
the number of new subscribers per month decreased from 14.9% to 8.2%.

1 Introduction

As seen in the number of Internet access subscribers via x Digital Subscriber
Line (xDSL) across the globe exceeding 6.3 million by the end of 2003, we can
have an always-on broadband Internet connection at home and office as well as
at traditionally limited universities or research institutes.

A typical home network for xDSL Internet access is composed of Customer
Premises Equipment (CPE) devices including an xXDSL modem, residential gate-
way, and PCs. Before we use Internet applications such as e-mail and Voice over
IP (VoIP), it is necessary to configure application and user-specific settings asso-
ciated with the applications as well as IP network settings, for diverse devices. An
e-mail account and Session Initiation Protocol (SIP) server address are examples
of such settings. Media-specific settings including an Extended Service Set Iden-
tifier (ESSID) and an encryption key must be configured if we use applications

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 232-244, 2004.
© IFIP International Federation for Information Processing 2004

Server Support Approach to Zero Configuration In-Home Networking 233

via IEEE802.11b[1] Wireless Local Area Network (WLAN) communications. Ad-
ditionally, software updates are prerequisite for the configuration, for such new
software as firmware on an xXDSL modem and device driver of a WLAN card
may be released for bug fixes or upgrades even after the shipping.

In contrast, the configuration and software update together require a highly
skilled and experienced user with technical knowledge of the Internet, as it was
initially created for academic purposes. This poses a barrier to Internet novices
and raises technical issues. In order to break down this barrier, some protocols
and techniques for zero configuration networking [2,3,4,5,6,7,8,9,10,11,12,13,14]
have been developed; however, almost all existing protocols and techniques could
not fully address this issue: some are only for single and specific devices or appli-
cations, and others are restricted to IP network settings, omitting applications
and user-specific settings.

This paper proposes a new server support approach to zero configuration in-
home networking to solve this issue. The proposed approach allows us to update
software on diverse devices and to configure all settings: application and user-
specific settings together with IP network settings, required to make available
Internet applications. The proposed approach consists of two stages: the former is
a Local stage in which a home network is isolated and has only local connectivity,
and the latter is a Global stage in which the home network has global Internet
connectivity after Local stage. In the Local stage, the proposed approach can
discover all devices based on Universal Plug and Play (UPnP) [14] and configure
local settings for the devices. In the Global stage, the proposed approach obtains
software and settings from servers and customer information systems managed
by an Internet Service Provider (ISP) then it updates the software and configures
the settings instead of the user. New application and user-specific UPnP actions
with the associated state variables are defined and together used in both stages
in a secure manner, to cover the shortcomings of the UPnP specifications, which
only provided general-purpose items at the development phase.

The emphasis of this paper lies not only in prototyping a system, but also in
deploying this system to demonstrate its proven practicality. We implemented a
system based on the proposed approach and yet conducted a field trial in which
we offer an all-in-one asymmetric Digital Subscriber Line (aDSL) modems with
IP router, VoIP, and WLAN access point capabilities to new subscribers, to-
gether with a CD-ROM that stores user-side autoconfiguration tools. The tool
will automatically configure all required settings for the PC and the aDSL mo-
dem with minimum user intervention once a user inserts the CD-ROM into a
PC in the home network and clicks the start button. Even an Internet novice
can easily have browser access and use e-mail through WLAN communication
as well as VoIP with the proposed approach, while an ISP can reduce operation
costs through decreasing number of technical calls to the help desk. For proven
practicality, we evaluated the proposed approach based on the total processing
time of the system, including some software updates, and the number of technical
calls to a help desk that were empirically collected during the field trial.

234 K. Yoshihara et al.

ISP domain

Home network

B | LR | Wireless LAN N
(eg.JEEE802.11b) @
Servers(RADIUS. WEB, SMTP, pterirrert A
POP, 5IP) and customer
information systems PC
. foi) xDSL 4 &= ééa e
el All-in-one modem Ethemet @ E-mail
Intemet BAS DSLAM - 1P router e I
xDSL operator domain - VoIP
- Wireless LAN
access point SET— z ! VoIP

Phone

Fig. 1. Typical Home Network with xDSL Connections

This paper is organized as follows: In Sect.2, we present an overview of a
typical home network with xDSL connections and address technical issues for
zero configuration. We review recent related work in Sect.3. In Sect.4, we propose
a new server support approach to zero configuration in-home networking. In
Sect.5, we implement a system and evaluate it through a field trial.

2 Typical Home Network with xDSL Connections and
Technical Issues for Zero Configuration In-Home
Networking

2.1 Typical Home Network with xXDSL Connections

Figure 1 shows a typical home network for Internet access via xDSL, with xDSL
operator and ISP domains. The CPE devices including an all-in-one xXDSL mo-
dem, PCs, and phone are connected in a tree with the modem as its root. Each
home network is connected to an ISP domain, in which Remote Authentication
Dial-In User Service (RADIUS), World Wide Web (WEB), Simple Mail Transfer
Protocol (SMTP), Post Office Protocol (POP), and SIP servers are operated to
serve such Internet applications as e-mail and VoIP via Digital Subscriber Line
Access Multiplexer (DSLAM) and Broadband Access Server (BAS) installed
at an xDSL operator domain. In addition to the servers, customer information
systems maintain user account information, and the information should be con-
figured for CEP devices as the application and user-specific settings.

The user must take care of software updates at present. The user voluntarily
performs manual updates when they learn of new software releases.

2.2 Technical Issues for Zero Configuration In-Home Networking

The following technical issues should be addressed to achieve zero configuration
in-home networking by studying typical home networks in Sect.2.1.

Server Support Approach to Zero Configuration In-Home Networking 235

1. All diverse CEP devices shown in Fig.1 should be autoconfigured with min-
imum user intervention, to release users from the complicated and labor-
intensive configuration task (Issue 1).

2. Application and user-specific settings maintained by the servers and cus-
tomer information systems in a remote ISP domain should be obtained and
configured for local CPE devices, to make Internet applications such as e-
mail and VoIP available in a simple and easy way (Issue 2).

3. Software updates of CPE devices including firmware on an xDSL. modem and
device driver of a WLAN card should be performed fully within the auto-
configuration whenever applicable, to run applications as reliably as possible
without abnormal terminations of devices due to software bugs (Issue 3).

3 Related Work

Research and development work on the zero configuration networking have been
conducted. We summarize recent related work below and show that none of them
alone addresses all issues in Sect.2.2 simultaneously.

Dynamic Host Configuration Protocol (DHCP)[2] is a well-known practical
protocol. It partially meets Issue 1 in Sect.2.2, in that a DHCP server centrally
configures an IP address for diverse IP devices. The server can configure other
IP and Domain Name System (DNS) settings; however, neither Issue 2 nor 3
could be addressed only with DHCP as they are restricted to link-local settings
while software updates are out of scope.

The Internet Engineering Task Force (IETF) Zero Configuration Network-
ing (zeroconf) working group was standardizing a distributed protocol[3] for
dynamic configuration of link-local IPv4 addresses. The IETF Mobile Ad-hoc
Networks (manet) working group has also standardized a distributed autoconfig-
uration protocol[4] for the manet. Although the protocol has inspired subsequent
research efforts[5,6,7,8], they are still the same as DHCP for the three issues.

DOCSIS[9] and PacketCable[10] provide similar protocols based on DHCP
and Trivial File Transfer Protocol (TFTP) for cable modems. They configure
downstream frequency, Class of Service (CoS), etc. for modems. Software updates
are also available for DOCSIS protocol. The protocols may meet Issue 3; however,
they cannot address Issue 1 and 2 alone, as the intended device of the protocols is
a single cable modem, while the configuration is limited to cable and IP-specific
settings. This is also true for other effort[11] with Cisco CPE devices.

In terms of media-specific settings, Co-Link configuration technique[12] for
wireless links such as IEEE802.11b and Bluetooth has been developed. This tech-
nique may meet Issue 1 partially as it introduces configuration point hardware,
from which diverse devices can obtain the media-specific settings including an
ESSID and encryption key. The technique integrated with the protocols[2,3,4]
may achieve autoconfiguration of WLAN communication in a home network;
however, even this integration addresses neither Issue 2 nor Issue 3, due to its
locality and the lack of the communication software installation and update.

UPnP[14] is designed to support zero configuration networking as devices
can join a network dynamically, obtain IP addresses typically with DHCP, and

236 K. Yoshihara et al.

exchange its presence and capabilities with other devices with Simple Service
Discovery Protocol (SSDP)[15]. A service interface defined as an action with
state variables is described in XML and is conveyed by Simple Object Access
Protocol (SOAP) [16], for controllers or control points to control and transfer data
among networked devices. General Event Notification Architecture (GENA)[17]
supports eventing, through which control points listen to state changes in devices
after subscriptions. Although UPnP may address Issue 1, its service interfaces
and typical scope restricted to proximity networking require more work to ad-
dress Issue 2 and 3. Jini[13] is the same as UPnP for the three issues.

4 Server Support Approach to Zero Configuration
In-Home Networking

The findings in Sect.3 motivated us to propose a new server support approach
to zero configuration in-home networking to meet all issues in Sect.2.2, which
will be presented in the following sections.

4.1 Design Principles and Assumptions

Design Principles. The proposed approach is designed based on the three
principles as shown in Fig.2.

1. Two-stage autoconfiguration: Local and Global stages

a) Local stage: In this first stage, the proposed approach configures all re-
quired settings: media, IP network, application, and user-specific settings
for diverse CPE devices in a carefully-designed flow in order to address
Issue 1. The successful completion of this stage enables an intended home
network to have global Internet connectivity.

b) Global stage: In this succeeding stage, which is the heart of the pro-
posed approach to address Issue 2 and 3, the approach obtains software
and settings from remote servers and customer information systems in
an ISP domain after user authentication then it updates software and
configures settings for devices.

2. UPnP and HTTP-based autoconfiguration
The proposed approach leverages UPnP and Hyper Text Transfer Protocol
(HTTP), the de-facto standards for the device configuration, to autoconfig-
ure multi-vendor devices comprising a home network for xDSL connection,
meeting Issue 1. In particular, we introduce a user-side autoconfiguration
tool running on a single device, typically a PC. The device performs as a
UPnP control point and autoconfigure itself and all other devices in the
intended home network.

3. Extended UPnP services
Autoconfiguring all required settings only with UPnP standard service
interfaces[18] is insufficient as they are given in a generic form and are not

Server Support Approach to Zero Configuration In-Home Networking 237

<Principle 1> v

. <Principle 1>
Global stage ISP domain Locel stage
----- Home network
> Wireless LAN

A L
Servers (RADIUS, WEB, SMTP,
POP, SIF) and customer
information WZ
G xDSL | — é-@ =
i All-in-one modem PC #E mail
Internet BAS DSLAM

xDSL operator domain
e

Phone

(eg. IEEEGQ2.L1R). ii% Autaconffpuration

<Principle 2> <= Autoconfiguration <Principle 3> <] Extended UPnP service interfaces

Fig. 2. Principles of Proposed Approach

ready for application and user-specific settings for e-mail and VoIP. We can-
not configure all IP network settings with them. We extend UPnP services
and define service interfaces so that the proposed approach may autocon-
figure all the necessary settings together with the standard ones in order to
meet Issue 1 and 2. See Sect.4.3 for details.

Assumptions. We assume the following before and during use of the proposed
approach.

1. Application, user-specific settings and new software for updates are regis-
tered with servers and customer information systems in an ISP domain.

2. An all-in-one modem and the user-side autoconfiguration tool in removable
media are delivered to a user. A password for the modem configuration is
preset. The tool recognizes it, but it is treated opaquely.

3. Hardware installation of all intended CPE devices including power and Eth-
ernet cable connections is performed properly.

4. Users initially turn on device power.

5. There are devices that can execute user-side autoconfiguration tools and
perform as a UPnP control point in a home network.

6. A DHCP server works in the home network and it configures link-local IP
settings containing an IP address, IP subnet mask, default gateway IP ad-
dress, and DNS server IP address for devices. Recent all-in-one modems
normally support a DHCP server and enables it after startup.

7. A WLAN access point conforms to IEEE802.11b/g and broadcasts a beacon
including an ESSID periodically if the modem supports WLAN access point
capability. The access point permits only authorized access from a device
with proper encryption keys.

238 K. Yoshihara et al.

BAS and All-in-one modem PC
Servers {UPnP Device) (UPnP control point)
] i T

i 2 o

configuration including PC
reboot and re-execution of

(1), (2), (3), and (4)
d)SSDP M-SEARCH req.

res|
ription s (6)Device discovery

;g_]G_ENn Su scriﬂon resps.

JDevice configuration
Including device reboot

-]
(n resp.
® HTTFSEEEB (10)Global connectivity check

GiobaT |, T t
stage | (r)HTTPS resps.

SHTTP = (11)Modem fi update

I‘um*‘ - {back to (6) if updated)

{v)SOAP resp.

{12)VolIP configuration

{13)E-mail configuration -l
L

T

Fig. 3. Autoconfiguration Flow of Proposed Approach

8. A user manually configures an xXDSL subscriber account and password, used
as a key to associate applications and user-specific settings for modems. An
alliance between device vendors and ISP permits modems to be shipped with
preset accounts and passwords, thus the user may skip manual configuration.

4.2 Autoconfiguration Flow

Figure 3 shows autoconfiguration flow of the proposed approach. For simplicity,
we suppose a typical home network shown in Fig.1 except that a single PC, an
all-in-one modem, and phone constitute the network for an aDSL connection.
The flow description assuming the alliance in Sect.4.1 is provided below.

Server Support Approach to Zero Configuration In-Home Networking 239

Local Stage. A PC capability check (Fig.3(1)) should be performed first. The
autoconfiguration tool checks the OS type and version, login users and their
authority, PC hardware specs, HDD free space size, other programs running,
active network interface card and/or WLAN card, TCP/IP protocol stacks, and
browsers with an e-mail client and the version. The tool exits if any of these are
inappropriate or insufficient.

The tool configures the card when an active WLAN card is attached to the
PC (Fig.3(2)). It probes an ESSID from the modem. An encryption key is derived
from the ESSID with a predefined algorithm. The tool configures these for the
card to establish a peer-to-peer link. After that or when the PC is wired, the tool
configures link-local IP settings obtained from the DHCP server supported by
the modem (Fig.3(3)). In addition, the tool checks and configures dial-up, proxy,
and SSL settings for the browser (Fig.3(4)). With the UPnP control point flagged
on, the tool reboots the PC to re-execute Fig.3(1) thru (4) to check if the PC
has booted and is operating properly (Fig.3(5)).

The tool tries to discover a device or modem (Fig.3(6)) by sending an SSDP
M-SEARCH request as a UPnP control point. Then the tool sends GENA sub-
scriptions to the modem to know the completion of the modem reboot required
for subsequent new settings. The tool configures aDSL-specific settings: the oper-
ation mode (Point to Point Protocol over ATM (PPPoA) or PPP over Ethernet
(PPPoE)), the PPPoE bridge option, the connection mode (always-on or on-
demand), the encapsulation type (Logical Link Control Encapsulation (LLC) or
Virtual Connection (VC)), the pair of Virtual Connection Identifier (VCI) and
Virtual Path Identifier (VPI), the encryption method, the PPP keep-alive op-
tion, and the PPP retry timer, for the modem for global connectivity (Fig.3(7)).
The tool leverages SOAP during configuration. The tool discovers the modem
(Fig.3(8)) again then checks if the modem has an expected aDSL connection and
obtains global IP settings from a BAS (Fig.3(9)), after modem reboot enabling
the above settings is completed. The tool communicates with remote DNS and
WEB servers to ensure the global connectivity at the end of the stage (Fig.3(10)).

Global Stage. The tool attempts to update firmware on the modem
(Fig.3(11)). The tool asks the remote servers the newest version of the firmware
and determines availability. The tool downloads it from the servers and up-
dates it for the modem if the latest firmware is available. Then the tool reboots
the modem and goes back to Fig.3(6) after receiving a GENA event describ-
ing the completion of modem reboot for the reconfiguration on the most recent
firmware. The tool proceeds to the VoIP configuration when the firmware is the
latest (Fig.3(12)). The tool checks whether the modem has VoIP capabilities.
If it does, the tool downloads VoIP-specific settings from remote servers, and
configures them for the modem. The settings contain SIP server address, user
name and password for the SIP server, SIP URL, area code, and phone number.
The tool goes on to the e-mail configuration (Fig.3(13)). The tool downloads
the application-specific settings, and configures them for the e-mail client on the
PC as with the VoIP configuration. The settings contain an SMTP server name,

240 K. Yoshihara et al.

InternetGatewayDevice Service

Tayer3 WANDevice interfaces | OPeration Action.yeme
Forwarding WANCommon WANConnectionDevice 1GDConfig- Set SIP 1GDConfigVoIPService
Service lnter_face(‘.onﬂg WAN*LinkConfig VolPService | server address)(__SetSIPServeerlress
Service Sarlea Set SIF URL 1GDConfigVoIPService
X_SetSIPUr e
*POTS, DSL, Cable, Ethernet 1GDConfigVol ice
Set area code X_SetAreaCode
WAN**Connection Set phone | IGDConfigVoIPService
Service number X_SetVoIPPhoneNumber
< (B)Extended Service Interfaces in IGDConhgvolPService
1P, PPP Sote
variables object Variable name
LANDevice
= 1GDConfig- SIP server | IGDConfigVolIPService
[LANHostConfigManagementService] ‘ VolPService| _ address | X_SIPServerAddress
———— 1GDConfigVoIPService
IGmDCnnﬂ@eme SIP URL X_SIPUK
1GDConfig***Service 1GDConfigVoIPService
st VolP MirdsssAN Area code X AreaCode
— - 1GDConfigVoIPService
(a)Extended IGDConfigDevice in Standard InternetGatewayDevice Phone number X_VolIPPhoneNumber

(c)Extended State Variables in IGDConfigVolPService

Fig. 4. Extended UPnP Services, Interfaces, and State Variables for All-in-One Modem

POP server name, e-mail account, password, user name, e-mail address, and user
identifier.

Finally, the tool attempts to update a WLAN card driver (Fig.3(14)), and
configures the WLAN-specific settings for the card (Fig.3(15)). The tool obtains
the corresponding driver from remote servers, installs the driver including unin-
stalling the older version, and reboots the PC if the driver update is applicable.
The tool configures for the card as appropriate after reboot, assuming a new
WLAN card attachment after Fig.3(2).

Although the above flow may somewhat have redundant parts and be still
optimized, the highest priority is given to the dependability for more practicality.
For example, the second device discovery (Fig.3(8)) is for preventing loss of the
event telling the completion of the modem reboot.

4.3 Extended UPnP Services

We extend the standard UPnP services, to achieve the autoconfiguration of all
required settings as described in Sect.4.2. As shown in Fig.4 (a), we define an
IGDConfigDevice (grayed out area in Fig.4) as a container of the extended three
UPnP services: IGDConfigSystem Service, IGDConfigVolIPService, and IGD-
ConfigWirelessLAN Service in the standard InternetGatewayDevice for a typical
all-in-one modem. Each of them includes 32, 26, and 19 service interfaces for the
configuration of the entire modem, VolP-specific, and WLAN-specific settings.
Note that we can now locate standard service interfaces for the configuration of
WLAN-specific settings, while undefined at our development phase.

Figure 4 (b) and (c) shows some service interfaces and state variables of
IGDConfigVolPService. For example, the tool leverages X_SetSIPServerAddress
service interface with the state variable X_SIPServerAddress using the desired
value as the input argument in order to configure a SIP server address.

Server Support Approach to Zero Configuration In-Home Networking 241

ISP domain

Home network

= I PC spec
it ARtk | CPU: mobile AMD Athlon XP
Servers (RADIUS, WEB, SMTP. 1400+(1200MHz)
POP, SIP) and customer Memory : 256MB
Information systems HDD:6GB B
i 0S:WindowsXP Home Edition SP1
St d All-in-one modem 4 UPRP/HTTP "L,
b Sl P i aDSL RI-11 =] 100Mbps(full-duplex) Autoconfiguration
BAS DSLAM Upstream: 1Mbps Ethermet PC
xDSL operator domain Downstream: 24Mbps ﬂ
VoIP
RJ-11 Phone

Fig. 5. Evaluation Conditions

5 Implementation and Evaluations

5.1 Implementation

We implement a system based on the proposed approach and describe a brief
overview of the system below.

1. We offer the user-side autoconfiguration tool implementing the flow in
Sect.4.2 in the CD-ROM as part of the proposed approach.

2. The runtime environment of the tool is WindowsXP. The tool leverages
UPnP control point software on WindowsXP installed as default.

3. We embed extended UPnP services in Sect.4.3 and standard ones in the
InternetGatewayDevice to a commercially available all-in-one modem. We
can configure this modem via UPnP interfaces together with HTTP ones
that the modem originally supports.

4. We install a server for the software update in an ISP domain.

5. The tool collects all configuration logs and uploads them to a server after
successful completion of the flow in Sect.4.2 (Hereafter referred to as logging).
The logs will be used to track future problems and make diagnoses.

6. The tool indicates each process. A user can gain insight into problems even
when the user is unable to correct them with the tool. A help desk operator
will give advice when the user indicates the problem being experienced.

5.2 Evaluations

The total processing time of the system in Sect. 5.1 including all software updates
will be evaluated first. After showing our promising results, we deployed the
system in Sect.5.1 and deliver the tool and all-in-one modem to new aDSL
subscribers in order to empirically verify its real practicality. Then the number
of technical calls to a help desk that were collected for five months will be shown.

242 K. Yoshihara et al.

(*1)93.3sec for PC reboot

8 50| (2)31.35ec for modem reboot 2?&5 " 1;%1(*2)
P 114.0(*1)
£ 150

23.422.123.025.1 28
@ (a9 (@ () (6)

¥ 2F ¢ g%e

SRR Y A P
2 5E9E § € QEEs S sge«g
ﬁuﬁgg“;gaﬁg‘gggégéggzg
SE ad . . ﬁ_ &I
A1 IR IO RE FR

Fig. 6. Processing Time of Proposed Approach

Performance Evaluation. We evaluate the total processing time along the
flow in Sect.4.2. Figure 5 shows the evaluation conditions. Note that all steps but
(2) in Fig.3 will be performed. Figure 6 shows the results, where the processing
time and parenthetic number of settings configured by the tool are shown over
the bar for each step.

The 43 settings are properly configured for diverse devices and applications
in 14 minutes and 10 seconds. This will be reduced to 8 minutes and 6 seconds if
none of the software updates is required. This implies that the proposed approach
is suitable for practical use, when we recall that such configuration tasks are
error-prone and will generally take more time even for professionals.

Empirical Evaluation. We deployed the system in Sect5.1 and delivered the
tool and all-in-one modems to approximately 230,000 new aDSL subscribers in
a field trial for five months. Note that we did not have software updates as the
software was the latest version throughout the trial.

The ratio of the number of technical calls to the number of new subscribers
per month decreased from 14.9% (November 2003) to 8.2% (March 2004). The
decrease in the absolute number of calls and in their total time to the help
desk was estimated at 48,600 and 24,300 (hours). These were factored from the
increase in the number of new aDSL subscribers for the five months and the
number of the calls observed just before the trial, assuming no deployment.

The decrease shows that the proposed approach provides both user and
provider benefits in that Internet novices can also easily connect and use typical
applications, while ISP can reduce operation costs.

6 Conclusions

This paper proposed a new server support approach to zero configuration in-
home networking. We showed three technical issues and indicated that none of

Server Support Approach to Zero Configuration In-Home Networking 243

related work alone addressed all issues simultaneously. To address these issues,
we designed a new approach based on: (1) a two-stage autoconfiguration, (2) a
UPnP and HTTP-based autoconfiguration, and (3) extended UPnP services.

To verify practicality, we implemented a system based on the proposed ap-
proach and evaluated the total processing time of autoconfiguration including
software updates, and the number of technical calls to a help desk that were
collected during a filed trial for five months. We delivered the user-side configu-
ration tool and all-in-one modems to new aDSL subscribers as part of the system
in the trial. Over 40 settings were properly configured for diverse devices and ap-
plications including software updates in 14 minutes and 10 seconds. The ratio of
the number of calls to the number of new subscribers per month decreased from
14.9% to 8.2%. These results suggest that the proposed approach is suitable for
practical use when we recall that such configuration tasks are error-prone and
will generally take more time even for professionals. It provides both user and
provider benefits in that Internet novices can also easily connect, while ISP can
reduce operation costs via this decrease.

The proposed approach may apply to IPv6 and the cable-based network.
Further studies including interworking with other in-home technologies such as
HAVi, OGSi or Bluetooth, as well as Web service technologies emerging with
UPnP 2.0 are now underway.

Acknowledgment. We are indebted to Mr. Tohru Asami, President & CEO
of KDDI R&D Laboratories Inc., for his continuous encouragement for this re-
search.

References

1. IEEE: IEEE Std 802.11: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications. 1999 ed. (1999)

2. Droms, R.: Dynamic Host Configuration Protocol. IETF, RFC 2131. (1997)

3. Cheshire, S., Aboba, B., Guttman, E.: Dynamic Configuration of Link-Local IPv4
Addresses. IETF draft-ietf-zeroconf-ipv4-linklocal-14.txt. (2004)

4. Perkins, C., Malinen, J., Wakikawa, R., Belding-Royer, E., Sun, Y.: IP Address
Autoconfiguration for Ad Hoc Networks. IETF draft-ietf-manet-autoconf-01.txt.
(2001)

5. Misra, A., Das, S., McAuley, A.: Autoconfiguration, Registration, and Mobility
Management for Pervasive Computing. IEEE Personal Commun. 8 (2001) 24-31

6. Weniger, K., Zitterbart, M.: IPv6 Autoconfiguration in Large Scale Mobile Ad-Hoc
Networks. In: Proc. of European Wireless 2002. (2002) 142-148

7. Nesargi, Prakash, R.: MANETconf: Configuration of Hosts in a Mobile Ad Hoc
Network. In: Proc. of IEEE INFOCOM 2002. (2002) 1059-1068

8. Zhou, H., Ni, L.M., Mutka, M.W.: Prophet Address Allocation for Large Scale
MANETSs. In: Proc. of IEEE INFOCOM 2003. (2003) 1304-1311

9. CableLabs: DOCSIS 2.0 Specifications: Operations Support System Interface Spec-
ification. (2004)

10. PacketCable™: CMS Subscriber Provisioning Specification. (2002)

244

11.
12.
13.
14.
15.

16.
17.

18.

K. Yoshihara et al.

Shen, F., Clemm, A.: Profile-Based Subscriber Service Provisioning. In: Proc. of
IEEE/IFIP NOMS2002. (2002)

Tourrilhes, J., Krishnan, V.: Co-link configuration : Using wireless diversity for
more than just connectivity. Technical Report HPL-2002-258, HP Labs. (2002)
SUN Microsystems: Jini™ Architecture Specification Version 2.0. (2003)

UPnP Forum: Universal Plug and Play™ Device Architecture. (2000)

Goland, Y., Cai, T., Leach, P., Gu, Y., Albright, S.: Simple Service Discovery
Protocol/1.0 Operating without an Arbiter. IETF draft-cai-ssdp-v1-03.txt. (1999)
World Wide Web Consortium: SOAP Version 1.2. (2003)

Cohen, J., Aggarwal, S., Goland, Y.: General Event Notification Architecture Base:
Client to Arbiter. IETF draft-cohen-gena-p-base-01.txt. (2000)

UPnP Forum: Internet Gateway Device (IGD) Standardized Device Control Pro-
tocol V1.0. (2001)

Rule-Based CIM Query Facility for Dependency
Resolution

Shinji Nakadai, Masato Kudo, and Koichi Konishi

NEC Corporation

s-nakadai@az.jp.nec.com

Abstract. A distributed system is composed of various resources which have
mutually complicated dependencies. The fact increases an importance of the
dependency resolution facility which makes it possible to check if there is given
dependency between resources such as a router, and to determine which
resources have given dependencies with other resources. This paper addresses
a CIM query facility for dependency resolution. Its main features are ease of
query description, bi-directional query execution, and completeness of query
capability to CIM. These features are performed by a rule-based language that
enables interesting predicates to be defined declaratively, unification and
backtracking, and the preparation of predicates corresponding to CIM
metamodel elements. To validate this facility, it was applied in servers
dynamically allocated to service providers in a data center. The basic behavior
of the query facility and the dynamic server allocation was illustrated.

1 Introduction

Today’s computer network systems have become huge and heterogeneous, and the
situation has induced operational mistakes from system administrators and increased
operational costs. To solve these problems, the interest in autonomic computing has
been growing. From the users’ viewpoint, a fixed investment in servers and networks
increases management risk and total cost, because the depreciation cost is a fixed cost,
even though the business environment is dynamic. To solve these problems, several
studies have been made on utility computing.

In this study, we focus on a dependency resolution facility [1,2] as one of the
important functions in autonomic computing and utility computing. This dependency
resolution facility is a facility that makes it possible to check if there is a given
dependency between resources and to determine which resources have given
dependencies with other resources. As for dependencies, the authors regard that some
dependencies are directed and others are undirected. For example, in the case of an
online bookstore, this service is hosted on a server, and the dependency hosted is
thought to be directed. If the server has a connection with one switch, the dependency
having-connection is thought to be undirected. It is noticeable that the dependencies
such as hosted and having-connection can be combined into another dependency, an
example of which is the dependency Bookstore-Switch. From the viewpoint of the

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 245-256, 2004.
© IFIP International Federation for Information Processing 2004

246 S. Nakadai, M. Kudo, and K. Konishi

ease of query description, this is the key-point in this study. The details of the ease of
query description are described in Section 3.1.

The reason such a dependency resolution facility is important for autonomic
computing is explained as follows. Suppose that under the circumstances of the
above-mentioned bookstore service, some trouble occurs on three services
simultaneously. Discovering a switch that has the dependency Bookstore-Switch with
all three services may be useful for root cause analysis. The discovered switch can
thus be regarded as a possible root cause. At the time of the recovery from the switch
failure, an impact analysis is required, because separation of the switch may affect
other irrelevant services. This analysis is realized by finding other services that have
the above-mentioned dependencies with the switch. It is noticeable that service
identifications should be retrieved from a switch identification in impact analysis, but
vice versa in the case of root cause analysis. The capability to query bi-directionally
thus enhance a reusability of query descriptions. As for utility computing, the
dependency resolution facility makes it possible to match resource requests. In the
following, we take the example of a service provider such as an online bookstore that
is utilizing several servers provided by a data center (DC) and requests an additional
server in the face of a workload increase. When a DC receives a request from a
service provider, the dependency resolution facility makes it possible for the DC to
resolve complicated requirements for a server, which include complicated
dependencies with other resources.

Our approach to the dependency resolution is an association traversal on an
information model representing dependencies between system components. The
query description for the dependency resolution is realized by the declaration of what
kind of dependency is to be traversed. In this paper, we adopt a Common Information
Model (CIM) [5] as a target information model. The overview of CIM are described
in Section 2.1.

Ease of query description, reusability of described query, and the completeness of
capability are all required for retrieving data represented in CIM. To put it more
concretely, ease of query description means that the description must be similar to the
system administrator’s concept that an interesting dependency (e.g., Bookstore-
Switch) is composed of pre-known dependency (e.g., hosted and having-connection).
In addition, the capability to query CIM without being aware of the CIM schema also
contributes to the ease of query description, because the schema is strictly defined by
Distributed Management Task Force, Inc. (DMTF) and is less readable. Reusability
of a query means that an information retrieval is possible in both ways, even if it is
composed of directed dependencies. It is desired, for example, that the same query
can be used by root cause analysis and impact analysis. Completeness means that the
query language should have sufficient capability to retrieve data of CIM. Our
approach meets these requirements with the following features: use of a rule-based
language, unification, backtracking, and unique built-in predicates.

The rest of the paper is organized as follows. In Section 2, we present
backgrounds of the discussion and review related works. Section 3 describes the
features and the architecture of our work. Section 4 shows the implementation
applying utility computing. Finally, we conclude our paper in Section 5.

Rule-Based CIM Query Facility for Dependency Resolution 247
2 Background and Related Work

This section presents the backgrounds: CIM and Meta-level. CIM is a information
model and Meta-level is an analysis framework for an information model. Related
works are also described in this section.

21 CIM

DMTF is an industry organization that has provided a conceptual information model
called CIM [5] in order to promote management interoperability among management-
solution providers. The heterogeneity of the present management repositories makes
it hard for system administrators to coordinate management information [3].
Differences in repository structures and query formats, for example, have worsened
the interoperability and the reusability of management applications. To resolve these
problems, it is important to divide data models, which represent a particular type of
repository, from an information model that is independent of repositories. The latter
is desired to be vender-neutral [3,4]. CIM is one of the industry-common conceptual
views of the management environment. And Web-Based Enterprise Management
(WBEM) is an implementation of management middleware that utilizes CIM. The
dependency resolution facility described in this paper makes use of application
programming interfaces (APIs) of WBEM.

2.2 Meta-level

The concept of Meta-level, which is discussed in the Object Management Group
(OMGQG), is applied for a comprehensive discussion about an information model. The
Meta-level is composed of four layers: the instance layer (short M0), the model layer
(M1), the metamodel layer (M2), and the meta-metamodel layer (M3). Elements at
lower layers are defined by upper layers. The element at MO is a so-called instance
which maintains state (e.g., ComputerSystem.Name = “host0”), and the element at
M1 is a type of instance, that is, a so-called class (e.g., ComputerSystem class). M2
defines how to represent M1 elements. For example, the M1 element of CIM is
defined by class, property, and association, which are the M2 elements. In this layer,
CIM differs from other models such as Shared Information and Data (SID) [3,6],
which is promoted by the TeleManagement Forum (TMF). For example, CIM
defines that association is derived from a class, whereas SID defines that an
association is not derived from a class and an association-class is derived from both
association and class. Such relationships between the M2 elements are defined by
M3. In this paper, CIM Metaschema is regarded as a metamodel (M2), CIM Core
Model and Common Model are regarded as a model (M1), and CIM instance is
regarded as an instance (MO).

248 S. Nakadai, M. Kudo, and K. Konishi

23 WQL

Our proposal provides CIM with a query facility. As regards the query facility,
WBEM Query Language (WQL) is a possible query language, which is a subset of
SQL, and its basic structure is described below.

Select <Property> From<Class> [Where <Condition>]

Conditions on properties of CIM are inputted into the Where clause, and the Select
clause indicates properties which are to be retrieved as output. This means that there
is a static relationship between input and output and the query is thereby “one-way”.
Although the WQL is advantageous in terms of its well-known syntax, the M2
elements of RDB (e.g., table and column) do not correspond to those of CIM (e.g.,
class, property, association, and qualifier). This fact may make it difficult to retrieve
qualifier or property of an association instance, even if the semantics of clauses are
transformed.

24 XML, XPath, and RDF

An approach for managing dependencies with XML, XML Path Language (XPath),
and the Resource Description Framework (RDF) has been proposed. Dependencies
are defined using class and property of an RDF Schema (RDES), which is a
vocabulary definition language, and the model element might be one of CIM [7].
And actual dependency data is retrieved as an XML document from managed
resources with instrumentations such as WBEM. The query is realized by an XPath
Query Language, which does not have any reverse query mechanisms. The reverse
query should hence be described, if it is required. This approach is, nevertheless,
promising because it may utilize several advanced Semantic Web technologies.

3 Management System Using the Rule-Based CIM Query Facility

This section addresses the architecture of the management system using our CIM
query facility. Section 3.1 describes the basic concept of the facility and overview of
the architecture. Section 3.2 describes the basis of the query description. We discuss
the sufficient capability to query CIM in Section 3.3 and the enhancement of the
query usability in Section 3.4. Section 3.5 describes the interaction with external
management applications and shows the capability to query bi-directionally.

3.1 Overview

In the following, MO elements such as CIM instances and association instances are
regarded as query targets. An instance represents the existence of a particular type of
system component in a managed system, and association instance represents an
existence of a particular type of relationship between system components. The types
of instance and association instance, which are the M1 elements, therefore can be
regarded as predicates that may become true or false depending on variables

Rule-Based CIM Query Facility for Dependency Resolution 249

representing the state of system components. The basic concept of our approach is
that CIM model (M1) elements can be treated as predicates and such M1 predicates
can be defined by M2 predicates, because M1 elements are defined by M2 elements.
The definition is realized by a rule-based language. The details of M2 predicates are
described in Section 3.3.

It is easy for system administrators to describe a query based on the rule-based
predicate definition, because the concept is similar to one’s way of thinking about a
dependency in an actual management environment. For example, an interesting
dependency such as Bookstore-Switch, as described in Section 1, can be regarded as a
combination of the dependencies hosted and having-connection. This predicate
definition is shown in Section 3.5.

The proposed CIM query facility, which deals with above-mentioned predicates, is
similar to a Prolog processor. One predicate is replaced with a combination of other
predicates recursively, unless it is a built-in predicate. If a built-in predicate is called,
WBEM API is utilized to obtain MO elements instead of unifying facts within the
processor. This unification process including a backtracking-algorithm makes it
possible to retrieve the MO elements, which makes the interesting predicate true.

Management Application

{_Work Flow Execution } ! jmpact
Analysis : | Administrator

Request for
Dependenc result %
Resolution ' I e edt

Built-in predicate
in Metamodel Layer (M2)

Information

Model
Dependency Definition
in Model Layer (M1)

Fact of Dependency !]
in Instance Layer (M0) l I e
saL
Data
Model

o
MiIF Managed Resources

Fig. 1. Architecture of Management System

Fig. 1 shows the whole architecture of a management system using developed
dependency resolution facility. Management applications are components with some
specific management functions such as work flow execution, impact analysis, and
resource matching. These management applications request the confirmation of
dependency existence or query resources with some dependencies. The dependency
resolution facility retrieves information one after another from WBEM in accordance
with dependencies described by administrators. The actual dependency information is
stored in WBEM as CIM instances and association instances (MO0). These instances
might be dynamic data or static data. Dynamic data might be retrieved from managed
resources via WBEM on demand, while static data is stored in the repository of
WBEM. The model in the managed resource can be thought as a data model, because

250 S. Nakadai, M. Kudo, and K. Konishi

it might depend on some repository formats. The correspondences with the Meta-
level are listed in Table 1.

Table 1. Correspondances to Meta-level

Instance Layer MO [CIM_ComputerSystem.Name="host0" |Query Target (e.g. WBEM)
IModel Layer M1 ICIM_ComputerSystem Definition of Dependency
Metamodel Layer M2 ICIM::Class, Association, Property Built-in Predicate
Meta-metamodel Layer [M3 IMOF::Class

3.2 Basis of Query Description

The way to describe dependencies is syntactically similar to Prolog. Fig. 2 shows
samples of the description. As for the definition of a new predicate using a rule, the
variable should be selected from a free variable or a bound variable. A free variable,
which is shown by a question mark, is able to become a variable whose value is not
yet decided. And a bound variable, which is shown by an exclamation mark must be
a variable which value must be determined. In Fig. 2(c), the predicate is defined
using a bound variable, so the term should be filled with a concrete variable as an
input. The predicate with some bound variables has some restrictions on the direction
of the query.

(a) computerSystem(?compSys):-
class(“ComputerSystem”, 2compSys).

(b) fileServer(?fServer):-
computerSystem(?fServer),
property(“Dedicated”, ?fServer, 16).

(¢) linuxFileServer(ILFServer):-
fileServer(/LFServer),
association(“InstalledOS”, ILFServer, ?0pSys),
class(“OperatingSystem”, ?o0pSys),
property(“OSType”, 70pSys, 36).

Fig. 2. Examples of Query Description

3.3 Built-in Predicate

The examples of the built-in predicates, which are key-components of this query
facility, are shown in Fig. 2. There are three built-in predicates: class predicate (Fig.
2(a)), property predicate (Fig. 2(b)), and association predicate (Fig. 2(c)).
Furthermore, these predicates correspond to CIM operations: enumeratelnstances,
getProperty, and associator. This means that these predicates have restrictions on
variables. The first term of each predicate should specify a model (M1) element,
because each predicate represents the metamodel (M2) element. The second terms of
a property predicate and an association predicate should be a bound variable, because
these are input parameters of CIM operations. The second term of the class predicate
and the third terms of the property predicate and association predicate should be free

Rule-Based CIM Query Facility for Dependency Resolution 251

variables, because these are dealt with the outputs of the operations. These
correspondences are listed in Table 2.

Table 2. Built-in Predicates Corresponding to CIM Metamodel Elements

Pradicates’ ATemaL 10 TR e Correspondir
[L e P 3oy CIM Operations
class bound vanable free variable enumeratelnstance()
{name of a class) (instance)
property bound varable bound variable free variable getProperty()
(name of a property) (belonging instance) (value of the property)
association |bound vanable bound variable free vanable associator{)
(name of an assucialion] ;assooiating instanoel associated instance

h istics J;,I" NamedElement
Mame : string
& | 1

Qualfier_| [Property *-9o7ein_Af Class |

ra 1 [
Reference Association
1

Fig. 3. CIM Metamodel (extracted from CIM Metaschema)

The reason these predicates are prepared is as follows. As described in Section 2.2,
the M1 element is defined by the M2 elements. A predicate corresponding to a CIM
model (M1) element is thus defined by the CIM metamodel (M2). The design of our
predicates is as follows. Fig. 3 shows an extracted CIM metamodel. Since all M2
elements have a name property, all built-in predicates have a name term, which can
specify an M1 element. A Property is aggregated by a Class and an Association
aggregate multiple References, each of which is associated with a Class. These
relationships are reflected on the 2nd terms and 3rd terms of the predicates. Though
we list only three predicates in Table 2, another predicate can be mentioned as long as
it reflects the relationship in Fig. 3. An example of the relationship is as follows: a
Qualifier can be aggregated by any element and an Association can aggregate
Properties. Usage of the Qualifier predicate may enable M0 elements of particular
version of CIM to be queried. This design concept of built-in predicates is applicable
to SID, which has a different metamodel from CIM.

3.4 Enhancement of Usability

This section describes a macro of the query for the enhancement of the usability. The
macro described here means that pre-described predicates are combined into more
readable predicates. This facility is important because CIM is designed on the basis
of the concept that reusability among the industry is more important than the usability
and readability. To enhance the reusability, managed resources are modeled in
functional aspects. For example, a router is not modeled as a Router class, but as a
combination of functional classes such as ComputerSystem and [PProtocolEndpoint.
It is true that such a divide-and-conquer strategy is useful for reusability, but it is not
so readable. It is therefore useful to re-organize these functional predicates into a

252 S. Nakadai, M. Kudo, and K. Konishi

more usable and readable predicate. For example, predicate fileserver shown in
Fig.2(b) is quite readable, while it is not so readable that a value of the Dedicated
property of ComputerSystem class means the type of server.

Table 3. Predicate Stack

Predicate Stack i [Example : S : _|Feature
Dependency Predicate ActiveConnectionBetweenRouterAndFileServer(7a, ?b). Usability
IComponent Predicate Definable [Router(7a). FileServer(7b).

Model Predicate (M1) (ComputerSystem(?a). ActiveConnection(la, ?b). |
Metamodel Predicate (M2)| Built-In [Class("ComputerSystem”, ?a). Association(“ActiveConnection”, /a, ?b).|Reusability

Since our rule-based language enables a new predicate to be defined by using pre-
defined multiple predicates, it is easy to define the macro of the query naturally.
Table 3 indicates a predicate stack as the guideline of macro definition. The
predicates in the upper layer are defined by the predicates at the lower layer. Fig. 2(a)
shows an example that a model predicate is defined by a metamodel predicate, and
Fig. 2(b) shows an example that component predicate is defined by a model predicate.
Predicates at the lower two layers depend on CIM, while predicates at the upper two
layers are independent of CIM and are suitable for management applications and
system administrators. We thereby suppose that the predicates at the lower layer are
defined by those who are familiar with CIM and predicates at the upper layer are
defined by those who describe a query for some management applications.

3.5 Usage of the CIM Query Facility

The interaction between this rule-based CIM query facility and management
applications is as follows. There are two patterns in a dependency resolution. One is
the pattern that resources are queried in accordance with defined dependencies
(Pattern 1), and the other is the pattern that the existence of the dependency is
checked (Pattern 2). These patterns have the same semantics as a Prolog.

Pattern 1: The input to CIM query facility is a predicate and its list of parameters
(Fig. 4). If some parameters are filled with data and the others are filled with null, the
filled data act as a key to a query, and the parameters filled with null can be retrieved
from WBEM. It is therefore possible to execute a reverse query using a same query
description, which is impossible using WQL. In the example of bookstore service
discussed in Section 1, Fig. 4(c) shows the query for impact analysis, while Fig. 4(b)
shows the query for root cause analysis.

(a) BookstoreSwitch(?bookstore, ?switch) :- (b) Input : BookstoreSwitch(Bookstore_1, null)
Bookstore(?bookstore), Output : { (Bookstore_1, switch_1),
hosted(?bookstore, ?server), (Bookstore_1, switch_2),
Server(?server), (Bookstore_1, switch_3) }

HavingGonnectivity(?server, ?switch),
Switch(?switch).

(€) Input : BookstoreSwitch(null, switch_1)
Qutput : { (Bookstore_1, switch_1),
(Bookstore_2, switch_1)}

Fig. 4. Examples of Input and Output
Pattern 2: Filling all terms with some values makes it possible to check if given

dependencies exist or not. If there is a given dependency in WBEM, the value true is
returned.

Rule-Based CIM Query Facility for Dependency Resolution 253

4 Prototype Implementation

This section describes the use case of utility computing for an illustration. In Section
4.1, a service model is described and a required sequence are described. In Section
4.2, we show an example of the query description, and an evaluation of query
performance is shown in Section 4.3.

4.1 Service Model

We utilize our dependency resolution facility for utility computing. We suppose that
servers in a data center (DC) are shared by several service providers. When
workloads on allocated servers increase, the service provider may request an
additional server with some requirements on resources such as the type of operating
system and IP address range. It is regarded that the service provider is a virtual
organization (VO) as defined in [8]. In addition, it is assumed that whether the
administrators of a VO can monitor resource information such as servers and network
devices depends on the access control policy of a DC. For example, Fig. 5 shows the
context that the monitor of the identifications of network devices such as firewalls are
restricted to a VO, and what can be monitored is the assigned servers and their
locations such as DMZ or internal-LAN. Therefore, when the DC receives a request
for an additional server, it needs to retrieve detail information about pool servers and
network devices in order to realize a resource matching [9] and filling parameters of
workflow templates. The CIM query facility is applied to this information retrieval.
To put it more concretely, among the following steps that consists an overall sequence
of our implementation, the facility is used in Step 2 and Step 5.

Step 1: VO requests an additional server with some requirements on resources.

Step 2: DC collects servers which match the request among the pool servers.

Step 3: DC selects the most suitable server among the collected servers.

Step 4: DC prepares a workflow template required for the configuration change.

Step 5: DC fills the workflow with parameters.

Step 6: DC executes the completed workflow.

CB V01 Administrator's Logical View
Request for Additional —==
Server with requri
e
M

i Firgwall}

innerT Vo1
LAN

Load
Balancer_1
Lirnm Lirax

. VO : Virtual Organizati
U Rk AN Chegey e
DMZ : DeMilitarized Zone

Fig. 5. Architecture of the Prototype System

The configuration change is realized by the control of servers and network devices
such as a layer 2 switch (L2SW), a firewall, and a load balancers. In the prototype
system, we use an NEC ES8000 L2SW, a Cisco PIX 515E firewall, and an Alteon

254 S. Nakadai, M. Kudo, and K. Konishi

ACEDirector3 load balancer as managed resources. And we use WBEMServices as a
WBEM server, and its runtime environment is as follows: Linux RedHat 7.3, Celron
1.7 GHz CPU, and 512 MB Memory.

4.2 Predicate Definition for Resource Collection

This section describes the outline of the experimental implementation according to the
above-mentioned sequence. In particular, we introduce a sample query and an object
diagram which represents objects existing in a WBEM server.

In Step 1, a VO generates the request for a server with following requirements.

Requirement 1: Linux OS is required.

Requirement 2: The domain at which the server is to be allocated is DMZ.

Requirement 3: The server’s IP address should be within the subnet 192.168.10.0.

In Step 2, the resource matching facility collects pool servers which have Linux
OS. In our prototype, pool servers are represented as the servers belonging to the
pool organization. The collection is thereby realized by the query shown in Fig. 6,
and the object diagram which represents the target of query is shown in Fig. 7.

CompSysInVLANofOpSysOrg(?compSys, Pvianid, ?0sType, ?org):-

Organization (Porginst),

property ("Organization”, ?orginst, ?org),
OrganizationDependency (Porginst, 2vian),

property ("VLANId", Pvian, 2 k
EndstationinVLAN (Pwian, ?vian_endstation_endpoint),
Endpointidentity (?vlan_endstation_endpoint, ?ip_protocol_endpoint)
Endpointidentity (?ip_protocol_endpoint, lan_endpoin),
PortimplementsEndpoint (Plan_endpoint, Pether_port),
SystemDevice (Pether_port, PcompSys),
OperatingSystem (?0s),

property ("OSType", 705, ?osType),
RunningOS (?o0s, 2compSys).

Fig. 6. Query Description

If the CIM query facility receives the predicate CompSysInVLANofOpSysOrg and
its parameters (null, null, 36, “pool”), the list (“server_2”, 5, 36, “pool”) is
returned to the resource matching facility. The fact that dedicated property is 36
means that the type of OS is Linux, as shown in Fig.2(c). If there are plural
appropriate servers, the plural lists are returned. The resources are thereby collected.

In Step 3, one server is selected from the collected servers on the basis of a first-
match strategy. In Step 4, a hard-coded workflow template is retrieved. This
workflow is filled with appropriate parameters in Step 5. The retrievals are realized
by the CIM query facility, that is, specifying of network device such as a switch, a
load balancer, and a firewall, and the retrieval of required configuration data such as
administrative IP addresses, port numbers, and VLAN numbers. In Step 6, the
completed workflow is executed and the result of the execution is reflected on
WBEM.

Rule-Based CIM Query Facility for Dependency Resolution 255

g RunningOS [~ = il
| e [1:0 J. Nams = L2Bwich_1*
| vame wmervee | | osType =36 1 Dedicated = § |
i 2
sgmm w{m S’Meml)w

68 " GystemDevice ~ ~

S

| Ememetpod | | Ememeteon | | :Ememetpon| [:Etmemetpon]
Lrams = on | [roms =omo] R () T |
: ; e BindsToLANEndpoint BindsTaLANEndpoint
ced iaMEngsaimt | [tanEnspomt et sieneot | [- -- [o]
| Macaddmss = ocaa~zz | [maCAddress = wcyy=ze | I =1 | | == “poer |

PviAddress = 192.168.2.1
SubratMask = 255 255, 255.0

Fig. 7. Object Diagram of Query Target

4.3 Performance Evaluation

The execution time used in the all steps was 59.6 seconds. This performance was
observed under an experimental condition that a CIM query facility was connected
with WBEM using XML/HTTP. After the protocol of the connection was changed to
Java/RMI, the execution time improved 45.2 seconds. This implies that our approach,
which can exclude an XML parser, has an advantage in terms of the execution time.
Furthermore, we provided a cache and connection-pooling with a CIM Query Facility
and we obtained the execution time of 32.5 seconds. Under this condition, the
execution time from Step 1 to Step 5 is about 16 seconds, while the method
enumeratelnstances, getProperty, and associators was called 12 times, 114 times and
114 times respectively. We have confirmed much time was consumed by the
responses from WBEM and the overhead of the query facility was negligible.

The scalability issue was investigated by changing the total number of instances
and association instances existing in the CIM repository of WBEM. Fig. 8§ shows the
execution time of a similar query. The figures in the graph indicate the number of
pool servers. This result indicates the scalability problem, though the cause is
supposed to stem from the usage of the WBEM API of the enumeratelnstances
method.

¥R 8

o w3 @

Execution Time (sec.)

g

350 !;‘g?of lm4§0 " 500 550

Fig. 8. Result of Scalability Investigation

5 Conclusion

We focus on the dependency resolution facility among the important issues in
autonomic computing and utility computing. The discovery of system components

256 S. Nakadai, M. Kudo, and K. Konishi

which have particular dependencies is realized by an association traversal, and
therefore we enhance a query facility of CIM. The required features of the facility are
ease of query description, bi-directional query execution, and sufficient capability to
query CIM. This CIM query facility is based on a predicate logic and a rule-based
language. The ease of query description is realized by the rule-based language that
can combine multiple predicates into a new predicate representing a query, because it
is similar to the system administrator’s concept that an interesting dependency is
combined with pre-known dependencies. The capability to define a macro also
contributes to the ease of description, because the model element of CIM is based on
the design concept that a reusability takes priority over an usability and readability.
Bi-direction query execution can be realized by the unification process. Sufficient
capability to query CIM can be realized by the preparation of the built-in predicates
corresponding to CIM metamodel elements. The discussion based on a Meta-level
indicates that our approach is independent of CIM. The proposed CIM query facility
was validated by implementing it in a utility computing application. The basic
behavior of the query facility and the dynamic server allocation was illustrated.

References

[1] A. Keller, U. Blumenthal, and G. Kar, “Classification and Computation of Dependencies
for Distributed Management,” 5th IEEE Symposium on Computers and Communications
(ISCC), July 2000.

[2] A. Keller, and G. Kar, “Determining Service Dependencies in Distributed Systems,” IEEE
International Conference on Communications (ICC), June 2001.

[3] J. Strassner, “Policy Based Network Management : Solutions for the Next Generation,”
Morgan Kaufmann, Aug. 2003.

[4] A. Westerinen, et al., “Terminology for Policy-Based Management,” IETF RFC3198,
Nov. 2001.

[5S] CIM standards. http://www.dmtf.org/standards/standard_cim.php

[6] TMF, “GB922: Shared Information/Data (SID) Model: Concepts, Principles, and
Business Entities,” July 2003.

[71 C. Ensel, and A. Keller, “Managing Application Service Dependencies with XML and the
Resource Description Framework,” IFIP/IEEE International Symposium on Integrated
Management (IM2001), May 2001.

[8] I Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid,” International J.
Supercomputer Applications, 2001.

[9] H. Tangmunarunkit, S. Decker, and C. Kesselman, “Ontology-based Resource Matching
in the Grid - The Grid meets the Semantic Web,” 1st Workshop On Semantics in P2P and
Grid Computing at the 12th International World Wide Web Conference, May 2003.

Work in Progress: Availability-Aware
Self-Configuration in Autonomic Systems

David M. Chess, Vibhore Kumar, Alla Segal, and Ian Whalley

IBM Thomas J. Watson Research Center, P.O. Box 704,
Yorktown Heights, NY 10598, USA
{chess , vibhore, segal, inw t@us .ibm.com

Abstract. The Unity project is a prototype autonomic system demonstrating
and validating a number of ideas about self-managing computing systems. We
are currently working to enhance the self-configuring and self-optimizing as-
pects of the system by incorporating the notion of component availability into
the system’s policies, and into its models of itself.

1 Introduction

The vision of autonomic computing is of a world where complex distributed systems
manage themselves to a far greater extent than they do today [1]. The Unity project
[2] is a prototype autonomic system, designed to develop and validate various ideas
about how this self-management can be achieved in practice. The aspects of self-
management that we explore in Unity include self-configuration and self-
optimization; the system initially configures parts of itself with a minimal amount of
explicit human input, and during operation it reallocates and reconfigures certain of
its resources to optimize its behavior according to human-specified policies.

In our current research, we are investigating ways to enhance the self-
configuration and self-optimization aspects of Unity by incorporating the concept of
availability into the system’s policies and models of itself. The notions of availability
and related concepts that we employ here are essentially those of [3]; availability is
the condition of readiness for correct service.

(Space does not allow a significant list of previous work relevant to this project;
the reader is invited to consult references such as [4].)

1.1 Availability in the Present System

In the current Unity system, availability is implicitly supported in one way: one com-
ponent of the system (the policy repository) is implemented as a self-healing cluster
of synchronized services; other components of the system ensure that if one member
of the cluster goes down, another service instance is brought up and enters the cluster
to take its place.

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 257-258, 2004.
© IFIP International Federation for Information Processing 2004

258 D.M. Chess et al.

2 Stages of Availability Awareness

The first and simplest enhancement we plan to make will involve moving the constant
representing the number of clustered copies of the repository to create, from its cur-
rent location in a configuration file into a simple policy in the system’s policy infra-
structure. While this still does not involve the system in any availability-related cal-
culations, it will at least leverage the commonality and deployment abilities of the
policy subsystem.

In the second stage, we will replace the constant number with a desired availability
target, representing a required percentage of uptime. We will then do a straightfor-
ward calculation based on MTBF and MTTR estimates for the repository component,
to determine the initial size of the repository cluster. (Estimating the proper MTBF
and MTTR figures from logs and other data will be addressed in a related project.)

In the third stage, we will replace the static required availability target with a serv-
ice-level utility function as defined in [5], representing the business value of various
levels of repository availability. Together with a similar representation of the cost
impact of running additional repositories (including the impact on the rest of the sys-
tem of devoting resources to those repositories), this will allow the system to calculate
the optimum number of repositories for the given utility and cost functions.

The third stage requires obtaining the utility and cost functions from outside the
system. In the fourth and final stage of this design, we will enrich the system’s model
of itself sufficiently to derive those functions from the model (and from the higher-
level utility functions describing the business value of the system’s overall behavior).
The system (or more accurately, the solution manager component which determines
and maintains the composition of the system) will use its model of the system’s be-
haviors to estimate the value of repository availability (in terms of the impact of hav-
ing the repository unavailable on the overall value produced) and the cost of running
multiple repositories, and use these functions to do the calculations as in the third
stage.

We solicit communication from others investigating similar problems or related
technologies in this area.

References

1. Kephart, J., Chess, D.: “The Vision of Autonomic Computing”, IEEE Computer 36(1): 41-
50, 2003.

2. Chess, D., Segal, A., Whalley, 1., White, S.: “Unity: Experiences with a Prototype Auto-
nomic Computing System”, International Conference on Autonomic Computing (ICAC-04),
2004.

3. Avizienis, A., Laprie, J-C., Randell, B.: “Fundamental Concepts of Dependability,” Re-
search Report NO1145, LAAS-CNRS, April 2001.

4. Marcus, E., Stern, H.: “Blueprints for High Availability: Designing Resilient Distributed
Systems”, John Wiley & Sons, 1st Edition, January 31, 2000.

5. Walsh, W., Tesauro, G., Kephart, J., Das, R.: “Utility Functions in Autonomic Systems,”
International Conference on Autonomic Computing (ICAC-04), 2004.

ABHA: A Framework for Autonomic Job Recovery

Charles Earl', Emilio Remolina', Jim Ongl, John Brown?, Chris Kuszmaul®, and
Brad Stone*

! Stottler Henke Associates
{earl, remolina, ong}@shai.com
Pentum Group,Inc.
johnbrown@pentum. com
3chris_kuszmaul@hotmail .com
4bstone@aspi:rinsoftware .com

Abstract. Key issues to address in autonomic job recovery for cluster
computing are recognizing job failure; understanding the failure sufficiently to
know if and how to restart the job; and rapidly integrating this information into
the cluster architecture so that the failure is better mitigated in the future. The
Agent Based High Availability (ABHA) system provides an APl and a
collection of services for building autonomic batch job recovery into cluster
computing environments. An agent API allows users to define agents for failure
diagnosis and recovery. It is currently being evaluated in the U.S. Department of
Energy’s STAR project.

1 Introduction

In production high-performance cluster computing environments, batch jobs can fail
for many reasons: transient and permanent hardware failures; software configuration
errors; insufficient computing, storage, or network resources; incorrectly specified
application inputs or buggy application code. Simplistic job recovery policies (e.g.
blind restart) can lead to low quality of service and inefficient use of cluster resources.
To provide high throughput and high reliability, it is necessary to determine the cause
of task failure in enough detail to select and execute the appropriate job recovery.

While many job failures require human intervention for proper troubleshooting and
repair, a significant number can be delegated to autonomic [1] software.

We are developing a platform called the Agent Based High Availability (ABHA)
that provides autonomic recovery for batch jobs running on cluster and grid computing
environments. ABHA is being tested in the context ofthe U.S. Department of Energy’s
STAR project [2] at Lawrence Berkeley National Laboratory (LBNL). We are now
evaluating it on production facilities there.

2 Architecture

A complete model for autonomic job recovery has to address four problems: 1)
recognition ofjob failure; 2) determination of appropriate failure recovery, which may

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 259-262, 2004.
© IFIP International Federation for Information Processing 2004

260 C. Earl et al.

require diagnosis to select between alternatives; 3) the ability to initiate recovery
actions; and 4) using that knowledge to avoid or mitigate the failure in the future.

ABHA uses a collection of distributed agents to address these problems. Agents
provide robustness, local monitoring and recovery with global communication, and
separation of concerns for creating new error management details.

Figure 1 depicts the core components of the system in a typical configuration.
Agents collect information about the system and jobs running on it and share that
information with other agents by producing events that are distributed by a centralized
Facilitator. Agents use this shared information to predict and diagnose job failures,
make job recovery recommendations, and autonomously perform job recovery.

Agents can be deployed on various nodes throughout the cluster as dictated by the
configuration of the site. For example, agents can gather information from and issue
commands to distributed resource managers (e.g. Condor [3] or LSF [4]), filter and
interpret information collected from other system monitors (e.g. Ganglia [5]), provide
detailed information from specific jobs, or collect information from services deployed
through the system (e.g. NES).

ABHA deploys a centralized Reasoner (based on the Java Expert System Shell [6])
that interprets rules that are run against the events sent to the Facilitator. The behavior
of remote agents can also be specified using rules. ABHA provides C++, Java, and
Perl APIs for developing agents. The Facilitator is implemented using the Java
Message Service (JMS) API and can be configured to provide fail-over and persistent
event storage. A graphical user interface allows inspection of events and control of
agents.

Clugtas Maoda |

- Cluster Node

Resource
Manager
(e.g. LSF,
Condor)

Monitors (e.g.
ganglia,
tepdump)

Services
(e.g. NFS)

Fig. 1. ABHA Architecture

3 An Example

One example provides an illustration of the functionality of ABHA and the kinds of
recovery issues that it can address. The STAR production cluster at LBNL [7]

ABHA: A Framework for Autonomic Job Recovery 261

maintains a clustered file system for storage of experimental data. Each node is
referred to as a disk vault. The typical STAR batch job will be assigned to run on one
of 344 compute nodes and will access data that is remotely mounted on one of the 65
disk vaults. If too many jobs try to read data at the same time, the disk vault goes into
a thrashing mode and only reboot can bring it back. A reboot can be avoided by
intervening when disk vault I/O reaches a critical value. An administrator can suspend
jobs accessing the overloaded vault, adjust their resource requirements, and shepherd
each job them the queue until the load on the vault reaches acceptable levels.

We developed and tested a solution to this problem on our local cluster. Rules
loaded by the Reasoner agent direct diagnosis and recovery. The main rule is
paraphrased below.

IF(high diskvault load (N ?dv AT ?T1l)
AND (max_dvio_consumer ?dv ?node ?T1)
AND (lsf_job ?node ?job ?T1)

AND {(job mounts ?job ?dv)
THEN

(1sf_suspend (jobs_using vault ?dv))
(restart ?job)

(UNTIL (normal_diskvault_load ON ?dv)

(1sf_restart (pick ?jobs)))

A ganglia agent filters information from the ganglia monitor, sending high
diskvault load when the load on one of the disk vault machines exceeds a
threshold.

The Reasoner agent then requests the tcpdump agent to determine which machine
consumes the most I/O bandwidth with respect to the vault. The tcpdump agent posts
this information as a max_dvio consumer event.

The Reasoner then requests the Isf agent to determine the jobs running on the
offending host, and returns these in an 1sf job event. The rule then requests mount
information from local_node_monitor agent on the node on which the job is running.
The local_node_monitor agent returns this information in a job_mounts event. The
Reasoner then follows the THEN part of the rule: it suspends jobs running against the
disk vault, adjusts the priority of the offending job, and once the offending job has
finished, restarts remaining jobs, until the load on the disk vault returns to normal.

4 Remaining Work

We are evaluating on the PDSF production cluster. A Grid service implementation of
ABHA is also being developed for the STAR Grid project [7].

262 C. Earl et al.

References

1. Chess, D., Kephart, J.: The Vision of Autonomic Computing. IEEE Computer Magazine 1
(2003) 41-50.

STAR experiment website http://www.star.bnl.gov/.

Condor project website http://www.cs.wisc.edu/condor/.

Platform Computing LSF http://www.platform.com

Ganglia project website http://ganglia.sourceforge.net/.

JESS website at http://herzberg.ca.sandia.gov/jess

Parallel Distributed Systems Facility website http://www.nersc.gov/nusers/resources/PDSF/

Nk L

Can ISPs and Overlay Networks Form a
Synergistic Co-existence?

Ram Keralapural’z, Nina Taft’, Gianluca lannaccone?, and Chen-Nee Chuah!*

' Univ. of California, Davis
2 Intel Research

1 Introduction

Overlay networks are becoming increasingly popular for their ability to provide
effective and reliable service catered to specific applications [1][2][3]. For instance,
this concept has been used in peer-to-peer services like SplitStream, content
delivery networks like Akamai, resilient networks like RON and so on.

Overlay networks consist of a number of nodes (spanning one or many do-
mains) that collaborate in a distributed application. One of the underlying
paradigms of overlay networks is to give applications more control over rout-
ing decisions, that would otherwise be carried out solely at the IP layer. Overlay
networks typically monitor multiple paths between pairs of nodes, and select the
one based on its own requirements (e.g., delay, bandwidth, etc.). Allowing rout-
ing control to take place at both the application layer and the IP layer, could
have profound implications on how ISPs design, maintain and run their networks.
The architecture and protocols that carriers use to run their networks are based
on assumptions about how their customers and traffic behave. It is possible that
the approach used by overlay networks could call into question some of carriers’
assumptions thus rendering it more difficult for them to achieve their goals.

In this paper, we identify some potentially problematic interactions between
overlay and layer-3 networks. We raise a key question: Can overlay networks and
underlying IP networks form a synergistic co-existence? Given the recent rise in
popularity of overlay networks, we believe that now is the time to address these
issues. We hypothesize that it could be problematic to have routing control in
two layers, when each of the layers is unaware of key things happening in the
other layer. ISPs may be unaware of which nodes are participating in an overlay
and their routing strategy. Overlay networks are unaware of an ISP’s topology,
load balancing schemes, routing protocol timer values, etc. We believe that ISPs
need to clearly understand the implications of overlay network behavior.

2 Sample Interaction Issues

Traffic Matrix (TM) Estimation: A traffic matrix specifies the traffic de-
mand from origin nodes to destination nodes for a single domain. A TM is a

* This work was partly supported by the NSF CAREER Grant No. 0238348.

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 263-265, 2004.
© IFIP International Federation for Information Processing 2004

264 R. Keralapura et al.

critical input for many traffic engineering tasks (e.g, capacity planning, failure
provisioning, etc.) and hence ISPs undergo considerable effort to estimate TMs.
Many flows whose ultimate destination lies outside an ISP’s domain still appear
inside the TM which specifies an exit router in the domain. If this traffic belongs
to an overlay network that uses its own path selection mechanism and spans
multiple domains, the overlay can alter the egress router for that flow from a
particular domain. For example, consider two domains with two peering links
between them. Suppose the layer-3 path from a node in the first domain to a
destination node in the second domain uses the first peering link. An overlay
network can decide to route to the destination node via an intermediate overlay
node that causes the path taken to traverse the second peering link, thereby
changing the exit node from the first domain and subsequently the TM of that
domain. If this were to happen for large flows, it could affect a significant portion
of the TM. If this were to happen often, it would increase the dynamic nature
of the TM which might then require more frequent updates to remain accurate.
Failure Reaction: It has been shown recently [4] that there are a large range of
failure types in the Internet, some intermittent and some long-lasting, and that
overall failures happen surprisingly often. As overlay networks use frequent active
probing to assess the quality of their paths, they could react to failure events at a
time scale either faster or similar to ISPs. If multiple overlay networks that have
their nodes in a domain experiencing a failure, react to the failure closely in time,
then it is easy to see that all of them might choose the same next best path,
causing congestion on that path. If two overlays have similar values for their
probe timeouts, they could become synchronized in their search for a new path,
thereby leading to load thrashing (or traffic oscillations). All of this is due to the
relationship between the failure reaction timers of a carrier’s routing protocol,
and the path probing timeouts of each of the multiple overlays. We believe that
careful guidelines should be developed for the selection of such timeouts. Traffic
oscillations in the network due to such race conditions are undesirable for ISPs
that are held accountable for performance degradation.

Load Balancing: ISPs usually have a target for the distribution of load across
their network; for example, they want a low average and variance of link loads
network-wide. Failures trigger overlay networks to redistribute their traffic by
probing a limited set of alternate paths (constrained by where other overlay
nodes reside). As overlay networks lack the global knowledge of the ISP’s domain,
the resulting distribution of load across all links could differ significantly from
what would happen if an ISP handles the load shift all by itself. In this way
overlays can undermine an ISP’s load balancing strategy.

3 Summary

We have identified a few critical problems that ISPs may face due to overlay
networks. Using simple examples, we show that it is important to address these
issues before the impact of overlay networks is detrimental to the Internet. The
co-existence of multiple overlays is likely to exacerbate these problems.

Can ISPs and Overlay Networks Form a Synergistic Co-existence? 265
References

[1] D. Anderson, H. Balakrishna, M. Kaashoek and R. Morris: “Resilient Overlay Net-
works”, SOSP, Oct 2001.

[2] Akamai: http://www.akamai.com

[3] B. Zhao, L. Huang, J. Stribling, A. Joseph and J. Kubiatowicz: “Exploiting Routing
Redundancy via Structured Peer-to-Peer Overlays”, ICNP, Nov 2003.

[4] A. Markopoulou, G. Iannaccone, S. Bhattacharrya, C. N. Chuah and C. Diot:
“Characterization of Failures in an IP Backbone Network™, INFOCOM, Mar 2004

Simplifying Correlation Rule Creation for Effective
Systems Monitoring

C. Araujol, A. Biazettil, A. Bussaniz, J. Dingerl, M. Feridunz, and A. Tanner’

" IBM Software Group, Tivoli Raleigh Development Lab, Raleigh, NC 12345, USA

{caraujo, abiazett, jd}@us.ibm.com

2 IBM Research, Zurich Research Laboratory, 8803 Rueschlikon, Switzerland

{bus, fer, axs}@zurich.ibm.com

Abstract. Event correlation is a necessary component of systems management
but is perceived as a difficult function to set up and maintain. We report on our
work to develop a set of tools and techniques to simplify event correlation and
thereby reduce overall operating costs. The tools prototyped are described and
our current plans for future tool development outlined.

Event correlation is a key component of systems management. Events from multiple
resources, e.g., network elements, servers, applications, are collected and analyzed to
detect problems such as component failures, security breeches and failed business
processes. Management solutions require correlation for filtering and analyzing mas-
sive numbers of events, for example by removing duplicate events, or for detecting
event sequences that signal a significant occurrence in the managed systems. Relevant
event patterns need to be identified and formulated as rules, and mechanisms pro-
vided to map observed events into the defined patterns. Many systems allow correla-
tion of events where the patterns are expressed as rules [1]. The difficulty lies in
identifying the different and relevant patterns of events, as patterns change and new
ones are introduced. Our goal is to develop tools to help operators and systems man-
agement architects to identify event patterns, to create rules to implement the patterns,
test their validity, and to monitor and manage the rules during their lifecycle.

filfered events

Fig. 1. Tools for automated correlation rule generation

The tool collection is shown in Figure 1. The correlation engines use installed rules to
filter incoming events, which are logged (Event Log) and displayed on the event con-
sole. By event mining [2, 3] or operator intervention, patterns of events that need to
be filtered or in sum indicate a situation are selected. In the rule wizard and the rule

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 266268, 2004.
© IFIP International Federation for Information Processing 2004

Simplifying Correlation Rule Creation for Effective Systems Monitoring 267

editor, the patterns are used as input to create rules, possibly through several refine-
ments, stored in the rule database, and distributed for deployment to the relevant
correlation engines.

Here, we describe the first stage of our work focusing on the prototype developed to
create rules based on events selected by an operator from an event console. The
automation of the rule-generation process begins with the operator selecting a number
of related events from the event console, for example false positives that should be
filtered out. First, the operator invokes the rule wizard which allows him to select a
pre-defined rule pattern to apply to the selected events. The prototype offers six pat-
terns: filter to match an event against a predicate; collection to gather matching events
within a time interval; duplicates to suppress duplicate events by forwarding the first
matching event and blocking similar events until the end of the time interval; thresh-
old to look for a sequence of similar events crossing a threshold value within a time
interval; and sequence to detect the presence/absence of a sequence of events (in
order or random) within a time interval. Second, the operator can select the parame-
ters relevant to the selected pattern, e.g. the time interval during which the pattern
should occur. The third step generates the predicates used in selecting pattern-relevant
events. The operator is presented with the attributes available in each event and se-
lects the one to be used in the predicate to filter the incoming events. With this infor-
mation, the wizard automatically generates a predicate expression for the rule. Fi-
nally, the operator specifies actions to be executed when the rule triggers, i.e., detects
the defined pattern. Actions can include updates to the events (e.g. relating to another
event, changing attributes of an event, closing/acknowledging an event) or sending
notifications (paging, email) to interested parties among others.

An example application of the rule wizard for a fax server demonstrates the useful-
ness of the approach. In the case of a failure, a number of related events, such as
rfboard_down and rfqueue_down are observed by the operator at the console. From
experience the operator knows that these are related to a defective fax server and
decides to create a rule to collect and summarize them into one event. He selects the
related events at the console and invokes the rule wizard, which shows the selected
events and the rule pattern options. The operator chooses the sequence pattern, con-
figures rule parameters, e.g., the time window, selection attributes, e.g., event type,
and selects an action to summarize all selected events into a single nt_rfserver_down
event. The rule is automatically created, and once deployed will result in just one
summary event displayed on the event console, instead of the multiple original ones.

We have developed and demonstrated a prototype rule wizard and rule editor, and
integrated it with the IBM Tivoli Event Console (TEC). The prototype enables auto-
matic creation of rules, which greatly helps operators by providing a simple way to
create rules based on observed events. Our follow-on work and areas of investigation
focus on the development and integration of tools for testing and debugging newly
created rules—for example checking how new rules interact with the existing deployed
rule sets—using the current event stream, historical event logs or simulated event
flows as an additional refinement step prior to rule deployment in the real environ-

268 C. Araujo et al.

ment. The rule wizard can be extended to define frequently occurring and typical
high-level tasks of an operator, such as ‘filter these events out’ or ‘page administrator
when these events occur together’ as templates for use by less skilled operators. We
also address instrumentation of the correlation engine to collect real-time data on rule
behavior and performance as feedback into rule design and improvement, and for the
management of the lifecycle of the rules.

References

[1] IBM Tivoli Event Console,
http://www.ibm.com/software/tivoli/products/enterprise-console/.

[2] J. L. Hellerstein, S. Ma and C. Perng, “Discovering actionable patterns from event data”,
IBM Systems Journal, vol. 41, issue 3, pp. 475-493, 2002.

[3] K. Julisch, “Clustering Intrusion Detection Alarms to Support Root Cause Analysis”, ACM
Transactions on Information and System Security, 6(4): 1-29, 2003

Author Index

Agarwal, Manoj K. 171
Al-Shaer, Ehab 28
Appleby, Karen 171
Araujo, C. 266

Badonnel, Remi 15
Bartolini, Claudio 64
Beller, André 40
Beyer, Dirk 100
Bhaskaran, Kumar 52
Biazetti, A. 266
Boutaba, Raouf 208
Brasileiro, Francisco V. 220
Brown, John 259
Burchard, Lars-Olof 112
Bussani, A. 266

Chang, Henry 52
Cherkaoui, Omar 147
Chess, David M. 257
Choi, Eunmi 135
Chuah, Chen-Nee 263
Cirne, Walfredo 220
Cridlig, V. 183

Deca, Rudy 147
Dillenburg, Fabiane 196
Dinger, J. 266

Earl, Charles 259

Feridun, M. 266
Festor, O. 183

Garschhammer, Markus 1
Gaspary, Luciano Paschoal 196
Gupta, Manish 171

Hall¢, Sylvain 147
Hinrich, Tim 159
Horiuchi, Hiroki 232

Tannaccone, Gianluca 263
Iraqi, Youssef 208

Jamhour, Edgard 40

Jeng, Jun-Jang 52

Kar, Gautam 171
Karmouch, Ahmed 76
Keller, Alexander 15
Keralapura, Ram 263
Konishi, Koichi 245
Kouyama, Takeshi 232
Kudo, Masato 245
Kumar, Vibhore 257
Kuszmaul, Chris 259

Lee, Chul 124

Lim, Sang Soek 124

Lim, Seung Ho 124
Linnert, Barry 112
Locatelli, Fabio Elias 196
Lohmann, Samir 196
Lopes, Raquel V. 220
Love, Nathaniel 159

Machiraju, Vijay 100
Maeda, Naoto 88
Mekouar, Loubna 208
Melchiors, Cristina 196
Min, Dugki 135

Nakadai, Shinji 245
Neogi, Anindya 171
Nishikawa, Masayuki 232

Ong, Jim 259

Park, Kyu Ho 124
Pellenz, Marcelo 40
Petrie, Charles 159
Puche, Daniel 147

Ramshaw, Lyle 159
Remolina, Emilio 259
Roelle, Harald 1

Sahai, Akhil 100, 159
Sailer, Anca 171

Sallé, Mathias 64
Samaan, Nancy 76
Santos, Cipriano A. 100

270 Author Index

Segal, Alla 257 Villemaire, Roger 147
Singhal, Sharad 100, 159
State, R. 183 Whalley, Ian 257

Stone, Brad 259
Yoshihara, Kiyohito 232

Taft, Nina 263
Tanner, A. 266 Zhang, Bin 28
Tonouchi, Toshio 88 Zhu, Xiaoyun 100

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

Lecture Notes in Computer Science

For information about Vols. 1-3193

please contact your bookseller or Springer

Vol. 3305: PM.A. Sloot, B. Chopard, A.G. Hoekstra
(Eds.), Cellular Automata. XV, 883 pages. 2004.

Vol. 3302: W.-N. Chin (Ed.), Programming Languages and
Systems. XIII, 453 pages. 2004.

Vol. 3299: F. Wang (Ed.), Automated Technology for Ver-
ification and Analysis. XII, 506 pages. 2004.

Vol. 3293: C.-H. Chi, M. van Steen, C. Wills (Eds.), Web
Content Caching and Distribution. IX, 283 pages. 2004.

Vol. 3292: R. Meersman, Z. Tari, A. Corsaro (Eds.), On the
Move to Meaningful Internet Systems 2004: OTM 2004
Workshops. XXIII, 885 pages. 2004.

Vol. 3291: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2004: CooplS, DOA, and
ODBASE. XXV, 824 pages. 2004.

Vol. 3290: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2004: CoopIS, DOA, and
ODBASE. XXV, 823 pages. 2004.

Vol. 3287: A. Sanfeliu, JF.M. Trinidad, J.A. Carrasco
Ochoa (Eds.), Progress in Pattern Recognition, Image
Analysis and Applications. XVII, 703 pages. 2004.

Vol. 3286: G. Karsai, E. Visser (Eds.), Generative Pro-

gramming and Component Engineering. XIII, 491 pages.
2004.

Vol. 3284: A. Karmouch, L. Korba, E.R.M. Madeira
(Eds.), Mobility Aware Technologies and Applications.
X1I, 382 pages. 2004.

Vol. 3281: T. Dingsgyr (Ed.), Software Process Improve-
ment. X, 207 pages. 2004.

Vol. 3280: C. Aykanat, T. Dayar, I Korpeoglu (Eds.), Com-
puter and Information Sciences - ISCIS 2004. X VIII, 1009
pages. 2004.

Vol. 3278: A. Sahai, F. Wu (Eds.), Utility Computing. XI,
270 pages. 2004.

Vol. 3274: R. Guerraoui (Ed.), Distributed Computing.
XIII, 465 pages. 2004.
Vol. 3273: T. Baar, A. Strohmeier, A. Moreira, S.J. Mel-

lor (Eds.), <<UML>> 2004 - The Unified Modelling
Language. XIII, 454 pages. 2004.
Vol. 3271: J. Vicente, D. Hutchison (Eds.), Management

of Multimedia Networks and Services. XIII, 335 pages.
2004.

Vol. 3270: M. Jeckle, R. Kowalczyk, P. Braun (Eds.), Grid
Services Engineering and Management. X, 165 pages.
2004.

Vol. 3269: J. Lopez, S. Qing, E. Okamoto (Eds.), Informa-
tion and Communications Security. XI, 564 pages. 2004.

Vol. 3266: J. Solé-Pareta, M. Smirnov, P.V. Mieghem, J.
Domingo-Pascual, E. Monteiro, P. Reichl, B. Stiller, R.J.
Gibbens (Eds.), Quality of Service in the Emerging Net-
working Panorama. XVI, 390 pages. 2004.

Vol. 3265: R.E. Frederking, K.B. Taylor (Eds.), Machine
Translation: From Real Users to Research. XI, 392 pages.
2004. (Subseries LNAT).

Vol. 3264: G. Paliouras, Y. Sakakibara (Eds.), Gram-
matical Inference: Algorithms and Applications. XI, 291
pages. 2004. (Subseries LNAI).

Vol. 3263: M. Weske, P. Liggesmeyer (Eds.), Object-
Oriented and Internet-Based Technologies. XII, 239
pages. 2004.

Vol. 3262: M.M. Freire, P. Chemouil, P. Lorenz, A. Gravey
(Eds.), Universal Multiservice Networks. XIII, 556 pages.
2004.

Vol. 3261: T. Yakhno (Ed.), Advances in Information Sys-
tems. XIV, 617 pages. 2004.

Vol. 3260: LG.M.M. Niemegeers, S.H. de Groot (Eds.),
Personal Wireless Communications. XIV, 478 pages.
2004.

Vol. 3258: M. Wallace (Ed.), Principles and Practice of
Constraint Programming — CP 2004. XVII, 822 pages.
2004.

Vol. 3257: E. Motta, N.R. Shadbolt, A. Stutt, N. Gibbins
(Eds.), Engineering Knowledge in the Age ofthe Semantic
Web. XVII, 517 pages. 2004. (Subseries LNAI).

Vol. 3256: H. Ehrig, G. Engels, F. Parisi-Presicce,
G. Rozenberg (Eds.), Graph Transformations. XII, 451
pages. 2004.

Vol. 3255: A. Benczir, J. Demetrovics, G. Gottlob (Eds.),
Advances in Databases and Information Systems. XI, 423
pages. 2004.

Vol. 3254: E. Macii, V. Paliouras, O. Koufopavlou (Eds.),
Integrated Circuit and System Design. XVI, 910 pages.
2004.

Vol. 3253: Y. Lakhnech, S. Yovine (Eds.), Formal Tech-
niques, Modelling and Analysis of Timed and Fault-
Tolerant Systems. X, 397 pages. 2004.

Vol. 3252: H. Jin, Y. Pan, N. Xiao, J. Sun (Eds.), Grid and
Cooperative Computing - GCC 2004 Workshops. X VIII,
785 pages. 2004.

Vol. 3251: H. Jin, Y. Pan, N. Xiao, J. Sun (Eds.), Grid and

Cooperative Computing - GCC 2004. XXII, 1025 pages.
2004.

Vol. 3250: L.-J. (L)) Zhang, M. Jeckle (Eds.), Web Ser-
vices. X, 301 pages. 2004.

Vol. 3249: B. Buchberger, J.A. Campbell (Eds.), Artificial
Intelligence and Symbolic Computation. X, 285 pages.
2004. (Subseries LNAI).

Vol. 3246: A. Apostolico, M. Melucci (Eds.), String Pro-
cessing and Information Retrieval. XIV, 332 pages. 2004.

Vol. 3245: E. Suzuki, S. Arikawa (Eds.), Discovery Sci-
ence. XIV, 430 pages. 2004. (Subseries LNAI).

Vol. 3244: S. Ben-David, J. Case, A. Maruoka (Eds.), Al-
gorithmic Learning Theory. XIV, 505 pages. 2004. (Sub-
series LNAI).

Vol. 3243: S. Leonardi (Ed.), Algorithms and Models for
the Web-Graph. VIII, 189 pages. 2004.

Vol. 3242: X. Yao, E. Burke, J.A. Lozano, J. Smith, J.J.
Merelo-Guervés, J.A. Bullinaria, J. Rowe, P. Tifio, A.
Kaban, H.-P. Schwefel (Eds.), Parallel Problem Solving
from Nature - PPSN VIII. XX, 1185 pages. 2004.

Vol. 3241: D. Kranzlmiiller, P. Kacsuk, J.J. Dongarra
(Eds.), Recent Advances in Parallel Virtual Machine and
Message Passing Interface. XIII, 452 pages. 2004.

Vol. 3240:1. Jonassen, J. Kim (Eds.), Algorithms in Bioin-
formatics. IX, 476 pages. 2004. (Subseries LNBI).

Vol. 3239: G. Nicosia, V. Cutello, P.J. Bentley, J. Timmis
(Eds.), Artificial Immune Systems. XII, 444 pages. 2004.

Vol. 3238: S. Biundo, T. Frithwirth, G. Palm (Eds.), KI
2004: Advances in Artificial Intelligence. XI, 467 pages.
2004. (Subseries LNAI).

Vol. 3236: M. Nifiez, Z. Maamar, FL. Pelayo, K.
Pousttchi, F. Rubio (Eds.), Applying Formal Methods:
Testing, Performance, and M/E-Commerce. XI, 381
pages. 2004.

Vol. 3235: D. de Frutos-Escrig, M. Nunez (Eds.), For-
mal Techniques for Networked and Distributed Systems
- FORTE 2004. X, 377 pages. 2004.

Vol. 3232: R. Heery, L. Lyon (Eds.), Research and Ad-
vanced Technology for Digital Libraries. XV, 528 pages.
2004.

Vol. 3231: H.-A. Jacobsen (Ed.), Middleware 2004. XV,
514 pages. 2004.

Vol. 3230: J.L. Vicedo, P. Martinez-Barco, R. Muiioz, M.
Saiz Noeda (Eds.), Advances in Natural Language Pro-
cessing. XII, 488 pages. 2004. (Subseries LNAI).
Vol:3229: J.J. Alferes, J. Leite (Eds.), Logics in Artificial
Intelligence. XIV, 744 pages. 2004. (Subseries LNAI).
Vol. 3226: M. Bouzeghoub, C. Goble, V. Kashyap, S.

Spaccapietra (Eds.), Semantics of a Networked World.
X1, 326 pages. 2004.

Vol. 3225: K. Zhang, Y. Zheng (Eds.), Information Secu-
rity. XII, 442 pages. 2004.

Vol. 3224: E. Jonsson, A. Valdes, M. Almgren (Eds.), Re-
cent Advances in Intrusion Detection. XII, 315 pages.
2004.

Vol. 3223: K. Slind, A. Bunker, G. Gopalakrishnan (Eds.),
Theorem Proving in Higher Order Logics. VIII, 337 pages.
2004.

Vol. 3222: H. Jin, G.R. Gao, Z. Xu, H. Chen (Eds.), Net-
work and Parallel Computing. XX, 694 pages. 2004.
Vol. 3221: S. Albers, T. Radzik (Eds.), Algorithms - ESA
2004. XVIII, 836 pages. 2004.

Vol. 3220: J.C. Lester, R.M. Vicari, F. Paraguagu (Eds.),
Intelligent Tutoring Systems. XXI, 920 pages. 2004.

Vol. 3219: M. Heisel, P. Liggesmeyer, S. Wittmann (Eds.),
Computer Safety, Reliability, and Security. X1, 339 pages.
2004.

Vol. 3217: C. Barillot, D.R. Haynor, P. Hellier (Eds.), Med-
ical Image Computing and Computer-Assisted Interven-
tion - MICCAI 2004. XXXVIII, 1114 pages. 2004.

Vol. 3216: C. Barillot, D.R. Haynor, P. Hellier (Eds.), Med-
ical Image Computing and Computer-Assisted Interven-
tion — MICCAI 2004. XXX VIII, 930 pages. 2004.

Vol. 3215: M.G.. Negoita, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems. LVII, 906 pages. 2004. (Subseries LNAI).

Vol. 3214: M.G.. Negoita, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems. LVIII, 1302 pages. 2004. (Subseries LNAI).

Vol. 3213: M.G.. Negoita, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems. LVIII, 1280 pages. 2004. (Subseries LNAI).

Vol. 3212: A. Campilho, M. Kamel (Eds.), Image Analysis
and Recognition. XXIX, 862 pages. 2004.

Vol. 3211: A. Campilho, M. Kamel (Eds.), Image Analysis
and Recognition. XXIX, 880 pages. 2004.

Vol. 3210: J. Marcinkowski, A. Tarlecki (Eds.), Computer
Science Logic. XI, 520 pages. 2004.

Vol. 3209: B. Berendt, A. Hotho, D. Mladenic, M. van
Someren, M. Spiliopoulou, G. Stumme (Eds.), Web Min-
ing: From Web to Semantic Web. IX, 201 pages. 2004.
(Subseries LNAI).

Vol. 3208: HJ. Ohlbach, S. Schaffert (Eds.), Principles
and Practice of Semantic Web Reasoning. VII, 165 pages.
2004.

Vol. 3207: L.T. Yang, M. Guo, G.R. Gao, N.K. Jha (Eds.),
Embedded and Ubiquitous Computing. XX, 1116 pages.
2004.

Vol. 3206: P. Sojka, I. Kopecek, K. Pala (Eds.), Text,
Speech and Dialogue. XIII, 667 pages. 2004. (Subseries
LNAI).

Vol. 3205: N. Davies, E. Mynatt, I. Siio (Eds.), UbiComp
2004: Ubiquitous Computing. XVI, 452 pages. 2004.

Vol. 3204: C.A. Pena Reyes, Coevolutionary Fuzzy Mod-
eling. XIII, 129 pages. 2004.

Vol. 3203: J. Becker, M. Platzner, S. Vernalde (Eds.), Field
Programmable Logic and Application. XXX, 1198 pages.
2004.

Vol. 3202: J.-F. Boulicaut, F. Esposito, F. Giannotti, D.
Pedreschi (Eds.), Knowledge Discovery in Databases:
PKDD 2004. XIX, 560 pages. 2004. (Subseries LNAI).

Vol. 3201: J.-F. Boulicaut, F. Esposito, F. Giannotti, D.
Pedreschi (Eds.), Machine Learning: ECML 2004. X VIII,
580 pages. 2004. (Subseries LNAI).

Vol. 3199: H. Schepers (Ed.), Software and Compilers for
Embedded Systems. X, 259 pages. 2004.

Vol. 3198: G.-J. de Vreede, L.A. Guerrero, G. Marin
Ravent6s (Eds.), Groupware: Design, Implementation and
Use. XI, 378 pages. 2004.

Vol. 3196: C. Stary, C. Stephanidis (Eds.), User-Centered
Interaction Paradigms for Universal Access in the Infor-
mation Society. XII, 488 pages. 2004.

Vol. 3195: C.G. Puntonet, A. Prieto (Eds.), Independent
Component Analysis and Blind Signal Separation. XXIII,
1266 pages. 2004.

Vol. 3194: R. Camacho, R. King, A. Srinivasan (Eds.), In-

ductive Logic Programming. XI, 361 pages. 2004. (Sub-
series LNAI).

