

International Series in Operations Research
& Management Science

Volume 127

Series Editor

Frederick S. Hillier
Stanford University, CA, USA

INT. SERIES IN OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Series Editor: Frederick S. Hillier, Stanford University

Special Editorial Consultant: Camille C. Price, Stephen F. Austin State University
Titles with an asterisk (*) were recommended by Dr. Price

Axsäter/ INVENTORY CONTROL, 2ndEd.
Hall/ PATIENT FLOW: Reducing Delay in Healthcare Delivery
Józefowska & Węglarz/ PERSPECTIVES IN MODERN PROJECT SCHEDULING
Tian & Zhang/ VACATION QUEUEING MODELS: Theory and Applications
Yan, Yin & Zhang/ STOCHASTIC PROCESSES, OPTIMIZATION, AND CONTROL THEORY

APPLICATIONS IN FINANCIAL ENGINEERING, QUEUEING NETWORKS, AND
MANUFACTURING SYSTEMS

Saaty & Vargas/ DECISION MAKING WITH THE ANALYTIC NETWORK PROCESS: Economic, Political,
Social & Technological Applications w. Benefits, Opportunities, Costs & Risks

Yu/ TECHNOLOGY PORTFOLIO PLANNING AND MANAGEMENT: Practical Concepts and Tools
Kandiller/ PRINCIPLES OF MATHEMATICS IN OPERATIONS RESEARCH
Lee & Lee/ BUILDING SUPPLY CHAIN EXCELLENCE IN EMERGING ECONOMIES
Weintraub/ MANAGEMENT OF NATURAL RESOURCES: A Handbook of Operations Research Models,

Algorithms, and Implementations
Hooker/ INTEGRATED METHODS FOR OPTIMIZATION
Dawande et al/ THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS
Friesz/ NETWORK SCIENCE, NONLINEAR SCIENCE and INFRASTRUCTURE SYSTEMS
Cai, Sha & Wong/ TIME-VARYING NETWORK OPTIMIZATION
Mamon & Elliott/ HIDDEN MARKOV MODELS IN FINANCE
del Castillo/ PROCESS OPTIMIZATION: A Statistical Approach
Józefowska/JUST-IN-TIME SCHEDULING: Models & Algorithms for Computer & Manufacturing Systems
Yu, Wang & Lai/ FOREIGN-EXCHANGE-RATE FORECASTING WITH ARTIFICIAL NEURAL NETWORKS
Beyer et al/ MARKOVIAN DEMAND INVENTORY MODELS
Shi & Olafsson/ NESTED PARTITIONS OPTIMIZATION: Methodology and Applications
Samaniego/ SYSTEM SIGNATURES AND THEIR APPLICATIONS IN ENGINEERING RELIABILITY
Kleijnen/DESIGN AND ANALYSIS OF SIMULATION EXPERIMENTS
Førsund/ HYDROPOWER ECONOMICS
Kogan & Tapiero/ SUPPLY CHAIN GAMES: Operations Management and Risk Valuation
Vanderbei/ LINEAR PROGRAMMING: Foundations & Extensions, 3rd Edition
Chhajed & Lowe/BUILDING INTUITION: Insights from Basic Operations Mgmt. Models and Principles
Luenberger & Ye/LINEAR AND NONLINEAR PROGRAMMING, 3rd Edition
Drew et al/ COMPUTATIONAL PROBABILITY: Algorithms and Applications in the Mathematical Sciences*
Chinneck/ FEASIBILITY AND INFEASIBILITY IN OPTIMIZATION: Algorithms and Computation Methods
Tang, Teo & Wei/ SUPPLY CHAIN ANALYSIS: A Handbook on the Interaction of Information, System and

Optimization
Ozcan/ HEALTH CARE BENCHMARKING AND PERFORMANCE EVALUATION: An Assessment using

Data Envelopment Analysis (DEA)
Wierenga/ HANDBOOK OF MARKETING DECISION MODELS
Agrawal & Smith/ RETAIL SUPPLY CHAIN MANAGEMENT: Quantitative Models and Empirical Studies
Brill/ LEVEL CROSSING METHODS IN STOCHASTIC MODELS
Zsidisin & Ritchie/ SUPPLY CHAIN RISK: A Handbook of Assessment, Management & Performance
Matsui/ MANUFACTURING AND SERVICE ENTERPRISE WITH RISKS: A Stochastic Management Approach
Zhu/ QUANTITATIVE MODELS FOR PERFORMANCE EVALUATION AND BENCHMARKING: Data

Envelopment Analysis with Spreadsheets

∼A list of the early publications in the series is found at the end of the book∼

Wieslaw Kubiak

Proportional Optimization
and Fairness

123

Wieslaw Kubiak
Memorial University
Faculty Administration
John’s NL
Canada A1B 3X5
wkubiak@mun.ca

ISBN: 978-0-387-87718-1 e-ISBN: 978-0-387-87719-8
DOI: 10.1007/978-0-387-87719-8

Library of Congress Control Number: 2008934787

c© Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

springer.com

of

To My Inka i Michał

Preface

If the beginning provides countless possibilities, then why not to start with few
questions? Why are cars of different colors spread along an assembly line rather then
batched together in a single long sequence of the same color? How to make equal
priority jobs progress at the rates proportional to their lengths so that a job twice the
length of another one gets a shared resource allocated twice the time of the other job
up to any point in time? Or a client who pays three times more for its computations
than another client gets its computations to progress three times faster than the other
client’s by getting more processor and bandwidth allocations? How to make sure
that the Internet gateway bandwidth is shared fairly so that the community sharing
the network is not reduced to few getting all and most nothing? All these questions
deal with proportional representation either according to the demand for particular
car color, or according to the job length or its right to resources, or according to the
reciprocal of the packet size to name just few. They are fundamental even more so
today when we are surrounded by systems enabled by technology to work in a just-
in-time mode since this mode very principle requires a steady, smooth, and evenly
spread progress of tasks in time. The progress is proportional to the demand for the
tasks’s outcomes.

As a thinker and futurist Alvin Toffler [1] in his Financial Times interview points
out “Global positioning satellites are key to synchronising precision time and data
streams for everything from mobile phone calls to ATM withdrawals. They allow
just-in-time productivity because of precise tracking.”

What is somewhat surprising is that all these questions that seem so far apart
have similar underlying framework, which is simply speaking to build a finite or
infinite often cyclic sequence; we shall refer to it as a just-in-time sequence, on
a finite n letter alphabet where each letter is spread “as evenly as possible” and
occurs with a given rate or a given number of times. The problem of finding such a
sequence is not only a mathematical one since there is no mathematical definition
of “as evenly as possible” that would satisfactorily capture the challenge behind
this phrase. The problem can find many mathematical formulations, but none will
probably satisfy all. Thus, one way of approaching the problem is to use the well-
known apportionment theory and especially its house monotone methods to build
the desired just-in-time sequence.

vii

viii Preface

The apportionment problem has its roots in the proportional representation sys-
tem designed for the House of Representatives of the United States where each state
receives seats in the House proportionally to its population. The theory has been in
the making for more than 200 years now and its exciting story as well as main results
can be found in an excellent book by Balinski and Young [2], see also more recent
book by Young [3], and Balinski’s popular introduction in [4]. The title of Balinski
and Young’s book speaks for itself: “Fair Representation: Meeting the Ideal of One
Man, One Vote.” Its main underlying message is that the ideal is not one but many
and that we can only hope to agree on one by stating some “obvious” axioms that
it must meet and then find a method that would deliver a solution meeting these
axioms, or to prove that one does not exist. This process may, however, not save us
from falling into various anomalies that do not contradict the axioms yet may be at
odds with the commonly accepted sense of fair representation.

This book argues that the apportionment methods, in particular the John Quincy
Adams’s and the Thomas Jefferson’s, have been widely, yet unknowingly, rediscov-
ered and used in resource allocation and sequencing computer, manufacturing, and
other real-life technical systems. Sometimes without a clear understanding of what
solutions they lead to in terms of their properties. The properties which have been
well researched and known from the apportionment literature but missing in the
technical one, either computer science or operations research. This lack of proper
context may have resulted, as we argue in some parts of this book, in overlooking
other apportionment methods, in particular the Daniel Webster’s method, that may
offer a number of additional attractive properties, like being better balanced than
either the Adams’s or the Jefferson’s.

The axiomatic approach favored by the apportionment theory for the proportional
representation systems is preferred over an optimization approach championed by
operations research scientists since the problem with the latter approach is in the
words of Balinski and Young from [2] as follows: “The moral of this tale is that
one cannot choose objective functions with impunity, despite current practices in
applied mathematics. The choice of an objective is, by and large an ad hoc affair. . .
Of much deeper significance than the formulas that are used are the properties they
enjoy.”

We think, however, that in order to adequately address the proportional represen-
tation problems listed at the beginning of this preface and others we need to study
them not only through the apportionment theory but through optimization as well.
After all the questions of quantifying excess inventory and shortage in just-in-time
manufacturing, the throughput error in stride scheduling, or the relative and absolute
bounds in fair queueing are clearly important. By doing so, we also realize that the
optimization reveals a new role of the well-known apportionment methods, the Web-
ster’s method in particular. The optimization moreover reveals connections with the
well-known and still open mathematical conjectures as the Fraenkel’s Conjecture,
see Tijdeman [5] for a brief account and Chap. 6, finally it relates to the multimodu-
lar functions minimization, introduced by Hajek [6] and later developed by Altman
et al. [7], which aims at evenly spreading the demand and workload in computer and
supply chains.

Preface ix

The question of which objective function to choose we settle by choosing either
total deviation or maximum deviation objective functions. Our solution method is
general enough to include a large class of point deviation functions. The choice of
objective functions follows sometime the choice made by Monden who, in his sem-
inal book [8], described the Goal Chasing Method of Toyota by using the square
point deviation function which apparently follows the minimization of square error
in the least squares method of Carl Friedrich Gauss. The attractive feature of this op-
timization is that it can be done efficiently, though certain intriguing computational
complexity issues remain open, and produce solutions which have many though not
all, by the Impossibility Theorem of Balinski and Young [2], desirable properties
identified by the theory and practice of apportionment.

The book intends to chart a solid common ground for discussing and solving
problems ranging from sequencing mixed-model just-in-time assembly lines,
through just-in-time batch production, balancing workloads in event graphs to
bandwidth allocation in the Internet gateways and resource allocation in operating
systems. From problems in mathematics of social sciences through operations re-
search and computer science problems, it argues that the apportionment theory and
the optimization based on deviation functions provide natural benchmarks in this
process. However, the process has just started and this book is to provide just a
small stepping stone on the way to this common ground. Needless to say it will be
a great pleasure for the author if the book’s topic finds its followers.

The book includes mostly very recent results – some of them published recently,
some of them new and yet unpublished. It includes ten main chapters. Chapter 2
briefly reviews main results of the apportionment theory used in the remainder of
the book. It emphasizes the axiomatic approach to the apportionment problem and
to the construction of the just-in-time sequences. The approach relies on the divisor
methods, in particular parametric methods advocated by Balinski and Young [2],
and their desirable properties embedded in the resulting just-in-time sequences.
Chapter 3 considers the problems of deviation minimization, the total and the max-
imum deviation, as tools for obtaining just-in-time sequences. It formulates these
problems as nonlinear integer optimization and presents efficient algorithms for
their solution. The algorithms are based on the concept of ideal positions, closely
related to the Webster’s apportionment method. They transform the deviation min-
imization problems to either the assignment or the bottleneck assignment problem,
respectively, and then solve the latter. The algorithms run in time which is polyno-
mial in the length of the outcome just-in-time output sequence. Chapter 4 proves that
there exist cyclic solutions that minimize the total deviation for symmetric point de-
viation functions, the same is shown for the maximum deviation. It also proves that
limiting optimization to the sequences with the bottleneck deviation not exceeding
1 renders some functions of point deviation equivalent. The oneness property claims
that limiting search for optimal just-in-time sequences to those with bottleneck not
exceeding 1 will be optimal in general. However, the chapter shows that all opti-
mal just-in-time sequences for some instances may have the bottleneck deviation
higher than 1 – thus showing that the oneness does not hold generally. Chapter 5
gives a more efficient algorithm for the maximum absolute deviation (referred to

x Preface

as bottleneck) deviation. The absolute value function of deviation results in optimal
bottleneck being always less than 1, and allows to develop strong upper and lower
bounds on the optimal bottleneck. These bounds and other properties of the bottle-
neck optimal just-in-time sequences are used in the application to the Liu–Layland
problem, stride scheduling, fair queueing, and others in the subsequent chapters.
Chapter 5 also shows that the optimal bottleneck just-in-time sequences for n = 2
are in fact Webster’s sequences of apportionment and the most regular words at
the same time; thus, they optimize the throughput of any two cyclic process shar-
ing a common resource. This new observation underlines again the advantages of
the Webster’s sequences for other than apportionment problems. Chapter 6 further
exploits the properties of just-in-time sequences with small bottleneck deviations,
which are understood as those less than 1

2 . The question is what are the instances
that admit this small bottleneck deviation? The answer given in the chapter is that
there is only one, called the power-of-two instance that results in this small bot-
tleneck deviation for n ≥ 3. The chapter also shows the connection between the
small bottleneck deviation problem and the famous Fraenkel’s Conjecture, which
states that the only distinct rates for which it is possible to build a balanced word
on three or more letters come essentially from the power-of-two instances. Finally,
the chapter presents the small bottleneck problem in the broader context of regular
sequences and multimodular functions they minimize. The applications of multi-
modular functions to workload balancing in event graphs (for instance the queues
and supply chains) are also discussed in the chapter. Chapter 7 addresses the re-
sponse time variability minimization problem, where the average response time for
a client is a reciprocal of its desirable rate. Thus, being as close as possible to the
average response time aims at achieving the “as evenly as possible” goal. The re-
sponse time variability is one of the main objectives in stride scheduling as well. The
chapter shows that the problem is NP-hard, proposes exact and heuristic solutions,
and reports computational experiments with the latter. Chapter 8 proves that the
optimal bottleneck sequences make tasks progress at the rates close enough to the
tasks’ processing time to request interval ratios so that they solve the Liu–Layland
problem – likely the best known scheduling problem in the hard real-time systems.
It also gives necessary conditions for the apportionment divisor methods to solve
the Liu–Layland problem, and proves that the quota-divisor methods solve the Liu–
Layland problem as well. Finally, the chapter presents solutions to some special
cases of the pinwheel scheduling problem given by the bottleneck optimal just-
in-time sequences. Chapter 9 focuses on the problem of constructing just-in-time
sequences for supply chains so that the temporal capacity constraints imposed by
suppliers are respected. The constraints are modeled by giving the limiting, supply-
dependent proportions p: q that stipulate that at most p out of any q models delivered
by the supply chain must be supplied by a particular supplier. Though the problem
of finding such a sequence is NP-hard in the strong sense the chapter discusses a
number of approaches: synchronized delivery and periodic synchronized delivery
for better balancing workloads in supply chains. Finally, the chapter points out a po-
tential for using tools developed by the combinatorics on words to design the just-
in-time sequences having desirable properties, and discusses the class of balanced

Preface xi

words in this role in more detail. Chapter 10 looks into the problem of fairness in fair
queueing and stride scheduling. It shows that both use the Jefferson’s and Adams’s
method of apportionment, and both are peer-to-peer fair. However, the chapter also
argues that the Webster’s method could prove a better yet untested choice for fair
queueing and stride scheduling. The chapter gives also a closer look at the measures
and criteria typically used in the fair queueing and stride scheduling and analyzes
them using the apportionment theory and just-in-time optimization tools developed
in Chaps. 2, 5, and 7. Finally, Chap. 11 extends the models developed in Chaps. 2,
3, and 9 to manufacturing environments with variable processing and set-up times.
This is a departure from the usual assumption of negligible variability resulting in an
simplification, often criticized, of unit times and synchronized lines assumed in the
applications of just-in-time sequences. The chapter’s approach is based on batching
to smooth out the variability of processing and set-up times, and then on sequencing
the batches to minimize the total deviation or alternatively to gain the advantages of
the Webster’s method. The approach is applied to a real-life problem arising in an
automotive pressure hose manufacturer. The computational experiments with both
algorithms are also presented in the chapter.

Special thanks go to my friends and colleagues, listed here in a random order, for
their encouragement and support: Prof. Dominique de Werra (École Politechnique
Fédérale de Lausanne), Profs. Jan Wȩglarz and Jacek Błażewicz (Poznań University
of Technology), Prof. Albert Corominas (Universitat Politècnica de Catalunya),
Prof. Jacques Cariler (Université de Technologie de Compiègne), Prof. Erwin Pesch
(University of Siegen), Prof. Moshe Dror (University of Arizona), Prof. Gerd Finke
(Université Joseph Fourier), and Prof. Marek Kubale (Gdańsk University of Tech-
nology). I am indebted in particular to Dr. Cynthia Philips (Sandia National Labo-
ratories) and Dr. Bruno Gaujal (INRIA-Grenoble) for pointing me to a number of
important references.

Finally, I wish to acknowledge the research support of the Natural Sciences
and Engineering Research Council of Canada without which many of my research
projects on just-in-time would simply not happen.

St. John’s, Canada Wieslaw Kubiak

Contents

1 Preliminaries . 1

2 The Theory of Apportionment and Just-In-Time Sequences 5
2.1 Introduction . 5
2.2 The Apportionment Problem . 6
2.3 Which Apportionment? . 7

2.3.1 The Basics: Exact, Anonymous and Homogeneous
Apportionments . 7

2.3.2 House Monotone Apportionments . 8
2.3.3 Population Monotone Apportionments 9
2.3.4 Uniform Apportionments . 9
2.3.5 Apportionments Satisfying Quota . 10

2.4 Apportionment Methods . 10
2.4.1 Divisor Methods . 10
2.4.2 Parametric Methods . 13
2.4.3 Rank-Index Methods . 13

2.5 What is Impossible? . 14
2.6 Coalitions and Schisms . 18
2.7 From Apportionments to Just-In-Time Sequences 20
2.8 Which Just-In-Time Apportionments? . 21

2.8.1 Cycles . 21
2.8.2 Advancing and Delaying . 23
2.8.3 Symmetry and Quasi-Palindromes . 25

2.9 The Consistency of Webster’s Method . 27
2.10 Exercises . 30
2.11 Comments and References . 31

3 Minimization of Just-In-Time Sequence Deviation 33
3.1 Introduction . 33
3.2 Minimization of Total Deviation . 34
3.3 The Transformation to the Assignment Problem 35

xiii

xiv Contents

3.4 The Monge Property of Assignment Costs . 41
3.5 The Equivalence . 46
3.6 The Solution . 48
3.7 Minimization of Maximum Deviation . 50
3.8 The Bottleneck Assignment . 50
3.9 The Bottleneck Monge Property . 52
3.10 Exercises . 53
3.11 Comments and References . 54

4 Optimality of Cyclic Sequences and the Oneness 55
4.1 Introduction . 55
4.2 Symmetries of Ci

jks for Symmetric Fis . 57
4.3 The Folding, Shuffling, and Unfolding of Sequences 65

4.3.1 The Folding . 68
4.3.2 The Shuffling . 68
4.3.3 The Unfolding . 69
4.3.4 Folding, Shuffling and Unfolding Yield An Assignment 69

4.4 Optimality of Cyclic Solutions for Total Deviation 71
4.5 Optimality of Cyclic Solutions for Maximum Deviation 72
4.6 The Oneness . 76
4.7 Exercises . 79
4.8 Comments and References . 80

5 Bottleneck Minimization . 81
5.1 Introduction . 81
5.2 The Position Window Based Algorithm . 82
5.3 The Complexity . 87
5.4 Bounds on the Bottleneck . 88

5.4.1 The Upper Bounds . 88
5.4.2 The Lower Bounds . 90

5.5 Main Properties . 91
5.6 The Absence of Competition . 92

5.6.1 Optimal Solutions for n = 2 . 93
5.6.2 The Bottleneck and the Webster’s Method Are One for n = 2 96
5.6.3 The Most Regular Words . 98
5.6.4 Two Cyclic Processes Sharing a Resource 101

5.7 Exercises . 103
5.8 Comments and References . 103

6 Competition-Free Instances, The Fraenkel’s Conjecture,
and Optimal Admission Sequences . 105
6.1 Introduction . 105
6.2 The Competition-Free and the Power-of-Two Instances 107
6.3 Bottleneck of the Competition-Free Instances 108
6.4 Polygons of the Competition-Free Instances . 111

Contents xv

6.5 Characteristics of Competition-Free Instances 115
6.6 The Competition-Free Instances for n = 3 . 118
6.7 Putting it Together . 121
6.8 Fraenkel’s Conjecture and Competition-Free Instances 124
6.9 Regular Sequences and Multimodular Functions 128

6.9.1 Regular Sequences . 128
6.9.2 Multimodular Functions . 131

6.10 Optimal Admission of Arrivals . 133
6.11 Multimodular Function on Just-In-Time Sequences 136
6.12 Exercises . 138
6.13 Comments and References . 138

7 Response Time Variability . 141
7.1 Introduction . 141
7.2 Optimization and Complexity . 144

7.2.1 Number Decomposition Graphs and Response
Time Variability . 144

7.2.2 Lower Bounds on Response Time Variability 147
7.2.3 Two Model Case . 148
7.2.4 Fixed Number of Models . 151
7.2.5 Complexity . 151

7.3 Heuristics . 157
7.3.1 The Exchange Heuristic . 157
7.3.2 The Initial Sequences . 158
7.3.3 Computational Experiment . 159

7.4 Mathematical Programming Formulation . 160
7.4.1 Input Parameters . 160
7.4.2 The Objective . 161
7.4.3 Eliminating Symmetries . 162
7.4.4 Feasibility of Position Variables . 164

7.5 The Algorithm . 164
7.6 Exercises . 165
7.7 Comments and References . 166

8 Applications to the Liu–Layland Problem and Pinwheel Scheduling . 167
8.1 Introduction . 167
8.2 The Liu–Layland Problem . 168
8.3 Just-In-Time Solution of the Liu–Layland Problem 171
8.4 Divisor Methods for the Liu–Layland Problem 174

8.4.1 The Necessary Conditions . 174
8.4.2 Adjusting the Jefferson’s Method to Solve

the Liu–Layland Problem . 179
8.4.3 Adjusting the Adams’s Method to Solve

the Liu–Layland Problem . 181
8.5 The Pinwheel Scheduling . 181

xvi Contents

8.6 Applications to Pinwheel Scheduling . 184
8.6.1 Additional Properties . 184
8.6.2 The Applications . 189

8.7 Exercises . 192
8.8 Comments and References . 193

9 Temporal Capacity Constraints and Supply Chain Balancing 195
9.1 Introduction . 195
9.2 The Car Sequencing Problem: A Model of Temporal Capacity

Constraints . 197
9.3 The Complexity of the Car Sequencing Problem 198
9.4 Dynamic Programming for the Car sequencing Problem 202
9.5 Simple Necessary Conditions . 204
9.6 IP Formulation and Heuristics for the Car Sequencing Problem 205
9.7 Mixed-Model, Pull Supply Chains . 207
9.8 Balanced Words and Model Delivery Sequences 209
9.9 Option Delivery Sequences . 212
9.10 Periodic Synchronized Delivery . 214

9.10.1 The Model . 215
9.10.2 The complexity . 219
9.10.3 Model-Supplier One-to-One Case . 219

9.11 Synchronized Delivery . 221
9.12 Exercises . 223
9.13 Comments and References . 224

10 Fair Queueing and Stride Scheduling . 227
10.1 Introduction . 227
10.2 The Story of Tiles: The Start, The Finish, or The In-Between 228
10.3 Fair Queueing . 230
10.4 Which Queueing Fairness? . 234

10.4.1 Max–Min Fairness Criterion . 234
10.4.2 Relative Fairness Bound . 235
10.4.3 Absolute Fairness Bound . 236

10.5 Stride Scheduling . 239
10.5.1 Throughput Error . 241
10.5.2 Response Time Variability . 243

10.6 Peer-To-Peer Fairness . 244
10.7 Exercises . 247
10.8 Comments and References . 248

11 Smoothing and Batching . 251
11.1 Introduction . 251
11.2 A Real-Life System . 254
11.3 Problem Definition . 255

11.3.1 Preliminaries . 255
11.3.2 Selection of the Objectives . 257

Contents xvii

11.3.3 A Mathematical Programming Formulation 260
11.4 Pareto Optimization . 261
11.5 Axiomatic Approach . 263
11.6 EIP Method and Optimization . 267
11.7 Computational Experiment . 268

11.7.1 Experimental Design . 268
11.7.2 Methods . 269
11.7.3 Results . 269

11.8 Exercises . 271
11.9 Comments and References . 272

References . 273

Index . 281

List of Figures

2.1 The dividing points for the five divisor methods in Table 2.1. The
order of the methods, from the left to right, follows the order
in the table . 12

3.1 The level curves for di = 3, D = 17, and Fi = |·| with the ideal
positions Zi

1 = 3, Zi
2 = 9, and Zi

3 = 15 . 35
3.2 The total deviation cost calculation for i with di = 3, sequenced in

positions 5, 8, and 16 . 36
3.3 Plots of | j− kri| for k < Zi

j: (a) j−1− kri ≥ 0 and (b) j−1− kri < 0 44
3.4 Plots of | j− kri| for k ≥ Zi

p: (a) p− kri ≤ 0 and (b) p− kri > 0 45
3.5 The bottleneck penalty for i with di = 3, sequenced in positions 5,

8, and 16 . 51

4.1 The bipartite multigraph G = (V1∪V2,E) being the result of the
folding operation on the sequence (4.9) . 67

4.2 The matching M being the result of the shuffle operation on the
graph G from Fig. 4.1 . 67

4.3 The matching Mc being the result of the shuffle operation on the
graph G from Fig. 4.1 . 67

5.1 The computation of the earliest and the latest positions for a model
i with three copies . 82

5.2 The bipartite graph for d = (5, 3, 2) and B = 0.5 85
5.3 The only two possible perfect matchings in graph G from Fig. 5.2 . . . 86
5.4 The line segment L(4,3) and its diagonal cells 99
5.5 Petri net modeling two cyclic processes A and B sharing a common

resource R . 102

6.1 D-circle, D = 15 . 112
6.2 The d-gone P

1
2 inscribed in D-circle, D = 15 and d = 8 112

xix

xx List of Figures

6.3 An arc ̂XY of D-circle bounded by the adjacent vertices X and Y of

di-gone P
1
2

i . 114

6.4 The North arcs of polygons P
1
2

n , P
1
2

i , and P
1
2
j in the rotations by θn,

θi, and θ j respectively . 127
6.5 Splitting arrival process according to the admission sequence s with

asymptotic rates ri for the letter ai, i = 1, . . .,n 135

7.1 The number decomposition graph for D = 16 and di = 3 145
7.2 The exchange improvements on the bottleneck, insertion and

random initial sequences for D = 1,000 . 160

8.1 The periodic schedule for tasks with periods T1 = 3, T2 = 4, and
T5 = 5, and run-times C1 = C2 = 1 and C3 = 2 respectively 169

8.2 The periodic schedule obtained by the just-in-time sequencing 174

9.1 Mixed-model supply chain with three levels and five suppliers (or
chain nodes): one at level 1 supplying three models, two at level 2,
and two at level 3 . 208

10.1 The framework for fair queueing and stride scheduling 228

11.1 Process flow at the automotive pressure hose manufacturing plant . . . 254
11.2 The ideal and actual schedules . 258
11.3 Four alternative solutions in Example 11.1 . 258

List of Tables

2.1 The best known divisor methods . 12
2.2 The just-in-time sequences for different δ . 23
2.3 The Webster’s just-in-time sequences . 27

8.1 The position windows for tasks 1, 2, and 3 . 173

9.1 An instance of the car sequencing problem . 198
9.2 A feasible sequence of models . 198
9.3 Matrix b for the supply chain in Fig. 9.1 . 208
9.4 Supplier 1 at L2 order sizes in each of the five periods, T2 = 2 216
9.5 Supplier 2 at L2 order sizes in each of the five periods, T2 = 2 216
9.6 Supplier 4 at L3 order sizes in each of the two periods, T4 = 5 216
9.7 Supplier 3 at L3 order sizes in each of the two periods, T3 = 5 216
9.8 Average order sizes . 217
9.9 The b matrix corresponding to the instance of 3-partition problem . . . 219
9.10 Matrix ∑(s, j)∈Ss bi,(s, j) . 221
9.11 Ratios r(s, j) . 222
9.12 The matrix ρ . 223
9.13 An infeasible instance of the temporal supplier capacity problem 224

11.1 Solution times and the numbers of Pareto-optimal solutions 269
11.2 Summary of average lost and response time as well as WIP 270

xxi

Chapter 1
Preliminaries

This chapter briefly reviews the basic terminology and notation used in the book.
We begin with some notation and terminology borrowed from the formal language
theory, see for instance Hopcroft and Ullman [9].

An alphabet A = {a1, . . .,an} is a finite non-empty set of symbols. A word (or
sequence) S (we also use small s to denote sequence) over A is any finite sequence
of symbols from A. The length of S, that is the number of symbol occurrences in
S, is denoted by |S|. The empty word, denoted by Λ, is the unique word over A of
length 0. The word

S = s1s2· · ·sm

where si ∈ A for i = 1, . . .,m will also be denoted as

S = s1→ s2→ ··· → sm.

The index i will be called the position of the letter si in the word S. If word S = S1S2

is the concatenation of words S1 and S2, then S1 is called a prefix of S, and S2 is
called a suffix of S. For k = 1, . . ., |S|, the prefix made up of the first k symbols of
a non-empty word S is referred to as the k-prefix. For a word S and a non-negative
integer m, the concatenation m times of S will be denoted as follows

SS. . .S
︸ ︷︷ ︸

m−times

= (S)m = Sm.

The infinite repetition of word S will be denoted by

S∞,

and then S is called a cycle of S∞. For

S = s1s2· · ·sm

its mirror reflection SR is
SR = sm· · ·s2s1.

W. Kubiak, Proportional Optimization and Fairness, International Series in Operations 1
Research & Management Science 127, DOI 10.1007/978-0-387-87719-8 1,
c© Springer Science+Business Media LLC 2009

2 1 Preliminaries

A sequence S is a palindrome if there is a sequence W such that

S = WW R.

We denote by A∗ the set of all finite words over A. The number of occurrences
of a given symbol a ∈ A in a word S ∈ A∗ is denoted by |S|a. Any occurrence of a
given symbol a in sequence S will also be referred to as a copy of the symbol.

The Parikh vector associated with a word S ∈ A∗ with respect to the alphabet
A= {a1, . . .,an} is

(|S|a1 , . . ., |S|an).

A factor (subsequence) of length (size) b≥ 0 of S = s1s2· · ·sm is a word x such that
x = si . . . si+b−1.

We denote by R, Z, and N sets of real, integer, and natural numbers, respectively.
Let {a1, . . .,an}Z be the set of infinite sequences on the alphabet A = {a1, . . .,an}.
For the letter ai and an infinite sequence S ∈ {a1, . . .,an}Z let I(S,ai) ∈ {0,1}Z be
the indicator in S of the letter ai, that is I(S,ai) j = 1 if and only if s j = ai.

Let d1, . . .,dn be n≥ 1 positive integers called demands (or model demands) and
let the alphabet A = {1, . . .,n}. This particular alphabet will be most often used in
the book. Any letter i ∈ A will also be referred to as a model i, or a client i, or a
state i, or a queue i depending on the context of our discussion. The vector

d = (d1, . . .,dn)

will be referred to as the vector of demands. We use the bold notation d,p,a, etc.
for vectors in the book. We define the total demand

D = d1 + · · ·+ dn,

and the rates

ri =
di

D

for letters i = 1, . . .,n. The vector of demands is called a standard instance if 0 <
d1 ≤ d2 ≤ ·· · ≤ dn, n≥ 2, and the greatest common divisor of d1,d2, . . . ,dn,D is 1,
that is gcd(d1, . . . ,dn,D) = 1.

Consider the set JIT of words on A all having their Parikh vectors with respect
to A equal

d = (d1, . . .,dn).

Any, S ∈ JIT will be referred to as a just-in-time sequence or a just-in-time word
for demand vector d, or simply just-in-time sequence. For S ∈ JIT, let xi,k be the
number of letter i ∈A occurrences in the k− prefix, k = 1, . . .,D of w. We also write
xik instead of xi,k.

The floor function �x	 of x is the greatest integer less than or equal to x. The
ceiling function
x� is the least integer greater that or equal to x, see Graham et al.
[10] for more on these functions. The nearest integer function [x] or [x] 1

2
is the

integer closest to x when the fractional part of x is equal to 1
2 we round downward

1 Preliminaries 3

unless otherwise specified. The |x| denotes the absolute value of any real x. Though,
we use the same notation |.| for both the absolute value and the sequence length the
context will clearly indicate which of the two applies.

The least common multiple of integers n1, . . .,nm, m ≥ 1, will be denoted by
lcm(n1, . . .,nm). The greatest common divisor of non-zero integers n1, . . .,nm, m≥ 1,
will be denoted by gcd(n1, . . .,nm). The notation di � D for positive integers di and
D means that di does not divide D.

The infimum or greatest lower bound of a subset R of real numbers is denoted
by inf(R) and is defined to be the biggest real number that is smaller than or equal
to every number in R. If no such number exists (because R is not bounded below),
then we define inf(S) = −∞.

Further terminology and notation will be introduced through the book.

Chapter 2
The Theory of Apportionment
and Just-In-Time Sequences

2.1 Introduction

The apportionment problem and theory have their roots in the proportional represen-
tation system intended for the House of Representatives of the United States where
each state receives seats in the House proportionally to its population. This chapter
reviews these results of the apportionment theory that are most relevant to the topic
of just-in-time optimization. It follows the excellent expositions of the basics of the
theory presented in the books by Balinski and Young [2], and Young [3]. However,
the chapter also includes new results obtained since these publications – especially
in the context of the theory’s new applications presented in this book.

The apportionment theory has been developed to address the problem of fair
representation or “meeting the ideal of one man, one vote” as Balinski and Young
put it in the title of their book. This ideal is clearly a fundamental one yet, as one
feels, unattainable, and thus the apportionment problem is not just a problem in
mathematics.

This book looks at this ideal in a broader than just political context in order to
recognize the ideal’s universality. For instance, the clients or virtual clients paying
for the executions of their jobs in today’s distributed computational economies, see
for instance Waldspurger et al. [11], expect a fair implementation of these virtual
economies – the clients demand a fair representation in terms of resource alloca-
tions to their jobs so that the ideal of one currency unit spent equals any other spent
in the same distributed economy is met. Thus, a client who pays twice as much
for its job execution as another one would like to see its job progressing at twice
the rate of the other client’s similar job at any time. Another example is a protec-
tion mechanism against antisocial behavior of individual hosts on the Internet and in
other networks, see Nagle [12]. There, the apportionment methods can be used to es-
tablish an accepted norm for a good behavior and can lead to the whole network in-
creased stability. There are volume differences too, the apportionment methods used
traditionally in proportional election or representation system are usually called to
work every 4–5 years, whereas the same methods would be called millions of times

W. Kubiak, Proportional Optimization and Fairness, International Series in Operations 5
Research & Management Science 127, DOI 10.1007/978-0-387-87719-8 2,
c© Springer Science+Business Media LLC 2009

6 2 The Theory of Apportionment and Just-In-Time Sequences

every minute on the Internet proving their application huge volume. This volume
requires such apportionment methods that are computationally extremely efficient
and relay on just few data in making online decisions as to who will receive the
resources next. Fortunately, most apportionment methods, the divisor methods and
in particular parametric methods for instance, satisfy all these conditions. Thus, the
apportionment theory is where we feel any discussion of proportional representation
should start.

Section 2.2 defines the apportionment problem. Section 2.3 introduces the basic
axioms of the apportionment theory. These include the basic exact, anonymous and
homogenous apportionments as well as population monotone apportionments intro-
duced to avoid undesirable anomalies. Section 2.4 presents the divisor methods of
apportionment. These are the only apportionment methods that deliver population
monotone apportionments. Section 2.5 discusses incompatibility of being popula-
tion monotone and staying within a quota properties of apportionment. Section 2.6
focuses on these features of divisor methods that encourage coalitions and schisms.
Section 2.7 shows how to construct the just-in-time sequences using the house
monotone apportionment methods. Section 2.8 discusses the desirable properties of
just-in-time sequences inherited from the parametric apportionment methods. The
properties include periodicity and various symmetries. Finally, Sect. 2.9 discusses
the consistency with a standard two-state solution which is unique for the Webster’s
method of apportionment.

2.2 The Apportionment Problem

The instance of the apportionment problem is defined by the integer house size h≥ 0
and a positive real vector of state populations:

p = (p1, p2, p3, . . . , ps) > 0. (2.1)

An apportionment of h seats among s states is an integer vector

a = (a1,a2,a3, . . .,as)≥ 0 (2.2)

such that ∑s
i=1 ai = h.

Let the total population be

P =
s

∑
k=1

pk.

A “fair” share of state i seats is its quota

qi =
pih
P

.

2.3 Which Apportionment? 7

However, the quota vector

q = (q1,q2,q3, . . .,qs)

may be fractional and thus not an apportionment. We sometimes use the notation
ah and qh instead of a and q, respectively to emphasize that the latter two vectors
correspond to the house of size h. We refer to

�qi	=
⌊

pih
P

⌋

(2.3)

as the lower quota of state i and to

qi�=
⌈

pih
P

⌉

(2.4)

as the upper quota of the state.
The solution to the apportionment problem is found by an apportionment

method M. The method maps the vector p and the house size h into a set M(p,h) of
apportionments a that satisfy the condition (2.2).

2.3 Which Apportionment?

The definition of the apportionment problem given in (2.2) may result into trivial
though unacceptable, for instance socially, solutions which need to be ruled out
from further consideration. This is done by imposing axioms that define what is
socially acceptable as properties of an apportionment. However, we believe that
these properties should hold for other applications of the apportionment theory as
well. We begin with the basic properties.

2.3.1 The Basics: Exact, Anonymous and Homogeneous
Apportionments

We call the method M exact if

(q1, . . .,qs) ∈M(p,h) whenever quota qi =
pih
P

is an integer for all i,

and this solution is unique. A method is anonymous if for any permutation π of the
states 1, . . .,s we have

(a1,a2,a3, . . .,as) ∈M((p1, p2, p3, . . . , ps),h)

8 2 The Theory of Apportionment and Just-In-Time Sequences

if and only if

(aπ(1),aπ(2),aπ(3), . . .,aπ(s)) ∈M((pπ(1), pπ(2), pπ(3), . . . , pπ(s)),h)

for all population vectors p and house sizes h. That is permuting the state popula-
tions results in apportionments that are permuted the same way.

An apportionment method M is homogeneous if for any p and h one requires
M(p,h) = M(λ p,h) for any positive rational number λ .

We continue the list of axioms with the not-so-obvious ones. These came to the
attention of politicians and researchers as a result of infamous paradoxes or anom-
alies that lead to abandoning some earlier used apportionment methods. The new
axioms were then formulated to protect against these paradoxes. We begin with the
most famous one, the Alabama paradox, and its remedy, namely the house monotone
methods.

2.3.2 House Monotone Apportionments

Any apportionment method M(p,h) that gives an apportionment vector a for the
house size h and the population vector p, and an apportionment vector a′ ≥ a for
the house of size h′ = h + 1 and the same population vector p is said to be house
monotone. Precisely, a method M is house monotone if for every p and h if a ∈
M(p,h), then there is a′ ∈M(p,h + 1) such that a′ ≥ a. This books relies on ap-
portionment methods for iteratively building sequences which requires the house
size h to grow. Thus, only house monotone methods are relevant for our discus-
sion since they allow to extend a sequence without any change to it, that is to
what has already been built. All divisor methods defined later in Sect. 2.4.1 are
house monotone. There are, however, historically important apportionment meth-
ods that are not house monotone. The Alexander Hamilton’s method, known also as
the largest reminder method is an example of an apportionment method that is not
house monotone. The Hamilton’s method lead to the infamous paradox of Alabama
in 1882, when a larger size of the House gave fewer seats to the state of Alabama.
The method’s failure to be house monotone can be illustrated by the following ex-
ample with the population vector p = (6,6,1). The house size h = 5 results in quotas
6×5
13 = 2 4

13 for the first two states and quota 5
13 for the third state, thus according to

the Hamilton’s method the apportionment is (2,2,1) since each state gets its whole
number of seats, that is 2,2 and 0 respectively, first, and then since the total number
of seats apportioned is one less than the house size, the difference goes to the state
with the largest reminder, that is to the third state. Now, let us increase the size of the
house to h = 6. Then, the quotas are 6×6

13 = 36
13 = 2 10

13 for the first two states and 6
13 for

the third. Then, the Hamilton’s method results in the apportionment (3,3,0). Thus,
the third state losses its only seat in a larger house – an example of the Alabama
paradox.

An even stronger axiom is the following population monotone axiom.

2.3 Which Apportionment? 9

2.3.3 Population Monotone Apportionments

The Alabama paradox reveals anomalies that some apportionment methods exhibit
whenever the size of the house h grows. However, it is not the only anomaly en-
countered in the theory of apportionment. Other anomalies may show in case of
rapid changes in populations. One such anomaly is the population paradox, which
happens whenever an apportionment method is not able to ensure that if the state is
population increases and the state js decreases, then state i gets no fewer seats and
state j gets no more seats with the new populations than they do with the original
ones and the unchanged house size h. To avoid this population paradox as well as
other paradoxes the population monotone apportionment methods have been intro-
duced. Formally, the method is population monotone if for any two vectors of pop-
ulations p,p′ > 0, house sizes h and h′, and vectors of apportionments a ∈M(p,h),
a′ ∈M(p′,h′) the following implication holds

p′�
p′k
≥ pi

p j
⇒

⎧

⎪

⎨

⎪

⎩

¬(a′� < ai∧a′k > a j)
or

p′�
p′k

= pi
p j

and a′�,a
′
k can be substituted for ai,a j in a

⎫

⎪

⎬

⎪

⎭

. (2.5)

The population monotone apportionment methods also avoid the new states paradox
that may arise whenever the sates join the union. The new states paradox consists in
the following. Suppose a state s+1 joins in the union of s states. Then, this paradox
happens whenever there are two states i and j of the old union such that one of
them losses seats and the other gains seats. The population monotone apportionment
methods avoid also the seceding states paradox. Suppose a state k secedes from the
union of s states. Then, the paradox happens if there are two states i and j other
than k such that one of them losses seats and the other gains seats.

The next class of methods ensures that an apportionment that is satisfactory for
all states remains so for any subset of states considered alone. For instance two
competing jobs may monitor their own progress and compare it with each other ir-
respectively of other jobs being present in the system and competing for the same
resources, see the peer-to-peer fairness in Chap. 10. The uniform apportionment
method ensures their satisfaction irrespective of other jobs.

2.3.4 Uniform Apportionments

An apportionment method is said to be uniform if it ensures that an apportion-
ment a = (a1,a2, . . .,as) of h seats of the house among states with populations
p = (p1, p2, . . ., ps) will stay the same whenever it is restricted to any subset S
of these states and the house size ∑i∈S ai = h′. In other words, if for every t, 2 ≤
t ≤ s, (a1, . . .,as) ∈M((p1, . . ., ps),h) implies (a1, . . .,at) ∈M((p1, . . ., pt),∑t

i=1 ai)
and if also (b1, . . .,bt) ∈ M((p1, . . ., pt),∑t

i=1 ai), then (b1, . . .,bt ,at+1, . . .,as) ∈

10 2 The Theory of Apportionment and Just-In-Time Sequences

M((p1, . . ., ps),h). Each uniform method can be obtained by using a rank-index
function. The rank-index functions will be defined in Sect. 2.4.3.

Finally, the quota satisfaction property. This property however is at odds with
population monotonicity, see the Impossibility Theorem 2.4.

2.3.5 Apportionments Satisfying Quota

The apportionment of ai seats to state i satisfies the lower quota for population
vector p and house size h if and only if

�qi	 ≤ ai, (2.6)

and it satisfies the upper quota if and only if

ai ≤
qi� . (2.7)

The ai satisfies the quota if it simultaneously satisfies the lower and the upper quota,
that is

�qi	 ≤ ai ≤
qi� . (2.8)

The apportionment vector a satisfies the quota if and only if it satisfies simultane-
ously the lower and the upper quota for all states. The method M(p,h) satisfies the
quota if each apportionment vector a ∈M(p,h) satisfies the quota for any p and h.

Though it may appear natural to request that an apportionment method stays
within the quota this request has been virtually rejected by the apportionment the-
ory since it can not be simultaneously met with the requirement of population
monotonicity. The latter is considered more important for the apportionment. How-
ever, staying within the quota gains importance in just-in-time applications where
it may be argued as being more important than population monotonicity due to its
ability to closely track a target value.

We now turn to the apportionment methods themselves.

2.4 Apportionment Methods

2.4.1 Divisor Methods

One can argue that the most successful approach to apportionment is based on a
deceptively simple and unquestionably natural idea that calls for calculating the
ideal district size x, or a divisor, that is the number of voters a single seat in the
house ideally represents, and then checking how many such ideal districts fit into
each state population. This latter number called quotient is then rounded to give the

2.4 Apportionment Methods 11

state apportionment. The nature of the game thus consists in doing the rounding –
the way the rounding is done defines a divisor method. However, irrespective of the
rounding the following result underlines the importance of divisor methods.

Theorem 2.1. An apportionment method is population monotone if and only if it is
a divisor method.

The proof of this theorem can be found in Balinski and Young [2]. Formally, a
divisor method finds proportional share of h seats by finding an ideal district size,
or divisor x, then computing the quotients qx

i of each state

qx
i =

pi

x
, (2.9)

and finally rounding them according to some rounding rule. The sum of all rounded
quotients must equal h. There are many ways to round the quotient. Any rounding
procedure can be described by specifying a dividing point d(a) in each interval of
quotients [a,a + 1] for each non-negative integer a.

Define a divisor function d to be any monotone, real-valued function defined for
all integers a ≥ 0 such that a ≤ d(a) ≤ a + 1 and such that there exists no pair of
integers b≥ 0 and c≥ 1 with d(b) = b+1 and d(c) = c. This last condition implies
that d is strictly increasing, and k + 1 > d(a + k)− d(a) > k− 1 for any a ≥ 0 and
k≥ 1. Any divisor function d can be used to define the d−rounding of a real number
y≥ 0 as follows

[y]d =
{

0 if 0≤ y≤ d(0),
a if d(a−1)≤ y≤ d(a).

The [y]d is unique for any y �= d(a) for all integer a ≥ 0. However, the threshold
y = d(a) can be either rounded down to a or up to a + 1.

The divisor method based on d is thus defined as follows:

M(p,h) =

{

a : ai =
[

pi

z

]

d
and

s

∑
i=1

ai = h for some z > 0

}

. (2.10)

From (2.10) we have d(ai−1)≤ pi
z ≤ d(ai) for any ai > 0 and pi

z ≤ d(ai) for ai = 0,
for some z > 0. Therefore,

min
ai>0

pi

d(ai−1)
≥ z≥max

ai≥0

pi

d(ai)
.

Observe that there usually is a closed interval of z values that satisfy these inequali-
ties, however, they all give the same apportionment, see Young [3]. We assume here
that pi

0 is defined and arbitrary large. The divisor method based on d can then be
defined alternatively by a min–max relationship as follows.

M(p,h) =

{

a : min
ai>0

pi

d(ai−1)
≥max

a j≥0

p j

d(a j)
and

s

∑
i=1

ai = h

}

(2.11)

where pi > p j implies pi
0 >

p j
0 .

12 2 The Theory of Apportionment and Just-In-Time Sequences

Table 2.1 The best known divisor methods

Method’s name Adams Dean Hill Webster Jefferson

d(a) a a(a+1)
a+1/2

√

a(a+1) a+1/2 a+1

�d(0) = 0

�d(1) = 1

�d(2) = 2

�d(3) = 3

�d(4) = 4

�d(5) = 5

�d(6) = 6

�d(7) = 7

�d(8) = 8

�d(9) = 9

�d(0) = 0

�d(1) = 1.33

�d(2) = 2.4

�d(3) = 3.43

�d(4) = 4.44

�d(5) = 5.45

�d(6) = 6.46

�d(7) = 7.47

�d(8) = 8.47

�d(9) = 9.47

�d(0) = 0

�d(1) = 1.41

�d(2) = 2.45

�d(3) = 3.46

�d(4) = 4.47

�d(5) = 5.48

�d(6) = 6.48

�d(7) = 7.48

�d(8) = 8.49

�d(9) = 9.49

�d(0) = 0.5

�d(1) = 1.5

�d(2) = 2.5

�d(3) = 3.5

�d(4) = 4.5

�d(5) = 5.5

�d(6) = 6.5

�d(7) = 7.5

�d(8) = 8.5

�d(9) = 9.5

�d(0) = 1

�d(1) = 2

�d(2) = 3

�d(3) = 4

�d(4) = 5

�d(5) = 6

�d(6) = 7

�d(7) = 8

�d(8) = 9

�d(9) = 10

Fig. 2.1 The dividing points for the five divisor methods in Table 2.1. The order of the methods,
for the left to right, follows the order in the table

Table 2.1 shows the d(a) function of the best known divisor methods.
It follows from the table that the Dean’s method uses the harmonic mean of a and

a + 1 as the divisor function, the Hill’s method uses the geometric mean of a and
a+1, and the Webster’s uses simply the arithmetic mean of a and a+1. Figure 2.1
shows the dividing points for the divisor methods from Table 2.1.

Any divisor method is population monotone, and thus house monotone, see
Theorem 2.1. Therefore, by the Impossibility Theorem 2.4 no divisor method stays
within the quota.

2.4 Apportionment Methods 13

2.4.2 Parametric Methods

Parametric method φδ is a divisor method with d(a) = a+δ , where 0≤ δ ≤ 1. The
parametric methods are of interest for two reasons. First, they are clearly computa-
tionally very efficient, their divisor functions are linear. Second, they generate cyclic
just-in-time sequences whereas the divisor methods which are not parametric do not
always generate cyclic just-in-time sequences. This will be shown in Theorem 2.12.

Clearly, the Adams’s, Webster’s (known also as the Sainte-Lagüe’s method) and
Jefferson’s (known also as the d’Hondt’s method) methods are parametric, while the
Dean’s and Hill’s are not.

2.4.3 Rank-Index Methods

The idea behind the rank-index methods is to define a standard of comparison or the
rank-index function, see Young [3], and then use it to obtain an equitable allocation
relative to that standard. An allocation is equitable relative to a rank-index function
if no seat transfer is justified. The seat transfer is justified if there are i and j so that j
can give up one seat to i and by doing so reduce the inequity between the two states,
that is if the following inequality is satisfied

∣

∣r(pi,ai)− r(p j,a j)
∣

∣ >
∣

∣r(pi,ai + 1)− r(p j,a j−1)
∣

∣ .

The rank-index function is any real-valued function of rational p and integer a ≥ 0
that is decreasing in a, that is r(p,a− 1) > r(p,a) for any p and a ≥ 1. The rank-
index methods begin apportionment of h seats with defining a rank-index function
r(p,a) on all possible pairs (p,a) where p is a state population and a is any integer
between 0 and h. The pairs (p,a) are then ordered in descending order of their rank-
index values. The h seats are then apportioned according with the first h pairs on the
ordered list. Thus, the h seats are apportioned to the most deserving, according to the
rank-index, states.

An equitable allocation can also be found by the following simple algorithm
given in Balinski and Young [2]. Let F be the family of functions f defined as
follows.

1. For h = 0 let f (p,0) = 0.
2. If f (p,h) = a, then f (p,h+1) is found by giving ai +1 seats to some state i such

that r(pi,ai)≥ r(p j,a j) for all j, and a j seats to each j �= i.

The rank-index method based on r(p,a) is defined as follows:

M(p,h) = {a : a = f (p,h) f or some f ∈ F}. (2.12)

Any function of the form r(p,a) = p
d(a) with a divisor function d(a) is a rank-index

function since p
d(a−1) > p

d(a) by definition of divisor functions. Therefore, we can
equivalently define the divisor method as follows, see Balinski and Young [2].

14 2 The Theory of Apportionment and Just-In-Time Sequences

Theorem 2.2. The divisor method based on a divisor function d can be defined as
follows

1. M(p,0) = 0,
2. If a ∈M(p,h) and k satisfies pk

d(ak)
= maxi

pi
d(ai)

, then b ∈M(p,h + 1) with bk =
ak + 1 for i = k and bi = ai for i �= k.

Clearly this definition gives us a simple way of constructing the just-in-time se-
quence as long as the divisor function d itself can be efficiently computed. The above
discussion and definitions prove that any rank-index method is uniform. Balinski
and Young [2] furthermore prove that any uniform method is a rank-index method
as long as it is balanced. A method is balanced if a ∈M(p =(p1, . . ., pi = p, . . ., p =
p j, . . .),h) implies |ai− a j| ≤ 1. That is the balanced method guarantees that the
apportionments of states with equal populations differ by at most one seat. We have
the following theorem.

Theorem 2.3. A method is balanced and uniform if and only if it is a rank method.

2.5 What is Impossible?

Balinski and Young [2] show that any population monotone method is house
monotone but not the other way around. Their famous Impossibility Theorem
shows that the failure to stay within the quota is the price that any population
monotone apportionment method must pay for its desirable quality of being pop-
ulation monotone.

Theorem 2.4 (The Impossibility Theorem). It is impossible for an apportionment
method to be population monotone and stay within quota at the same time.

Proof. Consider the vector of populations p =
(

5+e, 2
3 , 2

3 , 2
3−e

)

, where 2
3 > e > 0

is a rational number.
For P = h = 7, the pi is is exact quota for all i. Let a ∈ M(p,h). Now consider

the populations p′ =
(

4− e,2− e
2 , 1

2 + e
2 , 1

2 + e
)

. Again P′ = h = 7, so p′i is is exact

quota. Let a′ ∈M(p′,h). Choose any e that meets the condition e < 1
61 , we then have

p′1
p′4

>
p1

p4
.

This implies either a′1 ≥ a1 or a′4 ≤ a4 by population monotonicity, see (2.5). Now
assume a1≥ 5 and a′4 > 1. Then a′1≥ a1 implies a′1≥ 5 and thus a′ fails upper quota.
On the other hand, a4≥ a′4 implies a4 > 1 and thus a fails upper quota. Next, assume
a1≥ 5 and a′4 = 0. Then, by population monotonicity a′3 = a′4 = 0. Thus a′1 +a′2 = 7.
Therefore a′ fails upper quota. If a1 ≥ 5 and a′4 = 1, then it remains to consider
a′1 < a1 and a′4 ≤ a4. Then, a1 + a4 ≥ 6 and thus either a2 = 0 or a3 = 0. This,

2.5 What is Impossible? 15

however leads to a contradiction since M being population monotone apportions
the two seats to more populous states a2 and a3 rather than to a4, the least populous
out of the four states. Finally, if a1 < 5 then a fails lower quota. This ends the proof
since the cases considered exhaust all possibilities for e < 1

61 . ��
However, we have the following two results.

Theorem 2.5. Each divisor method stays within the quota for s=2.

Proof. See Exercise 2.23. ��
Theorem 2.6. The Webster’s method stays within the quota for s=3.

Proof. See Exercise 2.24. ��
The following two technical lemmas will be used in Sect. 8.4 of Chap. 8. The

lemmas show that if a divisor method fails to satisfy quota, then it does so for some
fractional quota.

Lemma 2.7. If a divisor method M does not stay above lower quota, then there are
the vector of populations p = (p1, p2, . . . , ps), the house size h and state k for which
the lower quota is not satisfied and the quota qk = pkh

P is fractional.

Proof. If M does not stay above lower quota, then there exist a vector of populations
p = (p1, p2, . . . , ps), s≥ 3, the house size h and the apportionment a =(a1, . . .,as)

a ∈M(p,h) = {a :∑
i

[pi

x

]

d
= h for some divisor x > 0} (2.13)

for which the lower quota is not satisfied for some state k, i.e.,

ak < �qk	=
⌊

pkh
P

⌋

. (2.14)

In (2.13), the d is the divisor function for M. Let us assume that qk is integral,
otherwise the lemma holds. The proof proceeds by cases.

If there is a state j �= k such that either

d(a j−1) <
p j

x
< d(a j)

or
p j

x
= d(a j) and

[p j

x

]

d
= a j,

that is
p j
x = d(a j) is d-rounded down, then define the populations

p′i =
{

pi(1 + ε
x) if i �= j,

p j if i = j,

16 2 The Theory of Apportionment and Just-In-Time Sequences

for all i and ε > 0. For the divisor x + ε, we have

p′i
x + ε

=
pi

x
for i �= j.

Moreover, for sufficiently small ε > 0 we get

[p j

x

]

d
=
[

p j

x + ε

]

d
.

Thus, a ∈M(p′,h) and

q′k =
pk(1 + ε

x)h
(1 + ε

x)∑i�= j pi + p j
> qk.

Therefore, ak does not stay above lower quota and furthermore q′k is fractional for
sufficiently small ε > 0. This proves the lemma.

It remains to show what happens if for all j �= k

p j

x
= d(a j−1) and

[p j

x

]

d
= a j, (2.15)

that is all
p j
x are d−rounded up to a j. In this case, if

d(ak−1)≤ pk

x
< d(ak), (2.16)

then define the populations

p′i =
{

pi if i �= k
pk + λ if i = k.

Then, the divisor x results in the apportionment a ∈M(p′,h) for sufficiently small
λ > 0. Since q′k is fractional for sufficiently small λ > 0 and q′k > qk, then again the
lemma holds.

Otherwise, that is if (2.16) does not hold, we have

pk

x
= d(ak) and the

pk

x
is d− rounded down to ak, i.e.,

[pk

x

]

d
= ak. (2.17)

Since M is homogeneous, then M(p,h)= M((d(a1−1), . . .,d(ak), . . .,d(as−1)),h),
where p =x(d(a1− 1), . . .,d(ak), . . .,d(as− 1)) by (2.15) and (2.17). Thus, it suf-
fices to consider the vector (d(a1− 1), . . .,d(ak), . . .,d(as− 1)) of populations and
the house size h. By (2.15) and (2.17) it follows that

h =
s
∑

i=1
ai.

Now, for ak ≥ 1 consider the vector of s(m+ 1) populations

2.5 What is Impossible? 17

p′=(d(a1−1), . . .,d(ak), . . .,d(as−1),d(a1−1), . . .,d(ak−1), . . .,d(as−1)
︸ ︷︷ ︸

m-times

),

for some m≥ 1, and the size of the house H = h(1 + m). We have

a′ = (a1, . . .,ak, . . .,as,a1, . . .,ak, . . .,as
︸ ︷︷ ︸

) ∈
m-times

M(p′,H).

To show this just take the divisor x = 1 and d-round accordingly. However,

d(ak)h
∑s

i=1,i�=k d(ai−1)+ d(ak)
(2.18)

≤ d(ak)h(1 + m)
∑s

i=1,i�=k d(ai−1)+ d(ak)+ m∑s
i=1 d(ai−1)

. (2.19)

obviously holds since d(ak − 1) < d(ak) by definition. Furthermore, the quota on
the right hand side of (2.18) can be made fractional by the appropriate choice of m.
Therefore, k fails its lower quota which is fractional. Thus, the lemma holds for p′
and H.

Finally, for ak = 0 we have d(0) > 0 by (2.17). Then, consider the vector of
s(m+ 1) populations

p′′ = (d(a1−1), . . .,d(ak), . . .,d(as−1),d(a1−1), . . .,ε, . . .,d(as−1)
︸ ︷︷ ︸

m-times

),

for some m≥ 1, d(0) > ε > 0, and the size of the house H = h(1 + m). We have

a′′ = (a1, . . .,ak = 0, . . .,as,a1, . . .,ak = 0, . . .,as
︸ ︷︷ ︸

) ∈
m-times

M(p′′,H).

To show this just take the divisor x = 1 and d−round accordingly. However,

d(0)h
∑s

i=1,i�=k d(ai−1)+ d(0)
<

d(0)h(1 + m)
d(0)+ mε +(1 + m)∑s

i=1,i�=k d(ai−1)
. (2.20)

obviously holds since ε < d(0) by definition. Furthermore, the quota on the right
hand side of (2.20) can be made fractional by the appropriate choice of m or ε.
Therefore, k fails its lower quota which is fractional. Thus, the lemma holds for p′
and H. ��

Similarly we can prove the following lemma, the proof will be omitted.

Lemma 2.8. If a divisor method M does not stay below upper quota, then there are
the vector of populations p = (p1, p2, . . . , ps), the house size h and state k for which
the upper quota is not satisfied and the quota qk = pkh

P is fractional.

18 2 The Theory of Apportionment and Just-In-Time Sequences

2.6 Coalitions and Schisms

In the apportionment practice and theory the coalitions and schisms in proportional
representation system have always been common tools for gaining and maintaining
power, and the apportionment methods were investigated for their ability to encour-
age, or discourage, coalitions or schisms.

Similar advantages of being either larger or smaller can be found in other contexts
as well. For instance, a number of clients sharing resources, for example computer,
network or manufacturing resources, may consider merging their individual jobs to
create one single composite job being the sum of these individual jobs. The com-
posite job then enters the competition for resources as a single entity belonging to
a single “corporate” client. The advantage of such coalition could be that the com-
posite job finishes earlier and, in the worst case, never later than the latest of the
individual jobs were they to compete for resources individually. We show in this
section that to realize this advantage of being larger the resource allocation must
be done according to the Jefferson’s method. No other divisor method is capable
of ensuring it. This advantage of being larger has been observed in stride schedul-
ing and networks, see Waldspurger and Weihl [13]. The issue of splitting the gains
resulting from the advantage of being larger between the individual clients though
very important and challenging is beyond the scope of this book.

The opposite situation occurs when a client considers breaking its job into a
number of smaller jobs so that doing them all separately and independently results
into the completion of the job itself. The smaller jobs are then let to compete for
resources between themselves and all other jobs. The advantage of such schism
would be that the latest of the smaller jobs finishes earlier and, in the worst case,
never later than the whole job were it done as a single job. This section shows
that to realize this advantage of being smaller the resource allocation must be done
according to the Adams’s method. No other divisor method is capable of ensuring it.

We begin with definitions.
Let C ⊆ {1, . . .,s} be a subset of states we refer here to as a coalition. For any

vector p = (p1, p2, p3, . . ., ps), let pC be the s−|C|+1 dimensional vector obtained
from p by replacing all coordinates in C by a single coordinate pC = ∑i∈C pi, all the
remaining coordinates do not change. We say that the apportionment method M en-
courages coalitions if and only for any a ∈M(p,h) there always exists bC ∈M(pC,h)
such that bC ≥ aC. We say that the apportionment method M encourages schisms if
and only for any a ∈M(p,h) there always exists bC ∈M(pC,h) such that bC ≤ aC.

Theorem 2.9. Jefferson’s method is the unique method that is population monotone
and encourages coalitions.

Proof. Let us denote the Jefferson’s method by J. We have d(a) = a + 1 for the
Jefferson’s method, see Table 2.1. If a ∈ J(p,h), then for some x > 0

ai = d(ai−1)≤ pi

x
≤ d(ai) = ai + 1 for all i.

We assume d(−1) = 0 by definition. Thus, for any subset C ⊆ {1, . . .,s} we have

2.6 Coalitions and Schisms 19

aC = ∑
i∈C

ai = d

(

∑
i∈C

ai−1

)

≤ ∑i∈C pi

x
=

pC

x
and ai ≤ pi

x
for all i /∈C.

Therefore, for the divisor x
x≤ pC

aC

and consequently there is a divisor y

x≤ y≤ pC

aC

such that
d(bC−1)≤ pC

y
≤ d(bC) and bi ≤ pi

y
for all i /∈C

and
bC ≥ aC and bC + ∑

i/∈C
bi = h.

This proves that the Jefferson’s method encourages coalitions. Now, let M be a
population monotone methods. By Theorem 2.1, M is a divisor method based on
some divisor function d. Consider an instance with s = n + 1 and

p =(p, . . ., p) and h = n(a + 1)+ a

for some p and a. Then, by (2.11)

(a,a + 1, . . .,a + 1)∈M(p,h).

Consider a coalition C = {2, . . .,n + 1}. If M encourages coalitions, then

(α,β) ∈M((p,np),h) with α ≤ a and β ≥ n(a + 1). (2.21)

However, by (2.11)

(a,na) ∈M((p,np),h−n).

Since M, being population monotone, is house monotone then

α ≥ a.

Consequently, by (2.21)

(a,na + n)∈M((p,np),h).

Thus
d(a−1)≤ p

x
≤ d(a) and d(an + n−1)≤ np

x
≤ d(an + n)

and consequently
1

d(a)
≤ n

d(an + n−1)
,

20 2 The Theory of Apportionment and Just-In-Time Sequences

or

a + 1− 1
n
≤ d(an + n−1)

n
≤ d(a)≤ a + 1

for any a ≥ 0 and all n ≥ 1. Therefore, d(a) = a + 1 and thus M is the Jefferson’s
method. ��

Similarly, it can be shown that:

Theorem 2.10. Adams’s method is the unique method that is population monotone
and encourages schisms.

All other divisor methods may result in two states (parties) either gaining a seat
or losing a seat sometime. If a method results in a coalition of two states gaining a
seat as likely as loosing it, then it is called coalition-neutral method. We have the
following theorem.

Theorem 2.11. Webster’s method is the unique method that is population monotone
and coalition-neutral.

We refer the reader to Balinski and Young [2] for details of the proof, however,
we would like to give intuition behind this result here. Assume vector of populations
p = (p1, p2, p3, . . ., ps) and a fixed divisor x. Let i and j form a coalition. Assume
that εi and ε j are the reminders of the quotients

pi

x
and

p j

x
.

The Webster’s method gives one less seat to the coalition of i and j than to i and j
separately provided that

εi > 0.5 and ε j > 0.5 and εi + ε j < 1.5 (2.22)

for the reminders that are independently and uniformly distributed between 0 and 1
the probability of this happening is 1

8 . On the other hand, the coalition gains a seat
provided that

εi < 0.5 and ε j < 0.5 and εi + ε j > 0.5 (2.23)

thus the probability of this happening is 1
8 as well. Therefore, the Webster’s method

is coalition-neutral. Observe that the probabilities do not change if we replace the
strong < inequalities by the weak ones≤ in both (2.22) and (2.23). Finally, observe
that the probability that the coalition of i and j gets the same as its two partners is
1− (1

8 + 1
8) = 3

4 .

2.7 From Apportionments to Just-In-Time Sequences

In the transformation between the just-in-time sequencing and apportionment prob-
lems, state i corresponds to model i and the demand di for model i corresponds to
population pi of state i. The cumulative number of units xi,k of i completed by k

2.8 Which Just-In-Time Apportionments? 21

corresponds to the number ai of seats apportioned to state i in a house of size k. The
following is the summary of the correspondences between the two problems:

number of states s←→ number of models n
state i←→ model i

population pi of state i←→ demand di for model i
vector of populations p←→vector of demands d

size of house h←→ position in sequence k
for a house of size h, ai←→ xi,k

total population P = ∑s
i=1 pi ←→ total demand D = ∑n

i=1 di.

Any exact and house monotone apportionment method M can be used to con-
struct a just-in-time sequence as follow. Let

M(d,1),M(d,2), . . .,M(d,D)

be the apportionments for the house sizes 1,2, . . .,D respectively and the population
vector d. The just-in-time sequence s is built as follows. Let vectors a1,a2, . . .,aD

be selected from M(d,1),M(d,2), . . .,M(d,D) respectively so that ah ≤ ah+1 for
any h = 1,2, . . .,D−1. Such selection of vectors exists since M is house monotone.
Moreover, there is exactly one i such that ah

i + 1 = ah+1
i since h = ∑ah

i and h + 1 =
∑ah+1

i . The i will be placed in the position h + 1 of the sequence s. Moreover,
the only state that gets a seat in a1 will be placed in position 1 of s. Finally, the
quotas Ddi

D = di for the house size D are all integer numbers, thus there is exactly
one vector in M(d,D) and it is (d1,d2, . . .,dn). The latter holds since the method is
exact. Consequently, the sequence is just-in-time since i occurs exactly di times in
it. We denote by SM(d) the set of all just-in-time sequences obtained by method M
for vector d.

2.8 Which Just-In-Time Apportionments?

We now focus on these properties of apportionment methods that make them espe-
cially attractive for building just-in-time sequence with desired properties. We begin
with the cyclic sequences.

2.8.1 Cycles

Let g = gcd(d1,d2, . . .,dn). The method M is cyclic

if s ∈ SM(d/g) implies sg ∈ SM(d).

A powerful advantage of the parametric methods of apportionment is that they
are cyclic which is not the case for other divisor methods that are not parametric. The

22 2 The Theory of Apportionment and Just-In-Time Sequences

key observation is that the distance between any two consecutive dividing points of
a parametric divisor method is constant, equal 1, which is not the case for divisor
methods not being parametric. We have the following theorem.

Theorem 2.12. A divisor method is cyclic if and only if it is parametric.

Proof. First, we observe that

di

ai + δ
≥ d j

a j + δ
if and only if

di

k di
g + ai + δ

≥ d j

k
d j
g + a j + δ

for k = 0,1, . . .,g−1. Thus any parametric method φδ is cyclic. Second, no divisor
method which is not parametric is cyclic. The proof is by contradiction. Assume that
M is a divisor method based on a divisor function d and M is not parametric. Then,
there exists positive integer k∗ such that d(k) = k + δ for 0 ≤ k < k∗and d(k∗) =
k∗+δ ∗ for some 0≤ δ �= δ ∗ ≤ 1. Assume δ < δ ∗. Let d1and d2 be any two positive
integers that satisfy 0≤ δ < d2

d1
< δ ∗ ≤ 1. Consider a vector d′ = (αd1−1,1) where

α is a positive integer. Then M(d′,h = αd1) = d′ since M, being a divisor method,
is exact. Moreover, M(d′,h = αd2) = (αd2− 1,1) for sufficiently large α , that is
state 2 always gets a single seat in the house of size αd2 provided α is sufficiently
large. To show this it suffices to observe that by Theorem 2.2 state 2 gets at least
one seat in such house since the following inequality

1
d(0)

=
1
δ

>
d1− 1

α
d2− 1

α
=

αd1−1
αd2−1

≥ αd1−1
d(αd2−1)

, (2.24)

holds for sufficiently large α . Furthermore, state 2 does not get more than one seat
since d2 < d1 and M, being a divisor method, is house monotone.

Now, consider the vector (k∗+ 1)d′ = (p1 = (k∗+ 1)(αd1− 1), p2 = k∗+ 1).
If M is cyclic, then (a1 = k∗(αd1−1)+ αd2−1,a2 = k∗+ 1) ∈M((k∗+ 1)d′,h =
k∗αd1 + αd2). However, since

p1

d(a1)
=

(k∗+ 1)(αd1−1)
d(k∗(αd1−1)+ αd2−1)

≥ (k∗+ 1)(αd1−1)
k∗(αd1−1)+ αd2

=
k∗+ 1

k∗+ αd2
αd1−1

>
k∗+ 1

k∗+ δ ∗
=

k∗+ 1
d(k∗)

=
p2

d(a2−1)

the min–max condition in (2.11) is violated. Thus, we get a contradiction. This
proves the theorem for δ < δ ∗. The proof for δ > δ ∗ proceeds in a similar fashion
and will be omitted. ��

We stay with the parametric divisor methods to investigate the influence of the
parameter δ on the just-in-time sequences being built.

2.8 Which Just-In-Time Apportionments? 23

2.8.2 Advancing and Delaying

A parametric divisor apportionment method used to built just-in-time sequence
could advance some jobs at the cost of retarding others in comparison to some other
parametric method. Since all methods we discuss in this book are anonymous the
only factor that affect this behavior is the size of the job and the parameter δ used
by the method. Table 2.2 shows all possible just-in-time sequences for the vector of
populations (or demands) d =(7,6,4,2,1) obtained by the parametric methods φδ

for 0≤ δ ≤ 1. The longest job, that is job 1, completes there at t = 20 for δ = 0 and
at t = 16, at the earliest, for δ = 1. At the same time the shortest job, that is job 5,
completes there at t = 5 for δ = 0 and at t = 20, at the latest, for δ = 1.

The longest job starts advancing its positions in the sequence starting from its
second position t = 6 for δ = 0 and never stops advancing. The second longest job
starts advancing its positions in the sequence starting from its second position t = 7
for δ = 0 and all its positions gets advanced. The third longest never gets advanced
or retarded. The losers are the two shortest jobs. The second shortest, that is job
4, starts retarding from its first position t = 4 for δ = 0 and never stops retarding.
The shortest starts retarding from its first position t = 5 for δ = 0 and never stops
retarding. Thus as δ grows the three longest jobs benefit by advancing their progress
whereas the two shortest lose by retarding their progress. Though the second longest
job completes only slightly earlier, at t = 19 for δ = 0 and at t = 17, at the earliest,

Table 2.2 The just-in-time sequences for different δ

δ ∈ φ δ

{0} 1→ 2→ 3→ 4→ 5→ 1→ 2→ 3→ 1→ 2→ 1→ 4↔ 3↔ 2→ 1→ 2→ 1→ 3→ 2→ 1
(0, 1

6) 1→ 2→ 3→ 4→ 5→ 1→ 2→ 3→ 1→ 2→ 1→ 2→ 3→ 4→ 1→ 2→ 1→ 3→ 2→ 1
{ 1

6} 1→ 2→ 3→ 4→ 5↔ 1→ 2→ 3→ 1→ 2→ 1→ 2→ 3→ 4→ 1→ 2→ 1→ 3→ 2→ 1
(1

6 , 1
5) 1→ 2→ 3→ 4→ 1→ 5→ 2→ 3→ 1→ 2→ 1→ 2→ 3→ 4→ 1→ 2→ 1→ 3→ 2→ 1

{ 1
5} 1→ 2→ 3→ 4→ 1→ 5↔ 2→ 3→ 1→ 2→ 1→ 2→ 3→ 4↔ 1→ 2→ 1→ 3→ 2→ 1

(1
5 , 1

3) 1→ 2→ 3→ 4→ 1→ 2→ 5→ 3→ 1→ 2→ 1→ 2→ 3→ 1→ 4→ 2→ 1→ 3→ 2→ 1
{ 1

3} 1→ 2→ 3→ 4→ 1→ 2→ 5↔ 3↔ 1→ 2→ 1→ 2→ 3→ 1→ 4→ 2→ 1→ 3→ 2→ 1
(1

3 , 2
5) 1→ 2→ 3→ 4→ 1→ 2→ 1→ 3→ 5→ 2→ 1→ 2→ 3→ 1→ 4→ 2→ 1→ 3→ 2→ 1

{ 2
5} 1→ 2→ 3→ 4↔ 1→ 2→ 1→ 3→ 5↔ 2→ 1→ 2→ 3→ 1→ 4→ 2→ 1→ 3→ 2→ 1

(2
5 , 1

2) 1→ 2→ 3→ 1→ 4→ 2→ 1→ 3→ 2→ 5→ 1→ 2→ 3→ 1→ 4→ 2→ 1→ 3→ 2→ 1
{ 1

2} 1→ 2→ 3→ 1→ 4↔ 2→ 1→ 3→ 2→ 1↔ 5→ 2→ 3→ 1→ 2↔ 4→ 1→ 3→ 2→ 1
(1

2 , 3
5) 1→ 2→ 3→ 1→ 2→ 4→ 1→ 3→ 2→ 1→ 5→ 2→ 3→ 1→ 2→ 4→ 1→ 3→ 2→ 1

{ 3
5} 1→ 2→ 3→ 1→ 2→ 4→ 1→ 3→ 2→ 1→ 5↔ 2→ 3→ 1→ 2→ 4↔ 1→ 3→ 2→ 1

(3
5 , 2

3) 1→ 2→ 3→ 1→ 2→ 4→ 1→ 3→ 2→ 1→ 2→ 5→ 3→ 1→ 2→ 1→ 4→ 3→ 2→ 1
{ 2

3} 1→ 2→ 3→ 1→ 2→ 4→ 1→ 3→ 2→ 1→ 2→ 5↔ 3↔ 1→ 2→ 1→ 4→ 3→ 2→ 1
(2

3 , 4
5) 1→ 2→ 3→ 1→ 2→ 4→ 1→ 3→ 2→ 1→ 2→ 1→ 3→ 5→ 2→ 1→ 4→ 3→ 2→ 1

{ 4
5} 1→ 2→ 3→ 1→ 2→ 4↔ 1→ 3→ 2→ 1→ 2→ 1→ 3→ 5↔ 2→ 1→ 4→ 3→ 2→ 1

(4
5 , 5

6) 1→ 2→ 3→ 1→ 2→ 1→ 4→ 3→ 2→ 1→ 2→ 1→ 3→ 2→ 5→ 1→ 4→ 3→ 2→ 1
{ 5

6} 1→ 2→ 3→ 1→ 2→ 1→ 4→ 3→ 2→ 1→ 2→ 1→ 3→ 2→ 5↔ 1→ 4→ 3→ 2→ 1
(5

6 ,1) 1→ 2→ 3→ 1→ 2→ 1→ 4→ 3→ 2→ 1→ 2→ 1→ 3→ 2→ 1→ 5→ 4→ 3→ 2→ 1
{1} 1→ 2→ 3→ 1→ 2→ 1→ 2↔ 3↔ 4→ 1→ 2→ 1→ 3→ 2→ 1→ 1↔ 2↔ 3↔ 4↔ 5

24 2 The Theory of Apportionment and Just-In-Time Sequences

for δ = 1 and the third longest job completes at t = 18 for δ = 0 and at t = 18, at
the earliest, for δ = 1.

We now investigate this phenomenon formally beginning with the following
definition, see Balinski and Rachev [14], and Balinski and Ramirez [15].

Method M gives up to method M∗ if

a ∈M(p,h), a∗ ∈M∗(p,h), and pi > p j implies ai ≤ a∗i or a j ≥ a∗j .

That is for any two states (jobs) of different sizes, the bigger gets no worse treat-
ment relative to the smaller by M∗ than it does by M.

Theorem 2.13. A parametric method φα gives-up to another parametric method φβ

if and only if α < β .

Proof. Let α < β . We show that φα gives-up to φβ . For any divisor x > 0 we have

[pi

x

]

α
≥
[pi

x

]

β
for all i.

Thus, if a �= a∗, then the largest feasible divisor for φβ (p,h) is smaller that the
smallest feasible divisor for φα(p,h). Hence, if the former is x, then the latter is
x− ε,ε > 0, and we have

d(a∗i) = a∗i + β ≥ pi

x− ε
>

pi

x
≥ ai−1 + α = d(ai−1). (2.25)

Moreover, if
a j < a∗j ,

then p j

x
≤ d(a j) = a j + α < a∗j−1 + β = d(a∗j −1)≤ p j

x− ε
. (2.26)

Therefore, if
ai > a∗i and a j < a∗j ,

then it follows from (2.26) that

ε p j

x(x− ε)
≥ β −α,

and at the same time it follows from (2.25)

ε pi

x(x− ε)
≤ β −α.

But these two inequalities lead to a contradiction as long as pi > p j. Therefore, we
must have

ai ≤ a∗i or a j ≥ a∗j ,

and thus φα gives-up to φβ .

2.8 Which Just-In-Time Apportionments? 25

Now, assume a∈ φα (p,h), a∗ ∈ φβ (p,h), and pi > p j implies ai≤ a∗i or a j ≥ a∗j ,
that is φα gives-up to φβ . We need to show that then α < β . By contradiction,
assume α ≥ β . Let α > β . Define p = (pi = ai + α, p j = a j + α), where ai = ma j

for some integer m > 1, and the house size

h = ai + a j.

We have pi

ai−1 + α
≥ p j

a j + α
,

thus by (2.11) (ai,a j)∈ φα(p,h), but also

pi

ai−1 + β
<

p j

a j + β
,

for m > α−β+2
α−β and a j ≥ 1. Then, however either

a∗i < ai or a∗j > a j,

for (a∗i ,a∗j)∈ φ β (p,h). Thus, if a∗i < ai, then a∗j > a j since a∗i + a∗j = ai +a j = h.
Also, if a∗j > a j, then a∗i < ai. Therefore, we get a∗i < ai and a∗j > a j, which leads

to a contradiction, since φα gives-up to φβ .
If 1 > α = β > 0, then consider an instance with

p = (1 + α,2 + α,m−mα,1−α,α, . . .,α
︸ ︷︷ ︸

)

m−1-times

where m > max{1, 1−α
α }. We have P = h = 4 + m. Then, both vectors (1,3,a3, . . .,

am+4) and (2,2,a3, . . .,am+4) belong to φα(p,h) as long as m
m+1 ≥ α. To show this,

we observe, that if m > max{1, 1−α
α } and m

m+1 ≥ α, then we can always have 1 ≤
a3≤m−1. Thus, the remaining m−1≥ h−(4+a3)≥ 1 can always be apportioned
according to φα . Finally, the first two states get their seats by appropriately rounding
their quotients 1 + α and 2 + α according to the divisor d(a) = a + α . Therefore,
we again get a contradiction since φα gives-up to φα . The case α = 1 or 0 is left for
Exercise 2.21. ��

The last property stipulates that the just-in-time sequence should be roughly the
same as its mirror reflection, that is they should be quasi-palindromes.

2.8.3 Symmetry and Quasi-Palindromes

Theorem 2.13 suggests that as far as parametric methods are concerned this can only
happen for the parameter equal 1

2 , that is for the Webster’s method. The following
section proves this observation.

26 2 The Theory of Apportionment and Just-In-Time Sequences

Theorem 2.14. The method of Webster produces a sequence SPSR, where P is a
permutation of the states with odd populations, and SR is a mirror reflection of S.
Moreover, if it produces a sequence SPSR and Q is a different permutation of the
states with odd populations, then it produces SQSR as well.

Proof. Consider D numbers di
k− 1

2
for k = 1, . . .,di and i = 1, . . .,n ordered in descend-

ing order. Build a sequence according to this order as follows: if di
k− 1

2
is in position

t of the order then place an i in position t of the sequence. The sequence so built
can in fact be obtained by the Webster’s parametric method φ

1
2 . To show this let us

consider position t in the order. Let y jt , 1≤ t ≤ D,1≤ j ≤ n be the smallest k such

that
d j

k− 1
2

is in one of the positions t, . . .,D in the order. The i selected for position t

of the sequence satisfies the following inequalities

di

yit − 1
2

≥ d j

y jt − 1
2

for all j. (2.27)

However, y jt = x jt + 1, where x jt is the number of allocations obtained by j up to
t exclusively. Therefore, the i selected for position t of the sequence satisfies the
inequalities

di

xit + 1
2

≥ d j

x jt + 1
2

for all j,

which is exactly the test the parametric method φ
1
2 does to allocate a seat for po-

sition t of the sequence, see Theorem 2.2. We now show that the sequence is of
the form SPSR, where P is a permutation of all states with odd populations and SR

is a mirror reflection of S provided that the ties in the order are broken appropri-
ately, for instance according to the order d1 ≥ ·· · ≥ dn. Suppose that the number

di

k− 1
2
, k ≤

⌊

di
2

⌋

, is in position t ≤ ⌊

D
2

⌋

of the order. We claim that, then the number
di

di+1−k− 1
2

is in position D+ 1− t. This holds since

di

k− 1
2

≤ d j

l− 1
2

if and only if
di

di + 1− k− 1
2

≥ d j

d j + 1− l− 1
2

,

for l ≤
⌊

d j
2

⌋

. Finally, we notice that for any state i with an odd population di =
2bi + 1 we have

di

bi + 1− 1
2

=
di

bi + 1
2

=
2di

di
= 2.

Thus they all fall in the middle of the order since for any state i with an even popu-
lation di = 2bi we have

di

bi− 1
2

> 2 and
di

bi + 1
2

< 2.

2.9 The Consistency of Webster’s Method 27

Table 2.3 The Webster’s just-in-time sequences

δ φ δ

[0, 1
2) 1−→ 2−→ 1−→ 1

1
2 1−→ 2←→ 1−→ 1

(1
2 ,1) 1−→ 1−→ 2−→ 1

1 1−→ 1−→ 1←→ 2

This proves the theorem since any permutation of the states with odd populations
can be obtained in the middle of the sequence. ��

The Webster’s method is the only parametric method for which the property from
theorem holds. The following example with d =(3,1) given in Table 2.3 is due to
Balinski and Shahidi [16].

In this example

{1−→ 2−→ 1−→ 1,1−→ 1−→ 2−→ 1} ⊆ Sφ δ (d)

only for δ = 1
2 .

We have proven that the Webster’s method is the only divisor method that pro-
duces cyclic quasi-palindromes. We study other desirable properties of this method
in the next section.

2.9 The Consistency of Webster’s Method

The Webster’s parametric method will return in our discussions in this book on
many occasions. Therefore, we further underline its importance in this section. We
begin by investigating the Webster’s apportionments for two states and begin with
defining the standard two-state solution, Young [3]. We denote the Webster’s method
by W. Let a = (a1,a2) ∈W(p = ((p1, p2),h = a1 +a2). By the min–max condition
of (2.11), for positive a1 and a2 we have

p1a2 ≥ p2a1− 1
2
(p1 + p2)

and

p2a1 ≥ p1a2− 1
2
(p1 + p2)

which implies

a1− 1
2
≤ d(a1−1)≤ p1h

p1 + p2
≤ d(a1) = a1 +

1
2

28 2 The Theory of Apportionment and Just-In-Time Sequences

and

a2− 1
2

= d(a2−1)≤ p2h
p1 + p2

≤ d(a2) = a2 +
1
2
.

Therefore,

a1 =
[

p1h
p1 + p2

]

1
2

and a2 =
[

p1h
p1 + p2

]

1
2

,

which proves that the Webster’s solution for any two-state p =(p1, p2) and the house
size h simply calculates the quota

q1 =
p1h

p1 + p2
and q2 =

p2h
p1 + p2

and then rounds them to the nearest integer numbers. If the fractional parts of q1 and
q2 are both equal 1

2 , then both (q1 + 1
2 ,q2− 1

2) and (q1− 1
2 ,q2 + 1

2) are Webster’s
solutions. Finally, if either a1 = 0 or a2 = 0, then the proof is similar. The Webster’s
solutions for two-states will be refereed to as the standard two-state solutions.

Let M be an apportionment method. For any population vector p, house size h
and apportionment a = (a1, . . .,as) ∈M(p,h) define

hi, j = ai + a j

for any two different states i and j. For the hi, j define the set

Hi, j = {(ai,a j) : hi, j = ai + a j,a = (a1, . . .,as) ∈M(p,h)}

The method is refereed to as pairwise consistent with the standard two-state solution
if and only if Hi, j = W((pi, p j),hi, j) for all i �= j. We have the following theorem.

Theorem 2.15. Webster’s method is the unique apportionment method that is pair-
wise consistent with the standard two-state solution.

Proof. If a = (a1, . . .,as) ∈W(p = ((p1, . . ., ps),h), then we can repeat the reason-
ing presented at the beginning of this section for any couple of states i �= j with the
vector of populations (pi, p j), apportionment (ai,a j) and house size hi, j = ai+a j to
prove that

ai =
[

(ai + a j)pi

pi + p j

]

1
2

and a j =
[

(ai + a j)p j

pi + p j

]

1
2

which implies that the Webster’s method is pairwise consistent with the standard
two-state solution.

We now prove that the Webster’s method is the only method pairwise consistent
with the standard two-state solution. The proof is by contradiction. Let M be pair-
wise consistent with the standard two-state solution but not the Webster’s method.
Let a ∈M(p,h) and a /∈W(p,h). Let a′ ∈W(p,h) be chosen so it differs from a
in a minimal number of coordinates. There are states i and j such that a′i < ai and

2.9 The Consistency of Webster’s Method 29

a′j > a j. Without loss of generality a′i + a′j ≥ ai + a j. Since both M and W are pair-
wise consistent with the standard two-state solution, then we get a contradiction by
the following inequality

a′i =

⎡

⎣q′i =
pi

(

a′i + a′j
)

pi + p j

⎤

⎦

1
2

≥
[

qi =
pi (ai + a j)

pi + p j

]

1
2

= ai, (2.28)

unless a′i + a′j = ai + a j and the fractional parts of qi and q′i are both equal 1
2 . Then,

a′i = ai−1 and a j = a′j−1

and the apportionment a′′ obtained from a′ by substituting a′i and a′j by ai and a j,
respectively also belongs to W(p,h). This leads to a contradiction since a′′ differs
from a in fewer components than a′. This proves that a ∈W(p,h) consequently
M(p,h)⊆W(p,h). Now, let a ∈W(p,h) and a /∈M(p,h). Let a′ ∈M(p,h) be cho-
sen so it differs from a in a minimal number of coordinates. There are states i and
j such that a′i < ai and a′j > a j. Without loss of generality a′i + a′j ≥ ai + a j. By
assumption, we get a contradiction since

a′i =

⎡

⎣q′i =
pi

(

a′i + a′j
)

pi + p j

⎤

⎦

1
2

≥
[

qi =
pi (ai + a j)

pi + p j

]

1
2

= ai,

unless a′i + a′j = ai + a j and the fractional parts of qi and q′i are both equal 1
2 . Then,

a′i = ai−1 and a j = a′j−1

and the apportionment a′′ obtained from a′ by substituting a′i and a′j by ai and a j,
respectively also belongs to M(p,h). This leads to a contradiction again since again
a′′ differs from a in fewer components than a′. This proves that a ∈M(p,h) conse-
quently W(p,h)⊆M(p,h). Therefore, W(p,h) = M(p,h) which ends the proof. ��

We now turn our attention to the just-in-time sequences built by the Webster’s
method and extend the pairwise consistency with the standard two-state solution to
the pairwise consistency with the standard two-model sequence. Any sequence s in
SW((d1,d2)) with gcd(di,d j) = 1 is called the standard two-model sequence. For
example d = (3,5) yields two standard two-model sequences

2→ 1→ 2→ 1→ 2→ 2→ 1→ 2 and 2→ 1→ 2→ 2→ 1→ 2→ 1→ 2.

A sequence S ∈ SW(d) is consistent with the standard two-model sequence if for
any two models i �= j its projection on models i and j is the sequence

sgcd(di,d j),

30 2 The Theory of Apportionment and Just-In-Time Sequences

where s ∈ SW((di,d j)/gcd(di,d j)) is the standard two-model sequence. The pro-
jection of S on models i and j is obtained by deleting from S all models except
i and j.

Consider an instance d = (d1, . . .,dn). Let W(d,1),W(d,2), . . .,W(d,D) be the
apportionments for house sizes 1,2, . . .,D respectively and the population vector d
obtained by the Webster’s method. Consider

W(d) =
D
⋃

h=1

W(d,h).

For any two 1≤ i �= j≤ n, let Wi, j(d) be the set of projections of vectors in W(d) on
the coordinates i and j and let Wi, j(d,h) be the set of projections of vectors in W(d)
on the coordinates i and j that sum up to h, h = 1, . . .,di + d j. By Theorem 2.15
Wi, j(d,h) = W((di,d j),h). By Theorem 2.12

s ∈ SW((di,d j)/gcd(di,d j)) implies sgcd(di,d j) ∈ SW((di,d j)).

Thus, there is a sequence in
SW(d)

that is pairwise consistent with the standard two-model sequence.

Example 2.16. For instance, consider d =(3,5,15) the Webster’s sequence is

32313323331233323313233.

It results in the projections

21212212, 331333331333331333, and 32333233323332333233

for models 1 and 2, 1 and 3, and 2 and 3 respectively. The first is consistent with
the standard two-model sequence 21212212 for (3,5), the second is consistent
with the standard two-model sequence 331333 for (1,5), and the third is consis-
tent with the standard two-model sequence 3233 for (1,3). Thus, this Webster’s
sequence is consistent with the standard two-model sequence.

We shall return to the standard two-model sequences in Sect. 10.6 in the context
of peer-to-peer fair solutions.

2.10 Exercises

Exercise 2.17. Find the smallest apportionment problem instance with Alabama
paradox.

Exercise 2.18. Show a population monotone apportionment method that stays
within quota for s ≤ 3.

2.11 Comments and References 31

Exercise 2.19. Prove Lemma 2.8.

Exercise 2.20. Prove the case δ > δ ∗ in Theorem 2.12.

Exercise 2.21. Prove that (p − 1,q,1), (p,q− 1,1), and (p,q,0) all belong to
φ1((p,q,1),h = p + q). Similarly, (p− 1,q,1), (p,q− 1,1), and (p− 1,q− 1,2)
all belong to φ0((p,q,1),h = p + q).

Exercise 2.22. The Hamilton’s method minimizes any Lp norm of the difference
ah−qh. Why then it does not minimize ∑P

h=1Lp(ah−qh)?.

Exercise 2.23. Prove Theorem 2.5.

Exercise 2.24. Prove Theorem 2.6.

2.11 Comments and References

The presentation of the apportionment theory in this chapter is based on an excellent
book by Balinski and Young [2] and a chapter in Young [3]. Both focus on the ideal
of representative democracy – one man, one vote and on achieving it by the fair
representation according to the theory of apportionment. The latter addresses the
fundamental question of how to divide the seats of a legislature fairly according to
the populations of states. The theory is based on axioms and apportionment methods
presented in this chapter. The axiomatic method of apportionment theory relies on
some socially desirable characteristics that one requires an apportionment to posses.
These characteristics include, for instance house and population monotonicity but
also many others. They have been shown crucial for the solutions of the appor-
tionment problem. The famous Impossibility Theorem of Balinski and Young puts
a clear limitation on which characteristics do not contradict one another by show-
ing that having solutions that satisfy quota and that are at the same time population
monotone is generally impossible. Other good introductions to the apportionment
theory are presented in Leyvraz [17], and in Balinski [4]. Grilli di Cortona et al.
[18], and Ibaraki and Katoh [19] discuss integer optimization approaches to the ap-
portionment problem.

The analysis of the divisor methods in the context of coalitions and the schisms
belongs to Balinski and Young [2]. Bautista et al. [20] observe a link between the
just-in-time sequencing and the apportionment problem. The proof of cyclic theo-
rem for the parametric divisor methods is based on Balinski and Ramirez [15] and
the advancing and retarding by the parametric methods on Balinski and Ramirez
[15], Balinski and Rachev [14], and Balinski and Shahidi [16]. Table 2.2 is from
Balinski and Shahidi [16]. The instance p = (6,6,1) is shown to suffer from the
Alabama paradox by Miltenburg [21]. The discussion of the consistency of the
Webster’s method with the standard two state solution is based on Young [3].

Chapter 3
Minimization of Just-In-Time Sequence
Deviation

3.1 Introduction

Chapter 2 presented an axiomatic approach to constructing just-in-time sequences.
The axioms used there followed the ones well established by the apportionment
practice and theory, however, some new axioms like periodicity, palindrome sym-
metry and the consistency with a standard two-model just-in-time sequences were
added and shown to be satisfied by the Webster’s method of apportionment. This
axiomatic approach by definition constructs a just-in-time sequence which gives as
fair a representation to each state (or model) in any house size (or sequence prefix)
as the axioms permit. More precisely, a fair representation may be understood as the
representation free of known paradoxes. Thus, the focus of this axiomatic approach
is solely on individual states (models) and consequently no population paradox can
be tolerated by a fair representation. Therefore, the divisor methods are the only
choice. However, there are situations where the focus moves from the individual
states (models) towards their collection. This may require the existence of an entity
on a level higher than the states (models) which may not be that unusual and may
even be natural. A just-in-time manufacturer often relies on the assumption that de-
mand for its product models is uniformly distributed over a planning horizon, and
hence, its goal of meeting the model demand with minimum inventories and short-
ages (or simply just-in-time) calls for distributing the production of each model i as
uniformly as possible over the planning horizon as well. Ideally, the manufacturer
would produce a model with a constant demand rate, equal ri for model i, thereby
making the cumulative production of the model to progress along a straight cumu-
lative demand line with its slope equal to the demand rate for the model. The total
deviation of the actual cumulative production from the ideal is then proportional
to the total inventory and shortage costs that may be charged at different rates for
different models. The bottleneck deviation does the same for the maximum charge.
Therefore, the manufacturer would strive to smooth the production rate variations
by using functions of deviations of the actual cumulative model production lev-
els from their ideal levels over the time horizon. The total deviation, defined in

W. Kubiak, Proportional Optimization and Fairness, International Series in Operations 33
Research & Management Science 127, DOI 10.1007/978-0-387-87719-8 3,
c© Springer Science+Business Media LLC 2009

34 3 Minimization of Just-In-Time Sequence Deviation

Sect. 3.2, and the maximum deviations, defined in Sect. 3.7, have been widely used
as the primary objectives in the just-in-time production smoothing literature, see
Monden [22]. The total deviation minimization is also known as the product rate
variation problem, Kubiak [23]. This production smoothing has a clearer goal, often
better achieved by optimization, than the more elusive goal of one man one vote
ideal of the apportionment theory of proportional representation.

Though optimization has been almost abandoned in the apportionment theory
long time ago, see Balinski and Young [2], we just argued that whenever the prob-
lem emphasis moves from the individual model to the whole collection of models,
then the optimization methods have much clearer objective and thus might pro-
vide a better approach in solving the smoothing problem, for instance, than the
axiomatic approach. Consequently, this chapter presents an efficient approach to
minimizing the total deviation. This approach constructs an equivalent assignment
problem which then can be solved by the well known assignment algorithms. The
approach is presented in detail in Sect. 3.3. Sections 3.4 and 3.5 show its correct-
ness. Finally, solution is given in Sect. 3.6. A similar approach is then presented for
the maximum deviation minimization in Sects. 3.8 and 3.9.

Finally, having argued that the axioms and the apportionment methods designed
to satisfy them may not ensure an optimal solution, if a certain objective function of
deviations is to be optimized, we after all realize that the apportionment methods can
provide solutions with a lot of potential for improving operations management as
we shall continue arguing in Chap. 11 where we return to the production smoothing
problem in a real-life setting. These improvements though more elusive and thus
difficult to measure in terms of cost savings may however in a long run lead to a
stronger and sustainable competitive position.

3.2 Minimization of Total Deviation

Following the motivating example of production smoothing given in the introduc-
tion to this chapter and the notation introduced in the preliminary chapter, we con-
sider a set of n, different models 1,2, . . .,n to produce, with demands d1, . . .,dn, units
respectively. For a sequence S = s1· · ·sD of length D = ∑n

i=1 di over the alphabet
1,2, . . .,n where i occurs exactly di times, let xik be the number, sometimes referred
to as the cumulative production , of times the i occurs in the k−prefix s1· · ·sk of S,
k = 1,2, . . .,D, i = 1, . . .,n. The total deviation minimization problem is formulated
as follows.

min
S

{

F(S) =
n
∑

i=1

D
∑

k=1
Fi(xik− kri)

}

(3.1)

subject to

n

∑
i=1

xik = k k = 1, . . .,D (3.2)

0≤ xik+1− xik ≤ 1 i = 1, . . .,n;k = 1, . . . ,D−1 (3.3)

xiD = di i = 1, . . . ,n. (3.4)

3.3 The Transformation to the Assignment Problem 35

where Fi(·) is a non-negative convex function satisfying

Fi(0) = 0 and Fi(x) > 0 for x �= 0, i = 1, . . .,n. (3.5)

3.3 The Transformation to the Assignment Problem

The algorithm for minimizing (3.1) subject to constraints (3.2–3.5) transforms the
original problem into an equivalent assignment problem. The key to this transfor-
mation is the calculation of the assignment costs to ensure the equivalence. The
transformation and the assignment cost calculations relay on the concept of level
curves, ideal positions and partitions.

The di + 1 level curves f i
j for i are defined as follows

f i
j(k) = Fi(j− kri), j = 0,1, . . .,di, k = 0, . . .,D. (3.6)

Note that f i
0(0)= f i

di
(D) = 0. For simplicity in exposition we conduct our discussion

assuming the absolute value of deviation for the time being, Fi = |·| , i = 1, . . .,n,
that is

f i
j(k) = | j− kri| , j = 0,1, . . .,di, k = 0, . . .,D, (3.7)

however, this assumption will be later relaxed to general Fi, i = 1, . . .,n, defined in
(3.5). The level curves for Fi = |·| , i = 1, . . .,n are shown in Fig. 3.1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

1

2

3
| 0 − kri |

| 1 − kri |

| 2 − kri |

| 3 − kri |

k

Fig. 3.1 The level curves for di = 3, D = 17, and Fi = |·| with the ideal positions Zi
1 = 3, Zi

2 = 9,
and Zi

3 = 15

36 3 Minimization of Just-In-Time Sequence Deviation

For d =(d1, . . .,dn) let π = (π1, . . .,πn) be a partition of {1, . . .,D} such that
∪n

i=1πi = {1, . . .,D} , πi ∩ π j = /0, for i �= j, and |πi| = di, for i = 1, . . .,n. We re-
fer to such partition π as a d−partition of {1, . . .,D}. Each just-in-time sequence
S for da = (d1, . . .,dn) uniquely defines a d−partition π(S) = (π1(S), . . .,πn(S))
of {1, . . .,D} by taking πi(S) = {k : sk = i} , for i = 1, . . .,n. Conversely, each
d−partition uniquely defines a sequence S(π) by taking s(π)k = i if and only if
k ∈ πi.

Let π = (π1, . . .,πn) be a (d1, . . .,dn)-partition of {1, . . .,D} . Suppose that πi =
{Y i

1, . . .,Y
i
di
} and that this set is ordered in ascending order, that is Y i

1 < · · · < Y i
di

.
Then, the cost in (3.1) is charged according to f i

0 at each k = 1, . . .,Y i
1 − 1, then

according to f i
1 at each k = Y i

1, . . .,Y
i
2− 1, and so on until k = Y i

di
, where the cost

starts being charged according to f i
di

and continues doing so until k = D. The total
cost of πi = {Y i

1, . . .,Y
i
di
}, or in other words the total cost for the copies of i being

sequenced in positions Y i
1, . . .,Y

i
di

of the sequence S(π), is thus equal

Ji
2(πi) =

Y i
1−1

∑
k=0

f i
0(k)+

Y i
2−1

∑
k=Y i

1

f i
1(k)+ · · ·+

D
∑

k=Y i
di

f i
di
(k)

=
di
∑
j=0

Y i
j+1−1

∑
k=Y i

j

f i
j(k), (3.8)

where by definition Y i
0 = 0 and Y i

di+1−1 = D.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

1

2

3
| 0 − kri |

| 1 − kri |

| 2 − kri |

| 3 − kri |

k

Fig. 3.2 The total deviation cost calculation for i with di = 3, sequenced in positions 5, 8, and 16

3.3 The Transformation to the Assignment Problem 37

Now, suppose that πi is not given but rather we would like to find out a πi =
{Y i

1, . . .,Y
i
di
} that minimizes (3.8) in isolation from all other j �= i. This can be can

be achieved by solving the following integer program (P2i) :

min
{

Ji
2(πi)

}

(3.9)

subject to

Y i
j+1 ≥ Y i

j + 1, j = 1, . . .,di−1,

1≤ Y i
j ≤ D, j = 1, . . .,di,

Y i
j are non-negative integers.

(3.10)

It turns out that obtaining an optimal solution for (P2i) is quite straightforward.
The solution is given by the following theorem.

Theorem 3.1. An optimal solution π∗i = (Zi
1, . . .,Z

i
di
) to (P2i) is given by

Zi
j =

⌈

2 j−1
2ri

⌉

, j = 1, . . .,di, (3.11)

for which the value of objective function Ji
2 in (3.9) equals

Ji
2(π
∗
i) =

D

∑
k=1

inf
j

f i
j(k).

Proof. Observe that 2 j−1
2ri

is the unique crossing point of the level curves f i
j−1 and f i

j

for j = 2, . . .,di. Thus, Zi
j =

⌈

2 j−1
2ri

⌉

is the smallest integer k for which f i
j(k)≤ f i

j′(k)

for all j′ �= j, see Fig. 3.1, where Zi
1 = 3,Zi

2 = 9 and Zi
3 = 15. Consequently, the solu-

tion (3.11) attains the lower bound
D
∑

k=1
inf j f i

j(k) on Ji
2 which proves the theorem. ��

The values
2 j−1

2ri
, (3.12)

for i = 1, . . .,n and j = 1, . . .,di, will play a central role in our further discussions
thus we reserve special names for them in this book. They will be called ideal
vertices. The ideal vertices in fact define the Webster’s method of apportionment,
see Chap. 2, in a sense that their ascending order results in the same just-in-time se-
quences as those obtained by the Webster’s method. We leave details to Chap. 5. We
shall refer to Zi

j in (3.11) as the ideal position for copy j of i. Clearly, if π∗i ∩π∗i′ = /0,
for i �= i′, then all Zi

j are different and placing copy j of i in position Zi
j results in a

feasible sequence minimizing (3.1). This will unfortunately not be the case in gen-
eral, and we must somehow come to terms with the resolution of conflicts between
the copies of i and i′ for the positions in π∗i ∩π∗i′ whenever π∗i ∩π∗i′ �= /0. Therefore,
our goal is to solve the following linear combination, refereed to as program (P2),
of programs (P2i) for i = 1, . . .,n:

38 3 Minimization of Just-In-Time Sequence Deviation

min

{

J2(π) =
n
∑

i=1
Ji

2(πi)
}

(3.13)

subject to
Y i

j+1 ≥Y i
j + 1, i = 1, . . .,n, j = 1, . . .,di−1, (3.14)

1≤Y i
j ≤ D, i = 1, . . .,n, j = 1, . . .,di, (3.15)

Y i
j �= Y i′

j′ for (i, j) �= (i′, j′) (3.16)

Y i
j are non-negative integers. (3.17)

The constraint (3.16) is to ensure that πi∩πi′ = /0, for i �= i′, that is that exactly one
copy occupies each of D positions.

The idea for the resolution of the conflicts is as follows. Let us set Ci
jk to be the

additional cost incurred by copy j of i whenever the copy is assigned to position
k rather than to its ideal position Zi

j. What is rather surprising is that this simple
heuristic idea turns out also to provide solutions which are both feasible and optimal
for (P2) as we shall prove in Sect. 3.5. More precisely, let us define

Ci
jk =

max(k,Zi
j)−1

∑
l=min(k,Zi

j)
Ψi

jl =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Zi
j−1

∑
l=k

Ψi
jl , if k < Zi

j,

0, if k = Zi
j,

k−1
∑

l=Zi
j

Ψi
jl , if k > Zi

j,

(3.18)

where

Ψi
jl =

∣

∣ f i
j(l)− f i

j−1(l)
∣

∣ =
{

f i
j(l)− f i

j−1(l) if l < Zi
j,

f i
j−1(l)− f i

j(l) if l ≥ Zi
j,

(3.19)

and by definition
k′
∑

l=k
al = 0 whenever k′ < k.

One interpretation of the assignment costs in (3.19) can be given in terms of
just-in-time manufacturing as follows. The cost f i

j(l) represents the inventory or
shortage cost in period l if exactly j copies of i have been produced by period l in
a just-in-time production sequence. The cost Ψi

jl represents the excess cost, either

excess inventory (l < Zi
j) or excess shortage (l ≥ Zi

j) costs of having j copies of i
produced by period l instead of having j−1 copies of i by l. Consequently, if copy
j of i is produced too early, that is k < Zi

j, then the excess inventory costs Ψi
jl are

incurred in periods l = k, . . .,Zi
j−1, adding up to Ci

jk. On the other hand if copy j of

i is produced too late, that is k > Zi
j, then the excess shortage costs Ψi

jl are incurred

in periods l = Zi
j, . . .,k−1, again adding up to Ci

jk. Finally, if copy j of i is produced

in its ideal position Zi
j then no excess costs are incurred and thus Ci

jk = 0. The cost
calculation is illustrated in the following example.

3.3 The Transformation to the Assignment Problem 39

Example 3.2. Consider the instance d = (5,3,2) and Fi = | · | for i = 1, . . .,n. Thus,
D = 10, r1 = 0.5, r2 = 0.3, and r3 = 0.2. The ideal positions computed by using
(3.11) are as follows: Z1

1 = 1, Z1
2 = 3, Z1

3 = 5, Z1
4 = 7, and Z1

5 = 9 for i = 1; Z2
1 = 2,

Z2
2 = 5, and Z2

3= 9 for i = 2; Z3
1 = 3, and Z3

2= 8 for i = 3. Thus, π∗1 = {1,3,5,7,9} ,
π∗2 = {2,5,9} , and π∗3 = {3,8} . Therefore, the conflicts arise three times: for po-
sition 3 between copy 2 of 1 and copy 1 of 3; for position 5 between copy 3 of
1 and copy 2 of 2; and for position 9 between copy 5 of 1 and copy 3 of 2. The
values of Ψi

jl for i = 1,2,3, j = 1, . . .,di and l = 1, . . .,D calculated according to

(3.19) are shown in Table 3.20. Finally, the costs Ci
jk for i = 1,2,3, j = 1, . . .,di and

k = 1, . . .,D calculated according to (3.18) are given in Table 3.21. Therefore, the
conflicts can easily be solved at no additional cost by moving copy 2 of 1 to posi-
tion 4, by moving copy 3 of 1 to position 6, and by moving copy 5 of 1 to position
10. These changes result in the partition π1 = {1,4,6,7,10} , π∗2 = {2,5,9} , and
π∗3 = {3,8} . This partition translates into the sequence

1→ 2→ 3→ 1→ 2→ 1→ 1→ 3→ 2→ 1

with no additional cost. Notice that the conflict for position 5 between copy 3 of 1
and copy 2 of 2 can also be solved at no additional cost by moving copy 2 of 2 to
position 6 thus obtaining π ′1 = {1,4,5,7,10} , π2 = {2,6,9} , and π∗3 = {3,8} , and
an optimal sequence

1→ 2→ 3→ 1→ 1→ 2→ 1→ 3→ 2→ 1.

Note that the latter schedule coincides with that in Monden [8, p. 184] for this in-
stance. ��

Table 3.20. The costs Ψi
jl

i = 1

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

j\l 1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 1 1 1 1 1 1
2 1 1 0 1 1 1 1 1 1 1
3 1 1 1 1 0 1 1 1 1 1
4 1 1 1 1 1 1 0 1 1 1
5 1 1 1 1 1 1 1 1 0 1

i = 2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

j\l 1 2 3 4 5 6 7 8 9 10
1 0.4 0.2 0.8 1 1 1 1 1 1 1
2 1 1 1 0.6 0 0.6 1 1 1 1
3 1 1 1 1 1 1 0.8 0.2 0.4 1

i = 3

⎧

⎨

⎩

j\l 1 2 3 4 5 6 7 8 9 10
1 0.6 0.2 0.2 0.6 1 1 1 1 1 1
2 1 1 1 1 1 0.6 0.2 0.2 0.6 1

(3.20)

40 3 Minimization of Just-In-Time Sequence Deviation

Table 3.21. The costs Ci
jk

i = 1

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

j\k 1 2 3 4 5 6 7 8 9 10
1 0 0 1 2 3 4 5 6 7 8
2 2 1 0 0 1 2 3 4 5 6
3 4 3 2 1 0 0 1 2 3 4
4 6 5 4 3 2 1 0 0 1 2
5 8 7 6 5 4 3 2 1 0 0

i = 2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

j\k 1 2 3 4 5 6 7 8 9 10
1 0.4 0 0.2 1 2 3 4 5 6 7
2 3.6 2.6 1.6 0.6 0 0 0.6 1.6 2.6 3.6
3 7 6 5 4 3 2 1 0.2 0 0.4

i = 3

⎧

⎨

⎩

j\k 1 2 3 4 5 6 7 8 9 10
1 0.8 0.2 0 0.2 0.8 1.8 2.8 3.8 4.8 5.8
2 5.8 4.8 3.8 2.8 1.8 0.8 0.2 0 0.2 0.8

(3.21)

The costs {Ci
jk} defined in (3.18) and (3.19) define the following assignment

problem (P3):

min

{

J3(π) =
n
∑

i=1
Ji

3(πi) =
n
∑

i=1
(

di

∑
j=1

D
∑

k=1
Ci

jkyi
jk)

}

(3.22)

subject to
∑

(i, j)∈I
yi

jk = 1, k = 1, . . .,D, (3.23)

D
∑

k=1
yi

jk = 1, (i, j) ∈ I, (3.24)

where I = {(i. j) : i = 1, . . .,n, j = 1, . . .,di} .

Let {yi
jk} be a feasible solution to (P3). We say that {yi

jk} preserves order if

(yi
jk = 1 and yi

j+1l = 1) ⇒ k < l (3.25)

for all i, j,k and l. The assignments that preserve orders assign copy j always in
front of copy j + 1 for any i and thus can be turned into feasible d−partitions as
follows:

Theorem 3.3. Let {yi
jk} be a feasible solution to (P3) that preserves order. Then,

Y i
j = k if and only if yi

jk = 1, for i = 1, . . .,n; k = 1, . . .,D (3.26)

is a feasible solution for (P2).

3.4 The Monge Property of Assignment Costs 41

Proof. Equation (3.23) implies (3.16). Since {yi
jk} preserves order, then {Y i

j} satis-
fies (3.14). Finally, (3.24) implies (3.15) and (3.17). This ends the proof. ��

We now show that the order preserving solution to (P3) always exists.

3.4 The Monge Property of Assignment Costs

The existence of order preserving solutions to the assignment problem (P3) is en-
sured if only the assignment costs Ci

j,k in (3.18) have the local Monge property
which is shown in the following lemma.

Lemma 3.4. If each matrix

Mi =
[

Ci
jk

]

di×D
i = 1, . . .,n,

is a Monge matrix, then there is an optimal solution {yi
jk} to (P3) that preserves

order.

Proof. By contradiction. Suppose that no optimal solution {yi
jk} to (P3) preserves

order. Consider an optimal solution {yi
jk} with the smallest number of the quadru-

ples i, j, k and l that violate (3.25). For any violation we have,

yi
jl = 1 and yi

j+1k = 1 and k < l.

However,
Ci

jk +Ci
j+1l ≤Ci

jl +Ci
j+1k,

since Mi is a Monge matrix . Then, swapping j and j + 1 does not increase the cost
of the assignment J3 and at the same time it reduces the number of condition (3.25)
violations. Thus, we get a contradiction since the solution {yi

jk} was chosen with
the smallest number of violations and thus the theorem holds. ��

It remains to show that the assignment costs Ci
j,k in (3.22) indeed have the local

Monge property. We shall do this first for the absolute value functions of deviations,
that is Fi = |·| , i = 1, . . .,n and than for any functions Fi, i = 1, . . .,n that meet (3.5).
We begin with preliminary observations in Lemmas 3.5 and 3.6.

Lemma 3.5. The following statements hold true:

1. j− kri > 0⇔ k <
⌈

j
ri

⌉

;

2.
⌈

j−1
ri

⌉

≤ Zi
j ≤

⌈

j
ri

⌉

;

3. p > j⇒ Zi
p > Zi

j and
⌈

p
ri

⌉

>
⌈

j
ri

⌉

;

4. p > j⇒ p− kri > 0, for k ≤ Zi
j.

42 3 Minimization of Just-In-Time Sequence Deviation

Proof. (1) is obvious. (2) follows immediately from (3.11). The fact ri ≤ 1 implies
(3). To prove (4), we notice that from (3) and (2),

⌈

p
ri

⌉

>

⌈

j
ri

⌉

≥ Zi
j.

Thus from (1)
j− riZ

i
j > 0

and hence
j− kri > 0 for Zi

j ≥ k.

��
Lemma 3.6. 0≤Ψi

jk ≤ 1 for all j,k.

Proof. For any real number a,

−1≤ |a + 1|− |a| ≤ 1.

By definition
Ψi

jk = || j− kri|− | j−1− kri|| ,
thus 0≤Ψi

jk ≤ 1. ��
The following two Lemmas 3.7 and 3.8 show that the incremental cost of moving

away from the ideal position is non-decreasing.

Lemma 3.7. For p > j and k < Zi
j, Ψi

pk ≥Ψi
jk.

Proof. From Lemma 3.5 (1) and (2), p− kri > j− kri > 0 for k = 1,2, . . .,Zi
j− 1.

Therefore, Ψi
pk = 1, k = 1,2, . . .,Zi

j−1. Now, the lemma immediately follows from
Lemma 3.6. ��
Lemma 3.8. For p > j and k ≥ Zi

p, Ψi
pk ≤Ψi

jk.

Proof. From Lemma 3.5 (3) and (2),

k ≥ Zi
p ≥ Zi

j+1 ≥
⌈

j
ri

⌉

.

Thus, from Lemma 3.5 (1), j− kri ≤ 0.Then Ψi
jk = 1 for k ≥ Zi

p, and the lemma
follows from Lemma 3.6. ��

We are now ready to show the local Monge property for Mi.

Theorem 3.9. The matrices Mi =
[

Ci
jk

]

di×D
i = 1, . . .n, are Monge matrices.

Proof. It suffices to show that

∆ jk = Ci
jk+1 +Ci

j+1k−Ci
jk−Ci

j+1k+1 ≥ 0

3.4 The Monge Property of Assignment Costs 43

for any j = 1, . . .,di and k = 1, . . .,D−1. From (3.18) and (3.19), we have,

∆ jk =
max(k+1,Zi

j)−1

∑
l=min(k+1,Zi

j)
Ψi

jl +
max(k,Zi

j+1)−1

∑
l=min(k,Zi

j+1)
Ψi

j+1l

−
max(k,Zi

j)−1

∑
l=min(k,Zi

j)
Ψi

jl−
max(k+1,Zi

j+1)−1

∑
l=min(k+1,Zi

j+1)
Ψi

j+1l

=
min(k+1,Zi

j+1)−1

∑
l=min(k,Zi

j+1)
Ψi

j+1l−
max(k+1,Zi

j+1)−1

∑
l=max(k,Zi

j+1)
Ψi

j+1l

+
max(k+1,Zi

j)−1

∑
l=max(k,Zi

j)
Ψi

jl−
min(k+1,Zi

j)−1

∑
l=min(k,Zi

j)
Ψi

jl .

We need to verify the following four cases:
For k + 1≤ Zi

j < Zi
j+1, we obtain by Lemma 3.7,

∆ jk = Ψi
j+1k−

Zi
j+1−1

∑
l=Zi

j+1

Ψi
j+1l +

Zi
j−1

∑
l=Zi

j

Ψi
jl−Ψi

jk = Ψi
j+1k−Ψi

jk ≥ 0.

For Zi
j ≤ k < k + 1≤ Zi

j+1, we obtain by (3.19),

∆ jk = Ψi
j+1k−

Zi
j+1−1

∑
l=Zi

j+1

Ψi
j+1l + Ψi

jk−
Zi

j−1

∑
l=Zi

j

Ψi
jl = Ψi

j+1k + Ψi
jk ≥ 0.

For k = Zi
j+1 < k + 1, we obtain by Lemma 3.8,

∆ jk =
k−1
∑

l=k
Ψi

j+1l−Ψi
j+1k + Ψi

jk−
Zi

j−1

∑
l=Zi

j

Ψi
jl = Ψi

jk−Ψi
j+1k ≥ 0.

For Zi
j < Zi

j+1 < k, we obtain by Lemma 3.8,

∆ jk =
Zi

j+1−1

∑
l=Zi

j+1

Ψi
j+1l−Ψi

j+1k + Ψi
jk−

Zi
j−1

∑
l=Zi

j

Ψi
jl = Ψi

jk−Ψi
j+1k ≥ 0.

Therefore, we always have ∆ jk ≥ 0, and thus the theorem holds. ��
Theorem 3.9 holds generally for any functions Fi, i = 1, . . .,n that meet (3.5). To

prove this it is sufficient to show that Lemmas 3.7 and 3.8 hold for these functions
but first we need to show how to calculate the ideal position for the general case.
We have the following theorem.

44 3 Minimization of Just-In-Time Sequence Deviation

Theorem 3.10. An optimal solution π∗i = (Zi
1, . . .,Z

i
di
) to (P2i) for a convex function

Fi(·) satisfying (3.5) is given by

Zi
j =

⌈

ki
j

⌉

, j = 1, . . .,di, (3.27)

where ki
j is the unique crossing point satisfying

Fi(j− ki
jri) = Fi(j−1− ki

jri).

The value of objective function Ji
2 in (3.9) for π∗i equals

Ji
2(π
∗
i) =

D

∑
k=1

inf
j

f i
j(k).

Notice that for any symmetric Fi(·), that is satisfying Fi(y) = Fi(−y) for any y,

we have ki
j = Zi

j, where Zi
j =

⌈

2 j−1
2ri

⌉

as in (3.11). We now show the counterparts of

Lemmas 3.7 and 3.8 for convex functions Fi(·) satisfying (3.5).

Lemma 3.11. For p > j and k < Zi
j, Ψi

pk ≥Ψi
jk.

Proof. By Lemma 3.5 (2), k < Zi
j implies k <

⌈

j
r

⌉

. Then, by Lemma 3.5 (1), j−
kri > 0. Therefore, l−kri > 0 for l = j, j+1, . . ., p as shown in Fig. 3.3a, b. We need
to consider two cases:

1. j− 1− kri ≥ 0, see Fig. 3.3a. Then, the lemma holds since l− kri > 0 for l =
j−1, j, j + 1, . . ., p and Fi(·) is convex.

p

p-1

j

j-1

k

p

p-1

j

j-1

k

a b

Fig. 3.3 Plots of | j− kri| for k < Zi
j: (a) j−1− kri ≥ 0 and (b) j−1− kri < 0

3.4 The Monge Property of Assignment Costs 45

2. j−1− kri < 0, see Fig. 3.3b. Using, (3.6) and (3.19), we obtain

Ψi
pk ≥ ·· · ≥Ψi

j+2k ≥Ψi
j+1k = Fi(j + 1− kri)−Fi(j− kri)

≥ Fi(j− kri)−Fi(0) = Fi(j− kri).

Thus, the lemma follows since Ψi
jk = Fi(j− kri)−Fi(j−1− kri)≥ 0 and Fi(j−

1− kri)≥ 0.

This completes the proof. ��

Lemma 3.12. For p > j and k ≥ Zi
p, Ψi

pk ≤Ψi
jk.

Proof. By Lemma 3.5 (3), k ≥ Zi
p ≥

⌈

p−1
ri

⌉

. Then, by Lemma 3.5 (1), p− 1− kri

≤ 0. Therefore, l− kri ≤ 0 for l = j, . . .p− 1 as shown in Fig. 3.4a, b. We need to
consider two cases:

1. p− kri ≤ 0, see Fig. 3.4a. This implies l− kri ≤ 0 for l = j, . . ., p− 1, p. Thus,
Ψi

pk ≤Ψi
jk follows from the convexity of Fi(·).

2. p− kri > 0, see Fig. 3.4b. Using, (3.6) and (3.19), we obtain

Ψi
jk ≥ ·· · ≥Ψi

p−2k ≥Ψi
p−1k = Fi(p−1− kri)−Fi(p− kri)

≥ Fi(p−1− kri)−Fi(0) = Fi(p−1− kri).

Thus, the lemma follows since Ψi
pk = Fi(p−1−kri)−Fi(p−kri)≥ 0 and Fi(p−

kri)≥ 0.
This completes the proof. ��

j-1

j

p-1

p

k

a

j-1

j

p-1

p

k

b

Fig. 3.4 Plots of | j− kri| for k ≥ Zi
p: (a) p− kri ≤ 0 and (b) p− kri > 0

46 3 Minimization of Just-In-Time Sequence Deviation

3.5 The Equivalence

We now show that the minimization of (P2) is equivalent to minimization of (P3).
We begin with the following lemma.

Lemma 3.13. For any partition πi = {Y i
1, . . .,Y

i
di
}, we have

Ji
2(πi) = Ji

3(πi)+
D
∑

k=1
inf

j
f i

j(k). (3.28)

Proof. The proof is by induction on

α(πi) =
di

∑
j=1

∣

∣Y i
j −Zi

j

∣

∣ .

For πi with α = 0, we have

Y i
j = Zi

j, for j = 1, . . .,di,

thus by Theorem 3.1 or generally Theorem 3.10,

Ji
2(πi) =

D
∑

k=1
inf

j
f i

j(k),

and by (3.22) and (3.18)
Ji

3(πi) = 0.

Thus the lemma holds for any πi with α = 0. Suppose that the lemma holds for any
πi with α(πi) = k≥ 0. We now prove that then it also holds for any solution πi with
α(πi) = k + 1. Consider a solution πi with α(πi) = k + 1 > 0. Let m be such that

∣

∣Y i
m−Zi

m

∣

∣ = max
j

{∣

∣Y i
j −Zi

j

∣

∣

}≥ 1. (3.29)

Clearly, such m exists since α(πi) = k + 1≥ 1. Assume first that

Y i
m−Zi

m ≥ 0. (3.30)

If there are more that one m that satisfy both (3.29) and (3.30), then take the smallest
of them. We have Y i

m ≥ Zi
m + 1. Define π ′i = {Xi

1, . . .,X
i
di
}, where

Xi
j =

{

Y i
j if j �= m,

Y i
j −1 if j = m.

Clearly, α(π ′i) = k, thus, by the inductive assumption

Ji
2(π
′
i) = Ji

3(π
′
i)+

D
∑

k=1
inf

j
f i

j(k). (3.31)

3.5 The Equivalence 47

Moreover,

Ji
3(π
′
i) = Ji

3(π
′
i)+Ci

m,Yi
m
−Ci

m,Xi
m
, (3.32)

and

Ji
2(π
′
i)− Ji

2(πi) = f i
m−1(X

i
m)− f i

m(Xi
m).

For Y i
m > Xi

m ≥ Zi
m, using (3.18) we obtain

Ci
m,Y i

m
−Ci

m,Xi
m

= Ψi
m,Xi

m
,

and using (3.19) we obtain

f i
m−1(X

i
m)− f i

m(Xi
m) = Ψi

m,Xi
m
.

Thus, by (3.31) we have

Ji
2(πi) = Ji

2(π
′
i)+ Ψi

m,,Xi
m

= Ji
3(π
′
i)+ Ψi

m,,Xi
m
+

D
∑

k=1
inf

j
f i

j(k)

= Ji
3(πi)+

D
∑

k=1
inf

j
f i

j(k).

Thus, it remains to show that π ′i is feasible. We need only to prove that if m > 1,
then Y i

m−1 < Y i
m−1 in Y. Otherwise, Y i

m−1 +1 = Y i
m and we have

Y i
m−1−Zi

m−1 = (Y i
m−1−Zi

m)+ (Zi
m−Zi

m−1)

= (Y i
m−Zi

m)+ (Zi
m−Zi

m−1)−1≥ Y i
m−Zi

m.

The last inequality follows from Lemma 3.5 (3), see also Exercise 3.19. This leads
to a contradiction since m− 1 satisfies (3.29) and (3.30), and it is smaller than m.
Thus if m > 1, then Y i

m−1 < Y i
m−1 in πi, which implies that π ′i is a feasible solution.

Therefore, the lemma holds for α(πi) = k + 1.
Assume now that

Zi
m−Y i

m > 0. (3.33)

If there are more that one m that satisfy both (3.29) and (3.33) take the largest of
them. We have Zi

m ≥ Y i
m + 1. Define a solution π ′i = {Xi

1, . . .,X
i
di
}, where

Xi
j =

{

Y i
j if j �= m,

Y i
j + 1 if j = m.

Clearly, α(π ′i) = k, thus by the inductive assumption

Ji
2(π
′
i) = Ji

3(π
′
i)+

D
∑

k=1
inf

j
f i

j(k). (3.34)

48 3 Minimization of Just-In-Time Sequence Deviation

For Zi
m ≥ Xi

m > Y i
m, using (3.19) and (3.18) we obtain

Ji
3(πi) = Ji

3(π
′
i)+Ci

m,Y i
m
−Ci

m,Xi
m

= Ψi′
m,,Y i

m
, (3.35)

and
Ji

2(πi)− Ji
2(π
′
i) = f i

m(Y i
m)− f i

m−1(Y
i
m) = Ψi′

m,,Y i
m
.

Thus, by (3.34) we have

Ji
2(πi) = Ji

2(π
′
i)+ Ψi

m,,Xi
m

= Ji
3(π
′
i)+ Ψi

m,,Xi
m
+

D
∑

k=1
inf

j
f i

j(k)

= Ji
3(πi)+

D
∑

k=1
inf

j
f i

j(k),

and the lemma holds for α(Y) = k + 1. Thus, it remains to show that π ′i is feasible.
We need only to prove that if m < di, then Y i

m +1 < Y i
m+1 in πi. Otherwise, Y i

m +1 =
Y i

m+1 and we have

Zi
m+1−Y i

m+1 = (Zi
m−Yi

m+1)+ (Zi
m+1−Zi

m)

= (Zi
m−Yi

m)+ (Zi
m+1−Zi

m)−1≥ Zi
m−Y i

m.

The last inequality follows from Lemma 3.5 (3), see also Exercise 3.19. This leads
to a contradiction since m+1 satisfies (3.29) and (3.33), and it is larger than m. Thus
if m < di, then Y i

m + 1 < Y i
m+1 in πi, which implies that π ′i is feasible. The lemma

holds for α(πi) = k + 1 and by induction for any k ≥ 0. ��
The equivalence can now readily be established.

Theorem 3.14. For any d =(d1, . . .,dn)−partition π of {1, . . .,D} ,

F(S) = J2(π) = J3(π)+
n
∑

i=1

D
∑

k=1
inf

j
f i

j(k).

Proof. Let π = (π1, . . .,πn). By (3.13), (3.22) and Lemma 3.13, we have

J2(π) =
n
∑

i=1
J2(πi) =

n
∑

i=1
Ji

3(πi)+
n
∑

i=1

D
∑

k=1
inf

j
f i

j(k)

= J3(π)+
n
∑

i=1

D
∑

k=1
inf

j
f i

j(k),

which proves the theorem. ��

3.6 The Solution

By Theorem 3.14 a partition π that minimizes J3(π) minimizes J2(π) at the same
time. The following theorem shows how the π can be found.

3.6 The Solution 49

Theorem 3.15. Let {yi
jk} be an optimal solution for (P3) that preserves order. Then

xik =
k
∑

l=1

di

∑
j=1

yi
jl fori = 1, . . .,n; k = 1, . . .,D, (3.36)

is an optimal solution for (P1) and

Y i
j = k if and only if yi

jk = 1, for i = 1, . . .,n; k = 1, . . .,D

is an optimal solution for (P2).

Proof. The solution {xik} satisfies constraints (3.3)–(3.4). By (3.23)

0≤ xik+1− xik =
k+1
∑

l=1

di

∑
j=1

yi
jl−

k
∑

l=1

di

∑
j=1

yi
jl =

di

∑
j=1

yi
jk+1 ≤ ∑

(i, j)∈I
yi

jk+1 = 1,

again by (3.23) Zi
j

n
∑

i=1
xik =

n
∑

i=1

k
∑

l=1

di

∑
j=1

yi
jl =

k
∑

l=1
∑

(i, j)∈I
yi

jl = k,

by (3.24)

xiD =
D
∑

l=1

di

∑
j=1

yi
jl =

di

∑
j=1

D
∑

l=1
yi

jl = di.

The (3.23) implies (3.16). Since{xik} preserves order, then {Y i
j} satisfies (3.14).

Finally, (3.24) implies (3.15) and (3.17). By Theorem (3.14), the optimality of
{yi

jk} implies optimality of {Y i
j}. Finally, since (P1) and (P2) are equivalent, the

{xik} is optimal for (P1). This ends the proof. ��
Let us close this section with a brief discussion of the time complexity of our

approach. There are D2 values Ψi
jk to calculate, and then there are D2 values Ci

jk
to calculate, each takes O(D) steps to calculate. Therefore, the calculation of the
assignment costs takes O(D3) steps. The Hungarian method takes O(D3) steps to
solve the assignment problem (P3) and the possible swapping to make the assign-
ment order preserving can be done in O(D) steps. Therefore, the optimal solution
to the original problem can be obtained in O(D3) steps. The step here is meant
as a simple arithmetic operation, addition and multiplication, or the calculation
of the value of function Fi(x) at x. Therefore, the algorithm runs in time polyno-
mial in D as long as the value Fi(x) can be calculated in time polynomial in D for
each x.

50 3 Minimization of Just-In-Time Sequence Deviation

3.7 Minimization of Maximum Deviation

The maximum deviation minimization problem is defined as follows.

min
S

{

G(S) = max
i,k

Fi(xik− kri)
}

(3.37)

subject to

n

∑
i=1

xik = k k = 1, . . . ,D (3.38)

0≤ xik+1− xik ≤ 1 i = 1, . . . ,n;k = 1, . . . ,D−1 (3.39)

xiD = di i = 1, . . . ,n. (3.40)

where Fi(·) is a non-negative convex function satisfying

Fi(0) = 0 and Fi(x) > 0 for x �= 0, i = 1, . . .,n. (3.41)

We reserve the term bottleneck deviation problem, or just the bottleneck problem,
for the minimization of the maximum deviation with all Fi(·) being the absolute
value functions, | · |. We now show that our approach to the minimization of total
deviation based on the level curves works for the maximum deviation minimization
problem as well. The approach transforms the maximum deviation minimization to
an equivalent bottleneck assignment problem which we define in the next section.

3.8 The Bottleneck Assignment

The solution to (3.37) subject to constraints (3.38–3.41) can be found by solving the
following bottleneck assignment problem

min

{

max
i, j,k

Bi
jkyi

jk

}

(3.42)

subject to

∑
(i, j)∈I

yi
jk = 1, k = 1, . . .,D, (3.43)

D
∑

k=1
yi

jk = 1, (i, j) ∈ I, (3.44)

where I = {(i, j) : i = 1, . . .,n, j = 1, . . .,di} and the costs

Bi
j,k = max{ f i

j−1(k−1), f i
j(k)} (3.45)

= max{Fi(j−1− (k−1)ri),Fi(j− kri)}. (3.46)

3.8 The Bottleneck Assignment 51

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

1

2

3
| 0 − kri |

| 1 − kri |

| 2 − kri |

| 3 − kri |

k

Fig. 3.5 The bottleneck penalty for i with di = 3, sequenced in positions 5, 8, and 16

Example 10.6 illustrates the calculations of Bi
jk. The idea behind calculating

the costs Bi
jk is follows closely the idea behind the calculation of Ci

jk in Sect. 3.3.

Suppose that πi = {Y i
1, . . .,Y

i
di
} and that this set is ordered in ascending order,

that is Y i
1 < · · · < Y i

di
. Then, the cost in (3.1) is charged according to f i

0 at each

k = 1, . . .,Y i
1 − 1, then according to f i

1 at each k = Y i
1, . . .,Y

i
2 − 1, and so on until

k = Y i
di

where the cost starts being charged according to f i
di

and continues doing so

until k = D. The highest cost along f i
0 is f i

0(Y
i
1 − 1), the highest cost along f i

1 is
max{ f i

1(Y
i
1), f i

1(Y
i
2−1)}, and finally the highest cost along f i

di
is f i

di
(Y i

di
).Therefore,

by assigning the costs max{ f i
0(Y

i
1−1), f i

1(Y
i
1)}, max{ f i

1(Y
i
2−1), f i

2(Y
i
2)} and max{

f i
di−1(Y

i
di
− 1), f i

di
(Y i

di
)} to the points Y i

1,Y
i
2 and Y i

di
respectively we obtain the re-

quired cost of (3.45) or equivalently the cost (3.37). Thus, the solution to this bot-
tleneck assignment problem can be turned in the solution to the original maximum
deviation minimization problem in a way similar to the one described earlier in
this chapter for the minimization of total deviation provided that there exist order
preserving solutions to the bottleneck assignment problem. Their existence will be
shown in the next section.

Example 3.16. Consider the instance d = (5,3,2) and Fi = | · | for i = 1, . . .,n from
Example 3.2. The costs Bi

jk for i = 1,2,3, j = 1, . . .,di and k = 1, . . .,D calculated
according to (3.45) are given in Table 3.47. ��

52 3 Minimization of Just-In-Time Sequence Deviation

Table 3.47. The costs Bi
jk

i = 1

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

j\k 1 2 3 4 5 6 7 8 9 10
1 0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5
2 1.5 1 0.5 0.5 1 1.5 2 2.5 3 3.5
3 2.5 2 1.5 1 0.5 0.5 1 1.5 2 2.5
4 3.5 3 2.5 2 1.5 1 0.5 0.5 1 1.5
5 4.5 4 3.5 5 2.5 2 1.5 1 0.5 0.5

i = 2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

j\k 1 2 3 4 5 6 7 8 9 10
1 0.7 0.4 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7
2 1.7 1.4 1.1 0.8 0.5 0.5 0.8 1.1 1.4 1.7
3 2.7 2.4 2.1 1.8 1.5 1.2 0.9 0.6 0.4 0.7

i = 3

⎧

⎨

⎩

j\k 1 2 3 4 5 6 7 8 9 10
1 0.8 0.6 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.6 0.8

(3.47)

3.9 The Bottleneck Monge Property

The following theorem proves the local bottleneck Monge property.

Theorem 3.17. The matrices Li =
[

Bi
j,k

]

di×D
i = 1, . . .n, are bottleneck Monge

matrices.

Proof. It suffices to show that

max{Bi
jk,B

i
j+1,l} ≤max{Bi

j+1,k,B
i
jl},

by (3.45)

max{max{ f i
j−1(k−1), f i

j(k)},max{ f i
j(l−1), f i

j+1(l)}}
≤max{max{ f i

j(k−1), f i
j+1(k)},max{ f i

j−1(l−1), f i
j(l)}}. (3.48)

This inequality holds since clearly

max{ f i
j(k), f i

j(l−1)} ≤max{ f i
j(k−1), f i

j(l)}

and
f i

j−1(k−1)≤ f i
j−1(l−1)

for k−1≥ j−1
ri

and

f i
j−1(k−1)≤ f i

j(k−1)

3.10 Exercises 53

otherwise,
and

f i
j+1(l)≤ f i

j+1(k)

for l ≤ j+1
ri

and

f i
j+1(l)≤ f i

j(l)

otherwise. ��
Thus, we have.

Theorem 3.18. There is an optimal solution {yi
jk} to (P4) that preserves order.

Proof. By contradiction. Suppose that no optimal solution {yi
jk} to (P4) preserves

order. Consider an optimal solution {yi
jk} with the smallest number of the quadru-

ples i, j, k and l that violate (3.25). For any violation we have,

yi
jl = 1 and yi

j+1k = 1 and k < l.

However,
max{Bi

jk,B
i
j+1l} ≤max{Bi

jl,B
i
j+1k},

since Li is a Monge matrix. Then, swapping j and j + 1 does not increase the cost
(3.42) and at the same time it reduces the number of condition (3.25) violations.
Thus, we get a contradiction since the solution {yi

jk} was chosen with the smallest
number of violations and thus the theorem holds. ��

The optimal solution to P4 and thus to the original problem can be obtained in
O(D3) steps, see Burkard et al. [24], and also Burkard et al. [25] for a comprehensive
review of assignment algorithms. The step here is again meant as a simple arithmetic
operation, addition and multiplication, or the calculation of the value of function
Fi(x) at x. Therefore, the algorithm runs in time polynomial in D as long as the value
Fi(x) can be calculated in time polynomial in D for each x. Chapter 5 will show a
more efficient algorithm for the bottleneck deviation minimization for a special case
of the absolute value of deviation, Fi = |·| , i = 1, . . .,n.

3.10 Exercises

Exercise 3.19. Let Zi
j =

⌈

ki
j

⌉

, where ki
j is the unique crossing point satisfying

Fi(j− ki
jri) = Fi(j−1− ki

jri)

for Fi(·) being a non-negative convex function satisfying

Fi(0) = 0 and Fi(x) > 0 for x �= 0, i = 1, . . .,n.

54 3 Minimization of Just-In-Time Sequence Deviation

Show that the following statements hold true:

1.
⌈

j−1
ri

⌉

≤ Zi
j ≤

⌈

j
ri

⌉

;

2. p > j⇒ Zi
p > Zi

j and
⌈

p
ri

⌉

>
⌈

j
ri

⌉

;

3. p > j⇒ p− kri > 0, for k ≤ Zi
j.

Exercise 3.20. Show that the cost matrix [Ci
jk] is not a Monge matrix.

Exercise 3.21. Show that the cost matrix [Bi
jk] is not a bottleneck Monge matrix.

Exercise 3.22. Show that the optimal solutions to the total deviation problem may
not be population monotone. Hint: See Józefowska et al. [26].

Exercise 3.23. Show that for any i there are O(D) costs Bi
jk in the cost matrix [Bi

jk]
of the bottleneck assignment problem (3.42) that are less than 1. Thus there are
O(nD) costs Bi

jk in the cost matrix [Bi
jk] of the bottleneck assignment problem (3.42)

that are less than 1.

3.11 Comments and References

The minimization of total deviation problem was formulated in Monden [8] and
further refined in Miltenburg [21]. These early formulations assumed the absolute
and the square functions of point deviations. The problem was solved by reduction
to the assignment problem by Kubiak and Sethi [27, 28] for the general case of
unimodal convex functions. The solution to the bottleneck deviation problem by
its reduction to the bottleneck assignment problem was suggested by Kubiak [23]
and subsequently formulated by Bautista et al. [29]. This solution works for any
unimodal function of deviation. Chapter 5 will present a different solution proposed
by Steiner and Yeomans [30] for the absolute deviations. For an introduction to
Monge matrices and their applications in optimization see Burkard et al. [31]. Inman
and Bulfin [32] independently introduced the concept of ideal positions.

Chapter 4
Optimality of Cyclic Sequences and the Oneness

4.1 Introduction

This chapter addresses the question whether there always exist cyclic optimal solu-
tions to the total deviation problem and the maximum deviation problem studied in
Chap. 3. This question can formally be stated as follows:

Let S be an optimal sequence for d = (d1, . . .,di, . . .,dn). Is Sm, for any integer
m ≥ 1, an optimal sequence for md = (md1, . . .,mdi, . . .,mdn), where Sm is a con-
catenation of m copies of S?

An affirmative answer to this question given in this chapter supports the usual for
just-in-time manufacturing systems practice of repeating relatively short sequence
to build a sequence for a longer time horizon, Monden [22] and Miltenburg [21].

This answer has also obvious consequences for the computational time complex-
ity of any optimization algorithm for just-in-time sequences. This time complexity
depends on the magnitude of demands d1, . . .,dn and consequently on the magni-
tude of total demand D. The only known polynomial time, with respect to D and n,
optimization algorithms for just-in-time sequences have time complexity O(D3),
see Chap. 3. The cyclic optimal solutions make it possible to reduce each of these
demands by the factor of m, where m is the greatest common divisor of numbers
d1, . . .,dn, in the computations of optimal just-in-time sequences. The Euclid’s al-
gorithm can find the m in O(n logD) steps, see for instance Graham et al. [10].
Furthermore, the cyclic optimal solutions make a small step forward in tackling the-
oretically intriguing question of how succinct the encoding of optimal just-in-time
sequence can be? The answer to this question also pertains to the computational
complexity of the total deviation and the maximum deviation problems since the in-
put of these problems can be made very short by the binary encoding of the demands
d1, . . .,dn using O(∑n

i=1 log(di +1)) bits. This encoding, however, makes all polyno-
mial time, with respect to D and n, algorithms for the total deviation problem and the
maximum deviation problem pseudopolynomial time algorithms, see Grigoriev [33]
for a review of the high multiplicity problems. Therefore, the question whether

W. Kubiak, Proportional Optimization and Fairness, International Series in Operations 55
Research & Management Science 127, DOI 10.1007/978-0-387-87719-8 4,
c© Springer Science+Business Media LLC 2009

56 4 Optimality of Cyclic Sequences and the Oneness

there is an algorithm with time complexity bounded by a polynomial function of
logD and n remains open.

The affirmative answer to the main question of this chapter typically relies on
two crucial observations. First, for the concatenation ST of sequences S and T for
ad = (ad1, . . .,adn) and bd = (bd1, . . .,bdn) respectively, with a and b being posi-
tive integers, we have F(ST) = F(S)+ F(T) for the total deviation problem, and
G(ST) = max{G(T),G(S)} for the bottleneck deviation problem. Second, even if
one relaxes the constraints xiD = di, i = 1, . . . ,n, there still exists an optimal se-
quence S∗ such that x∗iD = di for all i. The latter would usually require to prove
that a simple exchange of two copies of different models in a given sequence does
not increase either the total or the maximum deviation of the sequence. However,
since the copies exchanged might be of different models this technique may in-
crease these deviations in general whenever the Fis differ. Thus the simple exchange
method fails to work in a general case unless some exchanges are forbidden. Con-
sequently, a more sophisticated exchange method will be developed in Sect. 4.3 of
this chapter to prove the existence of cyclic optimal solutions. This method limits
the exchanges to the copies of models that occupy positions at the same distance
from the ends 1 and D of a sequence, we assume for the time being that all de-
mands are even. That is the exchange will only be allowed between positions 1
and D, 2 and D− 1, 3 and D− 2, etc., we refer to this exchange as shuffling. We
show that the shuffling does not increase either the total deviation or the maxi-
mum deviation of the sequence, and that the shuffling can be done to ensure that
the resulting sequence has the number of copies of each model equally split be-
tween its two halves. The existence of this desired distribution of model copies will
be guaranteed by the Hall’s Theorem for bipartite regular graphs, see for instance
Bondy and Murty [34]. Our method will rely on the assignment problems equiva-
lent to the total deviation problem and the bottleneck deviation problems developed
in Chap. 3. The crucial symmetries embedded in this assignment problem costs are
proven in Sect. 4.2 for the total deviation problem and in Sect. 4.5 for the maxi-
mum deviation problem. The optimality of cyclic solutions is shown in Sects. 4.4
and 4.5.

Finally, Sect. 4.6 addresses the question whether optimal solutions to the total
deviation problem can always be found among the just-in-time sequences with the
bottleneck deviation not exceeding 1, more precisely in the following set of just-in-
time sequences

Ω = {S : |xik− kri| ≤ 1 for i = 1, . . .,n;k = 1, . . .,D} ,

thus the term oneness. Interestingly, this set is non-empty for any instance d, which
we show in Chap. 5. Moreover, it will be shown in this chapter that the minimization
on Ω makes some total deviation problems with different Fis equivalent. This is the
case for the absolute value Fi = | · | and the square Fi = (·)2 for all i functions.
However, this question itself has a negative answer in general.

4.2 Symmetries of Ci
jks for Symmetric Fis 57

4.2 Symmetries of Ci
jks for Symmetric Fis

This section studies various symmetries inherited by the cost coefficients Ci
jk from

the symmetric Fi for i = 1, . . .,n. The symmetries will be crucial in the proof that
there exist optimal solutions that are cyclic. We begin with the following standard
feature of convex functions, see Rockafellar [35].

Lemma 4.1. For a convex function f and four distinct points α1,α2,α3, and α4

such that
α2−α1 = α4−α3 and α1 < α2 < α4, (4.1)

we have the following inequality

f (α1)+ f (α4)≥ f (α2)+ f (α3).

Proof. We observe that α1 < α3 < α4. By (4.1), there is λ , 0 < λ < 1, such that

α2 = λ α1 +(1−λ)α4 and α3 = (1−λ)α1 + λ α4.

Therefore for a convex f , we have

f (α2) ≤ λ f (α1)+ (1−λ) f (α4) and

f (α3) ≤ (1−λ) f (α1)+ λ f (α4).

By summing up these two inequalities side by side, we obtain the required inequality

f (α2)+ f (α3)≤ f (α1)+ f (α4).

��
The following lemma shows that the cost of being early grows at the same rate

as the cost of being late whenever an actual position of a copy moves away from
the copy’s ideal position. Thus the penalty for deviating from the ideal position can
be expected to be symmetric. However, this is not exactly the case. The penalty
for finishing l > 0 positions after the ideal position is not necessarily equal the
penalty for finishing l positions before. Thus, somewhat surprisingly, the symmetry
is not ensured by the symmetry of functions Fi for the ideal vertices 2 j−1

2ri
do not

necessarily fall in the middle of two neighboring integers Zi
j−1 and Zi

j, where the
latter is the ideal position of copy j. Here are the details.

Lemma 4.2. Let 1 ≤ k < Zi
j < m ≤ D for some i = 1, . . .,n and j = 1, . . .,di. We

have.
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Ci
jm ≥Ci

jk if m+ k > 2Zi
j

Ci
jm ≤Ci

jk if m+ k < 2Zi
j

Ci
jm ≤Ci

jk if m+ k = 2Zi
j and 0≤ εi j < 1

2
Ci

jm = Ci
jk if m+ k = 2Zi

j and εi j = 1
2

Ci
jm ≥Ci

jk if m+ k = 2Zi
j and 1

2 < εi j < 1

,

58 4 Optimality of Cyclic Sequences and the Oneness

where

0≤
⌈

2 j−1
2ri

⌉

− 2 j−1
2ri

= εi j < 1.

Proof. We have, for m > Zi
j and k < Zi

j

Ci
jm =

m−1

∑
l=Zi

j

Ψi
jl =

m−1

∑
l=Zi

j

[Fi(j−1− lri)−Fi(j− lri)]

and

Ci
jk =

Zi
j−1

∑
l=k

Ψi
jl =

Zi
j−1

∑
l=k

[Fi(j− lri)−Fi(j−1− lri)].

First, let m + k > 2Zi
j. Consider Ci

jm −Ci
jk, and couple Ψi

jZi
j+a

from Ci
jm with

Ψi
jZi

j−a
from Ci

jk, for a = 1, . . .,Zi
j− k. Since m > 2Zi

j− k we get

∆mk = Ci
jm−Ci

jk ≥
Zi

j−k

∑
a=1

(Ψi
jZi

j+a
−Ψi

jZi
j−a

).

Thus, it suffices to prove that

Ψi
jZi

j+a
−Ψi

jZi
j−a

= Fi(j−1−Zi
jri−ari)

−Fi(j−Zi
jri−ari)−Fi(j−Zi

jri + ari)

+Fi(j−1−Zi
jri + ari)≥ 0.

for an arbitrary a, a = 1, . . .,Zi
j− k. By definition of Zi

j

Zi
jri =

⌈

2 j−1
2ri

⌉

ri = j− 1
2

+ εi jri,

for some 0≤ εi j < 1. For a symmetric Fi(·), we get

Ψi
jZi

j+a
−Ψi

jZi
j−a

= Fi(α4)−Fi(α1)−Fi(α3)+ Fi(α2),

where

α1 =
1
2
− εi jri−ari,

α2 =
1
2

+ εi jri−ari,

α3 =
1
2
− εi jri + ari,

α4 =
1
2

+ εi jri + ari.

4.2 Symmetries of Ci
jks for Symmetric Fis 59

We have α1 ≤ α2<α3 ≤ α4. If α1 ≥ 0, then clearly

Ψi
jZi

j+a
−Ψi

jZi
j−a
≥ 0.

Assume α1 < 0. Let also α2 ≤ 0. Then, by the symmetry of Fi(·), we get

Ψi
jZi

j+a
−Ψi

jZi
j−a

= Fi(α4)−Fi(β1)−Fi(α3)+ Fi(β2),

where

β1 = −α1 =−1
2

+ εi jri + ari

β2 = −α2 =−1
2
− εi jri + ari.

We have 0≤ β2 < β1 < α4. Since

β1−β2 = 2εi jri = α4−α3,

then by Lemma 4.1 we get

Fi(β1)+ Fi(α3)≤ Fi(α4)+ Fi(β2).

Hence,
Ψi

jZi
j+a
−Ψi

jZi
j−a
≥ 0.

Now, consider α2 > 0 and set

γ4 = α4

γ3 = α3

γ2 = β1

γ1 = α2

Then, if γ1 < γ2, then 0 < γ1 < γ2 < γ4 and

β1−α2 = 2ari−1 < α4−α3 = 2εi jri. (4.2)

The inequality (4.2) holds since 0 < α2 implies

2(a− εi j)ri < 1. (4.3)

Then, there is γ∗ > α3 > 0 such that α4− γ∗ = β1−α2. Hence, by Lemma 4.1 we
have

Fi(α1)+ Fi(α3)≤ Fi(β1)+ Fi(γ∗)≤ Fi(α4)+ Fi(α2).

Thus, again
Ψi

jZi
j+a
−Ψi

jZi
j−a
≥ 0.

60 4 Optimality of Cyclic Sequences and the Oneness

If γ1 ≥ γ2, then
Fi(γ2)≤ Fi(γ1) and Fi(γ3)≤ Fi(γ4),

hence,
Fi(α1)+ Fi(α3)≤ Fi(α4)+ Fi(α2)

and Ψi
jZi

j+a
−Ψi

jZi
j−a
≥ 0. Therefore, if m+ k > 2Zi

j, then Ci
jm ≥Ci

jk.

Now, let m + k < 2Zi
j. Consider Ci

jk−Ci
jm, and couple Ψi

jZi
j−a−2

from Ci
jk with

Ψi
jZi

j+a
from Ci

jm, for a = 0, . . .,m−Zi
j−1. Since k < 2Zi

j−m we get

∆km = Ci
jk−Ci

jm ≥
m−Zi

j−1

∑
a=0

(Ψi
jZi

j−a−2−Ψi
jZi

j+a
).

Thus, it suffices to prove that

Ψi
jZi

j−a−2−Ψi
jZi

j+a
= Fi(α3 + 2ri)−Fi(α2−2ri)−Fi(α4)+ Fi(α1)≥ 0

for an arbitrary a, a = 0, . . .,m−Zi
j−1. However, α3 +2ri > α4 and α1 > α2−2ri,

thus the inequality clearly holds if α2 − 2ri ≥ 0. It remains to consider the case
α2−2ri < 0. Then, first assume α1 ≥ 0 which implies

1≥ 2(εi j + a)ri. (4.4)

Set

γ4 = α3 + 2ri

γ3 = α4

γ2 = −α2 + 2ri

γ1 = α1.

We have by (4.4)

γ4− γ3 =−2εi jri + 2ri ≥−1 + 2ari + 2ri = γ2− γ1.

and by Lemma 4.1

Fi(γ4)+ Fi(γ1)≥ Fi(γ∗)+ Fi(γ2)≥ Fi(γ3)+ Fi(γ2)

for γ∗ such that γ4− γ∗ = γ2− γ1. Therefore, Ψi
jZi

j−a−2
−Ψi

jZi
j−a
≥ 0. Now, assume

α1 < 0. Set

γ4 = α3 + 2ri

γ3 = α4

γ2 = −α2 + 2ri

γ1 = −α1.

4.2 Symmetries of Ci
jks for Symmetric Fis 61

We have
γ4− γ3 =−2εi jri + 2ri = γ2− γ1

and by Lemma 4.1
Fi(γ4)+ Fi(γ1)≥ Fi(γ3)+ Fi(γ2).

Thus again Ψi
jZi

j−a−2
−Ψi

jZi
j−a
≥ 0. Therefore, if m+ k < 2Zi

j, then Ci
jm ≤Ci

jk.

Finally, let m + k = 2Zi
j. Consider Ci

jm−Ci
jk, and couple Ψi

jZi
j+a

from Ci
jm with

Ψi
jZi

j−a−1
from Ci

jk, for a = 0, . . .,(m−1)−Zi
j. Since k = 2Zi

j−m we get

∆mk = Ci
jm−Ci

jk =
(m−1)−Zi

j

∑
a=0

(Ψi
jZi

j+a
−Ψi

jZi
j−a−1).

For a symmetric Fi(·), we get

Ψi
jZi

j+a−Ψi
jZi

j−a−1 = Fi(α4)−Fi(α1)−Fi(α3 + ri)+ Fi(α2− ri).

For 0≤ εi j < 1
2 . If α1 ≤ 0, then Ψi

jZi
j+a
−Ψi

jZi
j−a−1

≤ 0. If α1 > 0 and−α2 + ri

≤ α1, then Ψi
jZi

j+a
−Ψi

jZi
j−a−1

≤ 0. If α1 > 0 and −α2 + ri > α1, then set

γ4 = α3 + ri

γ3 = α4

γ2 = −α2 + ri

γ1 = α1

We have by (4.4)

γ4− γ3 =−2εi j + ri ≥−1 + 2ari + ri = γ2− γ1,

and by Lemma 4.1

Fi(γ4)+ Fi(γ1)≥ Fi(γ∗)+ Fi(γ2)≥ Fi(γ3)+ Fi(γ2)

for γ∗ such that γ4− γ∗ = γ2 − γ1. Therefore, Ψi
jZi

j−a
−Ψi

jZi
j−a−1

≤ 0. Thus, for

0≤ εi j < 1
2 , Ψi

jZi
j+a
−Ψi

jZi
j−a−1

≤ 0 for any a. Hence, ∆mk ≤ 0.

For εi j = 1
2 , clearly ∆mk = 0.

For 1
2 < εi j < 1. If α2− ri ≤ 0, then Ψi

jZi
j+a
−Ψi

jZi
j−a−1

≥ 0. If α2− ri > 0

and α2− ri ≥ −α1, then again clearly Ψi
jZi

j+a
−Ψi

jZi
j−a−1

≥ 0. If α2− ri > 0 and

α2− ri <−α1, then set

γ4 = α4

γ3 = α3 + ri

62 4 Optimality of Cyclic Sequences and the Oneness

γ2 = −α1

γ1 = α2− ri

Since α2− ri > 0, we have

γ4− γ3 = 2εi jri− ri ≥−1 + 2ari + ri = γ2− γ1,

and by Lemma 4.1

Fi(γ4)+ Fi(γ1)≥ Fi(γ∗)+ Fi(γ2)≥ Fi(γ3)+ Fi(γ2)

for γ∗ such that γ4− γ∗ = γ2− γ1. Therefore, Ψi
jZi

j−a
−Ψi

jZi
j−a−1

≥ 0. Thus, for

1
2 < εi j < 1, Ψi

jZi
j+a
−Ψi

jZi
j−a−1

≥ 0 for any a. Hence, ∆mk ≥ 0. ��

The lemma will be illustrated in the following example based on
Example 3.2.

Example 4.3. The reminders εi j for an instance d = (5,3,2) of Example 3.2 are all
equal 0 for i = 1 and j = 1, . . .,5 which means that the penalty for being early is
never lower than the penalty for being late at the same distance from an ideal po-
sition. This is also confirmed by the costs in Table 3.21, where the costs for being
early are actually higher than for being late at equal distances from the ideal posi-
tions. Both reminder for i = 3 are equal 1

2 thus the costs are perfectly symmetric,
see also Table 3.21. Finally, the reminders for i = 2 and j = 1,2,3 are equal 1

3 , 0
and 2

3 respectively. This means that the penalty for being early is higher than the
penalty for being late at the same distance for the first copy with its ideal position at
2, however, the situation reverses for the third copy with its ideal position at 9. The
cost of being late is higher than the cost of being early for this copy.

The following lemma proves an important symmetry embedded in the cost matri-
ces, namely rows j and di + 1− j are essentially the same if the former is followed
from 1 to D and the latter in the opposite direction from D to 1, see for instance
Table 3.21.

Lemma 4.4. We have
Ci

(di+1− j)(D+1−k) = Ci
jk (4.5)

for any i = 1, . . .,n, k = 1, . . .,D and j = 1, . . .,di.

Proof. By definition Ψi
jk and the symmetry of Fi(·) we have

Ψi
(di+1− j)(2D−k) = | f i

di+1− j(D− k)− f i
di− j(D− k)| (4.6)

= |Fi (1− j + kri)−Fi (− j + kri)|
= |Fi (j− kri)−Fi (j−1− kri)|
= | f i

j(k)− f i
j−1(k)|= Ψi

jk

4.2 Symmetries of Ci
jks for Symmetric Fis 63

Now, let us consider

Ci
(di+1− j)(D+1−k) =

max{D+1−k,Zi
di+1− j}−1

∑
l=min{D+1−k,Zi

di+1− j}
Ψi

(di+1− j)l.

By definitions of Zi
j, we have

Zi
di+1− j =

{

D−Zi
j if 2 j−1

2ri
is an integer,

D−Zi
j + 1 otherwise.

Suppose that 2 j−1
2ri

is fractional. Then,

Ci
(di+1− j)(D+1−k) =

D−min{k,Zi
j}

∑
l=D+1−max{k,Zi

j}
Ψi

(di+1− j)l. (4.7)

By substituting l by D− l on the right hand side of (4.7), we obtain

Ci
(di+1− j)(D+1−k) =

max{k,Zi
j}−1

∑
l=min{k,Zi

j}
Ψi

(di+1− j)(D−l).

By (4.6), we have

Ci
(di+1− j)(D+1−k) =

max{k,Zi
j}−1

∑
l=min{k,Zi

j}
Ψi

jl = Ci
jk,

and the lemma holds for a fractional 2 j−1
2ri

. Now, for integral 2 j−1
2ri

,

Ci
(di+1− j)(D+1−k) =

D−min{k−1,Zi
j}−1

∑
l=D−max{k−1,Zi

j}
Ψi

(di+1− j)l. (4.8)

By substituting l by D− l on the right hand side of (4.8), we obtain

Ci
(di+1− j)(D+1−k) =

max{k−1,Zi
j}

∑
l=min{k−1,Zi

j}+1

Ψi
(di+1− j)(D−l).

64 4 Optimality of Cyclic Sequences and the Oneness

By (4.6), we have

Ci
(di+1− j)(D+1−k) =

max{k,Zi
j+1}−1

∑
l=min{k,Zi

j+1}
Ψi

jl =
max{k,Zi

j}−1

∑
l=min{k,Zi

j}
Ψi

jl + Ψi
jZi

j

= Ci
jk + Ψi

jZi
j
.

However, integral 2 j−1
2ri

and symmetric Fi(·) imply

Ψi
jZi

j
= | f i

j(Z
i
j)− f i

j−1(Z
i
j)|=

∣

∣Fi
(

j−Zi
jri
)−Fi

(

j−1−Zi
jri
)∣

∣

=
∣

∣

∣

∣

Fi

(

j− (j− 1
2
)
)

−Fi

(

j−1− (j− 1
2
)
)∣

∣

∣

∣

=
∣

∣

∣

∣

Fi

(

1
2

)

−Fi

(

−1
2

)∣

∣

∣

∣

= 0,

and the lemma holds for an integral 2 j−1
2ri

. This ends the proof of the lemma. ��
By replacing k by 2D+ 1− k in (4.5) of Lemma 4.4 we obtain.

Lemma 4.5. We have

Ci
(di+1− j)k = Ci

j(D+1−k)

for any i = 1, . . .,n, k = 1, . . .,D and j = 1, . . .,di.

Finally, the top rows j = 1, . . .,
⌊

di
2

⌋

of the cost matrix Mi for any i that corre-

spond to the first half of copies have higher costs in the second half of the sequence
D−k+1, k = 1, . . .,

⌊

D
2

⌋

than they do in the corresponding positions of the first half
k = 1, . . .,

⌊

D
2

⌋

, again check Table 3.21 for an example.

Lemma 4.6. We have

Ci
j(D+1−k) ≥Ci

jk

for any i = 1, . . .,n, k = 1, . . .,
⌈

D
2

⌉

and j = 1, . . .,
⌊

di
2

⌋

.

Proof. We have

Zi
⌊

di
2

⌋ =
⌈⌊

di

2

⌋

D
di
− D

2di

⌉

≤
⌈⌊

di

2

⌋

D
di
− 1

2

⌉

≤
⌈

D−1
2

⌉

,

which implies D+ 1− k > Zi
j for k = 1, . . .,

⌈

D
2

⌉

and j = 1, . . .,
⌊

di
2

⌋

. Thus,

4.3 The Folding, Shuffling, and Unfolding of Sequences 65

Ci
j(D+1−k) =

max{D+1−k,Zi
j}−1

∑
l=min{D+1−k,Zi

j}
Ψi

jl. =
D−k

∑
l=Zi

j

Ψi
jl ≥

k−1

∑
l=Zi

j

Ψi
jl

=
max{k,Zi

j}−1

∑
l=min{k,Zi

j}
Ψi

jl = Ci
jk

as long as k ≥ Zi
j . Thus, it remains to show the lemma for k < Zi

j. We have m =
D+ 1− k > Zi

j > k and m+ k = D+ 1 > 2Zi
j. The latter inequality holds since

2Zi
⌊

di
2

⌋ = 2

⌈⌊

di

2

⌋

D
di
− D

2di

⌉

≤ 2

⌈⌊

di

2

⌋

D
di
− 1

2

⌉

≤ 2

⌈

D−1
2

⌉

≤ D.

Therefore, Lemma 4.2 implies Ci
j(D+1−k) ≥Ci

jk which completes the proof. ��

We now have now shown all symmetries and other essential properties of the
costs Ci

jk sufficient to prove that there are optimal solutions that are cyclic.

4.3 The Folding, Shuffling, and Unfolding of Sequences

Let us assume that all demands d1, . . .,dn are even in this section. The di ideal posi-
tions Zi

j for a model i with a symmetric function Fi are regularly spaced between 1

and D so that at exactly di
2 of them fall between 1 and D

2 , since

Zi
di
2

≤ D
2

,

and exactly di
2 of them fall between D

2 + 1 and D, since

Zi
di
2 +1
≥ D

2
+ 1.

Therefore, one can reasonably conjecture that whenever Fi for all i are symmetric,
then there are optimal solutions to the total deviation problem (3.1) that are half-
balanced. A sequence is half-balanced if it has exactly di

2 copies of each i in its first

half, that is in positions 1 to D
2 , and exactly di

2 copies of each i in its second half, that
is in positions D

2 + 1 to D. This in turn implies that there are optimal solutions that
are cyclic. This section proves that this conjecture holds true. Our approach simply
turns any sequence into a half-balanced one without cost increasing. Moreover, this
approach works under the sole assumption that functions Fi for all i are symmet-
ric. That is, it does not require any more assumptions about these functions, which
would be required for instance, if a simple swapping copies of different is was used.
The idea is as follows. Consider a feasible sequence

66 4 Optimality of Cyclic Sequences and the Oneness

S = s1· · ·s D
2

s D
2 +1· · ·sD

for an instance with demands d1, . . .,dn. We show how to construct a feasible, half-
balanced sequence S′ for d1, . . .,dn without cost increasing. The construction goes
through three steps: the folding, the shuffling, and the unfolding. The folding re-
places S by a sequence of D

2 ordered pairs

(s1,sD)· · ·(s D
2
,s D

2 +1).

The shuffling shuffles copies inside of each pair producing a sequence of ordered
pairs

(s′1,s
′
D)· · ·(s′D

2
,s′D

2 +1
),

such that {sk,sD+1−k}= {s′k,s′D+1−k} for k = 1, . . ., D
2 . Finally, the unfolding unfolds

the outcome of the shuffle into a sequence

S′ = s′1· · ·s′D
2

s′D
2 +1
· · ·s′D.

The shuffling uses the Hall’s Theorem for bipartite regular graphs to ensure that
each i occurs exactly di

2 times in each of the two halves of S′. We then show that
this three-step construction does not increase the cost of the assignment. This proof
is based on a crucial observation which is that the construction does not push the
copies further from their ideal positions in S′ than they were in S, and thus the
assignment cost does not increase. We begin with an example.

Example 4.7. Consider the sequence

1→ 2→ 3→ 2→ 1→ 2→ 2→ 3→ 1→ 1 (4.9)

→ 1→ 1→ 2→ 3→ 3→ 2→ 1→ 1→ 1→ 1

for d = (10,6,4) = 2(5,3,2). The sequence has too many copies of i = 2, 4 instead
of 3, and too few copies of i = 1, 4 instead of 5, in the first half. The the folding
operation produces a 2-regular bipartite multigraph in Fig. 4.1.

Then, the shuffling produces the matchings M and Mc shown in Figs. 4.2 and 4.3
respectively.

Finally, the unfolding produces the following sequence for the two matchings:

1→ 1→ 1→ 2→ 2→ 3→ 2→ 3→ 1→ 1

→ 1→ 2→ 3→ 1→ 1→ 2→ 3→ 2→ 1→ 1.

Notice that each half of the sequence has exactly 5 copies of i = 1,3 copies of i = 2,
and 2 copies if i = 3 as required.

Let us now define the folding, shuffling and unfolding operations on the cor-
responding assignments. Let S be an initial sequence for d1, . . .,dn and {yi

jl} the

assignment, see Chap. 3, that corresponds to S. Define the assignment {yi
jl} index

set as follows

4.3 The Folding, Shuffling, and Unfolding of Sequences 67

(1,1) (1,2) (1,3) (1,4) (1,5) (2,1) (2,2) (2,3) (3,1) (3,2)

1 2 3 4 5 6 7 8 9 10

Fig. 4.1 The bipartite multigraph G = (V1 ∪V2,E) being the result of the folding operation on the
sequence (4.9)

(1,1) (1,2) (1,3) (1,4) (1,5) (2,1) (2,2) (2,3) (3,1) (3,2)

1 2 3 4 5 6 7 8 9 10

Fig. 4.2 The matching M being the result of the shuffle operation on the graph G from Fig. 4.1

(1,1) (1,2) (1,3) (1,4) (1,5) (2,1) (2,2) (2,3) (3,1) (3,2)

1 2 3 4 5 6 7 8 9 10

Fig. 4.3 The matching Mc being the result of the shuffle operation on the graph G from Fig. 4.1

68 4 Optimality of Cyclic Sequences and the Oneness

s = {(i, j, l) : yi
jl = 1}. (4.10)

The composition, denoted by FSU, of folding, shuffling and unfolding, in this order,
is defined as a transformation of s. The folding is defined as follows:

4.3.1 The Folding

For (i, j, l) ∈ s, we define

F(i, j, l) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(i, j, l) if j ≤ di
2 and l ≤ D

2 ,

(i,di + 1− j, l) if j > di
2 and l ≤ D

2 ,

(i, j,D+ 1− l) if j ≤ di
2 and l > D

2 ,

(i,di + 1− j,D+ 1− l) if j > di
2 and l > D

2 ,

Let us define the multiset

C(s) = {((i′, j′), l′) : F(i, j, l) = ((i′, j′), l′) for some (i, j, l) ∈ s}.

We observe the following.

Lemma 4.8. Let t(i, j) = {l : ((i, j), l) ∈C(s)} for i = 1, . . .,n and j = 1, . . ., di
2 . We

have the following cardinality of t(i, j)

|t(i, j)|= 2.

Proof. We observe that F(i, j, l) and F(i,di + 1− j, l′) for i = 1, . . .,n and j =
1, . . ., di

2 are the only two triples in t(i, j). It is worth noticing that if l = D+ 1− l′,
then F(i, j, l) = F(i,di + 1− j, l′). ��

The shuffling is defined as follows:

4.3.2 The Shuffling

Define a bipartite multigraph G = (V1∪V2,E) as follows:

V1 =
{

(i, j) : i = 1, . . .,n; j = 1, . . .,
di

2

}

,

V2 =
{

l : l = 1, . . .,
D
2

}

,

4.3 The Folding, Shuffling, and Unfolding of Sequences 69

and
E = C(s).

We have the following observation about this graph.

Lemma 4.9. There are two disjoint matchings M and Mc in the graph G = (V1 ∪
V2,E) such that M∪Mc = E and

|M|= |Mc|= D
2

.

Proof. The folding operation ensures that each node degree in the bipartite multi-
graph G = (V1∪V2,E) equals 2, see Lemma 4.8. Thus the graph is 2−regular. This,
however, implies that there are two disjoint perfect matchings M and Mc, see Bondy
and Murty [?], such that

M∪Mc = E .

However, |E|= D. Thus, either of the two matchings has cardinality D
2 . This proves

the lemma. ��
We also observe the following.

Lemma 4.10. For any i = 1, . . .,n, we have

|{l : ((i, j), l) ∈M for some j}|
= |{l : ((i, j), l) ∈Mc for some j}|= di

2
.

Proof. The lemma follows immediately from the fact that there are exactly di
2 nodes

(i, j) in V1. Each of these nodes has degree 2 by Lemma 4.8. By Lemma 4.9.
((i, j), l) ∈M and ((i, j), l′) ∈Mc for some l an l′. Thus the lemma holds. ��

Finally, the unfolding.

4.3.3 The Unfolding

Define

U(i, j, l) =
{

(i, j, l) if ((i, j), l) ∈M
(i,di + 1− j,D+ 1− l) if ((i, j), l) ∈Mc.

4.3.4 Folding, Shuffling and Unfolding Yield An Assignment

The transformation FSU produces an assignment FSU(s) for an initial assignment s.

70 4 Optimality of Cyclic Sequences and the Oneness

Lemma 4.11. FSU(s) is an assignment.

Proof. Follows immediately from Lemmas 4.9 and 4.10. ��
The one-to-one correspondences between the assignments {yi

jl} their corresponding
index sets s, see (4.10), and their corresponding d−partitions π defined in Chap. 3
justify the notation J3(s) instead of J3(π) in the reminder of this section. We now
show that the FSU yields an assignment with its cost not exceeding the cost of the
original assignment s.

Lemma 4.12. We have

J3(s)≥ J3(FSU(s)).

Proof. We consider the following four cases:

1. (i, j, l) ∈ s, where j = 1, . . ., di
2 and l = 1, . . ., D

2 . Then FSU(i, j, l) is either
(i, j, l) or (i,di + 1− j,D + 1− l). Thus, FSU(i, j, l) contributes either Ci

jl or

Ci
(di+1− j)(D+1−l) to J3(FSU(s)). By Lemma 4.4, Ci

(di+1− j)(D+1−l) = Ci
jl . Hence,

FSU(i, j, l) makes the same contribution to J3(FSU(s)) as (i, j, l) does to J3(s).
2. (i,di +1− j, l)∈ s,where j = 1, . . ., di

2 and l = 1, . . ., D
2 . Then FSU(i,di +1− j, l)

is either (i, j, l) or (i,di +1− j,D+1− l). Thus, FSU(i,di +1− j, l) contributes
either Ci

jl or Ci
(di+1− j)(D+1−l) to J3(FSU(s)). Whereas, (i,di +1− j, l) contributes

Ci
(di+1− j)l to J3(s). By Lemma 4.5, Ci

(di+1− j)l = Ci
j(D+1−l), and by Lemma 4.6,

Ci
j(D+1−l) ≥Ci

jl . However, by Lemma 4.4 Ci
(di+1− j)(D+1−l) = Ci

jl .

3. (i,di +1− j,D+1− l)∈ s, where j = 1, . . ., di
2 and l = 1, . . ., D

2 . Then, FSU(i,di +
1− j,D+1− l) is either (i, j, l) or (i,di +1− j,D+1− l). Thus, FSU(i,di +1−
j,D + 1− l) contributes either Ci

jl or Ci
(di+1− j)(D+1−l) to J3(FSU(s)). On the

other hand (i,di + 1− j,D+ 1− l) contributes Ci
(di+1− j)(D+1−l) =Ci

jl to J3(s).

4. (i, j,D + 1− l) ∈ s, where j = 1, . . ., di
2 and l = 1, . . ., D

2 . Then FSU(i, j,D +
1− l) is either (i, j, l) or (i,di + 1− j,D + 1− l). Thus, FSU(i, j,D + 1− l)
contributes either Ci

jl or Ci
(di+1− j)(D+1−l) to J3(FSU(s)). On the other hand,

(i, j,D + 1− l) contributes Ci
j(D+1−l) to J3(s). By Lemma 4.6, Ci

j(D+1−l) ≥Ci
jl ,

and by Lemma 4.4, Ci
jl = Ci

(di+1− j)(D+1−l).

Therefore in each of the four cases the FSU(i, j, l) contributes to J3

(FSU(s)) no more that (i, j, l) ∈ s to J3(s). Therefore, the lemma holds. ��
The folding and shuffling may produce FSU(s) which is not order preserving.

However, by Lemma 3.4 an order preserving solution s′ can be constructed for which

J3(FSU(s))≥ J3(s′). (4.11)

4.4 Optimality of Cyclic Solutions for Total Deviation 71

4.4 Optimality of Cyclic Solutions for Total Deviation

The main results of the previous section can be summarized as follows.

Theorem 4.13. Let
S = s1, . . .,sD,sD+1, . . .,s2D,

be a feasible sequence for 2d = (2d1, . . .,2dn). Then, a sequence

T = t1, . . .,tD,tD+1, . . .,t2D,

where i = 1, . . .,n occurs di times in the first half t1, . . .,tD and di times in the second
half tD+1, . . .,t2D can be constructed such that

F(T)≤ F(S).

Proof. The FSU transformation of S produces a sequence T which by Lemma 4.10
is half-balanced. Furthermore, by Lemma 4.12 and Theorem 3.14 we get F(T) ≤
F(S) as required. ��
Theorem 4.14. Let ST be a concatenation of sequences S and T such that

xi|S| − |S|ri = 0 for all i, (4.12)

then F(ST) = F(S)+ F(T).

Proof. We have

F(ST) =
n
∑

i=1

|S|+|T |
∑

k=1
Fi(xik− kri)

=
n
∑

i=1

|S|
∑

k=1
Fi(xik− kri)+

n
∑

i=1

|T |
∑

k=1
Fi(xi|S|+k− (|S|+ k)ri)

=
n
∑

i=1

|S|
∑

k=1
Fi(xik− kri)+

n
∑

i=1

|T |
∑

k=1
Fi(xi|S|+ ∆ik−|S|ri− kri)

=
n
∑

i=1

|S|
∑

k=1
Fi(xik− kri)+

n
∑

i=1

|T |
∑

k=1
Fi(∆ik− kri)

= F(S)+ F(T),

where
xi|S|+k = xi|S|+ ∆ik.

Notice that (4.12) implies

xi|S|
|S| =

∆i|T |
|T | = ri.

��

72 4 Optimality of Cyclic Sequences and the Oneness

We are now ready to prove the main result of this section.

Theorem 4.15. For the total deviation problem, let S be an optimal sequence for
d1, . . .,dn. Then Sm, m≥ 1, is optimal for md1, . . .,mdn.

Proof. By induction on m. The theorem obviously holds for m = 1. Suppose that
the theorem holds for any 1 ≤ m ≤ k. We prove that it also holds for m = k + 1.
Consider an optimal sequence

T = t1· · ·tmD

for md1, . . .,mdn. If m is even, then by Theorem 4.13, this sequence can be trans-
formed by FSU without cost increasing into a sequence

T ′ = t ′1· · ·t ′mD/2t ′1+mD/2· · ·t ′mD,

where i occurs mdi/2 times in each of the two halves of T ′. Thus, by Theorem 4.14
each half must be optimal for md1/2, . . .,mdn/2. Therefore, by the inductive as-
sumption, each half is the concatenation of m/2 copies of S, and the theorem
holds for an even m = k + 1. If m is odd, then consider a sequence ST for
(m + 1)d1, . . .,(m + 1)dn. We have F(ST) = F(S) + F(T) by Theorem 4.14. By
Theorem 4.13, the sequence ST can be transformed by FSU without cost increasing
into a sequence

T ′ = t ′1· · ·t ′(m+1)D/2t ′1+(m+1)D/2· · ·t ′(m+1)D

where i occurs (m+1)di/2 times in each of the two halves of T ′. Thus, by Theorem
4.14 each half must be optimal for (m+ 1)d1/2, . . .,(m+ 1)dn/2. Therefore, by the
inductive assumption, each half is the concatenation of (m + 1)/2 copies of S, and
F(ST) = F(S)+F(T)≥ (m+1)F(S). Consequently, F(T)≥ mF(S) which proves
the theorem for odd m = k + 1. Thus the theorem holds for any m. ��
It is worth observing that the constructive folding, shuffling, and unfolding oper-
ations are used in this chapter to prove the existence of optimal cyclic sequences
rather than to actually construct optimal sequences. The latter can be obtained by
first calculating the greatest common divisor m of d1, . . .,dn, then by using the algo-
rithm given in Chap. 3 to obtain an optimal sequence for d1/m, . . .,dn/m, and finally
by concatenating the sequence m times to construct an optimal sequence for the
original demands d1, . . .,dn.

4.5 Optimality of Cyclic Solutions for Maximum Deviation

The folding, shuffling and unfolding of just-in-time sequences does not increase the
maximum deviation either. That is the counterpart of Lemma 4.12 for the bottleneck
deviation holds. To show this it is sufficient to prove the counterparts of Lemmas 4.4,
4.5, and 4.6. This will be now done in Lemmas 4.16, 4.17, and 4.18 respectively.
Check Table 3.47 for an example.

4.5 Optimality of Cyclic Solutions for Maximum Deviation 73

Lemma 4.16. We have
Bi

(di+1− j)(D+1−k) = Bi
jk (4.13)

for any i = 1, . . .,n, k = 1, . . .,D and j = 1, . . .,di.

Proof. By definition (3.45)

Bi
(di+1− j)(D+1−k) = max{Fi((di + 1− j)−1− (D+1− k−1)ri),

Fi((di + 1− j)− (D+ 1− k)ri)}
= max{Fi(− j + kri),Fi(1− j− ri + kri)}

thus by the symmetry of Fi we get

Bi
(di+1− j)(D+1−k) = max{Fi(j− kri),Fi(j−1− (k−1)ri)} = Bi

jk.

��
By replacing k by 2D+ 1− k in (4.13) of Lemma 4.16 we obtain.

Lemma 4.17. We have
Bi

(di+1− j)k = Bi
j(D+1−k)

for any i = 1, . . .,n, k = 1, . . .,D and j = 1, . . .,di.

Finally, we have the counterpart of Lemma 4.6 for the maximum deviation
problem.

Lemma 4.18. We have
Bi

j(D+1−k) ≥ Bi
jk

for any i = 1, . . .,n, k = 1, . . .,
⌈

D
2

⌉

and j = 1, . . .,
⌊

di
2

⌋

.

Proof. By definition (3.45)

Bi
j(D+1−k) = max{Fi(j−1− (D+ 1− k−1)ri),Fi(j− (D+ 1− k)ri)}

= max{Fi(j−1−di + kri),Fi(j−di− ri + kri)}

thus by the symmetry of Fi we have

Bi
j(D+1−k) = max{Fi(di + 1− j− kri),Fi(di− j− (k−1)ri)}.

On the other hand

Bi
jk = max{Fi(j− kri),Fi(j−1− (k−1)ri)}.

First, we observe that

di + 1− j− kri≥ j− kri (4.14)

74 4 Optimality of Cyclic Sequences and the Oneness

and

di− j− (k−1)ri ≥ j−1− (k−1)ri (4.15)

for j = 1, . . .,
⌊

di
2

⌋

. Second, we observe that

di + 1− j− kri ≥ di− j− (k−1)ri ≥ 0 (4.16)

for k = 1, . . .,
⌈

D
2

⌉

and j = 1, . . .,
⌊

di
2

⌋

, and

j− kri ≥ j−1− (k−1)ri. (4.17)

Thus, we have the following three cases:

1. j−1− (k−1)ri≥ 0. Then, by (4.15)

Fi(di− j− (k−1)ri)≥ Fi(j−1− (k−1)ri)

and by (4.14) and (4.17)

Fi(di + 1− j− kri)≥ Fi(j− kri).

Consequently

Bi
j(D+1−k) ≥ Bi

jk.

2. j− kri < 0. Then,

di + 1− j− kri≥ 1− j +(k−1)ri≥ 0 (4.18)

and

di− j− (k−1)ri≥− j + kri ≥ 0

for k = 1, . . .,
⌈

D
2

⌉

. Thus, by the symmetry of Fi

Fi(di + 1− j− kri)≥ Fi(1− j +(k−1)ri) = Fi(j−1− (k−1)ri)

and
Fi(di− j− (k−1)ri)≥ Fi(− j + kri) = Fi(j− kri).

Consequently,

Bi
j(D+1−k) ≥ Bi

jk.

3. j−1− (k−1)ri < 0 and j− kri ≥ 0. Then by (4.18) and the symmetry of Fi

Fi(di + 1− j− kri)≥ Fi(1− j +(k−1)ri) = Fi(j−1− (k−1)ri)

and by (4.14)
Fi(di + 1− j− kri)≥ Fi(j− kri).

4.5 Optimality of Cyclic Solutions for Maximum Deviation 75

Thus, again
Bi

j(D+1−k) ≥ Bi
jk.

This proves the lemma. ��
We have the following counterpart of Theorem 4.14.

Theorem 4.19. Let ST be a concatenation of sequences S and T such that

xi|S| − |S|ri = 0 for all i, (4.19)

then G(ST) = max{G(S),G(T)}.
Proof. We have

G(ST) = max
i,k
{Fi(xik− kri)}

= max{ max
i,1≤k≤|S|

{Fi(xik− kri)},
max

i,1≤k≤T |
{Fi(xi|S|+k− (|S|+ k)ri)}}

= max{ max
i,1≤k≤|S|

{Fi(xik− kri)},
max

i,1≤k≤T |
{Fi(xi|S|+ ∆ik−|S|ri− kri)}}

= max{ max
i,1≤k≤|S|

{Fi(xik− kri)},
max

i,1≤k≤T |
{Fi(∆ik− kri)}}

= max{G(S),G(T)},

where
xi|S|+k = xi|S|+ ∆ik.

��
We are now ready to prove the main result of this section.

Theorem 4.20. For the maximum deviation problem, let S be an optimal sequence
for d1, . . .,dn. Then Sm, m≥ 1, is optimal for md1, . . .,mdn.

Proof. By induction on m. The theorem obviously holds for m = 1. Suppose that
the theorem holds for any 1 ≤ m ≤ k. We prove that it also holds for m = k + 1.
Consider an optimal sequence

T = t1· · ·tmD

for md1, . . .,mdn. If m is even, then this sequence can be transformed by FSU without
cost increasing into a sequence

T ′ = t ′1· · ·t ′mD/2t ′1+mD/2· · ·t ′mD,

76 4 Optimality of Cyclic Sequences and the Oneness

where i occurs mdi/2 times in each of the two halves of T ′. Thus, each half
must be optimal for md1/2, . . .,mdn/2 by Theorem 4.19. Therefore, by the induc-
tive assumption, each half is the concatenation of m/2 copies of S, and the the-
orem holds for an even m = k + 1. If m is odd, then consider a sequence ST for
(m + 1)d1, . . .,(m + 1)dn. We have G(ST) = max{G(S),G(T)} by Theorem 4.19.
The sequence ST can be transformed by FSU without cost increasing into a se-
quence

T ′ = t ′1· · ·t ′(m+1)D/2t ′1+(m+1)D/2· · ·t ′(m+1)D

where i occurs (m+ 1)di/2 times in each of the two halves of T ′. Therefore, by the
inductive assumption, each half is the concatenation of (m + 1)/2 copies of S, and
G(ST) = max{G(S),G(T)} ≥ G(S). Consequently, G(T)≥ G(S) which proves the
theorem for odd m = k + 1. Thus the theorem holds for any m. ��

4.6 The Oneness

Let Ω be the set of all just-in-time sequences S for an instance d = (d1, . . .,dn) with
maximum absolute deviation, or the bottleneck, not exceeding 1. More precisely

Ω = {S : |xik− kri| ≤ 1 for i = 1, . . .,n;k = 1, . . .,D} . (4.20)

We show in Chap. 5 that Ω �= /0 for any d. We now prove that minimizing the total
absolute deviation

A∗ = min
S
{A(S) =

n
∑

i=1

D
∑

k=1
|xik− kri|}, (4.21)

and the total squared deviation

Q∗ = min
S
{Q(S) =

n
∑

i=1

D
∑

k=1
(xik− kri)2}, (4.22)

on the set Ω are equivalent which, however, is not necessarily the case on other sets.
The minimization on the set Ω has obvious advantages for the computational

complexity as it considerably reduces the number of cost coefficients Ci
jk (and Bi

jk)
necessary to calculate in the equivalent assignment problem, see Chap. 3 and the
Exercise 3.23. We denote by

OptA = {S : A(S) = A∗} and OptQ = {S : Q(S) = Q∗}

the sets of optimal sequences for the total absolute deviation and the total squared
deviation respectively.

We have the following key relationship between the values of A(S) and Q(S).

4.6 The Oneness 77

Theorem 4.21. We have

A(S) =
{

Q(S)+C if S ∈Ω,
Q(S)−E(S)+C otherwise,

(4.23)

where E(S) > 0 and a constant C > 0.

Proof. We have
kri = �kri	+ εik, (4.24)

where 0≤ εik < 1 for i = 1, . . .,n and k = 1, . . .,D. On the other hand

xik =
{ �kri	+ aik if xik > �kri	 ,
�kri	− bik otherwise,

(4.25)

where aik is a positive integer and bik is a non-negative integer. Thus, for any feasible
sequence S we obtain by (4.21)–(4.25)

A(S)−Q(S) = ∑
(i,k):xik>�kri	

((aik− εik)− (aik− εik)2)

+ ∑
(i,k):xik≤�kri	

((bik + εik)− (bik + εik)2)

= ∑
(i,k):xik>�kri	

[(εik− ε2
ik)− (aik−1)(aik−2εik)]

+ ∑
(i,k):xik≤�kri	

[(εik− ε2
ik)−bik(bik + 2εik−1)]

= ∑
(i,k)

(εik− ε2
ik)− ∑

(i,k):xik>�kri	
(aik−1)(aik−2εik)

− ∑
(i,k):xik≤�kri	

bik(bik + 2εik−1)

= C−E(S)

where
C = ∑

(i,k)
(εik− ε2

ik),

and

E(S) = ∑
(i,k):xik>�kri	

(aik−1)(aik−2εik)+ ∑
(i,k):xik≤�kri	

bik(bik + 2εik−1).

If S ∈ Ω, then xik > �kri	 implies aik = 1, and xik ≤ �kri	 implies bik + εik ≤ 1.
However, the latter implies either bik = 0 or bik = 1 and εik = 0. Therefore, S ∈ Ω
implies E(S) = 0. Otherwise, there are i and k such that either aik > 1 or bik = 1 and
εik > 0 or bik > 1 which implies that E(S) > 0. Finally,

C = ∑
(i,k)

(εik− ε2
ik) > 0

since 0 < εi1 = ri < 1 as long as n > 1. ��

78 4 Optimality of Cyclic Sequences and the Oneness

An instance d = (d1, . . .,dn) has the oneness property if

OptA∩Ω �= /0.

We now show that if d has the oneness property, then any optimal sequence in OptQ
must have its bottleneck not exceeding 1.

Theorem 4.22. If OptA∩Ω �= /0 , then OptA∩Ω⊆ OptQ ⊆Ω.

Proof. If S∗ ∈ OptA∩Ω, then A(S∗)≤ A(S) for any other S. By (4.23)

Q(S∗) = A(S∗)−C≤ A(S)−C+ E(S) = Q(S),

since E(S) > 0. Thus, OptA ∩Ω ⊆ OptQ. Moreover, OptQ ⊆ Ω whenever S∗ ∈
OptA∩Ω. Otherwise, there would be S ∈ OptQ and S /∈Ω such that

Q(S∗) = Q(S),

which leads to a contradiction since by (4.23)

A(S)+ E(S) = A(S∗),

and E(S) > 0, hence S∗ /∈ OptA. Therefore,

OptA∩Ω⊆ OptQ ⊆Ω.

��
The following example proves that OptA ∩Ω = /0 for some instances, that is

there are instances that do not have the oneness property. The characterization of
the instances not having the oneness property remains an open question.

Example 4.23. Consider the instance d = (46,46,1,1,1,1,1,1,1,1) with n = 10.
The sequence SQ with a single copy of each i = 3,4, . . .,10 in positions

15,26,35,46,55,66,75, and 86,

the copies of i = 1 and 2 alternating in the remaining 92 positions and with a copy of
i = 1 in position 1 minimizes (4.22) and Q(SQ) = 146.40. Moreover, SQ /∈Ω since

x1,13−13× 23
50

= 7− 299
50

= 1
1

50
(4.26)

and

x2,87−87× 23
50

= 39− 2,001
50

=−1
1
50

. (4.27)

Thus, by Theorem 4.22 OptA∩Ω = /0, in other words any sequence that minimizes
(4.21) must have its bottleneck higher than 1.

4.7 Exercises 79

The sequence SQ gives A(SQ) = 312.96 whereas the optimum is 312.76 and it is
attained by the sequence SA with a single copy of each i = 3,4, . . .,10 in positions

17,26,35,46,55,66,75, and 84,

the copies of i = 1 and 2 alternating in the remaining 92 positions and with a copy
of i = 1 in position 1. However, the bottleneck of SA is higher than the 1.02 for SQ

since

y1,15−15× 23
50

= 8− 69
10

= 1.10

and

y2,85−85× 23
50

= 38− 391
10

=−1.10.

4.7 Exercises

Exercise 4.24. Prove the counterpart of Theorem 4.13 for the maximum deviation
problem.

Exercise 4.25. Consider an instance with n = 10 products and demand vector

d = (24,24,28,28,42,42,42,42,48,16)

Thus, D = 336 and

r1 = r2 =
1

14
, r3 = r4 =

1
12

,r5 = r6 = r7 = r8 =
1
8
,r9 =

1
7
,r10 =

1
21

,

The deviation cost functions

F1(y) = F2(y) = a1 |y| , F3(y) = F4(y) = a2 |y| ,
F5(y) = F6(y) = F7(y) = F8(y) = a3 |y| ,
F9(y) = a4 |y| , F10(y) = a5 |y| ,

where

a1 = 1682 ·8 ·7 ·a2,

a2 = 1682 ·6 ·6 ·a3,

a3 = 1682 ·4 ·2 ·a4,

a4 = 1682 ·7 ·a5,

a5 = 1.

Prove that for any optimal sequence of the above instance, there is an i and time k
such that

|xik− kri|> 1.

80 4 Optimality of Cyclic Sequences and the Oneness

4.8 Comments and References

Bautista et al. [36] show that there always is cyclic optimal solution for Fi = F for
i = 1, . . .,n in the case of the total deviation problem. Kubiak [37] shows this for
a general case of possibly different Fi. The proof presented in this chapter follows
the prove given by Kubiak [37]. The proof that the same holds for the bottleneck
deviation is new. Corominas and Moreno [38] were first to present an instance with
any optimal solution minimizing total absolute deviation having maximum devia-
tion higher than 1. Kovalyov et al. [39] present results of extensive computational
experiments where they randomly generated 100,000 instances and were not able
to find a single one which would not have the oneness property. Theorems 4.21 and
4.22 were shown by Corominas and Moreno [38]. Lebacque et al. [40] confirm that
no simultaneous optimization of the absolute and squared deviations is possible.
They provide a number of small instances for which this holds.

Chapter 5
Bottleneck Minimization

5.1 Introduction

We presented a solution to the maximum deviation problem in Chap. 3. We now
take a closer look at the bottleneck deviation problem where the function to be
minimized over all just-in-time sequences S for a given vector d = (d1, . . .,dn) is
defined as follows:

H(S) = max
i,k
|xik− rik|. (5.1)

We keep the same notation here as in Chap. 3. More precisely, we deal with the
following minimization problem referred to in this chapter as simply the bottleneck
problem.

B∗ = min
S
{H(S) = max

i,k
|xik− rik|} (5.2)

Subject to

xik ≤ xik+1 for i = 1, . . . ,n and k = 1, . . . ,D−1
∑n

i=1 xik = k for k = 1, . . . ,D
xik non-negative integers for i = 1, . . . ,n and k = 1, . . . ,D.

(5.3)

We leave it to the reader to show that this formulation is equivalent to the formu-
lation (3.37–3.40) for G(S) = H(S), see also Exercise 5.25.

We consider this particular bottleneck problem due to its generic nature, proper-
ties, shown in Sects. 5.3 and 5.5, and applications that will be discussed in this and
subsequent chapters. We begin by showing in Sect. 5.2 a different solution to this
bottleneck problem than the bottleneck assignment approach given in Chap. 3. This
solution determines a consecutive interval of positions, called a position window,
for each copy of each model so as not to violate a given bound on the absolute
deviation, or the bottleneck, and then tries to sequence the copies in their position
windows if possible. This approach results in a more efficient algorithm for the bot-
tleneck problem. Moreover, it provides simple formulas for calculating the position
window ends in case of the absolute deviation bottleneck.

W. Kubiak, Proportional Optimization and Fairness, International Series in Operations 81
Research & Management Science 127, DOI 10.1007/978-0-387-87719-8 5,
c© Springer Science+Business Media LLC 2009

82 5 Bottleneck Minimization

Next, Sect. 5.4 shows the upper and lower bounds on the bottleneck, in particular
it proves that any optimal solution to the bottleneck problem respects quota that is
its deviation is less than 1. Finally, Sect. 5.6 addresses the case of two models, n = 2.
It proves that the optimal solutions for n = 2 are in fact the just-in-time sequences
obtained by the Webster’s method of apportionment discussed in Chap. 2. Hence,
it actually proves that the bottleneck of the latter sequences does not exceed 1

2 for
n = 2. This result implies that then the Webster’s sequences are the most regular
words. Section 5.6.4 applies these results by showing that the Webster’s sequences
maximize utilization of a resource shared by two cyclic processes.

5.2 The Position Window Based Algorithm

The idea of the solution to the problem (5.2) relies directly on the level curves
introduced in Chap. 3 and it was given by Steiner and Yeomans [41]. It is explained
here with the help of an example in Fig. 5.1, where the four level curves for a model
i with demand di = 3 are shown. Suppose that one wishes to test if there exists a
just-in-time sequence S with maximum deviation not exceeding B, that is H(S)≤ B,
where B is a given upper bound imposed a priori on the maximum deviation. Then,
one could draw a horizontal line at the distance B above the horizontal axis as in
Fig. 5.1, and then learn from the level curve graphs how far the three copies of
model i are allowed to deviate from their ideal positions in order not to violate the

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

1

2

3
|0−kri |

|1−kri |

|2−kri |

|3−kri |

Target B

1
2

3

Fig. 5.1 The computation of the earliest and the latest positions for a model i with three copies

5.2 The Position Window Based Algorithm 83

bound B imposed on the deviation. Figure 5.1 shows that model i will not violate B
as long as its first copy is somewhere between 1 and 10 inclusive, its second copy
somewhere between 7 and 16 inclusive, and its third copy somewhere between 13
and 17 inclusive.

On the other hand, copy 2 sequenced either before 7 or after 16 would result in
the deviation being above B along the graph of the level curve f i

2(k) = |2− rik|.
Consequently, the two crossing points of the horizontal line B and the graph of
f i

j(k) = | j− rik| determine the earliest and the latest positions for copy j to be
sequenced. These two positions are simply the ends of a position window for j. We
assume that the earliest position is 1 and the latest is D if the corresponding crossing
points do not exist in the interval [1,D]. These positions are defined generally as
follows.

For i = 1, . . .,n and j = 1, . . .,di and the bottleneck B≥ 0 let us define the earliest
start position

E(i, j) =
 j−B
ri
�, (5.4)

and the latest finish position

L(i, j) = � j−1 + B
ri

+ 1	, (5.5)

of the position windows for the copy j of model i.
We begin with the following result.

Theorem 5.1. A just-in-time sequence S with its bottleneck deviation not exceeding
B exists if and only if copy j of i, i = 1, . . . ,n and j = 1, . . . ,di, occupies position k
in S such that

E(i, j)≤ k ≤ L(i, j).

Proof. Let S be a sequence with its bottleneck deviation not exceeding B. We show
that copy j of i falls into the interval [E(i, j),L(i, j)] of S. The proof is by contradic-
tion. Suppose the copy is in position k < E(i, j) which implies kri < j−B < j and
xik = j. Then

|xik− kri|= xik− kri > j− j + B = B,

and we obtain a contradiction since the bottleneck deviation of S does not exceed B.
Now, suppose the copy is in position k > L(i, j) which implies (k−1)ri > j−1+B
and xik−1 = j−1. Then

|xik−1− (k−1)ri|= (k−1)ri− xik−1 > j−1 + B− j + 1 = B,

and we obtain a contradiction again since the bottleneck deviation of S does not
exceed B. Consequently, copy j of i falls into [E(i, j),L(i, j)], since S includes di

copies of i, and thus the necessary condition holds.
Now, let us assume that copy j of i, i = 1, . . . ,n and j = 1, . . . ,di, occupies a

position k in S such that
E(i, j)≤ k ≤ L(i, j).

84 5 Bottleneck Minimization

Consider a given i. Let its di copies be in positions 1 ≤ k1, . . .,kdi ≤ D of S, where
by assumption
 j−B

ri
� ≤ k j ≤ � j−1+B

ri
+ 1	. Then, xik = j, for k j ≤ k < k j+1 and

1≤ j < di−1, xik = 0, for 1≤ k < k1, and xik = di, for kdi < k ≤ D. Consider, the
interval k j ≤ k < k j+1. There, we have

B≥ j− j−B
ri

ri ≥ j−E(i, j)ri ≥ j− k jri ≥ j− kri

for any k. Moreover,

kri− j ≤ (k j+1−1)ri− j ≤ (L(i, j + 1)−1)ri− j ≤ (
j + B

ri
+ 1−1)ri− j = B

for any k. Thus, we have
|xik− kri| ≤ B

for any k1 ≤ k < kdi . It remains to show that

kri ≤ B for 1≤ k < k1 (5.6)

and
di− kri ≤ B for kdi < k ≤ D. (5.7)

The condition (5.6) holds since

(k1−1)ri ≤ (L(i,1)−1)ri ≤ (
B
ri

+ 1−1)ri≤ B,

and condition (5.7) holds since

0≤ di− kdiri ≤ di−E(i,di)ri ≤ di− (
di−B

ri
)ri = B.

This proves
|xik− kri| ≤ B for all k.

Since our choice of i was arbitrary, then the sufficient condition holds and so does
the theorem. ��

To find a just-in-time sequence for d =(d1, . . .,dn) with its bottleneck deviation
not exceeding a given B we construct a bipartite graph G = (V1 ∪V2,E), where
V1 = {1, . . . ,D} is the set of the sequence positions and V2 = {(i, j)|i = 1, . . . ,n; j =
1, . . . ,di} is the set of copies to sequence. The edge (k,(i, j)) ∈ E if and only if
k ∈ [E(i, j),L(i, j)]. This bipartite graph is V1−convex since for each (i, j) ∈ V2 if
(k,(i, j)) ∈ E and (m,(i, j)) ∈ E with k ≤ m, then (l,(i, j)) ∈ E for all k ≤ l ≤ m.

Any perfect matching M in G can be turned into a just-in-time sequence SM for
(d1, . . .,dn) by placing i in the position k of the sequence if (k,(i, j)) ∈M for some
j, that is SM

k = i. Conversely, any just-in-time sequence S for (d1, . . .,dn) can be
turned into a perfect matching MS as follows, if Sk = i, then (k,(i, j)) ∈MS, where

5.2 The Position Window Based Algorithm 85

j is the number of copies of i in the k−prefix S1· · ·Sk of S. Thus, the matching
MS is in fact an order preserving perfect matching, that is if (k,(i, j)) ∈ MS and
(k′,(i, j + 1)) ∈MS, then k < k′ for all i and j = 1, . . .,di−1.

Actually, any perfect matching M in G can be turned into an order preserving
perfect matching since if (k,(i, j)) ∈M and (k′,(i, j + 1)) ∈M and k′ < k, then

E(i, j) ≤ E(i, j + 1)≤ k′ < k ≤ L(i, j) ≤ L(i, j + 1).

Thus, (k′,(i, j)) ∈ E and (k,(i, j + 1)) ∈ E so the positions of copies j and j + 1
be exchanged since G is V1−convex. Therefore, we have just shown the following
theorem on which the solution to the problem (5.2) is based.

Theorem 5.2. A just-in-time sequence for d =(d1, . . .,dn) with its bottleneck devia-
tion not exceeding given B exists if and only if the bipartite graph G = (V1∪V2,E)
has an order preserving perfect matching.

The following example illustrates this algorithm.

Example 5.3. Consider d = (5,3,2) and B = 0.5. The formulas in (5.4) and (5.5)
give the following earliest start positions and latest finish positions for this instance.

j E(1, j) L(1, j) E(2, j) L(2, j) E(3, j) L(3, j)
1 1 2 2 2 3 3
2 3 4 5 6 8 8
3 5 6 9 9
4 7 8
5 9 10

The graph G for this instance is shown in Fig. 5.2, where the edges marked by
the thick lines must be included in any perfect matching in G.

1 2 3 4 5 6 7 8 9 10

(1,1) (2,1) (3,1) (1,2) (1,3) (2,2) (1,4) (3,2) (2,3) (1,5)

Fig. 5.2 The bipartite graph for d = (5, 3, 2) and B = 0.5

86 5 Bottleneck Minimization

1 2 3 4 5 6 7 8 9 10

(1,1) (2,1) (3,1) (1,2) (1,3) (2,2) (1,4) (3,2) (2,3) (1,5)

1 2 3 4 5 6 7 8 9 10

(1,1) (2,1) (3,1) (1,2) (1,3) (2,2) (1,4) (3,2) (2,3) (1,5)

Fig. 5.3 The only two possible perfect matchings in graph G from Fig. 5.2

Therefore, there are exactly two perfect matchings in G, both shown in Fig. 5.3.
The the top one gives the sequence

1→ 2→ 3→ 1→ 2→ 1→ 1→ 3→ 2→ 1

whereas the bottom

1→ 2→ 3→ 1→ 1→ 2→ 1→ 3→ 2→ 1. ��

A perfect matching in a V1−convex graph G, if any exists, can be found by the
algorithm that assigns position k to the copy (i, j) with the smallest value of L(i, j)
among all the available copies with (k,(i, j)) ∈ E , if such exists. Otherwise, no per-
fect matching exists. Observe that for each i

E(i, j)≤ E(i, j + 1) and L(i, j) ≤ L(i, j + 1)

for j = 1, . . .,di, moreover merging of any two ordered lists of numbers into a single
ordered list of numbers can be done in time linear with respect the number of num-
bers on both lists. Thus, the algorithm can be implemented to run in O(D) time. The
search for an optimal B∗ is based on the following observation.

5.3 The Complexity 87

Lemma 5.4. The product D ·B∗ is an integer.

Proof. Let B∗ be an optimal bottleneck for d =(d1, . . .,dn). Then, there are i and k
such that

|xik− kri|= B∗.

Thus, D ·B∗ is an integer since

D |xik− kri|= |Dxik− kdi|

is an integer. ��
By Lemma 5.4 and Theorems 5.6, 5.9, and 5.10 given in Sect. 5.4, the opti-

mal bottleneck B∗ takes on one of the values D−1
2D , . . ., D−1

D . Therefore, a binary
search needs to test O(logD) possible values to find the optimal B∗. Thus, it takes
O(D logD) to find the optimum bottleneck in the problem (5.2) subject to (5.3).

On the other hand, the general approach to the bottleneck deviation problem
based on the reduction to the bottleneck assignment problem (3.42) presented in
Chap. 3 requires calculating the D3 entries of the cost matrix [Bi

jk]. However, by
Theorem 5.6 and Exercise 3.23 the number of required entries can be reduced to
O(nD) as all entries with value 1 and higher can be eliminated for the absolute
value functions Fi. Moreover, these entries are as follows

Bi
jk = max{| j−1− (k−1)ri|, | j− kri|} (5.8)

for the absolute value functions Fi. An open question then remains whether the
bottleneck assignment problem (3.42) with costs (5.8) can be solved in time O(nD),
that is in time linear with respect to the required number of entries. Observe that this
solution to (5.2) subject to (5.3), if it exists, would avoid the binary search for the
optimal B∗ as well as would offer the time complexity O(nD), which is better than
O(D logD) for large D.

5.3 The Complexity

The succinct, binary input encoding of the input vector d =(d1, . . . ,dn) requires
O(∑ log(di + 1)) bits therefore the optimization algorithm shown in Sect. 5.2 to run
in time O(D logD) is in fact exponential with respect to this input encoding. The
decision problem consisting in checking if there is a solution with its bottleneck not
exceeding given B can only be solved in O(D) time in Sect. 5.2, again exponential.
Clearly, any certificate that requires the just-in-time sequence itself is too long to be
of polynomial length with respect to the binary input encoding. Though, a polyno-
mial certificate remains to be shown to exist so that the problem can be shown to
belong to NP, a polynomial certificate proving that the problem is in the class co-
NP does exist. The certificate is based on the Hall’s Theorem for bipartite convex

88 5 Bottleneck Minimization

graphs of the just-in-time sequences and it results in the following feasibility test
proven by Brauner and Crama [42].

Theorem 5.5. A just-in-time sequence S with its bottleneck not exceeding B exists if
and only if for each pair of integers x and y such that 0 ≤ x < y≤ D the following
two inequalities are satisfied simultaneously

n

∑
i=1

max(0,�yri + B	−
xri−B�)≥ y− x (5.9)

and
n

∑
i=1

max(0,
yri−B�−�xri + B)≤ y− x. (5.10)

The theorem allows checking the feasibility of B for a given instance
d =(d1, . . .,dn) in time (nD2) which is actually less efficient than the O(D) test pro-
posed in Sect. 5.2. However, the infeasibility certificate is made up of a pair (x,y),
0 ≤ x < y≤ D, for which either (5.9) or (5.10) or both fail. Clearly, the test can be
done in O(n) time for the (x,y), and either number requires only O(logD) bits.

5.4 Bounds on the Bottleneck

5.4.1 The Upper Bounds

The following upper bound follows from Theorem 5.5 and was shown by Brauner
and Crama [42], see also Steiner and Yeomans [41].

Theorem 5.6. There always exists a just-in-time sequence S with its bottleneck not
exceeding 1− 1

D .

Proof. We need to show that inequalities (5.9) and (5.10) of Theorem 5.5 are always
satisfied for B = 1− 1

D . We begin with the inequality (5.9). Consider any pair of
integers 0≤ x < y≤ D. We have

�yri + B	+ εi = yri + B

and

xri−B�= xri−B + λi

where 0 ≤ εi,λi < 1, for all i. Moreover, since B = 1− 1
D , then

εi,λi ∈ {0,
1
D

, . . .,1− 1
D
}.

5.4 Bounds on the Bottleneck 89

Consequently,

�yri + B	−
xri−B�= (y− x)ri + 2B− (εi + λi)≥ (y− x)ri > 0

and the inequality (5.9) holds for x and y.
Consider the inequality (5.10) now. We have

yri−B�= yri−B + ωi

and
�xri + B	= xri + B− τi

where 0 ≤ ωi,τi < 1, for all i. Consequently,

yri−B�−�xri + B	= (y− x)ri−2B +(ωi + τi). (5.11)

Let I be the set of all i for which the value of the expression in (5.11) is positive. We
obtain

n

∑
i=1

max(0,
yri−B�−�xri + B)≤ (y− x)+∑
i∈I

(ωi + τi−2B)≤ (y− x)

since B = 1− 1
D and

τi,ωi ∈ {0,
1
D

, . . .,1− 1
D
}.

This proves that the inequality (5.10) holds for for x and y. Therefore, the theorem
holds by Theorem 5.5 since our choice of x and y was arbitrary. ��
The upper bound can be improved by the following result shown by Tijdeman [43].

Theorem 5.7. Let λi j be a double sequence of non-negative numbers such that

∑
1≤i≤n

λik = 1 for k = 1, . . .

For an infinite sequence S on the alphabet {1, . . . ,n}, n≥ 2, let xik be the number of
is in the k-prefix of S. Then there exists a sequence S on {1, . . . ,n} such that

max
i,k
| ∑

1≤ j≤k

λi j− xik| ≤ 1− 1
2(n−1)

.

Let us define λik = ri = di
D for k = 1, . . . and i = 1, . . .,n. Then, this theorem ensures

the existence of an infinite sequence S such that

max
i,k
|kri− xik| ≤ 1− 1

2(n−1)
. (5.12)

We can ensure the required number di of copies of model i in the D-prefix of se-
quence S on the alphabet {1, . . . ,n} as follows. Consider the D-prefix of S and

90 5 Bottleneck Minimization

suppose that there is i with xiD > di. Then, there is j with x jD < d j. It can be easily
checked that replacing the last i in the D-prefix by j does not increase the absolute
maximum deviation for the D-prefix. Therefore, we can readily obtain a D-prefix
where each i occurs exactly di times and with maximum deviation not exceeding
1− 1

2(n−1) .
The sequence satisfying the bound in (5.12) is built as follows, see Tijdeman [43].

Let Lk,k = 1, . . . ,D be the set of models satisfying the following condition at k:

σi = kri− xi,k−1 ≥ 1
2n−2

, (5.13)

where, as usual, the xi,k−1 is the cumulative number of units of model i sequenced
between 1 and k− 1. Apportion k to model i from the set Lk with the minimum
value of

1− 1
2n−2 −σi

ri
. (5.14)

This is equivalent to apportioning k to model i from the set Lk with the maximum
value of

di

xi,k−1 + 1− 1
2(n−1)

, (5.15)

which is the divisor method with the divisor function

d(a) = a + 1− 1
2(n−1)

applied to the models in Lk. Observe that this divisor function actually depends on
the number n of models, the equivalent of the number of states s. Moreover, the
condition (5.13) ensures that the model getting the position k does not violate the
lower bound 1

2(n−1) −1 on its deviation imposed by (5.12).
By Theorem 5.7, we consequently have the following stronger than in

Theorem 5.6 upper bound.

Theorem 5.8. The optimal value B∗ satisfies the following inequality

B∗ ≤ 1−max{ 1
D

,
1

2(n−1)
}.

Though, D ≥ 2(n− 1) most often. It is obviously possible that D < 2(n− 1), for
instance when di = 1 for all i and n > 2.

5.4.2 The Lower Bounds

The following lower bounds are shown in Chap. 6.

5.5 Main Properties 91

Theorem 5.9. For n > 2, a standard instance d =(d1, . . . ,dn) of the bottleneck de-
viation problem defined in (5.2) has value, B, less than 1

2 if and only if di = 2i−1 for
i = 1,2, . . . ,n. Then,

B =
2n−1−1
2n−1

=
1
2
− 1

2(2n−1)
=

1
2
− 1

2D
.

Recall that for the standard instance gcd(d1, . . . ,dn) = 1. While, by Theorem 5.9,
for any n ≥ 3 there is only one standard instance with bottleneck less than 1

2 , the
number of standard instances with bottleneck less than 1

2 for n = 2 is infinite. We
have the following result of Brauner and Crama [42], and Kubiak [44].

Theorem 5.10. For n = 2, B < 1
2 if and only if one of demands d1 or d2 is odd and

the other even. Moreover, then B = 1
2 − 1

2D .

5.5 Main Properties

Theorem 4.20 shows optimality of cyclic solutions for the maximum deviation prob-
lem. We now present a simpler proof for the absolute value bottleneck which is es-
sentially based on Theorem 5.6. Let g > 1 be a positive integer and S a just-in-time
sequence for d =(d1, . . .,dn). The concatenation Sg = S· · ·S repeats S exactly g times
and thus it is a just-in-time sequence for gd =(gd1, . . .,gdn). We have

Theorem 5.11. The sequence Sg is optimal for (gd1, . . .,gdn) as long as S is optimal
for (d1, . . .,dn). Moreover their bottlenecks are equal.

Proof. Consider the concatenation Sg, g ≥ 1, of a sequence S for
(d1, . . .,dn). We have

xi,αD+l− (αD+ l)ri = αdi + xil−αdi− lri = xil− lri

for any 0 ≤ α < g and 1 ≤ l < D in Sg. Thus, both Sg, g ≥ 1, and S have the same
bottleneck. Now, let S′ be an optimal sequence for (gd1, . . .,gdn) with its bottle-
neck B∗. By Theorem 5.6, B∗ ≤ 1− 1

D . Thus, there are exactly di copies of i in
the D−prefix of S′. Otherwise, there would be an i such that xiD > di but Dri = di.
Consequently, xiD−Dri ≥ 1, which leads to a contradiction. Therefore, S′ = TW
is a concatenation of a just-in-time sequence T for (d1, . . .,dn) and a just-in-time
sequence W , perhaps empty if g = 1, for ((g−1)d1, . . .,(g−1)dn). Let B′ be a bot-
tleneck of T . We have max{B,B′} ≤ B∗, where B is the bottleneck of an optimal
sequence S for (d1, . . .,dn) . However, the bottleneck of Sg equals B as well. Thus
Sg is optimal for (gd1, . . .,gdn). ��

Finally, a just-in-time sequence and its mirror reflection have the same bottle-
neck.

92 5 Bottleneck Minimization

Theorem 5.12. The mirror reflection SR of sequence S for (d1, . . .,dn) has the same
bottleneck as S itself.

Proof. By definition
SD+1−k = SR

k for k = 1, . . .,D.

Thus
yik = di− xiD−k for all i and k = 1, . . .,D

where xi0 = 0 for all i and cumulative xik and yik for S and SR respectively. Let
k′ = D + 1− k, k = 1, . . .,D be the one-to-one correspondence between k′ and k.
Then,

∣

∣yik′ − k′ri
∣

∣ =
∣

∣yi,D+1−k− (D+ 1− k)ri
∣

∣

=
∣

∣di− xi,D−(D+1−k)−di +(k−1)ri
∣

∣

=
∣

∣xi,k−1− (k−1)ri
∣

∣ .

Since |xiD−Dri|= 0 for all i, then the theorem holds. ��

5.6 The Absence of Competition

The minimization of maximum deviation, and the total deviation as well for that
matter, can be viewed as simply a way of dealing with the competition for the same
ideal positions, see (3.11) in Chap. 3 for the definition of ideal positions, by allocat-
ing them so that the maximum, or the total deviation respectively, of a just-in-time
sequence is minimized, unfortunately that also means that as a result the bottleneck
itself must grow to 1

2 and most likely higher. However, there is a class of instances
which are competition-free. These are those with demands being the consecutive
powers of two. We prove in Chap. 6 that these are the only competition-free in-
stances for n ≥ 3. Moreover, all instances with n = 2 are virtually competition-
free and if there is a competition for an ideal position, then its resolution keeps the
value of the bottleneck unchanged and equal 1

2 . In fact any optimal solution then
is a standard two state solution obtained by the Webster’s method of apportion-
ment discussed in Chap. 2. Besides its being as fair as it can be according to the
apportionment theory the solution for n = 2 simultaneously minimizes the bottle-
neck deviation, the total deviation and the utilization of a resource shared by two
cyclical processes. Therefore, this case is unique as it is both fair and optimal. We
will discuss it in this section.

We assume n = 2 and that furthermore the greatest common divisor of d1, d2,
and D = d1 +d2 is 1, that is gcd{d1,d2}= 1. Otherwise, the optimal solution for d1

g

and d2
g can be repeated g = gcd{d1,d2} times resulting into an optimal solution for

the original instance with demands d1 and d2, by Theorem 5.11.

5.6 The Absence of Competition 93

5.6.1 Optimal Solutions for n = 2

We now show that it is essentially optimal for n = 2 to place the copies in their ideal
positions. The ideal position for copy j, j = 1, . . . ,di, of model i, i = 1,2, has been
defined in Chap. 3 in (3.11) as

2 j−1
2ri
�.

We first precisely define all solutions for n = 2 with their bottlenecks being less
or equal 1

2 . It turns out that such solutions always exist. Moreover, if one of the
demands d1 or d2 is even and the other odd, then there is exactly one solution with
its bottleneck not exceeding 1

2 . This solution has in fact its bottleneck less than 1
2 and

it is thus the only optimal. Moreover, if both d1 and d2 are odd, then there are exactly
two solutions with their bottlenecks not exceeding 1

2 . Either of these two solutions
has its bottleneck equal 1

2 and thus it is optimal. We begin with the definition of
these solutions in Lemmas 5.13–5.16.

Lemma 5.13. Consider the ideal vertices a j = 2 j−1
2r1

for j = 1, . . . ,d1 and bk = 2k−1
2r2

for k = 1, . . . ,d2. If �− 1 < a j ≤ � and �− 1 < bk ≤ � for some � = 1, . . . ,D, then
a j = bk = �.

Proof. If �−1 < a j ≤ � and �−1 < bk ≤ � for some � = 1, . . . ,D, then a j = 2 j−1
2r1

=
(�− 1)+ f1 and bk = 2k−1

2r2
= (�− 1)+ f2, with 0 < fi ≤ 1 for i = 1,2. Thus, we

have
2 j−1 = 2r1(�−1)+ 2r1 f1

2k−1 = 2r2(�−1)+ 2r2 f2

and, since r1 + r2 = 1, then

j + k−1 = (�−1)+ r1 f1 + r2 f2. (5.16)

Now, the left-hand side of the equation (5.16) and the (�− 1) are integers, thus
r1 f1 + r2 f2 must be an integer. However, 0 < r1 f1 + r2 f2 ≤ 1, since r1 f1 + r2 f2 ≤
(r1 + r2)max(f1, f2) = max(f1, f2) ≤ 1. Thus, r1 f1 + r2 f2 = 1. However, r1 f1 +
r2 f2 = 1 if and only if f1 = f2 = 1, which proves the lemma. ��

The following lemma shows that the instances with one of d1 and d2 being odd
and the other even are competition-free. Thus, all copies can fall in their ideal
positions.

Lemma 5.14. If one of the demands, d1 and d2, is odd and the other even, then
α j =
a j� for j = 1, . . . ,d1 and βk =
bk� for k = 1, . . . ,d2 are pairwise different.

Proof. By Lemma 5.13, if α j =
a j� = βk =
bk� for some j = 1, . . . ,d1 and
k = 1, . . . ,d2, then a j = bk or simply (2 j − 1)d2 = (2k − 1)d1. However, this
equality is impossible since its one side is odd and the other even. Moreover,
ak−a j = (k− j)D

d1
> 1 and bm − b� = (m−�)D

d2
> 1 for j < k and � < m. Therefore,

94 5 Bottleneck Minimization

α j =
a j� �= αk =
ak� for j,k = 1, . . . ,d1 and k �= j as well as β� =
b�� �= βm =

bm� for �,m = 1, . . . ,d2 and � �= m, which proves the lemma. ��

However, if both d1 and d2 are odd, then both models compete for the middle
position D

2 .

Lemma 5.15. If both d1 and d2 are odd, then none of the numbers a j = 2 j−1
2r1

for

j = 1, . . . , d1+1
2 − 1, d1+1

2 + 1, . . . ,d1 and bk = 2k−1
2r2

for k = 1, . . . , d2+1
2 − 1, d2+1

2 +
1, . . . ,d2 is integer. Moreover, a d1+1

2
= b d2+1

2
= D

2 is an integer.

Proof. If d1 and d2 are odd, then D
2 is an integer. Moreover, D

2 and di are relatively
prime for i = 1,2. Otherwise, gcd{D,d1,d2}> 1.Therefore, if di divides (2 j−1)D

2
for j = 1, . . . ,di and i = 1,2 , then di must divide (2 j−1). This can only happen for

j = di+1
2 . Therefore, a d1+1

2
= b d2+1

2
= D

2 and none of the numbers (2 j−1)D
2di

= 2 j−1
2ri

for j = 1, . . . , di+1
2 −1, di+1

2 + 1, . . . ,di and i = 1,2 is an integer. ��
Therefore, the competition for the middle position D

2 can be settled by moving
either competitor to position D

2 + 1, which is free.

Lemma 5.16. If both d1 and d2 are odd, then α j =
a j� for j = 1, . . . ,d1, and βk =

bk� for k = 1, . . . , d2+1

2 −1, d2+1
2 + 1, . . . ,d2, and β d2+1

2
=
b d2+1

2
�+ 1 = D

2 + 1 are

pairwise different, and so are β j =
b j� for j = 1, . . . ,d2, and αk =
ak� for k =
1, . . . , d1+1

2 −1, d1+1
2 + 1, . . . ,d1, and α d1+1

2
=
a d1+1

2
�+ 1 = D

2 + 1.

Proof. Follows immediately from Lemmas 5.13 and 5.15, and the fact that
a j� �=
D
2 + 1 for j = 1, . . . ,d1, and
bk� �= D

2 + 1 for k = 1, . . . ,d2. The latter holds since

 2 j−1
2ri
� ≥ D

2 + 2 for j = di+1
2 + 1 and i = 1,2. ��

Consider α j , j = 1, . . . ,d1 and β j for j = 1, . . . ,d2 and define the sets Xk = { j :
α j ≤ k} and Yk = { j : β j ≤ k} for k = 1, . . .D. By Lemmas 5.14 and 5.16 the solution

x1,k = |Xk| and x2,k = |Yk| (5.17)

for k = 1, . . .D meets the constraints (5.3). We now show that its bottleneck does not
exceed 1

2 .

Theorem 5.17. The bottleneck of the solution (5.17) does not exceed 1
2 .

Proof. For each j ∈ Xk we have

j ≤
⌊

kr1 +
1
2

⌋

,

thus

x1k = |Xk|=
⌊

kr1 +
1
2

⌋

.

5.6 The Absence of Competition 95

Therefore,

−1
2
≤ x1k− kr1 =

⌊

kr1 +
1
2

⌋

− kr1 ≤ 1
2
, (5.18)

or

|x1k− kr1| ≤ 1
2
.

By Lemmas 5.14 and 5.16

k−|Xk|= |Yk|= x2k.

Thus, by (5.18)

−1
2
≤ x2k− kr2 = k−

⌊

kr1 +
1
2

⌋

− kr2 =−
⌊

kr1 +
1
2

⌋

+ kr1 ≤ 1
2
.

��
The sequence with 1 in positions α j =
a j� for j = 1, . . . ,d1 and 2 in positions

βk =
bk� for k = 1, . . . ,d2 whenever one of d1 or d2 is odd and the other even is the
only one with bottleneck not exceeding 1

2 as shown in the following theorem.

Theorem 5.18. If one of the demands, d1 and d2, is odd and the other even, then the
solution defined in Lemma 5.14 is unique solution with bottleneck not exceeding 1

2 .

Proof. By Theorem 5.1, (5.4) and (5.5) copy (i, j) for j = 1, . . . ,di and i = 1,2 must
be in position k such that

⌈

j− 1
2

ri

⌉

≤ k ≤
⌊

j− 1
2

ri

⌋

+ 1 (5.19)

for B = 1
2 . However,

j− 1
2

ri
=

(2 j−1)D
2di

is not an integer since (2 j−1)D is odd and 2di is even. Therefore,

⌊

j− 1
2

ri

⌋

+ 1 =

⌈

j− 1
2

ri

⌉

,

and thus, there is only one k that satisfies (5.19). Therefore, if there is any solution it
must be unique. However, the solution with 1 in positions α j =
a j� for j = 1, . . . ,d1

and 2 in positions βk =
bk� for k = 1, . . . ,d2 does not exceed 1
2 by Theorem 5.17.

Thus, it is the unique solution. ��
Finally, there are exactly two solutions with their bottlenecks not exceeding 1

2
whenever both d1 and d2 are odd.

Theorem 5.19. If both demands d1 and d2 are odd, then the two solutions defined
in Lemma 5.16 are the only solutions with bottleneck not exceeding 1

2 .

96 5 Bottleneck Minimization

Proof. As in the proof of Theorem 5.18 copy (i, j) for j = 1, . . . ,di and i = 1,2 must
be in position k such that the condition (5.19) is satisfied for B = 1

2 . However,

j− 1
2

ri

becomes integer for j = di+1
2 , and it remains fractional for any other j. Therefore,

copy j = di+1
2 can be in either of two positions D

2 or D
2 +1. The solution from

Lemma 5.16 either gives the position D
2 to 1 and the position D

2 +1 to 2 or gives
the position D

2 to 2 and the position D
2 +1 to 1. Therefore, these are the only two

solutions possible for B = 1
2 . ��

5.6.2 The Bottleneck and the Webster’s Method Are One for n = 2

We proved in Theorem 2.5 of Chap. 2 that every divisor method stays within the
quota for all 2-state problems. However, what distinguishes the Webster’s method
from all other divisor methods for n = 2 is that it then actually minimizes the bot-
tleneck as well. This will be now shown. Let us order the ideal vertices

a j =
2 j−1

2r1
for j = 1, . . . ,d1 and bk =

2k−1
2r2

for k = 1, . . . ,d2

in non-decreasing order. Clearly, if we replace

a j by
d1

j− 1
2

, and bk by
d2

k− 1
2

we get the list ordered in non-increasing order. Actually, the order will be decreasing
if one of the demands, d1 and d2, is odd and the other even, and there will be a single
tie if both d1 and d2 are odd. Now, consider the number

di

�− 1
2

(5.20)

in the position h + 1 of this order. Then, clearly xi,h+1 = � and xi,h = �− 1 in the
solution (5.17), thus

di

�− 1
2

=
di

xi,h + 1
2

.

Therefore, position h + 1 is apportioned to i that satisfies the following equation

di

xi,h + 1
2

= max
k=1,2

dk

xk,h + 1
2

5.6 The Absence of Competition 97

which is exactly what the Webster’s method does. Therefore, we just shown that the
bottleneck solutions for n = 2 with B = 1

2 are exactly those obtained by the Webster
method of apportionment. The following example shows that neither Adams’s nor
Jefferson’s parametric methods minimize the bottleneck.

Example 5.20. Consider d1 = 10 and d2 = 7. By Theorem 5.18 the unique optimal
sequence for this instance is

1→ 2→ 1→ 2→ 1→ 1→ 2→ 1→ 2→ 1→ 2→ 1→ 1→ 2→ 1→ 2→ 1

which is the Webster’s sequence. The Adams’s divisor method would use

di

�−1

instead of (5.20) to obtain the following sequence for the instance

1→2→1→2→1→2→ 1→ 1→ 2→1→ 2→ 1→ 1→ 2→ 1→ 2→1 (5.21)

and the Jefferson’s method would use

di

�

instead of (5.20) to obtain the sequence

1→ 2→ 1→ 2→ 1→ 1→ 2→ 1→ 2→ 1→ 1→ 2→ 1→ 2→ 1→ 2←→1. (5.22)

The positions where the sequences differ are framed. Moreover, the Jefferson’s se-
quence is not unique since the copies in the last two positions can be interchanged,
which is indicated by←→. Thus, neither the Adams’s sequence nor the Jefferson’s
sequence are optimal for the instance. We could double check this statement by
observing that x1,6 = 3 for (5.21) and thus

∣

∣x1,6−6r1
∣

∣ =
∣

∣

∣

∣

3−6× 10
17

∣

∣

∣

∣

=
9

17
>

1
2
,

and x1,11 = 7 for (5.22), hence

|x1,11−11r1|=
∣

∣

∣

∣

7−11× 10
17

∣

∣

∣

∣

=
9
17

>
1
2

.

As pointed out earlier, by Theorem 2.5 all divisor methods are within the quota
for n = 2. Thus any divisor method gives a solution xi,k equals either �kri	 or
kri�
and consequently

|xi,k− kri|< 1.

Therefore, though all divisor methods ensure the bottleneck less that 1 for n = 2
only the Webster’s method ensures that then the bottleneck does not exceed 1

2 . We

98 5 Bottleneck Minimization

now show that it is this small bottleneck that makes the Webster’s method to provide
optimal utilization of a resource shared by two cyclical processes. We begin with the
definition of the most regular words.

5.6.3 The Most Regular Words

The most regular words are well-known in formal language theory, discrete geom-
etry and optimal resource allocation, see Gaujal [45] and Vuillon [46] for review.
This last application will be discussed later in this section. We now show that the
most regular words are exactly the same as the sequences generated by the Webster’s
method for n = 2. We begin by precisely defining the most regular words.

Let (c1,c2) be a point in R
2 with both coordinates c1 and c2 being non-negative

integers. The cell centered at (c1,c2), or just a cell C(c1,c2), is the square

C(c1,c2) =
{

(x,y) ∈ R
2 : |x− c1| ≤ 1

2
and |y− c2| ≤ 1

2

}

. (5.23)

Consider the line segment L
d2

d1
x

in R
2 between the points (0,0) and (d1,d2). Here, d1 and d2 are demands for models

1 and 2, respectively. That is the set

L(d1,d2) =
{

(x,y) ∈ R
2 : y =

d2

d1
x and 0≤ x≤ d1

}

. (5.24)

The L(d1,d2)-diagonal is the set of all cells that have non-empty intersection with
the segment L(d1,d2), that is

D(d1,d2) = {C(c1,c2) : C(c1,c2)∩L(d1,d2) �= /0} .

Example 5.21. The example in Fig. 5.4 shows the line segment L(4,3) for d1 = 4
and d2 = 3 along with its diagonal cells C(0,0),C(1,0),C(1,1), C(2,1),C(2,2),
C(3,2), C(3,3), and C(4,3). ��

Define a directed graph W(d1,d2) = (D(d1,d2),A(d1,d2)), with its nodes being
the cells of the diagonal D(d1,d2) and its set of arcs A(d1,d2) including a pair
(C(c1,c2), C(c′1,c

′
2)) if and only if either c′1 = c1 +1 and c′2 = c2 or c′1 = c1 and c′2 =

c2 + 1. That is, in the former case the cell C(c′1,c
′
2) is the horizontal translation of

the cell C(c1,c2) by one unit along the horizontal axis, in the latter the cell C(c′1,c
′
2)

is the vertical translation of the cell C(c1,c2) by one unit along the vertical axis.
Directed paths from the cell C(0,0) to the cell C(d1,d2) in W(d1,d2) generate

words on the alphabet {1,2} as follows. Let us mark the arc (C(c1,c2),C(c′1,c
′
2))

with the letter 1 if the C(c′1,c
′
2) is the horizontal translation of C(c1,c2), and let

5.6 The Absence of Competition 99

4

3

1
2

1

1

1

2

2

x

y

Fig. 5.4 The line segment L(4,3) and its diagonal cells

us mark the arc (C(c1,c2),C(c′1,c
′
2)) with the letter 2 if the C(c′1,c

′
2) is the vertical

translation of C(c1,c2). For a directed path from the cell C(0,0) to the cell C(d1,d2)
in W(d1,d2) let w be a word on the alphabet {1,2} made up by the concatenation
of the letters marking the consecutive arcs on the path from C(0,0) to C(d1,d2).
The word w is called the most regular word for d1 and d2, and obviously is made
up of d1 letters 1 and d2 letters 2. Figure 5.4 shows the only regular word 1212121
for d1 = 4 and d2 = 3. The set of all regular words for d1 and d2 will be denoted by
Γ(d1,d2).

We now show that the set of most regular words Γ(d1,d2) is the same as the set
of solutions to the bottleneck problem (5.2) with the bottleneck B≤ 1

2 , which in turn
is the same as the set of the apportionment sequences generated by the Webster’s
method of apportionment, for d1 and d2.

Let xik, i = 1,2 and k = 1, . . .,D be the solution to the bottleneck problem with
B≤ 1

2 . Define the points

(x1,1,x2,1),(x1,2,x2,2), . . .,(x1,D,x2,D).

The cells centered in these points belong to the diagonal D(d1,d2) which is shown
in the following lemma.

Lemma 5.22. The cells C(0,0),C(x1,1,x2,1),C(x1,2,x2,2), . . .,C(x1,D,x2,D) ∈ D

(d1,d2).

100 5 Bottleneck Minimization

Proof. The points
(r1,r2),(2r1,2r2), . . .,(Dr1,Dr2) (5.25)

are in L(d1,d2). Moreover, for any k = 1, . . .,D

∣

∣x1,k− kr1
∣

∣≤ 1
2

and
∣

∣x2,k− kr2
∣

∣≤ 1
2
,

since the solution has the bottleneck B≤ 1
2 . Thus

C(x1k,x2k)∩L(d1,d2) �= /0,

and C(x1k,x2k) ∈D(d1,d2). ��
On the other hand we have.

Lemma 5.23. If the cells C(0,0),C(t1,w1),C(t2,w2), . . .,C(tD,wD) make up a di-
rected path in W(d1,d2) from C(0,0) to C(d1,d2) , then the solution

x1k = tk and x2,k = wt (5.26)

has the bottleneck B ≤ 1
2 .

Proof. The solution (5.26) meets the constraints (5.3), thus it is feasible. Moreover,

(kr1,kr2) ∈ C(tk,wk), (5.27)

for k = 1, . . .,D. Otherwise, there would be � = 1, . . .,D such that (kr1,kr2)
∈ C(tk,wk) for k = 1, . . ., �− 1 and (�r1, �r2) /∈ C(t�,w�). We assume t0 = 0 and
w0 = 0. Then, either (�r1, �r2) ∈ C(t�−1,w�−1) or (�r1, �r2) ∈ C(t�+1,w�+1). This
holds since (�r1, �r2) must belong to some cell C(tk,wk) for k = 1, . . .,D and
(�r1, �r2)− ((�−1)r1,(�−1)r2) = (r1,r2) < (1,1). Therefore, we have either

|t�−1− �r1| ≤ 1
2

and |w�−1− �r2| ≤ 1
2
, (5.28)

or

|t�+1− �r1| ≤ 1
2

and |w�+1− �r2| ≤ 1
2
. (5.29)

However,

|t�− �r1|> 1
2

or |w�− �r2|> 1
2

since by assumption (�r1, �r2) /∈C(t�,w�), and

t�− �r1 + w�− �r2 = 0

since t� + w� = � and r1 + r2 = 1. Therefore

|t�− �r1|= |w�− �r2| ,

5.6 The Absence of Competition 101

thus

|t�− �r1|> 1
2

and |w�− �r2|> 1
2
.

This leads to a contradiction with either (5.28) or (5.29) since either

t�−1 = t� or w�−1 = w�

and either
t�+1 = t� or w�+1 = w�.

Thus, by (5.27) the solution in (5.26) has the bottleneck B≤ 1
2 . ��

5.6.4 Two Cyclic Processes Sharing a Resource

We now show that the just-in-time sequence obtained for n = 2 by the Webster’s
method maximizes utilization of a resource shared by two cyclic processes as well,
or equivalently the minimization of bottleneck deviation (5.2) for n = 2 implies the
maximization of utilization. To our knowledge this result is a very rare example of
fair allocation of a resource leading to its best utilization.

Following Gaujal [45] we consider two cyclic processes P1 and P2 that share
a common resource R. The resource can be used by at most one process at a time.
Either process passes through a cycle including a single activity that does not require
the resource and a single nonpreemptive activity that requires the resource. The
activities are denoted by AR and AR, respectively, for the process P1, and by BR and
BR for the process P2. Each activity has a fixed duration denoted by aR, aR,bR and
bR for AR, AR, BR and BR respectively. Figure 5.5 shows a temporized free-choice
Petri net modeling the two processes and the resource. The system models a typical
manufacturing work-cell where two Computer Numerical Control (CNC) machine
tools work independently on manufacturing two kinds of parts, A and B, but rely
on a common robot R for loading and unloading the parts, see Gaujal et al. [47].
Another example is a set of jobs with time lags to be processed on a single machine,
see Wenci Yu [48] for a review of problems with time lags. The set includes two
types of jobs those with processing time aR and the time lag aR, and those with
processing time bR and the time lag bR. Thus a job of the first type must wait at least
aR time units between its consecutive executions, and a job of the second type must
wait at least bR time units between its consecutive executions. The machine is the
resource R shared by the two types of jobs.

Let us assume that the two processes are required to be performed at certain
rates. For instance out of a given number of D parts produced by the robotic cell
daily dA should be of type A and dB of type B. The question then is how to sequence
the robot allocations so as to complete the production of D parts in the shortest
possible time C. Clearly, the robot is occupied by A during aRdA time units and by
B during bRdB time units, thus it remains idle no less than C− aRdA− bRdB time

102 5 Bottleneck Minimization

P 1 P 2

A BA B

Fig. 5.5 Petri net modeling two cyclic processes A and B sharing a common resource R

units. Therefore, the minimization of C is equivalent to the maximization of the
robot utilization (or the minimization of the robot idle time).

Formally, we look for a sequence S of length D over the two-letter alphabet A
and B, see Fig. 5.5. The A in the sequence means that the token available in place
R has been routed to place A regardless of the state of the system, that is the token
has been allocated to the process P1, the B in the sequence means that the token in
place R has been routed to place B, that is it has been allocated to the process P2.
For any given sequence S of the resource allocations the free-choice Petri net of
Fig. 5.5 can be unraveled as a decision-free Petri net, or a marked graph, where
each place has exactly one input arc and exactly one output arc, see Gaujal [45]
and Murata [49] for details. A circuit in a marked graph is a sequence of places and
transitions P1t1P2t2· · ·Pn where transition ti is both the output transition of place Pi

and the input transition of place Pi+1, i = 1, . . .,n− 1, Pn = P1, and where neither
a transition nor a place, except the place P1, occurs twice. The circuit duration is
the sum of durations of all the circuit places. The makespan of the marked graph
for a given sequence S is the duration of the longest circuit of the marked graph,
Ramamoorthy and Ho [50]. We have the following result.

Theorem 5.24. The Webster’s allocation sequences maximizes utilization of the
common resource for any dA and dB, and independently of durations aR, aR,bR
and bR. Moreover, no other allocation sequence maximizes the utilization.

Proof. The proof is based on a key result of Gaujal [45] who proves that the allo-
cation sequence that maximizes utilization of the common resource for any dA and
dB, and independently of durations aR, aR,bR and bR is the most regular word in

5.8 Comments and References 103

Γ(dA,dB). Lemmas 5.22 and 5.23 prove that the set Γ(dA,dB) is exactly the set of
solutions to the bottleneck deviation problem (dA,dB) with the bottleneck B ≤ 1

2 ,
which in turn, see Sect. 5.6.2, is the same as the set of the apportionment sequences
generated by the Webster’s method of apportionment, for dA and dB. ��

Gaujal [45] points out that in the case of n ≥ 3 processes sharing a resource
the optimal allocation sequence depends on the durations the processes require the
resource for as well as on their time lags, see Exercise 5.29. The maximization of
resource utilization problem then becomes NP-hard, see Ramamoorthy and Ho [50].

5.7 Exercises

Exercise 5.25. Show that the formulation (5.2–5.3) is equivalent to the formulation
(3.37–3.40) for G(S) = H(S).

Exercise 5.26. Show that the Steiner–Yeomans method is a quota-divisor method
for any given T, see Józefowska et al. [26].

Exercise 5.27. Prove that the optimal bottleneck for the instance defined as follows
d1 = 1, d2 = 2, d3 = 9 and di = ∑i−1

j=1 d j = 2i−4×12 for i = 4, . . .,n equals 1
2 . Find

other classes of instances with the same optimal bottleneck. Hint: See Brauner and
Crama [42].

Exercise 5.28. Consider a job with processing time aR = 3 and the time lag aR = 5,
and a job with processing time bR = 4 and the time lag bR = 2. Assume that the
former is to be repeated 7 times and the latter 11 times daily. What are the optimal
sequences of doing the jobs daily? What is the sequence makespan? What are the
Jefferson’s and Adams’s sequence makespans?

Exercise 5.29. Show that the optimal allocation sequence for n≥ 3 depends on the
timings of the n processes. Hint: See Gaujal [45].

Exercise 5.30. Show that any algorithm that produces just-in-time sequences with
bottleneck B < 1 defines a house monotone, quota satisfying apportionment method
and vice versa, that is any house monotone, quota satisfying apportionment method
defines an algorithm producing just-in-time sequences with bottleneck B < 1.

5.8 Comments and References

The Theorem 5.1 belongs to Steiner and Yeomans [41], see also Brauner and
Crama [42] for further refinements. For matching algorithms in bipartite convex
graphs see Glover [51], Lipski and Preparata [52], Frederickson [53], Gallo [54],
and Gabow and Tarjan [55]. The proof that the bottleneck problem is in co-NP

104 5 Bottleneck Minimization

based on Theorem 5.5 is given in Brauner and Crama [42]. The upper bound given
in Theorem 5.6 comes from Brauner and Crama [42] and Theorem 5.7 was given by
Tijdeman [43], see also Meijer [56], in 1980. For most regular words see Gaujal [45]
and Vuillon [46]. The two cyclic processes sharing a common resource have been
analyzed by Gaujal [45] and Gaujal et al. [47]. Murata [49] gives a good review of
Petri Nets.

Chapter 6
Competition-Free Instances, The Fraenkel’s
Conjecture, and Optimal Admission Sequences

6.1 Introduction

A number of applications, we have seen some of them already in Chap. 3, deal with
sequences over a finite alphabet where each letter of the alphabet is required to occur
with a pre-specified rate r. The sequences are modeled generally as infinite however
for the rational rates the sequences become cyclic and then we can limit ourselves
to studying finite cycles. The sequence projection on a particular letter results in
an isomorphic zero-one valued sequence with the ones in the positions occupied
by the letter in the original sequence and zeros elsewhere. Thus, for each letter we
can consider the zero-one valued sequences and search for an optimal one for a
given letter regardless of all other letters. It turns out that the objective functions for
a single letter are often minimized by sequences with the letter being in positions
defined be the following formula

⌈

j
r
− θ

r

⌉

(6.1)

where j = 1,2, . . . for some phase θ , which may be letter-dependent, and 0≤ θ < 1.
This was the case for the just-in-time sequences minimizing the total and maximum
deviation, see Theorem 3.1. There, θ = 1

2 . It also holds for a class of multimodular
functions as proven by Hajek [6]. The multimodular functions were first studied by
Hajek [6], see Sect. 6.9 for their definition, and later by Altman et al. [7] as discrete
counterparts of continuos convex functions. Their most prominent application thus
far is to the load balancing problem in queueing networks, where the sequences
are designed to implement an admission policy, see Sect. 6.10 for details of this
policy. Hajek [6], and Altman et al. [7] prove that the expected queue sizes and
more generally expected travel times in queuing networks represented by stochastic
event graphs are multimodular functions.

The just-in-time sequences have the same goal of leveling the workloads through-
out the supply chain. There, the admission sequence is simply the order in which the

W. Kubiak, Proportional Optimization and Fairness, International Series in Operations 105
Research & Management Science 127, DOI 10.1007/978-0-387-87719-8 6,
c© Springer Science+Business Media LLC 2009

106 6 Competition-Free Instances, The Fraenkel’s Conjecture

models enter the assembly line. The model rates are determined by model forecasts
relative to the total demand for all models.

The admission sequences defined by (6.1) spread the letter evenly throughout the
sequence but do not require equal distances between any two consecutive occur-
rences of the letter. These distances may differ by at most one. Thus the sequence
(6.1) is a relaxation of the exact covering sequences, also referred to as the constant
gap sequences, which require equal distances between any two consecutive occur-
rences of the same letter. The sequences (6.1) are also known as Beatty sequences,
Beatty [57], see Sect. 6.8.

Though an optimal solution for a single letter is provided by (6.1) and it can be
easily calculated, the real problem begins with composing the individual optimal
sequences for each letter into a sequence for the whole alphabet for clearly the
positions of letters in optimal sequences for individual letters may overlap. Thus,
a question of how the overlap conflicts should be resolved arises. We have seen in
Chap. 3 that the conflict for just-in-time sequence can be resolved to optimality so
that we can efficiently find sequences that optimize various functions of deviations –
total or maximum. To our knowledge there is no such efficient, that is polynomial
time, algorithm known for the multimodular functions so the problem there remains
open.

An important related question also arises, namely, what are the letter rates for
which the simple composition of individual letter optimal sequences defined by (6.1)
leads to a feasible sequence for the whole alphabet? In other words, can we find the
letter phase θ in (6.1) so that the individual letter sequences do not overlap? This
simple composition is always possible for n = 2, we have seen this in Lemma 5.14
for one demand odd and the other even, we then have θ = 1

2 for either sequence,
but it also holds for both demands being odd. Then, we can just take θ1 = 1

2 +ε and
θ2 = 1

2 − ε for sufficiently small ε > 0. The case with the irrational rates is dealt
with by the Beatty theorem [57], see Theorem 6.32.

However, the case n = 2 does not capture the complexity of the problem that
remains open and leads to an intriguing and challenging conjecture. This conjecture
referred to as the Fraenkel’s Conjecture, see Sect. 6.8 for its details, claims that if
the rates are requested to be pairwise distinct, then the simple composition without
overlap is only possible if the demands are powers-of-two, thus the rates are as
follows

1
2n−1

,
2

2n−1
, . . .,

2n−1

2n−1
.

The conjecture was proven for n = 3 by Morikawa [58, 59], for n = 4 by Altman
et al. [7], and for n = 5 and 6 by Tijdeman [5,60]. As well, it was shown for the case
with a letter having rate at least 2

3 by Simpson [61]. Thus, the relaxation from the
constant gap sequences to the sequences (6.1) admits a unique instance for distinct
rates, if the conjecture holds. A well known result obtained independently by Mirsky
et al. [62] shows that there are no constant gap sequences for pairwise distinct rates.
Such can only be obtained if at least two letters have the same rates.

In this chapter we show that the competition-free instances introduced in Chap. 5
for the just-in-time sequence optimization define a special case of Fraenkel’s

6.2 The Competition-Free and the Power-of-Two Instances 107

Conjecture that we refer to as the symmetric Fraenkel’s Conjecture, see Sect. 6.2
for details. The competition-free instances admit solutions that sequence all copies
in their ideal positions and thus minimize all the total deviation (3.1) and the maxi-
mum deviation (3.37) objective functions with the symmetric Fi, for i = 1, . . .,n, at
the same time.

We then show that the composition-free instances must be power-of-two in-
stances for n ≥ 3. This will be done in Sects. 6.3–6.7. We also prove in Sect. 6.8
that if the phases in (6.1) are chosen to be all equal, then the only instances for
which the solutions can be possibly composed from optimal single letter solutions
without overlapping are the power-of-two instances. All sequences obtained accord-
ing to the parametric apportionment methods result in all phases being equal. How-
ever, we conjecture that the only parametric method for which the power-of-two
is competition-free is the Webster’s method. Finally, we discuss the multimodular
functions and some of their applications in Sects. 6.9–6.11.

6.2 The Competition-Free and the Power-of-Two Instances

We now turn to the discussion of competition-free instances of the just-in-time prob-
lem, that is the total and maximum deviation minimization, that we alluded to in
Chaps. 3 and 5. A competition-free instance d = (d1, . . .,dn) is any instance that has
all its ideal positions

⌈

2 j−1
2ri

⌉

(6.2)

for i = 1, . . .,n and j = 1, . . .,di pairwise different. We show in Chap. 5 that any
instance d = (d1,d2) with one demand being even and the other odd is competition-
free. We now consider the competition-free instances for n ≥ 3. We show that
the move from n = 2 to n ≥ 3 is rather a quantum leap that results in a unique
competition-free instance for any n ≥ 3. This unique instance is the power-of-two
instance where di = 2i−1 for i = 1,2, . . . ,n.

Without loss of generality we consider the standard instances only. Recall
from Chap. 1 that an instance is standard if 0 < d1 ≤ d2 ≤ ·· · ≤ dn, n ≥ 2, and
gcd(d1, . . . ,dn) = 1. Moreover, recall from Chap. 4 that there always exist cyclic
optimal solutions. Without loss of generality we assume that no two demands are
equal, that is 0 < d1 < d2 < .. . < dn. Otherwise, clearly an instance would not be
competition-free since all ideal positions for models with equal demands would
overlap. Our ultimate goal in this chapter is to prove the following theorem:

Theorem 6.1. For n ≥ 3, an instance is competition-free if and only if it is power-
of-two.

We prove this theorem by showing that for the competition-free instances any
demand di either divides the highest demand dn or its complement D− dn, this is
proven in Sect. 6.4. The consequence of this is that the highest demand dn must

108 6 Competition-Free Instances, The Fraenkel’s Conjecture

be even in competition-free instances, this is shown in Sect. 6.5. Our proof of
Theorem 6.1 is by induction, thus Sect. 6.6 shows that the theorem holds for n = 3.
Though we could have used the existing proof of Fraenkel’s conjecture for n = 3,
4, 5, and 6 instead, see Sect. 6.8 for details of Fraenkel’s Conjecture, we decided
to prove the case n = 3 differently to show that this can be done without the ap-
paratus developed for the special cases Fraenkel’s Conjecture in the literature, see
Tijdeman [5]. The proof is presented in Sect. 6.7 which puts all the arguments to-
gether. Before moving to the details of the proof we show that the competition-free
instances attain the absolute minimum of the bottleneck deviation which no other
instances are capable of attaining. This is shown in the next section.

6.3 Bottleneck of the Competition-Free Instances

We prove that the competition-free instances are exactly those that result in maxi-
mum absolute (or bottleneck) deviation being less than 1

2 . That is the competition-
free instances satisfy the following inequality

B∗ = min
S
{H(S) = max

i,k
|xik− kri|}<

1
2

(6.3)

subject to constraints (5.3) given in Chap. 5 and these are the only instances that do
this.

The following lemma implies that the instances with bottleneck less than 1
2 must

be competition-free.

Lemma 6.2. If B∗ < 1
2 , then each copy is sequenced in its ideal position.

Proof. By contradiction. Consider copy j of i sequenced in position
 2 j−1
2ri
�+ ∆,

where ∆≥ 1 and integer. Then x
i,
 2 j−1

2ri
� ≤ j−1. Moreover,
 2 j−1

2ri
�ri ≥ 2 j−1

2 = j− 1
2 .

Therefore, the deviation |x
i,
 2 j−1

2ri
�−

2 j−1
2ri
�ri| at point k =
 2 j−1

2ri
� is at least 1

2 , which

contradicts B∗ < 1
2 . Now, assume that copy j is sequenced in position
 2 j−1

2ri
�−∆,

where again ∆ ≥ 1 and integer. Then, x
i,
 2 j−1

2ri
�−1 ≥ j. Moreover, (
 2 j−1

2ri
�− 1)ri ≤

j− 1
2 , which means that the deviation |x

i,
 2 j−1
2ri
�−1
−(
 2 j−1

2ri
�−1)ri| is at least 1

2 . This

again contradicts B∗ < 1
2 and proves the lemma. ��

Moreover, no ideal vertex of the competition-free instances is integral.

Lemma 6.3. If B∗ < 1
2 , then no ideal vertex is integral.

Proof. By contradiction. Let the ideal vertex of copy j of i be integral. Then,

 2 j−1

2ri
�= 2 j−1

2ri
. By Lemma 6.2, x

i,
 2 j−1
2ri
� = j. Consequently, |x

i,
 2 j−1
2ri
� −

2 j−1
2ri
�ri|=

| j− (j− 1
2)|= 1

2 , which contradicts B∗ < 1
2 and proves the lemma. ��

6.3 Bottleneck of the Competition-Free Instances 109

We have the following two important characteristics of the competition-free in-
stances.

Lemma 6.4. D must be odd for the competition-free instances.

Proof. By contradiction. Suppose that D is even for some competition-free instance.
Then, there must be a positive even number of odd demands di for the instance is
standard. Let di and d j, i �= j, be two odd demands in the instance. Then, the middle

copies di+1
2 and

d j+1
2 of i and j respectively occupy the same ideal position D

2 . Thus,
the instance is not competition-free which leads to a contradiction. ��

Similarly, we show that exactly one di of a competition-free instance may be odd.

Lemma 6.5. For competition-free instances exactly one di, i = 1, . . . ,n, is odd .

Proof. Consider i with an odd di. Then, di = 2k + 1 for some integer k ≥ 0, and the
ideal vertex of copy k + 1≤ 2k + 1 of i is 2(k+1)−1

2ri
= D

2 . Consequently, each i with

an odd di has one of its ideal positions at
⌈

D
2

⌉

, thus there is no more than one odd di

in a competition-free instance. However, at least one di must be odd, otherwise, the
instance would not be standard since gcd(d1, . . . ,dn,D)≥ 2. ��

We are ready to show that the instances with small bottleneck that meet the con-
dition (6.3) are the same as the competition-free instances.

Theorem 6.6. The (6.3) holds subject to constraints (5.3) for an instance
d = (d1, . . . ,dn) if and only if d = (d1, . . . ,dn) is competition-free.

Proof. Lemma 6.2 implies that all D ideal positions
 2 j−1
2ri
� are pairwise different

for B∗< 1
2 . Thus, the instance is competition-free. Now, by contradiction, assume

that all D ideal positions Zi
j =
 2 j−1

2ri
� are pairwise different and B∗ ≥ 1

2 . Consider a
solution that places all copies in their ideal positions. We have

|xik− kri| ≥ 1
2
, (6.4)

for some some i and position k in this solution. Without loss of generality assume
that k is the earliest such position, that is for all i and k′ < k the deviation |xik′ − k′ri|
is less than 1

2 .
If k is between the ideal positions of copies j and j + 1 of i, that is

Zi
j ≤ k < Zi

j+1, (6.5)

for some copy j = 1, . . .,di−1 of i, then xik = j and either

j− kri ≥ 1
2

or j− kri ≤−1
2
.

110 6 Competition-Free Instances, The Fraenkel’s Conjecture

Then, however, we get either

Zi
j ≥

2 j−1
2ri

≥ k or
2 j + 1

2ri
≤ Zi

j+1 ≤ k,

which contradicts (6.5) as long as

2 j−1
2ri

> k.

Thus, consider
2 j−1

2ri
= k.

Then, for k > 1, we have xi,k−1 = j−1. Thus,

j−1 +(k−1)ri = j− kri−1− ri =−1
2
− ri <−1

2

which contradicts our assumption that k is the earliest position where (6.4) holds.
However, k > 1. Otherwise, for k = 1, we have

ri =
1
2
,

thus D = 2di is even. This leads to a contradiction since by Lemma 6.4 D must be
odd for any competition-free instance.

If k is before the ideal position of the first copy of i, that is

k < Zi
1, (6.6)

then

|0− kri| ≥ 1
2
.

Thus

k≥ Zi
1 ≥

1
2ri

, (6.7)

holds since (6.7) contradicts (6.6). Finally, if k is after the ideal position of the last
copy of i, that is

k > Zi
di
, (6.8)

then

|di− kri| ≥ 1
2
.

Thus

Zi
di
≥ 2di−1

2ri
≥ k, (6.9)

holds since (6.9) contradicts (6.8). Therefore, we reach a contradiction for any pos-
sible case for k, which proves that if all D ideal positions Zi

j =
 2 j−1
2ri
� are pairwise

different, then B∗< 1
2 . ��

6.4 Polygons of the Competition-Free Instances 111

For n = 2, the instance is competition-free if and only if one of demands d1 or d2

is odd and the other even which follows from Lemmas 5.13 and 5.15. Moreover, by
Theorem 5.10

B∗ <
1
2

if and only if one of demands d1 or d2 is odd and the other even. These two also
imply the following theorem.

Theorem 6.7. B∗ < 1
2 if and only if one of demands d1 or d2 is odd and the other

even.

6.4 Polygons of the Competition-Free Instances

We now show further characteristics of the competition-free instances for n ≥ 3.
The main one is that any di, for i = 1, . . . ,n− 1, divides either the highest demand
dn or its complement D−dn in a competition-free instance. Our proof is geometric,
it relies on natural symmetries embedded in n regular polygons inscribed in a circle
of circumference D and defined by the ideal vertices

2 j−1
2ri

, (6.10)

for i = 1, . . .,n and j = 1, . . .,di.
We begin with introducing the essential definitions and terminology. Take a circle

of circumference D, that is of the diameter D
π , and wrap the interval [0,D] around it

so that the ends 0 and D meet at the North Pole, the highest point 0 in Fig. 6.1. Call
the resulting circle a D-circle . The circle is split into D unit arcs [0,1], . . . , [D−1,0]
by the unit marks 0, . . . ,D−1. The points j + 1

2 , for j = 0, . . .,D−1 will be called
the half-points. The lowest point on the D-circle opposite the North Pole will be
called the South Pole. The South Pole is always at D

2 , equal 7 1
2 in Fig. 6.1, since D

must be odd for any competition-free instance by Lemma 6.9.

The ideal vertices 2 j−1
2ri

, j = 1, . . .,di, of i define a polygon P
1
2

i inscribed in

D-circle, see Fig. 6.2. The superscript 1
2 in our notation for the polygons will be-

come clear later in the chapter, namely in Sect. 6.8. It suffices to say now that the
polygons correspond to the Webster’s parametric method of apportionment that uses

parameter δ = 1
2 in calculating apportionments. The polygon P

1
2

i is a regular di-gone
with the side of length D

π sin 180◦
di

as observed in the following lemma.

Lemma 6.8. The ideal vertices for any i are equally spaced in [0,D] with the first
vertex at D

2di
= 1

2ri
, each next at a distance D

di
= 1

ri
from its immediate predecessor,

and the last one at D
2di

= 1
2ri

from D.

112 6 Competition-Free Instances, The Fraenkel’s Conjecture

Fig. 6.1 D-circle, D = 15

1
2
_

W E

N

S

Fig. 6.2 The d-gone P
1
2

inscribed in D-circle, D = 15
and d = 8

0
1

2

3

4

5

6

78
9

10

11

12

13

14

Proof. Follows immediately from the definition of ideal vertices, see (6.10).
Namely, the distance between vertex j+1 and vertex j equals 2(j+1)−1

2ri
− 2 j−1

2ri
= D

di
,

for j = 1, . . . ,di − 1. The first vertex is at 2−1
2ri

= D
2di

, and the last at 2di−1
2ri

=
D− D

2di
. ��

The vertices of different polygons never fall in the same unit arcs for the
competition-free instances.

Lemma 6.9. For the competition-free instances exactly one ideal vertex falls in the
open interval (i−1, i), for i = 1, . . . ,D.

6.4 Polygons of the Competition-Free Instances 113

Proof. For competition-free instances all D ideal positions
 2 j−1
2ri
� for i = 1, . . .,n

and j = 1, . . .,di are pairwise different. By Lemma 6.3 and Theorem 6.6, all
ideal vertices 2 j−1

2ri
, i = 1, . . .,n and j = 1, . . .,di are fractional which proves the

lemma. ��
Finally, we have the following useful observation.

Lemma 6.10. For the competition-free instances, 1 < D
dn

< 2 and D
di

> 2 for i =
1, . . . ,n−1.

Proof. Obviously, 1 < D
dn

since n≥ 3 and all demands are positive integers. We show

that D
dn

< 2 by contradiction. Suppose that D
dn
≥ 2, then D

2dn
≥ 1 and consequently

by Lemmas 6.8 and 6.9 the first and last ideal vertices of product n do not fall inside
[0,1] and [D−1,D] respectively. However, D

di
≥ D

dn
, for i = 1, . . . ,n−1 and standard

instances, thus, no ideal vertex falls in either [0,1] or [D− 1,D] which contradicts
Lemma 6.9 and proves that D

dn
< 2. We now show that D

di
> 2 for i = 1, . . . ,n− 1.

By contradiction, suppose that D
di
≤ 2 for some i = 1, . . . ,n− 1. Then, D

2di
≤ 1 and

consequently, i shares both [0,1] and [D− 1,D] with n, which again contradicts
Lemma 6.9 and proves that D

di
> 2 for i = 1, . . . ,n−1. ��

For each polygon P
1
2

i with di > 1, let us call its two closest to the North Pole
vertices (one to the left and one to the right of the North Pole) the North Pole vertices

of P
1
2

i . By Lemma 6.8, if di > 1, then the side that connects the North Pole vertices

of P
1
2

i is horizontal. The arc between the North Pole vertices will be referred to as

the North arc of P
1
2

i .
For an even di, by the symmetry with respect to the WE axis, there are two

vertices of P
1
2

i at the bottom of the D-circle opposite the North Pole vertices of P
1
2

i ,

we shall call them the South Pole vertices of P
1
2

i . Obviously, the side connecting
them is horizontal. The arc between the South Pole vertices will be referred to as the

South arc of P
1
2

i . Notice that the North Pole vertices are the same as the South Pole
vertices for di = 2.

We are now ready to prove the main result of this section.

Lemma 6.11. Consider a di-gone P
1
2

i with di > 1, i = 1, . . . ,n−1. Then, either

dn = αidi

for some even αi or
D−dn−di = βidi

for some even βi ≥ 2.

Proof. Consider an arbitrary arc ̂XY of D-circle between two adjacent vertices X

and Y of P
1
2

i , di > 1, i = 1, . . . ,n−1, see Fig. 6.3. By Lemma 6.9, X does not coincide

114 6 Competition-Free Instances, The Fraenkel’s Conjecture

A
B

X Y

a

b

c
d

e

f

Fig. 6.3 An arc ̂XY of D-circle bounded by the adjacent vertices X and Y of di-gone P
1
2

i

with unit marks a or b, and Y does not coincide with unit marks e or f . By Lemma
6.10, the length be of the arc ̂be is at least 1. Also by Lemma 6.10, a vertex, say A,

of P
1
2

n must be somewhere between unit marks b and c, and another vertex, say B,

of P
1
2

n must be somewhere between unit marks d and e, see Fig. 6.3. Observe, that
be = 1 implies A = B,c = e, and d = b.

Let α be the number of P
1
2

n vertices between b and e. We have α ≥ 1 and

(α−1)× 1
rn

< be.

On the other hand,

α× 1
rn

> be

since 1
rn

> 1+max{bA,Be}> bA+Be, where bA and Be are the lengths of the arcs
̂bA and ̂Be respectively. Therefore, the α satisfies the following inequalities

rnbe < α < rnbe+ 1 (6.11)

and thus it is a unique integer. However, be can be either
⌊

1
ri

⌋

or
⌊

1
ri

⌋

−1. Let β be

the unique α satisfying the inequalities (6.11) for be=
⌊

1
ri

⌋

and γ be the unique α

satisfying the inequalities (6.11) for be=
⌊

1
ri

⌋

−1. We have

0≤ β − γ < 1 + rn. (6.12)

Thus, for integer β and γ, the inequalities (6.12) imply either β = γ or β = γ + 1.
In the former case, we have dn = β di, and since there is an even number of vertices

of P
1
2

n on the North arc of P
1
2

i , then β is even. Thus, the lemma holds. In the latter

case, there are di > a≥ 1, ̂XY -arcs between adjacent vertices of P
1
2

i with be =
⌊

1
ri

⌋

and di−a, ̂XY -arcs between adjacent vertices of P
1
2

i with be =
⌊

1
ri

⌋

−1. The former

have γ +1 vertices of P
1
2

n each, the latter have γ vertices of P
1
2

n each. Thus, there are

6.5 Characteristics of Competition-Free Instances 115

⌊

1
ri

⌋

− γ−1 vertices of polygons P
1
2

k for k �= i and k = 1, . . .,n−1 on each arc ̂XY .

Consequently,

D−dn−di = (
⌊

1
ri

⌋

− γ−1)di = βidi. (6.13)

This completes the proof since by (6.11) and the definition of γ we have

γ−1 < rn(
⌊

1
ri

⌋

−1) <

⌊

1
ri

⌋

−1 <

⌊

1
ri

⌋

and thus βi ≥ 2. Finally, observe that since there is an even number of vertices of

polygons P
1
2

k for k �= i and k = 1, . . .,n−1 on the North arc of P
1
2

i , then

βi =
⌊

1
ri

⌋

− γ−1

is even. ��

6.5 Characteristics of Competition-Free Instances

The consequence of Lemma 6.11 and the well-known result of Mirsky et al. [62]
concerning the exact covering sequences is that any competition-free instance must
have dn even. The proof of this claim will be the main result of this section.

We now recall an important result obtained independently by Mirsky, Newman,
Davenport and Rado and concerning the exact covering sequences. For nonnegative
integer numbers a and b denote by (a,b) the sequence { jb+ a : j = 0,1,2, . . .}.
A finite set {(ai,bi) : 1 ≤ i ≤ n} is called an exact covering sequence if every non-
negative integer occurs in exactly one (ai,bi). We have the following result.

Lemma 6.12. If a set of pairs (ai,bi) for i = 1, . . .,n is an exact covering sequence,
then there are k and l such that k �= l and bk = bl = maxi{bi}
Proof. Suppose (ai,bi) for i = 1, . . .,n is an exact covering sequence. Then in the
series

n
∑

i=1
∑

k≥0
xai+kbi

the xn for each nonnegative integer n occurs exactly once. Therefore, we have

n
∑

i=1
∑

k≥0
xai+kbi =

n
∑

i=1

xai

1− xbi
=

1
1− x

. (6.14)

Let ω = e2iπ/r be a primitive rth root of unity for some integer r > 1, multiply
both sides of (6.14) by ω− x to get

116 6 Competition-Free Instances, The Fraenkel’s Conjecture

n
∑

i=1

(ω− x)xai

1− xbi
=

ω− x
1− x

.

Thus

∑
r divides bi

(ω− x)xai

1− xbi
+ ∑

r does not divide bi

(ω− x)xai

1− xbi
=

ω− x
1− x

.

By letting x→ ω we get

∑
r does not divide bi

(ω− x)xai

1− xbi
→ 0 and

ω− x
1− x

→ 0

and

∑
r divides bi

(ω− x)xai

1− xbi
→ ∑

r divides bi

−ωai

−biωbi−1 .

Thus,

∑
r divides bi

−ωai

−biωbi−1 = ∑
r divides bi

ωai+1

biωbi
= 0. (6.15)

By definition ωbi = 1 as long as r divides bi, thus (6.15) becomes

∑
r divides bi

ωai

bi
= 0.

If we take r = max{bi}, then

∑
r divides bi

ωai

bi
= ∑

r =bi

ωai

r
= 0.

However, ω �= 0 and thus the equation

∑
r =bi

ωai = 0

can only hold if there are at least two different i and j such that bi = b j = r. ��
We are now ready to show the main result of this section.

Lemma 6.13. For the competition-free instances dn must be even.

Proof. By contradiction. Suppose that dn is odd. Then, by Lemma 6.5 all di are even
for i = 1, . . .,n−1. Therefore, by Lemma 6.11, there are even λ1, . . .,λn−1 such that

D−dn = (λi + 1)di, (6.16)

for i = 1, . . .,n− 1. Consider the vertices of polygons P
1
2

1 , . . .,P
1
2

n−1. By (6.16) they
are equal

6.5 Characteristics of Competition-Free Instances 117

(2 j−1)(λi + 1)D
2(D−dn)

(6.17)

for i = 1, . . .,n−1, and the vertices of polygon P
1
2

n are equal

(2 j−1)D
2dn

. (6.18)

The polygon P
1
2
n with its vertices equal

(2 j−1)D
2(D−dn)

, (6.19)

has these vertices in different unit arcs than P
1
2

n which follows from Theorems 6.6
and 6.7 since dn is odd and D−dn is even. Thus, the set of unit arcs with the vertices

of polygons P
1
2

1 , . . .,P
1
2

n−1 given in (6.17) coincides with the set of unit arcs with the

vertices of the polygon P
1
2
n in (6.19). Therefore, the sets {(2 j− 1)(λi + 1) : j =

1,2, . . .} for i = 1, . . .,n− 1 are disjoint and their union covers the set {(2 j− 1) :
j = 1,2, . . .} of odd positive integers. Thus, the sets {(λi + 1) j− λi

2 : j = 1,2, . . .}
for i = 1, . . .,n are disjoint and their union covers N. Then, however, by the result of
Mirsky, Newman, Davenport and Rado given in Lemma 6.12, we must have

λl = λk

for some l �= k. and consequently

dl = dk

for some l �= k by (6.16), which leads to a contradiction. This proves that dn must
be even in a competition-free instance. ��

Finally, we have the following observation.

Lemma 6.14. For the competition-free instances, if dn−1 is even, then αn−1 = 2.

Proof. By Lemma 6.13 dn must be even in a competition-free instance. Thus, if dn−1

is even as well, then we have dn = αn−1dn−1for some αn−1 ≥ 2 by Lemma 6.11. We

have D
dn

(αn−1−1) < αn−1 since only vertices of P
1
2

n may occur between the North

Pole vertices of P
1
2

n−1, and by Lemma 6.9 each of them occupies a different unit arc,
hence D

dn
<

αn−1
αn−1−1 . Let us now consider the South Pole vertices of an even dn−1-

gone P
1
2

n−1. Again, the distance between the first and the last of these vertices of P
1
2

n is
D
dn

(αn−1−1). Extend these sequence of vertices by adding one vertex of P
1
2

n to each

end. The distance between the new end vertices then becomes D
dn

(αn−1 + 1). On
the other hand there are at least αn−1 + 3 unit arcs between these two end vertices:

118 6 Competition-Free Instances, The Fraenkel’s Conjecture

αn−1 occupied by the vertices of P
1
2

n , two occupied by the vertices of P
1
2

n−1, and

one occupied by an odd d-gone vertex, see Lemma 6.5. The d-gone is neither P
1
2

n

nor P
1
2

n−1 since both dn and dn−1are even. Consequently, D
dn

(αn−1 + 1) > αn−1 + 3,

and thus αn−1+3
αn−1+1 < D

dn
. Therefore, we have shown that αn−1+3

αn−1+1 < D
dn

<
αn−1

αn−1−1 , and

thus, 2
αn−1+1 < 1

αn−1−1 . This implies, αn−1 < 3, hence αn−1 = 2, which proves the
lemma. ��

6.6 The Competition-Free Instances for n = 3

This section shows that there is only one competition-free instance for n = 3. This
instance is d1 = 1,d2 = 2,d3 = 4. This is not a straightforward extension of the n = 2
case where the number of instances with small deviations was shown infinite. The
case n = 3 needs to be considered separately since our proof of Theorem 6.1 will be
done by induction on n beginning with n = 3. We begin by showing the following.

Lemma 6.15. We have either d1 = 1,d2 = α,d3 = 2α for some even α or d3 =
β d1d2, where d1 > 1, and integer β ≥ 1.

Proof. If the unique odd di, where i is either 1 or 2, does not divide d3, then by
Lemma 6.11

d1+(imod2) = D−d3−di = αidi.

Since d
1+(imod2) is even then again by Lemma 6.11

d3 = α
1+(imod2)d1+(imod2) = α

1+(imod2)αidi.

Thus, di ≤ gcd(di,d1+(imod2) ,d3) = 1, and the lemma follows from Lemma 6.14.
Now, let the odd di, where i is either 1 or 2, divides d3. Then by Lemma 6.11

d3 = α2d2 and d3 = α1d1.

Thus,

d2 =
α1d1

α2

which means that α2 divides α1d1. If α2 and d1 are relatively prime, then α2 di-
vides α1 and thus d1 ≤ gcd(d1,d2,d3) = 1, and again and the lemma follows from
Lemma 6.14. Otherwise, d1 = kx and α2 = lx, for some integer x ≥ 2, and k and l
being relatively prime. Then

d3 = kxα1,

d1 = kx

6.6 The Competition-Free Instances for n = 3 119

and

d2 =
α1k

l
.

Thus, l divides α1, that is
α1 = ml and d2 = mk.

Consequently, k≤ gcd(d1,d2,d3) = 1 and

d3 = xml

d1 = x

d2 = m.

This ends the proof. ��
For the former case in Lemma 6.15 we have.

Lemma 6.16. The instances with d1 = 1,d2 = α,d3 = 2α, where α ≥ 4 and even,
are not competition-free.

Proof. Consider copy α− k of 2 and copy 2(α− k) of 3, where 0≤ k≤ α−1. The
ideal vertex of the former is

(2α−2k−1)
2α

(3α + 1) = (3α− k)− 1
2
− k

α
− 1

2α
(6.20)

and the ideal vertex of the latter equals

(3α− k)+
1
4
− k

α
− 1

4α
. (6.21)

Let us chose k so that α
4

< k ≤ α
3

<
α
2

,

which is possible for α ≥ 6. Then

−1 <
1
4
− k

α
− 1

4α
< 0

and

−1 <−1
2
− k

α
− 1

2α
< 0.

Therefore, the two vertices fall in the same unit interval [(3α− k)−1,3α − k] and
thus the instance is not competition free. For α = 4 we easily check that (6.20) for
k = 1 equals

(3α− k)− 1
2
− k

α
− 1

2α
= (3α−1)− 7

8

whereas (6.21)

(3α− k)+
1
4
− k

α
− 1

4α
= (3α−1)− 1

16
.

120 6 Competition-Free Instances, The Fraenkel’s Conjecture

Thus again the two fall in the same unit interval [(3α − k)− 1,3α − k] and thus
again the instance is not competition free. ��

For the latter case in Lemma 6.15 we have.

Lemma 6.17. The instances with d3 = β d1d2, where d1 > 1, and integer β ≥ 1, are
not competition-free.

Proof. If β d1 is odd, then d2 must be even by Lemma 6.5. Then, however by
Lemma 6.14, β d1 = 2 and we get a contradiction. Therefore, β d1 must be even.
If at the same time d2 is even, then again by Lemma 6.14, β d1 = 2 and thus d1 = 2
which leads to a contradiction since then all three, d1,d2 and d3 are even and thus
gcd(d1,d2,d3)≥2. Hence d2 must be odd. Now, consider

l =
(2 j−1)d3

2d1
=

(2 j−1)β d2

2
,

where j = 1, . . .,d1. If β is odd, then

k = l +
1
2

is a positive integer less than d3, and the ideal vertex for copy k of 3 is then

(2k−1)D
2d3

=
lD
d3

=
(2 j−1)d3

2d1
× D

d3
=

(2 j−1)D
2d1

the same as the ideal vertex for copy j of 1, thus the instance is not competition-free.

Finally, consider the case of even β . Suppose that
⌊

d2
d1

⌋

is even, then there are a

sides of d1-gone with the odd number
⌈

d2
d1

⌉

of d2-gone vertices between the ver-

tices of each of these sides, and by symmetry with respect to the NS axis the a is
even. Observe that by symmetry with respect to the NS axis, there is an even num-

ber
⌊

d2
d1

⌋

of d2-gone vertices between the North Pole vertices of d1-gone. Therefore,

the remaining (d1−a) sides of d1-gone are with the even
⌊

d2
d1

⌋

number of d2-gone

vertices between the vertices of each of these sides. Then, however

d2 = a

⌈

d2

d1

⌉

+(d1−a)
⌊

d2

d1

⌋

which is a contradiction since the right hand side is even and d2 is odd. Thus,
⌊

d2
d1

⌋

must be odd. Then, consider integers

l =
β kd1

2
and j =

k + 1
2

,

where k = 1, . . .,d2 and odd. The ideal vertex for copy j of 2 is

6.7 Putting it Together 121

kD
2d2

=
kβ d1

2
+
⌊

k
2

⌋

+
1
2

+
kd1

2d2

and the ideal vertex for copy l of 3 is

kD
2d2
− D

2d3
=

kβ d1

2
+
⌊

k
2

⌋

+
kd1

2d2
− d1 + d2

2d3
.

For k =
⌊

d2
d1

⌋

, we have

0 <
1
2

+
kd1

2d2
< 1.

Note that
⌊

d2
d1

⌋

< d2
d1

since odd d2 is not divisible by even d1. Thus, it remains to

show that

0 <
kd1

2d2
− d1 + d2

2d3

for the k. This is equivalent to showing that

1 +
d2

d1
<

⌊

d2

d1

⌋

β d1

or
3

2
⌊

d2
d1

⌋ + 1≤ β d1

which holds since
⌊

d2
d1

⌋

≥ 1 and β d1 ≥ 4. Thus, ideal vertex for copy j of 2 and the

ideal vertex for copy l of 3 both fall in the same interval [kβ d1
2 +

⌊

k
2

⌋

, kβ d1
2 +

⌊

k
2

⌋

+1]
and the instance is not competition-free. This ends the proof. ��

The main result of this section follows.

Theorem 6.18. The optimal solution to (6.3) for a standard instance d = (d1,d2,d3)
has value B∗< 1

2 if and only if d1 = 1,d2 = 2 and d3 = 4 and B∗ = 3
7 .

Proof. Follows immediately from Theorem 6.21 and Lemmas 6.15–6.17. ��

6.7 Putting it Together

We are now ready to prove Theorem 6.1. The induction is based on the following
key lemma.

Lemma 6.19. If an instance (d1, . . .,dn) is competition-free, then so is the instance
(d1, . . .,dn−1), n≥ 2.

122 6 Competition-Free Instances, The Fraenkel’s Conjecture

Proof. We have two cases to consider. First, suppose that the unique odd di in
the competition-free instance (d1, . . .,dn) does not divide dn. Consider the instance
(d1, . . .,dn−1) and

D′ =
n−1
∑

k=1
dk = D−dn.

We then have the ideal vertex of copy j = 1, . . .,di of i at

2 j−1
2r′i

=
(2 j−1)D′

2di
=

(2 j−1)(D−dn)
2di

. (6.22)

By Lemma 6.11
D′ = D−dn = (βi + 1)di (6.23)

where βi + 1 is odd. Thus from (6.22) and (6.23) we get

2 j−1
2r′i

=
(2 j−1)(βi + 1)

2
. (6.24)

Since (2 j− 1)(βi + 1) is odd, then the copies j = 1, . . .,di of i have all their ideal
vertices at the half-points. The distance between any two adjacent vertices of i is
thus βi +1, and the first vertex of i is at the half-point βi+1

2 . Moreover, for any k �= i
and k = 1, . . .,n−1, its ideal vertices are at

2 j−1
2r′k

=
2 j−1

2rk
− (2 j−1)

αk

2
(6.25)

where j = 1, . . .,dk. Thus, any ideal vertex of k advances to the left by an integer
(2 j−1)αk

2 , since αk is even by Lemma 6.11, from its original vertex 2 j−1
2rk

. It remains
to show that each of the vertices in (6.24) and (6.25) occupies a different unit interval
(l−1, l), l = 1, . . .,D′, that is there is exactly one ideal vertex of (d1, . . .,dn−1) that
falls into (l − 1, l), and thus the instance is competition-free. The proof uses the
D-circle introduced in Sect. 6.4. Let CD be the D-circle for the competition-free
instance (d1, . . .,dn−1,dn). Delete all unit arcs from CD with ideal vertices of dn-gone
to obtain a circle C. In this circle, each unit arc is occupied by exactly one vertex
since it is the case in the original circle CD. Moreover, by Lemma 6.11, exactly βi

unit arcs with the vertices of dk-gones, k �= i and k = 1, . . .,n− 1, remain between
any two adjacent vertices of di-gone after the deletion. Hence, the di-gone vertices
are in the unit arcs

[⌊

(2 j−1)(βi + 1)
2

⌋

,

⌈

(2 j−1)(βi + 1)
2

⌉]

. (6.26)

of C. Observe, however, that these vertices may not necessarily coincide with the
half-points in (6.24) Moreover, Lemma 6.11 guarantees that the removal of the unit
arcs with the ideal vertices of dn-gone from CD advances ideal vertex j of k �= i and
k = 1, . . .,n−1 by

6.7 Putting it Together 123

jαk− αk

2
with respect to the original position

⌈

2 j−1
2rk

⌉

,

thus the vertices of all dk-gones, k �= i and k = 1, . . .,n− 1 coincide with those in

(6.25). Finally, the vertices of the di-gone in the C-circle can be moved to the half-
points inside of their unit arcs (6.26) which results into a CD′ -circle with the ver-
tices define by (6.24) and (6.25) for the instance (d1, . . .,dn−1). Thus the instance
(d1, . . .,dn−1) is competition-free.

Now assume that the unique odd di in the instance (d1, . . .,dn) divides dn We
then have D

di
= αi + D′

di
, for i = 1, . . . ,n−1. Again, take the D-circle for the original

instance and delete from it all unit arcs with the ideal vertices of the dn-gone inside.
By Lemma 6.11, exactly αk unit arcs are deleted between any two adjacent vertices
of di-gone for i = 1, . . .,n−1. Consequently, the distance between any two adjacent
vertices of dk-gone becomes D′

dk
, and we can easily obtain a D′-circle for the instance

(d1, . . .,dn−1). with exactly one ideal vertex in each unit arc. Thus, the instance
(d1, . . .,dn−1) is competition-free. ��

This lemma is key in the following theorem.

Theorem 6.20. If an instance (d1, . . .,dn) is competition-free, then di = 2i−1 for i =
1, . . . ,n, n≥ 3.

Proof. By induction on n ≥ 3. The theorem holds for n = 3 by Theorem 6.18. Let
us assume that the theorem holds for n = k ≥ 3. We prove that it also holds for
n = k + 1. Consider a competition-free instance (d1, . . .,dn). By Lemma 6.19, the
instance (d1, . . .,dn−1) is competition-free. Thus, by the induction assumption di =
2i−1 for i = 1, . . . ,n− 1. Therefore, dn−1 is even, and by Lemma 6.14, αn−1 = 2.
Therefore, by Lemma 6.11 dn = 2dn−1 = 2n−1, hence di = 2i−1 for i = 1, . . . ,n, and
the theorem holds for n = k + 1. This completes the proof since by induction the
theorem holds for any n≥ 3. ��

Thus, it remains to show that the opposite also holds.

Theorem 6.21. The instance (d1, . . .,dn) with di = 2i−1 for i = 1, . . .,n has B∗ =
2n−1−1

2n−1 < 1
2 and so is competition-free.

Proof. Consider the ideal positions for the instance (d1, . . .,dn) with di = 2i−1 for
i = 1, . . .,n. We have the following ideal position for copy j = 1, . . .,2i−1 of i,

Zi
j =

⌈

2 j−1
2ri

⌉

= (2 j−1)2n−i−
⌊

2 j−1
2i

⌋

= (2 j−1)2n−i,

124 6 Competition-Free Instances, The Fraenkel’s Conjecture

and thus observe that all ideal positions for this instance are pairwise different. Now,

let us consider the earliest E(i, j) =
⌈

j−B
ri

⌉

and the latest L(i, j) =
⌊

j−1+B
ri

+ 1
⌋

positions for copy j of i and the bottleneck

B =
2n−1−1
2n−1

.

We have

E(i, j) =
⌈

j−B
ri

⌉

= (2 j−1)2n−i−
⌊

j−1
2i−1

⌋

= (2 j−1)2n−i = Zi
j

and

L(i, j) =
⌊

j−1 + B
ri

+ 1

⌋

= (2 j−1)2n−i−
⌊

2i−1− j
2i−1

⌋

= (2 j−1)2n−i = Zi
j.

Therefore, a feasible sequence for the instance (d1, . . .,dn) with di = 2i−1 for i =
1, . . .,n and B = 2n−1−1

2n−1 < 1
2 exists. The sequence simply has copy j of i in its ideal

position Zi
j. Finally, by Lemma 4.22 no other sequence for the instance di = 2i−1 for

i = 1, . . .,n with B < 1
2 exists. Otherwise, the sequence would have some copy j of

some i in a position different then Zi
j, which would result in a bottleneck at least 1

2 .

Therefore, B∗ = 2n−1−1
2n−1 . ��

It is clear now that Theorem 6.1 follows immediately from Theorems 6.20
and 6.21.

6.8 Fraenkel’s Conjecture and Competition-Free Instances

We now explore Theorem 6.1 in the context of the well-known Fraenkel’s Conjec-
ture which we now define. For rational numbers α ≥ 1 and β denote by S(α,β)
the sequence {� jα + β	 : j = 1,2, . . .}. A finite set {S(αi,βi) : 1 ≤ i ≤ n} is called
an exact cover if every positive integer occurs in exactly one S(αi,βi). We have the
following conjecture of Fraenkel, see also Tijdeman [5].

Conjecture 6.22 (Fraenkel). If {S(αi,βi) : 1 ≤ i ≤ n} is an exact cover with α1 >
.. . > αn and n≥ 3, then {α1, . . . ,αn}= { 2n−1

2i−1 : i = 1, . . . ,n}.
The Fraenkel’s Conjecture remains open. However, the following results have

been shown. Simpson [61] proves the following theorem.

Theorem 6.23. The Fraenkel’s Conjecture is vacuously true for αn ≤ 3
2 or equiva-

lently for rn ≥ 2
3 .

Morikawa [58, 59], and Altman et al. [7], and Tijdeman [5, 60] show the
following.

6.8 Fraenkel’s Conjecture and Competition-Free Instances 125

Theorem 6.24. The Fraenkel’s Conjecture holds for n = 3, 4, 5, and 6.

Uspensky [63] shows that.

Theorem 6.25. The Fraenkel’s Conjecture is vacuously true whenever
βi = 0 for i = 1, . . .,n, or βi = 1 for i = 1, . . .,n.

Proof. Uspensky proves that the set {S(αi,0) : 1≤ i≤ n} is never an eventual exact
cover for real αi ≥ 1, i = 1, . . .,n and n≥ 3. This also implies that no set {S(αi,1) :
1 ≤ i ≤ n} is an eventual exact cover for real αi ≥ 1, i = 1, . . .,n. These two imply
the theorem. ��

We now show the following theorem that we refer to as the symmetric Fraenkel’s
Conjecture.

Theorem 6.26. If {S(αi,−αi
2) : 1≤ i≤ n} is an exact cover with α1 > .. . > αn and

n≥ 3, then {α1, . . . ,αn}= { 2n−1
2i−1 : i = 1, . . . ,n}.

Proof. If {S(αi,βi) : 1 ≤ i ≤ n} is an exact cover, then ∑n
i=1

1
αi

= 1. Now, let D be

the common denominator of 1
α1

, . . . , 1
αn

. Then, we have 1
α1

= d1
D , . . . , 1

αn
= dn

D , where
d1, . . . ,dn are some positive integers, and D = ∑n

i=1 di. Without loss of generality
gcd(d1, . . . ,dn) = 1. Consider, the interval [0,D]. Since {S(αi,−αi

2) : 1 ≤ i ≤ n} is

an exact cover, then all jαi− αi
2 = (2 j−1)α j

2 = (2 j−1)
2ri

, j = 1, . . .di are fractional.

This claim holds as hollows. Suppose that there is j and i such that (2 j−1)
2ri

=
(2 j−1)D

2di
is integral. Hence, since 2 j− 1 is odd, then D must be even. Therefore,

there must be an even number of odd numbers among d1, . . . ,dn. Otherwise, either
all demands are even and then gcd(d1, . . . ,dn) ≥ 2 or else there is an odd number
of odd demands and then D is odd, both cases lead to a contradiction. Now, let
da = 2k−1 and db = 2l−1, for some positive integers k and l, be two odd demands
and a �= b. Obviously, k≤ da and l ≤ db and thus (2k−1)D

2da
= D

2 of a and (2l−1)D
2db

= D
2

of b are equal and thus {S(αi,−αi
2) : 1 ≤ i ≤ n} is not an exact cover, which leads

to a contradiction.
Therefore, the instance (d1, . . . ,dn) is competition-free. Thus, by Theorem 6.20,

di = 2i−1, i = 1, . . . ,n. Consequently the symmetric Fraenkel’s Conjecture
holds. ��

This theorem immediately implies the Fraenkel’s Conjecture for the sets of the
form {S(αi,−αi

2 + a) : 1≤ i≤ n}, where a is an integer, and {S(αi,−αi
2 + λi) : 1≤

i ≤ n}, where − 1
2n < λi < 1

2n . What happens for other forms of βis seems mostly
open. However, we show that the conjecture holds for the parametric case as well.

For a rational numbers α ≥ 1 and 0 ≤ δ ≤ 1, define the parametric sequence as
follows

jα +(δ −1)α (6.27)

for j = 1,2, . . . The parametric sequences are related to the parametric sequences of
apportionment as follows. Consider the set of parametric sequences {S(αi,(δ − 1)

126 6 Competition-Free Instances, The Fraenkel’s Conjecture

αi) : 1≤ i≤ n}. If the set is an exact cover, then ∑n
i=1

1
αi

= 1. Let D be the common

denominator of 1
α1

, . . . , 1
αn

. Then, 1
α1

= d1
D , . . . , 1

αn
= dn

D , for some positive integers
d1, . . . ,dn, and D = ∑n

i=1 di. Without loss of generality gcd(d1, . . . ,dn) = 1. We then
have

jαi +(δ −1)αi = (j +(δ −1))αi =
j +(δ −1)

ri
(6.28)

for j = 1, . . .di. Thus the sequence corresponds to a δ -parametric sequence

di

j +(δ −1)
.

The Adams’s for δ = 0, the Jefferson’s for δ = 1, and the Webster’s for δ = 1
2 .

Therefore, by Theorem 6.25 the Fraenkel’s conjecture is vacuously true for δ = 1
or the Adam’s sequence, and for δ = 0 or the Jefferson’s sequence. We have the
following general theorem for the parametric sequences.

Theorem 6.27. If {S(αi,(δ − 1)αi) : 1 ≤ i ≤ n} is an exact cover with 0 ≤ δ ≤ 1,
α1 > .. . > αn and n≥ 3, then {α1, . . . ,αn}= { 2n−1

2i−1 : i = 1, . . . ,n}.
Proof. By Theorem 6.25 we may assume 0 < δ < 1. Rewrite (6.28) as follows

j +(δ −1)
ri

=
2 j−1

2ri
+

ε
ri

,

where− 1
2 < ε = δ − 1

2 < 1
2 . The vertices

2 j−1
2ri

,

for i = 1, . . .,n and j = 1, . . .,di define a regular di-gone P
1
2

i and the vertices

2 j−1
2ri

+
ε
ri

,

for i = 1, . . .,n and j = 1, . . .,di define a regular di-gone denoted by P
1
2 +ε

i . The

polygon P
1
2 +ε

i is obtained from P
1
2

i by rotating the latter by the angle

θi =
2π |ε|

di
,

i = 1, . . .,n, clockwise if ε > 0, or counter-clockwise otherwise. Assume ε > 0. Sup-

pose that the polygons P
1
2 +ε

i make up an exact cover for (d1, . . .,dn) which is not the
power-of-two instance. Rotate them by θi counter-clockwise to obtain the polygons

P
1
2

i , i = 1, . . .,n. Consider those polygons after the rotation now. By Theorem 6.20

6.8 Fraenkel’s Conjecture and Competition-Free Instances 127

the instance (d1, . . .,dn) is not competition-free, thus there is a unit arc [k,k + 1] of
the D-circle, and by the NS-symmetry a unit arc [D− (k + 1),D− k], that includes

vertices of at least two polygons P
1
2

i and P
1
2
j , i �= j, after the rotations. Without

loss of generality let us assume that the k is smallest possible. Thus, each unit arc
[0,1], . . ., [k−1,k], as well as each unit arc [D,D−1], . . ., [D− (k−1),D− k] by the

NS-symmetry, includes at most one vertex of the polygons P
1
2

i , i = 1, . . .,n. Thus,

there are l ≤ k vertices of polygons P
1
2

i , i = 1, . . .,n in each of the arcs [0,k) and
[D− k,D), and l +2 in the arc [D− (k +1),D). This, however, leads to a contradic-
tion as follows. Consider the arcs R = [0,k) and L = [D− (k + 1),D). If l < k, then

the clockwise rotation of polygon P
1
2

i by, see Fig. 6.4

θi <
π
di

, (6.29)

for i = 1, . . .,n, results into at most l vertices of polygons P
1
2 +ε

i , i = 1, . . .,n, in
the arc R which leads to a contradiction since the polygons make up an exact cover
and thus there must be exactly k of then in R. Otherwise, that is if l = k, the same

rotation results into at least l + 2 vertices of polygons P
1
2 +ε

i , i = 1, . . .,n, in the
arc L. This leads to a contradiction again since then l +2 = k+2, and there are only
k+1 unit arcs in L. Therefore, the Fraenkel’s Conjecture holds for all apportionment
parametric sequences for ε >. However, a similar reasoning proves the ε < 0 case
as well, and the ε = 1

2 case is shown in Theorem 6.26. ��

θn

di

2π

dj

2π

di

k

k+1

D-K

D-(K+1)

dj

π
π

θj <
θi <

Fig. 6.4 The North arcs of polygons P
1
2

n , P
1
2

i , and P
1
2
j in the rotations by θn, θi, and θ j respectively

128 6 Competition-Free Instances, The Fraenkel’s Conjecture

6.9 Regular Sequences and Multimodular Functions

We begin by introducing regular sequences (words). The main problem is to find,
if any exists, a regular word for given rates with which letters should occur in the
sequence. Though this problem remains open, we provide a summary of condi-
tions under which such words exist. Our discussion relies on the results on the
competition-free instances and the symmetric Fraenkel’s Conjecture discussed in
Sect. 6.8.

6.9.1 Regular Sequences

For the rate 0 < r < 1 and the phase 0≤ θ < 1 the zero-one sequence

σ(r,θ) = �(j + 1)r + θ	−� jr + θ	 (6.30)

j ∈ Z is called a regular sequence (or a Sturmian word if r is irrational). Let
{a1, . . .,an} be a finite alphabet. Let {a1, . . .,an}Z be the set of infinite sequences
on {a1, . . .,an}. For the letter ai and sequence s ∈ {a1, . . .,an}Z let I(s,ai) ∈ {0,1}Z
be the indicator in s of the letter ai, that is I(s,ai) j = 1 if and only if s j = ai. An
example of the concepts just introduced follows.

Example 6.28. Consider a periodic sequence s∞ with the period

s = abacaba.

The three indicators I(s,a), I(s,b), and I(s,c) are

. . .0101010110101010. . .

. . .1001000100100010. . .

and
. . .01000000100000010. . .

with the periods 1010101, 0100010, and 0001000 respectively.

A sequence s is said to have asymptotic rate r of the letter ai if

lim
N→∞

1
N

N

∑
k=1

I(s,ai)k = r

Observe that s in Example 6.28 has asymptotic rate 4
7 of the letter a, 2

7 of the
letter b and 1

7 of the letter c.
For a zero-one sequence s∈ {0,1}Z, the support in s of 1 is the set of all positions

in s with the value 1

6.9 Regular Sequences and Multimodular Functions 129

S = { j ∈ Z : s j = 1}.
For the regular word σ(r,θ) the support is by (6.30) as follows

S =
{⌈

j
r
− θ

r

⌉

−1 : j ∈ Z

}

.

The main problem considered in this section can be formulated as follows, see
also Altman et al. [7].

Problem 6.29. Given the rates r1, . . .,rn that sum up to 1, is there a sequence s ∈
{a1, . . .,an}Z such that

I(s,ai) = σ(ri,θi) (6.31)

for some 0≤ θi < 1 for all i = 1, . . .,n?

Since the sequence in (6.31)

σ(ri,θi) = �(j + 1)ri + θi	−� jri + θi	 (6.32)

for j = 1,2, . . . has its support

Si =
{⌈

j
ri
− θi

ri

⌉

−1 : j ∈ Z

}

and all supports are shifted by −1 we can consider supports

S′i =
{⌈

j
ri
− θi

ri

⌉

: j ∈ Z

}

instead. Therefore, problem (6.29) is equivalent to the following problem.

Problem 6.30. Given the rates r1, . . .,rn, are there phases θ1, . . .,θn such that the sets

S′i =
{⌈

j
ri
− θi

ri

⌉

: j ∈ Z

}

for i = 1, . . .,n make up an exact cover of Z, that is each integer is in exactly one
set S′i?

The problem is a challenging open problem. Graham [64] proves that if all the
rates r1, . . .,rn are distinct, then all of them are rational. However, rational rates
imply that the sequences (6.32) are cyclic. Therefore, the Z in the problem (6.30)
can be replaced by the set N of positive integers. Then, however, the Fraenkel’s
conjecture claims that the only rates must be power-of-two rates. We show in
Theorem 6.27 that if the sequence s ∈ {a1, . . .,an}N is set up according to the para-
metric methods of apportionment, then this conjecture holds. It also holds uncondi-
tionally for n = 3, 4, 5, and 6 as well as vacuously for any instance with maximum
rate max{ri} ≥ 2

3 , see Sect. 6.8. Moreover, we observe that for this question to have

130 6 Competition-Free Instances, The Fraenkel’s Conjecture

an affirmative answer not all phases θi, i = 1, . . .,n, may be greater than 1
2 and not

all of them may be less than 1
2 . This follows from the same arguments as used in

the proof of Theorem 6.27. Finally, by Lemmas 5.14 and 5.15 the regular word is
always possible for n = 2, see also the proof of Lemma 6.31 below.

Although a complete characterization of all the rates for which a sequence
s ∈ {a1, . . .,an}Z satisfying (6.31) exists is an open problem even if some rates are
allowed to equal, we have the following result for two distinct rates, see also Altman
et al. [7].

Lemma 6.31. If the rates r1, . . .,rn are made up of at most two distinct numbers,
then they admit a regular sequence.

Proof. Let r1 = . . . = rk = p and rk+1 = . . . = rn = q. Consider an instance with
n = 2, R1 = kp and R2 = (n− k)q. If p is rational, then p = d1

D and q = d2
D and

D = kd1 +(n−k)d2, for some positive integers d1 and d2. Without loss of generality
gcd(d1,d2) = 1. Let gcd(k,n− k) = g, then k′ = k

g and m′ = n−k
g and D′ = k′d1 +

m′d2. The instance (k′d1,m′d2) is a standard instance such that R1 = k′d1
D′ and R2 =

m′d2
D′ . For one of k′d1 and m′d2 being odd and the other even, Lemma 5.14 shows

a solution s which is a regular word with θ = 1
2 for either letter. The solution can

be made to work for both k′d1 and m′d2 being odd as well. Then, we can just take
θ1 = 1

2 + ε and θ2 = 1
2 − ε for the two letters respectively and for sufficiently small

ε > 0. Thus the sequence sg, that is s concatenated g times is a regular word for the
instance (kd1,(n− k)d2). In that sequence, we replace the lth, the (k + l)th, . . ., the
(k(d1−1)+ l)th occurrence of the letter a by the letter l, l = 1, . . .,k, respectively,
and we replace the lth, the mth, the ((n− k)+m)th, . . . , the ((n− k)(d2−1)+m)th
occurrence of the letter b by the letter m, m = 1, . . .,n−k, respectively. The resulting
sequence is regular for the alphabet {1, . . .,n} and the rates r1, . . .,rk, rk+1, . . .,rn.

If p is irrational, then by the Beatty theorem, see Theorem 6.32 below, the se-

quences
⌊

j
kp

⌋

and
⌊

j
(n−k)q

⌋

, j = 1,2, . . . partition N since kp+(n− k)q = 1. In that

sequence replace the lth, the (k+ l)th, . . . , the (k j+ l)th, etc. occurrence of the letter
a by the letter l, and replace the lth, the ((n− k)+ m)th, . . . , the ((n− k) j + m)th,
etc. occurrence of the letter b by the letter m. By the Beatty theorem the resulting se-
quences are regular. The sequences also have the asymptotic rates as requested. ��

The following theorem is referred to in the proof and it was first shown by
Beatty [57].

Theorem 6.32 (Beatty). The sequences {�α j	 : j = 1,2, . . .} and {�β j	 : j =
1,2, . . .} partition N if and only if

(i) 1
α + 1

β = 1.
(ii) α is irrational.

Finally, the following lemma gives a relative way of generating regular word, see
Altman et al. [7] for its proof, for given rates for which the regular word already
exists.

6.9 Regular Sequences and Multimodular Functions 131

Lemma 6.33. If the rates r1,r2, . . .,rn admit a regular sequence, then so do the rates
r1

k
, . . .,

r1

k
︸ ︷︷ ︸

k−times

,r2,. . .,rn where the the letter a1 with the rate r1 is replaced by k ≥ 1

distinct letters a1
1, . . .,a

k
1 with the rate r1

k for each.

We finish this section with an example of regular words generated in the special
cases discussed earlier in this section.

Example 6.34. The power-of-two instance d = (1,2,4,8,16) admits a regular se-
quence with period

abacabadabacabaeabacabadabacaba.

Thus, by Lemma 6.33 the instance d1 = (1,2,4,4,4,4,4,8) admits a regular se-
quence, its period is

xbyczbwdxbyczbwexbyczbwdxbyczbw.

The instance d′ = (9,10) admits a regular sequence since n = 2. The sequence
has period

abababababababababa.

Thus, by Lemma 6.31 the instance with two different demands d′ = (3,3,3,10)

axayazaxayazaxayaza.

is regular.

6.9.2 Multimodular Functions

The multimodular functions were introduced by Hajek [6] as follows. Define vectors
v0,v1, . . .,vm ∈ Z

m

v0 = (−1,0, . . .,0)
v1 = (1,−1, . . .,0)
v2 = (0,1,−1, . . .,0)

. . .

vm = (0,0,0, . . .,1)

Let V = {v0,v1, . . .,vm}. A function J on Z
m is multimodular if for all u ∈ Z

m,

J(u + v)+ J(u + w)≥ J(u)+ J(u + v + w)

132 6 Competition-Free Instances, The Fraenkel’s Conjecture

for v,w ∈V and v �= w. A sequence of integers

s = s1s2· · ·

is said to have an asymptotic mean r if

lim
n→∞

1
n

n
∑

k=1
sk = r.

We let the multimodular function J on Z
m to “slide” along an infinite sequence of

integers s with a given asymptotic mean r,

lim
n→∞

inf
1
n

n

∑
k=1

J(sk,sk+1, . . .,sk+m−1) (6.33)

to calculate the asymptotic average of J along the s. The following theorem is due
to Hajek [6]. It gives a lower bound for the asymptotic average (6.33), and it also
shows that the bound is attained on regular words.

Theorem 6.35. Let J be a multimodular function on Z
m. If s is any integer sequence

with asymptotic mean r then

lim
n→∞

inf
1
n

n

∑
k=1

J(sk,sk+1, . . .,sk+m−1)

≥
∫ 1

0
J((�r + φ	 ,�2r + φ	−�r + φ	 , . . .,
�mr + φ	−�(m−1)r + φ))dφ

In case of a regular word s = σ(r,θ) for some 0≤ θ < 1

lim
n→∞

1
n

n

∑
k=1

J(σ(r,θ)k,σ(r,θ)k+1, . . .,σ(r,θ)k+m−1)

=
∫ 1

0
J((�r + φ	 ,�2r + φ	−�r + φ	 , . . .,
�mr + φ	−�(m−1)r + φ))dφ .

Altman et al. [7, 65] extend this result as follows. Let J1, . . .,Jn be multimodular
functions on Z

m and let g : R
n → R be any increasing linear function. Consider

sequences s ∈ {a1, . . .,an}Z with asymptotic rates ri for the letter ai so that

r1 + r2 + · · ·+ rn = 1.

They prove the following theorem.

Theorem 6.36. Let J1, . . .,Jn be a multimodular functions on Z
m. If s∈{a1, . . .,an}Z

with asymptotic rates ri for the letter ai, then

6.10 Optimal Admission of Arrivals 133

lim
N→∞

inf
1
N

N

∑
k=1

g(J1(I(s,a1)k, I(s,a1)k+1, . . ., I(s,a1)k+m−1), . . .,

Jn(I(s,an)k, I(s,an)k+1, . . ., I(s,an)k+m−1))

≥ g
(
∫ 1

0
J1((�r1 + φ	 ,�2r1 + φ	−�r1 + φ	 , . . .,�mr1 + φ	
−�(m−1)r1 + φ))dφ ,

∫ 1

0
J2((�r2 + φ	 ,�2r2 + φ	−�r2 + φ	 , . . .,�mr2 + φ	
−�(m−1)r2 + φ))dφ , . . .,

∫ 1

0
Jn((�rn + φ	 ,�2rn + φ	−�rn + φ	 , . . .,�mrn + φ	

−�(m−1)rn + φ))dφ
)

.

In case I(s,ai) = σ(ri,θi) for some 0≤ θi < 1 for all i = 1, . . .,n

lim
N→∞

1
N

N

∑
k=1

g(J1(σ(r1,θ1)k,σ(r1,θ1)k+1, . . .,σ(r1,θ1)k+m−1), . . .,

Jn(σ(rn,θn)k,σ(rn,θn)k+1, . . .,σ(rn,θn)k+m−1))

= g
(
∫ 1

0
J1((�r1 + φ	 ,�2r1 + φ	−�r1 + φ	 , . . .,�mr1 + φ	
−�(m−1)r1 + φ))dφ ,

∫ 1

0
J2((�r2 + φ	 ,�2r2 + φ	−�r2 + φ	 , . . .,�mr2 + φ	
−�(m−1)r2 + φ))dφ , . . .,

∫ 1

0
Jn((�rn + φ	 ,�2rn + φ	−�rn + φ	 , . . .,�mrn + φ	

−�(m−1)rn + φ))dφ
)

.

Section 6.9.1 reviews known cases of the rates r1,r2, . . .,rn for which it is possi-
ble to construct a sequence s such that all projections (indicators) I(s,ai) are regular,
that is I(s,ai) = σ(ri,θi) for some 0≤ θi < 1 for all i = 1, . . .,n.

6.10 Optimal Admission of Arrivals

This motivating application comes from Hajek [6]. Consider a sequence of cus-
tomers arriving at rate λ . Following Hajek we assume that the interarrival times
{Yk : k = 1,2, . . .} are independent, identically distributed random variables with
finite mean 1

λ . That is the arrival process is a renewal process, see Ross [66]. A pre-
specified admission sequence s over the alphabet {a1, . . .,an} with given asymptotic

134 6 Competition-Free Instances, The Fraenkel’s Conjecture

rates ri for the letter ai is used to split the arrival stream between n exponential
servers with mean service times 1

µ1
, . . ., 1

µn
. For each k, customer k is admitted to

server i such that sk = ai. Thus, customers arrive at server i at the rate λ ri.
Define Qi

k to be the number of customers in the queue of server i, including the
one whose service is in progress, immediately prior to the arrival of customer k.
Let Xi

k be the potential number of departures from the queue of server i between the
arrival of customer k and customer k+1. We assume that the conditional probability
distribution of Xi

k given that the time between the arrivals is t is Poisson with mean
µit. Thus, the expected value of Xi

k is µi
λ . The actual number of departures between

the arrival of customer k and customer k + 1 can not exceed Qi
k + I(s,ai)k, which is

the queue size just after customer k arrives. Thus, we have the following recursive
formula

Qi
k+1 = max{Qi

k + I(s,ai)k−Xi
k,0},

for k = 1,2, . . .and

Qi
1 = 0.

Thus, by induction we obtain

Qi
k+1 = max

{

l

∑
j=1

(I(s,ai)k+1− j−Xi
k+1− j) : l = 0, . . .,k

}

for k = 1,2, . . ., where by definition

0

∑
j=1

(I(s,ai)k+1− j−Xi
k+1− j) = 0.

Therefore, the expected number of customers, or the expected queue size, in the
queue of server i is

EQi
k+1 = E

(

max

{

l

∑
j=1

I(s,ai)k+1− j−Xi
k+1− j : l = 0, . . .,k

})

= Ji
k(I(s,ai)1, . . ., I(s,ai)k)

for k = 1,2, . . . and the expected queue size is a multimodular function for each
server.

Lemma 6.37. EQi
k+1 is a multimodular function on Z

k.

Hajek gives the following interpretation of this lemma. The difference EQi
k(u)−

EQi
k(u + v j) represents the waiting time saving seen by customer k in the queue of

server i if customer j− 1 were admitted to the server rather than customer j. This
saving is non-negative since k cannot wait longer by having a previous customer
admitted earlier to server i. Multimodularity of EQi

k ensures that for j �= l this time
saving is no greater than EQi

k(u + vl)−EQi
k(u + v j + vl), which is the time saving

6.10 Optimal Admission of Arrivals 135

that would result from admitting j−1 and l−1 rather than customer j and l respec-
tively to server i.

Finally.

Theorem 6.38. If s is any zero-one valued sequence with asymptotic mean ri, then

lim inf
N→∞

1
N

N

∑
i=1

EQi
k ≥ Ji

If s = σ(ri,θi), then

lim
N→∞

1
N

N

∑
i=1

EQi
k = Ji,

where

Ji = lim
k→∞

∫ 1

0
Ji

k((�ri + φ	 ,�2ri + φ	−�ri + φ	 , . . .,
�kri + φ	−�(k−1)ri + φ))dφ .

Therefore, regular admission sequences minimize expected queue sizes for each
server. Altman et al. [7] extend this result to the expected workload and waiting
time in an event graph (thus there is no inside choice for the route followed by
the customers in such graph) that replaces a single server in Fig. 6.5. However, in
either case regular sequences may not exist for some rates, after all the Fraenkel’s
Conjecture holds for n = 3,4,5, and 6, see Theorem 6.24, moreover, Simpson [61]
shows the same for one rate being at least 2

3 , see Theorem 6.23. Therefore, the
algorithm that finds an optimal admission sequence for the rates for which a regular
sequence does not exist remains an important open question.

µ1

µ2

µn

λ

λr1

λr2

λrn

Splitting according to the sequence δ

Fig. 6.5 Splitting arrival process according to the admission sequence s with asymptotic rates ri

for the letter ai, i = 1, . . .,n

136 6 Competition-Free Instances, The Fraenkel’s Conjecture

6.11 Multimodular Function on Just-In-Time Sequences

We close this chapter with a proof that the function on just-in-time sequences con-
sidered in Chap. 3 is a multimodular function when limited to a set zero-one vectors.
Let Ai

j,D be a set of all vectors in {0,1}D with exactly j = 0, . . .,di ones, that is

Ai
j,D =

{

u : u ∈ {0,1}D and
D
∑

k=1
uk = j

}

.

Let

Ai =
di
⋃

j=0
Ai

j,D.

For a vector u ∈ Ai let i1, . . ., i j be all coordinates with value 1. We define a function
g on Ai as follows

g(u) =
i1−1
∑

k=0
f0(k)+

i2−1
∑

k=i1
f1(k)+ · · ·+

D
∑

k=i j

f j(k). (6.34)

where the functions fl are defined in (3.6) in Chap. 3, and i1 = D + 1 for j = 0.
Notice that the function g on Ai

di,D
is exactly the function in (3.8) We have the

following observation.

Lemma 6.39. Function g is multimodular on Ai.

Proof. We need to show that for any u ∈ Ai and v,w ∈V with v �= w

g(u + v)+ g(u + w)≥ g(u)+ g(u + v + w) (6.35)

as long as all vectors u,u+ v,u+w and u+ v+w are in Ai. Suppose that v = vk and
w = vl , and without loss of generality k < l. If all four vectors are in Ai

j,D, for some
j, then we have 0 < k and l < D. Thus, there are ia = k and ib = l such that uk−1 = 0,
uk = 1, and ul−1 = 0, ul = 1. Consequently,

g(u + v) = g(u)+ fa(ia−1)− fa−1(ia−1),

g(u + w) = g(u)+ fb(ib−1)− fb−1(ib−1),

and

g(u + v + w) = g(u)+ fa(ia−1)− fa−1(ia−1)+ fb(ib−1)− fb−1(ib−1).

Thus, (6.35) holds as equality. For v = vD we get

g(u + vD) = g(u)+ f j+1(D)− f j(D) (6.36)

6.11 Multimodular Function on Just-In-Time Sequences 137

and for v = v0

g(u + v0) = g(u)+
i2−1
∑

k=1
(f0(k)− f1(k))+ · · ·+

D
∑

k=i j

(f j−1(k)− f j(k)), (6.37)

in particular for u + v0 having all zeros, we have

g(u + v0) =
D
∑

k=0
f0(k) = g(u)+

D
∑

k=1
(f0(k)− f1(k)).

Thus,
g(u + v0 + vD) = g(u + v0)+ f j(D)− f j−1(D)

and hence

g(u + vD)+ g(u + v0) = g(u)+ g(u + v0 + vD)+ f j+1(D)−2 f j(D)+ f j−1(D).

However,
f j+1(D)−2 f j(D)+ f j−1(D)≥ 0

by Lemma 4.1 where

f j(D) = F(j−di)

by definition (3.6) with convex F. Therefore,

g(u + vD)+ g(u + v0)≥ g(u)+ g(u + v0 + vD).

For g(u + vD) and g(u + w) with w �= v0, we have

g(u + vD + w) = g(u + w)+ f j+1(D)− f j(D)

hence by (6.36)

g(u + vD)+ g(u + w) = g(u)+ g(u + vD + w).

Finally, for w �= vD we have

g(u + v0 + w) = g(u + v0)+ fb−1(ib−1)− fb−2(ib−1),

thus

g(u + v0)+ g(u + w) = g(u)+ g(u + v0 + w)+ fb(ib−1)
−2 fb−1(ib−1)+ fb−2(ib−1)

However,

fb(ib−1)−2 fb−1(ib−1)+ fb−2(ib−1)≥ 0

138 6 Competition-Free Instances, The Fraenkel’s Conjecture

by Lemma 4.1 where
fb(ib−1) = F(b− (ib−1)ri)

by definition (3.6) with convex F . Therefore,

g(u + v0)+ g(u + w)≥ g(u)+ g(u + v0 + w).

��

6.12 Exercises

Exercise 6.40. Prove that
⌊

1
r

⌋

≤
⌈

j + 1
r
− θ

r

⌉

−
⌈

j
r
− θ

r

⌉

≤
⌈

1
r

⌉

for j = 1,2, . . ., 0≤ θ < 1 and the rate r.

Exercise 6.41. Show that the rates 1
11 , 2

11 , 4
11 , and 4

11 admit a regular sequence. Do
the same for the rates 1

11 , 2
11 , 2

11 , and 6
11 as well as for 1

11 , 1
11 , 3

11 , and 6
11 .

Exercise 6.42. Show that the Fraenkel’s Conjecture is vacuously true for {S(αi,
(δ −1)αi) : 1≤ i≤ n} with 3

4 < δ ≤ 1 or 0≤ δ < 1
4 .

Exercise 6.43. Show that for any 1
2 < δ ≤ 3

4 or 1
4 ≤ δ < 1

2 there is an m so that
for any m ≥ n the set {S(αi,(δ − 1)αi) : 1 ≤ i ≤ n} for {α1, . . . ,αn} = { 2n−1

2i−1 : i =
1, . . . ,n} is not an exact covering.

Exercise 6.44. Find the 25-prefix of the Beatty sequence for π do the same for
√

2.

Exercise 6.45. Consider admission into a D/D/1 queue with service times and in-
terarrival times all deterministic. Assuming that the system is initially empty, derive
the formula for the workload in the system immediately after the nth arrival. Prove
that this formula defines multimodular function for any n. This application comes
from Altman et al. [65], see also [67], where it is motivated by quality of service in
ATM networks that should guarantee a given Cell Loss Ratio for a session.

6.13 Comments and References

Theorem 6.1 was stated as a conjecture by Brauner and Crama [42]. It was proven
by Kubiak [44], another proof using balanced words, see Chap. 9 for definition of
balanced words, was given by Brauner et al. [68]. Lemma 6.12 was independently
shown by Mirsky, Newman, Davenport, and Rado, see Newman [62]. Our proof is

6.13 Comments and References 139

based on the proofs in Wilf [69], and Altman et al. [7]. For more information on
Fraenkel’s Conjecture see Tideman [5, 60]. Uspensky [63] shows Theorem 6.25.

The Fraenkel’s conjecture was proved by Morikawa [58, 59]for m = 3, and
Altman et al. [7] for m = 4, and by Tijdeman [5] for m = 5 and m = 6. Simpson [61]
proved that the conjecture vacuously holds if the highest rate rn is at least 2

3 , see
Theorem 6.23. For Beatty sequences see Beatty [57], Stolarsky [70], and Tijdeman
[60]. For some examples of Beatty sequences check [71].

Hajek defined multimodular functions in [6], and proved that regular sequences
provide a lower bound for these functions. More on regular sequences and Stur-
mian words can be found in Chap. 2 by Berstel and Séébold [72]. Hajek went fur-
ther showing the importance of multimodular functions and regular sequences to
the problem of the expected queue size minimization in a system that admits cus-
tomers to an exponential server according to a prespecified splitting sequence, see
Sect. 6.10. Altman et al. in a couple of papers [65,73] prove that the expected travel-
ing time in a system with multiple subsystems, each being a stochastic event graph,
controlled by an admission sequence that routs customers entering the system to its
sub-systems is an increasing multimodular function. The function’s lower bound is
obtained by assuming a regular admission sequence with a pre-specified asymptotic
rate for each subsystem. The lower bound can be attained if the sequences do not
overlap thus making an exact cover of N. Altman et al. [7] give a number of charac-
teristics of rates that guarantee that their individual sequences do not overlap. More
on the multimodular optimization and regular sequences can be found in Altman
et al. [67].

Chapter 7
Response Time Variability

7.1 Introduction

Most modern systems share their resources between different jobs. The jobs define
a certain amount of work to be done, for instance the file size to be transmitted to
or from a server or the number of cars of a particular model to be produced on a
mixed-model assembly line. To ensure fair sharing of common resources between
different jobs, this work is divided into atomic tasks, for instance data blocks or cars.
These tasks, in turn, are required to be evenly distributed so that the time distance
between any two consecutive tasks of the same job is as constant as possible. The
following are some real-live examples.

The Asynchronous Transfer Mode (ATM) networks divide each application
(voice, large data file, video) into cells of fixed size so that the application can be
preempted after each cell. Furthermore, isochronous applications, for instance voice
and video, require an inter-cell distance in a cell stream to be as close to being a con-
stant as possible. For instance, multimedia systems avoid presenting video frames
either too early or too late to avoid jagged motion perceptions. These applications
may also require the inter-cell distance not to exceed some pre-specified distance,
see Han et al. [74] and Altman et al. [7].

On a mixed-model, just-in-time assembly line a sequences of different models to
produce is sought where each model is distributed as “evenly” as possible but ap-
pears a given number of times to satisfy demand for different models. Consequently,
shortages, on one hand, and excessive inventories, on the other, are reduced, see
Monden [22] and Chap. 3.

Another application is stride scheduling, see Chap. 10 for details, where each
client is first issued a number of tickets. The resources are then allocated to the
clients in discrete time slices called quanta. The client to be allocated resources
in next quantum is selected through a certain function of the number of its past
allocations and the number of its tickets, Waldspurger and Weihl [13].

W. Kubiak, Proportional Optimization and Fairness, International Series in Operations 141
Research & Management Science 127, DOI 10.1007/978-0-387-87719-8 7,
c© Springer Science+Business Media LLC 2009

142 7 Response Time Variability

Herrmann [75] presents a waste collection problem in a health-care facility where
the time between two consecutive visits to the same waste collection point should
be kept as constant as possible.

These problems are often considered as distance-constrained scheduling prob-
lems, where the temporal distance between any two consecutive executions of a task
is not longer than a pre-specified distance, Han et al. [74]. See also Chap. 8. Some-
times even a stronger condition is imposed that the temporal distance is equal to the
pre-specified distance. For instance, Altman et al. [7] study the constant gap words,
and Wei and Liu [76], and Anily et al. [77] consider the Periodic Machine Main-
tenance problem with equal distances between consecutive services of the same
machine.

The distance-constrained model, however, suffers from a serious practical disad-
vantage which is that there may not be a feasible solution that respects the distance
constraints and at the same time ensures that tasks are done at given rates. In this
chapter, we propose the total response time variability metric instead to avoid the
feasibility problem but at the same time to preserve the main idea of having any two
consecutive tasks at a time distance which remains as constant as the existing re-
sources and other competing jobs permit. The total response time variability is also
proposed as a main metric of the stride schedule by Waldspurger and Weihl [13].
We formulate the Response Time Variability (RTV) problem as follows.

Given n positive integers d1 ≤ ·· · ≤ dn, define D = ∑n
i=1 di and the rates ri = di

D
for i = 1, . . .,n. Consider a just-in-time sequence S = s1s2 . . . sD of length D where
i (a client, a model or a task; in this chapter we shall use the term model most
often) occurs exactly di times. For any two consecutive occurrences (or copies) of
i we define a distance α between them as the number of positions that separate
them plus 1. This distance is often referred to as the end-to-end distance between
the two occurrences. Since i occurs exactly di times in S, then there are exactly di

distances α i
1, . . . ,α

i
di

for i, where α i
di

is the distance between the last and the first
occurrence of i in S. Obviously, the two are the same for di = 1. We shall assume
that s1 immediately follows sD. Since

α i
1 + · · ·+ α i

di
= D,

then the average distance α i between the is in S equals

α i =
D
di

=
1
ri

,

and it is the same for each feasible sequence S. We define the response time vari-
ability for i as follows

RTVi = ∑
1≤ j≤di

(α i
j−α i)2,

and the total response time variability (RTV) as follows

RTV =
n

∑
i=1

RTVi =
n

∑
i=1

∑
1≤ j≤di

(α i
j−α i)2.

7.1 Introduction 143

Observe that the total response time variability is a weighted variance with the
weight being equal to di for i, that is

RTV =
n

∑
i=1

diVari,

where Vari = 1
di

∑1≤ j≤di
(α i

j −α i)2. By definition, RTVi = Vari = 0 for any i with
di = 1.

The bottleneck metric (5.2) of Chap. 5 will be used as a secondary metric, with
RTV being primary, and it will also be referred to as the Throughput Error (T E) in
this chapter.

An input to the Response Time Variability problem is a list of n positive inte-
gers d1 ≤ ·· · ≤ dn. Their compact, for instance binary, encoding requires O(∑ log
(di + 1)) bits. Consequently, any algorithm, optimization or heuristic, for the prob-
lem that runs in time polynomial in D cannot be deemed polynomial with respect to
the compact encoding of the input. Such algorithm polynomial with respect to the
compact encoding of the input does not even exist if, as we assume in this chapter,
a solution to the Response Time Variability problem is a sequence (or a word) over
the alphabet made up of n different symbols, where model i occurs exactly di times.
Obviously, producing any such sequence will take at least D steps. This assumption
appears justified for, to our knowledge, there is in general no compact encoding of
solutions (outputs) to the Response Time Variability problem that would limit their
sizes by a polynomial of the compact input size. However, we show such a compact
scheme in a special case of n = 2 in Sect. 7.2.3. We refer the reader to Grigoriev [33],
and Brauner et al. [78] for a comprehensive discussion of the class of high multi-
plicity scheduling problems of which the Response Time Variability problem is a
member.

The plan for the reminder of the chapter is as follows. Section 7.2 studies the
optimization and the computational complexity of the Response Time Variability
problem. It first introduces the number decomposition graphs as a useful tool for the
analysis of the total response time variability. It then shows an optimization algo-
rithm for the two model case. The algorithm minimizes both the total response time
variability and the bottleneck at the same time. Next, the section shows a dynamic
programming algorithm to prove polynomial in D solvability for a fixed number of
models. Finally, the section proves that the problem is NP-hard. Section 7.3 presents
a simple position exchange heuristic that exchanges positions of model copies in a
sequence as long as the exchanges lead to a reduction in the value of RTV . The
sequences subjected to this exchange heuristic are generated by various procedures:
the bottleneck that solves the bottleneck minimization problem, the insertion based
on a solution to the two model case, the Webster’s and Jefferson’s based on the
well known parametric methods of the apportionment. Sections 7.4 and 7.5 present
mathematical programming optimization algorithms for the Response Time Vari-
ability problem.

144 7 Response Time Variability

7.2 Optimization and Complexity

7.2.1 Number Decomposition Graphs and Response
Time Variability

For i with di ≥ 2, consider a vector α = (α1, . . . ,αdi) of di positive integers that sum
up to D. Without loss of generality we assume that the coordinates of α are ordered
in descending order, that is α1≥ ·· · ≥αdi . Any vector α that meets the above condi-
tions will be referred to as the decomposition vector of D into di components. Now,
let us define a unit exchange operation on the decomposition vector α as follows.
Consider two components α j and αk > 1, j < k, of α . Replace α j by α j + 1 and
αk by αk−1 and keep all other components of α unchanged. The new components,
after possible ordering them, define another decomposition vector β . For instance,
adding 1 to the second component and subtracting 1 from the third component of the
vector α = (6,6,5) leads to the vector β = (7,6,4). Let us consider a weighted di-
rected graph Di referred to as the number decomposition graph for di. This graph’s
set of nodes Vi includes all decomposition vectors of D into di components, and
its set of arcs Ai includes all pairs of decomposition vectors (α,β) such that β is
obtained from α by a single unit exchange between α j and αk > 1, for some j < k,
(and possible permutation of the resulting components to keep them in descending
order). The weight of the arc (α,β) is defined as

2(α j−αk + 1). (7.1)

We have the following straightforward properties of Di.

Lemma 7.1. The following properties hold for Di:

• The graph Di is acyclic with a single node without predecessors, called a top
node,Ni, and a single node without successors,Mi.

• Ni = (
D
di
�, . . . ,
D

di
�

︸ ︷︷ ︸

Dmoddi

,�D
di
	, . . . ,�D

di
	

︸ ︷︷ ︸

di−Dmoddi

).

• Mi = (D−di + 1,1, . . . ,1
︸ ︷︷ ︸

di−1

).

Proof. If (α,β) ∈ Ai, then
n

∑
i=1

α2
i <

n

∑
i=1

β 2
i .

Therefore,Di must be acyclic. The nodeNi has in-degree 0. Otherwise, there would
be a node α in Di such that (α,Ni) ∈Ai. Then, there would be two components α j

and αk > 1, j < k, of α that would become some components α j + 1 and αk − 1
of Ni. Then, α j + 1 must be either �D

di
	 or
D

di
�. Consequently, α j must be either

�D
di
	−1 or
D

di
�−1. However, αk−1≤
D

di
�−2≤ �D

di
	−1, and thus αk−1 cannot

7.2 Optimization and Complexity 145

Fig. 7.1 The number decomposition graph for D = 16 and di = 3

be a component of Ni. No other node has in-degree 0 since it can be shown that
there is a path fromNi to any other node in Di. Finally, by definition the only node
with out-degree 0 is the one that has the last di components all equal 1. Otherwise a
unit exchange from this node would be possible. Moreover, since all components of
any node must sum up to di, there is only one such a node, namelyMi. ��
Figure 7.1 presents the number decomposition graph for D = 16 and di = 3. Con-
sider Ni and another node α in Di. The weight of a directed path from Ni to α is
the sum of all the weights along the path. Also, let

RTVi(α) =
di

∑
j=1

(

α j− D
di

)2

for α . We have the following lemma.

Lemma 7.2. For any node α in Di, we have

RTVi(α) = RTVi(Ni)+ wi(p),

where p is a path from Ni to α and wi(p) is its total weight.

Proof. The proof is by induction on the number of arcs a along a path connectingNi

and α in Di. The proof is obvious for a = 0 since then α =Ni. Suppose the lemma
holds for a ≥ 0. We show that then it holds for a + 1 as well. Let p = (α0 = Ni,
. . . , αa+1 = α) be a path of a+1 arcs connectingNi and α . Then, by the inductive
assumption

146 7 Response Time Variability

RTVi(αa) = RTVi(Ni)+ wi(p′),

where p′ is p without the last node αa+1. By definition of RTVi(αa)

RTVi
(

αa+1) =
di

∑
l=1

(

αa+1
l − D

di

)2

=
di

∑
l=1

(

αa
l −

D
di

)2

−
(

αa
j −

D
di

)2

−
(

αa
k −

D
di

)2

+
(

αa
j + 1− D

di

)2

+
(

αa
k −1− D

di

)2

= RTVi(αa)+ 2(αa
j −αa

k + 1).

Consequently,

RTVi(αa+1) = RTVi(Ni)+ wi(p′)+ 2(αa
j −αa

k + 1) = RTVi(Ni)+ wi(p),

since by definition 2(αa
j −αa

k + 1) is the weight on the arc (αa,αa+1). This ends
the induction and proves

RTVi(α) = RTVi(Ni)+ wi(p).

��
Notice that the equation in Lemma 7.2 is independent of the choice of path p for
in this equation both RTVi(α) and RTVi(Ni) are constants. Thus, we immediately
derive the following result.

Lemma 7.3. For any node α in Di, all directed paths from Ni to α have the same
weight.

By Lemma 7.3 the weight of any (Ni,α)-path in Di depends only on α . Therefore,
we denote the weight of any such path by wi(α). The following lemma links the
decomposition graphs and the total response time variability.

Lemma 7.4. Let S be a solution to the Response Time Variability problem with its
value equal to RTV . Then there are nodes α1, . . . ,αn in the decomposition graphs
D1, . . . ,Dn respectively, such that

RTV =
n

∑
i=1

wi(α i)+
n

∑
i=1

RTVi(Ni),

where

RTVi(Ni) = (Dmoddi)
(

D
di
�− D

di

)2

+(di−Dmoddi)
(

�D
di
	− D

di

)2

(7.2)

for i = 1, . . . ,n.

Proof. Follows from Lemma 7.2. ��

7.2 Optimization and Complexity 147

7.2.2 Lower Bounds on Response Time Variability

The following theorem shows that the total response time variability can be 0 only
if at least two demands are equal.

Theorem 7.5. If d1 < .. . < dn for n > 1, then RTV > 0.

Proof. If di � D for some i, then the theorem holds since the average distance for i
equal D

di
is not integer and all response times are integer. Otherwise, di |D for each i.

By contradiction, if RTV = 0, then for each i all response times are equal the average
response time D

di
. Consequently, there are non-negative integers a1, . . . ,an such that

(a1,
D
d1

), . . . ,(an,
D
dn

) is an exact covering sequence. However, by Lemma 6.12, then
D
d1

= D
d2

and consequently d1 = d2, which leads to a contradiction. This proves the
theorem. ��

The rates for which it is possible to build a regular sequence for each model that
does not overlap with any other model’s regular sequence would attain the lower
bound of the total response time variability given in (7.2). These sequences would
make up an optimal solution to the Response Time Variability problem. We have the
following theorem.

Theorem 7.6. If for the rates ri = di
D , i = 1, . . .,n,the problem (6.30) has an affirma-

tive answer then the instance (d1, . . .,dn) of the Response Time Variability problem
attains the value

RTV =
n

∑
i=1

RTVi(Ni)

for the optimal solution which is the exact cover in the problem (6.30).

Proof. The affirmative answer to the problem (6.30) implies that there are phases
θ1, . . .,θn such that the sets

Si =
{⌈

j
ri
− θi

ri

⌉

: j ∈ N

}

for i = 1, . . .,n make up an exact cover of N, that is each integer is in exactly one set
Si. For each i we have

⌊

1
ri

⌋

≤
⌈

j + 1
ri
− θi

ri

⌉

−
⌈

j
ri
− θi

ri

⌉

≤
⌈

1
ri

⌉

(7.3)

see Exercise (6.40) which means that the consecutive copies of i are either at the

distance
⌊

1
ri

⌋

or
⌈

1
ri

⌉

. Moreover, the copy j = di is in a position

⌈

D− θi

ri

⌉

≤ D

148 7 Response Time Variability

for i = 1, . . .,n. Thus, there are at least di copies of i in the first D positions and since
D = ∑n

i=1 di there must be exactly di copies of i in the first D positions. Therefore,
the first D positions make up a just-in-time sequence and by (7.3)

RTVi = RTVi(Ni)

for i = 1, . . .,n. Thus the theorem holds. ��
The opposite claim does not hold, that is there may be just-in-time sequences

with their total response time variability equal the lower bound ∑n
i=1 RTVi(Ni) yet

not regular for all models. An example is the following optimal just-in-time se-
quence for d1 = 5 and d2 = 12

12221222122122122

with N1 = (4,4,3,3,3) and N2 = (2,2,2,2,2,1,1,1,1,1,1,1). The sequence is not
a balanced word, see Sect. 9.8 for definition, since its two factors

2221222 (7.4)

and
1221221 (7.5)

of length 7 each differ on model 2 by more than 1. That is model 2 occurs six times
in the former and four times in the latter. Thus, the sequence must not be regular on
at least one model, see Altman et al. [7].

7.2.3 Two Model Case

This section considers the two model case, n = 2. It shows a solution that minimizes
both the total response time variability and the bottleneck at the same time, which
usually is impossible for more than two models. Prior to giving the details of the so-
lution we point out that the sequence minimizing the total response time variability
for two models is quite straightforward to obtain as follows. Let d1 < d2. We omit
the case d1 = d2 since it is trivial. It follows from Lemma 7.4 that if one can find a
solution with

RTV = RTV1(N1)+ RTV2(N2),

where

RTVi(Ni) = (Dmoddi)
(

D
di
�− D

di

)2

+(di−Dmoddi)
(

�D
di
	− D

di

)2

for i = 1,2, then this solution minimizes the total response time variability. Such
a solution is always possible, however, since � D

d1
	 ≥ 2 and 2 > D

d2
> 1. Namely,

7.2 Optimization and Complexity 149

consider a sequence that begins with 1 and that has each next copy of 1 at either a
distance
 D

d1
� or a distance � D

d1
	 from the last one. The number of times the distances

 D
d1
� and � D

d1
	 need to be used in this sequence are (Dmodd1) and (d1−Dmodd1)

respectively. The sequence separates any two consecutive empty positions by at
most one position with a copy of 1. The empty positions can then be filled in with the
copies of 2 to ensure the desired distances, either 2 or 1, for this model. The distances
2 and 1 must occur exactly (Dmodd2) and (d2−Dmodd2) times respectively in
the sequence, otherwise their total would not be D. The result is a sequence that
minimizes RTV which may not, however, minimize T E at the same time. Therefore,
we now present another solution that minimizes both RTV and TE simultaneously.
We assume that gcd{d1,d2} = 1. Otherwise, the optimal solution for d1

g and d2
g can

be repeated g = gcd{d1,d2} times resulting into an optimal solution with respect to
both metrics for the original instance with demands d1 and d2.

We show in Lemmas 7.7–7.9 that the solutions defined in Lemmas 5.14 and 5.16
are optimal for the Response Time Variability problem. We refer to these solutions
as the solutions based on ideal positions. To that end, we prove that the distance
between any two consecutive copies of 1 equals either
 D

d1
� or � D

d1
	 and for 2 equals

either
 D
d2
� or � D

d2
	. With definitions of a j for j = 1, . . . ,d1 and bk for k = 1, . . . ,d2

as in Lemma 5.13, that is a j = 2 j−1
2r1

for j = 1, . . . ,d1 and bk = 2k−1
2r2

for k = 1, . . . ,d2

we have the following results.

Lemma 7.7. We have � D
d1
	 ≤
a j+1�−
a j� ≤
 D

d1
� for j = 1, . . . ,d1−1 and � D

d2
	 ≤

b j+1�−
b j� ≤
 D
d2
� for j = 1, . . . ,d2−1.

Proof. We have,

D
d1
−1 = a j+1−a j−1≤
a j+1�−
a j� ≤ a j+1−a j + 1 =

D
d1

+ 1.

Since D
d1

is not an integer and
a j+1�−
a j� is an integer, then

� D
d1
	 ≤
a j+1�−
a j� ≤
 D

d1
�.

The proof for model 2 is similar and thus will be omitted. ��
Lemma 7.8. We have � D

d1
	 ≤ D−
ad1�+
a1� ≤
 D

d1
� and � D

d2
	 ≤ D−
bd2�+

b1� ≤
 D
d2
�.

Proof. We have ad1 = D− D
2d1

, a1 = D
2d1

and consequently

D
d1
−1 = D−ad1 + a1−1≤ D−
ad1�+
a1� ≤ D−ad1 + a1 + 1 =

D
d1

+ 1.

Since D
d1

is not an integer and D+
ad1�−
a1� is an integer, then

150 7 Response Time Variability

� D
d1
	 ≤ D−
ad1�+
a1� ≤
 D

d1
�.

The proof for model 2 is similar and thus will be omitted. ��
Lemma 7.9. For d1 and d2 odd, we have

b d2+1
2

+ 1−
b d2+1
2 −1
�=
 D

d2
�

and

b d2+1
2 +1
�− b d2+1

2
−1 = � D

d2
	.

Proof. For d1 and d2 odd, we have b d2+1
2

= D
2 , which is an integer. Consequently,

D
d2

= b d2+1
2
−b d2+1

2 −1
≤ b d2+1

2
+ 1−
b d2+1

2 −1
� ≤ b d2+1

2
+ 1−b d2+1

2 −1
=

D
d2

+ 1.

Since D
d2

is not an integer and b d2+1
2

+ 1−
b d2+1
2 −1
� is an integer, then the first

equality holds. Furthermore,

D
d2
−1 = b d2+1

2 +1
−b d2+1

2
−1≤
b d2+1

2 +1
�− b d2+1

2
−1≤ b d2+1

2 +1
−b d2+1

2
=

D
d2

.

Since
b d2+1
2 +1
�−b d2+1

2
−1 is an integer, then the second inequality also holds. This

proves the lemma. ��
We can now conclude with the following theorem.

Theorem 7.10. For n = 2, the solutions based on ideal positions minimize the total
response time variability.

Proof. Follows immediately from Lemmas 7.4, 7.7, 7.8, and 7.9 ��
By Lemmas 5.14 and 5.16, the position of each copy of either model in the opti-

mal just-in-time sequence can be computed in time polynomial in O(log(d1 + 1)+
log(d2 + 1)), that is, polynomial in the input size. So it can be the value of RTV of
the optimal solution by Lemma 7.4.

We close this section by showing that the solution based on ideal positions mini-
mizes bottleneck as well.

Theorem 7.11. For n = 2, the solutions based on ideal positions minimize bottle-
neck.

Proof. It suffices to notice that if both demands are odd, then all copies are in their
ideal positions, except for copy d2+1

2 of model 2 which is in position D
2 +1 whereas

its ideal position is D
2 . This, however, does not change the deviation for the copy,

which is 1
2 in either position. Consequently, the maximum deviation equals 1

2 which
is optimal for both demands being odd. Therefore, the solutions based on ideal po-
sitions minimize maximum deviation. ��

7.2 Optimization and Complexity 151

7.2.4 Fixed Number of Models

This section shows a straightforward dynamic program for the Response Time Vari-
ability problem. This program is similar to the algorithm of Anily et al. [77] for
the Periodic Scheduling Maintenance problem, see Sect. 7.2.5 for the problem de-
finition, with the difference that in the RTV problem one has to maintain also the
required number of model copies.

The program proves that the problem can be solved in time polynomial in D for
any fixed number of models, and thus complements our other results concerning
its complexity. However, the program is not intended as a practical alternative for
efficiently solving the problem.

The state of the dynamic program is represented by a quadruple 〈 f , �,q,d〉. The
f is an n dimensional vector f = (f1, . . . , fn), where fi = 0,1, . . . ,D−di +1 for i =
1, . . . ,n represents the position of the first copy of i. The � is an n dimensional vector
� = (�1, . . . , �n), where �i = 0,di +1, . . . ,D for i = 1, . . . ,n represents the position of
the last copy of i in the sequence of length d. The q is an n dimensional vector
q = (q1, . . . ,qn). It represents the number of copies that remain to be sequenced,
qi = 0, . . .,di. Finally, d is the length of the current sequence, d = 0, . . .,D. Initially,
f = � = 0, q = (d1, . . .,dn), and d = 0. A final state is any state with q = 0 and d = D.
There is a weighted arc from a non-final state 〈 f , �,q,d〉 to a state 〈 f ′, �′,q′,d′〉 if
and only if there is an i such that q′i = qi−1 ≥ 0, d′ = d + 1, �′i = d′. Furthermore,
if fi = 0, then f ′i = d′. The weight for the arc is calculated as follows for di ≥ 2,

�〈 f ,�,q,d〉〈 f ′,�′,q′,d′〉 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, qi = di;
(d′ − �i− D

di
)2, di−1≥ qi > 1;

(d′ − �i− D
di

)2

+(D−d′+ fi− D
di

)2 qi = 1

and it is equal to 0 for di = 1. Finally, we connect all final states to a dummy state
referred to as the destination. All arcs to the destination have weight 0. The shortest
path, more precisely the lightest path, between the initial state and the destination
obviously defines an optimal solution to the Response Time Variability problem.
This path can be found in time which is polynomial in the number of nodes, which
is of O(D3n+1), therefore the complexity is polynomial in D for a fixed number of
products n.

7.2.5 Complexity

We now show that the Response Time Variability problem is NP-hard. The reduction
is from the Periodic Maintenance Scheduling problem (PMSP) shown NP-complete
by Bar-Noy et al. [79], and motivated by the maintenance problem of Wei and Liu
[76], and Anily et al. [77]. The Periodic Maintenance Scheduling problem is defined
as follows.

152 7 Response Time Variability

Given m machines and integer service intervals �1, �2, . . . , �m such that ∑ 1
�i

< 1.
Does there exist a servicing schedule (or a servicing cycle) s1 . . . sL, where L =
lcm(�1, �2, . . . , �m) is the least common multiple of �1, �2, . . . , �m, of these machines
in which the end-to-end distance between any two consecutive servicing of machine
i is exactly �i, no more than one machine is serviced in a single time slot, and it takes
a single time slot to perform servicing of any machine? The distance between the
last and the first servicing of machine i in the cycle, if any exists, is also �i. The Pe-
riodic Maintenance Scheduling problem has been shown NP-complete by Bar-Noy
et al. [79]. Their proof shows that the Periodic Maintenance Scheduling problem
is NP-complete in the ordinary sense since the magnitude of distances �i used in
the transformation from the graph coloring problem is not necessarily bounded by
any polynomial of the graph size. Thus the transformation of Bar-Noy et al. [79]
is not pseudo-polynomial. However, a careful selection of an initial graph coloring
problem in their transformation would ensure that the magnitude of the distances re-
mains bounded by a polynomial of the graph size thus ensuring pseudo-polynomial
transformation and consequently strong NP-completeness of the Periodic Mainte-
nance Scheduling problem. We shall give details of this new transformation here.
We begin with the following lemma.

Lemma 7.12. The initial positions v1, . . .,vm of a servicing cycle are feasible for the
PMSP instance if and only if vi− v j �= 0 (mod gcd(�i, � j)) for any pair i �= j.

Proof. For any pair i �= j the numbers

�i

gcd(�i, � j)
and

� j

gcd(�i, � j)

are relatively prime. Thus, there are integers x and y that solve the following linear
Diophantine equation, see Le Veque [80],

�i

gcd(�i, � j)
x +

� j

gcd(�i, � j)
y = 1,

or equivalently the equation

x�i + y� j = gcd(�i, � j).

If vi−v j = 0 (mod gcd(�i, � j)) for some pair i �= j, then vi−v j = qgcd(�i, � j) for
some integer q. Therefore, there are integers x′ =−xq and y′ = yq such that

y′� j− x′�i = vi− v j,

and consequently
y′� j + v j = x′�i + vi

and thus the machines i and j are scheduled for maintenance at the same time
y′� j + v j. Hence v1, . . .,vm are not feasible.

7.2 Optimization and Complexity 153

Now let us assume that v1, . . .,vm are infeasible. Then, there are i �= j such that
machines i and j are scheduled for maintenance at the same time

t = x�i + vi = y� j + v j,

for some integers x and y.Then, however

vi− v j(mod gcd(�i, � j)) = y� j− x�i(mod gcd(�i, � j)) = 0

which proves the lemma. ��
The following restricted graph coloring problem will be used in the transformation.

Theorem 7.13. The following restricted graph coloring problem remains NP com-
plete in the strong sense: Given n−node graph G with each node degree being at
least n−7 and at most n−3. Can the nodes of G be colored with k colors?

Proof. The Exact Cover by 3-Sets problem remains NP-complete in the strong
sense if no element occurs in more than three subsets, see Garey and Johnson [81].
Therefore, the transformation from the Exact Cover by 3-Sets problem to the Par-
tition into Triangles problem given in the Garey and Johnson’s book [81] on pages
68 and 69 builds a graph which is K4-free (K4-free graph contains no clique of
size 4), has a maximum node-degree equal 6, a minimum node-degree equal 2, and
the number of nodes being a multiple of 3. Therefore, the Partition into Triangles
remains NP-complete for the class of graphs a member of which has just been de-
fined. Let G be any graph of this class with n-nodes. Consider a complement G of G.
We have a minimum node-degree equal n− 7, and a maximum node-degree equal
n− 3 in G. We are asking for k = n

3 coloring of the complement G. The transfor-
mation just described is polynomial. Moreover, if the sets T1, . . .,Tn

3
make up the

partition of G into triangles, then we color all nodes in Ti of G with color i. Thus,
we get n

3−coloring of G since the nodes in Ti make up an independent set in G.

On the other hand, let there be a k−coloring, k ≤ n
3 , of G. Let C1, . . .,Ck be the

sets of nodes colored with colors 1, . . .,k respectively. Then, no set has more than
three nodes, otherwise G would not be K4-free. Therefore, each set has exactly three
nodes, and k = n

3 . Thus, C1, . . .,Cn
3

are triangles in G and they make up the required

partition into triangles. This shows that the k-coloring of G is NP-complete in the
strong sense, which proves the theorem. ��

We are now ready to prove.

Theorem 7.14. The Periodic Maintenance Scheduling problem is NP complete in
the strong sense.

Proof. Lemma 7.12 shows how to verify if the initial positions v1, . . .,vm are fea-
sible for the PMSP instance in polynomial time. Thus, the PMSP is in NP. Now,
consider the restricted graph coloring problem defined in Theorem 7.13. We show
a pseudopolynomial transformation form this graph coloring problem to the PMSP

154 7 Response Time Variability

thus proving that the latter is NP complete in the strong sense. Let graph G with n–
nodes and k make up an instance of the restricted graph coloring problem. Let Kn be
an n−node clique such that its edges in G are painted red and those in G are painted
white. Since the node-degree in G is at least n− 7, the number of white-painted
edges incident with a given node in Kn is at most 6. Thus, the number of white-
painted edges in Kn is at most 3n. Let us assign a distinct prime number greater than
n to each white-painted edge of Kn. Since the number π(x) of prime numbers not
exceeding x≥ 2 satisfies the following inequality, see Le Veque [80]

7
8

x
logx

< π(x),

then by taking

x = 16n2

we get
4n < π(16n2)

and thus we can generate the required number of distinct primes greater than n in
time which is polynomial in n. The prime numbers do not exceed 16n2. Since the
node degree in G is at most n−3, then the number of white-painted edges incident
with a given node is at least 2. Now define a weight of a node in Kn to be the
product of all prime numbers assigned to the white-painted edges incident with the
node times k.

We are now ready to define the instance of the PMPS problem as follows. There
are n machines in this instance, each corresponding to a node of the Kn graph. The
�i for machine i equals the weight of node i. We have

n
∑

i=1

1
�i

< 1

since �i > n. Clearly, the magnitude of �i is bounded by k(16n2)6. Consequently, the
transformation is pseudopolynomial.

We make the following observation

gcd(�i, � j) =
{

k if the edge (i, j) of Kn is red-painted
pk if the edge (i, j) of Kn is white-painted with weight p.

(7.6)

We now show that if G is k-colorable, then there exists a feasible maintenance
service for the PMPS instance. Let the colors used in the k-coloring be 0,1, . . .,k−1,
and let there be ni nodes colored with the color i. The nodes with color i can then be
uniquely numbered 0,1, . . .,ni−1. Set the initial position vi for machine i to mk + l,
where the l is the color of node i, and the m is the node number in the set with
color l. Since m≤ n−1 and l ≤ k−1, we have

vi = mk + l ≤ (n−1)k + k−1 = nk−1 < nk. (7.7)

7.2 Optimization and Complexity 155

We show that
vi− v j �= 0(mod gcd(�i, � j)) (7.8)

for any two machines i �= j. If the edge (i, j) is white-painted, then by (7.6),
gcd(�i, � j) = pk for some prime number p > n. However, by (7.7)

0 < |vi− v j|< nk.

Therefore, (7.8) holds for machines i and j along the white-painted edge (i, j). Oth-
erwise, if the edge (i, j) is red-painted, then by (7.6), gcd(�i, � j) = k and vi = mk+ l,
v j = m′k′+ l′ for some integers m and m′. Furthermore, l �= l′ since (i, j)∈G. Hence,
vi− v j = l− l′(mod k). However,

0 < |l− l′|< k,

thus, (7.8) holds again. Therefore, by Lemma 7.12, there is a feasible maintenance
service for the PMPS instance.

Now, let us assume that the initial positions v1, . . .,vn are feasible for the PMSP
instance. We show that this implies the k-colorability of G. We assign color vi mod
k to node i so that the number of colors used does not exceed k. We need to show
that

vi modk �= v j modk

for (i, j) ∈ G. By contradiction, assume that

vi modk = v j modk

and (i, j) ∈ G.Then, by (7.6)

vi− v j = 0(mod gcd(li, l j)),

consequently, by Lemma 7.12, v1, . . .,vn are infeasible for the PMSP instance.
Hence, a contradiction and thus G is k−colorable. ��

The NP-completeness of PMSP is the point of departure in the main complexity
result for the Response Time Variability problem.

Theorem 7.15. The Response Time Variability problem is NP-hard.

Proof. For an instance �1, �2, . . . , �m of the Periodic Maintenance Scheduling prob-
lem, define demands di = L

�i
, i = 1, . . . ,m, and dm+1 = 2L− ∑di, where L =

lcm(�1, �2, . . . , �m). Thus, D = 2L and n = m + 1. We observe that the average dis-
tance D

dm+1
= 2L

2L−∑di
for m + 1 is between 1 and 2. Therefore, by Lemma 7.4, the

contribution of model m+ 1 to the total response time variability in any solution is
at least

V = (Dmoddm+1)
(

2− D
dm+1

)2

+(dm+1− (Dmoddm+1))
(

1− D
dm+1

)2

.

156 7 Response Time Variability

We make V the upper bound on the total response time variability for all models
1, . . . ,m,m+ 1, which is intended to force the models from 1 to m to keep their re-
sponse time variabilities equal 0 in any solution that respects the upper bound V .
That is, all their consecutive copies must be at (end-to-end) distances D

di
= 2�i, re-

spectively, in such a solution. We now prove that the instance of the Periodic Main-
tenance Scheduling problem has a solution if and only if its corresponding instance
of the Response Time Variability problem has variability not exceeding V .

(If) Assume that there is a solution

s1s2 . . .sL (7.9)

for the Periodic Maintenance Scheduling problem. Then, consider the sequence

S = s
′
1ns

′
2n . . .s

′
Ln

with every other time slot occupied by n, and s
′
j = s j if s j is a machine or s

′
j = n if s j

is empty in the solution (7.9). In such a sequence, consecutive copies of i are exactly
2�i time slots apart in S for i = 1, . . . ,m. Therefore, the response time variability for
each of these is is 0. Furthermore, any two consecutive copies of n are either next
to each other, thus at a distance 1, or separated by a single copy of i �= n, thus at a
distance 2. Consequently, the total response time variability of S equals V .

(Only if) Now, let us assume that there is a solution Q to the Response Time
Variability problem with variability RTV ≤V . Firstly, we observe from Lemma 7.4
that RTVn ≥ V in any solution to the Response Time Variability problem, and con-
sequently RTV = RTVn and RTVi = 0 for i = 1, . . . ,m in Q. Secondly, we observe
that if any two copies of n were three or more slots apart in Q, that is, if they were
separated by two or more copies of i �= n, then RTVn > RTV for Q, which would
lead to a contradiction. Therefore, no i ≤ m and j ≤ m are next to each other in Q.
The first observation implies that all distances between consecutive copies of model
i, i = 1, . . . ,m, are equal in Q. Furthermore, since there are di copies of i in the se-
quence of length D, then the distance between the consecutive copies of i is D

di
= 2�i

in Q. Now, let ci,ci +2�i, . . . ,ci +2(di−1)�i be the ends of time slots in Q occupied
by i, i = 1, . . . ,m. Of course all these numbers are different as no time slot is occu-
pied by more than one i. Consequently, all numbers, ci

2 , ci
2 + �i, . . . ,

ci
2 +(di− 1)�i,

i = 1, . . . ,m, are different. Furthermore, by the second observation, if for some i, j,h
and k, ck

2 + h�k > ci
2 + j�i, then ck

2 + h�k− (ci
2 + j�i) > 1

2 . Consequently, all num-
bers
 ci

2 �,
 ci
2 �+ �i, . . . ,
 ci

2 �+ (di− 1)�i, i = 1, . . . ,m, are different. Therefore, by
servicing machine i in time slots
 ci

2 �,
 ci
2 �+�i, . . . ,
 ci

2 �+(di−1)�i, i = 1, . . . ,m we
obtain a solution to the Periodic Maintenance Scheduling problem. This proves the
theorem. ��

The transformation presented in the proof of Theorem 7.15 is not pseudo-
polynomial since the largest number L = lcm(�1, �2, . . . , �m) in the instance of the
Response Time Variability problem may not be bounded by any polynomial of
max{�i} and m logmax{�i}, the latter being the input size of the Periodic Mainte-
nance Scheduling problem. Consequently, this transformation does not ensure that

7.3 Heuristics 157

the Response Time Variability problem is NP-hard in the strong sense even if the Pe-
riodic Maintenance Scheduling problem is NP-complete in the strong sense. There-
fore, it remains an open question whether the Response Time Variability problem is
NP-hard in the strong sense or whether there is a pseudo-polynomial, that is poly-
nomial in D, time algorithm that solves it to optimality. It also remains open if the
decision counterpart of the Response Time Variability problem is in NP.

7.3 Heuristics

This section describes heuristics for the total response time variability problem.
Each of these heuristics uses the Exchange Heuristic, described in Sect. 7.3.1, to
exchange the neighboring copies of a sequence in order to reduce its response time
variability. The exchanges can be applied to any feasible sequence and their out-
come is sensitive to the selection of the initial sequence. Section 7.3.2 describes a
number of different ways the initial sequence can obtained.

7.3.1 The Exchange Heuristic

Consider a sequence s = s1 . . . sD and a model i with di ≥ 2. Let i be in position p
of s, that is sp = i. We define the closest to position p clockwise i as the first i in s
encountered when moving clockwise away from p, similarly, we define the closest
to p counter-clockwise i as the first i encountered when moving counter-clockwise
away from p. Notice that if di = 1 or 2, then the clockwise i is the same as the
counter-clockwise i. The Exchange Heuristic does the exchange of two neighbor-
ing copies whenever it reduces the total response time variability. More precisely,
consider copies of i and j, i �= j, that are next to each other in a given sequence s,
assume the i is in position p and the j in position p + 1. Let Ri and Li be distances
to the closest to p clockwise and counter-clockwise, respectively, i in s. Similarly,
let R j and Lj be distances to the closest to p + 1 clockwise and counter-clockwise,
respectively, j in s. Then, for di,d j ≥ 2,

B = L2
i + R2

i + L2
j + R2

j

before the exchange and

A = (Li + 1)2 +(Ri−1)2 +(Lj−1)2 +(R j + 1)2

after the exchange. Since all the other distances remain unchanged, we have the
following net change in the value of the total response time variability,

∆ = B−A = 2(Ri−Li−1)+ 2(Lj−R j−1).

158 7 Response Time Variability

If d j = 1 and di ≥ 2, then ∆ = 2(Ri − Li − 1). If di = 1 and d j ≥ 2, then ∆ =
2(Lj−R j− 1). Finally, if di = d j = 1, then ∆ = 0. The exchange takes place only
if ∆ is positive. The Exchange Heuristic starts with position 1 and passes clockwise
through the sequence checking each couple spsp+1. If the exchange within the cou-
ple reduces the response time variability, then it is made and the algorithm proceeds
to position p + 1. Position D is immediately followed by position 1. If position 1 is
reached (again) without any reduction in the total response time variability, then the
algorithm stops. Otherwise, the next pass through the sequence begins. We observe
that the heuristic eventually stops since each pass either reduces the total response
time variability or proves that no exchange improves the total response time variabil-
ity. In fact, the Exchange Heuristic goes a bit further, namely, even if an exchange
attempt results in ∆ = 0 it is done after all as long as the maximum distance over all
distances for both models being exchanged does not increase and at least one of the
two maxima decreases. This last condition ensures that the heuristic actually termi-
nates. A single pass through the sequence can be done in O(D2) time. The upper
bound on the value of RTV that can be easily derived from the number decomposi-
tion graph is O(nD2). Therefore the exchange heuristic runs in O(nD4). Fortunately,
computational experiments, Corominas et al. [82], show that the heuristic never took
longer than 20 s for D as large as 1,500 to do the exchanges.

The Exchange Heuristic is applied to an initial sequence which is generated in a
number of different ways. These will be detailed in the subsequent section.

7.3.2 The Initial Sequences

Bottleneck (Minimum TE) Sequences

The bottleneck sequences have been obtained by solving the bottleneck problem
(5.2) from Chap. 5 to optimality with the algorithm implementation of Moreno [83].
However, other algorithms could be used to obtain, possibly different, bottleneck
sequences (see Steiner and Yeomans [41], Kubiak [23], and Bautista et al. [29]).

Random Sequences

The bottleneck sequence S has been randomized as follows. For each position x in
[1,D], get a random integer number ran in the range [1,D], then swap Sx with Sran.

Webster’s Sequences

These sequences have been obtained by applying the parametric method of appor-
tionment, described in Sect. 2.4, with parameter δ = 1

2 . The Webster’s method .
The sequence is generated as follows. Consider xit , the number of model i copies in

7.3 Heuristics 159

the sequence of length t, t = 0,1, Assume xi0 = 0, i = 1, . . . ,n. The model to be
sequenced in position t + 1 can be computed as follows i∗ = argmaxi{ di

(xit+δ)}.

Jefferson’s Sequences

These sequences have been generated by applying the parametric method of ap-
portionment with δ = 1. The Jefferson’s parametric method. The stride scheduling
technique produces the same sequences, see Chap. 10.

Insertion Sequences

Let again d1 ≤ ·· · ≤ dn. Consider n− 1, two-product instances I2 = (d2,d1), I3 =
(d3,∑2

j=1 d j), . . . , In = (dn,∑n−1
j=1 d j). In each of the instances In, In−1, . . . , I3, the first

model comes from the original instance, that is n,n−1, . . . , and 3 respectively, and
the second model is the same fictitious product for all problems, denoted by ∗. Let
sequences Sn,Sn−1, . . . ,S2 be the optimal solution for the instances In, In−1, . . . , I2

respectively. They can be obtained by the algorithm for two models described in
Sect. 7.2.3. Notice that the sequence S j, j = n, . . . ,3, is made up of the model j and ∗.
Next, the sequence for the original problem is built recursively by first replacing ∗ in
Sn by Sn−1 to obtain S′n. Notice that the latter is made up of models n, n−1, and ∗.
Next, ∗ are replaced by Sn−2 in S′n to obtain a sequence S′′n made up of models n, n−
1, n−2 and ∗. Finally, sequence S2 replaces all the remaining ∗ and thus we obtain
a sequence, referred to as the insertion sequence, where model i occurs exactly di

times.
All these initial sequences, except the bottleneck, can be generated in O(D) steps.

The bottleneck needs O(D logD) steps.

7.3.3 Computational Experiment

The Webster’s and Jefferson’s sequences have resulted in the final RTV comparable
to the bottleneck and insertion sequences only for very small values of n. For larger
n, on average, their final RTV was higher than that of the bottleneck, random and in-
sertion sequences. The same has been observed about the change in the bottleneck
T E . For small n, their T E has been in the same range as the T E for the bottle-
neck and insertion sequences, while their T E significantly grew when n increased.
Therefore, we do not include the computational results with either the Webster’s
or the Jefferson’s sequences in Fig. 7.2. For each of the three initial sequences in
Fig. 7.2 , the first column includes the averages of the initial RTV . The second col-
umn includes the averages of the final RTV . The averages are rounded to integers
for convenience. The third column contains the averages of the initial T E and the
fourth column the averages of the final T E .

160 7 Response Time Variability

 n:
Bottleneck Random Insertion

Init RTV
Final
RTV

Init TE
Final
TE

Init RTV
Final
RTV

Init TE
Final
TE

Init RTV
Final
RTV

Init TE
Final
TE

10 17904 601 0.837 1.503 253685 5435 13.327 10.985 1546 625 1.461 1.406
50 180503 3208 0.936 2.004 2706679 7407 9.704 6.219 49101 4242 1.761 1.570

100 636545 4946 0.964 2.289 7130615 6375 8.812 5.564 253319 5866 2.207 1.825
200 1020847 8412 0.978 2.931 13476818 3517 7.662 4.596 873579 5032 2.039 1.977
300 1418033 6120 0.985 3.555 16271934 2266 8.605 6.400 1376361 2717 2.166 2.153
400 3574364 3913 0.991 4.754 35047637 1195 6.339 4.203 3584645 3395 3.512 3.409
500 6232671 1162 0.992 2.327 35083775 862 5.883 4.006 3290617 1313 1.856 1.574
600 7681994 496 0.992 1.648 21386442 962 7.549 5.924 1321738 375 1.049 1.014
700 12206931 179 0.993 1.407 20496095 952 6.716 5.093 706786 130 1.007 1.001
800 18083157 334 0.994 1.466 15952258 697 5.431 3.676 184422 84 1.163 1.071
900 15549203 82 0.996 1.181 8299817 472 4.421 2.685 14832 18 1.004 1.001

Fig. 7.2 The exchange improvements on the bottleneck, insertion and random initial sequences for
D = 1,000

7.4 Mathematical Programming Formulation

Optimal solutions to the Response Time Variability problem can be obtained by
means of the dynamic program described in Sect. 7.2.4 but this program is too time
and space consuming to be practical. Another approach to get optimal solutions
uses mathematical programming approach described in this section and off the shelf
optimization software CPLEX. We assume for simplicity that d1≥ 2 in this and next
sections. We begin by defining some input parameters that would reduce the size of
the program.

7.4.1 Input Parameters

Given
M = {1, . . .,n} – The set of models.
X – The best solution obtained by applying the Exchange Heuristic to five greedy

initial sequences (see Sect. 7.3 for details).
Z – The total response time variability of X .
Zi – An upper bound on the value of RTVi defined as follows

Zi = Z− ∑
j∈M, j �=i

RTVj(N j).

Let λ ≥ 1 be an integer such that
⌊

D−λ
di−1

⌋

≥ λ .

Let N′i be the top node in the number decomposition graph for D′ = D− λ and
d′i = di− 1. We set LBi, the lower bound on the distance between the copies of i,
equal to the smallest λ such that

7.4 Mathematical Programming Formulation 161

RTVi(N′i ,λ)≤ Zi.

For instance, let D = 52, di = 5, α i = 52
5 = 10.4 and Zi = 33.2. For λ = 5, the

best decomposition vector is N = (N′i ,λ) = (12,12,12,11,5) which results in
RTVi(N) = 37.2 > Zi. For, λ = 6 the best decomposition vector is L = (N′i ,λ) =
(12,12,11,11,6), which gives RTVi(L) = 25.2≤ Zi and thus LBi = λ = 6.

For a given LBi, the upper bound on the distance between the copies of i,UBi, can
be set as follows: UBi = D− ((di−1) ·LBi). However, this bound can be possibly
improved as follows. Let ω ≥ 1 be such that

⌈

D−ω
di−1

⌉

≤ ω .

Let N′i be the top node in the number decomposition graph for D′ = D−ω and
d′i = di−1. We find the largest ω such that

RTVi(ω ,N′i)≤ Zi

and set UBi = min(D− ((di−1) ·LBi) ;ω). For instance, D = 52, di = 5, α i =
52
5 = 10.4 and Zi = 7.6. For, ω = 13, the best decomposition vector is N =
(13,10,10,10,9), which gives RTVi(N) = 9.2 > Zi. Then, for ω = 12 the best de-
composition vector is L = (12,10,10,10,10), which gives RTVi(L) = 3.2≤ Zi and
thus UBi = min(D− ((di−1) ·LBi) = 28;12) = 12.

Therefore, the earliest, Eik, and the latest, Lik, positions to be occupied by copy
k of i can be set as follows

Eik = max(1 + LBi · (k−1) ;D−UBi · (di− k + 1)+ 1)

Lik = min(D−LBi · (di− k) ;UBi · k)
for i = 1, . . .,n;k = 1, . . .,di, and consequently the set of positions available for copy
k of i can be set as follows

Hik = {h : Lik ≤ h≤ Eik} .

7.4.2 The Objective

The Response Time Variability problem can be considered as a special case of
the quadratic assignment problem and therefore formulated as a quadratic inte-
ger program. The well known separable convex programming technique (see, e.g.,
Wagner [84]) can be applied with variables γ j

ik ∈ {0,1}, where γ j
ik = 1 if and only

if the distance between copies k and k + 1 of i is greater than or equal to LBi + j,
where i ∈M = {1, . . .,n};k = 1, . . .,di; j = 1, . . ., UBi−LBi, to recast the response
time variability objective function as a linear one as follows:

162 7 Response Time Variability

RTV = ∑
i∈M,k, j

(

(LBi + j)2− (LBi + j−1)2
)

· γ j
ik

+ ∑
i∈M

di ·LB2
i −∑

i∈M
di · α2

i . (7.10)

The consistency of values γ j
ik is imposed, though already guaranteed for the convex-

ity of the objective function, by the following constraint:

γ j
ik ≥ γ j+1

ik (i ∈M;k = 1, . . .,di; j = 1, . . .,UBi−LBi−1) (7.11)

Moreover, for each i ∈M, it is required from variables γ j
ik, that the sum of the dis-

tances between its units is equal to D:

UBi−LBi

∑
j=1

di

∑
k=1

γ j
ik = D−di ·LBi (7.12)

UBi−LBi

∑
j=1

di

∑
k=1

(

1− γ j
ik

)

= di ·UBi−D. (7.13)

Finally, using (7.12) we can rewrite the RTV in (7.10) so that the minimization of
RTV is equivalent to the minimization of

rtv = ∑
i∈M,k, j

j · γ j
ik.

7.4.3 Eliminating Symmetries

Let us introduce additional integer position variables slik, i ∈M;k = 1, . . .,di, where
slik equals the position index of copy k of i. The first copy of n can be fixed in the
first position of the sequence, thus

sln,1 = 1.

Distance Mirror Reflection Elimination

Consider sequence S, then
S = nS1nS2· · ·nSdn ,

where S j j = 1, . . .,dn are sequences, possibly empty, of copies of i = 1, . . .,n− 1.
Then, the mirror reflection

Sdnn· · ·S2nS1n

7.4 Mathematical Programming Formulation 163

of S does not change the total response time variability, neither does the cyclic rota-
tion by a single position

S′ = nSdnn· · ·S2nS1.

To eliminate this mirror reflection symmetry we introduce the following constraint

dn−1

∑
k=1

k2 · (sln,k+1− sln,k
)

+ d2
n ·
(

D− sln,dn + sln,1
)

≤
dn−1

∑
k=1

(dn− k + 1)2 · (sln,k+1− sln,k
)

+
(

D− sln,dn + sln,1
)

. (7.14)

Cyclic Rotation Elimination

Consider S again
S = nS1nS2· · ·nSdn ,

and its dn−1 cyclic rotations
nS2· · ·nSdnnS1

...

nSdinS1· · ·nSdn−1.

All these rotations have the same value of the total response time variability. We
introduce the following constraints to eliminate these cyclic rotations.

dn−1

∑
k=1

k2 · (sln,k+1− sln,k
)

+ d2
n ·
(

D− sln,dn + sln,1
)

≤
dn−1

∑
k=1

(1 +((k + j)moddn))
2 · (sln,k+1− sln,k

)

+(1 + j)2 · (D− sln,dn + sln,1
)

(j = 0, . . .,dn−2) (7.15)

Consistency with γ j
ik

The consistency of the slik and γ j
ik variables is ensured by the following constraints

(7.16) and (7.17):

sli,k+1− sli,k = LBi + γ1
ik + · · ·+ γ j

ik + · · ·+ γUBi−LBi
ik

(∀i ∈M;k = 1, . . .,di−1) (7.16)

D− sli,di + sli,1 = LBi + γ1
i,di

+ · · ·+ γ j
i,di

+ · · ·+ γUBi−LBi
i,di

(i ∈M) (7.17)

164 7 Response Time Variability

For each i ∈ M, it is required that the sum of the distances between its units is
equal D:

di−1

∑
k=1

(

sli,k+1− sli,k
)

+
(

D− sli,di + sli,1
)

= D (i ∈M) (7.18)

7.4.4 Feasibility of Position Variables

Finally, we introduce the variables yikh ∈ {0,1}, where yikh = 1 if and only if copy
k of i is in position h, where i ∈M;k = 1, . . .,di;h ∈ Hik, and we link them with the
position variables slik by the constraint (7.19). These yikh variables are necessary to
ensure that all position variables slik have distinct values in a feasible solution. This
requirement is ensured by adding the following assignment type constraints (7.20)
and (7.21):

∑
h∈Hik

h · yikh = slik (i ∈M;k = 1, . . .,di) (7.19)

∑
(i,k)|i∈M∧h∈Hik

yikh = 1 (h = 1, . . .,D) (7.20)

∑
h∈Hik

yikh = 1 (i ∈M;k = 1, . . .,di) . (7.21)

7.5 The Algorithm

We now put all constraints and the objective together.

min rtv = ∑
i∈M,k, j

j · γ j
ik (7.22)

Subject to

∑
h∈Hik

h · yikh = slik (i ∈M;k = 1, . . .,di) (7.23)

sli,k+1− sli,k = LBi + γ1
ik + · · ·+ γ j

ik + · · ·+ γUBi−LBi
ik

(i ∈M;k = 1, . . .,di−1) (7.24)

D− sli,di + sli,1 = LBi + γ1
i,di

+ · · ·+ γ j
i,di

+ · · ·+ γUBi−LBi
i,di

(i ∈M) (7.25)

γ j
ik ≥ γ j+1

ik (i ∈M;k = 1, . . .,di; j = 1, . . .,UBi−LBi−1) (7.26)

∑
(i,k)|i∈M∧h∈Hik

yikh = 1 (h = 1, . . .,D) (7.27)

7.6 Exercises 165

∑
h∈Hik

yikh = 1 (i ∈M;k = 1, . . .,di) (7.28)

dn−1

∑
k=1

k2 · (sln,k+1− sln,k
)

+ d2
n ·
(

D− sln,dn + sln,1
)

≤
dn−1

∑
k=1

(dn− k + 1)2 · (sln,k+1− sln,k
)

+
(

D− sln,dn + sln,1
)

(7.29)

dn−1

∑
k=1

k2 · (sln,k+1− sln,k
)

+ d2
n ·
(

D− sln,dn + sln,1
)

≤
dn−1

∑
k=1

(1 +((k + j)moddn))2 · (sln,k+1− sln,k
)

+(1 + j)2 · (D− sln,dn + sln,1
)

(j = 0, . . .,dn−2) (7.30)

UBi−LBi

∑
j=1

di

∑
k=1

γ j
ik = D−di ·LBi (i ∈M) (7.31)

UBi−LBi

∑
j=1

di

∑
k=1

(

1− γ j
ik

)

= di ·UBi−D (i ∈M) . (7.32)

Corominas et al. [85] use off the shelf software, CPLEX, to show that the practi-
cal limit for obtaining optimal solutions is D = 40 units to be scheduled in 2,000 s or
less. The exact algorithms capable of solving the Response Time Variability prob-
lem for lager problem sizes in comparable amount of time remain to be found.

7.6 Exercises

Exercise 7.16. Develop a branch and bound algorithm for the Response Time Vari-
ability problem.

Exercise 7.17. Let αi be a given node in a number decomposition graph Di for
di, i = 1, . . .,n. Formulate an integer program to test the feasibility of the nodes
α1, . . .,αn. The feasibility means that there exists a just-in-time sequence for
(d1, . . .,dn) with distance of copies of i as in the node αi. What is the complex-
ity of this test? Hint: The complexity appears an open problem.

Exercise 7.18. What is the total response time variability for the power-of-two
instances?

166 7 Response Time Variability

7.7 Comments and References

This chapter is based to a large extend on Corominas et al. [82], where more
results of computational experiments with the Exchange Heuristic can be found.
The mathematical programming formulation and algorithm come from Corominas
et al. [82,85]. The total response time variability is suggested as a main metric of the
stride schedule by Waldspurger and Weihl [13], see also Chap. 10. The idea of The-
orem 7.13 comes from [86]. Lemma 7.12 is from Bar-Noy et al. [79]. The proof of
Theorem 7.14 was given in Bar-Noy et al. [79].

Chapter 8
Applications to the Liu–Layland Problem
and Pinwheel Scheduling

8.1 Introduction

This chapter presents a fresh approach to two hard real-time classical sequencing
problems: the Liu–Layland periodic sequencing problem and the (generalized) pin-
wheel scheduling problem. We show that a number of important results obtained
in the literature on either of these two problems follow quite easily from the prop-
erties of just-in-time sequences with small bottleneck deviations. We also present
new solutions to the Liu–Layland problem based on the quota-divisor methods of
apportionment. This fresh approach sheds a new light on the connections between
the just-in-time optimization and the apportionment problem on one side and the
hard two real-time scheduling problems on the other.

The Liu-Layland periodic sequencing problem [87] is one of the most funda-
mental problems studied in hard real-time computing systems. A system is said to
be real-time if the correctness of its operation depends not only on the logical cor-
rectness of the tasks making it but also on the time at which the tasks are performed.
In a hard real-time system, the completion of a task after its deadline is considered
useless and may ultimately lead to a critical failure of the whole system. For in-
stance, a task may calculate a current position of an aircraft in C seconds but the
position must be updated every T seconds. Missing a deadline may prove fatal for
the aircraft and generally for the system, thus deadlines must not be missed. More
details about hard real-time systems can be found in Cheng [88], and Butazzo [89].

The second problem discussed in this chapter is the pinwheel scheduling prob-
lem. Its motivation comes from the real-time satellite communication with a ground
station without data loss. This problem was introduced by Holte et al. [90] in 1989
and since then it is referred to as the pinwheel scheduling problem. In this problem,
the ground station receives data from a number of satellites. In each time slot the
station can only receive a single data packet from a single satellite. Each satellite,
due to its orbital characteristics, has a possibly different window of time of length b,
measured in the number of time slots, to repeatedly broadcast the same data packet
to the ground station. The station then has to allocate time slots to satellites so as

W. Kubiak, Proportional Optimization and Fairness, International Series in Operations 167
Research & Management Science 127, DOI 10.1007/978-0-387-87719-8 8,
c© Springer Science+Business Media LLC 2009

168 8 Applications to the Liu–Layland Problem and Pinwheel Scheduling

to ensure that no data packet is lost, that is a satellite with time window b must be
allocated at least one time slot out of any consecutive b time slots. A generalized
pinwheel scheduling problem introduced by Baruah and Bestavros [91] requires that
a sliding time window of size b always includes at least a≥ 1 time slots allocated to
a satellite, which can speed up error recovery in case of possible broadcast problems.

The plan for this chapter is as follows. Section 8.2 introduces the Liu–Layland
problem in detail and briefly reviews well-known results on this problem. Sec-
tion 8.3 shows that the Liu–Layland problem can be solved by any optimization
algorithm for the bottleneck problem. Actually, even stronger results holds, namely,
any algorithm that finds a just-in-time sequence with bottleneck deviation less than
1 solves the Liu–Layland problem. Such algorithms may be, for instance, the algo-
rithm of Tijdeman presented in Chap. 5 or the quota-divisor methods of apportion-
ment discussed in Sect. 8.4. We also show that the quota satisfaction is the neces-
sary condition for a devisor method to solve the Liu–Layland problem. Therefore,
no divisor method solves the Liu–Layland problem, and the culprit is population
monotonicity that characterizes any divisor method. Section 8.5 introduces the pin-
wheel and the generalized pinwheel scheduling problems and reviews well-known
results on these problems. Section 8.6 presents additional properties of just-in-time
sequences with bottleneck deviation less than 1. The properties lead to elegant and
simple proofs of a number of results on these problems known in the literature.
For instance the problems with the total density not exceeding 1

2 or the generalized
pinwheel problem with n = 2.

8.2 The Liu–Layland Problem

Following Liu and Layland [87], we define the periodic sequencing problem as fol-
lows. Consider n independent, preemptive and periodic tasks 1, . . . ,n with their re-
quest periods being T1, . . . ,Tn and their run-times being C1, . . . ,Cn respectively. The
execution of the kth request of task i, which occurs at moment (k−1)Ti, must finish
by moment kTi when the next request for the task begins, k = 1,2, Missing a
deadline is fatal to the system, therefore the deadlines Ti,2Ti, . . . are considered hard
for task i. All numbers are positive integers and Ci ≤ Ti for i = 1, . . . ,n. We need to
find an infinite word S = s1s2 . . . on the alphabet {1,2, . . . ,n} such that i occurs ex-
actly Ci times in each subsequence s(k−1)Ti+1 . . .skTi for k = 1, . . . and i = 1, . . . ,n. We
call S a periodic schedule for tasks 1, . . . ,n. For any periodic schedule S, its L-prefix
s = s1 . . . sL, where L = lcm(T1, . . . ,Tn), defines a periodic schedule s∞ which is an
infinite concatenation of s. Consequently, we shall assume that s∞ represents all
periodic schedules with their L-prefixes being s, and our discussion assumes for
simplicity that the term periodic schedule S refers to the L-prefix s of S rather than
to S itself. We begin with an example of three tasks and their periodic schedule.

Example 8.1. Consider a three task instance with request periods T1 = 3,T2 = 4 and
T3 = 5, and run-times C1 = C2 = 1 and C3 = 2 respectively. The periodic schedule
for this instance is shown in Fig. 8.1 where L = lcm(T1,T2,T3) = 60. Notice that the

8.2 The Liu–Layland Problem 169

0

4

5

8

10

3 6 60

60

60

0

0

Fig. 8.1 The periodic schedule for tasks with periods T1 = 3, T2 = 4, and T5 = 5, and run-times
C1 = C2 = 1 and C3 = 2 respectively

total load between 0 and L is 1× 20 + 1× 15 + 2× 12 = 59 which leaves a single
time slot, between 35 and 36, empty. ��

The solution in Fig. 8.1 can be obtained by the deadline driven algorithm of Liu
and Layland [87], see also Dertouzos [92]. The algorithm assigns priorities to tasks
according to the deadlines of their current requests. Therefore, a task with the high-
est priority at a unit time slot k will be the one with the deadline of its current request
being the nearest to k, and a task will be assigned the lowest priority if the deadline
of its current request is the furthest from k. In any unit time slot k a task with the
highest priority and still incomplete current request will be executed. This deadline
driven algorithm always produces a periodic schedule as long as

n
∑

i=1

Ci

Ti
≤ 1. (8.1)

Clearly, no periodic schedule exists with (8.1) being violated.
We view the Liu–Layland periodic sequencing problem from a rather different

angle in this chapter. Our solution is based on the solution to the bottleneck problem
and it can be explained as follows. Assume that a task i can be allocated processor so
that it can progress at a rate as close to ri = Ci

Ti
as possible. More precisely, consider

the straight line
Ci

Ti
k

in the interval [0,L] where variable k takes on integer values 0,1, . . .,L. Let xik be the
total time allocated by a given schedule to task i in [0,k], notice that the schedule
may allocate time to multiple requests for i in this interval. Then, Theorem 5.8
ensures that there is a schedule that keeps xik within distance less than 1 from the
line Ci

Ti
k simultaneously for each task i = 1, . . . ,n. We show that being this close to

the lines Ci
Ti

k automatically ensures that the schedule is periodic, that is each request
for task i falls inside its request period.

170 8 Applications to the Liu–Layland Problem and Pinwheel Scheduling

Our main goal is to show that any just-in-time sequence with ri = Ci
Ti

and its
bottleneck deviation being less than one (but not necessarily optimal) solves the
Liu–Layland problem for tasks 1, . . . ,n with their request periods being T1, . . . ,Tn

and their run-times being C1, . . . ,Cn respectively. Formally, the ratios ri = Ci
Ti

trans-

late into total demand D = L and the individual demands di = LCi
Ti

. Moreover, if

∑1≤i≤n
Ci
Ti

< 1, then a dummy model n + 1 with its demand

dn+1 = L

(

1− ∑
1≤i≤n

Ci

Ti

)

can be added to complete the instance of the bottleneck problem. It is worth noticing
that our proofs are formulated in terms of the ratios ri = Ci

Ti
rather than the actual

demands di which frees our approach from working with potentially large demands
di and L. For the proof, it is sufficient to show that any interval [(k−1)Ti +1,kTi] of
the bottleneck just-in-time sequence includes at least Ci copies of i. We begin with
the following two results shown in Lemmas 8.2 and 8.3, and Lemmas 8.4 and 8.5
respectively. The first shows that the inequalities

E(i, j)≤ L(i, j) ≤ E(i, j + 1)

hold for all i = 1,2, . . . ,n and j = 1, . . . ,d j − 1 as long as B < 1. Hence, copies
(k−1)Ci + 1, . . .,kCi of i occupy Ci positions in the interval

[E(i,(k−1)Ci + 1),L(i,kCi)].

The second proves that

(k−1)Ti < E(i,(k−1)Ci + 1) and L(i,kCi)≤ kTi (8.2)

for B < 1. Notice that the first inequality in (8.2) must hold as a strict inequality since
by definition the E(i,(k− 1)Ci + 1) is the earliest position that copy (k− 1)Ci + 1
can occupy. Thus the starting moment of that copy can be as early as E(i,(k−
1)Ci +1)−1 which must not be sooner than the release of the kth request that is the
moment (k−1)Ti.

The above definition of periodic schedule tacitly implies preemptions at integer
points only. This is justified, however, by the fact that the existence of preemptive
periodic schedule implies the existence of preemptive periodic schedule with pre-
emptions at integer points only. This claim holds since the Liu–Layland problem
can be reduced to the 1|pmtn,ri,di|− scheduling problem, we refer the reader to
Błażewicz et al. [93] for the definition of the three field scheduling notation, by
taking the release dates 0,Ti, . . . ,(L

Ti
−1)Ti and the deadlines Ti,2Ti, . . . ,L for the L

Ti
requests of task i with run-time Ci in the L-prefix. The latter problem can in turn
be reduced to the maximal network flow problem, Bratley et al. [94], which by the
integrality of all input data and the Integral Flow Theorem of network flows, see
Lawler [95], is solved by an integral flow. The flow can then be readily turned into a

8.3 Just-In-Time Solution of the Liu–Layland Problem 171

periodic schedule with preemptions at integer points only. These observations also
imply that the L-prefix, if it exists, can be found in time polynomial in L.

8.3 Just-In-Time Solution of the Liu–Layland Problem

We now give the details of the solution of the Liu–Layland periodic sequencing
problem based on the solution to the bottleneck problem studied in Chap. 5. The
following is the summary of the correspondences between the two problems alluded
in the previous section:

number tasks n←→ number of models n
task i←→ model i

total run-time of task i in [0,L]←→ demand di for model i
cycle time L←→ total demand D = ∑n

i=1 di

the ratio Ci
Ti
←→ ri = di

D = Ci
Ti

.

We begin with some implications of Theorem 5.1 for the bottleneck problem
solutions.

Lemma 8.2. For any feasible bottleneck deviation B, i = 1,2, . . . ,n and j =
1, . . . ,d j, we have

E(i, j)≤ L(i, j).

Proof. Follows immediately from Theorem 5.1. ��
We now show that for B < 1 the intervals for consecutive copies of model i can

overlap at the ends only.

Lemma 8.3. For B < 1 and k = 1,2, . . . j = 1, . . ., we have

L(i, j) ≤ E(i, j + 1).

Proof. By Theorem 5.1

L(i, j) = � j−1 + B
ri

+ 1	,

and

E(i, j + 1) =
 j + 1−B
ri

�=
 j−1 + B
ri

+
2(1−B)

ri
�.

If j−1+B
ri

is an integer, then L(i, j) = j−1+B
ri

+ 1 ≤ j−1+B
ri

+
 2(1−B)
ri
� = E(i, j + 1)

since 2(1−B)
ri

> 0 for B < 1. If j−1+B
ri

is not an integer, then L(i, j) =
 j−1+B
ri
� ≤

 j−1+B
ri

+ 2(1−B)
ri
� = E(i, j + 1) since again 2(1−B)

ri
> 0 for B < 1. Thus, the lemma

holds. ��

172 8 Applications to the Liu–Layland Problem and Pinwheel Scheduling

Moreover, for B < 1, the copy kCi of model i must be in a position not later than
kTi. That is the completion of the k−th request of task i is not later than the deadline
of this request.

Lemma 8.4. For any bottleneck B < 1 and i = 1, . . .,n, we have

kTi ≥ L(i,kCi).

Proof. By Theorem 5.1

L(i,kCi) = �kCi−1 + B
ri

+ 1	.

Since ri = Ci
Ti

, we have

L(i,kCi) = �kTi + 1 +
B−1

ri
	.

Finally, since B < 1, then
L(i,kCi)≤ kTi

which ends the proof. ��
Finally, for B < 1, the copy (k− 1)Ci + 1 of model i must be in a position later

than (k− 1)Ti. That is the earliest start time of the k− 1-st request of task i is not
earlier than its release date.

Lemma 8.5. For any B < 1 and i = 1, . . .,n, we have

(k−1)Ti < E(i,(k−1)Ci + 1).

Proof. By Theorem 5.1

E(i,(k−1)Ci + 1) =
 (k−1)Ci + 1−B
ri

�.

Since ri = Ci
Ti

, we have

E(i,(k−1)Ci + 1) =
(k−1)Ti +
1−B

ri
�.

Finally, since B < 1, then

E(i,(k−1)Ci + 1) > (k−1)Ti

which ends the proof. ��
We are now ready to prove the main result.

Theorem 8.6. Any solution to the bottleneck problem with rates ri = Ci
Ti

, i = 1, . . .,n
and the bottleneck deviation less than 1 is a periodic schedule.

8.3 Just-In-Time Solution of the Liu–Layland Problem 173

Proof. Consider any solution to the bottleneck problem with its bottleneck deviation
B being less than 1. By Theorem 5.6, such a solution always exists. Then, copy j of
model i occupies a position in the interval [E(i, j),L(i, j)], where E(i, j) and L(i, j)
are defined as in Theorem 5.1. Therefore, by Lemmas 8.2 and 8.3, Ci copies (k−
1)Ci + 1, . . .,kCi of model i occupy Ci positions in the interval [E(i,(k− 1)Ci + 1),
L(i,kCi)]. However, by Lemmas 8.4 and 8.5, we have (k−1)Ti < E(i,(k−1)Ci +1)
≤ L(i,kCi) ≤ kTi and thus at least Ci copies of i occupy positions in [(k−1)Ti + 1,
kTi]. Consequently, the schedule is periodic which proves the theorem. ��

The following example shows the just-in-time solution to the instance of
Example 8.1.

Example 8.7. The instance of the Liu–Layland problem from Example 8.1 translates
into an instance of the bottleneck problem with n = 4 models, demands d1 = 20,d2 =
15,d3 = 24 and d4 = 1, and rates r1 = C1

T1
= 1

3 ,r2 = C2
T2

= 1
4 ,r3 = C3

T3
= 2

5 , and r4 = 1
60

respectively. Notice that
3
∑

i=1

Ci

Ti
=

59
60

< 1

thus a dummy task with the request period T4 = 60 and the run-time C4 = 1 is
added. Table 8.1 shows the time windows in which to run a unit of tasks 1, 2, and 3

Table 8.1 The position windows for tasks 1, 2, and 3

j E(1, j) L(1, j) E(2, j) L(2, j) E(3, j) L(3, j)

1 1 3 1 4 1 2
2 4 6 5 8 4 5
3 7 9 9 12 6 7
4 10 12 13 16 9 10
5 13 15 17 20 11 12
6 16 18 21 24 14 15
7 19 21 25 28 16 17
8 22 24 29 32 19 20
9 25 27 33 36 21 22
10 28 30 37 40 24 25
11 31 33 41 44 26 27
12 34 36 45 48 29 30
13 37 39 49 52 31 32
14 40 42 53 56 34 35
15 43 45 57 60 36 37
16 46 48 39 40
17 49 51 41 42
18 52 54 44 45
19 55 57 46 47
20 58 60 49 50
21 51 52
22 54 55
23 56 57
24 59 60

174 8 Applications to the Liu–Layland Problem and Pinwheel Scheduling

0

0

0

3

4

5

6

8

10 60

60

60

Fig. 8.2 The periodic schedule obtained by the just-in-time sequencing

obtained for B = 1− 1
2(n−2) = 3

4 . The sequence is shown in Fig. 8.2. The sequence
ignores a dummy task 4. ��

8.4 Divisor Methods for the Liu–Layland Problem

8.4.1 The Necessary Conditions

Theorem 8.6 proves that in fact staying within the quota is a sufficient condition
for a house monotone method to solve the Liu–Layland periodic sequencing prob-
lem. This section goes further and studies the apportionment divisor methods as a
possible approach to solving this problem. These methods are chosen because of
their extreme computational efficiency, which makes them especially attractive for
real-time scheduling, their well know properties, which make them a cornerstone of
the apportionment theory, see Chap. 2, and because of their practical significance as
shown by their applications in operating systems and networking, see Chap. 10. Our
main result shows that staying within the quota is a necessary condition for a divisor
method to solve the Liu–Layland problem. This in fact proves that the divisor meth-
ods can not solve the Liu–Layland problem since no divisor method stays within the
quota by Theorem 2.4. Though this result can be deemed negative it provides inter-
esting insights into the solutions of the Liu–Layland problem, for instance, they are
not population monotone. Consequently, no population monotone method solves the
Liu–Layland problem and therefore any method that solves this problem must suffer
from the population paradox. That is sometimes even if task is run-time increases
and task js run-time decreases, the task i may get fewer allocations and task j may
get more allocations with the new run-times than they do with the original run-
times in the same time interval [0, t]. Finally, we show that slight modifications of
the Adams’s and Jefferson’s divisor methods solve the Liu–Layland problem. These
modifications result into the quota-Adams and the quota-Jefferson divisor meth-
ods introduced by Balinski and Young [2], and Still [96]. These particular quota

8.4 Divisor Methods for the Liu–Layland Problem 175

methods are chosen in this chapter because they are conceptually the simplest and
computationally the most efficient ones among all quota divisor methods. The fol-
lowing summarizes the correspondence between the Liu–Layland problem and the
apportionment problem discussed in Chap. 2:

number of tasks n←→ number of states n
task i←→ state i

total run-time of task i in [0,L]←→ population pi(= di) of state i
position in sequence h←→ size of house h

total time xih allocated to task i in [0,h]←→ ai for a house of size h
cycle time L←→ total population P = ∑n

i=1 pi.

We now show two necessary conditions for divisor methods to solve the Liu–
Layland periodic scheduling problem.

Lemma 8.8. Staying above lower quota is a necessary condition for any divisor
method to solve the Liu–Layland problem.

Proof. By contradiction. Let us consider any divisor method M that does not stay
above lower quota and solves the Liu–Layland problem at the same time. Since
M does not stay above lower quota, then there exist a vector of populations p =
(p1, p2, . . . , pn), n≥ 3 since all divisor methods stay within the quota for all 2−state
problems, see Theorem 2.5, and the house size h for which the lower quota (2.3) is
not satisfied for some state k, that is

ykh < �qk	=
⌊

pkh
P

⌋

. (8.3)

By Lemma 2.7, we can assume that qk is fractional.
Define an instance of the Liu–Layland problem as follows. For the task k corre-

sponding to the state k, let Tk= h. Let the run-time of task k be

Ck = �qk	=
⌊

pkh
P

⌋

≤ h. (8.4)

At the moment t = h×P, the total run time of all P requests for task k equals

αk = P

⌊

pkh
P

⌋

< P
pkh
P

= pkh. (8.5)

For all other tasks i �= k the run time is defined as follows

Ci = pih, (8.6)

and their request periods Ti = h×P. Thus all other tasks, except k, can be scheduled
at any moment up to t = h×P. Notice that this Liu–Layland instance has a solution
by (8.1), since

176 8 Applications to the Liu–Layland Problem and Pinwheel Scheduling

n
∑

i=1

Ci

Ti
=

n
∑

i=1,i�=k

hpi

h×P
+

⌊

pkh
P

⌋

h
<

n
∑

i=1

pi

P
= 1.

Since M, by assumption, solves the Liu–Layland problem, then it obtains a pe-
riodic sequence SLL with xkh=Ck positions assigned to the task k in the first request
period Tk = h of this task. By (8.3) and (8.4), ykh< Ck. Moreover, the instance of the

apportionment problem r with ri = hpi for i �= k and rk = P
⌊

pkh
P

⌋

< hpk changes

the populations according to the following proportions:

ri

rk
>

hpi

hpk
=

pi

pk
for all i �= k.

However, since xkh > ykh, and h = ∑n
i=1 xik = ∑n

i=1 yik, then there is i �= k such
that xih < yih, which contradicts the population monotonicity of method M. This
ends the proof. ��
Though staying above the lower quota is a necessary condition for a population
monotone method to solve the Liu–Layland problem, which we just proved, it is not
a necessary condition for a house monotone method. To show this let us consider
the following instance of the Liu–Layland problem:

C1 = 3,T1 = 5,C2 = 2,T2 = 5 (8.7)

and a house monotone (however not a divisor) method, for instance, the original
Liu–Layland algorithm [87]. Let us have this algorithm to break ties whenever there
is more then one task with the same request period Ti by assigning the current time
slot to a task with the longest run-time. The sequence produced by this algorithm is
as follows:

1→ 1→ 1→ 2→ 2 (8.8)

where 1 and 2 denote the unit time allocations of tasks 1 and 2 respectively. This
sequence solves the Liu–Layland problem, however, it violates the lower quota

�q2	=
⌊

2×3
5

⌋

=

⌊

6
5

⌋

= 1 (8.9)

for task 2 at position 3.
The following lemma presents the second necessary condition.

Lemma 8.9. Staying below upper quota is a necessary condition for any divisor
method to solve the Liu–Layland problem.

Proof. By contradiction. Let us consider any divisor method M that does not stay
below upper quota and solves the Liu–Layland problem at the same time. Since
M does not stay below upper quota, then there exists a vector of populations p =
(p1, p2, . . . , pn), n ≥ 3, and the house size h for which the upper quota (2.4) is not
satisfied for some state k. That is

8.4 Divisor Methods for the Liu–Layland Problem 177

h≥ ykh >
qk�=
⌈

pkh
P

⌉

. (8.10)

By Lemma 2.8, we can assume that qk is fractional.
Define an instance of the Liu–Layland problem as follows. For the task k corre-

sponding to the state k, let Tk= h. Let the run-time of task k be

Ck =
⌈

pkh
P

⌉

=
qk�< h. (8.11)

At the moment t = h×P, the total run time of all P requests of task k equals

αk = P

⌈

pkh
P

⌉

< P
(pkh

P
+ 1

)

= pkh + P. (8.12)

For all other tasks i �= k the initial run-time is defined as follows

Ci = pih, (8.13)

and their request periods Ti = h×P. The run time Ci of task i is now (possibly)
reduced by an integer δi, δi ≥ 0, to C′i = Ci− δi so that C′i ≥ 1 and

∑
i�=k

δi = P

⌈

pkh
P

⌉

− pkh > 0. (8.14)

This reduction is feasible, though it can be done in a number of different ways, since
by (8.11)

∑
i�=k

C′i = h ∑
i�=k

pi−
(

P

⌈

pkh
P

⌉

− pkh

)

= hP−P

⌈

pkh
P

⌉

= P

(

h−
⌈

pkh
P

⌉)

≥ P≥ n. (8.15)

Notice that this reduced Liu–Layland instance has a feasible solution by (8.1), since

n
∑

i=1

C′i
Ti

=
n
∑

i=1,i�=k

hpi−
(

P
⌈

pkh
P

⌉

− pkh
)

h×P
+

⌈

pkh
P

⌉

h
=

n
∑

i=1

pi

P
= 1. (8.16)

Finally, since M, by assumption, solves the Liu–Layland problem, then it obtains a
periodic sequence SLL with xkh=Ck positions assigned to the task k in the first request
period Tk = h. However, by (8.10) and (8.11) ykh> xkh, and the instance r where

ri = hpi− δi for i �= k and rk = P
⌈

pkh
P

⌉

> hpk satisfies the following condition:

ri

rk
=

hpi− δi

P
⌈

pkh
P

⌉ <
pi

pk
for all i �= k.

178 8 Applications to the Liu–Layland Problem and Pinwheel Scheduling

However, since xkh < ykh, and h = ∑n
i=1 xik = ∑n

i=1 yik, then there is i �= k such
that xih > yih, which contradicts the population monotonicity of the method M. This
ends the proof. ��
Though staying below upper quota is a necessary condition for a population
monotone method to solve the Liu–Layland problem, it is not a necessary con-
dition for a house monotone method. Consider again the instance (8.7) and a house
monotone (however not divisor) method that is the original Liu–Layland algo-
rithm [87]. Let us now have this algorithm to break ties whenever there is more then
one task with the same request period Ti by assigning the current time slot to a task
with the shortest run-time. The sequence produced by this algorithm is as follows:

2→ 2→ 1→ 1→ 1 (8.17)

where 1,2 denote the unit time allocations of tasks 1 and 2 respectively. This se-
quence solves the Liu–Layland problem, however, it violates the upper quota

q2�=
⌈

2×2
5

⌉

=

⌈

4
5

⌉

= 1 (8.18)

for task 2 at position 2.
The following theorem summarizes our results.

Theorem 8.10. Satisfying quota is a necessary condition for any divisor method to
solve the Liu–Layland problem.

Proof. Follows immediately from Lemmas 8.8 and 8.9. ��
Thus, by Theorem 2.4 we have an immediate conclusion formulated as
Corollary 8.11.

Corollary 8.11. No divisor method solves the Liu–Layland problem.

There are, however, divisor methods that stay above the lower quota, or below the
upper quota as stated in the following lemmas, see Balinski and Young [2].

Lemma 8.12. The Jefferson’s method is a unique divisor method that stays above
lower quota.

Lemma 8.13. The Adams’s method is a unique divisor method that stays below up-
per quota.

The following examples show that indeed neither Jefferson’s nor Adams’s method
solve the Liu–Layland problem.

Example 8.14. The Jefferson’s method of apportionment does not solve the Liu–
Layland problem.

8.4 Divisor Methods for the Liu–Layland Problem 179

Proof. Consider an instance of four tasks.

T1 = 5,C1 = 3,T2 = 5,C2 = 1,T3 = 10,C3 = 1,T4 = 10,C4 = 1. (8.19)

The rate monotonic scheduler proposed by Liu–Layland [87] gives the following
sequence for the tasks:

1→ 1→ 1→ 2→ 3→ 1→ 1→ 1→ 2→ 4. (8.20)

The transformation of the instance to the apportionment problem results into four
state instance with populations

p1 =
LC1

T1
= 6, p2 =

LC2

T2
= 2, p3 =

LC3

T3
= 1, p4 =

LC4

T4
= 1, (8.21)

where L = lcm(5,10) = 10. The Jefferson’s method results in the following se-
quence.

1→ 1→ 1←→ 2→ 1→ 1→ 1←→ 2←→ 3←→ 4, (8.22)

where x←→ y means that the x and y can be interchanged in the sequence. In (8.22)
only two (instead of required three) positions between positions 6 and 10 are occu-
pied by task 1. Thus, (8.22) is not periodic. ��
Example 8.15. The Adams’s method of apportionment does not solve the Liu–
Layland problem.

Proof. Consider again the instance (8.19). The Adams’s method results in the fol-
lowing sequence.

1→ 2→ 3←→ 4→ 1→ 1→ 2←→ 1→ 1→ 1 (8.23)

for the apportionment problem (8.21). In (8.23) only two (instead of required three)
positions between positions 1 and 5 are occupied by task 1. Thus, (8.23) is not
periodic. ��

8.4.2 Adjusting the Jefferson’s Method to Solve
the Liu–Layland Problem

We now show that it is possible to adjust the Jefferson’s method to solve the Liu–
Layland problem. We begin with the following observation.

Lemma 8.16. The Jefferson’s method assures that for every task i the cumulative
run-time ai of this task at the end of its kth request period kTi fulfils the following
condition:

ai ≥ kCi. (8.24)

180 8 Applications to the Liu–Layland Problem and Pinwheel Scheduling

Proof. The Jefferson’s method is the only divisor method that satisfies the lower
quota qi of any task i. By Lemma 8.12, we have

ai ≥ �qi	=
⌊

h× pi

∑n
i=1 pi

⌋

, (8.25)

for any house size h. By setting pi=
LCi
Ti

, ∑n
i=1 pi = L and finally h= kTi for some

k = 1,2, . . . and by substituting those values in (8.25) we obtain

ai ≥
⌊

(kTi)× (LCi
Ti

)

L

⌋

= kCi. (8.26)

Since kCi is an integer, this completes the proof. ��
Lemma 8.16 guarantees that the task i runs for at least kCi time units by the end
of the kth request period kTi which however does not guarantee that i runs for Ci

time units in each interval [(�−1)Ti, �Ti], � = 1, . . .,k. We illustrated this problem in
Example 8.14. To rectify the problem we can modify the Jefferson’s method so that
before allocating the next time unit to task i according to the standard Jefferson’s
method the upper quota of that task is verified and if it is not violated the task is
allocated the unit. Otherwise the task must be put on hold. This rule is nothing but
the quota method of Balinski and Young [2]. More formally, their method for any
apportionment a, vector of population p and house size h defines the set of states
that can receive the next seat at house size h+1 without exceeding their upper quota,
U(p,a), as follow:

U(p,a) =

{

i : ai <
pi(h + 1)

P

}

. (8.27)

We have U(p,a) �= /0 for every p and a because otherwise at the house of size h the
sum of apportioned seats would exceed h. Thus the quota satisfying solution can be
defined by the following recursive procedure:

1. M(p,0) = 0
2. If M(p,h) = a and k maximizes pk

ak+1 over all k ∈U(p,a), then b ∈M(p,h + 1)
with bk = ak + 1 and b j = a j for all j �= k

Let us now consider the instance from Example 8.14. Using the procedure of
Balinski and Young [2] just presented we obtain the following possible sequences:

1→ 1→ 2→ 1→ 3→ 1→ 1→ 2→ 1→ 4

1→ 1→ 2→ 1→ 3→ 1→ 1→ 4→ 1→ 2

1→ 1→ 2→ 1→ 3→ 1→ 1→ 2→ 4→ 1

1→ 1→ 2→ 1→ 3→ 1→ 1→ 4→ 2→ 1.

Notice that each is a periodic sequence required by the Liu–Layland problem.

8.5 The Pinwheel Scheduling 181

8.4.3 Adjusting the Adams’s Method to Solve
the Liu–Layland Problem

For the Adams’s method following lemma can be proved.

Lemma 8.17. The Adams’s method assures that for every task i the cumulative run
time ai of this task at the end of its kth request period kTi fulfils the following condi-
tion:

ai ≤ kCi. (8.28)

Proof. The proof is similar to the proof of Lemma 8.16 and thus will be omitted. ��
Lemma 8.17 guarantees that the task i runs for at least (L

Ti
− k)Ci time units from

the end of the kth request period kTi until L which however does not guarantee
that i runs for Ci time units in each interval [(�− 1)Ti, �Ti], � = k + 1, . . ., L

Ti
. We

illustrated this problem in Example 8.15. To correct the problem we can modify the
Adams’s method to solve the Liu–Layland in a similar fashion as was shown for
the Jefferson’s method, Balinski and Young [2], we omit details of this modification
here.

We finally remark that in general any divisor method can be modified to sat-
isfy quota and thus to solve the Liu–Layland problem using the general Still’s
procedure [96].

8.5 The Pinwheel Scheduling

The pinwheel schedule is defined as follows:

Definition 8.18 (Pinwheel Schedule). A pinwheel schedule on alphabet {1,2, . . . ,n}
is an infinite sequence S = s1s2 . . . such that

1. s j ∈ {1,2, . . . ,n} for all j ∈ N and
2. Each i ∈ {1,2, . . . ,n} occurs at least once in any subsequence σ consisting of bi

consecutive elements of S

The pinwheel scheduling problem is then to find a pinwheel schedule for given
bi, i = 1, . . .,n, or show that the schedule does not exist. Although the definition of
pinwheel schedule requires it to be infinite, it is well-known that if the schedule ex-
ists, then there exists a periodic schedule whose period does not exceed the product
∏bi. A pinwheel schedule is given in the following example.

Example 8.19. The pinwheel schedule for b1 = 3,b2 = 4,b3 = 7, and b4 = 10 is
shown below,

(1→ 3→ 2→ 1→ 4→ 2→ 1→ 3→ 2→ 1→ 4→ 2)∞. ��

182 8 Applications to the Liu–Layland Problem and Pinwheel Scheduling

However, the pinwheel schedule may not always exist. We then say that the in-
stance for which this happens is not schedulable. The following example gives one
such instance.

Example 8.20. Consider the b1 = 3,b2 = 4,b3 = 5,b4 = 5 instance of the pinwheel
problem. This instance is not schedulable. To show this let us assume that the in-
stance is scheduable. Then, there is a periodic schedule s∞ whose period s is not
longer than 3× 4× 5× 5. The s∞ must have some two adjacent copies of i = 1
separated by exactly two other symbols different than 1. Otherwise, the s∞ would
solve the instance (2,4,5,5) which leads to a contradiction since 1

2 + 1
4 + 1

5 + 1
5 > 1.

Therefore, without loss of generality, the following subsequence must occur in s∞

∗∗→ ∗→ 4→ 1→ 2→ 3→ 1→ 4

which can not be extended to the left since the two positions ∗∗ and ∗ are contested
by 1, 2, and 3. This proves that there is no sequence s∞ such that its any subsequence
of three includes at least one 1, any subsequence of four includes at least one 2, and
any subsequence of five includes at least one 3 and at least one 4. However, there is
a sequence s such that there is a 1 in any subsequence s3i−2s3i−1s3i, a 2 in any subse-
quence s4i−3s4i−2s4i−1s4i, and a 3 and a 4 in any subsequence s5i−4s5i−3s5i−2s5i−1s5i,
i = 1,2, . . .This sequence is simply the periodic schedule of the Liu–Layland prob-
lem for C1 = 1, T1 = 3,C2 = 1,T2 = 4,T3 = 2,C3 = 5 which is shown in Example 8.1
in Chap. 8. Therefore, synchronization of the satellite orbital characteristics simpli-
fies the scheduling of satellite communication with a ground station without data
loss and guarantee a solution as long as

∑
1
bi
≤ 1. ��

In Example 8.20 we have

1
b1

+
1
b2

+
1
b3

+
1
b4

=
1
3

+
1
4

+
1
5

+
1
5

=
59
60

.

Generally, the higher the instance density

∑
1
bi

the more difficult, if possible at all, is to find a pinwheel schedule. Fishburn and
Lagarias [97] prove the following theorem.

Theorem 8.21. There is a pinwheel schedule for any instance with

∑
1
bi
≤ 3

4
.

Example 8.20 shows that there are instances with

8.5 The Pinwheel Scheduling 183

∑
1
bi

>
5
6

for which no pinwheel schedule exists, actually the simplest such an instance is
b1 = 2, b2 = 3, and b3 any positive integer grater than 5. Chan and Chin [98] con-
jecture that

Conjecture 8.22. There is a pinwheel schedule for any instance with

∑
1
bi
≤ 5

6
.

The conjecture is supported by the three-value theorem of Lin and Lin [99].

Theorem 8.23. There is a pinwheel schedule for any instance with at most three
different values in the multiset {b1, . . .,bn} and

∑
1
bi
≤ 5

6
.

As well as by the following theorem of Fishburn and Lagarias [97].

Theorem 8.24. There is a pinwheel schedule for any instance with value 2 in the
multiset {b1, . . .,bn} and

∑
1
bi
≤ 5

6
.

The pinwheel scheduling problem is still not shown to be NP-hard, either
ordinary or strong, see Chen and Mok in the Handbook of Scheduling [100]. How-
ever, it is conjectured that the problem is NP-hard. The proof of Theorem 9.3 is
insufficient to prove the NP-hardness of the pinwheel scheduling problem since the
latter specifies each satellite individually and therefore model m + 1 with demand
(K + 2)L(1−∑ 1

bi
) in this proof would have to be turned into (K + 2)L(1−∑ 1

bi
)

satellites each with time window L. This, however, may result into an exponential
number of satellites, since we can not generally limit the value (K +2)L(1−∑ 1

bi
) by

the polynomial of the input size being O(log(bi + 1)), and thus the transformation
of Theorem 9.3 would not be polynomial.

The security and fault tolerance in computer networks lead to a more general pin-
wheel scheduling problem introduced by Baruah and Bestavros [91] where a mes-
sage is split into b equal size blocks by using the Information Dispersal Algorithm
developed by Rabin [101], so that any a ≤ b out of these b suffices to reconstruct a
message. We illustrate the problem by the following example with three messages
i = 1,2,3 where message 1 has 5 blocks, message 2 has 3 blocks, and message 3
has 2 blocks. Without dispersion the 10 blocks of the 3 messages can be transmitted
according to the following sequence

1→ 2→ 3→ 1→ 2→ 1→ 1→ 3→ 2→ 1

184 8 Applications to the Liu–Layland Problem and Pinwheel Scheduling

for instance. However, then if any block is lost or gets corrupted during transmission,
then the delay in retrieving the block is the time needed to transmit 10 blocks. By
dispersing message 1 in 15 blocks of which any 5 would suffice to reconstruct it,
message 2 in 9 blocks of which any 3 would suffice to reconstruct it, and message 3
in 6 blocks of which any 2 would suffice to reconstruct it we get a sequence

(1→ 2→ 3→ 1→ 2→ 1→ 1→ 3→ 2→ 1)3.

The delay to recover any single block lost during transmission does not exceed 3,
4, and 5 for messages 1, 2, and 3 respectively in the sequence with the dispersion.
Furthermore, there are at least 5 copies of 1 in any subsequence of 10 consecutive
blocks, at least 3 copies of 2 in any subsequence of 10 consecutive blocks, and at
least 2 copies of 3 in any subsequence of 10 consecutive blocks. The delay can be
controlled by setting a size bi of a time window independently for each message and
requesting that a sliding time window of that size always includes enough, that is ai,
blocks of that message to recover it completely. This leads the generalized pinwheel
scheduling problem defined as follows.

Definition 8.25 (Generalized Pinwheel Schedule). A generalized pinwheel sched-
ule on alphabet {1,2, . . . ,n} is an infinite sequence S = s1s2 . . . such that

1. s j ∈ {1,2, . . . ,n} for all j ∈ N and
2. Each i ∈ {1,2, . . . ,n} occurs at least ai times in any subsequence σ consisting of

bi consecutive elements of S

The problem is NP-hard.

Theorem 8.26. The generalized pinwheel scheduling problem is NP-hard.

Proof. Follows immediately from the proof of Theorem 9.3. ��

8.6 Applications to Pinwheel Scheduling

We now discuss some additional properties of bottleneck optimal sequences and
then apply them to the pinwheel scheduling problem later in this section.

8.6.1 Additional Properties

Let d =d1, . . . ,dn be an instance of the bottleneck problem. In this and following
sections we shall use the term letter (or symbol) instead of model. Let ri = di

D =
ai
bi

, where ai and bi are relatively prime, be the rate for letter i. We shall consider
an infinite periodic sequence S = s∞ with cycle s obtained by the algorithm, for
instance, described in Chap. 5 with a given bound B on the bottleneck deviation.

8.6 Applications to Pinwheel Scheduling 185

First, we show that any subsequence w of S that starts with an i, ends with an i,
and includes exactly kai copies of i is not longer than kbi + 1, k = 1,2, Let
the first occurrence of i in the subsequence w be the copy j + 1 of i, and the last
occurrence of i in the subsequence w be the copy j + kai of i. In S, copy j + 1 can
not be in any position prior to E(i, j+1) and copy j+kai can not be in any position
later than L(i, j +kai) for a given feasible B. We have the following upper bound on
the difference between the latter and the former in S with B < 1.

Lemma 8.27. For B < 1 and k = 1,2, . . . j = 0,1, . . ., we have

L(i, j + kai)−E(i, j + 1)≤ kbi,

and
L(i,kai)≤ kbi,

where i=1,. . . ,n.

Proof. By Theorem 5.1

L(i, j + kai) = � j + kai−1 + B
ri

+ 1	,

and

E(i, j + 1) =
 j + 1−B
ri

�.

Thus,

L(i, j + kai)−E(i, j + 1)≤ kbi + 1 +
2B−2

ri
. (8.29)

Since B < 1, then 1 + 2B−2
ri

< 1. Thus, since the left hand side of the inequality
(8.29) is integral, then, we have

L(i, j + kai)−E(i, j + 1)≤ kbi.

Finally,

L(i,kai) = �kai−1 + B
ri

+ 1	= kbi + 1−
⌈

1−B
ri

⌉

≤ kbi,

for B < 1. ��
The bound can be slightly reduced for the is with small ratios ai

bi
. More precisely,

we have.

Lemma 8.28. If ai
bi
≤ 1

n−1 , then there is a sequence S with

L(i, j + kai)−E(i, j + 1)≤ kbi−1,

for k = 1,2, . . . j = 0,1,

Proof. Consider the inequality (8.29) for B = 1− 1
2(n−1) . By Theorem 5.8 a se-

quence S with its bottleneck not exceeding this B always exists. For the S, we have

186 8 Applications to the Liu–Layland Problem and Pinwheel Scheduling

1 +
2B−2

ri
< 0

as long as ri = ai
bi

< 1
n−1 . Then, however,

L(i, j + kai)−E(i, j + 1) < kbi, (8.30)

The inequality (8.30) holds for ai
bi

= 1
n−1 as well. We then have

L(i, j + kai) = kbi + j(n−1)

and
E(i, j + 1) = j(n−1)+ 1,

thus
L(i, j + kai)−E(i, j + 1) = kbi−1.

This proves the lemma. ��
By Lemmas 8.27 and 8.28 we prove.

Theorem 8.29. Let S be a sequence with bottleneck deviation B < 1. Then any its
subsequence w that starts with an i, ends with an i, and has kai copies of i is not
longer than kbi +1, k = 1,2, Moreover, for any i with ai

bi
≤ 1

n−1 the subsequence

w is not longer than kbi, k = 1,2, . . . for B = 1− 1
2(n−1) .

Proof. Let the first occurrence of i in the subsequence w be the copy j + 1 of i, and
the last occurrence of i in the subsequence w be copy j + kai of i. In S, copy j + 1
can not be in any position prior to E(i, j + 1) and copy j + kai can not be in any
position after L(i, j + kai) if the bottleneck of S is at most B. By Lemma 8.27, the
difference between the latter and the former is at most kbi but since a copy of i can
occupy the position E(i, j + 1), the sequence can not be longer than kbi + 1 which
proves the first part of the theorem. The second part follows from Lemma 8.28. ��
Second, we show that any subsequence w of s with at least kai + 2 copies of i is
not shorter than kbi + 1, k = 1,2, Let the first copy of i and the last copy of i in
subsequence w be copies j and l respectively. Obviously, l ≥ j + kai + 1, otherwise
there would be less than kai + 2 copies of i in subsequence w. In S, copy j can not
be in any position higher than L(i, j) and copy j +kai +1 can not be in any position
prior to E(i, j + kai + 1) for a given feasible B. We have the following lower bound
on the difference between the latter and the former in S with B < 1.

Lemma 8.30. For B < 1 and k = 1,2, . . . j = 1, . . ., we have

E(i, j + kai + 1)−L(i, j)≥ kbi,

where i=1,. . . ,n.

8.6 Applications to Pinwheel Scheduling 187

Proof. By Theorem 5.1

E(i, j + kai + 1) =
 j + kai + 1−B
ri

�,

and

L(i, j) = � j−1 + B
ri

+ 1	.

Thus,

E(i, j + kai + 1)−L(i, j)≥ kbi−1 +
2−2B

ri
. (8.31)

Since B < 1, then 2−2B
ri
− 1 > −1. Thus, since the left hand side of the inequality

(8.31) is integral, thus, we have

E(i, j + kai + 1)−L(i, j)≥ kbi.

��
The bound can be slightly increased for the is with small ratios ai

bi
. More pre-

cisely, we have.

Lemma 8.31. If ai
bi
≤ 1

n−1 , then there is a sequence S with

E(i, j + kai + 1)−L(i, j)≥ kbi + 1,

for k = 1,2, . . . j = 0,1, . . . for B = 1− 1
2(n−1) .

Proof. Consider the inequality (8.31) for B = 1− 1
2(n−1) . By Theorem 5.8 a se-

quence s with its bottleneck not exceeding this B always exists. For the S, we have

−1 +
2−2B

ri
> 0

as long as ri = ai
bi

< 1
n−1 . Then, however,

E(i, j + kai + 1)−L(i, j) > kbi. (8.32)

The inequality (8.32) holds for ai
bi

= 1
n−1 as well. We then have

E(i, j + kai + 1) = kbi + j(n−1)+ 1

and
L(i, j) = j(n−1),

thus
E(i, j + kai + 1)−L(i, j) = kbi + 1

which proves the lemma. ��
Lemmas 8.30 and 8.31 imply the following theorem.

188 8 Applications to the Liu–Layland Problem and Pinwheel Scheduling

Theorem 8.32. Let S be a sequence with bottleneck deviation B < 1. Then, any its
subsequence w with at least kai +2 copies of i is not shorter than kbi +1, k = 1,2,
Moreover, for any i with ai

bi
≤ 1

n−1 the subsequence w is not shorter than kbi + 2,
k = 1,2,

Proof. Let the first occurrence of i in the subsequence w be the copy j of i, and the
last occurrence of i in the subsequence w be copy l of i. We have, l ≥ j + kai + 1
since there are at least kai + 2 occurrences of i in w. In s, copy j can not be in
any position after L(i, j) and copy j + kai + 1 can not be in any position prior to
E(i, j + kai + 1) if the bottleneck of s is at most B. By Lemma 8.30, the difference
between the latter and the former is at least kbi but since a copy of i can occupy the
position L(i, j), the sequence can not be shorter than kbi + 1 which proves the first
part of the theorem. The second part follows from Lemma 8.31. ��

We use the two lemmas to characterize the distribution of letter i in S with B < 1.

Theorem 8.33. Let s j+1 . . . s j+bi be any subsequence of bi consecutive letters of
S = s∞ with B < 1. Then, letter i occurs either ai − 1, or ai, or ai + 1 times
in the subsequence. Furthermore, if the closest subsequences s j+1 . . . s j+bi and
s j+1+kbi . . .s j+(k+1)bi

, for some k ≥ 1 have ai−1 copies of letter i each, then k ≥ 2
and there are exactly (k−1)ai + 1 copies of i in the sequence s j+1+bi . . . s j+kbi .

Proof. Consider a subsequence w = s j+1 . . .s j+bi , j ≥ 0, of S. We first show that
there are at least ai− 1 copies of i in w. This claim obviously holds for ai = 1.
Thus, let ai ≥ 2. Assume that the number of copies of i in w is less than ai− 1.
Then, if there is no i in s1 . . . s j, then there is l > j + bi + 1 such that sl = i and the
sequence s1 . . .sl has exactly ai copies of i but this contradicts Lemma 8.27 since
L(i,ai)≤ bi for B < 1. Now, if i occurs in s1 . . .s j , then there are k≤ j and l > j+bi

such that sk = sl = i and the sequence sk . . . sl has exactly ai copies of i. However,
l−k +1 > bi +1 which contradicts Theorem 8.29. Therefore, there is at least ai−1
copies of i in s j+1 . . .s j+bi .

Let us now assume that there are at least ai + 2 copies of i in w. This, however,
contradicts Theorem 8.32. Therefore, the only possible numbers of copies of i in
s j+1 . . .s j+bi are ai−1, ai, and ai + 1, which completes the proof of the first part of
the theorem.

Now, let s j+1 . . .s j+bi and s j+kbi+1 . . . s j+(k+1)bi
for k ≥ 1 be two sequences with

ai−1 copies of i. By contradiction. Assume that each sequence s j+lbi+1 . . . s j+(l+1)bi
,

0 < l < k, if any, in between the two has exactly ai copies of i. Then, if there is no
i in s1 . . .s j , then sequence s1 . . .s j+(k+1)bi

has no more than (k + 1)ai− 2 copies
of i and thus there is l > j +(k + 1)bi + 1 such that sl = i and the sequence s1 . . . sl

has exactly (k + 1)ai copies of i but this contradicts Lemma 8.27 which implies
L(i,(k + 1)ai) ≤ (k + 1)bi for B < 1. If there is an i in s1 . . . s j, then there are
h ≤ j and l > j +(k + 1)bi + 1 such that sh = sl = i and the sequence sh . . .sl has
exactly (k + 1)ai copies of i. However, l − h + 1 > (k + 1)bi + 1 which contra-
dicts Theorem 8.29. Therefore, in both cases k ≥ 2, and there must be a sequence
s j+lbi+1 . . . s j+(l+1)bi

0 < l < k with ai + 1 copies of i.

8.6 Applications to Pinwheel Scheduling 189

To complete the proof we observe that there is a positive integer αi such that
αibi = D and αiai = di consequently there are αiai copies of i in s = s1 . . . sD.
For any j, j = 0, . . . ,bi− 1, consider sequences wk = s j+kbi+1 . . .s j+(k+1)bi

for k =
0, . . . ,αi−2, and

wαi−1 = s j+(αi−1)bi+1 . . .sDs1 . . . s j.

Let wj0 , . . . ,wjm for j0 < .. . < jm be all the sequences with ai−1 copies of i. Then
there must be exactly one sequence wj with jk mod (m+1) < j < jk mod (m+1)+1 with
ai + 1 copies of i. This claim follows from the fact that there must be at least one
such a sequence, which we have already shown, and the fact that there cannot be
more than one since the number of is is αiai. ��

8.6.2 The Applications

We now apply the properties of just-in-time sequences with small bottleneck devi-
ations to the pinwheel scheduling problems. We begin with the following sufficient
condition for the existence of the generalized pinwheel schedule.

Theorem 8.34. If

∑
1≤i≤n

ai

bi
+

1
bi
≤ 1,

then there is a generalized pinwheel schedule for pairs (a1,b1), . . . ,(an,bn). The
schedule can be found any optimization algorithm for the bottleneck problem.

Proof. Let (a1,b1), . . . ,(an,bn) be an instance of the generalized pinwheel schedul-

ing problem such that ∑1≤i≤n
ai
bi

+ 1
bi
≤ 1. Define di =

L(ai+1)
bi

, for i = 1, . . . ,n, where
L = lcm (b1, . . . ,bn). Then, ∑n

i=1 di ≤ L, and if ∑n
i=1 di < L, then add a dummy

with dn+1 = L−∑n
i=1 di. Theorem 8.33 ensures that any optimization algorithm for

the bottleneck problem when applied to this instance with the ratios di
L = ai+1

bi
, for

i = 1, . . . ,n, delivers a sequence with at least (ai +1)−1 = ai copies of i in any sub-
sequence of bi consecutive letters, and therefore a generalized pinwheel schedule
for (a1,b1), . . . ,(an,bn). ��

A similar result was independently obtained by Baruah and Lin [102]. Notice
that as a corollary from Theorem 8.34 we have that, see also Holte et al. [90], the
following holds.

Corollary 8.35. There exists a pinwheel schedule for (1,b1), . . . ,(1,bn) if only
∑1≤i≤n

1
bi
≤ 1

2 .

Theorem 6.7 characterizes all instances of the bottleneck problem for n = 2 with
the bottleneck deviation B∗ < 1

2 . This small B∗ is key in the proof that the general-
ized pinwheel schedule always exists for n = 2.

190 8 Applications to the Liu–Layland Problem and Pinwheel Scheduling

Theorem 8.36. The generalized pinwheel schedule always exists for n = 2.

Proof. Consider a generalized pinwheel problem instance (a1,b1),(a2,b2) for
n = 2. Without loss of generality assume that gcd(a1,b1) = gcd(a2,b2) = 1. Ob-
serve that a pinwheel schedule for (a1

gcd(a1,b1) ,
b1

gcd(a1,b1)), (a2
gcd(a2,b2) ,

b2
gcd(a2,b2)) is a

pinwheel schedule for (a1,b1),(a2,b2). If

a1

b1
+

a2

b2
= 1,

then b1 = b2 and any sequence with a1 copies of 1 and a2 copies of 2 solves the
pinwheel problem.

If a1

b1
+

a2

b2
< 1,

then if the product b1b2 is odd, then there are nonnegative α1 and α2 such that
α1 + α2 = b1b2− (a1b2 + a2b1)≥ 1

a1

b1
≤ a1b2 + α1

b1b2
and

a2

b2
≤ a2b1 + α2

b1b2
.

Let β = gcd(a1b2 + α1,a2b1 + α2,b1b2). Define

d1 =
a1b2 + α1

β
,

d2 =
a2b1 + α2

β
,

D =
b1b2

β
.

We have D = d1 +d2 and odd since b1b2 is odd. Thus, exactly one of d1 or d2 is odd
and the other even.

If the product b1b2 is even, then there are positive α1 and α2 such that α1 +α2 =
1 + b1b2− (a1b2 + a2b1)≥ 2

a1

b1
≤ a1b2 + α1

b1b2 + 1
and

a2

b2
≤ a2b1 + α2

b1b2 + 1
.

Let β = gcd(a1b2 + α1,a2b1 + α2,b1b2 + 1). Define

d1 =
a1b2 + α1

β
,

d2 =
a2b1 + α2

β
,

D =
b1b2 + 1

β
.

8.6 Applications to Pinwheel Scheduling 191

We have D = d1 +d2 and odd since b1b2 +1 is odd. Thus, exactly one of d1 or d2 is
odd and the other even.

By Theorem 6.7, B∗ < 1
2 for (d1,d2) if and only if one of d1 or d2 is odd and the

other even. However, for B∗ < 1
2 copy j of i = 1,2 is in position

⌈

2 j−1
2ri

⌉

and copy j + ai in position
⌈

2(j + ai)−1
2ri

⌉

≤ bi +
⌈

2 j−1
2ri

⌉

.

Therefore, there are at least ai copies of i in any subsequence of length bi. This ends
the proof. ��

We now illustrate Theorem 8.36 with an example.

Example 8.37. Consider an instance (a1 = 2,b1 = 5),(a2 = 4,b2 = 7) of the gener-
alized pinwheel scheduling problem. We have

a1

b1
=

2
5

and
a2

b2
=

4
7
,

consequently b1b2 = 35 is odd and α = b1b2− (a1b2 +a2b1) = 35− (14+20) = 1.
Thus, we can take

d1 =
15
5

= 3 d2 =
20
5

= 4 and D =
35
5

= 7,

where β = gcd(a1b2 +α1,a2b1 +α2,b1b2) = 5. Consider the instance (d1 = 3,d2 =
4) of the bottleneck problem. By Theorem 8.36, the three copies of 1 will be in
positions

⌈

(2 j−1)
2r1

⌉

=
⌈

7(2 j−1)
6

⌉

for j = 1,2,3 and the four copies of 2 will be in positions
⌈

(2 j−1)
2r2

⌉

=
⌈

7(2 j−1)
8

⌉

for j = 1,2,3,4 in an optimal solution for this instance. Therefore, 1 occupies all
even-indexed positions, and 2 all odd-indexed positions and the sequence is

2→ 1→ 2→ 1→ 2→ 1→ 2. ��

Theorem 8.33 applies to n = 3 provided the following condition is met

min{a1 + a2

b1
+

a3

b3
,

a1

b1
+

a2 + a3

b2
} ≤ 1, (8.33)

192 8 Applications to the Liu–Layland Problem and Pinwheel Scheduling

where (a1,b1),(a2,b2) and (a3,b3) is an instance of the generalized pinwheel
scheduling problem with n = 3. Without loss of generality we assume b1 < b2 < b3.
The condition allows to reduce the n = 3 case to the n = 2 case with either
(a1 + a2,b1) and (a3,b3) or (a1,b1) and (a2 + a3,b2) depending on whichever of
the two instances is feasible.

Example 8.38. Consider the instance (2,6),(4,15), and (3,19) given in Lin and Lin
[99]. We have

2
6

+
4 + 3

15
≤ 1,

thus the instance (2,6),(7,15) is feasible. Since gcd(2,6)= 2, consider (1,3),(7,15)
instead. We have 3×15 = 45 odd, and α = 45− (15 + 21)= 9. Thus, we can take

d1 =
15
15

= 1 d2 =
30
15

= 2 and D =
45
15

= 3,

where β = gcd(a1b2 + α1,a2b1 + α2,b1b2) = gcd(15 + 0,21 + 9) = 15. By Theo-

rem 8.36, the single copy of 1 will be in position
⌈

(2 j−1)
2r1

⌉

= 2 and the two copies of

2 will be in positions
⌈

(2 j−1)
2r2

⌉

=
⌈

3(2 j−1)
4

⌉

for j = 1,2 in an optimal solution for this instance. Therefore, the sequence is

2→ 1→ 2.

Turning one of the 2′s into a 3 we get the following pinwheel schedule

(2→ 1→ 3)∞,

which actually meets a condition “1 out of 3” for each of the three. Observe, the
a different than 0 and 9 choice of α1 and α2 respectively could lead to a different
sequence. ��

Recall from Sect. 8.5 that we can not guarantee the existence of a generalized
pinwheel schedule for density higher than 5

6 for n = 3. More applications can be
found in the exercises.

8.7 Exercises

Exercise 8.39. Adjust the Adams’s method to solve the Liu–Layland problem. Hint:
See Balinski and Young [2].

Exercise 8.40. Show that any divisor method can be adjusted to solve the Liu–
Layland problem. Hint: See Still [96]

8.8 Comments and References 193

Exercise 8.41. Prove Lemmas 8.12 and 8.13.

Exercise 8.42. Show that there is a pinwheel schedule for any instance with at most
two different values in the multiset {b1, . . .,bn} and

∑
1
bi
≤ 1.

Hint: See Holte et al. [103] and Theorem 8.36.

Exercise 8.43. Prove Theorem 8.23 for min{b1,b2,b3} ≥ 18.

Exercise 8.44. Show that

L(i, j)+ 1≥ E(i, j + 1)≥ L(i, j),

for B = 1− 1
D , i = 1, . . .,n and j = 1, . . .,di(≥ 2).

Exercise 8.45. Let (ai,bi), i = 1, . . .,n be an instance of the generalized pinwheel
scheduling problem. Consider any just-in-time sequence s with the rates ri = ai

bi
and

bottleneck deviation not exceeding B = 1− 1
2(n−1) . show that any sequence of length

at least

bi + 1 +
⌊

n−2
n−1

× bi

ai

⌋

must have at least ai copies of i = 1, . . .,n.

Exercise 8.46. Find solutions to the generalized pinwheel scheduling problem for
each of the following two instances: (1,3),(7,15),(1,16) and (1,4), (1,5),(2,6),
see Lin and Lin [99].

8.8 Comments and References

The Liu–Layland periodic scheduling problem was introduced by Liu and Lay-
land [87], see also Devillers and Goossens [104]. Its solution via just-in-time se-
quencing presented in Sect. 8.3 was given by Kubiak [105]. The divisor methods
for the Liu–Layland problem were studied by Józefowska et al. [106] on which
Sect. 8.4 is based. Some of the properties of the bottleneck sequences with B < 1
have been shown by Kubiak [107]. The pinwheel scheduling was introduced by
Holte et al. [90] in 1989, and the generalized pinwheel scheduling problem by
Baruah and Bestavros [91], see also Baruah and Lin [102]. Theorem 8.34 was given
by Kubiak [107], its application to the pinwheel scheduling problem gives a short
proof of Corollary 8.35 which was originally proven by Holte et al. [90], see also
Baruah and Lin [102]. The pinwheel scheduling problem for two distinct numbers
was studied by Holte et al. [103]. Theorem 8.36 gives a short proof that the problem
is always feasible, that is a pinwheel schedule with two distinct numbers always
exists.

Chapter 9
Temporal Capacity Constraints and Supply
Chain Balancing

9.1 Introduction

This chapter discusses leveling off (smoothing out) demand in mixed-model, pull
supply chains. These chains respond to customer demand by setting forecast-based
demands for each model produced, and pulling supplies required for model produc-
tion whenever they are needed. To level off and synchronize these supply chains,
it is crucial to design model delivery sequence for given demands for models. Two
main goals shape this sequence. The external, that is meeting the model demands,
and, the internal, that is satisfying the chain temporal capacity constraints. These
constraints may render a model delivery sequence difficult to implement through
the pull mechanism of the chain just-in-time material flow for the sequence may
temporarily impose too much strain on supplier’s resources by setting too high a
temporary delivery rate for their supplies.

The chapter addresses the temporal supplier capacity constraints. It presents in
Sect. 9.7 a framework for a mixed-model, pull supply chain, and proposes using
the model of temporal capacity constraints based on the car sequencing problem
to level off demand in the chain. It claims that this model of temporal capacity
constraints though typically used to better balance the workload of mixed-model
assembly lines may serve a more important and general goal of leveling off demand
in the entire supply chain. We assume in particular that supplier s is a subject to a
capacity constraint in the form ps : qs, which means that at most ps models of the
model delivery sequence S in each consecutive sequence of qs models of S may need
options supplied by s. A digression: it seems natural here and later in the chapter to
use the small letter s to denote a supplier, we hope this notation will not be confused
with the notation that uses the letter to denote sequences in other chapters of the
book.

The leveling off problem then consists in finding a just-in-time sequence S of
length D over models {1, . . . ,n}, where i occurs exactly di times, and which respects
the ps : qs capacity constraints for each supplier s. This type of constraint is an
Artificial Intelligence model of temporal capacity constraints intended originally

W. Kubiak, Proportional Optimization and Fairness, International Series in Operations 195
Research & Management Science 127, DOI 10.1007/978-0-387-87719-8 9,
c© Springer Science+Business Media LLC 2009

196 9 Temporal Capacity Constraints and Supply Chain Balancing

for sequencing models on mixed-model assembly lines. The problem has been a
cause célèbre for the constraint programming methods for about 20 years now, see
ILOG [108].

Section 9.2 introduces the car sequencing problem, and Sect. 9.3 studies its com-
putational complexity. Section 9.3 also points out a similarity between the car
sequencing problem and the generalized pinwheel problem discussed in Chap. 8.
While the former seeks sequences with models being sparsely spread throughout
the sequence so that not too many copies of the same model are close to one an-
other – thus the “at most q out of p” constraint, the latter seeks the opposite, that
is a sequence with models being densely packed throughout the sequence – thus
the “at least q out of p” constraint. Though similar to the car sequencing problem,
the pinwheel scheduling problem has lead its independent live in Computer Science
for its applications come from the satellite scheduling and the information disper-
sal algorithms. To the author’s knowledge the literature does not report solutions to
the pinwheel problem by constrained programming methods. Section 9.4 presents
a dynamic programming algorithm for the car sequencing problem. Section 9.6
presents an integer programming formulation of the car sequencing problem, and
Sect. 9.5 gives some characteristics of the instances for which a feasible car se-
quence exists.

Section 9.8 presents other method of leveling off the chains that has its roots in
the theory of regular words. Recall from Chap. 6 that regular words balance work-
loads in events graphs which can also naturally model flows in mixed-model, pull
supply chains. The section investigates certain properties of the model and option
delivery sequences. The properties are based on the combinatorics on words, es-
pecially on the concept of balanced words which is a more general concept than
regular words, Tijdeman [5]. The chapter introduces and explores a link between
the model delivery sequences and balanced words, and shows that though balanced
words result in optimal workload balancing, see Chap. 6, they can not be obtained
for all possible sets of demand rates. The obtainable model delivery sequences are
either 2-balanced or 3-balanced at best, that is if they disregard temporal capacity
constraints, and thus they are more complex than balanced sequences. Section 9.9
observes that moving downstream of the supply chain the model delivery sequences
translate in the option delivery sequences, and thus the variability of the sequences
as measured by the degree of their balance increases, a similar effect of increased
variability down the supply chain has been well know in the theory of supply chain,
see Daganzo [109]. We show bounds on the degree of balance based on minimum
bottleneck model delivery sequences studied in Chap. 5.

Finally, the chapter discusses two other techniques to level off the suppliers
demand for parts. Section 9.10 discusses the periodic synchronized delivery, and
Sect. 9.11 the synchronized delivery models for constructing the model delivery se-
quence to minimize safety stocks of parts in the mixed-model, pull supply chains.
They also show bounds for the safety stocks based on the model delivery sequences
with minimum bottleneck.

9.2 The Car Sequencing Problem: A Model of Temporal Capacity Constraints 197

9.2 The Car Sequencing Problem: A Model of Temporal
Capacity Constraints

The car sequencing problem was first introduced by Parello et al. [110] in 1986 to
sequence a mix of models to be produced on a single assembly line. In their illus-
trative example a car assembly line assembles cars with slightly different sets of
options, for instance transmissions or air conditioning. Assume, for instance, that
the demand for the car models with air conditioning is estimated to be 60% of the
total demand. If the cars are moving through the line with a given cycle time so that
exactly five of them will pass the air-conditioning workstation in the time it takes to
install air-conditioning on a single car, then three teams are the minimum number
required at the air-conditioning workstation in order to meet the demand for models
with the air-conditioning option. With the three teams whenever a model with air
conditioning enters the air-conditioning workstation, an available team starts work-
ing on it walking along with the car until it reaches the end of the workstation. At
this moment, four more cars will have passed the workstation entrance. If no more
than two of them require the air conditioning installation, then the other two teams
will be able to handle the workload. If, however, at least one more car requires air
conditioning installation, the workstation will be unable to respond fast enough and
either the workstation operator will have to push a stop button to slow down the line
or a utility team will be called for to finish the work. Thus, having three teams may
prove insufficient and a proper sequencing of models must be done to deal with
the temporal capacity shortage. That is to avoid the disruption and related costs,
the sequence of models that enters the line must meet the 3 out of 5 capacity con-
straint, also denoted by 3:5, for models with air conditioning. That is no more than
three models may require air conditioning out of any consecutive five that enter the
assembly line.

The car sequencing problem is defined by a set M = {1, . . .,n} of n models and a
set O = {1, . . .,m} of m options. Each model i differs from all other models in M by
its subset Oi ⊆ O of options, that is Oi �= Ok for i �= k. Since there are 2m different
subsets of O, then the number of models n does not exceed 2m, or logn ≤ m. The
demand vector d = (d1, . . .,dn) for models in M is also given, where di is the number
of copies of model i to be produced. The problem then is to find a sequence S, if any
exists or return NO otherwise, of length D = ∑n

i=1 di where model i occurs exactly di

times that meets the option capacity constraints for each option. The constraints are
defined for each option j ∈O by giving a pair p j : q j, p j < q j,that stipulates that no
more than p j models out of any consecutive q j models in S may include option j.
The option content of the models will be also represented by an m×n binary matrix
C, where Cji = 1 if and only if model i includes option j, that is j ∈ Oi.

Example 9.1. Table 9.1 shows an instance of the car sequencing problem with n = 6
models and m = 5 options. Table 9.2 shows a feasible sequence for the instance in
Table 9.1. ��

198 9 Temporal Capacity Constraints and Supply Chain Balancing

Table 9.1 An instance of the car sequencing problem

Option Capacity Models

1 2 3 4 5 6
1 2:3 1 0 0 0 1 1
2 2:3 0 0 1 1 0 1
3 1:2 1 0 0 0 1 0
4 3:5 1 1 0 1 0 0
5 2:5 0 0 1 0 0 0

Demands 2 3 1 1 2 2

Table 9.2 A feasible sequence of models

Option Sequence

2 2 1 3 5 2 1 6 4 5 6
1 0 0 1 0 1 0 1 1 0 1 1
2 0 0 0 1 0 0 0 1 1 0 1
3 0 0 1 0 1 0 1 0 0 1 0
4 1 1 1 0 0 1 1 0 1 0 0
5 0 0 0 1 0 0 0 0 0 0 0

An interesting feature of the car sequencing problem is that it is relatively easy to
prove that the problem is NP-hard even if one significantly constraints the problem
instances. This issue will be explored further in the next section.

9.3 The Complexity of the Car Sequencing Problem

Interestingly, the complexity of the car sequencing problem was rightly suspected to
be in the class of the NP-hard in the strong sense problems from the time the prob-
lem was first formulated, however, it was only in 1998 when Gent [111] showed
the problem NP-hard in the strong sense by an elegant transformation from the
Hamiltonian path problem, though his transformation requires different capacity
constraints for different car options. We now show that the car sequencing problem
remains NP-hard in the strong sense even if all demands are unit, that is di = 1, and
all options have the same capacity constraints 1 : α for some positive integer α , that
is for each option j at most 1 in each consecutive α models of the sequence may
require the option j. We have the following theorem.

Theorem 9.2. The car sequencing problem is NP-hard in the strong sense even if
the demand for each model is unit and each option capacity constraint is the same
1 : α for some α > 1.

Proof. The transformation is from the graph coloring problem, see Garey and John-
son [81]. Let graph G = (V,E) and k ≥ 2 make up an instance of the graph col-
oring problem. Let |V | = n and |E| = m. Take k disjoint isomorphic copies of

9.3 The Complexity of the Car Sequencing Problem 199

G, G1 = (V 1,E1), . . . ,Gk = (V k,Ek). Let G = (V =
⋃k

i=1 V i,E =
⋃k

i=1 Ei) be the
union of the k copies. Now, consider an independent set S on n nodes, that is the
graph S = (N = {1, . . . ,n},Ø). Take k + 1 disjoint isomorphic copies of S, S1 =
(N1,Ø), . . . ,Sk+1 = (Nk+1,Ø). Add an edge between any two nodes ofN =

⋃k+1
i=1 Ni

being in different copies of S to make a graph S = (N ,X =
⋃

i�= j Ni×Nj). Notice
that N1, . . . ,Nk+1 are independent sets ofN each with cardinality n. No independent
set ofN with cardinality n+1 exists. Finally, consider a disjoint union of G andN ,
that is H = G ∪N = (V ∪N ,E ∪X). Clearly, the union has nk + n(k + 1) nodes

and mk + k(k+1)
2 n2 edges, and thus its size is polynomially bounded in n,m and k

and consequently polynomial in the size of the input instance of the graph coloring
problem. Consider the arc-node incidence matrix I of graph H. The columns of I
correspond to the nodes ofH and they, in turn, correspond to the models. The rows
of I correspond to the edges of H and they, in turn, correspond to the options. The
demand for each model equals one. The capacity constraint for each option in E is
1 : (n + 1), and so is the capacity constraint for each option in X is 1 : (n + 1). We
shall refer to any option in E as the E-option, and to any option in X as X -option.

(if) Assume there is a coloring of G using no more than k colors. Then, obviously,
there is a coloring of G using exactly k colors. The coloring defines a partition of V
into k independent sets W1, . . . ,Wk. Let W i

j ⊆V i be a copy of the independent set Wj

inside of the copy Gi of G. Define the sets

A1 = W 1
1 ∪W 2

2 ∪ . . .∪W k
k ,

A2 = W 1
2 ∪W 2

3 ∪ . . .∪W k
1 ,

...

Ak = W 1
k ∪W 2

1 ∪ . . .∪W k
k−1.

These sets partition set V , moreover, each of them is an independent set of G of
cardinality n. Let us sequence these sets as follows

N1A1N2A2 . . .AkNk+1, (9.1)

then to obtain a sequence of models we sequence models in each set arbitrarily.
Next, we observe that each set N j is independent thus no X -option is used twice
by models in N j . Furthermore, there are n models with no X -option between N j

and N j+1, j = 1, . . . ,k. Consequently, any two models with an X -option are sepa-
rated by at least n models without this X -option, and therefore the sequence (9.1)
respects the 1 : (n + 1) capacity constraint for each X -option. Finally, we observe
that each set A j, j = 1, . . . ,n is independent, thus no E-option is used twice by
models in A j. Moreover, there are n models with no X -option between A j and
A j+1, j = 1, . . . ,k− 1. Thus, any two models with an E-option are separated by
at least n models without this E-option, and therefore the sequence (9.1) respects
the 1 : (n + 1) capacity constraint for each E-option. Therefore, sequence (9.1) is a
feasible model sequence in the car sequencing problem.

200 9 Temporal Capacity Constraints and Supply Chain Balancing

(only if) Let S be a feasible sequence of models. Let us assume for the time being
that S is of the following form

S = N1M1N2M2 . . .MkNk+1 (9.2)

where
⋃k

j=1 Mj = V and |Mj| = n for j = 1, . . . ,k. Consider models in V 1 and the
intersections

Vi = Mi∩V 1, i = 1, . . . ,k.

Obviously,
⋃k

i=1 Vi = V 1 and each set Vi is an independent set. Otherwise, there
would be an edge (a,b) between some models a and b of some Vi. Then, how-
ever, the E-option (a,b) would be used by both a and b models in Mi of length n
which would make S infeasible by violating the 1 : (n+1) capacity constraint for the
E-option (a,b). Consequently, coloring each Vi with a distinct color would provide
a coloring of G1 using k colors. Since G1 is an isomorphic copy of G, then the col-
oring would be a required coloring of G itself. It remains to show that a feasible
sequence of the form (9.2) always exists. To this end, let us consider the following
decomposition of S into 2k + 1 subsequences of equal length n,

S = γ1γ2 . . .γ2k+1,

where
γi = S(i−1)n+1 . . .Sin, i = 1, . . . ,2k + 1. (9.3)

For each γi there is at most one N j whose models are in γi. Otherwise, the 1 : (n+1)
constraint for some X -option would be violated. Consequently, no N j can share
γi, i = 1, . . . ,2k + 1 with any other Nl , j �= l. However, since there are only 2k + 1
subsequences γi, then there must be N j∗ which models completely fill in one of
the subsequences γi. Let us denote this sequence by γ . Neither the subsequence γi

immediately to the left of γ , if any, nor to the right of γ , if any, may include models
from

⋃k+1
j �= j∗, j=1 N j . Otherwise, the 1 : (n + 1) constraint for some X -option would

be again violated. Consequently, there are at most 2k−1 subsequences with models
from

⋃k+1
j �= j∗, j=1 N j in S, but this again implies the existence of N j∗∗ , j∗ �= j∗∗, which

models completely fill in one of the subsequences γi, say γ∗. Furthermore, neither
the subsequence γi immediately to the left of γ∗, if any, nor to the right of γ∗, if
any, may include models from

⋃k+1
j �= j∗∗, j=1 N j. By continuing this argument we reach

a conclusion that for any feasible S there is an injection f of {N1, . . . ,Nk+1} into
{γ1, . . . ,γ2k+1} such that the sequence f (Ni) is made up of models from Ni only,
i = 1, . . . ,k + 1. Also, if γi and γ j are mapped into then |i− j| ≥ 2. This injection f
is only possibly if s is of the form (9.1), which we needed to prove. ��

The car sequencing remains NP-hard even if different models do not share any
option, that is Oi∩O j = ∅ for i �= j and |Oi|= 1 for i = 1, . . .,n. We will refer to this
subproblem as the singular car sequencing problem. This subproblem is NP-hard as
the following theorem shows.

Theorem 9.3. The car sequencing problem is NP-hard even if each model requires
a single option unique for the model.

9.3 The Complexity of the Car Sequencing Problem 201

Proof. The reduction is from the Periodic Maintenance Scheduling Problem. We
recall from Chap. 7 that the Periodic Maintenance Scheduling Problem is defined
as follows. Given m machines and integer service intervals �1, �2, . . . , �m such that
∑ 1

�i
< 1. Does there exist a servicing schedule (or a servicing cycle) s1 . . .sL, where

L = lcm(�1, �2, . . . , �m) is the least common multiple of �1, �2, . . . , �m, of these ma-
chines in which the end-to-end distance between any two consecutive servicing of
machine i is exactly �i, no more than one machine is serviced in a single time slot,
and it takes a single time slot to perform servicing of any machine? The distance be-
tween the last and the first servicing of machine i in the cycle, if any exists, is also �i.
The Periodic Maintenance Scheduling Problem is NP-complete in the strong sense,
see Theorem 7.14. Without loss of generality we assume L > 2�i for i = 1, . . .,m.
This problem naturally transforms to the car sequencing problem as follows. We
have a model for each machine i, the demand for the model is di = (K +2) L

�i
, where

K =
m
∏
i=1

(�i + 1).

There is a unique option for model i, also denoted by i, with the capacity constraint
1:�i. Moreover, there is one more model m+1 with demand (K +2)L(1−∑ 1

�i
) and

its unique option m+ 1 having capacity constraint L(1−∑ 1
�i
) : L. This transforma-

tion is polynomial but not pseudo-polynomial since (K + 2)L is not bounded by a
polynomial of the input size which is of O(∑ log(�i +1)). Now, any servicing cycle
can be easily turned in into a car sequence that respects the capacity constraints of
each option i = 1, . . .,m since there is exactly one servicing of machine i in each �i

time slots. The insertion of L(1−∑ 1
�i
) copies of model m+1 into this sequence and

repeating it K + 2 times, then results into a feasible solution to the car sequencing
problem. On the other hand, consider any feasible solution

S = S1· · ·SK+2 = s1· · ·s(K+2)L

to the cars sequencing problem, where

S j = s(i−1)L+1· · ·siL

for j = 1, . . .,(K + 2). We observe that the distance between any two consecutive
copies of model i = 1, . . .,m may not exceed 2�i for any i in S, otherwise the demand
for i would not be met, and it may not be less than �i, otherwise the capacity con-
straint 1:�i would be violated. Therefore, there are no more than 2�i−�i +1 = �i +1
possible values of the distance between any two consecutive copies of i in S. Con-
sequently, the number of possible consecutive distance configurations between the
last copy of model i in S j and its first copy in S j+1 for all m models is K and the
length (K +2)L of the sequence S ensures the repetition of some of them in S. Thus
there must be a subsequence

S′ = S j· · ·S j+k

202 9 Temporal Capacity Constraints and Supply Chain Balancing

of S for some j and k ≥ 0 such that the distance between the last copy of i in S j+k

and the first copy of i in S j is at least �i. Since there are at most L(1−∑ 1
�i
) copies

of model m + 1 in each subsequence S j, . . ., S j+k, due to the capacity constraint
L(1−∑ 1

�i
) : L for m+ 1, and since for each i the distance between any consecutive

copies of i in S′, including the first and the last, is at least �i, then they must be at
the distance exactly �i, otherwise there would be two of them at a distance shorter
than �i to satisfy the demand for i which would violate the capacity constraints
for i. Thus, any two consecutive copies of i must be at a distance �i in S′which
results in a feasible servicing cycle Si and proves that the car sequencing problem is
NP-hard. ��

The singular car sequencing problem requires that any two consecutive copies of
the same model be sufficiently distant from one another in a feasible sequence in
order not to violate temporal capacity limitations. On the other hand the generalized
pinwheel scheduling problem requires that the copies of the same model be not too
far away from one another, see Chap. 8. The proof of Theorem 9.3 works for both
problems since the capacity constraints in the proof actually require that there is
exactly one copy of a model with a given option out of any consecutive �i for i =
1, . . .,m and exactly L(1−∑ 1

�i
) out of L for model m+1. Thus, minor modifications

to the algorithms for the car sequencing problem presented later in the chapter lead
to algorithms for the generalized pinwheel problem. However, it is worth pointing
out an important difference between the two problems. The car sequencing problem
is formulated as a finite acyclic problem whereas the pinwheel problem as an infinite
one, that is cyclic.

9.4 Dynamic Programming for the Car sequencing Problem

We sketch a straightforward dynamic program to test the existence of a just-in-time
sequence of length D that meets all option capacity constraints. Let q = max j(q j),
without loss of generality we assume q ≤ D. Moreover, to simplify the exposition,
we assume for the time being that D = k(q− 1). The sequence v = v1· · ·vq−1 of
length q− 1 > 0 of models from M that meets all option capacity constraints will
be referred to as a feasible (q− 1)-pattern. For a feasible (q− 1)-pattern v, let i(v)
be an n−dimensional vector with the coordinate j equal to the number of copies of
model j ∈M in v. Define a node of a directed graph G = (N,A) as being either a
pair (∆,v), where ∆ is an n−dimensional vector with its coordinate j, 0≤ ∆ j ≤ d j,
keeping track of the number of model j copies already in the current prefix of the
sequence, and v being a feasible (q−1)-pattern, or a sink node (d,�) with an empty
sequence �. An arc ((∆,v),(∆′,v′)) ∈ A if and only if

the concatenation vv′ is feasible and ∆′ = ∆ + i(v).

The concatenation vv′ is feasible if it meets all option capacity constraints. The
inequality of arithmetic and geometric means implies the following upper bounds
on the numbers of nodes

9.4 Dynamic Programming for the Car sequencing Problem 203

|N| ≤
n
∏
i=1

(di + 1)×nq−1≤
(

D+ n
n

)n

×nq−1

and the number of arcs

|A| ≤
(

D+ n
n

)2n

×n2(q−1)

of G = (N,A). We observe that there is a feasible sequence if and only if there is a
directed path from a node (0,v) for some v to (d,�) in the graph G = (N,A). The
existence of this directed path can be checked in time O(|A|) thus the car sequencing
problem can be solved in time

O

(

(

D+ 2m

2m

)2m+1

22m(q−1)

)

.

The algorithm is thus polynomial in D as long as the number of options m is fixed,
that is it is not part of the problem’s input, and 2q is bounded from above by a poly-
nomial of D. This observation as well as the proof of Theorem 9.2 strongly suggest
that the computational complexity of the car sequencing problem often hinges only
on the option contents of models represented by the binary matrix C that encodes
the option subsets Oi of models i = 1, . . .,n. Therefore, a natural first step in the
quest for efficient algorithms for the car sequencing problem is to understand the
logic used in the model design and reflected in the model option content. The logic
is shaped both by the market research determination of the attributes most valued
by customers and by the car design team that translates these attributes at minimum
cost into possible options and models, see Lockledge et al. [112]. However, Theo-
rem 9.3 shows that the car sequencing problem is a much more complex problem
than that since even if the option content of models is made trivial by having a single
unique option per model, the car sequencing problem still exhibits its NP-hardness
through the number theoretic features embedded in the option capacity constraints.
This relative ease with which even very special cases of the car sequencing problem
can be shown NP-hard explains why there are no, to the author’s knowledge, spe-
cial cases of the car sequencing problem with polynomial time solutions published
in the literature. Consequently, the problem computational intractability provides a
very fertile ground for computational competitions, for instance the 2005 ROADEF
(Société Française de Recherche Opérationnelle et d’Aide à la Décision) challenge
sponsored by the car maker Renault, and the study of formulations, search methods
and especially the constraint programming techniques. These formulations will be
briefly discussed in Sect. 9.6.

We note that if D = k(q− 1) + r, 0 < r < q− 1, then the sink node must be
immediately preceded by the nodes (d−i(w),w), where w is a sequence of length r
that meets all option capacity constraints. Each of these nodes is connected to a sink
node (d,�). Again, there is a feasible sequence if and only if there is a directed path
from a node (0,v) for some v to (d,�).

204 9 Temporal Capacity Constraints and Supply Chain Balancing

For q = 2, all option capacity constraints are of type 1 : 2. Hence, the car se-
quencing problem reduces to an undirected Hamiltonian path problem. since the
(q− 1)-pattern boils down to a single model. Therefore, there is not need for hav-
ing the vector ∆ as a part of the node. Instead, the number of nodes corresponding
to model i can be made equal to the demand di for the model. Thus, N =

⋃n
i=1 Di,

where Di the set of di nodes being copies of model i. The edge between nodes v and
u belongs to E if and only if the two model sequence vu meets all option capacity
constraints. A Hamiltonian path in G = (N,E) exists if and only if there is a feasi-
ble sequence. The reduction does not help to solve this case of the car sequencing
problem in polynomial time generally since the Hamiltonian path problem is well-
known to be NP-hard in the strong sense. However, it can be used to prove that the
subproblem with all option constraints being 1 : 2 still renders the cars sequencing
problem NP-hard, see Exercise 9.20.

9.5 Simple Necessary Conditions

We give two necessary conditions for a feasible model sequence to exist. The first
condition states that the total demand for models with a given option may not be
too high. Otherwise the demand for the option would certainly violate its capacity
constraint.

Lemma 9.4. In order for a feasible model sequence S to exist the capacity con-

straints must satisfy the condition
⌈

D
q j

⌉

p j ≥ ∑i∈{k:C jk=1}di for all j.

Proof. For option j, the sequence can be rewritten as follows

S = α1· · ·α⌈

D
q j

⌉,

where all sequences αi except perhaps the last one α⌈

D
q j

⌉, which can be shorter,

include exactly q j models. By the option capacity constraint, p j : q j, each αi may
include at most p j copies of models that require option j. Therefore, the total de-
mand for all models that require option j, that is

∑
i∈{k:C jk=1}

di,

must not exceed
⌈

D
q j

⌉

p j,

which proves the lemma. ��

For instance, in the example from Table 9.1 demand for option 1 equals 6 which
is less than the

⌈

11
3

⌉×2 with the 2 : 3 capacity constraint for option 1.

9.6 IP Formulation and Heuristics for the Car Sequencing Problem 205

The second category of conditions is based on the observation that for a given set
of options ω if there is too much demand for the models that require all options in
ω and too little demand for the models that require none of the options in ω , then
the capacity constraints for the options in ω may again be violated. An example of
the necessary condition that falls into this category is given in the following lemma.

Lemma 9.5. Let λ ⊆ M with dλ = ∑i∈λ di ≥ 2 be a set of models and ω a set of
options such that each model in λ requires all options from ω . Let λ be a set of all
models that require no option from ω . If |ω | < q− 1 and the capacity requirement
for each j ∈ ω falls in the set {1 : q,2 : q} and at least one of them is 1 : q, then we
must have dλ ≥ dλ −1 for a feasible sequence S to exist.

Proof. Let S be a feasible sequence with the copies of models from λ in positions
j1, . . ., jdλ . Consider a subsequence αi of S between positions ji and ji+1. By the

1 : q constraint, |αi| ≥ q− 1. If none of the models in αi belongs to λ , then by the
pigeon-hole argument for some k ∈ ω we would have at least three models in S jiαi

that require k as long as |ω |< q−1. Therefore, at least one model in αi must come
from λ . Consequently, dλ ≥ dλ −1, which proves the lemma. ��

The lemma holds if the capacity constraints 2 : q are replaced by stronger con-
straint 2 : q j where q j ≤ q and possibly different for different options.

9.6 IP Formulation and Heuristics for the Car
Sequencing Problem

The car sequencing problem is often solved by constraint satisfaction programming,
see Dincbas et al. [113], and ILOG [108]. However, as Gravel et al. [114], and
Drexl and Kimms [115] point out this method performance quickly deteriorates
as the problem size grows. Furthermore, the former observes that the constraint
satisfaction programming is rather sensitive to the existence of a feasible solution.
Thus confirming once again a common experimental observation for any NP-hard
problem that the absence of a feasible solution is usually a much harder nut to crack,
see Exercise 9.19 as an example, than showing one if any exists.

A similar observation has been made by Gravel et al. [114] on solvers for a linear
integer programming model of the car sequencing model.

The following assignment-based formulation comes from Drexl and Kimms
[115] and Gravel et al. [114], it uses binary variables

yi,k =
{

1 if model i is in position k of the sequence,
0 otherwise

for i = 1, . . .,n and k = 1, . . .,D. The formulation is as follows

n
∑

i=1
yi,k = 1 k = 1, . . .,D (9.4)

206 9 Temporal Capacity Constraints and Supply Chain Balancing

D
∑

k=1
yi,k = di i = 1, . . .,n (9.5)

q j−1

∑
�=0

n
∑

i=1
Cjiyi,k+� ≤ p j j = 1, . . .,m k = 1, . . .,D−q j + 1 (9.6)

The constraints (9.4) and (9.5) are standard assignment constraints. The con-
straint (9.6) is a sliding window constraint that ensures that a window of size q j

sliding along the sequence of length D never includes more than p j copies with
option j, j = 1, . . .,m.

This formulation is to test a feasibility of an instance of the car sequencing prob-
lem – usually a harder task. However, an objective function can be added and the
constraints (9.6) modified by the well-known big M technique to turn the integer
program into the minimization of the number of capacity constraints violations, see
Gravel et al. [114] who also point out that the number of violations may itself be
difficult to calculate as the following example illustrate.

Example 9.6. Consider a sequence

111111

for an option with 2:3 capacity constraint. This constraints is violated four times if
we use the sliding window method of calculating the violations – we simply have
four factors 111 when sliding the window of size three from the left to the right
along the sequence. However, replacing the second and the and the fourth models
in the sequence by the ones that do not require the option, and do not cause any
violations for other options, would reduce the number of violations to 0. Thus, it
may be argued that the number of violation in this example should be two rather
than four since in practice changing the sequence two positions fixes all violations
for the option. ��

We conjecture that this problem may be NP-hard itself, see Exercise 9.22 for
details .

Drexl et al. [116] propose an integer programming model to minimize maxi-
mum deviation of model copies from their optimal positions, which is different
from though somehow related to the bottleneck problem discussed in Sect. 5, over
all sequences satisfying capacity constraints. The LP-relaxation of their model is
then solved by column generation technique, see Desrochers and Soumis [117] for
details of this technique, to provide lower bound which is reported tight in their
computational experiments.

The ant colony optimization has been often proposed heuristic approach to the
car sequencing model, see Solnon [118], and Gravel et al. [114]. The latter com-
putational study of this heuristic concludes that it is able to more efficiently find
optimal solutions than the integer programming solver for those instances the solver
was able to find optimal solutions for. Moreover, the quality of solutions found by
the heuristic for the benchmark instances equalled the quality of the best solutions
known for these instances.

9.7 Mixed-Model, Pull Supply Chains 207

We close this section by again observing that straightforward modifications of the
formulations and heuristics discussed here would readily apply to both the pinwheel
scheduling and the generalized pinwheel scheduling problems, see Exercise 9.21.
The research in this direction seems unexplored yet promising.

9.7 Mixed-Model, Pull Supply Chains

The goal of this section is to present a framework for a mixed-model, pull supply
chains which is a point of departure for our discussion in the following sections.
A mixed-model supply chain has a set {0,1, . . . ,S} of suppliers. The supplier s
offers supplies from its list Ss = {(s,1), . . . ,(s,ns)} of ns supplies. The supplies
of different suppliers are connected by directed arcs as follows. There is an arc
from (si,x) to (s j,y) if and only if supplier si requires supplier s j to supply y for
its x. The arc ((si,x),(s j,y)) is weighted by the number (or amount) of y needed
for a unit of x. The set of supplies

⋃S
s=0Ss and the set of arcs A between supplies

make up a weighted, acyclic digraph – called the model-supplier graph. Without
loss of generality we shall assume that si < s j for any arc ((si,x),(s j,y)) in this
graph. The supplies S0 = {(0,1), . . . ,(0,n0)} at Level 1 will be called models. For
simplicity, we denote model (0, j) by j and the number of models n0 by n. To avoid
duplicates in the supply chain, we assume that any two nodes of the digraph have
different out-sets and no node has out-degree 1. In fact we assume that the digraphs
are multistage digraphs, as virtually all supply chains appear to have this structure
simplifying feature, see Shapiro [119], and Bowersox et al. [120]. For an example
of the mixed-model supply chain please see Fig. 9.1 where all arcs are directed from
the top down.

Each path π from model m to (s, j) represents a demand for (s, j) originating
from a single copy of model m. The size of this demand equals the product of all
weights along the path π . Therefore, the total demand for the supply (s, j) originat-
ing from a single copy of model m is the sum of path demands over all paths from
m to (s, i) in the model-supplier graph and it is denoted by bm,(s, j). The matrix b of
the size n× (∑s∈S ns) contains all model-supplier contents.

The model-supplier graph shown in Fig. 9.1 has two paths from model 1 to (4,1)
both with weight 1, therefore the total demand for (4,1) originating from 1 equals 2.
Each supplier s aggregates its demand over all supplies on its list Ss. For supplier
4 the demand originating from model 1 is [112], from model 2, [12233], and from
model 3, [233]. In our notation supply i for a given model is listed the number of
times equal to the unit demand for i originating from the model. Each of these lists
will be referred to as a kit to emphasize the fact that suppliers may not deliver an
individual part or a subassembly required by models but rather a complete collection
required by the model, a common practice in manufacturing Bowersox et al. [120].
Thus, model 1 needs the entire kit [112] delivered in a single delivery from supplier
4 rather than two 1s and one 2 delivered separately. We shall also refer to a kit as

208 9 Temporal Capacity Constraints and Supply Chain Balancing

(1,1) (1,2) (2,3)

1

11

1 1

1
1

11 1

2

L 2

L 3

1

(2,1) (2,2)

(3,1) (4,1) (4,2) (4,3)

(0,1) (0,2) (0,3)

1

1
1

L 1

Fig. 9.1 Mixed-model supply chain with three levels and five suppliers (or chain nodes): one at
level 1 supplying three models, two at level 2, and two at level 3

Table 9.3 Matrix b for the supply chain in Fig. 9.1

m/(s, j) (1,1) (1,2) (2,1) (2,2) (2,3) (3,1) (4,1) (4,2) (4,3)

1 1 1 1 0 0 1 2 1 0
2 1 0 1 1 1 0 1 2 2
3 0 0 0 1 1 0 0 1 2

an option. Notice that a model may require at most one kit from a supplier. The
supplier content of models is defined by an n by S+ 1 matrix C, where

Csi =
{

1 if model i requires a kit (option) from supplier s,
0 otherwise.

(9.7)

We assume that the supply chain operates in a pull mode. That is any supply at
a higher level is drawn as needed by a lower level. Therefore, it is a sequence of
models at Level 1 (L1), called the model delivery sequence, that determines the
delivery sequence of each supplier, called the option delivery sequence, at every
level higher than 1 (downstream) and the supplier must exactly follow this delivery
sequence when delivering its options. For instance, the model delivery sequence

1→ 2→ 3→ 1→ 1→ 2→ 1→ 3→ 2→ 1 (9.8)

at L1 results in the option delivery sequence

[1]→ [123]→ [23]→ [1]→ [1]→ [123]→ [1]→ [23]→ [123]→ [1] (9.9)

9.8 Balanced Words and Model Delivery Sequences 209

for supplier 2 at the level L2 and the option delivery sequence

[12]→ [1]→ ∗→ [12]→ [12]→ [1]→ [12]→ ∗→ [1]→ [12] (9.10)

for supplier 1 at the level L2, where the “∗” in a given position of the option delivery
sequence denotes an empty kit, the option delivery sequence

[112]→ [12233]→ [233]→ [112]→ [112]
→ [12233]→ [112]→ [233]→ [12233]→ [112] (9.11)

for supplier 4 at L3, and finally the option delivery sequence

[1]→ ∗→ ∗→ [1]→ [1]→ ∗→ [1]→ ∗→ ∗→ [1] (9.12)

for supplier 3 at L3.
Observe that the kit [112] to be delivered first by supplier 4 according to the

option delivery sequence (9.11) is in fact made up of kits [1] and [12] the former to
be delivered to supplier 1 at L2 as it is needed for its supply (1,2) and the latter to be
delivered to supplier 2 at L2 as it is needed for its (2,1) though both eventually end
up in a copy of model 1 which is to be produced first. Therefore, the option delivery
sequence has in fact the following nested structure

[[1][12]]→ [[12][233]]→ [233]→ [[1][12]]→ [[1][12]]
→ [[12][233]]→ [[1][12]]→ [233]→ [[12][233]]→ [[1][12]]

for supplier 4 at L3. This nested structure corresponds naturally to the levels of the
multistage model-supplier graph.

The demand for model j is denoted by dj and it is assumed given. The demand
for any other supply can easily be derived from the demand vector for models d =
(d1, . . .,dn) and the kit content of each model given in the matrix b.

The supplier content matrix C defined in (9.7) corresponds to the option content
matrix of the car sequencing problem. Moreover, supplier s is a subject to a capacity
constraint in the form ps : qs, which requires that at most ps models of the model
delivery sequence S in each consecutive sequence of qs models of S may need op-
tions supplied by s. Thus, the leveling of demand problem can be recast as a car
sequencing problem.

9.8 Balanced Words and Model Delivery Sequences

We show in Chap. 6 that regular words minimize multimodular functions and thus
balance workloads in event graphs. We further explore this line of research in this
section by having a closer look at balanced words, which are a slightly more general
concept than regular words, to explore insights they can provide into the complex-
ity of model delivery sequences. We use the terminology and the notation bor-

210 9 Temporal Capacity Constraints and Supply Chain Balancing

rowed from the combinatorics on words which is briefly recall from the preliminary
Chap. 1.

The models {1, . . . ,n} will be viewed as the letters of a finite alphabet A =
{1, . . . ,n}. We consider both finite and infinite words over A. A model delivery se-
quence will then be viewed a finite word of length D onA, where the letter i occurs
exactly di times. This word can be concatenated ad infinitum to obtain a periodic,
infinite word on A.

We recall from Chaps. 5 and 3 that sequencing copy j of model i in its ideal
position
 2 j−1

2ri
� minimizes both the total deviation and the maximum deviation,

however, it leads to an infeasible solution whenever more than one copy competes
for the same ideal position in the sequence. The algorithms discussed in these chap-
ters show how to efficiently resolve the conflicts so that the outcome is an optimal
sequence, minimizing either total or maximum deviations.

Let us now consider an infinite, periodic sequence of the ideal vertices

2 j−1
2ri

=
jD
di
− D

2di
=

(j−1)D
di

+
D

2di
.

We build an infinite word on A using these numbers as follows. Label the points
{ (j−1)D

di
+ D

2di
, j ∈ N} by the letter i. Consider

n
⋃

i=1

{

(j−1)D
di

+
D

2di
, j ∈N

}

and the corresponding sequence of labels. Each time there is a tie we chose i over
j whenever i < j. Notice that here higher priority is always given to a lower index
whenever a conflict needs to be settled. This way we obtain what Vuillon [46] refers
to as an hypercubic billiard word with the angle vector α = (D

d1
, D

d2
, . . . , D

dn
) and the

starting point β = (D
2d1

, D
2d2

, . . . , D
2dn

). Vuillon [46] proves the following theorem.

Theorem 9.7. Let x be an infinite hypercubic billiard word in dimension n of angle
α and starting point β . Then x is (n−1)-balanced word.

The c-balanced words, c > 0 is referred to as the degree of balance, are defined as
follows.

Definition 9.8 (c-Balanced Word). A c-balanced word on alphabet {1,2, . . . ,n} is
an infinite sequence S = s1s2 . . . such that

1. s j ∈ {1,2, . . . ,n} for all j ∈ N, and
2. If x and y are two factors of S of the same size, then ||x|i − |y|i| ≤ c, for all

i = 1,2, . . . ,n.

Theorem 9.7 shows that the priority based conflict resolution applied whenever there
is a competition for an ideal position results in c being almost of the size of the
alphabet, in fact 1 less than this size. However, Jost [121] proves that the conflict
resolution provided by any optimization algorithm for the bottleneck problem leads
to the c being a small constant. He proves the following theorem.

9.8 Balanced Words and Model Delivery Sequences 211

Theorem 9.9. For a word S∞ obtained be infinitely repeating a sequence S with
bottleneck deviation B for n models with demands d1, . . . ,dn. We have:

If B < 1
2 , then S is 1-balanced.

If B < 3
4 , then S is 2-balanced.

If B < 1, then S is 3-balanced.

Proof. Consider a solution xik, i = 1, . . .,n and k = 1, . . .,D to the bottleneck prob-
lem, (5.2) subject to (5.3). Let B be the bottleneck deviation of this solution. Define,

yik =
⌊

k
D

⌋

di + xi,k modD

i = 1, . . .,n and k = 1, . . . for sequence S . Thus,

∣

∣yi,k− kri
∣

∣ =
∣

∣

∣

∣

⌊

k
D

⌋

di + xi,k modD−
(⌊

k
D

⌋

D+(k modD)
)

ri

∣

∣

∣

∣

=
∣

∣xi,k modD− (k modD)ri
∣

∣≤ B

and

∣

∣yi,(k+h)− (k + h)ri
∣

∣ =
∣

∣

∣

∣

⌊

k + h
D

⌋

di + xi,(k+h)modD

−
(⌊

k + h
D

⌋

D+(k + h)modD

)

ri

∣

∣

∣

∣

=
∣

∣xi,(k+h)modD− ((k + h)modD)ri
∣

∣≤ B.

Therefore,
−B + kri ≤ yi,k ≤ B + kri

and
−B +(k + h)ri ≤ yi,(k+h) ≤ B +(k + h)ri.

Consequently,
−2B + hri ≤ yi,(k+h)− yi,k ≤ 2B + hri.

Since k is arbitrary, then any factor of S of length h ≥ 1 includes no less than

−2B + hri� and no more that �2B + hri	 occurrences of i. Therefore, the differ-
ence between the number of i occurrences in any two factors of S of length h ≥ 1
does not exceed 4B. Thus, it is less than 2 for B < 1

2 ,less than 3 for B < 3
4 , and less

than 4 for B < 1. Therefore, S is 1-balanced for B < 1
2 , 2-balanced for B < 3

4 , and
3-balanced for B < 1. This proves the theorem. ��
The opposite claim does not hold, for instance, any sequence for n models with their
demands all equal 1 is a 1-balanced word though its maximum deviation equals
1− 1

n , and thus it is greater than 0.5 for n≥ 3. Theorem 5.8 shows that there always
is an optimal solution with B < 1, and Theorem 9.9 shows that such solutions are
3-balanced. These two ensure that 3-balanced words can be obtained for any set of

212 9 Temporal Capacity Constraints and Supply Chain Balancing

demands d1, . . . ,dn. It remains an open question to show whether or not there always
is a 2-balanced word for any given set of demands d1, . . . ,dn. However, the infinite
word

(1→ 2→ 3→ 1→ 2→ 1→ 1→ 3→ 2→ 1)∞

is 2-balanced as its maximum deviation equals 1
2 but not 1-balanced, factors 23

and 11 differ by 2 on the latter 1. It is a challenging open problem to find a
characterization of the instances with bottleneck B < 3

4 . The characterization of
instances with B < 1

2 is given in Chap. 6 and Theorem 5.8 gives the characterization
of instances with B < 1.

In the hierarchy of balanced words, the 1-balanced words, or just balanced
words, have attracted most attention thus far, see Vuillon [46], Altman et al. [7],
and Tijdeman [60] for reviews of recent results on balanced words. Berthe and
Tijdeman [122] observe that the number of balanced words of length m is bounded
by a polynomial of m, which makes the balanced words very rare. They furthermore
observe that the number of c-balanced words of length m is exponential in m for any
c > 1. The polynomial complexity of balanced words reduces the number of pos-
sible factors of delivery sequences, and thus the variability of demand through the
supply chain which could have obvious advantages for their management. As well
balanced words would optimally balance suppliers workload according to the results
of Altman et al. [7], see also Chap. 6. However, the balanced sequences may turn out
to be out of reach in practice. Indeed, according to the famous Frankel’s Conjecture,
Altman et al. [7] and Tijdeman [5] and Chap. 6, there is only one such word on n
letter alphabet with distinct demands. The demands must be powers-of-two. Though
this conjecture remains open generally, a simpler one for periodic, symmetric and
balanced words has been proven in Chap. 6, see also Brauner et al. [68], which in-
dicates that the balanced words can indeed be very rare generally and as the model
delivery sequences in particular.

9.9 Option Delivery Sequences

We now explore the change of the sequence variability measured by its degree of
balance down the supply chain.

A supplier s option delivery sequence can be readily obtained from the model
delivery sequence S and the supplier content matrix C by deleting from S all models
i not supplied by s, that is those with Csi = 0. This deletion increases the degree of
balance of the option delivery sequences for suppliers in comparison to the model
delivery sequence as we show in this section. Let us first introduce some necessary
notation.

• As ⊆ {1, . . . ,n} – the subset of models supplied by s.
• As j ⊆ As – the subset of models requiring option j of supplier s. Different models

may require the same option delivered by s.

• rs j =
∑m∈As j

dm

∑m∈As dm
.

9.9 Option Delivery Sequences 213

• rAs j =
∑m∈As j

dm

D = ∑m∈As j
rm.

• rAs = ∑m∈As dm
D = ∑m∈As rm.

We notice that
rs j =

rAs j

rAs

. (9.13)

First, we investigate the bottleneck deviation in the option delivery sequence of
supplier s. Supplier s has total derived demand ∑m∈As dm and the derived demand
for its option j equals ∑m∈As j

dm. A model delivery sequence S with xmk copies of
model m out of first k copies delivered results in the actual total derived demand
∑m∈As xmk for supplier s out of which ∑m∈As j

xmk is the actual demand for option j
of s. Therefore, the bottleneck deviation for the option delivery sequence of supplier
s equals

max
j,k
| ∑

m∈As j

xmk− rs j ∑
m∈As

xmk|. (9.14)

However, for S with bottleneck deviation B∗ we have

krm−B∗ ≤ xmk ≤ krm + B∗ (9.15)

for any model m and k, and consequently

krAs j −|As j|B∗ ≤ ∑
m∈As j

xmk ≤ krAs j + |As j|B∗

for option j of s and

krAs −|As|B∗ ≤ ∑
m∈As

xmk ≤ krAs + |As|B∗.

Thus,

∑
m∈As j

xmk = krAs j + εAs j ,

where |εAs j | ≤ |As j|B∗ and

∑
m∈As

xmk = krAs + εAs ,

where |εAs | ≤ |As|B∗.
Therefore, (9.14) becomes

max
j,k
|krAs j −

rAs j

rAs

(krAs + εAs)+ εAs j | (9.16)

or
max

j,k
|rs jεAs − εAs j |. (9.17)

214 9 Temporal Capacity Constraints and Supply Chain Balancing

However,

max
j,k
|rs jεAs − εAs j | ≤ |As|B∗.

Therefore,

max
j,k
| ∑

k∈As j

xmk− rs j ∑
m∈As

xmk| ≤ |As|B∗. (9.18)

We have just proved the following theorem.

Theorem 9.10. The bottleneck deviation of the option delivery sequence for sup-
plier s who supplies |As| different models out on n produced increases |As| times in
comparison with the bottleneck deviation of the model delivery sequence.

Theorem 9.9 shows that the model delivery sequences minimizing bottleneck devi-
ation are 3-balanced. However, Theorem 9.10 proves that the bottleneck deviation
of the option delivery sequence of supplier s grows proportionally to the number of
models s supplies. Therefore, the option delivery sequence becomes less balanced.
We have the following result.

Theorem 9.11. The option delivery sequence for supplier s is �4|As|B∗	-balanced.

Proof. For supplier s consider k and k∆, ∆≥ 1 such that between k and k∆ there are
exactly ∆ copies of models requiring some option from s. That is

∑
m∈As

xmk∆ − ∑
m∈As

xmk = ∆.

We then have by (9.18)

−|As|B∗ ≤ ∑
k∈As j

xmk− rs j ∑
m∈As

xmk ≤ |As|B∗,

and
−|As|B∗ ≤ ∑

k∈As j

xmk∆ − rs j ∑
m∈As

xmk∆ ≤ |As|B∗,

which results in

−2|As|B∗ ≤ ∑
k∈As j

xmk∆ − ∑
k∈As j

xmk− rs j∆≤ 2|As|B∗

for each k. Therefore, the numbers of option j occurrences in any two supplier s
delivery subsequences of length ∆ differ by at most �4|As|B∗	. ��

9.10 Periodic Synchronized Delivery

This section considers supply chains where supplies are regularly delivered to level
L1 a given number of times a day by using a constant order cycle, variable or-
der size framework. The pull material flow mechanism of just-in-time systems re-
quires direct suppliers to supply only what is needed by level L1 and only when it

9.10 Periodic Synchronized Delivery 215

is needed. This requirement is determined by the final model delivery sequence of
models produced at level L1. Monden [22] discusses how Toyota Motor Corporation
uses this framework with its suppliers. Aigbedo [123] points out that for example
Japan Glass Sheet Company delivers parts 10 times and 16 times daily to Toyota’s
Motomachi plant and Tsutsumi plant, respectively, and he goes on to point out that
similar arrangements are common in North America, where part delivery frequency
is usually agreed on between the Original Equipment Manufacturer (OEM) and the
suppliers, by considering factors such as distance and transportation costs between
the supplier’s plant and OEM plant.

9.10.1 The Model

We now present an approach to building a model delivery sequence that minimizes
order size variability for a constant order cycle and thus minimizing safety stocks.
Suppose that a supplier s is to deliver all its supplies periodically at the instants kcTs,
k = 0,1, . . ., where c is the assembly cycle time and Ts is the total number of copies
produced in one period, for instance an intended bi-hourly or half-day production.
Let us begin with an example based on the example of supply chain from Sect. 9.7.

Example 9.12. The deliver periods are T1 = T2 = 2 for both suppliers at L2 and
T3 = T4 = 5 for both suppliers at L3. Thus, supplier 1 at L2 delivers according to the
sequence (9.10)

Supplier 2 at L2 delivers according to the sequence (9.9)
Supplier 4 at L3 delivers according to the sequence (9.11)
Supplier 3 at L3 delivers according to the sequence (9.12). ��
Now let us develop a general model of this problem. Consider supplier s. Given

that the demand for model i equals di, i = 1, . . .,n, the total demand for the supply j
of s equals

D(s, j) =
n
∑

i=1
bi,(s, j)di (9.19)

and the average demand for supply j of s, or simply supply (s, j), per copy of the
model delivery sequence equals

R(s, j) =
D(s, j)

D
,

where D is the total demand for all models. Therefore, on average, supplier s expects
to deliver

TsR(s, j) = Ts
D(s, j)

D
= Ts

∑n
i=1 bi,(s, j)di

D
= Ts

n
∑

i=1
ribi,(s, j)

copies of its supply j in each delivery with period Ts. Since the TsR(s, j) may not be
an integer, we assume that on average the order size should be either

⌊

TsR(s, j)
⌋

or
⌈

TsR(s, j)
⌉

216 9 Temporal Capacity Constraints and Supply Chain Balancing

Table 9.4 Supplier 1 at L2 order sizes in each of the five periods, T2 = 2

Period/delivery (1,1) (1,2)

1 2 1
2 1 1
3 2 1
4 1 1
5 2 1

Table 9.5 Supplier 2 at L2 order sizes in each of the five periods, T2 = 2

Period/delivery (2,1) (2,2) (2,3)

1 2 1 1
2 1 1 1
3 2 1 1
4 1 1 1
5 2 1 1

Table 9.6 Supplier 4 at L3 order sizes in each of the two periods, T4 = 5

Period/delivery (4,1) (4,2) (4,3)

1 7 6 4
2 6 7 6

Table 9.7 Supplier 3 at L3 order sizes in each of the two periods, T3 = 5

Period/delivery (3,1)

1 3
2 2

copies of supply j in each delivery period for supplier s. Thus, to ensure that each de-
livery of supplier s matches the actual average demand for its supplies as closely as
possible we request that the model delivery sequence requires no less than

⌊

TsR(s, j)
⌋

and no more than
⌈

TsR(s, j)
⌉

units of supply j in each delivery period

[(l−1)Ts, lTs]

of length Ts for supplier s. The deliveries of supplier s take place at moments

0,Ts,2Ts, . . .,(ms−1)Ts,

where

ms =
⌈

D
Ts

⌉

,

is the number of deliveries for supplier s required to meet the total demand D with
delivery period Ts. Let

9.10 Periodic Synchronized Delivery 217

δ0 = 0 < δ1 < · · ·< δp = D, p≤
S
∑

s=0
ms + 1

be all different values among kTs and D, where k = 0,1, . . .,(ms − 1) and s ∈
{0,1, . . . ,S}. We shall refer to these values as the possible delivery dates. De-
fine the k−th inter-delivery interval [δk−1,δk], and the k−th inter-delivery duration
∆k = δk− δk−1 for k = 1, . . ., p. Define variable

zik= the number of model i copies produced in [δk−1,δk].

Moreover, let
Il,s = {k : (l−1)Ts ≤ δk−1 < δk ≤ lTs}

for 1 ≤ l < ms be the set of all inter-delivery intervals included in delivery period
[(l−1)Ts, lTs] of supplier s. The existence of a model delivery sequence of models
that ensures the least possible variability of interval order sizes for each supplier s
and its supply j, that is the variability of at most 1 for the interval order sizes are
either

⌊

TsR j
⌋

or
⌈

TsR j
⌉

for supply j, can be checked by solving the following set
of integer linear inequalities:

p
∑

k=1
zik = di i = 1, . . .,n

⌊

TsR(s, j)
⌋≤

n
∑

i=1
bi,(s, j)Zil ≤

⌈

TsR(s, j)
⌉

(9.20)

for l = 0, . . .,ms−1,s ∈ {0,1, . . . ,S}, j = 1, . . .,ns

n
∑

i=1
zik = ∆k k = 1, . . ., p

where
Zil = ∑

k∈Il,s
zik

is the total production, or the number of copies, of model i in the delivery interval
[(l−1)Ts, lTs] . Let us return to Example 9.12 to illustrate the concepts just intro-
duced.

Example 9.13. Notice that the sequence (9.8) produces solution that meets con-
straint (9.20) for all suppliers and supplies with the exception of supply (4,3) of
supplier 4 where it results in the deliver of size 4 in the first period and 6 in the
second whereas ideally it should deliver the average of 5 in each delivery. ��

Table 9.8 Average order sizes

(s, j) (1,1) (1,2) (2,1) (2,2) (2,3) (3,1) (4,1) (4,2) (4,3)

D(s, j) 8 5 8 5 5 5 13 13 10
Ts×R(s, j) 1.6 1 1.6 1 1 2.5 6.5 6.5 5

218 9 Temporal Capacity Constraints and Supply Chain Balancing

We have the following lemma to bound the variability of the order size in model
delivery sequences with minimum bottleneck deviation.

Lemma 9.14. Any sequence with minimum bottleneck gives a solution zik with no
more than three copies of any model difference between delivery periods l and l′ of
supplier s. That is

|Zil−Zil′ | ≤ 3

for i = 1, . . .,n and any two delivery periods l and l′ of supplier s.

Proof. By Theorem 5.8 the minimum bottleneck B∗ < 1, and by Theorem 9.9 any
solution with bottleneck B < 1 is 3−balanced. Therefore, any factor of length Ts has
no more than three occurrences of any model i than any other factor of the same
length, which proves the lemma. ��

Thus, we get the following bound on the order size variability, see (9.20), for the
supply j of supplier s

∣

∣

∣

∣

n
∑

i=1
bi,(s, j)Zil−

n
∑

i=1
bi,(s, j)Zil′

∣

∣

∣

∣

≤ B(s, j) |Zil−Zil′ | ≤ 3B(s, j),

where

B(s, j) =
n
∑

i=1
bi,(s, j).

Notice that since
n
∑

i=1
Zil−

n
∑

i=1
Zil′ = Ts−Ts = 0,

then B(j,s) can in fact be replaced by the sum of the
⌈

n
2

⌉

largest among
b1,(s, j), . . .,bn,(s, j) and thus strengthen the bound.

Finally, since the problem (9.20) might be infeasible, then we consider the fol-
lowing always feasible modification

p
∑

k=1
zik = di i = 1, . . .,n (9.21)

⌊

TsR j
⌋−q js ≤

n
∑

i=1
bi,(j,s)Zil ≤

⌈

TsR j
⌉

+ Q js

for l = 0, . . .,ms−1,s ∈ {0,1, . . . ,S}, j = 1, . . .,ns

∑
i

zik = ∆k k = 1, . . ., p

where the Qjs ≥ 0 and
⌊

TsR j
⌋ ≥ q js ≥ 0 are the bounds on maximum shortage

and oversupply of option j in a single delivery period of supplier s. The bounds may
of course be minimized giving rise to a family of optimization problems involving
Qjs and q js.

9.10 Periodic Synchronized Delivery 219

9.10.2 The complexity

We have the following complexity result that states that minimizing order size vari-
ability in the periodic synchronized supply chains is NP-hard in the strong sense, in
fact even the feasibility test for the system of inequalities (9.20) is NP-hard in the
strong sense.

Theorem 9.15. The minimization of order size variability in the periodic synchro-
nized supply chain problem is NP-hard in the strong sense.

Proof. Let the positive integers a1, . . .,a3m and A make up an instance of the
3-partition problem. We define a two level supply chain with n = 3m models at
L1 and a single supplier at L2. The supplier content b of each model is given in
Table 9.9 where model i simply requires ai units of supply (1,1). The demand
for each model equals 1, and we assume period T1 = 3 for the supplier. Then,
D(1,1) = mA, D = 3m, and T1R(1,1) = A. For a 3-partition P1, . . .,Pm of the set
{1, . . .,3m} the sequence

P1→ ··· → Pm

where the permutation in each set Pi is arbitrary solves the periodic synchronized
supply chain problem since the order size in each delivery cycle equals A for
∑ j∈Pi

a j = A. Now, let the sequence of models

j1→ j2→ j3→ ··· → j3m

meet the constraint (9.20). Then, the sets Pi = { j3(i−1)+1, j3(i−1)+2, j3i} make up
the required 3-partition of the set {1, . . .,3m}. This transformation is pseudo-
polynomial, thus the periodic synchronized supply chain problem is NP-hard in the
strong sense. ��

9.10.3 Model-Supplier One-to-One Case

We close this section by showing a special case of the periodic synchronized deliv-
ery problem (9.21) solvable in polynomial time. The case is called model-supplier

Table 9.9 The b matrix corresponding to the instance of 3-partition problem

m\(s, j) (1,1)

1 a1
...

...
i ai
...

...
3m a3m

220 9 Temporal Capacity Constraints and Supply Chain Balancing

one-to-one case to emphasize that the matrix b in this case has exactly one non-zero
entry in each column and each row.

If each supply (s, j) is model unique, that is there exists exactly one model i such
that bi,(s, j) �= 0, then the problem can be simplified as follows. Let i∗(s, j) the unique
model that requires the supply (s, j). Then, (9.19) can be recast as follows

D(s, j) =
n
∑

i=1
bi,(s, j)di = bi∗(s, j),(s, j)di∗(s, j),

and

TsR(s, j) = Ts
D(s, j)

D
= Ts

bi∗(s, j),(s, j)di∗(s, j)

D
= Tsri∗(s, j)bi∗(s, j),(s, j).

We thus have
n
∑

i=1
bi,(s, j)Zil = bi∗(s, j),(s, j)Zi∗(s, j)l,

for any l = 0, . . .,ms−1,s ∈ {0,1, . . . ,S}, and j = 1, . . .,ns. Consequently, we would
require to ideally have

bi∗(s, j),(s, j)Zi∗(s, j)l = Tsri∗(s, j)bi∗(s, j),(s, j)

or
Zi∗(s, j)l = Tsri∗(s, j). (9.22)

However, since the right hand side of (9.22) is integer and the left might not be then
the constraint (9.20) is replaced by

⌊

Tsri∗(s, j)
⌋≤ Zi∗(s, j)l ≤

⌈

Tsri∗(s, j)
⌉

(9.23)

for l = 0, . . .,ms−1,s ∈ {0,1, . . . ,S}, j = 1, . . .,ns

Additionally, we observe that if the models are supplier disjoint as well, that is for
each model i there is exactly one supply i(s, j), that is there is exactly one nonzero
entry in each row of matrix b, then constraint (9.23)

�Ts∗ri∗	 ≤ Zi∗l ≤
Ts∗ri∗�
for l = 0, . . .,ms∗ −1, i∗ = 1, . . .,n

where s∗ is a unique supplier for i∗ and the other way round, that is the i∗ is the
unique model supplied by s∗. Then, the system (9.21) becomes

p
∑

k=1
zik = di i = 1, . . .,n (9.24)

�Ts∗ri∗	 ≤ Zi∗l ≤
Ts∗ri∗�
for l = 0, . . .,ms∗ −1, i∗ = 1, . . .,n

∑
i

zik = ∆k k = 1, . . ., p

and it can be solved by the network flow algorithms.

9.11 Synchronized Delivery 221

9.11 Synchronized Delivery

An alternative approach to the leveling off demand problem follows the bottleneck
problem for the model level L1. However, now smoothing at each supplier is com-
plicated by the fact that the demand for its supplies is not independent as it is the
case for L1 but rather depends on the model delivery sequence. This makes the
leveling off problem much more challenging. We now give details of this approach.

Let xik be the cumulative production of i for the k-prefix of the model delivery
sequence. Then, the delivery sequence-dependent total demand for (s, j) originating
from this k-prefix is

Y(s, j),k =
n
∑

i=1
bi,(s, j)xik.

Consequently, the total demand for supplier s originating from this k-prefix equals

Ys,k = ∑
(s, j)∈Ss

Y(s, j) = ∑
(s, j)∈Ss

n
∑

i=1
bi,(s, j)xik.

On the other hand, the total demand for supplier s as a result of demands d1, . . .,dn
for models 1, . . .,n respectively, can be derived as follows

Ds = ∑
(s, j)∈Ss

D(s, j) = ∑
(s, j)∈Ss

n
∑

i=1
bi,(s, j)di (9.25)

out of which

D(s, j) =
n
∑

i=1
bi,(s, j)di (9.26)

is demand for (s, j) only. Thus, the ratio

r(s, j) =
D(s, j)

Ds
, (9.27)

for the supply (s, j). Let us illustrate these definitions with an example based on the
example of chain from Sect. 9.7.

Example 9.16. For the matrix b given in Table 9.3 the ratio calculations are shown
in Tables 9.10 and 9.11. ��

Table 9.10 Matrix ∑(s, j)∈Ss bi,(s, j)

i/(s, j) (1,1) (1,2) (2,1) (2,2) (2,3) (3,1) (4,1) (4,2) (4,3)

1 2 1 1 3
2 1 3 0 5
3 0 2 0 3

222 9 Temporal Capacity Constraints and Supply Chain Balancing

Thus, ideally the fraction r(s, j) of Ys,k should be equal to Y(s, j). In other words,
we minimize

min
(s, j),k

∣

∣Y(s, j),k− r(s, j)Ys,k
∣

∣ . (9.28)

We can rewrite the deviation in (9.28) as follows

Y(s, j),k− r(s, j)Ys,k =
n
∑

i=1
bi,(s, j)xik− r(s, j)

n
∑

i=1
∑

(s, j)∈Ss

bi,(s, j)xik

=
n
∑

i=1
(bi,(s, j)− r(s, j) ∑

(s, j)∈Ss

bi,(s, j))xik

=
n
∑

i=1
ρi,(s, j)xik

where
ρi,(s, j) = bi,(s, j)− r(s, j) ∑

(s, j)∈Ss

bi,(s, j). (9.29)

The following example illustrates the calculations defined by (9.29).

Example 9.17. For the matrix b given in Table 9.3 and the ratios in Table 9.11 we
have the matrix ρ in Table 9.12.

Thus, the problem is to minimize

min
(s, j),k

∣

∣

∣

∣

n
∑

i=1
ρi,(s, j)xik

∣

∣

∣

∣

(9.30)

Subject to
n

∑
i=1

xik = k k = 1, . . . ,D (9.31)

0≤ xik+1− xik ≤ 1 i = 1, . . . ,n;k = 1, . . . ,D−1 (9.32)

xiD = di i = 1, . . . ,n. (9.33)

Kubiak et al. [124] prove that the synchronized delivery problem, that is the
minimization of (9.30) subject to (9.31)–(9.33), is NP-hard in the strong sense and
they give a dynamic programming algorithm to solve it. Their algorithm runs in time

O(n2
n
∏
i=1

(di + 1)). Its experimental performance evaluation can be found in [124].

We now show a bound on the objective (9.30). We begin with the following
observation.

Table 9.11 Ratios r(s, j)

(s, j) (1,1) (1,2) (2,1) (2,2) (2,3) (3,1) (4,1) (4,2) (4,3)

D(s, j) 8 5 8 5 5 5 13 13 10
Ds 13 18 5 36
r(s, j)

8
13

5
13

8
18

5
18

5
18 1 13

36
13
36

10
36

9.12 Exercises 223

Table 9.12 The matrix ρ

i/(s, j) (1,1) (1,2) (2,1) (2,2) (2,3) (3,1) (4,1) (4,2) (4,3)

1 − 3
13

3
13

10
18 − 5

18 − 5
18 0 33

36 − 3
36 − 30

36

2 5
13 − 5

13 − 6
18

3
18

3
18 0 − 29

36
7
36

22
36

3 0 0 − 16
18

8
18

8
18 0 − 39

36 − 3
36

42
36

Lemma 9.18. We have
n
∑

i=1
ρi,(s, j)rik = 0.

Proof. We get

n
∑

i=1
ρi,(s, j)ri =

1
D

(
n
∑

i=1
bi,(s, j)di− r(s, j)

n
∑

i=1
∑

(s, j)∈Ss

bi,(s, j)di)

by (9.29). Thus, by definitions (9.26), (9.25) and (9.27) we have

n
∑

i=1
ρi,(s, j)ri =

1
D

(D(s, j)− r(s, j)Ds) = 0.

��
For optimal solution xik to the bottleneck problem we have

xik = kri + εik,

where−1 <−B∗ ≤ εik ≤ B∗ < 1. Thus, we have
∣

∣

∣

∣

n
∑

i=1
ρi,(s, j)xik

∣

∣

∣

∣

=
∣

∣

∣

∣

n
∑

i=1
ρi,(s, j)kri +

n
∑

i=1
ρi,(s, j)εik

∣

∣

∣

∣

,

by Lemma 9.18 the bound is as follows
∣

∣

∣

∣

n
∑

i=1
ρi,(s, j)xik

∣

∣

∣

∣

=
∣

∣

∣

∣

n
∑

i=1
ρi,(s, j)εik

∣

∣

∣

∣

≤ B∗
n
∑

i=1

∣

∣ρi,(s, j)
∣

∣≤ B∗Bs,

where

Bs =
n
∑

(s, j)∈Ss

B(s, j) =
n
∑

(s, j)∈Ss

n
∑

i=1
b(s, j),i.

9.12 Exercises

Exercise 9.19. Prove that there is no feasible solution for the following instance
given in Table 9.13. Hint: See Gent [111].

224 9 Temporal Capacity Constraints and Supply Chain Balancing

Table 9.13 An infeasible instance of the temporal supplier capacity problem

Demand ps : qs Model
di 1 : 2 2 : 3 1 : 3 2 : 5 1 : 5 i
2 0 0 0 1 1 1
2 0 0 1 0 1 2
5 0 1 1 1 0 3
4 0 0 0 1 0 4
4 0 1 0 1 0 5
1 1 1 0 0 1 6
3 1 1 1 0 1 7
4 0 0 1 0 0 8
19 0 1 0 0 0 9
7 1 1 0 1 0 10
10 1 0 0 0 0 11
1 0 0 1 1 0 12
5 1 1 1 1 0 13
2 1 0 1 1 0 14
6 1 1 0 0 0 15
4 1 1 1 0 0 16
8 1 0 0 1 0 17
1 1 0 0 0 1 18
4 0 1 1 0 0 19
2 0 0 0 0 1 20
4 0 1 0 0 1 21
1 1 1 0 1 1 22
1 0 1 1 0 1 23

Exercise 9.20. Prove that the car sequencing problem is NP-hard in the strong sense
even each capacity constraint is 1:2 and demand for each model is unit, that is di = 1
for i = 1, . . .,n

Exercise 9.21. Based of the formulation in (9.4), (9.5) and (9.6) for the car sequenc-
ing problem give a formulation for the generalized pinwheel scheduling.

Exercise 9.22. Consider an instance of the car sequencing problem and a just-in-
time sequence S, possibly violating some capacity constraints, for this instance. Find
an efficient way of determining the minimum number of positions in S than need to
be turned in blanks – a blank is a fictitious models with no options – to turn S into a
sequence that meets all option capacity constraints but not necessarily just-in-time.
What is the complexity to this problem?

9.13 Comments and References

The car sequencing problem was shown NP-hard in the strong sense by an ele-
gant transformation from the Hamiltonian path problem by Gent [111], though his
transformation requires different capacity constraints for different car options. The

9.13 Comments and References 225

problem later was shown NP-hard in the strong sense even if each capacity require-
ment is either 1:4 or 2:3, see Kis [125], however yet again this transformation re-
quires that the demands for different models differ. The IP formulation of the car
sequencing problem is based on Gravel et al. [114], and Drexl and Kimms [115].
The former presents a quite comprehensive reference list of paper that solve the car
sequencing problem by the ant colony optimization technique. The proof of Theo-
rem 9.2 is from Kubiak [126], so is the mixed-model, pull supply chain framework
from Sect. 9.7 and the discussion of model deliver sequences as balanced words in
Sect. 9.8. Theorem 9.9 was shown in Jost [121]. More on word combinatorics can
be found in Vuillon [46], Altman et al. [7], Tijdeman [60], and on balanced words
in Berthe and Tijdeman [122].

Section 9.11 is based on approach to the leveling off demand from Miltenburg
and Sinnamon [127], Miltenburg and Goldstein [128], Kubiak et al. [124], and
Kubiak [23]. This last refers to the problem as the Output Rate Variation (ORV)
problem.

Chapter 10
Fair Queueing and Stride Scheduling

10.1 Introduction

Fairness related objectives appear to have gained their prominence through fair
queueing algorithms and stride scheduling – both essential building blocks of to-
day’s information technology. This chapter focusses on the fundamental issue of
defining and quantifying fairness for these two applications rather than on the tech-
nical details of their implementation and performance which can be readily found
in the literature, see for instance Keshav [129], Bertsekas and Gallager [130], and
Waldspurger and Weihl [131].

We first observe that though both basic fair queueing and stride scheduling use
essentially the same algorithms based on the Jefferson’s method of apportionment
their approach to defining and quantifying fairness have been rather different. While
the former is based on the max–min criterion, and the relative as well as the absolute
fairness bounds, the latter is based on the bottleneck and variance minimization.
Despite these differences we propose here a common ground for both approaches
to fairness in fair queueing and stride scheduling. This approach is based on the
apportionment theory and the just-in-time optimization. It opens possibilities for
alternative fair queueing and stride scheduling algorithms. One such clear alternative
is the Webster’s method of apportionment not previously used in either fair queueing
or stride scheduling contexts. This method is the only one that results in a peer-to-
peer fairness consistent with a standard two-client solution – a new and promising
in the context of technical systems concept of fairness.

Section 10.2 presents an illustrative example that serves as a general framework
for our discussion of fair queueing algorithms and stride scheduling. Section 10.3
provides an introduction to fair queueing and its connection to the apportionment
parametric methods. Section 10.4 presents different measures of fairness used his-
torically in fair queueing. In particular the max–min fairness criterion, the relative
fairness bound, and the absolute fairness bound. We show that the uniform appor-
tionment methods naturally satisfy the max–min fairness criterion though with dif-
ferent objective functions. We show that the relative fairness bound is minimized by

W. Kubiak, Proportional Optimization and Fairness, International Series in Operations 227
Research & Management Science 127, DOI 10.1007/978-0-387-87719-8 10,
c© Springer Science+Business Media LLC 2009

228 10 Fair Queueing and Stride Scheduling

an algorithm well-known in the apportionment theory since the sixties. The algo-
rithm, however, is not house monotone, thus there is no on-line queueing algorithm
to minimize the relative fairness bound. We also show a good approximation of the
Generalized Processor Sharing policy which is based on the weighted bottleneck
deviation minimization algorithm developed in Chap. 3. The Generalized Processor
Sharing policy is considered as an ideal fair scheduling policy in the networking
literature. This policy is a benchmark against which to compare any other queueing
algorithm in the absolute fairness measure.

Section 10.5 introduces stride scheduling. We show there that the basic stride
scheduling is the Jefferson’s divisor method of apportionment problem. We argue
that the quota divisor methods would greatly reduce the throughput error if used
instead of the Jefferson’s method in stride scheduling, however, at the cost of loosing
population monotonicity of the Jefferson’s method. We also show that the bottleneck
algorithm would minimize the throughput error. We finally discuss the minimization
of the response time variability in stride scheduling.

Section 10.6 proposes another approach to fairness in fair queueing and stride
scheduling. This one is called peer-to-peer fairness and it is essentially based on the
Webster’s apportionment method. In a nutshell, this approach produces a solution
which is consistent with the standard two-client solution being arguably ideal for any
two flows or clients competing for resources – either the bandwidth or the central
processor unit time.

10.2 The Story of Tiles: The Start, The Finish,
or The In-Between

We now introduce a common framework for our discussion of fairness in fair queue-
ing and stride scheduling.

The framework is based on a simple model with n types of tiles. Each tile of type
i is �i units long, i = 1, . . .,n. The �i can be the packet size (in bits) of flow i in fair
queueing or the stride length, the reciprocal of the number of tickets, of client i in
stride scheduling. The tiles of each type are arranged into an infinite strip of type i
where tiles of type i are placed one next to another without gaps, see Fig. 10.1. This

. . .

. . .

. . .

. . .

:
:

11 1 1 1

22 2 2 2 2 2 2 2 2 2

33 3 3 3

nn n n n n n

0

Fig. 10.1 The framework for fair queueing and stride scheduling

10.2 The Story of Tiles: The Start, The Finish, or The In-Between 229

strip models backlogged packets from flow i waiting for bandwidth allocation in the
fair queueing context or backlogged strides of client i waiting for quanta allocation
in the stride scheduling context. Thus, the ends of tiles in the strip of type i are at
points k�i, k = 1,2,3, . . . The set of these points is then

Ei = {k�i : k = 1,2,3, . . .}.

Let
f1 ≤ f2 ≤ ·· ·

be the ascending order of the points of the multiset
n
⋃

i=1
Ei. Let us consider the se-

quence
S = s1s2s3· · ·

where
sk = i if and only if fk ∈ Ei.

The sequence S is the Jefferson’s sequence. To see this let us consider the point in
position k. Let xi,k be the number of the ends from Ei on the list

s1s2· · ·sk

and consider
xi,k�i.

Then, position k + 1 of S is occupied by the end from the list i∗ such that

l j + x j,kl j ≥ li∗ + xi∗,kli∗ for all j = 1, . . .,n

or
1

�i∗
xi∗,k + 1

≥
1
� j

x j,k + 1

which is exactly the Jefferson’s parametric method for the population vector
(

1
�1

, . . .,
1
�n

)

,

see Theorem 2.2 and Table 2.1. Notice that without loss of generality the populations
can be made integer by taking pi = lcm(�1,...,�n)

�i
instead of 1

�i
.

Similarly, we observe that by considering the starts k�i, i = 1, . . .,n, k =
0,1,2,3, . . . ,

Si = {k�i : k = 0,1,2,3, . . .}
we can build the Adams’s sequence, and by considering the middle points k�i + 1

2�i,
i = 1, . . .,n, k = 0,1,2,3, . . .,

Mi = {k�i +
1
2
�i : k = 0,1,2,3, . . .}

230 10 Fair Queueing and Stride Scheduling

we can obtain the Webster’s sequence. Finally, by taking 0 ≤ δ ≤ 1 and points
k�i + δ�i, i = 1, . . .,n, k = 0,1,2,3, . . ., we obtain the sequence for the parametric
method φδ , see Sect. 2.4.2. We illustrate these sequences, that is the Jefferson’s, the
Adams’s, and the Webster’s, by the following example.

Example 10.1. For �a = 2, �b = 3, and �c = 5 we have

Ea = {2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32, . . .}
Eb = {3,6,9,12,15,18,21,24,27,30,33, . . .}
Ec = {5,10,15,20,25,30,35, . . .}

and

Ma = {1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31, . . .}
Mb = {1.5,4.5,7.5,10.5,13.5,16.5,19.5,22.5,25.5,28.5,31.5, . . .}
Mc = {2.5,7.5,12.5,17.5,22.5,27.5,32.5, . . .}

and

Sa = {0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30, . . .}
Sb = {0,3,6,9,12,15,18,21,24,27,30, . . .}
Sc = {0,5,10,15,20,25,30, . . .}

Thus, the sequence for the finish times, the Jefferson’s sequence, is

(abacababacababcaabacbaabcabaabc)∞

the sequence for the midpoints, the Webster’s sequence, is

(abcabaabcabacababacababcaabacba)∞

the sequence for the start times, the Adams’s sequence, is

(abcabacababacababcaabacbaabcaba)∞.

Each sequence has the cycle of length 31 since lcm(2,3,5) = 30 and the three pop-
ulations are 30

2 = 15, 30
3 = 10, and 30

5 = 6 respectively, summing up to 31. ��

10.3 Fair Queueing

In a packet-switching or datagram network, the Internet being one, fair queueing al-
gorithms set the rules of bandwidth allocation at the gateways of the network so that
a good user behavior is encouraged and enforced throughout the network. Demers
et al. [132] argue, following the game-theoretic view of the bandwidth allocation

10.3 Fair Queueing 231

first proposed by Nagle [12], that a formal game-theoretic analysis of simple gate-
way models suggests that fair queueing algorithms may be “the only reasonable
queueing algorithms to . . . make self-optimizing source behavior result in fair, pro-
tective, non-manipulable, and stable networks.” We show here that the fair queueing
algorithms, proposed in the literature and implemented in practice, to determine
the rules of the gateway’s bandwidth allocation are essentially two basic parametric
methods of apportionment: the Adams’s and the Jefferson’s methods. Following this
new insight, we argue that the Webster’s method of apportionment, not known to the
author to be used as a queueing algorithm thus far, might be even a better choice for
a fair queueing algorithm than the other two. Let us now look closer at the issue of
fair queueing at a gateway of a packet-switching network.

A gateway has a number of incoming and outgoing links through which pack-
ets from various sources are routed to various destinations. Each outgoing link
maintains separate queues associated with it, one queue for each individual source–
destination pair. The nonempty queues are cycled through so that in each cycle the
packet at the head of one queue is selected for transmission on the outgoing link.
The packets of a single source–destination queue are all of the same size. How-
ever, the sizes of packets for different source–destination pairs, often referred to
as users, flows or queues, may be different. For instance, short packets may result
from users engaging in remote login sessions using the Telnet protocol whereas long
packets may result from users transferring files with the FTP protocol. Furthermore,
the packets are assembled at the source and disassembled at the destination, thus
preempting a packet in any intermediate node would be in violation of the commu-
nications protocol and it is not permitted. Maintaining separate queues for different
source–destination pairs protects well-behaved pairs from ill-behaved ones. The lat-
ter by sending their packets too quickly simply increase the length of their own
queues without actually increasing their share of the bandwidth of the outgoing link
or delaying other pairs. This ensures that the ill-behaved pairs can get no more than
their fair share of the bandwidth. Though the model with the separate queues pro-
vides certain protection against antisocial behavior, it leaves open the question of a
fair share and the way to ensure it so that the whole network remains stable. Nagel
describes the problem elegantly in his seminal paper [12] as follows:

This game-theory view of datagram networks leads us to a digression on the stability of
multiplayer games. Systems in which the optimal strategy for each player is suboptimal
for all players are known to tend towards the suboptimal state. The well-known prisoner’s
dilemma problem in game theory is an example of a system with this property. But a closer
analog is the tragedy of the commons problem in economics. Where each individual can im-
prove his own position by using more of a free resource, but the total amount of the resource
degrades as the number of users increases, self-interest leads to overload of the resource and
collapse. Historically, this analysis was applied to the use of common grazing lands; it also
applies to such diverse resources as air quality and timesharing systems. In general, experi-
ence indicates that many player systems with this type of instability tend to get into serious
trouble. Solutions to the tragedy of the commons problem fall into three classes: cooper-
ative, authoritarian, and market. Cooperative solutions, where everyone agrees to be well
behaved, are adequate for small numbers of players, but tend to break down as the num-
ber of players increases. Authoritarian solutions are effective when behavior can be easily
monitored, but tend to fail if the definition of good behavior is subtle. A market solution is

232 10 Fair Queueing and Stride Scheduling

possible only if the rules of the game can be changed so that the optimal strategy for players
results in a situation that is optimal for all. Where this is possible, market solutions can be
quite effective. The above analysis is generally valid for human players. In the network case,
we have the interesting situation that the player is a computer executing a preprogrammed
strategy. But this alone does not ensure good behavior; the strategy in the computer may
be programmed to optimize performance for that computer, regardless of network consid-
erations. A similar situation exists with automatic redialing devices in telephony where the
user’s equipment attempts to improve performance over an overloaded network by rapidly
redialing failed calls. Since call-setup facilities are scarce resources on telephone systems,
this can seriously impact the network; there are countries that have been forced to prohibit
such devices (Brazil, for one). This solution by administrative fiat is sometimes effective
and sometimes not, depending on the relative power of the administrative authority and
the users. As transport protocols become more commercialized and competing systems are
available, we should expect to see attempts to tune the protocols in ways that may be op-
timal from the point of view of a single host, but suboptimal from the point of view of
the entire network. We already see signs of this in the transport protocol implementation
of one popular workstation manufacturer. So, to return to our analysis of a pure datagram
internetwork, an authoritarian solution, would order all hosts to be “well behaved” by fiat;
this might be difficult since the definition of a well-behaved host in terms of its externally
observed behavior is subtle. A cooperative solution faces the same problem, along with the
difficult additional problem of applying the requisite social pressures in a distributed sys-
tem. A market solution requires that we make it pay to be well behaved. To do this, we will
have to change the rules of the game. see Nagle [12], pp. 436–437.

The authoritarian solution refereed to in the Nagel’s comments has perhaps un-
knowingly been found in the apportionment solution to the fair representation prob-
lem of meeting the ideal of one man, one vote. Here is why.

The following two queueing algorithms have been formulated in the literature in
response to the Nagel work:

1. Fair queueing based on starting times by Greenberg and Madras, [133], stipu-
lates that whenever a packet finishes transmission on outgoing link the next one
transmitted on that link is the one with the earliest start time.

2. Fair queueing based on finishing times by Demers et al. [132], stipulates that
whenever a packet finishes transmission on outgoing link the next one transmitted
on that link is the one with the earliest finish time.

These two work essentially as follows. Let �i be the packet size of queue i, and
let ai be the number of packets from that queue that got transmitted on the outgoing
link thus far. When a packet from some queue finishes transmission, then the former
algorithm selects a next packet from the queue (flow) i∗ such that

� ja j ≥ �i∗ai∗ for all j (10.1)

whereas the latter selects a next packet from the queue i∗ such that

� j(a j + 1)≥ �i∗(ai∗+ 1) for all j. (10.2)

Thus, the fair queueing based on starting times is clearly the Adams’s method
of apportionment and the fair queueing based on finishing times is the Jefferson’s
method, see Chap. 2 for details of these methods, where the population of state i is 1

�i
.

10.3 Fair Queueing 233

Consequently, the fair queueing based on starting times maximizes the minimum
share of the bandwidth, that is it optimizes

maxmin
i

ai

pi
= maxmin

i
�iai, (10.3)

whereas the fair queueing based on finishing times minimizes the maximum share
of the bandwidth, that is it optimizes

minmax
i

ai

pi
= minmax

i
�iai, (10.4)

see Balinski and Young [2].
However, the fair queueing based on the midpoints rather than either starting or

finishing times may prove even better choice for a fair queueing algorithm since it
results in the Webster’s method of apportionment, which as we argued throughout
this book, see Chaps. 2 and 5, provides a number of advantages over the other two,
the Adams’s and the Jefferson’s methods. The fair queueing based on the midpoint
selects a next packet from the queue i∗ such that

� j

(

a j +
1
2

)

≥ �i∗

(

ai∗ +
1
2

)

for all j. (10.5)

The fair queueing based on the midpoint, or the Webster’s method, minimizes the
following, different from both (10.3) and (10.4), objective. The queue i share of the
bandwidth is ai

pi
= �iai whereas the ideal share for all the queues at the gateway is

∑ai

∑ pi
=

a

∑ 1
�i

=
a
P

.

The Webster’s method minimizes the weighted squared difference between each
queue share and the ideal share defined as follows

∑
i

pi

(

ai

pi
− a

P

)2

. (10.6)

Notice that the weight for the queue i is 1
�i

where �i is the queue i packet size in bits,
thus the Webster’s method minimizes the weighted squared difference between each
flow’s share and the ideal share summed over all queues, see Balinski and Young [2],
and Young [3].

All three methods, the Adams’s and the Jefferson’s known from the existing
queueing literature and the Webster’s suggested here for the fair queueing algo-
rithm, are the parametric methods of apportionment and thus they are all uniform.
Therefore, they ensure that a fair bandwidth allocation remains a fair bandwidth
allocation for every subset of queues. For the Adams’s method, this ensures that
minimum share is maximized and that holds even if we remove any queue and re-
duce the total bandwidth accordingly by taking away all this queues’s bandwidth

234 10 Fair Queueing and Stride Scheduling

allocations. The Jefferson’s method ensures that the maximum share is minimized
and this condition remains recursively true as we remove any queue and again re-
duce the total bandwidth accordingly by taking away all this queues’s bandwidth
allocations. Finally, the Webster’s method minimizes the weighted squared differ-
ence between each queue’s share and the ideal share summed over all queues and
again this holds recursively true as we remove any queue.

10.4 Which Queueing Fairness?

10.4.1 Max–Min Fairness Criterion

The selection of the most appropriate objective for fair queueing algorithms has not
received its due attention in the literature except for the max–min fairness criterion,
see Gafni and Bertsekas [134], which has been historically yet somewhat arbitrarily
tied up with fair queueing. The criterion can be defined as follows.

Consider the allocation of a single resource among n users. There are λ units of
this resource and each of the users requests ρi and receives λi units. The max–min
fairness criterion stipulates that an allocation is fair if

1. No user receives more than its request, that is ρi ≥ λi

2. No other allocation scheme that satisfies (1) has a higher minimum allocation
3. Condition (2) remains recursively true as we remove the minimal user and reduce

the total resource accordingly, that is

λ := λ −λmin

As we have shown, the Adams’s, the Jefferson’s and the Webster’s methods
satisfy the conditions (2) and (3) of this definition albeit with different objectives
(10.3), (10.4), and (10.6) respectively. Actually, the Adams’s method maximizes
the minimum allocation, see (10.3), thus literally meeting condition (2). The con-
dition (1) simply provides an upper bounds for user allocations and it is irrelevant
for backlogged flows. Thus, we conclude that the well known and widely used for
more than 20 years max–min fairness criterion results in the Adams’s method of ap-
portionment. Though this method’s quality has been widely recognized, the method
may prove not the best queueing algorithm available since it may be bettered by the
qualities of the Webster’s method as we argued in Chaps. 2 and 5.

The choice of an objective to optimize in the condition (2) of the max–min crite-
rion remains an open question. Though, the fair queueing aims may not be exactly
the same as those of the apportionment problem, this still remains to be seen, the
choice of the objective function for a fair queueing algorithm may actually be a
wrong question to ask in a much the same way as it has been argued to be a wrong
question to ask for the apportionment problem, see Balinski and Young [2]. The
latter asks instead what is the apportionment method, if any, that meets all desirable

10.4 Which Queueing Fairness? 235

properties without actually explicitly asking what is the objective it optimizes. The
approach is thus axiomatic, and the focus is on the desirable properties instead.

10.4.2 Relative Fairness Bound

Relative fairness will be determined for flows that are all backlogged in time interval
(0,t), where t is time in seconds, see also Zhou and Seth [135]. For a queueing
algorithm Q the relative fairness bound, RFB, is defined as follows.

RFB = max
(0,t),i, j

∣

∣

∣

∣

∣

SQ
i (t)
wi
− SQ

j (t)

wj

∣

∣

∣

∣

∣

, (10.7)

where wi is an integer weight of queue i, and SQ
i (t) is the number of bits (in complete

packets) send by Q in time interval (0,t) from flow (queue) i. Since bits from each
queue are sent in complete packets only, the SQ

i (t) is as follows

SQ
i (t) = xi,(0,t)�i, (10.8)

where xi,(0,t) is the number of packets send by Q in (0,t) from i. Thus,

SQ
i (t)
wi

=
xi,(0,t)

wi
�i

=
xi,(0,t)

pi
, (10.9)

where the population pi = wi
�i

is simply weight per packet bit for the queue i. The
xi,(0,t) is a counting function that increases its value by 1 at points, referred to as step
points,

0 < t1,i < · · ·< tk,i < · · ·
in time, and it remains constant in between any two consecutive step points. That is

xi,(0,tk,i)− xi,(0,tk,i−ε) = 1

and
xi,(0,t1,i−ε) = 0

for any sufficiently small ε > 0. Observe that

tk+1,i− tk,i ≥ �i

C

where �i
C is the minimum amount of time to send one packet from queue i, and C is

the transmission rate in bits per second. Let

0 < T1 < T2 < · · ·< Tm < · · ·

236 10 Fair Queueing and Stride Scheduling

be all step points of these counting functions. Let us denote this set of counting
functions by C.

We can rewrite (10.7) as follows

RFB = max
(0,t),i, j

∣

∣

∣

∣

xi,(0,t)

pi
− x j,(0,t)

p j

∣

∣

∣

∣

= max
m,i, j

∣

∣

∣

∣

xi,m

pi
− x j,m

p j

∣

∣

∣

∣

(10.10)

where
xi,(0,m) = xi,(0,Tm).

Our goal is to find the xi,(0,m) = xi,m that minimizes (10.10). We have the following
theorem.

Theorem 10.2. There exists no queueing algorithm that is house monotone and min-
imizes the RFB measure.

Proof. Balinski and Shahidi [16], and Ibaraki and Katoh [19] show that there ex-
ists no house monotone apportionment method minimizing objective function in
(10.10). ��

Theorem 10.2 proves that it is impossible to build an on-line algorithm that min-
imizes the RFB measure. That is it may always happen that the sequence that
minimizes the RFB measure for the packets transmitted so far becomes subopti-
mal by extending it by one more packet. However, if the total set of packets is
known a priory, an optimal sequence can be found by an off-line algorithm based
on a dynamic programming algorithm proposed by Burt and Harris [136].

10.4.3 Absolute Fairness Bound

The absolute fairness bound deals with the absolute deviation between the flow send
from a queue by a given queueing algorithm Q and the ideal amount of flow send
from the queue by the Generalized Processor Sharing (GPS) policy. The GPS works
in a weighted round robin fashion, see Parekh and Gallager [137] for the details and
analysis of the GPS, sending from each queue an amount of flow proportional to
the weight associated with the queue. The flow send by the GPS is divisible which
is not the case for Q. The GPS policy meets the following condition, for any two
queues i and j in interval (0,t)

FG
i (t)

FG
j (t)

=
wi

wj
, (10.11)

where FG
i (t) is the flow send from queue i in interval (0,t). Summing up (10.11)

over all n queues, we get the following

FG
i (t) = tC

wi

W
(10.12)

10.4 Which Queueing Fairness? 237

where C is the transmission rate in flow units per second and W = ∑n
i=1 wi. In prac-

tice, the GPS policy can not be implemented since the data in packet-switching
networks is send in packets rather than in divisible flows. However, the GPS serves
as a benchmark in the absolute fairness bound. The absolute fairness bound, AFB,
for a given queueing algorithm Q is defined as follows.

AFB = max
(0,t),i

∣

∣

∣

∣

∣

SQ
i (t)
wi
− FQ

i (t)
wi

∣

∣

∣

∣

∣

.

Since the data is send by Q in packets rather than in divisible flows the following
condition holds for Q

SQ
i (t) = xi(0,t)�i, (10.13)

where xi(0,t) denotes the number of complete packets sent by Q from queue i in
the interval (0,t). Combining (10.12) and (10.13) with (10.13), we can write the
following formula for the AFB measure.

AFB = max
(0,t),i

{

1
wi

∣

∣

∣xi(0,t)�i− tC
wi

W

∣

∣

∣

}

, (10.14)

which is equivalent to

AFB = max
(0,t),i

{

�i

wi

∣

∣

∣

∣

xi(0,t)− tC
wi

W�i

∣

∣

∣

∣

}

. (10.15)

Now, let us define k as follows

k =
n
∑

i=1
tC

wi

W �i
=

tCD
WL

. (10.16)

and the rate ri

ri =
di

D
=

Lwi
�i

D
, (10.17)

where the demand di = l cm(�1,...,�n)wi
�i

= Lwi
�i

for queue i, and

D =
n
∑

i=1

Lwi

�i
.

Thus, the GPS could potentially send

�kri	=
⌊

tC
wi

W�i

⌋

(10.18)

packets from queue i in (0,t). We can thus rewrite (10.15) as follows

AFB = max
(0,t),i

{

1
di

∣

∣xi(0,t)− kri
∣

∣

}

. (10.19)

238 10 Fair Queueing and Stride Scheduling

Let AFB(C) be the minimum absolute fairness bound over all counting functions
in C defined in Sect. 10.4.2. Let CM ⊂ C be a subset of the counting functions

where each tm,i is a linear integer combination of
� j
C , j = 1, . . .,n, that is there are

non-negative integers α j, j = 1, . . .,n, dependent on m and i such that

tm,i = α1
�1

C
+ · · ·+ αn

�n

C
.

Let AFB(CM) be the minimum absolute fairness bound over all counting functions
in CM. Obviously, AFB(C) ≤ AFB(CM). Now, assume that all counting functions
xi(0,t) are in CM for i = 1, . . .,n. Let

0 < T1 < T2 < · · ·< Tm < · · ·

be all step points of these counting functions. All of them are different, and the total

n
∑

i=1
xi(0,t) = m

for any Tm ≤ t < Tm+1. Moreover,

Tm = α1
�1

C
+ · · ·+ αn

�n

C

thus there are
m = α1 + · · ·+ αn

complete packets send in (0,Tm) by Q. Hence, we have
∣

∣xi(0,t)− kri
∣

∣≤max
{∣

∣xi(0,Tm)− k′ri
∣

∣ ,
∣

∣xi(0,Tm)− k′′ri
∣

∣

}

(10.20)

for Tm ≤ t < Tm+1, where

k′ =
CD
WL

Tm and k′′ =
CD
WL

Tm+1.

Consider the counting function defined as follows yi(0,m) = xi(0,Tm) with the step
points at 1,2, . . .,m, . . . Clearly, the yi(0,m) is in CM. For simplicity, we use the nota-
tion yi,m for yi(0,m). We have

max
m,i

{

1
di
|yi,m− kri|

}

(10.21)

≤max
m,i

{

1
di

max{∣∣yi,m−mri +(m− k′)ri
∣

∣ ,
∣

∣yi,m−mri +(m− k′′)ri
∣

∣}
}

(10.22)

Let y′i,m minimize the bottleneck on the right hand side of the inequality (10.21). We
then have

10.5 Stride Scheduling 239

max
m,i

{

1
di

max{∣∣y′i,m−mri +(m− k′)ri
∣

∣ ,
∣

∣y′i,m−mri +(m− k′′)ri
∣

∣}
}

≤max
m,i

{

1
di

max{∣∣y∗i,m−mri +(m− k′)ri
∣

∣ ,
∣

∣y∗i,m−mri +(m− k′′)ri
∣

∣}
}

, (10.23)

for y∗i,m being a solution to the bottleneck problem (3.37)–(3.41) in Chap. 3 and di

as in (10.17). However, for y∗i,m we have by (10.18)

n
∑

i=1

⌈

k′ri
⌉≥ m≥

n
∑

i=1

⌊

k′ri
⌋

,

thus,
∣

∣m− k′
∣

∣ < n.

The |m− k′| is the difference between the throughputs of Q and the GPS in the
time interval (0,Tm) measured in the number of complete packets send by the two.
Similarly,

n
∑

i=1

⌈

k′′ri
⌉≥ m+ 1≥

n
∑

i=1

⌊

k′′ri
⌋

,

thus
∣

∣m− k′′
∣

∣≤ n.

Thus, (10.23) does not exceed

max
m,i

{

1
di

∣

∣y∗i,m−mri
∣

∣+
n
D

}

.

The bottleneck assignment problem (3.42) leads to a counting function y∗i,m that
minimizes

max
m,i

{

1
di

∣

∣y∗i,m−mri
∣

∣

}

,

and this optimal solution has value α∗ ≤ B
di∗

for some i∗ and B < 1, by Theorem 5.8.

Thus, we have the following upper bound of the optimal absolute fairness bound

AFB = max
(0,t),i

{

1
di

∣

∣

∣x∗i(0,t)− kri

∣

∣

∣

}

≤ B
di∗

+
n
D

,

where x∗i(0,t) is optimal in C. Finding, an optimal x∗i(0,t) is an open question as is
proving that x∗i(0,t) is simply y∗i,m.

10.5 Stride Scheduling

The market solution first alluded to by Nagle [12] as an alternative to the cooper-
ative and authoritarian solutions to stabilize the multiplayer games played played
to obtain resources in computer systems has been proposed in the form of stride

240 10 Fair Queueing and Stride Scheduling

scheduling. The stride scheduling was introduced by Waldspurger and Weihl in their
1995 reports [13, 131], and independently by Maheshwari [138], as a universal, de-
terministic scheduling paradigm.

The stride scheduling allows clients to buy, sell and trade tickets according to the
rules of a computational market, for instance the Spawn distributed computational
economy proposed by Waldspurger et al. [11]. The number di of tickets acquired
by a client i then determines the rate at which the client will receive the resources
needed for its job, which competes for resources with jobs of other clients. The total
number of tickets issued equals D = ∑1≤i≤n di.

The number of tickets issued to a client quantifies the client’s resource rights.
The tickets can be issued in various currencies and distributed in a modular fashion.
The clients can be issued tickets in the base currency and then each of them can
allocate tickets in its own currency to its various tasks. For instance, a client who
obtained 10 tickets in the base currency may allocate 40 tickets in its own currency
to its task A, 50 to its task B, and 10 to its task B. Thus, allocating 4, 5, and 1 tickets,
respectively in the base currency.

The resources are allocated to clients in discrete time slices 1,2, . . ., called
quanta. The main idea of stride scheduling is to calculate a stride �i = 1

di
, inversely

proportional to number of client’s tickets, that client must wait between succes-
sive resource allocations. A client with a shorter stride will get resource allocations
more frequently than a client with a longer stride. For instance a client with double
the stride of another client will execute twice as slowly getting just half of the re-
source allocations of the client with the shorter stride. We assume for the simplicity
of exposition that the stride �i of client i equals L

di
, where the constant L is only

used to obtain high-precision fixed-point integer representation of the strides �i for
individual clients, see Waldspurger and Weihl [13] for a discussion of this techni-
cal problem. We assume L to be equal lcm(d1, . . .,d2). The client i∗ to be allocated
resources in quantum k + 1, k = 0,1,2, . . ., is calculated as follows

L(x j,k + 1)
d j

≥ L(xi∗,k + 1)
di∗

(10.24)

where xi,k is the client’s i number of quantum allocations received during the first k
quantum allocations. We assume that initially xi,0 = 0 for i = 1, . . . ,n, and the ties
are broken using the ascending order of the client’s index i = 1, . . . ,n. It is obvious
from (10.24) that the sequence of allocations produced by the stride scheduling is in-
dependent of L. Therefore, from now on, we shall assume without loss of generality
that i∗ is calculated, equivalently, as follows.

i∗ = argmax
i

{

di

xi,k + 1

}

, (10.25)

Thus, the basic stride scheduling is just the Jefferson’s method of apportionment.
Because of the parameter δ = 1 for the Jefferson’s parametric method, see Table 2.1,
we call it the 1-stride scheduling.

10.5 Stride Scheduling 241

We now discuss main metrics of the stride schedules: the throughput error and
the response time variability.

10.5.1 Throughput Error

The stride scheduling keeps track of the number of resource allocations each client
i has received out of the first k allocations, xi,k, and uses the criterion in (10.24) to
decide which client gets the next quantum. Therefore there is a negligible overhead
for this rather efficient scheduling algorithm. Waldspurger and Weihl [13] view the
stride scheduling as a mechanism to keep the progress of each client i job as close
to the ideal progress defined by the straight line

k
di

D

as possible. It is worth noticing that it is essentially the same goal as in the solution
to the Liu–Layland problem given in Chap. 8.

The deterministic stride scheduling has been originally conceived as an alterna-
tive to a random lottery scheduling which results in a more erratic progress of a
client job. To see this let as have a closer look at the lottery scheduling first. The lot-
tery scheduling determines each allocation by holding a lottery where client i with
di tickets has probability πi = di

D of winning it. We use the notation πi instead of the
traditional pi for the probability since the latter is set aside for the population in the
apportionment problem. Thus, the lottery is a Bernoulli process with a probability
of success πi for client i, and consequently the number of lotteries wk won by i in k
identical, independent lotteries has a binomial distribution. Therefore, the expected
number of wins E(wk) is

E(wk) = kπi = k
di

D
,

and the variance V (wk) is

V (wk) = σ2(wk) = kπi(1−πi) = k
di(D−di)

D2 ≤ k
4
.

Given these, let us estimate the expected throughput error for the lottery scheduling
defined as the expected value of the following absolute deviation

E

(∣

∣

∣

∣

wk− k
di

D

∣

∣

∣

∣

)

by Waldspurger and Weihl [13]. By the Markov’s inequality, see Ross [66], we have

P

(∣

∣

∣

∣

wk− k
di

D

∣

∣

∣

∣

≥ σ(wk)
)

≤
E
(∣

∣

∣wk− k di
D

∣

∣

∣

)

σ(wk)
.

242 10 Fair Queueing and Stride Scheduling

By the Central Limit Theorem

P

⎛

⎝

∣

∣

∣wk− k di
D

∣

∣

∣

σ(wk)
≥ 1

⎞

⎠

tends to a constant 0.3174 as k tends to ∞. Moreover,

E

(∣

∣

∣

∣

wk− k
di

D

∣

∣

∣

∣

)

≤
√

k
2

, (10.26)

see Exercise 10.5. Thus, we have

E
(∣

∣

∣wk− k di
D

∣

∣

∣

)

σ(wk)
≤ 1.

Therefore,

E

(∣

∣

∣

∣

wk− k
di

D

∣

∣

∣

∣

)

= Θ(
√

k),

that is
√

k is both an upper and lower bound on the expected throughput error

E
(∣

∣

∣wk− k di
D

∣

∣

∣

)

. Thus, the throughput error of the lottery scheduling can grow with-

out bound as k increases. This is certainly the main disadvantage of the lottery
scheduling. On the other hand, the stride scheduling reduces the throughput error
considerably. In fact it may keep the throughput error below 1 as long as we re-
place the Jefferson’s method in it by a bottleneck optimal algorithm or quota-divisor
methods. We show this now.

Waldspurger and Weihl [13] define the throughput error of stride scheduling,
called also accuracy, as the maximum absolute or bottleneck deviation

minmax
i,k
|xi,k− k

di

D
|

introduced also in Chap. 5 in (5.2). Waldspurger and Weihl realize that their basic
1-stride scheduling may produce sequences with a large absolute throughput er-
ror. We now know that this is because a parametric method with δ = 1, that is the
Jefferson’s method, always advances the allocations of the high-throughput clients,
that is clients with large number of tickets. Waldspurger and Weihl also point out
that a similar behavior, resulting in large throughput error, has been exhibited by
similar to the stride scheduling fair queueing algorithms. Again, we know now that
these algorithms are essentially the Jefferson’s method of apportionment as well.

To illustrate this problem with the parametric methods consider an instance with
101 clients and the following ticket allocations

d1 = 100,d2 = . . . = d101 = 1.

10.5 Stride Scheduling 243

The 1-stride algorithm would result in a cycle where client 1 receives the first
100 quanta followed by the remaining 100 clients receiving 1 quantum each. The
throughput error of this cycle is 50. Notice that since x1,k = 100 for k = 100 and
r1 = 1

2 , then |x1,k− kr1| = 50 for k = 100. The 1
2 -stride scheduling, the Webster’s

method, would reduce this error twice. It would result in a cycle where client 1
receives the first 50 quanta followed by the remaining 100 clients receiving 1 quan-
tum each, and followed by 50 quanta allocated to client 1. Clearly, the throughput
error of this cycle is 25. Notice that since x1,k = 50 for k = 50 and r1 = 1

2 , then
|x1,k− kr1|= 25 for k = 50. However, it follows from Theorem 5.8 that the optimal
throughput error does not exceed 1− 1

200 = 199
200 , a cycle that attains this throughput

error allocates all odd quanta between 1 and 200 to client 1, and all even quanta
to the remaining clients in an arbitrary way. In fact, an optimal cycle results in a
throughput error of 198

200 . This optimal cycle allocates all odd quanta between 1 and
100, and all even quanta between 101 and 200 to client 1 and all the remaining
quanta to the remaining clients in an arbitrary way. Notice that a more sophisticated
hierarchical stride scheduling, we refer the reader to Waldspurger and Weihl [13]
for details, is able to reduce the throughput error for the instance discussed above to
4.5 only. However, further reduction is possible and follows the ideas developed in
Chap. 5. This reduction can be summarized as follows.

Theorem 10.3. The algorithm defined in Sect. 5.2 minimizes the throughput error.
The optimal throughput error is always less than 1. Moreover, all quota-divisor
methods of apportionment keep the throughput error below 1.

By the Impossibility theorem, Theorem 2.4, respecting priorities, which is a key ax-
iom in the axiomatic approach to the apportionment problem, can only be achieved
at the cost of increased throughput error. Therefore, by attempting to minimize the
throughput error the stride scheduling may compromise population monotonicity.

10.5.2 Response Time Variability

Waldspurger and Weihl [13] define the response time variability as the elapsed time
from a client’s completion of one quantum up to and including its completion of the
next. In the lottery scheduling the number of lotteries needed until next success of
client i, αi, is a geometric random variable with the expected value

E(αi) = α i =
D
di

and the variance

Var(αi) = α i(α i−1) =
D(D−di)

d2
i

.

For the stride scheduling, a natural measure of the response time variability for
a client is the variance of its response time. For cyclic sequences this variance for

244 10 Fair Queueing and Stride Scheduling

client i can be defined as the variance of response time for the first di +1 allocations.
More formally, let α i

j be the number of quanta between the completion of the jth
allocation and the completion of the j + 1-st, j = 1, . . . ,di. Then the response time
variability for client i is

RTVi = ∑
1≤ j≤di

(α i
j−α i)2,

and

Vari =
1
di

∑
1≤ j≤di

(α i
j−α i)2 =

1
di

RTVi.

Notice that the average response time α i is constant and equal to D
di

for client i. For
any solution with throughput error less than 1 we have, see Exercise 10.6,

1≤ α i
j ≤ 2α i, (10.27)

thus
Vari ≤ α i

2 (10.28)

Though the upper bound in (10.28) does not imply the response time variabil-
ity reduction by the stride scheduling in comparison to the lottery scheduling,
Waldspurger and Weihl [13] observe in their computational experiments that the
stride scheduling produces much less response time variability than the lottery
scheduling. As well, Corominas et al. [82] observe a substantial reduction in the
response variability obtained by the exchanges on a bottleneck optimal sequence.
The improvement however usually comes at a slight increase in the throughput er-
ror, see Fig. 7.2.

Unfortunately, the problem of minimizing the total response time variability de-
fined as follows

RTV = d1Var1 + · · ·+ dnVar(n). (10.29)

is computationally more difficult than the problem of minimizing throughput error.
We have Theorem 7.15 proven in Chap. 7 to show that the problem of minimizing
the response time variability is NP-hard. However, it is open whether the problem of
minimizing the response time variability is NP-hard in the strong sense. See Chap. 7
for more results on the response time variability minimization.

10.6 Peer-To-Peer Fairness

We now present the peer-to-peer fairness model. First, we give some motivation
behind the model using a simple example of the stride scheduling problem, though
the model itself is general and equally well applies to the fair queueing.

Consider two clients a and b. Suppose client a obtains 3 tickets and client b
obtains 6, then b expects advancing its task at a rate which is twice the rate of a.

10.6 Peer-To-Peer Fairness 245

Thus, if clients a and b were the only two clients competing for shared resources,
then the infinite cyclic sequence

(abb)∞

with the cycle abb, would be fair for both and neither would have a casus for com-
plaining since out of any three consecutive quanta two are allocated to b, with 6
tickets, and one to a, with 3 tickets. Notice that 3

6 = 1
2 and consequently 1+2 = 3 is

the smallest number of quanta to consider for clients a and b in any mathematically
sound discussion of what constitute a fair allocation of quanta for the couple. Any
smaller number of quanta would obviously be biased towards one of the clients and
the 1

2 ratio could not then be achieved.
However, if another client, say c, joins the couple with 4 tickets in their compe-

tition for the shared resources, then the sequence

(cbabcbabcbabc)∞ (10.30)

with the bottleneck deviation B = 9
13 , for the three becomes

(bab)∞

for a and b, which ensures that out of any three consecutive quantum allocations
two are made to b and one to a. This should certainly be fair for the two. Also, for
clients a and c it becomes

(cacacac)∞

which ensures that out of any seven consecutive quanta 3 are allocated to a and 4
to c. Again, it is fair to both a and c as their ticket ratio is 3

4 , and 3 + 4 = 7 is the
length of the shortest cycle where this ratio is achievable. Finally, for clients b and
c the sequence becomes

(cbbcbbcbbc)∞

which means that out of any five consecutive quanta client b is allocated at least 3,
but sometimes 4. This could make client c feel that it does not receive its fair share
of allocations with respect to client c as it has as many as 2

3 of the number of tickets
client b has, though it sometimes gets only 1

5 of consecutive 5 quanta. This potential
perception of unfairness can be avoided by the sequence

(bcbacbbcabcba)∞ (10.31)

with the bottleneck deviation B = 11
13 , as it becomes

(bcbcb)∞

for clients b and c. Thus out of any consecutive 5 quanta, 3 are allocated to b and 2
to c. Furthermore, the sequence becomes

(bba)∞

246 10 Fair Queueing and Stride Scheduling

for clients a and b, which ensures that out of any three consecutive quantum alloca-
tions two are made to b and one to a, and

(caccaca)∞

which ensures that out of any seven consecutive quanta 3 are allocated to a and
4 to c. The sequence (10.31), has an obvious advantage of being peer-to-peer fair
though it is not optimal from the bottleneck deviation stand point. The sequence
(10.30) we begun with is not peer-to-peer fair but has lower bottleneck deviation
of 9

13 . The question then is can we have a peer-to-peer fair sequence for a,b,c which
at the same time minimizes maximum deviation. In our example of clients a, b, and
c the answer is positive for the sequence

(bcabcbabcbacb)∞ (10.32)

minimizes bottleneck deviation, its optimal value is 7
13 , and is peer-to-peer fair: we

have
(bcbcb)∞

for b and c,
(bab)∞

for a and b, and finally
(cacacac)∞

for a and c. Observe that the sequence (10.32) is the Webster’s sequence. Notice
also that this sequence is not a balanced word since it includes subsequences bb
with two bs and ca with no b. In fact since the Fraenkel’s conjecture holds for
n≤ 6, see Tijdeman [5], no balanced word for clients a,b,c with tickets 3, 6, and 4
respectively is possible.

We have the following definition.

Definition 10.4 (Peer-To-Peer Fair Sequencing Problem). Given the clients
1, . . . ,n with tickets d1 ≤ ·· · ≤ dn respectively. Define the peer-to-peer ratio for
clients i and j, i < j, as fi j = di

d j
= αi j

βi j
, where αi j and βi j are relatively prime. Find

an infinite periodic sequence S∞ with the cycle S which has as small a bottleneck
deviation as possible, and which is peer-to-peer fair. That is client i occurs exactly di

times in S, and for each couple i, j, i < j, of clients any subsequence of Si j obtained
from S by deleting all clients except i and j, whose relative positions remain as in
the original sequence S, with the length αi j + βi j has exactly αi j client i allocations
and exactly βi j client j allocations. ��

The peer-to-peer fair sequencing problem remains open. We make however a
number of observations. First, it is tempting to conjecture that for any instance of
the peer-to-peer fair sequencing problem there always exists solution that minimizes
bottleneck deviation. An instance with three clients a, b and c and their tickets 3,
5, and 15, respectively, makes a simple counterexample to this conjecture. Observe,
however, that the following sequence for these three clients

10.7 Exercises 247

(cbcaccbcccabcccbccacbcc)∞

is peer-to-peer fair and it has bottleneck deviation B = 19
23 less than 1, which follows

from Theorem 2.6 as the sequence is Webster’s. The minimum bottleneck deviation
for this instance is B∗ = 14

23 . Thus, the peer-to-peer fair sequence with bottleneck not
exceeding 1 is possible after all for this instance though its bottleneck is not optimal.

Though this last observation may hold true for many instances, it does not
hold generally if we insists on the sequences which are not only peer-to-peer fair
but also remain consistent with the standard two-client (state) solution. Then, by
Theorem 2.15, the Webster’s method is the unique apportionment method that is
pairwise consistent with the standard two-client (state) solution. This standard so-
lution ensures possibly the fairest treatment of any two clients, see Chaps. 2 and 5.
Therefore, the Webster’s method ensures not only that for each couple i, j, i < j,
of clients any subsequence of Si j obtained from S by deleting all clients except i
and j, whose relative positions remain as in the original sequence S, with the length
αi j + βi j has exactly αi j client i allocations and exactly βi j client j allocations but
also that these allocation will be made as fair as possible in the Si j. The uniformity
of other parametric methods would ensure peer-to-peer fairness as well however
these methods would not ensure the standard two-client solution. However, by the
Impossibility Theorem 2.4, the Webster’s method does not satisfy quota and thus
may result in the bottleneck deviation higher that 1. Recall from Theorem 5.8 that
there always is a sequence with bottleneck deviation less than 1.

Finally, Balinski and Young [2] point out that there is no uniform and anonymous
apportionment method that satisfies quota. Consequently, the solutions to the peer-
to-peer fair sequencing will most likely have their bottleneck deviations higher than
1 for some instances. This is the case for the anonymous methods which ignore the
names or other than the number of tickets characteristics of clients.

10.7 Exercises

Exercise 10.5. Show that the expected absolute error under lottery scheduling is
O(
√

k).

Exercise 10.6. Prove that (10.27) holds.

Exercise 10.7. Develop the quota-Jefferson’s stride scheduling and fair queueing
algorithms.

Exercise 10.8. Develop the quota-Adams’s stride scheduling and fair queueing
algorithms.

Exercise 10.9. Develop the quota-Webster’s stride scheduling and fair queueing
algorithms.

Exercise 10.10. Develop an algorithm that produces a peer-to-peer fair sequence
with minimum bottleneck.

248 10 Fair Queueing and Stride Scheduling

Exercise 10.11. What are the RFB and AFB for the Jefferson’s method?

Exercise 10.12. What are the RFB and AFB for the Adam’s method?

Exercise 10.13. What is the RFB and AFB for the Webster’s method?

10.8 Comments and References

The observation that the stride scheduling is the Jefferson’s was made in Kubiak
[107]. The stride scheduling has been used for scheduling resource allocations in the
Linux kernel, Waldspurger and Weihl [13], in network routers by the Click modular
router, Kohler et al. [139], and in storage appliances by the NeST software-only
storage appliance, Bent et al. [140].

For the tragedy of the commons see the classic paper by Hardin [141].
The fairness measures used in fair queueing are discussed in Zhou and Seth [135]

who provide more references on the topic.
The idea of fair, meaning proportional, resource allocation is widely used in

many areas of information technology. It can be found for instance in network of
workstations (NOW) which is defined as a loose collection of workstations phys-
ically scattered across users’ desk by Theimer et al. [142]. The current advances
in local networks, especially in low-latency, high-bandwidth switches enabled net-
works of workstations to resemble more closely massively parallel processors. By
connecting many workstations one can build incrementally scalable, cost-effective
and highly available cluster that can act as a shared server. An application can use
resources of the whole cluster such as: processors, memory and disks that may not
otherwise be utilized. It is desirable that each user of NOW receives a fair share
of the available resources, see Arpaci-Dusseau and Culler [143]. Another example
where the idea of proportional resource allocation is used is metacomputing or grid
environment of independent geographically dispersed sites connected by wide-area
networks, in which parallel applications can be run, see Nabrzyski et al. [144] on
the grid resource management. Metacomputing enables the user to effectively ben-
efit from all resources it has access to. The basic motivation for metacomputing is
resource trading, see Cirne and Marzullo [145]. Cirne and Marzullo [145] propose
proportional resource scheduling algorithm for scheduling applications running on
geographically dispersed clusters that form a metacomputer called Computational
Co-op.

Proportional resource allocation is required also in operating systems. Especially,
the multithread systems allot a resource to threads according to their relative im-
portance. Many systems solve this problem using priority-based schedulers. Such
schedulers ignore the lower priority threads as long as there exists a higher priority
thread which can be run. This situation can lead to a starvation of the lower prior-
ity thread. Some priority-based schedulers solve this problem by the reduction of
priorities to allow all threads to be executed. However, in this case the problem
of reducing the priorities of threads in a predictable way needs to be addressed.

10.8 Comments and References 249

A stride scheduling algorithm of Waldspurger and Weihl [13] was proposed to solve
this problem. This algorithm provides a way to control the relative execution rates
of threads. This control over relative computation rates is required to achieve the
service rate objectives for the user and the application.

Józefowska et al. [146] observe that algorithms for a proportional resource allo-
cation proposed in Arpaci-Dusseau and Culler [143] for NOW environment as well
as in Cirne and Marzullo [145] for grid computing use in fact the idea of stride
scheduling of Waldspurger and Weihl [13].

Kumar and Kleinberg [147] study the so-called max–min fair vectors of allo-
cations. The vectors borrow the main idea of recursively maximizing the mini-
mum allocation from the max–min criterion, considered already in the seventies
by Megiddo [148], and are used to various combinatorial problems: bandwidth allo-
cation, scheduling, and facility location. However, finding the max–min fair vectors
is computationally intractable thus the focus is on the approximation algorithms.

Chapter 11
Smoothing and Batching

11.1 Introduction

Mixed-model production systems are widely adopted by manufacturing companies
in a broad range of industries where customers demand a variety of models of the
same product, Monden [22], Sawik [149], and Boysen et al. [150] . Automotive and
electronics industries are two well-known examples with well-established presence
of different options that create a tremendous variety of models of a single product.
At the same time the demand for a particular model is often insufficient to war-
rant dedicated production resources for the model, instead the resources have to be
shared by a whole collection of models. Thus, operating such mixed-model manu-
facturing systems efficiently is a challenging problem that has been widely studied
in the operations management literature particularly with the goal to reduce their
inherent variability.

The last few decades have witnessed a fast growing adaptation of the just-in-
time manufacturing philosophy by numerous companies, including those that oper-
ate mixed-model manufacturing systems. These companies sooner or later come to
realize that the variability reduction in its various forms is what makes their just-in-
time manufacturing systems designed for mixed-model production tick, see a recent
study of the automotive industry by Harbour [151]. The Toyota Motor Corporation
is credited with being the pioneer in variability reduction, in particular production
smoothing through level scheduling, see Monden [22]. The underlying idea, see
for instance Jones [152], is the three M concept where large variability results in
mura, that is undesirable variability in productivity and quality, and muri, that is
overburden of resources, managers, and workers. The two together create muda,
that is waste. The answer to the production smoothing problem is known as hei-
junka, see McBride [153] and Jones [152], that is leveling the load and in particular
leveling production by properly selecting and sequencing the product mix. To ex-
plain the concept let us start with an example. Suppose a demand for five models
A,B,C,D and E are dA = 8,dB = 16,dC = 4,dD = 6 and dE = 2 respectively. Since
the gcd(2,4,6,8,16)= 2, then the solution for dA

2 = 4, dB
2 = 8, dC

2 = 4, dD
2 = 3, dE

2 = 1
will be repeated twice. This solution according to the Webster’s method is

W. Kubiak, Proportional Optimization and Fairness, International Series in Operations 251
Research & Management Science 127, DOI 10.1007/978-0-387-87719-8 11,
c© Springer Science+Business Media LLC 2009

252 11 Smoothing and Batching

BADBCBABDEBABCBDAB.

Suppose moreover that the system capacity allows to release at most five orders
(Kanbans in a typical just-in-time system) every 20 min, then the sequence can be
split as follows:

BADBC | BABD | EBABC | BDAB

and the heijunka box, see Jones [152], filled in as follows

Model\time 7:00 7:20 7:40 8:00 8:20 8:40 9:00 9:20
Model A A A A A A A A A
Model B BB BB BB BB BB BB BB BB
Model C C C C C
Model D D D D D D D
Model E E E

Thus starting at 7:00 the orders are withdrawn from the Heijunka box every
20 min following the time line in the first row and released for production.

Hence, in the first 20 min a copy of model A, two copies of model B, one copy of
model C, and one copy of model D will be produced by the system. It is worth
observing that by Theorem 9.9 there always exists a sequence such that the numbers
of copies of each model in each 20 min time column interval differ by at most 4,
actually they differ by at most 3 if the number of orders released in each interval are
equal, see Exercise 11.9.

The production smoothing problem has been studied mainly for synchronized
assembly lines where each model takes exactly one unit of processing time and
setup times are being assumed negligible, see Chaps. 3 and 9. Under these assump-
tions any permutation of models gives a feasible sequence as long as the sequence
meets demands for models, and the problem reduces to uniformly dispersing the
models over the sequence, see Monden [22] and Miltenburg [21]. However, many
manufacturing systems with processing and setup times significantly varying among
the models are far from being synchronized assembly lines. Lummus [154] investi-
gates the operation of manufacturing systems with high model variability under the
just-in-time manufacturing principles. Her limited simulation study of a nine-station
production system where different models have different setup and processing time
requirements shows that the smooth production schedule obtained by the methods
primarily designed for synchronized assembly lines is as good as a random sched-
ule. This result has underpinned and motivated a number of subsequent studies of
mixed-model manufacturing systems with different models having different setup
and processing time requirements.

Nevertheless the concept of Heijunka can still be successfully used with variable
setup times as follows. Suppose that the weekly demand calls for producing dA =
1,000 units of model A, dB = 600 units of model B, and dC = 400 units of model C.
Suppose moreover that each unit of each model takes 1 min to produce, however, it
takes 3 min to setup production for A, 1 min for B, and 4 min for C. The Heijunka

11.1 Introduction 253

would find the gcd(1,000, 600, 200) = 200 and then a sequence for 5 units of A,
3 units of B, and 2 units of C. The sequence could be for instance

ABCAABACBA (11.1)

which minimizes the bottleneck deviation, see Example 5.3 in Chap. 5. The se-
quence requires eight setups, three for A, three for B, and two for C. Observe
that the sequence starts and ends with the A. Thus, the total setup per sequence
is 3×3 + 3×1 + 2×4 = 20 min. Therefore, at most 20 setups are allowed weekly
consuming the total of 400 min of the 2,400 min available. Then the smallest feasi-
ble cycle based on the sequence (11.1) is as follows

A)20B20C20(AA)20B20A20C20B20(A.

This chapter studies the production smoothing problem arising in mixed-model
just-in-time manufacturing systems where processing and setup times significantly
vary among the models. Though this chapter’s real-life motivation comes from just-
in-time operations at a leading US automotive pressure hose manufacturer it can
apply its results to any mixed-model just-in-time manufacturing systems where the
final production stage or the bottleneck stage of the system can be reasonably mod-
eled as a single machine where different models are allowed to have different se-
tups and processing times. The solution found for this machine can then be spread
through a pull just-in-time control mechanism to the entire system or even further
to the whole supply chain.

The chapter presents two methods to solve the production smoothing problem in
mixed-model just-in-time systems. One method finds all Pareto-optimal solutions
that minimize total production rate variation (we use this term instead of total de-
viation in this chapter) of models and Work-In-Process, and maximize the system
utilization and responsiveness. These Pareto-optimal solutions are found efficiently
in O(D4) time, where D is the total demand for all models. The other relies on
the Webster’s method of apportionment for production smoothing which produces
periodic, uniform and reflective production sequences that can improve operations
management of the just-in-time systems. The method can also be used as a heuristic
for the Pareto-optimization in O(nD2) time.

The performance of the algorithms is tested through an extensive computational
study. The study shows that the proposed algorithms are computationally efficient
and they produce solutions with provable characteristics desirable for operations
management. The results also show that both methods are effective in minimizing
the total variation in production rates of different models and the WIP; and maximiz-
ing system utilization and responsiveness. More specifically, they result in solutions
with low WIP levels, and high machine utilization and system responsiveness, en-
abling them to be used as efficient and effective tools of operations management in
just-in-time manufacturing systems.

The remainder of this chapter is organized as follows. In Sect. 11.2 the real-
life operation will be briefly described. In Sect. 11.3, we formulate the problem.
Section 11.4 proposes a procedure to find all Pareto-optimal solutions to the

254 11 Smoothing and Batching

problem. Section 11.5 presents the axiomatic approach to the total production
rate variation and proves its main properties. Section 11.6 discusses the axiomatic
approach in the context of optimization. Section 11.7 presents the design and the
results of our computational experiment.

11.2 A Real-Life System

This chapter’s real-life motivation comes from the just-in-time operations at the
leading US automotive pressure hose manufacturer first studied by Yavuz et al.
[155]. The manufacturer produces various types of pressure hoses for the automo-
tive industry. The hoses pass through a six-stage process demonstrated in Fig. 11.1
where the first three stages are heavier processes that use large batch-sizes, whereas
the latter three stages are more model-specific operations that use smaller batch-
sizes. The latter stages are separated from the former ones by a buffer with partially
processed hoses. This operation is far from being a synchronized assembly line,
therefore, under the just-in-time philosophy it requires a new production smoothing
method. Yavuz et al. [155] propose focusing on the assembly stage, the last stage of
the process. This stage can be modeled as a single-machine batching and scheduling
problem. The solution to this problem can then be spread through a pull just-in-time
control mechanism to the two preceding stages. The focus of this approach is on
the bottleneck of the system, that is the assembly stage, thus its other stages can be
scheduled with relative ease.

The chapter proposes a new model and a new solution to the problem. First, the
existing line of research adopts a two-phase solution methodology that first deter-
mines the batch sizes (the first phase) and then sequences those batches (the second

Oven
Curing

Cut

Reeled
Hose

Inventory

Mold &
Vulcanize

Rubber
Mixer

Assembly

Continouous
Hose Mfg.

Rubber raw
material

Finished hoses

Initialization
 Bring reel to the
cutting station
 Setup cutting machine
for a particular hose type

Cut hoses to desired
length

For each item in the batch

For each batch of the oven Initialization
 Setup the fixture for a
particular hose type
For each item in the batch
Place hose on the fixture
Trim ends
Print labels on the hose
Replace hose

Put the right pins on the
rack for the hoses on cart
Place rack in the
vulcanizing oven
Remove vulcanized hoses
from the pins

Fig. 11.1 Process flow at the automotive pressure hose manufacturing plant

11.3 Problem Definition 255

phase). Since it solves the two phases sequentially and separately, the existing ap-
proach possibly yields a sub-optimal solution for the entire system. In contrast, this
chapter attacks the problem as a whole. Both the model and the solution approach
developed here broadly apply to any mixed-model just-in-time manufacturing sys-
tem where the final production stage or the bottleneck stage of the system can prac-
tically reduce the entire system to a single machine. This reduction approach is
commonly used in practice and theory of planning and scheduling of manufacturing
and service systems, see Pinedo [156].

Second, it argues that the choice of objective function responsible for smooth-
ing out production of models will always remain somewhat arbitrary since there
does not seem to ever exist any criterion to choose one over another production
smoothing objective function. More specifically, the model proposed in this chap-
ter is based on four criteria: the minimization of the total production rate variation
of the models and Work-In-Process, and the maximization of the system utilization
and responsiveness. Among different ways of handling multi-objective optimiza-
tion problems, see T’kindt and Billaut [157], we adopt Pareto-optimization. This
optimization advocates keeping all the objectives at hand without any priorities or
weights and seeking a set of optimal solutions instead of only one optimal solution
being sought by the other approaches. The set of optimal solutions in this approach
is called the set of non-dominated or Pareto-optimal solutions. A Pareto-optimal
solution by definition can not be improved on any of its objective function values
without worsening some other of these values. Our optimization approach in this
chapter seeks to find Pareto-optimal solutions.

Third, in addition to the optimization approach for the minimization of the total
production rate variation, we also propose an approach inspired by an axiomatic
method used in solving the apportionment problem, see Chap. 2. The axiomatic ap-
proach looks for an algorithm that possesses certain desirable properties (or ax-
ioms), for instance periodicity and scalability, or proves that such an algorithm does
not exist. Both the optimization method, the workhorse of the operations research
approach, and the axiomatic method, novel yet practically absent from the solutions
of problems in operations management are equally valid and practically useful for
production smoothing. Thus, both will be exploited in this chapter. The axiomatic
method used in this chapter is based on the Webster’s method of apportionment.
We show its desirable properties and its relationship to the optimization problem for
which it can also be used as a very efficient heuristic.

11.3 Problem Definition

11.3.1 Preliminaries

Let n be the number of models to produce, and i = 1,2, . . .,n be the models them-
selves. The demand for model i equals di > 0 and the sequence-independent setup

256 11 Smoothing and Batching

and processing times for the model equal si ≥ 0 and τi > 0, respectively. The plan-
ning horizon is T > 0 time units long. All data are integers. Finally, let D = ∑n

i=1 di

be the total demand for all models over T .
In order to smooth out the natural variability present in the values of setup and

processing times our approach first calls for dividing the time horizon T into Q
time-buckets of equal length t = T

Q and then filling in some of these time-buckets,
possibly all, with models so that each non-empty time-bucket begins with a setup
and it is filled in with copies of the same model. The non-empty time-buckets will be
referred to as batches. The empty time-buckets will be referred to as empty batches
or blanks. The number of blanks is denoted by q0≥ 0. Clearly, t must be sufficiently
long to be able to fit a setup and at least a single copy of a model. Therefore, without
loss of any generality, we assume t ≥ si +τi for any i = 1,2, . . .,n. Consequently, t is
feasible if and only if there exist positive integers, the numbers of batches for each
model,

qi =

⎡

⎢

⎢

⎢

di
⌊

t−si
τi

⌋

⎤

⎥

⎥

⎥

, i = 1, . . . ,n, (11.2)

such that

q0 = Q−
n

∑
i=1

qi ≥ 0. (11.3)

The inequality (11.3) ensures that the total number of batches is sufficiently small
so that it does not exceed the capacity of the system defined by T. At the same time,
the integers (11.2) ensure that the number of batches of each model is sufficiently
large so that the demand for each model is met exactly. To see this we observe that
there always is an ri such that

di =
⌊

di

qi

⌋

qi + ri, i = 1, . . . ,n,

where 0 ≤ ri < qi. Therefore, filling in ri batches with Bi =
 di
qi
� copies of model i

each, and the remaining qi− ri batches with bi = � di
qi
	 copies of model i each results

in a total of exactly

Biri + bi(qi− ri) = di

copies of model i produced. Notice that the average number of model i copies per
batch is thus

γ i =
di

qi
,

for i = 0, . . . ,n. We assume d0 = 0 for a fictitious model 0 making up blanks, and
set γ0 = 0. Moreover, we have

t ≥ si + Biτi, i = 1, . . . ,n,

11.3 Problem Definition 257

which holds since by (11.2)

t− si

τi
≥
⌊

t− si

τi

⌋

≥ di

qi
.

Thus, t is sufficiently long to accommodate the Bi (or bi ≤ Bi) copies of model
i, i = 1, . . . ,n. Finally, we observe that t ≥ si + τi in (11.2) implies qi ≤ di for all
i = 1, . . . ,n. Hence, no excess of i will be ever produced. To summarize, the feasible
integer Q (or equivalently t = T

Q) are those and only those that satisfy the following
two inequalities

Q−
n

∑
i=1

⎡

⎢

⎢

⎢

⎢

⎢

di
⌊

T
Q−si

τi

⌋

⎤

⎥

⎥

⎥

⎥

⎥

≥ 0, (11.4)

T
maxi{si + τi} ≥ Q. (11.5)

The solution to the set of inequalities will be found by an enumeration method
shown in Algorithm 1. To our knowledge no other method for solving the nonlinear
inequality (11.4) exists, and finding a more efficient method for its solution remains
a challenging open problem.

Example 11.1. Consider an example with n = 2 models and with the following data:
d1 = 50 , d2 = 80, s1 = 4, s2 = 2, τ1 = 1, τ2 = 3 and T = 450. For Q = 15, we obtain
t = 450/15 = 30, q1 = 2, q2 = 9, b1 = B1 = 25, b2 = 8, B2 = 9, r1 = 0, and r2 = 8.
Thus, the demand for model 1 is met by two batches of 25 units each, and for model
2 by one batch of 8 units and eight batches of 9 units each. There are q0 = 4 blank
batches that make 120 units of time available. The Q = 15 batches can be sequenced
in 15!

4!2!9! = 75,075 different ways, two of which are demonstrated in Fig. 11.3a, b
along with two sequences for Q = 10 depicted in Fig. 11.3c, d. ��

Any feasible t = T
Q thus defines a vector q = (q0,q1, . . .,qn) specifying feasible

number of batches for each model and the number of blanks. However, the sequence
in which the Q batches are produced is crucial for smoothing out model production
in just-in-time systems, Monden [22]. The selection of Q (or, equivalently t) and
sequencing of the emerging batches will be Pareto-optimized using the following
four objective functions.

11.3.2 Selection of the Objectives

• The first objective, Z1, aims at minimizing the total variation in the production
rates of the models. This production rate variation is often expressed by a total
deviation of the actual cumulative model production levels from their ideal levels
over the whole time horizon T . The total deviation has been widely used as the

258 11 Smoothing and Batching

Fig. 11.2 The ideal and actual schedules

30 min

45 min

a)

b)

c)

d)

Fig. 11.3 Four alternative solutions in Example 11.1

primary objective in the production smoothing literature following Miltenburg
[21] and Monden’s [22] work, and it is illustrated in Fig. 11.2. Its application
in just-in-time manufacturing systems relies on the assumption that demand for
models is uniformly distributed over the planning horizon, and, hence, the goal
of meeting the model demand with minimal inventories (or just-in-time) calls
for distributing the production of each model as uniformly as possible over the
planning horizon as well. Ideally, one would produce a model with a constant
rate, thereby making the cumulative production of the model to progress along
a straight cumulative demand line with its slope equal to the demand rate of the

11.3 Problem Definition 259

model, as seen in Fig. 11.2. The actual cumulative production level for the model,
on the other hand, would progress along a stair-case like curve that includes the
discrete values marked with a “•” but excludes the ones with a “◦” in the figure.
The actual production levels depend on the sequence in which batches of dif-
ferent models are produced as well as on their sizes. However, the batch sizes,
that is bi and Bi, of model i differ by at most one in our model, therefore it is a
reasonable approximation to assume that all batches of the same model are of the
same average size, γ i for i = 1, . . .,n. This assumption permits us to define the
actual cumulative production level of model i as simply γ ixi,k, where the actual
cumulative number of model i batches in the first k time buckets is denoted by
xi,k and it is sequence dependent. On the other hand the ideal number, perhaps
unattainable, of time buckets allocated to model i out of the first k time buckets is
the qi

Q fraction of k, see Fig. 11.2. Therefore, the ideal production level for model
i is defined as γ i

qi
Q k. Consequently, the total squared deviation between the two

production levels for model i over the Q time buckets equals ∑Q
k=1 γ2

i (xi,k− k qi
Q)2

and the total deviation for all models equals

Z1 =
Q

∑
k=1

n

∑
i=0

γ2
i

(

xi,k− k
qi

Q

)2

over the time horizon T . We choose the total squared deviation in this chap-
ter since it is a standard measure of deviation in the well-known least squares
method; it has also been suggested as a measure of deviation by Miltenburg [21]
and Moden [22].

• The second objective, Z2, aims at minimizing the total time lost. The variability
in setup and processing times results in time-buckets being filled in to various de-
gree. This varying degree of the time-bucket fill-up is the cost paid for achieving
a smoother production schedule. Therefore, there will be unavoidably some time
lost in each batch. Moreover, the setup time itself is in fact time lost. However,
meeting all demand does not necessarily mean filling in the whole time horizon
T with batches. It would be unreasonable to advocate that being busy all the
time is preferable to having time to spare sometime, see Bertrand Russell [158]
on general advantages of idleness, which holds especially true for the just-in-
time systems, Monden [22]. A just-in-time system does not need to be run at all
times, on the contrary, due to its pull control mechanism the system can remain
idle awaiting the best moment to produce in order to meet demand. The model
i uses diτi time units productively out of qit time in all batches with model i.
Therefore, the total time lost is

n

∑
i=1

(tqi−diτi) = t
n

∑
i=1

qi−
n

∑
i=1

diτi

=
T
Q

(Q−q0)−
n

∑
i=1

diτi = T

(

1− q0

Q

)

−
n

∑
i=1

diτi

260 11 Smoothing and Batching

which is minimized by maximizing the ratio

Z2 =
q0

Q
.

The q0 blanks are not considered the time lost as they can potentially be used
productively, if need be, for instance they can be filled in with any model i =
1, . . . ,n should there be an increase in demand for the model.

• The third objective, Z3, aims at improving the system responsiveness by min-
imizing the average time between blanks. The average time referred to as the
average response time equals

Q
q0

t =
Q
q0

T
Q

=
T
q0

which is minimized by maximizing

Z3 = q0.

The blanks can be used to perform maintenance or other tasks aimed at improving
the system performance, or they can be filled in with some unexpected orders, or
they can provide spare capacity should quality problems occur in batches. In few
words, the blanks provide a desired flexibility.

• The fourth objective, Z4, is to minimize the Work-In-Process (WIP) inventory
and it is based on the Little’s Law (see Hopp and Spearman [159, p. 223]) that

ties up the flow time t, the average flow rate
n
∑

i=1
γ i

qi
Q per t and the WIP as follows

WIP = t

(

n

∑
i=1

γ i
qi

Q

)

/t =
D
Q

.

Thus, the minimization of WIP is equivalent to the maximization of

Z4 = Q.

In Fig. 11.3 the sequences (a) and (c) group the batches of the same model to-
gether, whereas the sequences (b) and (d) disperse the batches over the planning
horizon in a more uniform fashion. The objective Z1 favors sequences (b) and (d)
over (a) and (c). The Z2 favors (a) and (b) with the value 4/15 over (c) and (d) with
the value 2/10. Finally, the Z3 and Z4, favor (a) and (b) with the values 4 and 15 of
Z3 and Z4 respectively over (c) and (d) with the values 2 and 10. Thus, sequence (b)
in this example is optimal according to all four objectives.

11.3.3 A Mathematical Programming Formulation

We now formulate the batching and smoothing problem as a multi-objective, non-
linear mathematical programming model, as follows.

11.4 Pareto Optimization 261

minimize Z1 =
Q

∑
k=1

n

∑
i=0

(

di

qi

)2(

xi,k− kqi

Q

)2

(11.6)

maximize Z2 =
q0

Q
(11.7)

maximize Z3 = q0 (11.8)

maximize Z4 = Q (11.9)

subject to

xi,k− xi,k−1 ∈ {0,1}, i = 0,1, . . .,n; k = 1,2, . . .,Q (11.10)

xi,0 = 0, i = 0,1, . . .,n (11.11)

xi,Q = qi, i = 0,1, . . .,n (11.12)

qi =

⎡

⎢

⎢

⎢

⎢

⎢

di
⌊

T
Q−si

τi

⌋

⎤

⎥

⎥

⎥

⎥

⎥

, i = 1,2, . . .,n (11.13)

Q−
n

∑
i=1

qi ≥ 0, (11.14)

q0 = Q−
n

∑
i=1

qi, (11.15)

T
maxi{si + τi} ≥ Q, (11.16)

Q ∈ Z
+. (11.17)

Constraints (11.10–11.12) guarantee that each model is assigned as many time-
buckets as the number qi of batches for that model as well as they define a unique
sequence of batches that minimizes Z1 for any feasible vector q = (q0,q1, . . .,qn).
Constraints (11.13–11.17) guarantee feasibility of the vector q = (q0,q1, . . .,qn).

11.4 Pareto Optimization

Our solution to the model of Sect. 11.3.3 is presented in Algorithm 1. Step 1 finds
the largest possible Q value, QU , for which a feasible solution may still exist. This
value is determined by the constraint (11.16). Then, steps 2–4 simply enumerate all
possible Q, Q = n, . . .,QU . Step 3 calculates for each such Q the minimum number
of batches qi necessary to meet demand di for each model i. Then, Step 4 checks if
the current Q is sufficiently large to accommodate the qis.

262 11 Smoothing and Batching

Algorithm 1 Pseudo-code for Algorithm E

1: QU =
⌊

T
maxi(si+τi)

⌋

;

2: for all Q such that n≤ Q≤ QU do
3: t = T

Q ;

4: qi =

⌈

di
⌊

t−si
τi

⌋

⌉

, i = 1, . . .,n;

5: if q0 = Q−
n
∑

i=1
qi ≥ 0 then

6: sequence batches using the algorithm for total deviation minimization given in Chap. 3
7: end if
8: end for

The first four steps thus find all feasible Q values and their corresponding feasi-
ble vectors q = (q0,q1, . . . ,qn) and they do it in O(nD) time. Observe that the first
four steps reveal all possible values of Z2 , Z3, and Z4, as well. For each feasible
q = (q0,q1, . . . ,qn), Step 5 finds a sequence that minimizes Z1, by transforming the
minimization of Z1 for a given q = (q0,q1, . . . ,qn) to the assignment problem, see
Chap. 3 for the solution to the total deviation problem. The transformation defines
an ideal position, see (3.11), for each batch of each model and a cost function which
increases as a batch deviates from its ideal position. The details of this transforma-
tion are as follows. Define Pi∗

j to be the ideal position of jth batch of model i

Pi∗
j =

⌈

(2 j−1)Q
2qi

⌉

. (11.18)

Define Ci
j,k to be the cost of assigning jth batch of model i to the kth position as

follows

Ci
j,k =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

γ2
i

Pi∗
j −1

∑
l=k

Ψi
j,l , i f k < Pi∗

j

0, i f k = Pi∗
j

γ2
i

k−1
∑

l=Pi∗
j

Ψi
j,l , i f k > Pi∗

j

where Ψi
j,l =

∣

∣

∣

∣

∣

(

j− l
qi

Q

)2

−
(

j−1− l
qi

Q

)2
∣

∣

∣

∣

∣

.

The cost Ψi
j,l represents the excess cost, either excess inventory (l < Pi∗

j) or excess

shortage (l ≥Pi∗
j) costs of having j batches of model i produced by period (position)

l instead of having j−1 batches of i by l. Consequently, if the jth batch of model i is
produced too early, that is k < Pi∗

j , then the excess inventory costs Ψi
jl are incurred

11.5 Axiomatic Approach 263

in periods l = k, . . .,Pi∗
j −1, adding up to Ci

jk. On the other hand if the jth batch of i

is produced too late, that is k > Pi∗
j , then the excess shortage costs Ψi

jl are incurred

in periods l = Pi∗
j , . . .,k− 1, again adding up to Ci

jk. Finally, if the jth batch of i is

produced in its ideal position Pi∗
j then no excess costs are incurred and thus Ci

jk = 0.

Now, let Y i
j,k ∈ {0,1} be the decision variable equal 1 if the jth batch of model i

is assigned to the kth position of the sequence. The assignment problem formulation
of the Z1 minimization is then given by, see Chap. 3:

(AP) Minimize F =
n

∑
i=0

qi

∑
j=1

Q

∑
k=1

Ci
j,kY

i
j,k (11.19)

subject to
Q

∑
k=1

Y i
j,k =1 i=0,1, . . .,n; j=1,2. . .,qi (11.20)

n

∑
i=0

qi

∑
j=1

Y i
j,k = 1 k = 1,2, . . .,Q (11.21)

Y i
j,k ∈ {0,1} (11.22)

Constraints (11.20) ensure that each batch of each model is assigned to exactly
one position. Similarly, constraints (11.21) ensure that each position is occupied
by exactly one batch or blank. Note that γ0 = 0, thus the selection of positions for
blanks does not affect the objective function. This assignment problem (AP) with 2Q
nodes can be solved in O(Q3) time using the well-known Hungarian method or any
other optimization algorithm for the assignment problem, Kuhn et al. [160,161], see
also Burkard et al. [25] for a comprehensive review of assignment algorithms. We
shall refer to the Algorithm E with the optimal solution to the assignment problem
in Step 5 as the optimization method. Therefore, all Pareto-optimal solutions can be
found in O(D(n + Q3)) = O(DQ3) time, since Q3 >> n. Moreover, since Q ≤ D,
the complexity is O(D4).

11.5 Axiomatic Approach

This section presents an axiomatic approach to the product rate variation. We give
an algorithm that always produces sequences having certain desirable properties
(axioms). Furthermore, we conjecture that there is no other algorithm that ensures
meeting these properties all at the same time. Thus, we conjecture that the algorithm
is in fact unique. We begin with the definition of the properties followed by the
definition of the method and the proofs of its properties.

We propose that the sequence (or sequences, given that the ties can be broken in
many different ways) should be

264 11 Smoothing and Batching

1. Periodic. A method is periodic if it produces a sequence Sm whenever applied
to a batch vector mq = (mq0,mq1, . . . ,mqn), for any integer m ≥ 1, where S is
the sequence produced by the method for q = (q0,q1, . . . ,qn). Thus, solution to a
smaller size instance can be repeated sufficiently many times to obtain a solution
for a larger instance – clearly a desirable property in practice and also one that
is closely related to the well-known concept of the periodic scheduling of the
minimum part set, see Pinedo [156], often used in manufacturing.

2. Uniform or scalable. Let M ⊆ {0,1, . . .,n} be a subset of models and M be its
complement. Also, for a given q = (q0,q1, . . . ,qn) vector, let q(M) be the vector
obtained from q by deleting coordinates corresponding to the models in M, let
S be the sequence produced by a method for q, and let S(M) be the sequence
obtained by deleting from S all models in M.
A method is uniform if it produces the sequence S(M) for q(M). Moreover, if
S′(M) is another sequence produced by the method for q(M), then the sequence
S′ obtained from S by replacing the sequence of models in M by S′(M) is also
produced by the method for vector q. Therefore, a cancellation of all orders for
any model in a uniform sequence leaves the remaining sequence uniform, thus
there is no need to re-run the method on a reduced vector q(M) – again a clear
practical advantage for operations management.

3. Reflective. The method is reflective if it produces quasi-palindromes. This has an
important practical consequence for production planning since it ensures that the
second half of any production plan designed according to the reflective method
looks like its first half if read backwards. The reflective methods may create a
desirable déjà vu effect helping the learning process.

Example 11.2. Consider the following instance q1 = 7,q2 = 5,q3 = 4. The reflective
method could produce the following sequence

1231213123121321

which is the same whether one reads it forwards or backwards except for the middle
subsequence 1–2. The middle sub-sequences consist of exactly one batch of each
model with an odd number of batches to produce, they can be sequenced essentially
in any order which depends on a tie breaking rule. ��

We now present the method itself. The method that we claim is periodic, uniform
and reflective consists in sorting batches of models in non-decreasing order of

(2 j−1)Q
2qi

, (11.23)

j = 1, . . . ,qi and i = 0,1, . . . ,n, for a given vector q = (q0,q1, . . . ,qn) and then
allocating batches to the Q positions according to this order. We refer to this al-
gorithm as the Earliest Ideal Position Method or EIP Method (Algorithm 2). We
later prove in Sect. 11.6 that this algorithm is equivalent to the Webster’s method of
apportionment.

11.5 Axiomatic Approach 265

Algorithm 2 EIP Method
1: k = 1;
2: ji = 1, i = 0,1, . . .,n;
3: while k ≤ Q do
4: i∗ = argmini{ (2 ji−1)Q

2qi
};

5: if i∗ is not unique then
6: break the tie as follows: If the current position k is (not) earlier than the common ideal

vertex, then assign the model with the smallest (largest) assignment weight di
qi

first;
7: end if
8: end while

Step 3 describes a tie breaking rule used by the EIP method in our computational
experiments. However, no particular tie-breaking rule will be assumed in our dis-
cussion of the EIP in this section and Sect. 11.6, where the ties are assumed to be
broken arbitrarily.

The following lemmas show, see also Sect. 2.8, that the EIP method has all three
desired properties listed at the beginning of this section.

Lemma 11.3. The EIP is periodic.

Proof. Follows immediately from the fact that

(2 j′ −1)Q′

2q′i
= kQ+

(2 j−1)Q
2qi

for Q′ = mQ, q′i = mqi, j′ = kqi + j and j = 1, . . .,qi. ��
Lemma 11.4. The EIP is uniform.

Proof. It suffices to notice that the EIP orders the batches in ascending order of

(2 j−1)Q
2qi

j = 1, . . . ,qi and i = 0,1, . . . ,n, where Q is fixed for a given vector q. Thus, the EIP
in fact orders the batches in ascending order of

2 j−1
2qi

.

This proves the lemma since the coordinates of q are the same as q(M) for all models
in M. ��
Lemma 11.5. The EIP produces sequences of the following form SMSR, where M is
any permutation of batches of the models with odd qs, and SR is a mirror reflection
of S.

266 11 Smoothing and Batching

Proof. It suffices to observe that if 2 j−1
qi
≤ 2l−1

qk
, then 2(qi+1− j)−1

qi
≥ 2(qk+1−l)−1

qk
.

Therefore, if copy j of model i precedes copy l of model k, then copy qk + 1− l
of model k precedes copy qi + 1− j of model i. Notice that all models with odd
q′s have their ideal position for the middle batch equal to Q

2 . These models will
make the middle subsequence M, where a single batch of each of these models will
occur. ��

Lemmas 11.3–11.5 prove that the EIP method has the qualities listed at the begin-
ning of this section, thus, proving the EIP method’s clear advantages for operations
management. By comparison, the optimization method has only some of the three
desired properties. Namely, Chap. 4 shows that periodic schedules are optimal for
a generalized objective function ∑k ∑i Fi(·), where Fi(·) is a convex and symmetric
function with Fi(0) = 0. The objective function Z1 falls clearly into this category.
Thus, periodic sequences are optimal for Z1. However, the following lemma shows
that the optimization method is not uniform in general, see also Exercise 11.12.

Lemma 11.6. The optimization method is not uniform.

Proof. Consider vector q = (7,6,4,3,1) for an instance d = (7,6,4,3,1). The fol-
lowing sequence

12312413215231421321 (11.24)

is optimal for q and d with the value of total absolute deviation equal to 9.55. On
the other hand, the sequence

2324325234232

obtained by deleting model 1 from (11.24) is not optimal for q′ = (6,4,3,1) and
d′ = (6,4,3,1) since its total absolute deviation equals 4.923, whereas the optimal
solution for q′ and d′ is

2342325232432

with the total absolute deviation of 4.615 units. ��
Finally, it remains open whether the optimization method is reflective. However,

we can prove the following weaker property.

Lemma 11.7. If solution S minimizes Z1, then so does its mirror reflection SR.

Proof. By definition
SQ+1−k = SR

k for k = 1, . . .,Q.

Thus, denoting the number of batches sequenced in the first k stages of S and SR by
xi,k and yi,k, respectively; we have

yi,k = qi− xi,Q−k for all i and k = 1, . . .,Q,

where xi,0 = yi,0 = 0 for all i. Let k′ = Q + 1− k, k = 1, . . .,Q be the one-to-one
correspondence between k′ and k. Then,

11.6 EIP Method and Optimization 267

(

di

qi

)2(

yi,k′ − k′
qi

Q

)2

=
(

di

qi

)2(

yi,Q+1−k− (Q+ 1− k)
qi

Q

)2

=
(

di

qi

)2(

qi− xi,Q−(Q+1−k)−qi +(k−1)
qi

Q

)2

=
(

di

qi

)2(

xi,k−1− (k−1)
qi

Q

)2

.

Since
(

di
qi

)2
(xi,Q−Q qi

Q)2 = 0 for all i, then

Q

∑
k=1

n

∑
i=0

(

di

qi

)2(

yi,k− kqi

Q

)2

=
Q

∑
k′=1

n

∑
i=0

(

di

qi

)2(

yi,k′ −
k′qi

Q

)2

=
Q

∑
k=1

n

∑
i=0

(

di

qi

)2(

xi,k− kqi

Q

)2

,

which proves the lemma. ��

11.6 EIP Method and Optimization

This section will have a closer look at the EIP method as an optimization tool. We
begin with the following lemma.

Lemma 11.8. The EIP method minimizes the following objective

E0(x) =
Q

∑
k=1

n

∑
i=0

1
qi

(

xi,k− k
qi

Q

)2

,

where we assume 1
q0

= 0 for q0 = 0.

Proof. The EIP method orders the batches in ascending order of

(2 j−1)Q
2qi

j = 1, . . . ,qi and i = 0,1, . . . ,n, and then assigns the positions in the sequence ac-
cording to this order. Equivalently, the model � gets position k+1, k = 0, . . . ,Q−1 if

q�

x�,k + 1
2

≥ qi

xi,k + 1
2

for all i, where xi,k is the number of batches of model i in the first k positions.
This shows that the EIP method is the Webster’s method of apportionment, Balinski
and Young [2]. Let us consider a fixed position k = 1, . . . ,Q, then the vector
(x1,k, . . . ,xn,k) minimizes

268 11 Smoothing and Batching

n

∑
i=0

1
qi

(

xi,k− k
qi

Q

)2

,

see Balinski and Shahidi [16]. Moreover, the EIP method ensures that xi,k+1 ≥ xi,k

for all i = 0,1, . . . ,n and k = 0, . . . ,Q−1. Therefore, the EIP method minimizes

Q

∑
k=1

n

∑
i=0

1
qi

(

xi,k− k
qi

Q

)2

.

��
The original objective Z1 and E0 are clearly different, the former uses the squared

average model i batch size (di
qi

)2 as the weight for model i deviations, the latter uses

just 1
qi

instead. (There will be no difference from the optimization stand point if

it used (d)2

qiq
, where d = D

n and q = Q
n+1 , instead of 1

qi
since d is constant for any

instance and q is constant for any vector q. Consequently, if the standard deviations
of demands d1, . . .,dn and batch numbers q1, . . .,qn are negligible, then Z1 and E0

could become practically equal.)
The EIP method, being the Webster’s method of apportionment, as shown in

Lemma 11.8 is near quota, Balinski and Young [2], that is at any position k no
model i can be brought closer to its ideal level k qi

Q without bringing another model

j further from its ideal level k
q j
Q . On the other hand, the assignment method used in

Step 5 of Algorithm E shows how to do the exchanges between the models optimally
so as to minimize the total deviation. This explains why the EIP method often pro-
duces production sequences with the total deviation higher than the optimum in our
experiments. The optimization method, however, causes the production sequences
to lose some of their desirable characteristics as we have shown in Lemma 11.6.

Although the EIP is near the quota it does not actually meet the quota, that is it
does not satisfy �k qi

Q 	 ≤ xi,k ≤
k qi
Q � for all k and i. Interestingly, the optimization

method does not satisfy these inequalities either. However, the quota violations by
either the optimization or EIP methods are rare. Thus both methods will meet the
quota in practice quite often, see the experimental evidence in Balinski and Young
[2], Kubiak et al. [39], Corominas and Moreno [38], and Lebacque et al. [40]

11.7 Computational Experiment

11.7.1 Experimental Design

We consider small, medium and large-size instances with n = 5, 10, and 15 models,
respectively, in our computational experiment. The small-size instances are weekly
(T = 2,250 min) with total demand of D = 1,000 units. The medium-size instances
are monthly (T = 9,900 min) with total demand of D = 3,000 units; and the large-
size instances are quarterly (T = 39,150 min) with total demand of D = 5,000 units.

11.7 Computational Experiment 269

For each problem size, we randomly create test instances based on two para-
meters: α and β . The α is the expected setup to processing time ratio (0.9×α ≤
si
τi
≤ 1.1×α, i = 1,2, . . .,n) and β is the ratio of total available time T to min-

imum required time for setups and processing of the models to meet the demands
(β = T/(∑n

i=1 si + diτi)). We let α ∈ {50,10,5} and β ∈ {2,1.75,1.5}, which re-
sults in nine problem sets for each problem size. We then create ten test instances
for each set. Therefore, we have 90 test instances for each problem size. The in-
stance generator ensures that a feasible solution exists for every test instance. Our
computational experiment relies on synthetic data generated over a wide spectrum.
This allows us for broader representation of possible scenarios observed in practice
and more thorough performance tests of the algorithms.

11.7.2 Methods

We experiment with the Algorithm E that produces the list of Pareto-optimal solu-
tions. The Hungarian method and the EIP method are used in Step 5 of Algorithm E
to solve the resulting assignment problem. All the methods and the random instance
generator are coded in Microsoft Visual C#. NET language and run on a PC with an
Intel Pentium 4 3.4 GHz CPU and 2 GB of memory.

11.7.3 Results

We summarize the average and maximum run times taken by both methods in
Table 11.1. The table shows that the optimization method takes approximately
23 min on average and it can take up to 3 h and 40 min to solve large-sized in-
stances. This time, however, is just below 0.6% of the duration of the time horizon
T for which it finds an optimum batching and scheduling solution. The EIP method
takes approximately 21 s in the worst case. Thus the EIP method runs much faster
than the optimization method. The table also shows the average cardinality of the
set of Pareto-optimal (P-opt) solutions for each of the two methods.

Table 11.1 Solution times and the numbers of Pareto-optimal solutions

n Method Solution time (s) Avg. # of Average relative (%)

Avg. Max. P-opt sol. Overall Void Extra

5 Opt 2.280 22.422 21.0
EIP 0.019 0.094 18.7 92.8 11.9 5.5

10 Op 147.224 1,380.560 65.8
EIP 0.378 1.797 53.6 86.7 15.0 2.0

15 Opt 1,360.348 13,158.300 112.2
EIP 2.240 20.750 98.9 92.0 10.1 2.3

270 11 Smoothing and Batching

The summary of differences between the sets of Pareto-optimal solutions found
by the optimization method and the EIP method are given in the last three columns
of Table 11.1. The first column is the average percentage of the number of Pareto-
optimal solutions found by the EIP method to that of the optimization method. This
percentage is around 90 for all problem sizes. The second column is the average per-
centage of Pareto-optimal solutions found by the optimization method but missed
by the EIP method. We call these solutions void solutions and report the percentage
of the void solutions in the Pareto-optimal set of solutions found by the optimization
method. The third column is the average percentage of mistaken Pareto-optimal so-
lutions. That is the solutions identified as Pareto-optimal by the EIP method but not
by the optimization method. We call these solutions extra and report the percentage
of the extra solutions in the Pareto-optimal set of solutions found by the EIP method.
The results show that the extra solutions are under 6%, and the void solutions are
under 15%.

The optimization and EIP methods differ in the way they solve the batch se-
quencing problem for a given vector q = (q0,q1, . . . ,qn). However, the objectives
Z2, Z3, and Z4 depend solely on Q and q0 but not of the sequence of batches. Thus,
they are not affected by either the actual sizes of batches q1, . . . ,qn or the method
employed in batch sequencing. Since Algorithm E enumerates all possible Q and q0

values neither method will miss the best possible values of Z2, Z3, and Z4. Further-
more, our analysis of the Pareto-optimal sets obtained by the two methods in the
experiment reveals that the Q value that yields the smallest possible value of Z1 is
always included in the Pareto-optimal set obtained the EIP method. These observa-
tions indicate that the extreme solutions of the Pareto-optimal set are never missed
by the EIP approach. Furthermore, our experimental observations indicate that the
Pareto-optimal solutions missed by the EIP method are some intermediate solutions
whose absence do not affect the diversity of the Pareto-optimal set. Consequently,
we claim that the EIP is an excellent heuristic for Z1 in addition to having very
desirable properties for operations management.

Finally, the results for the objectives Z2, Z3, and Z4 are reported in Table 11.2.
The objective Z2 represents the percentage of time lost, which is under 6% for both
methods in our experiment. The time lost is a major issue in operating mixed-model
manufacturing systems, a recent study of mixed-model assembly lines by Mendes

Table 11.2 Summary of average lost and response time as well as WIP

n Method Average percentage of

Lost time Response time WIP

5 Optimization 5.99 16.49 3.96
EIP 5.93 16.77 3.96

10 Optimization 5.98 15.45 1.54
EIP 5.91 15.99 1.56

15 Optimization 5.76 14.98 0.93
EIP 5.72 15.20 0.92

11.8 Exercises 271

et al. [162] reports the average station utilization around 70%. This comparison
demonstrates that our approach is rather effective in machine utilization as well.

The Z3 objective shows the responsiveness of the system. We observe that the
average response time is approximately 15% of the planning horizon for both meth-
ods in our experiments. This result shows that an average schedule contains approx-
imately six blanks dispersed over the horizon. From a practical perspective, these
blanks introduce flexibility into operations which can be used to respond to possible
demand increases or quality problems while maintaining a smooth production.

The minimization of WIP level, i.e., Z4, is also used in our model. The results
in Table 11.2 show that both methods yield approximately the same average WIP
levels. The relative WIP is under 4%, which is rather low, furthermore it decreases
with the size of the problem.

Note that, the percentages of Table 11.2 are found using all Pareto-optimal so-
lutions, a careful selection of the Pareto-optimal solution that will be implemented
may lead to even further improvement of the performance measures in practice.

11.8 Exercises

Exercise 11.9. Show that there is Heijunka sequence with the difference of no more
that 4 for each model and time interval.

Exercise 11.10. A subsequence of at least two batches of the same model i, i =
1, . . .,n, is referred to as a cluster. A sequence of batches with clusters is refereed
to as a clustered sequence. Obviously, each cluster needs only a single setup for all
batches in the cluster, that is all other setups in the cluster’s batches can be removed.
Without loss of generality, let us assume that q1 ≥ q2 ≥ ·· · ≥ qn. Show that the
EIP can produce clustered sequences even if q1 ≤ Q

2 , this happens for the following
instance q1 = 9,q2 = 5,q3 = 4.

Exercise 11.11. Prove that if q1−q2 ≤ 1, then no cluster is produced by the EIP.

Exercise 11.12. Lemma 11.6 gives a counterexample to prove that the optimization
method is not uniform. The counterexample is based on the total absolute deviation.
Find a counterexample based on Z1.

Exercise 11.13. Find an example showing that the optimization method is not
reflective.

Exercise 11.14. Consider a production smoothing problem with the objective to
minimize a weighted sum of the number of setups and Z1. What is the computa-
tional complexity of the problem. Hint: This is an open problem.

Exercise 11.15. Show the following upper bound on Z1: Z1(x∗) ≤ q2

Q

n
∑

i=1
(di

qi
)2 for

some q<Q.

272 11 Smoothing and Batching

11.9 Comments and References

This chapter is based on Kubiak and Yavuz [163].
Kurashige et al. [164] address the problem of scheduling mixed-model assembly

lines under differing assembly time requirements, and propose a modification of
Toyota’s goal chasing method Monden [22], namely the time-based goal-chasing
method (TBGCM), for its solution.

Drexl and Kimms [115], and Drexl et al. [116] combine the production smooth-
ing problem with a car sequencing problem where processing times of the mod-
els are embedded into hard constraints that prevent models with lengthy operations
from being sequenced consecutively.

Aigbedo and Monden [165] allow different models to have different processing
time requirements both at the final assembly line and supplying processes, and pro-
pose a heuristic procedure to solve the emerging multi-criteria problem. McMullen
et al.’s [166] approach aims at minimizing the variability in the production sequence
and the number of setups simultaneously, see McMullen [167], and McMullen
et al. [166] for a weighted sum of the two, and McMullen [168] for a bi-criteria
model. Although the incorporation of setups in the optimization model captures
an important variability dimension of the production smoothing problem, the num-
ber of setups minimization does not reduce variability by itself. Moreover, these
approaches ignore setup times and their variability, and thus they do not consider
batching as a smoothing tool at all.

Yavuz et al. [155] study operations at a leading U.S. automotive pressure hose
manufacturer Yavuz et al. [155], and Yavuz and Tufekci [169].

References

1. Gardels, N.: Lunch with the FT: He has seen the future. Financial Times August 19/August
20 (2006) Weekend W3

2. Balinski, M., Young, H.: Fair Representation: Meeting the Ideal of One Man, One Vote. Yale
University Press, New Haven and London (1982)

3. Young, H.P.: Equity. In Theory and Practice. Princeton University Press, Princeton, NJ
(1994)

4. Balinski, M.: Le scrutin. Pour La Science 294 (2002) 46–51
5. Tijdeman, R.: Fraenkel’s conjecture for six sequences. Discrete Mathematics 222 (2000)

223–234
6. Hajek, B.: Extremal splittings of point processes. Mathematics of Operations Research 10

(1985) 543–556
7. Altman, E., Gaujal, B., Hordijk, A.: Balanced sequences and optimal routing. Journal of the

ACM 47 (2000) 752–775
8. Monden, Y.: Toyota Production System. Industrial Engineering and Management Press,

Norcross, GA (1983)
9. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages and Computation.

Addison-Wesley, Reading, MA (1979)
10. Graham, R., Knuth, D., Potashnik, O.: Concrete Mathematics, second edn. Addison-Wesley,

Reading, MA (1994)
11. Waldspurger, C., Hogg, T., Huberman, B., Kephart, J., Stornetta, W.: Spawn: A distributed

computational economy. IEEE Transactions on Software Engineering 18 (1992) 103–117
12. Nagle, J.: On packet switches with infinite storage. IEEE Transactions on Communications

Com-35 (1987) 435–438
13. Waldspurger, C., Weihl, W.: Stride scheduling: Deterministic proportional-share resource

management. Technical report mit/lcs/tm-528, MIT Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA (1995)

14. Balinski, M., Rachev, S.: Rounding proportions: Methods of rounding. Mathematical Scien-
tist 22 (1997) 263–279

15. Balinski, M., Ramirez, V.: Parametric methods of apportionment, rounding and production.
Mathematical Social Sciences 37 (1999) 107–122

16. Balinski, M., Shahidi, N.: A simple approach to the product rate variation problem via
axiomatics. Operations Research Letters 22 (1998) 129–135

17. Leyvraz, J.P.: Le Probleme de larepartition proportionnelle. Ph.D. thesis, Ecole Polytech-
nique Federale de Lausanne, Lausanne, Switzerland (1977)

18. di Cortona, P.G., Manzi, C., Pennisi, A., Ricca, F., Simeone, B.: Evaluation and Optimization
of Electoral Systems. SIAM Monographs on Discrete Mathematics and Its Applications,
Philadelphia (1999)

273

274 References

19. Ibaraki, T., Katoh, N.: Resource Allocation Problems: Algorithmic Approaches. MIT,
Cambridge, MA (1988)

20. Bautista, J., Companys, R., Corominas, A.: A note on the relation between the product
rate variation (PRV) problem and the apportionment problem. Journal of the Operational
Research Society 47 (1996) 1410–1414

21. Miltenburg, J.: Level schedules for mixed-model assembly lines in just-in-time production
systems. Management Science 35 (1989) 192–207

22. Monden, Y.: Toyota Production System: An Integrated Approach to Just-In-Time, third edn.
Engineering & Management Press, Norcross, GA (1998)

23. Kubiak, W.: Minimizing variation of production rates in just-in-time systems: A survey.
European Journal of Operational Research 66 (1993) 259–271

24. Burkard, R., Hahn, W., Zimmermann, U.: An algebraic approach to assignment problems.
Mathematical Programming 12 (1977) 318–327

25. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM Monographs on
Discrete Mathematics and Its Applications, Philadelphia (2008)

26. Jozefowska, J., Jozefowski, L., Kubiak, W.: Characterization of Just in Time Sequencing via
Apportionment. In: Yan, H., Yin, G., Zhang, Q., eds.: Stochastic Processes, Optimization,
and Control Theory. Springer, Berlin (2006) 175–200

27. Kubiak, W., Sethi, S.: A note on “level schedules for mixed-model assembly lines in just-in-
time production systems”. Management Science 37 (1991) 121–122

28. Kubiak, W., Sethi, S.P.: Optimal just-in-time schedules for flexible transfer lines. The Inter-
national Journal of Flexible Manufacturing Systems 6 (1994) 137–154

29. Bautista, J., Companys, R., Corominas, A.: Modelling and solving the product rate variation
problem. TOP 5 (1997) 221–239

30. Steiner, G., Yeomans, J.: Optimal level schedules in mixed-model, multi-level jit assembly
systems with pegging. European Journal of Operational Research 95 (1996) 38–52

31. Burkard, R., Klinz, B., Rudolf, R.: Perspectives of Monge properties in optimization. Dis-
crete Applied Mathematics 70 (1996) 95–161

32. Inman, R., Bulfin, R.: Sequencing JIT mixed-model assembly lines. Management Science
37 (1991) 901–904

33. Grigoriev, A.: High Multiplicity Scheduling Problems. Ph.D. thesis, Maastricht University,
Maastricht, the Netherlands (2003)

34. Bondy, J., Murty, U.: Graph Theory with Applications. Elsevier, Amsterdam (1976)
35. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1997)
36. Bautista, J., Companys, R., Corominas, A.: Note on cyclic sequences in the product variation

problem. European Journal of Operational Research 124 (2000) 468–477
37. Kubiak, W.: Cyclic just-in-time sequences are optimal. Journal of Global Optimization 27

(2003) 333–347
38. Corominas, A., Moreno, N.: On the relations between optimal solutions for different types

of min-sum balanced JIT optimisation algorithms. Information Processing and Operational
Research 41 (2003) 333–339

39. Kovalyov, M., Kubiak, W., Yeomans, J.: A computational analysis of balanced JIT optimiza-
tion algorithms. Information Processing and Operational Research 39 (2001) 299–316

40. Lebacque, V., Jost, V., Brauner, N.: Simulataneous optimization of classical objectives in jit
scheduling. European Journal of Operational Research 182 (2007) 29–39

41. Steiner, G., Yeomans, S.: Level schedules for mixed-model, just-in-time processes. Manage-
ment Science 39 (1993) 728–735

42. Brauner, N., Crama, Y.: The maximum deviation just-in-time scheduling problem. Discrete
Applied Mathematics 134 (2004) 25–50

43. Tijdeman, R.: The chairman assignment problem. Discrete Mathematics 32 (1980) 323–330
44. Kubiak, W.: On small deviation conjecture. Bulletin of the Polish Academy of Sciences 51

(2003) 189–203
45. Gaujal, B.: Optimal allocation sequences of two processes sharing a resource. Discrete Event

Dynamic Systems: Theory and Applications 7 (1997) 327–354

References 275

46. Vuillon, L.: Balanced words. Technical report 3, LIAFA CNRS, Universite Paris 7 (2003)
47. Gaujal, B., Jafari, M., Baykal-Gurso, M., Gulgun, A.: Allocation sequences of two processes

sharing a resource. IEEE Trnsactions on Robotics and Automation 11 (1995) 748–753
48. Yu, W.: The two-machine flow shop problem with delays and the one-machine total tardiness

prpblem. Ph.D. thesis, Eindhoven University of Technology, Eindhoven, the Netherlands
(1996)

49. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of The IEEE 77
(1989) 541–580

50. Ramamoorthy, C., Ho, G.: Performance evaluation of asynchronous concurrent systems
using petri nets. IEEE Trnsactions on Software Engineering SE-6 (1980) 440–449

51. Glover, F.: Maximum matching in a convex bipartite graph. Naval Research Logistics Quar-
terly 4 (1967) 313–316

52. Lipski, W. Jr., Preparata, F.: Efficient algorithms for finding maximum matching in convex
bipartite graphs and related problems. Acta Informatica 15 (1981) 329–346

53. Frederickson, G.: Scheduling unit-time tasks with integer release times and deadlines. Infor-
mation Processing Letters 16 (1983) 171–173

54. Gallo, G.: An O(NlogN) algorithm for the convex bipartite matching problem. Operations
Research Letters 3 (1984) 31–34

55. Gabow, H., Tarjan, R.: A linear-time algorithm for a special case of disjoint set union. Journal
of Computer and System Science 30 (1985) 209–221

56. Meijer, H.: On a distribution problem in finite sets. Nederlands Akademie Wetenschappen
Indagationes Mathematicae 35 (1973) 9–17

57. Beatty, S.: Problem 3173. American Mathematical Monthly 33 (1926) 159, Solutions, ibid.
34 (1927) 159.

58. Morikawa, R.: On eventually covering families generated by the bracket fuction. Bulletin of
the Faculty of Liberal Arts (Nagasaki University), Natural Science 23 (1982) 17–22

59. Morikawa, R.: On eventually covering families generated by the bracket fuction. Bulletin of
the Faculty of Liberal Arts (Nagasaki University), Natural Science 25 (1985)

60. Tijdeman, R.: Exact covers of balanced sequences and frankel’s conjecture. In: Halter-Koch,
F., Tichy, R., eds.: Algebraic Number Theory and Diophantine Analysis. Walter de Gruyter,
Berlin (2000) 467–483

61. Simpson, R.: Disjoint covering systems of rational beatty sequences. Discrete Mathematics
92 (1991) 361–369

62. Newman, N.: Roots of unity and covering sets. Mathematics Annals 191 (1971) 279–282
63. Uspensky, J.: On a problem arising out of the theory of a certain game. American Mathe-

matical Monthly 34 (1927) 516–521
64. Graham, R.L.: Covering the positive integers by disjoint sets of the form [nα +β]. Journal

of Combinatorial Theory, Series A 15 (1973) 354–358
65. Altman, E., Gaujal, B., Hordijk, A.: Multimodularity, convexity and optimization properties.

Technical report 3181, RUL-TW-97-07, INRIA and Leiden University, the Netherlands (June
1997)

66. Ross, S.: Introduction to Probability Models. Academic, New York (2007)
67. Altman, E., Gaujal, B., Hordijk, A.: Discrete-Event Control of Stochastic Networks: Multi-

modularity and Regularity. Springer, Berlin (2003)
68. Brauner, N., Jost, V., Kubiak, W.: On Symmetric Fraenkel’s and Small Deviations Conjec-

tures. Les cahiers du Laboratoire Leibniz-IMAG, no 54, Grenoble, France (2002)
69. Wilf, H.: Generatingfunctionology, second edn. Academic, New York (1994)
70. Stolarsky, K.: Beatty sequences, continued fractions and certain shift operartors. Canadian

Mathematical Bulletin 19 (1976) 473–482
71. Weisstein, E.W.: Beatty sequence. From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/BeattySequence.html (2007)
72. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge

(2002)
73. Altman, E., Gaujal, B., Hordijk, A.: Admission control in stochastic event graphs. Technical

report 3179, RUL-TW-97-06, INRIA and Leiden University, the Netherlands (June 1997)

276 References

74. Han, C., Lin, K., Hou, C.: Distance-constrained scheduling and its applications in real-time
systems. IEEE Transactions on Computers 45 (1996) 814–826

75. Herrmann, J.W.: Generating cyclic fair sequences using aggregation and stride scheduling.
Technical report, University of Maryland, College Park, MD (2007)

76. Wei, W., Liu, C.: On a periodic maintenance problem. Operations Research Letters 2 (1983)
90–93

77. Anily, S., Glass, C., Hassin, R.: The scheduling of maintenance service. Discrete Applied
Mathematics 82 (1998) 27–42

78. Brauner, N., Crama, Y., Grigoriev, A., de Klundert, J.V.: On the complexity of high-
multiplicity scheduling problems. Journal of Combinatorial Optimization 9 (2005) 313–323

79. Bar-Noy, A., Bhatia, R., Naor, J., Scheiber, B.: Minimizing service and operation costs of
periodic scheduling. Mathematics of Operations Research 27 (2002) 518–544

80. LeVeque, W.J.: Topics in number theory. Dover, New York (2002)
81. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman and Company, New York (1979)
82. Corominas, A., Kubiak, W., Moreno, N.: Response time variability. Journal of Scheduling

10 (2007) 97–110
83. Moreno, N.: Solving the product rate variation problem (PRVP) of large dimensions as an

assignment problem. Ph.D. thesis, Department D’Organizacio D’Empreses, UPC, Barcelona
(2002)

84. Wagner, H.: Principles of operations research-with applications to managerial decisions.
Prentice-Hall, Englewood Cliffs, NJ (1969)

85. Corominas, A., Kubiak, W., Pastor, R.: Mathematical programming modelling of the re-
sponse time variability problem. Working paper ioc-dt-p-2006-17, UPC (2006)

86. Giaro, K.: Private communication. (2005)
87. Liu, C., Layland, J.: Scheduling algorithm for multiprogramming in hard-real-time environ-

ment. Journal of ACM 20 (1973) 46–61
88. Cheng, A.: Real-time systems: scheduling, analysis, and verification. Wiley, New York

(2005)
89. Buttazzo, G.: Predictable Scheduling Algorithms and Applications, Hard Real-Time Com-

puting Systems. Kluwer, Dordrecht (1997)
90. Holte, R., Mok, A., Rosier, L., Tulchinsky, I., Varvel, D.: The pinwheel: A real-time schedul-

ing problem. In: Proceedings of the 22nd Hawaii International Conference on System Sci-
ence. (1989) 693–702

91. Baruah, S., Bestavros, A.: Timely and fault-tolerant data access from broadcast disks: A
pinwheel-based approach. In: DART’96. (1996)

92. Dertouzos, M.: Control robotics: The procedural control of physical processes. In: Proceed-
ings of IFIP Congress. (1974)

93. Blazewicz, J., Ecker, K., Pesch, E., Schmidt, G., Weglarz, J.: Scheduling Computer and
Manufacturing Processes, second edn. Springer, Berlin (1996)

94. Bratley, P., Florian, M., Robillard, P.: Scheduling with earliest start and due date constraints.
Naval Research Logistics Quarterly 18 (1971) 511–517

95. Lawler, E.: Combinatorial Optimization. Networks and Matroids. Holt, Rinehart and Win-
ston, New York (1976)

96. Still, J.: A class of new methods for congressional apportionment. SIAM Journal on Applied
Mathematics 37 (1979) 401–418

97. Fishburn, P., Lagarias, J.: Pinwheel scheduling: Achievable densities. Algorithmica 34
(2002) 14–38

98. Chan, M., Chin, F.: Schedulers for larger classes of pinwheel instances. Algorithmica 9
(1993) 425–462

99. Lin, S.S.L., Lin, K.J.: A pinwheel scheduler for three dinstinct numbers with a tight schedu-
lability bound. Algorithmica 19 (1997) 411–426

100. Leung, J.Y.T., ed.: Hanbook of Scheduling: Algorithms, Models, and Performance Analysis.
Chapman & Hall/CRC, London/Boca Raton (2004)

References 277

101. Rabin, M.O.: Efficient dispersal of information for security, load balancing, and fault toler-
ance. Journal of ACM 36 (1989) 335–348

102. Baruah, S., Lin, S.S.: Pfair scheduling of generalized pinwheel task systems. IEEE Transac-
tions on Computers 47 (1998) 812–816

103. Holte, R., Rosier, L., Tulchinsky, I., Varvel, D.: Pinwheel scheduling with two distinct num-
bers. Theoretical Computer Science 100 (1992) 105–135

104. Devillers, R., Goossens, J.: Liu and layland’s schedulability test revisited. Information
Processing Letters 73 (2000) 157–161

105. Kubiak, W.: Solution to the Liu-Layland problem via bottleneck just-in-time sequencing.
Journal of Scheduling 8 (2005) 295–302

106. Jozefowska, J., Jozefowski, L., Kubiak, W.: Apportionment methods and the liu-
layland problem. European Journal of Operational Research 193 (2009) 857–864, doi:
10.1016/j.ejor.2007.11.007 (2007)

107. Kubiak, W.: Fair Sequences. In: Handbook of Scheduling. Chapman & Hall/CRC,
London/Boca Raton (2004) 19–1 –19 – 21

108. ILOG: ILOG Concert Technology 1.1. (2001)
109. Daganzo, C.: A Theory of Supply Chains. Springer, Berlin (2003)
110. Parello, B., Kabat, W., Wos, L.: Job-shop scheduling using automated reasoning. Journal of

Automated Reasoning 2 (1986) 1–42
111. Gent, I.: Two results on car-sequencing problem. Technical report APES-02-1998, Depart-

ment of Computer Science, University of Strathclyde, Glasgow, UK (1998)
112. Lockledge, J., Mihailidis, D., Sidelko, J., Chelst, K.: Prototype fleet optimization model.

Journal of Operational Research Society 53 (2002) 833–841
113. Dincbas, M., Simonis, H., Hentenryck, P.V.: Solving the car-sequencing problem in con-

straint logic programming. In: ECAI-88. (1988) 290–295
114. Gravel, M., Gagne, C., Price, W.: Review and comparison of three methods for the solution of

the car sequencing problem. Journal of Operational Research Society 56 (2005) 1287–1295
115. Drexl, A., Kimms, A.: Sequencing jit mixed-model assembly lines under station-load and

part-usage constraints. Management Science 47 (2001) 480–491
116. Drexl, A., Kimms, A., Matthiessen, L.: Algorithms for the car sequencing and the level

scheduling problem. Journal of Scheduling 9 (2006) 153–176
117. Desrochers, M., Soumis, F.: A column generation approach to the urban transit crew schedul-

ing problem. Transportation Science 23 (1989) 1–13
118. Solnon, C.: Solving car sequencing problems with artificial ants. In: Werner, H., ed.: ECAI-

2000, IOS, Amsterdam, the Netherlands (2000) 118–122
119. Shapiro, J.: Modeling the Supply Chain. Duxbury, North Scituate, MA (2001)
120. Bowersox, D., Closs, D., Cooper, M.: Supply Chain Logistics Management. McGraw-Hill

Irwin, New York (2002)
121. Jost, V.: Deux problemes d’approximation diophantine:le partage proportionnel en nom-

bres entires et les pavages equilibres de z. Dea roco, Laboratoire Leibniz-IMAG, Grenoble,
France (2003)

122. Berthe, V., Tijdeman, R.: Balance properties of multidimensional words. Theoretical Com-
puter Science 273 (2002) 197–224

123. Aigbedo, H.: Analysis of parts requirements variance for a JIT supply chain. International
Journal of Production Research 42 (2004) 417–430

124. Kubiak, W., Steiner, G., Yeomans, J.S.: Optimal level schedules for mixed-model, multi-level
just-in-time assembly systems. Annals of Operations Research 69 (1997) 241–259

125. Kis, T.: On the complexity of the car sequencing problem. Operations Research Letters 32
(2004) 331–335

126. Kubiak, W.: Balancing Mixed-Model Supply Chains. In: Avis, D., Hertz, A., Marcotte, O.,
eds.: Graph Theory and Combinatorial Optimization. Springer, Berlin (2005) 159–189

127. Miltenburg, J., Sinnamon, G.: Algorithms for scheduling multi-level just-in-time production
systems. IIE Transactions 24 (1992) 121–130

278 References

128. Miltenburg, J., Goldstein, T.: Developing production schedules which balance part usage and
smooth production loads for just-in-time production systems. Naval Research Logistics 38
(1991) 893–910

129. Keshav, S.: An Engineering Approach to Computer Networking. Addison-Wesley, Reading,
MA (1997)

130. Bertsekas, D., Gallager, R.: Data Networks. Prentice-Hall, Englewood Cliffs, NJ (1991)
131. Waldspurger, C.: Lottery and Stride Scheduling: Flexible Proportional-Share Resource Man-

agement. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (1995)
132. Demers, A., Keshav, S., Shenkar, S.: Analysis and simulation of a fair queueing algorithm.

Internetworking: Research and Experience 1 (1990) 3–26
133. Greenberg, A., Madras, N.: How fair is fair queuing. Journal of the ACM 39 (1992) 568–598
134. Gafni, E., Bertsekas, D.: Dynamic control of session input rates in communication networks.

IEEE Transactions on Automatic Control 29 (1984) 1009–1016
135. Zhou, Y., Harish, S.: On the relationship between absolute and relative fairness bounds. IEEE

Communications Letters 6 (2002) 37–39
136. Burt, O., Harris, C.: Apportionment of the u.s. house of representatives: a minimum range,

integer solution, allocation problem. Operations Research 11 (1963) 648–652
137. Parekh, A., Gallager, R.: A generalized processor sharing approach to flow control in inte-

grated services networks: The single-node case. IEEE/ACM Transactions on Networking 1
(1993) 344–357

138. Maheshwari, U.: Charge-based proportional scheduling. Technical memo mit/lcs/tm-529,
MIT Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge,
MA (1995)

139. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.: The click modular router. ACM
Transactions on Computer Systems 18 (2000) 263–279

140. Bent, J., Venkateshwaran, V., LeRoy, N., Roy, A., Stanley, J., Arpaci-Dusseau, A., Arpaci-
Dusseau, R.H., Livny, M.: Flexibility, managebility and performance in a grid storage appli-
ance. In: Proceedings of the Eleventh IEEE Symposium on High Performance Distributed
Computing, Edinburgh, Scotland (2002)

141. Hardin, G.: The tragedy of the commons. Science 162 (1968) 1243–1248
142. Theimer, M., Landtz, K., Cheriton, D.: Preemptable remote execution facilities for the v

system. In: Proceedings of the 10th ACM Symposium on Operating Systems Principles.
(December 1985)

143. Arpaci-Dusseau, A., Culler, D.: Extending proportional-share scheduling to a network
of workstations. In: Proceedings of International Conference on Parallel and Distributed
Processing Techniques and Applications. (June 1997)

144. Nabrzyski, J., Schopf, J., Weglarz, J., eds.: Grid Resource Management: State-of-the Art.
and Future Trends. Kluwer, Dordrecht (2003)

145. Cirne, W., Marzullo, K.: The computational co-op: Gathering clusters into a metacomputer.
In: Proceedings of IEEE International Parallel and Distributed Processing Symposium. (April
1999)

146. Jozefowska, J., Jozefowski, L., Kubiak, W.: Proprtional allocation of discrete resources using
divisor methods of apportionment. Foundation of Computing and Decission Sciences 32
(2007) 227–237

147. Kumar, A., Kleinberg, J.: Fairness measures for resource allocation. SIAM Journal on
Copmuting 36 (2006) 657–680

148. Megiddo, N.: Optimal flows in networks with multiple sources and sinks. Mathematical
Programming 7 (1974) 97–107

149. Sawik, T.: Production Planning and Scheduling in Flexible Assembly Systems. Springer,
Berlin (1999)

150. Boysen, N., Fliedner, M., Scholl, A.: Sequencing mixed-model assembly lines: Survey, clas-
sification and model critique. Technical report, Fredrich-Schiller-Universitat Jena (2007)

151. Harbour, J.: Automotive competitive challange: Going beyond lean. Harbour-Felax Group
Study (2006)

References 279

152. Jones, D.: Heijunka: Leveling production. Manufacturing Engineering 137 (2006) 29–36
153. McBride, D.: Heijunka: Leveling the load. Retrieved from http://www.emsstrategies.com/

dm090804article.html on August 6, 2007 (2004)
154. Lummus, R.: A simulation analysis of sequencing alternatives for JIT lines using kanbans.

Journal of Operations Management 13 (1995) 183–191
155. Yavuz, M., Akcali, E., Tufekci, S.: Optimizing production smoothing decisions via batch

selection for mixed-model just-in-time manufacturing systems with arbitrary setup and
processing times. International Journal of Production Research 44 (2006) 3061–3081

156. Pinedo, M.L.: Planning and Scheduling in Manufacturing and Services. Springer, Berlin
(2005)

157. T’kindt, V., Billaut, J.C.: Multicriteria Scheduling. Springer, Berlin (2002)
158. Russell, B.: In Praise of Idleness: And other essays. Routledge, London (2004)
159. Hopp, W., Spearman, M.: Factory Physics: Foundations of Manufacturing Management.

McGraw-Hill Irwin, New York (2000)
160. Kuhn, H.: The Hungarian method for the assignment problem. Naval Research Logistics

Quarterly 2 (1955) 83–97
161. Dell’Amico, M., Toth, P.: Algorithms and codes for dense assignment problems: the state of

the art. Discrete Applied Mathematics 100 (2000) 17–48
162. Mendes, A., Ramos, A., Simaria, A., Vilarinho, P.: Combining heuristic procedures and

simulation models for balancing a PC camera assembly line. Computers and Industrial En-
gineering 49 (2005) 413–431

163. Kubiak, W., Yavuz, M.: Just-in-time smoothing through batching. Manufacturing & Service
Operations Management 10 (2008) 506–518

164. Kurashige, K., Yanagawa, Y., Miyazaki, S., Kameyama, Y.: Time-based goal chasing method
for mixed-model assembly line problem with multiple work stations. Production Planning &
Control 13 (2002) 735–745

165. Aigbedo, H., Monden, Y.: A parametric procedure for multicriterion sequence scheduling
for just-in-time mixed-model assembly lines. International Journal of Production Research
35 (1997) 2543–2564

166. McMullen, P., Tarasewich, P., Frazier, G.: Using genetic algorithms to solve the multi-
product JIT sequencing problem with set-ups. International Journal of Production Research
38 (2000) 2653–2670

167. McMullen, P.: JIT sequencing for mixed-model assembly lines with setups using tabu search.
Production Planning & Control 9 (1998) 504–510

168. McMullen, P.: An efficient frontier approach to addressing JIT sequencing problems with
setups via search heuristics. Computers & Industrial Engineering 41 (2001) 335–353

169. Yavuz, M., Tufekci, S.: A bounded dynamic programming solution to the batching problem
in mixed-model just-in-time manufacturing systems. International Journal of Production
Economics 103 (2006) 841–862

Index

1-stride scheduling, 242

absolute fairness bound, 227
admission policy, 105
admission sequence, 133
Aigbedo, 215, 272
Akcali, 254
Alabama paradox, 8
Alpan, 101
alphabet, 1
Altman, viii, 105, 124, 141, 212
Anily, 142, 151
anonymous method, 7
ant colony optimization, 206, 225
apportionment method, 7
apportionment problem, viii, 5
apportionment theory, 5
arithmetic mean, 12
Arpaci-Dusseau, 248
assembly line, 197
assignment problem, 35
asymptotic average, 132
asymptotic rate, 128
at least q out of p constraint, 196
at most q out of p constraint, 195
average response time, 260
axioms, 7

balanced method, 14
balanced word, 138, 148
Balinski, viii, 5, 11, 13, 24, 27, 31, 34, 174,

181, 233, 268
Bar-Noy, 151, 166
Baruah, 168, 193
base currency, 240
batch, 256
Bautista, 31, 54, 80, 158

Baykal-Gürsoy, 101
Beatty, 106, 130
Beatty sequences, 106
Bent, 248
Bernoulli process, 241
Berstel, 139
Berthe, 212
Bertsekas, 227, 234
Bestavros, 168
Bhatia, 151, 166
Billaut, 255
binomial distribution, 241
blank, 256
Blazewicz, 170
Bondy, 69
bottleneck deviation problem, 50, 81
bottleneck Monge property, 52
Bowersox, 207
Boysen, 251
Brauner, 80, 88, 91, 143, 212, 268
Bulfin, 54
Burkard, 53
Burt, 236
Butazzo, 167

c-balanced words, 210
car maker Renault, 203
car sequencing problem, 197
ceiling function, 2
Central Limit Theorem, 242
Chan, 183
Chelst, 203
Chen, 183, 248
Cheng, 167
Cheriton, 248
Chin, 183
Cirne, 248

281

282 Index

Click modular router, 248
Closs, 207
CNC machine tools, 101
co-NP, 87
coalition encouraging method, 18
coalition-neutral, 20
column generation, 206
Companys, 31, 54, 80, 158
competition-free instance, 92, 107
concatenation, 1
consistency with the standard two-model

sequence, 29
consistency with the standard two-state

solution, 28
constant gap sequence, 106
constant order cycle, 214
convex function, 57
convex function , 35, 50
Cooper, 207
Corominas, 31, 54, 80, 158, 244, 268
counting function, 235
CPLEX, 165
Crama, 88, 91, 143
Culler, 248
cumulative production, 34
cyclic methods, 21

d’Hondt’s method, 13
D-circle, 111
d-partition, 36
d-rounding, 11
Daganzo, 196
datagram network, 230
Davenport, 106
decomposition vector, 144
degree of balance, 210
delivery period, 216
Dell’Amico, 53, 263
Demers, 230
density, 182
Dertouzos, 169
Desrochers, 206
Devillers, 193
Dincbas, 205
Diophantine equation, 152
dividing point, 11
divisor, 10
divisor function, 11
Drexl, 205

earliest start position, 83
Ecker, 170
empty word, 1
end-to-end distance, 142

equitable allocation, 13
Euclid’s algorithm, 55
exact cover, 124
exact cover by 3-sets problem, 153
exact covering sequence, 106, 115
exact method, 7
exponential server, 134

factor, 2
fair queueing, 230
fair queueing based based on midpoint,

233
fair queueing based on finishing times,

232
fair queueing based on starting times, 232
Fishburn, 182
Fliedner, 251
floor function, 2
Florian, 170
folding, 66
Fraenkel, 124
Fraenkel’s Conjecture, viii, 106
Frazier, 272
Frederickson, 103
free-choice Petri net, 101
FTP protocol, 231

Gabow, 103
Gafni, 234
Gagné, 205
Gallager, 227, 236
Gallo, 103
Garey, 153
Gaujal, viii, 98, 101, 105, 124, 141, 212
Gauss, ix
generalized pinwheel schedule, 189
Generalized Processor Sharing, 228
Generalized Processor Sharing (GPS) policy,

236
Gent, 198
geometric mean, 12
geometric random variable, 243
Giaro, 166
Glass, 142, 151
Glover, 103
Goldstein, 225
Goossens, 193
Graham, 2, 55
graph coloring problem, 153
Gravel, 205
greatest common divisor, 2
grid computing, 249
Grigoriev, 55, 143
Grilli di Cortona, 31

Index 283

Hahn, 53
Hajek, viii, 105, 131
half-balanced sequence, 65
Hall’s Theorem, 56, 66
Hamilton’s method, 8
Hamiltonian path problem, 198
Han, 141
Harbour, 251
hard real-time systems, 167
Hardin, 248
harmonic mean, 12
Harris, 236
Hassin, 142, 151
heijunka, 251
heijunka box, 252
Herrmann, 142
high multiplicity problems, 55
Ho, 102
Hogg, 5
Holte, 167
homogeneous method, 8
Hopcroft, 1
Hopp, 260
Hordijk, viii, 105, 124, 141, 212
Hou, 141
house monotone, 8
Huberman, 5
Hungarian method, 49, 263
hypercubic billiard word, 210

Ibaraki, 31, 236
ideal vertices, 37, 57
ILOG, 196
Impossibility Theorem, 31
independent demand, 221
indicator, 128
infimum, 3
Information Dispersal Algorithm, 183
Inman, 54
isochronous application, 141

Józefowska, 193, 249
Józefowski, 193, 249
Jafari, 101
Jannotti, 248
Johnson, 153
Jones, 251
Jost, 80, 210, 212, 268
just-in-time sequence, 2

Kaashoek, 248
Kabat, 197
Kameyama, 272
Kanban, 252

Katoh, 31, 236
Kephart, 5
Keshav, 227, 230
Kimms, 205
Kis, 225
kit, 207
Kleinberg, 249
Klinz, 54
Knuth, 2, 55
Kohler, 248
Kovalyov, 80, 268
Kubiak, 34, 54, 80, 91, 158, 193, 212, 222,

244, 249, 268, 272
Kuhn, 263
Kumar, 249
Kurashige, 272

L(d1,d2)-diagonal, 98
L-prefix, 1
Lagarias, 182
Landtz, 248
largest reminder method, 8
latest finish position, 83
Lawler, 170
Layland, 167
Le Veque, 154
Lebacque, 80, 268
LeRoy, 248
level curve, 35
level scheduling, 251
Leyvraz, 31
Lin, 141, 183, 193
Linux kernel, 248
Lipski Jr., 103
Little’s Law, 260
Liu, 142, 151, 167
Livny, 248
load balancing, 105
Lockledge, 203
lottery scheduling , 241
lower quota, 7, 10
Lummus, 252

Maheshwari, 240
Manzi, 31
marked graph, 102
Markov’s inequality, 241
Martello, 53
Marzullo, 248
Matthiessen, 206
max-min fair vectors of allocations, 249
max-min fairness criterion, 234
maximum deviation minimization problem, 50
McBride, 251

284 Index

McMullen, 272
Megiddo, 249
Meijer, 104
metacomputing, 248
Mihailids, 203
Miltenburg, 31, 54, 55, 225, 252
min-max fairness criterion, 227
mirror reflection, 1
Mirsky, 106
Mirsky, Newman, Davenport and Rado

Lemma, 117
Miyazaki, 272
model delivery sequence, 195, 208, 215
model-supplier graph, 207
Mok, 167, 183
Monden, ix, 34, 54, 55, 141, 215, 251, 252,

272
Monge matrix, 41, 53
monotone function, 11
Moreno, 80, 158, 244, 268
Morikawa, 106, 124
Morris, 248
most regular word, 98, 99
most regular words, 82
muda, 251
multimodular function, 105, 131
multistage digraph, 207
multithread systems, 248
mura, 251
Murata, 102, 104
muri, 251
Murty, 69

Nabrzyski, 248
Nagle, 5, 231, 232, 239
Naor, 151, 166
near quota, 268
nearest integer function, 2
nested structure, 209
new states paradox, 9
Newman, 106
NP, 87
NP-complete, 151
NP-hard in the strong sense, 198
number decomposition, 144
number decomposition graph, 144

oneness property, 78
option delivery sequence, 208
options, 197
order preserving solution, 40
Output Rate Variation problem, 225

packet-switching network, 230
pairwise consistent, 28

palindrome, 2
parametric sequence, 125
Parekh, 236
Parello, 197
Pareto-optimal solution, 253
Pareto-optimization, 255
Parikh vector, 2
part delivery frequency, 215
Partition into Triangles problem, 153
partition into triangles problem, 153
Pastor, 166
peer-to-peer fairness, 9
Pennisi, 31
perfect matching, 84
periodic maintenance scheduling problem, 151
periodic schedule, 171
Pesch, 170
phase, 105
Pinedo, 255, 264
pinwheel scheduling problem, 167
planning horizon, 256
point deviation functions, ix
Poisson distribution, 134
population monotone, 8
population paradox, 9
position window, 81
Potashnik, 2, 55
power-of-two instances, 107
prefix, 1
Preparata, 103
Price, 205
prisoner’s dilemma, 231
product rate variation problem, 34
production rate variation, 253
proportional election system, viii, 5
pull mode, 208

quadratic assignment, 161
quanta, 240
quasi-palindrome, 25
quota, 6
quotient, 10, 11

Rabin, 183
Rachev, 24, 31
Rado, 106
Ramamoorthy, 102
Ramirez, 24, 31
rank-index function, 10, 13
rank-index method, 13
rate monotonic scheduler, 179
regular sequence, 128
relative fairness bound, 227, 235
renewal process, 133

Index 285

response time variability, 243
Ricca, 31
ROADEF, 203
Robillard, 170
Rockafellar, 57
Rosier, 167
Ross, 133, 241
Roy, 248
Rudolf, 54
Russell, 259

Séébold, 139
Sainte-Lagüe’s method, 13
Sawik, 251
Schieber, 151, 166
schism encouraging method, 18
Schmidt, 170
Scholl, 251
Schopf, 248
seceding states paradox, 9
separable convex programming, 161
service times, 134
Seth, 235
Sethi, 54
Shahidi, 27, 31, 236
Shapiro, 207
Shenkar, 230
shuffling, 66
Sidelko, 203
Simeone, 31
Simonis, 205
Simpson, 106, 124
singular car sequencing problem, 200
Sinnamon, 225
sliding window constraint, 206
Solnon, 206
Soumis, 206
Spearman, 260
standard instance, 2, 107
standard of comparison, 13
standard two-model sequence, 29
standard two-state solutions, 28
Stanley, 248
Steiner, 54, 82, 158, 222
step point, 235
Still, 174
stochastic event graphs, 105
Stolarsky, 139
Stornetta, 5
stride, 240
stride scheduling, 240
Sturmian word, 128, 139
succinct input encoding, 87

suffix, 1
supply chain, 253
symmetric Fraenkel’s Conjecture, 125

T’kindt, 255
Tarasewich, 272
Tarjan , 103
Telnet protocol, 231
Theimer, 248
throughput error, 242
Tijdeman, viii, 89, 124, 196, 212, 246
time-bucket, 256
Toffler, vii
total deviation minimization problem, 34
total time lost, 259
Toth, 263
tragedy of the commons, 231
Tufekci, 254
Tulchinsky, 167

Ullman, 1
unfolding, 66
upper quota, 7, 10
Uspensky, 125

V-convex graph, 84
van de Klundert, 143
Van Hentenryck, 205
variable order size, 214
Varvel, 167
vector of demands, 2
Venkateshwaran, 248
Vuillon, 98, 210

Waldspurger, 5, 18, 141, 227, 240
Weglarz, 170, 248
Wei, 142, 151
Weihl, 18, 141, 227, 240
Wilf, 139
word, 1
Work-In-Process, 253, 260
Wos, 197

Yanagawa, 272
Yavuz, 254, 272
Yeomans, 54, 80, 82, 158, 222, 268
Young, viii, 5, 11, 13, 31, 34, 174, 181, 233,

268
Yu, 101

Zhou, 235
Zimmermann, 53

Early Titles in the
INTERNATIONAL SERIES IN
OPERATIONS RESEARCH & MANAGEMENT SCIENCE

Frederick S. Hillier, Series Editor, Stanford University

Saigal/ A MODERN APPROACH TO LINEAR PROGRAMMING
Nagurney/ PROJECTED DYNAMICAL SYSTEMS & VARIATIONAL INEQUALITIES WITH APPLICATIONS
Padberg & Rijal/ LOCATION, SCHEDULING, DESIGN AND INTEGER PROGRAMMING
Vanderbei/ LINEAR PROGRAMMING
Jaiswal/ MILITARY OPERATIONS RESEARCH
Gal & Greenberg/ ADVANCES IN SENSITIVITY ANALYSIS & PARAMETRIC PROGRAMMING
Prabhu/ FOUNDATIONS OF QUEUEING THEORY
Fang, Rajasekera & Tsao/ ENTROPY OPTIMIZATION & MATHEMATICAL PROGRAMMING
Yu/ OR IN THE AIRLINE INDUSTRY
Ho & Tang/ PRODUCT VARIETY MANAGEMENT
El-Taha & Stidham/ SAMPLE-PATH ANALYSIS OF QUEUEING SYSTEMS
Miettinen/ NONLINEAR MULTIOBJECTIVE OPTIMIZATION
Chao & Huntington/ DESIGNING COMPETITIVE ELECTRICITY MARKETS
Weglarz/ PROJECT SCHEDULING: RECENT TRENDS & RESULTS
Sahin & Polatoglu/ QUALITY, WARRANTY AND PREVENTIVE MAINTENANCE
Tavares/ ADVANCES MODELS FOR PROJECT MANAGEMENT
Tayur, Ganeshan & Magazine/ QUANTITATIVE MODELS FOR SUPPLY CHAIN MANAGEMENT
Weyant, J./ ENERGY AND ENVIRONMENTAL POLICY MODELING
Shanthikumar, J.G. & Sumita, U./ APPLIED PROBABILITY AND STOCHASTIC PROCESSES
Liu, B. & Esogbue, A.O./ DECISION CRITERIA AND OPTIMAL INVENTORY PROCESSES
Gal, T., Stewart, T.J., Hanne, T./ MULTICRITERIA DECISION MAKING: Advances in MCDM Models,

Algorithms, Theory, and Applications
Fox, B.L./ STRATEGIES FOR QUASI-MONTE CARLO
Hall, R.W./ HANDBOOK OF TRANSPORTATION SCIENCE
Grassman, W.K./ COMPUTATIONAL PROBABILITY
Pomerol, J.-C. & Barba-Romero, S./ MULTICRITERION DECISION IN MANAGEMENT
Axsäter, S./ INVENTORY CONTROL
Wolkowicz, H., Saigal, R., & Vandenberghe, L./ HANDBOOK OF SEMI-DEFINITE PROGRAMMING:

Theory, Algorithms, and Applications
Hobbs, B.F. & Meier, P./ ENERGY DECISIONS AND THE ENVIRONMENT: A Guide to the Use of

Multicriteria Methods
Dar-El, E./ HUMAN LEARNING: From Learning Curves to Learning Organizations
Armstrong, J.S./ PRINCIPLES OF FORECASTING: A Handbook for Researchers and Practitioners
Balsamo, S., Personé, V., & Onvural, R./ ANALYSIS OF QUEUEING NETWORKS WITH BLOCKING
Bouyssou, D. et al./ EVALUATION AND DECISION MODELS: A Critical Perspective
Hanne, T./ INTELLIGENT STRATEGIES FOR META MULTIPLE CRITERIA DECISION MAKING
Saaty, T. & Vargas, L./ MODELS, METHODS, CONCEPTS and APPLICATIONS OF THE ANALYTIC

HIERARCHY PROCESS
Chatterjee, K. & Samuelson, W./ GAME THEORY AND BUSINESS APPLICATIONS
Hobbs, B. et al./ THE NEXT GENERATION OF ELECTRIC POWER UNIT COMMITMENT MODELS
Vanderbei, R.J./ LINEAR PROGRAMMING: Foundations and Extensions, 2nd Ed.
Kimms, A./ MATHEMATICAL PROGRAMMING AND FINANCIAL OBJECTIVES FOR SCHEDULING

PROJECTS
Baptiste, P., Le Pape, C. & Nuijten, W./ CONSTRAINT-BASED SCHEDULING
Feinberg, E. & Shwartz, A./ HANDBOOK OF MARKOV DECISION PROCESSES: Methods and Applications
Ramík, J. & Vlach, M./ GENERALIZED CONCAVITY IN FUZZY OPTIMIZATION AND DECISION

ANALYSIS
Song, J. & Yao, D./ SUPPLY CHAIN STRUCTURES: Coordination, Information and Optimization
Kozan, E. & Ohuchi, A./ OPERATIONS RESEARCH/MANAGEMENT SCIENCE AT WORK

Early Titles in the
INTERNATIONAL SERIES IN
OPERATIONS RESEARCH & MANAGEMENT SCIENCE
(Continued)

Bouyssou et al./ AIDING DECISIONS WITH MULTIPLE CRITERIA: Essays in Honor of Bernard Roy
Cox, Louis Anthony, Jr./ RISK ANALYSIS: Foundations, Models and Methods
Dror, M., L’Ecuyer, P. & Szidarovszky, F./ MODELING UNCERTAINTY: An Examination of Stochastic

Theory, Methods, and Applications
Dokuchaev, N./ DYNAMIC PORTFOLIO STRATEGIES: Quantitative Methods and Empirical Rules for

Incomplete Information
Sarker, R., Mohammadian, M. & Yao, X./ EVOLUTIONARY OPTIMIZATION
Demeulemeester, R. & Herroelen, W./ PROJECT SCHEDULING: A Research Handbook
Gazis, D.C./ TRAFFIC THEORY
Zhu/ QUANTITATIVE MODELS FOR PERFORMANCE EVALUATION AND BENCHMARKING
Ehrgott & Gandibleux/ MULTIPLE CRITERIA OPTIMIZATION: State of the Art Annotated Bibliographical

Surveys
Bienstock/ Potential Function Methods for Approx. Solving Linear Programming Problems
Matsatsinis & Siskos/ INTELLIGENT SUPPORT SYSTEMS FOR MARKETING DECISIONS
Alpern & Gal/ THE THEORY OF SEARCH GAMES AND RENDEZVOUS
Hall/ HANDBOOK OF TRANSPORTATION SCIENCE - 2ndEd.
Glover & Kochenberger/ HANDBOOK OF METAHEURISTICS
Graves & Ringuest/ MODELS AND METHODS FOR PROJECT SELECTION: Concepts from Management

Science, Finance and Information Technology
Hassin & Haviv/ TO QUEUE OR NOT TO QUEUE: Equilibrium Behavior in Queueing Systems
Gershwin et al/ ANALYSIS & MODELING OF MANUFACTURING SYSTEMS
Maros/ COMPUTATIONAL TECHNIQUES OF THE SIMPLEX METHOD
Harrison, Lee & Neale/ THE PRACTICE OF SUPPLY CHAIN MANAGEMENT: Where Theory and

Application Converge
Shanthikumar, Yao & Zijm/ STOCHASTIC MODELING AND OPTIMIZATION OF MANUFACTURING

SYSTEMS AND SUPPLY CHAINS
Nabrzyski, Schopf & Węglarz/ GRID RESOURCE MANAGEMENT: State of the Art and Future Trends
Thissen & Herder/ CRITICAL INFRASTRUCTURES: State of the Art in Research and Application
Carlsson, Fedrizzi, & Fullér/ FUZZY LOGIC IN MANAGEMENT
Soyer, Mazzuchi & Singpurwalla/ MATHEMATICAL RELIABILITY: An Expository Perspective
Chakravarty & Eliashberg/ MANAGING BUSINESS INTERFACES: Marketing, Engineering, and

Manufacturing Perspectives
Talluri & van Ryzin/ THE THEORY AND PRACTICE OF REVENUE MANAGEMENT
Kavadias & Loch/ PROJECT SELECTION UNDER UNCERTAINTY: Dynamically Allocating Resources to

Maximize Value
Brandeau, Sainfort & Pierskalla/ OPERATIONS RESEARCH AND HEALTH CARE: A Handbook of Methods

and Applications
Cooper, Seiford & Zhu/ HANDBOOK OF DATA ENVELOPMENT ANALYSIS: Models and Methods
Luenberger/ LINEAR AND NONLINEAR PROGRAMMING, 2ndEd.
Sherbrooke/ OPTIMAL INVENTORY MODELING OF SYSTEMS: Multi-Echelon Techniques, Second Edition
Chu, Leung, Hui & Cheung/ 4th PARTY CYBER LOGISTICS FOR AIR CARGO
Simchi-Levi, Wu & Shen/ HANDBOOK OF QUANTITATIVE SUPPLY CHAIN ANALYSIS: Modeling in the

E-Business Era
Gass & Assad/ AN ANNOTATED TIMELINE OF OPERATIONS RESEARCH: An Informal History
Greenberg/ TUTORIALS ON EMERGING METHODOLOGIES AND APPLICATIONS IN OPERATIONS

RESEARCH
Weber/ UNCERTAINTY IN THE ELECTRIC POWER INDUSTRY: Methods and Models for Decision Support

Figueira, Greco & Ehrgott/ MULTIPLE CRITERIA DECISION ANALYSIS: State of the Art Surveys

Early Titles in the
INTERNATIONAL SERIES IN
OPERATIONS RESEARCH & MANAGEMENT SCIENCE
(Continued)

Reveliotis/ REAL-TIME MANAGEMENT OF RESOURCE ALLOCATIONS SYSTEMS: A Discrete Event
Systems Approach

Kall & Mayer/ STOCHASTIC LINEAR PROGRAMMING: Models, Theory, and Computation
Sethi, Yan & Zhang/ INVENTORY AND SUPPLY CHAIN MANAGEMENT WITH FORECAST UPDATES
Cox/ QUANTITATIVE HEALTH RISK ANALYSIS METHODS: Modeling the Human Health Impacts

of Antibiotics Used in Food Animals
Ching & Ng/ MARKOV CHAINS: Models, Algorithms and Applications
Li & Sun/ NONLINEAR INTEGER PROGRAMMING
Kaliszewski/ SOFT COMPUTING FOR COMPLEX MULTIPLE CRITERIA DECISION MAKING
Bouyssou et al/ EVALUATION AND DECISION MODELS WITH MULTIPLE CRITERIA: Stepping stones

for the analyst
Blecker & Friedrich/ MASS CUSTOMIZATION: Challenges and Solutions
Appa, Pitsoulis & Williams/ HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION
Herrmann/ HANDBOOK OF PRODUCTION SCHEDULING

* A list of the more recent publications in the series is at the front of the book *

	Contents
	1. Preliminaries
	2. The Theory of Apportionment and Just-In-Time Sequences
	2.1 Introduction
	2.2 The Apportionment Problem
	2.3 Which Apportionment?
	2.3.1 The Basics: Exact, Anonymous and Homogeneous Apportionments
	2.3.2 House Monotone Apportionments
	2.3.3 Population Monotone Apportionments
	2.3.4 Uniform Apportionments
	2.3.5 Apportionments Satisfying Quota

	2.4 Apportionment Methods
	2.4.1 Divisor Methods
	2.4.2 Parametric Methods
	2.4.3 Rank-Index Methods

	2.5 What is Impossible?
	2.6 Coalitions and Schisms
	2.7 From Apportionments to Just-In-Time Sequences
	2.8 Which Just-In-Time Apportionments?
	2.8.1 Cycles
	2.8.2 Advancing and Delaying
	2.8.3 Symmetry and Quasi-Palindromes

	2.9 The Consistency of Webster'sMethod
	2.10 Exercises
	2.11 Comments and References

	3. Minimization of Just-In-Time Sequence Deviation
	3.1 Introduction
	3.2 Minimization of Total Deviation
	3.3 The Transformation to the Assignment Problem
	3.4 The Monge Property of Assignment Costs
	3.5 The Equivalence
	3.6 The Solution
	3.7 Minimization of MaximumDeviation
	3.8 The Bottleneck Assignment
	3.9 The Bottleneck Monge Property
	3.10 Exercises
	3.11 Comments and References

	4. Optimality of Cyclic Sequences and the Oneness
	4.1 Introduction
	4.2 Symmetries of C[sup(i)][sub(jk)]s for Symmetric F[sub(i)]s
	4.3 The Folding, Shuffling, and Unfolding of Sequences
	4.3.1 The Folding
	4.3.2 The Shuffling
	4.3.3 The Unfolding
	4.3.4 Folding, Shuffling and Unfolding Yield An Assignment

	4.4 Optimality of Cyclic Solutions for Total Deviation
	4.5 Optimality of Cyclic Solutions for Maximum Deviation
	4.6 The Oneness
	4.7 Exercises
	4.8 Comments and References

	5. Bottleneck Minimization
	5.1 Introduction
	5.2 The Position Window Based Algorithm
	5.3 The Complexity
	5.4 Bounds on the Bottleneck
	5.4.1 The Upper Bounds
	5.4.2 The Lower Bounds

	5.5 Main Properties
	5.6 The Absence of Competition
	5.6.1 Optimal Solutions for n = 2
	5.6.2 The Bottleneck and the Webster's Method Are One for n =2
	5.6.3 The Most Regular Words
	5.6.4 Two Cyclic Processes Sharing a Resource

	5.7 Exercises
	5.8 Comments and References

	6. Competition-Free Instances, The Fraenkel's Conjecture, and Optimal Admission Sequences
	6.1 Introduction
	6.2 The Competition-Free and the Power-of-Two Instances
	6.3 Bottleneck of the Competition-Free Instances
	6.4 Polygons of the Competition-Free Instances
	6.5 Characteristics of Competition-Free Instances
	6.6 The Competition-Free Instances for n = 3
	6.7 Putting it Together
	6.8 Fraenkel's Conjecture and Competition-Free Instances
	6.9 Regular Sequences and Multimodular Functions
	6.9.1 Regular Sequences
	6.9.2 Multimodular Functions

	6.10 Optimal Admission of Arrivals
	6.11 Multimodular Function on Just-In-Time Sequences
	6.12 Exercises
	6.13 Comments and References

	7. Response Time Variability
	7.1 Introduction
	7.2 Optimization and Complexity
	7.2.1 Number Decomposition Graphs and Response Time Variability
	7.2.2 Lower Bounds on Response Time Variability
	7.2.3 Two Model Case
	7.2.4 Fixed Number of Models
	7.2.5 Complexity

	7.3 Heuristics
	7.3.1 The Exchange Heuristic
	7.3.2 The Initial Sequences
	7.3.3 Computational Experiment

	7.4 Mathematical Programming Formulation
	7.4.1 Input Parameters
	7.4.2 The Objective
	7.4.3 Eliminating Symmetries
	7.4.4 Feasibility of Position Variables

	7.5 The Algorithm
	7.6 Exercises
	7.7 Comments and References

	8. Applications to the Liu–Layland Problem and Pinwheel Scheduling
	8.1 Introduction
	8.2 The Liu–Layland Problem
	8.3 Just-In-Time Solution of the Liu–Layland Problem
	8.4 Divisor Methods for the Liu–Layland Problem
	8.4.1 The Necessary Conditions
	8.4.2 Adjusting the Jefferson's Method to Solve the Liu–Layland Problem
	8.4.3 Adjusting the Adams's Method to Solve the Liu–Layland Problem

	8.5 The Pinwheel Scheduling
	8.6 Applications to Pinwheel Scheduling
	8.6.1 Additional Properties
	8.6.2 The Applications
	8.7 Exercises
	8.8 Comments and References

	9. Temporal Capacity Constraints and Supply Chain Balancing
	9.1 Introduction
	9.2 The Car Sequencing Problem: A Model of Temporal Capacity Constraints
	9.3 The Complexity of the Car Sequencing Problem
	9.4 Dynamic Programming for the Car sequencing Problem
	9.5 Simple Necessary Conditions
	9.6 IP Formulation and Heuristics for the Car Sequencing Problem
	9.7 Mixed-Model, Pull Supply Chains
	9.8 Balanced Words and Model Delivery Sequences
	9.9 Option Delivery Sequences
	9.10 Periodic Synchronized Delivery
	9.10.1 The Model
	9.10.2 The complexity
	9.10.3 Model-Supplier One-to-One Case

	9.11 Synchronized Delivery
	9.12 Exercises
	9.13 Comments and References

	10. Fair Queueing and Stride Scheduling
	10.1 Introduction
	10.2 The Story of Tiles: The Start, The Finish, or The In-Between
	10.3 Fair Queueing
	10.4 Which Queueing Fairness?
	10.4.1 Max–Min Fairness Criterion
	10.4.2 Relative Fairness Bound
	10.4.3 Absolute Fairness Bound

	10.5 Stride Scheduling
	10.5.1 Throughput Error
	10.5.2 Response Time Variability

	10.6 Peer-To-Peer Fairness
	10.7 Exercises
	10.8 Comments and References

	11. Smoothing and Batching
	11.1 Introduction
	11.2 A Real-Life System
	11.3 Problem Definition
	11.3.1 Preliminaries
	11.3.2 Selection of the Objectives
	11.3.3 AMathematical Programming Formulation

	11.4 Pareto Optimization
	11.5 Axiomatic Approach
	11.6 EIP Method and Optimization
	11.7 Computational Experiment
	11.7.1 Experimental Design
	11.7.2 Methods
	11.7.3 Results

	11.8 Exercises
	11.9 Comments and References

	References
	Index
	A
	B
	C
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.001 841.997]
>> setpagedevice

