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Preface

Classic biostatistics, a branch of statistical science, has as its main focus the applica-
tions of statistics in public health, the life sciences, and the pharmaceutical industry.
Modern biostatistics, beyond just a simple application of statistics, is a confluence of
statistics and knowledge of multiple intertwined fields. Biostatistics often requires
innovations across disciplines. Over the years, biostatistics has gradually shaped its
own unique characteristics and approaches. Indeed, the application demands, the
advancements in computer technology, and the rapid growth of life science data
(e.g., genomics data) have promoted the formation of modern biostatistics.

There are at least three characteristics of modern biostatistics: (1) in-depth
engagement in the application fields that require penetration of knowledge across
several fields, (2) high-level complexity of data because they are longitudinal,
incomplete, or latent because they are heterogeneous due to a mixture of data or
experiment types, because of high-dimensionality, which may make meaningful
reduction impossible, or because of extremely small or large size; and (3) dynamics,
the speed of development in methodology and analyses, has to match the fast growth
of data with a constantly changing face.

This book is written for researchers, biostatisticians/statisticians, and scientists
who are interested in quantitative analyses. The goal is to introduce modern issues
and methods in biostatistics and help researchers and students quickly grasp key
concepts and methods. Bear in mind that many methods can solve the same problem
and many problems can be solved by the same method, which becomes apparent
when those topics are discussed in a single volume. Modern biostatistics requires
researchers to possess diverse knowledge. However, given the vast number of
publications in the research area, it requires a huge investment of time to gain
insight into modern biostatistics. Therefore, I hope this book can serve as a vehicle
to achieve this objective, though by no means do I want or am I able to cover this
fast-growing field completely. I would also like to warn readers that, inevitably, the
book will often reflect the author’s opinions, especially in discussing controversial
matters. Nevertheless, it displays broad coverage and can be used as a textbook or
as a reference text.

v



vi Preface

The book consists of ten chapters: Multiple-Hypothesis Testing Strategy, Phar-
maceutical Decision and Game Theory, Noninferiority Trial Design, Adaptive
Trial Design, Missing Data Imputation and Analysis, Multivariate and Multistage
Survival Data Modeling, Meta-analysis, Data Mining and Signal Detection, Monte
Carlo Simulation, and Bayesian Methods and Applications. Some of these titles
are new; others are not that new but include novel ingredients or developments in
methodology, computation algorithms, or applications. These areas have a common
reason for their popularity in that they are in high demand by the real world and
especially from the pharmaceutical industry.

Each chapter includes an introduction to the concepts, discussions of methodol-
ogy, and examples of applications. Controversies and challenges are also included.
Each chapter is limited to about 30 pages. Given the limit in length, materials are
selected to focus on the key concepts and methods that have been used in practice;
lengthy mathematical derivations are generally omitted, but references to them are
provided. At the end of each chapter, exercises are provided as well as a list of
references for further reading.

I point out that, due to the nature of each of the ten topics, the mathematical
complexity varies from chapter to chapter. Some are more theoretical, whereas
others are more scientifically involved and require thinking rather beyond straight
mathematics. I have fully realized the importance of consistency in presentation
across chapters but will not over-emphasize it. The book is organized as follows.

Chapter 1, Multiple – Hypothesis Testing Strategy, introduces commonly used
methods for multiplicity adjustment in the frequentist paradigm, including com-
monly used single-step and stepwise procedures such as gatekeeping and tree-
structured test procedures. Discussions of applications will focus on clinical trials.
The controversies surrounding multiplicity issues particularly are addressed.

Chapter 2, Pharmaceutical Decision and Game Theory, addresses decision and
game theory, which has a long history in economics. However, recently the need for
more cost-effective R & D programs has demanded a shift in the pharmaceutical
decision-making process from the qualitative decision paradigm to the quantitative
decision approaches that are based on formal decision and game theory. For this
reason, this chapter first introduces decision and game theory in general and
then discusses how to apply it to the pharmaceutical decision process by using
models, such as the Markov decision process and implementations using computer
simulations. Applications presented include clinical development program and R &
D portfolio optimizations, and prescription drug commercialization among others.

Chapter 3, Noninferiority Trial Design, discusses the needs of noninferiority
(NI) trials and summarizes three common methods for NI trial designs, including
the fixed-margin, lamda, and synthetic methods. Comparisons are made among
the different methods, and the controversies surrounding such trials are discussed.
The materials covered in this chapter should meet the basic needs for designing an
NI trial.

Chapter 4, Adaptive Trial Design, deals with adaptive trials, a coming storm
in the pharmaceutical industry thanks to the leadership of biostatistics. This
chapter introduces the adaptive design concept and provides a uniform formulation
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for hypothesis-based adaptive trial designs. The evaluation matrix and various
applications are studied. Controversies and challenges are considered.

Chapter 5, Missing Data Imputation and Analysis, discusses the problem of
imperfect or incomplete information. Traditional methods such as the general linear
model, which ignore subjects with incomplete observations, often cause bias and
often are not applicable in practice. Statistical models that effectively deal with
missing observations are becoming increasingly important, and research in this
area is developing rapidly. This chapter discusses different types of missing data
and various models for analyses with ignorable and nonignorable missing patterns.
Implementations using software such as SAS are presented as well.

Chapter 6, Multivariate and Multistage Survival Data Modeling, addresses the
fact that the survival data model we are dealing with today in the life sciences is
more complicated than ever, involving multivariates and many covariates. Multi-
stage models provide powerful tools for solving various problems with survival
data such as competing risks, adaptive treatment switching, informative dropouts,
progressive disease, and longitudinal data modeling. This chapter starts with a
review of various survival models, including Cox’s proportional hazard model, the
frailty model, the copula model, the first-hitting-time model, and nonparametric
approaches. The frailty, copula, and first-hitting-time models are discussed in detail
and expanded to multivariate and multistage models. We discuss step-by-step model
building using various examples.

Chapter 7, Meta-analysis, discusses what is in a sense an art, with many
controversies, especially for post hoc meta-analysis. Meta-analysis methods are
classified into three categories based on data type: subject-based data, study-
based data, and mixed-data models. Fixed-effect and random-effect models and
sequential methods are at the center of the discussion. Graphical presentations and
interpretations of the results are also made.

Chapter 8, Data Mining and Signal Detection, introduces supervised, unsuper-
vised, and reinforcement learning mechanics in data mining methods, including link
analysis, the nearest-neighbor method, kernel and tree methods, the support vector
machine, artificial neural networks, the k-means algorithm, genetic programming,
cellular automata, and agent-based methods. Applications in the life sciences and
drug development are discussed. Signal detection with various sequential likelihood
ratio tests and other data mining methods is studied.

Chapter 9, Monte Carlo Simulation, notes that computer simulations have
become a very powerful and cost-effective approach in the life sciences and in the
pharmaceutical industry. This chapter discusses several random sampling methods,
clinical trial simulations, molecular designs, biological pathway simulations, and
pharmacokinetic and pharmacodynamic simulations.

Chapter 10, Bayesian Methods and Applications, introduces Bayesian infer-
ences, hierarchical models, decision models, model selection, Bayesian multiplicity,
and computational methods. It also provides application examples for clinical trials,
signal detection, missing data-imputation, meta-analysis, disease mapping, and
other areas.



viii Preface

The draft manuscripts were reviewed by nine statisticians. Their constructive
comments have greatly improved the manuscript. In the big picture, they consis-
tently suggested reducing the mathematical complexity and adding more motivating
examples. As a result, I have added about 20 examples and 40 pages. I have also
removed some mathematical content; but I found it difficult to cut math too much
and at the same time cover a reasonable scope in depth of topic within 30 pages – I
wanted it to be concise.

My little daughter, Monica, a middle school student, reviewed an early draft
manuscript of all ten chapters and corrected many of my grammatical errors (she
very much enjoyed doing that for me!). I want to thank her a lot! Dr. Robert Pierce
carefully reviewed parts of the manuscript before I submitted it to the publisher.
Without his review, the quality of the book would not be as good as you have
right now. Finally, I would like to thank Mr. John Kimmel and Mr. Marc Strauss
at Springer for providing me with the opportunity to work on this project.

Mark Chang ( )



Contents

1 Multiple-Hypothesis Testing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Multiple-Testing Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Statistical Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Sources of Multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.3 Multiple-Testing Taxonomy.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Multiple-Testing Approaches .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Single-Step Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Stepwise Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Common Gatekeeper Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Tree Gatekeeping Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.5 Generalized FWER and Partitioning Testing . . . . . . . . . . . . . . 18
1.2.6 Procedures Controlling False Discovery Rate . . . . . . . . . . . . . 21

1.3 Controversies and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.1 Family of Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.2 Interpretation of Multiple-Testing Results . . . . . . . . . . . . . . . . 25
1.3.3 The Spring Water Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.4 A Patient’s Dilemma with Multiple-Testing.. . . . . . . . . . . . . . 26

1.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Further Readings and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Pharmaceutical Decision and Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1 Pharmaceutical Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.2 Dynamic Programming.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.3 Clinical Development Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.4 R & D Portfolio Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.5 Prescription Drug Marketing .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2 Pharmaceutical Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.1 The Game Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.2 Multiple-Player Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.3 Queuing Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ix



x Contents

2.2.4 Cooperative Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.5 Sequential Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3 Implementation Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Further Readings and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Noninferiority Trial Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1 Concept of Noninferiority Trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1 Needs for Noninferiority Design. . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1.2 Noninferiority Lingo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.3 Noninferiority Design Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.4 Analysis of Noninferiority Trials . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Two-Arm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.1 Fixed-Margin Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.2 �-Portion Method .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.3 Synthesis Method .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.4 Paired Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Three-Arm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4 The Noninferiority Margin and Regulatory Guidance.. . . . . . . . . . . . . 77

3.4.1 ICH Guidance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.2 FDA Guidance .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.3 CHMP Guidance.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 Controversies and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.5.1 Assay Sensitivity, Constancy and Biocreep . . . . . . . . . . . . . . . 81
3.5.2 Conflicting Noninferiority-Superiority Claims. . . . . . . . . . . . 81
3.5.3 Dilemma of Totality Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.5.4 Superiority-Noninferiority Testing . . . . . . . . . . . . . . . . . . . . . . . . 83
3.5.5 Summary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Further Readings and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Adaptive Trial Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1 Concept of Adaptive Trial Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.1 Reasons for Adaptive Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1.2 Hypothesis-Based Adaptive Design . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Adaptive Design Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.1 p-value Weighting Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.2 Fisher Combination Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2.3 p-value Inversion Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.4 Error-Spending Approach .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Evaluation and Analysis of Adaptive Design . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.1 Evaluation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.2 Analysis of Adaptive Trial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3.3 Comparison of Adaptive Design Methods . . . . . . . . . . . . . . . . 102

4.4 Adaptive Designs in Action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.4.1 Sample Size Reestimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



Contents xi

4.4.2 Adaptive Seamless Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.4.3 Noninferiority-Superiority Adaptive Design . . . . . . . . . . . . . . 108

4.5 Adaptive Design Debates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.5.1 Sufficiency Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.5.2 Minimum Sufficiency Principle and Efficiency . . . . . . . . . . . 110
4.5.3 Conditionality and Exchangeability Principles. . . . . . . . . . . . 110
4.5.4 Equal Weight Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.5.5 Consistency of Stagewise Results . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.5.6 Adjusted p-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.5.7 Summary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Further Readings and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 Missing Data Imputation and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.1 Missing Data Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.1.1 Missing Data Issue and Its Impact . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.1.2 Missing Data Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Analysis Methods for Missing at Random . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.2.1 Single Imputation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.2.2 Generalized Linear Mixed Models . . . . . . . . . . . . . . . . . . . . . . . . 120
5.2.3 Expectation-Maximization Algorithm .. . . . . . . . . . . . . . . . . . . . 122
5.2.4 Inverse-Probability Weighting Method .. . . . . . . . . . . . . . . . . . . 123
5.2.5 Multiple-Imputation Method .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2.6 Weighted Generalized Estimating Equations.. . . . . . . . . . . . . 126

5.3 Analysis Methods for Missing Not at Random .. . . . . . . . . . . . . . . . . . . . 128
5.3.1 Missing Data Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3.2 Selection Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3.3 Pattern-Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.3.4 Shared-Parameter Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4 Analysis Examples Using SAS and SOLAS . . . . . . . . . . . . . . . . . . . . . . . . 133
5.4.1 Likelihood Ignorable Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4.2 Multiple-Imputation Method .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4.3 EM Algorithm Using SAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.4.4 SOLAS for Missing Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5 Controversies, Challenges, and Recommendations .. . . . . . . . . . . . . . . . 137
5.5.1 Comparisons of Different Methods . . . . . . . . . . . . . . . . . . . . . . . . 137
5.5.2 How to Implement Missingness . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.5.3 Regulatory Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.5.4 Recommendations for Clinical Trials . . . . . . . . . . . . . . . . . . . . . . 140

5.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Further Readings and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6 Multivariate and Multistage Survival Data Modeling . . . . . . . . . . . . . . . . . . 145
6.1 Introduction to Survival Data Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.1.1 Basic Terms in Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.1.2 Maximum Likelihood Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.1.3 Overview of Survival Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



xii Contents

6.2 Frailty Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2.1 Univariate Frailty Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2.2 Multivariate Frailty Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.2.3 The Shared Frailty Copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.2.4 The Correlated Frailty Copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.3 First-Hitting-Time Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.1 Wiener Process and First Hitting Time . . . . . . . . . . . . . . . . . . . . 153
6.3.2 Covariates and Link Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.3.3 Parameter Estimation and Inference .. . . . . . . . . . . . . . . . . . . . . . 155
6.3.4 Applications of First-Hitting-Time Model . . . . . . . . . . . . . . . . 156
6.3.5 Multivariate Model with Biomarkers . . . . . . . . . . . . . . . . . . . . . . 157

6.4 Multistage Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.4.1 General Framework of Multistage Model . . . . . . . . . . . . . . . . . 159
6.4.2 Covariates and Treatment Switching . . . . . . . . . . . . . . . . . . . . . . 161
6.4.3 Latent Process and Competing Risks . . . . . . . . . . . . . . . . . . . . . . 163
6.4.4 Competing Risks in Progressive Disease . . . . . . . . . . . . . . . . . . 167
6.4.5 Longitudinal Multivariate Model . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.5 Challenges and Controversies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Further Readings and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7 Meta-Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.1 Concept of Meta-Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.1.1 The Art and Science of Meta-Analysis . . . . . . . . . . . . . . . . . . . . 175
7.1.2 Study Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.1.3 Basic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.2 Subject-Based Meta-Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.3 Study-Based Meta-Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.3.1 The Fixed-Effect Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.3.2 Assessing Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.3.3 Random-Effect Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.3.4 Mixture Model for Relative Risk . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.4 Meta-Analysis in Complex Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.4.1 Individual and Aggregate Data Mixtures . . . . . . . . . . . . . . . . . . 190
7.4.2 Mixture of Matched and Unmatched Pairs . . . . . . . . . . . . . . . . 193
7.4.3 p-value Combination Approaches .. . . . . . . . . . . . . . . . . . . . . . . . 194
7.4.4 Cumulative Meta-Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.5 Graphical Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.5.1 Funnel Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.6 Controversies and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.6.1 Inclusion of Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.6.2 Inclusion, Analysis, and Reporting Bias. . . . . . . . . . . . . . . . . . . 199
7.6.3 Inconsistency in Weight Selection . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Further Readings and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202



Contents xiii

8 Data Mining and Signal Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.1 Common Data Mining Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.1.1 Supervised, Unsupervised, and Reinforcement Learning. 205
8.1.2 Link Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
8.1.3 Nearest-Neighbors Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.1.4 Kernel Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.1.5 Support Vector Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.1.6 Tree Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
8.1.7 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
8.1.8 Unsupervised to Supervised Learning .. . . . . . . . . . . . . . . . . . . . 215
8.1.9 K-Means Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
8.1.10 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8.1.11 Cellular Automata Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8.1.12 Agent-Based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.2 Signal Detection and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
8.2.1 Pharmacovigilance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
8.2.2 Traditional Hypothesis Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
8.2.3 Sequential Probability Ratio Test . . . . . . . . . . . . . . . . . . . . . . . . . . 221
8.2.4 Disproportional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
8.2.5 Group Sequential Method .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
8.2.6 Data Mining Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

8.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
8.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Further Readings and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

9 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
9.1 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

9.1.1 Inverse c.d.f Method .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
9.1.2 Acceptance-Rejection Methods .. . . . . . . . . . . . . . . . . . . . . . . . . . . 234
9.1.3 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

9.2 Clinical Trial Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
9.2.1 Adaptive Trial Simulation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
9.2.2 Dynamic Drug Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
9.2.3 Bootstrapping Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

9.3 Molecular Design and Simulation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
9.3.1 The Landscape of Molecular Design . . . . . . . . . . . . . . . . . . . . . . 242
9.3.2 The Drug-Likeness Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
9.3.3 Molecular Docking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

9.4 Biological Pathway Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
9.4.1 Biology Pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
9.4.2 Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
9.4.3 Biological Pathway Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

9.5 PK and PD Modeling and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
9.5.1 Pharmacokinetic Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
9.5.2 Pharmacodynamic Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255



xiv Contents

9.6 Implementation Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
9.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Further Readings and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

10 Bayesian Methods and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
10.1 Bayesian Paradigm .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

10.1.1 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
10.1.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
10.1.3 Hierarchical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
10.1.4 Bayesian Decision-Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
10.1.5 Bayesian Approach to Multiplicity . . . . . . . . . . . . . . . . . . . . . . . . 269
10.1.6 Bayesian Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

10.2 Applications of Bayesian Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
10.2.1 Clinical Trial Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
10.2.2 Bayesian Adaptive Trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
10.2.3 Safety Signal Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
10.2.4 Missing-Data Handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
10.2.5 Meta-Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
10.2.6 Noninferiority Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
10.2.7 Disease Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

10.3 Controversies and Debates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
10.3.1 Internal Consistency .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
10.3.2 Subjectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

10.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Further Readings and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291



Chapter 1
Multiple-Hypothesis Testing Strategy

1.1 Multiple-Testing Problems

1.1.1 Statistical Hypothesis Testing

In this chapter, we will discuss multiple hypothesis-testing issues from a frequentist
perspective. The Bayesian approaches for multiple-testing problems will be dis-
cussed briefly in Chap. 10. As we all know, a typical hypothesis test in the frequentist
paradigm can be written as

Ho W ı 2 �0 or Ha W ı 2 �1; (1.1)

where ı is a parameter such as treatment effect, the domain�0 can be, for example,
a set of nonpositive values, and the domain �1 can be the negation of �0. In this
case, (1.1) becomes

Ho W ı � 0 or Ha W ı > 0: (1.2)

The probability of erroneously rejectingHo when it is true is called the type-I error
rate, ˛. Similarly, the probability of erroneously rejecting Ha when it is true is
called the type-II error rate, ˇ. The probability of rejecting Ho is the power of
the hypothesis test, which is dependent on the particular value of ı. The power
is numerically equal to 1 � ˇ when Ha is true. When Ho is true, the power is
numerically equal to the type-I error rate, ˛.

1.1.2 Sources of Multiplicity

It is well known that multiple-hypothesis testing (multiple-testing) can inflate
the type-I error dramatically without proper adjustments for the p-values or
significance level. This is referred to as a multiplicity issue. The multiplicity
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2 1 Multiple-Hypothesis Testing Strategy

can come from different sources, for example, in clinical trials, it can come
from (1) multiple-treatment comparisons, (2) multiple tests performed at different
times, (3) multiple tests for several endpoints, (4) multiple tests conducted for
multiple populations using the same treatment within a single experiment, and (5) a
combination of some or all of the sources above.

Multiple-treatment comparisons are often conducted in dose-finding studies.
Multiple time-point analyses are often conducted in longitudinal studies with
repeated measures, or in trials with group sequential or adaptive designs.

Why are multiple-endpoint analyses required? Lemuel Moyé points out (2003,
p. 76) that there are three primary reasons why we conduct a multiple-endpoint
study: (1) a disease has an unknown aetiology or no clinical consensus on the
single most important clinical efficacy endpoint exists; (2) a disease manifests
itself in multidimensional ways; and (3) a therapeutic area for which the prevailing
methods for assessment of treatment efficacy dictate a multifaceted approach both
for selection of the efficacy endpoints and for their evaluation.

The statistical analyses of multiple-endpoint problems can be categorized as
(1) a single primary efficacy endpoint with one or more secondary endpoints,
(2) coprimary endpoints (more than one primary endpoint) with secondary end-
points, (3) composite primary efficacy endpoints with interest in each individual
endpoint, or (4) a surrogate primary endpoint with supportive secondary endpoints.
A surrogate endpoint is a biological or clinical marker that can replace a gold
standard endpoint such as survival.

In the case of diseases of unknown etiology, where no clinical consensus has
been reached on the single most important clinical efficacy endpoint, coprimary
endpoints may be used. When diseases manifest themselves in multidimensional
ways, drug effectiveness is often characterized by the use of composite endpoints,
global disease scores, or the disease activity index (DAI). When a composite
primary efficacy endpoint is used, we are often interested in the particular aspect
or endpoint where the drug has demonstrated benefits. An ICH guideline (European
Medicines Agency 1998) suggests: “If a single primary variable cannot be selected
from multiple measurements associated with the primary objective, another useful
strategy is to integrate or combine the multiple measurements into a single or
‘composite’ variable, using a predefined algorithm. . . This approach addresses the
multiplicity problem without requiring adjustment to the type-I error.” For some
indications, such as oncology, it is difficult to use a gold standard endpoint, such as
survival, as the primary endpoint because it requires a longer follow-up time and
because patients switch treatments after disease progression. Instead, a surrogate
endpoint, such as time-to-progression, might be chosen as the primary endpoint
with other supporting efficacy evidence, such as infection rate. Huque and Röhmel
(2010) provide an excellent overview of multiplicity problems in clinical trials from
the regulatory perspective. Following are some motivating examples.

(1) A trial compares two doses of a new treatment to a control with respect to
the primary efficacy endpoint. (2) In a clinical trial, there are two endpoints; at least
one needs to be statistically significant or all need to be statistically significant.
(3) Given three specified primary endpoints E1, E2 and E3, either E1 needs to
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be statistically significant or both E2, and E3 need to be statistically significant.
(4) One of the two specified endpoints must be statistically significant and the other
one needs to show noninferiority. (5) A trial tests for treatment effects for multiple
primary and secondary endpoints at low, medium and high doses of a new treatment
compared with a placebo with the restriction that tests for the secondary endpoints
for a specific dose can be carried out only when certain primary endpoints show
meaningful treatment efficacy for that dose. (6) A clinical trial uses a surrogate
endpoint S for an accelerated approval and a clinically important endpoint T for a
full approval. (7) In a multiple-group oncology trial, each treatment group represents
a single drug or combination of drugs. The goal is to identify the most effective drug
or combination of drugs, if any. (8) In pharmacovigilance or sequential drug safety
monitoring in postmarketing, how can we effectively control the false signals? (9) In
adaptive sequential design, multiple tests are performed at different time points.
How can we control the type-I error rate?

In this chapter, we will discuss various multiplicity issues and methods. However,
multiplicity due to sequential analyses or adaptive designs will be discussed in
Chap. 4. The multiplicity in data mining and pharmacovigilance will be discussed
in Chap. 8.

1.1.3 Multiple-Testing Taxonomy

Let Hoi .i D 1; : : : ; K/ be the null hypotheses of interest in an experiment. There
are at least three different types of global multiple-hypothesis testing that can be
performed.

1.1.3.1 Union-Intersection Testing

Ho W \K
iD1Hoi versusHa W NHo: (1.3)

In this setting, if any H0i is rejected, the global null hypothesis Ho is rejected.
For union-intersection testing, if the global testing has a size of ˛, then this has
to be adjusted to a smaller value for testing each individual Hio, called the local
significance level.

Example 1.1. In a typical dose-finding trial, patients are randomly assigned to one
of several (K) parallel dose levels or a placebo. The goal is to find out if there is
a drug effect and which dose(s) has the effect. In such a trial, Hoi will represent
the null hypothesis that the i th dose level has no effect in comparison with the
placebo. The goal of the dose-finding trial can be formulated in terms of hypothesis
testing (1.3).
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1.1.3.2 Intersection-Union Testing

Ho W [K
iD1Hoi versusHa W NHo: (1.4)

In this setting, if and only if all H0i (i D 1; : : : ; K) are rejected is the global
null hypothesis Ho rejected. For intersection-union testing, the global ˛ will apply
to each individualHio testing.

Example 1.2. Alzheimer’s trials in mild to moderate disease generally include
ADAS Cog and CIBIC (Clinician’s Interview Based Impression of Change) end-
points as coprimaries. The ADAS Cog endpoint measures patients’ cognitive
functions, while the CIBIC endpoint measures patients’ deficit in activities of daily
living. For proving a claim of a clinically meaningful treatment benefit for this
disease, it is generally required to demonstrate statistically significant treatment
benefit on each of these two primary endpoints (called coprimary endpoints). If we
denote Ho1 as the null hypothesis of no effect in terms of the ADAS Cog and Ho2

as the null hypothesis of no effect in terms of CIBIC, then the hypothesis testing for
the efficacy claim in the clinical trial can be expressed as (1.4).

1.1.3.3 Union-Intersection Mixture Testing

This is a mixture of (1) and (2), for example,

Ho W \K
iD1H�

oi versusHa W NHo; (1.5)

whereH�
oi D [Ki

jD1Hoij.

Example 1.3. This example is a combination of Examples 1.1 and 1.2, Suppose
this dose-finding trial has K D 2 dose levels and a placebo. For each dose level,
the efficacy claim is based on the coprimary endpoints, ADAS Cog and CIBIC. Let
Hoi1 and Hoi2 be the null hypotheses for the two primary endpoints for the i th dose
level. Rejection of H �

oi will lead to an efficacy claim for the i th dose in terms of the
two coprimary endpoints. Then, the efficacy claim in this trial can be postulated in
terms of hypothesis test (1.5).

Familywise Error Rate

Familywise Error Rate (FWER) is the maximum (sup) probability of falsely
rejectingHo under all possible null hypothesis configurations:

FWER D sup
Ho

P .rejectingHo/ : (1.6)

In intersection-union testing, a null hypothesis configuration can be just a
combination of some Hoi (i D 1; : : : ; K).
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Table 1.1 Error inflation due
to correlations between
endpoints

Correlation
Level ˛A Level ˛B RAB FWER

0 0.098
0.25 0.097

0.05 0.05 0.50 0.093
0.75 0.083
1.00 0.050

Note: ˛A D ˛ for endpoint A, ˛A D ˛ for endpoint B

Table 1.2 Error inflation due
to different numbers of
endpoints

Level ˛A Level ˛B
Number of
analyses FWER

1 0.050
2 0.098

0.05 0.05 3 0.143
5 0.226

10 0.401

The strong FWER ˛ control requires that

FWER D sup
Ho

P .rejectingHo/ � ˛: (1.7)

On the other hand, the weak FWER control requires only ˛ control under the
global null hypothesis. We will focus on the strong FWER control for the rest of
this chapter.

Local alpha: A local alpha is the type-I error rate allowed (often called the size of
a local test) for individualHoi testing. In most hypothesis test procedures, the local
˛ is numerically different from (smaller than) the global (familywise) ˛ to avoid
FWER inflation. Without the adjusted local ˛, FWER inflation usually increases as
the number of tests in the family increases.

Suppose we have two primary endpoints in a two-arm, active-control, random-
ized trial. The efficacy of the drug will be claimed as long as one of the endpoints
is statistically significant at level ˛. In such a scenario, the FWER will be inflated.
The level of inflation is dependent on the correlation between the two test statistics
(Table 1.1). The maximum error rate inflation occurs when the endpoints are
independent. If the two endpoints are perfectly correlated, there is no alpha inflation.
For a correlation as high as 0.75, the inflation is still larger than 0.08 for a level
0.05 test. Hence, to control the overall ˛, an alpha adjustment is required for each
test. Similarly, to study how alpha inflation is related to the number of analyses,
simulations are conducted for the two independent endpoints, A and B . The results
are presented in Table 1.2. We can see that alpha is inflated from 0.05 to 0.226 with
five analyses and to 0.401 with ten analyses.

Closed family: A closed family is one for which any subset intersection hypothesis
involving members of the testing family is also a member of the family. For example,



6 1 Multiple-Hypothesis Testing Strategy

a closed family of three hypothesesH1; H2; H3 has a total of seven members, listed
as follows: H1; H2; H3, H1\ H2, H2\H3, H1\ H3, H1 \H2\ H3.

Closure principle: This was developed by Marcus et al. (1976). This principle
asserts that one can ensure strong control of FWER and coherence (see below) at
the same time by conducting the following procedure. Test every member of the
closed family using a local ˛-level test (here, ˛ refers to the comparison-wise error
rate, not the FWER). A hypothesis can be rejected provided (1) its corresponding
test was significant at the ˛-level, and (2) every other hypothesis in the family that
implies it has also been rejected by its corresponding ˛-level test.

Closed testing procedure: A test procedure is said to be closed if and only if the
rejection of a particular univariate null hypothesis at an ˛-level of significance
implies the rejection of all higher-level (multivariate) null hypotheses containing
the univariate null hypothesis at the same ˛-level. The procedure can be described
as follows (Bretz et al. 2006):

1. Define a set of elementary hypotheses,H1I : : : IHK , of interest.
2. Construct all possible m>K intersection hypotheses, HI D \ Hi; I �

f1; : : : ; Kg.
3. For each of the m hypotheses find a suitable local ˛-level test.
4. Reject Hi at FWER ˛ if all hypotheses HI with i 2 I are rejected, each at the

(local) ˛-level.

This procedure is not often used directly in practice. However, the closure
principle has been used to derive many useful test procedures, such as those of
Holm (1979), Hochberg (1988), Hommel (1988), and gatekeeping procedures.

˛-exhaustive procedure: If P .Reject HI/ D ˛ for every intersection hypothesis
HI ; I � f1; : : : ; Kg, the test procedure is ˛-exhaustive.

Partition principle: This is similar to the closed testing procedure with strong
control over the familywise ˛-level for the null hypotheses. The partition principle
allows for test procedures that are formed by partitioning the parameter space
into disjointed partitions with some logical ordering. Tests of the hypotheses are
carried out sequentially at different partition steps. The process of testing stops upon
failure to reject a given null hypothesis for predetermined partition steps (Hsu 1996;
Dmitrienko et al. 2010, pp. 45–46). We will discuss this more later in this chapter.

Coherence and consonance are two interesting concepts in closed testing pro-
cedures.Coherence means that if hypothesis H implies H �, then whenever H is
retained, so must beH �. Consonance mean that wheneverH is rejected, at least one
of its components is rejected, too. Coherence is a necessary property of closed test
procedures; consonance is desirable but not necessary. A procedure can be coherent
but not consonant because of asymmetry in the hypothesis testing paradigm. When
H is rejected we conclude that it is false. However, when H is retained, we do not
conclude that it is true; rather, we say that there is not sufficient evidence to reject
it. Multiple comparison procedures that satisfy the closure principle are always
coherent but not necessarily consonant (Westfall et al. 1999).
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Adjusted p-value

The adjusted p-value for a hypothesis test is defined as the smallest significance
level at which one would reject the hypothesis using the multiple-testing procedure
(Westfall and Young 1993). If pI denotes the p-value for testing intersection
hypothesisHI , the adjusted p-value for Hoi is given by

p
adj
i D max

I Wi2I pI : (1.8)

If padji � ˛, Hoi is rejected.

Simultaneous confidence interval

It is well known that a two-sided .1 � ˛/% confidence interval for parameter �
consists of all parameter values for which the hypothesis Ho W � D 0 is retained
at level ˛. This concept can be applied to multiple-parameter problems to form a
confidence set or a simultaneous confidence interval.

1.2 Multiple-Testing Approaches

1.2.1 Single-Step Procedures

The commonly used single-stage procedures include the Sidak method (Sidak
1967), the simple Bonferroni method, the Simes-Bonferroni method (Global test:
Simes 1986), and Dunnett’s test for all active arms against the control arm (Dunnett
1955). In the single-step procedure, to control the FWER, the unadjusted p-values
are compared against the adjusted alpha to make the decision to reject or not reject
the corresponding null hypothesis. Alternatively, we can use the adjusted p-values
to compare against the original ˛ for decision-making.

1.2.1.1 Sidak Method

The Sidak method is derived from the simple fact that the probability of rejecting
at least one null hypothesis is equal to 1� Pr (all null hypotheses are correct). To
control the FWER, the adjusted alpha ˛k for the null hypothesisHok (k D 1; : : : ; K)
can be found by solving the following equation:

˛ D 1 � .1 � ˛k/
K . (1.9)
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Therefore, the adjusted alpha is given by

˛k D 1 � .1 � ˛/1=K . (1.10)

If the p-value is less than or equal to ˛k , reject Hok . Alternatively we can calculate
the adjusted p-value:

Qpk D 1 � .1 � pk/K . (1.11)

If the adjusted p-value Qpk is less than or equal to ˛; then reject Hok:

1.2.1.2 Bonferroni Method

The simple Bonferroni method is a simplification of the Sidak method that uses the
Bonferroni inequality:

P.[K
kD1Hk/ �

KX

kD1
P.Hk/: (1.12)

Based on (1.12), we can conservatively use the adjusted alpha,

˛k D ˛

K
, (1.13)

and the adjusted p-value,
Qpk D Kpk.

This is a very conservative approach without consideration of any correlations
among p-values.

The alpha doesn’t have to be split equally among all tests. We can use the
so-called weighted Bonferroni tests, for which the adjusted alpha and p-value are
given by

˛k D wk˛ and Qpk D pk

wk
, (1.14)

where the weight wk � 0 and
PK

kD1 wk D 1. The weight wk can be determined
based on the clinical importance of the kth hypothesis or the power of the kth
hypothesis test.

1.2.1.3 Simes Global Testing Method

The Simes-Bonferroni method is a global test in which the type-I error rate is
controlled for the global null hypothesis (1.3). We reject the null hypothesisHo if

p.k/ � k˛

K
for at least one i D 1; : : : ; K , (1.15)

where p.1/ < : : : < p.K/ are the ordered p-values.
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The adjusted p-value is given by

Qp D max
k2f1;:::;Kg

�
K

k
p.k/

�
. (1.16)

If Qp � ˛, the global null hypothesis (1.3) is rejected.

1.2.1.4 Dunnett’s Method

Dunnett’s method can be used for multiple comparisons of active groups against a
common control group, which is often done in clinical trials with multiple parallel
groups. Let n0 and ni .i D 1; : : : ; K/ be the sample sizes for the control and the i th
dose group; the test statistic (one-sided) is given by Westfall et al. (1999, p. 77)

T D max
i

Nyi � Ny0
�
p
1=ni C 1=n0

, (1.17)

The multivariate t-distribution of T in (1.17) is called one-sided Dunnett
distribution with v D PKC1

iD1 .ni � 1/ degrees of freedom. The cdf is defined by

F .xjK; v/ D P .T � x/ : (1.18)

The calculation of (1.18) requires numerical integrations (Hochberg and
Tamhane 1987, p. 141). Tabulation of the critical values is available from the
book by Kanji (2006), and in software such as SAS.

The adjusted p-value corresponding to ti is given by

Qpi D 1 � F .ti jK; v/ . (1.19)

If Qpi < ˛, Hi is rejected, i D 1; : : : ; K .

1.2.1.5 Fisher-Combination Test

To test the global null hypothesis Ho D \K
iD1Hoi, we can use the so-called Fisher

combination statistic,

�2 D �2
KX

iD1
ln .pi/ , (1.20)

where pi is the p-value for testingHoi. WhenHoi is true, pi is uniformly distributed
over [0,1]. Furthermore, if the pi .i D 1; : : : ; K/ are independent, the test statistic
�2 is distributed as a chi-square statistic with 2K degrees of freedom. Thus Ho is
rejected if �2 � �22K;1�˛ . Note that if the pi are not independent or Ho is not true
(e.g., one of the Hoi is not true), then �2 is not necessarily a chi-square distribution.
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1.2.2 Stepwise Procedures

Stepwise procedures are different from single-step procedures in the sense that
a stepwise procedure must follow a specific order to test each hypothesis. In general,
stepwise procedures are more powerful than single-step procedures. There are
three categories of stepwise procedures which are dependent on how the stepwise
tests proceed: stepup, stepdown, and fixed-sequence procedures. The commonly
used stepwise procedures include the Bonferroni-Holm stepdown method (Holm
1979), the Sidak-Holm stepdown method (Westfall et al. 1999, p. 31), Hommel’s
procedure (Hommel 1988), Hochberg’s stepup method (Hochberg and Benjamini
1990), Rom’s method (Rom 1990), and the sequential test with fixed sequences
(Westfall et al. 1999).

1.2.2.1 Stepdown Procedure

A stepdown procedure starts with the most significant p-value and ends with the
least significant. In this procedure, the p-values are arranged in ascending order,

p.1/ � p.2/ � : : : � p.K/, (1.21)

with the corresponding hypotheses

H.1/;H.2/; : : : ;H.K/.

The test proceeds from H.1/ to H.K/: If p.k/ > Ck˛ .k D 1; : : : ; K/, retain all
H.i/ .i � k/; otherwise, reject H.k/ and continue to test H.kC1/: The critical values
Ck are different for different procedures.

The adjusted p-values are

� Qp1 D C1p.1/,
Qpk D max

� Qpk�1; Ckp.k/
�

, k D 2; : : : ; n.
(1.22)

Therefore an alternative test procedure is to compare the adjusted p-values
against the unadjusted ˛. After adjusting p-values, one can test the hypotheses in
any order.

1.2.2.2 Stepup Procedure

A stepup procedure starts with the least significant p-value and ends with the
most significant p-value. The procedure proceeds from H.K/ to H.1/: If, P.k/ �
Ck˛ .k D 1; : : : ; K/, reject all H.i/ .i � k/; otherwise, retain H.k/ and continue
to test H.k�1/: The critical values Ck for the Hochberg stepup procedure are
Ck D K � k C 1 .k D 1; ::; K/.
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The adjusted p-values are
� QpK D CKp.K/;

Qpk D min
� QpkC1; Ckp.k/

�
; k D K � 1; : : : ; 1: (1.23)

Therefore, an alternative test procedure is to compare the adjusted p-values
against the unadjusted ˛.

The Hochberg stepup method does not control the FWER for all correlations,
but it is a little conservative when p-values are independent (Westfall et al. 1999,
p. 33). The Rom method (Rom 1990) controls ˛ exactly for independent p-values.
However, the calculation of Ck is complicated.

1.2.2.3 Fixed-Sequence Test

This procedure is a stepdown procedure with the order of hypotheses predetermined:

H1;H2; : : : ;HK:

The test proceeds from H1 to HK: If pk > ˛ .k D 1; : : : ; K/, retain all Hi

.i � k/. Otherwise, reject Hk and continue to test HkC1:
The adjusted p-values are given by

Qpk D max .p1; : : : ; pk/ ; k D 1; ::; K: (1.24)

The sequence of the tests can be based on the importance of hypotheses or the
power of the tests. Note that if the previous test is not significant, the next test will
not proceed even if its p-value is extremely small.

1.2.2.4 Dunnett Stepdown Procedure

A commonly used stepdown procedure is the Dunnett stepdown procedure. The
adjusted p-values are formulated as follows. First, p-values are arranged in a
descending order,

t.1/ � t.2/ � : : : � t.K/,

with the corresponding hypotheses

H.1/;H.2/; : : : ;H.K/.

Based on (1.18), we calculate p�
k D 1 � F

�
t.k/jK � k C 1; v

�
, where the second

argument in F .�/ is K � k C 1 instead of K as in the single-step Dunnett test. The
adjusted p-values are then calculated as follows:

Qpk D
�
p�
1

max
� Qpk�1; p�

k

�
if k D 2; : : : ; K:

(1.25)

The decision rule can be specified as: if Qpk < ˛, reject H.k/.
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1.2.2.5 Holm Stepdown Procedure

Suppose there are K hypothesis tests Hi (i D 1; : : : ; K). The Holm stepdown
procedure (Holm 1979; Dmitrienko et al. 2010) can be outlined as follows:

Step 1. If p.1/ � ˛=K , reject H.1/ and go to the next step; otherwise retain all
hypotheses and stop.

Step i (i D 2; : : : ; K � 1). If p.i/ � ˛= .K � i C 1/, reject H.i/ and go to the next
step; otherwise retainH.i/; : : : ;H.K/ and stop.

Step K . If p.K/ � ˛, reject H.K/; otherwise retain H.K/.

The adjusted p-values are given by

Qpk D
�
p.K/ if k D K

min . QpkC1; .K � k C 1/pkC1/ if k D K � 1; : : : ; 1: (1.26)

1.2.2.6 Shaffer Procedure

Shaffer (1986) and Dmitrienko et al. (2010) uses logical dependencies between the
hypotheses to improve the Holm procedure. The dependency means that the truth of
certain hypotheses implies the truth of other hypotheses. To illustrate, suppose a trial
with four dose levels and a placebo group has a treatment mean �i for the i th group
(i D 0 for the placebo). If the null hypotheses under consideration areHij:�i D �j ,
thenH12 andH13 implyH23. The steps of the Shaffer procedure are similar to those
for the Holm procedure, but replace the divisors .K � i C 1/ by ki . Here ki is the
maximum number of hypotheses H.i/; : : : ;H.K/ that can be simultaneously true,
given that H.1/; : : : ;H.i�1/ are false. Thus, at the i th step, reject H.i/ if

p.j / � ˛

kj
; j D 1; : : : ; i: (1.27)

As an example, for the five-group dose-response study, there can be k1 D�
5
2

� D 10 pairwise comparisons (the same as for the Holm procedure). After H.1/

is rejected, there are k2 D �
4
2

� D 6 possible pairwise comparisons (compared to
K � i C 1 D 9 in the Holm procedure).

1.2.2.7 Fallback Procedure

The Holm procedure is based on a data-driven order of testing, while the fixed-
sequence procedure is based on a prefixed order of testing. A compromise between
them is the so-called fallback procedure. The fallback procedure was introduced by
Wiens (2003) and was further studied by Wiens and Dmitrienko (2005) and Hommel
and Bretz (2008). The test procedure can be outlined as follows:

Suppose hypotheses Hi (i D 1; : : : ; K) are ordered according to (1.22). We
allocate the overall error rate ˛ among the hypotheses according to their weights
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wi , where wi � 0 and
P

i wi D 1. For Fixed-Sequence test, w1 D 1 and w2 D
: : : D wK D 0.

1. Test H1 at ˛1 D ˛w1. If p1 � ˛1, reject this hypothesis; otherwise retain it. Go
to the next step.

2. Test Hi at ˛i D ˛i�1 C ˛wi (i D 2; : : : ; K � 1) if Hi�1 is rejected and at
˛i D ˛wi if Hi�1 is retained. If pi � ˛i , rejectHi ; otherwise retain it. Go to the
next step.

3. Test HK at ˛K D ˛K�1 C˛wK if HK�1 is rejected and at ˛K D ˛wK ifHK�1 is
retained. If pK � ˛K , reject HK ; otherwise retain it.

Example 1.4. Suppose that a dose-finding trial has been conducted to compare low
(L), medium (M ), and high (H ) doses of a new antihypertension drug. The primary
efficacy variable is diastolic blood pressure (DBP). The mean reduction in DBP is
denoted by �P , �L, �M , and �H for the placebo, and low, medium, and high doses,
respectively. The global null hypothesis of equality, �P D �L D �M D �H , can
be tested using an F-test from a model such as analysis of covariance (ANCOVA).
However, for strong FWER control, this F -test is not sufficient. We illustrate how
to apply various multiple-testing procedures to this problem. One is interested in
three pairwise comparisons (one for each dose) against a placebo (P ) with null
hypotheses: H1 W �P D �L, H2 W �P D �M , and H3 W �P D �H . Denote the
p-values for these tests by p1; p2, and p3, respectively. A one-sided significance
level ˛ of 2.5% is used for the trial.

In the following methods or procedures (1)–(8), we assume p1 D 0:009, p2 D
0:0085, and p3 D 0:008.

Weighted Bonferroni Procedure

Suppose we suspect the high dose may be more toxic than the low dose. Unless
the high dose is more efficacious than the low dose, we will choose the low dose
as the target dose. For this reason, we want to spend more alpha in the low-dose
comparison than in the high-dose comparison. Specifically, we choose one-sided
significance levels ˛1 D 0:01, ˛2 D 0:008, and ˛3 D 0:007 (˛1 C ˛2 C ˛3 D ˛),
which will be used to comparep1,p2, andp3, respectively, for rejecting or accepting
the corresponding hypotheses. Since p1 D 0:009 < ˛1, p2 D 0:0085 > ˛2, and
p3 D 0:008 > ˛3, we will reject H1 but accept H2 and H3.

Simes-Bonferroni Method

We first order the p-values: p.1/ D p3 < p.2/ D p2 < p.3/ D p1; the adjusted
p-values calculated from (1.16) are Qp D maxf 3

1
p.1/ D 0:024; 3

2
p.2/ D 0:01275;

3
3
p.3/ D 0:009g D 0:024 < ˛. Therefore the global hypotheses (�P D �L D
�M D �H ) are rejected and we conclude that one or more dose levels are effective,
but the testing procedure has not indicated which one.
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Fisher Combination Method

This method usually requires independent p-values; otherwise, the test may be on
the conservative or liberal side. However, for illustrating the calculation procedure,
let’s pretend the p-values are independent. From (1.20), we can calculate the Chi-
square value: �2 D �2 ln..0:009/.0:0085/.0:008// D 28:62 with six degrees of
freedom. The correspondingp-value is 0:0001 < ˛. Thus the global null hypothesis
is rejected.

Fixed-Sequence Procedure

Suppose we have fixed the test sequence asH3;H2;H1 before we see the data. Since
p3 < ˛, we reject H3 and continue to test H2. Because p2 < ˛, we reject H2 and
continue to test H1. Since p1 < ˛, we reject H1.

Holm Procedure

Since p.1/ D p3 D 0:008 < ˛=K D 0:025=3, reject H3 and continue to test H2.
Because p.2/ D p2 D 0:0085 < ˛= .K � 2C 1/ D 0:025=2 D 0:0125, reject
H2 and continue to test H1. Since p1 D 0:009 < ˛= .K � 3C 1/ D 0:025, H1 is
rejected.

Shaffer Procedure

Since p.1/ D p3 D 0:008 < ˛=k1 D 0:025=3, reject H3. After H3 is rejected,
H1 and H2 can be simultaneously true, but k2 D 2 and p.2/ D p2 D 0:0085 <

˛=k2 D 0:025=2 D 0:0125, so reject H2. We have only H1 left, and thus k3 D 1

and p1 D 0:009 < ˛= .K � 3C 1/ D 0:025; H1 is rejected. We can see that in
this case the Holm and Shaffer procedures are equivalent. This is because we are
not interested in the other possible comparisons: �1 versus �2, �2 versus �3, and
�3 versus �1.

Fallback Procedure

Choose equal weights wi D 1=K D 1=3. ˛1 D ˛=3 D 0:00833, ˛2 D ˛1 C ˛=3 D
0:0167, and ˛3 D ˛2 C˛=3 D ˛ D 0:025. Since p1 D 0:009 > ˛1, p2 D 0:0085 <

˛2, and p3 D 0:008 < ˛3, H1 is retained but H2 andH3 are rejected.

Hochberg Stepup Procedure

Since p.3/ D 0:009 < ˛ D 0:025, we reject all three hypotheses, H1, H2, and H3.
The adjusted p-values Qp1, Qp2, and Qp3 can be calculated using (1.23).
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Dunnett’s Procedure

Suppose the adjustedp-values calculated from (1.19) (requiring a software package)
are Qp1 D 0:027 > ˛, Qp2 D 0:021 < ˛, and Qp3 D 0:019 < ˛. Then, we reject H2

andH3 but retain H1.

Dunnett’s Stepdown Procedure

Suppose the test statistics t.1/ D t3 > t.2/ D t2 > t.3/ D t1 for the three hypotheses
H3;H2, andH1. Assume that the p-values are p�

1 D 0:019, p�
2 D 0:018, and p�

3 D
0:0245 for the hypotheses H.1/ D H3;H.2/ D H2, and H.3/ D H1, respectively.
The adjusted p-values can be calculated from (1.25): Qp1 D p�

1 D 0:019 < ˛,
Qp2 D max

� Qp1; p�
2

� D 0:019 < ˛, Qp3 D max
� Qp2; p�

1

� D 0:0245 < ˛. Then, we
reject H3;H2, andH1.

1.2.3 Common Gatekeeper Procedure

The gatekeeper procedure (Dmitrienko et al. 2005, pp. 106–127) is an extension of
the fixed-sequence method. The method is motivated by the following hypothesis-
testing problems in clinical trials. (1) Benefit of secondary endpoints can be claimed
in the drug label only if the primary endpoint is statistically significant. (2) If there
are coprimary endpoints (multiple primary endpoints), secondary endpoints can
be claimed only if one of the primary endpoints is statistically significant. (3) In
multiple-endpoint problems, the endpoints can be grouped based on their clinical
importance.

Suppose there areK null hypotheses to test. We group them intom families. Each
family is a composite of hypotheses. The null hypotheses in the i th.i D 1; : : : ; mi /

family are denoted by either a serial gatekeeper

Fi D Hi1 [Hi2 [ : : : [Himi (1.28)

or a parallel gatekeeper

Fi D Hi1 \Hi2 \ : : : \Himi : (1.29)

The hypothesis test proceeds from the first family, F1, to the last family, Fm. To
test Fi .i D 2; : : : ; m/ ; the test procedure has to pass i � 1 previous gatekeepers,
i.e., reject all Fk .k D 1; : : : ; i � 1/ at the predetermined level of significance ˛.

For a parallel gatekeeper we can either weakly or strongly control the familywise
type-I error. For a serial gatekeeper, we always strongly control the familywise
error. The serial gatekeeping procedure is straightforward: test each family of null
hypotheses sequentially at a level ˛ with any strong ˛-control method.
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The stepwise procedure of parallel gatekeeping proposed by Dmitrienko and
Tamhane (2007) can be described as follows. The procedure is built around the
concept of a rejection gain factor. At the kth stage, the significance test is performed
at the �k˛ level, k D 1; 2; : : : ; m, where ˛ is the FWER, and the rejection gain
factor, 0 � �k � 1 (with �1 D 1/, depends on the number and importance of the
hypotheses rejected at the earlier stages.

The stepwise parallel gatekeeping procedure for testing the null hypotheses in
F1; : : : ; Fm can be performed as follows:

1. Family Fk , k D 1; : : : ; m� 1: Test the null hypotheses using the Bonferroni test
at the �k˛ level.

2. Family Fm: Test the null hypotheses using the weighted Holm test at the �m˛
level.

The rejection gain factors �i are given by

�1 D 1, �k D
k�1Y

iD1

0

@
miX

jD1
rijwij

1

A , k D 2; : : : ; m; (1.30)

where the weights wij � 0 with
Pni

jD1 wij D 1 represent the importance of the null
hypotheses in Fi , and rij D 1 ifHij is rejected and 0 otherwise. For equally weighted
hypotheses (wij D 1=mi), the formula for �k reduces to

�k D
k�1Y

iD1

�
ri

mi

�
; k D 2; : : : ; m; (1.31)

where ri D P
j rij is the number of rejected hypotheses in Fi . Thus, �k is the

product of the proportions of previously rejected hypotheses in F1 through Fk�1.
The modified adjusted p-value for Hij, i D 2; : : : ; m, is given by p�

ij D Qpij=�i ,
where Qpij is the usual adjusted p-value produced by the multiple tests within Fi .
Inferences in F2; : : : ; Fm can be performed by p�

ij to the prespecified FWER, ˛.

Example 1.5. This example was given by Dmitrienko and Tamhane (2007). The
trial was designed to compare a single dose of an experimental drug with a
placebo. Two families of endpoints were considered in this trial. F1 consisted of two
hypotheses related to the primary endpoints, P1 (lung function) and P2 (mortality),
and F2 consisted of two hypotheses related to the secondary endpoints, S1 (ICU-
free days) and S2 (quality of life). The raw p-values pij for the endpoints P1, P2, S1,
and S2 are 0.048, 0.003, 0.026, and 0.002, respectively. F1 was chosen as a parallel
gatekeeper. P1 was deemed more important than P2 in F1 with weights w11 D 0:9

and w12 D 0:1, respectively; S1 and S2 were considered equally important with
weight w21 D w22 D 0:5. The FWER is to be controlled at ˛ D 0:05.

To apply the stepwise parallel gatekeeping procedure, one first considers the
adjusted p-values produced by the weighted Bonferroni test and the Holm test for
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the null hypotheses in F1 and F2, respectively. The adjusted p-values Qpij for the
endpoints P1, P2, S1, and S2 are 0:048=0:9 D 0:053 (the weighted Bonferroni
test), 0:003=0:1 D 0:03 (the weighted Bonferroni test), 0.026 (the Holm test), and
0:002 � 2 D 0:004, respectively. Next, since �1 D 1, the primary hypotheses
are tested at the full ˛ D 0:05 level. The P2 comparison is significant at this
level, whereas the P1 comparison is not. Therefore, the rejection gain factor for
the secondary family based on (1.31) is �2 D w12 D 0:1, and the adjusted p-values
for S1 and S2 are 0:026=�2 D 0:260 and 0:004=�2 D 0:040, respectively. It is clear
that only the hypothesis concerning S2 is rejected.

1.2.4 Tree Gatekeeping Procedure

The tree gatekeeping procedure (TGP) is a stepwise procedure that combines the
characteristics of both the parallel and series gatekeeping methods. For each individ-
ual hypothesisHij in family Fi , where i D 2; : : : ; m, j D 1; : : : ; ni , we define two
associated hypothesis sets: the serial rejection set, RSij , and the parallel rejection set,
RPij . These sets consist of some hypotheses from F1; : : : ; Fi�1; at least one of them
is non-empty. Without loss of generality, we assume RSij and RPij do not overlap.

Dmitrienko et al. (2007) developed Bonferroni-based and resampling-based
tree gatekeeping procedures. The Bonferroni-based tree-gatekeeping procedure is
described as follows.

Let H be any non-empty intersection of the hypotheses Hij and let wij.H/ be
the weight assigned to the hypothesis Hij 2H . From (1.14), we know that the
Bonferroni (adjusted) p-value for testing H is given by p.H/ D min

i;j
f pij

wij.H/
g.

Because there can be more than one H that includes each Hij, we need to
further adjust the p-value p .H/. The multiplicity-adjusted p-value for the null
hypothesis Hij is defined as Qpij D max

H
fp.H/g, where the maximum is taken over

all intersection hypothesesH such that Hij � H . The rejection rules are: rejectHij

if Qpij � ˛; and retainHij otherwise.
The testing procedure above for the adjusted p-value is based on the closure

principle, which requires us to construct the weight wij .H/ appropriately. For
convenience, we define two indicator variables: let ıij.H/ D 0 if Hij 2 H and
1 otherwise, and let �ij.H/ D 0 if H contains any hypothesis from RSij or all
hypotheses from RPij and 1 otherwise. The following three conditions together for
the weights will constitute a sufficient condition for using the closure principle, and
thus for the TGP, also.

Condition 1: For any intersection hypothesis H , wij.H/ � 0,
Pmi

jD1 wij.H/ � 1

and wij.H/ D 0 if ıij.H/ D 0 or �ij.H/ D 0.
Condition 2: wi .H/ D .wi1.H/; : : : ;wimi .H// is a vector function of the weights

w1.H/, . . . , wi�1.H/ (i D 2; : : : ; m) and does not depend on wiC1.H/, . . . ,
wm.H/ (i D 1; : : : ; m � 1).
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Condition 3: The weights for F1; : : : ; Fm�1 meet the monotonicity condition, i.e.
wij.H/ � wij.H

�/, i D 1; : : : ; m � 1, if Hij 2 H , Hij 2 H�, and H� � H .

1.2.4.1 Implementation of a Tree Gatekeeping Procedure

The authors developed the following algorithm for the weight assignments that
meets conditions 1–3. Here we define 0=0 D 0.

Step 0: Choose Bonferroni weights Qwij > 0 satisfying
Pmi

jD1 Qwij D 1 and the
serial rejection set RSij and the parallel rejection set RPij for i D 2; : : : ; m,
j D 1; : : : ; mi .

Step 1: Family F1. Let w1j .H/ D w�
1 .H/ Qw1j ı1j .H/, j D 1; : : : ; m1, where

w�
1 .H/ D 1 and w�

2 .H/ D w�
1 .H/ �Pm1

jD1 w1j .H/.
Step i D 2; : : : ; m � 1: Family Fi . Let wij.H/ D w�

i .H/ Qwijıij.H/�ij.H/, j D
1; : : : ; mi , and w�

iC1.H/ D w�
i .H/�Pmi

jD1 wij.H/.
Step m: Family Fm. Let

wmj .H/ D w�
m.H/ Qwmj ımj .H/�mj .H/Pmm
kD1 Qwmkımk .H/ �mk .H/ ; j D 1; : : : ; mm: (1.32)

After each wij is determined, we can calculate the adjusted p-value

Qpij D max
H

min
i;j

�
pij

wij .H/

�
. (1.33)

If Qpij � ˛, reject Hij; otherwise, accept Hij.

1.2.5 Generalized FWER and Partitioning Testing

LetHoi W � 2‚oi; i D 1; : : : ; K , be a family of null hypotheses, where the parameter
subspace‚oi constitutes the null parameter subspace‚o D [‚oi. The complemen-
tary set of ‚oi, denoted by ‚ai , constitutes of the alternative parameter subspace
‚a D [‚ai . The parameter space is therefore ‚ D ‚o [ ‚a. The generalized
FWER (gFWER) is defined as the probability of making strictly more than 	 � 0

false rejections in multiple-hypothesis testing. We define gFWER by

# .	/ D sup
�2‚0

P .
 > 	j�/ , (1.34)

where 
 is the number of different null hypotheses rejected. FWER is the special
case of gFWER when 	 D 0.
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1.2.5.1 Single-Step Test

Let pi be the raw p-value associated with the null hypothesis Hoi; i D 1; : : : ; K .
Define the adjusted p-value as

Qpi D
kX

jD	C1

 
k

j

!
p
j
i .1 � pi/

k�j . (1.35)

The procedure, which rejects Hoi if Qpi � ˛ and retains it otherwise, will control
gFWER.	/ at level ˛ in the strong sense for the single hypothesisHoi, i D 1; : : : ; K ,
if the pi are independently distributed. See the Ph.D. dissertation by Xu (2005).

Lehmann and Romano (2005) proposed the following generalized Bonferroni
procedure.

Reject Hoi if the adjusted p-value Qpi � ˛, where

Qpi D min

�
K

	C 1
pi ; 1

�
; i D 1; : : : ; K:

When 	 D 0, the Lehmann-Romano procedure degenerates to the common
Bonferroni test.

1.2.5.2 Partitioning Testing Principle

1. Let I D f1; : : : ; Kg. Partition ‚ into disjoint ‚�
J , J � I , based on different

combinations of the null parameter subspace ‚oi and the alternative parameter

subspace ‚ai , i.e., for each J � I , let ‚�
J D \

i2J ‚oi \
�

\
j…J

‚aj

�
. Then

˚
‚�
J ; J � I

�
and ‚; D \

j2I‚aj partition the parameter space ‚.

2. Test each null hypothesis HP
oJ :� 2 ‚�

J at level ˛. There are no multiplicity
adjustments needed because the HP

oJ ; J � I are disjoint.
3. For all J � I , infer � … ‚�

J if all HP
oJ 0 such that J � J 0 are rejected. That is,

reject the intersection null hypothesis H0J if all null hypotheses HP
oJ 0 implying

it are rejected, particularly rejecting Hoi; i 2 I , if all HP
oJ such that i 2 J are

rejected.

As discussed earlier, the closed testing principle can be stated as:

1. Let I D f1; : : : ; Kg. For every J � I; J ¤ ;, define ‚J D \
i2J‚i and the

intersection null hypothesisHoJ W � 2 ‚J .
2. Test each HoJ W � 2 ‚J at level ˛.
3. For all J � I , infer � … ‚J if allHP

oJ 0 such that J � J 0, are rejected, i.e., reject
the intersection null hypothesisHoJ if all hypotheses implying it are rejected.
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Comparing the partitioning testing principle with the closed testing principle, we
can see that in the partitioning testing principle ‚�

J consists of all null parameter
subspaces ‚oi for which i 2 J and all alternative parameter subspaces ‚aj for
which j … J (There are

PK
jD	C1

�
K
j

� D 2K � 2	 such ‚�
J s.) In the closed testing

procedure,‚J is the parameter subspace, for which Hoi; i 2 J , are true. This is the
essential difference between the two principles.

1.2.5.3 Generalized Partitioning Testing Principle for Controlling gFWER

Xu (2005) proposed the following procedure for the gFWER:

1. Partition ‚ into disjoint ‚�
J , J � I D f1; : : : ; Kg, such that, for each J � I ,

‚�
J D \

i2J‚oi \
�

\
j…J
‚aj

�
.

2. In each ‚�
J , reject all Hoi; i … J , and test HP

oJ D fHoi W �i 2 ‚i ; i 2 J g at level
gFWER ˛, controlling sup

�2‚�

J

P .
 > 	j�/ � ˛.

3. For i 2 J � I , defineHoi to be J -rejected to meanHoi is rejected in‚�
J . Reject

Hoi if Hoi is J -rejected for any J � I .

1.2.5.4 Stepdown Partitioning Testing

As we stated earlier there are 2K � 2	 tests with the partitioning principle. Xu
(2005) proposed a stepdown procedure that reduces the maximum number of tests
required to no more than K � 	. This reduction is significant for larger K , such as
in microarray analysis. A set of sufficient conditions for such a reduction to be valid
is specified as:

S1 All tests are based on a set of statistics fTi ; i D 1; : : : ; Kg whose values do not
depend on which‚�

J is being tested.
S2 The tests are performed in each of the disjoint‚�

J s, defined previously.
S3 For jJ j > 	, where jJ j denotes the cardinality of J , the critical values CJ have

the property that if J � J 0, then CJ � CJ 0 , and CJ D CJ 0 if jJ j D jJ 0j.
As an example, consider the test statistics Ti D 1 � pi , i D 1; : : : ; k, where pi

is a suitably defined p-value for testing Hoi. Define the critical values as

CJ D 1 � .	C 1/ ˛

jJ j : (1.36)

Since CJ is dependent on jJ j, it can be denoted by CjJ j. Let T.1/ � : : : � T.K/
be the test statistics that associate the hypotheses H.1/; : : : ;H.K/. The stepdown
procedure is specified as follows:

1. Reject H.K/; : : : ;H.K�	C1/.
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2. For i D 	; : : : ; K � 1, if T.K�i / � CK�i , reject H.K�i / and continue; otherwise
retain H.K�i / and stop.

Xu’s stepdown procedure includes Lehmann and Romano’s (2005) procedure as
a special case.

1.2.5.5 General Stopping Boundary

Suppose the stepdown testing condition S1 holds and the distribution of Ti when the
null hypothesisH0i is true is the same for all i . Denote by F the common marginal
null distribution and by P0 the probability computed based on the assumption
of the null hypotheses involved. Let ˛c D F

�
CjJ j�	

�
. If the test statistics are

independent, then

P0 .
 > 	/ D 1 �
	X

jD0

 
jJ j
j

!
˛jc .1 � ˛c/

jJ j�j : (1.37)

In general, Markov’s inequality holds

P0 .
 > 	/ � jJ j˛c
	C 1

: (1.38)

Keep in mind that neither (1.37) nor (1.38) is necessarily the upper bound of
the gFWER or FWER when the dependence of Ti is not specified. The rejection
boundary Ci can be determined using either simulation or numerical methods.

1.2.6 Procedures Controlling False Discovery Rate

1.2.6.1 Type-I Error Rate Versus False Discovery Rate

The false discovery rate (FDR) is the expected proportion of false rejections among
all rejections. The FDR is defined to be zero when the total number of rejections
equals zero (Benjamini and Hochberg 1995; Westfall et al. 1999, p. 21)

FDR D E

�



max .R; 1/

�
; (1.39)

where R denotes the number of rejected hypotheses and 
 is the number of falsely
rejected hypotheses.

FDR-controlling procedures may lead to more type-I errors and fewer type-II
errors than FWER-controlling procedures. However, increasing the number of true
positive drugs in the market is as important as reducing the number of false drugs,
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because a reduction in FDR will increase the probability of treating patients with
the right drugs. FDR is more relevant than the type-I error rate for increasing the
probability of patients getting the right drugs. Therefore, controlling the proportion
of false drugs in the market may be more meaningful than type-I error rates.
However, be cautious. In the FDR procedure, one can purposely include some
hypotheses that are known to be rejected in the set of hypotheses to be tested, and
this will increase the test level for the hypothesis of main interest (Finner and Roter
2001).

It is informative to investigate the relationship between FDR and the type-I rate
˛. If we denote by Pe the proportion of effective test compounds and by Pw the
power for the pivotal trials, then the expected proportion of ineffective drugs in the
market is (neglecting other factors such as drug disapproval due to safety issues)

FDR D .1 � Pe/ ˛

.1 � Pe/ ˛ C PePw
: (1.40)

The FDR is a monotonic function of ˛.
From (1.40) we know that when Pe D 0 the FDR is 100% and so is the type-I

error rate. In other words, if all test drugs in the pivotal trials are ineffective, then
regardless of the ˛ value, 100% of the approved drugs are no more effective than the
control. On the other hand, if all drugs in the pivotal trials are effective (Pe D 1),
then regardless of ˛, 100% of the approved drugs are effective (FDR D 0).

1.2.6.2 Benjamini-Hochberg Procedure

Let p.i/ be the p-value associated with the hypothesis H.i/, where p.1/ � : : : �
p.K/. The Benjamini and Hochberg (1995) linear stepup (LSU) procedure can be
described as: reject all H.i/, i D 1; : : : ; K�, where K� is the largest i for which
P.i/ � i

K
˛. This procedure will control the FDR strongly at level ˛ when the p-

values are independent or positively dependent (Benjamini and Yekutieli 2001). In
fact, the FDR of the LSU is bounded by �0˛, where �0 is the proportion of true
null hypotheses. Moreover, if the p-values associated with the true null hypotheses
are exactly distributed as a uniform distribution, the linear stepup procedure has an
FDR exactly equal to �0˛ (Blanchard and Roquain 2009).

1.2.6.3 Blanchard-Roquain Procedure

Under an unspecified dependence of the family of p-values pi forHi (i D 1; : : : K),
and ˇ being a shape function of the form

ˇ .r/ D
Z r

0

udv .u/ , (1.41)
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where v is some fixed prior probability distribution on (0;1) and r > 0, Blanchard
and Roquain (2009) proved that the procedure that rejectsHi ifpi <Ci D˛ˇ .i/ =K

has an FDR bounded above by ˛�0.
This general result can be used to develop different testing procedures depending

on different estimations of O�0. Such a procedure that includes an estimating �0 is
called an adaptive procedure. As an example, if the p-values are independent and
� 2 .0; 1/ is fixed, then the following procedure will control the FDR at level ˛:
reject Hi if the p-value pi � Ci , where Ci D min

�
.1 � �/ ˛i

K�iC1 ; �
�
.

Theorem 1.1. (Blanchard and Roquain 2009) Let ˇ be a fixed shape function given
by (1.41), and 0 < ˛0 < ˛1 < 1. Denote by R0 the stepup procedure with critical
values C0i D ˛0ˇ.i/

K
. Then the adaptive stepup procedure R with data-dependent

critical values C1i D ˛1ˇ.i/

K
F


	 jR0j
K



has an FDR bounded above by ˛1 C 
˛0,

where 
 � 2 and

F
 .x/ D
(
1 if x � 1=
,

2=


1�p
1�4.1�x/=
 otherwise. (1.42)

1.2.6.4 Storey-Taylor-Siegmund Procedure

If the rejection rule for Hi is pi � � , then a conservative FDR is given by

FDR D K O�0�
max .R .�/ ; 1/

; (1.43)

where O�0 D .# fpi � �g C 1/ = Œ.1 � �/K� is an estimator of �0 and R .�/ is the
number of rejected hypotheses. Here #fpi � �g denotes the number of p-values
exceeding � 2 Œ0; 1/: The larger � is, the smaller the bias of O�0 will be (at the cost
of a larger variance). The critical value is chosen as the maximal � � � such that
the estimated FDR .�/ � ˛. This procedure controls the FDR at the nominal level
˛ if the p-values corresponding to the true null hypotheses are independent and are
obtained from conservative tests (Storey et al. 2004).

1.2.6.5 Sequential Testing Method

Suppose an experiment has K hypotheses and up to N stages. Denote the p-value
of hypothesis i at stage t by pit, which is computed from the data accumulated for
hypothesis i up to stage t . Let � denote the random variable determining the stage
where the trial is stopped. The stopping time � may be a function of the collected
data (e.g., pit) but may also depend on external information. Posch et al. (2009)
proved that the following procedure asymptotically (K ! 1) controlled the FDR
at level ˛.

For the stopping stage � , define the critical value �� to be the maximal �� � �

such that F ODR� .�� / � ˛, where F ODR� is defined as in (1.43) with pi replaced
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by pit. Here � is assumed to be a fixed prior. All null hypotheses with pi�
� �� are rejected. Furthermore, sampling is stopped for all hypotheses at the
same interim analysis, and the test in the final analysis solely determines which
hypotheses are rejected; we restrict early stopping to interim analyses where at least
a certain fraction of null hypotheses can be rejected. No stopping rule needs to be
prespecified, but one can flexibly decide at every interim analysis to stop the trial or
change the sample size.

1.3 Controversies and Challenges

1.3.1 Family of Errors

We want to control the familywise type-I error rate in a multiple-testing problem.
However, how should we determine the “family” of errors? Should the family
chosen be an experiment (e.g., a clinical trial) even when two completely different
hypotheses (a single drug treating two different diseases, two drugs treating the
same disease, or two drugs treating two different diseases) are included in the same
experiment? Why should we adjust multiplicity when hypotheses are addressed in
the same experiment but not when they are addressed in two different experiments?
Does this discourage people who use a more efficient way (one experiment) to do
scientific research? Keep in mind that the concept of “an experiment” is subjective.
We can define two experiments as a super-experiment. We can even consider the
whole life of an individual an experiment and all the errors one has made in his life
the family of errors. The difference in the definition of the family of errors could
lead to completely different adjustments of p-values and conclusions. On the other
hand, controlling alpha beyond the scope of the (commonly defined) experiment is
difficult because we don’t know what types of studies and how many of them we
are going to conduct.

We should be aware that the same term, type-I error, does not necessarily mean
the same thing at different times. As a result, ˛ D 2.5% may not imply the same
criterion at different times. The first drug for an indication may be tested against
a placebo. Newer compounds are being tested each year against better and better
drugs in the market. It appears that ˛ D 2.5% doesn’t change, but in fact the bar is
set higher and higher because different competitors are used.

As we mentioned earlier, a reduction in FDR will increase the chance of treating
patients with the right drugs. Thus, it seems reasonable to consider FDR control
in place of the type-I error control ˛. However, one can purposely include some
hypotheses known to be rejected in the set of hypotheses to be tested and therefore
increase the test level for the hypothesis of main interest.

Furthermore, not all type-I errors have the same impact. Why do we control the
error rate, and not the impact of the errors (Chap. 2)?
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1.3.2 Interpretation of Multiple-Testing Results

Remember that all stepwise testing procedures can be expressed in a single-step
fashion using adjusted p-values (Chang 2009). In general, for any given data
and any stepwise test procedure, the rejection criterion associated with the null
hypothesisHok at the kth step can be written as

pk � ˛k.˛; p1; p2; : : : ; pk�1/; k D 1; 2; : : : K; (1.44)

where the critical point ˛k.˛; p1; p2; : : : ; pk�1/ is a function of the overall alpha
and the previous p-values in the procedure. By solving for ˛, (1.44) is equivalent
(leads to the same decision) to

Qk.p1; p2; : : : ; pk/ � ˛; k D 1; 2; : : :K; (1.45)

where the functionQk.p1; p2; : : : ; pk/ usually is not continuous in the pi . Note that
the right-hand side of (1.45) is the constant ˛ for all ks and can be used in any order
of k, just as in a single-step test procedure.

Formulation (1.45) suggests that all stepwise procedures in fact implicitly use
some form of “composite endpoint” – rejection of Hok is dependent on a certain
combination of p1; p2; : : : ; pk for the k “endpoints.” This type of “composite
endpoint,” unlike a common endpoint (e.g., ACR50 for rheumatoid arthritis),
often makes little sense scientifically or clinically, so interpretations of “composite
endpoints” are difficult. In light of this, why shouldn’t we use direct p-value com-
binations with clear clinical meanings for the test statistics (e.g., Tk D PK

i wkipi ,
where wki � 0 and

PK
iD1 wki D 1)?

1.3.3 The Spring Water Paradox

If controlling the type-I error rate is a critical goal for an experiment, the following
is a paradox. An experiment is to be conducted to test the hypothesis that spring
water is effective compared with a placebo in a certain disease population. To carry
out the trial at a minimal cost, we will need a coin and two patients with the disease.
To control type-I error, the coin is used; i.e., zero patients are needed. To have
an unbiased point estimate, a sample size of two patients is required (for a higher
precision, more patients are needed). The trial is carried out as follows:

1. Randomize two patients: one takes the placebo and the other drinks spring water.
The unbiased estimate of the treatment difference is given by y�x, where x and
y are the clinical responses from the placebo and the spring water, respectively.



26 1 Multiple-Hypothesis Testing Strategy

2. If y � x > 0, we will proceed with the hypothesis test Ho W �y � �x � 0 at a
level of one-sided ˛ D 0:05. To perform the hypothesis test, we flip the coin 100
times. If the number of heads (n) appears at least 95 times, the efficacy of spring
water will be claimed.

Suppose the spring water is presumably very safe. This is a cost-effective
approach (two patients C a coin), even though there is only approximately a 5%
power and approximately a 2.5% probability of making the efficacy claim.

What if all pharmaceutical companies test such water-like compounds, over and
over again, in their drug development? There will be many ineffective drugs on
the market. In fact, this scenario could happen for two reasons: (1) A small ˛
makes it difficult to show statistical significance for compounds that have small
to moderate effects, so testing water-like compounds is more cost-effective. (2)
Many companies screen the same compound libraries without multiple-testing
adjustments. Therefore, a smaller ˛ (more stringent type-I error control) could lead
to more ineffective compounds flowing into the drug development pipeline and to
the market.

1.3.4 A Patient’s Dilemma with Multiple-Testing

Andy is a biochemists and Mike is a statistician working for a pharmaceutical
company. They both had cancer and were hospitalized in the same room on the same
day. Their doctor was discussing their treatment options: drug A or drug B . Both
have been tested on 500 patients, drug A prolongs survival by 6 months and drug
B prolongs survival by 2 years. Andy preferred drug B without a second thought.
Mike proceeded cautiously, asking: “Was there any interim analysis and multiplicity
adjustment?” The doctor told him that the raw p-value was 0.04 for A and 0.01
for B . However after the multiplicity adjustment, the p-value for B was close to
significance .p D 0:055/; no adjustment was needed for drug A. After listening to
the details, Mike chose drug A. He thought B was not even statistically significant.
Andy asked Mike: “Why did you pick A? Do you believe the statistical testing
procedure will damage the chemical structure of the compound?” Mike replied:
“The false positive rate will be very high if you choose drugs this way!” Andy was
wondering: “Everyone only has one life; we don’t have many chances to repeat this!
Also, the selection of the type-I error rate 5% is a somewhat arbitrary value; why
did Mike take this literally?” Later, however, Mike learned that there was an interim
analysis showing thatB was better than the control in the trial. Mike informed Andy
about this, and asked him if he wanted to switch the treatment to drugA. What would
be your answer if you were Andy (Fig. 1.1)?
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Fig. 1.1 A personal dilemma
I don’t think the p-value should be
adjusted for multiplicity since the
hypothesis test procedure will not
damage the drug. However, if the p-
value is not adjusted, the false
positive rate could be very high.
Adjust or not adjust?

1.4 Exercises

1.1. Suppose there are six hypotheses in an experiment with the associated p-values
(one-sided): 0.0001, 0.0018, 0.009, 0.021, 0.034, and 0.052. Use the single-step
testing procedures in Sect. 1.2.1 to test the six hypotheses with a familywise type-I
error rate of ˛ D 0:05 (one-sided).

1.2. Given the same p-values as in Exercise 1.1, perform the hypothesis test using
the Holm, Shaffer, and fallback procedures (one-sided ˛ D 0:05).

1.3. (Dmitrienko and Tamhane 2007) Suppose a parallel-group trial is conducted
to compare a new formulation of an insulin therapy (formulationA) with a standard
formulation (formulation B) in patients with Type 2 diabetes. Patients are allocated
to three treatment groups (A, B , and A C B), and the efficacy analysis is based
on the mean change in hemoglobin A1c from baseline to a 6-month endpoint. The
three pairwise comparisons among the treatment groups are ordered according to
their clinical relevance. The primary objective of the study is to compare the new
formulation with the standard one (A versus B). After that, the combination is
compared with the standard formulation (ACB versus B) and the new formulation
(AC B versus A). Each comparison begins with a noninferiority test, followed by
a superiority test if noninferiority is established. According to this strategy, the six
null hypotheses are grouped into four families:

Family F1 D fH1g, where H1 states that A is inferior to B .
Family F2 D fH2;H3g, where H2 states that A is not superior to B and H3

states that AC B is inferior to B .
Family F3 D fH4;H5g, whereH4 states thatACB is not superior to B andH5

states that AC B is inferior to A.
Family F 4 D fH6g, whereH6 states that ACB is not superior to A.
The raw p-values are presented in Table 1.3. Please draw the decision tree

(diagram) for the testing procedure and complete the table by filling in the adjusted
p-values. The adjusted p-values are then compared with ˛ D 0:05 for rejecting or
accepting the corresponding hypothesis.

1.4. Do you believe the FDR, the type-I error rate, or another efficacy criterion
should be used in the regulatory approval of a drug? Why?
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Table 1.3 Tree gatekeeping procedure based on the Bonferroni test

Family Hypothesis
Serial
rejection set Raw p-value

Adjusted
p-value

F1 H1 NA 0.011
F2 H2 H1 0.023
F2 H3 H1 0.006
F3 H4 H3 0.018
F3 H5 H3 0.042
F4 H6 H5 0.088

Note: The parallel rejection sets are empty

1.5. In Sect. 1.3.2, we stated that any stagewise testing procedure implies an
adoption of a “composite endpoint.” Do you agree? Why? How do you interpret
the results from a stepwise testing procedure?

1.6. If you faced the dilemma presented in Sect. 1.3.4, which drug would you take?
Why?
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Huque, M., Röhmel, J.: Multiplicity problems in clinical trials: A regulatory perspective. In:

Dmitrienko, A., Tamhane, A.C., Bretz, F. (eds.) Multiple Testing Problems in Pharmaceutical
Statistics. Chapman and Hall/CRC, Boca Raton (2010)

Kanji, G.K.: 100 Statistical Tests, 3rd edn. Sage Publications, London (2006)
Lehmacher, W., Wassmer, G., Reimeir, P.: Procedure for two-sample comparisons with multiple

endpoints controlling the experimentwise error rate. Biometrics 47, 511–521 (1991)
Lehmann, E.L., Romano, J.P.: Generalizations of the familywise error rate. Ann. Stat. 33,

1138–1154 (2005)
Marcus, R., Peritz, E., Gabriel, K.R.: On closed testing procedures with special reference to ordered

analysis of variance. Biometrika 63, 655–660 (1976)
Lemuel, A.M.: Multiple analysis in clinical trials. Springer-Verlag, New York (2003)
Pocock, S., Geller, N., Tsiatis, A.: Analysis of multiple endpoints in clinical trials. Biometrics 43,

487–498 (1987)
Posch, M., Zehetmayer, S., Bauer, P.: Hunting for significance with the false discovery rate. J. Am.

Stat. Assoc. 104(486), 832–840 (2009)



30 1 Multiple-Hypothesis Testing Strategy

Quan, H., Luo, X., Capizzi, T.: Multiplicity adjustment for multiple endpoints in clinical trials with
multiple doses of an active control. Stat. Med. 24, 2151–2170 (2005)

Rom, D.M.: A sequentially rejective test procedure based on a modified Bonferroni inequality.
Biometrika 77, 663–665 (1990)

Roy, S.N.: On a heuristic method for test construction and its use in multivariate analysis. Ann.
Stat. 24, 220–238 (1953)

Sarkar, S.K., Chang, C.K.: Simes’ method for multiple hypothesis testing with positively depen-
dent test statistics. J. Am. Stat. Assoc. 92, 1601–1608 (1997)

Shaffer, J.P.: Modified sequentially rejective multiple test procedures. J. Am. Stat. Assoc. 81,
826–831 (1986)

Sidak, Z.: Rectangular confidence regions for the means of multivariate normal distributions.
J. Am. Stat. Assoc. 62, 626–633 (1967)

Simes, R.J.: An improved Bonferroni procedure for multiple tests of significance. Biometrika 63,
655–660 (1986)

Storey, J., Taylor, J., Siegmund, D.: Strong control, conservative point estimation and simultaneous
conservative consistency of false discovery rates: A unified approach. J. R. Stat. Soc. Ser. B,
66(1), 187–205 (2004)

Tsong, Y., Wang, S.J., Hung, H.M.J., Cui, L.: Statistical issues on objective, design, and analysis
of noninferiority active-controlled clinical trial. J. Biopharm. Stat. 13, 29–41 (2003)

Wang, X.: Gatekeeping procedures for multiple endpoints. Ph.D. Dissertation, Department of
Statistics, Northwestern University, Evanston (2006)

Westfall, P.H., Krishen, A.: Optimally weighted, fixed-sequence and gatekeeper multiple testing
procedures. J. Stat. Plan. Inference 99, 25–41 (2001)

Westfall, P.H., Tobias, R.D., Rom, D., Wolfinger, R.D., Hochberg, Y.: Multiple Comparisons and
Multiple Tests Using the SAS System. SAS Institute, Cary (1999)

Westfall, P.H., Young, S.S.: Resampling-Based Multiple Testing: Examples and Methods for p-
value Adjustment. Wiley, New York (1993)

Wiens, B.L.: A fixed-sequence Bonferroni procedure for testing multiple endpoints. Pharm. Stat.
2, 211–215 (2003)

Wiens, B., Dmitrienko, A.: The fallback procedure for evaluating a single family of hypotheses. J.
Biopharm. Stat. 15, 929–942 (2005)

Xu, H.: Using the partitioning principle to control generalized familywise error rate. Ph.D.
Dissertation, The Ohio State University, Columbus (2005)



Chapter 2
Pharmaceutical Decision and Game Theory

2.1 Pharmaceutical Decisions

A pharmaceutical or biopharmaceutical company is a commercial business licensed
to research, develop, market, and/or distribute drugs, most commonly in the context
of healthcare. It is subject to a variety of laws and regulations regarding the
patenting, testing, and marketing of drugs, particularly prescription drugs.

Drug development involves large, lengthy collaborations among people from
dozens of disciplines. The entire development process includes multiple stages or
phases from discovery, preclinical, and clinical trials, to phase IV commitment or
marketing. It is estimated that, on average, a drug takes 10–12 years from initial
research to the commercialization stage. The cost of this process is estimated to be
more than US$500 million. At each stage of research and development, decisions
have to be made. A correct decision will lead to successful of drug development,
the mitigation of risks, or a cost reduction. A wrong decision can have a significant
negative impact. Thus, drug development can be viewed as a sequence of decision
processes, which can be modeled statistically by Markov decision processes. We
will give many examples later, after we introduce the concept of a Markov decision
process.

2.1.1 Markov Decision Process

A Markov decision process (MPP) is similar to a Markov chain, but there are also
actions and utilities (rewards or gains, see Fig. 2.1). MDPs provide a powerful
mathematical framework for modeling the decision-making process in situations
where outcomes are partly random and partly under the control of the decision-
maker. They are useful in studying a wide range of optimization problems solved
via dynamic programming and reinforced learning. Since the 1950s, when MDP first
became known (Bellman, 1957a), it has been widely used in robotics, automated
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Fig. 2.1 Markov sequential
decision-making

Action: a1 a2 a3

State: S1 S2 S3

Gain: g1 g2 g3

S4

g4

control, economics, business management, nursing system, and manufacturing
(Gosavi 2003; Bertsekas 1995).

There are two types of MDPs: finite and infinite horizon problems. In a finite
horizon problem, the transition probabilities (from state s at time t to state s0 at time
t C 1) vary over time,

T
�
s; a; s0� D Pr

�
stC1 D s0jst D s; at D a

�
, (2.1)

whereas in the infinite horizon MDP problem, the system reaches a steady state and
the transition probability is only dependent on the two states (s and s0) and the
action taken, a, but is independent of the time when the transition occurs. Thus, the
transition probability can be simplified as

T
�
s; a; s0� D Pr

�
s0js; a� : (2.2)

We will focus our discussions on infinite horizon MDPs.
Suppose a dynamic system (Fig. 2.1) moves over states si 2S; i D 1; 2; : : : ; N

and the motion is controlled by choosing a sequence of actions ai 2 A; i D;
1; 2; : : : N . There is a net numerical gain (immediate reward or cost) gi .˛i /
associated with each action ai . The goal is to find a policy (strategy) that maximizes
the total expected gain. This problem can be formalized as a Markov decision
process.

An infinite horizon Markov decision process is a 4-tuple of four elements
fS;A;Pr .S;A/, g .S;A/g with the following properties:

1. Finite (N ) set of states, S .
2. Set of actions, A (can be conditioned on the state s).
3. Policy/strategy/action rule – action mapping to state s.
4. Discount rate for future rewards 0 < � < 1.
5. Immediate reward (utility or gain function) g W S�A ! <; g .s; a/ D immediate

reward by reaching the state s and taking action a.
6. Transition model (dynamics) T W S � A � S ! Œ0; 1� T .s; a; s0/ D probability

of going from s to s0 under action a.

T
�
s; a; s0� D Pr

�
s0js; ai D a

�
. (2.3)

7. The goal is to find a policy �� D fa�
i ; i D 1; : : : ; N g that maximizes the total

expected reward over the course of motion, which is subject to some initial
conditions and possible constraints. Note that action a often associates with
state s. We may write as for action at state s.
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Here are examples of Markov decision processes in drug development
(Fig. 2.1):

1. s1 D drug discovery phase, s2 D preclinical phase, s3 D clinical development
phase, and s4 D regulatory approval and marketing. The ai represents the general
decision rules or action rules for moving from the i th phase to the next phase in
the drug development process.

2. s1 D Preclinical phase, si D the i th phase clinical trial (i D 1; 2; 3), and ai has
a similar meaning as in (1).

3. s1 D initiation of a clinical trial, si D interim and final analyses for the .i � 1/th
phase trial (i D 2; 3; 4); the actions, ai , are the stopping and adaptive rules (see
the details in Chap. 4).

2.1.2 Dynamic Programming

2.1.2.1 Bellman’s Optimality Principle

An optimal policy has the property that, whatever the initial state and initial
decision, the remaining decisions must constitute an optimal policy with regard to
the state resulting from the first decision (Bellman 1957a).

This principle can be applied to the stochastic decision problems here, but the
optimal policy is regarded as the expected gain (loss) as opposed to loss in a
deterministic sense.

Computationally, stochastic decision problems are usually solved using the so-
called Bellman equations in terms of value V.s/:

V.s/ D max
as2A

 
g .s; a/C �

X

s02S
Pr
�
s0js; as

� � V �s0�
!
: (2.4)

The optimal policy, �� D fa�
1 ; a

�
2 ; : : : ; a

�
N g, for the MDP is a vector whose com-

ponents are defined by

a�
s D arg max

as

(
g .s; as/C �

X

s02S
Pr
�
s0js; as

� � V �s0�
)
: (2.5)

Equation 2.4 can be written in matrix form:

V � D g� C �P�V � : (2.6)

The solution to (2.6) can be written in matrix form:

V � D .I � �P�/
�1

g� : (2.7)
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Fig. 2.2 Markov decision
process for CDP

P11

P12 P23 P34

P22
P33

a1 a2 a3

g1 g2 g3 g4

Phase 1 Phase 2 Phase 3 Approval

We can optimize policy � among all possible policy options to maximize V� in
(2.7). However, a more efficient way is to use the Bellman equations (2.4) as the
dynamic programming algorithm (a backward induction algorithm) to obtain the
optimal policy. The iterations will go from the last state to the first state (Chang
2010).

2.1.3 Clinical Development Program

The success of a pharmaceutical company depends on integrating scientific, clinical,
regulatory, and marketing approaches into the development and commercialization
of therapies. The MDP-based clinical development program design can eliminate
unnecessary or redundant clinical trials that are used for internal decision-making,
identify and address critical path issues that could delay development timelines, and
ensure that clinical programs focus quickly and unambiguously on key attributes of
the compound.

A stochastic decision process can provide a rational basis for decision-making
and help optimize the compound’s regulatory strategy and determine its commercial
position and value. Simulation of the clinical development program (CDP) can
increase confidence in decision-making and help to define and track critical success
factors and their uncertainties.

Let’s study how to model a clinical development program using a Markov
decision process.

A typical drug development program includes phases I–IV clinical trials that are
conducted in a sequence. At the end of each phase the decision is made regarding
whether to stop the program (the “No-Go” decision) or to carry on to the next phase
(the “Go” decision). Each action is associated with an estimated net gain (Fig. 2.2).
Formally, it can be modeled by the following MDP:

1. A finite set of states, S . For the case in Fig. 2.2, the state space is given by S D
fphase I, phase II, phase III, NDA approvalg.

2. A set of actions, As (state-dependent action space). The choice of the action set
can be As D fGo, No-Gog and/or sample size ni for the i th phase.

3. Action rules. The action rule or decision rule is typically a set of values, Ai D˚
aij ; j D 1; 2; : : : m; i D 1; 2; 3

�
, where aij can be a set of sample size options
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(j D 1; : : : ; m) for the i th phase trial or Ai D Œamin; amax� as the range of the
cutpoint for “Go or No-Go” decision-making. The action space can also be a
vector, e.g., corresponding to efficacy and safety requirements or to the point
estimate and confidence interval of a parameter (or a p-value). The goal is to
find the optimal policy A�

i D fa1�; a2�; a3�g that maximizes the expected gain.
4. A discount factor for future rewards, 0 < � � 1:

5. Immediate reward. In the simplest case, the immediate reward gi .ai D a/, or
gi .a/ for simplicity, at the i th state (phase) can be a cost ciC1 and a reward from
NDA approval or the value of out-licensing of the new molecular entity (NME).

6. Transition dynamics T W S �A � S ! Œ0; 1�.

The transition probability of going from the i th phase to the .i C 1/th phase is a
function of the action rule Ai , written as

T .si ; a; siC1/ D Pr .siC1jsi ; Ai / : (2.8)

We now use a numerical example to illustrate the process.

Example 2.1. Optimal Sample Size for Trials in a Clinical Development Plan:
Suppose the CDP team wants to develop a clinical development program for a
disease indication that includes phases I–III trials (Fig. 2.2). Phase I is a single-arm
toxicity study; the phases II and III trials are two-group efficacy studies with two
parallel groups. A common and important question is how to determine the optimal
sample size for each trial so that the success or the expected overall gain for the CDP
is maximized. Let’s build, step by step, a Markov decision process for this problem.

1. State space

S D fphase I, phase II, phase III, NDA approvalg
2. Action space

In practice, there are limits for the sample size. For simplicity, assume the
limits (i.e., the action space) are independent of state (the phase):

A D f10; : : : ; 1; 000g:
3. Discount rate

Based on typical trial durations, assume that the discount rate is

� D 0:95:

4. Immediate reward and cost
In calculating immediate gains in phases I–III trials, the costs are ap-

proximately proportional to the corresponding sample size. After approval for
marketing, there is a commercial/advertising cost. The net gains (cost) for phases
I–III can be written as functions of sample size or simply the sample sizes
themselves:

gi .ni / D ni ; i D 1; 2; 3; (2.9)

and the net gain for marketing the drug (less commercial cost) is assumed to be
g4 D 10;000:
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5. Decision rules and transition probabilities
Assume the decision rule for the phase I trial is that if the toxicity rate r1 �

�1 D 0:2, the study will continue to phase II; otherwise stop. The decision rules
for phase II are based on a hypothesis test for treatment differences in efficacy.
Specifically, if the one-sided p-value for the test is p2 � �2 D 0:1, the study will
continue and a phase III trial will be launched; otherwise, the clinical program
will stop after phase II. Similar to phase II, phase III is a parallel two-group
active-controlled trial. The decision rule is that if the one-sided p-value for the
efficacy test is p3 < �3 D 0:025, the drug will be approved for marketing,
otherwise, the NDA will fail.

From these decision rules, we can determine the transition probabilities. The
transition probability from phases I to II can be calculated using the binomial
distribution

p12 .n1/ D
b�1n1cX

iD0
B .i Ip0; n1/ D

b�1n1cX

iD0

 
n1

i

!
pi0.1 � p0/n1�i ; (2.10)

where p0 is the toxicity rate of the NME, B .i Ip0; n1/ is the binomial probability
mass function (p.m.f.). and the floor function bxc gives the integer part of x.

The transition probability p23 from phases II to III is the power of the
hypothesis test in the phase II trial at the one-sided alpha level of �2 D 0:1,

p23 .n2/ D ˚

�p
n2

2
ı � z1��2

�
, (2.11)

where ı is the standardized treatment difference and ˚ is the standard normal
c.d.f.

Similarly, the transition probability from phase III to NDA approval is
given by

p34 .n3/ D ˚

�p
n3

2
ı � z1��3

�
. (2.12)

Note that there is no repeated trial, even though pii in Fig. 2.2 seems to represent
a transition loop. Keep in mind that in this simple case each state has only
one immediately proceeding state. The rest of the transition probabilities can
be easily calculated as follows:

8
<

:

p11 D 1 � p12;
p22 D 1 � p23;
p33 D 1 � p34:

(2.13)
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6. Dynamic programming
We are now ready to use dynamic programming to solve this problem. Start

with Bellman’s equation:

(
V4 D g4;

Vi D max
ni2A

fgi .ni /C �pi;iC1 .ni / ViC1g , i D 3; 2; 1: (2.14)

Example 2.2. In Example 2.1, we are only concerned with the optimization of
sample size, but in practice it is also important to optimize the cutpoints f�1; �2; �3g
simultaneously. Let’s build the MDP for the decision problem:

1. State space

S D fphase I, phase II, phase III, NDA approvalg.

2. Action space
Ai D ui � vi ; (2.15)

where the sample size space and cutpoint space are given, respectively, by

ui D fni;min; : : : ; ni;maxg and vi D Œ�i;min; �i;max�; i D 1; 2; 3:

3. Discount rate
Let � D 1 for simplicity.

4. Immediate reward and cost
Assume the rewards have the form

gi .ai / D c0i C ni ; i D 1; 2; 3; (2.16)

where c0i is a constant.
The net gain for marketing the drug (less commercial cost) is assumed to be a

linear function of the estimated treatment effect Oı,
g4 D g0 C b Oı; (2.17)

where g0 and b are constants.
5. Decision rules and transition probabilities

Assume the decision rules are similar to those in Example 2.1, specified as
follows:

phase I: If the observed toxicity rate is r1 � �1, the study will continue to phase
II; otherwise stop.

phase II: If the one-sided p-value for the efficacy test is p2 � �2, launch a phase
III trial; otherwise, stop.

phase III: If the one-sided p-value for the efficacy test is p3 < 0:025 (0.025
is a regulatory requirement for approval and therefore is not considered a
variable), the drug will be approved for marketing; otherwise, the NDA will
fail.
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The expressions for the transition probabilities are the same as in Example 2.1.
For clarity, we rewrite pij as a function of both the sample size ni and the
cutpoint �i ,

p12 .n1; �1/ D
b�1n1cX

iD0
B .i Ip0; n1/ , (2.18)

where p0 is the toxicity rate of the NME.
The transition probability p23 from phases II to III is the power of the

hypothesis test in the phase II trial (Chang 2008; Chang and Chow 2006),

p23 .n2; �2/ D ˚

�p
n2

2
ı � z1��2

�
. (2.19)

Similarly, the transition probability from phase III to approval is given by

p34 .n3/ D ˚

�p
n3

2
ı � z1�0:025

�
. (2.20)

The rest of the transition probabilities can be calculated using (2.13).
6. Dynamic programming

We are now ready to use dynamic programming to solve this problem. Start
with Bellman’s equation:

(
V4 D g4,
Vi D max

ni2ui ;�i2vi
fgi .ni /C pi;iC1 .ni / ViC1g ; i D 3; 2; 1: (2.21)

So far, we have not considered the action rules (policy) that concern efficacy
and safety jointly. In most realistic settings, they have to be considered simulta-
neously at some point (e.g., in phases II and III trials). The key is to construct
the transition probabilities using the policy with efficacy and safety components.
We may consider another common situation, multiple optional paths in clinical
development plans. This will be illustrated in the next section.

2.1.4 R & D Portfolio Optimization

Most pharmaceutical research efforts have focused on four major disease areas:
central nervous system, cancer, cardiovascular, and infectious disease. Increasingly,
researchers will have to search for products in poorly understood and more com-
plex therapeutic areas such as autoimmune diseases and genitourinary conditions
(Bernard 2002; Hu et al. 2007). The increasing failure rate and cost in pharma R & D
(5,000 patients per NDA based on data from 1999 to 2003) alert pharmaceutical
companies to be extremely cautious in their decision-making. They have to carefully
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Fig. 2.3 Decision modeling for two new molecular entities

evaluate their core competencies, technological advantages, competitive barriers,
and financial resources before committing to develop a drug to fulfill the unmet
need. They have to weigh their options carefully from the perspectives of market
potential, patent, intellectual property portfolio, competitive forces and regulatory
status, and core competencies, and build their R & D portfolio accordingly.

In this regard, many new technologies can be used in conjunction with traditional
methods to accelerate the R & D process and reduce the cost. The following example
illustrates how to use MDPs in the product development program.

Example 2.3. Suppose a biotech company has identified two leading compounds
(NME-1 and NME-2) from drug discovery and preclinical studies. Due to financial
constraints, the management team proposed the following strategy for evaluations:
If the NME-1 phases I or II trial fails, we will consider launching the NME-2 trials.
If the phases I and II trials are successful but the NME-1 phase III fails, the sponsor
doesn’t have enough cash to invest in the NME-1 clinical trials and NME-2 will be
considered for out-licensing. However, if phase III is successful for drug marketing,
the company will consider investigating NME-2 in clinical trials. Other options such
as joint ventures are, for simplicity, not considered. This strategy is plotted as an
MDP in Fig. 2.3.

What the working team needs to do is to develop an MDP with specific action
rules that optimize the MDP and evaluate the maximum expected net gain.

Example 2.4. Risk Aversion and Pick-Winner Strategy: Risk aversion is a concept
in economics, finance, and psychology related to the behavior of consumers and
investors in the face of uncertainty. Risk aversion is the reluctance of a person to
accept a bargain with an uncertain payoff rather than another bargain with more
certainty but possibly a lower expected payoff. This concept is also applicable to
the pharmaceutical industry. Risk aversion is measured as the additional marginal
reward required for an investor to accept additional risk, which is measured as the
standard deviation of the return on investment.
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Risk aversion is reflected in the diversity of the pharmaceutical portfolio. With
multiple leading NMEs in the drug discovery and preclinical pipeline, an optimal
strategy to pick the winners and carry them forward to clinical development
becomes critically important. We can do this by means of an MDP. Suppose there
are n leading NMEs identified. If n is relatively small, we can launch all n NMEs
at the same time. In the development process (preclinical to phase III trials), an
MDP can be used to tune the decision rule for picking the winner so that the gain
is optimized. If n is large, a subset of the NMEs can be tested first and losers (bad
NMEs) are dropped over time in the development process. Then, more NMEs can
be tested later in development.

There are many criteria (i.e., decision rules) that can be used for picking the
winners. For example, pick the safest m0 out of n NMEs, based on the observed
toxicity rate (aggregated toxicity rate from multiple components) in the preclinical
phase, for further testing in the phase I; pick m1 best responses out of m0 NMEs
in the phase I trial and carry on to the phase II trial. The criteria for the best
response can be measured by some utility index that consists of safety and efficacy
biomarkers. After a set of decision rules is formed, the corresponding transition
probabilities can be constructed as well as gain/reward functions. Finally, the
optimal policy can be found using the dynamic programming algorithm to maximize
the gain or success.

2.1.5 Prescription Drug Marketing

A pharmaceutical company usually starts its marketing strategy research before
the drug gets approval for marketing. There are several key factors to consider in
making the strategy: (1) company marketing positioning; (2) characteristics of the
prescription drug and its competitors, including efficacy, safety, convenience, and
cost; (3) target patient segmentation and mapping to the drug characteristics in (2);
(4) physician prescription behavior of the drug class; (5) behavior characteristics of
the competitors; (6) financial condition of the company and its competitors; and (7)
availability of the marketing force.

Example 2.5. Suppose we do marketing consulting for the company and need to
decide marketing strategies, and there are three patient segments (inferior, mixed,
and prime) that are determined for the overall patient population. For each of the
patient segments, we have to decide on x dollars for advertising. If x D 0, it means
no direct advertising at all for that segment; if x D Dmax, it reaches the financial
constraint.

It is important to fully realize that the outcomes of the advertisement are not only
dependent on the company’s advertising strategy but are also influenced by the
behavior of other game players (competitors).

Let’s build the Markov decision process. For the current problem (Fig. 2.4), there
are three states, S D fs1; s2; s3g, for each patient segment: (1) the inferior, patients
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Table 2.1 Probabilities
of strategy matching

Competitor

SC LA DN

Sponsor SC Qpss Qpsl Qpsd

LA Qpls Qpll Qpld

DN Qpds Qpdl Qpdd

who will mostly use the competitor’s drug (the gain at this state is g D g1 D 0); (2)
the mixed, patients who will use both our client’s and the competitor’s drugs (the
gain at this state is g D g2.�/, which is dependent on the patient segment �); and
(3) the prime, patients who will virtually use only our client’s drug.

At each stage, we have to make a decision on whether to launch a strong
campaign (SC), do limited advertising (LA), or do nothing (DN); i.e., the action
space is AD fSC, LA, DNg : A cost is associated with each action taken, specifi-
cally C D fc1; c2; c3g corresponding to AD fSC, LA, DNg. No discount � will be
considered.

The transition probabilities pij .a/ can be estimated using the information
about the competitor’s possible strategies. We can use Table 2.1 to illustrate this
conceptually. The probability that both the sponsor and the competitor have a strong
marketing campaign is Qpss , and the conditional transition probability from state
i to state j under this campaign condition is Opij .ss/. Therefore, the transition
probability is given by

pij D
X

a2A�A
Qpa Opij .a/ . (2.22)

Bellman’s equation can be written as

V.s/ D max
a2A

 
g
�
s0� � c .a/C �

X

s02S
Pr
�
s0js; a� � V �s0�

!
. (2.23)
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The implementation algorithms of (2.23) and (2.24) can be found elsewhere
(Chang 2010).

2.2 Pharmaceutical Games

2.2.1 The Game Concept

A game is a formal description of a strategic situation. Game theory is the
formal study of decision-making wherein several players must make choices that
potentially affect the interests of the other players. A player is an agent who makes
decisions in a game.

Tucker’s Prisoners’ Dilemma is one of the most influential examples in eco-
nomics and the social sciences. It is stated like this: Two criminals, Bob and John,
are captured at the scene of their crime. Each has to choose whether or not to confess
and implicate the other. If neither man confesses, then both will serve 2 years. If
both confess, they will go to prison for 10 years each. However, if one of them
confesses and implicates the other, and the other does not confess, the one who has
collaborated with the police will go free while the other will go to prison for 20
years on the maximum charge.

The strategies offered in this case are confess or don’t confess. The payoffs or
penalties are the sentences served. We can express all this in a standard payoff table
in game theory (Table 2.2).

Let’s discuss how to solve this game. Assume both prisoners are rational and
try to minimize the time they spend in jail. Bob might reason as follows: If John
confesses, I will get 20 years if I don’t confess and 10 years if I do, so in that
case it’s best to confess. On the other hand, if John doesn’t confess, I will go free
if I confess and get 2 years if I don’t confess. Therefore, either way, it’s better
(best) if I confess. John reasons in the same way. Therefore, they both confess
and get 10 years. This is the solution or equilibrium for the game. This solution

Table 2.2 The Prisoners’
Dilemma

John (Player B)

Confess Don’t

Bob
(PlayerA)

Confess .10; 10/ .0; 20/

Don’t .20; 0/ .2; 2/
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Fig. 2.5 Braess’s Paradox

is a noncooperative solution; it is a solution to a noncooperative game in which
no communication is allowed and thus no collaboration exists between the players.
However, we can see in this example that it is better for both players if they both
don’t confess, which is a solution of a cooperative game and will be discussed later.

We now introduce an important concept in game theory: Nash equilibrium.
Nash equilibrium, named after John Forbes Nash, is a solution concept of a game
involving two or more players in which no player can benefit by changing his
strategy unilaterally. If each player has chosen a strategy and no player can benefit
by changing his or her strategy while the other players keep theirs unchanged,
then the current set of strategy choices and the corresponding payoffs constitute a
Nash equilibrium (see Nash 1951). The Nash equilibrium is a pretty simple idea:
we have a Nash equilibrium if each participant chooses the best strategy, given
the strategies chosen by other participants. In the Prisoners’ Dilemma, the pair of
strategies fconfess, confessg constitutes the equilibrium of the game.

Another well-known example is the so-called Braess’s Paradox: eliminating a
road, rather than building a road, will sometimes improve traffic conditions.

When 42nd Street in New York City was temporarily closed to traffic, rather
than the expected gridlock resulting, traffic flowed more easily. In fact, it was
reported in the September 2, 2002, edition of The New Yorker that in the 23
American cities that added the most new roads per person during the 1990s, traffic
congestion rose by more than 70% (Havil 2008). Braess’s Paradox was named after
the German mathematician Dietrich Braess, who published a paper (Braess 1969) in
which he showed that, under the appropriate conditions, building new roads to ease
congestion actually makes the problem worse.

Suppose there are initially two alternative roads to E from S : S ! A ! E and
S ! B ! E . The one-way relief road A ! B was added with the intention of
easing congestion. The time taken on each route is shown in Fig. 2.5, where xi is
the number of vehicles on that road. Assume that each driver is completely aware
of the traffic situation at all times and selfishly chooses the route that minimizes his
time of driving.

Suppose there are six cars. Let’s look into the process consisting of six cars with
and without the relief road.

1. Without the relief road A ! B , there will be three cars on route S ! A ! E

and three cars on route S ! B ! E . The average driving time is 10.3/C 3C
50 D 83.
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2. With road A ! B , we assume all six cars line up at the starting point (S ) one by
one. Because each driver takes the shortest route available at the moment, the first
two cars will be on S ! A ! B ! E with the drivers’ perceived driving time
60 min, shorter than the alternative routes. The third and fourth cars will be on
S ! A ! E and S ! B ! E , with the drivers’ perceived driving time 81 min,
one on each route; the fifth and sixth cars will also be on S ! A ! E and
S ! B ! E , with the drivers’ perceived driving time 92 (minutes). However,
the drivers’ perceived time is not the actual time because they didn’t consider the
drivers behind them. The actual drive time should be based on the actual number
of cars on the routes: x1 D 4 cars on S ! A, x2 D 2 cars on S ! B , x3 D 2

cars on A ! E , x4 D 4 cars on B ! E , and x1 D 2 cars on A ! B . The
driving time on route S ! A ! E or S ! B ! E is 10.4/C 2 C 50 D 92.
The driving time on route S ! A ! B ! E is 10.4/C 10.2/C 10.4/ D 100.
It is interesting that the first two drivers, who think they are getting the best deal
for being the first two making the choice, are actually getting the worst result, or
the longest driving time.

Braess’s Paradox can be found in any network, such as water flow, computer data
transfer, electrical and electronic networks, and telephone exchanges. In 1990, the
British Telecom network suffered in such a way when its “intelligent” exchanges
reacted to blocked routes by rerouting calls along “better” paths. This in turn caused
later calls to be rerouted with a cascade effect, leading to a catastrophic change in the
network’s behavior (Havil 2008). Can you identify examples of Braess’s Paradox in
the pharmaceutical and health industries?

Game theory is a distinct and interdisciplinary approach to the study of human
behavior. Game theory addresses interactions using the metaphor of a game: in
these serious interactions, the individual’s choice is essentially a choice of strategy,
and the outcome of the interaction depends on the strategies chosen by each of the
participants. The significance of game theory is dignified by the three Nobel Prizes
to researchers whose work is largely game theory: in 1994 to Nash, Selten, and
Harsanyi, in 2005 to Aumann and Schelling, and in 2007 to Maskin and Myerson.

Most game theories assume three conditions: common knowledge, perfect
information, and rationality. A fact is common knowledge if all players know it, and
know that they all know it, and so on. The structure of the game is often assumed to
be common knowledge among the players. A game has perfect information when at
any point in time only one player makes a move and knows all the actions that have
been made until then. A player is said to be rational if he seeks to play in a manner
that maximizes his own payoff. It is often assumed that the rationality of all players
is common knowledge. A payoff is a number, also called the utility, that reflects the
desirability of an outcome to a player, for whatever reason. When the outcome is
random, payoffs are usually weighted with their associated probabilities. Note that
the expected payoff incorporates the player’s attitude toward risk.

There are games that have more than one Nash equilibrium point. The following
example contains multiple equilibria.
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Table 2.3 Payoffs with
multiple equilibria

Diagnosis (Player B)

Go No-Go

Biotech
(Player A)

Go .10; 5/ .�5; 0/
No-Go .0;�3/ .0; 0/

Example 2.6. Suppose a biotech company has identified a drug compound that
is expected to effectively treat cancer patients with certain genetic markers or
biomarkers. However, there is no commercial screening tool currently available to
test the biomarker. Luckily, a diagnostic company has the capability to develop the
screen tool. The two companies now face a Go or No-Go decision.

If the biotech company (player A) decides to develop the drug (the Go decision)
and the diagnostic company (player B) also decides to develop the screen tool (the
Go decision), then if both are approved by the regulatory agency, the drug can be
marketed and made available to cancer patients. As a result, the gains for player A
and Player B are 10 and 5, respectively. If player A chooses “Go” and player B
chooses “No-Go,” then the drug may be available but the biotech company doesn’t
have the screening tool to identify the right patients to treat. Therefore, the drug
can’t be marketed. In such a case, the payoffs for players A and B are �5 and
0, respectively. Player A has a negative payoff due to the development cost. If
player B chooses “Go” and player A chooses “No-Go,” then the biomarker patient
population can be identified but no drug is available. Therefore, no one wants to
buy the screening tool. The payoffs for A and B are 0 and �3, respectively. If both
companies choose “No-Go,” then there is a zero payoff for both of them. The payoffs
are summarized in Table 2.3.

There are two Nash equilibria, at the upper left fGo,Gog and the lower right fNo-
Go, No-Gog. Starting from the upper left, either the column player (B) or the row
player (A) will be worse off if she changes strategies unilaterally. Similarly, starting
from the lower right, either of the players will be worse off if he changes strategies
unilaterally. In either case, they don’t want to change unilaterally. In other words,
there are two Nash equilibria. However, if communication is allowed so that either
of the players can learn immediately when the other player makes a move, then
fGo,Gog is the only equilibrium. This is because under open communication player
A or B is willing to make the first move or Go decision by knowing that the other
will immediately follow her and make the same Go decision.

A Nash equilibrium is reached if neither player can be better off changing
strategy unilaterally. However, even though the outcome fNo-Go, No-Gog is a Nash
equilibrium, it is clearly inferior to fGo, Gog.

A game in strategic form, also called normal form, is a compact representation
of a game in which players simultaneously choose their strategies. The resulting
payoffs are presented in a table with a cell for each strategy combination.

Definition 2.1. A strategy is a complete contingent plan for a player in the game.

A typical strategy profile is a vector of strategies s D .s1; : : : sn/, where si is the
strategy of player i .i D 1; : : : ; n/.
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A two-person win-lose game can be played on a so-called graph, G D .X; F /,
by stipulating a starting position x0 2 X and using the following rules:

1. Player 1 moves first, starting at x0.
2. Players alternate moves.
3. At position x, the player whose turn it is to move chooses a position y 2 F.x/.
4. The player who is confronted with a terminal position at his turn, and thus cannot

move, loses.

A game is often solved efficiently using so-called backward induction. Backward
induction is a technique to solve a game of perfect information. It first considers the
moves that are the last in the game and determines the best move for the player in
each case. Then, taking these as given future actions, it proceeds backward in time,
again determining the best move for the respective player, until the beginning of the
game is reached.

Among various types of games, a simple and well-studied type of game is the
zero-sum game. A zero-sum game is a game in which one player’s winnings are
equal to the other player’s losses.

We have discussed the pure game, where there is no probability involved regard-
ing strategy selection. However, in reality we more often encounter mixed strategy
games, where each player’s strategy selection involves a probability distribution.

Definition 2.2. If a player in a game chooses among two or more strategies
randomly according to specific probabilities, this choice is called a mixed strategy.

The game of matching pennies has a solution in mixed strategies. The game rules
are: The two players involved show their pennies at the same time; if both are heads
or tails, player A wins, and if one is a head and one is a tail, player B wins. In such
a game, neither player wants his opponent to know what to show. In other words,
they both should randomly choose heads or tails with a probability of 0.5.

We may be curious about the existence of an equilibrium in a game. The
following well-known theorem by John Nash answers the question.

Theorem 2.1. (Nash 1951). Every finite pure or mixed game with a finite number
of players and a finite strategy space has at least one Nash equilibrium.

2.2.2 Multiple-Player Game

In the prisoner’s game, there are two players and each has only two options. The
solution of the game can be found intuitively. However, in practice there are usually
more than two options for each player. To solve such games, the following theorem
is a very powerful tool.

Theorem 2.2. (Dresher 1961, p. 43). Suppose all pure strategies for each player in
a two-person zero-sum matrix game are active (i.e., no dominance or saddle point
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where A D ˚
aij
�
n�n is a nonsingular payoff matrix of the game, 1 D .1; 1; : : : ; 1/

0

is an n � 1 column vector, and the column vectors q� and p� are the optimal
mixed strategies for the players with row and column strategies in the matrix game,
respectively. The value of the game to the row player using q� is u D 1

0

A�11.

One way of phrasing this theorem is that player A searches for a strategy that
makes playerB indifferent as to which of the (good) pure strategies to use. Similarly,
playerB should play in such a way as to make playerA indifferent among his (good)
strategies. This is called the Principle of Indifference.

2.2.3 Queuing Game

Queuing theory deals with providing a service on a waiting line (queue). In a
queuing game, the order of a player benefiting more is based on his order in the
queue. Economic competition and highway congestion are two common examples.
When the number of players, N , is larger, we traditionally simplify with some
assumptions such as the representative agent model, in which we assume that all
players are identical, have the same strategy options, and get symmetrical payoffs.
We also assume that the payoff to each player depends only on the number of other
players who choose each strategy and not on which agent chooses which strategy.

Example 2.7. An example of the representative agent model is shown in Fig. 2.6,
where each investor has to decide whether to invest in inflammation or oncology
drug development but the return on investment (ROI) is dependent on the number
of investors in the product. In this hypothetical example, at the beginning the ROI is
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Table 2.4 Payoff structures
in a queuing game

Order Gross Cost of Expected net
served payoff standing payoff

1 20 3 17
2 17 3 14
3 14 3 11
4 11 3 8
5 8 3 5

higher for oncology than for inflammation drugs. When the number of oncology
drug investors increases, development becomes expensive and at the same time
development of inflammation drugs becomes less expensive in comparison. Note
that when more drugs become available for treating one disease, the chance of
having or dying from other diseases increases.

Suppose the objective is to maximum the ROI. The equilibrium is reached at the
intersection of the two profit lines in Fig. 2.6. From the figure, it is obvious that the
firstNc investors will be interested in investing in oncology drugs but investors who
come after will be interested in investing in inflammation drugs. This is a queuing
game in which multiple players are involved and payoffs are dependent on the order
of the player’s engagement.

The following is another example of a queuing game.

Example 2.8. Suppose there are five customers trying to receive a service. They all
want to get the service as early as possible, but at the same time they don’t like to
stand in line. To quantify, we make the following assumptions that apply to all five
players: The gross payoffs and cost of standing depend on the order served as listed
in Table 2.4. Net payoffs are the difference between the gross payoff and the cost of
standing (Table 2.4).

Those who do not stand in line are chosen randomly for service, after those
standing in line have been served. Therefore, the expected payoff for anyone not
standing in the line is their average gross payoff. The player’s decision on whether
to stand in line or not is driven by the maximization of his net payoff. The game can
be analyzed as follows:

1. If no one stands in line, then each person will have an equal probability of being
served first, second, . . . , and fifth. The expected payoff is .20 C 17 C 14 C
11C 8/=5 D 14. However, such a case can be improved since an individual can
improve his payoff by standing first in line. The net payoff to the person first in
line is .20� 3/ D 17 > 14, so someone will get up and stand in line.

2. If no more persons stand in line, the expected payoff is .17C 14C 11C 8/=4 D
12:5 for the four remaining. Since the second person in line gets a net payoff of
14 > 12:5, someone will get up and stand in the second place in line.

3. This leaves the average payoff at 11 for the three remaining. Since the third
person in line gets a net payoff of 11, there may or may not be someone standing
in the third place in line. When either two or three persons stand in the line, the
Nash equilibrium is reached, i.e., there are two equilibria.
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4. If no one stands in the third place, the game is over; if there is a third person
in line, then the remaining two have the expected payoff of 9:5 for not standing
in line and 8 for standing in line. Therefore, no one wants to stand in the fourth
place. The game is definitely over.

With two or three people standing in the line, a Nash equilibrium is reached. The
total net payoff for queuing is 17C 14C 11C 9:5C 9:5 D 61, which is less than
70 for not queuing at all. We call such a case inefficient queuing. To prevent this
from happening, the authority (e.g., an airline) can simply ignore the queue and,
let’s say, pass out lots for order of service at the time of each customer’s arrival, and
no standing in line will be necessary.

2.2.4 Cooperative Games

Games in which the participants cannot make commitments to coordinate their
strategies are noncooperative games. In a noncooperative game, the rational per-
son’s problem is to answer the question “What is the rational choice of strategy
when other players will try to choose their best responses to my strategy?” In
contrast, games in which the participants can make commitments to coordinate their
strategies are cooperative games.

In noncooperative games, the solution from an individual perspective often leads
to inferior outcomes, as in the Prisoners’ Dilemma. It is preferable, in many cases,
to define a criterion to rank outcomes for the group of players as a whole. The Pareto
criterion is one of this kind: an outcome is better than another if at least one person
is better off and no one is worse off. If an outcome cannot be improved upon (i.e.,
if no one can be made better off without making somebody else worse off), then we
say that the outcome is Pareto optimal. A Pareto optimization for the drug price, if
it exists, would be the price value such that any change to this price will either make
the pharmaceutical company less profitable or provide less benefit to patients.

Example 2.9. Suppose two companies are in a position to decide whether to
develop competitive drugs for anemia – a decrease in the normal number of red
blood cells (RBCs) or less than the normal quantity of hemoglobin in the blood.
Since hemoglobin (found inside RBCs) normally carries oxygen from the lungs
to the tissues, anemia’s leading symptoms are nonspecific symptoms: a feeling of
weakness or fatigue, general malaise and sometimes poor concentration.

The cost (including opportunity loss) for developing such a drug is presumably
Ca for company A and Cb for company B . The probability of success of such an
indication for marketing is denoted by p; if the drug gets regulatory approval, gross
profit for the successful company is dependent on the success of the other company
for the same indication. Assume that the total profit for the two companies is fixed
and equals G billion dollars if at least one is successful in developing the drug;
if both companies are successful in developing drugs for anemia, they get G=2
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Table 2.5 Expected net
profits

Company B

Go No-Go

Company A Go .0; 0/ .0:5; 0/

No-Go .0; 0:5/ .0; 0/

Note: GD $10B, Ca DCb D 0:5, pD 0:1

billion dollars each. If both companies make the Go decision (develop the drug),
the expected net profits will be pG=2 � Ca and pG=2 � Cb for companies A and
B , respectively. If only one company, say company A, made the Go decision and
companyB made the No-Go decision, the net profit for companyA is pG�Ca and
that for company B is zero. Similarly, we can calculate the net profits for the two
other scenarios as summarized in Table 2.5.

fGo, Gog is a Nash equilibrium (can you explain why?) with an expected net
profit of $0 for each company. Remember that the values for the parameters in this
example more or less reflect the realities in the pharmaceutical industry.

Other than by internal development, a firm can acquire necessary resources
through partnerships with other stakeholders in the pharmaceutical industry such as
pharmas, biotechs, CROs, academicians, policy-makers, and government. Common
forms of partnerships include (1) spot market exchanges, (2) contractual agreements
and alliances, and (3) mergers and acquisitions.

In Example 2.9, companiesA and B can make a joint venture to develop the two
drug candidates sequentially; i.e., if one fails, then the second will be invested in the
clinical trials. This will reduce the risk and increase the success of development.

2.2.5 Sequential Game

2.2.5.1 Compulsory Licensing and Parallel Importation

Compulsory licenses are licenses that are granted by a government to regulate
the use of patents, copyrighted works, and other types of intellectual property.
Compulsory licenses are an essential government instrument to intervene in the
market and limit patent and other intellectual property rights, in order to correct
market failures. As concerns public health and compulsory licensing, the restrictions
imposed by the intellectual property rights (IPRs) system on access to (patented)
drugs must be reasonable, not creating situations where entire populations are
denied access to known therapies. Therefore, the 1994 WTO TRIPs agreement
contains provisions on safeguards, exceptions, and mechanisms to protect essential
public health interests. The TRIP provides for compulsory licenses of patents but
also provides a number of restrictions on the use of compulsory licenses.

The propriety of parallel trade is a matter of intense policy debate in a number of
countries and in the World Trade Organization (WTO). Presently, WTO provisions
allow member countries to establish their own rules for the “exhaustion” of
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intellectual property rights (IPRs). If a country opts for national exhaustion of IPRs,
a rights holder there may exclude parallel imports because intellectual property
rights continue until such time as a protected product is first sold in that market. If
a country instead chooses international exhaustion of IPR, parallel imports cannot
be blocked because the rights of the patent, copyright, or trademark holder expire
when a protected product is sold anywhere in the world. The United States practices
national exhaustion for patents and copyrights, but permits parallel imports of
trademarked goods except when the trademark owner can show that the imports are
of different quality from goods sold locally or otherwise might cause confusion for
consumers. The European Union provides for regional exhaustion of IPR, whereby
goods circulate freely within the trading bloc but parallel imports from nonmember
countries are banned. Japanese commercial law permits parallel imports except
when such trade is explicitly excluded by contract provisions or when the original
sale is made subject to foreign price controls (Grossman and Lai 2008).

When parallel trade comes into play, the regulated price cap becomes a strategic
variable in an international setting. Parallel trade is an arbitrage mechanism through
which the drugs produced in a low-price market flow into a high-price market,
reestablishing nearly uniform prices in the presence of a large number of parallel
traders. The price difference mainly results from the transportation and transaction
costs for the reimportation.

Opponents of parallel trade are concerned that such trade undermines manufac-
turers’ intellectual property rights. The prevailing wisdom, expressed for example
by Barfield and Groombridge (1998), Chard and Mellor (1989), and Danzon and
Towse (2003), is that parallel trade impedes the ability of research-intensive firms
such as those in the pharmaceutical industry to reap an adequate return on their
investments in new technologies. Grossman and Lai (2008) challenge the prevailing
wisdom that parallel trade is induced by different national price controls. They argue
that the existing policy discussions and formal modeling overlook an important
effect of national policy regarding the exhaustion of IPRs. First, the admissibility
of parallel trade introduces the possibility that a manufacturer will eschew low-
price sales in the foreign market in order to mitigate or avoid reimportation.
When arbitrage is impossible, the manufacturer is willing to export at any price
above the marginal production cost. But when the potential for arbitrage exists, the
manufacturer may earn higher profits by selling only in the unregulated (or high-
price) market than by serving both markets at the lower, foreign-controlled price.
Accordingly, a switch from a regime of national exhaustion to one of international
exhaustion can induce an increase in the controlled price as the foreign government
seeks to ensure that its consumers are adequately served. Second, the admissibility
of parallel trade mitigates the opportunity for one government to free-ride on the
protection of IPRs granted by another.

Example 2.10. In this example, we will discuss how to model drug marketing using
a sequential game. Suppose a sequential game consists of three stages specified as
follows, where we use North and South to represent two countries with and without
an intellectual property, respectively.
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Fig. 2.7 Extensive form
of drug marketing game

North

South
Unnp(pn, ps), Usnp(ps, ps)

Unnc(pn, ps), Usnc(ps, ps)

Unip(pn, ps), Usip(ps, ps)

Unic(pn, ps), Usic(ps, ps)
South

South utility, North utility

Stage 1: North decides to go for national exhaustion (ne) or international exhaus-
tion (ie).

Stage 2: South decides to exercise a price control (pc), i.e., set up a price cap pc or
a compulsory license (cl).

Stage 3: North decides the price for North and South, pn and ps .

The extensive form of the sequential game is shown in Fig. 2.7.
A non-cooperative solution is the solution to the game when the players take

actions to maximize each individual gain. LetUnij .�; �/ be North’s utility when North
takes strategy i and South takes strategy j ; letUsij .�; �/ be South’s utility when North
takes strategy i and South takes strategy j , as illustrated in Fig. 2.7.

Using backward induction, South will take the action Ask (price control
or compulsory license) to maximize its utility Usk such that Usk D max
.Uskp.pn; ps/; Uskc.ps; ps//, where kDn for national exhaustion or kD i for
international exhaustion. After knowing South will take action Ask, North will
take action Ank to maximize its utility.

If maxUnnp.pn; ps/> maxUnnc.pn; ps/> maxUnip.pn; ps/> maxUnic.pn; ps/;

maxUsnp.pn; ps/< maxUsnc.pn; ps/, and max Usip.pn; ps/> maxUsic.pn; ps/,
then South will decide to exercise the compulsory license if North opts for national
exhaustion of IPRs. On the other hand, South will exercise price control if North opts
for international exhaustion, which implies North either has utility maxUnnc .pn; ps/

under national exhaustion or maxUnip .pn; ps/ under international exhaustion.
Knowing this fact and that maxUnnc .pn; ps/ > maxUnip .pn; ps/, North will
exercise national exhaustion.

The noncooperative solution can often be improved. We use an example to
illustrate how to find a Pareto optimum for the cooperative game in Fig. 2.5. Suppose
max Unip .pn; ps/ D 10 > maxUnnp .pn; ps/ D 8 > maxUnnc .pn; ps/ D 5 > max
Unic .pn; ps/ D 1 and maxUsnp .pn; ps/ D 2 < maxUsnc .pn; ps/ D 3 < max
Usip .pn; ps/ D 7 < max Usic .pn; ps/ D 10. In such a case, South will exercise
the compulsory license regardless of North’s action (national or international
exhaustion), which implies North either has utility maxUnnc .pn; ps/ D 4 under
national exhaustion or maxUnic .pn; ps/ D 1 under international exhaustion. It is
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obvious that North will exercise national exhaustion with a utility of 5 and South
will have a utility of 3. However, the result can be improved through an agreement
that North will use international exhaustion and South will use the price control.
This is the only Pareto optimum for the game, which gives North 10 and South 7 for
the utility.

2.3 Implementation Challenges

The most fundamental step in pharmaceutical decision-making and game modeling
is to quantify a utility function based on the objective and to understand the
process of the problem to be modeled. For different objectives, the assumptions
made about the process are different because an assumption may be quite suitable
for one purpose but not suitable at all for another. Model building is an abstract
thinking process in which the model builder tries to capture the most important
factors and simplify or convert the problem into a decision or game model. The
selection of factors to be included in the model is a dimension-reduction process
using knowledge beyond statistics, which is different from and not replaceable by
statistical modeling approaches such as stepwise elimination in a linear regression.
Pharmaceutical decision modeling here is beyond traditional modeling. It is large-
scale, cross-discipline modeling directed by decision and game theory.

Decision modeling requires strong collaborations among people from different
disciplines, in which the statistician plays the critical role of the “project coordi-
nator.” He or she has to know what information is needed, and where and how to
acquire it. Furthermore, the statistician should have a good sense about the precision
or variability of the information. For example, to determine the utility of developing
a drug, we have to determine the value proposition and project the short-term and
long-term market values, which can usually be obtained by working with the com-
mercial/marketing group of the company. The statistician may be asked to design
clinical development programs, which involve multiple phases in clinical trials.

The success of decision-process modeling will also include the campaign of
the proposed model, which requires diverse skills, including presentation and
interpersonal skills. Such soft skills are critical but unfortunately often neglected
by statisticians. Statistics alone can, in this case, only make things look good on
paper. Note that the campaign for the project is itself a game.

The utility in the Markov decision process will direct the choice of the optimal
design. Years ago, a colleague of mine told me that he had tried different pharma-
ceutical decision models in a certain clinical trial but the maximization of utility
always led to an infinitely large sample size or a Go decision. I suspect that the
reason behind this is an overly optimistic model. This overly optimistic attitude is a
general trend in the pharmaceutical industry. I am going to elaborate upon this and
discuss how pharmaceutical decision modeling can be made realistic and successful.

A study (Pearlman, 2007) shows that big pharma has consistently been the single
most profitable industry of all 47 represented in the Fortune 500. However, this
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kind of comparison may not be very informative, as we know that investment in
pharmaceutical R & D has a high risk. The success rate in the pharmaceutical indus-
try is very low: there are many failures and bankruptcies; only a small proportion
of the NMEs can make it all the way to market. The profitability for successful
big pharma is naturally higher. Just like playing lotteries, if the profitability is
calculated based only on the winners, it will be much higher than that for the real-
life pharmaceutical industry. However, the expected profit of playing any lottery
game is negative. Because “the winner talks all,” we often overestimate the value of
a new drug. This optimism may sometimes be used as a strategy of a team to get the
financial support they need. Not only is the drug’s value over-projected, but also the
probability of success (I will provide an example soon). Optimism adversely inflates
the probability of moving the project forward but eventually fails with high costs.

The most obvious example, but surprisingly not well recognized, concerns
the power calculation in clinical trial designs. We know that the phase III trial
approval rate has been about 40% in the past 10 years, including the reason of
failing to demonstrate efficacy. However, phase III trials are commonly designed at
approximately a 90% power, which means that about 90% (81% if two independent
trials are required) will demonstrate statistical significance. Why is there such a
big difference, 90 versus 40%? There are several reasons: (1) overestimating the
treatment effect or using the minimal clinical difference inappropriately to calculate
the power, (2) underestimating the variance, and (3) the commonly used methods for
power calculation do not consider variability of the treatment effect (see Chap. 10).

The Markov decision processes we have discussed so far have known transition
probabilities, so that calculation can be carried out. What if the probability is
unknown, or is too complicated and becomes intractable? In our previous examples
of clinical development, both the transition probabilities and the expected overall
gain are heavily dependent on the toxicity rate p0 and the treatment effect ı, two
unknown parameters. If the assumptions about the two parameters change, the
overall expected gain will change. In other words, the optimal action rules will
depend on the assumptions around the parameters. To solve this dilemma, several
methods are proposed, includingQ-learning and the one-step-forward approach.
Q-Learning (Gosavi 2003) is a form of model-free reinforcement learning. It

is a forward induction and an asynchronous dynamic programming. The power
of reinforcement learning lies in its ability to solve the Markov decision process
without computing the transition probabilities that are needed in value and policy
iteration.

One of the popular approaches in robotics is to let the agent randomly choose
an action with the selection probability proportional to the potential gain from each
action. The idea behind this approach is to modify the randomization probability
gradually in such a way that when our initial judgment about expected gains is
wrong, the action will be corrected over time. This has motivated the one-step-
forward approach, which has the transition probability

pij D gjP
k gk

;
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where the summation is performed over all nodes that can be reached by one step
forward from node i . We will use this concept in designing adaptive trials, i.e., the
response-randomization trials in Chap. 4.

However, both the Q-learning and one-step-forward approaches are effective
only when the same experiments can be repeated many times, which does not
happen for any single drug candidate.

Most game theories are developed under the assumption of common knowledge.
However, such an assumption generally does not hold because each pharmaceutical
company is very protective of its intellectual properties. In such a scenario, the
complexity of the game increases, and we have to distinguish between what our
opponent actually knows and what we think they know.

In collaborative games, many details about partnerships between the two or
multiple players cannot be specified in the contract; the actions and associated
consequences have great uncertainties. Therefore, probability theory, including
Bayesian approaches (Chap. 10), plays an important role here. Pharmaceutical
decision and game modeling often require simulation for support (see Chap. 9).

2.4 Exercises

2.1. Braess illustrated his paradox using an example in Fig. 2.5, but the time taken
on the relief road A ! B was 10 C x5 instead of 10x5. Solve this game (Braess
Paradox). If there are generally a total of n cars, solve the game. Hint: At Nash
equilibrium, the times taken on each road of the three routes (S ! A ! E , S !
A ! B ! E , and S ! B ! E) will be the same; furthermore, x1 D x3 C x5 and
x2 C x5 D x4.

2.2. Table 2.6 represents the actual success rates of different phases of clinical
trials. Success is defined as the launch of the next phase, with the exception of
phase III. Success for a phase III trial means NDA approval. Please discuss how
to use this prior to your clinical development program (CDP) modeling using the
stochastic decision process.

2.3. Explain the terms: game, strategy, player, zero-sum game, mixed strategy
game, matrix game, queuing game, cooperative and non-cooperative games, equi-
librium in a game, Nash equilibrium, Pareto optimum, and strategic and extensive
forms.

Table 2.6 Success rates of various phases of trials

Year

1990 1992 1994 1996 1998 2000

Preclinical 0.24 0.24 0.19 0.21 0.18 0.21
Phase I 0.55 0.60 0.52 0.55 0.55 0.50
Phase II 0.47 0.44 0.42 0.47 0.39 0.28
Phase III 0.78 0.79 0.73 0.60 0.65 0.43

Source: Chang (2010)
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2.4. Find the Pareto optimal solution set for the following cooperative game
(McCain, 2009).

Suppose that Joey has a bicycle. Joey would rather have a game machine than a
bicycle, and he could buy a game machine for $80 but doesn’t have any money.
We express this by saying that Joey values his bicycle at $80. Mikey has $100 and
no bicycle, and would rather have a bicycle than anything else he can buy for $100.
We express this by saying that Mikey values a bicycle at $100. Analyze the game,
construct a 2 � 2 payoff table, and solve the game. You can make assumptions as
necessary.

2.5. Elaborate how Bellman’s backward induction algorithm can improve the
efficiency of simulations in the CDP.

2.6. Discuss different forms of alliances, their advantages, and their disadvantages.

2.7. Elaborate on the three common assumptions in game theory, and discuss the
fitness of those assumptions in situations of interest.

2.8. For the two-player pharmaceutical game (Table 2.3), discuss the following
cooperative game: The two companies make strategic alliances in which they agree
to jointly develop a drug for an indication using one of the NMEs. If it is successful,
the second NME will not be studied; if it fails, they will bring the second one to the
development pipeline.
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Chapter 3
Noninferiority Trial Design

3.1 Concept of Noninferiority Trial

3.1.1 Needs for Noninferiority Design

Superiority and noninferiority (NI) trials are two common types of clinical trials.
Superiority means, in layman’s language, that the test drug is better than the
comparative drug (active comparator or active-control), whereas noninferiority
suggests that the test drug may not be as good as the comparative drug, but the
difference is not clinically significant. If a test drug is noninferior to an active-
control, it must be at least superior to a placebo (Fig. 3.1).

Statistically, the hypothesis tests for superiority and noninferiority are expressed,
respectively, as

Ho W �T � �C � 0 versusHa W NHo

and
Ho W �T � �C � �ıNI versusHa W NHo,

where �T and �C are treatment effects for the test and control groups, respectively.
Here the so-called noninferiority margin ıNI is usually defined based on clinical and
statistical considerations (see details later in this chapter).

As the European regulatory agency, Committee for Medicinal Products for Hu-
man Use (CHMP 2005) stated, “Many clinical trials comparing a test product with
an active comparator are designed as noninferiority trials. The term ‘noninferiority’
is now well established, but if taken literally could be misleading. The objective of a
noninferiority trial is sometimes stated as being to demonstrate that the test product
is not inferior to the comparator. However, only a superiority trial can demonstrate
this. In fact a noninferiority trial aims to demonstrate that the test product is not
worse than the comparator by more than a pre-specified, small amount. This amount
is known as the noninferiority margin, or delta.”

Until recent years, the majority of clinical trials were designed for superiority to
a comparative drug (the control group). A statistic shows that only 23% of all NDAs
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Fig. 3.1 Superiority versus
noninferiority
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from 1998 to 2002 were innovative drugs, and the rest were accounted for as “me-
too” drugs (Chang, 2010). Those me-too drugs are based on noninferiority criteria.
The increasing popularity of noninferiority trials is a reflection of the regulatory and
industry adjustments in response to the increasing challenges in drug development.

The emerging trend of more noninferiority trials than superiority trials can be
attributed to the following causes:

1. When many efficacious treatments are available, the use of placebo-control
trials for the evaluation of new medical treatments in clinical trials is ethically
problematic.

2. Test and control drugs are expected to have a similar magnitude of efficacy, but
they may have different mechanics of action and hence will work for different (at
least partially) populations.

3. A new test drug may be safer, cheaper, more convenient or easy to administrate,
or have a better taste, different interactions with other drugs, or other kinds of
benefits to patients.

4. There is growing interest among third-party payers and some regulatory au-
thorities, on both cost-effectiveness and medical grounds, in the comparative
effectiveness of treatments.

5. The “low-hanging fruits” in drug development are much less available than in
prior years. When we continue to make more effective and/or safer drugs, the
chance of finding a compound better than the “best” in the market is smaller and
the efforts required to find such a compound are bigger.

6. There are great attractions to develop generic drugs after patent expiration of
innovative drugs.

CHMP (2005) pointed out the situations in which NI trials may be used, which
include:

1. Applications based upon essential similarity in areas where bioequivalence
studies are not possible, e.g., modified release products or topical preparations;

2. Products with a potential safety advantage over the standard might require an
efficacy comparison to the standard to allow a risk-benefit assessment to be made;

3. Cases where a direct comparison against the active comparator is needed to help
assess risk/benefit;

4. Cases where no important loss of efficacy compared to the active comparator
would be acceptable;

5. Disease areas where the use of a placebo arm is not possible and an active-control
trial is used to demonstrate the efficacy of the test product.
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However, there are concerns and challenges in design, conduct, and analysis
and interpretation of a noninferiority trial, such as active-control selection, the
noninferiority margin determination, and inclusion of a placebo arm. We will
discuss these issues in later sections.

3.1.2 Noninferiority Lingo

1. Noninferiority margin: The noninferiority active-control trial should demonstrate
that the new treatment T is within the noninferiority margin ıNI of the active-
control C . This margin should have clinical relevance. The determination of the
NI margin is a major challenge in designing an NI trial.

2. Assay sensitivity: Assay sensitivity, a property of a clinical trial, refers to the
ability of the trial to distinguish effective drugs from ineffective ones. Assay
sensitivity depends on the effect size one needs to detect. A trial may have
assay sensitivity for an effect of ten but not an effect of five. One therefore
needs to know the effect of the control drug (Temple 2002). Assay sensitivity
is the assurance that the active-control would have been superior to a placebo
if a placebo had been employed in the noninferiority trial. Establishing assay
sensitivity is a basic requirement in an NI trial, which is usually accomplished
using an adequate NI margin that is based on past placebo-control trials.

3. Constancy: The constancy assumption means that the historical difference
between the active-control and placebo is assumed to hold in the setting of the
new trial if a placebo control was used. The populations in the historical trial and
the current NI trial are similar (D’Agostino et al. 2003).

4. Putative placebo: The term “putative placebo” is often used in a situation where
no placebo has actually been used. Since an NI trial often does not include a
placebo group, to establish the assay sensitivity it is then necessary to use C
versus T data in conjunction with C versus P , the historical placebo-controlled
trial data, to demonstrate that T is superior to P . This process is called the
putative placebo comparison.

5. Biocreep: Biocreep refers to the phenomenon that can occur when a slightly infe-
rior treatment becomes the active-control for the next generation of noninferiority
trials, and so on. Eventually the active controls become no better than a placebo.

6. Noninferiority design methods include the fixed-effect method, �-method, syn-
thesis method, NI95-H95 method, and others.

3.1.3 Noninferiority Design Methods

There are three major sources of uncertainty about the conclusions from an NI study:
(1) the uncertainty of the active-control effect over a placebo, which is estimated
from historical data, (2) the control effect may change over time, violating the
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“constancy assumption,” and (3) that the risk of making a wrong decision from the
test of the noninferiority hypothesis in the NI study, i.e., the type-I error. These three
uncertainties have to be considered in developing a noninferiority design method.

Most commonly used noninferiority trials are based on parallel, two-group
designs. Three-group designs with a placebo may sometimes be used, but they are
not very cost-effective and often face ethical challenges by including a placebo
group, especially in the United States.

We now discuss five commonly used hypothesis-testing methods for noninfe-
riority trials: the fixed-margin method, the �-portion method, and three synthesis
methods (one in original scale and two in log scale). In the rest of the chapter, we will
denote the test and the active-control groups by subscripts T and C , respectively.
Where there is no confusion, T will also be used for test statistics. We will use
the hat “ˆ” to represent an estimate of the corresponding parameter, e.g., O� is an
estimate of � .

3.1.3.1 Fixed-Margin Method

The null hypothesis for the fixed-margin method is given by

Ho W �T � �C C ıNI � 0, (3.1)

where � can be the mean, hazard rate, adverse event rate, recurrent events rate, or
the mean number of events. The constant noninferiority margin ıNI � 0 is usually
determined based on a historical placebo-control study (see more discussions later).
When �NI D 0, (3.1) becomes a null hypothesis test for superiority.

The rejection of (3.1) can be interpreted in layman’s terms: The test drug T is
not inferior to C by ıNI or more.

3.1.3.2 �-Portion Method

The null hypothesis for the �-portion method is given by

Ho W �T � �NI �C � 0, (3.2)

where 0 < �NI < 1. For the superiority test, �NI D 1.
The rejection of (3.2) can be interpreted in layman’s terms: Drug T is at least

100�NI% as effective as drug C .

3.1.3.3 Synthesis Method

The null hypothesis for the synthesis method is given by

Ho W �T � �P

�C � �P
� �NI � 0. (3.3)
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Assuming we have proved �C � �P > 0,(3.3) is then equivalent to

Ho W �T � �C C .1 � �NI / .�C � �P / � 0; (3.4)

where 0 < �NI < 1. For the superiority test, �NI D 1.
The rejection of (3.3) can be interpreted in layman’s terms: The test drug T

is at least 100�NI% as effective as C after subtracting the placebo effect. When
�NI D 0, (3.3) represents a null hypothesis for a putative placebo-control trial.

3.1.3.4 Synthesis Method in Log Form

Drug effect is often measured by the hazard ratio (relative risk) or odds ratio, i.e.,
�T
�C

and �C
�P

. These ratios are often expressed in log scale, so that their distributions
are close to normal distributions. In such cases, we can use the NI null hypothesis

Ho W �T =�C
�C =�P

� �NI � 0, (3.5)

where 0 < �NI < 1 if a larger value of �i indicates a better result and �NI > 1 if a
smaller �i indicates a better result.

Taking the logarithm, (3.5) becomes

Ho W ln

�
�T

�C

�
� ln

�
�C

�P

�
� ��

NI � 0; (3.6)

where ��
NI D ln�NI . Thus ��

NI < 0 if a larger value of �i indicates a better result
and ��

NI > 0 if a smaller �i indicates a better result.
The rejection of (3.5) can be interpreted in layman’s terms: The incremental

effect of test drug T over the active-control is at least 100�NI% of the effect . �C
�P
/

of the active versus placebo. Note that �T =�C is addressed in the current NI trial,
whereas �C =�P is addressed in the historical trial.

3.1.3.5 Synthesis Method for Time-to-Event Endpoint

Rothmann et al. (2003) proposed the noninferiority test method for the time-to-event
analysis with the null hypothesis being

Ho W ln
�T

�C
C ��

NI ln
�C

�P
� 0, (3.7)

where 0 < ��
NI � 1 if a smaller �i indicates a better result and ��

NI < 0 if a larger
�i indicates a better result. Hypothesis (3.7) can also be used for a hazard ratio test
for a binary (not time-to-event) endpoint. The advantage of (3.7) is small variance
and higher power in comparison with (3.6), but interpretation is not intuitive.
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We can rewrite the hypothesis tests (3.1)–(3.7) above in a general form,

Ho W L.„ .�// � 0 versusHa W NHo; (3.8)

where NHo is the negation of Ho, L.�/ is a linear function, function „.�/ can be, for
example, the natural logarithm function, and vector � can be, for example, means,
proportions, or hazard rates.

For hypothesis (3.8), we can define the test statistic as

T D
L
�
„
� O�
��

v
; (3.9)

where O� can be an estimate of � with variance

v2 D var
�
L
�
„. O�/

��
: (3.10)

The asymptotic distribution of the test statistic T given by (3.9) usually has a
normal distribution,

T � N
�"

v
; 1
�
; (3.11)

where " D L.„.�// D E
�
L
�
„. O�/

��
.

Under the null hypothesis boundary "D0, the test statistic has the standard normal
distribution T � N .0; 1/. Therefore, the power can be expressed as

1 � ˇ D ˚
�"

v
� z1�˛

�
, (3.12)

where ˇ is the type-II error rate, ˚ .�/ is the standard normal c.d.f., and z1�˛ D
˚�1 .1� ˛/.

Solving (3.12) for 1=v, we have

1

v
D .z1�a C z1�ˇ/

"
. (3.13)

Where, under a large-sample assumption, v can usually be expressed as v D �p
n

,
where � is independent of the total sample size n. Therefore, the sample size can be
obtained from (3.13),

n D .z1�a C z1�ˇ/2�2

"2
; (3.14)

where the “equivalent variance,” �2; will be discussed later for each particular case.

Remark. The rejection of the null hypothesis Ho W � � 0 implies concluding the
general condition � > 0 (the negation ofHo) but not concluding any particular value
of � D " even if we have written the alternative hypothesis asHa W � D ". Therefore,
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in this chapter, we always use the negation of Ho as the alternative hypothesis in
hypothesis-testing. However we have to assume a particular value for � D " for the
purpose of power or sample size calculation.

3.1.4 Analysis of Noninferiority Trials

In superiority trials, the intent-to-treat (ITT) population is the primary analysis
population because of the ITT principle and is also a conservative approach.
However, for the NI trial, both ITT and per protocol analyses are equally important,
according to CPMP (2000), partially because ITT analysis does not necessarily
provide conservative results.
P -values for the NI hypothesis-test and confidence interval are usually presented.

The two methods are equivalent in terms of making the positive or negative claim
about the test drug. The confidence interval consists of all the possible values of the
parameter (e.g., �T � �C , �T =�C , etc.) that will not lead to the rejection of the null
hypothesis. Theorem 3.1 and its converse, Proposition 3.1, assert the equivalence.
In practice, the confidence interval (CI) method is used more often because it is a
common view that it is more informative than the p-value. In fact, CHMP (2005)
suggests applicants provide CIs both for each treatment group separately, and for
the difference between the groups.

Theorem 3.1. (Shao, 2003, p. 477) For each �0 2 � (parameter space), let T�0 be
a test for Ho W � � �0 D 0 versus Ha W NH with significance level ˛ and acceptance
region A .�0/. For each x in the range of X , define

C .x/ D f� W x 2 A .�/g :

Then C .x/ is a level 1 � ˛ confidence set for � .

Proof. Under the given condition,

sup
�D�0

P .X … A .�0// D sup
�D�0

P .T�0 D 1/ � ˛

is the same as

1 � ˛ � inf
�D�0

P .X 2 A .�0// D inf
�D�0

P .�0 2 C .X// .

Since this holds for all �0, the result follows from

inf
P2} P .X 2 C .X// D inf

�02�
inf
�D�0

P .�0 2 C .X// � 1 � ˛.
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Scenario 1

Scenario 2

Scenario 3

-δNI 0 Treatment difference δ T-C

Fig. 3.2 Determination of superiority and noninferiority with CI

The converse of Theorem 3.1 is the following proposition.

Proposition 3.1. Let C .X/ be a confidence set for � with significance level 1� ˛.
For any �0 2 �, define a region A .�0/ D fx W �0 2 C .x/g. Then the test T .X/ D
1 � IA.�0/ .X/ has a significance level ˛ for testing Ho W � D �0 versus NHa.

However, the equivalence between the CI method and hypothesis-testing may not
hold for sequential or multiple-testing; e.g., in a multiple-endpoint NI trial. In such
a case, we may use the methods discussed in Chap. 1.

We have illustrated the concepts of noninferiority and superiority in terms of
the true treatment effect (parameter). However, because the true effect can’t be
known exactly, the confidence method is illustrated in Fig. 3.2. In scenario 1, the
lower 95% confidence bound is larger than the NI margin (�ıNI ), indicating the
test drug is effective (NI demonstrated). In scenario 2, the point estimate favors
the test drug but the lower 95% confidence bound is smaller than the NI margin
(�ıNI ), indicating unacceptable loss of the control effect (assume a larger treatment
difference is better). In scenario 3, the test drug is superior to the active-control
because the lower 95% confidence bound is larger than 0.

3.2 Two-Arm Design

3.2.1 Fixed-Margin Method

Based on the fixed-margin method, a hypothesis test for a noninferiority test for two
independent parallel-group designs can be specified as

Ho W �T � �C C ıNI � 0 versusHa W NHo: (3.15)
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The test statistic is defined as

T D O"pn
O� , (3.16)

where
8
<̂

:̂

O" D O�T � O�C C ıNI ;

O� D
s

O�2T
fT

C O�2C
fC
;

(3.17)

with O�2i being the sample variance (i D T;C ), n being the total sample size, and
sample size fractions fi D ni =n (i D T;C ).

For a large sample size, T has the standard normal distribution ofN .0; 1/ on the
boundary of the null hypothesis domain (�T � �C C ıNI D 0) and has the normal

distribution N."
p
n

�
; 1/ under the condition �T � �C C ıNI D ".

For the mean endpoint�i , O�T and O�C are the sample standard deviations. For the
proportion endpoint pi , the standard deviations are

O�2i D Opi .1 � Opi /; i D T;C . (3.18)

For the survival endpoint, O�i D O�i ; i D T;C , where �i is the population hazard rate
for group i . The standard deviation for O�i , under exponential distribution, is given
by (e.g., Chang 2007b):

�2i D �2i

�
1C e��iTs .1 � e�i T0 /

T0�i

��1
, (3.19)

where T0 and Ts are the accrual time period and the total trial duration, respectively.
Under an exponential survival model, the relationship between hazard .�/,

median .Tmedian/, and mean .Tmean/ survival time is very simple:

TMedian D ln 2

�
D .ln 2/Tmean.

The rejection rule is specified as follows (assume larger � is preferred):

�
Reject Ho if T � z1�˛ ,
Accept Ho otherwise.

(3.20)

Equivalently, we can use the confidence interval of ":

(
Reject Ho if O" � z1�˛ O�p

n
� 0,

AcceptHo otherwise.
(3.21)
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The power of the test statistic T under a particularHa can be expressed as

1 � ˇ D ˚

�
"
p
n

�
� z1�˛

�
; (3.22)

where " and � are estimated by (3.17).
Solving (3.22) for the sample size, we obtain

n D
	
z1�˛ C z1�ˇ


2
�2

"2
: (3.23)

Equation 3.23 is a general sample size formulation for the two-group designs
with a normal, binary, or survival endpoint (Chang 2007a).

For the test statistic given by (3.16), the p-value is given by

p D 1 � ˚

� O"pn
O�
�

. (3.24)

Remark. A common misconception is that for an NI trial the sample size calculation
must assume �T � �C D 0, which is not true at all. One could choose an NI design
because the difference �T � �C > 0 is too small for superiority testing with
reasonable power. The treatment difference can be positive or negative depending
on the particular situation. The power and sample size calculation should be based
on the best knowledge about the value of �T � �C , and this knowledge should not
change because of the different choice of hypothesis test. Therefore, for a given
value of �T � �C and power, superiority testing always requires a smaller sample
size than noninferiority testing.

Example 3.1. Arteriosclerotic Vascular Disease Trial: Cholesterol is the main lipid
associated with arteriosclerotic vascular disease. The purpose of cholesterol testing
is to identify patients at risk for arteriosclerotic heart disease. The liver metabolizes
cholesterol to its free form and transports it to the bloodstream via lipoproteins.
Nearly 75% of the cholesterol is bound to low-density lipoproteins (LDLs) – “bad
cholesterol” and 25% is bound to high-density lipoproteins (HDLs) (“good choles-
terol”). Therefore, cholesterol is the main component of LDLs and only a minimal
component of HDLs and very-low-density lipoproteins. LDL is the substance most
directly associated with increased risk of coronary heart disease (CHD).

Suppose we are interested in a phase III trial for evaluating the effect of a test
drug on cholesterol in patients with CHD. A two-group (test versus control) parallel
design is chosen for the trial, with LDL as the primary endpoint. The treatment
difference in LDL is estimated from the previous phase II trial to be �T � �C D 5%
(LDL reduction O�TD25% and O�CD20%) with a standard deviation of O� D 2 O�T D
2 O�C D 0:3 (sample size fraction fT D fC D 0:5 for the balance design, O�C D
0:15). For power = 90% and one-sided ˛ D 0:025, the total sample required for
superiority can be calculated:
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n D4.1:96C 1:28/2
	
0:32




0:052
D 1;512:

For a noninferiority test with a margin ıNI D �0:01, the total sample size is
given by (2.23):

n D4.1:96C 1:28/2
	
0:32




.0:05C 0:01/2
D 1;050:

We can see that the required sample size is smaller for the noninferiority test
than for a superiority test under the same assumption of treatment effect �T � �C .
However, if we assume the treatment difference is �T � �C D 0 instead of 5%, the
sample size for the noninferiority trial will be

n D4.1:96C 1:28/2
	
0:32




0:012
D 27;791;

which means that if the test drug has the same effect as the control, �T D �C , it is
not feasible for a superiority trial (n D 1) or noninferiority trial (n D 27;791). In
practice, if the estimate �T � �C D 5% is reliable, we may design the noninferiority
trial with 90% power (n D 1;050). The trial will be tested both for noninferiority
and superiority claims at one-sided ˛ D 0:025. With the same size of n D 1;050,
the power for the superiority test is 77%.

3.2.2 �-Portion Method

For the �-portion method, the hypothesis is given by

Ho W �T � �NI �C � 0 ; (3.25)

where 0 < �NI < 1 (assume that a larger � is better).
The test statistic is defined in the same way as in (3.16), where

8
<

:

O" D O�T � �NI O�C ;
O�2 D O�2T

fT
C �2NI

O�2C
fC
:

(3.26)

With O" and O� given by (3.25), the calculations for the p-value (3.24), the rejection
rule (3.21), power formulation (3.22), and the sample size formulation (3.23) are still
valid.

The �-portion method is usually more powerful than the fixed-margin method
because the variance given by (3.26) is usually smaller than the corresponding
variance (3.17) for the fixed-margin method.
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Example 3.2. For the LDL trial in Example 3.1, the estimated O" D O�T � O�C C
ıNI D 0:06. For the purpose of comparison with the fixed-margin method, assume
�NI D 0:95 such that the estimated

O" D O�T � �NI O�C D 25% � 0:95.20%/ D 0:06:

From (3.26), we can obtain

O�2 D
p
0:152=0:5C 0:952.0:152=0:5/ D 0:293:

Therefore, the total sample size required can be obtained from (3.14),

n D4.1:96C 1:28/2
	
0:2932




0:062
� 1;000;

which is smaller than the sample size (n D 1;050) required for the fixed-margin
method.

For the survival endpoint, the logarithm of the hazard ratio (ln�/ is often used in
the hypothesis test. The standard error of ln� is conveniently expressed as a function
of events (deaths),

SEln O� D
Z 1

0

�
nT � nC

nC C nT ��.��1/=�

�1=2
d� �

�
1

dT
C 1

dC

�1=2
,

where dT and dC are the number of deaths for the test and control groups,
respectively. The approximate upper limit of the confidence interval of � is given by

UL D exp
�

ln O� C z1�˛SEln O�
�

.

If the UL � ��NI (the cut point for NI, e.g., ��NI D 1:25), noninferiority will be
claimed.

3.2.3 Synthesis Method

1. With the synthesis method, the hypothesis test for noninferiority with two-group
designs can be specified as

Ho W �T � �C C .1 � �NI / .�C � �P / � 0 versusHa W NHo. (3.27)

The test statistic is again defined as in (3.16), where
8
<̂

:̂

O" D O�T � O�C C .1 � �NI / OıC�P ,

O�2 D
� O�2T
fT

PC O�2C
fC

C .1� �NI / s
2
en

�
,

(3.28)
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and �i (i D T;C ) is the same as given earlier for the fixed-margin approach for
different endpoints, mean proportion, and hazard rate. Both OıC�P D O�C� O�P and the
standard error se of OıC�P are obtained from the historical placebo-control trial(s).
The standard error se can be estimated by

se D
r

O�C
�
1 � O�C

�
=nC C O�P

�
1 � O�P

�
=nP ;

where ni (i D C;P ) are the sample sizes in the treatment groups C and P of the
historical trial, respectively.

For a large sample size, T � N.
"
p
n

�
; 1/, where

" D �T � �C C .1 � �NI / ıC�P : (3.29)

Therefore, using (3.28) and (3.29), the calculations for the p-value (3.24) and
rejection rules (3.21) are still valid; so are the power (3.22) and sample size (3.23).
However, because � involves n, the sample size needs to be reformulated for easy
calculation.

The sample size can be obtained through iterations based on the following
formulation:

n D
	
z1�˛ C z1�ˇ


2 � �2T
fT

C �2C
fC

C .1 � �NI/ s
2
e n
�

"2
: (3.30)

Alternatively, we can solve (3.30) for n. We can obtain

n D
�0

�
�2T
fT

C �2C
fC

�

1 � .1� �NI / s2e �0
; (3.31)

where

�0 D
	
z1�˛ C z1�ˇ


2

"2
: (3.32)

Because the synthesis method considers the variability of the historical trial, there
is a bigger variance in the denominator of the test statistic in comparison with the
fixed-margin method. As a result, the synthesis method is less powerful.

Example 3.3. Suppose we are going to design a two-arm phase III cardiovascular
(CV) disease trial comparing the effect of the test treatment T to an active-controlC
with 1:1 randomization. The primary endpoint is the rate of the composite endpoint,
i.e., death or MI (myocardial infarction) within 30 days. The proportion of the com-
posite endpoint in the historical randomized trial was O�C D 0:14 and O�P D 0:16 for
the treatment C (nC D 5;000) and the standard care P (nP D 5;000), respectively.
Thus ıC�P D 0:14 � 0:16 D �0:02. The standard error is estimated to be

se D
p
.0:14.1� 0:14/=5;000/C 0:16.1� 0:16/=5;000 D 0:00714:
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The death rate with treatment T is estimated to be O�T D 0:115. The target power is
90%, and the one-sided significance level is ˛ D 0:025. Assume we want to retain
80% of the historical active-control effect, i.e., �NI D 0:8 (or about 0:4% more
composite events in terms of the fixed NI margin). To calculate the total sample size
required for a balanced design (f1 D f2 D 0:5), we estimate " from (3.29):

" D 0:12� 0:14C .1 � 0:8/ .�0:02/ D �0:024.

From (3.32), we obtain

�0 D .1:96C 1:28/2 =.�0:024/2 D 18; 225.

Finally, from (3.31), we obtain the total sample size

n D
18; 225

�
0:12.1�0:12/

0:5
C 0:14.1�0:14/

0:5

�

1 � .1 � 0:8/ 0:007142.18; 225/ D 10; 118.

For the superiority design, the total same size would be

n D
�
0:115.1� 0:115/

0:5
C 0:14.1� 0:14/

0:5

�
.1:96C 1:28/2

.0:12� 0:14/2
D 11;662.

2. We now study the hypothesis

Ho W ln
�T

�C
� ln

�C

�P
� ��

NI � 0, (3.33)

where ��
NI D ln�NI as given in (3.6). Hypothesis (3.33) is often used for survival

problems, where �T
�C

represents the hazard rate. The test statistic can again be defined
by (3.16), where

O" D ln
O�T
O�C

� ln
O�C
O�P

� ��
NI . (3.34)

The estimated log hazard ratio, ln
O�C
O�P , is usually obtained from a historical placebo-

control trial(s), whereas ln
O�TO�C is obtained from the current NI trial, and

O�2 D n

"
var

 
ln

O�T
O�C

!
C var

 
ln

O�C
O�P

!#
, (3.35)

where the first and second terms on the right-hand side of the equation are obtained
from the current NI and historical trials, respectively. The variance of the log relative
risk can be calculated using
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�2TC D var

 
ln

O�T
O�C

!
D 1

n

�
1

rT
� 1

fT
C 1

rC
� 1

fC

�
, (3.36)

where ri and fi are the response (death) rate and the sample size fraction in group i
(i D T;C ), respectively.

Therefore, with (3.34) and (3.36), the formulations for the p-value (3.24),
rejection rules (3.21), power (3.22), and sample size (3.23) are still valid.

Example 3.4. Suppose we are conducting a two-group oncology trial with a 1 year
death rate as the primary endpoint (more often it is survival time). Assume that in

the historical trial we know O�C D 0:4 and O�P D 0:52, and var
�

ln
O�CO�P

�
D 0.0065.

Because a smaller �i indicates a better result, ��
NI should be positive. Assume

��
NI D 0:4 or, equivalently, �NI D e0:4 D 1:5. Given the true rates �C D 0:4 and
�P D 0:52, we know from (3.5) that it can be that �T

�C
D �NI

�C
�P

D 1:5 0:4
0:52

� 0:85.
This means that the use of ��

NI D 0:4 will retain about 85% of the control effect.

From (3.34), we obtain

O" D ln
0:3

0:4
� ln

0:4

0:52
� 0:4 D �0:425,

from (3.36), we obtain

O�2TC D 1

n

�
1

0:3.0:5/
� 1

.0:5/
C 1

0:4.0:5/
� 1

.0:5/

�
D 7:667

n
,

and from (3.35) we can obtain �2 D n .7:667=nC 0:0065/ D 7:667 C 0:0065n.
The sample size can be calculated from (3.23):

n D .1:96C 1:28/2 .7:667C 0:0065n/

.�0:425/2 D 445:6C 0:3778n.

Solving for n, we obtain nD716 for the noninferiority design. For the superiority
design, the sample size would be

n D .1:96C 1:28/2.7:667/
.�

ln
0:3

0:4

� 2

� 972.

We can see that the savings on sample size for the NI trial using (3.33) are
dramatic when the event rate is low. When the event rate is high (e.g., 0.3),
the savings in sample size are much smaller using (3.33). For high event rates,
the method based on (3.27) can be better than the method based on (3.33) in terms
of sample size.
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3. We now study the hypothesis

Ho W ln
�T

�C
C ��

NI ln
�C

�P
� 0. (3.37)

The test statistic is given by (3.16), where

O" D ln
O�T
O�C

C ��
NI ln

O�C
O�P

. (3.38)

Here ln
O�CO�P and ln

O�TO�C are the same as previously stated, but the variance is different

and is given by

O�2 D n

"
var

 
ln

O�T
O�C

!
C ��2

NIvar

 
ln

O�C
O�P

!#
.

Using (3.36), we can obtain

O�2 D 1

rT
� 1

fT
C 1

rC
� 1

fC
C ��2

NI

�
1

rC
� 1

fC
C 1

rP
� 1

fP

�
. (3.39)

With (3.38) and (3.39), the calculations of p-value (3.24), rejection rules (3.21),
power (3.22), and sample size (2.23) are still valid. The can also be formulated in
terms of the number of events under, for example, exponential distribution.

As pointed out in the draft FDA guidance (FDA 2010), because of the way
the variance of the historical data and the NI data are combined for the synthesis
test, the synthesis test is more efficient (it uses a smaller sample size or achieves
greater power for the same sample size) than the fixed-margin approach but requires
assumptions that may not be appropriate.

3.2.4 Paired Data

Let Y1 and Y2 be, respectively, binary response variables of treatments 1
and 2 with the joint distribution P.Y1 D i IY2 D j /Dpij for i D 0; 1I j D 0; 1.P1

iD0
P1

jD0 pij D 1. This kind of data is usually displayed in a 2 	 2 contingency
table as in Table 3.1.

Nam and Tango’s asymptotic test (Nam 1997; Tango 1998) is given by

Ho W p01 � p10 � ıNI vs. Ha: NHo. (3.40)
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Table 3.1 Matched-pair data Test Total

Control 1 0

1 x11 x10
0 x01 x00
Total n

Define the test statistic in (3.16), where

8
<̂

:̂

O" D Op01 � Op10 � ıNI ,

Opij D xij =n,

O�2 D 2 Qp10 C ıNI � ı2NI ,

(3.41)

and Qp10 is the restricted MLE of p10,

8
ˆ̂<

ˆ̂:

Qp10 D �b C p
b2 � 8c
4

,

b D .2C Op10 � Op01/ ıNI � Op01 � Op10,
c D � Op10ıNI .1 � ıNI / .

(3.42)

Nam (1997) proved that under the constraint p01 � p10 D ıNI , T in (3.16) follows
the normal distribution for large n,

T � N

�p
n"

�
; 1

�
, (3.43)

where " D E .O"/ and � D E . O�/ can be obtained by replacing Opij with pij (i D
0; 1I j D 0; 1) in the corresponding expressions.

Using (3.41) and (3.42), the calculations of the p-value (3.24), the rejection
rules (3.21), and power (3.22) are the same, but the sample size calculation requires
numerical iterations.

3.3 Three-Arm Design

CHMP (2005) suggested: “A three-armed trial with test, reference and placebo
allows some within-trial validation of the choice of noninferiority margin and is
therefore associated with fewer difficulties. This is the recommended design and
should be used wherever possible.”
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In the United States, a noninferiority trial with a placebo arm is often considered
ethically problematic. However, there are situations when the use of a placebo
is permissible. According to Ellenberg and Temple (2000), placebo controls are
ethical when delaying or omitting available treatment has no permanent adverse
consequences for the patient and as long as patients are fully informed about
the alternatives and settings where the available “effective treatment” may not be
uniformly accepted as standard treatment and so placebo-control trials are justified.
The escape clauses are suggested to be included in the study protocol.

In a three-arm NI trial, we can use the synthesis method and then rewrite the
hypothesis test as

Ho W �T � �NI �C � .1 � �NI / �P � 0, and

Ha W �T � �NI �C � .1 � �NI / �P > 0: (3.44)

Let the test statistic be

T D O"pn
O� , (3.45)

where n is the total sample size,

8
ˆ̂<

ˆ̂:

O" D O�T � �NI O�C � .1 � �NI / O�P

O� D
s

O�2T
fT

C �2NI O�2C
fC

C .1 � �NI /2 O�2P
fP

;
(3.46)

and fi is the sample size fraction for the i th group.
T in (3.45) follows a t-distribution with � D nT C nC C nP � 3 degrees of

freedom under H0. Thus, noninferiority can be claimed if T � t1�˛;� . Since most
NI trials have a large sample size, we can use a normal approximation; therefore,
using (3.46), the calculations for the p-value (3.24), the rejection rule (3.21), and
power formulation (3.22) are still valid.

However, unlike in the two-arm trial, we now have to reject the hypothesisH00 W
�C � �P � 0 first before we test (3.44), as suggested by Pigeot et al. (2003) and
Kieser and Friede (2007). Therefore, the sample size and overall power calculations
can be obtained using simulations.

There are some dilemmas in three-arm NI trials. For example, what if we failed
to reject H0 W �C � �P � 0 but rejected H0 W �T � �P � 0, and failed to reject
H0 W �T � �C C ıNI � 0? Should we claim T superiority to C , or not even
claim T is noninferior to C ? CHMP’s guidance (CHMP 2005) states that when
�C � �P is smaller than what was previously estimated, the appropriateness of the
predetermined margin is in doubt and modifications may be needed. This inevitably
further undermines the validity of the statistical method for the NI design. We will
discuss controversies and challenges further in Sect. 3.5.
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3.4 The Noninferiority Margin and Regulatory Guidance

3.4.1 ICH Guidance

Different regulatory authorities may have different requirements and recommen-
dations regarding the NI trial in general and the determination of the NI margin.
Therefore, it is important to carefully review their guidance documents before
designing an NI trial.

According to the ICH E10 guidance, the design and conduct of a noninferiority
trial thus involves four critical steps:

1. Determining that historical evidence of sensitivity to drug effects exists. Without
this determination, demonstration of efficacy from a showing of noninferiority is
not possible and should not be attempted.

2. Designing a trial. Important details of the trial design, e.g., study population,
concomitant therapy, endpoints, run-in periods, should adhere closely to the
design of the trials used to determine that historical evidence of sensitivity to
drug effects exists.

3. Setting a margin. An acceptable noninferiority margin should be defined, taking
into account the historical data and relevant clinical and statistical considerations.

4. Conducting the trial. The trial conduct should also adhere closely to that of the
historical trials and should be of high quality.

The determination of the noninferiority margin “. . . should reflect uncertainties
in the evidence on which the choice is based, and should be suitably conservative.”
The guidance states: “In practice, the noninferiority margin chosen usually will be
smaller than that suggested by the smallest expected effect size of the active-control
because of interest in ensuring some clinically acceptable effect size (or fraction of
the control drug effect) was maintained.”

3.4.2 FDA Guidance

Conceptually, the NI study design provides two comparisons: (1) a direct compari-
son of the test drug with the active comparator drug, and (2) an indirect comparison
of the test drug with a placebo, based on what is known about how the effect of the
active comparator compares with the placebo. For this reason, the determination of
the NI margin requires two quantities: (1) ı1D the entire effect of the active-control
assumed to be present in the NI study and (2) the minimal clinically meaningful
difference ı2. The NI margin ıNID min .ı1 ı2/ is interpreted as the largest clinically
acceptable difference (degree of inferiority) of the test drug compared with the
active-control, which implies (1) ıNI � ı1, a condition to rule out “the test
drug is worse than the placebo” when the inferiority hypothesis is rejected, and
(2) ıNI � ı2, a condition to rule out “the test drug is inferior to the control by more
than a clinically meaningful difference” when the inferiority hypothesis is rejected.
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The commonly used method is NI95-H95, in which NI95 means the NI margin
is determined by a 95% confidence interval bound (ı1 D either lower or upper 95%
confidence bound of the treatment difference between the active-control and placebo
from a historical study), and the NI hypothesis test is also based on a 95% CI.
According to the draft FDA guidance (FDA 2010), in this traditional method, there
can be flexibility in the CI choice, such as a 90% or even narrower confidence
interval, when the circumstances are appropriate to do so (e.g., strong evidence of
a class effect, strong biomarker data). It is recognized that use of a fixed margin
to define the control response is conservative, as it picks the “worst case” out of
a confidence interval that consists of values of effect that are all larger. When
the qualities of the historical trials are good and constancy holds well, a narrow
confidence interval can be used in determining the NI margin.

The determination of ı2 is a matter of clinical judgment, which may take into
account the actual disease incidence or prevalence and its impact on the practicality
of sample sizes that would have to be accrued for a study. According to the draft
guidance, there can be flexibility in the ı2 margin; for example, when:

1. The difference between the active comparator response rate and the spontaneous
response rate is large.

2. The primary endpoint does not involve an irreversible outcome such as death.
3. The test product is associated with fewer serious adverse effects than other

therapies already available.
4. The test product is in a new pharmacological category and has been shown to be

tolerated by patients who do not tolerate therapies that are already available.

The draft guidance indicates that choosing ıNI as 50% of ı1 has become the
usual practice for cardiovascular (CV) outcome studies, whereas in antibiotic trials
effect sizes are relatively large, ıNI D 10–15% is common. In large cardiovascular
studies, it is unusual to seek retention of more than 50% of ı1, even if this might be
clinically reasonable, because doing so will usually make the study size infeasible.

The guidance allows the NI margin to be determined based on a historical single-
arm trial (the active-control arm for the disease being assessed) under circumstances
similar to those in which a historically controlled trial can be persuasive (see ICH
E10). First, there should be a good estimate of the historical spontaneous cure rate
or outcome without treatment. Examination of medical literature and other sources
of information may provide data upon which to base these estimates (e.g., historical
information on natural history or the results of ineffective therapy). Second, the cure
rate of the active-control should be estimated from historical experience, preferably
from multiple experiences in various settings, and should be substantially different
from the untreated rate.

Since the NI margin is determined (partially) based on clinical judgment, as
indicated by the draft guidance, prior information could be characterized in a
statistical model or in a Bayesian framework by taking into account such factors as
evidence of effects in multiple related indications or on many endpoints. Examples
are provided in the appendix of the draft guidance.
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Remark. The draft guidance states: “Seeking an NI conclusion in the event of a
failed superiority test would almost never be acceptable. It would be very difficult
to make a persuasive case for an NI margin based on data analyzed with study
results in hand. If it is clear that an NI conclusion is a possibility, the study should
be designed as an NI study.” If you didn’t read this carefully, you may conclude that
we can perform the NI test first, followed by a superiority test, without a multiplicity
adjustment, but we can’t do it the other way around. In fact, the testing sequence is
irrelevant as far as the type-I error control is concerned, as long as the NI margin is
prespecified before seeing the NI trial data.

Regarding the analysis population, the draft guidance requires performing both
ITT and as-treated analyses in NI studies.

The FDA usually requires at least two pivotal studies. However, one NI trial
may be sufficient, as the draft guidance states it is common in NI trials for
the test drug to be pharmacologically similar to the active-control. (If they were
not pharmacologically similar, an add-on study would usually have been more
persuasive and more practical.) In that case, the expectation of similar performance
(but still requiring confirmation in a trial) might make it possible to accept a
single trial and perhaps could also allow less conservative choices in choosing the
noninferiority margin. A similar conclusion might be reached when other types
of data are available, for example: (1) if there were a very persuasive biomarker
confirming similar activity of the test drug and active-control (e.g., tumor response,
ACE inhibition, or extent of beta blockage), (2) if the drug has been shown to be
effective in closely related clinical settings (e.g., effective as adjunctive therapy with
an NI study of monotherapy), and (3) if the drug has been shown to be effective in
distinct but related populations (e.g., pediatric versus adult).

3.4.3 CHMP Guidance

CHMP (2005) provides general guidelines on the choice of the noninferiority
margin, which include:

1. The selection of the noninferiority margin is based upon a combination of
statistical reasoning and clinical judgement.

2. There are many conditions where established effective agents do not consistently
demonstrate superiority in placebo controlled trials (e.g. depression or allergic
rhinitis). In areas where this lack of sensitivity exists, a noninferiority trial which
does not also include a placebo arm is not appropriate. See ICH E10 for a fuller
discussion of assay sensitivity.

3. If the performance of the reference product in a trial is very different from what
was assumed when defining the noninferiority margin then the chosen margin
may no longer be appropriate. The implications of this should be considered at
the planning stage.
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4. It may be possible to justify a wider noninferiority margin for efficacy if the
product has an advantage in some other aspect of its profile. This margin should
not, however, be so wide that superiority to placebo is left in doubt.

5. In some extreme situations it may be acceptable to run a superiority trial
specifying a significance level greater than 0.05 as an alternative to defining a
noninferiority margin (a 15% level of significance has been used as example in
the document for demonstrating superiority. This increased alpha must be clearly
stated in the protocol and should be discussed with CHMP beforehand regarding
the appropriateness for the particular situation).

CHMP (2005) states: “It is not appropriate to define the noninferiority margin as
a proportion of the difference between active comparator and placebo. Such ideas
were formulated with the aim of ensuring that the test product was superior to
(a putative) placebo; however they may not achieve this purpose. If the reference
product has a large advantage over placebo this does not mean that large differences
are unimportant, it just means that the reference product is very efficacious.”
However, this is not necessarily the view of the U.S. regulatory authority. A counter
argument might be: a patient may consider the two drugs similar in terms of benefit
if one prolongs his life for 10 years and the other 9 years and 11 months; however,
he will definitely say the two drugs are different in life saving if they prolong life
for 3 and 2 months, even though there is a 1 month difference in both situations.

CHMP (2005) also allows a larger NI margin when the test drug can demonstrate
advantages on coprimary endpoints. When historical control-placebo trial data are
not available and conducting a placebo-control trial is not ethical, such as in
oncology settings and some orphan indications, a putative placebo may not be
necessary since the treatment benefit over the placebo is generally acceptable. In
other cases, it is possible to survey practitioners on the range of differences that
they consider to be unimportant and choose the NI margin based upon a summary
statistic of the responses.

CHMP (2005) emphasizes: “A judgement must be made regarding whether the
difference seen is clinically useful. This judgement is usually made in the context of
the safety profile via an assessment of benefit/risk.” As we can see, this will be very
challenging because it includes a large portion of subjectivity, and sometimes post
hoc analyses. While it is necessary, the NI margin also faces challenges in interpre-
tation. For continuous variables, if ıNI D ımin (the minimum clinical difference or
the minimum assay detectable level), it can be challenged because it could be that
half of the patients showed ı D 0 and the other half showed ı D 2ımin, which is
important because half of the patients had good responses, even though the average
change was ımin. For binary responses, any percentage always seems meaningful.

During the literature search for determining the NI margin, we should avoid
selection bias. Publication bias also should be noted. Constancy is important. We
should consider the constancy of trial design and clinical practice over time; pay
attention to the changes in standard care, medical practice, the criteria or methods
for measuring, entry criteria, the method of diagnosis, concomitant treatments
allowed, dosing regime of reference products, endpoints measured, and timing of
assessments.
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CHMP (2005) states: “It is not appropriate to use effect size (treatment difference
divided by standard deviation) as justification for the choice of noninferiority
margin. This statistic provides information on how difficult a difference would be to
detect, but does not help justify the clinical relevance of the difference, and does not
ensure that the test product is superior to placebo.” However, it is arguable that we
use �

p
n=� instead of �

p
n for the test statistic for superiority. Fleming (2008) and

Koch (2008) provide several case studies and insightful discussions on this issue.

3.5 Controversies and Challenges

3.5.1 Assay Sensitivity, Constancy and Biocreep

There are often no or a few historical placebo-control trials available, and therefore
the NI margin is difficult to assess precisely. When there are many such historical
placebo-control trials available, the variability is often large. Moreover, the con-
stancy does not usually hold exactly due to medical practice change, difference
in study populations, and others. The impact due to violating the constancy
requirement is difficult to assess.

Biocreep can occur when a test drug is slightly inferior to the comparator from
generation to generation. However, the current NI testing method is conservative
(see Sect. 3.5.3), and biocreep may not actually happen. Of course, under an extreme
situation where all test drugs are inferior or even worse than the placebo, regardless
of what hypothesis (superiority or noninferiority) test is used, all the approved drugs
will be inferior or worse than placebo (Chang 2007b). We should not be confused by
the two different concepts, the type-I error rate and the false discovery rate (FDR).
The former is the probability of rejecting the null hypothesis Ho (negative drug)
when it is true. The latter (FDR) is the expected proportion of false positive drugs
among all the drugs approved (rejectingHo). Ideally, we want to control FDR below
a certain value (e.g., ˛); however, this is difficult because it depends on both the
level of significance of the hypothesis test and the prior distribution of the treatment
parameter �s for all test drugs (i.e., the effectiveness of the test drugs).

3.5.2 Conflicting Noninferiority-Superiority Claims

Recall that the noninferiority null hypothesis for T versus C is defined as

Ho W �T � �C C ıNI � 0. (3.47)

The superiority null hypothesis for C versus T is defined as

Ho W �C � �T � 0 (3.48)
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instead of

Ho W �C � �T � ıNI � 0. (3.49)

It is obvious that (3.47) and (3.49) are symmetric in the sense that rejecting (3.47)
implies acceptance of (3.49). In other words, if we conclude T is noninferior to C ,
then C is not superior to T ; if T is inferior to C , then C is superior to T . However,
(3.47) and (3.48), which are currently used in practice and for drug approval, are
consistent. This inconsistency will lead to some contradictory conclusions when
the confidence interval for the treatment difference .T � C/ lies completely within
.�ıNI ; 0/. When this happens, we conclude T is not inferior to C based on (3.47)
but at the same time have to concludeC is superior to T based on (3.48) because the
confidence interval for the difference .C � T / lies completely with .0; ıNI /. Note
that medical significance has already been considered in NI margin ıNI , as stated in
the regulatory guidance.

To give T and C an equal “right” to claim superiority and noninferiority, if there
should be a test for superiority/noninferiority for T versus C , then there should be
another test for superiority/noninferiority for C versus T and vice versa.

Ideally, to make the superiority testing and noninferiority test symmetric, the null
hypothesis for the superiority test should be defined by (3.47) with a larger level of
significance. The problem with that is that we will encounter the same challenges
for determining ıNI .

3.5.3 Dilemma of Totality Evidence

Suppose we have data from two trials conducted sequentially: a superiority trial
for P versus C was conducted first, followed by an NI trial with T versus C . The
hypothetical efficacy data are presented in Table 3.2. In the P versus C trial, the
p-value D 0:0227 < ˛ D 0:025; therefore we claim C is superior to P . In the
second NI T versus C trial, the p-value = 0:0286 > ˛; hence we failed to show T

is noninferior to C . However, if we consider the totality of the evidence under the
constancy assumption (i.e., considering the data from the two trials together), we
can find the following:

1. The standard deviation �i is the same for all the groups in the two trials.
2. The treatment effect �i for the control group is consistent between the two trials.
3. The total sample sizes in the two trials are the same (200) for the control and test

groups.
4. The treatment effect is 2 for the control group and 2:8 for the test group.

How can we conclude C is significantly better than P , and T is not even
noninferior to C ? Don’t data show clearly that T is better than, or at least as good
as, C ? Is there something fundamentally wrong with NI testing?

Furthermore, when ıNI > �C � �T > 0 and the sample size is large enough, we
can reject bothHos W �C � �T � 0 and H0NI W �T � �C < �ıNI . The first rejection
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Table 3.2 Dilemma of totality evidence

Trial Drug Effect �i Std dev. Sample size P -value

1 Control 2 3.5 100 0.0227
Placebo 1 3.5 100

2 Test 2.8 3.5 200 0.0286 (NI)
Control 2 3.5 100

Note: One-sided ˛ D 0:025, ıNI D 0:015 D 50% of the 95% CI
lower limit for the treatment difference in trial one

leads to the conclusion that the control is superior to the test drug. On the other
hand, the second rejection leads to the conclusion that the test drug is noninferior to
the control. These two conclusions are contradictory to each other.

3.5.4 Superiority-Noninferiority Testing

CPMP (2000) states that, in a noninferiority trial, if the null hypothesis is rejected,
we can proceed to test the null hypothesis for superiority. No ˛-adjustment is needed
because of the closed test procedure. This argument is supported by, for example,
two papers (Dunnett and Gent 1976; Morikawa and Yoshida 1995).

However, Tie-Hua Ng (2007) argues that allowing simultaneous testing of
superiority and noninferiority will increase the FDR (false discovery rate or the
probability of claiming false superiority) in comparison with the scenario where
just one test (either superiority or noninferiority) is allowed. He argues that the
compounds that would have been tested for noninferiority will now be tested for
superiority and noninferiority simultaneously, and this will increase the probability
of false superiority claims. However, he didn’t mention the positive side, that
the simultaneous testing tends to increase the positive discovery rate (PDR),
too.A simple solution to make T and C even is to simultaneously test Ho W T < C

and H0 W C > T so that the chance of a positive claim and the chance of a negative
claim increase simultaneously. Readers may refer to Chaps. 10 and 1 for in-depth
discussions on type-I error and FDR.

3.5.5 Summary

The NI margin is the most challenging issue in NI design. Especially when the
constancy requirements have not been met well, the NI margin is inevitably largely
subjective. In some or most cases, a judgment must be made regarding whether the
difference seen is clinically useful. This judgment is usually made in the context of
the safety profile via an assessment of benefit/risk (CHMP 2005).

There are other methods, such as the modeling approach and the nonparametric
approaches, that we have not yet covered. Readers can find the relevant materials in
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the papers by Siqueira et al. (2008) (with Comments by Brittain and Hu 2009). Wang
and her colleagues (2001) discuss group sequential test strategies for superiority and
noninferiority hypotheses. However, we will not discuss this issue here. Instead, we
will discuss this topic in Chap. 4.

The following questions suggested by D’Agostino (2003) are very helpful in
planning an NI trial:

1. Is the disease condition being studied now the same as in the historical studies?
Have there been changes in the diagnosis of the disease or curse of the disease?

2. Have there been changes in the standard of care or treatment of the disease
condition?

3. Is the same population being studied? Are the new study subjects from similar
settings, same age, same gender, etc.?

4. Are the dose and route of administration of the active-control in the historical
trials the same as in the current study?

5. Are the outcomes and modes of data collection consistent across studies? Will we
allow a retrospective collection of outcomes in the historical controlled studies?
If so, what is the effect on our estimate of assay sensitivity?

6. Which historical placebo-control studies do we use? If not all, how do we select
those of interest? If some studies showed no significant effect of active-control
versus placebo (due to lack of efficacy of the active drug or due to a high placebo
effect), then do we include these studies? What are the implications of their
inclusion or exclusion?

Wang and her colleagues (2001) discuss group sequential test strategies for
superiority and noninferiority hypotheses. However, we will not discuss this issue
here. Instead, we will discuss this topic in Chap. 4.

3.6 Exercises

3.1. Suppose we are interested in a trial for evaluating the effect of a test drug
on cholesterol in patients with CHD. A two-group parallel design is chosen for
the trial with LDL as the primary endpoint. The treatment difference in LDL is
estimated to be 5%, with a standard deviation of 0.3. Use at least three different
methods to design noninferiority trials and provide justifications for the design you
recommended. You can make any assumptions necessary.

3.2. Discuss the Dilemma of Totality Evidence presented in Table 3.2.

3.3. In a noninferiority design, biocreep theoretically can occur. Can biocreep
occur with superiority trials, too? If test compounds are randomly drawn from a
chemical compound pool with an effective size ı=� that has the standard normal
distribution, study the probability of biocreep using noninferiority trials (ıNID0:02)
and superiority trials (ıNI D 0), respectively. All trials are assumed to have 90%
power. What are the probabilities that the first, fifth, and tenth drugs, respectively,
are worse than a placebo?
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Chapter 4
Adaptive Trial Design

4.1 Concept of Adaptive Trial Design

4.1.1 Reasons for Adaptive Design

The utilization of adaptive trial designs can increase the probability of success,
reduce the cost, reduce the time to market, and deliver the right drug to the right
patient. Two popular definitions of adaptive design are: (1) Chow and Chang’s
definition that an adaptive design is a clinical trial design that allows adaptations
or modification to aspects of the trial after its initiation without undermining the
validity and integrity of the trial (Chow and Chang 2005), and (2) The PhRMA
Working Group’s definition that adaptive design refers to a clinical trial design
that uses accumulating data to decide on how to modify aspects of the study as
it continues, without undermining the validity and integrity of the trial (Gallo et al.
2006). Most recently, the FDA released the draft guidance on Adaptive Design for
Clinical Drugs and Biologics, where the definition of adaptive trial design is stated
as “a study that includes a prospectively planned opportunity for modification of one
or more specified aspects of the study design and hypotheses based on analysis of
data (usually interim data) from subjects in the study. Analyses of the accumulating
study data are performed at prospectively planned timepoints within the study, can
be performed in a fully blinded manner or in an unblinded manner, and can occur
with or without formal statistical hypothesis-testing.”

Commonly used types of adaptive trials include standard group sequential
design, sample size reestimation, drop-loser design, adaptive dose-finding study,
and response-adaptive randomization (Chang 2007b).

In this chapter, our discussions will focus on the hypothesis-based adaptive de-
signs. There are many different methods for hypothesis-based adaptive designs, for
which we are going to present a unified approach using combinations of stagewise
p-values. There are four major components of adaptive designs in the frequentist
paradigm: (1) type-I error rate or ˛-control: determination of stopping boundaries,
(2) type-II error rate ˇ: calculation of power or sample size, (3) trial monitoring and

M. Chang, Modern Issues and Methods in Biostatistics, Statistics for Biology and Health,
DOI 10.1007/978-1-4419-9842-2 4, © Springer Science+Business Media, LLC 2011
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adaptations: calculation of conditional power and making adaptations (e.g., sample
size reestimation, stopping a trial, dropping an inferior arm); and (4) analysis after
the completion of a trial: calculations of adjusted p-values, unbiased point estimates,
and confidence intervals. The mathematical formulations for these components will
be discussed.

4.1.2 Hypothesis-Based Adaptive Design

4.1.2.1 Stopping Boundary

Consider a clinical trial with K stages where at each stage a hypothesis test is per-
formed, followed by some actions that are dependent on the analysis results. Such
actions can be early futility or efficacy stopping, sample size reestimation, modifi-
cation of randomization, or other adaptations. The objective of the trial (e.g., testing
the efficacy of the experimental drug) can be formulated using a hypothesis test,

Ho versus NHo; (4.1)

where Ho is the null hypothesis (e.g., Ho :ı � ı0) with ı being the treatment
difference and ı0 a constant; the alternative hypothesis NHo is negation of Ho.

Generally, the test statistic Tk at the kth stage can be a function �.p1; p2; : : : ; pk/
where pi is the one-sided p-value calculated based on the i th stage subsample and
�.p1; p2; : : : ; pk/ is a strictly increasing function of all pi (i D 1; 2; : : : k).

The stopping rules are given by

8
<̂

:̂

stop for efficacy if Tk � ˛k;

stop for futility if Tk > ˇk;

continue with adaptations if ˛k < Tk � ˇk;

(4.2)

where ˛k < ˇk (k D 1; : : : ; K � 1) and ˛K D ˇK . For convenience, ˛k and ˇk are
called the efficacy and futility boundaries, respectively.

To reach the kth stage, a trial has to pass through the first to the .k � 1/th stages.
Therefore, the conditional c.d.f. of Tk is given by

 k.t/ D Pr.˛1 < T1 < ˇ1; : : : ; ˛k�1 < Tk�1 < ˇk�1; Tk < t/

D
Z ˇ1

˛1

: : :

Z ˇk�1

˛k�1

Z t

�1
fT1:::Tk dtk dtk�1 : : : dt1; (4.3)

where fT1:::Tk is the joint p.d.f. of T1; : : : ; and Tk .
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4.1.2.2 Type-I Error Control, p-value, and Power

When H0 is true,  k.t/ is the stagewise p-value pc if the trial stopped at the kth
stage,

pc.t I k/ D  k.t jH0/: (4.4)

The stagewise error rate (˛ spent) �k at the kth stage is given by

�k D  k.˛k jH0/: (4.5)

The stagewise power of rejectingHo at the kth stage is given by

$k D  k.˛k jHa/: (4.6)

When efficacy is claimed at a certain stage, the trial is stopped. Therefore, the
type-I errors at different stages are mutually exclusive. Hence the experiment-wise
type-I error rate can be written as

˛ D
KX

kD1
�k: (4.7)

Similarly, the power can be written as

power D
KX

kD1
$k: (4.8)

Equation 4.5 is the key to determining the stopping boundaries for adaptive
designs.

There are several possible definitions of (adjusted) p-values. Here we are most
interested in the so-called stagewise-ordering p-values, defined as

p.t I k/ D
k�1X

iD1
�i C pc.t I k/: (4.9)

The adjusted p-value is a measure of overall statistical strength against Ho.
The later the Ho is rejected, the larger the adjusted p-value is and the weaker the
statistical evidence (against Ho) is. A late rejection leading to a larger p-value
is reasonable because the alpha at earlier stages has been spent. An important
characteristic of the adjusted p-value is that when the test statistic t is on stopping
boundary ak; pk must be equal to the alpha spent so far.
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4.1.2.3 Selection of Test Statistics

There are many possible forms to choose for the test statistic � .p1; p2; : : : ; pk/,
such as:

1. linear combination (Chang 2007b),

Tk D ˙k
iD1wkipi ; k D 1; : : : ; K , where constants wki > 0; (4.10)

2. product of stagewise p-values (Fisher combination, Bauer and Kohne 1994),

Tk D
kY

iD1
pi ; k D 1; : : : ; K; (4.11)

and
3. linear combination of inverse-normal stagewise p-values (Lehmacher and

Wassmer 1999; Cui et al. 1999; Lan and DeMets 1987)

Tk D ˙k
iD1wki˚

�1 .1 � pi / ; k D 1; : : : ; K; (4.12)

where weight, wki > 0, satisfying
Pk

iD1 w2ki D 1, can be a constant or function of
data from previous stages and K is the number of analyses planned in the trial.
Note that pk is the naive p-value from the subsample at the kth stage, while
pc.t I k/ and p.t I k/ are stagewise and stagewise-orderingp-values, respectively.

4.1.2.4 Method for Determining Stopping Boundary

After selection of the test statistic, we can determine the stopping boundaries ˛k
and ˇk by using (4.3) and (4.7) under the null hypothesis (4.1). Once the stopping
boundaries are determined, the power and sample size under a particular Ha can
be obtained using (4.3) and (4.8) in conjunction with the Monte Carlo method.
We can choose one of the following approaches to fully determine the stopping
boundaries:

1. Classical method: Choose certain types of functions for the boundaries ˛k and
ˇk . The advantage of using a stopping boundary function is that there are
only limited parameters in the function to be determined. After the parameters
are determined, the stopping boundaries are then fully determined, regardless
of the number of stages. The commonly used boundaries are O’Brien and
Fleming (1979), Pocock (1977), and Wang and Tsiatis (1987). The Wang-Tsiatis’
boundary was originally defined on the standardized z-scale but can equivalently
be defined as ˛k D 1�˚.ct�k �0:5/ on the p-scale, where tk D k=K or the sample
size fraction (information time); c is a constant determined by the significance
level ˛. When the parameter � D 0 and 0:5, the Wang-Tsiatis boundary will
degenerate to the O’Brien-Fleming and Pocock boundaries, respectively (Chang
2008).
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2. Error-spending method: Choose certain forms of functions for �k such that
˙K
kD1�k D ˛: Traditionally, the cumulative quantity ��

k D ˙k
iD1 �i is called

the error-spending function, which can be either a function of stage k or the
so-called information time based on the sample size fraction. After the function
�k or equivalently ��

k is determined, the stopping boundaries ˛k and ˇk .k D
1; : : : ; K/ can be determined using (4.3), (4.5), and (4.7).

3. Nonparametric method: Choose non-parametric stopping boundaries, i.e., no
function is assumed. Instead, use computer simulations to determine the stopping
boundaries via a trial and error method. The non-parametric method does not
allow for changes to the number and timing of the interim analyses.

4. Conditional error function method: One can rewrite the stagewise error rate for
a two-stage design as

�2 D  2.˛2jHo/ D
Z ˇ1

˛1

A.p1/ dp1; (4.13)

where A.p1/ is called the conditional error function. For a given ˛1 and ˇ1;
by carefully selecting A.p1/, the overall ˛ control can be met (Proschan and
Hunsberger 1995). However, A.p1/ cannot be an arbitrary monotonic function
of p1. In fact, when the test statistic (e.g., sum of p-values, Fisher’s combination
of p-values, or inverse-normal p-values) and constant stopping boundaries are
determined, the conditional error function A .p1/ is determined. For example,
for the three commonly used adaptive methods, MSP, MPP, and MINP, A.p1/ is
given by

8
<

:

A .p1/ D ˛2 � p1 for MSP,
A .p1/ D ˛2=p1 for MPP,
A .p1/ D �

˛2 � p
n1p1

�
=
p
n2 for MINP,

(4.14)

where ni is the subsample size for the i th stage.
On the other hand, if an arbitrary (monotonic) A .p1/ is chosen for a

test statistic (e.g., sum of p-values or inverse-normal p-values), the stopping
boundaries ˛2 and ˇ2 may not be constants anymore. Instead, they are usually
functions of p1.

5. Conditional error method: In this method, for a given ˛1 and ˇ1; A.p1/ is
calculated on the fly or in real time, and only for the observed p1. Adaptations
can be made under the condition that A.p1jHo/ is kept unchanged.

Note that ˛k and ˇk are usually only functions of stage k or information
time, but they can be functions of response data from previous stages, i.e.,
˛k D˛k .t1; : : : ; tk�1/ and ˇk Dˇk .t1; : : : ; tk�1/ : In fact using variable trans-
formation of one test statistic to another, the stopping boundaries often change
from response-independent to response-dependent. For example, in MSP, we use
stopping boundary p1 C p2 � ˛2, which implies that p1p2 � ˛2p2 � p22 . In
other words, the MSP stopping boundary at the second stage, p1 C p2 � ˛2,
is equivalent to the MPP boundary at the second stage, p1p2 � ˛2p2 � p22 , a
response-dependent stopping boundary.
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6. Recursive design method: Based on Müller and Shäfer’s conditional error
principle, this method recursively constructs two-stage designs at the time of
interim analysis, making the method a simple but very flexible approach to a
general K-stage design (Müller and Shäfer 2004; Chang 2007a).

4.2 Adaptive Design Methods

4.2.1 p-value Weighting Approach

Chang (2007b) proposed an adaptive design method in which the test statistic is
defined as the sum of the stagewise p-values (MSP),

Tk D ˙k
iD1pi ; k D 1; : : : ; K; (4.15)

where pi is a stagewise p-value that is calculated based on a subsample (not a
cumulative sample) from the i th stage. The type-I error rate at stage k can be
expressed as (assume ˇi � ˛iC1; i D 1 : : :/

�k D
Z ˇ1

˛1

Z ˇ2

˛2�p1
� � �
Z ˇk�1

˛k�1�Pk�2
iD1 pi

Z ˛k�Pk�1
iD1 pi

0

dpkdpk�1 � � � dp2dp1, (4.16)

where for the nonfutility binding rule, let ˇi D ˛k; i D 1 : : : ; i.e.,

�k D
Z ˛k

˛1

Z ˛k

max.0;˛2�p1/
� � �
Z ˛K

max.0;˛k�1�Pk�2
iD1 pi /

Z max.0;˛k�Pk�1
iD1 pi /

0

dpkdpk�1 � � � dp2dp1 (4.17)

We set up ˛k > ˛k�1, and if pi > ˛k , then analysis is necessary for stages i C 1

to k because there is no chance to reject Ho at these stages.
To control the overall type-I error, it is required that

˙K
iD1�i D ˛: (4.18)

Theoretically, (4.17) can be carried out for any k. Here, we provide the analytical
forms for k D 1–3, which should satisfy most practical needs.

8
ˆ̂̂
<

ˆ̂̂
:

�1 D ˛1,

�2 D 1

2
.˛2 � ˛1/2 ,

�3 D ˛1˛2˛3 C 1

3
˛32 C 1

6
˛33 � 1

2
˛1˛

2
2 � 1

2
˛1˛

2
3 � 1

2
˛22˛3.

(4.19)
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Table 4.1 Stopping
boundaries with MMP

˛1 0.0010 0.0025 0.005 0.010 0.015 0.020
˛2 0.1100 0.1073 0.1025 0.0916 0.0782 0.0600

Note: One-sided ˛ D 0:025, ˛2 D ˇ1 D ˇ2

It might be convenient to define the test statistic as (we refer to this as MMP)

Tk D 1

k
˙k
iD1pi ; k D 1; : : : ; K; (4.20)

so that Tk will be bounded by Œ0; 1�. The stopping boundary corresponding to (4.20)
can be obtained by modifying (4.19), where ˛k is replaced by k˛k (question for
readers: why?); that is,

8
ˆ̂̂
<

ˆ̂̂
:

�1 D ˛1,

�2 D 1

2
.2˛2 � ˛1/2 ,

�3 D 6˛1˛2˛3 C 8

3
˛32 C 9

2
˛33 � 2˛1˛22 � 9

2
˛1˛

2
3 � 6˛22˛3.

(4.21)

�i can be viewed as the error spent at the i th stage, which can be predetermined
individually or specified as the error-spending function �k D f .k/. The stopping
boundary can be solved recursively. Specifically, determine �i .i D 1; 2; : : : ; K/;
from �1 D ˛1, solve for ˛1; from �2 D 1

2
.2˛2 � ˛1/

2, obtain ˛2; : : :; and from
�K D �K .˛1; : : : ; ˛K�1/, obtain ˛K .

See Table 4.1 for numerical examples of the stopping boundaries defined
by (4.21).

The stagewise-ordering p-value is given by

p.t I k/ D
8
<

:
t; k D 1;

˛1 C 1

2
.2t � ˛1/2; k D 2 ;

(4.22)

where t D p1 if the trial stops at stage 1 and t D 1
2
.p1 C p2/ if it stops at stage 2.

It is interesting to know that when p1 > ˛2, there is no point in continuing
the trial because p1 C p2 > p1 > ˛2; and futility should be claimed. Therefore,
statistically it is always a good idea to choose ˇ1 � ˛2. However, because the
nonbinding futility rule is adopted currently by the regulatory bodies, it is better
to use the stopping boundaries with ˇ1 D ˛2.

The conditional power is the conditional probability of rejecting the null
hypothesis during the rest of the trial based on the observed interim data. The
conditional power for a two-stage design with MMP is given by

cP D 1 � ˚

 
z1�2˛2Cp1 �

Oı
O�
r
n2

2

!
, ˛1 < p1 � ˇ1; (4.23)

where n2 D sample size per group at stage 2; Oı and O� are observed treatment
difference and standard deviation, respectively.
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To obtain power and conditional power for a generalK-stage design using MMP,
Monte Carlo simulation can be used (Chang 2007b, 2010).

4.2.2 Fisher Combination Approach

This method is referred to as MPP. The test statistic in this method is based on
the product (Fisher’s combination) of the stagewise p-values from the subsamples
(Bauer and Kohne 1994; Bauer and Rohmel 1995), defined as

Tk D ˘k
iD1pi ; k D 1; : : : ; K , (4.24)

�k D
Z ˇ1

˛1

Z ˇ2

˛2=p1

Z ˇ3

˛3=.p1p2/

� � �
Z ˇk�1

˛k�1=.p1 ���pk�2/

Z ˛k=.p1���pk�1/

0

dpk � � � dp1. (4.25)

For a design without a futility boundary, we choose ˇ1 D 1: It is interesting to
know that when p1 < ˛2, there is no point in continuing the trial because p1p2 <
p1 < ˛2 and efficacy should be claimed. Therefore it is suggested that we should
choose ˇ1 > ˛2 and ˛1 > ˛2. In general, if pk � max .ak; : : : ˛n/, stop the trial.
In other words, ˛k should monotonically decrease in k. The relationships between
error spent �i and stopping boundary ˛i at the i th stage are given up to three stages:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

�1 D ˛1,

�2 D ˛2 ln
1

˛1
,

�3 D ˛3

�
ln ˛2 � 1

2
ln˛1

�
ln ˛1.

(4.26)

The closed form of �k for any K-stage design with Fisher’s combination is
provided by Wassmer (1999). Numerical examples of stopping boundaries for two-
stage adaptive designs with MPP are presented in Table 4.2.

The stagewise-ordering p-value for a two-stage design can be obtained using

p.t I k/ D
(
t; k D 1;

˛1 � t ln˛1; k D 2 ;
(4.27)

where t D p1 if the trial stops at stage 1 .k D 1/ and t D p1p2 if the trial stops at
stage 2 .k D 2/.

The conditional power is given by Chang (2007b)

cP D 1 �˚
0

@z
1�
˛2

p1

�
Oı
O�
r
n2

2

1

A , ˛1 < p1 � ˇ1: (4.28)
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Table 4.2 Stopping
boundaries with MPP

˛1 0.0010 0.0025 0.005 0.010 0.015 0.020
˛2 0.0035 0.0038 0.0038 0.0033 0.0024 0.0013

Note: One-sided ˛ D 0:025

4.2.3 p-value Inversion Approach

This method is based on inverse-normal p-values (MINP) in which the test statistic
at the kth stage, Tk , is a linear combination of the inverse-normal of stagewise
p-values. MINP (Lecherman and Wassmer 1999) can be viewed as a general method
that includes the standard group sequential design and Cui-Hung-Wang method for
sample size reestimation (Cui et al. 1999) as special cases.

Let zk be the stagewise normal test statistic at the kth stage. In general,
zi D˚�1 .1 � pi/, where pi is the stagewise p-value from the i th stage subsample.

In a group sequential design, the test statistic can be expressed as

T �
k D

kX

iD1
wki zi , (4.29)

where the prefixed weights wki satisfy the equality
Pk

iD1 w2ki D 1.
Note that when wki is fixed, the standard multivariate normal distribution of˚

T �
1 ; : : : ; T

�
k

�
will not change regardless of adaptations as long as zi .i D 1; : : : ; k/

has the standard normal distribution. To be consistent with the unified formations, in
which the test statistic is on the p-scale, we use the transformation Tk D 1�˚ �T �

k

�

such that

Tk D 1 �˚
 

kX

iD1
wki zi

!
, (4.30)

where ˚ D the standard normal c.d.f. The corresponding stopping rules for the test
statistic (4.30) are given in (4.2).

The stopping boundary and power for MINP can be calculated using numer-
ical integration or computer simulation (see Chap. 9). Table 4.3 gives numerical
examples of stopping boundaries for two-stage adaptive designs generated using
ExpDesign StudioTM5.0 (www.ctrisoft.net).

The conditional power for a two-stage design with MINP is given by

cP D 1 � ˚

 
z1�˛2 � w1z1�p1

w2
�

Oı
O�
r
n2

2

!
, ˛1 < p1 � ˇ1; (4.31)

where weights satisfy w21 C w22 D 1.
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Table 4.3 Stopping
boundaries with MINP

˛1 0.0010 0.0025 0.0050 0.0100 0.0150 0.0200
˛2 0.0247 0.0240 0.0226 0.0189 0.0143 0.0087

Note: One-sided ˛ D :025; w1 D w2

4.2.4 Error-Spending Approach

MINPs have fixed weights wki regardless of the changes in the timing of the interim
analyses. For example, if the equal weights for all stages were initially decided,
then whether the interim analysis was performed on 10 or 80% of the patients, the
weights will not change. Theoretically we can change the weights without peeking
at the data, which is exactly the notion of the so-called error-spending method (Lan
and DeMets 1987).

If we define the error function as

˛�.k/ D
kX

iD1
�i ; (4.32)

then the familywise type-I error is controlled because ˛� .K/ D ˛.
Because �k > 0 is arbitrary as long as

PK
kD1 �k D ˛ (or smaller than ˛), ˛�.k/

can be any nondecreasing scale function with ˛�.K/ D 1. This is why MSP, MMP,
MPP are flexible regarding �k or ˛�.k/ selection. These methods are valid if the
total number of analysesK is modified but not based on the interim trial results, pk .

Similarly, an error-spending function can also be used for MINP as long as the
timing and the total number of analyses are not dependent on interim results. The
MINP can be expanded (i.e., allow the weights wki to be modified as long as they are

not dependent on the interim results from the trial, e.g., wki D
q

ni
NK

, where ni is the

subsample size per group from stage i and Nk is the cumulative sample size up to
(including) stage k). Historically, the error-spending approach based on MINP with

weight wki D
q

ni
NK

was first developed by Lan and DeMets (1987) using a property

of a Brownian motion (Wiener process) with the error-spending function

˛�.Ik/ D
8
<

:
2

�
1 � ˚

�
z1�˛=2p
Ik

��
; for 0 < Ik � 1,

0; for Ik D 0.
: (4.33)

This error-spending function ˛�.t/ is an increasing function in information time
Ik D Nk=Nmax (Nmax D the maximum sample size) and satisfies the conditions
˛�.0/ D 0 and ˛�.1/ D ˛; the one-sided significance level. Note that

KX

iD1
�i D

KX

kD1

	
˛� .Ik/� ˛� .Ik�1/


 D ˛� .1/ � ˛� .0/ D ˛; (4.34)

and thus familywise error is controlled.
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Table 4.4 OF-like error-spending stopping boundaries

Ik 0.3 0.4 0.5 0.6 0.7 0.8
˛1 0.00004 0.00039 0.00153 0.00381 0.00738 0.01221
˛2 0.22347 0.02490 0.02454 0.02380 0.02271 0.02142

Note: One-sided ˛ D :025. Computed by ExpDesign StudioTM5.0

When ˛� .Ik/ D ˛� .Ik�1/, the kth stage interim analysis is used either for
futility stopping or modifying the design (such as its randomization) but not
for efficacy stopping. Note that (4.33) is an error-spending function very similar
to the O’Brien-Fleming stopping boundaries (called OF-like stopping boundary).
Other commonly used error-spending functions include the Pocock-like function
˛�.t/D˛ lnŒ1 C .e � 1/t� (Kim and DeMets 1992) and power family ˛�.t/ D
˛t� ; � > 0.

For the two-stage design with OF-like error-spending function (4.33), the
stopping boundaries are given in Table 4.4. Please keep in mind that OF-like and
O’Brien-Fleming stopping boundaries are two types of stopping boundaries that are
very similar but not identical (Proschan et al. 2006; Chang 2008).

We should emphasize that the error-spending method is valid only when the
time and the number of interim analyses as well as the weight wki change are
independent of interim analysis results. It is also important to keep in mind that the
error-spending function has to be predetermined before the first interim analysis. In
other words, the error-spending function should also be independent of interim data.
For example, the stopping boundaries in Tables 4.3 and 4.4 are both valid, but we
have to predetermine which one to use before we review the interim results.

4.3 Evaluation and Analysis of Adaptive Design

4.3.1 Evaluation Matrix

4.3.1.1 Stopping Probabilities

The stopping probability at each stage is an important property of an adaptive design
because it provides the information about time-to-market. The stopping probabilities
are also used to calculate the expected samples that measure the average cost or
efficiency of the trial design.

There are two types of stopping probabilities: unconditional probability of
stopping to claim efficacy (reject Ho) and unconditional probability of stopping
to claim futility (accept Ho). The former is called the efficacy stopping probability
(ESP), and the latter is called the futility stopping probability (FSP). From (4.3), it
is obvious that the ESP at the kth stage is given by

ESPk D  k.˛k/ (4.35)
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and the FSP at the kth stage is given by

FSPk D 1 �  k.ˇk/: (4.36)

4.3.1.2 Expected Duration of an Adaptive Trial

The expected trial duration is definitely an important feature of an adaptive design.
The conditionally (on the efficacy claim) expected trial duration is given by

Nte D
KX

kD1
ESPk tk; (4.37)

where tk is the time from the first patient in until the kth interim analysis.
The conditionally (on the futility claim) expected trial duration is given by

Ntf D
KX

kD1
FSPk tk : (4.38)

The unconditionally expected trial duration is given by

Nt D
KX

kD1
.ESPk C FSPk/ tk: (4.39)

4.3.1.3 Expected Sample Sizes

The expected sample size is a function of the treatment difference and its variability,
which are unknowns. Therefore, the expected sample size is really based on
hypothetical values of the parameters. For this reason, it is important to calculate
the expected sample size under various values of the parameters. The total expected
sample size can be expressed as

Nexp D
KX

kD1
nk .ESPk C FSPk/ D

KX

kD1
nk .1C  k.˛k/�  k.ˇk// , (4.40)

where nk is the sample size at stage k. Equation 4.40 can also be written as

Nexp D Nmax �
KX

kD1
nk . k.ˇk/�  k.˛k// , (4.41)

where Nmax D PK
kD1 nk is the maximum sample size.
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4.3.1.4 Conditional Power and Futility Index

The conditional power is the conditional probability of rejecting the null hypothesis
during the rest of the trial based on the observed interim data so far. The conditional
power is commonly used for monitoring an ongoing trial. Similar to the ESP and
FSP, conditional power is dependent on the population parameters or treatment
effect and its variability. The conditional power at the kth stage is the sum of the
probability of rejecting the null hypothesis at stage k C 1 through K (K does not
have to be predetermined), given the observed data from stages 1 through k,

cPk D
KX

jDkC1
Pr
�
\j�1
iDkC1 .ai < Ti < ˇi/\ Tj � ˛j j \k

iD1 Ti D ti

�
, (4.42)

where ti is the observed test statistic Ti at the i th stage. For a two-stage design, the
conditional power can be expressed as

cP1 D Pr .T2 � ˛2jt1/ . (4.43)

Specific formulations of conditional power for two-stage designs with MSP,
MPP, and MINP were provided in earlier sections.

The futility index is defined as the conditional probability of accepting the null
hypothesis:

FIk D 1 � cPk: (4.44)

Computer algorithms and programs for calculating the operating characteristics
of an adaptive design can be found elsewhere (Chang 2007b, 2010).

4.3.2 Analysis of Adaptive Trial Data

4.3.2.1 Parameter Estimation

Unbiased estimation of parameters is challenging adaptive design. Let’s start with
a two-stage standard group sequential design. Consider the hypothesis test for
mean �:

Ho W � � 0 versusHa W � > 0:
Let xij be the independent observations from the j th patient at the kth stage

(k D 1; 2 and j D 1; : : : ; ni ). Assume xij has the normal distribution N
�
�; �2

�

with known � . Denote by Nxk the stagewise sample mean at the kth stage (not based
on cumulative data), thus Nx1 and Nx2 are independent. The test statistic at the first
stage of the standard group sequential design can be written as T1 D Nx1pn1=� ,
where n1 is the sample size at the first stage. The stopping rule at the first stage
is: stop the trial if T1 � c1 (p1 � ˛1 on the p-scale) and continue otherwise. It is
obvious that T1 D Nx1pn1=� � c1 implies x1 � �c1=

p
n1.
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The expectation of the conditional mean at the first stage is

�1 D
R1
�c1=

p
n1

Nx1f NX1 . Nx1/ d Nx1
R1
�c1=

p
n1
f NX1 . Nx1/ d Nx1

. (4.45)

The expectation of the conditional mean at the second stage is

�2 D
R �c1=pn1

�1
R1

�1
Nx1n1C Nx2n2
n1Cn2 f NX1 . Nx1/ f NX2 . Nx2/ d Nx1d Nx2

R �c1=pn1
�1 f NX1 . Nx1/ d Nx1

D
R �c1=pn1

�1
n1 Nx1Cn2�
n1Cn2 f NX1 . Nx1/ d Nx1

R �c1=pn1
�1 f NX1 . Nx1/ d Nx1

. (4.46)

For normal distribution f NXk . Nx1/ D N
� NXk I�; �2=ni

�
, we have

�1 D 1

1 �˚0 .c�/

Z 1

�c1=
p
n1

Nx1 1
p
2��2=n1

e
�.Nx1��/2n1

2�2 d Nx1

D �C
� exp

�
� c2

�

2

�

Œ1 � ˚0 .c�/�
p
2�n1

, (4.47)

where c� D c1 � �
p
n1=�:

If n2 is independent of x1 (i.e., there is no sample size adjustment), then

�2 D 1

˚0 .c�/

Z �c1=
p
n1

�1
n1 Nx1 C n2�

n1 C n2

1
p
2�=n1

e
�.Nx1��/2n1

2�2 d Nx1

D n1

n1 C n2

�
� � �

˚0 .c�/
p
2�n1

exp

�
�c

2�
2

��
C n2

n1 C n2
�

D � �
n1� exp

�
� c2

�

2

�

.n1 C n2/˚0 .c�/
p
2�n1

: (4.48)

From (4.47) to (4.48), the expectation of the conditional mean can be
expressed as

�naive D Œ1 � ˚0 .c�/� �1 C˚0 .c�/ �2 D �C n2

n1 C n2

�p
2�n1

exp

�
�c

2�
2

�
.

(4.49)

The bias can be calculated as

�bias D �naive � � D n2

n1 C n2

�p
2�n1

exp

�
�c

2�
2

�
<

�p
2�n1

: (4.50)
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To calculate the bias, the standard normal c.d.f. can be approximated by

˚0 .c/ D 1 � .c2 C 5:575192695cC 12:77436324/ exp
��c2=2�p

2�c3 C 14:38718147c2 C 31:53531977cC 2.12:77436324/
.

(4.51)

The error of approximation (4.51) is less than 1:9 � 10�5 over 0 � c < 1. The
largest error occurs when c ranges from 1.03 to 1.04 (Yun 2009).

In my view, the conditional estimate is more important than the unconditional
estimate. The reason is simple: We know from (4.47) to (4.48) that Nx1 is biased
upward and Nx2 is biased downward. If the trial stops at stage 1, we should report
Nx1 with the adjustment given by (4.47). On the other hand, if the trial stops at
stage 2, we should report Nx2 with the adjustment given by (4.48). It doesn’t make
sense to report xk with the overall adjustment given by (4.49), especially when
the trial stops at stage 2, and adjust x2 downward using (4.49), knowing that x2
is already biased downward. Although both the conditional and overall adjustments
can provide unbiased estimates, the conditional adjustment makes much more sense.

Equations 4.45–4.50 are valid for MINP, MSP, and MPP because the naive mean
is determined by the c1 (or ˛1) and n1 independent of the definition of the test
statistic for the two-stage designs. In other words, for two-stage designs, there are
always equivalent stopping boundaries for any two adaptive design methods (MSP,
MPP, MINP). However, this conclusion is applicable to a design with more than two
stages because such equivalent boundaries don’t exist in general.

In general K-stage design, the expectation of the unconditional mean at the nth
stage is

�n D
R
˝1

� � � R
˝n�1

R1
�1

Nx1n1C���C Nxnnn
n1C���Cnn f NX1 : : : NXn . Nx1; : : : ; Nxn/ d Nx1 : : : d Nxn

R
˝1

� � � R
˝n�1

R1
�1 f NX1 : : : NXn . Nx1; : : : ; Nxn/ d Nx1 : : : d Nxn

, (4.52)

where if xi 2 ˝i , the trial will continue to the .i C 1/th stage.
For an adaptive design with a sample size adjustment, the calculation of bias is

more complicated because sample size at the second stage, n2, is a function of x1.
Several sample size reestimation rules have been proposed such as the conditional
power approach. These rules will lead to different functions of n2 .x1/, and integral
(4.46) can only be carried out using numerical methods or simulations.

For a K-stage design, the integral (4.52) may sometimes be easier in p-scale,
which may involve the p-value distribution under the alternative hypothesis. The
p-value distribution can be easily derived.

Denote by f o .t/ > 0 and f a .t/ the distributions of the test statistic T under
the null hypothesisHo and the alternative hypothesisHa, respectively. The p-value
for a one-sided test is defined as p .t/ D R1

t f o .	/ d	 . To derive the distribution
of p-value p .t/ under Ha , we start with the c.d.f. identity: FT .t/ D FP .p .t//.
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Taking the derivative with respect to p (Kokoska and Zwillinger 2000, p. 40), we
obtain the p.d.f. of the p-value:

P � fP .p/ D f a .t/
1

jdp.t/=dt j D f a .t/

f o .t/
; (4.53)

where t is function of p.
When the null hypothesis Ho is true, f a .t/ D f o .t/, p-value P has a uniform

distribution in Œ0; 1�.

4.3.2.2 Confidence Interval

The confidence interval calculation is usually complicated for adaptive designs.
There are even several different versions of confidence intervals. The so-called
repeated confidence interval at the k, RCIk , consists of all possible values for the
parameter for which the null hypothesis will not be rejected given the observed
value. When xij is normally distributed and MINP, the RCIk can be expressed as

. Nx � ck� Nx; Nx C ck� Nx/;

in ck is the stopping boundary at the kth stage and � Nx is the standard deviation of Nx.
A general approach to obtain RCIk numerically is through Monte Carlo

simulations, but we are not going to discuss the simulation details here.

4.3.3 Comparison of Adaptive Design Methods

Different adaptive methods have different stopping boundaries, as shown in Fig. 4.1
for MSP, MPP, and MINP for two-stage adaptive designs. Because of the differences
in the stopping boundaries, the same data can lead to different conclusions with
different methods. For example, for data point A with p1 D 0:025 and p2 D 0:008,
the null hypothesis is rejected by all three methods. However, for data point B with
p1 D 0:01 and p2 D 0:25, the null hypothesis is rejected by MPP and MINP but not
by MSP. Yet for data point C with p1 D 0:07 and p2 D 0:12, the null hypothesis is
rejected by MSP but not by MPP or MINP.

Conditional power is an important feature of an adaptive design. The conditional
power curves for different methods (MSP, MPP, and MINP) are constructed based
on (4.23), (4.28), and (4.31) with ˛1 D 0:005 (Fig. 4.2). We know that when a
trial is appropriately powered (�90%), the interim p-value is mostly near the target
value ˛ D 0:023 (one-sided) or smaller. When a trial is underpowered, the interim
p-value would be mostly near 0.1. Since an important goal of sample size
reestimation is to save the trial when it is underpowered, we should focus on the
conditional power when the interim p-value is near 0.1. As we can see from Fig. 4.2,
MSP (or equivalently MMP) has higher power near one-sided p1 D 0:1 than MPP
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Fig. 4.1 Different stopping boundaries at stage 2

Fig. 4.2 Comparison
of conditional power
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and MINP. For trial results with very large p-values, one-sided p1 > 0:18 (or
two-sided p1 > 0:36), which is probably an indication of no or minimal treatment
effect, the value of increasing the sample size is in great doubt even though MINP
and MPP show a higher conditional power. Also, if the observed treatment effect
Oı is very small or p-value p1 is very large, we may be better off starting a new
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trial than continuing the current trial. Having said that, we may be curious about
the reality of underpowered trials. In fact, the recent approval rate for NDAs (new
drug applications) submitted to the FDA is about 40%. In contrast, the power for
most phase-III trials is about 90%. Considering there are phase-III trials withdrawn
by sponsors before they are rejected by the FDA, the failure rate of phase-III
clinical trials is realistically more than 60%, which clearly indicates there are plenty
of trials that are underpowered due to overestimating the treatment difference or
underestimating its variance. The challenge is that we don’t know which trials are
underpowered, and thus uniformly increasing the sample size across all trials is not
a wise practice. This is exactly the reason for introducing an adaptive design with
sample size reestimation.

In additional to the conditional power, another commonly used method to
compare different adaptive design methods is based on the power of the hypothesis
test or equivalently the sample size (maximum or expected sample sizes). These
types of criteria are often not very informative for adaptive design because they have
not considered the magnitude of treatment difference and reduction in trial duration
or time-to-market as well as the flexibility of adaptive designs that allow mitigation
of the risks later. A better approach is to use the decision theory discussed in Chap. 2.
To illustrate this, let’s construct a utility function. We know that the magnitude of a
drug effect (e.g., years of survival prolongation) often plays a critical role in terms
of the benefit to patients and the profit of the drug maker. Because the true treatment
effect (parameter ı for treatment difference) is not known, we use the observed
treatment difference Oı for the purpose of constructing utility,

U D Oır � C; (4.54)

where r > 0 is a constant and C is the associated cost, which is often a function of
sample size. The expected utility is given by

NU D
Z
I
�
˛ � p

� Oı
�� Oı df

� Oı
�

, (4.55)

where I.x/ is an indication function with value 1 if x � 0 and 0 otherwise, the
p-value p. Oı/ is a function of the observed treatment difference Oı, ˛ is the level
of significance, and f . Oı/ is the p.d.f. of Oı. I.˛ � p. Oı// � 0 implies achievement
of statistical significance or rejection of the null hypothesis. The constant r should
be constructed at least based on the clinical and commercial values. The expected
utility (4.51) can be easily calculated using simulations after the cost and r are
determined.

In Tables 4.5 and 4.6, we present some typical simulation results, both power and
the utility U , respectively, for SSR trials. In the utility comparison, we use r D 1

and remove the cost factor by making the expected sample size (cost) the same.
From the tables, we can see that when the trial is underpowered, MSP is better

than MPP and MINP in terms of power. MINP always has slightly higher power
than MPP. When the power reaches around 70% or higher, MINP is better than
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Table 4.5 Comparison of power from MSP (MMP), MPP, and MINP

ı=� 0.1 0.15 0.2 0.25 0.3 0.35
Nn 173 180 180 175 166 153
MSP(MMP) 0.182 0.334 0.514 0.686 0.824 0.915
MPP 0.161 0.308 0.496 0.685 0.835 0.928
MINP 0.161 0.315 0.507 0.696 0.843 0.933

Note: Nn D expected sample size , � D 1. Best values are highlighted

Table 4.6 Expected utilities from MSP(MMP), MPP, and MINP

ı=� 0.1 0.15 0.2 0.25 0.3 0.35
Nn 173 180 180 175 166 153
MSP(MMP) 9.62 17.9 27.8 37.6 46.0 51.7
MPP 7.69 15.2 25.3 36.0 45.3 51.6
MINP 7.90 15.5 25.7 36.5 45.6 51.8

Note: Nn D expected sample size, � D 1. Best values are highlighted

MSP or MMP (MSP) (Table 4.5). In terms of utility defined by (4.50) with r D 1,
MMP (MSP) is better until the power reaches about 90% or higher (Table 4.6). The
notion of the adaptive design with SSR reminds us to focus on situations where
the trial is underpowered. As we discussed earlier, a majority of phase-III trials are
underpowered. For this reason, among others, MMP or MSP is recommended for
SSR. Keep in mind that the uniformly most powerful test for the classic design may
not be applicable in the context of adaptive designs (see Sect. 4.5.2).

4.4 Adaptive Designs in Action

4.4.1 Sample Size Reestimation

Sample size determination is critical in clinical trial designs. It is estimated at about
5,000 patients per NDA on average (Mathieu 2008). The average cost per patient
ranges from $20,000 USD to $50,000 USD. A small but adequate sample size
will allow sponsors to use their resources efficiently, shorten the trial duration, and
deliver the drug to the patients earlier.

From the efficacy point of view, sample size is often determined by the power for
the hypothesis test of the primary endpoint. However, the challenge is to estimate
precisely the treatment effect and its variability at the time of protocol design. If
the effect size of the NME is overestimated or its variability is underestimated, the
sample size will be underestimated and consequently the power will be too low to
have a reasonable probability of detecting a clinically meaningful difference. On
the other hand, if the effect size of the NME is underestimated or its variability
is overestimated, the sample size will be overestimated and consequently the
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power will be unnecessarily higher, which could lead to unnecessary exposure of
many patients to a potentially harmful compound when the drug in fact is not
effective. The commonly used adaptive design, called sample size reestimation
(SSR), emerged to provide a remedy for this problem.

An SSR design refers to an adaptive trial that allows for sample size adjustment
or reestimation based on the review of interim analysis results. There are two types
of sample size reestimation procedures, based on blinded and unblinded data. In the
first scenario, the sample size adjustment is based on the (observed) pooled variance
at the interim analysis to recalculate the required sample size, which does not
require unblinding the data. In this scenario, the type-I error adjustment is usually
negligible. In the second scenario, the effect size and its variability are re-assessed,
and the sample size is adjusted based on the unblinded treatment information. The
statistical method for the adjustment can be based on the observed effect size or the
conditional power.

For a two-stage trial with two parallel groups, the sample size per group for the
second stage, n2, can be calculated based on the target conditional power

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

n2 D 2 O�2
Oı2
�
z1�˛2Cp1 � z1�cP

�2
, for MSP,

n2 D 2 O�2
Oı2
�
z1�˛2=p1 � z1�cP

�2
, for MPP,

n2 D 2 O�2
Oı2
�

z1�˛2
w2

� w1
w2

z1�p1 � z1�cP
�2

, for MINP,

(4.56)

where, for the purpose of calculation, Oı and O� are taken to be the observed treatment
effect and standard deviation at stage 1, and cP is the target conditional power.

For a general K-stage design, the sample size rule at the kth stage can be based
on the observed treatment effect in comparison with the initial assessment:

nj D
�
ı

Nı
�2
n0j ; j D k; k C 1; : : : ; K; (4.57)

where n0j is the original sample size for the j th stage, ı is the initial assessment for

the treatment effect, Nı is the updated assessment after interim analyses, given by

Nı D
Pk

iD1 ni OıiPk
iD1 ni

for MMP and MPP, (4.58)

Nı D
kX

iD1
w2ki

Oıi for MINP. (4.59)

The stagewise p-value pc given by (4.4) can be calculated using the Monte Carlo
method. Specifically, if the trial is stopped at the Qkth stage with T Qk D t Qk , then the
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percentage of simulated trials with T Qk > t Qk out of all the simulated trials that reach
the Qkth is equal to pc . The stagewise-ordering p-value is given by (4.9), i.e.,

p D
Qk�1X

iD1
�i C pc: (4.60)

4.4.2 Adaptive Seamless Design

A seamless design is an adaptive design consisting of multiple treatment groups. At
each stage, an interim analysis is performed and the losers (i.e., inferior treatment
groups) are dropped based on prespecified criteria. If there is a control arm, it is
usually also retained for the purpose of comparison. This type of design can be
used in phase-II/III combined trials. A traditional phase-II clinical trial is typically a
dose-response study, where the goal is to identify different response characteristics
with different doses and select the appropriate dose level (or treatment groups) for
the phase-III trials. This type of traditional design is not efficient with respect to
time and resources because the phase-II efficacy data are not pooled with data from
phase-III trials for the pivotal efficacy analysis. Therefore, it is desirable to combine
phases II and III so that the data can be used efficiently. Such a combined study is
called an adaptive seamless phase-II/III design, which is one of the most attractive
adaptive designs.

For illustration purposes, let’s discuss a simple but somewhat conservative
approach for a two-stage seamless design (a seamless trial with more stages can be
designed similarly). Assume there are m1 comparisons among M treatment groups
at the first stage. These comparisons can be expressed as m1 null hypotheses:

Hoi ; i D 1; : : : ; m1: (4.61)

The corresponding p-values are p1i ; i D 1; : : :m1: With Bonferroni adjustment
(if there is a common control group for all the comparisons, the Dunnett method
is better), the Bonferroni adjusted p-value is Qp1i D m1 p1i . Decision rules are
described as follows.

At stage 1, (1) if m1 p1i � ˛1, then reject Hoi .i D 1; : : : ; m1/; (2) if m1 p1i >

ˇ1, then accept Hoi .i D 1; : : : ; m1/; (3) if ˇ1 � m1 p1min > ˛1, then continue
to the second stage and make adaptations (e.g., adjust the sample size and add new
arms) if necessary, where p1min D min fp11; : : : ; p1m1g.

At stage 2, (1) choose a set of comparisons based on the corresponding p-values
Qp1i or other criteria, such as safety, for the second stage. Assume there are m2

comparisons at the second stage. (2) Based on the second-stage data, the naive
stagewise p-values are calculated as p2i and the Bonferroni adjusted p-value is
Qp2i D m2p2i .
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If MSP is used, the decision rules at stage 2 are: if Qp1i C Qp2i D m1p1i Cm2p2i �
˛2, then rejectHoi .i D 1; : : : ; m2/; otherwise, don’t reject the null. The global null
hypothesis can be rejected as long as m1p1min C m2p2min � ˛2, where p2min D
fp21; : : : ; p2m2g.

Bauer and Kieser (1999) provided a two-stage method for this purpose, where
investigators can terminate the trial entirely or drop a subset of treatment groups for
lack of efficacy after the first stage. Shun et al. (2008) developed a simple method
using normal approximation.

Let’s consider a drop-loser design with three arms: A, B; and C (control). At
the first stage, we perform two pairwise comparisons: A versus C and B versus C .
The corresponding p-values are denoted by p1A and p1B . If p1A < p1B , arm B is
dropped; otherwise, arm A is dropped. If we don’t drop any arm, the p-values for
the two comparisons at the final stage are denoted by pA and pB . It is obvious that
p1A, p1B , pA, and pB are uniformly distributed under the global null that implies
all three arms are equally effective. For the drop-loser design, we are interested in
the statistic

Zw D IABZ
A C .1 � IAB/Z

B; (4.62)

where IAB D 1 if arm B is dropped; otherwise, IAB D 0, ZA D ˚.1 � pA/, and
ZB D ˚.1 � pB/.

Shun et al. (2008) found that, under the global null hypothesis, Zw is approxi-
mately normally distributed with mean E .Zw/ D p

	
2�

and var.Zw/ D 1 � 	
2�

,
where the information time for the interim analysis 	 D n1

n
(the sample size fraction

at the interim analysis). Therefore they proposed as a test statistic

Zws D Zw �p
	
2�p

1 � 	
2�

, (4.63)

which has approximately the standard normal distribution under the global null
hypothesis that treatments A, B , and C have the same treatment effect.

The approximate p-value hence can be easily obtained: pA D 1�˚ .Zws/ : The
exact p-value is given by

p D pA C 0:0003130571 .4:444461	/� 0:00033. (4.64)

Note that we have used the inverse-normal transformation to generalize the Shen-
Lan-Soo method to binary and survival endpoints.

4.4.3 Noninferiority-Superiority Adaptive Design

For a standard K-stage group sequential trial, usually either a superiority or
noninferiority test is performed at each stage. However, it is often of interest to
pharmaceutical companies to perform both superiority (HS ) and noninferiority
(HNI) tests in a single trial. Wang et al. (2001) proposed a procedure to test
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superiority and noninferiority simultaneously in a single adaptive design, where a
noninferiority test procedure with a fixed margin was used. Recall that the standard
group sequential design is a special case of MINP. The authors proposed two
closed test procedures, referred to as GSC S-NI and GSC NI-S, as illustrated in
Fig. 4.1. Both procedures control the maximum total type-I error probability for
both noninferiority and superiority at the ˛ level. Furthermore, the GSC procedure
achieves the power for superiority at the planned level ˛ (i.e., not a reduced power)
because of testing superiority and noninferiority simultaneously. The procedures
are established on the usual lower limit of the confidence interval, LLi , for the
treatment difference from the i th interim analysis. The fixed noninferiority margin
is denoted by ıNI (see Chap. 3, Sect. 3.1.3.1).

The procedure GSC S-NI is described as follows:

1. At stage i , if LLi > 0, then claim superiority and stop the trial; otherwise,
continue to step 2.

2. If LLi > �ıNI , then claim noninferiority; otherwise, the trial continues to stage
i C 1 (if i C 1 > K , conclude noninferiority).

The procedure GSC NI–S is described as follows:

1. At stage i , if LLi > �ıNI , then claim noninferiority and continue examining for
superiority:

a. If LLi > 0, then claim superiority and stop.
b. If LLi � 0, continue on step 2.

2. If LLi > 0, then claim superiority and stop; otherwise continue to stage iC1 and
repeat steps 1 and 2 until loop over all the stages.

These two procedures imply that we can test superiority and noninferiority
separately in the sequential trial. Superiority can be claimed regardless of the
noninferiority claim as long as the superiority hypothesis HS is rejected at a stage.
Similarly, noninferiority can be claimed regardless of the superiority claim as long
as the noninferiority hypothesisHNI is rejected at a stage.

Wang et al. (2001) proved that the previous closed procedures are also valid
for a two-stage adaptive design with SSR at the interim analysis using a method
equivalent to MINP.

4.5 Adaptive Design Debates

4.5.1 Sufficiency Principle

Jennison and Turnbull (2003), Posch et al. (2003), and Burman and Sonesson (2006)
pointed out that the adaptive design using a weighted statistic violates the sufficiency
principle because it weighs the same amount of information from different stages
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differently. Michael A. Proschan (Burman and Sonesson 2006, discussion) proved
that no test based on the sufficient statistic can maintain a level ˛ irrespective of
whether the prespecified sample size rule is followed.

The “unweighted test” utilizes the distribution of sample size N to choose a
critical level with the desired probability of rejecting the null hypothesis uncon-
ditional on N but disregards the observed value of N . Because N is part of the
minimal sufficient statistic, it is not in accordance with the sufficiency principle and
is inefficient (Marianne Frisen, in Burman and Sonesson 2006, discussion).

The key question is: should information (or sufficiency of a statistic) regarding
� be based on data or data + procedure? The conclusion that each observation
contains the same amount of information is valid in a classic design but not in
an adaptive design because a later observation contains some information from
previous observations due to the dependent sampling procedure. Therefore, an
insufficient statistic in a classic design can become sufficient under an adaptive
design. For example, suppose we want to assess the quantity # D 1�RB

1�RA , where
RA and RB are the true response rates in groups A and B , respectively. In a
classic design with balanced randomization, NA

NB
is asymptotically approaching 1.

However, in the randomized play-the-winner design, NA
NB

asymptotically converges

to #: Therefore, the same data NA
NB

could contain different amounts of information in
different designs.

4.5.2 Minimum Sufficiency Principle and Efficiency

Jennison and Turnbull (2006) raised the question as to when an adaptive design
using nonsufficient statistics can be improved upon by a nonadaptive group
sequential design. Tsiatis and Mehta (2003) have proved that for any SSR adaptive
design there exists a more powerful group sequential design. On the other hand, the
weighted method (or MINP) provides great flexibility, and when the sample size
does not change, it has the same power as the classic group sequential design.

It is really analogous with a two-player game. Player A says to player B: if you
tell me the sample size rule, I can find a group sequential design (with as many
analyses as I want to have) that is more efficient than the adaptive design. Player B
says to playerA: if you tell me how many and when you plan the interim analyses, I
can produce an adaptive trial with the same number and timing of the analyses that
is more flexible, and if the sample size does not change, it is identical to the group
sequential design.

4.5.3 Conditionality and Exchangeability Principles

Burman and Sonesson (2006) pointed out that SSR also violates the invariance
and conditionality principles because the weighted test depends on the order
of exchangeable observations. Marianne Frisen (Burman and Sonesson 2006,
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discussion) stated similarly: “The ‘weighted’ test avoids this by forcing a certain
error spending. This is done at the cost of violating the conditionality principle.
The ordering of the observations is an ancillary statistic for a conclusion about
the hypothesis. Thus, by the conditionality principle the test statistic should not
depend on the ordering of the realized observations.” For a general distribution, not
belonging to the exponential family, the weighted test will violate the conditionality
principle but not the sufficiency principle (Burman and Sonesson 2006).

If sufficiency and conditionality are important, then the combination of the two is
the likelihood principle, which also faces challenges (Robert 1997; Chang 2007a).

4.5.4 Equal Weight Principle

Exchangeable observations should be weighted equally in the test statistic. The
equal weight principle views exchangeability from the weight perspective. However,
the measurement of the information level is not unique. For example observation xi ,
1=xi , or pi can be counted as the unit of information. The adaptive design method
MSP equally weights the evidence (pi ) againstHo from the two stages.

It has been misunderstood that the classic group sequential design equally
weights information, but actually it does not because the observations from the
first stage have the potential of being used more than once in decision-making
(hypothesis-testing); e.g., if ˇ2 > p1 > ˛1, the trial continues and the data from
the first stage will be combined with data from the second stage to calculate the test
statistic for rejecting or accepting the null hypothesis. The patients from the first
stage have the chance of “voting twice or more” in the decision process.

4.5.5 Consistency of Stagewise Results

Compared with the classic design, adaptive designs naturally allow for an interim
look to check the consistency of results from different stages. If p1 and p2 are very
different, we may have to look at the reasons, such as baseline difference, gene
difference, and others. The question is should we check this consistency for a classic
design, too, by splitting the data in different ways?

It is also controversial in adaptive designs (including group sequential designs)
that we often reject the null hypothesis with weaker evidence but don’t reject
the null hypothesis with stronger evidence. For example, in a two-stage group
sequential design with the O’Brien-Fleming spending function (˛1 D 0:0025 and
˛2 D 0:0238/, we will not reject the null when the p-value D 0:003 > ˛1 at the
interim look but we do reject the null when the p-value D 0:022 < ˛2. Why don’t
we reject the null hypothesis when the evidence against the null is stronger (p-value
D 0.003) and rejectHo when the evidence is much weaker (p-value D 0.022)? Let’s
elaborate on the controversy using the following patient-statistician dilemma.
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Suppose you are a patient and a statistician. As a patient, you have to be treated
with some drug. As a statistician, you have designed two trials for two NMEs (new
molecular entities) for a therapeutic indication with classical and adaptive features,
respectively. As a patient, you have specified the criteria for selecting the treatment:
rank the two p-values for the efficacy tests from the two NME trials and pick the
NME with a smaller associated p-value.

Suppose now that NME 1 with a classical design has tested with 30% improve-
ment (p D 0:04 < ˛ D 0:05), statistically significant, whereas NME 2 with an
adaptive design has been tested with 50% improvement and the final p D 0:026,
which is not statistically significant due to the multiple looks at the data. You further
examine the sample size and variability of the efficacy data; they are similar between
the two groups. The safety, tolerability, cost, and convenience of drug administration
are all similar between the two NMEs. As a statistician for the trials, you should
recommend NME 1 for treating the disease; as a patient with that disease, you will
take NME 2. Since you are the statistician with the disease, what do you do?

4.5.6 Adjusted p-value

Controversies surrounding p-values have been discussed in Chap. 1. Our
discussions here focus on the p-value issues that are particular to adaptive design.
The type-I error control is not very challenging, and most adaptive designs control
the familywise error. However, because hypothesis-testing is primarily based on
the concept of repeated experiments, the scope in which the experiment will
potentially be repeated is critical. In clinical trials, we virtually never test the
same compound for the same indication in a phase-III study repeatedly. For this
reason, the implication of control of the experimental error rate ˛ may be totally
different from what we initially intended.

The definition, not the calculation, of the p-value is challenging because there
are so many options for an adaptive design. Remember that the p-value is the
probability of the test statistic under the null hypothesis being more extreme than
the critical point. The key lies in how the extreme should be defined. Unlike in a
classic design, definitions of extremeness of a test statistic can be defined in many
different ways in adaptive designs (e.g., stagewise ordering, sample mean ordering,
and likelihood ratio ordering). None of these definitions simultaneously satisfies
the concerns raised from statistical, scientific, and ethical perspectives. Similarly,
an agreeable definition and calculations of the unbiased point estimate and the
confidence interval remain challenging for adaptive designs.

4.5.7 Summary

Adaptive designs violate several commonly accepted statistical principles. The
violations on the one hand remind us to adopt the new approaches with extreme
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caution. On the other hand, the new approaches may suggest that principles of
inference only go so far and that new principles may be desirable. Indeed, adaptive
designs present great challenges to frequentist statistics and conventional thinking
in development. Group sequential designs have been widely used in clinical trials;
however, there are many controversial issues with these designs that are only fully
realized when we widen the concept to a more general category of adaptive designs.

It is obvious that efficiency in clinical trials is not identical to the power of
hypothesis-testing. In clinical trials, the concept of efficiency often includes the
power, the time-to-market, and the operational flexibility. Overemphasizing the
power can be very misleading when evaluating adaptive designs. This simple fact is
often overlooked.

Despite the challenges, adaptive designs have been proved useful in practice and
more and more clinical trials have adopted.

4.6 Exercises

4.1. In a two-arm comparative oncology trial, the primary efficacy endpoint is time
to progression (TTP). The median of TTP is estimated to be 8 months (hazard rate
D 0.08664) for the control group and 10.5 months (hazard rate D 0.06601) for the
test group. Assume the trial has a uniform enrollment with an accrual period of 9
months and a total study duration of 24 months. The log-rank test will be used for
the analysis. An exponential survival distribution is assumed for the purpose of the
sample size calculation. The classic design requires a sample size of 323 subjects
per group. Design a group sequential trial using MMP, MPP, and MINP.

4.2. Use each of the adaptive methods (MMP, MPP, and MINP) to design a two-
stage trial with a sample size reestimation. Assume the stopping boundary for the
first stage ˛1 D 0:01, the effect size ı=� D 0:2, and power D 40%. The sample size
adjustment at the interim analysis is based on (4.52) or (4.53). Compare the six
expected sample sizes NN under the condition ı=� D 0:2 between the two methods.
(Hint: Computer simulation programs can be downloaded from www.statisticians.
org.)

4.3. In Exercise 4.1, assume the sample size adjustment is based on the following
formulation. The sample size per group for the second stage is determined by

n2 D p


1 .

Determine the constant 
 to minimize the expected sample size NN under the
condition ı=� D 0:2 and ˛ D 0:01. (Hint: For a given 
 , adjust the maximum
sample size Nmax such that power D 40%.)

4.4. Compare the nine expected sample sizes obtained from Exercises 4.2 and 4.3.
Summarize your findings.



114 4 Adaptive Trial Design

4.5. Assume a classic three-arm trial including placebo, low-dose, and high-dose
groups. The objective is to prove either the low dose or high dose is effective
compared with the placebo at the level ˛ D 5% using the Dunnett method (see
Chap. 1). Calculate the total sample size required for the trial design. Then take an
adaptive seamless design using the Shun-Lan-Soo method and compare the sample
size against that from the classic design.

4.6. Suppose that in a classicm-group dose-finding trial with a continuous response
(variance �2 D 1) the test statistics for pairwise comparisons are defined as

Zi D Nxi � Nx0p
n

;

where Nxi is the mean of the i th group, i D 0 for the control group, and n is the
sample size per group. Study (analytically or numerically using simulation) the
distributions of the following order statistics:

Z.1/ <; : : : ; < Z.m/:

4.7. Do you believe the exchangeability holds between an observation from the first
stage and an observation from the second stage of the adaptive design? Why?
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Chapter 5
Missing Data Imputation and Analysis

5.1 Missing Data Problems

5.1.1 Missing Data Issue and Its Impact

Missing data are a common occurrence in scientific research and in our daily lives.
In a survey, a lack of response constitutes missing data. In clinical trials, missing
data can be caused by a patient’s refusal to continue in a study, treatment failures,
adverse events, or patient relocations.

Missing data will complicate data analysis. In many medical settings, missing
data can cause difficulties in estimation, precision, and inference. In clinical
trials, missing data can undermine randomization (Little 2010). CHMP’s guideline
(CHMP 2009) provides advice on how the presence of missing data in a confir-
matory clinical trial should be addressed in a regulatory submission. It is stated
that the pattern of missing data (including reasons for and timing of the missing
data) observed in previous related clinical trials should be taken into account when
planning a confirmatory clinical trial.

An analysis that ignores subjects with missing data is called a completer analysis.
Completer analyses, on the one hand, can reduce the power of hypothesis-testing
due to a reduction in sample size; on the other hand, noncompleters might be
more likely to have extreme values (e.g., treatment failure leading to dropout,
or extremely good response leading to loss of follow-up). Therefore, the loss
of noncompleters could lead to an underestimate of variability, hence artificially
narrowing the confidence interval for the treatment effect and artificially increasing
the power of the study. Therefore, the overall effect of missing data depends on the
situation.

A completer analysis can potentially cause bias if missingness is not at random
(i.e., it relates to observed, unobserved or both measurements). Generally, missing
data will not be expected to lead to bias in the completer analysis if they are not
related to the observed or unobserved measurements (e.g., poor outcomes are no
more likely to be missing than good outcomes). However, it is virtually impossible
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to elucidate whether the relationship between missing values and the unobserved
outcome variable is completely absent. Consequently, unbiasedness cannot be firmly
asserted in reality.

If subjects with missing data are excluded from the analysis in a clinical trial,
it may affect the comparability of the treatment groups and the representativeness
of the study sample in relation to the target population (external validity) is
questionable.

In this chapter, we study different types of missing data, except censoring survival
data, which will be studied in Chap. 6.

5.1.2 Missing Data Taxonomy

5.1.2.1 Syntax Conventions

Let Yij denote the random variable measured at the j th time point on the i th subject,
where i D 1; : : : ; n and j D 1; : : : ; ni . We use vector Y i D .Yi1; : : : ; Yini /

0 to de-
note the measurements on subject i , where the prime represents the matrix transport.
We use an uppercase letter to denote a random variable and a lowercase letter for a
corresponding observation. We use superscripts or subscripts, “obs” and “mis”, to
indicate observed and missing quantities, respectively. Therefore,yij consists of yobs

ij

and ymis
ij . The indicatorRij D 1 if the value of Yij is observed; otherwise,Rij D 0. Let

Ri D .Ri1; : : : ; Rini /
0. The mechanism of missingness will be denoted by $i , and

the matrix of covariates for the i th subject is denoted by Xi D .Xi1 : : : ; Xini /.

5.1.2.2 Classification of Missing Mechanisms

According to Rubin (1976) and Little and Rubin (2002), the missing value process
can be characterized by way of three different categories in terms of its marginal
probability distribution.

1. If the probability of an observation being missing does not depend on observed
or unobserved measurements, then the observation is classified as missing
completely at random (MCAR). The marginal density for missingness is given by

f .r i jy i ;$i ; / D f .r i j$i; / , (5.1)

where  is the parameter vector characterizing the mechanism of missingness.
MCAR is difficult to find in reality. One may consider a patient moving to another
city for nonhealth reasons as MCAR. However, we can reason that if a new
oncology drug works well, the patient is more unlikely to move out of the city
than otherwise. A car accident may be considered as MCAR, but it could also be
caused by one’s health condition.
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2. If the probability of an observation being missing depends only on observed
measurements, then the observation is classified as missing at random (MAR).
This assumption implies that the behavior (i.e., distribution) of the post-dropout
observations can be predicted from the observed values, and therefore that
response can be estimated without bias using exclusively the observed data.
Mathematically, the density of MAR is given by

f .r i jy i ;$i ; / D f
�
r i jyobsi ;$i ; 

�
. (5.2)

3. When observations are neither MCAR nor MAR, they are classified as missing
not at random (MNAR), i.e., the probability of an observation being missing
depends on both observed and unobserved measurements. The density of miss-
ingness, f .r i jy i ;$i ; /, cannot be simplified.

Mathematically, there is no way to know whether missing is MACR, MAR, or
MNAR. However, we often believe MCAR/MAR can be a good approximation in
certain situations.

Ignorability is a property of missingness. Ignorability ensures that ignoring the
unobserved data in the analysis will not lead to biased results.

Monotonic missingness is a common and simple pattern of missingness. If
the missing data pattern is monotone, then all observations after time point t
are missing, where t is the time point when the first missing observation occurs.
Sufficient conditions for ignorability are the following two requirements.

1. The joint prior distribution for � and  can factor into independent priors

P.�; / D P.�/P. /; (5.3)

i.e., the joint distribution is ’distinct.’ In this case, the change in one parameter
will not cause a change in the other parameter.

2. MAR holds. In other words, the distribution of missingness depends only on the
observed data, and all the information about missing data is contained in the
observed part of the data. Mathematically, it is characterized as

P.RijjY ; / D P.RijjY obs; /: (5.4)

A commonly used parametric model for missingness is the logistic model that
models the continuation probability for subject i , at time j , using

pij. / D P.Rij D 1jYi1; : : : ; Yij; / D exp. 0 C  1Yi1 C � � � C  jYij/

1C exp. 0 C  1Yi1 C � � � C  jYij/
:

(5.5)

For MCAR,  1 D � � � D  j D 0, and for MAR,  j D 0.
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5.2 Analysis Methods for Missing at Random

5.2.1 Single Imputation Methods

As mentioned earlier, completer analysis often is not preferred. There are several
commonly used simple methods that deal with missing data. An example would be
the last-observation carry forward (LOCF), which can be used if the outcome for a
participant would not change after his dropping out. The LOCF is not unbiased even
under the MCAR assumption (Little 2010) and can give the two groups better or
worse results. If the timing of two withdrawals is different (e.g., some may withdraw
when the drug effect starts to decline, others may withdraw when the efficacy is
still at its trough, and others may withdraw from the study due to side-effects) or
the baseline covariates differ between the treatment groups, bias can occur. Other
kinds of simple implementations, as mentioned in the CHMP guidance (CHMP
2009) are, for e.g., to replace the unobserved measurements by values derived
from other sources such as information from the same subject collected before
withdrawal, from other subjects with similar baseline characteristics, a predicted
value from an empirically developed model, or historical data. Examples of
empirically developed models such as unconditional/conditional mean imputation
and best/worst case imputation (assigning the worst possible value of the outcome
to some dropouts and the best possible value to others) are also mentioned in the
guidance.

5.2.2 Generalized Linear Mixed Models

Some statistical approaches to handling missing data do not employ any explicit
missing imputation. Generalized estimating equations (GEEs), random-effects ap-
proaches, and general linear mixed models (GLMMs) are examples of such models.
They are usually valid under MAR assumptions. GLMMs can be used for data with
repeated measures. Unlike a general linear model (GLM), in which subjects with
missing values are removed from the analysis (i.e., completer analysis), GLMMs
utilize all the observed data. GLMs are only valid under MCAR, but GLMMs are
valid under MAR.

The general linear mixed model family is given by

Y i D Xiˇ CZi� i C "i , (5.6)

where Y i is the response vector, Xi is fixed effects with the associated un-
known parameter vector ˇ, Zi is random effects with the associated parameters
� i �N .0; G/ ; and the random error term "i � N .0; ˙i /. It is assumed that � i and
"i are independent.
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The fitting of a linear model is usually based on the marginal model that,
for subject i , is multivariate normal with mean Xiˇ and covariance Vi .˛/ D
ZiGZ

0

i C ˙i . The parameters in ˛ are usually called “variance components.” A
common approach to estimation and inference is based on maximum likelihood
(ML) or likelihood. Assuming independence across subjects, the likelihood takes
the form

L.�/ D
nY

iD1

exp
�� 1

2
.Y i � Xiˇ/

0 V �1
i .˛/ .Y i �Xiˇ/

�

.2�/ni=2
pjVi .˛/ j . (5.7)

After ignoring a constant term, the log-likelihood is given by

LL D �n
2

ln jVi .˛/ j �
nX

iD1

�
�1
2
.Y i �Xiˇ/0 V �1

i .˛/ .Y i � Xiˇ/

�
. (5.8)

For the linear mixed model case, inference is conventionally based on the
marginal model for Y i , which is obtained from integrating out the random effects.
The likelihood contribution for subject i then becomes

fi .y i jˇ; G; �/ D
Z njY

jD1
fij
�
yijj� i ;ˇ; �

�
f .� i jG/ d� i . (5.9)

Based on (5.9), the likelihood for ˇ; G, and � can be derived as

L.ˇ; G; �/ D
nY

iD1
fi .y i jˇ; G; �/

D
nY

iD1

Z njY

jD1
fij
�
yijj� i ;ˇ; �

�
f .� i jG/ d� i . (5.10)

The exponential-family distributions are often used in conditional form,

fi
�
yijj� i ;ˇ; �

� D exp

 
yij�ij �  ��ij

�

�
� c �yij; �

�
!

, (5.11)

with a link function g
�
�ij
� D g

�
E
�
Yijj� i

�� D x0
ijˇ C z0

ij� i , where xij and zij are
p-dimensional and q-dimensional vectors of known covariate values, vectorˇ D un-
known fixed regression coefficients, � D scale parameter, and �ij are the canonical
parameters. Furthermore, let f .� i jG/ be the density of the N .0; G/ distribution
for the random effects � i . Various covariance structures, such as the compound-
symmetric, first-order autoregressive, and unstructured, can be used for G.
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The maximization of likelihood (5.10) is challenging because of the presence
of n integrals over the high-dimensional random effects. Monte Carlo simulation
may be used since the efficiency of Monte Carlo for integrals is independent
of dimensionality. Other numerical approximations and quasi-likelihood estimates
have also been proposed.

A trial example and SAS program using the mixed model will be illustrated in
Sect. 5.4, Example 5.2 and SAS Program 5.4.

5.2.3 Expectation-Maximization Algorithm

The term “expectation-maximization (EM) algorithm” was coined in 1977
(Dempster et al. 1977). The EM algorithm is an iterative algorithm used to calculate
maximum likelihood estimates in parametric models in the presence of missing data.
After the initial values are chosen, the iteration involves two steps: the expectation
or E-step and the maximization or M-step. The condition for the EM algorithm to
be valid, in its basic form, is ignorability, and hence MAR.

In the implementation of the EM algorithm, before the E-step and M-step begin,
the choice of an initial value of the parameter, �.0/, is important since this value
will affect the speed of convergence. A commonly used value for � .0/ is the
solution from the complete-case (completer) analysis or from some simple method
of imputation.

1. The E-step
Given the parameter values �.k/ at the kth iteration, the E-step computes the
objective function:

Q
�
� j�.k/

	
D
Z
L.� jy/ f

�
ymisjyobs;�

.k/
	

dymis

D E
h
L.� jy/ jyobs;�

.k/
i
: (5.12)

2. The M-step
� .kC1/ is calculated to maximize the log-likelihood of the imputed data (or the
imputed log-likelihood). Formally, � .kC1/ satisfies

� .kC1/ D arg max
�2� Q

�
� j�.k/

	
. (5.13)

The EM algorithm is guaranteed to be convergent, but the solution can be a
local maximum, and the speed of convergence can be slow.

A trial example and SAS program using the mixed model will be illustrated
in Sect. 5.4, Example 5.2 and SAS Program 5.5.
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5.2.4 Inverse-Probability Weighting Method

5.2.4.1 Univariate Outcome

When data are MAR but not MCAR, a modification of complete-case analysis is to
assign a missingness weight to the complete cases so that bias may be reduced.
Suppose that in the complete dataset there are ten counts for yD 1 but only
seven of them are actually observed (70% observed, 30% missing). We weight
these observations by the inverse of the proportion of observed (70%), making
it equivalent to ten observations for the estimation of the mean. However the
proportion being observed is a random variable, so in practice we use the probability
of being observed. That is the basic idea behind the inverse-probability weighting
(IPW) method.

Consider the simple case in which the intended outcome is Y and the design
variables are X (they can also include an auxiliary variable). Define a response
indicator, RD 1 when Y is observed and RD 0 when it is missing. An IPW
estimator for the mean of Y can be computed as follows:

1. Specify an appropriate model (e.g., the logistic model) for the missingness
�.X; �/ D P� .R D 1jX/.

2. Estimate the mean of Y using the weighted average

O� D 1

n

nX

iD1

RiYi

�
�
Xi ; O�

	 ; (5.14)

whereRi D 1 when Yi is observed andRi D 0 when Yi is missing. The estimator
(5.14) is obtained by inflating the average of the observed Y by the inverse
probability of being observed.

As pointed out by Little (2010) for large samples, this method properly adjusts for
bias when the data are MAR, provided the model for �.X; �/ is correctly specified.
In finite samples, the method can yield mean estimates that have a high variance
when some individual-specific weights are high and � is close to zero. To avoid the
high variance, we can lower the limit for the weights, making a trade off between
bias and variance.

In addition to the MAR assumption, the IPW method requires that the possible
values of the missing responses be the same as those of the observed responses.
The IPW method, and generally any method that relies on MAR, is estimating the
mean under the condition that everyone remained in treatment in the clinical trial.
This is why it is important to collect outcome data after individuals withdraw from
treatment.
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5.2.4.2 Augmented IPW Estimation Under MAR

IPW can be combined with the GEE method. Hogan et al. (2004) conducted an
analysis of repeated binary data from a smoking cessation study. The investigators
used IPW to estimate the effect of a behavioral intervention involving supervised
exercise on the rate of smoking cessation in women. The publication includes SAS
code for fitting the model.

However, IPW with GEE does not make full use of the information in incomplete
cases. The augmented IPW GEE procedure remedies this weakness. The procedure
is best understood in the simple case in which only the values (Yit) at the last time
point, t DK , are missing for some subject i , and they are MAR. Suppose one wishes
to estimate � D E.YK/, the mean outcome in a particular treatment group in a
clinical trial. Let ZiK� D fZi1; : : : ZiK�1g, and let RiK D 1 if the i th subject has
the observation YiK at the time point t D K , and RiK D 0 otherwise. Fit a model
�i .�/ D P� .RiK D 1jZiK�/ as described earlier for the univariate outcome.

The augmented IPW (AIPW) estimator of � is given by

O� D 1

n

nX

iD1

RiKYiK

�i

� O�
	 C 1

n

nX

iD1

8
<

:
RiK

�i

� O�
	 � 1

9
=

;g .ZiK�; Xi / , (5.15)

where g .ZiK�; Xi/ is some function of the observed-data history up to K � 1.
The first term is just the IPW estimator of �. The second (augmentation) term

has mean zero, so that O� is still a consistent estimator. However, the variance of O�
will depend on the choice of g, where the optimal choice isE.YiKjZiK�; Xi /, which
in practice can be approximated by the regression prediction OYiK .

5.2.4.3 Imputing Nonmissing Responses

Relevant to the IPW method, Müller et al. (2006) proposed a better estimator
(smaller variance) by imputing responses that are not missing.

Let h.X; Y / be a square-integrable function of a random vector .X; Y /.
We want to estimate its expectation EŒh.X; Y /� using the empirical estimator
1
n

Pn
iD1 h .xi ; yi /. If nothing is known about the distribution of .X; Y /, this

estimator is efficient. We are interested in the situation whereX is always observable
but Y is observable only if some indicatorR equals one. We assume thatR and Y are
conditionally independent given X , i.e., Y is MAR. In this case, the empirical esti-
mator is not available unless all Ri are one. Let �.X/ D E.RjX/ D P.R D 1jX/.
If � .�/ is known and positive, we could use the estimator 1

n

Pn
iD1

Ri
�.Xi /

h .Xi ; Yi /.
If � .�/ is unknown, one could replace � by an estimator O� , resulting in

1

n

nX

iD1

Ri

O� .Xi/h .Xi ; Yi / . (5.16)
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Surprisingly, even if � is known, replacing � by an estimator can decrease the
asymptotic variance. Furthermore, the partially imputed estimator is given by

1

n

nX

iD1
.Rih .XiYi /C .1 �Ri/ O� .Xi// , (5.17)

where O� .Xi/ is an estimator of the conditional expectation,

O� .Xi / D E .h .Xi ; Yi / jXi/ . (5.18)

An alternative to the partially imputed estimator is the fully imputed estimator

1

n

nX

iD1
O� .Xi/ . (5.19)

Müller et al. (2006) show that the fully imputed estimator (5.19) is usually better
than the partially imputed estimator (5.17).

5.2.5 Multiple-Imputation Method

Multiple-imputation (MI) methods generate multiple copies of the “complete
dataset” by replacing missing values with randomly generated values, using a
Bayesian or other method, and analyzing them as complete sets. MI does not model
the dropout process but requires a correct specification of the model that relates
the distribution of missing responses to the observed data, known as the imputation
model.

According to Rubin (1987), MI involves three distinct tasks:

1. The missing values are filled in M times to generateM complete datasets.
2. The M complete datasets are analyzed using the standard procedure.
3. The results from the M analyses are combined into a single inference.

The first step is the key. Consider a Bayesian joint model for the complete data
and the missingness

' .�; Ymis/ / f .Ymis; Yobsj�/ � .�/ , (5.20)

where � .�/ is the prior of � . The marginal posterior of � is given by

�.� jYobs/ D ' .�/ D
Z
' .�; Ymis/ dYmis. (5.21)

MCMC is often used as a missing-imputation algorithm.
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Ignorability is the weakest general condition under which the distribution of
missingness does not need to be taken into account when making likelihood-based
or Bayesian inferences (Rubin 1987). Without ignorability, MIs would have to be
drawn from (5.21).

Because MI uses a Bayesian method to generate missing values, how to have a
valid frequentist inference is an interesting topic. Rubin (1976) describes conditions
under which the following asymptotic result holds in a frequentist sense, i.e., the
test statistic has a t-distribution.

To estimate ˇ, we can use the weighted average of the M estimates,

Ǒ D
MX

mD1
wm Ǒ.m/, (5.22)

with variance
OV D W C



M C 1

M

�
B , (5.23)

where (
W D PM

mD1 wm OV .m/
B D PM

mD1 wm
� Ǒ.m/ � Ǒ	 � Ǒ.m/ � Ǒ	0

.
(5.24)

Under MAR, wm D 1=M . Under MNAR, weight wm can be calculated using
sensitivity methods (Carpenter et al. 2007).

A trial example and SAS program using the multiple-imputation method will be
illustrated in Sect. 5.4, Example 5.2 and SAS Program 5.2.

5.2.6 Weighted Generalized Estimating Equations

The GEE model is described as a marginal model for the response Yij (j D
1; : : : ; ni ; i D 1; : : : ; n, and ˙n

iD1ni DN ). The parameter vector ˇ is obtained by
solving the system of equations,

S .ˇ/ D
nX

iD1

@�i

@ˇ
0
ŒVi .˛/�

�1 .y i ��i / D 0, (5.25)

where the mean �i D E .Y i / and the marginal covariance matrix

Vi .˛/ D �A
1=2
i W

�1=2
i Ci .˛/W

�1=2
i A

1=2
i ; (5.26)

in which the variance matrix for repeated measures on subject i is �Ai D
��diagŒv .�i1/ ; : : : ; v .�iT/�, with � being the unknown dispersion parameter and
Ci .˛/ the so-called ni � ni working matrix for the i th subject. If Ci .˛/ is the true
correlation matrix of Yi , then Vi .˛/ is the true covariance matrix of Yi .
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With the logistic dropout model (5.5), the weight is given by (e.g., SAS Institute
Inc. 2008, p. 1681)

1

wi
D .1 � 	im/

I .m�T /
m�1Y

jD2
	ij; (5.27)

where 	ij D P
�
rij D 1jri;j�1 D 1;Xi ; Yi;j�1

�
, m is the time of dropout for the i th

subject (2 � m < T � 1), and the indicator I .m � T / D 1 if m � T ; otherwise
I .m � T / D 0. When the weight matrixWi is the identity matrix, (5.25) and (5.26)
reduce to the estimate for the unweighted GEE.

The dispersion parameter � has to be estimated through iterations, and usually
by means of the following Pearson residuals:

eij D yij � �ijq
v
�
�ij
�
=wij

: (5.28)

Specifically, the dispersion parameter � can be estimated by

O� D 1

N � p

nX

iD1

niX

jD1
e2ij; (5.29)

where p is the size of parameter vector ˇ.
The correlation matrix Ci .˛/ is dependent on the correlation structure. The

following commonly used structures, as well as others, are available in the SAS
GENMOD procedure.

1. For the m-independent structure,

Corr
�
Yij; Yi;jCt

� D

8
<̂

:̂

1 for t D 0,

˛t for t D 1; 2; : : : ; m,

0 for t > m,

(5.30)

Ǫ t D 1

.N � nt � p/ �
nX

iD1

X

j�ni�t
eijei;jCt . (5.31)

2. For the exchangeable structure,

Corr
�
Yij; Yik

� D
(
1 for j D k,

˛ for j ¤ k,
(5.32)

Ǫ D 1�
1
2

Pn
iD1 ni .ni � 1/� p� �

nX

iD1

X

j<k

eijeik. (5.33)
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3. For an unstructured covariance,

Corr
�
Yij; Yik

� D
�
1 for j D k,
˛jk for j ¤ k,

(5.34)

Ǫ jk D 1

.n � p/ �

nX

iD1
eijeik. (5.35)

4. For the first-order autoregressive AR(1) structure,

Corr
�
Yij; Yi;jCt

� D ˛t for t D 0; 1; : : : ; ni � j , (5.36)

Ǫ D 1

.N � n � p/ �

nX

iD1

X

j�ni�t
eijei;jCt . (5.37)

The link function g, defined by

g .�i / D X iˇ, (5.38)

can be chosen from various categories. Thus the derivatives are

@�i

@ˇ
0

D

2
66664

xi11

g0 .�i1/
� � � xini 1

g0 .�ini /
:::

:::
xi1p

g0 .�i1/
� � � xinip

g0 .�ini /

3
77775

. (5.39)

Unlike the classic GLM, GEE uses all data available in pairwise fashion as
defined in the estimates for Ǫ and Ǒ:

5.3 Analysis Methods for Missing Not at Random

In many cases, there are a variety of settings for each method, which can lead
to different conclusions. Therefore, approaches that investigate different MNAR
scenarios, such as pattern-mixture, selection, and shared parameter models, should
be explored.

5.3.1 Missing Data Frameworks

The common model-based methods for MNAR are likelihood-based approaches,
which can be classified into selection model, pattern-mixture model, and
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shared-parameter model frameworks by factorization of the full data model
(conditional probability density)

f .y i ; r i jXi;$i ;� ; / , (5.40)

where Xi and $i denote design matrices for the measurement and missing-
ness mechanisms, respectively. The corresponding parameter vectors are � and
 , respectively. For simplicity, we omit Xi and $i in (5.40), giving simply
f .y i ; r i j�; /.
1. The selection model combines a model for the distribution of the complete data

with a conditional model for the missingness given the data, i.e., it factorizes the
marginal density as

f .y i ; r i j�; / D f .y i j�/ f .r i jy i ; / , (5.41)

where the first factor is the marginal density of the measurement process and
the second one is the density of the missingness process, conditional on the
outcomes.

In the selection model approach (Diggle and Kenward 1994), the missing-
data mechanism was modelled to depend on the missing outcome variable as
well as covariates. Gao and Hui (2000) extended the selection model approach
from continuous outcomes to binary outcomes. The results from these models
tend to be highly sensitive to departures from the assumptions about the shape of
the complete-data population.

2. The pattern-mixture model (Little 1993, 1995) factorizes the marginal density as

f .y i ; r i j�; / D f .y i jr i ;�/ f .r i j / . (5.42)

The pattern-mixture model approach models the probability of the missing
data and appends it to the joint likelihood for the outcome models conditional
on the missing-data status. The pattern-mixture model allows for a different
response model (e.g., Bernoulli distribution or logistic regression) for each
pattern of missingness. The population of the complete data becomes a mixture
of distributions, weighted by the probabilities of the missingness pattern.

3. The shared-parameter model factorizes the marginal density as

f .y i ; r i j�; ; bi / D f .y i jr i ;�; bi / f .r i j ; bi / , (5.43)

where parameters bi for subject-specific latent (or random) effects are included
to model certain common latent mechanisms shared by both the measurement
and missingness processes.

The notion behind the shared random-effect parameter approach is that there
may be some latent quantity underlying a person’s susceptibility to two processes
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(e.g., disease and death). This latent quantity may represent genetic/genomic or
environmental risk factors yet to be identified (Lancaster and Intrator 1998; Ten
Have et al. 1998).

5.3.2 Selection Model

Let Yij be measured at time points for the i th subject at time tij, i D 1; : : : ; n, j D
1; : : : ; ni , and Y i D .Yi1; : : : ; Yini /

0. We consider a special type of missingness, the
dropout; i.e., once missingness occurs at the j th measuring time, all measurements
after that are missing. Suppose a dropout occurs at the occasion j D Di (1 <
Di � ni ) for the i th subject, so that the first measurement is always available. We
decompose vector Y i into the observed and missing parts, Y i D .Y obs

i ;Y mis
ni
/0. The

likelihood contribution of the i th subject based on the observed data (yobs
i ; di ) is

proportional to the marginal density function

f .yi ; di j�; / D
Z
f .yi ; di j�; / dymis

i D
Z
f .yi j�/ f .di jyi ; / dymis

i ,

(5.44)
where we have utilized the selection factorization (5.37).
Let vector y ij� D .yi1; : : : ; yij�1/. The Diggle-Kenward model (Diggle and

Kenward 1994) for the dropout process allows the conditional probability density to
be specified at occasionDi :

fij . / D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

P
�
Di D j jDi � j;y ij�; yij; 

�
, j D 2,

P
�
Di D j jDi � j;y ij�; yij; 

��
Qj�1
kD2

�
1 � P

�
Di D kjDi � k;y ij�; yij; 

��
, 2 < j � ni ,

Qni
kD2

�
1 � P

�
Di D kjDi � k;y ij�; yij; 

��
, j > ni .

(5.45)

A multivariate normal model,

Yi � f .Yi j�/ D N .Xiˇ; ˙i / ; i D 1; : : : ; n, (5.46)

is used for the measurement process, where various forms can be chosen for the
covariance matrix ˙ . Meanwhile, a simplified logistic model from (5.5) for the
missing mechanism is,

P
�
Di D j jDi � j;y ij�; yij; 

� D exp. 0 C  1yij C  2yij�1/
1C exp. 0 C  1yij C  2yij�1/

: (5.47)

The likelihood involves marginalization over the unobserved outcomes Y mis
i ,

which are computationally intensive. Molenberghs and Kenward (2008) provided
illustrative examples.
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5.3.3 Pattern-Mixture Model

The high sensitivity of the selection model to the misspecification of the mea-
surement process and dropout mechanism has led to growing interest in the
pattern-mixture model with the factorization of marginal density for pattern-mixed
models (PMMs) given by (5.42). To illustrate the method, let ti be the index
(measurement time, clinic visit) indicating the late measurement for the i th subject.
After time ti , the subject dropped out of the experiment. Here we use f .y i jti ;�/
instead of f .y i jr i ;�/ and f .ti j / instead of f .r i j /. We assume

f .y i jti ;�/ D N .� .ti / ; ˙ .ti // . (5.48)

A pattern-mixture model is usually overparameterized if there are no restrictions.
Different restrictions can be used, such as.,

fi
�
yj jyj�;�

� D
niX

kDj
!jkfk

�
yj jyj�;�

�
; j D i C 1; : : : ; ni , (5.49)

where the weights !jk satisfy
Pni

kDj !jk D 1.
The full density function can be expressed as

fi .yj�/ D fi
�
yobsj�� D

ni�i�1Y

jD1

2

4
niX

kDni�j
!ni�j;kfk

�
yni�j jy.ni�j /�;�

�
3

5 .

(5.50)

Different weights in (5.49) and (5.50) will lead to different models (Yang
et al. 2008; Little 1993, 1995; DeGruttola and Tu 1994; Hogan and Laird 1997;
Henderson et al. 2000; Vonesh et al. 2006).

There are also various f .ti j / to choose; an example would be f .ti j / D
u C vti , where u and v are constants. The likelihood function and MLEs can be
constructed using the standard procedures.

5.3.4 Shared-Parameter Models

Recently there have been many discussions of shared-parameter modeling, where
the factorization of the marginal density is given as in (5.43).

Gao (2004) proposed a method that models both the probability of disease
and the probability of death using shared random-effect parameters. Gao used the
Laplace approximation to obtain an approximate likelihood function to avoid high-
dimensional integration over the distributions of the random-effect parameters.
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Let Yij be a binary variable denoting disease status (yij D 0 for non-disease,
yij D 1 for disease) for the i th subject at the j th assessment, i D 1; : : : ; nI j D
1; : : : ; ni . Let Dij be the variable for survival status, with Dij D 1 indicating the i th
subject died before the j th assessment. Let Xij be the covariates associated with yij

and Zij the covariates associated with Dij. Let 
i be an m � 1 vector of unobserved
random effects contributing to the probabilities of disease. Let Uij and Vij be the sets
of covariates associated with the random effects in the disease model and the death
model, respectively.

Gao (2004) starts with a general disease model for the disease outcome by
defining the conditional probability of new disease to relate linearly to fixed and
random effects by a link function, � .�/,

pij D Pr .yij D 1jyij�1 D 0IXij; Uij/ D �.Xijˇ C Uij˙
1=2� i /; j � 2, (5.51)

where ˇ is the fixed-effect parameter and � i in the disease model is the component
of � � N.�I 0; I /, with I being an identity and ˙ 0˙ a positive definite covariance
matrix.

The mortality model is defined through another link function, � .�/,

�ij D Pr
�
Dij D 1jDij�1 D 0;Zij; Vij

� D �
�
Zij˛C Vij


1=2� i
�
; j � 2, (5.52)

where ˛ is the fixed-effect parameter and 
0
 is a positive definite variance-
covariance matrix.

Assuming that yij and Dij are independent given normally distributed 
i , the
likelihood function of y andD is

L D
Z
f .y j�/g.Dj�/ dN.�I 0; I /

D 1p
2�

Z
exp

�
ln Œf .y j�/g.Dj�/� � 1

2
� 0�



d� . (5.53)

The derivation of maximum likelihood estimates from the joint likelihood
function above usually requires high dimensional integration over the distributions
of the random effect parameters. A Monte Carlo method may be used since its
efficiency is independent of the dimensionality. Alternatively, Gao (2004) expands
ln Œf .y j�/g.Dj�/� � 1

2
� 0� at O�0 as a second-order Taylor series, where O�0

maximizes ln Œf .y j�/g.Dj�/� � 1
2
� 0� . The approximate log-likelihood function

leads to

lnL � ln Œf .yj�0/ g .Dj�0/� �
O� 0
0 O�0
2

�1
2

ln

ˇ̌
ˇ̌I � @2 ln Œf .y j�/ g .Dj�/�

@�2

ˇ̌
ˇ̌
�D�0

: (5.54)
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Differently, Yang et al. (2008) propose a shared-parameter model based on
a Markov chain, in which yij is dependent on yi;j�1 but independent of
.yi1; : : : ; yi;j�2/. They use a regression-type linear transition model to characterize
the process,

yij D xijˇ C .yi;j�1 � xi;j�1ˇ/˛ C �i C "ij, (5.55)

where �i
iid� N.0; �2� / denotes the random intercept for subject i and "ij

iid� N.0; �2" /

represents the residual errors. Vector ˇ contains fixed parameters, such as treatment
efficacy, in clinical trials. The parameter ˛ sets up the link between the previous and
the current unexplained measurement effects, i.e., between yi;j�1 � xi;j�1ˇ and
yij � xijˇ.

To model the dropout process, let the indicator variable rij D 0 (or 1) if yij is
observed (or missing due to a dropout). A first-order Markov chain is assumed with
a 2 � 2 matrix of transition probabilities: Plk D Pr

�
rij D kjri;j�1 D l

�
, l D 0 or

1; k D 0 or 1. By the definition of dropout, we have P10 D 0 and P11 D 1. The
transition probabilities P00 and P01 are modeled by logistic regression:

P
�
rij D kj�i ;xij; ri;j�1 D 0

� D

8
ˆ̂̂
<

ˆ̂̂
:

1

1C exp
�
xij�C �i 


� if k D 0

exp
�
xij�C �i 


�

1C exp
�
xij�C �i 


� if k D 1:

(5.56)

Here the authors use parameters � to calibrate the influence of covariates on the
possibility of dropout and 
 to indicate whether the dropout process shares the
random intercepts with the measurement process. Hence, it tells us whether a
dropout is informative.

Based on the measurement and dropout mechanics above, the full likelihood
function with parameters � D .ˇ0; �2� ; �2" / and ' D .�; 
/0can be written as

L.�;'/ /
nY

iD1

Z di�1Y

jD1
p
�
yijjxij; yi;j�1; �i ;�

�
p
�
yijjxij; ri;j�1; �i ;'

�
p .�i / d�i ;

where p.�i / is the normal p.d.f. of the random intercept �i .
Most models discussed above have been limited to outcome variables, which is

clearly not always the case. To include the missing auxiliary variable in the models
may not be difficult, but more research needs to be done.

5.4 Analysis Examples Using SAS and SOLAS

For implementing missing data using SAS, we recommend the book by Dmitrienko
et al. (2005). Here we give a brief introduction.
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Table 5.1 Depression data
structure

Patient Visit Basval Change Y Trt Ctr

1001 4 25 �7 2 103

1001 5 25 �14 2 103

1001 6 25 �19 2 103

1001 7 25 � 2 103

1002 4 17 �4 1 105

1002 5 17 �8 1 105

1002 6 17 � 1 105

1002 7 17 � 1 105
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

5.4.1 Likelihood Ignorable Analysis

A likelihood ignorable analysis for MAR uses all available information without
directly implementing any missing data. The analysis using SAS PROC MIXED
is straightforward. The order of the measurements should be correctly specified,
which can be done by supplying records with missing data in the input dataset.

Example 5.1. A multicenter depression trial was conducted with the Hamilton
Depression Rating Scale as the primary efficacy endpoint. For each patient, a
baseline assessment is available and the change from baseline (Basval) is denoted
by Y . Y is missing when the assessment at postbaseline visit is not available. There
are four treatment options (Trt). The clinic center is denoted by variable Ctr. The
data structure is presented in Table 5.1, where a dot represents a missing value.

SAS Program 5.1: MAR Analysis of the Depression Trial

Proc mixed data = depression method = ml noitprint ic;
class Patient Visit Ctr Trt;
model Y = Trt Ctr Visit Trt*Visit Basval Basval*Visit
/solution ddfm = satterth;
repeated visit / subject = patient type = un;

Run;

Details about options in Proc Mixed can be found in the SAS User’s Guide (SAS
Institute 2004).

5.4.2 Multiple-Imputation Method

A multiple-imputation method using SAS involves two steps: implementation and
analysis. We illustrate the process with the growth data in Table 5.2.

Example 5.2. The growth data contain growth measurements for girls and boys. For
each subject, the distance from the center of the pituitary to the maxillary fissure



5.4 Analysis Examples Using SAS and SOLAS 135

Table 5.2 Growth data
structure

ID Sex Meas8 Meas12 Meas14 Meas10

1 1 26 29.0 31.0 27
2 1 21.5 23.0 26.5 �
3 2 23 24.0 27.5 23.5
4 1 20 26.5 27.0 �
� � �

was recorded at ages 8, 10, 12, and 14 years and denoted by variables Meas8,
Meas10, Meas12, and Meas14 (Table 5.2). Note that the measurement times are
ordered as age D 8, 12, 14, and 10 years because the data at age 10 are incomplete.
In this way, a monotone ordering is achieved, which is required for the monotone
regression method. The implementation step with SAS PROC MI is presented in
SAS Program 5.2.

SAS Program 5.2: Imputation Step

Proc mi data = Growth seed = 213 simple Nimpute = 10
round = 0.1 out = outmi;
by sex;
monotone method = reg;
var Meas8 Meas12 Meas14 Meas10;

Run;

To prepare for a standard linear mixed model analysis, we convert the output
outmi from SAS Program 5.2 to vertical structure using SAS Program 5.3.

SAS Program 5.3: Data Manipulation

Proc sort data = outmi;
by imputation idnr;

Run;
Data outmi2;

set outmi;
array y (4) meas8 meas10 meas12 meas14;
do j = 1 to 4;
measmi = y(j) ;
age = 6 + 2*j;
output;
end;

Run;

The analysis step using the SAS MIXED procedure requires four sets of inputs
for the inference task: (1) parameter estimates of the fixed effects (mixbetap), (2) pa-
rameter estimates of the variance components (mixalfap), (3) the covariance matrix
of the fixed effects (mixbetav), and (4) the covariance matrix of the variance compo-
nents (mixalfav). An example of a SAS program is presented in SAS Program 5.4.
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SAS Program 5.4: Analysis Step Using PROC MIXED

Proc mixed data = outmi2 asycov;
class idnr age sex;
model measmi = age*sex / noint solution covb;
repeated age / subject = idnr type = cs;
by Imputation ;
ods output solutionF = mixbetap covb = mixbetav

covparms = mixalfap asycov = mixalfav;
Run;

However, to use PROC MIANALYZE, further data manipulation is required; see
SAS Programs 5.17 and 5.18 in the book by Dmitrienko et al. (2005), or the SAS
User’s Guide for details.

When missingness is nonmonotone, Dmitrienko et al. (2005) suggest generating
multiple imputations that render the datasets monotonically missing by including
the statement in PROC MI: mcmc impute D monotone and then applying a method
of choice to the multiple sets of data that are thus completed.

5.4.3 EM Algorithm Using SAS

The MI procedure in SAS provides an EM algorithm for both multivariate normal
and categorical data by means of an MCMC imputation method (for general
nonmonotone settings). The EM algorithm for the growth data is presented in SAS
Program 5.5. PROC MI uses the means and standard deviations from the available
cases as the initial estimates for the EM algorithm. The correlations are set equal
to zero.

SAS Program 5.5: The EM Algorithm Using PROC MI

Proc mi data = Growth seed = 213 simple nimpute = 0;
em itprint outem = growthem;
var Meas8 Meas12 Meas14 Meas10;
by sex;

Run;

5.4.4 SOLAS for Missing Data Analysis

SOLAS, developed in conjunction with Prof. Donald Rubin, is a software applica-
tion that has a user-friendly graphical interface and provides a range of missing-data
imputation techniques. The single-imputation techniques include the hot deck
imputation, in which missing values are replaced with values taken from matching
respondents, the last value carried forward, the group means, or the predicted mean
from the models. The predictive-model-based multiple-imputation methods include



5.5 Controversies, Challenges, and Recommendations 137

the ordinary least-squares regression of imputation for the continuous, integer,
and ordinal imputation variables, the discriminant multiple imputation for the
nominal imputation variables and the Bayesian imputation method for various types
of variables. The propensity-score-based multiple imputation method includes an
implicit model approach based on propensity scores and an approximate Bayesian
bootstrap. The propensity score is the conditional probability of “missingness”
given the vector of observed covariates. It also includes a fully configurable logistic
regression algorithm.

The Missing Data Pattern in SOLASTM 3.0 provides a clear overview of the
quantity, positioning, and types of missing values in your dataset. By right-clicking
on any cell in the matrix, you can identify the variable and observation details. This
feature allows you to study the missing-data patterns and helps you to choose the
most appropriate imputation techniques. You can also use the Missing Value Pattern
to view the monotone and nonmonotone missing values in your dataset.

5.5 Controversies, Challenges, and Recommendations

5.5.1 Comparisons of Different Methods

Single-imputation methods such as the LOCF are simple to implement but they
generally do not conform to well-recognized statistical principles for drawing
inferences, and often lead to a biased estimate.

Multiple-imputation methods explicitly specify the missing data assumptions and
allow one to use large amounts of auxiliary information. They can be relatively
straightforward to implement, without special programming needs, and can handle
arbitrary patterns of missing data.

The IPW method is simple to implement when the missing values have a
monotone pattern, and can be carried out in any software package that allows
weighted analyses. The IPW method allows one to include auxiliary variables
such as previously observed outcomes. There are potential instabilities with large
weights, leading to high variance in finite samples, especially when the missingness
model is incorrectly specified. Methods that yield valid inferences when either the
outcome regression or the missingness model is correct are said to have a double-
robustness property.

Maximum likelihood and Bayesian inference approaches under ignorable miss-
ingness provide valid inferences using models that are generally easy to fit with
commercial software. Random-effects models can be very useful to simplify a
highly multivariate distribution with a few parameters. However, when missingness
is not ignorable, the impact is difficult to assess.

It is intuitive to assume a model for the full-data response, as is done in selection
models. If MAR is plausible, a likelihood-based selection formulation leads directly
to inference based solely on the model for the full-data response, and the inference
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can be carried out using MLE. However, it may not be intuitive to specify the
relationship between nonresponse probability and the outcome of interest, which
typically has to be done in the logit or probit scale. Selection models are highly
sensitive to parametric assumptions about the full-data distribution. This concern
can be alleviated by using semiparametric selection models (Little 2010).

In pattern-mixture models, respondents and nonrespondents have different
outcome distributions. The models are explicit in specifying how missing
observations are being imputed because the within-pattern models specify the
predictive distribution directly. However, pattern-mixture models can present
computational difficulties for estimating treatment effects because of the need
to average over missing-data patterns; this is particularly true of pattern-mixture
specifications involving regression models within each pattern.

5.5.2 How to Implement Missingness

Practically speaking, missing data usually refers to any data points that were
intended for collection but were not obtained. Theoretically, any unobserved
variable at any time point can be considered a missing value in an analysis, even
if the measurement was not intended to be collected at all. In the most general
and abstract form, “missing data” can refer to any augmented component of the
probabilistic system under consideration, and the inclusion of this component often
results in a simpler structure and easier computation (Liu 2003). On the other hand,
people may argue that if missing imputation is allowed, one can “make up” any
value at any point in time and space, and as many as one wants, in the name of
computational convenience.

Regarding the pattern of missingness, in clinical trials missingness is often a
mixture of MCAR, MAR, and MNAR because, for example, missingness should
not just relate to how one collects and measures the data but also to the behavior
of the subject from whom the data are collected. The choice of MAR or MCAR is
often simply motivated by mathematical convenience. However, the question is: if
we know the missingness is MAR in a practical problem, why do we try to collect
it in the first place? The answer may be to increase data points and thus the power
for the hypothesis-test. Another argument would be that although MAR is a non-
testable assumption, we can get very close to justifying the MAR hypothesis if we
include enough variables in the imputation models (Harel and Zhou 2007).

A simple example of MNAR is when the values to be measured are out of
the range of the measurement instrument. Another example would be a patient
withdrawal due to lack of efficacy or side effects. If the drug is not very effective,
causing a large number of dropouts due to ineffectiveness, models based on MAR
would not be appropriate.

We may say the true value should be imputed for a missing value; however, the
truth is missing and how to impute it is a matter of belief. To elaborate on this, let
me share a story with you. When I appeared in court for my first traffic citation,
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I argued: “I don’t think this is my fault. . . . I’ve never gotten any citation for a traffic
violation in my 13 years driving history.” Of course, the judge didn’t observe the
accident; it is a missing value to her. She replied nicely: “Yes, I know; but everyone
has his first time.” In this case, who is at fault is unknown or missing. I tried to
impute the missingness “longitudinally” by looking back at my own driving history
and concluding the missing value should be 0: not my fault. However, the judge
imputed the missing value “cross-sectionally” by looking at all the drivers who
had 13 years of driving experience and concluded that most of them had traffic
violations; therefore it was likely my fault, and the missing value should be 1. Do
you think it is fair to make a judgment of me based on other people’s behavior?

In clinical trials, the missing imputation faces the same dilemma: should we look
for a data pattern within the trial or across different trials, or even in everything
happening in the whole world?

Regarding who should perform the data implementation, Harel and Zhou (2007)
offer their opinion: Many public-data users differ in their statistical proficiency,
computing power, and objectives. Most users only have access to complete-data
methodology and software. Database constructors have additional information about
the data that can help in modeling the missing values. Therefore, it would be
preferable if the missing data modeling was done by the data constructors and not
by the users. However, in many cases, that is not possible.

5.5.3 Regulatory Perspective

For clinical trials, the health authority (CHMP 2009) states: “Missing data are a
potential source of bias when analyzing clinical trials. . . A critical discussion of the
number, timing, pattern, reason for and possible implications of missing values in
efficacy and safety assessments should be included in the clinical report as a matter
of routine. . . It should be noted that just ignoring missing data is not an acceptable
option when planning, conducting or interpreting the analysis of a confirmatory
clinical trial. . . The justification for selecting a particular method should not be based
primarily on the properties of the method under particular assumptions (for example
MAR or MCAR) but on whether it will provide an appropriately conservative
estimate for the comparison of primary regulatory interest in the circumstances
of the trial under consideration.” They believe missing data (completer analyses)
violate the strict ITT principle, which requires measurement of all patient outcomes
regardless of the protocol adherence. This principle is of critical importance, as con-
firmatory clinical trials should estimate the effect of the experimental intervention
in the population of patients with the greatest external validity.

There are many factors that can affect missingness: (1) the complexity of the
measurements, (2) the frequency of measurements, (3) self-reported versus in-
clinic measures by clinicians, (4) the nature of the outcome variable, such as
modality versus morbidity, (5) the treatment modalities, such as surgical versus
medical treatment, (6) frequency of the treatment, (7) the benefit-risk profile of the
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treatment, (8) duration of the clinical trial (since a longer trial will likely have a
larger proportion missing than a shorter trial), (9) the therapeutic indication (missing
values are more frequent in those diseases where the adherence of patients to the
study protocol is usually low, such as psychiatric disorders, (10) data entry error
(some numbers may be easier to missight than others), and (11) the design and
conduct of the experiment.

A reduction in missing data can be achieved by favoring clinical trial designs,
strengthening data collection, and whenever possible, collecting outcome data after
withdrawals. To minimize potential bias, CHMP (2009) recommends that a detailed
description of the preplanned methods used for handling missing data and any
amendments of that plan and a justification for each amendment should be included
in the clinical study report. A critical discussion of the number, timing, pattern,
and reasons for and possible implications of missing values in efficacy and safety
assessments should be included in the clinical report as a matter of routine. Because
of the unpredictability of some problems, the study protocol sometimes allows the
possibility of updating the strategy for dealing with missing values in the statistical
analysis plan or during the blind review of the data at the end of the trial.

5.5.4 Recommendations for Clinical Trials

At the request of the FDA, the National Research Council convened the Panel
on the Handling of Missing Data in Clinical Trials, under the Committee on
National Statistics, to prepare “a report with recommendations that would be
useful for FDA’s development of a guidance for clinical trials on appropriate study
designs and follow-up methods to reduce missing data and appropriate statistical
methods to address missing data for analysis of results.” The panel, chaired by
Prof. Rod Little, developed an excellent report, “The prevention and treatment
of missing data in clinical trials” (Little 2010). The panel consisted of a group
of academic statisticians, but I believe there was some interaction with industry
statisticians, as indicated in the acknowledgments. Among many useful suggestions,
they recommend the following.

5.5.4.1 Clinical Trial Design

Investigators, sponsors, and regulators should design clinical trials consistent with
the goal of maximizing the number of participants who are maintained on the
protocol-specified intervention until the outcome data are collected.

The techniques to reduce the occurrence of missingness include (1) adding run-
in periods before randomization to identify who can tolerate or respond to the study
treatment, (2) using flexible doses (titration), (3) restricting the trial to the target
population for whom treatment is indicated, (4) adding the study treatment to a
standard treatment, (5) reducing the length of the follow-up period, (6) allowing
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rescue medication in the event of poor response, and (7) defining outcomes that
can be ascertained in a high proportion of participants. Of course, benefits of these
options need to be weighed against costs.

5.5.4.2 Clinical Trial Conduct

Trial sponsors should continue to collect information on key outcomes in partic-
ipants who discontinue their protocol-specified intervention in the course of the
study, except in those cases for which a compelling cost-benefit analysis argues
otherwise, and this information should be recorded and used in the analysis.

The techniques to limit the amount of missing data include (1) choices of study
sites, investigators, participants, study outcomes, time in study and times of mea-
surement, and the nature and frequency of follow-up to limit the amount of missing
data, (2) limiting participant burden in other ways, such as making follow-up visits
easy in terms of travel and childcare, (3) providing frequent reminders of study
visits, (4) training of investigators on the importance of avoiding missing data,
(5) providing incentives to investigators and participants to limit dropouts, and
(6) monitoring of adherence and in other ways dealing with participants who cannot
tolerate or do not adequately respond to treatment.

The panel recommends that study sponsors should explicitly anticipate potential
problems of missing data. In particular, the trial protocol should contain a section
that addresses missing-data issues, including the anticipated amount of missing data
and steps taken in trial design and trial conduct to monitor and limit the impact of
missing data.

5.5.4.3 Trial Data Analysis

There is no universal method for handling incomplete data in a clinical trial. Despite
differences among the trials, there are common principles that can be applied in a
wide variety of settings as suggested by the panel:

1. A basic assumption is that missingness of a particular value hides a true
underlying value that is meaningful for analysis.

2. The analysis must be formulated to draw inferences about an appropriate and
well-defined causal estimand.

3. Reasons for missing data must be documented as much as possible.
4. The trial designers should decide on a primary set of assumptions about the

missing-data mechanism. Those primary assumptions then serve as an anchor
point for the sensitivity analyses.

5. The trial sponsors should conduct a statistically valid analysis under the primary
missing-data assumptions.

6. The analysts should assess the robustness of the treatment effect inferences by
conducting a sensitivity analysis.
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Despite efforts to minimize missing data in the design and conduct of clinical
trials, the statistical analysis often has to deal with a nontrivial amount of missing
data. There is no single correct method for handling missing data. As such, the panel
recommends that statistical methods for handling missing data should be specified
by clinical trial sponsors in study protocols, and their associated assumptions stated
in a way that can be understood by clinicians. Single-imputation methods like last
observation carried forward and baseline observation carried forward should not be
used as the primary approach to the treatment of missing data unless the assumptions
that underlie them are scientifically justified. Sensitivity analyses should be part of
the primary reporting of findings from clinical trials. Examining sensitivity to the
assumptions about the missing-data mechanism should be a mandatory component
of reporting.

5.6 Exercises

5.1. Suppose there are data available from two clinical trials. Trial A is a 2 � 2

crossover design (one treatment sequence is drugs C and T ; the other sequence
is drugs T and C ) and trial B is a design with two parallel treatment groups (C
and T ). The statistician wants to combine data from these two clinical trials using
the technique for the missing data. He treats trial B as an imaginary 2� 2 crossover
trial with one group missing the first period and the other group missing the second
period. Furthermore, he assumes that the missing data are completely at random
(MCAR) because it was not planned to collect the missing data. Discuss his strategy.

5.2. Compare different methods for the missing data analysis under different
scenarios, such as percentage of missing data and missing patterns.
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Chapter 6
Multivariate and Multistage Survival
Data Modeling

6.1 Introduction to Survival Data Modeling

6.1.1 Basic Terms in Survival Analysis

Survival analysis or time-to-event analysis is a branch of statistics dealing with
death (failure) or degradation in biological organisms, mechanical or electronic
systems, or other areas. This topic is called reliability theory or reliability analysis in
engineering, and duration analysis or duration modeling in economics or sociology.

The term lifetime distribution function F .t/ is defined as the probability of
the event (e.g., death) occurring on or before time t , i.e., F .t/ DP .T � t/. The
survival function S .t/ is the probability of an individual surviving longer than t ,
i.e., S .t/ D 1 � F .t/. Thus the event density is f .t/ D dF .t/ =dt . The hazard
function or rate � .t/, is defined as the event rate at time t , conditional on survival
until time t or later,

� .t/ dt D P .t < T � t C dt jT > t/ D f .t/ dt

S .t/
D �S

0 .t/
S .t/

dt . (6.1)

Integrating (6.1) with respect to t , we obtain S .t/ D exp .��.t//, where
�.t/ D R t

0
� .u/ du is called the cumulative hazard function. From (6.1), we can

obtain
f .t/ D � .t/ S .t/ . (6.2)

The expected future (residual) lifetime at a given time t0 is defined as 1
S.t0/

R1
0

t f .t C t0/ dt D 1
S.t0/

R1
t0
S .t/ dt .

In Chap. 5, we discussed missing-data issues in general. In survival analysis, we
usually have a special type of missing data; i.e., censoring. In practice, survival data
involve different types of censoring: (1) left-censoring if a data point (time value)
is equal to or below a certain value but it is unknown by how much (e.g., missing
adverse event start date), (2) right-censoring if a data point is above a certain value
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but it is unknown by how much (e.g., lost to follow up), and (3) interval censoring
if a data point is somewhere in an interval between two values. Censoring can occur
at a fixed time point (e.g., prescheduled clinical trial termination) or at a random
time (e.g., early termination). Censoring can be informative or noninformative with
respect to time (treatment/medical intervention). If it is noninformative, the cen-
soring time is statistically independent of the failure time. However, the statistical
independence of the failure time is a necessary but not a sufficient condition for non-
informative censoring; there must be no common parameters between survival and
censoring parameters to ensure the censoring is noninformative. Right-censoring is
the most common and can be treated as a competing risk. See Sect. 6.3 for details.

6.1.2 Maximum Likelihood Method

Modeling survival data can be based on a parametric or nonparametric method. Here
we will focus on parametric models. A parametric model can be specified for the
hazard rate � .t/ � 0, survival time S .t/, or degradation process (we will discuss
this soon).

The maximum likelihood estimate (MLE) method is commonly used for param-
eter estimation in survival modeling, which is similar to the MLE for other models,
the only difference being the presence of censoring. Specifically, the likelihood can
be written as

L.�/ D
Y

ti2˝U
P .T D ti j�/

Y

tj2˝L
P .T � ti j�/

Y

ti2˝R
P .T > ti j�/

�
Y

ti2˝I
P .tia � T < tibj�/ , (6.3)

where ˝U , ˝L, ˝R, ˝I are the sets for uncensored, left-, right-, and interval-
censored data, respectively;P .T D ti j�/ D f .ti j�/, P .T � ti j�/ D 1�S .ti j�/,
P .T > ti j�/ D S .ti j�/, and P .ti;a < T � ti;bj�/ D S .tiaj�/� S .tibj�/.

The MLE is defined as

O�mle D arg maxL.�/ . (6.4)

Under fairly weak conditions (Newey and McFadden 1994, Theorem 3.3), the
maximum likelihood estimator has approximately a normal distribution for a larger
sample size n, p

n
� O�mle � �0

�
d! N

�
0; I�1� ,

where I is the expected Fisher information matrix given by

I D E
�
O� ln f .xj�0/O� lnf .xj�0/0

�
,

where the gradient operator is given by O� D P
i
@
@�i

.
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Hougaard (2000) provided two reasons not to use the expected information for
survival analysis. He argued that first, for the evaluation, it is necessary to make
assumptions on the general censoring pattern, whereas the observed information is
based only on the actual observed censoring times. Consequently, the evaluation
is only valid under precisely that censoring pattern. Second, for censored data, the
expected information is more complicated to evaluate than the observed information
because integration is necessary. This is in contrast to many other models, such as
nonlinear regression and exponential families, where taking the expectation makes
some terms vanish.

6.1.3 Overview of Survival Model

6.1.3.1 Proportion Hazard Model

Proportional hazard models are widely used in practice. Just as the name suggests, a
proportional hazard model assumes the hazard is proportional (i.e., independent of
time) between any two different groups with covariatesX 0 D x0

1 andX 0 D x0
2,

h .t/ D h0 .t/ exp
�
X 0ˇ

�
, (6.5)

where X is the vector of observed covariates and ˇ are the corresponding
parameters. If the baseline hazard function is specified (e.g., h0 .t/ D ��t��1),
(6.5) represents a parametric proportional hazard model; otherwise, (6.5) is the well-
known Cox semiparametric proportional hazard model (Cox 1972).

6.1.3.2 Accelerated Failure Time Model

When the proportional hazard assumption does not hold, we may use the accelerated
failure time model with a hazard function:

h .t/ D exp
�
X 0ˇ

�
h0
�
exp

�
X 0ˇ

�
t
�

. (6.6)

Different baseline functions h0 .�/ will lead to different parametric models. For
the exponential model, h0 .t/ D � and S0 .t/ D exp .��t/, where � > 0; for the
Weibull model, h0 .t/ D ��t��1 and S0 .t/ D exp .��t�/, where �; � > 0; for the
Gompertz model, h0 .t/ D � exp .� t/ and S0 .t/ D exp

�����1 .exp .� t/� 1/
�
,

where �; � > 0; and for the loglogistic model, h0 .t/ D exp.˛/ktk�1

1Cexp.˛/tk
and S0 .t/ D

1

1Cexp.˛/tk
, where ˛ 2 R; k > 0.



148 6 Multivariate and Multistage Survival Data Modeling

6.1.3.3 Frailty Model

The notion of frailty provides a convenient way to introduce random effects,
association and unobserved heterogeneity into models for survival data. In its
simplest form, a frailty is an unobserved random factor that modifies the hazard
function of an individual or related individuals. The term frailty was coined by
Vaupel et al. (1979) in univariate survival models, and the model was substantially
promoted for its application to multivariate survival data in a seminal paper by
Clayton (1978) on chronic disease incidence in families. The simplest form of
frailty model with a (unobserved) scale frailty variable Z can be written as

h .t; Z;X/ D Zh0 .t/ exp
�
X 0ˇ

�
.

We will discuss this approach further later.

6.1.3.4 Copula Model

Copula modeling is a general approach to formulating different multivariate distri-
butions. The idea is that a simple transformation can be made of each marginal
variable in such a way that each transformed marginal variable has a uniform
distribution. Once this is done, the dependence structure can be expressed as a
multivariate distribution on the obtained uniforms, and a copula is precisely a
multivariate distribution on marginally uniform random variables.

In the context of survival analysis, a copula model is often constructed from
marginal survival functions instead of marginal distribution functions. If the argu-
ments of the copula function are univariate survival functions S1.t1/DP.X1 > t1/

and S2.t2/DP.X2 > t2/, the copula function C.S1; S2/ is a legitimate joint
(bivariate) survival function S.t1; t2/ D P.X1 > t1; X2 > t2/ with marginals S1
and S2.

Archimedean copulas are commonly used copulas in survival analysis. Suppose
that  W Œ0;1� ! Œ0; 1� is a strictly decreasing convex function such that .0/ D 1.
Then an Archimedean copula can be written as

C .S1; S2I �/ D  
�
 �1 .S1/C  �1 .S2/

�
, S1; S1 2 Œ0; 1� ; (6.7)

where � is the parameter of association. For example, the stable (Gumbel-Hougaard)
copula, generated by  �1 .s/ D .� ln s/� , � � 1, can be expressed as

S .t1; t2I �/ D exp

�
�
h
.� lnS1/

� C .� lnS2/
�
i1=�	

:

Archimedean copulas can be conveniently used for modeling a bivariate survival
function with such marginal distributions as Gompertz, Weibull, or even in the
semiparametric setup in combination with Kaplan-Meier estimates for the marginal
survival functions (Genest and Rivest 1993). All information concerning depen-
dence between the marginals is contained in the association parameter.
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6.1.3.5 First-Hitting-Time Model

Many practical problems, such as biomarker or clinical responses, survival time and
random vibrations of a bridge, can be modeled using stochastic processes X .t/.
When the stochastic process reaches a certain level (i.e., X .t/ D ß) for the first
time, it is called first hitting time (FHT). FHT usually indicates a critical state such
as a biological inhibition, death, or bridge collapse. The critical value ß, called the
boundary or threshold, can be a constant or function of time t . Threshold regression
refers to the first-hitting-time models with regression structures that accommodate
covariate data (Lee and Whitmore 2006).

A very commonly used stochastic process is a Wiener process or Brownian
motion, which describes, for example, a particle random motion on the microscope.
The macro-behavior (i.e., the average properties for Brownian motion) of the mass
is governed by the so-called diffusion equation, which is widely used in science and
engineering, the social sciences, and other areas. We will discuss this approach in
Sect. 6.3.

6.1.3.6 Multistage Model

A multistage model consists of several stages across a time axis. At each stage, a
time-to-event model is applied. In principle, all models mentioned above can be used
in multistage models. However, most common multistage models are semi-Markov
processes (continuous time, discrete states).

The rationale for using multistage models is that it may not be easy to specify a
single model across the entire time course. This is because, for example, the natural
course of disease may consist of stages and the time-to-event model is relatively
easy to specify for each stage separately. The model within each stage can be
the proportional hazard model, frailty model, exponential model, or a combination
of them. In principle, a time-dependent hazard model can be approximated by a
multistage model with a time-independent hazard rate at each stage, but the number
of stages required may be large in order to have the desired precision. The time-
independent hazard rate � does not have to be a constant; it can include covariates�
i:e:;� D �

�
X 0ˇ

��
. The examples to illustrate the method in this chapter will focus

on Markov or semi-Markov models because their calculations don’t require specific
software. However, for more complicated multistage models, a software package is
required. The transitional probability matrix for a semi-Markov chain is given by

P .t/ D eAt D I C
1X

kD1

Aktk

kŠ
,

where A D lim
h!0

.P .h/ � I/ =h with I being the identity matrix. We will discuss

the multistage approach in Sect. 6.4.
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6.1.3.7 Nonparametric Approach

Nelson-Aalen Estimator

Let Y .t/ be the number of individuals at risk at (just before) time t and �i the
occurrence of the i th event. The Nelson-Aalen estimator for the cumulative hazard
is given by

O�.t/ D
X

�i�t

1

Y .�i /
,

with variance estimator

O	2� .t/ D
X

�i�t

1

Y .�i /
2

.

The cumulative hazard O�.t/ approaches to a normal distribution as the sample
size approaches infinity. To improve precision, log-transformation can be used.

Kaplan-Meier Estimator

The Kaplan-Meier estimator is given by

OS .t/ D
Y

�k�t
S .�kj�k�1/ D

Y

�i�t

�
1 � 1

Y .�i /

	
,

with variance

O	2S .t/ D OS .t/2
X

�i�t

1

Y .�i /
2

.

Alternatively, the variance can be estimated using Greenwood’s formulation:

O	2S .t/ D OS .t/2
X

�i�t

1

Y .�i /
2 � Y .�i/

.

For a large sample size, OS .t/ has approximately a normal distribution. To
improve precision, log-transformation can be used.

Many software packages, such as SAS, R, and STATA, have the built-in
capability of performing survival analyses with various models.
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6.2 Frailty Model

6.2.1 Univariate Frailty Models

We know an individual’s survival time is dependent on his risk factors. If these risk
factors are known, they can be included in the analysis by using the proportional
hazards model or accelerated failure time model. However, sometimes there are too
many covariates to be considered in the model or there are some important unknown
or unmeasured covariates. In a proportional hazard model, neglect of a subset of the
important covariates leads to biased estimates of both regression coefficients and the
hazard rate. To account for such unobserved heterogeneity in the study population,
Vaupel et al. (1979) introduced univariate frailty models into survival analysis. The
univariate frailty model extends the Cox model such that the hazard of an individual
depends in addition on an unobservable random variableZ that acts multiplicatively
on the baseline hazard function

h .t; Z;X/ D Zh0 .t/ exp
�
X 0ˇ

�
, (6.8)

where X is the vector of observed covariates and Z is the unobservable frailty
variable, which varies over the population and lowers (Z < 1) or increases (Z > 1)
the individual risk. The respective survival function S is given by

S .t jZ;X / D exp



�Z

Z t

0

h0 .�/ d� exp
�
X 0ˇ

��
. (6.9)

S .t jZ;X / may be interpreted as the fraction of individuals surviving at time t
after the beginning of follow-up given the vector of observable covariates X and
frailty Z. The model has been described at the level of individuals. However, this
individual model is not observable. Therefore, it is necessary to consider the model
at the population level. The survival function of the total population is the mean
of the individual survival functions (6.9). It can be viewed as the survival function
of a randomly drawn individual and corresponds to what is actually observed. It
is important to note that the observed hazard function will not be similar to the
individual hazard rate. What may be observed in the population is the net result for
a number of individuals with different Z. The population hazard rate may have a
completely different shape than the individual hazard rate (Wienke 2010).

One important issue in frailty models is the choice of the frailty distribution.
Examples of frailty distributions are the gamma distribution (Vaupel et al. 1979),
a three-parameter distribution (Hougaard 2000), the compound Poisson distribution
(Aalen 1992) and the log-normal distribution (McGilchrist and Aisbett 1991).
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6.2.2 Multivariate Frailty Models

Multivariate frailty models can be useful when lifetimes in a cluster or recurrent
events like infections are considered because in such cases independence between
the clustered survival times cannot be assumed. Multivariate models are able to
account for dependence between these event times. A general approach is to assume
independence among observed data items conditional on a set of unobserved or
latent variables (Hougaard 2000); for example, let S.t1jZ;X1/ and S.t2jZ;X 2/ be
the conditional survival functions of two related individuals with different vectors
of observed covariates X 1 and X 2, respectively, in (6.9). Integrating out the noise
variable Z, the two-dimensional survival function can be written as

S .t1; t2/ D
Z 1

0

S .t1jz;X 1/ S .t2jz;X 2/ g .z/ d z; (6.10)

where g.Z/ denotes the density of the frailty Z. In the case of twins, S.t1; t2/
denotes the fraction of twins pairs with twin 1 surviving t1 and twin 2 surviving t2.

6.2.3 The Shared Frailty Copula

The shared frailty model is relevant to event times of related subjects (similar organs
and repeated measurements). Subjects in a cluster are assumed to share the same
frailty Z (Clayton 1978; Hougaard 2000). The survival times are assumed to be
conditionally independent with respect to the shared (common) frailty. Conditional
on the frailty Z, the hazard function of an individual in a pair is of the form
Zh0.t/ exp.X 0ˇ/, where the value of Z is common to both individuals in the pair
and thus is the cause for dependence between survival times within pairs.

S .t1; t2jZ/ D S1 .t1/
Z S2 .t2/

Z .

In most applications it is assumed that the frailty distribution is a gamma dis-
tribution with mean 1 and variance 2. Averaging the conditional survival functions
under this assumption, the survival functions can be written as (Wienke 2010)

S .t1; t2/ D
�
S1 .t1/

�	2 C S2 .t2/
�	2 � 1

� 1

	2 .

where 	2 > 0 indicates a dependent model and 	2 > 0 with Z D 1 indicates an
independent model.

Shared frailty explains correlations between subjects within clusters. There are
a few issues with the model: When covariates are present in a proportional hazard
model with gamma-distributed frailty, the dependence parameter and the population
heterogeneity are confounded, which implies that the joint distribution can be
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identified from the marginal distributions (Hougaard 1986). In most cases, a one-
dimensional frailty can only induce positive association within the cluster. However,
there are some situations in which the survival times for subjects within the same
cluster are negatively associated. For example, in the Stanford Heart Transplantation
Study, generally the longer an individual must wait for an available heart, the
shorter he or she is likely to survive after the transplantation. Therefore, the waiting
time and the survival time afterward may be negatively associated. To avoid the
above-mentioned limitations of shared frailty models, correlated frailty models were
developed (Wienke 2010).

6.2.4 The Correlated Frailty Copula

Correlated frailty models were initially developed for the analysis of bivariate failure
time data, in which two associated random variables are used to characterize the
frailty effect for each pair. For example, processes of biomarkers 1 and 2 are
associated with a joint distribution but don’t have a common frailty distribution.
These two variables can also be negatively associated, which would induce a
negative association between survival times. Assuming gamma-distributed frailties,
Yashin and Iachine (1995) used the correlated gamma frailty model, resulting in a
bivariate survival distribution of the form:

S .t1; t2/ D S1 .t1/
1�� S2 .t2/1��

�
S1 .t1/

�	2 C S2 .t2/
�	2 � 1

� �

	2

.

Research on applications of correlated frailty models has been done, including a
shared log-normal frailty model for the catheter infection (McGilchrist and Aisbett
1991), a shared frailty model with gamma and log-normally distributed frailty for
the recurrence of breast cancer (dos Santos et al. 1995), a shared positive stable
frailty model for a diabetic retinopathy study (Manatunga and Oakes 1999), and a
correlated gamma frailty model to analyze genetic factors involved in mortality due
to coronary heart disease in twins (Wienke et al. 2001; Zdravkovic et al. 2002).

6.3 First-Hitting-Time Model

6.3.1 Wiener Process and First Hitting Time

Definition 6.1. A stochastic process fX.t/; t � 0g is said to be a Brownian motion
with a drift 
 if (1) X .0/ D 0; (2) fX.t/; t � 0g has stationary and independent
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increments; and (3) for every t > 0;X .t/ is normally distributed with mean 
t and
variance 	2t ,

X .t/ � 1p
2�	2t

exp

 
� .x � 
t/2

2	2t

!
. (6.11)

The covariance of the Brownian motion is covŒX.t/; X .s/� D 	2 min fs; tg.
The standard Brownian motion B .t/ is the Brownian motion with drift 
D 0

and diffusion 	2 D 1. The relationship between the standard Brownian motion and
Brownian motion with drift 
 and diffusion parameter 	2 can be expressed as

X .t/ D 
t C 	B .t/ . (6.12)

The c.d.f. is given by

Pr fX .t/ � yjX .0/ D xg D ˚



y � x � 
t
	

p
t

�
, (6.13)

where ˚ .�/ is the c.d.f. of the standard normal distribution.
The first hitting time T is a random variable when X .t/ starts from the initial

position X .0/ D 0 2 ˝nß and reaches a given constant boundary ß D b of
the domain ˝ (non-negative values). The FHT for Brownian motion is the inverse
normal distribution:

T � f
�
t j
; 	2; b� D bp

2�	2t3
e

� .bC
t/2

2	2t : (6.14)

The c.d.f. corresponding to (6.14) is given by

F
�
t j
; 	2; b� D ˚

�
� .
t C b/p

	2t



C e

� 2b


	2 ˚

�

t � bp
	2t



: (6.15)

Note that if 
 > 0, then the FHT is not certain to occur and the p.d.f. is improper.
Specifically, in this case, P.t D 1/ D 1�exp.�2b
=	2/.
Definition 6.2. In general, an FHT model < X.t/; ß> has two essential com-
ponents: (1) a parent stochastic process fX.t/; t 2 T , x 2 Rg with initial value
X.0/ D 0, where T is the time space and R is the state space of the process, and
(2) a boundary set or threshold ß, where ß � R. Note that ß can be a constant or
function vector of time t or a stochastic process.

6.3.2 Covariates and Link Function

In an FHT model, both the parent process fX.t/g and boundary ß can have
parameters that depend on covariates. As a simple sample, the Wiener process has
mean parameter 
 and variance parameter 	2. The boundary ß has parameter x0,
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the initial position. In FHT regression models, these parameters will be connected
to linear combinations of covariates using a suitable regression link function,

g .�/ D Zˇ0, (6.16)

where g .�/ is the link function that has the inverse function g�1 .�/, � is the
parameter vector in the FHT model, Z D .1;Z1; : : : ; Zk/ is the covariate vector
(with a leading unit to include an intercept term), and fi D .ˇ0; ˇ1; : : : ; ˇk/ is the
associated vector of regression coefficients. The commonly used link functions
include the identity and logistic functions.

There are two different covariates: time-independent (e.g., DNA markers) and
time-dependent covariates (e.g., RNA markers). The use of time-dependent covari-
ates should be taken cautiously since it could be very controversial (see Sect. 6.4).

We can solve (6.16) for � :

� D g�1 �Zˇ0� . (6.17)

6.3.3 Parameter Estimation and Inference

The parameter estimations for FHT models have been dominated by the maximum
likelihood method. Consider a latent health status process characterized by a
Wiener diffusion process. The FHT for such a process follows an inverse Gaussian
distribution. The inverse Gaussian distribution depends on the mean and variance
parameters of the underlying Wiener process (
 and 	2) and the initial health status
level (x0), i.e., � D .
; 	; x0/. Let f .t j�/ and F.t j�/ be the p.d.f. and c.d.f. of the
FHT distribution, respectively. Using (6.17), we can obtain

(
f .t j�/ D f

�
t jg�1 �Zˇ0�� ,

F.t j�/ D F
�
t jg�1 �Zˇ0�� .

(6.18)

To form a likelihood function, denote by Z i (i D 1; : : : ne) the realization of
covariate vector Z on the i th subject who had an event at time ti , and by Z j

(j D ne C 1; : : : ne C ns) the realization of covariate vector Z on the j th subject,
who is right-censored at time tj . Then the likelihood function is given by

L.ˇ/ D
neY

iD1
f
�
ti jg�1 �Z iˇ

0

�� neCnsY

jDneC1
S
�
tj jg�1 �Z jˇ

0�� : (6.19)

To estimate parameters ˇ, the likelihood or the log-likelihood function can be
used. Numerical gradient methods can be used to find the maximum likelihood
estimates for ˇ. Then the parameter vector � can be found using (6.17), and the
distribution function f .t j�/ and F.t j�/ can be obtained from (6.18).
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6.3.4 Applications of First-Hitting-Time Model

Example 6.1. A death can be viewed as the final result of the degradation of an
individual’s health. If we model an individual’s health state using a Wiener process,
then death can be viewed as the Wiener process reaching a certain threshold ß. The
survival analysis becomes the study of the FHT of the process, which has an inverse
normal distribution.

Alternatively, if a gamma process is chosen to model the health state, the survival
(FHT) will have an inverse gamma distribution. Singpurwalla (1995) and Lawless
and Crowder (2004) consider the gamma process as a model for degradation. The
Ornstein-Uhlenbeck process can also be used for modeling the biological process.
The FHT for the Ornstein-Uhlenbeck process has the Ricciardi-Sato distribution
(Ricciardi and Sato 1988).

Example 6.2. Survival analysis in a clinical trial with treatment switching is a
challenge. In randomized oncology trials, a patient’s treatment may be switched
in the middle of the study because of a progressive disease (PD), which indicates
a failure of the initial treatment regimen. In such cases, the total survival time is
the sum of two event times: randomization to switching and switching to death.
If the test drug is more effective than the control, then the majority of patients in
the control group will switch to the test drug and the survival difference between
the two treatment groups will be significantly reduced in comparison with the case
without treatment switching. This marker-based treatment switch is not random
switching but rather response-adaptive switching. Branson and Whitehead (2002)
and Shao et al. (2005) proposed different approaches to the problem. Lee et al.
(2008) proposed a mixture of Wiener processes for clinical trials with adaptive
switching and applied it to an oncology study. It is outlined as follows.

Since the actual or censored survival time can be composed of two intervals,
representing the time on the primary therapy and the time on the alternative therapy,
the disease may progress at different rates in these two intervals (irrespective of the
treatment). We transform survival times from calendar time to the so-called running
time, which has the form

r D a1�1 C �2, (6.20)

where �1 and �2 correspond to time to progression and progression to death,
respectively, and a1 is a scale parameter to be estimated.

The mixture of Wiener processes with FHT used for the modeling is given by

Pr .S > r/ D p .1 � F1 .r//C .1 � p/ .1 � F2 .r// . (6.21)

The respective lifetime functions Fj .r/ (j D 1; 2) are the same as (6.15) but
expressed in terms of running time r . The parameter p is to be estimated.
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6.3.5 Multivariate Model with Biomarkers

There are different biomarkers: a pharmacodynamic biomarker informs if a drug has
reached its target; a functional response biomarker informs if a drug has affected
a target pathway; a pharmacogenomic biomarker (PGx) measures variations in
a target; a disease biomarker monitors or predicts disease risk, progression, and
improvement; and a surrogate endpoint reflects how a patient feels or physical or
mental functions.

Biomarkers, compared with a clinical endpoint such as survival, can often be
measured earlier, easier, and more frequently. They are less subject to competing
risks and are less confounded by changes in treatment modalities. Among different
biomarkers, some are static, such as DNA markers, while others are time-dependent,
such as RNA markers. A time-independent biomarker can be treated as a covariate,
whereas a time-dependent marker can be treated in multivariate survival models.
There are also models that treat a time-dependent variable as a covariate. However,
we will show you that the results from such models can be very misleading. The
utility of biomarkers in clinical trial designs, especially in adaptive designs, has
been discussed in Chang (2007). Here we discuss how to use the biomarker process
to assist in tracking the progress of the parent process if the parent process is latent
or only infrequently observed. In this way, the marker process forms a basis for a
predictive inference about the status of the parent process and its progress toward an
FHT. As markers of the parent process, they offer potential insights into the causal
forces that are generating the movements of the parent process (Whitmore et al.
1998).

We now introduce the Whitmore-Crowder-Lawless method (Whitmore et al.
1998). Suppose there are the parent survival process, X .t/, and a correlated
biomarker process, Y .t/. They form a two-dimensional Wiener diffusion process
fX .r/ , Y .r/g for r � 0 and the initial condition fX .0/ , Y .0/g D f0; 0g. Vector
fX .r/ , Y .r/g has a bivariate normal distribution with a mean vector r�, where

� D �

x , 
y

�0
, 
x � 0, and covariance matrix r˙ with ˙ D



	xx 	xy

	yx 	yy

�
. The

correlation coefficient is � D 	xy=
p
	xx	yy .

The key is to formulate the probability or p.d.f. for the survival and failing
subjects. For a survivor at time t , an observed value Y .t/ D y .t/ for the biomarker
constitutes a censored observation of failure time because we know S > t . The
p.d.f. for survival subjects is given by

ps .y/ D ˚ .c1/ � .c2/� e
2
x
	xx ˚

0

@c1 � 2

s
.1 � �2/
	xxt

1

A�


c2 � 2	xy

	xx
p
	yyt

�
,

(6.22)
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where � and ˚ are, respectively, the standard normal p.d.f. and c.d.f., and

8
ˆ̂̂
<

ˆ̂̂
:

c1 D 1 � 
xt � 	xy
�
y � 
yt

�

	yy
p
	xx .1 � �2/ t

,

c2 D y � 
ytp
	yyt

.

(6.23)

For a subject that died at time S D s with an observed value Y .S/ D y .s/ for
the biomarker, the joint p.d.f. is

pf .y; s/ D exp
�� 1

2
W T˙�1W

�

2�
pj˙ js2 , (6.24)

where

W T D


y � 
ysp

s
;
1 � 
xsp

s

�
. (6.25)

The probability of surviving longer than time t is

P .S > t/ D
Z 1

�1
ps .y/ dy. (6.26)

Numerical methods can be used to calculate P .S > t/.
To carry out maximum likelihood estimation of the parameters, we denote the

independent sample observations on failing items by . Oyi ; Osi /, i D 1; : : : ; 
, and
those on surviving items by Oyi , i D 
 C 1; : : : ; n. The log-likelihood can then be
written as

lnL.
;˙/ D

X

iD1
lnpf . Oyi ; Osi /C

nX

iD
C1
lnps . Oyi / . (6.27)

The maximum likelihood estimates of the parameters 
 and ˙ can be found
based on (6.27).

From (6.22) through (6.27), we have assumed the threshold for failure is x D 1. If
failure is defined as x D a, then the estimates O
x , O	xx , and O	xy from (6.20) should
be multiplied by a constant a. Other estimates and probabilities are independent
of a. Thus no changes are needed.

So far, we have considered a single-marker case. In practice, there is usually
more than one relevant marker, while each marker will have a certain degree of
correlation with the underlying parent process. We wish to find that the linear
combination of the available markers will have the largest possible correlation with
the degradation component. Whitmore et al. (1998) extended their method to include
a composite marker or a combination of several markers.

Suppose there are k candidate markers available, denoted by Z .t/ D .Z1
.t/ ; : : : ; Zk .t//, with the initial condition Z .0/ D 0. Assume that vector Z .t/,
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together with the degradation componentX .t/, forms a k C 1 dimensional Wiener
process. We define the composite marker denoted by Y .t/ as

Y .t/ D Z .t/ˇ0 D
kX

jD1
Zj .t/ ˇj ; (6.28)

where ˇ D .1; ˇ2; : : : ; ˇk/ is a k � 1 vector of coefficients that we wish to estimate.
The linear structure of (6.28) assures that the joint process for Y .t/ andX .t/ retains
its bivariate Wiener form. The parameterization is defined by


y D 
Zˇ
0; 	yy D ˇ˙ZZ ˇ

0; 	yy D ˙XZ ˇ
0; (6.29)

where 
Z and ˙ZZ denote the k � 1 mean vector and k � k covariance matrix of
markersZ .t/ and ˙XZ denotes the 1 � k covariate vector of X .t/ with Z .t/.

The MLEs presented earlier for a single marker can be extended to estimate the
optimal composite marker in (6.28). This extension requires rewriting the likelihood
function in (6.27) in terms of the new parameterization in (6.29).

6.4 Multistage Model

6.4.1 General Framework of Multistage Model

Multistage models are not only used for longitudinal data but can also be used
for multivariate survival analysis if we partition all the possible event scenarios
into stages (or states) and build a progressive model. According to Hougaard
(2000), a progressive model is a stochastic model in which all states except the
initial state have only one possible transition into the state. We consider the time-
dependent Markov progressive model in which the probability (density) of transition
is usually dependent on the time relative to the previous state but independent of
any earlier states. For example, a healthy individual can become a disabled person
and then die, as shown in Fig. 6.1. The progressive Markov model says that the
transition probability from the state “Disabled” to “Death” is a function of time from
“Disabled” but is independent of how healthy he was and how quickly he became a
disabled person.

Suppose we have a simple multistage model, as shown in Fig. 6.1, that has three
states of an individual: health, disabled, and death. Possible transition directions are
indicated by arrows, with a corresponding transition probability Fi .t/ and density
fi .t/ (i D 1; 2), which are the lifetime and event density functions.

After a multistage model is constructed, we need to formulate the likelihood for
the MLE of parameters. Similar to the single stage model discussed in Sect. 6.1, the
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Fig. 6.1 Time-dependent
Markov process

F1

Health Disabled Death
S1=1-F1 S2=1-F2

f1

F2

f2

likelihood formulationL (assume the process starting time t0 D 0) can be classified
into the following four different cases:

1. For subject i disabled at time t D t1i and dead at t D t2i , the likelihood is
li D f1 .t1i / f2 .t2i � t1i /.

2. For subject j disabled at time t D t1j and alive (right-censored) at t D t2j , the
likelihood is lj D f1

�
t1j
� �
1 � F2

�
t2j � t1j

��
.

3. For subject k disabled before or at time t1k (left-censored) and dead at t D t2k ,
the likelihood is lk D F1 .t1k/ f2 .t2k � t1k/.

4. For subject m disabled before or at time t1m (left-censored) and alive (right-
censored) at t D t2m, the likelihood is lm D F1 .t1m/ .1 � F2 .t2m � t1m//.
Assume there are ni subjects in category i . We label the subjects in such a way

that patients 1 to n1 are in category 1, patients n1 C 1 to n1 C n2 in category 2,
patients n1 Cn2 C 1 to n1 Cn2 Cn3 in category 3, and patients n1 Cn2 Cn3 C 1 to
n1 C n2 C n3 C n4 in category 4. The likelihood function for the n (n D n1 C n2 C
n3 C n4) observations is given by

L D
n1Y

iD1
li

n1Cn2Y

jDn1C1
lj

n1Cn2Cn3Y

kDn1Cn2C1
lk

n1Cn2Cn3Cn4Y

mDn1Cn2Cn3C1
lm: (6.30)

By maximizing L in (6.30), we can obtain the MLE of the parameters.

Example 6.3. In the multistage model in Fig. 6.1, we apply an exponential model
with constant hazard �i . The transition probability density is fi D �i exp .��i t/. It
follows that Fi D 1� exp .��i t/ and Si D 1�Fi .t/ D exp .��i t/. Suppose there
are n1 observations .t11; : : : ; t1n1/ in category 1 and n2 observations .t21; : : : ; t2n2 /
in category 2, but no left-censored observations, i.e., n3 D n4 D 0. The likelihood
function is given by

L D
n1Y

iD1
�1e

��1t1i �2e��2.t2i�t1i /
n2Y

jDn1C1
�1e

��1t1j e��2.t2j�t1j /. (6.31)

The log-likelihood is given by

lnL D .n1 C n2/ ln�1 C n1 ln�2 �
n1Cn2X

iD1
Œ�2 .t2i � t1i /C �1t1i � . (6.32)



6.4 Multistage Model 161

Fig. 6.2 Effect of treatment
switching

Treatment
randomization

A PD B

Death
B PD A

The maximization of lnL gives

�1 D n1 C n2Pn1Cn2
iD1 t1i

I�2 D n1Pn1Cn2
iD1 .t2i � t1i /

. (6.33)

6.4.2 Covariates and Treatment Switching

Covariates such as medical treatment, age, race, and disease status may or may not
be time-dependent. In Example 6.4, a progressive disease (PD) is an indication of
treatment failure and the patient usually has to switch from the initial treatment to
an alternative. Thus, treatment for a patient is a time-dependent variable: before PD
with one treatment, after PD with another treatment (Fig. 6.2).

To consider covariates in a multistage model, we can use a link function as
defined in (6.16). Then substitute (6.17) into (6.30) and maximize it to obtain MLEs
of the parameters ˇ.

Example 6.4. Suppose patients in a two-group oncology clinical trial are random-
ized to receive either treatmentA orB . If a progressive disease is observed, meaning
the patient has developed a resistance to the drug, then the patient will switch the
treatment from A to B or B to A (in practice, there are more options, i.e., different
combinations of drugs). Let Zi.t/ be a random process for the i th patient. If patient
i is on treatment A at time t , then Zi.t/D 1; otherwise, Zi.t/D 0. We use the
identity link function

�i .t/ D ˇi .t/ Zi .t/ . (6.34)

Recognizing the different hazard rates before and after PD, we use the piecewise
constant hazard

�i .t/ D ˇi1Z .t/C ˇi2 .1�Z .t// ; i D 1; 2;

where i D 1 before PD and i D 2 after PD. In other words, the hazard rates are ˇ11
for treatmentA before PD, ˇ21 for treatmentA after PD, ˇ12 for treatment B before
PD, and ˇ22 for treatment B after PD.

For simplicity we assume PD is always observed immediately (i.e., no censoring
on PD). Thus, a typical patient i initially treated with drugAwill have the following
two possible likelihood functions:

1. PD at time t D t1i and death at t D t2i , li D ˇ11e
�ˇ11t1i ˇ21e�ˇ21.t2i�t1i /, where

i D 1; : : : ; n1.
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2. PD at time t D t1i and alive (right-censored) at t D t2i , li D ˇ11e
�ˇ11t1i

e�ˇ21.t2i�t1i /, where i D n1 C 1; : : : ; n1 C n2.

Similarly, a typical patient i initially treated with drug B will have the following
two possible likelihood functions:

1. PD at time t D t1i and death at t D t2i , li D ˇ12e
�ˇ12t1i ˇ22e�ˇ22.t2i�t1i /, where

i D n1 C n2 C 1; : : : ; n1 C n2 C n3.
2. PD at time t D t1i and alive (right-censored) at t D t2i , li D ˇ12e

�ˇ12t1i
e�ˇ22.t2i�t1i /, where i D n1 C n2 C n3 C 1; : : : ; n1 C n2 C n3 C n4.

The likelihood function based on the total n1 C n2 C n3 C n4 observations is the
same as (6.30). The log-likelihood function can be given explicitly by

lnL D .n1 C n2/ lnˇ11 C .n3 C n4/ lnˇ12 C n1 lnˇ21 C n3 lnˇ22

�
n1Cn2X

iD1
Œˇ21 .t2i � t1i /C ˇ11t1i �

�
n1Cn2Cn3Cn4X

iD1Cn1Cn2
Œˇ22 .t2i � t1i /C ˇ12t1i � . (6.35)

Letting @ lnL
@ˇjk

D 0, we can obtain

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

ˇ11 D n1 C n2Pn1Cn2
iD1 t1i

,

ˇ12 D n3 C n4Pn1Cn2Cn3Cn4
iD1Cn1Cn2 t1i

,

ˇ21 D n1Pn1Cn2
iD1 .t2i � t1i /

,

ˇ22 D n3Pn1Cn2Cn3Cn4
iD1Cn1Cn2

.t2i�t1i /
.

(6.36)

The relative treatment efficacy between the treatment groups can be measured by
the hazard ratio:

8
ˆ̂̂
<

ˆ̂̂
:

HR1 D ˇ11

ˇ12
, before PD,

HR2 D ˇ21

ˇ22
, after PD.

(6.37)

In practice, cancer drugs are categorized by the number of PDs: newly diagnosed
patients usually use first-line drugs, after one PD they use second-line drugs, and
so on.
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Fig. 6.3 Competing risks
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Death of
cause k

Death of
cause M

Death of
cause 1

The efficacy should be compared in terms of life saving between the two
conditions with and without the new drugB . (1) Without drugB , the patients would
be treated withA initially and then treated with some other available drugs. (2) With
drug B , the patients will eventually have PD and will be treated with drug B or
other drugs. If there are other drugs available (as good as drugB) after the PD, then
HR1 D ˇ11

ˇ12
should be used to measure the survival benefit, which implies that PD

is a good surrogate marker for survival.

6.4.3 Latent Process and Competing Risks

Most survival data are gathered under conditions of competing risks, in which two
or more causes are competing to determine the observed duration (Fig. 6.3). In a
clinical trial, an early withdrawal can be considered as either a censor or a competing
risk. Because of the censoring or competing risks, the FHT may not be observable
or latent. Latent FHT models are theoretically not necessary, but in practice it is
convenient to the concept of latent FHT. An engineer may be interested in how
much repair work can be reduced if one or more old machines are replaced with
new ones in the production line. Health authorities may be interested in an optimal
resource allocation and predicting the survival prolongation by investing resources
in different therapeutic areas. Simply investing all government health resources on
the treatments of leading causes of death may not be a good idea. Such problems can
be dealt with by using the difference in FHT (survival time) between the two models,
with and without a certain competing risk. Lee and Whitmore (2006) provided
applications of such models in the health and medical field. It is obvious that if
the underlying multidimensional Wiener process is correlated, the latent survival
times for different causes of death will be dependent. Competing-risk problems are
also viewed as cluster survival problems because of the correlation between the
risks. A mixed distribution may be required in this case. In what follows, we will
discuss independent competing risks. The competing-risks analysis of correlated
failure time data or clustered data can be found elsewhere (e.g., Chen et al., 2008).



164 6 Multivariate and Multistage Survival Data Modeling

General steps in building a multistage model with independent competing risks
can be outlined as follows:

1. Identify competing risks.
2. Propose a local failure density model fk .�; t/.
3. Formulate the lifetime function F .�; t/=

PM
kD1 fk .� ; t/ and the survival func-

tion S .�; t/ D 1 � F .�; t/, where M is the number of competing risks.
4. Determine the link function g .�/ D Xˇ

0

if any, where X represents covariates;

� D g�1
�
Xˇ

0

�
.

5. Formulate the likelihood function

L D
Y

i2�
S
�
g�1 �Xˇ0

�
, ti
� Y

j…�
fkj

�
�; tj

�
, (6.38)

where � is the set of indices for right-censoring observations. Here we have
assumed that there is only right-censoring.

6. Obtain the MLE of ˇ
0

by maximizing L. Other parameters of interest can be
obtained consequently.

Before we discuss more complicated models, let’s study a degenerated case:
single-stage competing risks. Denote by fk the hazard function of the kth cause
(k D 1; : : : ;M ). Then the total hazard function for the parallel competing-risks
model in Fig. 6.3 is f .u/ D PM

kD1 fk .u/. In light of (6.2), we assume the hazard
density has the form

fk.t/ D �k .t/ .1 � F .t// D �kS .t/ , (6.39)

where S .t/ D 1 � F .t/ is the survival function with the lifetime function F .t/ DR t
0
f .u/ du.
Given a subject alive at time t , the probability of dying within the time interval

dt due to cause k is given by

�k .t/ dt D fk .t/

1 � F .t/
dt . (6.40)

Summing up (6.40) over all causes and letting � .t/ D PM
kD1 �k .t/, we obtain

�dt D f .t/

1 � F .t/dt D dF .t/

1 � F .t/
. (6.41)

As shown in Sect. 6.1, the overall survival function derived from (6.41) is

S .t/ D exp .��.t// D exp



�
Z t

0

� .u/ du

�
. (6.42)
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From (6.34), we know that fkj
�
tj
� D �kj S

�
tj
�
. Substituting this into (6.38) we

can obtain the likelihood

L D
Y

i2˝
S .ti /

Y

j…˝
�kj

�
tj
�
S
�
tj
�
: (6.43)

The transitional probability from the initial state to the death state due to cause k
is given by

Fk .t/ D
Z t

0

�k .u/ S .u/ du D
Z t

0

�k .u/ exp

 
�
Z u

0

MX

iD1
�i .v/ dv

!
du. (6.44)

We can see that for each death there is a hazard term, depending only on the
actual cause, and an exponential term depending on the integrated hazard for all
causes together. It is obvious that F .t/ D P

k Fk .t/ D 1 � S .t/.
When all �k .t/ D �k; k D 1; : : :M , are independent of time, S .t/ D

exp .��t/, � D PM
kD1 �k . Thus, the system acts just like a single risk system with a

big hazard (the sum of all individual hazard rates). The transition probability density
is given by fk .t/ D �k exp .��t/.

To consider the covariates, we can use the identity link function

�k D X k .t/ˇ
0

.t/ , (6.45)

whereX k represents covariates with corresponding parameters ˇ. Both of them can
be time-dependent or time-independent.

Substituting (6.45) into (6.43), we obtain the likelihood function in terms of
parameters ˇ:

L D
Y

i2˝
exp

 
�
Z ti

0

MX

kD1
Xk .u/ˇ

T .u/ du

!
Y

j…˝
�kj

�
tj
�

exp



�
Z tj

0

� .u/ du

�
.

(6.46)
Note that the term S .t/ in model (6.39) implies that an individual having a higher

risk of dying from one cause will have a higher risk of dying from other causes too.
Alternatively, we can remove this constraint and propose as a local model for cause-
specific death,

fk .t/ D ak�k .t/ Sk .t/ D ak�k .t/ exp



�
Z t

0

�k .u/ du

�
, (6.47)

where ˛k is independent of time and
PM

kD1 ak D 1 (see explanation later). Thus ak
can be viewed as a weight.
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For the competing-risks model in Fig. 6.3, the total failure density is given by

f .t/ D
MX

kD1
fk .t/ D

MX

kD1

�
ak�k .t/ exp



�
Z t

0

�k .u/ du

�

. (6.48)

The lifetime function is given by

F .t/ D
Z t

0

f .t/ dt D
MX

kD1

�
ak

Z t

0

�k .v/ exp



�
Z v

0

�k .u/ du

�
dv



. (6.49)

The likelihood function is given by

L.a;ˇ/ D
Y

i2˝
S
�
g�1 �XˇT

�
, ti
� Y

j…˝
fkj

�
g�1 �XˇT

�
, tj
�

. (6.50)

Because it is usually required that F .1/ D 1 and Fk .1/ D 1 (k D 1; : : : ;M ),
we have

' .a/ D 1 �
MX

kD1
ak D 0. (6.51)

Because of the constraint (6.51), we can use the Lagrange multiple method
(Bronshtein et al. 2004) by introducing an extra parameter �. To find MLEs for
the parameters, we can solve the equations

@ .L .a; ˇ/C �' .a//

@�
D 0 or

@ .lnL.a; ˇ/C �' .a//

@�
D 0; (6.52)

where � D .a; ˇ;�/
0

.
A special case is the case with constant hazards �k (time-independent) and no

covariates. Thus, fk D ak�ke
��kt , F .t/ D PM

kD1 akFk .t/, Fk .t/ D 1� e��kt and
Sk .t/ D ake

��kt .
Let ti be the time of the i th death and tj be the censored time for the j th subject.

The likelihood is then given by

L.a; �/ D
Y

i…˝
aki �ki e

��ki ti
Y

j2˝
akj e

��kj tj . (6.53)

Let nk be the number of subjects (alive or dead) associated with cause k among
whom nkd subjects died. Then the log-likelihood is given by

lnL.a; �/ D
MX

kD1
nk ln ak �

MX

kD1

 
�k

nkX

iD1
tki

!
C

MX

kD1
.nkd ln�k/ , (6.54)
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Fig. 6.4 Progressive disease with competing risks

where tki is the observed time (death or censoring) associated with cause k.
Substituting (6.54) into (6.52), we obtain the MLE of �:

8
ˆ̂<

ˆ̂:

ak D nkPM
kD1 nk

,

�k D nkdPnk
iD1 tki

.
(6.55)

It can be seen that ak D nkPM
kD1 nk

holds true for general model (6.47), which is

consistent with our intuition.
There are many other research studies on competing risks. Among them, Shen

and Thall (1998) applied a mixed distribution for multiple nonfatal and fatal
competing risks. Chen et al. (2008) studied the competing risks of correlated failure
time data.

6.4.4 Competing Risks in Progressive Disease

Suppose that in an oncology clinical trial the patients in the study can be ap-
proximately grouped into four categories (Fig. 6.4): (1) progressive disease (PD),
then death (D) due to cancer; (2) PD, then dropout due to lack of efficacy (LE);
(3) dropout due to adverse events (AE); and (4) dropout due to other reasons.
For simplicity, we group other scenarios such as death for other reasons and
early withdrawals for other reasons in scenario (4). Scenarios (1), (2), and (3) are
considered competing risks because they are likely treatment-related. Scenario (4)
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is considered non-informative censoring. Here we have generalized the concept of
competing risks; i.e., the risks can be a mixture of different events. The reason we
can do this is because the likelihood function (joint probability) does not require
that all the events be of the same type. In practice, if there are enough patients, we
can have more than these four categories.

The complexity of the model is not substantial, even though the steps involved
in solving the problem are more tedious. The key is to formulate likelihood
functions:

1. A patient with PD at t1i and who died of cancer at t2i has l1 D f11 .t1i / f12 .t2i /.
There are n1 patients in this category.

2. A patient with PD at t1i and dropout after PD at t2i due to LE has l2 D
f11 .t1i / f22 .t2i � t1i /. There are n2 patients in this category.

3. A patient dropout at t1i due to AE has l3 D f31 .ti /. There are n3 patients in this
category.

4. A patient censored at t1i after PD, not because of LE or AE, has l4 D
.1 � F41.t1i //, where F41 .t/ D R t

0
f41 .u/ du. There are n4 patients in this

category.

The likelihood for the patients can be expressed as

L D
n1Y

iD1
l1

n2Y

iD1
l2

n3Y

iD1
l3

n4Y

iD1
l4 (6.56)

or

L D
n1Y

iD1
f11 .t1i / f12 .t2i /

n2Y

iD1
f11 .t1i / f22 .t2i � t1i /

n3Y

iD1
f31 .ti /

n4Y

iD1
.1 � F41 .t1i // .

(6.57)
Since we have used multiple stages, we can choose relatively simple transition

probability densities fjk . For example, assume constant �jk for transition proba-
bility densities fjk :

fjk .t/ D ajk�jk exp
���jkt

�
, (6.58)

Again, because of the condition of the transition probabilities at t D 1 (i.e.,R1
0
fjk .t/ dt D 1), constants ak satisfy (through derivations similar to the previous

MLE derivations)

aj1 D nj

n1 C n2 C n3 C n4
; j D 1; 2; 3; 4. (6.59)

Therefore, we have

Fjk .t/ D
Z t

0

fjk .u/ du D ajk
�
1 � exp

���jkt
��

. (6.60)
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Using the identity link function, �jk D Xˇ
0

jk , where X represents covariates.
We assume ajk is covariate-independent such that

fjk
�
t I ajk;ˇjk

� D ajkXˇ
0

jk exp
�
�Xˇ0

jkt
�

, (6.61)

Fjk
�
t I ajk;ˇjk

� D ajk

�
1 � exp

�
�Xˇ0

jkt
��

. (6.62)

Substituting (6.61) and (6.62) into (6.57) and then taking derivatives with respect
to vector ˇ

0

jk , the MLEs of the parameters can be found using numerical methods.
Other transition probability densities can also be used, such as the Weibull

distribution with S.t/ D exp.��t� / or f .t/ D ��t��1 exp.��t� /; Gompertz
distribution with hazard �.t/ D �wt , S.t/ D exp.� R t0 �wudu/ D exp. �

1Ct w
tC1/ �

exp.�w/, and f .t/ D � dS.t/
dt , where the positive constant w can be <1;D 1, and

>1. We can also construct the transition probability using the FHT distribution
given by (6.14) or (6.15). The simplest case is probably the model with constant
transition probability density (rate), which leads to a homogeneous Markov process
or finite-state continuous time Markov chains. However, such an oversimplified
model is not very practical in survival analysis, though it is useful elsewhere.

6.4.5 Longitudinal Multivariate Model

Unlike in Sect. 6.3.5, where we modeled the correlation between parent and marker
processes, we are going to model the correlation of the hitting times between parent
and marker processes directly, which will greatly simplify the problem.

For the problem presented in Fig. 6.5, with one primary disease process X1 .t/,
a disease marker process X2 .t/, and a (composite) PGx marker process X3 .t/, we
can specify the joint transition probability densities

fij .t1; t2; t3/ , (6.63)

or more explicitly
fij .t11; t12; t21; t22; t31; t32/ . (6.64)

We then can obtain the conditional “survival” probability

Scij D
Z
fij .ujtkm/ du; i D 1; 2; 3I j D 1; 2, (6.65)

where the integration is carried out with respect to all censored variables. For
example, if X1 .t/ is right-censored at t D t12, X2 .t/ is left-censored at t D t21,
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Fig. 6.5 Longitudinal multivariate model

and X3 .t/ has no censoring, the conditional “survival” probability is given by

Scij D
Z t21

0

Z 1

t12

fij .t11; u12; u21; t22; t31; t32/ du12du21; i D 1; 2; 3I j D 1; 2;

(6.66)

where we have assumed that t21 imposes no constraint on the upper limit of t12;
otherwise, the upper limit 1 should change to the upper limit imposed by t21.

The contribution of this individual likelihood to the overall likelihood func-
tion is Scij , whereas for an individual without censoring, the contribution is
fij .t11; t12; t21; t22; t31; t32/. Therefore the likelihood function is

L D
Y

˝

Scij

Y

N̋
fij ; (6.67)

where˝ is the censoring set and N̋ is the noncensoring set.
The consideration of covariates using the link function and MLE of parameters

is similar to what we discussed earlier. If there are a larger number of markers, it
is difficult to construct valid joint transition probability densities. Therefore we can
use composite markers, as suggested by Whitmore et al. (1998) in Sect. 6.3.5.

6.5 Challenges and Controversies

One of the main challenges in multivariate models is the construction of the
transition probabilities. Alternatively, we may use time-dependent covariates if we
are only interested in the primary or parent process. However, regression with time-
dependent covariates has controversies, as discussed below.
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Table 6.1 Responses in clinical endpoint (CE) and biomarker

Subject Id 1 2 3 4 5 6 7
Treatment A CE 1 2 3 4 5 6 7

Biomarker 1 2 3 4 5 6 7

Subject Id 8 9 10 11 12 13 14
Treatment B CE 1 2 3 4 5 6 7

Biomarker 3 4 5 6 7 8 9

Biomarker
Response 

YB

Treatment
indicator

X

Clinical
Response 

YC

RXC = 0

R
BC = 0.90R XB

 =
 0.

45

Pearson’s Correlations Rij

Fig. 6.6 Correlation ¤ prediction

Suppose we have data from a hypothetical trial as shown in Table 6.1. There are
seven subjects in each treatment group (A or B), and every subject was measured
for clinical and biomarker responses. We first calculate Pearson’s correlations
between the variables: the treatment, biomarker, and clinical endpoint. The results
are presented in Fig. 6.6. We can see that the correlations between them are not
transitive. In other words, a correlation between treatment and the biomarker .RXB/
and a correlation between the biomarker and the clinical endpoint .RBC / do not
ensure a correlation .RXC / between treatment and the clinical endpoint (Fig. 6.6).

The results in Table 6.1 show that Pearson’s correlation between the biomarker
and the clinical endpoint is 1 (perfect correlation) in both treatment groups. If the
data from the two groups are pooled, the correlation between the biomarker and
the clinical endpoint is still high, about 0.9. The average response with the clinical
endpoint is 4 for each group, which indicates that there is no treatment effect. On
the other hand, the average biomarker response is 6 for the test group and 4 for the
control group, which indicates that the drug has effects on the biomarker.

Given the data, what we would typically do is fit a regression model with the data
in which the dependent variable is the clinical endpoint (YC / and the independent
variables (predictors) are the biomarker (YB ) and the treatment (X ). After model
fitting with the data in Table 6.1, we can obtain

YT D YB � 2X: (6.68)
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This model fits the data well based on the model-fitting p-value and R2.
Specifically, R2 is equal to 1. The p-values for the model and all parameters are
equal to 0. The coefficient 2 in model (6.68) is the separation between the two lines.
Based on (6.68), we would conclude that both the biomarker and the treatment affect
the clinical endpoint. However, if the population is well represented by the data, the
treatment has no effect on the clinical endpoint at all. In fact, the biomarker predicts
the response in the clinical endpoint, but it does not predict the treatment effect on
the clinical endpoint, i.e., it is a prognostic marker.

6.6 Exercises

6.1. Prove the FHT for Brownian motion is the inverse normal distribution given
by (6.14) and (6.15).

6.2. Suppose in Example 6.3 there are four (instead of two) categories of patients,
as specified in Sect. 6.3.1. Derive the MLEs of �1, �2, �3, and �4.

6.3. Suppose in Example 6.3 �1 D a1t and �2 D a2t . Derive the MLEs of a1
and a2.

6.4. Suppose in Example 6.3 �1 D �01!
t
1 and �2 D �02!

t
2. Derive the MLEs of the

parameters.

6.5. Study the bias of the estimators �1and �2 given by (6.33).

6.6. Study the bias of the estimators defined by (6.36).

6.7. Study the competing risk problem presented in Fig. 6.3, assuming the death for
each cause follows the Gompertz model with a hazard rate of � .t/ D �!t .

6.8. Discuss the challenges presented in Table 6.1 and Fig. 6.6.
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Chapter 7
Meta-Analysis

7.1 Concept of Meta-Analysis

7.1.1 The Art and Science of Meta-Analysis

Meta-analysis is a statistical technique of performing integrated analyses by
combining results of several independent studies to answer specific questions.
In fact, any time we make a decision we have actually performed, often implicitly,
a meta-analysis in our mind. This kind of meta-analysis varies from individual
to individual. The analyses we are going to discuss are formal, explicit, and
retrospective analyses, but may be more subjective than prospective analyses that
are planned before the experiment data are available.

Meta-analyses are undertaken for a variety of reasons. A large number of them
are undertaken with the broad aim of summarizing existing evidence. On the other
hand, many meta-analyses are undertaken to inform specific decisions and may be
extended to incorporate economic considerations in a decision analysis framework
(Sutton and Higgins 2008). Well-conducted meta-analyses allow a more objective
appraisal of the evidence than traditional narrative reviews, provide a more precise
estimate of a treatment effect, and may explain heterogeneity between the results
of individual studies. Poorly conducted meta-analyses, on the other hand, may be
biased due to exclusion of relevant studies, inclusion of inadequate studies, or the
use of inappropriate models.

Meta-analysis is not only a science but also an art because of the great hetero-
geneity among studies: differences in interventions, place and time of the exper-
iments, study design, evaluation method, and endpoint. Sometimes very different
results or conclusions can be reached with different methods. For this reason, we
should conduct meta-analysis in a cohesive way and avoid ad hoc approaches as
much as we can. The QUOROM statement (Moher et al. 1999) offers guidelines for
reporting meta-analyses of randomized controlled trials.

Since the development of the QUOROM statement, there have been several con-
ceptual, methodological, and practical advances regarding the conduct and reporting

M. Chang, Modern Issues and Methods in Biostatistics, Statistics for Biology and Health,
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Table 7.1 2� 2 contingency
table

Failure/death Success/survival

Drug A a b

Drug B c d

of systematic reviews and meta-analyses. Also, reviews of published systematic
reviews have found that key information about these studies is often poorly reported.
Realizing these issues, an international group that included experienced authors
and methodologists developed PRISMA (Preferred Reporting Items for Systematic
reviews and Meta-Analyses) as an evolution of the original QUOROM guideline
for systematic reviews and meta-analyses of evaluations of health care interventions
(Liberati et al. 2009).

The PRISMA Statement consists of a 27-item checklist and a four-phase flow
diagram. The checklist includes items deemed essential for transparent reporting of
a systematic review. In the Explanation and Elaboration document, the meaning
and rationale for each checklist item are explained, including an example of
good reporting and, where possible, references to relevant empirical studies and
methodological literature (www.prisma-statement.org).

There are a large number of recent publications on meta-analysis. For an
introduction to meta-analysis of controlled clinical trials, see the book by Whitehead
(2002). For the step-by-step practical guidance to meta-analysis, see the introduc-
tory book by Borenstein et al. (2009), which has minimal statistical background.

In this chapter, we will review many different methods for meta-analysis. The
core methods are based on the normality assumption. The methods are equally
applicable to several different types of data such as the mean for continuous
variables or the risk ratio or hazard ratio for binary variables under the large-sample
assumption. Therefore, it is helpful to review different study endpoints and see how
they can form (approximately) a normal distribution.

7.1.2 Study Endpoints

There are three common endpoints: binary/categorical/ordinal, continuous, and
survival. For binary data, we often present them in a 2 � 2 table as shown in
Table 7.1.

7.1.2.1 Odds Ratio

The term odds ratio is defined as

OR D ad

bc
: (7.1)
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When the cell frequencies a, b, c, and d are the expected values, OR is a
population parameter. When a, b, c, and d are observed values, (7.1) is an estimation
of the parameter. The same interpretations are applicable to (7.2)–(7.8).

The log odds ratio is given by

ln OR D ln aC ln d � ln b � ln c: (7.2)

For a large sample size, ln OR is approximately a normal distribution with a
variance of (Fleiss 1993)

var .ln OR/ D 1

a
C 1

b
C 1

c
C 1

d
: (7.3)

When there is a zero cell, we usually add 0:5 to each cell as an approximation.

7.1.2.2 Relative – Risk

The risk ratio or relative risk (RR) is defined as the ratio between the probability
(a=.aC b/) of an event in the treatment group and the probability (c=.cCd/) of an
event in the control group,

RR D a.c C d/

c.a C b/
. (7.4)

The variance of ln RR is given by

var .ln RR/ D 1

a
� 1

a C b
C 1

c
� 1

c C d
: (7.5)

7.1.2.3 Risk Difference

The risk difference (RD) or rate (proportion) difference is defined by

RD D a

a C b
� c

c C d
: (7.6)

For a large sample size, RD has approximately a normal distribution with
variance

var .RD/ D a .b � a/

.aC b/3
C c .d � c/
.c C d/3

: (7.7)



178 7 Meta-Analysis

7.1.2.4 Number Needed to Treat (NNT)

Another commonly used measure in clinical trials is the number needed to treat
(NNT), which is the reciprocal of the risk difference,

NNT D
�

a

a C b
� c

c C d

��1
: (7.8)

The interpretation of NNT can be the number of patients that need to be treated
using the new treatment rather than placebo to prevent one additional adverse
outcome.

7.1.2.5 Ordinal Endpoint

For an endpoint with more than two categories, we can collapse them into two
categories and use the methods for the binary endpoint for the meta-analysis. This
approach is also applied when there is a mixture of a different number of categories
among the trials.

7.1.2.6 Continuous Endpoint

For continuous variables xi
iid� N

�
�x; �

2
�
, yi

iid� N
�
�y; �

2
�
, .i D 1; : : : ; n/, the

mean difference, defined by

Nx � Ny D 1

n1

n1X

iD1
xi � 1

n2

n2X

iD1
yi , (7.9)

has approximately a normal distribution for a large sample with mean � and variance
�2. 1

n1
C 1

n2
/.

Since different measurement scales or instruments may be used in different
experiments under meta-analysis (e.g., some may range from 0 to 100, others may
range from 0 to 1), to make them comparable a standard index may be created such
as the standard mean, which is defined as mean divided by the standard deviation.
We may also rescale them to, for example, 0–1. However, if they measure different
things, scaling could be more problematic and could invalidate the meta-analysis.

7.1.2.7 Survival Endpoint

Denote the hazard rate by �i for group i ; the hazard ratio (HR) is defined as

HR D �1

�2
. (7.10)
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For a larger sample size, the observed lnHR has approximately a normal
distribution.

7.1.3 Basic Methods

The basic, widely applicable, meta-analysis method is a weighted average of
point estimates (one from each study), with weights wi based on the within-study
and/or between-study variances of the parameter estimates O�i (e.g., the treatment
difference). The commonly used models are fixed-effect and random-effect models.
A fixed-effect meta-analysis usually takes the inverse variances of the estimates as
weights, and interpretation relies on an assumption of a common effect underlying
every study. A random-effect meta-analysis incorporates the underlying among-
study variation of effects into the weights. Both methods can be extended to
incorporate study-level covariates. The fixed-effect methods are classic or relatively
standardized, don’t have much recent development, and are criticized for not being
able to take the between-study variation or covariates into consideration.

For both the fixed-effect and the mixed-effect models, the parameter estimate is
given by

O� D 1
PK

iD1 wi

KX

iD1
wi O�i , (7.11)

and

var
� O�
�

D 1
�PK

iD1 wi
�2

KX

iD1
w2i �

2
�i

. (7.12)

The difference between the fixed-effect and random-effect models is in weight
wi . For the fixed-effect model, we have wi D 1=�2�i , where �2�i is within study
variance. For the random-effect model, we have wi D 1=.�2�i C �2/, where �2 is
between-study variance. The parameter can be mean, ln OR, ln RR, or ln RD.

The test statistic for testing Ho W � � 0 is defined as

T D
O�r

var
� O�
� , (7.13)

which usually has approximately the standard normal distribution under the condi-
tion � D 0.

The two-sided 100.1� ˛/% confidence interval can be constructed as

CI D
 

O� � z1�˛=2
r

var
� O�
�
; O� C z1�˛=2

r
var

� O�
�!

. (7.14)
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7.2 Subject-Based Meta-Analysis

Meta-analyses can be based on individual patient data (IPD) or subject-based.
Collecting individual patient data from original study investigators is widely
regarded as the ideal approach to meta-analysis. However, IPD is usually available
only for some of the patients. A systematic review with individual patient data
meta-analysis to evaluate diagnostic tests is provided by Khan et al. (2003).
Tobias et al. (2004) investigated meta-analysis based on individual patient data
in epidemiological studies. IPD random-effect models have been developed for
continuous, binary, survival, and ordinal outcome variables (Higgins et al. 2001;
Turner et al. 2000; Tudor et al. 2005). The majority of meta-analyses use simple
fixed-effect pooling after obtaining an effect size from each study dataset, with only
a small proportion considering among-study heterogeneity and adopting a random-
effect approach (Sutton and Higgins 2008).

If IPD are available, the model for meta-analysis can be similar to the model
for each individual study but includes the additional factor, study, in the model
(Whitehead 1997).

7.3 Study-Based Meta-Analysis

The study-based model is based on summary data from each individual study. The
simplest study-based model is a fixed-effect model, which assumes the true effect
is the same for all studies. In other words, a fixed-effect model concerns the true
treatment effect for the overall population, whose characteristics are shared by
subpopulations in the meta-analysis. A random-effect model, however, allows the
true effect to vary across studies, with the mean true effect as the parameter of
interest. The introduction of parameters for the subpopulation allows a distributional
link between parameters for the subpopulations and the parameter for the overall
population.

7.3.1 The Fixed-Effect Model

O�i D � C "i : (7.15)

The most intuitive way to combine individual studies into a meta-analysis is the
weighting method. Let O�i .i D 1; : : : K/ be the mean of the i th independent study
with variance �2�i and sample size ni per group (two-group design). The population
parameter � can be estimated by (7.11) and the variance estimated by (7.12).

In principle, weight wi can be, for example, 1=ni (ethically justified), 1/��i , or
1/�2�i . Under a homogeneous variance, �i D � (standard deviation for the individual
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patient; note O��i D O�p2=ni ). The three weights will not lead to identical results.
We will discuss weights further in Sect. 7.6. We will also examine the meaning of � .

The most commonly used method for estimating the weight is probably MLE.
Under the normality assumption with a fixed-effect model, we have

O�i ind� N
�
�; �2�i

�
, (7.16)

where ��i D O��i is assumed known.
The log-likelihood is given by

LL D �
KX

iD1

�
� � O�i

�2

2�2�i

C ln ��i C constant. (7.17)

To maximize LL, take @LL
@�

D 0, which leads to the MLE (7.11) of � with

wi D 1

�2�i

: (7.18)

Substituting (7.18) into (7.12), we obtain

var
� O�
�

D 1
PK

iD1 wi
: (7.19)

Therefore, we have

O� � N

 
�;

1
PK

iD1 wi

!
. (7.20)

Using (7.20), constructing the CI of � and performing the hypothesis test are
straightforward tasks.

The result (7.20) is robust even when the normality does not hold well. In such a
case, (7.17) becomes an approximation.

When the normality does not hold, (7.17) can be viewed as a Taylor second-order
expansion,

LL D �
KX

iD1

�
� � O�i

�2

2�2�i

C Ci CO

 
� � O�i
��i

!3
;

where Ci is not dependent on �i .
As we have discussed in Sect. 7.1, � can be the mean, ln OR, ln RD, ln RR, or

ln HR. Under the large-sample assumption, they all have normal distributions. With
the given variances, the application of the inverse-variance weighting method is
straightforward.
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Table 7.2 Outcomes from two studies of Alzheimer’s disease

Selegiline Placebo

Rating No. of Std. Std. No. of Std. Std.
Trial scale patients mean dev. patients mean dev.

1 GBS 9 �:0203 .1733 9 .0172 .1783
2 BDS 15 .0016 .0076 15 .0027 .0129

Deeks (2002) empirically investigated four summary statistics: odds ratios (OR),
risk differences (RD) and risk ratio of beneficial outcomes (RR(B)), and risk ratio
of harmful outcomes (RR(H)). Based on a sample of 551 systematic reviews,
he concluded that the RR and OR models are on average more consistent than
RD. From a second sample of 114 meta-analyses, evidence indicates that for
interventions aimed at preventing an undesirable event, the greatest absolute benefits
are observed in trials with the highest baseline event rates, corresponding to the
model of constant RR(H). Deeks concludes that selection of a summary statistic
solely based on identification of the best-fitting model by comparing tests of
heterogeneity is problematic, principally due to low numbers of trials, and suggests
that the choice of a summary statistic should be guided by both empirical evidence
and a clinically informed debate as to which model is likely to be closest to the
expected pattern of treatment benefit across baseline risks.

Example 7.1. The outcomes from two studies of Alzheimer’s disease are presented
in Table 7.5 of Exercise 7.1. For illustration purposes, we perform a meta-analysis
that just includes the first two trials. The Gottfries-Brane-Steen (GBS) score ranges
from 0 to 36. The Blessed Dementia Scale (BDS) ranges from 0 to 84. A lower value
means good. Because of the different scales, we rescale them into a range of 0–1.
To do that, we divide the GBS scores by 36 and BDS scores by 84. The resulting
outcomes are presented in Table 7.2.

The mean difference is O�1 D �0:0375, with variance �2�1 D 0:17332C0:17832
2.9�1/ D

0:0039 for trial 1. Similarly, O�2 D �0:0011 and �2�2 D 0:00762C0:01292
2.15�1/ D 0:00000

8 for trial 2.
PK

iD1 wi D 125; 260. The estimated mean of the Selegiline effect on
the standard rating scale is calculated from (7.11): O� D .�0:0375

0:0039
C �0:0011

0:000008
/ 1
125260

D
�0:00117. From (7.12) or (7.19), we have var. O�/ D 1

125260
D 0:00000798: The test

statistic from (7.13) is T D �0:00117=p0:00000798 D �0:41418. The p-value
obtained from the standard c.d.f. is p D 0:3394. The two-sided 95% confidence
interval is given by �0:00117˙ 196

p
0:0798.

To interpret the difference O� in a particular rating scale, we can multiply O� by the
scale factor. For example, O� D �0:00117 on the standardized scale is equivalent to
O� D �0:00117.84/ D �0:098 28 on the Blessed Dementia Scale. Of course, the
interpretation of meta-analysis results can be controversial.
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Table 7.3 Cases of pre-eclampsia in nine diuretics trials

Cases/total Odds Variance
Trail Treated Control Ratio ln OR (ln OR)

1 14/131 14/136 1.04 0.04 0.16
2 21/385 17/134 0.40 �0:92 0.12

Example 7.2. The outcomes of nine clinical trials that examine the effect of taking
diuretics during pregnancy on the risk of pre-eclampsia are summarized in Table 7.6
in Exercise 7.2. For illustration purposes, we perform a meta-analysis that just
includes the first two trials. The OR, ln OR, and var(ln OR) in Table 7.3 are
calculated using (7.1)–(7.3).

The variance can be obtained from (7.19), var. O�/ D . 1
0:16

C 1
0:12
/�1 D 0:06857.

The log odds ratio can be obtained from (7.11), O� D 0:06857.0:04
0:16

C �0:92
0:12

/ D
�0:5086. The test statistic T D �0:5086p

0:06857
D �1: 9423, and p-value p D 0:026. The

95% confidence interval is 0:06857˙ 1:96
p
0:06857.

7.3.1.1 Mantel-Haenszel Method

In addition to the weighting method, the Mantel and Haenszel (1959) method for
combining odds ratios from different strata can be used directly for meta-analyses.

The pooled estimate for the OR is given by

ORMH D
PK

iD1
ai di
niPK

iD1
bi ci
ni

. (7.21)

The ln ORMH has approximately a normal distribution with a variance (Robins et
al. 1986) of

var .ln ORMH/ D
PK

iD1 PiRi

2
�PK

iD1 Ri
�2 C

PK
iD1 .PiSi CQiRi /

2
PK

iD1 Ri
PK

iD1 Si
C

PK
iD1 QiSi

2
�PK

iD1 Si
�2 ,

(7.22)

where Pi D .ai C di/ =ni , Qi D .bi C ci / =ni , Ri D aidi=ni , and Si D bici =ni .
Engels et al. (2000) summarized methods for pooling risk differences and odds

ratios. For ordinal endpoints, when individual patient data are available, we can
use the proportional odds model for ordinal data; when only study-level data are
available, we can collapse the ordinal data into binary data. This approach is
also applicable when the studies in the meta-analysis have different numbers of
categories.
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7.3.2 Assessing Heterogeneity

The termed “heterogeneity” here refers to the differences across studies in
populations, exposures/interventions, outcomes, design, and/or conduct. A forest
plot can be useful for a visual assessment of consistency of results across studies.

Traditionally, a chi-square test is undertaken to determine whether there is statis-
tically significant evidence against a null hypothesis of no heterogeneity. Cochran’s
heterogeneity statistic, Q, is calculated using the inverse variance weights wi as

Q D
KX

iD1
wi
� O�i � O�

�2
; (7.23)

where O�i is the ln OR, ln RR, or RD in each trial and O� is the common ln OR, ln RR,
or RD estimated from the meta-analysis.

7.3.3 Random-Effect Model

The random-effect model can be specified as

O�i D � C �i C "i , (7.24)

O�i j�i ; ��i ind� N
�
�i ; �

2
�i

�
, (7.25)

and
�i D N

�
�; �2

�
. (7.26)

But for now we use the restricted maximum likelihood (REML). This is a method
for estimating variance components in GLM using the marginal distribution for � D
f�1; : : : ; �Kg. The log-likelihood to be maximized is

LL
�
�; �2j�1; : : : �K; �2�1 ; : : : ; �2�K

�

/
KX

iD1

2

64ln
�
�2 C �2�i

�C
� O� � O�i

�2

�2 C �2�i

3

75C ln
KX

iD1

1

�2 C �2�i

. (7.27)

The REML of �2 is the solution to (Normand 1999)

O�2 D
PK

iD1
�

w2i . O�/
�

K
K�1

� O�i � O�
�2 � �2�i

�	

PK
iD1 w2i . O�/

. (7.28)
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The estimator for the population mean is then calculated as

O� D
PK

iD1 wi . O�/ O�iPK
iD1 wi . O�/

, (7.29)

where

wi . O�/ D 1

O�2 C �2�i

. (7.30)

The inferences are made using

O� � N

 
�;

1
PK

iD1 wi . O�/

!
. (7.31)

This method is available in the SAS Mixed procedure (Normand 1999; White-
head 1997).

The iteration procedure (7.28)–(7.29) is not convenient. A noniterative procedure
for O�2 can be obtained by using the method of moments and equating Qw to its
expected value (DerSimonian and Laird 1986; Borenstein et al. 2009),

O�2 D Q � .K � 1/
PK

iD1 1

�2
�i

�
�PK

iD1 1

�2
�i

	�1PK
iD1 1

�4
�i

, (7.32)

whereQ is given by (7.23).

Example 7.3. In Example 7.2, we have used a fixed-effect model. We now use
the random-effect model for the same problem. Since O� D �0:5086 from Exam-
ple 7.2, we can obtain Q from (7.23): QD .0:04 � .�0:5086//2=0:16C .�0:92 �
.�0:5086//2=0:12 D 3:29 and O�2 from (7.31): O�2 D 3:29�.2�1/

14:583�.108:51/=14:583 D 0:321.
From (7.30), we obtain w1 . O�/ D 1=.0:321C0:16/D 2:08 and w2 . O�/ D 1=.0:321C
0:12/ D 2:27. From (7.29), O� D .2:08.0:04/C .2:27/.�0:92//=.2:08C 2:27/ D
�0:461. The test statistic T D O�=

qPK
iD1 wi . O�/D � 0:461=

p
2:08C 2:27D �

0:221, and p-value p D 0:4125. This p-value is much bigger than the p-value
from the fixed-effect model (p D 0:026) because of the among-study variability
included in the random-effect model. The 95% confidence interval is �0:461 ˙
1:96

p
2:08C 2:27 D �0:461˙ 4:0879.

The parameter estimation in the random-effect model is sensitive to the estimation
of among-study variance, which is poor when there are only a few studies.
Brockwell and Gordon (2001) show that the DerSimonian and Laird method does
not adequately reflect the error associated with parameter estimation, especially
when the number of studies is small. Several different methods have been proposed
including the profile likelihood method, the nonparametric maximum likelihood,
and Bayesian models (Chap. 10 of this book; Smith et al. 1995).
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7.3.3.1 Profile Likelihood Method

When an estimate problem usually involves more than one parameter, we can use
the profile likelihood method (PLM). In PLM, the maximization proceeds in a
stepwise fashion based on the number of parameters. A profile likelihood function
can be used to find the global maximum and to construct a confidence interval for a
parameter. For the moment, the profile likelihood function is defined as

L�.�0/ D L.�0I O�2.�0//, (7.33)

where O�2.�0/ satisfies

O�2 .�0/ D
X

i

2

64
.yi � �0/2 � O�2i�
O�2�i C O�2 .�0/

�2

3

75

2

64
X

i

1
�

O�2�i C O�2 .�0/
�2

3

75

�1

. (7.34)

Clearly O�2 .�0/ is not assumed fixed for all �0.
An approximate .1 � ˛/100% confidence interval for � is then given by values

of �0 that satisfy

ln.L� .�0// > ln.L. O�ML; O�2ML// � 1

2
C1�˛.�21/, (7.35)

where C�.�21/ is the � -quantile of the �21-distribution and O�ML is the maximum

likelihood estimate; i.e., the solution of L. O�ML/ D L. O�ML; O�2ML/ D 0 (Brockwell
and Gordon 2001). After O�ML is found, the minimum and maximum values of �0
can be found through iterations based on (7.35) and (7.33).

Brockwell and Gordon (2001) compared several fixed-effect and random-effect
models as well as the profile likelihood method using simulations. They found that
the random-effect methods generally perform better than the fixed-effect methods,
with respect to coverage probabilities. However, particularly when the number of
studies is modest (fewer than 20), the commonly used DerSimonian and Laird
method has a coverage probability considerably below 0.95. This suggests that the
error associated with the estimation of �2 is not adequate. The profile likelihood
method usually produces the highest coverage probabilities. The coverage probabili-
ties for small k were considerably closer to 0.95 than for the two other random-effect
methods.

7.3.4 Mixture Model for Relative Risk

Kuhnert and Böhning (2007) compare three statistical models (approximate likeli-
hood, multilevel, and profile likelihood) used to estimate the relative risk. The three
models can be derived through the general mixture model as described below.
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We express the treatment effect in a two-group (T D treatment, C D Control)

study as the relative risk �i D pTi
pCi

, which can be estimated as xTi n
C
i

xCi n
T
i

. Here xTi and xCi
are the number of events in the treatment and control groups, respectively; nCi and
nTi are the number of subjects in the treatment and control groups, respectively.
To model the cluster (study) structure, we can use the nonparametric mixture
distribution:

f .xi j�; q/ D
mX

jD1
f .xi j�j /qj ; (7.36)

where f .xi j�j / is a parametric density, called the mixture kernel, xi contains the
data for trial i , � D .�1; : : : ; �m/, q D .q1; ::; qm/, qj > 0, and

Pm
jD1 qj D 1,

with m being the number of components or clusters. For the homogeneous model,
m D 1; usually m < K (the number of studies).

The three different models can be derived from the mixture model using three
different kernels.

Let ıij be the latent indicator variable ıij, defined as 1 if trial i belongs to
component j and 0 otherwise. The unconditional joint density of (xi ; ıij) is given by

mY

jD1



qj f

�
xi j�j

��ıij , (7.37)

where the product in (7.37) is taken over all components. The full-sample log-
likelihood becomes

KX

iD1

mX

jD1
ıij ln



qj f

�
xi j�j

�� D
KX

iD1

mX

jD1
ıij ln



qj
�C

KX

iD1

mX

jD1
ıij ln



f
�
xi j�j

��
:

(7.38)

An advantage is that in (7.38) the qs and �s can be maximized separately. In
the EM algorithm, the unobserved indicator ıij is replaced by its expected value,
conditional on current values of �j and qj (j D 1; : : : ; m), leading to the E-step
(DerSimonian and Laird 1986; Kuhnert and Böhning 2007):

eij D qj f
�
xi j�j

�

˙m
tD1qtf .xi j�t /

: (7.39)

Replace eij for ıij in (7.38) and maximize the expected log-likelihood in qi ,
leading to the M-step that is specified for the three different models as follows.

7.3.4.1 Approximate Likelihood Model

The logarithmic relative risk, 	i D ln.�i /, can be estimated as

O	i D ln

�
xTi

nTi

�
� ln

�
xCi

nCi

�
.
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Assume O	i has approximately a normal distribution with unknown mean �i and
known standard deviation �i .

Therefore, the associated kernel f .xi j�j / in the mixture model is the normal
density, written as

f .xi j�j / D f
� O	i j�j

�
� 1p

2
 O�i
exp

0
B@�

� O	i � ln
�
�j
��2

2 O�2i

1
CA . (7.40)

The log-likelihood can be written as

KX

iD1

mX

jD1
eij ln



f
�
xi j�j

�� D
KX

iD1

mX

jD1

�eij .xi � ln .�i //

2 O�2i
. (7.41)

Thus the MLE in the M-step is given by

O�j D exp

 PK
iD1 eijxi = O�2iPK
iD1 eij= O�2i

!
. (7.42)

7.3.4.2 The Multilevel Model

The ML model captures the hierarchical structure of the data used in the meta-
analysis. The first level (within study) can be modeled by means of the log-linear
regression:

�
pCi D e˛i ,
pTi D e˛iCˇi , (7.43)

where ˛i is in this case the baseline parameter and ˇi D 	i D ln.pTi =p
C
i /. Let

xi D �
xTi ; n

T
i ; x

C
i ; n

C
i

�
. Under the assumption that the observations have a Poisson

distribution, the likelihood for trial i is given as

f
�
xi jpCi ; pTi

� D
2

4e�nTi pTi
�
nTi p

T
i

�xTi

xTi Š

3

5 �
2

4e�nCi pCi
�
nCi p

C
i

�xCi

xCi Š

3

5 . (7.44)

Substituting (7.43) into (7.44), we obtain the likelihood for the i th trial:

f .xi j˛i ; ˇi / D e�nTi e˛iCˇi

�
nTi e

˛iCˇi �xTi

xTi Š
� e�nCi e˛i

�
nCi e

˛i
�xCi

xCi Š
. (7.45)

The log-likelihood function is given by (omitting the terms not involving the
parameters ˛j ,ˇj , and �i )
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KX

iD1

mX

jD1
eij ln
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�
xi j˛j ; ˇj

�� D
KX

iD1

mX

jD1
eij
�
xCi ˛j � nCi exp .˛i /

CxTi
�
˛j C ˇj

�� nTi exp .˛i C ˇi/
�
: (7.46)

The MLEs in the M-step are given by
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<̂

ˆ̂̂
:̂

Ǫj D ln
�PK
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iPK

iD1 eijn
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Ǒ
j D ln

�PK
iD1 eijx

T
i

PK
iD1 eij0n

C
iPK

iD1 eijn
T
i

PK
iD1 eijx

C
i

�
,

O�j D
PK
iD1 eijx

T
i

PK
iD1 eijn

C
iPK

iD1 eijn
T
i

PK
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C
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(7.47)

The effect parameter Ǒ
j is the log relative risk.

7.3.4.3 Profile Likelihood Model

The profile likelihood (PL) model is usually complex and sometimes only exists in
an iterative form. Fortunately, in our case, a simple PL model will do the job. The
joint density function f

�
xi jpCi ; pTi

�
is the same as (7.44). Substituting pTi with

�ip
C
i in (7.44), we obtain

f
�
xi jpCi ; �i

� D
2

4e�nTi �i pCi
�
nTi �ip

C
i

�xTi

xTi Š

3

5

2

4e�nCi pCi
�
nCi p

C
i

�xCi

xCi Š

3

5 . (7.48)

To follow the PL approach, we replace pCi with its profile maximum likelihood
estimator (PMLE). The PMLE, denoted by QpCi , can be obtained by taking the
derivative of f

�
xi jpCi ; �i

�
with respect to pCi and setting the result to 0, which

leads to

QpCi D xTi C xCi

nTi �i C nCi
. (7.49)

The PMLE QpCi replaces pCi in (7.48), and the resulting outcome is denoted by
f .xi jpCi D QpCi ; �i /.

Thus in the M-step, we obtain the MLE of �i by maximizing the following log-
likelihood using numerical methods and Monte Carlo simulations:

O�i D arg max
�i

KX

iD1

mX

jD1
eij ln



f
�
xi jpCi D QpCi ; �i

��
. (7.50)
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Kuhnert and Böhning (2007) develop the implementation algorithms and analyze
22 trials to prevent respiratory tract infections and show that by using the multilevel
approach in the case of baseline heterogeneity, the number of clusters or components
is considerably overestimated. They conclude that the profile likelihood can be
considered a clear alternative to the approximate likelihood model. In the case of
strong baseline heterogeneity, the profile likelihood method shows superior behavior
when compared with the multilevel model.

7.4 Meta-Analysis in Complex Settings

7.4.1 Individual and Aggregate Data Mixtures

A simple way to deal with the mixture of IPD and AD is to reduce IPD to AD
and then apply standard AD meta-analysis techniques. However, a better and more
complex approach is to include both patient-level and study-level parameters. The
model can use a dummy variable to distinguish IPD trials from AD trials and to
constrain which parameters the AD trials estimate. Riley and colleagues (2008a)
show that this is important when assessing how patient-level covariates modify
the treatment effect, as aggregate-level relationships across trials are subject to
ecological bias and confounding. Thus they develop models to separate within-trial
and across-trial treatment-covariate interactions; this ensures that only IPD trials
estimate the former, while both IPD and AD trials estimate the latter in addition to
the pooled treatment effect and any between-study heterogeneities.

For each IPD trial, there are patient responses, yij, and their residual variances,
�2i . However, for each AD trial, there is only one “patient” with the response O�i and
variance V. O�i/. A dummy variable,Di , is defined to distinguish between responses
from IPD trials (Di D 1) and responses from AD trials (Di D 0). This ensures that
only the IPD trials estimate their trial effect, �i , and their residual variance, �2i , but
allows both the IPD trials and the AD trials to estimate the pooled treatment effect,
� , and the between-study variance, �2. The model can be expressed as follows:

8
ˆ̂̂
<

ˆ̂̂
:

y�
ij D Di	i C �ixij C "�

ij ,
�i D � C ui ,
ui � N.0; �2/,
"�

ij � N.0; V �
i /.

(7.51)

For each IPD trial, y�
ij D yij and V �

i D �2i ; for each AD trial, there is only one

response (j D 1), and we set xi1 D 1, y�
i1 D O�i , and V �

i D V. O�i /, with the latter
assumed to be known. The necessary SAS code is available from the authors on
request. This model can also have covariates included.
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Fig. 7.1 Data mixture in
meta-analysis
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Sutton et al. (2008) propose a (random-effect) meta-analysis model that synthe-
sizes individual-level and aggregate-level binary outcome data while exploring the
effects of binary covariates also available in a combination of individual participant
and aggregate-level data. Their model also involves a mixture of cluster and
individual participant allocated designs. The Bayesian model uses Markov chain
Monte Carlo (MCMC) to estimate parameters. Both models, with and without
covariates, are studied.

Here are four different categories of two-arm studies that are included in the
model: (1) IPD individually allocated studies; (2) IPD cluster-allocated studies;
(3) AD individually allocated studies; and (4) AD cluster-allocated studies (often
analyzed by ignoring clustering). Each of these study/datatype combinations is
modeled separately in the analysis, but each contributes to one overall meta-
analysis, as outlined schematically in Fig. 7.1. The model includes four submodels
and one parent model.

The model includes four submodels and one parent model.

Submodel One: The model for individually allocated IPD studies is

8
<

:

Yij � Ber.pij/,
logit.pij/ D �j C �j t rtij,
�j � N.0; 106/,

(7.52)

where Yij D binary response of the i th subject in the j th noncluster-allocated IPD
study, pij D probability of response, Ber D Bernoulli, and t rt D treatment.

Submodel Two: The model for cluster-allocated IPD studies is given by

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

Yikj � Ber.pikj/,
logit.pikj/ D �kj C �j trtikj,
�kj � N. j ; �

2
cj/,

 j � N.0; 106/,
�cj � U.0; 0:1/,

(7.53)
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where Yikj D response of the i th subject in the kth cluster of the j th cluster-allocated
IPD study, �2cj D variance within the j th cluster, �j D ln OR, and U .�; �/ D uniform
distribution.

Submodel Three: The model for individually allocated AD studies is

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

rCj � Bin.pCj; nCj/,
rTj � Bin.pTj; nTj/,
logit.pCj/ D �j ,
logit.pTj/ D �j C �j ,
�j � N.0; 106/,

(7.54)

where rij D the number of events in the i th arm (the subscripts i D C D control,
i D T D test) out of nij subjects.

Submodel Four: The model for cluster-allocated AD studies is
8
<̂

:̂

ıj D 1C .mj � 1/�j ,
Q�2j D �2j ıj ,
Tj � N.�j ; Q�2j /,

(7.55)

where ıj is called the design effect, mj D the average cluster size, �j is the
intraclass correlation coefficient in the j th study, and Q�2j D adjusted variance in
the j th study.

This submodel combines AD cluster-allocated studies assuming the reported
analysis (data source) ignored the effect of clustering. Since this will result in these
studies being given more weight in the analysis than they should, an attempt has
been made to adjust this by inflating the variances of the treatment effects. The
proposed adjustment is simply multiplying a factor of ıj , as defined in (7.55).

Parent Model: The model for combining all estimates of the intervention effect
from the four data sources is

8
<

:

�j � N.�; �2/,
� � N.0; 106/,
� � U.0; 0:1/.

(7.56)

This part of the model specifies a random effect to be placed across all ln.OR/
estimates, the �j s, from submodels 1–4 (i.e., they are specified as exchangeable).
These intervention effects are assumed to be normally distributed with mean �
and variance �2. Both parameters are given vague prior distributions. This is the
standard random-effect model for combining treatment effects commonly used in
meta-analysis.

The WinBug software package can be used for the simulation. The posterior
� and �2 are the outcomes for the overall treatment effect ln OR and its variance,
respectively.
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7.4.2 Mixture of Matched and Unmatched Pairs

It is not uncommon that a meta-analysis involves a mixture of clustered and
unclustered measures. Chang (2011) developed a simple method to analyze the
mixture of matched and unmatched pairs, which is outlined as follows.

Let xts be the response of the sth subject in treatment group t , s D 1; : : : ; n1 for
paired data, and s D 1; : : : ; nt2 for unpaired data.

For paired data, let the treatment difference Oıp D 1
n1

Pn1
iD1.x2i � x1i /; for un-

paired data, the treatment difference is estimated by Oıu D 1
n12

Pn12
iD1 x2i � 1

n22Pn22
iD1 x1i :
We now propose the estimator for the treatment difference using a linear

combination of ıp and ıu,

Oı D wp Oıp C wu
Oıu.

where the prefixed weight wp C wu D 1. Therefore, given the unbiased estimators
Oıp and Oıu of the treatment difference ı, Oı will also be an unbiased estimator of ı:

E Oı D wpE Oıp C wuE Oıu D ı.

The variance of Oı is given by

�2ı D w2p�
2
ıp

C �
1 � wp

�2
�2ıu

.

The variance can also be expressed as a function of the common variance
�
�2x
�

of xij,

�2ı D 2w2p .1 � �/
�2x
n1

C �
1 � wp

�2
�
1

n12
C 1

n22

�
�2x ,

where � is the correlation coefficient between the matched observations.
The weights wp and wu can be chosen such that the variance is minimized. This

can be accomplished by letting

@�2ı
@wp

D 0,

which leads to

wp D 1

1C 2 .1 � �/ n12n22
n1.n12Cn22/

.

When n12 D n22 D n2, the weight becomes

wp D 1

1C .1 � �/ n2
n1

.
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It is helpful to look into some special cases: (1) for paired data only, n2 D 0, and
thus wp D 1 and wu D 0; (2) for independent data, n1 D 0, and thus wp D 0 and
wu D 1; (3) when � > 0, wp > n1= .n1 C n2/, when � < 0, wp < n1= .n1 C n2/,
and as � ! 0, wp ! n1= .n1 C n2/.

Usually, � is determined independent of the current data. However, if � is
(approximately) independent of Oıu and Oıp , it can be estimated from the data.

For hypothesis test

Ho W ı � 0 versusHa W ı > 0,

we can define the test statistic as

T D
Oı
O�ı � N .ı; 1/ .

When ı D 0, T has the standard normal distribution: T �N .0; 1/. The two-
sided .1 � ˛/100% confidence interval for treatment difference ı is given by

wpıp C �
1 � wp

�
ıu ˙ z1�˛=2

h
w2p�

2
ıp

C �
1 � wp

�2
�2ıu

i
.

7.4.3 p-value Combination Approaches

To deal with a situation such as a mixture of endpoints (continuous, binary, categor-
ical), study populations, interventions, assessment methods, and even differences in
study design and conduct, we can use methods of p-value combinations.

Let Tk D Pk
iD1 pi , where pk are independent variables with uniform distribu-

tions on [0,1]. We can prove (Sadooghi-Alvandi et al. 2009) that the p.d.f. of Tk is
given by

fk.x/ D
(

1
.k�1/Š

Pk
iD0.�1/i

�
k
i

�
.x � i/k�1 I .x > i/ for 0 � x � k,

0; otherwise,
(7.57)

where the indicator function I .x > i/ is defined as 1 if x > i and 0 otherwise. As
k ! 1, Tk approaches the normal distribution N .k=2; k=12/.

The overall “treatment effect” can be estimated by
P

wi O�i , where the wi s are
predetermined weights.

Theorem 7.1. Let Tn be the product of n independent, uniform [0,1] random
variables pi (i D 1; : : : ; n):

Tn D
nY

iD1
pi : (7.58)
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Then the c.d.f. of Tn is given by

Fn .x/ D x

n�1X

iD0

.� ln x/i

i Š
; (7.59)

where 0 < x � 1 and Fn .0/ D 0.

Proof. (Feller 1957) Let Yi D � lnpi for 1 � i � n such that Yi are mutually
independent and exponentially distributed because

Pr .Yi � t/ D Pr
�
pi � e�t� D e�t :

Therefore, Z D Y1 C : : : ;CYn is the sum of independent, exponential random
variables and has an Erlang distribution with the p.d.f. given by (Kokoska and
Zwillinger 2000),

f .z/ D zn�1e�z

.n � 1/Š
,

and the c.d.f. given by

Gn .z/ D 1 � e�z
n�1X

iD0

zi

i Š
; z > 0. (7.60)

Since Tn D e�Z and e�Z < x if and only if Z > � ln x, the c.d.f. of Tn is given
by 1 �Gn .� lnx/. Substituting � ln x for z in (7.60) proves the theorem.

7.4.4 Cumulative Meta-Analysis

7.4.4.1 Sequential Approaches and Statistical Power

Cumulative meta-analysis typically refers to the retrospective undertaking of a series
of meta-analyses, each one repeated upon the inclusion of an additional study. For
instance, an infinitely updated cumulative meta-analysis with a constant rejection
boundary would eventually yield a statistically significant finding even under the
null hypothesis (Sutton and Higgins 2008). Researchers who use sequential methods
for cumulative meta-analyses include Pogue and Yusuf (1997), and Whitehead
(1997), among others. Since the studies are often conducted at different times with
different protocols, the heterogeneity among studies is generally not ignorable. The
estimation of the between-study variation is particularly problematic in the earlier
stage of the cumulative meta-analyses when the number of studies is small. Lan et
al. (2003) proposed a method based on the Law of the Iterated Logarithm and by
using a penalty factor for the test statistic to account for multiple tests. Their method
can account for estimation of heterogeneity in the treatment effects across studies.
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Definition 7.1. The Law of Iterated Logarithm: If fXng are independent, identically
distributed random variables with mean zeros and unit variances, let Zn D .X1 C
: : :CXn/=

p
n. Then

P

 
lim sup
n!1

Znp
ln.ln n/

D p
2

!
D 1: (7.61)

The asymptotically bounded property of statistic Znp
ln.ln n/

can be used to construct
the sequential tests for the meta-analysis. For the fixed-effect model, Lan et al.
simply pooled the data from different studies and proposed the following test
statistic for the hypothesis-testingHo W � � 0 for two independent two-arm trials at
the kth meta-analysis,

Z�
k D Zkr

& ln
�

ln
Pk

iD1 wi
� , (7.62)

whereZk is the classical test statistic based on cumulative data from all first k trials,
wi D 1

�2�i

is the inverse variance of O�i , and & can be determined through simulation.

For one-sided ˛-level testing, the rejection rule is to reject Ho if Z�
k � z1�˛ and

otherwise retainHo. For ˛ D 0:025, the simulation results of Lan et al. suggest that
& D 1:5 is a good choice for practical use with sample size ni � 20 for the i th
trial and number of analyses K � 25. For ni � 300, & D 1 is sufficient to control
the familywise type-I error. In general, whenK increases or ni is reduced, & should
increase.

The penalty factor
q
& ln.ln

Pk
iD1 wi / is used in the test statistic due to multiple-

testing. Alternatively, we can keep Zk unchanged and adjust the critical value z1�˛
by multiplying the same factor, which becomes a sort of error-spending approach in
adaptive designs.

For the mixed-effect model, (7.62) still holds but the weight wi is modified to

w�
i D 1

�2�i C �2
; (7.63)

where �2 can be the DerSimonian-Larid estimate (7.32).
The precision of estimating the between-study availability �2 is largely depen-

dent on the number of studies in the meta-analysis; therefore, in the first several
analyses in the sequential meta-analysis, �2 cannot be precisely estimated and
causes some unstable conditions. Equation (7.62) is stable because the wi or the
�2 is within the ln function and the square root, which makes the dominator much
less sensitive to the change of the between-study variability �2. An alternative is to
use the Bayesian prior for �2 as proposed in Chap. 10.
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7.5 Graphical Presentations

In a traditional forest plot (Fig. 7.2), a collection of confidence intervals from
studies can be visually misleading: the eye is drawn to the longer CI bars, and thus
less informative studies will draw more attention. Therefore, it is helpful to use
proportional symbols for point estimates to reduce this distortion. Sometimes color
can also be added.

7.5.1 Funnel Plots

Funnel plots (Fig. 7.3) are another way to visualize the results from meta-analyses.
A funnel plot is a scatterplot of treatment effects against a precision measure or
“study size.” A funnel plot can be used visually to “detect” bias or systematic
heterogeneity. Light and Pillemer (1984) state: “If all studies come from a single
underlying population, this graph should look like a funnel, with the effect sizes
homing in on the true underlying value as n increases. If there is publication bias
there should be a bite out of the funnel.” A symmetric funnel shape indicates that

Fig. 7.2 Forest plot with proportional symbols (Sutton et al. 2007)
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Fig. 7.3 Funnel plot of precision by effect size

publication bias is unlikely. An asymmetric funnel plot indicates a relationship
between effect and sample size. Such a relationship leads to doubts over the
appropriateness of a simple meta-analysis and suggests that there needs to be
investigation of possible causes.

A variety of choices of measures of “study size” or “precision” are available,
including total sample size, standard error of the treatment effect, and inverse
variance of the treatment effect (weight).

Caution should be taken with the funnel plot: the visual effect of the funnel plot
can be dramatically affected by the scales used on the axis; if high-precision studies
really are different from low-precision studies with respect to effect size (e.g., due
to different populations examined), a funnel plot may give the wrong impression of
publication bias.

7.6 Controversies and Challenges

7.6.1 Inclusion of Studies

There are several challenges when selecting the individual studies to be included in
the meta-analyses. This is because meta-analyses have different objectives, and in-
dividual studies differ in many ways: different study populations, drug competitors,
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efficacy endpoint definition, measuring method and timepoint, experiment design
(e.g., parallel or crossover), information included in the publication (e.g., mean,
standard deviation, CI, standard error, sample size, p-value), and general quality
in trial conduct, analysis, and reporting. Thus, determining the set of studies to
be included in the meta-analysis study is an art and a science. There is little
consensus on the best practice, but the proposed alternatives include (1) restricting
those studies meta-analyzed to only those of the best quality, either as a primary
or sensitivity analysis, but this approach may be result in too few studies to allow
meta-analysis to draw sensible conclusions; (2) down-weighting studies based on a
quantitative assessment of quality, but the weight selection is subjective (Tritchler
1999); (3) exploring the effect of components of quality via meta-regression (Jüni
et al. 1999); and (4) using “assay sensitivity” as an inclusion criterion for meta-
analysis (Gelfand et al. 2006).

7.6.2 Inclusion, Analysis, and Reporting Bias

The issue of publication and related biases is always a concern in the scientific
community, especially with meta-analysis, since if statistically significant or “posi-
tive” results are more likely to be published, a meta-analysis based on the resulting
literature will be biased. In other words, if individual studies have a global “positive-
bias” trend, meta-analyses have a global “positive-bias” on top of the “positive-bias”
trend; i.e., more bias. On the other hand, if all studies have a “positive-bias” with
the exception of this one, then this study will have a relatively “negative bias.” The
funnel plot is used to explore the potential bias. However, a symmetric funnel plot
doesn’t ensure nonbias, especially when the size is small. Similarly, an asymmetric
funnel plot does not guarantee bias is present.

It is controversial as to whether adjustment for publication bias should be
encouraged. Despite some disagreement, many authors have considered their ad-
justment methods as a form of sensitivity analysis. Jackson (2006) investigates how
publication bias affects the estimation of the among-study heterogeneity parameter
in a random-effect meta-analysis model, Sutton et al. (2002) allow different levels
of publication bias across studies of different designs, and Bennett et al. (2004)
uses capture–recapture methods across electronic databases in order to estimate the
number of missing studies (Sutton and Higgins 2008).

One relevant and interesting controversy is that if we repeatedly investigate the
reporting bias, what is the false positive discovery (false bias) rate (see Chap. 1)?
Remember the studies that have “identified” reporting bias are much easier to
publish and draw more attention than research studies that have no bias findings.
This recursive nature of reporting bias makes the issue very complicated.

One practical limitation of carrying out an IPD regression analysis is that it relies
on datasets for all studies in the meta-analysis that are available. Study designs often
involve many aspects. Even if the data are available, simply performing the analysis
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Table 7.4 Meta analysis versus mega-analysis

Control Test

Trail Deaths/patients Risk Deaths/groups Risk Risk ratio

A 20/100 0.20 40/100 0.40 0:2=0:4 D 0:50

B 40/400 0.10 20/100 0.20 0:1=0:2 D 0:50

Total 60/500 0.12 60/200 0.30 0:12=0:3 D 0:40

on the final dataset without fully understanding the design aspects is problematic for
the validity and interpretation of meta-analysis results.

There are recent research studies that are not well covered in this chapter.
Examples would be meta-analysis using a binary surrogate endpoint to predict
the effect of intervention on the true endpoint (Baker 2006), meta-analysis for a
crossover design (Curtin et al. 2002), meta-analysis for matched-pair and unmatched
data (Sutton et al. 2000), and meta-analyses for survival endpoint (Parmar et al.
1998; Moodie et al. 2004; Fiocco et al. 2009).

7.6.3 Inconsistency in Weight Selection

The controversies in weight selection in meta-parameter estimation can be illus-
trated as follows. Suppose we split the data from a trial into two parts as if they
were from two smaller “trials.” We then perform a meta-analysis based on these two
smaller “trials” and estimate the parameter � by O�meta D 1p

w1Cw2
.w1�1 C w2�2/,

where wi D 1=�2�i D ni
�2i

. However, the data are actually a single trial, and thus the

parameter is usually estimated by O� D 1p
w1Cw2

.w1�1 C w2�2/, where wi D ni , the

sample size of the i th artificially divided trial. The two estimates O�meta and O� for
the same parameter � are usually different. Furthermore, using the inverse variance
weight wi D 1=�2�i , the outcomes from different patients weigh differently if the
variance �2i is different among the trials. This creates an ethical controversy; i.e.,
violating the principle of “one person one vote.”

Here we actually discuss the controversies between the meta-analysis and the so-
called mega-analysis. In a mega-analysis, all data from different trials are lumped
together to obtain one estimate, treating patients from different trials as if they were
from the same trial and ignoring the treatment difference between the trials. This
controversy can also be illustrated in the following example for the binary endpoint
(Table 7.4). The trials (A and B) both have two parallel treatment groups (control
and test). In both trials, the risk ratio is 50%. However, the sample size is different
in the two trials, which leads to different risk ratios for the meta-analysis (50%) and
mega-analysis (40%).
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7.7 Exercises

7.1. The outcomes of seven studies of Alzheimer’s Disease are presented in
Table 7.5. Different scales were used for these studies (Whitehead 1997, p. 221).
The ranges of the different rating scales are GBS (0–36), BDS (0–84), NOSIE (0–
320), DS (1–7), and PIADL (0–24). Perform meta-analyses using the fixed-effect
and random-effect models, and generate the forest plot.

7.2. The outcomes of nine clinical trials that examine the effect of taking diuretics
during pregnancy on the risk of pre-eclampsia are summarized in Table 7.6
(Thompson and Pocock 1991). Fill in the numbers in the empty cells, perform a
meta-analysis, and generate the forest and funnel plots.

7.3. Suppose there are six cancer studies. Their outcomes are presented in Table 7.7
(Whitehead 1997, p. 239). Perform a meta-analysis using a p-value combination
method.

7.4. Develop a model for meta-analysis when the outcomes are the mixture of
continuous and binary variables.

Table 7.5 Results from seven studies of Alzheimer’s disease

Selegiline Placebo

Rating No. of No. of
Trial scale patients Mean Std. dev. patients Mean Std. dev.

1 GBS 9 �0.73 6.24 9 0.62 6.42
2 BDS 15 0.13 0.64 15 0.23 1.08
3 NOSIE 79 �0.84 6.28 77 0.43 6.64
4 BDS 59 �1.90 3.47 49 1.04 3.52
5 BDS 62 �2.02 2.44 46 0.63 2.59
6 DS 172 �0.02 0.89 169 0.01 0.89
7 PIADL 25 0.88 2.82 24 0.08 2.83

Table 7.6 Cases of
pre-eclampsia in nine
diuretics trials

Cases/total Odds Variance
Trail Treated Control ratio ln OR (ln OR)

1 14/131 14/136 1.04 0.04 0.16
2 21/385 17/134 0.40 �0.92 0.12
3 14/57 24/48 0.33 �1.12 0.18
4 6/38 18/40
5 12/1011 35/760
6 138/1370 175/1336
7 15/506 20/524
8 6/108 2/103
9 65/153 40/102
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Table 7.7 Outcomes from six cancer studies

Study 1 2 3 4 5 6

ln OR �0.329 �0.385 �0.216 �0.220 �0.225 0.125
p-value 0.048 0.029 0.216 0.063 0.115 0.898

7.5. Repeated measures are often present in clinical trials, e.g., the primary efficacy
endpoint is measured twice at different timepoints. Develop a model for meta-
analysis with repeated-measures data.

7.6. Conduct three sets of sequential/cumulative meta-analyses using the data in
Tables 7.3–7.5.
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Chapter 8
Data Mining and Signal Detection

8.1 Common Data Mining Methods

8.1.1 Supervised, Unsupervised, and Reinforcement Learning

Data mining, a the confluence of multiple intertwined disciplines such as statistics,
machine learning, pattern recognition, database systems, information retrieval, the
World Wide Web, visualization, and many application domains, has made great
progress in the past decade. Statistics plays a vital role in successful machine
learning or data mining in which we are constantly dealing with streamed data,
which are usually of vast volume, changing dynamically, possibly infinite, and
containing multidimensional features. The contents and methods to be discussed
in this chapter often appear under bioinformatics, data mining, signal detection, or
pharmacovigilance.

Learning algorithms in data mining fall into three categories (supervised,
unsupervised, and reinforcement learning) based on the type of feedback that the
learner can get. In supervised learning, the learner will give a response Oy based
on input x and will be able to compare his response Oy to the target (correct)
response y. In other words, the “student” presents an answer Oyi for each xi in the
training sample, and the supervisor provides either the correct answer and/or an error
associated with the student’s answer. If .X; Y / are random variables represented
by some joint probability density P.X; Y /, then supervised learning can be
formally characterized as a density estimation problem where one is concerned with
determining properties of the conditional density P.Y jX/. Usually the properties of
interest are the “location” parameters � that minimize the expected error at each x
(Hastie et al. 2001),

�.x/ D arg min
�

EY jXL.Y; �/;

where L.Y; �/ is the loss function.
In unsupervised learning, the learner receives no feedback from the supervisor at

all. Instead, the learner’s task is to re-represent the inputs in a more efficient way,
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as clusters or a reduced set of dimensions. Unsupervised learning is based on the
similarities and differences among the input patterns. In this case, one has a set of n
observations .x1; : : : ; xn/ of a random p-vector X having joint density P.X/. The
goal is to directly infer the properties of this probability density without the help
of a supervisor or teacher providing a correct answer or degree of error for each
observation (Hastie et al. 2001).

Reinforcement learning is an active area in artificial intelligence study or
machine learning that concerns how a learner should take actions in an environment
so as to maximize some notion of long-term reward. Reinforcement learning
algorithms attempt to find a policy (or a set of action rules) that maps states of
the world to the actions the learner should take in those states. In economics and
game theory, reinforcement learning is considered a rational interpretation of how
equilibrium may arise. A Markov decision process is considered a reinforcement
learning model.

Unlike supervised learning, in reinforcement learning, the correct input-output
pairs are never presented. Furthermore, there is a focus on on-line performance,
which involves finding a balance between exploration (of uncharted territory) and
exploitation (of current knowledge).

8.1.2 Link Analysis

In many situations, finding causality relationships is the goal. When there are a
larger number of variables, the task is not trivial. However, association is a necessary
condition for a causal relationship. Finding the set of events that correlate with many
others is often the focus and a subject for further research. Link analysis provides a
way to find the event set with high density. Finding sale items that are highly related
(or frequently purchased together) can be very helpful for stocking shelves, cross-
marketing in sales promotions, catalog design, and consumer segmentation based
on buying patterns. A commonly used algorithm for such density problems is the
so-called Apriori (Motoda and Ohara, 2009, in Wu and Kumar 2009, p. 61).

Link analysis explores the associations between large numbers of objects of
different types. Link analysis can be used to examine the adverse effects of
medications during postmarketing surveillance (Fig. 8.1), determining whether a
particular adverse event can be linked to just one medication or a combination of
medications. Link analysis can examine specific patient characteristics to determine
whether they might correlate with both the adverse event and the medication (Cerrito
2003). Link analysis has also been used in page ranking of webpages.

8.1.2.1 PageRank Algorithm

The name “PageRank” is a trademark of Google, and the PageRank process has
been patented (U.S. Patent 6,285,999). However, the patent is assigned to Stanford
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Fig. 8.1 Link analysis in
drug AE (adverse event)
relationship

Drug
B

Drug
A

Drug
C

AE
1

AE
3

AE
4

AE
5

AE2

University and not to Google. Google has exclusive licensing rights on the patent
from Stanford University. The university received 1.8 million shares of Google stock
in exchange for use of the patent according to wikipedia.org.

The PageRank algorithm (Brin and Page 1998) first forms the so-called adja-
cency matrix A, whose element is 1 if page links to page and 0 otherwise. Then a
probability transition matrix W is constructed by renormalizing each row of A to
sum to 1. Imagine a random web surfer who randomly clicks a hyperlink on the
page with a probability of .1 � p"/ to jump to another page or enter randomly a
url to a new page with a probability of p". The process continues until the web
surfer stops. This process defines a Markov chain on the webpages with transition
matrix p"U C .1 � p"/W , where U is the transition matrix of uniform transition
probabilities (Uij D 1=n for all i; j ). The vector of PageRank scores s is then
defined to be the stationary distribution of this Markov chain. Equivalently, s is the
principal right eigenvector of the transition matrix ."U C .1 � "/W /0. Here again
the apostrophe represents the transpose of the matrix (Golub and Van Loan 1996;
Langville and Meyer 2005)

."U C .1 � "/M/0 s D s. (8.1)

8.1.2.2 HITS Algorithm

Another popular algorithm is the Kleinberg HITS algorithm (Kleinberg 1999),
which is also an eigenvector-based method; it essentially computes principal
eigenvectors of particular matrices related to the adjacency graph to determine
“authority,” a. The HITS algorithm posits that an article has high “authority” weight
if it is linked by many pages with high “hub” weight and that a page has high
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hub weight if it links to many authoritative pages. The HITS algorithm iterates the
following equations:

(
a.tC1/ D .A0A/a.t/,
h.tC1/ D .AA0/h.t/.

(8.2)

When the iterations are initialized with the vector of ones .1; : : : ; 1/0, this is the
power method of obtaining the principal eigenvector of a matrix (Golub and Van
Loan 1996). From (8.2) we know that a� D a.1/ and h� D h.1/ are the principal
eigenvectors of A0A and AA0, respectively. The authoritativeness of page i is then
taken to be a� and likewise for hubs h�.

The properties of .AA0/ determine the stability of the ranks generated by the
HITS algorithm under small perturbations. The HITS, the PageRank, and other
link-analysis algorithms can be used for identifying “authoritative” or “influential”
articles, given hyperlink or citation information. The questions are: will such
algorithms be reliable and will they give consistent answers? Ng et al. (2001)
analyzed such algorithms when they can be expected to give stable ranks under
small perturbations to the linkage patterns.

8.1.3 Nearest-Neighbors Method

Probably the simplest of all machine learning algorithms is the k nearest neighbors
(kNN) method, in which an object is classified by a majority vote of its neighbors,
with the object being assigned to the class most common among its k nearest
neighbors. The kNN is a type of instance-based learning, or lazy learning, where
the function is only approximated locally and all computation is deferred until clas-
sification. Despite its simplicity, kNN has been used in many classification problems
such as handwritten digits, satellite imaging scenes, and electrocardiograms (EKGs
or ECGs).

The kNN can be used for regression by simply assigning the property value for
the object to be the average of the values of its k nearest neighbors.

Oy D Ave .yi jxi 2 Nk .x// , (8.3)

whereNk .x/ is the set of k points nearest to x. We may weigh neighbors differently
according to the distances. e.g.; to choose weight to be the reciprocal of the distance
to the neighbor.

The neighbors are taken from a set of objects for which the correct classification
(or, in the case of regression, the value of the property) is known. This can be thought
of as the training set for the algorithm, though no explicit training step is required.
The kNN can be effective when the decision boundary is very irregular (Hastie et al.
2001, 2009).
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8.1.4 Kernel Method

The kernel method is a natural extension of the kNN method. The localization
is achieved via two steps: (1) fitting a local model (e.g., a polynomial model)
and (2) using a weighting function or kernel K� .x0; xi /, which assigns a weight
to xi based on its distance from x0. The index parameter � in the kernel K� is
used to determine the width of the neighborhood. These memory-based methods in
principle require little or no training. In general, larger � implies lower variance but
higher bias.

For a local linear regression, if the squared error is used, the kernel method
becomes the following minimization problem at each target point x0:

min
a.x0/;ˇ.x0/

NX

iD1
K� .x0; xi / Œyi � ˛ .x0/ � ˇ .x0/ xi �2 . (8.4)

The estimate is then Oy D Of .x0/ D Ǫ .x0/C Ǒ.x0/x0.
The kernel function can be an Epanechnikov quadratic kernel,

8
<̂

:̂

K� .x0; x/ D D

� jjx � x0jj
�

�
,

D .t/ D 3

4

�
1 � t2� I .jt j � 1/ .

(8.5)

Kernel density estimation (or the Parzen window method) is an unsupervised
learning method. If a random sample x1; : : : ; xn is independently drawn from a
probability density fX .x/, we can estimate fX .x/ using

OfX .xI�/ D 1

n

nX

iD1

1

�i
K

�
x � xi

�i

�
, (8.6)

where K.�/ is some kernel and �i is a smoothing parameter called the bandwidth.
A commonly used kernel is the standard Gaussian function with a constant band-
width �i D �. Thus the variance is controlled indirectly through the parameter �.

Binary kernel discrimination has thus far mostly been used for distinguishing
between active and inactive compounds in the context of virtual screening (Wilton
et al. 2006; Harper et al. 2001).

8.1.5 Support Vector Machine

Linear discriminant analysis is based on the construction of the hyperplane that
minimizes the misclassification error. Similarly, a support vector machine (SVM)
is used to construct a hypersurface (multiple hyperplanes) that minimizes the
misclassification or regression error.
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The classifier is defined as

G .x/ � sgn
�
xTi ˇ C ˇ0

�
. (8.7)

The parameters ˇ and ˇ0 that determine the hypersurface are obtained by solving
the following optimization:

min jjˇjj, (8.8)

subject to

�
yi
�
xTi ˇ C ˇ0

� � 1 � �i 8i ,
�i � 0.

(8.9)

The interpretation of ˇ is that jjˇjj is the distance or margin that separates the
two classes. When the slack variable �i D � (constant), (8.8) defines a hyperplane.
The computational details of (8.8) can be found elsewhere (e.g., Hastie et al. 2001,
2009).

8.1.6 Tree Methods

Tree methods are simple and popular methods in data mining and machine learning.
The goal is to predict an outcome variable y based on input variables x D
.x1; : : : ; xn/. There are so-called classification and regression trees (CARTs). In a
regression tree, y is treated as continuous variable, and in a classification tree, it is
treated as a discrete variable.

In the tree method, each input variable xi .i D 1; : : : ; p/ is divided into categories
in terms of value (e.g., age divided into age groups) sequentially (Fig. 8.2). A binary
tree is a simple one in which xi is divided into two categories. At the end of the tree
are the leaves, denoted by Rj (i D 1; 2; : : : ; m). Rj represents a classification of x.
A value cj is attached to each leaf. The prediction with the tree method is

Oy D
mX

iD1
ci I .x 2 Ri/ , (8.10)

where ci is a constant and I.x 2 Ri/ is an indicator function, which is equal to 1 if
x 2 Ri and 0 otherwise. Here are two questions that the tree methods try to answer:
(1) For a given tree structure, how should the constant ci be determined so that the
error can be minimized? (2) How should the tree be constructed so that the error can
be minimized?

Suppose we have observations .x1j ; : : : ; xpj; yj /, where j D 1; : : : n. We take a
subset .x1j ; : : : ; xpj; yj /, where j D 1; : : : nt Int < n. To determine the constant ci ,
we minimize the error or impurity measure,

Err D 1

nt

ntX

jD1
.yj � Oyj /2; (8.11)
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Fig. 8.2 Tree structure
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which leads to

ci D ave
�
yj jxj 2 Ri

�
: (8.12)

Here we have assumed there are no missing data.
Knowing how to determine ci in the minimization, we now can determine the

tree structure to further minimize the error. The process is recursive. We split one xi
each time into categories from i D 1 to p and calculate the error Erri from (8.11).
Then we find the index i with minimum error,

i.1/ D arg min
i

.Erri / . (8.13)

After we find the first index i.1/, we further split the second variable and the
second-best index i.2/ and search among the rest of the p � 1 variables using the
same criterion of minimizing the error given by (8.13). However, this time there are
two variables that are split in the search process. This recursive process continues
until all variables xi have been split.

In a classification tree, if the classification problem has K categories (i.e.,
y1; : : : ; yK ), the proportion of the kth class observations in a node can be written as

Opjk D 1

nt

X

xi2Rj
I .yi D k/ , (8.14)

where I .A/ D 1 if A D True and 0 otherwise.
The common impurity measures are misclassification error,

1

nt

X

xi2Rj
I .yi ¤ k/ D 1 � Opjk; (8.15)
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Gini index,
KX

kD1
Opjk
�
1 � Opjk

�
; (8.16)

and gross entropy or deviance,

KX

kD1
Opjk ln Opjk. (8.17)

Note that the number of leaves in the binary tree is much less than the number of
unique categories (2p) formulated by the n input variables.

There are, for example, several obvious questions in the tree methods: How many
classes should the tree have? How do we determine the tree depth? How do we
split the data for training and validation? A large training set will usually make the
model better. The question is: Do you want a better model without knowing how
good it is (if all the data available are used for training only) or a worse model with
information on the quality of the model?

A single big tree is not stable because a single error in classification can
propagate to the leaves. Therefore, different methods have been proposed as
remedies, such as bagging, boosting, and random forests. The boosted trees can
be used for regression-type and classification-type problems.

8.1.6.1 Bagging

Bagging (bootstrap aggregating) is a variance reduction method that averages
predictions from multiple tree models. The tree models are generated by multiple
sampling from training sets with replacement,

Oybag D 1

Nb

NbX

iD1
Oyi : (8.18)

Bagging is also known as bootstrap aggregating.

8.1.6.2 Boosting

A week classifier Gi.x/, with value either �1 or 1, is one whose misclassification
error rate is only slightly better than random guessing. A boost sequentially applies
the weak classification algorithm to repeatedly reweigh the data, thereby producing
a sequence of weak classifiers Gi.x/; i D 1; 2; : : : ; nt . The predictions from all
of them are then combined through a weighted majority vote to produce the final
prediction,

G .x/ D sgn

 
ntX

iD1
˛iGi .x/

!
, (8.19)
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where ˛1; ˛2; : : : ; ˛nt are computed by the boosting algorithm in such a way that
more accurate classifiers in the sequence will get larger weights.

The data modifications at each boosting step consist of applying weights
w1; : : : ;wnt to each of the training observations .xi ; yi /, i D 1; 2; : : : ; nt , such that
the weight shifts more to misclassified observations. Initially all of the weights
are set to wi D 1=nt , so that the first step simply trains the classifier on the data
in the usual manner. At step i , those observations that were misclassified by
the classifier Gi�1.x/ induced at the previous step have their weights increased,
whereas the weights are decreased for those that were classified correctly. Thus,
as iterations proceed, observations that are difficult to correctly classify receive
ever-increasing influence. Each successive classifier is thereby forced to concentrate
on those training observations that are missed by previous ones in the sequence
(Hastie et al. 2001).

8.1.6.3 Random Forests

A random forest is an ensemble classifier that consists of many decision trees and
outputs the class that is the mode of the class’s output by individual trees. The
method was introduced by Ho (1998) and Breiman (2001). The method combines
Breiman’s “bagging” idea and the random selection of features. There are many
versions of random forest algorithms. Here is the basic one.

Each tree is constructed using the following algorithm:

1. Choose p for the number of variables in the classifier and nt for the number of
training cases.

2. Choosem � p input variables for determining the decision at a node of the tree.
3. Choose a training set for this tree by choosing n times with replacement from all

available training cases.
4. For each node of the tree, randomly choosem variables, from which the decision

at that node is made. Calculate the best split based on these m variables in the
training set.

8.1.7 Artificial Neural Network

An artificial neural network (ANN), or simply neural network (NN), is an artificial
intelligence method for system modeling. An ANN mimics the mechanism of a
human neural network using adaptive weights between the layers in the network to
model very complicated systems. It can be used in supervised learning (classifica-
tion) and predictions, and can be locally linear (having a relationship between two
adjacent layers), but collectively it shows global nonlinear behavior.

An ANN is configured for a specific application, such as pattern recognition
or data classification, through a learning process. Learning in biological systems
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Fig. 8.3 A multilayer
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involves adjustments to the synaptic connections that exist between the neurons;
the same is true for ANNs. An ANN features adaptive learning (an ability to learn
how to do tasks based on the data given for training or initial experience) and self-
organization (creating its own organization or representation of the information it
receives at the learning phase).

What we know about how the brain trains itself to process information is very
limited. In the human brain, a typical neuron collects signals from others through
a host of fine structures called dendrites. The neuron sends out spikes of electrical
activity through a long, thin strand known as an axon, which splits into thousands
of branches. At the end of each branch, a structure called a synapse converts the
activity from the axon into electrical effects that inhibit or excite activity from the
axon into electrical effects that inhibit or excite activity in the connected neurons.
When a neuron receives an excitatory input that is sufficiently large compared with
its inhibitory input, it sends a spike of electrical activity down its axon. Learning
occurs by changing the effectiveness of the synapses so that the influence of one
neuron on another changes (Chang 2010).

The multiple-layer ANN model in Fig. 8.3 is an example of a perceptron with a
hidden layer where data are not measurable or observable.

The local models (link functions) for the hidden layer and the output layer are

yk D Ga .˙iaikxi / , (8.20)

and

zm D Gb
�
˙jbjmyj

�
, (8.21)

respectively. The squared error loss is expressed as

E D 1

2

X

m

.Ozm � zm/
2 , (8.22)

where Ozm and zm are the observed and model outputs at themth node, respectively.
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Therefore we have

8
ˆ̂<

ˆ̂:

@E

@bik
D �G0

b .Ozk � zk/ yi ,

@E

@aik
D �G0

b G
0
axi

P
m Œ.Ozm � zm/ bkm� .

(8.23)

Given these derivatives, a gradient descent update at the .r C 1/th iteration can
be formed,

8
<

:
b
.rC1/
ik D b

.r/

ik C ˇ.r/G0
b .Ozk � zk/ yi ,

a
.rC1/
ik D a

.r/
ik C ˛.r/G0

b G
0
axi

P
m Œ.Ozm � zm/ bkm� ,

(8.24)

where ˛.r/ is the learning rate at the r th iteration.
Equations 8.23 and 8.24 formulate a back-propagation training algorithm for

updating coefficients aik and bik. The computer pseudocode is available elsewhere
(Chang 2010).

The performance of an ANN depends on the weights and the link function.
A commonly used link function is the additive logit function, given by

G .x/ D 1

1C exp .�f .x// I G
0 .x/ D G .x/ .1 �G .x//

df .x/

dx
, (8.25)

where f .�/ is a real function.

8.1.8 Unsupervised to Supervised Learning

We are going to discuss a very interesting method that converts the unsupervised
problem into a supervised problem.

The density estimation problem can be stated as finding a subset sj of data (or
support Sj ), j D 1; : : : ; p, such that

P
h
\p
jD1

�
Xj 2 sj

�i
(8.26)

is high.
To solve this unsupervised density problem, we can convert it to the supervised

problem (Hastie et al. 2001).
Let x1; x2; : : : ; xn be the i.i.d. random sample from an unknown p.d.f. g .x/. Let

xnC1; xnC2; : : : ; xnCn0 be the i.i.d. random sample from a reference (e.g., uniform)
p.d.f., g0.x/. Assign weight w D n0=.n0 C n/ to each observation from g.x/ and
w0 D n/.n0 C n/ to each observation from g0.x/. Then the resulting pooled data
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with nCn0 observations can be viewed as a sample drawn from the mixture density
.g.x/ C g0.x//=2. Let Y D 1 to each sample point from g.x/ and Y D 0 to each
sample point from g0.x/. Then

� .x/ D E .Y jx/ D g .x/

g .x/C g0 .x/
(8.27)

can be estimated by supervised learning using the combined sample

.y1; x1/ ; .y2; x2/ ; : : : .ynCn0;xnCn0/ , (8.28)

as the training dataset. The resulting estimate O� .x/ can be inverted to provide an
estimate for g .x/:

Og .x/ D g0 .x/
O� .x/

1 � O� .x/ . (8.29)

Similarly, for logistic regression, since the log odds ratio is given by

f .x/ D ln
g .x/

g0 .x/
, (8.30)

g .x/ can be estimated by

Og .x/ D g0 .x/ e
Of .x/: (8.31)

8.1.9 K-Means Algorithm

The k-means algorithm is one of the simplest and most popular clustering methods.
Let data beX D fxi I i D 1; : : : ; ng and clusterC D ˚

cj I j D 1; : : : ; k
�
. For a given

k, the goal of clustering is to find C such that

min
cj Ij

 
nX

iD1
jjxi � cj jj

!
. (8.32)

The k-means algorithm is described as follows:

1. Randomly choose k data points from X as the initial cluster C .
2. Reassign all xi 2 X to the closest cluster mean cj .
3. Update all cj 2 C with the means of their corresponding clusters.
4. Repeat steps 2 and 3 until the cluster assignments don’t change.

The convergence of the algorithm is guaranteed in a finite number of iterations.
However, when the distance

Pn
iD1 jjxi � cj jj is a nonconvex function, the con-

vergence can lead to a local optimum. The algorithm is also sensitive to outliers
and could lead to some empty clusters. Here we have assumed that k is fixed. The
clustering problem with variable k is very challenging computationwise.
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8.1.10 Genetic Programming

Genetic programming (GP), inspired by biological evolution, is an evolutionary
computation (EC) technique that automatically solves problems without requiring
the user to know or specify the form or structure of the solution in advance. At
the most abstract level GP is a systematic, domain-independent method for getting
computers to solve problems automatically starting from a high-level statement of
what needs to be done (Poli et al. 2008). The idea of GP is to evolve a population
of computer programs such that, generation by generation, GP stochastically
transforms populations of programs into new populations of programs that will
effectively solve the problem under consideration. Like evolution in nature, It has
been very successful at developing novel and unexpected ways of solving problems
(Chang 2010). GP is considered a reinforced learning approach.

8.1.11 Cellular Automata Method

Cellular automata (CAs) are a class of simple computer simulation methods used to
model both temporal and spatiotemporal processes. They normally consist of large
numbers of identical cells that form a lattice or drift (like a chessboard) with defined
interaction rules.

Cellular automata were invented in the late 1940s by von Neumann and Ulam
(von Neumann 1966) and have been used to model a wide range of artificial
intelligence, image processing, virtual music creation, and physical science appli-
cations (Wolfram 2002). Cellular automata also have a long history in biological
modeling. Indeed, one of the first and most interesting CA simulations in biology
was Conway’s Game of Life (Berlekamp et al. 1982). CAs are simple but can do
virtually everything that any computer can do. For example, there is a finite initial
state such that any paragraph of English prose, when properly coded as a sequence
of gliders, will result in a “spell-checked” paragraph of English prose (again coded
as a sequence of gliders).

The rule of CAs can be defined in many ways. Here is a simple example.

Example 8.1. An occupant of a cell with less than two neighbors will, sadly, die of
loneliness; with two or three neighbors she will continue into the next generation;
and with four or more neighbors she will die of overexcitement.

The objects (cells, proteins, or reagents) in a CA simulation usually do not move:
they only appear, change properties, or disappear. Object properties, attributes,
or information are the only things that “move” in CA simulations. Variations
on the CA model, known as dynamic cellular automata (DCAs), actually enable
objects to exhibit motions (Wishart et al. 2005). We can apply random-walk or
other stochastic processes to DCA. Depending on the implementation of the DCA
algorithm, molecules can move one or more cells in a single time step. DCA models
permit considerably more flexibility in simulating biological processes (Materi and
Wishart 2007).
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There are CA applications in the pharmaceutical industry, such as drug release
in bio-erodible microspheres (Zygourakis and Markenscoff 1996), lipophilic drug
diffusion (Kier et al. 1997; Wishart et al. 2005), drug-carrying micelle formation
(Kier et al. 1996), the progression of HIV/AIDS and HIV treatment strategies (Peer
et al. 2004), and simulation of different drug therapies or combination therapies.
The CA model has the capacity to model the extreme timescales (days to decades)
efficiently and to simulate the spatial heterogeneity of viral infections.

8.1.12 Agent-Based Models

In an agent-based model (ABM) of a biological system, agents represent biological
entities (molecule or drug, gene, cell, metabolites, proteins, tissue, organ, body,
humanecosystem, etc.). The term “agent” is used to indicate a “conscious” computer
program entity with potential learning capabilities that is characterized by some
degree of autonomy and synchrony with regard to its interactions with other agents
and its environment. An agent must be distinguishable from its environment by some
kind of spatial, temporal, or functional attribute.

The first step in devising an agent-based model is to identify the entities to
be modeled. There are many possible levels of entities, from molecule, to cell, to
humanecosystem, that can be chosen for modeling and simulation. An appropriate
selection of the entity level is important to the success of the simulation.

A quite interesting observation on agent-based simulation is that by using simple
agents who interact locally with simple rules of behavior and actions limited to
merely responding befittingly to environmental cues without necessarily striving for
an overall goal, we have as a result a synergy that leads to a higher-level whole with
much more intricate behavior than that of each component agent. Agents, though,
as discrete, diverse, and heterogeneous entities, besides having their own goals and
behavior, share the ability to adapt and modify their behavior to their environment,
placing their autonomy characteristic at a more sophisticated level (Politopoulos
2007). This is again the general phenomenon called “micro-motivated and macro-
consequence.”

In the medical field, ABMs have been used for real-time signaling induced
in osteocytic networks by mechanical stimuli (Ausk et al. 2005), studying social
behavior of cells and understanding important clinical problems (Walker et al.
2006), investigating the patterns in tumor systems and the dynamics of cell motility
and aggregation, studying the theory and approaches for stem cell organization
in the adult human body (d’Inverno and Prophet 2005), modeling the effect of
exogenous calcium on keratinocyte and HaCat cell proliferation and differentiation
(Walker et al. 2006), simulating bacterial chemotaxis (Emonet et al. 2005), modeling
the calcium-dependent cell migration events in wound healing (Walker et al. 2006),
developing optimal breast cancer vaccination protocols (Lollini et al. 2006), and
predicting clinical trial outcomes of different anticytokine treatments for sepsis
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(An 2004). In An’s study, an ABM model of the innate immune response was
constructed using extensive literature data and information about all the relevant
cell types, cell functions, and cell mediators (cytokines).

8.2 Signal Detection and Analysis

8.2.1 Pharmacovigilance

There is no unified definition of the term “signal” in pharmacovigilance. One
commonly cited definition is from the WHO (World Health Organization), which
defines a safety signal as reported information on a possible causal relationship be-
tween an adverse event and a drug, the relationship being unknown or incompletely
documented previously. Another popular definition, given by the PhRMA working
group (Almenoff et al. 2005), is that a signal is a relationship between a drug and
event that is strong enough, using a predefined threshold or criteria set by an analyst,
to warrant further evaluation.

When a safety signal is identified, further investigation is generally warranted
to determine whether an actual connection exists. Data contained in spontaneous
adverse event reports are collected from patients, health care providers, lawyers,
health authorities, the medical literature, and other sources. This information is
entered by pharmaceutical companies into their safety databases so that, first,
serious events meeting certain reporting criteria can be reported to regulators in
an expedited manner, and, second, so that the adverse event data can be analyzed
cumulatively for potential safety signals. Where a spontaneously reported serious
adverse event meets expedited reporting criteria, it must be reported to regulatory
agencies within 15 days, depending on the nature of the event. All spontaneous
reports received by the FDA are entered into the Adverse Event Reporting System
(AERS), a database designed to support the FDA’s postapproval safety monitoring.
The AERS contains data for all approved medicines and therapeutic biologic
products, with a goal of providing a vehicle for signal detection by the agency
(www.pfizer.com/medicinesafety, August 2008). The most recent FDA Sentinel
Initiative, the Observational Medical Outcomes Partnership (OMOP), has the goal
of developing a nationwide electronic safety monitoring system to strengthen the
FDA’s ability to monitor postmarket performance of a product. The system will
enable the FDA to partner with existing data owners (e.g., insurance companies
with large claims databases, owners of electronic health records). The data sources
remain with the original owners behind existing firewalls. Owners would run queries
per clients’ requests and convey summary results of their queries to the network
according to strict privacy and security safeguards. This initiative was a response to
the U.S. Congress’s request. In 2007, Congress (FDA Amendments Act) asked the
FDA to develop postmarket safety surveillance and analysis (25 million patients by
2010; 100 million by 2012) guidance and do it in collaboration with others.
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The postapproval spontaneous safety reporting systems maintained by pharma-
ceutical companies and regulatory agencies contain substantially larger volumes
of data than preapproval databases, which are mainly based on clinical study
data. Although useful, spontaneous reports have some limitations, such as no
“denominators” for calculating the AE rate. Patients can take more than one
medication. In such instances, one bad medicine can make others look good.

According to Pfizer (www.pfizer.com/medicinesafety, August 2008), safety sig-
nals that warrant further investigation include, but are not limited to:

• new adverse events, not currently documented in the product label, especially if
serious and in rare untreated populations;

• an apparent increase in the severity of an adverse event that is already included
in the product label;

• occurrence of serious adverse events known to be extremely rare in the general
population;

• previously unrecognized interactions with other medicines, dietary supplements,
foods, or medical devices;

• identification of a previously unrecognized at-risk population, such as pop-
ulations with specific genetic or racial predisposition or coexisting medical
conditions;

• confusion about a product’s name, labeling, packaging, or use;
• concerns arising from the way a product is used (e.g., adverse events seen at

doses higher than normally prescribed, or in populations not recommended, in
the label);

• concerns arising from a failure to achieve a risk management goal.

8.2.2 Traditional Hypothesis Test

Hypothesis-testing for drug safety can be confusing. For example, the ICH E9
Guideline (EMEA 1998) states that for safety data “statistical adjustments for
multiplicity to quantify the type-I error are appropriate, but the type-II error is
usually of more concern,” whereas the CPMP Points to Consider on Multiplicity
(CPMP 2002), on the other hand, states that “an adjustment for multiplicity is
counterproductive for considerations of safety.”

The confusion can come from the way the hypothesis test is formulated in a
clinical trial. Suppose we are investigating the safety issue in a two-arm parallel
trial using hypothesis testing. We may use hypothesis

Ho W RT � RC � ı versus RT � RC > ı (8.33a)

or

Ho W RT �RC > ı versus RT � RC � ı; (8.33b)
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where ı is usually a positive value and RT and RC are adverse event rates in the
test and control groups, respectively. In clinical trials, due to low event rates in tier
1 AE (see Chap. 10), the power for (8.33a) is usually low and it is often unable to
detect safety problems. However, if (8.33b) is used, an insufficient sample size will
lead to potential false safety warnings (i.e., acceptance of Ho W RT � RC > ı) and
a conclusion that the AE rate is higher in the treatment group than in the control.

8.2.3 Sequential Probability Ratio Test

A commonly used method for pharmacovigilance is the sequential likelihood ratio
test or the sequential probability ratio test (SPRT).

Wald’s SPRT tests a null hypothesis Ho W f D f0 versus a simple alternative
hypothesisHaWf Df1, based on independent observations x1; : : : ; xi ; : : : that have
a common density function f . As the i th observation arrives, the log-likelihood
ratio statistic �i is calculated as

�i D ln
L.xjHa/

L .xjHo/
D ln

Qi
jD1 f1 .xi /Qi
jD1 f0 .xi /

: (8.34)

The stopping rule is as follows:

1. If �i � A, stop monitoring and acceptHo.
2. If A < �i < B , continue monitoring.
3. If �i � B , stop monitoring and acceptHa .

Here A and B are constants and 0 < A < B .
A and B are chosen to maintain the prespecified type-I and type-II error rates.

Exact values of A and B are difficult to calculate analytically, but Wald showed an

approximation to the thresholds, A � ln
�

ˇ

1�˛
	

, B � ln
�
1�ˇ
˛

	
, where ˛ and ˇ are

the type-I and type-II error rates, respectively. This approximation is based on the
assumption of negligible excess of the likelihood ratio over the threshold when the
test ends, which is often true in practice.

Suppose the random variable Ct , the number of adverse events up until and
including time t , follows a Poisson distribution with its mean being �t and r�t
for some r > 1 under the null and the alternative hypotheses, respectively, where
�t is a known function reflecting the baseline risk of adverse events adjusted for
the time a person exposed and some confounders like age or sex. The relative risk
(RR) of the drug equals 1 under the null hypothesis (Ho) and equals r > 1 under
the alternative hypothesis (Ha). The test statistic �t for the sequential probability
ratio test becomes

�t � ln
P .Ct D ct jHa/

P .Ct D ct jHo/
D ln

exp .�r�t / .r�t/ct =ct Š
exp .��t/ .�t /ct =ct Š D .1 � r/ �t C ct ln r;

(8.35)
where ct is a realization of Ct .
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8.2.3.1 Maximum SPRT

Because the performance of Wald’s SPRT depends heavily on the prespecified
value r for the alternative hypothesis (Abt 1998), an inappropriate specification
of r for the alternative hypothesis may fail to detect the excess risk or delay
the detection. To overcome the difficulty of correctly specifying a single-point
alternative hypothesis, Kulldorff (2006) generalized Wald’s SPRT by proposing the
maximum SPRT (MaxSPRT) for a null hypothesisHo W f D f0 versus a composite
alternative hypothesisHa W f D f1 using the likelihood ratio:

�i D ln

sup
�2�o[�a

L .x1; : : : ; xi j�/
sup
�2�o

L .x1; : : : ; xi j�/ D ln

Qi
jD1 f1

�
Xi j O�

	

Qi
jD1 f0

�
Xi j O�0

	 , (8.36)

where O� D arg sup
�2�o[�a

L .x1; : : : ; xi j�/ and O�0 D arg sup
�2�o

L .x1; : : : ; xi j�/.
Under the Poisson distribution, the test statistic for the MaxSPRT is given by

�t D ln

0

@
max
r>1

P .Ct D ct jRR D r/

P .Ct D ct jRR D 1/

1

A

D ln max
r>1

exp .�r�t / .r�t/ct =ct Š
exp .��t/ .�t /ct =ct Š : (8.37)

Because the MLE of r is ct=�t , we can write the log-likelihood ratio for the
MaxSPRT as

�t D �t � ct C ct ln
ct

�t
; (8.38)

where the indicator function I .�/ was defined previously. The critical values for the
stopping rules are provided by Li and Kulldorff (2010).

8.2.3.2 Conditional MaxSPRT

It is known that for a homogeneous Poisson process with rate � > 0, Pk , the
cumulative person time from the beginning of the surveillance until the kth event,
is a sum of k i.i.d. random variables from the exponential distribution with rate
�v and thus follows an Erlang distribution, which is a special case of the gamma
distribution with shape k and scale 1=�v. According to Li and Kulldorff (2010), V ,
the total person time in the historical data, is in general greater than the cumulative
person time for the observed events c, as it is extremely rare that the historical data
ends right after the last observed event. However, for simplicity, we assume they do.
Thus, as a sum of the i.i.d. random variables c from the exponential distribution with
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rate �h, V is also gamma-distributed with shape c and scale 1=�h. Right after the
kth adverse event in the surveillance population, the joint likelihood of the historical
data and the current data Lk is

Lk D �ch exp .��hV / �kv exp .��vPk/ , (8.39)

and the test statistic is defined as

�k D ln
max
�v��h

P .Lk j�h; �v/

max
�0
P .Lkj�h D �v D �0/

D ln
max
�v��h

e��hV��vPk�ch�
k
v

max
�vD�hD�0

e��0.VCPk/�c0�k0

D I

�
k

c
>
Pk

V

�

c ln

c .1C Pk=V /

c C k
C k ln

k .1C Pk=V /

.Pk=V / .c C k/

�
. (8.40)

Conditioning on the number of adverse events, the only random part in �k is
the ratio of the person-times Pk=V . Furthermore, under the null hypothesis, the
distribution of the ratio Pk=V does not depend on the value of �0 simply because
Pk=V D �0Pk=�0V and the distributions of �0Pk and �0V depend on c and
k only. Therefore, under H0, the distribution of �k and the joint distribution of
(�1;�2; : : : ; �k) for any k � 1 depend on c and k only. The critical values for
decision-making are provided by the authors (Li and Kulldorff 2010).

8.2.4 Disproportional Analysis

Pharmacovigilance spontaneous reporting systems are primarily devoted to early de-
tection of the adverse reactions of marketed drugs. They maintain large spontaneous
reporting databases (SRDs) for which several automatic signaling methods have
been developed (Ahmed et al. 2010). The commonly used public safety databases
include FDA Spontaneous Report System (SRS) (postmarketing surveillance of
all drugs since 1969), FDA Adverse Event Reporting System (AERS), FDA/CDC
Vaccine Adverse Events (VAERS), World Health Organization Collects Similar
Data across Countries, and others.

The methods for disproportional analysis of drug safety are often considered as
data mining approaches since they are applied to these larger databases. The most
commonly used methods are the proportional reporting ratio (PRR), the reporting
odds ratio (ROR), the Bayesian confidence propagation neural network (BCPNN)
and the multi-gamma Poisson shrinker (MGPS or GPS). Currently, none of these
methods is defined as a reference method. The BCPNN method is used for the WHO
safety database, the MGPS method for the AERS, and the ROR and PRR methods
for the European Medicines Agency EudraVigilance database (Ahmed et al. 2010).
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Table 8.1 Drug-event pairs Target event Other events All events

Target drug a b ntd

Other drugs c d nod

All drugs nte noe n

8.2.4.1 Nonparametric Method

A basic disproportional analysis method is a nonparametric one based on a two-
way table for any particular drug and event, as shown in Table 8.1, where the count
numbers of drug-event pairs are generated by the reports in a spontaneous reporting
database. This is not the same as the number of reports because each report could
generate multiple drug-event pairs.

The degree of reporting association is measured by the statistic

� D a

E .a/
; (8.41)

where the reporting ratio,E.a/, denotes the expected number of reports mentioning
the target drug and target event. A value of � larger than 1 indicates a drug-
event reporting association. If the value of � is large, the drug will be “flagged
for follow-up.”

Different definitions of E.a/ lead to different estimators of �, e.g.,

reporting ratio: E.a/ D ntdnte
n

,
proportional reporting ratio: E.a/ D ntdc

nod
,

odds ratio: E.a/ D bc
d

.

8.2.4.2 GPS Method

The parameter � can also come from the model. Two commonly used methods are
the empirical Bayes method (DuMouchel 1999), employed by the FDA, and the
fully Bayesian method (Bate et al. 1998), used by the World Health Organization
(WHO). In the empirical Bayes approach models, parameters for the posterior
distributions are determined by the MLE. The empirical Bayes (FDA) and Bayes
(WHO) approaches flag a drug-event pair for follow-up if the lower 5% quantile of
� (the posterior distribution of �) exceeds a critical value of �0. The choice of values
for �0 is somewhat arbitrary and there is no consensus in the pharmacovigilance
community as to the appropriate critical value to use (Gould 2007).

Both empirical Bayes and Bayes methods utilize a mixture of gamma distribu-
tions accounting for multiplicity (see Sect. 10.1.5). The method can be described as
follows.

Assume mij, the number of spontaneous reports mentioning the drug-event pair
associated with the i th drug and the j th event, is a realization from a Poisson
distribution with parameter �ij D �ijEij and p.d.f.
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f
�
mijI�ij

� D �
mij

ij e
��ij

ni Š
, (8.42)

where Eij, assumed known, denotes the number of reports that would be expected
to mention the i th drug-j th event pair.

The mixture model has p.d.f.

gmix
�
�ijI!

� D !g
�
�ijI a0; b0

�C .1 � !/g ��ijI a1; b1
�

, (8.43)

where 0 � ! � 1 is the weight; g
�
�ijI a0; b0

�
and g

�
�ijI a1; b1

�
. Here g .�I �I �/ is

the gamma distribution given by

g .�I a; b/ D b .b�/a�1 exp .�b�/ =	 .a/ . (8.44)

Integrating (8.43) out with respect to �ij and using (8.42), we obtain

f
�
mij
� D !f0

�
mij
�C .1 � !/ f

1

�
mij
�

, (8.45)

where

fk
�
mij
� D 1

mijB
�
ak;mij

�
�

bk

bk C Eij

�ak � Eij

bk C Eij

�mij

; k D 0; 1. (8.46)

Estimates of !, a0, b0, a1, and b1 are obtained by maximizing the likelihood,

max
!;a0;b0;a1;b1

Y

i;j

f
�
mij
�

. (8.47)

The empirical Bayes approach given by the following posterior density of �ij is
still a mixture of the gamma density:

f
�
mij
� D !�

ijg
�
�ijI a0 Cmij; b0 C Eij

�C �
1 � !�

ij

�
g
�
�ijI a1 Cmij; b1 C Eij

�
,

(8.48)

where

!�
ij D



1C 1 � !

!

f1 .ni /

f0 .ni /

��1
. (8.49)

The initial strategy of DuMouchel was to rank the cells according to the posterior
expectation of log2(�ij); later he ranked them according to the 5% quantile Q0:05

of the posterior distribution of �ij, and a threshold of 2 for this quantile was
recommended by Szarfman et al. (2002) on the basis of several retrospective studies.
The GPS software is available online at ftp://ftp.research.att.com/dist/gps/.

Gould (2007) discussed the posterior based on the Bayes approach. The result
turns out to be the same formulation as (8.49) but with a different weight !�.
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8.2.4.3 FPR and FNR

Ahmed et al. (2010) proposed the Bayesian false positive rate and false negative
rate, respectively denoted by FDR and FNR. The quantity dij 2 f0; 1g represents the
decision to generate a signal (dij D 1) or not (dij D 0). Define by vij the posterior
probability for the alternative hypothesis to be true,

FDR D
P

ij

�
1 � vij

�
dijP

ij dij
and FNR D

P
ij

�
1 � dij

�
vij

ncell �P
ij dij

;

where ncell is the number of cells and vij is the posterior probability for the alternative
hypothesis to be true, which can be calculated based on GPS or BNPNN.

8.2.5 Group Sequential Method

In Chap. 7, we discussed the cumulative meta-analysis using (7.62), which is derived
from the Law of the Iterated Logarithm. This method can be used directly for
sequential safety monitoring. Here we discuss a group sequential method based
on a combination of stagewise p-values. From Chap. 4, we know that when pi 	
U .0; 1/, the sum of stagewisep-values Tk D Pk

iD1 pi has p.d.f. (Sadooghi-Alvandi
and Nematollahi 2009)

fk.x/ D

8
<̂

:̂

1

.k � 1/Š

Pk
iD0.�1/i

�
k
i

�
.x � i/k�1 I .x � i/ for 0 � x � k,

0; otherwise,

(8.50)

where the indicator function I .x � i/ is defined as 1 if x � i > 0 and 0 otherwise.
As k ! 1, Tk approaches the normal distribution N .k=2; k=12/.

Therefore, for the statistic, the average of stagewise p-values (with large k) is

Tk D 1

k

kX

iD1
pi 	 N

�
0:5;

1

12k

�
underHo. (8.51)

Using the error spending function ˛� .k/ D 1
2
kc for the stopping rules, the

constant c can be easily determined for large k.
Note that this method is valid as long as pi (i D 1; : : : ; k) is stochastically larger

than uniform pi . Therefore, it is valid even when the variability of the interstudy 

is large.

8.2.6 Data Mining Approach

In postmarketing pharmacovigilance, a primary task is to assign an adverse event
to its treatment cause or treatments in the case of interaction or to classify
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subjects into treatments based on their adverse events. To this end, Southworth and
O’Connell (2009) quantify the ability of all the adverse events to classify subjects
by treatment. In this setting, the response variable is the treatment classification
and the explanatory variables are the adverse events experienced by each subject.
The authors a variety of tree ensemble methods, including bagging (Breiman 1996),
boosting (Friedman 2001), random forests (Breiman 2001), and boosted randomized
trees, to the model formulation. These methods fit a sequence of trees through
bootstrapping and give all adverse events a chance to classify subjects into treatment
groups. In contrast, a single tree produced by a greedy algorithm may get stuck in a
local optimum as mentioned earlier. Southworth and O’Connell use observations
left out of the bootstrap sample for each tree (out-of-bag patients/observations)
to estimate the prediction accuracy of the model and relative importance of the
adverse events in classifying the treatment. They use both the permutation and split
improvement measures of variable importance in the analysis. In the random forests,
the number of variables considered at each split is set to be log2.nae/C1, where nae

is the number of adverse event terms in the analysis. The bagging method allows all
interactions between adverse events available within individual trees in the forest.
Examples are provided by the authors (Southworth and O’Connell 2009).

8.3 Challenges

The challenges of data mining in the biological and medical fields come from
multiple sources. Large-scale databases from genetic mapping, microarray studies,
functional genomics, protein-protein and protein-ligand interactions, structural biol-
ogy, and open source journal articles are growing at rapid rates. The challenge in sys-
tems biology is to connect all the dots from the diverse molecular, cellular, organism,
and environmental data sources to deduce how subsystems and whole organisms
work using dimension reduction technologies. We need to decipher the language of
life – the language of the genome, protein folding, and biology pathways.

Establishment of the structure activity relationship (SAR) in drug development
is a challenging task. Over ten million nonredundant chemical structures cover the
actual chemical space, out of which only about 1,000 are currently approved as
drugs. The complexity of the 3D structures of proteins and ligands, and their relative
locations that determine the interactions, raise numerous computational challenges
in collecting, indexing, searching, and mining these vast data sources. Mining the
diverse data sources from private and public sectors is a crucial component in
piecing together the bigger picture.

Proteomics, the large-scale study of proteins, particularly their structures and
functions, becomes very attractive to biological scientists and bioinformaticians.
The proteome is the complete set of proteins in the cell under a set of conditions.
It is a dynamic and complex system that is characterized in terms of structure,
protein expression level, localization (subcellular location), post-translational mod-
ifications, and protein interactions.



228 8 Data Mining and Signal Detection

Functional annotation of the proteome comprehensively categorizes the
information to help address questions such as: Why is a given protein produced
(biological process)? What kind of molecule is it (molecular function)? Where is it
found (cellular localization)? However, during this massive discovery process using
data mining, reducing the false discovery rate (FDR) becomes critically important.
FDR is usually high because of multiple-testing procedures as discussed in Chap. 1.
The same occurs in signal detection due to the large number of repeated analyses.

Another important aspect in data mining is the dimensionality reduction. Com-
putational limitation requires a large reduction in parameter space. However, a
large reduction may not be possible because evolution has made man a very robust
creature with large redundancy so that when one part fails other parts will take over
the same functional role.

Regarding the accessibility of data, there are privacy issues. Data from internal
data warehouses in different companies usually are not shared. Data from different
health institutes cannot be easily shared either. These medical data can be multime-
dia, which will raise another layer of challenges.

Text mining (e.g., in medical records) is an important aspect in modern life
sciences. Text mining involves the preprocessing of document collections (text
categorization, information extraction, term and sentence extraction), the storage
of the intermediate representations, the techniques to analyze these intermediate
representations, and visualization of the results. There are several challenges in
such text mining, including entity extraction and autonomous text analysis. Most
text analysis systems rely on accurate extraction of entities and relations from the
documents. However, the accuracy of the entity extraction systems in some of the
domains reaches only 70–80% and creates a noise level that prohibits the adoption
of text mining systems by a wider audience. Therefore, it is desirable to have
a domain-independent language with high accuracy. Text analysis systems today
are pretty much user-guided, and they enable users to view various aspects of the
corpus. There is still a lot to be done before we have a text analysis system that is
totally autonomous and will analyze huge corpora and come up with truly interesting
findings that are not captured by any single document in the corpus and were not
known before.

Similar to the classic Turing test, the AI agents in text mining systems will
be able to pass standard reading comprehension tests such as the SAT, GRE, and
GMAT, and will understand medical records (free text field). The systems can utilize
the Web when answering the test questions. We should emphasize interactive text
mining rather than the classic static text mining approach. These interactive data
mining systems will be able to work with physicians or other endusers. These
AI data mining agents can learn from each other. We expect these AI agents will
eventually not only understand existing knowledge but also to discover and create
new knowledge.

In pharmacovigilance signal detection or data mining, there are many challenges.
We try to determine the adverse event rate, but without a denominator or the number
of patients who took the drug. It is not reliable to use sales or prescription data
for determining the denominator. For this reason, we have constructed internal
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denominators from an independence model. However, this approach also faces
challenges; i.e., data reliability because of substantial under-reporting to the FDA,
uncertainty about the cause of a reported reaction, and different reporting rates of
adverse events by drug.

8.4 Exercises

8.1. Construct a link-analysis model for a practical problem in a biological or
medical field, and perform the analysis.

8.2. Assume y D xCexp.2 sin.x//C", where the random error " has the standard
normal distribution. Perform a comparative analysis between the nearest-neighbors
method, kernel method, and support vector machine.

8.3. Prove the constants ci given by (8.12) will minimize the error given by (8.11).

8.4. Following the idea of Southworth and O’Connell (2009), perform data mining
to identify the treatment code for blinded data from a clinical trial.

8.5. In Sect. 8.1.8, for general weights !0 and !, what is the corresponding
expression �.x/ in (8.27)? Study the effect of !0 and ! on the variance of O� .x/.
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Chapter 9
Monte Carlo Simulation

9.1 Random Number Generation

Monte Carlo simulation is the technique to mimic a dynamic system or process
using a computer program. Computer simulations, as an efficient and effective
research tool, have been used virtually everywhere, including in biostatistics,
engineering, finance, and other areas. To perform simulations, we often need to
draw random samples from a certain probability distribution. Typically, the simplest
and most important random sampling procedure is sampling from the uniform
distribution over .0; 1/, denoted by U .0; 1/. The computer-generated “random”
number is not truly random because the sequence of numbers is determined by
the so-called seed, an initial number. Random variates from other distributions
can often be obtained by applying a transformation to uniform variates. There are
usually several algorithms available to generate random numbers from a particular
distribution. The algorithms differ in speed, accuracy, and the computer memory
required. Many software packages have implemented various algorithms to generate
random numbers with different probability distributions. Here we introduce a few
commonly used algorithms.

9.1.1 Inverse c.d.f Method

The inverse c.d.f. (cumulative distribution function) method, if available, is a direct
method of generating a sample with a given distribution.

Theorem 9.1. LetfF .z/ ; a � z � bg denote a distribution with inverse distribution

F �1 .u/ D inf fz 2 Œa; b� W F .z/ � u; 0 � u � 1g . (9.1)

Let U denote a random variable from the uniform distribution U .0; 1/. Then
Z D F �1 .U / has the c.d.f. F .
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Algorithm 9.1 Inverse c.d.f. Method

Objective: generate Z from fF .z/ ; a � z � bg using the inverse c.d.f. method.
Generate U from U .0; 1/

Z WD F�1 .U /

Return Z
�

The proof is straightforward because Pr .Z � z/D Pr
�
F�1 .U / � z

�D Pr
ŒU � F .z/� D F .z/. The algorithm for implementing the inverse c.d.f. method is
simple (Algorithm 9.1).

The inverse c.d.f. relationship exists between any two continuous (nonsingular)
random variables. If X is a continuous random variable with c.d.f. F and Y is a
continuous random variable with c.d.f. G, then X D F �1.G.Y // over the ranges
of positive support. To use this relationship is actually to match percentile points of
one distribution, F , with those of another distribution, G.

Although the inverse method is simple, the closed form of F�1 is not always
available. When F does not exist in a closed form, the inverse c.d.f. method can be
applied by solving equation F.x/ � u D 0 numerically.

The inverse c.d.f. method also applies to discrete distributions. Suppose the
discrete random variable X has mass points of m1 < m2 < m3 < : : :with
associated probabilities of p1; p2; p3; : : : ; and the distribution function

F.x/ D
X

mi�x
pi . (9.2)

To use the inverse c.d.f. method, we generate a realization u of the uniform
random variableU , then deliver the realization of the target distribution as x, where
x satisfies the relationship

F.x ��x/ < u � F.x/, (9.3)

where�x > 0 is a small increment of x determining the precision of the histogram.

9.1.2 Acceptance-Rejection Methods

The acceptance-rejection method is an elegant method for random number gen-
eration. For generating realizations of a random variable X with p.d.f. f .x/, the
acceptance-rejection method generates random numbers by using realizations of
another random variable, Y , with a simpler distribution, g. The method is based on
the following theorem (Fishman 1996, p. 171).

Theorem 9.2. (Von Neuman 1951) Let ff .z/ ; a � z � bg denote a p.d.f. with
factorization

f .z/ D cg .z/ h .z/ , (9.4)

where h .z/ � 0;
R b
a
h .z/ d z D 1; c D sup

z
Œf .z/ =h .z/�, and 0 � g .z/ � 1.
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Algorithm 9.2 Acceptance-Rejection Method

Objective: Generate a random number from distribution g.
rejection WDTrue
While rejection:

Generate y from p.d.f. g
Generate u from U.0; 1/

If u < f.y/=cg.y/; Then rejection WD False
Endwhile
Return y
�

Let Z denote a random variable with p.d.f. fh .z/g and let U be the standard
uniform distribution U .0; 1/. If U � g .Z/, then Z has the p.d.f. ff .z/g.

The algorithm with acceptance-rejection method is presented in Algorithm 9.2.

9.1.3 Markov Chain Monte Carlo

A Markov chain fXng with a countable state space S and transition probability
matrixP � �

pij
�

is said to be irreducible if for any two states i and j the probability
of the Markov chain visiting j starting from i is positive, i.e., for some n � 1,
p
.n/
ij � P .Xn D j jX0 D i/ > 0.

Theorem 9.3. (Law of Large Numbers for Markov chains) Let fXngn�0 be an
irreducible Markov chain with countable states, a transition probability matrix P ,
and a stationary probability distribution � � .�i W i 2 S/. Then, for any bounded
function h: S ! R and for any initial distribution of X0

1

n

n�1X

iD0
h .Xi / !

X

j

h .j / �j (9.5)

in probability as n ! 1.

A similar Law of Large Numbers holds when the state space S is not countable.
Monte Carlo simulations based on this theorem are called MCMC. For example,

to calculate
P

j h .j / �j , we can use an irreducible Markov chain fXi g with state
space S and stationary distribution � . Let the stochastic process run sufficiently
long. Then the integral of h with respect to � reduces to:

X

j

h .j / �j D 1

n

n�1X

iD0
h .Xi/ . (9.6)
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A discrete-time Markov chain is the basis for several schemes for generating
random numbers, either continuous or discrete, multivariate or univariate. The
differences in the various methods using Markov processes come from differences
in the transition kernel. To generate variate from an arbitrary distribution � D
.�i > 0; i 2 L / on a finite state space L D f0; 1; : : : ; v � 1g, we use the
Metropolis-Hastings method (Chang 2010).

9.2 Clinical Trial Simulation

9.2.1 Adaptive Trial Simulation

Clinical trial simulation (CTS) is a powerful tool for supporting strategic decision-
making in clinical trials. CTS is very intuitive, easy to implement with minimal
cost, and can be done in a short time. The utilities of CTS include (1) sensitivity
analysis and risk assessment, (2) estimation of the probability of success (power),
(3) design evaluation and optimization, (4) cost, time, and risk reduction, (5) clinical
development program evaluation and prioritization, (6) prediction of long-term
benefits using short-term outcomes, (7) validation of trial design and statistical
methods, and (8) streamlining communication among different parties. Within
regulatory bodies, CTS has been frequently used for assessing the robustness of
results, validating statistical methodology, and predicting long-term benefits of
accelerated approvals.

In classical designs, CTS not only can be used to simulate the power of a
hypothesis test for a complex trial, but also allows us to calculate the probability
of success. CTS plays an important role in adaptive design for the following
reasons: First, statistical theory for adaptive designs is often complicated under
some relatively strong assumptions, and CTS is useful in modeling very complicated
situations not only to control the type-I error but also to calculate the power
and generate many other important operating characteristics such as the expected
sample size, conditional power, and unbiased estimates. Second, CTS can be used to
evaluate the robustness of the adaptive design against protocol deviations. Moreover,
CTS can be used as a tool to monitor trials, predict outcomes, identify potential
problems, and provide early remedies.

As discussed in Chap. 4, there are four major components of adaptive designs
in the frequentist paradigm: (1) type-I error rate or ˛-control, determination of
stopping boundaries, (2) calculation of power or sample size and probability of
success, (3) in trial monitoring: calculation of the conditional power or futility index,
and (4) in analysis after the completion of the trial, calculation of adjusted p-values,
unbiased point estimates, and confidence intervals.
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9.2.1.1 Sample Size Reestimation

A sample size reestimation (SSR) design refers to an adaptive design that allows for
sample size reestimation based on the review of interim analysis results.

For a two-stage SSR of a two-group trial, the sample size per group for the second
stage can be calculated based on the target conditional power cP (Chap. 4),

8
ˆ̂̂
<

ˆ̂̂
:

n2 D 2 O�2
Oı2
�
z1�˛2Cp1 � z1�cP

�2
; for MSP,

n2 D 2 O�2
Oı2
�
z1�˛2=p1 � z1�cP

�2
; for MPP,

n2 D 2 O�2
Oı2
�

z1�˛2
w2

� w1
w2

z1�p1 � z1�cP
�2
; for MINP,

(9.7)

where, for the purpose of calculation, Oı and O� are taken to be the observed treatment
effect and standard deviation at stage 1.

An algorithm for a two-stage design with SSR based on MSP (see Chap. 4) is
presented in Algorithm 9.3.

Algorithm 9.3 Two-Stage Sample Size Reestimation with MSP

Objective: Return power and PE for two-stage adaptive design.
Input treatment difference ı and common � , stopping boundaries ˛1; ˛2; ˇ1, n1; n2, target
conditional power for SSR, the maximum sample size nmax, clinical meaningful and commercial
viable ımin, target conditional power cP , and the number of simulation runs nRuns.
power WD 0

PE WD 0

For iRun WD 1 To nRuns
T WD 0

Generate u from N .0; 1/

z1 D ı
p
n1=2=� C u

p1 D 1� ˚ .z1/
If p1 > ˇ1 Then Exitfor
If p1 � ˛1 Then power WD power+1/nRuns
If p1 � ˛1 And Oı1 � ımin Then PE WD PE+1/nRuns
If ˛1 < p1 � ˇ1 Then

n2 WD 2�2

Oı21

�
z1�˛2Cp1 � z1�cP

�2

Generate u from N .0; 1/

z2 D ı
p
n2=2=� C u

p2 D 1� ˚ .z2/
T WD p1 C p2
If T � ˛2 Then power WD power+1/nRuns
Oı D .Oı1n1 C Oı1n2/=.n1 C n2/

If T � ˛2 And Oı � ımin Then PE WD PE+1/nRuns
Endif

Endfor
Return fpower, PEg
�
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9.2.2 Dynamic Drug Supply

The conventional way for drug supply in a clinical trial separates the supply chains
for each stratum or treatment group. In this approach, an initial drug shipment
would be made for each stratum. Resupply shipments would then follow, based on
fixed trigger levels for each stratum. However, keeping the supply chains separate
requires a high initial outlay and can result in a lot of waste if a site does not enroll
as anticipated. This conventional drug supply can be particularly problematic for
adaptive trials.

Hamilton and Ho (2004) described a dynamic drug supply method as follows:
To randomize a patient, a site would call the IVRS and enter some basic patient
identifiers such as ID number and date of birth, along with the stratum to which the
patient belonged. The system would then access the randomization and treatment
kit lists and read back to site personnel the blinded kit number assigned to that
patient. A fax confirming patient information and the assigned kit number would
then be automatically generated by the system and sent to the site.

Their logistic steps for the dynamic supply are:

1. At site initiation, ship enough drug to cover the first y patients enrolling into the
study, regardless of strata.

2. After each patient is randomized, recalculate the patient coverage based on the
randomization list and current levels of drug supply at the site.

3. If the patient coverage falls below a lower resupply threshold x, ship enough drug
to replenish supply to an upper resupply threshold y. That is, ship enough drug
so that the next y patients can be enrolled into the study, regardless of strata.

The implementation aspect of the dynamic supply can be further elaborated as
follows: In the original study, the dynamic drug supply scheme was implemented
utilizing a telephone-based interactive voice response system. The system was
designed in such a way that when a site completed regulatory and contractual
requirements, sponsor personnel could go to a secure administrative Web page and
activate that site. Upon activation, the system would examine the randomization
list for that site and calculate the amount of drug needed to cover the first y
patients, regardless of strata. Notifications via email and fax would then be sent
to the central drug repository indicating which drug kits to ship and the shipment
number to appear on the waybill. When the site received the drug shipment, they
were instructed to register the shipment number with the IVRS, making those drug
kits available to be used to randomize patients at the site.

The steps to randomize a patient via IVRS are similar to the conversional ap-
proach. After each patient was successfully randomized, the IVRS would recalculate
patient coverage at the site. If patient coverage dropped below x patients, another
calculation was made by the IVRS to determine which kit types were necessary to
bring the coverage back up to cover the next y patients. An automatic notification
would then be sent to the central drug repository, indicating which drug kits to be
shipped to the site.
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Fig. 9.1 Sketch of adaptive medication supply system

9.2.2.1 Adaptive Drug Supply

In adaptive drug supply (Chang 2010) (Fig. 9.1), recommendations are to use the
prerandomization based on all possible scenarios and associated probabilities for
the next n patients at each site. The size of n can typically be 2–10, but depends
on the time and cost required for the drug shipment and available medication
packaging (e.g., placebo, 1, 2, 3, . . . , units). With all these random variables, we
can do the dynamic shipment to ensure a probability (p) of covering the drug
supply. The “trigger/resupply” or “floor/ceiling” system of inventory control with
joint replenishment can be used with IVRS at centers and depots.

Algorithms 9.4a and b provide a way to simulate adaptive drug supply, wheremi

is the number of patients recruited during the time interval for the drug shipment
from the warehouse to the i th clinic site, which is equal to the time required for the
drug shipment to the i th site multiplied by the patient accrual rate at the i th site. p
is the target probability of having sufficient drug at the site. The drug amount Dc

will provide a probability (p) of covering the drug supply needed for the site; Dc is
also used as the trigger level for resupply in the algorithm.
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Algorithm 9.4a Adaptive Drug Supply

Objective: Return the amount of drug required for a trial.
Input p and fmig for sites.
mDrug WD P

i ni0fdig WD fni0g
When each patient is enrolled at site i

Dc WD DrugCoverage(p)
Calculate the drug inventory di at the site
If di < Dc Then mDrugWD mDrug + Dc

Return mDrug
Endwhen

Algorithm 9.4b Function DrugCoverage (p)

Objective: Function used in Algorithm 9.4a.
For i WD 1 To 10000

Di WD 0

For j WD 1 Tomi

Randomize patient j based on randomization rule.
Determine the drug package x required for patient j .
Di WD Di C x

Endfor
Endfor
Sort Di in ascending order

Return D10000�pro

9.2.3 Bootstrapping Methods

Bootstrapping is a resampling method that estimates the distribution of an estimator
by sampling with replacement from the original sample. Bootstrapping is useful
when the analytical form of distribution is not available or unknown. Bootstrapping
is often used for deriving robust estimates of standard errors and confidence intervals
of a population parameter like a mean, median, proportion, odds ratio, correlation
coefficient, or regression coefficient.

Suppose x1; x2; : : : ; xn is i.i.d. from probability distribution F . The empirical
distribution function OF is defined to be the discrete distribution that put 1=n on
each value xi .i D 1; : : : ; n/,

OPr fAg D # fxi 2 Ag
n

. (9.8)

9.2.3.1 The Plug-in Principle

The plug-in principle is a simple method of estimating parameters from samples.
The plug-in estimate of a parameter � D t .F / is defined as (Efron and Tibshirani
1994; Chernick 2007)

O� D t
� OF
�

. (9.9)
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Algorithm 9.5 Bootstrapping Distribution of Estimator

Objective: Return bootstrapping distribution of estimator � .x1; : : : ; xn/.
Input observations fx1; : : : ; xng and nRuns.
For i WD 1 To nRuns

For j WD 1 To n
Draw k from the equal distribution Uc .n/

y
.i/
j WD xk

Endfor
O�i WD �

�
y
.i/
1 ; y

.i/
2 : : : ; y.i/m

�

Endfor
Sort

n O�1; O�2; : : : ; O�nRuns

o

Return
n O�1; O�2; : : : ; O�nRuns

o

�

In other words, we estimate the function � D t .F / of the probability distribution

F using the same function of the empirical distribution OF , O� D t
� OF
�

.

Algorithm 9.5 is an algorithm for the plug-in principle.

Having obtained the sorted
n O�1; O�2; : : : ; O�nRuns

o
, its median, quantiles, mean,

standard error, and confidence interval can be easily calculated.

9.2.3.2 Resampling Methods in Clinical Trials

Confidence intervals (CI) and hypothesis tests are common statistical analyses in
clinical trials. The following is a clinical trial example with two parallel groups of
sample size n per group. Assume the total number of responses observed is m and
the observed proportions in groups 1 and 2 are Op1 and Op2, respectively. In Algorithm
9.6, the goal is to calculate the confidence interval for the difference between the
response rates p1 and p2. The main step in the bootstrap approach is to sort the
bootstrap values for Tk D p2 � p1 (k D 1; 2;. . . ). With these sorted values Tk ,
the confidence interval and the p-value are ready to obtain. Because the CI and p-
value can be calculated based on the assumption of the null hypothesis condition,
meaning there is no treatment effect, the response data can be pooled and the
treatment code can be scrambled. In Algorithm 9.6, the pooled data represented by
fx1; x2; : : : ; x2ng, for each simulation run, the treatment code is randomly assigned
for each observation xi and the response rates, p1 and p2, are calculated for the two
groups, from which the test statistic Tk WD p2 �p1 is calculated. These Tks are then
sorted to calculate the confidence interval for the rate difference. The histogram of
Tk is the empirical distribution of the test statistic Tk under the null hypothesis; by
comparing this distribution with the observed value OT D Op2 � Op1, the p-value can
be calculated.
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Algorithm 9.6 Bootstrapping CI for Rate Difference

Objective: Return a bootstrap 100.1� ˛/% CI for Op2� Op1.
Input n, m, Op1, Op2, and binary responses fx1; x2; : : : ; x2ng.
For k WD 1 To nRuns

p1 WD 0

p2 WD 0

For i WD 1 To 2n
Generate a random sample u from Uc .n/

If u D 1 Then p1 WD p1 C xi=n

If u D 2 Then p2 WD p2 C xi=n

Endfor
Tk WD p2 � p1

Endfor
Sort fT1; T2; : : : ; TnRunsg in ascending order
CI WD ˚

Tb˛�nRunsc; Td.1�˛/�nRunse

�

Return CI and fT1; T2; : : : ; TnRunsg
�

9.3 Molecular Design and Simulation

9.3.1 The Landscape of Molecular Design

As mentioned earlier, Pharmaceutical R & D expense has increased dramatically
over the past 15 years, while the number of NDAs approved has been relatively
flat. Innovative and cost-effective drug discovery approaches become inevitable for
any pharmaceutical company to stay competive. Molecular design and modeling is
a promising new field, in which computer simulations and a chemical compound
database are used to screen, model, and design NMEs in order to reduce the
discovery cost and accelerate the discovery process. The reasons why this in-
silico method can help in this aspect are because (1) the number of compounds
that can be examined by a human mind is limited compared with the capacity
throughput of virtual, computer-based storage, modeling, and virtual screening
systems, and (2) compound supply is also limited. Many different companies use
blind screening for the same compound libraries even after many of the compounds
have been proven structurally unfavorable, which often turns out to be a waste of
time and resources. Computer-based design of activity enriched screening libraries
can be of great value here, and (3) the traditional biochemical screening assays
can be very expensive, especially for cell-based systems or when elaborate protein
purification schemes are required. Costs have been estimated to fall somewhere
between $0.02 and $10 per well. When considering a screening library containing
one million compounds with multiple measurements, the sum adds up (Schneider
and Baringhaus 2008).

There are approximately 8,000 drug targets, of which 5,000 could be “hit”
by small druglike molecules. Only about 3,000 targets out of the 5,000 are
pharmacological interest, and only 200–500 targets are addressed by marketed
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drugs – there are many more targets to be explored in the future. It is estimated
that out of the 20,000–25,000 human genes supposed to code for about 3,000
druggable targets, only a subset of the pharmacological space (about 800 proteins)
has currently been investigated by the pharmaceutical industry (Paolini et al. 2006).
Over ten million nonredundant chemical structures cover the actual chemical space,
out of which only about 1,000 are currently approved as drugs. Chemogenomics is
the new interdisciplinary field that attempts to fully match target and ligand space,
and ultimately identify all ligands of all targets. The 8,000 drug targets can be
further categorized into seven different classes: proteases (19%), kinases (12%),
other enzymes (17%), G-protein coupled receptors (GPCRs, 16%), ion channel
(13%), nuclear receptor (4%), and other targets (19%).

The steps in the standard drug lead approach include (1) identifying the target
(e.g., enzyme, receptor, ion channel, transporter), (2) determining the DNA and/or
protein sequence, (3) elucidating the structures and functions of proteins, (4)
proving the therapeutic concept in animals (“knock-outs”), (5) developing an assay
for HTS, (6) mass screening, and (7) selecting lead structures.

A goal of Monte Carlo molecular design is to identify novel substances that
exhibit desired properties. An example would be a particular biological activity
profile including a selective binding to a single target or desired activity modulation
of multiple targets simultaneously. This design certainly must include proper
physicochemical and ADMET (absorption, distribution, metabolism, excretion, and
toxicity) properties of the novel compounds (Schneider and Baringhaus 2008).

9.3.2 The Drug-Likeness Concept

The term “druglike” describes various empirically found structural characteristics
of molecular agents that are associated with pharmacological activities. It is not
strictly defined but provides a general concept of what makes a drug a drug. Drug-
likeness may be considered as the overall likelihood that a molecular agent can
be turned into a drug. Therefore, it is a measure of complex physicochemical and
structural features of the compound that can be used to guide the rational design of
lead structures that can be further optimized to become a drug.

The well-known QSAR (quantitative structure-activity relationship) Lipinski’s
rule-of-five is often used in rational drug design to reduce the risk of costly late-stage
preclinical and clinical failures. The guidelines predict that poor passive absorption
or permeation of an orally administered compound is more likely if the compound
meets at least two of the following criteria (Lipinski et al. 1997):

1. molecular weight greater than 500 Da;
2. high lipophilicity (expressed as clogP > 5);
3. more than five hydrogen-bond donors, expressed as the sum of OHs and NHs;
4. more than ten hydrogen-bond acceptors, expressed as the sum of Os and Ns;
5. containing more than five rotatable bonds to limit its conformational freedom.
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Fig. 9.2 Weight distribution of druglike molecules

These guidelines were developed based on an empirical pharmaceutical database.
For example, Fig. 9.2 is the distribution of molecular weights of 4,500 selected
druglike molecules containing marketed drugs and drug candidates. We can see that
most druglike molecules weight between 300 and 600 Da.

9.3.2.1 Tanimoto Similarity Index

The rationale behind a similarity search is the so-called similar property principle:
structurally similar molecules are likely to have similar chemical or physiological
properties. A variety of methods are used in these searches, including 2D and 3D
shape similarity, graph theory, vector space models based on 2D fingerprints, and
machine learning methods.

Similarity searching can be achieved by comparing representations of molecules
with respect to the substructure elements they contain. A popular similarity index is
the Tanimoto (Jaccard) index defined by

TAB D nAB

nA C nB � nAB
; (9.10)

where nA is the number of bits set to 1 (indicating a certain substructure) in molecule
A, nB is the number of bits set to 1 in molecule B , and nAB is the number of set bits
common to both A and B . The possible value of TAB ranges between 0 (maximal
dissimilarity) and 1 (identical bitstrings). However, TAB D 1 implies A and B have
identical fingerprint but does not necessarily mean that the two molecules A and B
are identical.
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Ligands A and B can be viewed as fingerprint vectors, and the quantity

DAB D 1� TAB (9.11)

is called the distance in vector space. For the distance, the following triangular
inequality holds (Lipkus 1999):

jDAB �DAC � DBC � DAC CDAB: (9.12)

From (9.12) we can obtain the following bound on the Tanimoto similarity index:

TBC � 1 � jTAB � TAC j: (9.13)

This bound (9.13) has been improved by Baldi and Hirschberg (2009).

9.3.2.2 Bayesian Network for Similarity Search

In a similarity search, a Bayesian network (BN) is a simple and popular way of
doing probabilistic inference that formalizes the way to synchronize the evidence
using the Bayes rule:

P.H jE/ D P.EjH/P.H/=P.E/:
A Bayesian network is a directed acyclic graph and has the following properties:

• Nodes of the BN represent random variables and the parents of a node are those
judged to be direct causes of it.

• The roots of the network are the nodes without parents.
• The arcs represent causal relationships between these variables, and the strengths

of these casual influences are expressed by conditional probabilities.
• Let X D fx1; : : : ; xng be a set of parents of y (child node), where xi \ xj D
� .empty/ for i ¤ j and xi is a direct cause of y. The influence of X on y can
be quantified with the conditional probability P .yjX/.

9.3.3 Molecular Docking

A ligand (drug candidate) has to bind the protein closely enough in order to have a
drug effect. This requires the ligand to have the right shape and orientation to fit the
“pocket” of the protein target. Molecular docking is a computer-based technology
to find the binding orientation of a ligand (small molecule) to the protein target
in order to predict the affinity and activity of the small molecule. Hence docking
plays an important role in the rational design of drugs. The docking methods
can be geometry or energy-based. Here we only discuss the energy minimization
approach.
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9.3.3.1 Energy Minimization Approach

The design of ligands that interact with a target receptor always yields a low energy
ligand-receptor complex. The free energy (Gibbs energy) change�G for a receptor-
ligand interaction was defined by Gibbs in 1873 as

�G D �H � T�S; (9.14)

where�H and T�S are enthalpic and entropic terms, respectively, contributing to
the change in the free energy of binding�G.

This ligand conformation is not necessarily the global minimum-energy con-
formation. However, typical bioactive ligand conformations are close to global
minimum conformations in water, which might differ substantially from confor-
mations in a vacuum.

Free-energy differences between two states are almost independent of high-
energy contributions. This allows an approximation of each state by its mean
partition function, taking into account only relevant low-energy conformations
weighted by their Boltzmann probability. The energy differences between the two
states can be quantified from Monte Carlo or molecular dynamics (MD) simulations
(Schneider and Baringhaus 2008).

9.3.3.2 Monte Carlo Simulated Annealing

In solid physics, annealing is known as a thermal process for obtaining the lowest-
energy states of a solid. The processes are governed by molecular dynamics in which
the system starts at a high-temperature state with its particles being relatively free to
move around. The temperature then slowly deceases and the particles are forced to
line up to achieve the local energy minimization. In this process, the system is cooled
down slowly; otherwise, if it cools too fast, the particles will not have enough time
to line up (Liu 2001). In Monte Carlo simulated annealing, during each constant
temperature cycle, random perturbations are made to the ligand’s current orientation
and conformation. The new state is accepted if its energy is lower than the energy of
the preceding state. Otherwise, the configuration is accepted probabilistically based
upon a Boltzmann equation (Höltje et al. 2008). The probability of acceptance is
given by

Pa D exp

	
� �E

kBT



, (9.15)

where �E is the difference in energy from the previous step, T is the absolute
temperature in Kelvin, and kB is the Boltzmann constant.

From (9.15), we can see that the higher the temperature of the cycle, the higher
the probability that the new state is accepted. When the energy change �E is
negative,Pa will be larger than 1. Therefore, regardless of the direction of the energy
change in Monte Carlo simulated annealing, the acceptance probability for a state
can be written as
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Algorithm 9.7 Simulated Annealing

Objective: Docking with simulated annealing
Set up initial ligand’s coordinates.
Input temperature sequence fTi g, kB; and a small " > 0.
For i WD 1 To K

Make random perturbations to the ligand’s current orientation and
conformation.
Calculate the incremental energy �E
Generate random number u from U .0; 1/

If u < Pa D min
�
1; e

�
�E
kBTi

�
Then accept new state

If �E < " Then Exitfor
Endfor
Return current state of the ligand

�

Pa D min
�
1; e

� �E
kBT

�
. (9.16)

Keep in mind that the final state in Monte Carlo simulated annealing usually
depends on the initial placement of the ligand because the algorithm does not
explore the solution space exhaustively. The algorithm for the simulated annealing
is presented in Algorithm 9.7.

9.3.3.3 Scoring Functions

A scoring function is a measure of interaction between a ligand and a receptor; it
is a measure of the drug-likeness of a ligand. The scoring function can be the free
energy of binding given by the Gibbs-Helmholtz equation (9.14), where�G relates
to the binding constantKi through the equation

�G D �RT lnKi , (9.17)

where R is the gas constant.
The binding free-energy difference between a ligand and a reference

molecule can be accurately calculated using energy perturbation Miyamoto and
Kollman (1993). However, such a time-consuming approach is not practical for
virtual screening to compute energies for thousands of protein-ligand complexes. A
fast method is desirable. A scoring function, monotonic in �G, can be calculated
quickly and the resulting conformation rankings based on a score function will be
the same as those by the �G.

Höltje and colleagues (2008) categorize scoring functions into three groups:
empirical scoring functions, force-field-based functions, and knowledge-based
potential of mean force. Scoring functions can be used in two ways (1) during the
docking process, they serve as fitness functions in the optimal placement of the
ligand; and (2) when the docking is completed, they are used to rank each ligand of
the database for which a docking solution has been found.
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9.4 Biological Pathway Simulation

9.4.1 Biology Pathways

A biological pathway is a molecular interaction network in biological processes.
The pathways can be classified into the fundamental categories: metabolic, regula-
tory, and signal transduction. There are about 10,000 pathways, nearly 160 pathways
involving 800 reactions.

A metabolic pathway is a series of chemical reactions occurring within a cell,
catalyzed by enzymes, resulting in either the formulation of a metabolic product
to be used or stored by the cell, or the inhibition of another metabolic pathway.
Pathways are important to the maintenance of homeostasis within an organism.

A gene regulatory pathway or genetic regulatory pathway is a collection of DNA
segments in a cell that interact with each other and with other substances in the
cell, thereby governing the rates at which genes in the network are transcribed into
mRNA. In general, each mRNA molecule goes on to make a specific protein or
its particular structural properties. The protein can be an enzyme for breakdown
of a food source or toxin. By binding to the promoter region at the start of other
genes, some proteins can turn the genes on, initiating or inhibiting the production of
another protein.

A signal transduction pathway is a series of processes involving a group of
molecules in a cell that work together to control one or more cell functions, such
as cell division or cell death. Molecular signals are transmitted between cells by
the secretion of hormones and other chemical factors, which are then picked up by
different cells. After the first molecule in a pathway receives a signal, it activates
another molecule, and then another, until the last molecule in the signal chain is
activated. Abnormal activation of signaling pathways can lead to a disease such as
cancer. Drugs are being developed to block these disease pathways.

Systems biology is a newly emerging, multidisciplinary field that studies the
mechanisms underlying complex biological processes by treating these processes
as integrated systems of many interacting components (Materi and Wishart 2007).
Quantitative studies in systems biology require the utilization of computer modeling
and simulation, which has given rise to a new discipline called computational
systems biology (CSB).

The modeling and simulation can be carried out on different temporal and spatial
scales, ranging from nanometers to meters and milliseconds to days. Conventionally,
“fine grain” models simulate the events that concern short times (ms) or small (nm)
dimensions, and coarse “grain models” simulate the events that concern longer times
(s) or larger (mm or cm) dimensions.
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9.4.2 Petri Nets

A Petri net (PN) is a mathematical network model for simulating a dynamic system
such as an electronic process, traffic system, or biological pathway. Petri nets were
proposed by Carl Adam Petri in 1962 in his PhD thesis in computer science. PN has
gained an increasing attention in the biological sciences and drug development in the
past 10 years. PN research papers dominate the field in simulations of life sciences
and PNs have been adopted more and more by the pharmaceutical industry.

The basic elements in PNs include places (or stelle) to symbolize the states or
conditions of the system, transitions to symbolize the actions in the system, tokens
to symbolize the resources responsible for the changes of the system, directed arcs
to indicate the directions of token (resource) travel, and weights for the directed arcs
representing the minimum required tokens for firing (executing action). Graphically,
a place is often denoted by a circle; a transition is denoted by a rectangle; tokens are
allocated in places; places and transitions are connected by directed lines (arcs); and
weights are values next to the corresponding arcs. When the number of tokens in a
place meets the minimum requirement for firing (execution), some of the tokens are
moving from one place to another – the firing rules. Figure 9.3 is a PN representation
of the chemical reaction of water.

The mathematical definition of a PN can be described as follows.

Definition 9.1. A Petri net is a 5-tuple PN D .P; T; F;W;M0/ where

• P D fp1; : : : pKg is the set ofK places,
• T D ft1; : : : tN g is the set of N transitions, with P \ T D ; and P [ T ¤ ;,
• F D I � .P � T / [ O � .T � P/ is the flow relation defining the set of

directed arcs,
• W W F ! .Nn f0g/ (N D f0; 1 : : :g) is the arc weight function, and
• M0 D fm01; : : : ; m0Kg 2 N

K is the initial marking, i.e., an integer number of
tokens associated to each place initially.

p1

p2

p3

2

t

2

H2

O2

H2O

2

Chemical
reaction

2

Fig. 9.3 PN representing chemical reaction of water
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Note that the preset I corresponds to all the directed arcs from places to
transitions, whereas postset O corresponds to all the directed arcs from transitions
to places. M .p/ often denotes the number of tokens in place p in markingM .

The state of a Petri system is characterized by the distribution of tokens in the
places. The dynamics of PN is characterized by the firing mechanism. A place may
contain zero or several tokens, which may be interpreted as resources. There may be
several input and output arcs between a place and a transition. The number of these
arcs is represented as the weight of a single arc. A transition is enabled if each of its
input places contains at least as many tokens as the corresponding input arc weight
indicates. When an enabled transition is fired, its input arc weights are subtracted
from the input place markings and its output arc weights are added to the output
place markings. Formally, we have the following definition.

Petri nets can be of different types: (1) place/transition PNs (colored or non-
colored) or (2) time-dependent PNs (discrete PN, continuous PN, hybrid PN for
mixtures of continuous and discrete systems, and stochastic PN).

9.4.2.1 Why Petri Nets

Biological networks or pathways are extremely complicated, and their mechanisms
are difficult to understand using the traditional 2D representation. Using a Petri
net, we can have a coherent presentation of the very diverse forms of information
and solve the problem by means of computer simulation. Petri nets offer a general
framework for analyzing the dynamic properties of large systems, either from a
qualitative or a quantitative point of view. The mathematical properties of standard
Petri nets are well studied and can be used for model validation. PNs can be
used on an abstract level with specification of limited resources possible and
allow for combining all these different abstract levels within one model. PNs
allow for integration of qualitative and quantitative analyses. Petri nets have an
executable graphical representation, supporting the intuitive understanding of the
system modeled and the communication between experimentally and theoretically
working scientists. There are movable objects, the animation of which visualizes
possible flows through the network. Model animation helps us experience the
network behavior and allows us to test whether the model actually does behave in
the desired manner (Koch and Heiner 2008). Petri nets can be used as both analysis
and prediction tools. There exist many public-domain software tools such as editors,
animators, and analyzers. One of the nice features with a PN is its scalability to fit
the constantly updated knowledge of systems biology. Any update to the current
knowledge can be easily implemented in the previous PN by simply modifying the
relevant substructure of the PN without recreating a completely new PN.

There are biological interpretations for most properties of a PN. For example, the
reachability of a marking from some other marking in the PN model of a metabolic
pathway determines the possibility of forming a specified set of product metabolites
from another set of reactant metabolites, using some sequence of reactions that is
dictated by the PN’s firing sequence(s).
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9.4.2.2 Petri Net Dynamics

PN dynamics include reachability, liveness, and boundedness. They all relate
to the initial marking. A reachability study concerns whether a marking under
consideration can be reached from the initial marking; liveness study addresses
whether any transition will eventually be fired for the given initial marking; and
a boundedness study investigates whether the number of tokens at each place is
bounded for any initial marking of the Petri net.

There are three commonly used abstract levels in the simulation, (1) molecular
level (biochemical network), (2) gene cross-regulation level (genetic network), and
(3) tissue level (intercellular network), in which the biological cells are believed to
operate with a steady state of the internal metabolites. Note that the same compound
can be presented using multiple places in the same network if they play different
biological roles.

9.4.3 Biological Pathway Simulations

9.4.3.1 Petri Net for Metabolic Pathways

A metabolic pathway is a series of enzymatic reactions consuming certain metabo-
lites and producing others. These metabolites usually participate in more than one
metabolic pathway, forming a complex network of reactions.

The S-transformation of biochemical reactions can be modeled using PNs
in which (1) places can be metabolites, reactants, products, genes, cells, and
enzymes, (2) transitions can be reactions, catalysis, activation, and inhibition, and
(3) weighted arcs can be stoichiometries (Chang 2010).

9.4.3.2 Stochastic PN for Regulatory Pathways

Regulation of gene expression (or gene regulation) includes the processes (amount
and timing) turning the information in genes into gene products (RNA or protein).
The majority of known mechanisms regulate protein coding genes. Any step of
the gene’s expression may be modulated, from DNA-RNA transcription to the
post-translational modification of a protein. The stages where gene expression is
regulated are chromatin domains, transcription, post-transcriptional modification,
RNA transport, translation, mRNA degradation, and post-translational modification.
Gene regulation is essential for viruses, prokaryotes, and eukaryotes, as it increases
the versatility and adaptability of an organism by allowing the cell to express protein
when needed. The first discovered (by Jacques Monod) example of a gene regulation
system was the lac operon, in which proteins involved in lactose metabolism are
expressed by E. coli only in the presence of lactose and absence of glucose (Chang
2010).
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9.4.3.3 Hybrid PN for Regulatory Pathways

In many cases, molecular concentration is considered continuous rather than
discrete. How do we deal with actual molecule numbers? If we represent each
molecule by one token, it is not feasible for simulations; if one token stands for,
for example, 1 mol of a substance, it might not be accurate enough. The solution is
to allow continuous values for certain places, which leads to the so-called hybrid
Petri nets (HPNs) (Chang 2010).

An HPN can have continuous and discrete tokens in places. Discrete places have
tokens, whereas continuous places contain real variables. Discrete transitions fire
after a certain delay. Continuous transitions fire continuously at a given rate.

Chen and Hofestädt (2003) conducted a case study on the urea cycle disorder,
a genetic disease caused by a deficiency of one enzyme in the urea cycle that is
responsible for removing ammonia from the bloodstream. In urea cycle disorders,
the nitrogen, a waste product of the metabolite, is not removed from the body.
Ammonia then reaches the brain through the blood, where it causes irreversible
brain damage, coma, and/or death.

The metabolic behavior is modeled using continuous places and transitions,
whereas gene regulations are modeled by discrete net elements. The regulation
both on genomic and metabolic levels can be simulated. A generalization of hybrid
Petri nets (hybrid function Petri nets) was developed by Matsuno et al. (2003).
The typical examples they studied included a metabolic pathway (the glycolysis)
and a signaling pathway (the Fas legand induced apoptosis). The effectiveness
of PN-based biopathway modeling was demonstrated in the circadian rhythm in
Drosophila and the apoptosis induced by the Fas ligand. The simulations of these
models were performed with the software tool Genomic Object Net.

9.5 PK and PD Modeling and Simulation

9.5.1 Pharmacokinetic Simulation

For a drug to interact with a target, it is necessary for the drug to present sufficient
concentration in the fluid medium surrounding the cells with receptors. Pharma-
cokinetics is the study of the kinetics of absorption, distribution, metabolism, and
excretion (ADME) of a drug. It analyzes the way the human body works with a drug
after it has been administered, and the transportation of the drug to the specific site
for drug-receptor interactions.

In what follows, we will discuss the ADME mechanisms to guide our PK model-
ing and simulation. There are two schools of modeling and simulation approaches.
One is to model the complex ADME directly, treating the whole body as one entity –
the macro-approach. The mixed-effect population PK model is an example of this
type of statistical modeling. There are nearly 100 commercial software products
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Fig. 9.4 Physiology-based pharmacokinetic model

available (see, e.g., www.boomer.org/pkin/soft.html for such a list) for this type of
modeling and most PK specialists are familiar with the approach and software. I am
not going to discuss this approach. Alternatively, we can use low-level modeling,
which either models the four components of ADME separately or models the
mechanisms at the organ level as for the physiologically based pharmacokinetic
(PBPK) model (Fig. 9.4) and then integrate the low-level components into a higher-
level model. The integration is accomplished through simulation.

The law governing the drug concentration C .t/ over time t is the diffusion
equation:

dC .t/

dt
D kC .t/ . (9.18)

It is interesting that the model is mathematically equivalent to the survival model
(6.1). Therefore, the same method can deal with two complete problems in two
completely different disciplines.

PBPK model structures are based on the actual physiological and biochemical
structure of the species being described, allowing the physiological and biochemical
parameters in the model to be changed from those for the test species to those
appropriate for humans to perform animal to human extrapolations and predict drug
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Algorithm 9.8 Physiologically Based Pharmacokinetics

1. Construct a typical compartment model using object-oriented programming (any OOP com-
puter language or visual simulation tool).

2. Make copies of the typical compartment model (TCM) and that customized based on the PBPK
model

3. Connect the TCMs based on the PBPK diagram.
4. Input parameters for each TCM:

The model parameters can be assumed to be fixed values, from data, or validated by data. The
model parameters can also be chosen as random variables. In such cases, one can generate
parameter distributions for each compartment using the technique in Sect. 9.1.

5. Determining output parameters:
Many different PK outputs can be easily obtained for the model for each compartment (organ)
or the body as a single entity. The PBPK simulation model can also output the traditional PK
parameters such as Cmax, AUC, t1=2, and others.

effects over a wide range of conditions. The improved dose metric can then be used
in place of traditional dose metrics (e.g., administered dose) or can be generated as
a time-dependent input for a more biologically based response model to simulate
the time course of the drug. Figure 9.4 is an illustration of a PBPK model.

In general, a PBPK model can be determined by the permeability matrix
�
kij
�
,

where the element kij is the permeability between the i th and j th compartments. If
kij are constants, the network is a Markovian process; if kij � 0 are time-dependent,
the model is a time-dependent Markovian chain.

Implementation of PBPK models can follow the steps outlined in Algorithm 9.8.
If you know any object-oriented programming and visual simulation tools such as
ExtentSim, building a PBPK model is a straightforward job programming-wise.
However, determining the parameters and validating the model are still challenging.

9.5.1.1 Markov Chain with Constant Permeability

It is possible to include fixed and known covariates in the time-independent
permeability kij from state (compartment) i to state (compartment) j . The total
permeability for state m is defined as km D ˙i¤j kij . In this model, the transition
probabilities can be evaluated by means of exponential functions:

dPkl .t/=dt D ˙mPkm.t/Gml , (9.19)

where Gml D �kml .m ¤ l/ and Gmm D km.
In general, we can show that

Pkl .v; t/ D Pkl .0; t � v/ . (9.20)

The solution can be described by means of the matrix exponential function,
where the matrix of transition probabilities satisfies (Hougaard 2001)

P .v; t/ D exp fG .t � v/g D
1X

rD0

Gr .t � v/r

rŠ
. (9.21)
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The eigenvalues of G are usually distinct, and the solutions for the transition
probabilities are the sums of exponential functions, where the rate constants are the
eigenvalues ofG. Sometimes it might be most convenient to evaluate them explicitly
knowing that the transition probabilities are of the form

Pkl .v; t/ D
X

r

˛klr exp f�ˇr .t � v/g , (9.22)

where �ˇr , r D 1; : : : ; S are the eigenvalues of G. The solution is only valid when
the eigenvalues are distinct. The eigenvalues are found as the solutions to the general
matrix determinant equation

jG C ˇI j D 0, (9.23)

where I is the identity matrix. The eigenvectors are required to satisfy a set of
boundary conditions and a set of balance equations,

Pkk .t; t/ D 1, and Pkl .t; t/ D 0 for k ¤ l; (9.24)

which can be expressed as, respectively,

X

r

˛kkr D 1, and
X

r

˛klr D 0 for k ¤ l: (9.25)

The balance equations specify that the solutions have to satisfy Eq. 9.23. This
can generally be written as

� ˛klrˇr D
X

m

˛kmrkml , (9.26)

for each r .

9.5.2 Pharmacodynamic Simulation

9.5.2.1 Objectives of Pharmacodynamics

Pharmacodynamics is the study of the relationship between the drug concentration
at the site of action and the pharmacological response (biochemical and physiolog-
ical effects). According to the occupancy theory, originated by Clark (1933), the
drug effect is a function of the following processes: binding of drug to the receptor,
drug-induced activation (or inhibition) of the receptor, and propagation of this initial
receptor activation (or inhibition) into the observed pharmacological effect, where
the intensity of the pharmacological effect is proportional to the number of receptor
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sites occupied by drug. The interaction of a drug molecule with a receptor causes a
chain of reactions (events) that could lead to a desirable pharmacological effect or
undesirable side effect. Therefore, the relationship between pharmacokinetic and
pharmacodynamic properties is a focus of pharmacodynamics. In PK, we study the
relationship between dose regimen and plasma drug concentration (PK); in PD,
we study the time course of the concentration in relation to the pharmacological
(positive or negative) responses using modeling and simulation. The goal is to use
pharmacokinetics to develop dosing regimens that will result in plasma concentra-
tions in the therapeutic window and yield the desired therapeutic or pharmacological
response.

In general, a typical PK-PD curve for an ideal drug can be divided into three
stages: (1) low dose level, where no biological effect will be seen; (2) moderate dose
level, where pharmacological or clinical effects are expected to be seen, but some
infrequent adverse events will also be observed; and (3) pharmacological response
has no significant changes but toxicity increases dramatically. We should choose a
dose regimen to avoid situations (1) and (3) and target situation (2).

The commonly used models are logistic and Emax models (Chang 2010). Here
we consider the artificial neural network (ANN). There are many possible ANNs
for pharmacodynamic analyses. Figure 9.5 presents an ANN with four layers: input,
PK compartment, receptor, and pharmacological output layers.

The layer structure such as the one in ANNs is very common in our lives. The
nodes in each layer perform similar roles but differ in magnitude or efficiency
(weights differ). Once some nodes fail, other nodes in the same layer will take
more “responsibilities” or weights to accomplish the mission. There are plenty of
examples where several units in a system have the same functionality but differ in
efficiency or time (it seems that redundant equals robust). For example, many people
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can accomplish the same task, but their speed and quality of outcomes differ. There
are many cells that carry out similar functions or several biological pathways that
could cause the same disease. For this reason, we can consider them the nodes in
the same layer in an ANN and use a linear combination for the outcome.

Keep in mind that, in the regression method, less significant parameters are
removed from the final model to avoid overfitting. In an ANN, no parameters are
removed from the model, but the weights are adjusted gradually based on observed
(training) data using algorithms such as the back-propagation method discussed in
Chap. 8.

9.6 Implementation Challenges

The precision of simulation results will depend on the model assumptions, machine
memory, and quality of the random number generation. Let’s illustrate the precision
of simulation using a trivial example for which the exact answer is known. Suppose
we want to know the probability of x < 0:000001, where random variable x has
a uniform distribution in Œ0; 1�. We draw a sample xi (i D 1 to 10; 000; 000) and
inspect the number of observations within Œ0; 0:000001/. Ideally, we should find 10
such observations. However, we can’t always expect 10; otherwise, x is not random
at all. If it is one off from 10 (i.e., 11 or 9), it will be 11% off in precision. In addition,
pseudorandom numbers are not completely random: x may not be truly uniform
over an arbitrary small interval of [0,1], and x will repeat the whole sequence after
a certain point. The largest size of nonrepeated sequence is called the period of a
random number sequence.

The second problem is computer power. The currently available power from
a single computer or a small-scale parallel computing network is good enough
for clinical trial simulations but not sufficient for complex biological simulation
and molecular modeling. The large number of pathways (10,000) and reactions
involved (800 identified) demand more computing power. The same is true for
molecular modeling: 3D molecular docking itself requires a large amount of CPU
time, and, on top of that, finding the structure-activity relationship adds another layer
of complexity. The emerging IT platform cloud-computing technology, could be a
better solution. Cloud computing is an IT platform that aims at global information
and computer resource exchanges. It is predicted that computing will 1 day be the
fifth utility (after water, electricity, gas, and telephony). This computing utility, like
all four other existing utilities, will provide computing services that are considered
essential to meet the everyday needs of individuals and communities.

Sensitivity analyses, often used in simulation, can be used to answer “What if”
questions and serve as a supporting tool in optimization. These sensitivity analyses
provide insights about how the model behaves and thus can be used as a model
validation tool. The analyses allow us to make earlier preparations if the actual
course deviates from our initial predictions. However, to determine a small set of
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“what if” scenarios that are just enough to cover what is likely to happen is not
always easy. Many other challenges in simulation are the same as those in modeling
using pharmaceutical decision and game theory (Chap. 2), and will not be repeated
here.

Keep in mind that computer simulations require the ability to rapidly integrate
knowledge and experiences from different disciplines into the decision-making
process and hence require a shift to a more collaborative working environment
among disciplines.

9.7 Exercises

9.1. The log-normal distribution LN
�
	; �2

�
p.d.f. is given by

f .x/ D 1p
2��x

exp

 
� .lnx � 	/2

2�2

!
.

Devise a computer algorithm for generating samples from this distribution.

9.2. Use Monte Carlo to evaluate the value of � from the formula � D 4p
2R 1

0
1Cx2
1Cx4 dx.

9.3. Use Monte Carlo to evaluate the constant e D �
2
=
R1
0

cosx
1Cx2 dx.

9.4. Implement Algorithm 9.3 using a computer language, and design an adaptive
trial (see Chap. 4).

9.5. Implement Algorithm 9.4 and run simulations.

9.6. Implement Algorithm 9.6 and run simulations.

9.7. Carry out a comparative study on software products available for molecular
design and docking.

9.8. Conduct research and give the mathematical definitions and biological inter-
pretations of the following terms in a Petri net: reachability, coverability, liveness,
boundedness, P -invariance, and T -invariance. Hint: See Chang (2010).

9.9. Develop a computer algorithm using the pseudocode for the PBPK model
presented in Fig. 9.4.

9.10. Develop a back-propagation algorithm for the ANN defined in Fig. 9.5.
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Chapter 10
Bayesian Methods and Applications

10.1 Bayesian Paradigm

This introductory section will provide some key elements in the Bayesian paradigm
and a quick review of basic Bayesian methods. It is intended mainly for those who
are new to Bayesianism or Bayesian applications in biostatistics.

10.1.1 Bayesian Inference

There are different statistical paradigms or theoretical frameworks that reflect
different philosophies or beliefs. These differences have provoked quite a few
controversies. However, within each paradigm or axiom system, consistency and
completeness are expected. Our discussions in this chapter will focus on the
Bayesian paradigm.

Definition 10.1. A Bayesian statistical model is made of a parametric statistical
model, f .xj�/, and a prior distribution of the parameters, �.�/.

The Bayes Theorem places causes (observations) and effects (parameters) on the
same conceptual level since both have probability distributions. It is considered a
major step from the notion of an unknown parameter to the notion of a random
parameter (Robert 1997). However, it is important to distinguish x and � : x is
usually observable, but � is usually latent.

Denote the prior distribution by �.�/ and the sample distribution by f .xj�/. The
following are four basic elements of the Bayesian approach:

1. the joint distribution of .�; x/, given by

' .�; x/ D f .xj�/ � .�/ , (10.1)
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2. the marginal distribution of x, given by

m.x/ D
Z
' .�; x/ d� D

Z
f .xj�/ � .�/ d� , (10.2)

3. the posterior distribution of � , given by the Bayes formula

� .� jx/ D f .xj�/ � .�/
m .x/

; and (10.3)

4. the predictive probability distribution, given by

P .yjx/ D
Z
P .xjy; �/ � .� jx/ d� . (10.4)

Example 10.1. Beta Posterior Distribution: Assume that X � Bin.n; p/ and p �
Beta.˛; ˇ/. The sample distribution is given by

f .xjp/ D
 
n

x

!
px .1 � p/n�x , x D 0; 1; : : : ; n. (10.5)

The prior about the parameter p is given by

� .p/ D 1

B .˛; ˇ/
p˛�1 .1 � p/ˇ�1 ; 0 � p � 1, (10.6)

for the beta function B.˛; ˇ/ D � .˛/� .ˇ/

� .˛Cˇ/ :
The joint distribution then is given by

' .p; x/ D
�
n
x

�

B .˛; ˇ/
p˛Cx�1 .1 � p/n�xCˇ�1 , (10.7)

and the marginal distribution is

m.x/ D
�
n
x

�

B .˛; ˇ/
B .˛ C x; n � x C ˇ/ . (10.8)

Therefore the posterior distribution is given by

� .pjx/ D p˛Cx�1 .1 � p/n�xCˇ�1

B .˛ C x; ˇ C n � x/
D Beta .˛ C x; ˇ C n � x/ . (10.9)

Example 10.2. Normal Posterior Distribution: Assume that X has a normal dis-
tribution: X �N.�; �2=n/ and � �N.�; �2=n0/. The posterior distribution can be
written as

� .� jX/ _ f .X j�/ � .�/ (10.10)
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or

� .� jX/ D Ce
� .X��/2n

2�2 e
� .���/2n0

2�2 , (10.11)

where C is a constant. We immediately recognize that (10.11) is the normal
distribution of N.n0�CnX

n0Cn ; �2

n0Cn/.
We now wish to make predictions concerning future values of X , taking into

account our uncertainty about its mean � . We may write X D .X � �/C � , so that
we can consider X the sum of two independent quantities: .X � �/ � N.0; �2=n/

and � � N.�; �2=n0/. The predictive probability distribution is given by

X � N

�
�; �2

�
1

n
C 1

n0

��
. (10.12)

If we have already observed the mean of the first n1 observations Nxn1 , the
predictive distribution is given by

X jxn1 � N

�
n0�C n1 Nxn1
n0 C n1

; �2
�

1

n0 C n1
C 1

n

��
: (10.13)

10.1.1.1 Conjugate Family

We have noticed that, in Examples 10.1 and 10.2, the posterior distributions are the
same as the priors. In general, a family ± of probability distributions on � is said
to be conjugate if, for every � 2 ± , the posterior distribution �.� jx/ also belongs
to ± . Commonly used conjugate families are presented in Table 10.1.

10.1.1.2 Point Estimate

The Bayesian point estimate is the posterior expectation of the parameter, given by

E .�/ D
Z
� .� jx/ �d�: (10.14)

Parallel to the frequentist confidence interval, the Bayesian credible interval
(BCI) describes the variability of the parameter � .

Table 10.1 Commonly used
conjugate families

Model f .xj�/ Prior � .�/ Posterior � .� jx/
Normal N

�
�; �2

�
N
�
�; �2

�
N
�
�2�C�2x

�2C�2
; �2�2

�2C�2
;
�

Poisson P .�/ G .˛; ˇ/ G .˛ C x; ˇC 1/

Gamma G .	; �/ G .˛; ˇ/ G .˛ C 	; ˇ C x/

Binomial Bin .n; �/ Beta .˛; ˇ/ Beta .˛ C x; ˇ C n�x/
Neg. Bin NB .m; �/ Beta .˛; ˇ/ Beta .˛ Cm; ˇ C x/
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Definition 10.2. For 0 < ˛ < 1, a 100.1�˛/% credible set for � is a subset C 2 �
such that

P fC jX D xg D 1 � ˛. (10.15)

The BCI usually is not unique. The commonly used equal-tailed credible interval
does not necessarily have the smallest size. The smallest-sized credible interval is
defined by the highest posterior density (HPD).

Definition 10.3. Suppose the posterior density for � is unimodal. Then the HPD
interval for � is the interval

C D f� W � .� jX D x/ � kg , (10.16)

where k is chosen such that

P .C jX D x/ D 1 � ˛. (10.17)

10.1.1.3 Hypothesis Testing

For the hypothesis test,

Ho W � 2 �0 versusHa W � 2 �a; (10.18)

we would use the posterior odds ratio (POR) P.�0jx/
P.�ajx/ ; a small value of POR is strong

“evidence” against the null hypothesisHo.
We can separate the POR into the prior component and current evidence from the

current data
P .�0jx/
P .�ajx/ D P .� 2 �0/

P .� 2 �a/BF; (10.19)

where the Bayes factor (BF) is defined as

BF D
R
�0
f .xj�/ �0 .�/ d�

R
�a
f .xj�/ �a .�/ d�

: (10.20)

The BF is independent of the prior and equal to the POR when P.� 2 �0/ D
P.� 2 �a/. The BF may be more useful in practice than the POR because the prior
is subjective and varies from individual to individual, and it is difficult to convince
everyone to use a particular individual prior. In general, we reject Ho if the BF �
k0, where k0 is a small value, e.g., 0.1. A small value of the BF implies strong
evidence in favor of Ha or againstHo.
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10.1.1.4 Bayesian p-value

Suppose we want to test the null hypothesis that Ho W � � 0 against an alternative
hypothesis that Ha W � > 0.

The frequentist p-value is the probability of having the observed treatment
difference or larger under the condition � D 0; i.e., Pr.more extreme dataj� D 0/.
The Bayesian p-value, calculated from the posterior distribution, is the probability
of � � 0 (no treatment effect) given the observed data, i.e., Pr.� � 0jdata/.

Bayesian significance is claimed when the Bayesian p-value is less than or equal
to the so-called Bayesian significance level ˛, a predetermined constant that does not
have to be the same as the frequentist significance level. Spiegelhalter et al. (2004)
provided examples in clinical trials using the concept of the Bayesian p-value.

10.1.1.5 Asymptotic Property

Using Taylor’s expansion near Q�n, we have

ln� .�jXn/ D ln�
� Q�njXn

�
C
�
� � Q�n

� @

@�
ln .�jXn/ j Q�n

�1
2

�
� � Q�n

�0 QIn
�
� � Q�n

�
C o

�
jj� � Q�njj3

�
, (10.21)

where the generalized observed Fisher information matrix is given by

QIn
�
� � Q�n

�
D � @2

@� i @�j
ln .� jXn/ j�D Q�n . (10.22)

Here we have assumed that ln .�jXn/ is sufficiently differentiable and has finite
derivatives at Q�n with respect to � .

Theorem 10.1. If ln .�jXn/ is sufficiently differentiable and has finite derivatives
at �0 with respect to � , then for any prior �0.�/,

P

0

BBBB@
lim

n ! 1
Q�n ! �0

Z
�n .t jX1; : : : ; Xn/ �

q
QI .�0/p
2�

exp

�
�1
2
t2 QI .�0/

�
dt D 0

1

CCCCA
D 1;

(10.23)

where �n.t jX1; : : : ; Xn/ is the posterior density of t D p
n.� � Q�n/ given

X1; : : : ; Xn.
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10.1.2 Model Selection

Suppose i.i.d. samples x are drawn from a density f .xj�/ with an unknown
parameter � . Then we face a model selection problem:

�
M0 W X � f .xj�/ where � 2 �0,
M1 W X � f .xj�/ where � 2 �1. (10.24)

Let �i .�/ be the prior density conditional on Mi being the true model. We can
use the Bayes factor BF01 for model selection:

BF01 D
R
�0
f .xj�/ �0 .�/ d�

R
�1
f .xj�/ �1 .�/ d�

. (10.25)

We know that the Bayes factor is the ratio of the posterior odds ratio of the
hypotheses to the corresponding prior odds ratio. Thus, if the prior probability
P.M0/ D P.�0/ and P.M1/ D P.�1/ D 1 � P.�0/, then

P .M0jx/ D
�
1C 1 � P .�0/

P .�0/

1

BF01 .x/

	�1
. (10.26)

Therefore, if conditional prior densities �0 and �1 can be specified, we should
simply use the Bayes factor BF01 for model selection. If P.�0/ is also specified,
the posterior odds ratio of M0 to M1 can be used.

However, the computation of the BF may not always be easy. In such cases, we
can use the Bayesian information criterion (BIC). Using the Taylor series expansion,
we have the approximation (Ghosh et al. 2006)

2 ln .BF01/ D 2 ln

0

@
f
�
xj O�0

�

f
�
xj O�1

�

1

A � .›0 � ›1/ ln nCO .1/ , (10.27)

where ›0 and ›1 are the number of parameters in models M0 and M1, respectively,
and n is the number of data points in x. Here the term .p0 � p1/ ln n can be viewed
as a penalty for using a more complex model. Alternatively, the Akaike information
criterion (AIC),

AIC D 2 lnf
�
xj O�

�
� 2›, (10.28)

is often used, where › is the number of parameters in the model. The AIC has a
smaller penalty for more complex models than the BIC does.
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10.1.3 Hierarchical Model

For modeling, it is often convenient and appropriate to use Bayesian statistical
models hierarchically with several levels of conditional prior distributions.

Definition 10.4. A hierarchical Bayes model is a Bayesian statistical model,
.f .xj�/; �.�//, where the prior distribution �.�/ is decomposed into conditional
distributions

�1 .� j�1/ ; �2 .�1j�2/ ; � � � ; �n .�n�1j�n/ (10.29)

and a marginal distribution �nC1.�n/ such that

� .�/ D
Z

�1������n
�1 .� j�1/ �2 .�1j�2/ � � ��n .�n�1j�n/ �nC1 .�n/ d�1 � � � d�n.

(10.30)

The parameters �i are called hyperparameters of level i .

Note that hierarchical structures do exist in frequentist models. See the following
example.

Example 10.3. The following random-effect model can be viewed as a hierarchical
model:

y j� � N .�; ˙1/

� jˇ � N .Xˇ; ˙2/ : (10.31)

The mean of y, �; is decomposed into fixed effects,Xˇ, and random effects, and
Z� is normal with mean 0 (the covariance˙2 can be singular).

10.1.3.1 Exchangeability

The parameters (�1; : : : ; �n) are exchangeable in their joint distribution if the density
f .�1; : : : ; �n/ is invariant with respect to permutations of the indexes .1; : : : ; n/.

The simplest form of exchangeable distribution has each of the parameters �j as
an independent sample from a prior (or population) distribution governed by some
unknown parameter vector 
; thus,

f .� j
/ D
nY

jD1
f
�
�j j
� . (10.32)

In general, 
 is unknown, so our distribution for � must average over our uncertainty
in 
:

f .�/ D
Z nY

jD1
f
�
�j j
�� .
/ d
. (10.33)
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10.1.3.2 Elimination of Nuisance Parameters

In a multivariate or hierarchical model, our interest may not be in the full parameter
vector � D .�1; : : : ; �n/ but only certain components of � . In the frequentist
paradigm, there are three methods that can be used (Ghosh et al. 2006, p. 51): (1)
constructing a conditional test, (2) using an invariance argument, and (3) using the
profile likelihood defined as

Lp .�1/ D sup
�2

f .xj�1;�1C/ D f
�
xj�1; O�1C .�1/

�
, (10.34)

where �1 is the parameter of interest, �1C D .�2; �3; : : : ; �n/, and O�1C.�1/ is the
MLE of �1C given the value of �1.

In the Bayesian paradigm, to eliminate the nuisance parameters we just integrate
them out in the joint posterior. This “integrate out” approach can also be used on
other quantities; e.g., analogous to profile likelihood,

L.�1/ D
Z
f .xj�1;�1C/ � .�1Cj�1/ d�1C: (10.35)

10.1.4 Bayesian Decision-Making

Statistical analyses and predictions are motivated by objectives. When we choose
between models, we evaluate their consequences or impacts. The impact is char-
acterized by a loss function in decision theory. The challenge is that different
people have different perspectives on the loss and hence different loss functions.
Loss functions are often vague and not explicitly defined, especially when we make
decisions in our daily lives. Decision theory makes this loss explicit and deals with
it with mathematical rigor.

In decision theory, statistical models involve three spaces: the observation space
X , the parameter space�, and the action space A. Actions are guided by a decision
rule ı.x/. An action ˛ 2 A always has an associated consequence characterized by
the loss function L.�; a/. In hypothesis-testing, the action space is A D faccept,
rejectg.

Because it is usually impossible to uniformly minimize the loss L.�; a/, in the
frequentist paradigm, the decision rule ı is determined to minimize the following
average loss:

R .�; ı/ D EX j� .L .�; ı .x///

D
Z

X

L .�; ı .x// f .xj�/ dx: (10.36)
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The rule a D ı.x/ is often called an estimator in estimation problems. Commonly
used loss functions are squared error loss (SEL), L.�; a/ D .� �a/2, absolute loss,
L.�; a/ D j� � ˛j; and 0-1 loss, L.�; a/ D I (j˛ � � j), for example.

Definition 10.5. Bayesian expected loss is the expectation of the loss function with
respect to the posterior measure,

� .ı .x/ ; �/ D E� jXL .ı .x/ ; �/ D
Z

�

L .�; ı .x// � .� jx/ d� . (10.37)

An action a� D ı�.x/ that minimizes the posterior expected loss is called a Bayes
action.

By averaging (10.36) over a range of � for a given prior �.�/, we can obtain

r .�; ı/ D E� .R .�; ı//

D
Z

�

Z

X

L .�; ı .x// f .xj�/ � .�/ dx d�: (10.38)

The two notions in (10.37) and (10.38) are equivalent in the sense that they lead
to the same decision.

Theorem 10.2. An estimator minimizing the integrated risk r.�; ı/ can be obtained
by selecting, for every x 2 X , the value ı.x/ that minimizes the posterior expected
loss, �.a; �/, because

r .�; ı/ D
Z

X

� .a; ı .x/ jx/m .x/ dx: (10.39)

The Bayes estimators use uniform representations of loss functions.

10.1.5 Bayesian Approach to Multiplicity

In Chap. 1, we provided many multiplicity examples. Here are three more examples:
(1) In analyses of gene expression microarrays, we are interested in the mean
differential expression, �i , of genes i D 1; : : : ;10,000, using hypothesis tests H0 :
�i D 0 versusH1 : �i ¤ 0. The multiplicity problem is that even if all �i D 0, one
would find that roughly 500 tests reject at, say, level ˛ D 0:05, so a correction
for this effect is needed. (2) In pharmacovigilance for monitoring drug safety,
we conduct a sequence of analyses on a cumulative adverse drug event database
(Chap. 8). Without multiplicity control, all drugs will eventually be flagged unsafe.
(3) In syndromic surveillance of the national defense and homeland security, many
counties in the USA perform daily tests on the “excess” of some symptoms, wishing
to have early detection of the outbreak of epidemics or bioterrorist attacks (Berger
2009).
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We should be aware that Bayesian views on multiplicity are different from those
of frequentists. Therefore, the Bayesian approach to multiplicity is different from the
frequentist approaches. We also must not confuse the penalty on a more complex
model (Occam’s Razor principle) with the multiplicity penalty. When competing
hypotheses are equal in other respects, the principle recommends selection of the
hypothesis that introduces the fewest assumptions and postulates the fewest entities
while still sufficiently answering the question.

Multiple tests in exchangeable settings are handled by a mixed model yi D
wf0 C .1 � w/f1, where f0 and f1 are distributions under signal and noise,
respectively. The primary goal is to flag which yi s are signals and which are noise.
We have seen an application of this approach to drug safety signal detections in
Chap. 8.

The general empirical Bayes approach to such a problem can be outlined as
follows:

1. Represent the hypothesis-testing problem, Hi W �i D 0, as a model uncertainty
problem: model Mi , with densities fi .xj�i / for data x, given unknown parame-
ters �i .

2. Specify prior distributions �i .�i /, and calculate the marginal likelihoods mi.x/

D R
fi .xj�i /�id�i .

3. Specify the forms of prior probabilities, P.Mi/, of models to reflect the
multiplicity issues.

4. Implement Bayesian model averaging based on

P .Mi jx/ D P .Mi/mi .x/P
j P

�
Mj

�
mj .x/

. (10.40)

The quantities of interest are P.Mi jx/, the probabilities of inclusion of �i
(equivalent to �i ¤ 0) in the model and the distributions of the “signals” if the
corresponding null is not true.

Example 10.4. Suppose data X arise from a normal linear regression model, with
K possible regressors having associated unknown regression coefficients ˇi ; i D
1; : : :K , and unknown variance �2. Consider selection from among the submodels
Mi; i D 1; : : : ; 2K , having only ki regressors with coefficients ˇi (a subset of
.ˇ1; : : : ; ˇK/) and resulting density fi .xjˇi ; �2/. We consider Zellner-Siow priors
�i .ˇi ; �

2/ for the prior density underMi . The marginal likelihood ofMi is given by

mi.x/ D
Z
fi .xjˇi ; �2/�i .ˇi ; �2/dˇid�2. (10.41)

Define Bernoulli variables �i D 1 if ˇi ¤ 0 and �i D 0 if ˇi D 0. The standard
modern practice in Bayesian variable-selection problems is to treat variable inclu-
sions as exchangeable Bernoulli trials with common success probabilityp.�i D 1/
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(called the inclusion probability), which implies that the prior probability of a model
is given by

P.Mi/ D pki .1 � p/K�ki . (10.42)

We discuss the empirical and full Bayes choice of the prior inclusion
probability p.

1. Empirical Bayes exchangeable variable inclusion

Find the MLE Op by maximizing the marginal likelihood of p (often called type-II
maximum likelihood),

Op D arg max
p2Œ0;1


X

j

pkj .1 � p/K�kj mj .x/ , (10.43)

and use P.Mi/ D Opki .1 � Op/K�ki as the prior model probabilities. Thus, from
(10.40), the posterior probability of Mi becomes

P .Mi jx/ / Opki .1 � Op/K�ki mi .x/ . (10.44)

From (10.43), we can see that the empirical Bayes model does control for
multiplicity in that Op will be small if K is large due to many ˇi s that are zero. If
pi;max D max

�iD1;j2.1;:::;K/P.Mj jx/ > pc , ˇi will be included. In other words, if model

Mj includes ˇi ¤ 0 and a posterior P.Mj jx/ > pc , then ˇi will be included. With
that approach, the false positive (inclusion of ˇi D 0 in any submodelMj ) rate can
be controlled. Numerical examples can be found elsewhere (Scott and Berger 2010).

It is interesting to know (Scott and Berger 2010) that in the variable-selection
problem, if the null model M0 (including no ˇi ) has the (strictly) largest marginal
likelihood among all models, then the type-II MLE of p is OpD 0. Similarly, if the
full model MF (including all ˇis) has the (strictly) largest marginal likelihood,
then the type-II MLE of p is OpD 1. As a consequence, the empirical Bayes
approach here would assign final probability 1 to M0 whenever it has the largest
marginal likelihood and final probability 1 to MF whenever it has the largest
marginal likelihood. These are clearly very unsatisfactory answers. My suggestion
for handling this problem is to add an artificial variable x0 known to have the
corresponding parameter ˇ0 ¤ 0 and another variable xKC1 known to have the
corresponding parameter ˇKC1 D 0. With these two artificial variables, we can
ignore the posterior null model and full model because we know they are false.
Of course, we can add more variables that have known ˇi to improve model
performance.

A good model should have higher probabilities to include any ˇis that are not
truly zero and lower probabilities to include any ˇis that are truly 0. The separation
of these two types of probabilities (the true and false inclusion probabilities) is
determined by the curvature of mi.x/, which is instructive in selecting the density
fi .xj�i / for modelMi .
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2. Bayes exchangeable variable inclusion

Each variable, ˇi , is independently in the model with unknown inclusion
probability p. A commonly used prior is p � Beta.pja; b/. Thus

P .Mi/ D
Z 1

0

pki .1 � p/K�ki Beta .pja; b/ dp D Beta .aC ki ; b CK � ki /
Beta .a; b/

:

(10.45)
For a uniform prior on p, a D b D 1, (10.45) reduces to

P .Mi/ D ki Š .K � ki /Š
.K C 1/KŠ

D 1

K C 1

 
K

ki

!�1
. (10.46)

Therefore the posterior model is

P .Mi jx/ / 1

K C 1

 
K

ki

!�1
mi .x/ . (10.47)

Similar to the situation for the empirical Bayes model, it is clear thatP.Mi/ ! 0

asK ! 1, and the separation of true and false inclusion probabilities is determined
by the curvature of mi.x/.

Scott and Berger (2010) show that the prior odds ratio (smaller/larger) is reduced
as the number of variables K increases, and if one uses the posterior inclusion
criterion � pc D 0:5 to include ˇi , the false positive (inclusion of noise variable)
rate will be controlled – multiplicity control.

It should be pointed out that the equal prior probabilities P.Mi/ D 2�K do
not control for the multiplicity; it corresponds to a fixed prior inclusion probability
p D 1=2 for each variable.

Note that the control of multiplicity by Bayesian variable inclusion usually
reduces model complexity but is different from the usual Bayesian Occam’s Razor
effect that reduces model complexity. The latter operates through the effect of model
priors �i .ˇi ; �2/ on mi.x/, penalizing models with more parameters, whereas
multiplicity correction occurs through the choice of the P.Mi/.

The multiple associations that arise in fitting structured low-dimensional models
in order to describe high-dimensional joint distributions (dimension reduction), such
as Gaussian graphical models, can be found elsewhere (Carvalho and Scott 2009).

10.1.6 Bayesian Computation

A Markov chain is a sequence of random variables �.1/, �.2/; : : : ; such that for
any t the distribution of �.t/ depends only on �.t�1/. Markov chain Monte Carlo
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(MCMC) is a general method based on drawing values of � from approximate
Markov chain distributions and then correcting those draws over time to better
approximate the target posterior, p.� jy/. MCMC is an effective means of sampling
from the posterior distribution of interest even when the form of that posterior has
no known algebraic form.

The idea behind the simulation of a posterior distribution is that if we can easily
simulate a sequence of �i (i D 1; 2; : : :) from an unnormalized conditional density
q.� jy/, given observations y, we can construct an empirical distribution of � using
the normalization

O�i D �iP
�j
: (10.48)

In other words, the histogram of O�i forms the desired empirical distribution.
Using this empirical distribution, an inference (estimate, hypothesis test, CI) is
a straightforward task. Once simulations have been obtained from the posterior
distribution, p.� j Qy/, sampling from the predictive distribution of future data, Qy,
can be simple. For each draw of � from the posterior distribution, we just draw one
value Qy from the predictive distribution, p. Qyj�/. The set of simulated Qys from all
the �s characterizes the posterior predictive distribution.

The key to Markov chain simulation is to create a Markov process whose
stationary distribution is the target posterior distribution. If such an MC is found,
then we can run the simulation long enough so that the distribution reaches
approximately its stationary state. The number of simulation runs needed to reach
the stationary state is called the “burning period.”

There are two popular MCMC algorithms, Gibbs and Metropolis-Hastings (see,
e.g., Chang 2010), described below.

10.1.6.1 Gibbs Algorithm

The Gibbs method is an iteration algorithm in which during each iteration cycle
through the parameter �1, �2, . . . , �n, a typical O�i is drawn conditional on the value
of all the others, ��i D f�1; : : : ; �i�1; �iC1; : : : �ng. Let’s illustrate this with a simple
bivariate normal distribution (Gelman et al. 2004).

Consider a single observation .y1; y2/ from a bivariate normally distributed
population with an unknown mean �D .�1; �2/ and a known covariance matrix

�
1 �
� 1

�
.

With a uniform prior distribution on � , the posterior distribution is
�
�1
�2

�
jy � N

��
y1
y2

�
;

�
1 �

� 1

��
. (10.49)
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At step t , draw a sample from each of the following marginal posterior
distributions in turn:

8
<̂

:̂

draw O�.t/1 from �1j�2;y � N
�
y1 C �

�
�
.t�1/
2 � y2

�
; 1 � �2

�
,

draw O�.t/2 from �2j�1;y � N
�
y2 C �

�
�
.t/
1 � y1

�
; 1 � �2

�
.

(10.50)

The initial value �.0/ can affect the convergence of the algorithm.

10.1.6.2 Metropolis Algorithms

The Metropolis algorithm is a general term for a family of Markov chain simulation
methods for drawing samples from Bayesian posterior distributions. The method
is an extension of the usual rejection-acceptance sampling method (Chap. 9). The
algorithm proceeds as follows:

1. Draw a starting point �.0/ at timestep t D 0, for which p.�.0/jy/ > 0, from a
starting distribution p0.�/.

2. Sample a proposal �� from a proposal distribution at timestep t , Jt .��j�.t�1//,
where Jt is symmetric; i.e., Jt .� j�/ D Jt .�j�/.

3. Draw a sample u from the uniform distribution U.0; 1/.
4. If u < Qr , then �.t/ D ��, otherwise, �.t/ D �.t�1/, where Qr D p.��jy/

p.�.t�1/jy/ .
5. Increase the timestep t by 1 and go back to step 2.

The symmetry requirement for Ji .�j�/ can be removed if we define the quantity
r as

Qr D p .��jy/ Jt
�
�.t�1/j���

p
�
�.t�1/jy�Jt

�
��j�.t�1/� : (10.51)

The Metropolis algorithm with Qr defined by (10.43) is called the Metropolis-
Hastings algorithm.

To illustrate the algorithm, Gelman et al. (2004, p. 290) provided the following
example. The target density is the bivariate unit normal, p.� jy/DN.0j0; I /, where
I is the 2 � 2 identity matrix. The jumping distribution is also bivariate normal,
centered at the current iteration, Jt .��j�t�1/ D N.��j�t�1; 0:22I /. At each step,
the density ratio r D N.��j0; I /=N.�t�1j0; I / can be calculated. In general, the
proposal distribution should be chosen such that (1) for any � it is easy to sample
from Jt .�

�j�.t�1//; (2) the value r is larger (otherwise samples will be rejected
too often, causing inefficiency) and is easy to compute; and (3) each step goes a
reasonable distance in the parameter space.
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10.1.6.3 Convergence

MCMC is convergent to the target posterior over time. To determine the time
of convergence or the burning period, we can use multiple sequences with m

overdispersed starting points. The convergence can be determined using the quantity

G D n � 1
n

W C 1

n
B; (10.52)

where B and W are between- and within-sequence variances, i.e., the burning ends
as soon as G < " (a small positive value).

10.2 Applications of Bayesian Methods

10.2.1 Clinical Trial Design

We are going to use an example to illustrate some differences between Bayesian and
frequentist approaches in trial designs.

Example 10.5. Effect of Prior on Power: Consider a two-arm parallel design com-
paring a test treatment with a control. Suppose three historical trials show that the
effect sizes are 0.1, 0.25, and 0.4. The three trials have approximately the same
sample size and variance of the effect size.

For the two-arm trial, the power of the hypothesis test from the frequentist approach
is a function of effect size ",

power ."/ D ˚

�p
n"

2
� z1�˛

�
, (10.53)

where ˚ is the c.d.f. of the standard normal distribution and z1�˛ D ˚�1 .1 � ˛/.
With the Bayesian approach we consider the uncertainty of ", with prior � ."/ D

1=3 for " D 0:1, 0.25, and 0.4. The expected power can be calculated as

Pexp=
Z
˚

�p
n"

2
� z1�˛

�
� ."/ d": (10.54)

Numerical integration is usually required for evaluation (10.46).
To illustrate the implication of (10.54), let’s assume a one-sided ˛ D 0:025;

z1�˛ D 1:96, and the prior

� ."/ D
�

1/3, " D 0:1; 0:25; 0:4,
0, otherwise.

(10.55)
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Conventionally, we use the average of the effect size, N" D 0:25, to design the trial
and calculate the sample size. For the two-arm balanced design with type-II error
rate ˇ D 0:2 or power D 80%; the total sample from (10.45) is given by

n D4.z1�a C z1�ˇ/2

"2
D 4 .1:96C 0:842/2

0:252
D 502: (10.56)

With the Bayesian approach, the expected power from (10.54) with a sample size
of 252 is the average of the three powers calculated using the three different effect
sizes (0.1, 0.25, and 0.4), which turns out to be 66%, much lower than the 80% from
the frequentist approach.

This is an example of a Bayesian-frequentist hybrid approach, i.e., the Bayesian
approach is used for the trial design to increase the probability of success given the
final statistical criterion, p-value � ˛ D 0:025.

10.2.2 Bayesian Adaptive Trial

How the response is related to the dose for a new investigational product is a
question that is usually answered in a dose-finding or dose-response study. Dose-
response trials may serve a number of objectives, among which the following two
are particularly important: the investigation of the shape and location of the dose-
response curve and the determination of a maximal dose beyond which additional
benefit would be unlikely to occur. These objectives should be addressed using
the data collected at a number of doses under investigation, including a placebo
(zero dose) wherever appropriate. There are various sample size calculation methods
available for dose-response trials with different endpoints (Chang and Chow 2006;
Chang 2007b).

The continual reassessment method (CRM) is a model approach in which the
parameters for the response model are continually updated based on the observed
response data using a Bayesian approach. Actions taken (assigning the next patient
an appropriate dose, modifying or dropping doses, and/or adjusting sample size) are
based on the updated dose-response relationship. In principle, this method can be
applied to many different problems, but here we use an oncology dose-escalation
trial as an example.

10.2.2.1 Probability Model for Dose-Response

Let x be the dose or dose level, and p .x/ be the probability of response or response
rate. The commonly used model for dose-response is the logistic model

p.x/ D Œ1C b exp.�ax/
�1 , (10.57)

where b can be a predetermined constant and a is a parameter to be updated based
on observed data.
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10.2.2.2 Prior Distribution of Parameter

The Bayesian approach requires the specification of the prior probability distribution
of the unknown parameter a,

a � g0.a/; (10.58)

where g0.a/ is the prior probability. A beta distribution is often used.
When there is very limited knowledge about the prior, a noninformative prior can

be used.

10.2.2.3 Likelihood Function

The next step is to construct the likelihood function. Given n observations with yi
.i D 1; : : : ; n/ associated with dose xmi , the likelihood function can be written as

fn.r ja/ D
nY

iD1
Œp.xmi /


ri Œ1 � p.xmi /

1�ri , (10.59)

where

ri D
�
1, if a response is observed for xmi ,
0, otherwise.

(10.60)

10.2.2.4 Reassessment of Parameter: Posterior Distribution

The response model (10.57) is continually updated through the posterior distribution
based on the cumulative response data observed from the trial thus far. In other
words, the posterior probability of parameter a can be obtained as follows:

gn.ajr/ D fn.rja/g0 .a/R
fn.rja/g0.a/ da

. (10.61)

After obtaining gn.ajr/, we can update the predictive probability using

p.x/ D
Z
Œ1C b exp.�ax/
�1 gn.ajr/ da: (10.62)

10.2.2.5 Assignment for the Next Patient

The updated dose-toxicity model is usually used to choose the dose level for the
next patient. In other words, the next patient enrolled in the trial is assigned the
currently estimated MTD (maximum tolerated dose) based on the dose-response
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model (10.57). In practice, this assignment is subject to safety constraints such as a
limited dose jump. Assignment to a patient of the most updated MTD is intuitive.
This way, the majority of the patients will be assigned to the dose levels near the
MTD, which allows for a more precise estimation of the MTD.

10.2.2.6 Stopping Rule

There are many possible rules for stopping a trial. For example, when a fixed total
number of subjects is reached, the trial will stop. However, this simple method often
does not work well. An alternative is to fix the number of subjects at a dose level and
whenever the number is reached at any dose level, the trial will stop. Simulations
have shown that this is more efficient than fixing the total number of subjects (Chang
2008).

10.2.2.7 Extension of CRM

Extensive studies have been done along the lines of CRM and dose-finding studies:
CRM for bivariate competing outcomes (Braun 2002), dose-finding based on
toxicity-efficacy trade-offs (Thall and Cook 2004), dose-finding with two agents
in phase-I oncology trials (Thall et al. 2003), a hybrid Bayesian adaptive design
for dose-response trials (Chang and Chow 2005), a logistic regression for drug
combination trials (Wang and Ivanova 2005), a dose-finding model using toxicity-
efficacy odds-ratio contour (Yin et al. 2006), a quasi-likelihood approach to
accommodating multiple toxicity grades (Yuan et al. 2007), the Bayesian model
averaging approach, safety-efficacy modeling to time-to-event outcomes, copula
regression for drug-combination trials (Yin and Yuan 2009a,b), and others.

For a combination of drugs, a single model may not fit the data well. In such
cases, the average CRM can be used, in which multiple models are specified and the
final average toxicity rate is the weighted average of the models,

Np .x/ D O�k .x/ Pr .Mk jD/ ,

where D denotes the observed data and Mk is the kth model with toxicity rate
pk .xI ak/ (e.g., a logistic model (10.57)). The weight O�k .x/ is the posterior mean
of the toxicity probability,

O�k .x/ D
R
pk .xI ak/L .DjMk .ak// f .ak jMk/ d˛kR

L.DjMk .ak// f .ak jMk/dak
,

where f .akjMk/ is the prior distribution of ak under modelMk and L.DjMk.ak//

is the likelihood function under modelMk.ak/.
For a bivariate model that models the toxicity and efficacy data of a compound,

the joint distribution function can be constructed using a copula (see Chap. 6) that
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combines the two marginal distributions pe.x/ for efficacy and pt.x/ for toxicity
(Nelsen 1999),

pet .x/ D 1 � ˚
.1 � pae .x//

�c C .1� pbt .x//
�c � 1


�1=c
,

where the association parameter c > 0 characterizes the correlation between efficacy
and toxicity, and a and b are constants.

Copulas can also be used for studying drug combinations. In such cases, the
association parameter c >0 characterizes the drug-drug interactions.

Alternative to the multivariate approach, we can combine the response variables
to form a composite response variable (e.g., in the efficacy-toxicity model, we can
construct a univariate model based on the efficacy-toxicity trade-off). However,
because the response pattern of the composite variables may not be a simple
function, a Bayesian averaging model may be very helpful in this regard.

10.2.3 Safety Signal Detection

For the purpose of analysis, it is helpful to classify adverse drug events (AEs) into
tiers. According to Mehrotra and Heyse (2004), Tier 1 AEs are those thought to be
caused by the drug or AEs of special interest (AESI). Tier 1 AEs are predefined
in the clinical trial protocol, and, if the rate is not very low, this hypothesis may be
predefined and tested using the trial data. Tier 2 AEs are any AEs other than Tier 1
that are routinely collected in clinical trials. The analysis of those AEs is descriptive
in nature; confidence intervals and p-values for comparison between treatment arms
may be reported, but no criteria for rejecting hypotheses are prespecified. Tier 3 AEs
are those from postmarketing or are spontaneous. Here we focus on Tier 2 AEs. As
stated by Chi et al. (2002), from a regulatory perspective, “Safety assessment is
one area where frequentist strategies have been less applicable. Perhaps Bayesian
approaches in this area have more promise.” Berry and Berry (2004) proposed a
three-level hierarchical Bayesian model for analyzing the Tier 2 AEs according
to the hierarchical structure of MedDRA (the Medical Dictionary for Regulatory
Activities Terminology). MedDRA is a controlled vocabulary widely used as a
medical coding scheme. It is a clinically validated international medical terminology
used by regulatory authorities and the pharmaceutical industry. The terminology is
used throughout the entire regulatory process, from premarketing to postmarketing,
and for data entry, retrieval, evaluation, and presentation.

The MedDRA hierarchical structure includes about 25 System Organ Classes
(SOCs), 350 high-level group terms, 1,700 high-level terms, 11,000 preferred
terms (PTs), and 46,000 lowest-level terms. The hierarchical model will be able
to synergize the information within and across SOCs and will allow early detection
of safety signals and alert medical reviewers to focus on the right safety issues.

Let Abj be the j th AEs in the SOC, which are assumed exchangeable within
the SOC in the following three-level hierarchical mixed model. The probabilities
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of experiencing Abj are cbj and tbj for subjects in the control and treatment groups,
respectively. A commonly used risk measure is the log odds ratio �bj, which is a
logistic transformation of the AE probabilities:

8
ˆ̂<

ˆ̂:

�bj D ln

�
cbj

1 � cbj

�
,

�bj D ln

�
tbj

1 � tbj

�
� �bj.

(10.63)

When �bj D 0, the probability that a patient experiences Abj is the same for the
control and treatment; that is, cbj D tbj.

For a level 1 model,

8
<

:
�bj � N

�
��b; �

2
�

�
,

�bj � �bI
�
�bj D 0

�C .1� �b/N
�
��b; �

2
�b

�
,

(10.64)

where function I Œx
 D 1 if x is true and 0 otherwise.
For a level 2 model,

8
ˆ̂<

ˆ̂:

��b � N
�
��0; �

2
�0

�
; �2� � IG

�
˛�� ; ˇ��

�
,

�b � Beta .˛� ; ˇ�/ ,

��b � N
�
��0; �

2
�0

�
; �2�b � IG .˛� ; ˇ� / ,

(10.65)

where IG.�; �/ is the inverse-Gaussian distribution, and ˛˛� and ˇ�� are fixed
constants.

For a level 3 model,

8
ˆ̂̂
<̂

ˆ̂̂
:̂

��0 � N
�
��00; �

2
�00

�
; �2�0 � IG

�
˛�� ; ˇ��

�
,

˛� � �˛ exp .�˛�˛/
exp .��˛/ I .˛ > 1/ ; ˇ� � �ˇ exp

��˛�ˇ
�

exp
���ˇ

� I .ˇ > 1/ ,

��0 � N
�
��00; �

2
�00

�
; ��0 � IG .˛�0; ˇ�0/ .

(10.66)

The hyperparameters ��00, �2�00, ˛�� , and ˇ�� are fixed constants. Here, the
function I Œx
 is used to restrict both parameters in the beta-distribution to be greater
than 1 so that the posterior density of � will not become too heavily concentrated at
one of its edges.

Berry and Berry (2004) use the parameter values ��00 D 0, �2�00 D 10, ˛� D 3,
ˇ� D 1, ˛�0 D 3, ˇ�0 D 1, ˛�� D 3, ˇ�� D 1, ˛�� D 3, ˇ�� D 1, and �˛
D �ˇ D 1 in their simulations, with 10,000 observations from the posterior after
a burn-in of 1,000 observations. The posterior distributions and the details of the
MCMC methods are available in their paper.
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10.2.4 Missing-Data Handling

Missing data are common in practice. Missing data can reduce the power of analysis
and cause bias and imprecise estimation. We use Bayesian bootstrapping to illustrate
the Bayesian method in handling missing-data issues.

From the Bayes Theorem, the joint posterior distribution of ymis and � is

' .�;ymis/ _ f .ymis;yobsj�/ � .�/ , (10.67)

where � .�/ is the prior. The marginal posterior of � is given by

� .�jyobs/ D
Z
' .�;ymis/ dymis: (10.68)

We can draw random samples .�.1/;y .1/mis/; : : : ; .�
.m/;y

.m/
mis / from '.�;ymis/ to

form an empirical distribution to approximate�.�jyobs/. This empirical distribution
can be used for estimation and inference. For example, given the function h.�/, we
can have

E fh .� jyobs/g ' 1

m

h
h
�
�.1/

�
C : : :C h

�
�.m/

�i
. (10.69)

In the case that there is no analytical form available, we can easily obtain
the marginal distributions p.ymisj�.t/;yobs/ and p.� jy .tC1/mis ;yobs/ from the joint
distribution '.�;ymis/. The computer algorithms to obtain the posterior distribution
of � are available elsewhere (Chang 2010).

10.2.5 Meta-Analysis

As we discussed in Chap. 7, meta-analysis is a statistical technique for performing
integrated analyses by combining results of several independent studies to answer
specific questions. Let �i and �2�i be the treatment effect and its variance for the i th
clinical trial, (i D 1; 2; : : : ; K).

We can propose a Bayesian hierarchical model,
8
ˆ̂<

ˆ̂:

O�i j�i ; ��i ind� N
�
�i ; �

2
�i

�
;

�i D N
�
�; �2i

�
;

�2i � �
�
�2
�
:

(10.70)

A frequentist estimate for the overall parameter is given by (see Chap. 7)

O� D
PK

iD1 w2i .�/ O�iPK
iD1 w2i .�/

; (10.71)
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where � can be estimated using a frequentist approach. However, the frequentist
estimate O� is inaccurate when the number of meta-analyses is small and O� is sensitive
to O� . This sensitivity issue can be overcome by using a Bayesian prior for �2.
Accordingly, wi in (10.71) is replaced by

wi .�/ D
Z

�
�
�2
�

�2�i C �2
d�2: (10.72)

Particularly, for the flat prior �
� O�2� D 1

�2max��2min
;

wi D 1

�2max � �2min

Z
1

�2
�i

C �2
d�2 D 1

�2max � �2min

ln
�2�i C �2max

�2
�i

C �2min

: (10.73)

10.2.6 Noninferiority Design

Noninferiority trials are intended to show that the effect of a new medical treatment
is not worse than that of an active-control by more than a specified margin, called
the noninferiority margin.

The hypothesis test for noninferiority is given by

Ho W �T � �C � �ıNI versusHa W NHo, (10.74)

where �T and �C are treatment effects for the test and control groups, respectively.
Here ıNI > 0 is the noninferiority margin, which is determined based on clinical
and statistical considerations.

NI trials are also utilized in the so-called bridging studies. A bridging study (de-
fined by The International Conference on Harmonization E5) is usually conducted
in the new region only after the test product has been approved for commercial
marketing in the original region due to its proven efficacy and safety. If the foreign
clinical data contained in the complete clinical data package (CCDP) cannot provide
sufficient bridging evidence, ICH E5 suggests that a bridging study should be
conducted in the new region to generate additional information to bridge the foreign
clinical data. The ICH E5 therefore defines a bridging study as a supplementary
study conducted in the new region to provide pharmacodynamic or clinical data
on efficacy, safety, dosage, and dose regimen to allow extrapolation of the foreign
clinical data to the population of the new region.

Following Simon (1999), Liu et al. (2004) proposed the model

Y D �P .1 �X/C f�NTZ C �OT .1 �Z/gX C "; (10.75)
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where �P is the common placebo effect for both new and original regions, �NT

(�OT) is the treatment mean for the new (original) region, the dummy variableX D 1

for the test group and 0 for the placebo group, Z D 1 for the new region and 0 for

the original region, and "
iid� N.0; �2/.

Given the data from the bridging study and prior information (�P , �NT , �OT )
formulated from the CCDP, the efficacy observed in the bridging study of the
new region is similar if the posterior probability of similarity using the concept
of noninferiority is at least 1 � ˛; that is,

PSI D P f�NT � �OT C ıNI � 0jbridging data, priorg � 1 � ˛: (10.76)

For the proportional margin ıNI D �.�OT ��P /, where 0 < � < 1, (10.76) becomes

PSI D P f�NT � .1 � �/�OT � ��P � 0jbridging data, priorg � 1 � ˛: (10.77)

Based on the n clinical responses from the bridging study, the least-squares mean
estimators for �NT and �P are given as (Liu et al. 2004)

�
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P XY
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�
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�
;

0
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�2
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0

0
�2

NNP

1

CCA

1

CCA , (10.78)

where NNT and NNP are the sample sizes for the test and placebo groups, respec-
tively, in the bridging study.

Assume the prior distribution of the parameter vector .�P ; �OT ; �NT/
0 with mean

.�P ; �OT ; �NT/
0 and diagonal covariance matrix with diagonal elements �2P , �2OT , and

�2NT , respectively. Using the normal prior distribution, the posterior distribution is
normal with mean .�P ; �OT ; �NT/

0 and a diagonal covariance matrix with diagonal
elements �2P , �2OT , and �2NT , where

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

�P D
�
�P

�2P
C YNP

v2P

�
�2P ,

�2P D
�
1

�2P
C 1

v2P

��1
,

�OT D �OT ,

�2OT D �2OT ,

�NT D
�
�NT

�2NT

C YNT

v2NT

�
�2NT ,

�2NT D
�
1

�2NT

C 1

v2NT

��1
.

(10.79)
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It follows that the posterior distribution of the quantity �NT � .1��/�OT ���P
is normal with mean � and variance !2, where

8
<

:
� D �NT � .1 � �/ �OT � ��P ;

!2 D �2NT � .1� �/2 �2OT � �2�2P :
(10.80)

With posterior (10.80) and similarity criterion (10.77), it is straightforward to
determine the efficacy of the drug in the new region.

10.2.7 Disease Mapping

Hierarchical models can be used in epidemiological studies such as disease map-
ping. The goal of disease mapping is to provide a geographical distribution of a
disease displaying some index such as the relative risk of the disease. LetOi andEi
(i D 1; : : : ; N ) be the observed and expected number of cases of a disease in the i th
region. Ghosh et al. (2006) used a multivariate normal distribution for log-relative
risks ln �i in their hierarchical model:

�
Oi j�i � Poisson .Ei�i / ,
where link function ln �i D x0

iˇ C 
i :
(10.81)

Let � D f
1; : : : ; 
N g. Assuming the conditional autoregressive model for the
correlation among the 
i s, we can obtain the prior

� � N .0;˙/ , (10.82)

where ˙ D � .Dw � ˛W /�1. Here 0 < ˛ < 1, which ensures the prior spatial
correlation, and the proximity matrix W satisfies ˙N

iD1wij D 1. The element wij

spatially connects regions i and j in a certain manner.Dw DDiag.�21 ; : : : ; �
2
N /.

Ghosh et al. (2006) used a constant ˛ and a vague prior for ˇ in their example
for modeling cancer rates in 56 countries. There are many other applications of the
Bayesian approach in the medical and life sciences. More examples can be found in
Gelman et al. (2004), Simon (1999), and Spiegelhalter et al. (2004).

10.3 Controversies and Debates

There is a long history of debate between frequentists and Bayesians. Since the
nineteenth century, frequentists have dominated the field of statistics. However,
there is an apparent trend that Bayesianism is starting to gain momentum. One of the
distinctions between frequentist and Bayesianism is that a parameter is considered
a fixed unknown in frequentism but an unknown quantity with a distribution in
Bayesianism. However, with the development of random-effect modeling in the
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frequentist approach, this distinction is not that clear anymore. The purpose of
statistical modeling and analysis is to guide our decisions. We make our decisions
(or take actions) based on our knowledge or perceptions about the truth and not the
truth itself. Knowledge virtually always involves uncertainty. This justifies why we
consider the distributions of parameters even though the true parameters are fixed.

10.3.1 Internal Consistency

As we mentioned in the beginning of the chapter, Bayesianism and frequentism
reflect different beliefs. It is usually acceptable for two controversial mathematical
axiom systems to coexist as long as each of them is internally consistent and
complete. We are going to discuss consistency within frequentist and Bayesian
statistics.

Two fundamental principles are the sufficiency and conditionality principles.

Definition 10.6. When x � f .xj�/, a function T of x (also called a statistic) is
said to be sufficient if the distribution of x conditionally on T .x/ does not depend
on � .

A sufficient statistic T .x/ contains the whole information brought by x about the
distribution of � .

When the model allows for a minimal sufficient statistic (i.e., for a sufficient
statistic that a function of all the other sufficient statistics), we only have to consider
the procedures depending on this statistic.

10.3.1.1 Sufficiency Principle

Two observations, x and y, factorizing through the same value of a sufficient statistic
T (i.e., such that T .x/ D T .y/) must lead to the same inference on � .

10.3.1.2 Conditionality Principle

If m experiments . ME1; : : : ; MEm/ on the parameter � are available with equal
probability of being selected, the resulting inference on � should only depend on
the selected experiment.

The sufficiency and conditionality principles are so intuitively appealing that no
proofs are required, i.e., they are considered axioms.

We now examine the same hypothesis test based on two different experiments.

Example 10.6. Paradox: Binomial or Negative Binomial? Suppose we are inter-
ested in the hypothesis test of a binary endpoint

Ho W p D 0:5 vs: Ha W p > 0:5: (10.83)
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The experiment is finished with 3 responses out of 12 patients. However, this
information is not sufficient for rejecting or accepting the null hypothesis.

Scenario 1: If the total number of patients,N D 12, is predetermined, the number
of responsesX follows the binomial distributionB.nIp/ and the frequentistp-value
of the test is given by

Pr .X � 9jHo/ D
12X

xD9

 
12

x

!
0:5x0:512�x D 0:073.

The null cannot be rejected at a one-sided level ˛ D 0:05. The likelihood in this
case is given by

l1 .xjp/ D
 
12

9

!
p9 .1� p/3 D 220p9 .1 � p/3 .

Scenario 2: If the number of responses, nD 3; is predetermined and the exper-
iment continues until three responses are observed, then X follows the negative
binomialNB.3I 1� p/, and the frequentist p-value of the test is given by

Pr .X � 9jHo/ D
1X

xD9

 
3C x � 1

2

!
0:5x0:53 D 0:0327.

Therefore, the null is rejected at a one-sided level, ˛ D 0:05. The likelihood in this
case is given by

l2 .xjp/ D
 
3C 9 � 1

2

!
p9 .1 � p/3 D 55p9 .1 � p/3 .

These two different conclusions are not surprising to any frequentist statistician
because it is a routine hypothesis that is based on the control of the type-I error rate
˛. However, we want to look at the problem a little more closely.

We can show that the conjunction of the sufficiency and conditionality principles
leads to the likelihood principle (Robert 1997), which says that the two scenarios
above should lead to the same conclusion.

10.3.1.3 Likelihood Principle

The information contained in an observation x about � is entirely contained in the
likelihood function l.� jx/. Moreover, if x1 and x2 are two observations depending
on the same parameter � , such that there exists a constant c satisfying

l1 .� jx/ D cl2 .� jx2/ , (10.84)
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for every � , then l1 and l2 contain the same information about � and must lead to
identical inferences.

In fact, the likelihood principle is intuitively appealing, too. Since l1.xjp/ D
220
55
l2.xjp/ in Example 10.5, we can, according to the likelihood principle, conclude

that all information is included in l.p/ D p9.1� p/3, and the two scenarios should
not lead to different conclusions (rejection or nonrejection).

Note that the likelihood principle is only valid when (1) the inference is about
the same parameter � and (2) � includes every unknown factor of the model.
The likelihood and sufficiency principles are naturally followed by the Bayesian
paradigm. On the other hand, the Bayesian approach rejects other principles, such
as the notion of unbiasedness. This notion was once a cornerstone of classical
statistics and restricted the choice of estimators to those that are, on average, correct
(Lehmann 1983).

10.3.2 Subjectivity

Subjectivity is nothing but a pretext for all kinds of abductions, including the
particular choice of research subjects, experiment designs, and model selection
processes. Subjectivity exists in every scientific discipline. On the other hand,
subjectivity is a reflection of individual experiences; some of those experiences are
closely related to the current study, and many others are remotely related. Because
these relationships to the current study are unclear or difficult to specify, we call this
aggregation of knowledge (evidence) a “subjective prior.” However, without this
subjective prior, everyone would act no more mature than a newborn baby.

Subjectivity does raise concerns in practice when a decision is required to be
made jointly by stockholders who have different priors and when the decision made
will have different impacts on them. The statistical criterion for NDA (new drug
application) approval is an example. The current regulatory criterion is p-value �
˛D 5%, which we all know is not a good scientific criterion. However, if we use
a Bayesian criterion, which prior should be used? Should the prior be different
for different drug candidates? Does it sound practical and scientific to get mutual
agreement on the prior before we obtain the clinical trial results? If not, poststudy
disputes could lead to a disaster.

10.4 Exercises

10.1. Divide the class into teams and perform debates between Bayesian and
frequentist paradigms.

10.2. What are the differences in utilization of prior knowledge between Bayesian
and frequentist approaches?
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10.3. In Example 10.2, suppose X � N.�; �2=n/ and � � N.�; �20 =n0/. Derive
the posterior distribution.

10.4. Suppose that in Example 10.2 the prior has just a single observation x0 from
a normal distribution. Derive the posterior distribution.

10.5. If in Example 10.5 we lose the information about how the design was
conducted (i.e., we don’t know whether the distribution is binomial or negative
binomial, but we do know 3 responses out of 12 subjects), how do you use the
information to make a conclusion for the hypothesis test?

10.6. Study the relationship between the frequentist p-value and the Bayesian p-
value under a normal distribution.

10.7. Discuss the differences between Bayesian hierarchical modeling and frequen-
tist random-effect modeling.

10.8. Discuss the importance of the exchangeability in Bayesian and frequentist
paradigms, and study the exchangeability of observations from sequential trial
designs.

10.9. Justify the Bayesian decision approach in general.
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