
Lecture Notes in Computer Science 2594
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Tokyo

Andrea Asperti Bruno Buchberger
James H. Davenport (Eds.)

Mathematical
Knowledge Management

Second International Conference, MKM 2003
Bertinoro, Italy, February 16-18, 2003
Proceedings

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Andrea Asperti
University of Bologna, Department of Computer Science
Mura Anteo Zamboni, 7, 40127 Bologna, Italy
E-mail: asperti@cs.unibo.it

Bruno Buchberger
Johannes Kepler University
Research Institute for Symbolic Computation
4232 Castle of Hagenberg, Austria
E-mail: Buchberger@RISC.Uni-Linz.ac.at

James Harold Davenport
University of Bath
Departments of Mathematical Sciences and Computer Science
Bath BA2 7AY, England
E-mail: J.H.Davenport@bath.ac.uk

Cataloging-in-Publication Data applied for

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): H.3, I.2, H.2.8, F.4.1, H.4, C.2.4, G.4, I.1

ISSN 0302-9743
ISBN 3-540-00568-4 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2003
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin S. Sossna e.K.
Printed on acid-free paper SPIN 10872514 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of the Second International Conference on
Mathematical Knowledge Management (MKM 2003), held 16–18 February 2003
in Bertinoro, Italy.

Mathematical Knowledge Management is an exciting new field at the inter-
section between mathematics and computer science. We need efficient, new tech-
niques, based on sophisticated formal mathematics and software technology, to
exploit the enormous knowledge available in current mathematical sources and
to organize mathematical knowledge in a new way. On the other side, due to its
very nature, the realm of mathematical information looks like the best candidate
for testing innovative theoretical and technological solutions for content-based
systems, interoperability, management of machine-understandable information,
and the Semantic Web.

The organizers are grateful to Dana Scott and Massimo Marchiori for agree-
ing to give invited talks at MKM 2003.

November 2002 Andrea Asperti
Bruno Buchberger
James Davenport

Conference Organization

Andrea Asperti (Program Chair)
Luca Padovani (Organizing Chair)

Program Commitee

A. Asperti (Bologna)
B. Buchberger (RISC Linz)
J. Caldwell (Wyoming)
O. Caprotti (RISC Linz)
J. Davenport (Bath)
W. M. Farmer (McMaster Univ.)
H. Geuvers (Nijmegen)
T. Hardin (Paris 6)
M. Hazewinkel (CWI Amsterdam)
M. Kohlhase (CMU)

P. D. F. Ion (Michigan)
Z. Luo (Durham)
R. Nederpelt (Eindhoven)
M. Sofroniou (Wolfram Research Inc.)
N. Soiffer (Wolfram Research Inc.)
M. Suzuki (Kyushu)
N. Takayama (Kobe)
A. Trybulec (Bialystok)
S. M. Watt (UWO)
B. Wegner (Berlin)

Invited Speakers

Massimo Marchiori (W3C, University of Venezia)
Dana Scott (CMU)

Additional Referees

G. Bancerek
P. Callaghan
D. Doligez

R. Gamboa
B. Han

G. Jojgov
V. Prevosto

Table of Contents

Regular Contributions

Digitisation, Representation, and Formalisation
(Digital Libraries of Mathematics) . 1

Andrew A. Adams

MKM from Book to Computer: A Case Study . 17
James H. Davenport

From Proof-Assistants to Distributed Libraries of Mathematics:
Tips and Pitfalls . 30

Claudio Sacerdoti Coen

Managing Digital Mathematical Discourse . 45
Jonathan Borwein, Terry Stanway

NAG Library Documentation . 56
David Carlisle, Mike Dewar

On the Roles of LATEX and MathML in Encoding and Processing
Mathematical Expressions . 66

Luca Padovani

Problems and Solutions for Markup for Mathematical Examples
and Exercises . 80

Georgi Goguadze, Erica Melis, Carsten Ullrich, Paul Cairns

An Annotated Corpus and a Grammar Model of Theorem Description . . . 93
Yusuke Baba, Masakazu Suzuki

A Query Language for a Metadata Framework about
Mathematical Resources . 105

Ferruccio Guidi, Irene Schena

Information Retrieval in MML . 119
Grzegorz Bancerek, Piotr Rudnicki

An Expert System for the Flexible Processing of Xml–Based
Mathematical Knowledge in a Prolog–Environment 133

Bernd D. Heumesser, Dietmar A. Seipel, Ulrich Güntzer

Towards Collaborative Content Management and Version Control for
Structured Mathematical Knowledge . 147

Michael Kohlhase, Romeo Anghelache

X Table of Contents

On the Integrity of a Repository of Formalized Mathematics 162
Piotr Rudnicki, Andrzej Trybulec

A Theoretical Analysis of Hierarchical Proofs . 175
Paul Cairns, Jeremy Gow

Comparing Mathematical Provers . 188
Freek Wiedijk

Translating Mizar for First Order Theorem Provers 203
Josef Urban

Invited Talk

The Mathematical Semantic Web . 216
Massimo Marchiori

Author Index . 225

Author Index

Adams, Andrew A. 1
Anghelache, Romeo 147

Baba, Yusuke 93
Bancerek, Grzegorz 119
Borwein, Jonathan 45

Cairns, Paul 80, 175
Carlisle, David 56
Coen, Claudio Sacerdoti 30

Davenport, James H. 17
Dewar, Mike 56

Goguadze, Georgi 80
Gow, Jeremy 175
Güntzer, Ulrich 133
Guidi, Ferruccio 105

Heumesser, Bernd D. 133

Kohlhase, Michael 147

Marchiori, Massimo 216
Melis, Erica 80

Padovani, Luca 66

Rudnicki, Piotr 119, 162

Schena, Irene 105
Seipel, Dietmar A. 133
Stanway, Terry 45
Suzuki, Masakazu 93

Trybulec, Andrzej 162

Ullrich, Carsten 80
Urban, Josef 203

Wiedijk, Freek 188

Digitisation, Representation, and Formalisation
Digital Libraries of Mathematics

Andrew A. Adams�

School of Systems Engineering, The University of Reading.
A.A.Adams@Rdg.ac.uk

Abstract. One of the main tasks of the mathematical knowledge man-
agement community must surely be to enhance access to mathematics
on digital systems. In this paper we present a spectrum of approaches to
solving the various problems inherent in this task, arguing that a variety
of approaches is both necessary and useful. The main ideas presented
are about the differences between digitised mathematics, digitally rep-
resented mathematics and formalised mathematics. Each has its part to
play in managing mathematical information in a connected world. Digi-
tised material is that which is embodied in a computer file, accessible and
displayable locally or globally. Represented material is digital material in
which there is some structure (usually syntactic in nature) which maps to
the mathematics contained in the digitised information. Formalised ma-
terial is that in which both the syntax and semantics of the represented
material, is automatically accessible. Given the range of mathematical
information to which access is desired, and the limited resources avail-
able for managing that information, we must ensure that these resources
are applied to digitise, form representations of or formalise, existing and
new mathematical information in such a way as to extract the most ben-
efit from the least expenditure of resources. We also analyse some of the
various social and legal issues which surround the practical tasks.

1 Introduction

In this paper we present an overview of the use of information technology in
mathematics. Some of the earliest uses of computers was the automation of math-
ematics. Babbage’s Difference and Analytical Engines [Bab23] were designed to
engineer tedious, error-prone, mathematical calculations. Some of the first dig-
ital computers were designed for the purpose of breaking encryption codes. In
the early days of digital computing, much was expected of this mechanical revo-
lution in computation, and yet so little appeared for decades. As with the Strong
AI and Ubiquitous Formal Methods communities, early over-selling of the idea
of mechanised mathematical assistants led to a dismissal of the whole idea by
many in the mathematics community.

� This work is supported by EU Grant MKMNet IST-2001-37057 and UK EPSRC
Grant GR/S10919

A. Asperti, B. Buchberger, J.H. Davenport (Eds.): MKM 2003, LNCS 2594, pp. 1–16, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: h×N
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (h×N)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

2 A.A. Adams

This raises a side question as to who is part of this “mathematical commu-
nity”. Athale and Athale presented a modest categorisation of this community
in [AA01]. In the sense of developing tools and techniques for mathematical
knowledge management(MKM), we must be as inclusive as possible in defining
this community. The narrower our definition, the less use our work will be, and
the more likely to become a sideline in the progress of information technology.
That is not to say that the MKM community should not define specific tasks
with narrow, achievable goals. Far from it, but for each of these goals, the needs
and milieu of the whole mathematical community should be considered before
fixing on the specifics of a project. Some projects will, naturally, only be of in-
terest and benefit to a specific small group within the mathematics community.
Even these, however, will benefit from a broad strategic overview being used to
inform their development. The general and the specific must always be kept in
balance when developing technology. Lack of this overarching viewpoint has led
to the fragmentation of mathematical tools we see currently. This paper presents
a wide-ranging view of who the users of MKM software might be, their needs
and what approaches appear fruitful for further exploration.

We will begin by considering the various levels on which information may be
represented on computers: Digitisation (for display) in Sect. 2; Representation
(purely syntactic detail) in Sect. 3; and finally Formalisation (both syntax and
semantics included) in Sect. 4. Once these categories of mathematical informa-
tion have been described in detail, we will turn our attention to the uses of this
information: in Sect. 5, to the dissemination of mathematical information to the
various types of user; in Sect. 5.1, to the methods of dissemination historically
and to the present; to some ideas on future directions in Sect. 5.2; lastly to legal
and social issues effecting MKM in Sect. 5.3. In Sect. 6 we survey prior efforts in
aspects of MKM, many of which form the background to the work of current re-
searchers in the community, and which will form background or components for
our developing technologies. We finish with some concluding remarks in Sect. 7.

2 Digitisation

New mathematical material is being produced by digital means. In many subjects
this would lead to knowledge management specialists for that field discounting
the necessity of spending much effort on bringing the older non-digital material
into the digital world. In mathematics, however, the effort would not be mis-
placed. Even given the ever-increasing rate of publication of new mathematics
(estimated to be rising exponentially at present: the total amount of mathe-
matics that has been published appears to be doubling every ten years). This
compares with the science in general where it is estimated that only the num-
ber of new works published every ten years doubles (as opposed to the total
published) [Kea00]. Mathematics is a very hierarchical subject. It is rare that
new work completely supersedes older work. Unlike physics, for example, where
new theories expand upon and quite often replace older work, leaving the older
to languish in the annals of the history of science, older mathematics is rarely
completely replaced. Newer proofs may be shorter or more elegant, even appear-
ing to approach some divine perfection [AZ99]. However, when a new area of

Digitisation, Representation, and Formalisation 3

study opens up it is often the case that older proofs, in their less refined and
honed state, may give more insight into approaches, than the newer subject-
specific ones. So, mathematics, and mathematical knowledge, is rarely, if ever,
superseded. See [Mic01] for an interesting look at a specific digitisation effort.

Given this idea, that older mathematics may be as useful as the latest up-
to-date material, it is imperative that efforts at MKM do not begin from 1962
(LISP 1.5 [McC62]); 1979 (TEX [Knu79]); 1988 (Mathematica [Wol]). . . and work
forward with existing represented and formalised mathematics. (In Sect. 3, we
will discuss the work on automatic translation of digitised mathematics texts
into a representational format.) Seminal works may still go out of print, or be
available from small publishers and almost unobtainable, try to buy a copy of
[ML84] for instance. University libraries periodically cull their stock, and printed
matter is always susceptible to accidental destruction. Material is still subject to
copyright and, as we shall discuss in Sect. 5.3, the copyright holders may not even
be the original authors. For instance, I am reliably informed that photocopies of
the difficult-to-obtain (supposedly still in print) [ML84] are available. While this
may be true for widely-acknowledged seminal works, it is less likely to be true
for a wide range of material, languishing in the hands of uninterested publish-
ers refusing to relinquish rights gained from highly biased contracts. A project
such as Project Gutenberg [Har71] should be created as part of a large-scale
investigation into MKM, not to transcribe works of mathematics, but simply
to capture their graphic essence, to guard against loss and degradation of the
physical originals.

That is not to say that digital materials are themselves completely proof
against loss and degradation. [JB01] includes many details on the general issues,
following research by and for The British Library on digital collections. Preserva-
tion of material in digital form requires a different approach to the preservation
of physical material. Some issues are easier to solve for digital copies than phys-
ical ones: digital copies, when made carefully, are identical to the original and
further copies of the copy also do not degrade. Other issues are more tricky
in the digital world: language changes over time may make the “format” of a
physical copy difficult to process, but this usually takes centuries to become a
serious problem (except in the case of rapidly disappearing languages), whereas
the formats of binary files may change very quickly and backwards compati-
bility between formats may not be preserved even for years, let alone decades
or centuries. The physical form of the digital data must also be considered in
terms of potential damage or outdated storage mechanisms. The University of
Edinburgh, for instance, donated their last punched card reading machine to a
computer museum in the 1990s. A year or so later the University had to ask for
it to be loaned back because a number of members of the Physics and Chemistry
department had data that would be expensive to reproduce stored on punched
cards in filing cabinets. CD Roms have only a limited shelf life and although
backwards compatibility with CD Roms is currently being maintained this may
not be the case for decades longer. We will discuss other issues related to this in
the section (3) on represented mathematics.

Current work on the digital display of mathematics focusses on how to effi-
ciently transmit mathematical data which is already digitally represented, and

4 A.A. Adams

how to coherently display that mathematics to capture the intent of the author
while fitting with the restrictions of the reader’s display method. While an issue
for MKM, this is much less important (and recent work has been very successful
at addressing these issues) than the reverse engineering one of taking displayed
mathematics, commonly a mixture of consistent and inconsistent printing for-
mats, and creating a digital archive, which may then be amenable to further
processing, which we now consider.

3 Representation

The problem of cross-communication between differing systems of formalisation
of mathematics has received a moderate amount of interest over the last decade
or so. We will address this issue in detail in Sect. 4. In this section, we concentrate
on the gap between formalised mathematics and digitally displayed mathemat-
ics, which is the simple representation of the syntax without necessarily linking
this to an underlying semantics. Davenport’s overview [Dav01] provides useful
background to both this and the following section.

Typeset mathematics comprises two primary types of text: the mathemati-
cal text and the explanatory text. The richness of the combination is one of the
causes of the massive expansion factor involved in fully formalising a published
mathematics text. Modern mathematics may be typeset in a variety of systems.
Some of these systems include some level of formalisation supporting the math-
ematical text (e.g. in a Mathematica Workbook). Others, such as LATEX [Knu79,
Lam94] or Display-MathML [Fro02], only contain typesetting information which
may be partially converted to a formal semantic scheme. (We will consider rep-
resentations which include fully or partially formalised semantics in Sect. 4.)
There are two primary sources of represented mathematics: papers produced
by mathematics users/producers for which the original encoding is available (as
opposed to merely the graphical output); and scanned mathematics papers. We
will consider these two types of information separately as there are some very
different issues to consider. After this, we will return to the connection between
the mathematical text and the explanatory text.

3.1 Representation from Digital Encoding

Some interesting work has been done on recovering some of the author’s mathe-
matical intent from the printed or digital graphic format of published mathemat-
ics. A very interesting paper is that of Fateman et al [FTBM96]. The main issues
in this topic are the recognition of symbols in the rich language of mathematics,
and the parsing of the two dimensional presentation used in typesetting. Take
the simple instance of integration of real-valued functions. An integral presented
in typeset form might look like this:

b∫

a

f(x)dx

Digitisation, Representation, and Formalisation 5

or this:
∫ q

p
f(y)dy. These may have identical semantics, yet are displayed some-

what differently. Mechanical parsing of these two-dimensional graphical lan-
guages poses problems that have received limited attention from the optical
recognition community (see comments in [FTBM96] for details. Since recovery
of representational material from existing graphical representations (whether
scanned or original digital documents) is important to the field of MKM, it is
up to us in the MKM community to seek collaboration with those working in
the area of parsing of graphic images to develop this field.

Without a suitable underlying representation language in which to embed
the translations, however, the utility of parsing techniques for graphical images
is entirely pointless for a large scale effort at enabling access to a wider corpus.
We will return to this point in Sect. 4.1, where we will consider current systems
which may be good candidates for such representation.

3.2 Representation in the Primary Source

Representations which are available with the source code (e.g. a LATEX file)
are already in a form suitable for automatic parsing to add in some level of
formalisation. Even a veneer of formalisation, providing it is accurately and
automatically produced, can be highly useful in the task of MKM. However,
challenges still remain. Authors use their own style files and redefine commands.
Some intelligence must be applied to the parsing of even a well-written LATEX
file, since the aim of the author is to present the text clearly in the graphical
output to a human reader, rather than to produce machine-parseable code. This
same issue attaches to other methods of typesetting mathematics to a greater
or lesser degree: word processor files using an equation editor; papers written
using a Computer Algebra System (CAS); etc. This issue is also related to that
of the explanatory text, and its relationship to the mathematical text. While
inline formulae are obviously connected to the sentence that surrounds them,
English is full of hanging anaphora, even in the most clearly written technical
paper. Cross-references to equations and lemmas buried in other parts of the
paper, in other papers, and inside floating tables and figures, further cloud the
issue. Even with the abstraction layer of \label and \ref in a LATEX file, such
internal links may be obscure and are almost certainly incomplete.

Some very good initial work on these kinds of problems can be found in
[BB01], which looks at the problem of developing new documents from a variety
of originals, through the use of text-slicing. Some automation is present, but most
of the ‘”meta-information” (information about the document) is hand-crafted.
Beyond this initial input of meta-information, however, there is an automated
layer which ties a variety of documents together in a coherent form. The purely
practical issues of converging a variety of sources has also been considered in
this project.

3.3 Representation and Explanation

The relationship between the natural language parts of a mathematics text and
the symbolic content is further complicated by a variety of nomenclatures and

6 A.A. Adams

symbol sets. The older the mathematical text we wish to represent in a manipu-
lable form, the wider the deviation is likely to be from current standard usages.
Given that this is already a problem requiring the application of intelligence to
understand the context of the pure mathematical text, it is unlikely that current
automatic tools will be able to solve this problem. Automatic cross-referencing
within a paper can help but we must accept the limitations of current technol-
ogy and not expect at this stage too fine grained an automatic analysis of maths
texts.

One area which should be relatively easy within this area, however, is to
cross-link documents both forwards and backwards via citation indices. Each
mathematical document in a digital mathematics library should have an associ-
ated set of links pointing to papers which reference it and which are also avail-
able in the library. Likewise links to the papers referenced from a work should be
present, both where they appear in the text and from the bibliography section
at the end. See Sect. 5.4 for further discussion of cross-referencing to external
items.

3.4 Maintenance of Archives of Represented Material

As previously mentioned, the mere fact that data is digital is not a guarantee of
its incorruptibility. Some basic precautions, such as adequate backup facilities,
are obvious, and the process of mirroring data worldwide is another step int he
right direction. However, the subject of maintaining digital archives is a current
topic of much discussion amongst library scientists, and the MKM community
should take note of such developments. Beyond simple data hygiene and archival
storage of snapshots of data, there is a definite and growing problem in formalised
mathematics that the amount of effort needed to keep formal developments up to
date with the growing, and therefore changing, capabilities of the formal systems
is increasing. If the required effort increases beyond the funding available for
maintenance on such projects then there is a substantial risk of the prior work
degrading, possibly degrading beyond the point where it is quicker and cheaper
to recreate the lost data when it is needed than to try and bring it up to the
state of the art.

There are some interesting developments in this area coming from the NuPrl
group at Cornell University. Growing from a perceived need to maintain large for-
mal developments of abstract and applied mathematics with their own systems,
the NuPrl [CA+86] group developed a “librarian” architecture which maintains
not only the current proof status of objects with reference to the “version” of
the system, but also attempts to patch proofs that fail with new versions using
automated deduction techniques. The system also maintains records and copies
of the older versions of the system in which earlier developments are valid, and
documents that changes between versions. This provides a framework for keep-
ing developments valid with as up to date a version of the system as is feasible
given limited resources. Following on from this development, the Office of Naval
Research has funded a project at Cornell to produce a “library of digital math-
ematics” to support “the production of mathematically proved programs”. This
has consisted of integrating various other theorem proving and some other spe-

Digitisation, Representation, and Formalisation 7

cialist mathematical systems within the same “librarian” framework. In addition,
a fair amount of work has been done on reconciling the differences between the
underlying logics of these various systems (HOL, NuPrl, MetaPRL, PVS, Coq
[BB+96], Isabelle [Pau88]. . .) where possible, and on identifying the difference
where not. Thus, a theorem proved in one system may be identified as compat-
ible or incompatible with the basic logic of another (such as the incompatibility
derived from one system being classical and another constructive in nature).

The development of mathematical software has reached the point of maturity
where there are many users and constant small upgrades to the capabilities of
the software. It has also reached the point where it is usable not only to experts
int he field but to users from other fields wishing to benefit from the advances.
This is a crucial juncture in the development of a field like this and efforts in
preserving a legacy now should prevent much wailing and gnashing of teeth in
the future over incompatible and out of date archives having to be reinvented
instead of merely updated.

4 Formalisation

Formalised mathematical developments might be thought to be the easiest to
control and make use of, given their highly structured nature, and the embedded
semantics necessary for their development. This semantics, however, is purely an
operational semantics. To be useful in supporting human mathematical endeav-
our, some form of denotational semantics or Kripke semantics is still needed to
connect the type Real in PVS [SOR] with the type Real in HOL [GM93], and
to distinguish it from the type Real in Mathematica [Wol] which is actually a
floating point representation.

A note of caution about management of knowledge in formalised mathemat-
ics. As the body of work in the various systems (PVS, HOL, Mathematica etc.)
progress, variations on a theme become more likely. As the body of work in
these areas grows, the chances of re-inventing the wheel become ever more ap-
parent. Large formalisations run to thousands of lemmas and definitions, and
despite efforts at consistent naming, the sheer number of variants required for
a formalisation leads to a lack of clarity. Textual searching through the formal
development, while more easily achieved than textual search through less struc-
tured representations of mathematics, can still lead to an overload of possible
results. So, we must not ignore the needs of the user communities of these sys-
tems for good search mechanisms based on higher order matching and some form
of semantic matching.

4.1 Representation Languages and Formats

There are a number of possible frameworks for use in storing fully formal repre-
sentations of mathematics. Some of these are briefly discussed in Sect. 6 on Prior
Art which informs and provides a foundation for MKM. Here we will compare
some of the existing systems in their scope and utility. A full exploration of these
varied systems would require at least one, probably many, papers so by necessity
this is only a brief overview.

8 A.A. Adams

OpenMath [Dew00b,Dew00a] and OMDoc [Koh01] form an interesting start-
ing point for consideration of formats for representing mathematics. As pointed
out in [APSCS01,APSC+01], however, the source of OpenMath as primarily a
transport layer for CAS, later expanded to cover theorem provers, leaves some
aspects of it unsuitable as a generic formal representation system for mathemat-
ical information.

There are a number of individual systems with a good underlying format for
the representation of parts of mathematics, such as Mizar [Try80]. However, these
systems tend to be tied very strongly to a particular system and a particular
viewpoint of mathematics. SO, while these systems are worthwhile and form a
highly useful and usable source of mathematical knowledge, it is unlikely that
they will be useful as a format for generic representations.

The same can be said of the various theorem provers and computer algebra
systems. Their languages, and even more cross-system developments such as
the CASL [Mos97] are still more focussed on a single kind of mathematical
knowledge.

In bringing MKM into sharper focus there must be a review of the various
languages in terms of their capabilities, their current usage and their suitability
for the needs of MKM. This must be done in parallel with identifying require-
ments and useful goals in the type of information needed to be accessed, and
how that information can be described in a formal way as well as stored in a
formal way.

5 Information Dissemination

So, we have seen that the various types of mathematics held on and accessible
by computer have their problems. The job of MKM, like that of a librarian, is
not just to catalogue, file and cross-reference information. It is to provide it to
those who desire it, in as usable a form as possible. Hence in this section we
consider the problem of MKM in terms of the people involved, their needs and
the possible ways MKM might meet their needs.

5.1 Different Users and Their Needs

When considering types of user for MKM, we are not considering individuals and
splitting them into discrete sets. Rather we are (to use a term from the Human-
Computer Interaction (HCI) community) considering the “modes” of working
displayed by users at different times. These modes can be categorised as:

Producer creating new mathematical information.
Cataloguer filing and sorting a variety of mathematical information into new

collections.
Consumer using mathematical information in an application, or for educa-

tional purposes.

Note that in the process of producing mathematical information, most will also
be consuming other pieces: it is a rare mathematician who does not depend on

Digitisation, Representation, and Formalisation 9

the body of mathematics built up over two thousand years, at least by direct
reference to prior art. A cataloguer is a special form of producer, but one with
such an obviously key role in MKM that we feel that mode should be singled
out for more detailed attention (see Sect. 5.4 in particular). Finally, even in the
“simple” act of applying prior art, a consumer may still produce new material
worth being disseminated to others.

The other useful distinction between classes of user is in their type of employ-
ment. Mathematicians have always included highly skilled “amateurs” in their
ranks as well as those professionally involved in the production of mathematics.
These, and those primarily involved in pure academic positions have specific
goals, generally involving as wide as possible a dissemination of their work.

Non-mathematician academics in a wide variety of fields use mathematics and
produce their own brand of mathematical developments. Computer scientists,
engineer, economists, archaeologists and many others contribute to and benefit
from a wide range of sources of mathematical information, and need good MKM
for the development of their field.

Industrial mathematicians may also be interested in wide distribution of their
own work (for instance see the notes on Intel in 5.3 below), or may be interested
in allowing paid access to parts of it. They also desire access to the work of
others to improve their own developments.

These different types of user also have different modalities of operation. All,
at one time or another, can be regarded in the mode of “learner” or “student”. Of
course, this includes the user for whom this is the primary (sometimes sole) mode,
the student of mathematics. Following on from the student mode of learning a
piece of mathematics, there is the “application” mode, where the user is getting
to grips with a piece of mathematics and using it to solve a problem. Lastly
there is the “development mode” where the user understands the mathematics
well and may come up with novel twists or uses for it, or create entirely new
concepts based on the original.

5.2 From Caxton to CERN

From the development of movable type through to recent developments in
MathML and on-line journals, the dissemination of mathematics has gone
through many changes. Originally one could access such material only by talking
to the mathematician who originated a new concept, or via a limited number
of libraries containing scrolls and then books laboriously copied by hand, an
error-prone procedure, especially when carried out by those with no mathemat-
ical training themselves. The days of movable type improved this process, but
the expense of professional typesetting of mathematics, together with personal
typewriters and early word-processors (with type limited to a few symbols be-
yond alphanumerics) led to a large number of monographs, theses and the like
being produced with typed words but hand-drawn symbology. Gradually this
gave way to more powerful digital solutions and word processors with equation
editors, TEX and LATEX, and CAS with various output options.

The business of publishing has gone through many similar changes. In the be-
ginning natural sciences were supported by the church and universities (many of

10 A.A. Adams

them supported by the church as well, though some more state-oriented institu-
tions existed quite early on). Movable type in particular led to the development
of a business model whereby a publisher put up the costs of the printing (either
directly by ownership or by paying a separate printing business) and took a share
of the profits gained from distributing the product. Books and journals on math-
ematics have proliferated over the years, and the advent of cheap self-publication
on the Web has led to changes in both the business models and the academic
models. However, these models are slow to change and technology has overtaken
the speed with which slow evolution can happen. Pressures are building in both
the academic and business worlds which MKM must take account of in order to
help rather than hinder the goal of MKM, which is to better disseminate math-
ematical information to those who need it, while allowing due benefit to those
who produced it.

5.3 Copyright, Corporate Publishing, and Quality Concerns

In recent years the academic publishers, once concerned with the quality of their
output at least as much with its profitability, have mutated out of recognition.
The “independent” publishers have mostly been bought up by large multi-media
conglomerates and despite the efforts of those who care about the content, the
model of the academic journal, edited and refereed by unpaid academics for the
prestige they gained, is becoming less and less viable with respect to these large
conglomerates, who have priced themselves out of the market in many cases, by
increasing the costs to libraries well beyond the increase in University funding in
most places. Increasingly, academics are beginning to wonder what these costs
are doing other than expanding the bottom line of the publishing houses. Even
the University publishing houses are under pressure from their parent institutions
to produce more income, as other sources decrease. (This is not true everywhere,
but even where the institutions are not under financial pressure, the profits made
by the non-University houses leads to similar increases at the University houses
in many cases.)

The unpaid labour provided by academics and scholarly societies is increas-
ingly begrudged. The ever more restrictive copyright terms demanded by pub-
lishers is another cause for concern, leading the International Mathematics Union
to recommend a counter-proposal for copyright agreements [Bor01]. One lead-
ing mathematics academic has even announced that he had abandoned reading
journals in favour of the Alamos archive of “live” papers. As academics face
pressure to produce more, the time and energy they have for the unpaid work of
quality control on the publications of their peers continues to diminish. MKM
surely has a role to play in improving the efficiency of this work, allowing faster,
more insightful refereeing within new models of publication. This needs to be
true not just for formal mathematics, which is supposed to automate some of
the refereeing process by using a proof checker to test the validity of claims,
allowing the referee to study the definitions and final resulting theorems rather
than needing to work through the intermediate result. The role of a referee can
be seen as part of the cataloguing work that needs to be done for the efficient
management of mathematical information. The role of referees in determining

Digitisation, Representation, and Formalisation 11

the importance and overall quality of mathematics that is a candidate for publi-
cation would be very difficult to automate, but the book-keeping involved in this
process can be made much easier with the correct attribution of meta-data, and
the easy availability of referenced prior art. The recent scandal of falsified results
in physics at Bell Labs [Bel02], with papers published in Science and Nature,
reinforces the necessity of providing good support for the peer review system in
mathematics and related subjects.

The attitude of the free software movement, that better code comes from free
distribution and the right to produce derivative works, has many similarities with
the attitudes of mathematicians (particularly academics). Even companies who
business model is built primarily on the value of certain classes of intellectual
property (such as Intel Corporation) recognise that other intellectual develop-
ments (such as the formalised mathematics of Harrison [Har00]) are more valu-
able in free dissemination than in closed-source exploitation. Formalised mathe-
matics still mostly follows this ideal and MKM tool developers need to be aware
of the desires of the mathematics communities in similar respects.

The idea of the mathematical toolbox, like the IT toolbox being developed as
Open Source Software, can be shown to benefit a variety of users. Mathematics,
like IT, is more often a tool in wealth generation, than the product generating the
wealth directly. it is in the interests of society and mathematicians that the tools
in these toolkits are as available as possible, and flexible in their applicability.

So far in this section we have focussed on the issue of new mathematics be-
ing published. As we have said before, however, MKM is at least as much about
enabling access to the existing corpus as it is about new material. Here we have
a difficult problem, posed by existing agreements between publishers and the
original authors. While there are many possible copyright agreements between
author and publisher, the ones which concern us are those which either assign
copyright (or all rights of exploitation) to the publisher, or those which restrict
electronic rights to the author themselves. For material which needs digitisation
(from journals, books or conference proceedings) some of this is probably now
out of copyright (though less and less new material is being added to the intellec-
tual commons in this way due to ever-increasing lengths of copyright protection).
However, the vast majority of material published after 1930 will be under copy-
right still, and care would have to be taken with any large-scale digitisation effort
to comply with the appropriate law (especially with international treaties since
such an effort would almost certainly be undertaken in various global locations).
Any estimates of the effort involved in such work should include costings on con-
tacting, negotiating with, and possibly paying, copyright holders for the right
to transfer their material to a new form (i.e. producing a derivative work). It
should be noted that even where an author has not signed over copyright in the
work itself to the publisher, the publisher still retains copyright over the layout
of the material and must be included in discussions.

12 A.A. Adams

5.4 Meta-information

The Web in general is beginning to suffer from information overload. Legal ar-
guments about deep-linking, the copyright status of “collections of information”
and digital copyright laws are contributing to the chaos in general information
management at present. While it can be expected that these arguments will go
on for some time, it can be hoped that relatively stable situations can be reached
with respect to parts of the mathematics community quite quickly.

In respect of this, it is in the development of good infrastructure for support-
ing meta-level information (information about a piece of digital mathematics)
that MKM may have the quickest and most prevalent effect. Meta-Information
can be produced automatically or “manually”, and in the case of information
only digitised but not represented, manual production is quite probably the only
feasible way forward. Some of this meta-information already exists, in fact, such
as the straight citations of papers. As we shall see below, however, even these
are not without problems are present. As with much of MKM development, the
limited resources available must be put to good use, and frequently, the manual
or machine-assisted production of good quality meta-information will be of far
more use than the translation of digitised material into symbolic representations.
Only once automatic translation and automatic extraction of meta-information
become possible will this change. All these areas should be explored and devel-
oped but the near-term realisable goals should be pursued with greater vigour
in the short term while laying the groundwork for improved automation in the
longer term.

While MathSciNet [AMS], the Alamos archive, citeseer [Cit] and other sys-
tems are useful, the lack of a good underlying representation of the mathemati-
cal content of pages reduces that utility exponentially in the number of papers
stored. Note, for instance, that most journals in mathematics and the mathemat-
ical sciences, such as computing and physics, generally advise authors to avoid
use of mathematical formulae in the titles of papers, so that text-only searching
can be applied at that level. Good symbolic representations and formalisations
are obviously the way in which meta-information should be stored an manip-
ulated, and it is in this area that the experience of those working in theorem
proving (automated and machine-assisted) and CAS should prove highly useful.
HCI experts are also important to such undertakings. An excellent database
of meta-information about digitally stored mathematics remains useless if the
interface is counter-intuitive. Not only must the underlying representation of
meta-information be suitable for automatic processing and searching (a hard
problem in itself) it must also be possible to enter and display the queries and
results in a usable fashion. The experience of HCI experts in theorem proving
and CAS should again be invaluable in this arena.

The various technologies mentioned above (OpenMath, OMDoc, HELM,
“book-slicing”) are a vital starting point for identifying suitable technologies
for storing and accessing mathematically useful meta-information. Once good
methods for storing and entering meta-information for mathematics have been
developed, there needs to be a concerted effort to “sell” it to as many producers

Digitisation, Representation, and Formalisation 13

and cataloguers of mathematics as possible. This does not mean ask them to
part with money for the right to be involved in the web of knowledge, but to
persuade them that being involved is in their interests and that making their
meta-information freely available to others in return for reciprocal access, will
benefit them in the long run. The intellectual property issues, in both a legal
and a social sense, make this area a sensitive one that must be handled with
care.

6 Prior Art: Previous and Current Projects of Relevance
to MKM

It would be impossible to cover all the projects that have led to the formation
of the current MKM community. However, there are various projects, either re-
cently completed or currently ongoing, to which members of this community
should pay close attention, particularly to the projects they themselves were
not involved with, the assumption being that they are well aware of the poten-
tial contributions of their own previous work. So, in this section we will give a
quick description of a number of project, primarily EU funded, which form the
background to current developments of a concerted effort in Europe, not ignor-
ing the contributions of those elsewhere, particularly in the US. Some of these
projects have already been discussed in more detail but it is useful to have them
mentioned here again.

– Monet: http://monet.nag.co.uk/
Mathematics on the Net. A recently funded EU project starting in early 2002.
This project is aimed at the general theme of “mathematical web services”,
generic mathematical services offered over the internet.

– OpenMath: http://monet.nag.co.uk/openmath

A Common Mathematical representation language for mathematical soft-
ware, particularly CAS and theorem proving systems. The OpenMath Soci-
ety continues to support and extend the standard. A new EU project started
in 2001, following on from the original project which ran from 1997 to 2000.

– Calculemus: http://www.calculemus.net/
A project to combine the capabilities of CAS (excellent for calculation) and
Theorem Provers (good for proving logical statements) into better mathe-
matics software. In addition to an EU funded network of sites with junior
researchers, there are annual workshops/conferences and a recent autumn
school.

– MoWGLI: http://www.mowgli.cs.unibo.it/
Mathematics on the Web, Get it by Logic and Interfaces
The MoWGLI abstract from their website:
The World Wide Web is already the largest resource of mathematical knowl-
edge, and its importance will be exponentiated by emerging display tech-
nologies like MathML. However, almost all mathematical documents avail-
able on the Web are marked up only for presentation, severely crippling the

14 A.A. Adams

potentialities for automation, interoperability, sophisticated searching mech-
anisms, intelligent applications, transformation and processing. The goal of
the project is to overcome these limitations, passing from a machine-readable
to a machine-understandable representation of the information, and devel-
oping the technological infrastructure for its exploitation. MoWGLI builds
on previous standards for the management and publishing of mathematical
documents (MathML, OpenMath, OMDoc), integrating them with different
XML technologies (XSLT, RDF, etc).

– Euler

Euler is a relatively recently funded EU project to develop a web portal for
mathematics available on the web. This project is aimed at the user interface
level of searching for, and using, mathematical information and services via
the internet.

– Mizar
One of the oldest Formalised Mathematics projects. Since the early 1970s
the Mizar project has been a central point for a large development of fully
formalised mathematics and the development of the Mizar system and its
components. Various aspects of the system have influenced the development
of related projects, such as the ability to produce “human-readable” versions
of proofs.

– MKMNet: http://monet.nag.co.uk/mkm/

This EU 5th Framework project (IST-2001-37057) has been funded to sup-
port the development of a 6th Framework Integrated Programme for Math-
ematical Knowledge Management. It is run by a consortium of (primarily)
academics most of whom were present at the MKM ’01 workshop.

– NIST Digital Library of Mathematical Functions

Based on the Handbook of Mathematical Functions [AS72], this NIST project
aims to digitise and extend the utility of this seminal mathematical reference
text. Two papers were presented about this project at MKM ’01: [Loz01,
MY01].

– Digital Library of Mathematics: Cornell University

This project has already been described in some detail in Sect. 3.4. it aims to
produce a library of formalised mathematics, from various theorem proving
and related systems, for use in program verification and synthesis, for the
US ONR.

7 Conclusions

We hope we have covered a wide range of the issues surrounding MKM in an in-
teresting and enlightening way. The differing viewpoints of technical issues (the
differentiation and the links between digitised, symbolically represented and for-
malised mathematics) and user issues (copyright, HCI, mate-information) have
been covered and some of the links between them explored. This is something

Digitisation, Representation, and Formalisation 15

of a position paper, and some of the ideas are drawn from the discussions since
the first MKM workshop in Linz [BC01].

Attention must be paid not only to the technical issues but the social and
legal ones as well. Without the engagement of as many of the stakeholders as
possible, the development of MKM will be held back.

The role of mathematics in the world continues to grow. While computers
seem ubiquitous, it is really mathematics that is ubiquitous, from e-science ini-
tiatives, to cryptographic protocols, they’re all based on mathematics as well
as computer hardware. Without good MKM, the development of knowledge
economies and a net-enabled world is delayed and made poorer.

Acknowledgements. Many of the ideas in this paper are refined from discus-
sions with members of the MKMNet consortium and attendees at MKM ’01.
I would also like to thank the anonymous referees for a number of good sug-
gestions including the list of related EU project which have contributed to the
development of the MKMNet project.

References

[AA01] M. Athale and R. Athale. Exchange of mathematical information on the
web: Present and Future. In Buchberger and Caprotti [BC01].

[AMS] AMS. Mathscinet. www.ams.org/mathscinet/.
[APSC+01] A. Asperti, L. Padovani, C. Sacerdoti Coen, G. Ferruccio, , and I. Schena.

Mathematical Knowledge Management in HELM. In Buchberger and
Caprotti [BC01].

[APSCS01] A. Asperti, L. Padovani, C. Sacerdoti Coen, and I. Schena. HELM and
the Semantic Math-Web. Springer-Verlag LNCS 2152, 2001.

[AS72] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions
with formulas, graphs and mathematical tables. Dover, 1972.

[AZ99] M. Aigner and G. M. Ziegler. Proofs from THE BOOK. Springer, 1999.
[Bab23] C. Babbage. On the Theoretical Principles of the Machinery for Calcu-

lating Tables. Edin Phtl Jrl, 8:122–128, 1823.
[BB+96] B. Barras, S. Boutin, et al. The Coq Proof Assistant Reference Manual

(Version 6.1). Technical report, INRIA, 1996. Available on-line with Coq
distribution from ftp.inria.fr.

[BB01] P. Baumgartner and A. Blohm. Automated Deduction Techniques for the
Management of Personal Documents (Extended Abstract). In Buchberger
and Caprotti [BC01].

[BC01] B. Buchberger and O. Caprotti, editors. MKM 2001 (First International
Workshop on Mathematical Knowledge Management).
http://www.risc.uni-linz.ac.at/conferences/MKM2001/Proceedings,
2001.

[Bel02] Research Review, 2002.
http://www.lucent.com/news events/researchreview.html.

[Bor01] J. M. Borwein. The International Math Union’s Electronic Initiatives
(Extended Abstract). In Buchberger and Caprotti [BC01].

[CA+86] R. L. Constable, S. F. Allen, et al. Implementing Mathematics with the
NuPrl Proof Development System. Prentice-Hall, 1986.

16 A.A. Adams

[Cit] Citeseer. www.citeseer.org.
[Dav01] J. Davenport. Mathematical Knowledge Representation (Extended Ab-

stract). In Buchberger and Caprotti [BC01].
[Dew00a] M. Dewar. OpenMath: An Overview. ACM SIGSAM Bulletin, 34(2):2–5,

June 2000.
[Dew00b] M. Dewar. Special Issue on OPENMATH. ACM SIGSAM Bulletin, 34(2),

June 2000.
[Fro02] M. Froumentin. Mathematics on the Web with MathML.

http://www.w3.org/People/maxf/papers/iamc.ps, 2002.
[FTBM96] R. Fateman, T. Tokuyasu, B. P. Berman, and N. Mitchell. Optical Char-

acter Recognition and Parsing of Typeset Mathematics. Journal of Visual
Communication and Image Representation, 7(1):2–15, March 1996.

[GM93] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL. CUP,
1993.

[Har71] M. Hart. Project gutenberg, 1971. www.gutenberg.org.
[Har00] J. Harrison. Formal verification of floating point trigonometric functions.

Springer-Verlag LNCS 1954, 2000.
[JB01] M. Jones and N. Beagrie. Preservation Management of Digital Materials

(A Handbook). The British Library, 2001.
[Kea00] T. Kealey. More is less. Nature, 405(279), May 2000.
[Knu79] D. Knuth. TEX and METAFONT: New directions in Typesetting. AMS

and Digital Press, 1979.
[Koh01] M. Kohlhase. OMDoc: Towards an Internet Standard for the Adminis-

tration, Distribution and Teaching of Mathematical Knowledge. In J. A.
Campbell and E. Roanes-Lozano, editors, Proceedings of Artificial In-
telligence and Symbolic Computation 2000, pages 32–52. Springer LNCS
1930, 2001.

[Lam94] L. Lamport. LATEX: A Document Preparation System, 2/E. Addison
Wesley, second edition, 1994.

[Loz01] D. Lozier. The NIST Digital Library of Mathematical Functions Project.
In Buchberger and Caprotti [BC01].

[McC62] J. et al. McCarthy. LISP 1.5 Programmer’s Manual. MIT Press, 1962.
[Mic01] G. O. Michler. How to Build a Prototype for a Distributed Mathematics

Archive Library. In Buchberger and Caprotti [BC01].
[ML84] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
[Mos97] P. D. Mosses. CoFI: The Common Framework Initiative for Algebraic

Specification and Development. pages 115–137. Springer LNCS 1214,
1997.

[MY01] B. R. Miller and A. Youssef. Technical Aspects of the Digital Library
of Mathematical Functions Dreams and Realities. In Buchberger and
Caprotti [BC01].

[Pau88] L. C. Paulson. The Foundation of a Generic Theorem Prover. J. Auto-
mated Reasoning, 5:363–396, 1988.

[SOR] N. Shankar, S. Owre, and J. M. Rushby. The PVS Proof Checker: A
Reference Manual. Computer Science Lab, SRI International.

[Try80] A. Trybulec. The Mizar Logic Information Language, volume 1 of Studies
in Logic, Grammar and Rhetoric. Bialystok, 1980.

[Wol] www.wolfram.com.

MKM from Book to Computer: A Case Study

James H. Davenport�

Department of Computer Science, University of Bath, Bath BA2 7AY, England
J.H.Davenport@bath.ac.uk

Abstract. [2] is one of the great mathematical knowledge repositories.
Nevertheless, it was written for a different era, and for human reader-
ship. In this paper, we describe the sorts of knowledge in one chapter
(elementary transcendental functions) and the difficulties in making this
sort of knowledge formal. This makes us ask questions about the nature
of a Mathematical Knowledge Repository, and whether a database is
enough, or whether more “intelligence” is required.

1 Introduction

It is a widely-held belief, though probably more among computer scientists and
philosophers than among mathematicians themselves, that mathematics is a
completely formal subject with its own, totally precise, language. Mathemati-
cians know that what they write is in a “mathematical vernacular” [7], which
could, in principle be rendered utterly formal, though very few mathematicians
do so, or even see the point of doing so. In practice the mathematical vernacular
is intended for communicating between human beings, or more precisely, math-
ematicians, or, more precisely still, mathematicians in that subject. The reader
is meant to apply that nebulous quality of “common sense” when reading the
mathematical vernacular.

It turns out to be remarkably hard to write “correct” mathematics in the
mathematical vernacular. The problem is often with “obvious” special cases that
are not stated explicitly1, but which the knowledgeable reader will (and must)
infer. There are even errors in [2] of this sort — see [11] and equation (23). The
ninth printing of [2] contained corrections on 132 pages, and the Dover reprint
of that corrected a further nine pages.

In this paper, we will explore the problems of representing a small part of one
of the most well-known sources of mathematical knowledge: [2]. In particular,
we consider the problems of translating the relevant content of chapter 4 —
Elementary Transcendental Functions — into OpenMath [1,13]. In this paper we
will be concerned with the semantic problems, rather than with the OpenMath
� The author was partially supported by the European OpenMath Thematic Network

and the Mathematical Knowledge Management Network.
1 The author recently had a problem with this, having set an examination question “if

α is algebraic and β is transcendental, is αβ always transcendental”? One students
answered in the negative, quoting the case of α = 0.

A. Asperti, B. Buchberger, J.H. Davenport (Eds.): MKM 2003, LNCS 2594, pp. 17–29, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: h×N
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (h×N)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

18 J.H. Davenport

problems. It should be noted that there is concern within the computer algebra
community about the treatment of these functions in computer algebra [3,17].

It should be emphasised that this paper is in no way a criticism of [2]. The
author is one of, probably literally, millions of people who have benefited from
this enormous compendium of knowledge. Rather, the point is to illustrate that
a book produced for other human beings to read, in days before the advent
of (general-purpose) computer algebra systems or theorem provers, implicitly
assumes knowledge in the reader that it is notoriously difficult to imbue such
systems with. We therefore ask how we can make such knowledge explicit.

2 The “Elementary Transcendental Functions”

These days2 these functions are normally considered to be exp and its inverse
ln, the six trigonometric functions and their inverses, and the six hyperbolic
functions and their inverses. For the purposes of this paper, we will class exp,
the six trigonometric functions and the six hyperbolic functions together as the
forward functions, and the remainder as the inverse functions.

The forward functions present comparatively little difficulty. They are contin-
uous, arbitrarily-differentiable, many–to–one functions defined from C (possibly
less a countable number of singularities) to C. While it is possible to extend
them to run from from the whole of C to C ∪ {∞}, [2] sensibly chooses not to.
The concept of ∞ is a difficult one to formalise (but see [4]), and, while R ⊂ C,
it is not the case for their natural completions: R ∪ {−∞, +∞} �⊂ C ∪ {∞}.

The problem lies rather with the inverse functions. They are continuous,
arbitrarily-differentiable, one–to–many functions defined from C (possibly less
a countable number of singularities) to an appropriate Riemann surface. The
problem comes when we wish to consider them as functions from C (possibly
less a countable number of singularities) to C. The solution is to introduce
“branch cuts”, i.e. curves (though in practice we will only be considering lines
in this paper) in C across which the inverse function is not continuous.

Provided that they satisfy appropriate mathematical conditions, any line or
curve can be chosen as the branch cut. For example, ln, as one makes a complete
counter-clockwise circle round the origin, increases in value by 2πi. Therefore
any simple curve from the origin to infinity will serve as a branch cut. The
normal choice today3, as in [2], is to choose the negative real axis.

It is also important to specify what the value of the function is on the branch
cut. It clearly makes sense to have it continuous with one side or the other, and
the common choice, as in [2], is to choose the value of ln on the branch cut to
be continuous with the upper half-plane, so that −π < � ln z ≤ π. However,
this choice is essentially arbitrary, and [16] would like to make the function two-

2 Other trigonometric variants such as versine have disappeared. However, see sec-
tion 5.

3 Though the author was taught at school to use the positive real axis, with 0 ≤
� ln z < 2π.

MKM from Book to Computer: A Case Study 19

valued on the branch cut: ln(−1) = ±πi. This has the drawback of not fitting
readily with numerical evaluation.

One still might wish to “have one’s cake and eat it”. [15] points out that the
concept of a “signed zero”4 [14] (for clarity, we write the positive zero as 0+ and
the negative one as 0−) can be used to solve this dilemma, if we say that, for
x < 0, ln(x + 0+i) = ln |x| + πi whereas ln(x + 0−i) = ln |x| − πi. However, this
is no use to computer algebra systems, and little use to theorem provers.

The serious problem with branch cuts is that they make many “obvious” re-
lations false. For example, exp takes complex conjugates to complex conjugates,
as exp z = exp z, so one might expect the same, i.e.

log z
?=log z, (1)

to be true of its inverse. Unfortunately, this is true everywhere except on the
branch cut, where z = z, and therefore log z = log z. These complications mean
that it is not a simple matter to codify knowledge about the inverse functions.

2.1 Encoding Branch Cut Information

[10] points out that most ‘equalities’ do not hold for the complex logarithm, e.g.
ln(z2) �= 2 ln z (try z = −1), and its generalisation

ln(z1z2) �= ln z1 + ln z2. (2)

The most fundamental of all non-equalities is z = ln exp z, with an obvious
violation at z = 2πi. They therefore propose to introduce the unwinding number
K, defined5 by

K(z) =
z − ln exp z

2πi
=

⌈�z − π

2π

⌉
∈ Z (3)

We can then rescue equation (1) as

ln z = ln z − 2πiK(ln z). (4)

Since we know that −π < � ln z ≤ π, −π ≤ �ln z < π. So the only places where
the K term is non-zero is when �ln z = −π, i.e. � ln z = π. Hence this equation
implicitly encodes the region of invalidity of equation (1).
4 One could ask why zero should be special and have two values (or four in the

Cartesian complex plane). The answer is that all the branch cuts for the basic
elementary functions (this is not true for, e.g. ln(i + ln z), whose branch cut is
z ∈ {et(cos 1 + i sin 1) | t ∈ (∞, 0]) are on either the real or imaginary axes, so the
side to which the branch cut adheres depends on the sign of the imaginary or real
part, including the sign of zero. With sufficient care, this technique can be used for
other branch cuts as long as they are parallel with the axes, e.g. ln(z + i).

5 Note that the sign convention here is the opposite to that of [10], which defined K(z)
as �π−�z

2π
�: the authors of [10] recanted later to keep the number of −1s occurring

in formulae to a minimum.

20 J.H. Davenport

3 Codifying ln

[2, p. 67] gives the branch cut (−∞, 0], and the rule [2, (4.1.2)] that

− π < � ln z ≤ π. (5)

OpenMath has chosen to adopt equation (5) as the definition of the branch cut,
rather than words, since it also conveys the necessary information about the
value on the branch cut, which the form of words does not. From equation (5),
one can deduce that the branch cut is {z | � ln z = π}, which should be the
same as {z | � ln z = −π}. However, it takes a certain subtlety to convert this
to z ∈ (−∞, 0], and maybe the branch cut should be stated explicitly, either
instead of equation (5) (but then how does one specify the value on the branch
cut?) or as well as it (in which case, how does one ensure coherence between the
two?). However, despite the discussion in the previous section, precisely what
formal semantics can one give to the phrase “branch cut”? Does it depend on
one’s semantic model for C and functions C → C?

Currently, OpenMath does not encode equations such as equation (1) (since
they are false). There are various options.

1. Encode them with unwinding numbers, as in equation (4).
2. Encode them as conditional equations, e.g.

z /∈ branch cut ⇒ log z = log z, (6)

3. Encode them via multivalued functions (see section 6)

The unwinding number approach is attractive, and it could be used in the “un-
winding number approach” to simplification [8]. However, it would be useless
to a system that did not support the semantics of unwinding numbers, though
an “intelligent” database might be able to convert such an encoding into the
conditional one. The conditional equation approach might be helpful to theorem
provers, but the proof obligations that would build up might be unmanageable.
In this form, it does not say what happens when z is on the branch cut, but an
“else clause” could be added.

To state them in the “unwinding number” formalism, the following equations
seem to be a suitable “knowledge base” for ln, in addition to equation (4).

ln(z1z2) = ln z1 + ln z2 − 2πiK(ln z1 + ln z2). (7)

ln(z1/z2) = ln z1 − ln z2 − 2πiK(ln z1 − ln z2). (8)

The following is a re-writing of equation (3):

ln exp z = z − 2πiK(z), (9)

and we always have
exp ln z = z. (10)

MKM from Book to Computer: A Case Study 21

It is harder to write equations (7) and (8) in a “conditional” formalism, since
what matters is not so much being on the branch cut as having crossed the
branch cut. A direct formalism would be

(−π < �(ln z1 + ln z2)) ∧ (�(ln z1 + ln z2) ≤ π) ⇒ ln(z1z2) = ln z1 + ln z2,

but, unlike equation (6), there is an input space of measure 0.5 on which this
does not define the answer. One is really forced to go to something like

−π < �(ln z1 + ln z2) ≤ π ⇒ ln(z1z2) = ln z1 + ln z2

�(ln z1 + ln z2) > π ⇒ ln(z1z2) = ln z1 + ln z2 − 2πi

�(ln z1 + ln z2) ≤ −π ⇒ ln(z1z2) = ln z1 + ln z2 + 2πi

which is essentially equation (7) unwrapped.

3.1 Square Roots

It is possible to define
√

z = exp
(1

2 lnx
)
. This means that

√
inherits the

branch cut of ln. Since this definition is possible, and causes no significant prob-
lems, Occam’s Razor tells us to use it. Equation (7) then implies

√
z1z2 =

√
z1

√
z2 (−1)K(ln z1+ln z2), (11)

and the same discussion about alternative forms of equation (7) applies here. It
is also possible to use the complex sign6 function to reduce this to

√
z1z2 = csgn (

√
z1

√
z2)

√
z1

√
z2. (12)

4 Other Inverse Functions

All the other forward functions can be defined in terms of exp. Hence one might
wish to define all the other inverse functions in terms of ln. This is in fact
principle 2 of [9] (and very close to the “Principal Expression” rule of [15]).

All these functions should be mathematically7 defined in terms of ln, thus
inheriting their branch cuts from the chosen branch cut for ln (equation
5).

6 The csgn function was first defined in Maple. There is some uncertainty about
csgn(0): is it 0 or 1, but for the reasons given in [6], we choose csgn(0) = 1.

7 This does not imply that it is always right to compute them this way. There may be
reasons of efficiency, numerical stability or plain economy (it is wasteful to compute
a real arcsin in terms of complex logarithms and square roots) why a numerical,
or even symbolic, implementation should be different, but the semantics should be
those of this definition in terms of logarithms, possibly augmented by exceptional
values when the logarithm formula is ill-defined.

22 J.H. Davenport

In fact, it is not just the branch cut itself, but also the definition of the function
on the branch cut, that follows from this principle, since we know the definition
of ln on the branch cut.

[2] does not quite adhere to this principle. It does give definitions in terms
of ln, but these are secondary to the main definitions, and, as in the case of [2,
4.4.26]

Arcsin x = −iLn
(√

1 − x2 + ix
)

|x2| ≤ 1, (13)

the range of applicability is limited. [15] suggested, and [9] followed, that equa-
tion (13) be adopted as the definition throughout C. This has the consequence
that

arcsin(−z) = − arcsin(z) (14)

is valid throughout C. No choice of values on the branch cut (compatible with
sin arcsin z = z) can make arcsin(z) = arcsin(z) valid on the branch cut: it has
to be rescued as

arcsin z = (−1)K(− ln(1−z2)) arcsin z
+ πK(− ln(1 + z)) − πK(− ln(1 − z)). (15)

Here we have a fairly complicated formula, and the conditional form

(z /∈ R) ∨ (z2 ≤ 1) ⇒ arcsin z = arcsin z (16)

(which does not tell what happens on the branch cuts, but there z = z) might
be simpler.

For real variables, the addition rule for arctan can be written out condition-
ally [6]:

arctan(z1) + arctan(z2) = arctan
(

z1+z2
1−z1z2

)

+

{π z1 > 0, z1z2 > 1
0 z1 ≥ 0, z1z2 ≤ 1
−π z1 < 0, z1z2 ≥ 1

(17)

For both real and complex variables, there is a representation [8] in terms of
unwinding numbers:

arctan(z1) + arctan(z2) = arctan
(

z1+z2
1−z1z2

)
+

πK (2i(arctan(z1) + arctan(z2)) .
(18)

It is also possible to write the law for addition of real arcsin of real arguments
in a conditional form:

√
(1 − z2

1)(1 − z2
2) − z1z2 ≥ 0 ⇒ arcsin(z1) + arcsin(z2) = A (19)

(
√

(1 − z2
1)(1 − z2

2) − z1z2 < 0) ∧ (z1 > 0) ⇒ arcsin(z1) + arcsin(z2) = π − A

(
√

(1 − z2
1)(1 − z2

2) − z1z2 < 0) ∧ (z1 < 0) ⇒ arcsin(z1) + arcsin(z2) = −π − A,

MKM from Book to Computer: A Case Study 23

where A = arcsin
(
z1

√
1 − z2

2 + z2
√

1 − z2
1

)
, but we have yet to find8 an un-

winding number formalism in terms of arcsin — there clearly is one in terms of
(complex) lns, which works out to be arcsin(z1) + arcsin(z2) =

−i

[
ln

(
iz1

√
1 − z2

2 + iz2
√

1 − z2
1 +

(−1)K(c2)
√

1 − (
z1

√
1 − z2

2 + z2
√

1 − z2
1

)2
)

+ 2πiK(c1)
]
,

where the correction terms are c1 = i(arcsin(z1) + arcsin(z2)) and

c2 = 2 ln
(√

1 − z2
1

√
1 − z2

2 − z1z2

)
.

When K(c2) = 0, the main ln is recognisably arcsin
(
z1

√
1 − z2

2 + z2
√

1 − z2
1

)
,

as required, but otherwise it is ±π − arcsin
(
z1

√
1 − z2

2 + z2
√

1 − z2
1

)
.

It is also possible to state correct relations between the inverse trigonometric
functions, as in [9]:

arcsin z = arctan
z√

1 − z2
+ πK(− ln(1 + z)) − πK(− ln(1 − z)). (20)

No really new issues arise when looking at the other inverse trigonometric
functions, or at the inverse hyperbolic functions.

5 The Case for ATAN2

It is common to say, or at least believe, that, for real x and y,

arg(x + iy) = arctan
(y

x

)
, (21)

but a moment’s consideration of ranges (a tool that we have found very valuable
in this area) shows that it cannot be so: the left-hand side has a range of (−π, π]
with the standard branch cuts, and certainly has a range of size 2π, whereas the
right-hand side has a range of size π.

The fundamental problem is, of course, that considering y
x immediately con-

fuses 1 + i with −1 − i. This fact was well-known to the early designers of
FORTRAN, who defined a two-argument function ATAN2, such that

ATAN2(y, x) = arctan
(y

x

) ?±π. (22)

More precisely, the correction factor is 0 when x > 0, +π when x < 0 and y ≥ 0,
and −π when x, y < 0. For completeness, one should also define what happens
when x = 0, when the answer is +π/2 when y > 0 and −π/2 when y < 0.
8 The situation with addition of arcsin is complicated: see the discussion around equa-

tion (38).

24 J.H. Davenport

This has been added to OpenMath, as the symbol arctan in the transc2
Content Dictionary. Use of this enables us to rescue the incorrect equation [2,
6.1.24] arg Γ (z + 1) = arg Γ (z) + arctan y

x (where x and y are the real and
imaginary parts of z) as

arg Γ (z + 1) ≡ arg Γ (z) + arctan(y, x) (mod 2π). (23)

We should note the necessity to think in terms of congruences.

6 Multivalued Functions

Mathematical texts often urge us (and we have found this idea useful in [6,5])
to treat these functions as multivalued (which we will interpret as set-valued),
defining, say, Ln(z) = {y | exp y = z} = {Ln z + 2nπi | n ∈ Z} (therefore
Sqrt(z) = ±√

z) and Arctan(z) = {y | tan y = z} = {arctan(z) + nπ | n ∈ Z}
(the notational convention of using capital letters for these set-valued functions
seems helpful). It should be noted that Ln and Arctan are deceptively simple
in this respect, and the true rules for the inverse trigonometric functions are [2,
(4.4.10–12)]

Arcsin(z) = {(−1)k arcsin(z) + kπ | k ∈ Z} (24)
Arccos(z) = {± arccos(z) + 2kπ | k ∈ Z} (25)
Arctan(z) = {arctan(z) + kπ | k ∈ Z} (26)
Arccot(z) = {arccot(z) + kπ | k ∈ Z} (27)
Arcsec(z) = {± arcsec(z) + 2kπ | k ∈ Z} (28)
Arccsc(z) = {(−1)k arccsc(z) + kπ | k ∈ Z} (29)

(30)

where we have changed to our set-theoretic notation, and added the last three
equations, which are clearly implied by the first three.

[2, (4.4.26–31)] give equivalent multivalued expressions in terms of Ln, as
in table 6 (we have preserved their notation). To get the correct indeterminacy
from equation (24), it is in fact necessary to interpret z

1
2 as Sqrt(z) throughout

this table. The range restrictions are in fact unnecessary (as proved in [12]), and
it is possible (and consistent with the decisions in the univariate case) to accept
these as definitions.

One might think that the move to multivalued functions was a simplification.
Indeed many statements that needed caveats (unwinding numbers, exceptional
cases) before are now unconditionally true: we give a few examples below, where,
for example, Ln(z1) + Ln(z2) is to be interpreted as {x + y | x ∈ Ln(z1) ∧ y ∈
Ln(z2)}.

Sqrt(z1) Sqrt(z2) = Sqrt(z1z2)
Ln(z1) + Ln(z2) = Ln(z1z2)

MKM from Book to Computer: A Case Study 25

Table 1. Multivalued functions in terms of Ln

(4.4.26) Arcsin x = −i Ln
[
(1 − x2)

1
2 + ix

]
x2 ≤ 1

(4.4.27) Arccos x = −i Ln
[
x + i(1 − x2)

1
2

]
x2 ≤ 1

(4.4.28) Arctan x = i
2 Ln 1−ix

1+ix
= i

2 Ln i+x
i−x

x real

(4.4.29) Arccsc x = −i Ln

[
(x2−1)

1
2 +i

x

]
x2 ≥ 1

(4.4.30) Arcsec x = −i Ln

[
1 + i (x2−1)

1
2

x

]
x2 ≥ 1

(4.4.31) Arccot x = i
2 Ln ix+1

ix−2 = i
2 Ln x−i

x+1 x real

Ln(z) = Ln z

Arcsin(z) = Arcsin z.

However, all is not perfect. Equation (20), which needed caveats (but only on
the branch cuts), now becomes the strict containment

Arcsin z ⊂ Arctan
z

Sqrt(1 − z2)
, (31)

and the true identity is

Arcsin z ∪ Arcsin(−z) = Arctan
z

Sqrt(1 − z2)
. (32)

Note that it is not true that Arcsin z = Arctan z√
1−z2 : the right=hand side has

values alternately in Arcsin z and Arcsin(−z), and misses half the values in each.

6.1 Addition Laws

[2] quotes several addition laws for the multivalued inverse trigonometric func-
tions. We give below (4.4.32–4).

Arcsin(z1) ± Arcsin(z2) = Arcsin
(

z1

√
1 − z2

2 ± z2

√
1 − z2

1

)
. (33)

Arccos(z1) ± Arccos(z2) = Arccos
(

z1z2 ∓
√

(1 − z2
1)(1 − z2

2)
)

. (34)

Arctan(z1) ± Arctan(z2) = Arctan
(

z1 ± z2

1 ∓ z1z2

)
. (35)

Equation (35) is, as the layout suggests, shorthand for the two equations

Arctan(z1) + Arctan(z2) = Arctan
(

z1 + z2

1 − z1z2

)
(36)

and

26 J.H. Davenport

Arctan(z1) − Arctan(z2) = Arctan
(

z1 − z2

1 + z1z2

)
. (37)

It would be tempting to think the same of equation (34), but in fact Arccos(x) =
− Arccos(x), so the ± on the left-hand side is spurious. Modulo 2π, each of
Arccos(z1) and Arccos(z2) has two values, so the left-hand side has, generically,
four values modulo 2π. Therefore we seem to need (see the proof in [12]) both
values of ∓, and this is indeed true. The equation could also be written as

Arccos(z1) + Arccos(z2) = Arccos
(
z1z2 + Sqrt

(
(1 − z2

1)(1 − z2
2)

))
.

When it comes to equation (33), the situation is more complicated, but
in fact it is possible to prove (see [12]) that any containment of the form
Arcsin(z1) + Arcsin(z2) ⊂ Arcsin(A) must also have the property that
Arcsin(z1) − Arcsin(z2) ⊂ Arcsin(A). So the equation should be read as

Arcsin(z1) ± Arcsin(z2) = Arcsin
(
z1 Sqrt(1 − z2

2) + z2 Sqrt(1 − z2
1)

)
, (38)

with each side taking on eight values modulo 2π (counting special cases like
Arcsin(1) as a “double root”).

It is unfortunate that the desire to save space led the compilers of [2] to
compress equations (36) and (37) into equation (35), since the ± notation here
actually has a completely different meaning from its use in the adjacent equations
(33) and (34). For completeness, let us say that in [2, (4.4.35)] —

Arcsin z1 ± Arccos z2 = Arcsin
(

z1z2 ±
√

(1 − z2
1)(1 − z2

2)
)

= Arccos
(

z2

√
1 − z2

1 ∓ z1

√
1 − z2

2

)

the convention is as in (4.4.32), i.e. the equation cannot be split and
√

w means
Sqrt(w), whereas in [2, (4.4.36)] —

Arctan z1 ± Arccot z2 = Arctan
(

z1z2 ± 1
z2 ∓ z1

)

= Arccot
(

z2 ∓ z1

z1z2 ± 1

)

the convention is as in (4.4.34), i.e. the equation can be split.

7 Couthness

[9] introducted this concept. If h is any hyperbolic function, and t the corre-
sponding trigonometric function, we have a relation

t(z) = ch(iz) where c =

{ 1 cos, sec
i cot, cosec

−i sin, tan
. (39)

MKM from Book to Computer: A Case Study 27

From this it follows formally that

h−1
(

1
c
z′

)
= it−1(z′). (40)

Definition 1. A choice of branch cuts for h−1 and t−1 is said to be a couth
pair of choices if equation (40) holds except possibly at finitely many points.

[9] show that, with their definitions (the definitions of [2] with the values on the
branch cuts prescribed) all pairs were couth except for:

arccos/arccosh Here equation (40) only holds on the upper half-plane (includ-
ing the real axis for �z ≤ 1);

arcsec/arcsech Here equation (40) only holds on the lower half-plane (includ-
ing the real axis for �z > 1).

However, [2, (4.4.20–25)] show that all pairs are couth in the multivalued case
(where equation (40) is interpreted as equality of sets).

8 Conclusion

This paper has, as is perhaps inevitable at this stage of Mathematical Knowl-
edge Management, posed more questions than it answers. For convenience, we
recapitulate them here.

1. Should we codify a branch cut, e.g. for ln as a direct subset of C, or via a
specification such as equation (5).

2. If the former, what formal semantics can we attach to the phrase “branch
cut”? Can one do this in a way independent of the specification of C and
C → C?

3. What should be the correct encoding of false equations such as equation
(1): unwinding numbers, conditional or multivalued? How does one cope
with equations such as (7) and (8) in the conditional formalism — aren’t we
just rewriting the unwinding number formalism? Conversely, equation (16)
is distinctly simpler than equation (15), and equation (19) currently has
no unwinding equivalent. Should a Mathematical Knowledge Management
system (in this area) have to support more than one such encoding?

4. How do we support the restriction of these functions to (partial) functions
R → R? In this case most of the unwinding number terms or conditions
drop out. It is harder to see how the multivalued formalism supports this
restriction.
The obvious case where some caveat is still necessary is

√
z2 ?=z, where the

formalisms might be:
z ≥ 0 ⇒

√
z2 = z;√

z2 = (−1)K(2 ln z)
z.

The second has the disadvantage of still introducing complex numbers, via
ln z when z < 0, though it could clearly be massaged into

√
z2 = (sign z)z.

28 J.H. Davenport

5. It appears that, contrary to popular belief, the multivalued semantics are
not simply a tidier version of the univalued (branch cut) semantics: contrast
equation (20) and its conditional equivalent

(z /∈ R) ∨ (z2 ≤ 1) ⇒ arcsin z = arctan
z√

1 − z2

with equation (32). Does this mean that we need two separate Mathematical
Knowledge Repositories for the two cases?

6. Can a Mathematical Knowledge Repository for these facts (either case, or
both cases) be simply a database, or must it be much more intelligent, pos-
sibly incorporating ideas along the lines outlined in [5].

We also deduce the following differences between the “Abramowitz & Stegun”
(A+S) era and the MKM era.

– In the A+S era, it was not necessary to specify the values of the functions on
branch cuts: numerical analysts for the most part did not care (but see [15])
since the branch cuts were of measure zero, and the intelligent reader could
choose the adherence most suitable to the problem. In the MKM era, both
computer algebra systems and theorem provers need to know correctly what
the answer is. For interoperability, they must agree on what the answers is
— see the examples in [9].

– In the A+S era, it was acceptable (maybe only just) to use the ± notation
to mean two different things: in the MKM era it is not, and the notation
should only be used (if at all) with A ± B being shorthand for {a + b, a − b}
(or, in the set-valued case (A + B) ∪ (A − B)).

– A+S was ambivalent about whether it was talking about C → C or (partial)
R → R. Many of the formulae are stated with (unnecessary) restrictions to
the R case — see equation (13) and [2, 4.4.28] relating Arctan to Ln, which
restricts z to be real.

– In the A+S era “everyone knew” what a branch cut was. To the best of the
author’s knowledge, no computer algebra system or theorem prover does.

It is hoped that these thoughts, limited as they are to one chapter of one book,
will stimulate debate about the difficulties of managing this sort of mathematical
knowledge.

References

1. Abbott,J.A., Dı́az,A. & Sutor,R.S, OpenMath: A Protocol for the Exchange of
Mathematical Information. SIGSAM Bulletin 30 (1996) 1 pp. 21–24.

2. Abramowitz,M. & Stegun,I., Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. US Government Printing Office, 1964. 10th
Printing December 1972.

3. Aslaksen,H., Can your computer do complex analysis?. In: Computer Algebra Sys-
tems: A Practical Guide (M. Wester ed.), John Wiley, 1999.
http://www.math.nus.edu.sg/aslaksen/helmerpub.shtml.

http://www.math.nus.edu.sg/aslaksen/helmerpub.shtml

MKM from Book to Computer: A Case Study 29

4. Beeson,M. & Wiedijk,F., The Meaning of Infinity in Calculus and Computer Alge-
bra Systems. Artificial Intelligence, Automated Reasoning, and Symbolic Compu-
tation (ed. J. Calmet et al.), Springer Lecture Notes in Artificial Intelligence 2385,
Springer-Verlag, 2002, pp. 246–258.

5. Bradford,R.J. & Davenport,J.H., Towards Better Simplification of Elementary
Functions. Proc. ISSAC 2002 (ed. T. Mora), ACM Press, New York, 2002, pp.
15–22.

6. Bradford,R.J., Corless,R.M., Davenport,J.H., Jeffrey,D.J. & Watt,S.M., Reasoning
about the Elementary Functions of Complex Analysis. Annals of Mathematics and
Artificial Intelligence 36 (2002) pp. 303–318.

7. de Bruijn,N., The Mathematical Vernacular, a language for mathematics with type
sets. Proc. Workshop on Programming Logic, Chalmers U., May 1987.

8. Corless,R.M., Davenport,J.H., Jeffrey,D.J., Litt,G. & Watt,S.M., Reasoning about
the Elementary Functions of Complex Analysis. Artificial Intelligence and Symbolic
Computation (ed. John A. Campbell & Eugenio Roanes-Lozano), Springer Lecture
Notes in Artificial Intelligence Vol. 1930, Springer-Verlag 2001, pp. 115–126.

9. Corless,R.M., Davenport,J.H., Jeffrey,D.J. & Watt,S.M., “According to
Abramowitz and Stegun”. SIGSAM Bulletin 34 (2000) 2, pp. 58–65.

10. Corless,R.M. & Jeffrey,D.J., The Unwinding Number. SIGSAM Bulletin 30 (1996)
2, pp. 28–35.

11. Davenport,J.H., Table Errata — Abramowitz & Stegun. To appear in Math. Comp.
12. Davenport,J.H., “According to Abramowitz and Stegun” II. OpenMath Thematic

Network Deliverable ???, 2002. http://www.monet.nag.co.uk/???/
13. Dewar,M.C., OpenMath: An Overview. ACM SIGSAM Bulletin 34 (2000) 2 pp.

2-5.
14. IEEE Standard 754 for Binary Floating-Point Arithmetic. IEEE Inc., 1985.
15. Kahan,W., Branch Cuts for Complex Elementary Functions. The State of Art in

Numerical Analysis (ed. A. Iserles & M.J.D. Powell), Clarendon Press, Oxford,
1987, pp. 165–211.

16. Rich,A.D. and Jeffrey,D.J., Function evaluation on branch cuts. SIGSAM Bulletin
116(1996).

17. Stoutemyer,D., Crimes and Misdemeanors in the Computer Algebra Trade. Notices
AMS 38 (1991) pp. 779–785.

http://www.monet.nag.co.uk/???/

From Proof-Assistants to Distributed Libraries
of Mathematics: Tips and Pitfalls

Claudio Sacerdoti Coen

Department of Computer Science
Mura Anteo Zamboni 7, 40127 Bologna, ITALY.

sacerdot@cs.unibo.it

Abstract. When we try to extract to an open format formal mathe-
matical knowledge from libraries of already existing proof-assistants, we
must face several problems and make important design decisions. This
paper is based on our experiences on the exportation to XML of the the-
ories developed in Coq and NuPRL: we try to collect a set of (hopefully
useful) suggestions to pave the way to other teams willing to attempt
the same operation.

1 Introduction

The formalization of interesting and useful fragments of mathematics and com-
puter science requires the development of a lot of elementary theories. In particu-
lar, we recently got more and more evidence of the fact that complex chapters of
mathematics may be required even to justify the correctness of simple algorithms
[8,1].

Current tools for the development of formal mathematical knowledge, such
as theorem-provers and proof-assistants, have been successful in the last decade
only in encoding small parts of mathematics and computer science, starting from
the elementary ones. The lack of sharing between the different systems resulted
in many theories formalized again and again, each time using a different tool.
Moreover, since all of these systems are application-centric and use proprietary
formats, the formalized knowledge is not even accessible, if not by means of
the system itself. Finally, the tasks of visual rendering mathematical libraries
and making them searchable and reusable are complex issues that are usually
under-developed in these tools.

Several groups and projects1 tried to improve the situation, providing two
general and largely orthogonal solutions.

The first solution consists of making the systems communicate to each other,
developing some kind of lingua franca (e.g. OpenMath [12]) and standardizing
software interfaces (e.g. the MBase mathematical software bus [9]). This is the
solution that less impacts the systems, since it is enough to provide a module
1 The Calculemus Network, the MKM Network, the OpenMath Society, the HELM

Project, the MoWGLI Project, the FDL Project, the MathWeb Project and many
others.

A. Asperti, B. Buchberger, J.H. Davenport (Eds.): MKM 2003, LNCS 2594, pp. 30–44, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile (Ø¯P)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

From Proof-Assistants to Distributed Libraries of Mathematics 31

(called Content Dictionary in OpenMath) to query other systems and answer to
queries, mapping the lingua franca to their logical dialect. This solution works
well for computer algebra systems and first order theorem provers, which are all
based on a very similar logic and which are quite flexible on the notion of correct
mathematical results: since the logic is more or less the same, a result proved by
another system can be reasonably considered correct. Fewer applications have
been proposed for making proof-assistants cooperating. The reason is that tra-
ditionally these systems do not attempt proof-search for undecidable theories
and thus are allowed to exploit more complex logical frameworks (Higher Order
Logics, Pure Type Systems, Calculus of Constructions, Martin-Löf Constructive
Type Theory) with more emphasis on the foundational issues and on the notion
of correctness2. Since every proof-assistant adopts a different logic, proofs from
other systems can not be reused nor trusted, unless encodings of one logic into
the others are provided3. Finally, note that this solution is successful in avoiding
proving the same things again or implementing the same decision procedures,
but does not address other problems, in particular those related to the publishing
and rendering of the developed theories.

The second solution, pursued by other projects [2,4], is to develop standard
formats for long-term storing of the formal mathematical knowledge and to use
them to build distributed libraries of documents. In a previous paper [3] we
explained why XML-based formats are a promising choice. Once the standard
formats have been defined, tools can be independently provided to manage, ren-
der, index, transform, create, check and data mine the documents in the library.
Since we must face the multilingual environment of the many logical frameworks,
we can not have just one format, but we need at least one for each logic. Nev-
ertheless, those operations which are independent of the specific logic can still
be implemented once and applied to every document, either directly or after a
transformation that maps the logic level format to a Content Level one (such as
MathML Content or OpenMath); the transformation prunes out the encoding
details of the rigorous mathematical notion into the logical framework, obtain-
ing an informal representation that is more suitable for searching, rendering and
exchange (by means of Phrasebooks) with other systems that are based on a
different logic. Instead, logic dependent tools such as proof-checkers, program
extractors and decision procedures can work directly on the format that corre-
sponds to their logic, without any need of importing or exporting the documents.

2 Axioms are (almost) never introduced in these systems, so that the consistency
of the theory developed is reduced to the consistency of the logical system. As a
consequence, everything must be proved, here comprising very primitive notions
such as the fact that 0 is different from 1.

3 Note that a notion P in the encoding of a system A in a system B is generally
different from the same notion P given directly in system B. For example, 0 is
defined in set theory as the empty set and in type theory as a constructor of an
inductive type. Given that set theory can be encoded into type theory, we can define
a new 0 as the (encoded) empty set; still we will not be able to use it in place of the
original 0, since its type (and properties) are different

32 C.S. Coen

There is an alternative to defining a new XML format for each logic: Open-
Math, being an extensible format, can be used to encode any logical system,
simply defining in OpenMath a symbol for each constructor of the logic. In this
way, though, we do not get any real benefit, since there is no sharing of construc-
tors with other logics; so logic dependent tools will have Phrasebooks defined
on disjoint subsets of OpenMath and will still not be able to share information,
unless a transformation to a Content Level is provided. The only tools that could
be shared are parsers and tools to manage the distribution of the documents,
but with no real benefit. Parsing is not made easier with respect to standard
XML parsing, since the logic level tools will have to interpret the parsed struc-
tures to recognize the constructs of the logic and reject other constructs; ad-hoc
Document Type Definitions (DTDs), instead, at least relieve the system from
this rejection phase. Distribution tools do not get any benefit either, since they
do not need to interpret the data4. On the contrary, at the Content Level Open-
Math provides already developed libraries for the management and exchange of
the information, and may enhance comunication by means of modularly designed
Phrasebooks.

While the first solution does not require big modifications in the existent
tools, the second approach is much more invasive (but also much more promis-
ing), because it implies for the existent tools the change from their application-
centric architecture to the document-centric one. Since this is a slow process,
the suggested shortcut is to provide modules for the existent systems to extract
the mathematical knowledge from their libraries and save it in the new standard
format. This way we achieve two different and equally important goals: we can
start developing the new tools around an already existent library of interesting
documents and we preserve the already formalized content, avoiding redoing the
formalization and, in the long term, improving the way it can be accessed and
exploited.

In 1999 we wrote for project HELM (Hypertextual Electronic Library of
Mathematics) a DTD for a variant of the Calculus of (Co)Inductive Construc-
tions (CIC), which is the logical system of the Coq5 proof-assistant, and an
exportation module from the Coq compiled library files (“.vo” files) to our XML
format. Several tools were then developed to work on the exported library: a
distribution and publishing system; stylesheets to render proofs and definitions
in MathML Presentation or HTML; dependency analyzers and renderers for
studying the relations among items of the library; a query language based on
automatically generated metadata to summarize relevant information extracted
from the statements of the theorems; a brand new stand-alone incremental proof-
checker; a prototype of a proof-engine. Of the previous tools, all but the last two
are logic independent (which implies DTD-independent). All the other tools can
be reused on any other DTD used to encode any other logical framework. The

4 They may inspect metadata, but metadata are provided using the standard RDF
format and are completely logic independent.

5 Another proof-assistant based on a different variant of the same calculus is Lego.

From Proof-Assistants to Distributed Libraries of Mathematics 33

development of our tools helped us in identifying wrong decisions in the design
of the DTD and in the implementation of the export module.

In 2002 we became members of the European IST Project MoWGLI (Math on
the Web, Get it by Logics and Interfaces), which extends the goal of the HELM
project and adds new requirements. Sustained by our previous experience, we
are redefining the DTD for the Calculus of (Co)Inductive Constructions and we
are reimplementing the exportation module, starting from the first version and
adding several new features.

In the meantime in the HELM project we are now trying to export also the
library of the NuPRL system, which is based on a variant of the Martin-Löf
constructive type theory.

In the rest of the paper we will try to outline the principles that we have
learnt in the last three years and that we are now trying to apply to our new
implementations of exporting modules.

2 Tips and Pitfalls

The main self-assesment criteria for an exportation module is that the exported
information must be complete, general enough and unbiased, in the sense that
it must not force some design choices that we would better avoid. The risk is to
later find out to be unable to develop the expected tools.

Thus we must face at least the following issues: What information should be
exported? What is the granularity of the generated files? How is the information
described? (i.e. how should a DTD be designed)

2.1 What Classes of Information Should Be Exported?

Catalogue the information according to its use.
When the information is required for more than one task, factorize.

Before writing the DTDs, catalogue all the information that is available inside
the system and all the information you are interested in (which may or may not
be already available). Since different tools may require different subsets of the
whole knowledge and since you are likely to change the DTDs and the documents
often, insulating the tools from changes in other parts of the library is almost
mandatory. It is not unusual to find out later that the grain was not fine enough.
Example: not every operation that is applied to a theorem requires both the
statement and the proof. Finding out which lemma can be applied, for instance,
just requires the statement or, even better, the list of its hypotheses and the
conclusion.

Sometimes some data is required to perform more than one task. In that case
it is better to factorize, even if the factorized information does not seem at once
to have any special meaning.

We have identified the following classes of information in the library of the
Coq system:

34 C.S. Coen

– Definitions, inductive definitions and proof-objects as sets of lambda-terms,
according to the Curry-Howard isomorphism and the theory of CIC. Even
for definitions, this is not what the user entered to the system, but the result
of complex post-processing, typing and refining rules implemented in Coq.
This is what is actually proof-checked, by type-checking the lambda-terms
and testing the convertibility of their inferred type (in case of a proof, what
the theorem really proves) with the expected type (the statement of the
theorem). Theorems are further refined (see below).

– Statements of the theorems. They are useful not only for proof-checking.
First of all the user can be interested just in the statement of a theorem,
that can be parsed and rendered independently of its proof. Secondly they
are the only information required to answer several kind of logic-dependent
queries:
1. which lemma can be applied in this situation?
2. which theorem concludes an instance or a generalization of something?
3. what can we conclude from a certain set of hypotheses?

Note that the previous queries are essentially based on the notion of unifi-
cation, which is an expensive operation when performed on very large sets
of candidates (that must also be parsed and loaded into memory to apply
unification).
Statements of the theorems can be further divided into hypotheses and con-
clusion. This is not a trivial task, since this information is encoded in a
lambda-term and because the constructors of the logical framework (Π-
abstractions) are overloaded in Coq to mean either a dependent product, a
non dependent product (function space), a logical implication or a universal
quantification. Other logical frameworks as the one of NuPRL, instead, can
have several primitive or derived constructors for introducing hypotheses.
Thus, to implement the logic independent queries in a general way, the sepa-
ration must be performed in advance (either statically or dynamically, when
needed).

– Logic independent information extracted from a statement. For example, the
single notion of occurrence of a definition in a statement is useful to answer
interesting queries:

• which theorem states some property of an operator?
• which theorem may be applied in a certain situation? Note that if we

want to prove some fact about the multiplication of two real numbers, we
are interested only on those statements where that multiplication occurs
and no other uninteresting definition (let’s say the “append” function of
two lists) occurs. So we can effectively use this information to quickly
filter out those theorems whose application will never succeed. Note that
this filtering operation is logic independent (then it can be provided once
and for all for every system), it is easily implemented using a standard
relational or XML-based data-base and can be extremely more efficient
than trying one at a time the applications, which usually involve higher-
order unification of two expressions.

From Proof-Assistants to Distributed Libraries of Mathematics 35

– Proofs. Their size is usually orders of magnitude bigger than the size of their
statements. They are never rendered alone, but are an interesting part of
the library for data-mining (for example to recognize similar proofs or to
understand the complexity of some proofs). An usual operations on proofs
that do not require additional information is proof improvement: a group of
inference steps, possibly automatically found by the system, may be replaced
with a shorter proof, usually human provided.

– Logic independent information extracted from a proof. As for the case of
statements, the most interesting notion is that of occurrence. Given the list
of occurrences it is easy to answer the following queries:

• which proofs depend, directly or indirectly, on a given lemma or axiom?
• which axioms does a proof depend on, either directly or indirectly?
• which part of the library will be affected if some definition or axiom is

changed?
• what should I learn to be able to understand the following theorem?

– System dependent information related to a proof or definition. For exam-
ple, in Coq and other systems there exists a notion of implicit arguments,
which are those arguments that can be automatically inferred by the system
if they are not provided. For example, when writing x = π it is clear that the
monomorfic equality of type ∀T.T → T → Prop is applied to the set of real
numbers. This information is not necessary to proof-check a document, but
may be useful to render it: information that can be inferred by a system can
often be inferred by the human being and is usually omitted in an informal
presentation. Finally, note that implicit arguments are really system depen-
dent, since a more powerful system may be able to infer more information
and thus consider more arguments to be implicit.

– Redundant information related to a proof or definition. A typical exam-
ple is the opacity of a constant. Opaque constants are abstract data types,
whose exact definition can not be inspected. Proofs in proof-irrelevant sys-
tems are always opaque. In those systems that are not proof-irrelevant,
such as Coq, all the constants may be considered transparent for the sake
of proof-checking. This means that all constants may be expanded during
proof-checking. Often, though, it is not necessary to expand every constant
for proof-checking and knowing in advance which constants may not be ex-
panded can make the system much more performant. This information is
essentially logical redundant, since there is an easy algorithm to make it
explicit: try type-checking without any expansion and, in case of failure,
backtrack and expand. Of course the computational complexity of this al-
gorithm is, in the worst case, exponential in the number of constants that
occur in the theorem being typed.
Another even more interesting example of redundant information is the types
of the sub-expressions of one proof, that corresponds to the conclusions of
the subproofs. This information is completely logical redundant (if type-
inference is decidable), but it is essential to render the term in a pseudo-
natural language [6].

36 C.S. Coen

Since extracting the implicit information inside the system is easy, but it may
be very difficult, time consuming or hardly possible to do with an external
tool, the advice is to

Make implicit information explicit.
– Metadata related to definitions and theorems. These are other logic inde-

pendent information such as author name or the version of the system the
proof was developed in that can be useful to implement other kind of queries.
Metadata can range from simple to very complex ones, as those needed in
educational systems [10]. Usually, though, they are not provided inside the
system or they are just given as unstructured comments.

– A system dependent history of the operations that lead to the creation of
a definition or theorem. For example, in the case of Coq, we can export
the proof-tree, which is the internal structured representation of the list of
tactics (and their arguments) used to prove one theorem. This information
may be useful both for rendering purposes and to replay the proof inside the
system, in case we need to modify it.

– Comments. Comments provided by the users are an extremely valuable form
of documentation. The problem is that they are often discharged during the
lexical analysis of the input to the system; So they are likely to be unavailable
inside the system itself.

– Parsing and pretty-printing rules. The existent systems only perform pretty-
printing to ASCII notation, while we are interested in more advanced visual
rendering. Thus we do not have any use for this information, that will not
be exported.

– Tactics and decision procedures. It would be extremely interesting to put
the code of tactics and decision procedures into the library. In this way it
would become possible to replay the construction of a proof independently
from the system that generated it and from its version. Indeed a problem we
face is that every time some detail of the implementation of Coq changes,
the same script produces a new slightly different proof. This represents a
problem from the point of view of proof-engineers, that must continuously
update the proofs every time a definition changes.
To have the tactics into the library we need first to formalize the language
(and the libraries) in which they are implemented and this is surely a complex
task.

Once the information classes have been identified, it is time to start devel-
oping a syntax (a DTD in the case of XML) for them. At this stage it is also
important to understand what are the relations between the data belonging
to the different classes. Those relations must be made explicit. Thus the third
advice is

Develop one DTD for each class you are interested in.
Make the links between different instances explicit in the DTD.
Locate the atomic components.

From Proof-Assistants to Distributed Libraries of Mathematics 37

Our initial expectation was to be able to heavily link at a very fine grained
level the information collected in the documents belonging to the different
classes. For example, it is reasonable to link:

– every type of a sub-term of a proof (inner-type) to that sub-term;
– every node of the proof-tree (that corresponds to a user or system issued

tactic) to the sub-term it generated.

Still it is often the case that there is no real correspondence between those notions
inside the system. For example it may happen that a tactic generates a term
that is not present in the final proof, because a subsequent tactic modified or
discarded it. Another possibility is that the whole proof can be generated using
dirty tactics that create detours or lot of redexes that are later simplified during
a clean-up stage. We consider this behaviour of the system to be a debatable
design decision, since it introduces a gap between the proof that the user wants
to describe and the proof that is produced at the end. This may be especially
annoying when the user is really interested in the generated proof-object and he
is not given any effective tool to inspect it.

In these cases, instead of simply avoiding to provide that linking information,
it is better to pinpoint to the developers of the system the problematic operations
to be modified. In the worst case it may be necessary to create a branch in the
system development to obtain a slightly modified tool that is used to produce
the library that will be eventually exported.

The atomic components that must be located belong to the same informa-
tion classes and represent the minimal referentiable units that have a precise
meaning when considered as stand-alone documents6. Sometimes this notion is
quite fuzzy. For example, what are the atomic components of a block of mutually
defined functions? We may choose that the only atomic component is the whole
block, and the functions are simply subparts that may be referenced starting
from the whole block (using XPaths, in the case of XML). Or we may consider
each function to be atomic and make it refers to the other mutual defined func-
tions via links. Note that some operations (rendering, proof-checking) require
the whole block, while others (extraction of metadata used to answer queries)
operate on one function at a time. Thus, according to our first suggestion, we
should split the functions.

2.2 How Should Files Be Organized?

The need to clearly identify the atomic components, addressed in the previous
sections, is related to our next suggestion:

Do not mix information about several components or belonging to several
classes: one file for each class and for each component.

6 Of course the documents may have links to other documents that must be considered
when determining their meaning. What is important here is that if some kind of
context is requested, it must be explicitly stated by means of explicit links.

38 C.S. Coen

Assembling together information from different classes is perhaps the worst
pitfall, for several reasons:

– The set of operations we want to perform on the data is not a fixed one.
For example, we can implement several indexing tools to be able to answer
to different queries. Since every tool requires and produces new information
that should be put into the library, it is fundamental to be able to define new
file formats (DTDs) and change existent ones. If several information classes
are assembled together, this means that we will have to modify all the already
developed tools to handle (usually to ignore!) the new or modified syntax.
Moreover we will have to regenerate huge amounts of files distributed over
the network (we are supposed to work with distributed libraries of formal
mathematical knowledge).

– The amount of information we want to handle is large. For example, just
the proof objects of the Coq libraries and their inner-types, once saved as
compressed XML files, require about 260Mb. It is not unusual to have sin-
gle theorems that, exported in XML and compressed, require 24Kb. Thus
parsing (or even lexically analyze) these files is an expensive operation. Of
course we want to avoid as much as possible wasting time in parsing parts
of a file we are not interested in.

– It is reasonable, at least for some applications, to use a data-base to hold
the exported information. In that case the XML representation is used just
as an exchange format and mixing several data in the same file is not a
problem, since the information will be disgregated inside the data base. This
approach, though, limits a priori the possibility of implementing other tools
that, instead of connecting themselves to the database, will just work on the
original files. Moreover, the database approach is surely heavier from the
point of view of Web-publishing, where the most successful model is that of
Web pages publishing, which is simpler and less demanding.

So far we have given suggestions on how to decide which classes of information
should be exported and how files should be organized. We will now go back to
the problem of designing the DTD and focus on the main difficulties that must
be faced.

2.3 What Theory Should Be Described?

Describe, as much as possible, the theory and not the implementation.
Do not be afraid of mapping concepts from the implementation back to the
theory.
Make the theory explicit.
Introduce new theories to justify the implementation.

There may be a big gap between the theory a system is based on and the way
it is implemented. Proof-assistants are implemented starting from a well-known
theory (e.g. Martin-Löf Constructive Type Theory for NuPRL; the Calculus of

From Proof-Assistants to Distributed Libraries of Mathematics 39

Constructions for Coq). Later on, extensions to the theory are implemented and
possibly proved to be correct. For example, both in the case of NuPRL and HOL,
logic constructions that are derived in the original theory are made primitive in
the implementation for efficiency reasons. In NuPRL this is done, for example,
for the integer numbers and the usual arithmetic operations on them.

What usually happens is that after some years it is difficult to reconstruct
a unified theory of all the extensions provided, while many other changes are
completely undocumented. This happens not only in the kernel of the systems,
which is responsible of checking that inference steps are well-applied, but also
in external layers that rely on techniques (e.g. higher order unification) that are
well-known in the literature and that requires extensions to the representation
of the proofs (e.g. metavariables that are typed holes in a proof-term).

When exporting from Coq the first time, we decided to be quite close to
the implementation, even if some parts of what we exported were partially not
understood. When we developed our proof-checker first and our proof-assistant
later, we realized that we had no clear foundation for the theory we were im-
plementing. Moreover, having represented not the terms of the theory but their
encoding in the structures of Coq, the implementation of many operations were
forcedly isomorphic to what was done in Coq, even if we wanted to experiment
with other solutions. Let’s see in detail a couple of examples.

Metavariables and Existential Variables. According to the Curry-Howard
isomorphism, a correct proof can be seen as a well-typed lambda-term in some
lambda-calculus. Thus an incomplete, partially correct proof must be a well-
typed lambda-term with holes therein. To extend the notion of well-typing to
terms with holes, a hole (called metavariable in the literature [11]) can not simply
be a missing term, but must be associated to a sequent. So a metavariable has
a given type and a typed context.

The two main operations on metavariables are instantiation and restriction.
A metavariable can only be instantiated with a term that is closed w.r.t. the
metavariable context and that has the expected type in that context. Instan-
tiating a metavariable is an heavy operation, since it requires a linear visit of
the whole proof-term. The other operation, restriction, deletes some hypotheses
from the metavariable context. It is required, for example, to perform unifica-
tion: to unify two metavariables the first step is to restrict both of them so that
their contexts become equal (possibly up to a decidable convertibility relation).

How can those operations be implemented efficiently? One possibility is to
implement restriction using instantiation: every time a metavariable should be
restricted, a new metavariable of the right shape is generated and used to in-
stantiate the old one. Since restriction occurs quite often, this implies that an
efficient way to perform instantiation must be designed. This is the approach of
Coq: restriction is reduced to instantiation and instantiation is not performed
explicitly, but delayed using a new environment that maps every instantiated
metavariable to the term used to instantiate it.

40 C.S. Coen

A completely different approach implements restriction explicitly, making
each hypothesis in the sequent optional, so that it is possible to remove one
hypothesis keeping trace of the fact that it was removed7. Nothing is done to
speed up instantiation, that becomes a seldom required operation.

The two possibilities requires different data-structures and representation of
metavariables. Moreover, for technical reasons, in Coq there is a further distinc-
tion between full-fledged metavariables (called existential variables and use to
represent holes in the type of other metavariables) and restricted metavariables
that are used to represent just the open goals.

The first time we exported from Coq, we did not change the Coq representa-
tion. Later on, when implementing our own proof-assistant, we found out that
our choice forced us to a treatment of metavariables similar to the one of Coq.
Moreover the distinction between the two kinds of metavariables did not allow
any progress in the proof8. So we defined a different internal representation of
metavariables, following the second solution above, and we decided to change
the DTD.

Now, which is the right format for describing metavariables in the library?
The only reasonable choice is to stick to the theory, where hypotheses in a
metavariable context are not optional and there is no environment to delay
instantiation. It is a responsibility of the systems to map back and forth between
this standard and well-understood format and their internal encoding.

Sections, Variables, and Discharging. In the syntax of Coq it is possible to
abstract a group of definitions and theorems with respect to some assumptions.
Example (in Coq syntax):

Section S.
Variable A : Prop.
Variable B : Prop.
Definition H1 : Prop := A /\ B.
Theorem T1 : H1 -> A.
Proof.
<some proof>
Qed.

End S.
(* Here the type of H1 and T1 are different. See code fragment below *)
Theorem T2 : True /\ True -> True.
Proof.
Exact (T1 True False (I,I)).

Qed.

The previous fragment should be equivalent, from a logic point of view, to
the following input:
7 This information is required for managing explicit substitutions that are needed to

allow reduction of terms with metavariables.
8 This is not a problem in Coq since the proof-tree with holes is generated on-demand

only for pretty-printing and exporting purposes. Proof-trees are instead used to
describe an incomplete proof and the progress on it.

From Proof-Assistants to Distributed Libraries of Mathematics 41

Definition H1 : Prop -> Prop -> Prop := [A:Prop ; B:Prop]A/\B.
Theorem T1 : (A:Prop ; B:Prop)(H1 A B) -> A.
Proof.
<some slightly different proof>
Qed.

Theorem T2 : True /\ True -> True.
Proof.
Exact (T1 True False (I,I)).

Qed.

The operation that transforms the first code fragment in the second one is
called discharging. Discharging is implemented in an external layer of the Coq
system, in such a way that the kernel of the system is given the discharged term
(and the theory of the kernel of Coq does not need to be modified).

Since, for rendering purposes, we are more interested in the first fragment, we
exported the undischarged form of the theorems and definitions. The problem
with that representation is that the theorem T1 that is used in theorem T2 is no
more equal to the one defined above: its type is different! This implies two kind
of problems in developing tools:

1. While rendering T2, we would like to make the occurrence of T1 an hyperlink
to its definition. What we get is misleading for the reader: the theorem T1
is shown to have a type that is not the same of its occurrence in T2.

2. To proof-check T2 we need the type of the discharged form of T1. So we are
obliged to discharge T1 and this leads to serious problems: either we save the
discharged form, as Coq does, and this goes against our initial choice; or we
discharge the theorem on-the-fly when needed, and, being this an expensive
procedure, we have to implement complex caching machineries9.

The solution we are adopting now is simply to redesign the theory, replacing
the notion of discharging with that of explicit named substitution. So, while
exporting, we completely change the definition of T2 to the following one:

Theorem T2 : True /\ True -> True.
Proof.
Exact (T1[A := True ; B := False] (I,I)).

Qed.

In this way we are no longer exporting the exact definition of T2 inside Coq,
but something more well-behaved for our purposes and that can be mapped
back, if needed, to the Coq representation. Both of the previous problems are
solved with this representation, since T1 can be rendered as it is just adding the
explicit substitution to the top and T2 can be type-checked without discharging
T1, by taking care of the explicit substitution in the typing rules of the system.

If we stop reflecting on the real cause of the problems given by discharging, we
will easily identify another severe problem that must be faced when exporting
9 This is what we implemented, but the nature of the discharging operation interfered

with the usual locality reference principle of caches. As a result we got very poor
and unexpected performances.

42 C.S. Coen

the information: a proof-assistant may be implemented in an imperative way,
where there is a strong notion of time and the objects of the library change
from time to time. This behaviour seems utterly incompatible with the notion
of mathematical library:

A library, due to its nature, is a random access structure, both in space and
time. Try to minimize the dependencies, give them the right direction, beware
of “imperative” commands of the system that change already defined things.
Make them immutable.

How can we face the situation in which we have to export some impera-
tive information? For example, Coq has many other examples of this kind of
information:

– A list of theorems that are considered while automatically searching a proof.
Theorems can be added and removed from this list at pleasure.

– Implicit variables. Even if the system automatically chooses the variables it
thinks it may infer, the user can force at any time the set of implicit variables
for an object. Subsequent commands will use the new set.

– Opacity. It can be changed from transparent to opaque, to simulate abstract
data types.

– Parsing and pretty-printing rules.

The situation can be described in two ways. The first one is to add the
imperative command that changes the system status to the library, adding links
from the command to all the other objects that are affected. The second way is to
say that every command or definition of the system has an implicit dependency
on the state of Coq. This dependency can be effectively make explicit. While
the first solutions is easier to implement, because that information is already
available in the system, interpreting a command means in practice re-running
all the commands in a clone of the Coq system to build the status requested.
The second solution, instead, avoids rebuilding the status. Remember that, in
a distributed setting, collecting all the given commands and definitions just
to update them because of imperative commands is already an unaffordable
operation. Managing a distributed status may be even worse. The price to pay,
of course, is that objects that change are replicated again and again for each
status they may have. Our experience shows that either the requested status
information is minimal or there is some problem in the formulation of the theory
that should be better removed, as in the case of discharging.

3 Further Discussion and Future Work

The previous sections should make evident that there is a conflict between the
two design principles “what is expensive is worth saving” and “what is com-
putable can be disregarded”. Indeed it is often the case that the computations
that can be disregarded are also the expensive ones.

From Proof-Assistants to Distributed Libraries of Mathematics 43

We recall that the two strong motivations for the second rule are: redundant
information requires consistency checks; redundant information may require un-
wanted parsing of unuseful data. Our suggestion is to look for a compromise
preferring to avoid redundant information when possible. When this is not the
case, the expensive computed information should be stored in a different file, so
that we can grant at least internal consistency, i.e. consistency of the data in the
same file. Internal consistency is often enough for our needs. Unwanted parsing
is also minimized in this way.

Future work will consist in trying to apply our guidelines to other proof-
assistants and theorem provers, with the aim of integrating them in our dis-
tributed library.

So far we have not tried to apply our guidelines to export information from a
Computer Algebra System (CAS). Our feeling is that some of the issues we faced
would be irrelevant for Computer Algebra Systems. For example, the theory
behind these systems is quite uniform and better understood, just being some
extension of a first-order setting. Determining the information classes to export
should present more or less the same problems. Probably, though, other issues
may get much more severe and new ones will certainly arise: CAS are more
imperative than proof-assistants and theorems prover, and a notion of library
is much more difficult to define. Since the power of a CAS mainly derives from
the procedures it implements and not from a library of pre-computed results,
exporting a description of these procedures to the library could be compelling.

Since our experience derives from a long process of committing mistakes and
finding solutions, we want to conclude with a final few advices: be ready to go
back on your steps; and be always creative and flexible:

Sometimes it is better to avoid good suggestions and look for compromises!

4 Conclusions

We presented a collection of simple rules-of-thumb that we learned in the previ-
ous three years from small successes and lots of mistakes. Each rule was justified
with small examples; their only aim was to give a grasp on the set of problems
that must be faced by a designer and implementor of an exporting procedure
from a proof-assistant to a distributed library of mathematical documents.

To our knowledge, this is the first paper in the literature with this aim, even if
many other exporting procedures have been developed for several other systems
in the past few years [7,5].

Even if many of the suggestions may appear obvious, the temptation of stick-
ing to the internals of the system when exporting the information is great. The
experiences of the HELM project strongly suggest that the design phase of the
DTDs requires a lot of time and a lot of thought; but the result is worth the
time spent, since wrong decisions will greatly slow-down further developments.

Only time and further experiences can have the final word on our guidelines
and solutions. Still we believe we have provided at least a comprehensive list of
the common problems that must be faced.

44 C.S. Coen

References

1. M. Agrawal, N. Kayal, N. Saxena, “PRIMES in P”, unpublished, August 2002,
http://www.cse.iitk.ac.in/users/manindra/primality.ps.

2. A. Asperti, F. Guidi, L. Padovani, C. Sacerdoti Coen, I. Schena, “Mathematical
Knowledge Management in HELM”, in On-Line Proceedings of the First Interna-
tional Workshop on Mathematical Knowledge Management (MKM2001), RISC-
Linz, Austria, September 2001.

3. A. Asperti, L. Padovani, C. Sacerdoti Coen, Schena, I., “HELM and the semantic
Math-Web”. Proceedings of the 14th International Conference on Theorem Proving
in Higher Order Logics (TPHOLS 2001), 3-6 September 2001, Edinburgh, Scotland.

4. A. Asperti, B.Wegner, “MoWGLI - A New Approach for the Content Description
in Digital Documents”, in Proceedings of the Ninth International Conference on
Electronic Resources and the Social Role of Libraries in the Future, Section 4,
Volume 1.

5. O. Caprotti, H. Geuvers, and M. Oostdijk, “Certified and Portable Mathematical
Documents from Formal Contexts”, in On-Line Proceedings of the First Interna-
tional Workshop on Mathematical Knowledge Management (MKM2001), RISC-
Linz, Austria, September 2001.

6. Y.Coscoy. “Explication textuelle de preuves pour le Calcul des Constructions In-
ductives”, Phd. Thesis, Université de Nice-Sophia Antipolis, 2000.

7. A. Franke, M. Kohlhase, “MBase: Representing Knowledge and Context for the
Integration of Mathematical Software Systems”, to appear in Journal of Symbolic
Computation.

8. J. Harrison, “Real Numbers in Real Applications”, invited talk at Formalising
Continuous Mathematics 2002 (FCM2002), 19th August 2002, Radisson Hotel,
Hampton, VA, USA

9. M. Kohlhase, A. Franke, “MBase: Representing Knowledge and Context for the
Integration of Mathematical Software Systems”, Journal of Symbolic Computation
23:4 (2001), pp. 365 - 402.

10. Learning Technology Standards Committee of IEEE, “Draft Standard for Learning
Object Metadata”, July 15th 2002.

11. C. Muñoz, “Un calcul de substitutions pour la représentation de preuves partielles
en théorie de types”, PhD. Thesis, University Paris 7, 1997.

12. The OpenMath Esprit Consortium, “The OpenMath Standard”, O. Caprotti, D.
P. Carlisle, A. M. Cohen editors.

Managing Digital Mathematical Discourse

Jonathan Borwein1 and Terry Stanway2

1 CoLab, The Centre for Experimental and Constructive Mathematics,
Simon Fraser University, Burnaby, British Columbia, Canada. V5A 1S6

jborwein@cecm.sfu.ca,
http://www.cecm.sfu.ca/˜jborwein

2 CoLab, The Centre for Experimental and Constructive Mathematics,
Simon Fraser University, Burnaby, British Columbia, Canada. V5A 1S6

tstanway@cecm.sfu.ca

Abstract. In this paper, we propose that the present state of Mathe-
matical Knowledge Management (MKM) derives from two main imper-
atives: the desire to organize and encapsulate mathematical knowledge
after it is produced and the desire to encapsulate the act of production.
While progress in digital network technology has facilitated a confluence
of these efforts, their original separation imposes an approximate rubric
on MKM which may be used to help define the challenges facing the field.
We propose that one of the main challenges lies in the question of fixed
versus flexible ontologies and the related question of ontology resolution
between applications. Finally, we describe Emkara, an application which
adopts a flexible metadata definition in the archiving and retrieval of
digital mathematical exchanges, queries, and grey literature.

1 MKM’s Intellectual Pedigree

Involving research mathematicians as well as specialists from such diverse fields
as librarianship, education, cognitive science, and computer science, there are
currently a wide range of initiatives and projects that may be considered as
belonging to the field of Mathematical Knowledge Management (MKM). A pe-
rusal of the Proceedings of the First International Workshop on Mathematical
Knowledge Management reveals that presentations with a focus on best prac-
tice in the exchange mathematical documents in digital environments, such as a
presentation on the recommendations of the International Mathematics Union’s
Committee on Electronic Information and Communication, shared time with
presentations focussed on foundational concepts, such as a presentation on the
underlying logic and language of the Theorema theorem proving system.1 The
juxtaposition of topics represented by these two presentations represents a fun-
damental duality of focus in the field of MKM, as the intellectual foundations
of the two presentations are distinct: those of the former stretching back to the
1 The former presentation was by Dr. Jonathan Borwein and the latter by Dr. Bruno

Buchberger. (Proceedings of the First International Workshop on Mathematical
Knowledge Management)

A. Asperti, B. Buchberger, J.H. Davenport (Eds.): MKM 2003, LNCS 2594, pp. 45–55, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile (Ø¯P)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

46 J. Borwein and T. Stanway

libraries of antiquity and those of the latter, while more recent, reaching back
at least as far as Leibniz’ seventeenth century call for a calculus philosophicus.2

From this perspective, the pre-history of MKM is the dual histories of math-
ematical librarianship and mathematical logic. While both of these are ‘meta-
fields’ in the sense that both are about mathematics, it would not have been
immediately obvious to a pre-digital intellect that they share anything else in
common. That emerging computer and network related technologies have rede-
fined these fields in such a way that there are now good reasons to consider
them as aspects of a single field, is an example of how a shift in media can lead
to a shift in perspective.3 The benefit of analysing MKM’s intellectual pedigree
is that not only does it help bring into focus the field’s central preoccupations
but it also helps identify some underlying tensions. From the librarianship side,
MKM has inherited a concern for preservation, metadata, cataloguing, and is-
sues related to intellectual property and accessibility. From the mathematical
logic side, MKM has inherited a concern for foundations and issues related to
automated or guided proof generation. Both traditions have bequeathed a con-
cern for authentication of knowledge, albeit in different contexts. One task that
is a concern in both of these two founding fields but is treated differently in each
is the question of how to establish the underlying semantics that any exercise in
information sharing requires. From a knowledge management perspective, this
is the question of ontology definition and in the following section, we examine
some of the problems presented by ontology definition in MKM.

2 Ontology Definition

The philosophical concept of domain ontology has important implications for
MKM. In their Scientific American article, The Semantic Web, Berners-Lee,
Hendler, and Lassila define “ontology” in the context of artificial intelligence
and web-based applications:

. . . an ontology is a document or file that formally defines the relations
among terms. The most typical kind of ontology for the Web has a tax-
onomy and a set of inference rules.4

For our purposes, we will bear in mind this broad definition, but seek out
a more precise description in order to address ontology problems in MKM. In
particular, our focus will be on the discourse of mathematical communities as
opposed to their literature and we will consider management problems arising
2 From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931, Jean van

Heijenoort (editor), (Boston: Harvard University Press, 1967) 6.
3 The conference description for the First International Workshop on Mathematical

Knowledge Management describes MKM as an “exciting new field in the intersection
of mathematics and computer science”.

4 Berners-Lee, T. Hendler, J. Lassila, O. The Semantic Web, Scientific American, May
2001. 35-43.

Managing Digital Mathematical Discourse 47

from the informal exchange of information conducted in the shared vocabularies
of communities that make up the broader mathematical community.

In The Acquisition of Strategic Knowledge, Thomas R. Gruber describes five
overlapping stages of knowledge acquisition. These are: identification, concep-
tualization, formalization, implementation, and testing.5 While originally con-
ceived for the build-up of knowledge in expert systems, these five stages provide
a useful framework for the description of MKM knowledge management tasks.
In particular, the description of the conceptualization stage draws from the ter-
minology of ontological analysis, specifying three distinct aspects of the broad
ontology: static ontology, dynamic ontology, and epistemic ontology. Gruber de-
scribes this stage as follows:

Conceptualization results in descriptions of categories or classes of the
domain objects and how objects are related (the static ontology), the op-
erators, functions, and processes that operate on domain objects (the
dynamic ontology), and how all this knowledge can be used to solve the
application task (the epistemic ontology).6

By way of an example, consider the application of the language of conceptual-
ization stage ontological analysis to a typical MKM knowledge retrieval task: the
discovery of publications which mention the Bartle-Graves theorem in their title,
abstract, or keywords. In this case, the static ontology includes a definition of
the ‘publication’, ‘title’, ‘abstract’, and ‘keywords’ entities as well as a definition
of the entities to be searched. The dynamic ontology includes a definition of the
protocols and processes involved in information access and retrieval; this could
be as simple as a SQL search on a fixed database or a more complex specification
such as that of an agent-based query of a remote database. The epistemic ontol-
ogy defines the interface level entities, both style related and logic related which
will be invoked to determine the manners in which the information request and
results interfaces may be presented to the user. According to a defined set of
criteria, if the knowledge acquisition cycle is effective, the user is presented with
output that, in some useful manner, lists publications that are related to the
Bartle-Graves theorem along with relevant background information regarding
these publications. A more sophisticated epistemic ontology may present related
information based on an inference concerning what type of information might
be of use to a particular user.

The dual inheritance of MKM is reflected in the definition of static ontologies.
Applications that draw more strongly from the librarianship tradition, admit de-
grees of flexibility and ambiguity in their ontologies. Both Math-Net’s MPRESS
and the NSF funded arXiv mathematical document servers admit weakly defined
elements in their metadata sets, asking submitting authors to make subjective
assignments of topic descriptors.7 Applications that draw from mathematical
5 Gruber, T. The Acquisition of Strategic Knowledge, Academic Press, 1989. 128
6 Gruber, 128.
7 In the case of MathNet, these descriptors are referred to as ‘keywords’ and in the

case of arXiv, they are referred to as ‘Mathematical Categories’.

48 J. Borwein and T. Stanway

logic depend on highly fixed ontologies. The static ontology of Theorema is en-
coded at the implementation level as highly structured ‘Theorema Formal Text’,
an implementation of high order predicate logic.8

Negotiating differences in ontologies is part of human communication. It is
therefore not surprising that applications that have evolved from the highly
human-centred discipline of librarianship have inherited a tolerance for subjec-
tivity and a degree of ambiguity. It is similarly not surprising that applications
that have evolved out of the field of mathematical logic depend upon fixed and
highly defined ontologies. Certainly, ontology resolution is a problem that must
be addressed in any effort to interconnect MKM applications. While much work
has been done in this area resulting in significant progress, notably, by the Open-
Math and OMDoc research groups, much work remains. Consider, for example,
the task of determining whether the proof of a given proposition either exists
in the literature or can be automatically generated. Significant refinements of
current technology are required before this determination can be reliably accom-
plished by a purely agent-based query of proof repositories or theorem proving
systems. The task is made more difficult if the proposition is originally expressed
using a human-centred application which accepts input, such as LATEX or Pre-
sentation MathML, that maps directly to standard mathematical text. In this
case, it is easy to imagine that some form of challenge and response interaction
may be necessary in order to determine the semantic content of the query.

While the problems associated with ontology negotiation in MKM have re-
ceived considerable attention, equally germane is the fundamental question of
ontology construction. Motivated by the desire to build applications from a solid
foundation in predicate logic, explicit attention to ontology construction has his-
torically been a characteristic of research in artificial intelligence. This research
has resulted in a number of languages and methods for building ontologies such
as Knowledge Interchange Format.9 Of note, in the domain of MKM, is the work
done by Fürst, Leclère, and Trichet in developing a description of projective ge-
ometry based on the Conceptual Graphs model of knowledge representation.10

Ontology definition is made more difficult if it is impossible to describe a priori
aspects of the knowledge domain. This is precisely the case with grey literature
in which elements of the static, dynamic, and epistemic ontologies will inevitably
need to be extended as new fields and forms of knowledge are defined. In the next
section, we examine the need for a flexible and extendable ontology in managing
digital mathematical grey literature and mathematical discourse in general.

8 Buchberger, Bruno. Mathematical Knowledge Management in Theorema, proceed-
ings of The First International Workshop on Mathematical Knowledge Management

9 http://logic.stanford.edu/kif/kif.html
10 Fürst, Frédéric, Leclère, Michel, and Trichet, Francky. Contribution of the Ontol-

ogy Engineering to Mathematical Knowledge Management proceedings of The First
International Workshop on Mathematical Knowledge Management

Managing Digital Mathematical Discourse 49

3 The Digital Discourse

As mathematical activity is increasingly conducted with the support of digital
network helper technologies, it is becoming increasingly possible to address the
questions of to what extent, and for what purposes, this activity can be captured
and archived. The types of mathematical activity that are conducted with the
aid of digital networks cover a spectrum with highly informal activities such as
queries to search engines and mathematical databases at one end and, at the
other end, activities of a much more formal nature such as the publication of
papers in online journals and preprint servers. As the majority of online mathe-
matical activity is informal, the challenge that it presents to MKM is akin to the
challenge presented by “grey literature” to the field of librarianship. A simple
Web search reveals that the question of what constitutes grey literature is very
much open to interpretation. Definitions range from the restrictive “theses and
pre-prints only” to more inclusive interpretations such as the following from the
field of medical librarianship:

In general, grey literature publications are non-conventional, fugitive,
and sometimes ephemeral publications. They may include, but are not
limited to the following types of materials: reports (pre-prints, prelimi-
nary progress and advanced reports, technical reports, statistical reports,
memoranda, state-of-the art reports, market research reports, etc.), the-
ses, conference proceedings, technical specifications and standards, non-
commercial translations, bibliographies, technical and commercial docu-
mentation, and official documents not published commercially (primarily
government reports and documents).11

This idea of the “fugitive and sometimes ephemeral” nature of grey literature
is particularly apt when applied to expression conveyed via digital networks. For
purposes which will be discussed presently, we choose to adopt a definition of
digital mathematical discourse (DMD) which encompasses the full grey to white
spectrum. A list of examples from this spectrum might contain such diverse math-
ematical entities as email exchanges, bulletin boards, threaded discussions, CAS
worksheets, transcripts of electronic whiteboard collaborations, exam questions,
and database query strings as well as preprints and published papers. The moti-
vation for this open-ended definition is the potential that methods of archiving
and retrieving DMD hold for both gaining insight into the nature of mathemati-
cal activity and facilitating productivity in mathematical activity. We turn now
to the problem of specifying an appropriate ontology development framework.

4 Ontology Development for Digital Mathematical
Discourse

There are two reasons that careful consideration of an ontology development
framework for DMD is important. The first relates to the “Web Services” aspect
11 www.nyam.org/library/greylit/whatis.shtml

50 J. Borwein and T. Stanway

of the Semantic Web specification and the potential for DMD oriented applica-
tions to both harvest and be harvested from, either manually or via agents. The
second is more complicated and is related to the emerging state of metadata
standards. Jokela, Turpeinen, and Sulonen have argued that if an application’s
main functions are content accumulation and content delivery, then a highly
structured ontology definition and corresponding logic is unnecessary. In this
case, ontologies may effectively be defined by way of formally specified metadata
structures.12

One problem confronting DMD ontology development is that while it would
be enticing to simply make the ontology implicit in an application profile com-
bining, for example, the Dublin Core and the related Mathematics Metadata
Markup metadata specifications, it is not clear that such a profile would be rich
enough or offer fine enough granularity to meet the needs of a DMD specifi-
cation. A second problem originates from the objective that DMD applications
be acessible to the broader mathematical community, including individuals with
possibly limited understanding of the metadata standards at their disposal. A
lack of understanding of metadata standards introduces the possibility of inap-
propriate use of taxonomy and the unnecessary use of ad hoc taxonomy. For
these reasons, for the definition of new forms of mathematical expression, an
appropriate ontology based on a profile of existing metadata standards, must
exhaust those standards and then encourage the intelligent use of ad hoc tax-
onomy to complete the definition to the desired degree of granularity. As the
dominant metadata standards become more fully refined, the ad hoc component
should be reconciled with the existing metadata profile. Figure 1 represents a
component of the static ontology of the type of threaded discussion that might
be motivated by an online class discussion; ad hoc elements are connected into
the diagram by dotted lines. This ontology is based on an application profile that
references the Dublin Core and Educational Modeling Language name spaces.

The extension of a metadata application profile by the addition of elements
that are not defined in the schemata that make up the profile leads to poten-
tial management problems. These include incomplete object definition, in which
not enough elements are defined to allow the desired degree of granularity, as
well as contradictory or superfluous definition of elements. While it is certainly
possible, depending on the size of the knowledge base, that these problems be
resolved manually, it is also possible to at least partially automate the manage-
ment process. In the next section, we will discuss some design issues for a DMD
management application in the context of progress on the Emkara project at
Simon Fraser University’s CoLab.

12 Jokela, Sami, Turpeinen, Marko, and Sulonen, Reijo, Ontology Development for Flex-
ible Content, Proceedings of the Hawaii International Conference on System Sci-
ence 2

Managing Digital Mathematical Discourse 51

Fig. 1. The Monk Paradox: Online Class Discussion

5 The Emkara Project

The purpose of the Emkara project is to conduct investigations in DMD inter-
faces and management. A major component of the project is the design and con-
struction of a DMD management application based on open source technology.
Corresponding respectively to the static, dynamic, and epistemic ontologies, this
application has three fundamental components: an archiving component which
respects the static ontology, an object and interface building component that
respects the dynamic ontology, and a user interfaces component which respects
the epistemic ontology. Caste as design objectives, these three components reflect
the intent to provide:

• qualified user control over granularity of object classification
• qualified user control over functionality and interface design, and . . .
• end user access to knowledge creation and retrieval interfaces.

Secondary design objectives include the ability to store all forms of math-
ematical content and the ability to translate structured mathematical text be-
tween LATEX, MathML, and, ultimately, OMDoc formats.

At the implementation level, an Emkara system consists of a front-end CSS
and MathML compatible web interface together with a MathML editor con-
figured as a “helper application”. The mid-level implementation consists of a
SQL compatible relational database management system, functions which sup-
port the creation and management of user interfaces, functions which support
user authentication and session management, and functions which support data

52 J. Borwein and T. Stanway

transformations such as translation of structured text formats. The back-end
consists of the database tables and a data directory tree. Used primarily for
the storage of metadata and internal system parameters, the tables also provide
a convenient location to store data obtained from data mining processes. The
directory tree is used for the storage of documents and large objects.13 Figure 2
illustrates the Emkara system architecture.

Fig. 2. Emkara System Architecture

While the prototype is intended mainly as an experimental interface, a fully
implemented Emkara system presents opportunities for research which respond
to each of the fundamental ontologies. As alluded to in the last section, making
the static ontology open and subject to extension by qualified users presents
design questions concerning how to present an ontology editing environment
along with the question of how to ensure that the ontology is being edited in
a useful manner. That the static ontology is being represented as XML makes
testing for “well-formedness” a simple test for consistency however, such a test
makes no comment about superfluousness or lack of detail. The latter failings
may only become apparent with use. It is a valid question, therefore, whether
or not data regarding user interaction with the system can be processed in such
a way as to reveal strengths and weaknesses in the static ontology. If so, then
it is possible that the process of ontology management can be at least partially
automated.14

A compelling question related to the introduction of unneeded vocabulary in
the construction of static ontologies concerns the potential differences between
the language that members of a particular community of interest use to describe
13 The prototype is implemented using PostgresqlTMand PHP4TMwith a lightly modi-

fied AmayaTMbrowser serving as the MathML editor helper application. The modi-
fied Amaya browser must be installed on the client along with a CSS and MathML
compatible browser.

14 We expect to profit from the considerable amount of work done by the members of
the Ontolingua research team concerning ontology development environments and
automated ontology analysis.

Managing Digital Mathematical Discourse 53

their field and the vocabulary presented by the relevant schemata. The latter
are typically developed through extensive committee work and are designed to
meet a much broader range of needs than those of an individual communicating
ideas to fellow members of a given community. It is important that methods be
developed to support the presentation of schemata vocabularies in such a way
that users can identify the elements they need to express their ideas and make
the appropriate association with the language of their particular communities.

The dynamic ontology underlies the relationship between entities in the static
ontology and the way they interact with each other. A “flash card” object may
consist of only two main fields: question and answer. The dynamic ontology
allows for the description of how these two fields interact in the context of the
flash card object and directly reflects the functions and methods that determine
object behaviour.15 A valid question concerns the numbers and types of general
object interactions that are necessary in order to construct the type of behaviour
required by DMD. A related question is that of ontology representation: how
many and what types of object access methods must be exposed in order to afford
qualified “non-programmers” the flexibility they need to create the behaviour
they desire. With respect to these questions, inspiration, guidance, and, possibly,
code, can be derived from the work of the members of the Protege-2000 research
team who have created a visual ontology editor and undertaken research into
its application in the creation of ontologies in several Semantic Web compatible
knowledge interchange languages.16

Questions that can be addressed at the level of the epistemic ontology include
any question related to the type of interface appropriate for a particular task and
user device. If the task is helping students understand the material in a particular
lesson, a threaded discussion might be part of the solution. The related question
is what access and acquisition methods make sense for different devices?

Related to the epistemic ontology, a number of valid research objectives are
derived from the fact that an Emkara system is necessarily a stateful system
which must enforce authentication and a system of maintaining read and edit
access privileges. From this follow questions related to how users interact with
the system and the system’s function as a facilitator of “on-line community”.
In particular, users are instances of a “user object” that includes metadata that
makes up a user profile. This permits the collection and processing of data re-
garding what types of users are accessing what types of data and using what
kinds of interfaces.

One of the most compelling features of any system that attempts to provide
management functions for digital mathematical discourse is the potential that
the system has to interact with other MKM applications via the emerging Se-
mantic Web interchange languages and Web Services protocols. While atomic
in nature, search strings for pre-print servers and input to theorem provers are

15 In the prototype, the dynamic ontology is bound up in PHP4 classes and scripts and
therefore some knowledge of PHP is required to customize system behaviour.

16 Noy, N.F. et al, Creating Semantic Web Contents with Protege-2000, IEEE Intelligent
Systems, March-April 2001

54 J. Borwein and T. Stanway

forms of grey literature. If a DMD application is able to provide interfaces for
remote access to these systems coupled with organized methods of storing and
retrieving the output, it is possible that a significant proportion of access to
MKM applications would take place via interfaces that could provide mean-
ingful information about the ways in which mathematics is being accessed and
shared through the Web. In this situation, the payoff would be data concerning
what types of users are accessing what types of documents in pre-print servers
and what types of users are using what types of services provided by theorem
provers.

6 Conclusion and Future Work

Emkara is now situated in the CoLab at Simon Fraser University’s Centre for
Experimental and Constructive Mathematics.17 Dedicated to the investigation of
advanced digital collaboration in mathematics research and education, the CoLab
provides the opportunity to experiment with different ways of representing and
communicating mathematical thought with the aid of advanced network and
visualization technologies. As Emkara based interfaces are further developed,
they will provide a means of capturing and archiving this mathematical activity.

Fig. 3. The (virtual) CoLab with avatar

17 Figure 3 is a virtual rendering of the CoLab by Steve Dugaro with the aid of MuseTM

immersive 3D client software

Managing Digital Mathematical Discourse 55

Due largely to its diverse intellectual inheritance, the field of Mathematical
Knowledge Management remains divided across a spectrum with applications
whose main focus is derived from the field of mathematical librarianship at one
end and applications whose main focus is derived from the field of mathemat-
ical logic at the other. In between, are applications such as Computer Algebra
Systems, function libraries, and reverse look-up interfaces that interact with
each other only with human intervention. By providing a means of interfacing
with and organizing data from diverse MKM applications, digital mathematical
discourse applications have the potential to exert a unifying influence on the
field. Along with the challenges presented by ontology definition and interface
design, future work with the Emkara system will focus on interaction with other
MKM applications and on the interface design considerations associated with
the support of online mathematical communities.

NAG Library Documentation

David Carlisle and Mike Dewar

NAG Ltd, Wilkinson house, Jordan Hill Road, Oxford, UK, OX2 8DR
{davidc,miked}@nag.co.uk

Abstract. This paper describes the management and evolution of a
large collection of 1200 documents detailing the functionality in NAG
Library products.
This provides a case study addressing many of the issues which concern
the “MKM” project, involving conversion of legacy formats (SGML and
LATEX) to XML, and inferring semantic content from mainly presenta-
tional mathematical expressions.

1 The NAG Library Documentation

The NAG Fortran Library consists of around 1200 routines providing a range
of mathematical functions. Each routine is accompanied by a document describ-
ing the mathematical problem being addressed and also the interface to the
routine. PDF versions of these documents are freely available from the URL:
http://www.nag.co.uk/numeric/fl/manual/html/FLlibrarymanual.asp

The documents have been written by a large number of different authors
although fairly strict style and content guidelines have been enforced. The ear-
liest documents possibly as much as twenty-five years old and were originally
typed on a golfball typewriter before an electronic typesetting system (TSSD, a
typesetting system for scientific documents developed by Harwell laboratories)
was adopted. The documents were subsequently migrated to SGML and propri-
etary systems such as DynaText were used to deliver them to users until PDF
became widespread at which point that was adopted as the main electronic de-
livery mechanism. One of the issues throughout this process has been how to
mark-up and render mathematical objects and expressions: originally this was
done via “ASCII art” (i.e. 2-D representations based on ASCII characters), then
via TSSD’s own native format, and finally by embedding LATEX fragments inside
the SGML.

In this paper we will discuss issues involved in migrating these documents
from their most recent format (SGML with mathematics encoded as LATEX frag-
ments) into an XML-based format that allows the document sources to be more
readily used for multiple purposes: generating documentation in other formats
(HTML, XHTML+MathML), documenting other products (C library), generat-
ing interface code and header files. In principle we would like to adopt a totally
content-based markup scheme but, given the amount of documentation involved
and the critical requirement of maintaining the correctness of the documents,
the migration from presentation to content must be automated. This is much
harder than it might first appear and we will describe some of the problems
encountered (and the solutions adopted) in what follows.

A. Asperti, B. Buchberger, J.H. Davenport (Eds.): MKM 2003, LNCS 2594, pp. 56–65, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

http://www.nag.co.uk/numeric/fl/manual/html/FLlibrarymanual.asp
Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: h×N
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (h×N)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

NAG Library Documentation 57

2 Mathematical Fragments in SGML Documents

The NAG documentation naturally includes many mathematical expressions. At
the conclusion of this project the number of mathematical expressions is 112,830
(many of which appear in XML entities and are re-used in a number of different
documents). Before this project, for the reasons explained below, this number
was substantially higher.

Mathematical expressions were previously encoded using a single element.
The content of this element was declared as #PCDATA, that is, it was essentially a
string. The content of the string was a LATEX expression. Thus a typical fragment
might look like

<p>....<maths>\frac{x}{2}</maths>

Many SGML systems have a native ability to handle such TEX fragments (Dyna-
Text, 3B2, . . .). Moreover, if the documents are to be printed via conversion to
LATEX, then any such fragments may be directly copied into the TEX document
resulting from translating the SGML markup. (More details on the TEX and
LATEX typesetting systems may be obtained from the TEX Users group [3].)

While such a dual markup solution is apparently easy to define and can pro-
duce high-quality printed documentation, the lack of integration of the mathe-
matical structure with the markup structure of the non-mathematical text causes
problems when producing more structured output, for example on-line hyper-
text documentation in PDF or HTML. The NAG documentation will frequently
make reference to a parameter (argument) of a function/subroutine. The SGML
markup for a parameter A is <arg>A</arg>. In printed documentation this just
produces a roman ‘A’ but in online text the ‘A’ is an active link back to the
main documentation of the parameter. However if mathematical fragments are
restricted to #PCDATA then the <arg>A</arg> markup may not be used. Instead
one uses an equivalent TEX expression such as

$\mathrm{A} + \mathrm{B} > 0$

or artificially breaks up the mathematical expression to allow the SGML markup
to be used:

<arg>A</arg>${}+{}$<arg>B</arg>${} > 0$

The first method provides acceptable printed output but hyperlinking is lost,
also the creation of, for example, automatic indices of use of parameters is made
harder as the markup of function arguments is not consistent. The second method
is only feasible if the arguments appear at the top level of the expression, not
as a parameter of a TEX macro such as \frac{...}{...} or \sqrt{...}. It
is also hard to ensure that the resulting expression retains the correct spacing
(note the empty brace groups in the above) and most importantly it obscures the
mathematical structure of the expression (which is now encoded as two separate
mathematical fragments). This makes it harder to automatically infer any mean-
ing from the markup, or convert to other formats such as Content MathML [1]
or OpenMath [2] which would be able to encode the sum and inequality in se-
mantically richer formats.

58 D. Carlisle and M. Dewar

Even if we could overcome these problems and amalgamate all such math-
ematical fragments into complete objects, there will still be many cases where
the mathematical objects have no obvious semantic meaning or cannot be rep-
resented in a content language. For example the expression:

<maths><arg>MAXIP</arg>\geq 1\ +</maths>
the number of values of <maths><arg>ISX</arg>>0</maths>

is perfectly reasonable but on their own the two mathematical expressions are
meaningless.

NAG has taken a gradual approach to improving this situation. In the first
stage (which was achieved for the Mark 20 Fortran library) the SGML sources
were converted to XML, and the XML Document Type Definition (DTD) was
extended to allow certain elements within mathematics. So the above could be
encoded more naturally:

<math><arg>A</arg> + <arg>B</arg> > 0</math>

The markup is also allowed inside TEX expressions such as

<math>\frac{<arg>A</arg>}{2}</math>

This intertwining of TEX and XML is also not ideal and complicates some of the
further processing of the documents. An eventual aim is to convert to MathML,
with additional elements (such as <arg>) from the NAG DTD. In this case the
fraction would be encoded as

<math><mfrac><arg>A</arg><mn>2</mn></mfrac></math>

and the inequality above would be encoded as

<math><mrow><arg>A</arg> <mo>+</mo> <arg>B</arg></mrow>
<mo>></mo> <mn>0</mn></math>

Having the structure in MathML (even Presentation MathML rather than the
semantically richer Content MathML markup) would greatly ease further pro-
cessing, however currently the documents are primarily hand authored and it is
unreasonable to hand author the more verbose MathML markup. Experiments
are continuing with available MathML editing tools and also with automatic
conversion from TEX-like syntax.

3 Classifying Mathematical Expressions

In printed documentation the expression “A(1)” might denote either the first el-
ement of an array A or the function A applied to the number 1. As XML markup
may be used within mathematical expressions these may be distinguished. Array
references are marked using NAG-specific elements, that markup both the array
reference (<ar>) and the array index(<ai>). Markup of the form

<ar><arg>A</arg><ai>1</ai></ar>

NAG Library Documentation 59

will be typeset as A(1) in the documentation of the Fortran library, with the A
being a link to the description of the array valued parameter “A” if the docu-
mentation format supports links. The improved structure of the documentation
now allows documentation of the C interface to the routine to be derived from
the same source. The C library documentation would typeset the same markup
as a[0] as C array indexing is 0-based, and the C library conventionally uses
lower case names. The recent Mark 7 release of the NAG C library contains
around 400 new functions. The documentation of each of these is automatically
generated from the same source as the documentation of the corresponding For-
tran routine. In most cases the code of the C interface is also generated from the
same file.

Moving from essentially unstructured TEX markup to this structured form
that allows arrays to be identified and re-indexed has been a major effort and
cannot be fully automated. A great deal of in-house knowledge was used in the
conversion (for example A(. . .) in the linear algebra chapters F07 and F08 always
refers to a matrix not a function, while in the statistics chapters P(. . .) usually
denotes a probability function). The generated C library documentation went
through many cycles of proof reading, at each stage any errors reported were
used to further refine the conversion scripts. This iterative procedure appears to
be successfully producing highly structured and accurate documentation, how-
ever the tools have been highly customised for this one documentation set. The
more general problem, highlighted in the MKM project description of converting
“legacy” TEX documents may require quite different techniques if one does not
have extra knowledge about the subject area of the document.

3.1 Constraints

Mathematical expressions occur primarily in two places in the library documen-
tation. Firstly in the description section of each routine, where the mathematical
functionality is described. Secondly in the description of each parameter where
many constraints on the parameter values are documented. It has proved es-
pecially useful to have these constraints in a strongly marked up form. Having
fully marked up the constraints it has been possible to automatically generate
C code for the C library that checks the constraints and generates appropriate
error messages if the user input violates these constraints. Thus a constraint
appearing in the XML as

<con><maths><arg>M</arg> \geq 0</maths></con>

will appear in the Fortran documentation as

M ≥ 0

in the C documentation as
m ≥ 0

and in the C library sources as

if (!(m >= 0)) {
....
v=sprintf(buf, nag_errlist[NE_INT], "m", m, "m >= 0");

60 D. Carlisle and M. Dewar

4 Classifying Function Arguments

In addition to using more structured markup within mathematical expressions,
the main other enhancement to the library XML which has allowed the docu-
ments to be used for multiple products is the additional markup used to classify
the parameters of the routine. The aim has been to get away from the idea that
the document is a human-readable description of how to use the software, and
instead treat it as a high-level specification of the algorithm and its parameters.

The description of each parameter is prefixed by an element whose attributes
classify the parameter. For example the parameter M used in the constraint
above (in the routine F08AEF) is classified by

<paramhead xid="M"
type="integer" class="I" purpose="data"/>

That is it is an input (I) parameter of integer type which forms part of the
user’s problem description. This is used to generate the appropriate Fortran and
C variable declarations

In the same routine, the Fortran interface makes use of a “workspace array”

<paramhead xid="WORK"
type="rarray" class="O" dim1="*" purpose="workspace"/>

i.e. a real valued array which must be allocated by the program that calls this
subroutine, and which must be at least a certain size, which will be documented
in a constraint in the parameter description. In the C Library such workspace
parameters do not appear in the function interface. Code is automatically gen-
erated to allocate the required space.

Almost all the parameters in the C interface may be similarly automatically
constructed from the algorithm specification, once sufficient ‘class’ and ‘purpose”
attributes have been added. There are a few cases where this automatic conver-
sion needs to be overridden by explicitly supplying the description of a parameter
in the C interface, but this mechanism proved to be very rarely needed, most
often in cases where the C interface needed to be kept consistent with earlier
releases that were not so closely modeled on the Fortran interface.

The resulting documents may be viewed on the NAG website
Fortran: http://www.nag.co.uk/numeric/fl/manual/pdf/F08/f08aef.pdf
C: http://www.nag.co.uk/numeric/cl/manual/pdf/F08/f08aec.pdf
The first two pages of each document are shown in Figure 1 and 2.

5 Conclusions

What we have described is a real-life case study of the transformation of an exist-
ing body of legacy documentation to make its inherent structure and semantics
explicit. The project was driven by commercial imperatives and successfully met
its goals.

http://www.nag.co.uk/numeric/fl/manual/pdf/F08/f08aef.pdf
http://www.nag.co.uk/numeric/cl/manual/pdf/F08/f08aec.pdf

NAG Library Documentation 61

NAG Fortran Library Routine Document

F08AEF (SGEQRF=DGEQRF)

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

F08AEF (SGEQRF=DGEQRF) computes the QR factorization of a real m by n matrix.

2 Specification

SUBROUTINE F08AEF(M, N, A, LDA, TAU, WORK, LWORK, INFO)
ENTRY sgeqrf (M, N, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, LDA, LWORK, INFO
real A(LDA,*), TAU(*), WORK(*)

The ENTRY statement enables the routine to be called by its LAPACK name.

3 Description

This routine forms the QR factorization of an arbitrary rectangular real m by n matrix. No pivoting is
performed.

If m � n, the factorization is given by:

A ¼ Q
R
0

� �
;

where R is an n by n upper triangular matrix and Q is an m by m orthogonal matrix. It is sometimes
more convenient to write the factorization as

A ¼ Q1 Q2ð Þ R
0

� �
;

which reduces to

A ¼ Q1R;

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is trapezoidal, and the factorization can be written

A ¼ Q R1 R2ð Þ;
where R1 is upper triangular and R2 is rectangular.

The matrix Q is not formed explicitly but is represented as a product of minðm;nÞ elementary reflectors
(see the F08 Chapter Introduction for details). Routines are provided to work with Q in this representation
(see Section 8).

Note also that for any k < n, the information returned in the first k columns of the array A represents a
QR factorization of the first k columns of the original matrix A.

4 References

Golub G H and van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08AEF (SGEQRF=DGEQRF)

[NP3546/20A] F08AEF (SGEQRF=DGEQRF).1

Fig. 1. Fortran interface

62 D. Carlisle and M. Dewar

5 Parameters

1: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

2: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: N � 0.

3: A(LDA,*) – real array Input/Output

Note: the second dimension of the array A must be at least maxð1;NÞ.
On entry: the m by n matrix A.

On exit: if m � n, the elements below the diagonal are overwritten by details of the orthogonal
matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the orthogonal matrix Q and
the remaining elements are overwritten by the corresponding elements of the m by n upper
trapezoidal matrix R.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08AEF
(SGEQRF=DGEQRF) is called.

Constraint: LDA � maxð1;MÞ.

5: TAU(*) – real array Output

Note: the dimension of the array TAU must be at least maxð1;minðM;NÞÞ.
On exit: further details of the orthogonal matrix Q.

6: WORK(*) – real array Workspace

Note: the dimension of the array WORK must be at least maxð1;LWORKÞ.
On exit: if INFO ¼ 0, WORK(1) contains the minimum value of LWORK required for optimum
performance.

7: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the subprogram from which F08AEF
(SGEQRF=DGEQRF) is called, unless LWORK ¼ �1, in which case a workspace query is
assumed and the routine only calculates the optimal dimension of WORK (using the formula given
below).

Suggested value: for optimum performance LWORK should be at least N� nb, where nb is the
blocksize.

Constraint: LWORK � maxð1;NÞ or LWORK ¼ �1.

8: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

F08AEF (SGEQRF=DGEQRF) NAG Fortran Library Manual

F08AEF (SGEQRF=DGEQRF).2 [NP3546/20A]

Fortran interface (cont)

NAG Library Documentation 63

NAG C Library Function Document

nag_dgeqrf (f08aec)

1 Purpose

nag_dgeqrf (f08aec) computes the QR factorization of a real m by n matrix.

2 Specification

void nag_dgeqrf (Nag_OrderType order, Integer m, Integer n, double a[],
Integer pda, double tau[], NagError *fail)

3 Description

nag_dgeqrf (f08aec) forms the QR factorization of an arbitrary rectangular real m by n matrix. No
pivoting is performed.

If m � n, the factorization is given by:

A ¼ Q
R
0

��
;

where R is an n by n upper triangular matrix and Q is an m by m orthogonal matrix. It is sometimes
more convenient to write the factorization as

A ¼ Q1 Q2 Þð R
0

��
;

which reduces to

A ¼ Q1R;

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is trapezoidal, and the factorization can be written

A ¼ Q R1 R2 Þð ;

where R1 is upper triangular and R2 is rectangular.

The matrix Q is not formed explicitly but is represented as a product of minðm;nÞ elementary reflectors
(see the f08 Chapter Introduction for details). Functions are provided to work with Q in this representation
(see Section 8).

Note also that for any k < n, the information returned in the first k columns of the array a represents a QR
factorization of the first k columns of the original matrix A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08aec

[NP3645/7] f08aec.1

Fig. 2. C interface

64 D. Carlisle and M. Dewar

2: m – Integer Input

On entry: m, the number of rows of the matrix A.

Constraint: m � 0.

3: n – Integer Input

On entry: n, the number of columns of the matrix A.

Constraint: n � 0.

4: a½dim� – double Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ when
order ¼ Nag ColMajor and at least maxð1; pda�mÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
On entry: the m by n matrix A.

On exit: if m � n, the elements below the diagonal are overwritten by details of the orthogonal
matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the orthogonal matrix Q and
the remaining elements are overwritten by the corresponding elements of the m by n upper
trapezoidal matrix R.

5: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraints:

if order ¼ Nag ColMajor, pda � maxð1;mÞ;
if order ¼ Nag RowMajor, pda � maxð1;nÞ.

6: tau½dim� – double Output

Note: the dimension, dim, of the array tau must be at least maxð1;minðm; nÞÞ.
On exit: further details of the orthogonal matrix Q.

7: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = hvaluei.
Constraint: m � 0.

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ hvaluei, m ¼ hvaluei.
Constraint: pda � maxð1;mÞ.

f08aec NAG C Library Manual

f08aec.2 [NP3645/7]

C interface (cont)

NAG Library Documentation 65

The main conclusion that we draw from this project is that it is possible to
take a large collection of documents and infer a useful amount of content from
the presentation markup but that this requires a large amount of specific infor-
mation about the documents themselves. The benefits however, which include
hyperlinking, more intelligent indexing and searching, better rendering in differ-
ent target environments and the potential for re-use in un-anticipated contexts
(in our case generating C library code and documentation from documents orig-
inally intended to document a Fortran library), may well make such an exercise
worthwhile.

In our case we adopted an iterative approach rather than trying to produce
tools which would do everything in one go. By making the conversion in discrete
steps our documentation collection was at all times kept valid to a DTD (which
changed at each step) and we were able gradually to adapt our in-house tools to
use the new features as they were added. Thus while the general problem of TEX
to Content MathML or OpenMath is probably unsolvable, and the problem of
TEX to Presentation MathML is in general still hard, by using extra knowledge
of the subject matter in the documents, and by allowing existing TEX based
markup to remain in intermediate versions, extra semantic information has been
added while keeping the document source in a form that may be processed at
all times.

The success of our project depended on both the explicit structure of the
existing documents (basically the SGML DTD) and the implicit structure (for
example we know that in general every workspace parameter should have a
minimum size described in the documentation). The same should be true of
other kinds of mathematical documents, although the implicit structures which
are important will of course vary. Any tools for migrating legacy documents to
more semantically-rich forms will need to be highly customisable and support a
great deal of human interaction.

Further details on the format used and possible future uses of the documents
may be found in our paper [4]

References

1. D. Carlisle, P. Ion, R. Miner, N. Poppelier; (editors) Mathematical Markup Lan-
guage (MathML) 2.0 Specification. http://www.w3.org/TR/MathML2

2. O. Caprotti, D. P. Carlisle, A. M. Cohen (editors); The OpenMath Standard,
February 2000. http://www.openmath.org/standard

3. The TEX User’s Group. http://www.tug.org
4. D. Carlisle and M. Dewar, From Mathematical servers to mathematical Services,

Proceedings of the First International Congress of Mathematical, Editors, Arjeh
Cohen, Xiao-Shan Gao, Nabuki Takayama, World Scientific, 2002, ISBN 981-238-
048-5 Software,

http://www.w3.org/TR/MathML2
http://www.openmath.org/standard
http://www.tug.org

On the Roles of LATEX and MathML in Encoding
and Processing Mathematical Expressions

Luca Padovani

Department of Computer Science
Mura Anteo Zamboni 7, 40127 Bologna

Italy
lpadovan@cs.unibo.it

Abstract. The Mathematical Markup Language (MathML [1]), a stan-
dard language for the encoding of mathematical expressions, is going to
have a deep impact on a vast community of users, from people interested
in publishing scientific documents to researchers who seek new forms of
communication and management of mathematical information. In this
paper we survey the worlds of LATEX [10,11], a well-established language
for typesetting, and MathML, whose diffusion is promisingly taking off
in these days, with an emphasis on the management of mathematics. We
will try to understand how they relate to each other, and why we will
still need both in the years to come.

1 Introduction

The history of LATEX can be traced back to 1977, when D. E. Knuth started
designing METAFONT [4] and TEX [6,7,3]. METAFONT is a language for the
mathematical description of font glyphs, while TEX is a language for arranging
glyphs together, so that they form words, sentences, and mathematical formulae.
In the mid-1980s, L. Lamport developed LATEX, a set of macros that allowed to
typeset with TEX at a higher level of abstraction, making the system easier to
use and ultimately successful. In 2001 the Math Working Group published the
specification of the Mathematical Markup Language Version 2.0 [1], an XML
language whose aim is to encode mathematical expressions capturing both their
appearance (presentation markup) and their meaning (content markup).

Just looking at the implementation page for MathML1 we realize that the
terms MathML, TEX, and LATEX are almost equally distributed. Some of the tools
presented are stylesheets, others are scripts, others are real, complex programs,
many of them converting from LATEX to MathML, a few doing the opposite.
People started doing research on this subject, investigating how TEX and its
macro mechanism relate to MathML [9]. At the same time, other people still
have confused ideas about MathML and are somehow reluctant to “throw away”
their knowledge of LATEX just to adopt a young technology which has not stopped
evolving yet.
1 See http://www.w3.org/Math/implementations.html.

A. Asperti, B. Buchberger, J.H. Davenport (Eds.): MKM 2003, LNCS 2594, pp. 66–79, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: h×N
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (h×N)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

On the Roles of LATEX and MathML 67

So what is the direction of these developments? Is there a role for both
LATEX and MathML in the Web era? What can we expect from MathML that
we have not achieved with LATEX after so many years? Admittedly, LATEX and
MathML do not lay on the same level, for the former allows typesetting of whole
documents, whereas MathML is concerned with mathematical expressions only.
We will restrict our analysis to the LATEX markup for expressions, being conscious
that the challenging complexity of encoding mathematics can be considered a
good basis to compare different technologies in general. We are not trying to
follow a scheme or to draw an exhaustive comparison. Rather, we aim at giving
the reader a glimpse of the differences and the similarities of the two languages
by focusing on a few examples, hoping to clarify some points and to stimulate
curiosity and motivations for further research.

The starting point of our discussion is the following mathematical formula,
which will accompany us, in one form or another, for the rest of the paper:

ε0

∮
S

E · dA = q . (1)

Equation 1 is the Gauss’s law as presented in D. Halliday, et al. [8]. In a
different form it is better known as the first Maxwell equation, but we stick
with this less popular version since it will prove more interesting to encode.
In a nutshell, the equation states that the total of the electric flux out of a
closed surface S multiplied by the the electric permittivity in the region of the
electric field is equal to the charge enclosed within the same surface. The region
is assumed to be a vacuum. In the formula

∮
denotes a surface integral.

The discussion that follows will concentrate on syntax, semantics, formatting
quality, macros and transformations.

2 Syntax

The syntax of TEX and LATEX was born with a precise idea in mind: to make it
easy for a human to type the markup, and to provide access to a wide variety
of mathematical symbols solely by means of characters available on common
computer keyboards. As D. E. Knuth reports in [5], “experience shows that
untrained personnel can learn how to type [TEX] without difficulty” in a short
amount of time.

The “pretty-printed” LATEX markup used to typeset equation 1 is shown in
Fig. 1. The fact that the markup is so compact and so simple to type, the outcome
still being such a beautifully formatted formula, is because LATEX takes care of
most of the “dirty jobs:” space is automatically added around operators, the
details about font size reduction and vertical displacement of scripts are coded
in the formatting semantics of the scripting operator _. Also, the Computer
Modern fonts that LATEX typically comes with have been explicitly designed to
be used in conjunction with TEX, and a deep knowledge of the fonts used by a
system for typesetting is a fundamental requirement for achieving professional
results [16].

68 L. Padovani

\begin{displaymath}
\epsilon_0
\oint_S
\mathbf{E}
\cdot
d\mathbf{A} = q

\end{displaymath}

Fig. 1. LATEX markup for equation 1. The displaymath environment surrounds a for-
mula to be typeset in “display mode”, in a paragraph of its own. Symbols and letters
that are not normally available on keyboards are typeset using macros like \epsilon
and \cdot, and bold letters are typeset using the macro \mathbf. The underscore sym-
bol has the special meaning “subscript”, so that the immediately subsequent symbol,
or subformula, is formatted in subscript position. Braces { and } group subexpressions

<math xmlns="http://www.w3.org/1998/Math/MathML"
display="block">

<mrow>
<msub>
<mi> ε </mi>
<mn> 0 </mn>

</msub>
<mo> ⁢ </mo>
<mrow>
<mrow>
<msub>
<mo xref="i1"> ∮ </mo>
<mi> S </mi>

</msub>
<mrow>
<mi> 𝐄 </mi>
<mo> ⋅ </mo>
<mrow>
<mo> ⅆ </mo>
<mi> 𝐀 </mi>

</mrow>
</mrow>

</mrow>
<mo> = </mo>
<mi> q </mi>

</mrow>
</mrow>

</math>

Fig. 2. MathML presentation markup encoding equation 1. XML documents are made
of markup and Unicode characters [15,2]: the names epsi, InvisibleTimes, oint, sdot,
DifferentialD are just human readable references (entity references, in XML jargon)
for the Unicode characters U+03B5, U+2062, U+222E, U+22C5, U+2146. A character ref-
erence such as 𝐄 refers directly to the Unicode character U+1D404

On the Roles of LATEX and MathML 69

MathML is an XML application. As such it inherits the syntax of XML
documents, which is equally well-known today due to the diffusion of markup
languages for the Web, and XML itself. Since the very beginning of its specifica-
tion, MathML does not even try to deceive its potential users: “while MathML
is human-readable, it is anticipated that, in all but the simplest cases, authors
will use equation editors, conversion programs, and other specialized software
tools to generate MathML.”

The first impression looking at the markup in Fig. 2, which encodes equa-
tion 1 in MathML presentation, is that of a dramatic difference with respect
to LATEX markup. A closer look reveals that things are not that different. The
emphasis of MathML is on the structure of the formula. Not only the whole
fragment is enclosed inside a math element, but every subexpression (mrow),
including scripts (msub), is explicitly delimited by MathML tags. The atomic
entities (called tokens in MathML) such as numbers, identifiers, operators are
all marked up with corresponding elements mn, mi, mo. By its own nature, XML
calls for embedding of different markup languages within each other. The xmlns
attribute in the math element identifies the whole markup enclosed in math as
MathML markup, and its value is the MathML namespace. XML namespaces
allow any processor of XML markup to identify the parts of a document to be
processed, and the suitable software components needed to process them.

If we abstract the syntax, the two encodings are very close and the layout
schemata of the two languages are basically the same, as Table 1 summarizes. But
the concrete representation of the structure and the explicit representation of the
atomic components that in TEX and LATEX are only implicitly (or heuristically)
assumed are two strong points favoring MathML. The Web, where resource
exploitation largely depends on the addressability of the resource itself, is made
of links, and XML markup enables linking capabilities much more expressive
and fine-grained than those available with LATEX: we moved from the possibility
of linking “documents” to the possibility of linking any structured fragment of
any document.

3 Semantics

TEX and LATEX are purely presentational languages whereas MathML is con-
cerned with both semantics and presentation. We will come to MathML content
markup in a moment, but first we have to fully appreciate presentation markup
because, despite of the name, it conveys lots of semantics.

3.1 Semantics in Presentation

Structure. Structure is semantics. The multiplication sign · is an operator inside
an mrow which is more deeply nested than the mrow that contains the equal
sign =. Hence, we know that that the first operator (multiplication) has greater
precedence with respect to the second operator (equality) before we know the
actual names of the two operators. This is fundamental because processors of

70 L. Padovani

Table 1. Correspondence between LATEX and MathML layout schemata

Layout Schemata LATEX MathML presenta-
tion

Identifiers a,\sin,. . . mi
Numbers 0,. . . mn
Operators +,(,\oint,. . . mo
Grouping { } mrow
Fractions \frac mfrac
Radicals \sqrt msqrt, mroot
Scripts _, ˆ msub, msup,

msubsup,
mmultiscripts

Stacked expressions, lines
and braces above and below
formulae

\stackrel,
\underline,
\overline,
\underbrace,
\overbrace

munder, mover,
munderover

Matrices, tables \begin{array} mtable

MathML markup do not necessarily know mathematics as we do. Actually, we
would like them to know as little about mathematics as possible, because the
more rules (assumptions, conventions, heuristics) we hard-code in them, the more
likely it is to find examples where the processors behave badly.

Let us stress the point with an example by considering a formatting engine
for MathML that is capable of automatic line-breaking of very long formulae.
Breakpoints are typically placed just before or after operators. The formatting
engine will tend to favor breakpoints around operators that are “on the surface”,
rather than breakpoints around operators that are deeply nested. In this algo-
rithm the formatting engine may ignore completely the actual names of those
operators. By contrast, in the very few circumstances where TEX allows a line-
break in a formula, the decision is solely based on the “name” of the operator,
as any attempt of grouping subformulae prevents line-breaking. In fact an ex-
pression like (1 + 1 + 1 + · · · + 1)2 has a chance of being broken just because
it is marked up as (1+1+1+\cdots+1)ˆ2, where the superscript 2 applies to the
closed parenthesis alone, and not to the whole subformula!

Unicode characters. Text inside a MathML document is made of Unicode char-
acters, and Unicode classifies characters according to their semantics, not to
their shape.2 Let us compare E and A of the Gauss’s law in the two encodings.
In LATEX they are encoded as \mathbf{E} and \mathbf{A}, where \mathbf’s
purpose is to set the bold font for its argument. In MathML they are encoded as
the Unicode characters U+1D404 and U+1D400, which are defined as ‘mathemat-

2 Because of the unbound variety of meanings that mathematical symbols may have,
Unicode had to make an unavoidable compromise on them [2].

On the Roles of LATEX and MathML 71

ical bold capital A’ and ‘mathematical bold capital E’. Thus, the first encoding
does not distinguish style from semantics, whereas the second encoding reminds
us that E and A are precise mathematical objects, vectors in this case. MathML
allows the application “styles,” but with a different mechanism that does not
generate such kind of ambiguities. A similar thing happens with the d that
stands for the differential operator. In LATEX it is just a plain letter d, whereas
in MathML it has been encoded as the DifferentialD entity which, in turn,
expands to the Unicode character U+2146, classified by Unicode as a letter-like
symbol. It is a symbol, even if it resembles a letter.

Incidentally, if we look up the glyph that the book editor used for the surface
integral we discover that in Unicode it corresponds to U+222E, ‘contour integral,’
and not to the surface integral operator which is U+222F and which has a different
glyph. This is an interesting case where the publisher has chosen a notation that
violates somehow the semantics of the formula. There can be many reasons
for doing so, for example the search of consistency with other related documents
that are typeset using that glyph, and not the right one. Either way, a document
typeset using LATEX usually requires the reader to give the “right” semantics to
the symbols he sees by understanding the context. This is a problem though if the
document is meant to be processed automatically, or if the formula is extracted
from its context and communicated elsewhere. We delay further discussion of
this point until Sect. 3.2, where we show how MathML content markup can
be used to “restore” the semantics of a formula, whenever presentation is not
enough.

No shortcuts. In mathematics the multiplication sign is omitted in most con-
texts. In equation 1 this convention has been applied between ε0 and the surface
integral because the multiplication involves two numbers, but not between E and
dA, where the dot indicates multiplication of vectors. No matter what the rea-
sons are to use one notation instead of another, in TEX and LATEX the invisible
multiplication is represented with. . . no markup!

In MathML presentation markup a multiplication operator is always used,
even when the multiplication sign is invisible (the Unicode character U+2062 has
an empty glyph). Other invisible operators that must be explicitly inserted in
MathML are “apply function” (U+2061), separating a function from its argument
as in sinx or sin(x), and “invisible comma” (U+200B), separating multiple indices,
as in a script xij .3 By allowing such verbose encoding of formulae, presentation
markup conveys more meaning and (perhaps surprisingly) its rendering can be
more precise. Let us consider “invisible times:” Computer Modern glyphs for
letters in mathematical mode have been designed so that when they stand next
to each other they look perfectly fine, as if they were multiplied together, but
this might not be the case in other font families. If the markup has an explicit
multiplication operator, as in MathML, the rendering engine can adjust the space
between the two factors automatically. If not, it is up to the typist to be careful

3 There are arguments favoring the definition of an “invisible plus” character, to be
used in expressions like 2 1

4 when they mean 2 + 1/4.

72 L. Padovani

about the fonts he uses. The “apply function” operator is even more interesting:
when we typeset expressions like sin x or sin(x) in LATEX we do not mind putting
a space between the function and its argument if the argument has no fences
around. LATEX takes care of this automatically, because it “knows” the function
sin. But a rendering engine for MathML can do it more generally, whenever the
“apply function” operator occurs.

In the discussion above we have made the implicit assumption that rendering
means visual rendering. But the use of explicit operators even when they have
no visual appearance enables MathML with aural rendering as well, in a very
natural way.

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<apply>
<times/>
<apply>
<csymbol definitionURL="..."> ezero </csymbol>
<apply>
<int id="i1" definitionURL="..."/>
<bvar>
<ci> A </ci>

</bvar>
<condition>
<apply>
<in/>
<ci> A </ci>
<ci> S </ci>

</apply>
</condition>
<ci> E </ci>

</apply>
</apply>
<ci> q </ci>

</apply>
</math>

Fig. 3. MathML content markup encoding equation 1. The grouping element is apply
instead of mrow. The empty element eq stands for the equality relation, times for
multiplication (it does not matter if we want an invisible multiplication here), int for
an integral. Numbers and identifiers are represented with the token elements cn and
ci. The special token csymbol can be used to extend the (necessarily finite) set of basic
operators and constants that MathML content provides

On the Roles of LATEX and MathML 73

3.2 Semantics in Content

MathML content markup’s aim is that of encoding the “meaning” of mathemat-
ical formulae. A possible encoding of equation 1 in content markup is shown
in Fig. 3. The basic idea is the same: the formula is encoded depending on its
structure, but grouping is always done with respect to an operator or a function
that says how the grouped subexpressions relate to each other. Most MathML
content elements allow the definitionURL attribute whose value is a reference
to another document that gives more precise semantics to the element it applies
to. In the figure the definitionURL attribute is supposed to point at a resource
identifying the symbol ezero with the electric permittivity of free space.

MathML content markup can be associated with a corresponding fragment
of presentation markup by means of the semantics element:

<semantics>
MathML Presentation markup of Fig. 2
<annotation-xml encoding="MathML-Content">

MathML Content markup of Fig. 3
</annotation-xml>

</semantics>

Since XML documents are trees with labelled nodes, a fragment of an XML
document is a subtree easily identifiable either by an explicit id on the node, in
the form of an attribute, or by a path from the root of the tree. XML provides
a linking mechanism that can be exploited to relate fragments of presentation
markup to fragments of content markup within the same semantics element.
In our favorite equation, we can set a link from the mo element encoding the
contour integral (which we know being a surface integral) to the corresponding
int element: the xref attribute in Fig. 2 and the id attribute in Fig. 3 do exactly
this. As a result, we can avoid any ambiguity that may come from the use of
a particular notation, as long as we can access the related content by means of
suitable links.

Even more severe are those situations in which the structure of presentation
markup must be violated in order to achieve particular rendering effects. Breaking
the structure is an irreparable process that prevents in all but the simplest cases
to recover any meaning from the encoded formula.

Two typical examples where this occurs in classical mathematics are the
following:

– very long expressions that need to be manually arranged on several lines, as
the automatic line-breaking algorithm is not available, or does not produce
a satisfactory rendering;

– functions defined “by cases”, which do not have a linear, horizontal format-
ting and their vertical formatting is not completely standardized.

The use of semantics allows the preservation of the meaning by providing a par-
allel encoding of expressions: the presentation markup achieves the required ren-
dering, possibly paying the price of not being completely well-structured; content

74 L. Padovani

markup encodes the meaning, and links can relate well-structured fragments of
the presentation markup with corresponding fragments of content markup, giv-
ing rendering engines and, more generally, any processor of the markup, aware-
ness of the semantics.

4 Formatting Quality

The LATEX user will be concerned about quality of a (visual) rendering engine for
MathML, since he comes from a world where quality is “for free.” The TEXnician
also knows that, in case any difficulty arises, he can count on the low-level
TEX commands and macros with which everything is virtually possible (apart
from being Turing complete, TEX’s primitive commands have been specifically
designed for typesetting purposes).

Among the characteristics that made TEX a quality typesetting system since
the very beginning were its association with a family of high-quality fonts and the
fact that TEX has basically fixed formatting rules. Authors who need to tweak a
formula are allowed to do so, and are guaranteed that all TEX implementations
will render it identically, if they use the same fonts. MathML, on the other side,
has completely different goals: as a Web-oriented language it aims at device
(and font) independence; it has to be suitable for rendering in a wide variety
of environments ranging from printed paper to computer screens, to pocket-size
devices; it has to enable interactive capabilities where feasible. Hence, MathML
formatting rules are much looser and the fine points are up to the rendering
engine, although MathML does suggest certain conventions. Notwithstanding
this, we have shown in a different work [13,14] that it is possible to design
and implement a general architecture for MathML formatting that achieves the
best formatting available for each context, in particular a formatting quality
comparable to that of LATEX where the context allows it.

The basic idea of the architecture is the following: MathML presentation
elements correspond to formatting devices, each having a specific formatting se-
mantics. The formatting engine is made of two components: a set of modules
implementing the formatting semantics of the MathML elements and an abstrac-
tion of the formatting context that hides all the details regarding the available
fonts, their properties, the resolution of the output device and so on.

One of the innovative features of the architecture is that the abstraction of
the formatting environment is specifically designed for formatting mathematics,
and it can be instantiated to different implementations depending on the plat-
form, the available fonts, and, more generally, the context in which the engine is
used. By contrast, common multi-platform applications that render structured
documents4 are based on a very primitive abstraction of the environment, that
makes them unsuitable to achieve quality typesetting in every context.

Modules of the formatting engine are such that they interact with each other
by means of a simple and narrow interface, allowing the interchange of different
4 Mozilla (http://www.mozilla.org) and AbiWord (http://www.abiword.org) are

two examples.

On the Roles of LATEX and MathML 75

module implementations for the same formatting device. For instance, a full-
featured implementation of the module corresponding to the mrow element might
provide support for automatic line-breaking,5 whereas another implementation,
which is targeted to embedded system with computational constraints, might
ignore the problem thus providing a more light-weight module.

In order to be formatted, the source document is parsed and compiled into a
tree of areas. Areas describe low-level typographical entities (glyphs, horizontal
or vertical spaces) and their geometrical relationships (horizontal or vertical
grouping, overlapping). The architecture can be related to TEX and LATEX as
follows:

– areas are close to TEX primitives such as \hbox and \vbox, used in con-
junction with so-called “kerns” and “fillers.” Area creation and management
are hidden inside the abstraction of the formatting environment. Areas may
depend on the available fonts, on their properties, and generally on the for-
matting context;

– modules are close to LATEX macros, but they are completely independent
of the formatting context as the areas they generate indirectly through the
abstraction of the environment are opaque to them. The only property that
modules can query about areas is their bounding box, that is the extent of
the rectangular portion of the output medium they occupy.

An interesting consequence of the architecture’s design is that, by a clear
separation of modules from areas, we were able to describe the process of for-
matting mathematics encoded in MathML in a formal way using the language
of areas.

The issue of quality could have been quickly addressed by noticing that,
thanks to the close correspondence of LATEX and MathML layout schemata (Ta-
ble 1), and given the availability of a tool for converting MathML presenta-
tion markup into LATEX markup (this task can be accomplished with an XSLT
stylesheet, Sect. 5) the two languages are potentially equivalent in terms of for-
matting quality. But the transformation of MathML into LATEX is not loss-less
in general, for much of the semantical information which is explicitly encoded
in the MathML presentation markup is forgotten in the process. In fact, we can
say that with MathML presentation markup it is possible to achieve the same
formatting quality achieved with TEX and LATEX, but with basically no tweaking
at the MathML markup level, and by doing this in a context-sensitive, adaptable
way.

5 Macros and Transformations

The whole TEX system is based on the concept of macro. A macro is a named,
possibly parametrized sequence of TEX commands that expands wherever the
5 Support for line-breaking is affected by other MathML elements as well, but it is

mainly governed by mrow.

76 L. Padovani

name occurs in the document. The macro mechanism of TEX is what ultimately
makes the system usable, for typing at the level of the basic commands is really
hard. LATEX is “just” a large collection of TEX macros that allow the author to
typeset mathematical documents at a relatively high level of abstraction, so that
it is not necessary to use basic TEX commands directly (even if some people,
including TEX’s creator, still prefer to do so). In TEX a macro is introduced with
the \def command, which is followed by the name of the macro we want to
define, a pattern with named holes (the arguments of the macro), and a body
that the macro expands to. The arguments may be referred to in the body and
are substituted by their value at each point of expansion. In LATEX the user
can introduce a macro with \newcommand, with a syntax which is a cleaner and
simplified (hence less powerful) version of the one for \def.

<xsl:template match="m:apply[*[1][self::m:int]
and *[3][self::m:condition]]">

<m:mrow>
<m:msub>
<m:mo> ∮ </m:mo>
<xsl:apply-templates select="*[3]"/>

</m:msub>
<m:mrow>
<xsl:apply-templates select="*[4]"/>
<m:mo> ⋅ </m:mo>
<m:mrow>
<m:mo> ⅆ </m:mo>
<xsl:apply-templates select="*[2]"/>

</m:mrow>
</m:mrow>

</m:mrow>
</xsl:template>

Fig. 4. An example of XSLT template for converting the integral encoded in Fig. 3
into its corresponding presentation markup in Fig. 2. The template matches against
an apply element whose first child is the int element, and whose third child is a
condition element. The transformation occurs recursively as the XSLT commands
apply-templates are executed

MathML does not define any notion of macro. Given that MathML is not
meant to be written by hand, it is not clear what advantages could derive from a
macro mechanism other than a smaller size of documents. Besides, XML has al-
ready a powerful, standard transformation mechanism that goes under the name
of XSLT (XSL Transformations6). Despite its name, XSLT is very expressive (it
is Turing complete, in fact), thus it can be used to perform arbitrary transfor-
6 See http://www.w3.org/TR/xslt, XSL stands for the Extensible Stylesheet Lan-

guage.

On the Roles of LATEX and MathML 77

mations on XML (hence MathML) documents, not limited to “styling.” XSLT is
a tree transformation language that works by pattern matching on the structure
of the document tree, transforming a source document into a result document:
an XSLT stylesheet is made of a list of templates that match fragments of the
source document. With each template a fragment of the result document markup
is specified, either by explicit markup or by re-arrangement and composition of
the source document. A typical XSLT stylesheet for MathML converts content
markup into presentation markup. Fig. 4 shows a simplified XSLT template
for converting integrals encoded in content markup into the corresponding pre-
sentation markup. The match clause is used by the XSLT engine to determine
whether there is an instance of the template in the source document. In case
of match, the markup included in the body of the template is generated, and
the transformation is applied recursively as specified by the apply-templates
commands.

Despite the fact that the markup in Fig. 3 is basically as verbose as the
markup in Fig. 2, we can think of content as a macro version of presentation
that captures structural information about a mathematical formula, regardless
of any cultural or environmental context about the formula itself (Fig. 5 gives
an example of different renderings of the sine function). In this view, XSLT
provides a mechanism that is very close to macro expansion of content markup
into presentation markup. Other approaches based on MathML extensions are
also being investigated [12].

Remarkably, XSLT engines are becoming a standard component of the most
popular Web browsers, thus enabling on-the-fly transformations of XML doc-
uments, including those embedding mathematics. A combination of MathML
presentation and content markup together with XSLT stylesheets could be eas-
ily exploited to customize mathematical documents on-the-fly, according to the
user’s environment, culture, and personal preferences. Such transformations can
also automate the generation of links connecting freshly created presentation
markup with the source content markup, thus relieving authors of mathematical
documents from this burden.

6 Conclusions

In the last decade the world of publishing and the World Wide Web have be-
come increasingly involved. This is a one-way transformation process that will
eventually lead to a new concept of document and resource, especially in the sci-
entific area. Already now we can touch new digital libraries, electronic journals,
online encyclopedias, specialized search engines that have adopted, or are going
to adopt, MathML and its related technologies as the basis for the management
and processing of mathematical knowledge. An increasing number of research
projects are exploring and developing the possibilities of this approach, and the
results achieved so far are tangibly promising. We are just a little step away
from having interactive, semantic and context sensitive, hyper-linked libraries of
scientific documents.

78 L. Padovani

<apply>
<sin/>
<ci> x </ci>

</apply>

<mrow>
<mi> sin </mi>
<mo> ⁡ </mo>
<mi> x </mi>

</mrow>

(a) ‘the sine of x’ (b) sin x

<mrow>
<mi> sin </mi>
<mo> ⁡ </mo>
<mfenced>
<mi> x </mi>

</mfenced>
</mrow>

<mrow>
<mi> sh </mi>
<mo> ⁡ </mo>
<mi> x </mi>

</mrow>

(c) sin(x) (d) sh x

Fig. 5. The formula sin x in MathML content markup (a) and three expansions to
presentation markup. Expansion (d) is particularly common in Russian literature.

People will still use LATEX for a long time in the future because of its relatively
simple syntax, that today is known by virtually every author of publications in
computer science, in mathematics, in chemistry and certainly in other fields. But
here is the key: people will use its syntax, but will tend to forget the underly-
ing system, since the potential of MathML and, in general, XML technologies
with respect to document processing, flexibility of information management,
and expectations for Web publishing are overwhelming. Because of its nature,
MathML is suitable for on-line, interactive and printed paper publishing, and
has the potential of achieving LATEX high-quality typesetting. Powerful transfor-
mation technologies, XSLT first of all, allow possibly loss-less transformations
between MathML and other XML dialects, as well as on-the-fly localization and
customization of the markup. MathML is suitable for the communication of con-
tent other than presentation, hence providing disambiguous notation, facilitating
communication between computer applications, and allowing semantic-sensitive
searching operations over digital libraries of mathematics.

References

1. R. Ausbrooks, et.al., Mathematical Markup Language (MathML), Version 2.0,
W3C Recommendation, February 2001. Online http://www.w3.org/TR/MathML2

2. B. Beeton, A. Freytag, M. Sargent III, Unicode Support for Mathematics, Proposed
Draft, Unicode Technical Report #25, 2002. Online
http://www.unicode.org/unicode/reports/tr25/

3. D. E. Knuth, The TEXbook, Addison-Wesley, Reading, Massachusetts, 1984.

On the Roles of LATEX and MathML 79

4. D. E. Knuth, The METAFONTbook, Addison-Wesley, Reading, Massachusetts,
1986.

5. D. E. Knuth, Mathematical Typography, Bullettin of the American Mathematical
Society (new series) 1, pp.337–372, March 1979.

6. D. E. Knuth, TEXDR.AFT, in Digital Typography, CSLI Lecture Notes Number 78,
pp.481–504, 1999.

7. D. E. Knuth, TEX.ONE, in Digital Typography, CSLI Lecture Notes Number 78,
pp.505–532, 1999.

8. D. Halliday, R. Resnick, K. S. Krane, Physics, 4th Edition, John Wiley & Sons,
Inc., 1992.

9. S. Huerter, I. Rodionov, S. Watt, Content-Faithful Transformations for MathML,
MathML International Conference 2002, Chicago, Illinois. Online
http://www.mathmlconference.org/2002/presentations/huerter/

10. L. Lamport, LATEX—A Document Preparation System, Addison-Wesley, Reading,
Massachusetts, 1985.

11. L. Lamport, LATEX—A Document Preparation System, 2nd edn. for LATEX2ε,
Addison-Wesley, Reading, Massachusetts, 1994.

12. W. A. Naylor, S. Watt, Meta Style Sheets for the Conversion of Mathematical Doc-
uments into Multiple Forms, Proceedings of the Mathematical Knowledge Man-
agement, RISC-Linz, Austria, September 2001.

13. L. Padovani, A Standalone Rendering Engine for MathML, MathML International
Conference 2002, Chicago, Illinois. Online
http://www.mathmlconference.org/2002/presentations/padovani/

14. L. Padovani, MathML Formatting, Ph.D. Thesis, Bologna, Italy. To be published
in 2003.

15. The Unicode Standard, Version 3.0, Addison-Wesley Developers Press, Reading,
Massachusetts, 2000. Online
http://www.unicode.org/unicode/uni2book/u2.html

16. U. Vieth, Math typesetting in TEX: The good, the bad, the ugly, Proceedings of
the EuroTEX’01 Conference.

Problems and Solutions for Markup for
Mathematical Examples and Exercises�

Georgi Goguadze1, Erica Melis1, Carsten Ullrich1, and Paul Cairns2

1 DFKI Saarbrücken, D-66123 Saarbrücken, Germany,
{george,melis,cullrich}@ags.uni-sb.de

2 UCL Interaction Centre, University College London,
26 Bedford Way, London WC1H OAP, UK

p.cairns@ucl.ac.uk

Abstract. This paper reports some deficiencies of the current status
of the markup for mathematical documents, OMDoc, and proposes
extensions. The observations described arose from trying to represent
mathematical knowledge with the goal to present it according to
several well-established teaching strategies for mathematics through the
learning environment ActiveMath. The main concern here is with
examples, exercises, and proofs.

Keywords: knowledge representation, markup for mathematics docu-
ments

1 Motivation

For publishing mathematics on the Web OpenMath [6] and MathML[8] represen-
tations are being developed, for mathematical symbols and expressions and
OMDoc[13] that integrates both, OpenMath and MathML and, in addition, takes
care of structural elements of mathematical documents. Such standard represen-
tations are necessary, among others, in order to present the same knowledge in
different contexts and scenarios without changing the underlying representation.

Naturally, these representations develop over time as more and more appli-
cations occur and new requirements built up. Changes or extensions might be
required, e.g., when more theorem proving systems want to use the same rep-
resentation or when authors want to encode documents and present them in a
useful but not yet covered style.

The ActiveMath-group collaborates with several authors who emphasize
different elements of a mathematical document and want to realize different
styles of presentation and teaching which - in principle - is supported by Ac-
tiveMath’ separation of representation and presentations. The needs of the
various authors are very important for establishing a reasonable standard since

� This work has been funded by a project funded by the German Ministry for Educa-
tion and Reseach (BMBF) and by the EU-project MoWGLI

A. Asperti, B. Buchberger, J.H. Davenport (Eds.): MKM 2003, LNCS 2594, pp. 80–92, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: h×N
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (h×N)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

Problems and Solutions for Markup 81

only if a standard is flexible enough to meet the authors’ demands, will the stan-
dard be accepted widely. This is because there is evidence that even a simple
self-determination of the sequencing of content improves the acceptance [1].

This does not mean that every new idea of an author should change the
standard. Although we want to be able to simulate as many useful teaching
and learning scenarios as possible and assemble appropriate content with Ac-
tiveMath or any other user-adaptive environment, we are determined to use
document representations that are encoded in a standard way rather than in a
very specific and system-dependent way.

This paper reports presentational needs that cannot be realized using the in-
formation included in the current representation standards. These needs require
extensions of the representation and we propose some of them.

2 Preliminaries

ActiveMath is a web-based learning environment that generates interactive
mathematics courses and feedback in a user-adaptive way and dependent on a
chosen learning strategy (scenario) [16]. The user-adaptivity is based on the
learner’s goals, preferences, capabilities, and mastery of concepts which are
stored and updated in a user model. For interactive exercises with computer
algebra systems (CASs) we developed a generic interface and feedback mecha-
nism [5]. This code still relies on the language of the CAS in use but the plan is
to abstract this language.1

2.1 Current OMDoc Markup

OMDoc provides markup elements for basic mathematical items such as axiom,
definition, theorem, lemma, corollary, conjecture and proof. Other kinds of tex-
tual items such as remarks and elaborative texts are represented by an omtext
element that can have different types indicating which kind of textual remark
it is. Currently, examples and exercises are represented as separate markup ele-
ments of the OMDoc core, although they are educational in nature.

Examples in OMDoc have no particular internal structure. Those examples
can be annotated with a relation of type for or against to indicate that the
example is a model of the concept or not.

Exercises in OMDoc allow for further structuring of their informal textual con-
tent and multiple choice questions are represented by a particular OMDoc element
additionally for the representation of so-called multiple choice statements. An
exercise element consists of the text of its statement, a possible occurrence of
a hint element, zero or more solution elements or zero or more mc elements
representing multiple choices. The hint is supposed to be a small remark pro-
viding some initial idea for a solution. The solution consists of an OMDoc CMP
element (CMPs can contain text and mathematical object representations) and
1 We needed to use the feedback practically before we were able to define a more

generic language.

82 G. Goguadze et al.

is not further structured. An mc element can consist of choice, hint (optional),
and answer. This does not allow for more complex constructions (see 3.2 for
some examples). The markup for exercises is still subject of research. After the
modularization of OMDoc in one of the next versions, the exercise element is
going to migrate from the core OMDoc to its pedagogical module2.

Special attention in OMDoc is paid to the representation of proofs. A proof in
OMDoc is a direct acyclic graph (DAG) the nodes of which are the proof steps. Every
proof step contains a local claim and a justification by applying an inference rule,
referring to a proof method, or employing a subproof. Steps can be represented
formally as well as contain textual annotations. Since the DAG structure of a proof
can not be directly represented by XML tree-like structure, the OMDoc element
proof consists of a sequence of proof steps, whose DAG structure is given by cross-
referencing. Steps are represented by four kinds of elements: derive element
that specifies the proof step deriving new claim from known ones, hypothesis
element to specify local assumptions, conclude element, reserved for the last
step in the proof and metacomment that contains textual explanations. These
elements have some further structure, including cross-references, references to
subproofs or external proof methods.

2.2 Current Educational Metadata in the ActiveMath DTD

According to the needs of a learning environment, mathematical items have to
be annotated with additional metadata. The ActiveMath DTD defines a set
of metadata for most of the OMDoc items as well as some metadata specific for
exercises.

Among others, it refines the relation element by several types of relations
relevant for pedagogical purposes and beyond. The standard values of the at-
tribute type of the relation are “depends-on” as purely mathematical depen-
dency and “prerequisite-of” as a pedagogical dependency pointing to the items
needed for the understanding the current one. Another pedagogical relation is
the role of a mathematical item relative to another one. There can be multiple
role of one element. For example, a definition for one concept can serve as an
example-for another one.

Some pedagogical metadata describe a learning situation similar to those of
Learning Object Metadata (LOM). These are the fields of an item (mathematics,
computer science, economy, etc.) and its learning context (university first cycle,
secondary school, etc.), as well as technical difficulty and abstractness of the
content.

Characterizations applicable especially to exercises are the activity type with
values “check-question”, “make-hypothesis”, “prove”, “model” and “explore”
and pedagogical level with values “knowledge”, “comprehension”, “application”
and “transfer” corresponding to the Bloom’s taxonomy of learning goal levels.

2 Communication on OMDoc list

Problems and Solutions for Markup 83

3 Experiences with Representing Mathematical
Documents

Our current experience with authors designing mathematics courses includes:

– Abstract algebra for university students by Cohen, Cuypers and Sterk [9]
– Calculus book for first year university students by Dahn and Wolter [10]
– Statistics course by Grabowski
– Topology course by Cairns [7]
– Operations research course by Izhutkin
– Calculus course for high school (11th grade) by Schwarz and Voss [18]

In the near future, more authors and institutions from Germany, Great
Britain, China, Mexico, Russia, Spain and the United States, will join our effort
to present mathematics through ActiveMath.

In this section, we report some problems that occurred when we tried to
represent these mathematics courses in the current OMDoc and maintain their
characteristic presentation. For these problems we suggest some solutions. So
far, the need for extending OMDoc has been most urgent for presenting examples,
exercises, and proofs properly.

3.1 Example Representation: Problems and Solutions

In OMDoc examples represent concrete mathematical structures, rather than ex-
amples in an educational sense (which overlap but have a much wider range).
They do not possess internal structure allowing for applying advanced pedagog-
ical strategies.

Examples occur in educational material and in other types of mathemati-
cal documents. Depending on the teaching strategy, examples are introduced
before a general property (’American style’) or after (’German style’). This se-
quencing can be performed by the ActiveMath course generator without any
need to extend the knowledge representation. However, there are more subtle
style requirements that a course generator cannot realize without an additional
markup.

For instance, the school calculus course [18] is built mostly on examples. It
illustrates a concept by an example before and after introducing it. Another
strategy in this course is to choose a number of concrete examples and then
develop them by changing parameters and extending them to newly introduced
concepts. This produces a hierarchy of examples developing in parallel to the
conceptual content. This is just one instance of quite a strong use of examples
in teaching and beyond.

There are other ways in which examples are used that are common to many
mathematical texts and ActiveMath should be able to reflect these common
practices. The following lists some of the ways in which examples are used:

1. A particular example may be used as motivation for a theory. For example, in
[17], an example of solving simultaneous linear equations is used to motivate
the definition of elementary row operations on matrices. The goal of other
examples is to illustrate the concept.

84 G. Goguadze et al.

2. Examples can have considerable structure, they can be miniature theories
themselves. For pedagogical reasons, some authors emphasize this structure.
They explicitly provide a problem description and its (possibly worked-out)
solution.

3. A single example can be used many times to illustrate many different and
various aspects and properties. This can be particularly evident, when an
example is used as a prototypical structure for a theory, for instance, in the
use of [0, 1]ω as the prototypical Hilbert Space [4].

4. An example can be constructed over several sub-examples. In [10] the concept
of linear function is introduced by giving several examples that are continued
when elaborating further properties of linear functions. In [3], the example
of the exponential function as a power series is built up in three examples
over two chapters.

In order to decide which example is better suited for being a motivation the
author would have to provide additional metadata, since this can not be deduced
automatically. The problem addressed in 1 can be solved by the role-dependency
metadata mentioned in section 2.2. In the above example, the relation can be
of a type motivation-for and contain a reference to the concept “elementary row
operations on matrices”.

Using a single example to illustrate different properties, the problem ad-
dressed in 3 of our list, requires the use of multiple relations of type for. There-
fore, we have changed the for attribute of an OMDoc element example to an
attribute of element relation in metadata that can contain more than one
reference elements as children.

In OMDoc an example element is connected to the concept it is a model for.
There is no connection between examples using the same concrete structure if
they are bound to different concepts. Therefore, something is missing for use
of pedagogical strategies that successively consider the same structure assigning
more and more properties to it.

In order to provide more facilities for the reuse of examples additional struc-
ture is needed. We propose to partition an example into three subelements: an
situation description (SD) containing a description of mathematical objects
(structures, formulas, terms) and relations between them, considered in this ex-
ample, one or more property assignments (PA), and every property assignment
may have one or more solutions (SOL).

In addition we propose to connect examples that use the same object descrip-
tion by a new type of relation called same-situation provided in the metadata
of the example. In this way an object descriptions can be introduced only once
and then retrieved automatically. One could also avoid introducing a new type
of relation in metadata. In order to reuse the existing situation description it
would be sufficient to provide a reference to it inside the body of an example.
But the goal of our annotation is to keep all the information necessary for course
generation within the metadata of the item. This way there will be no reason to
parse the content of the example during the course generation.

The proposed complex structure is not obligatory, so the author can also
write the content of his example just as a CMP element. The new structure can
be described in a simplified DTD-style as follows:

Problems and Solutions for Markup 85

Example := (CMP|(SD?,PA+))
SD := (CMP)
PA := (CMP,SOL*)

(The ?-mark here means zero or one, + means one or more, * means zero or
more.)

Consider the following example:

– Let’s take a look at the set of real numbers with the addition operation. –
situation description

– This structure is a monoid. – assignment of a property
– Indeed, the addition operation is associative and possesses a unit – the num-

ber 0. – Proof, i.e., problem solution

It has an internal structure that can be emphasized according to the wish of
author, as asked in 2. This example can be continued - the more notions are
introduced, the more properties can be assigned to the situation description,
i.e. the real numbers with addition operation. By providing the same-situation
relation other examples can reuse the same object description and enable new
pedagogical strategies that rely on developing examples.

3.2 Exercise Representation: Problems and Solutions

Historically, multiple choice questions (MCQ) were the first and only explicit type
of exercises in OMDoc. In the light of our experience this is not a valid decision
because MCQs are just one of several types of exercises occurring in mathematics
courses, even a rather untypical one. The main reason for its use in on-line
mathematics courses is the simplicity to understand and evaluate the user’s
input. In order to make an MCQ a valuable learning and assessment source anyway,
carefully designed questions and sometimes more structure is required.

Just as examples can serve several purposes in a text, so too can exercises.
Of course, the emphasis is different. Whereas examples are illustrative or elabo-
rative, exercises are intended to help the reader develop a deeper understanding
through actively solving problems rather than just reading about them. Never-
theless, the uses of exercises in mathematical texts have much in common with
the use of examples:

1. A particular exercise can serve multiple purposes, just as an example. For
instance, it can be used to motivate theory by implicitly employing ideas
that will later be defined in their own right. This problem can be solved in
the same way as for examples.

2. An exercise can have considerable structure, for instance, it may consist
of many sub-exercises. In fact this is an extremely common structure in
exercises so that the reader is effectively led to the final solution rather than
being faced with the entire problem from the outset.

3. Exercises may actually develop an entire piece of theory. Willard [19] has
many exercises on topological groups that together build up a substantial
theory. However, nowhere else in the theorems or definitions in the book

86 G. Goguadze et al.

are topological groups mentioned. This case will be handled analogously
to examples by providing the relations of the type same-situation between
corresponding exercises.

Similar to examples, we propose to structure the internal representation of
exercises into subelements of the following types:

– situation-description (SD) describing the initial state of the problem.
This means description of some given objects and relations between them.

– problem-statement (PS) containing the statement of the problem to be
solved. This can be an assignment of a property, calculation or construc-
tion of some new structures. This element can possibly contain a hint,
interactive actions and solutions. Multiple problem statements for
dividing the exercise into sub-exercises can be provided.

– interactive-action (IA) serve as an abstraction of the interactive parts of
an exercise. Every action consists of an EXCLET and one or more feedback
elements.

– The code of the interactive pieces itself is contained within the subelement
EXCLET. For example, it can contain an MCQ, a table or a text with blanks to
fill-in, a call of an external system such as CAS or planner, or an applet in
which the user has to analyze (modify) some graphical objects. Abstractly,
the execution of an EXCLET should return a certain result which is then
compared with the finite number of conditions of the feedback elements
in order to select the appropriate feedback.

– feedback (FB) consisting of the condition that has to be fulfilled for the
feedback to be given, and two kinds of feedback: system messages sent
to interested system components, for instance the user model, and user
messages to be provided to the user. It can also contain another problem
statement that enables nesting of interactive actions.

– condition to be satisfied for the feedback to be applied is a string that is
compared to the result of an EXCLET.

– system message (SYS-MES) for providing information to the user model or
other components of the learning environment on the result of user interac-
tion

– user messages (USR-MES) for the communication with the user,
– solution (SOL) containing a solution of the problem statement. Solutions

share several structure properties with proofs. As soon as a suitable repre-
sentation for proofs is specified, it can be also used for worked-out solutions.

The new structure of exercises is shown by the following schema:

Exercise := (CMP|(SD?,PS+))
SD := (CMP)
PS := (CMP,HINT?,IA*,SOL*)
HINT := (CMP)
IA := (CMP,EXCLET,FB*)
FB := (condition,SYS-MES*,USR-MES,PS*)
USR-MES := (CMP)

Problems and Solutions for Markup 87

Let’s take a closer look at the EXCLET element. This element serves as an
abstraction for all types of interactive steps. All interactive exercises have in
common that after the execution of each of their steps the result of the step
is evaluated and some information has to be provided to system components
such as the user model and feedback to the user himself. The outcome of the
interactive step is compared to the condition of the feedback elements. The
matching feedback element is executed, i.e., its messages are delivered and its
other child elements (such as another problem statement) are presented.

The following schema shows the structure of a simple MCQ as an instance of
an EXCLET. It is, in fact, the simplest kind of an interactive step. It consists
of a number of choices (CH), which contain the result later compared with the
condition of each of the feedback elements.

MCQ := (CH*)
CH := (CMP, result)

Note that this structure of MCQ differs from the current OMDoc representation.
Choices and the process of their selection is a part of an interactive action and
the assignment of feedback to the result is happening outside of the EXCLET.

Let us show how the above representation covers exercises with sub-exercises
as well as nested exercises. Table 1 to 3 show different kinds of MCQs that are
covered and Figure 1 schematically illustrates their structure. While Table 1
contains an ordinary, non-nested MCQ, Tables 2 show a nested MCQ and and Table 3
an MCQ with subtasks using an external theorem prover.

Given a set of natural numbers with an addition operation. Which of the following
structures is it?

Table 1. An ordinary MCQ

Choice: Answer:
Group No.
Monoid Wrong.
None of these Correct.

The first diagram on Figure 1 illustrates the exercise representation that con-
sists of a situation description, problem statement and one interactive action.
This action consists of an EXCLET (with an MCQ inside) and three feedback el-
ements corresponding to three possible values of the result of an EXCLET. The
second feedback in the second diagram gives raise to a subproblem with another
interactive action. The third diagram is nesting different kinds of interactive ac-
tions. At every interactive action the information can be provided to the system
components, and to the user.

88 G. Goguadze et al.

Given a set of natural numbers with an addition operation and zero. Which of the
following structures is it?

Table 2. A nested MCQ

Choice: Answer:
Monoid Correct
Group No, because Choice: Answer:

It has no unit Wrong
No inverses Correct

Given a set of natural numbers with an addition operation. Is it :

Table 3. An exercise using an external theorem prover

Choice: Answer:
A group? Click here to prove it with Ωmega
A monoid? Click here to prove it with Ωmega

SD
PS

21
SDSD

3

IA IA PS

EXCLET
IA

FB

EXCLET
IA

PS
FB
FB
EXCLET

PS

EXCLET
FB
FB
FB

FB IA
PS

PS
IA

FB
FB

Fig. 1. Exercise structure according to the proposed representation

Interactive Exercises Using External Systems. Currently, ActiveMath
offers interactive exercises for which an external system such as CAS or a proof
planner can be used to execute certain steps and/or to evaluate the user’s input.
The general scheme for encoding those exercises includes startup, evaluation,
example of which is shown in Figure 2, and shutdown code. These are capsuled
in an EXCLET element.

Problems and Solutions for Markup 89

<eval><command>evalSilent</command>
<param>if (Inv=I1) then erg:=1 end_if</param></eval> ...

<eval><command>eval</command>
<param>

case erg
of 1 do print(Unquoted, "This answer is correct!");break
...

of 4 do print(Unquoted, "You must use the variable
Inv for the result.");break

end_case
</param> </eval>

Fig. 2. A paste of an evaluation code of a CAS exercise

The startup is the initialization part and typically contains load instructions.
The evaluation part is executed after a learner’s input. Essentially, the eval-code
represents an evaluation tree. It checks the validity of a user’s action and may
provide a feedback.

At the moment, the content of these markup elements consist of native code
of a particular CAS. As shown in the Figure 2, the feedback is encoded using
the syntax of the CAS. The same holds for the rest of the code. The content of
the exercise is mixed with the processing instructions of the particular CAS, and
hence, the code is not reusable by another external system.

Using the structure for interactive actions, proposed above, one can reach
more generic representation of such exercises. For example, the user messages
are separated from the code of CAS and represented in a reusable way. Interactive
actions are more structured and allow for mixing steps done by different external
systems. Some problems, however, are still open.

Problems. One of the obvious problems is the representation of the for-
mula/expression input in the proprietary format of the CAS which is only due
to insufficient or buggy phrase-books for the CASs. This is, however, a practical
problem only and no longer a research problem. The following lists problems
that are not yet fully solved.

– system-independent encoding of functionalities/commands
– general encoding of evaluation information (tree) that is the basis for the

local feedback and for an evaluation function that serves as input for a user
model.

3.3 Proof Representation

Proof is central in modern mathematics. It is the heart of what mathematics is
about and yet, in the majority of mathematical texts, has an informal, natural
language-like presentation which is difficult to characterize in a way that Ac-
tiveMath could currently exploit without a further annotation. This can be
seen in the sheer variety of content that a proof can present:

90 G. Goguadze et al.

– Proof sketches give an outline of a proof that, whilst not complete, highlight
key ideas important for the learner.

– Proof processes are really what students need to learn, that is, how to dis-
cover/invent proofs for new problems. Yet ironically, the proving process is
almost entirely absent from most mathematical texts. With the computer-
aided facilities for theorem proving, in particular for proof planning, the pic-
ture changes dramatically since they concentrate on the proof process and
make some information explicit that is only hidden or implicit in minimal
proofs. For instance, the collection of constraints during a proof process that
eventually serves to instantiate meta-variables, i.e., construct mathematical
objects, is not part of the final proof anymore. Typically, for a student such
a construction of an object comes out of the blue, maybe not so for a trained
mathematician.

– Proofs in traditional mathematical documents contain the final (cleaned up
and minimal) proofs only. Much of the information is hidden or implicit in
those minimal proofs and could be inferred by an experienced mathematician
but not by any user.

– Proofs can take the form of calculations, inductions, deductions and dis-
cussion. All of these may require different structures to represent them [14,
7].

– Proofs made by humans are usually very high-level and in an informal lan-
guage [11] that computers cannot use. Proofs generated by computers are
usually very low-level and too detailed for humans to use.

– Proofs depend on the notation and theory already developed, be that in the
mathematical or logic-calculus sense. The same logical proof may therefore
appear very differently in different contexts.

– Proofs can motivate subsequent theory. For example, Euclidean rings are
defined as a result of the Euclidean algorithm used to prove that any two
numbers have a greatest common divisor [12].

It is a fact that proofs have such rich and diverse communication goals that
causes the problem. Any single minimal formalization of a proof structure is
likely to omit some of the informal uses for which proofs are used. Proofs could
also cause difficulties when translated between the formal contexts of differ-
ent automated proof systems. For instance, an issue in the MoWGLI project3
is that the system-independent proof representation should allow for machine-
understandability and its reproducibility.

The current OMDoc markup gives a stepwise proof representation which is not
suitable for all applications. For example, a hierarchic representation in the form
of an expandable proof plan is not possible in OMDoc but would be appreciated
by many Web-publishing and learning applications as well as by proof assistants.

First Solutions. The proof process can be presented only via replay in an external
system (e.g., proof planner or automated theorem prover).

Proof sketches can be indicated by a value of the metadata verbosity much
like other textual elements in the ActiveMath DTD.
3 http://www.mowgli.cs.unibo.it/

Problems and Solutions for Markup 91

More structure can be introduced by providing metadata like expands-to
connecting pieces with different verbosity or by using Lamport’s proof structure
that defines a grammar for different elements of a proof [14].

A high-level proof presentation can be achieved as soon as one has richer
representation for the proof structure, e.g., by proof planning methods as in [15]
will be available.

The machine understandability and reproducibility of proof in different sys-
tems requires at least to annotate the proof by its underlying logical foundation
and make assumptions explicit that are implicit in a specific proof system.

In order to view a proof as a motivation one can provide a relation of a
type motivation-for in the metadata containing a reference to the corresponding
concepts (as in case of examples and exercises).

4 Conclusion

We have proposed several extensions of the OMDoc markup and of its education-
module that is planned for OMDoc 2.2.

Future Plans. We suggest that the metadata be represented in RDF4 format,
because it serves the description and exchange of Web resources and their meta-
data. RDF provides a collection of classes (called schema) that are hierarchically
organized and it offers extensibility through subclass refinement. This representa-
tion will allow authors to define modularized metadata for different applications
as well as different sets of metadata of the same module for the same item. In
this way other authors could reuse the same items but for their own purposes.
The RDF-representation is similar to an object-oriented approach [2] and allows
authors to construct new uses for items from existing ones in much the same
way as inheritance in object-oriented data structures.

Some Open Questions: We have not solved all the problems we encountered,
partly because we do not know a solution yet, partly because there is no agree-
ment on a general standard extension yet. For instance, the following problems
are open

– standard language for service system-commands and feedback in order to
represent interactive exercises and their local feedback

– standard for proof representation satisfying the needs of formal proof appli-
cations as well as Web-publishing and learning applications.

References

1. S. Ainsworth, D. Clarke, and R. Gaizaukas. Using edit distances algorithms to com-
pare alternative approaches to ITS authoring. In S.A. Cerri, G. Gouarderes, and
F. Paraguacu, editors, Intelligent Tutoring Systems, 6th International Conference,
ITS2002, volume 2363 of LNCS, pages 873-882. Springer-Verlag, 2002.

4 http://www.w3.org/RDF

92 G. Goguadze et al.

2. S. Bennett, S. McRobb, R. Farmer, Object-Oriented Systems Analysis and Design
using UML, McGraw Hill, 1999

3. K. G. Binmore, Mathematical Analysis: a straightforward approach, second edi-
tion, Cambridge University Press, 1982

4. B. Bollobás, Linear Analysis: an introductory course, Cambridge University Press,
1990

5. J. Büdenbender, E. Andres, Adrian Frischauf, G. Goguadze, P. Libbrecht, E. Melis,
and C. Ullrich. Using computer algebra systems as cognitive tools. In S.A. Cerri,
G. Gouarderes, and F. Paraguacu, editors, 6th International Conference on Intel-
ligent Tutor Systems (ITS-2002), 2363 Lecture Notes in Computer Science, pages
802-810. Springer-Verlag, 2002.

6. O. Caprotti and A. M. Cohen. Draft of the open math standard, Open Math
Consortium, http://www.nag.co.uk/projects/OpenMath/omstd/, 1998.

7. P. Cairns, J. Gow, On Dynamically Presenting A Topology Course, Submitted to
Annals of Mathematics and Artificial Intelligence (Special issue on Mathematical
Knowledge Management) http://www.uclic.ucl.ac.uk/topology/

8. D. Carlisle, P. Ion, R. Miner, and N. Poppelier. Mathematical markup language,
version 2.0, 2001. http://www.w3.org/TR/MathML2/.

9. A. Cohen, H. Cuypers, and H. Sterk. Algebra Interactive! Springer-Verlag, 1999.
10. B.I. Dahn and H. Wolter. Analysis Individuell, Springer-Verlag, 2000.
11. J. Harrison, Formalized Mathematics, Math. Universalis, 2, 1996
12. I. N. Herstein, Topics in Algebra, second edition, Wiley, 1975
13. M. Kohlhase, OMDoc: Towards an OpenMath Representation of Mathematical Doc-

uments, Seki Report,FR Informatik, Universität des Saarlandes, 2000.
14. L. Lamport, How to write a proof, American Mathematical Monthly, 102(7) p600-

608, 1994
15. E. Melis, U. Leron A Proof Presentation Suitable for Teaching Proofs, 9th Inter-

national Conference on Artificial Intelligence in Education, pages 483-490, 1999.
16. E. Melis, J. Büdenbender, E. Andres, Adrian Frischauf, G. Goguadze, P. Libbrecht,

M. Pollet, and C. Ullrich. Activemath: A generic and adaptive web-based learning
environment, Artificial Intelligence and Education, 12(4), 2001.

17. A. O. Morris, Linear Algebra: an introduction, second edition, van Nostrand Rein-
hold, 1982

18. A. Schwarz, M. Voss, Universität des Saarlandes, Multimedia im Mathematik-
Unterricht, Copyright ATMedia GmbH, 1998,1999

19. S. Willard, General Topology, Addison Wesley, 1970

http://www.w3.org/TR/MathML2/

An Annotated Corpus and a Grammar Model of
Theorem Description

Yusuke Baba1 and Masakazu Suzuki2

1 Graduate School of Mathematics, Kyushu University
2 Faculty of Mathematics, Kyushu University

6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
{ma201040,suzuki}@math.kyushu-u.ac.jp

Abstract. Digitizing documents is becoming increasingly popular in
various fields, and training computers to understand the contents of dig-
itized documents is of growing interest. Since the early 90’s, research of
natural language processing using large annotated corpora such as the
Penn TreeBank has developed. Applying the methods of corpus-based
research, we built a syntactically annotated corpus of theorem descrip-
tions, using a book of set theory, and extracted a grammar model of
theorems from the obtained corpus, as the first step to understanding
mathematical documents by computer.

1 Introduction

In recent years, digitizing documents has become increasingly popular in various
fields, for example, in mathematics[1][2][3][4]. In connection with this movement,
understanding the contents of digitized documents by computer is of growing
interest[5][6].

The technology of understanding documents is applicable to useful systems
such as machine translation, summarization and search. In mathematics, there
are also particular application ideas of application e.g. the a system that trans-
lates descriptions of a proof into a language of proof-checker.

The fundamental technology of understanding documents by computer is
parsing. The effectiveness of the above-mentioned systems depends heavily on the
accuracy of the parser. Generally, parsing is complicated by the characteristics of
natural language such as ambiguity, omission and inversion. On the other hand,
since mathematical documents are written in logical and precise expressions, we
can expect that the typical methods of parsing for natural language give more
accurate results for mathematical documents.

The availability of large, syntactically annotated corpora such as the Univer-
sity of Pennsylvania Tree Bank(Penn TreeBank,[7]) lead to rapid developments
in the field of natural language processing. Sekine et al.[8] extracted rules of
grammar from the Penn TreeBank and released a parser of English, the “Apple
Pie Parser[9]”, using the grammar.

To extract a grammar from the Penn TreeBank, the first approach of Sekine
et al. is based on the assumption that the corpus covers most of the possible

A. Asperti, B. Buchberger, J.H. Davenport (Eds.): MKM 2003, LNCS 2594, pp. 93–104, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: h×N
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (h×N)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

94 Y. Baba and M. Suzuki

sentence structures in a domain. The outline of their idea follows. They assign
parts-of-speech to an input sentence using a tagger, and then simply search for
the same sequence of parts-of-speech in the corpus. The structure of the matched
sequence is the output of their parser.

However, it turned out that this strategy was not practical. Only 4.7% of
sentences in the corpus had the same structure as another sentence in the corpus.
As a result, they applied the idea to not only sentences but also noun phrases, and
extracted rules of grammar about S(sentence) and NP(noun phrase). 77.2% and
98.1% of S and NP structures have the same structure in the corpus, respectively
[8].

If there were a large corpus covering most of the possible sentence structures
in a domain, the method [8] would be more effective. While building a large
corpus of natural language costs a great deal of labor and time, a corpus of
theorem descriptions covering all the possible structures looks buildable with
comparative ease because theorems have a limited vocabulary and consist of
many idiomatic expressions. For this reason, we apply the corpus-based methods
to process theorem descriptions.

We built a simply annotated corpus of theorem descriptions using a book of
set theory, and extracted a context-free grammar with only three non-terminals
from the corpus. The constructed corpus included about 100 instances, and the
grammar that was extracted from the corpus had 141 generation rules. In order
to evaluate the descriptive power of the obtained grammar, we performed an
experiment as described in section 4.

2 Building a Corpus

2.1 Preliminaries

We used a book of set theory[10] to collect samples of theorem descriptions as
the source of the corpus.

To build an annotated corpus of theorems, we used 28 categories of Parts-of-
Speech(POS) symbols, and 3 categories of phrase and clause symbols.

We processed the theorem descriptions as a sequence of words. In our corpus,
a formula is simply a word.

2.2 Sentence Structure

To express the structure of theorem descriptions in the corpus, we defined a
symbol of phrase(NP) and two symbols of clause(S, IFC), as follows.

Proposition-Clause(S)
S is a string of words which expresses a proposition. S can include any other
propositions in itself. Naturally, a theorem description is described by S.

An Annotated Corpus and a Grammar Model 95

Examples of S

– If R is a strict order on X , then S is a non-strict order on X.
– (x1, x2) = (y1, y2) if and only if x1 = x2 and y1 = y2.
– X is an open set
– Vα ⊂ Vβ

If-Clause(IFC)
IFC is a string of words which expresses the assumption of a proposition.

Examples of IFC

– If |X| ≤ |Y| and |Y| ≤ |X|, then |X| = |Y |.
– In ZFC, every vector space has a basis.

Noun-Phrase(NP)
NP is a string of words which can be processed like a noun.

Examples of NP

– “any non-zero ordinal”
– “the set P = {R(x) : x ∈ X} of R-classes”
– “P = {R(x) : x ∈ X}”
– “X”

2.3 Classification of Parts-of-Speech

Referring to the Penn TreeBank which has 48 categories of POS symbols[7], we
use 7 original categories and 21 typical categories of POS on the grounds that
the target domain of our corpus is only theorems. We defined original categories
and typical categories of POS so that all the words that appeared in the samples
would be classified naturally.

(a) Original Parts-of-Speech
Theorem descriptions have many idiomatic expressions. For example, out of the
96 instances in the samples, 50 theorems(52.1%) have the structure:
“If [proposition], then [proposition]” or “Let [proposition], then [proposition].”
11 theorems(11.5%) have the structure: “[proposition] if and only if [proposi-
tion].” The words ‘if’ and ‘let’ are generally classified as a conjunction and a
verb respectively, and ‘if and only if’ is generally partitioned into ‘if’ ‘and’ ‘only’
‘if’, in natural language processing. However, since these words have particular
meaning in theorem descriptions, they should be given special treatment. In this
way, we defined 7 original categories of POS referring to empirical knowledge of
mathematics and rough characteristics obtained from the samples:
(1) Proposition-Conjunction(PPC),
(2) Assumption(IF),

96 Y. Baba and M. Suzuki

(3) Existence(EX),
(4) Restriction(RST),
(5) Number(NUM),
(6) Explain-Conjunction(EXPC),
(7) Formula(FML).
We give detailed explanations for these categories below.

(1) Proposition-Conjunction(PPC)
PPC is used between two propositions, and expresses a relationship between
the propositions.

Examples of PPC

– if and only if
– implies

Examples of Appearances in Samples

– A set is most countable if and only if it is finite or countable.
– P (α) implies P (s(α)) for any cardinal α.

(2) Assumption(IF)
IF is a word used in a description which expresses an assumption of the theorem
(or a larger proposition which includes it).

Examples of IF

– if
– let
– suppose that
– assume that

Examples of Appearances in Samples

– If P is a partition of X, then R = {(x, y) : x, y ∈ p for some p ∈ P} is an
equivalence relation on X.

– Let f be a function from X to Y . Then Im(f) is a subset of Y .

(3) Existence(EX)
EX is used to express the existence of something in a mathematical sense.

Examples of EX

– there is
– there exists

An Annotated Corpus and a Grammar Model 97

Examples of Appearances in Samples

– there is a bijective function from X to Y
– there exists a positive integer n

(4) Restriction(RST)
RST is used in order to impose restrictions on NP, in a mathematical sense.

Examples of RST

– such that
– satisfying

Examples of Appearances in Samples

– There is no set S such that x ∈ S if and only if x �∈ x.
– there is a set Z ∈ X such that p(Z) = Z

(5) Number(NUM)
In mathematics there are various quantities, not only one, two, three, · · ·, but also
‘only one’, ‘all’, ‘infinite’ · · ·, which have particular meanings. NUM expresses
such a numerical quantity in a mathematical sense.

Examples of NUM

– a
– unique
– any
– only one
– no

Examples of Appearances in Samples

– a well-ordered set
– For any formula φ, · · ·
– There is no set S such that x ∈ S if and only if x �∈ x.

(6) Explain-Conjunction(EXPC)
EXPC is used between propositions, and expresses an explanation or a trans-
lation.

Examples of EXPC

– in other words
– that is

98 Y. Baba and M. Suzuki

Table 1. Typical POS

Symbol Category Examples of members
NN Noun set, relation, function, · · ·
PR Pronoun it, we, following, · · ·

RPR Relative Pronoun what, which, that, whose, · · ·
JJ Adjective countable, empty, same, · · ·
BE be is, are, be, · · ·
VB Verb have, lie, · · ·

VBG Verb, gerund/present participle subsutituting, asserting, · · ·
VBN Verb, past participle based, denoted, · · ·
MD Modal may, can, · · ·
RB Adverb mutually, moreover, totally, · · ·
CNJ Conjunction and, but, or, as, · · ·
IN Preposition on, of, in, from, to, · · ·
DT Determiner the, · · ·

LPAR Left bracket character (, {, [
RPAR Right bracket character), },]
LOQ Left open quote ‘ -and- “
RCQ Right close quote ’ -and- ”
SFP Sentence-final punctuation .
COM Comma ,
COL Colon, Semi-colon : -and- ;
SYM Other Symbols - , * , · · ·

Example of Appearances in Samples

– For any set X, there is an injection from X to PX but no bijection between
these sets; that is, |X| < |PX|.

(7) Formula(FML)
FML expresses a mathematical formula. We process a formula as a word.

Examples of FML

– p : PX → PX
– f [A] = {f(a) : a ∈ A}
– (x1, x2) = (y1, y2)
– X
– n

(b) Typical Parts-of-Speech
In addition to the Original POS, we defined 21 categories of POS that are gen-
erally used in natural language processing. Table 1 is a list of these Typical
POS.

An Annotated Corpus and a Grammar Model 99

If there is a bijection between n and m , then n = m .
IF EX NUM NN IN FML CNJ FML COM RB FML SEP

SIFC

S

S

NP

NP

NP NP

Fig. 1. Example of expression of sentence structure

Table 2. Examples of Members of the Corpus

a: Character String of the Theorem Description
b: Partition of String into Words
c: Sequence of POS
d: Structure of Sentence

(the numbers ‘n’ appearing in the expression
represent the ‘n-th’ member of a sequence of POS)

a (x1, x2) = (y1, y2) if and only if x1 = x2 and y1 = y2.
b [(x1, x2) = (y1, y2)] [if and only if] [x1 = x2] [and] [y1 = y2] [.]
c FML PPC FML CNJ FML SFP
d (S (S (S 1) 2 (S (S 3) 4 (S 5))) 6)

a There is no set S such that x ∈ S if and only if x �∈ x.
b [There is] [no] [set] [S] [such that] [x ∈ S] [if and only if] [x �∈ x] [.]
c EX NUM NN FML RST FML PPC FML SFP
d (S (S 1 (NP 2 3 (NP 4) 5 (S (S 6) 7 (S 8)))) 9)

a The union of at most countably many at most countable sets
is at most countable.

b [The] [union] [of] [at most] [countably] [many] [at most] [countable] [sets]
[is] [at most] [countable] [.]

c DT NN IN RB RB JJ RB JJ NN BE RB JJ SFP
d (S (S (NP 1 2 3 (NP 4 5 6 (NP 7 8 9))) 10 11 12)13)

a If there is an injective function from X to Y , and X �= φ,
then there is a surjective function from Y to X.

b [If] [there is] [an] [injective] [function] [from] [X] [to] [Y] [,] [and] [X �= φ] [,] [then]
[there is] [a] [surjective] [function] [from] [Y] [to] [X] [.]

c IF EX NUM JJ NN IN FML IN FML COM CNJ FML
COM RB EX NUM JJ NN IN FML IN FML SFP

d (S (IFC 1(S 2(NP 3 4 5 6 (NP 7) 8 (NP 9))10 11 (S 12))
13 14(S 15(NP16 17 18 19 (NP 20) 21 (NP 22)))23)

Using S, IFC, NP and POS, we assigned the sentence structure for each
member of the samples. The structure of a sentence can be expressed as a tree.
An example of the expression of a sentence structure is shown in Fig. 1. In the
Figure, a box contains those parts of a sentence processed as a word. IF, EX,
· · · are POS. Symbols of phrase and clause are assigned to nodes of the structure
tree.

100 Y. Baba and M. Suzuki

Our primary corpus has 96 instances of theorem descriptions which are all
the theorems in [10]. Table 2 shows some examples of members of the corpus. An
instance of the corpus has 4 categories of data (a,b,c,d in the Table). Practically,
we built the corpus in an XML file using tag hierarchy.

3 Extraction of Grammar

3.1 Algorithm

The structure tree of the corpus that we built has three non-terminal symbols :
S, IFC, NP. We applied the method [8] to the corpus and three symbols, and
extracted generation rules of a grammar. The algorithm for extracting the rules
is as follows. Let G be the set of rules of the grammar to be extracted.
Repeat step1. and step2. for all the trees of the corpus.

The Algorithm of Extraction of Rules

Let G be the set of rules of the grammar to be extracted.
Repeat step1. and step2. for all the trees of the corpus.

step 1.
For the root and all the nodes of the tree,
make a generation rule of the grammar such that
the Left-hand-side of the rule is

the symbol of the node or root, and
the Right-hand-side of the rule is

the left-to-right sequence of the symbols of the children of the node or root.

step 2.
Add the rules made in step1. to G

unless any rule is already in G.

Ex. The Rules obtained from Fig. 1 are as follows.

– S -> IFC COM RB S SFP
– S -> EX NP
– S -> FML
– IFC -> IF S
– NP -> NUM NN IN NP
– NP -> NP CNJ NP
– NP -> FML

3.2 The Obtained Grammar

Using Algorithm 3.1, we extracted a grammar which has 141 generation rules,
as the model of theorem description. The obtained rules consist of 48 S-rules, 17
IFC-rules, and 76 NP-rules. Table 3 shows a selection of the obtained rules. Since
the grammar has only 3 non-terminals, some rules have a long right-hand-side.

An Annotated Corpus and a Grammar Model 101

Table 3. A selection of the obtained rules of grammar

S-rules (Total 48)
S -> EX NP
S -> FML
S -> IFC SFP RB S
S -> IN NUM NP COM S
S -> NP BE JJ
S -> NP BE NP
S -> NP MD RB VB NP
S -> NP VB
S -> PR BE JJ CNJ JJ
S -> PR BE NP LPAR PR BE COM JJ RPAR
S -> S CNJ S
S -> S COL EXPC COM NP S

· · ·
IFC-rules (Total 17)
IFC -> IF S
IFC -> IF S COM IF S
IFC -> IF S SFP COM IF S
IFC -> IN NP
IFC -> IN NUM NP COM IF S

· · ·
N-rules (Total 76)
NP -> DT JJ NN
NP -> DT NN IN JJ NN
NP -> DT NN IN NN IN NP IN NP
NP -> DT NN IN NN IN NP RPR VB IN NUM DT NN NP
NP -> NN NN
NP -> NP CNJ NP
NP -> NP CNJ PR NP
NP -> NUM JJ CNJ JJ NN
NP -> NUM JJ JJ NN IN NN RB NP
NP -> NUM JJ NN
NP -> RB JJ NN
NP -> RB RB JJ NP

· · ·

4 Experiment

To evaluate the descriptive power of the grammar obtained in section 3(let G be
the grammar), we used 100 theorems collected from two books A[11] and B[12]
which are written about Galois theory and model theory.

We assigned the correct structure of S, IFC, NP and POS to each theorem,
and extracted generation rules using algorithm sec:al. If all the rules obtained
from a theorem are elements of G, then the theorem can be described by G.
We checked whether or not each theorem is described by G. Additionally, we

102 Y. Baba and M. Suzuki

expanded G into G′ by adding the rules which are not in G whenever they
appear, and we then checked the descriptivity of G′.

Firstly, we experimented using 50 theorems of book A(Step-1). Secondly we
used 50 theorems of book B and G′ obtained from Step-1(Step-2). Table 4 shows
the results of the experiments. ”G-describable” means that the theorem can be
described by G. From the table, we can see that G describes only 10% of new
theorems. Using the expanded grammar G′ did not produce a significant increase
in descriptive power.

We can consider that one factor influencing the results is a simplistic struc-
ture model. Because our structure has only 3 non-terminals, obtained rules have
greater diversity in their right-hand-sides. Moreover, the fact that the total num-
ber of rules of G′ increased at a constant rate means that the test corpus is too
small.

Therefore in order to improve the system, we have to introduce other struc-
tures like verb-phrase or adjective-phrase, and expand our corpus.

Table 4. Experimental Results

G-describable G′-describable Total number of rules of G′ after Step
Step-1 5/50 11/50 223
Step-2 5/50 11/50 316

5 The Corpus Operation System

To build a large, syntactically-annotated corpus of mathematical text is trou-
blesome work, and very time consuming. In order to make the work easier, we
are designing a system that assists with many operations regarding using the
corpus.

Fig. 2 is an image of the system. Users need only assign the correct structure
of a sentence via a user-interface, and they can see the sentence structure being
edited in real time as a tree. Other operations: tagging, parsing, expanding the
corpus, training the grammar, are all automatic.

6 Conclusion

We collected about 100 theorem descriptions from a book of set theory[10], and
built a model for an annotated corpus of theorems.

We extracted a grammar model of theorem description from the corpus,
which has 141 generation rules. We also performed an experiment to evaluate
the descriptive power of the grammar.

An Annotated Corpus and a Grammar Model 103

Fig. 2. The Corpus Operatrion System

The results of the experiment indicated that the structure of our test corpus
is too simplistic to generate an effective grammar, and the size of the corpus is
too small.

As the next step in our work, we will introduce another structure and collect
more instances for the corpus. Additionally, we plan to build the semi-automatic
corpus operation system in the near future.

References

1. Inoue, K., Miyazaki, R., Suzuki, M.: Optical Recognition of Printed Mathematical
Documents. Proceedings of the Third Asian Technology Conference in Mathemat-
ics. Springer-Verlag. (1998) 280-289

2. Eto, Y., Suzuki, M.: Mathematical Formula Recognition Using Virtual Link Net-
work. Proceedings of the Sixth International Conference on Document Analysis
and Recognition. Seattle. IEEE Computer Society Press. (2001) 430-437

3. Michler, G.: A prototype of a combined digital and retrodigitaized searchable math-
ematical journal. Lecture Notes in Control and Infomation Sciences. 249 (1999)
219-235

4. Michler, G.: Report on the retrodigitiization project “Archiv der Mathemark”.
Archiv der Mathemark. 77 (2001) 116-128

5. IPSJ Magazine. vol.41 No.7 July (2000) (in Japanese)
6. IPSJ Magazine. vol.41 No.11 Nov. (2000) (in Japanese)

104 Y. Baba and M. Suzuki

7. Marcus, M., et al.: Building a large annotated corpus of English:the Penn Tree-
Bank. In the distributed Penn TreeBank Project CD-ROM. Linguistic Data Con-
sortium. University of Pennsylvania

8. Sekine, S., Grishman, R.: A Corpus-based Probabilistic Grammar with Only Two
Non-terminals. Fourth International Workshop on Parsing Technology. (1995)

9. The Proteus Project Parser URL: http://nlp.cs.nyu.edu/app/
10. J Cameron, P.: Sets, Logic and Categories. Springer. (1999)
11. Rotman, J.: Galois theory(2nd ed.). Springer. (1998)
12. Hodges, W.: A shorter model theory. Cambridge University Press. (1997)

A Query Language for a Metadata Framework
about Mathematical Resources

Ferruccio Guidi and Irene Schena

Department of Computer Science
Mura Anteo Zamboni 7, 40127 Bologna, ITALY.

{fguidi,schena}@cs.unibo.it

Abstract. Our aim is in the spirit of the Semantic Web: to gener-
ate an on-line database of machine-understandable mathematical doc-
uments, re-using the same methodology and standard technologies, as
RDF, mostly based on the exploitation of metadata to improve smart
searching and retrieving. In this paper we describe the syntax and se-
mantics of a query language which gives access to a search engine capable
of retrieving resources on the basis of meta-information: the role of meta-
data consists in filtering the relevant data.

1 Introduction

The mathematical information, owing to its semantically rich structured nature,
its scalability and inter-operability issues, can be considered as a relevant and
interesting test case for the study of content-based systems and the development
of the Semantic Web.
The Semantic Web1 is an extension of the Web in which information is given
a well-defined meaning in a machine-processable form, say by means of meta-
data, in order to share, interpret and manipulate it world-wide, enabling and
facilitating specific functionalities such as searching and indexing.

Our aim is to generate an on-line database of machine-understandable math-
ematical documents, re-using the same methodology and standard technologies,
as RDF, mostly based on the exploitation of metadata to improve smart search-
ing and retrieving.

Since we are developing our work inside the HELM2 project [1], which is now
integrated with related projects in the framework of the MOWGLI Project3, we
have pointed out and taken into account different kinds of involved domains of
application: general mathematical applications, as reviewing databases or on-
line libraries, automated mathematics applications, as proof-assistants or proof-
checking systems, and educational applications, as learning environments. All
these applications require classifying, smart searching and browsing semantically
meaningful mathematical information.
1 <http://www.w3.org/2001/sw/>.
2 Hypertextual Electronic Library of Mathematics, <http://helm.cs.unibo.it/>.
3 Math On the Web: Get it by Logic and Interfaces, European FET Project IST-2001-

33562, <http://mowgli.cs.unibo.it/>.

A. Asperti, B. Buchberger, J.H. Davenport (Eds.): MKM 2003, LNCS 2594, pp. 105–118, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: h×N
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (h×N)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

106 F. Guidi and I. Schena

At this point we have to face two fundamental related issues: the meta-
description4 associated to data and an outfit query language.

We have distinguished at least three different levels of querying mathematical
information:

– Querying metadata: filtering relevant data (see MathQL Level 1 in Sect. 2).
– Querying data: taking into account the semantically meaningful content of

mathematics (i.e. pattern matching).
– Querying data “up to”: processing data on the basis of the formal content

of mathematics (i.e. isomorphisms, unification, δ-expansion).

The standard format for metadata proposed by W3C is RDF (Resource De-
scription Framework) [4,5]. RDF provides a common model for describing the
semantical information on the Web corresponding to different domains of ap-
plication: RDF allows anyone to express assertions (i.e. statements as subject-
predicate-object records) about every resource on the Web.

In this paper we focus on a query language that gives access to a search
engine capable of retrieving resources on the basis of meta-information, suc-
cessfully querying RDF metadata eventually coming from different domains of
application.
In particular, besides the main requirements for an RDF query language [10,3,
6], our query language on metadata fulfills two main design goals:

– abstracting from the representation format of the queried (meta)data (i.e.
XML [9])

– abstracting from the concrete specification of RDF but supporting its formal
model and characteristics, that are independence, interchange and scalabil-
ity. Reasoning cannot be based on RDF, but we want an abstract logical
model for our query language: this model is given in terms of relationships
between resources (see 2).

2 MathQL Level 1

In this section we describe the features of MathQL-1 giving its syntax and seman-
tics. Here are the main guidelines concerning the general language architecture.

– A resource is denoted by a URI reference [7] (or just reference), that is a
URI (Uniform Resource Identifier) [7] with an optional fragment identifier,
and may have some named attributes describing it. These attributes hold
multiple string values and are grouped into sets containing the ones that are
meaningful in the same context.

– A query gives a set of distinct resources each with its sets of attributes.
– The basic RDF data model is based on the concept of property: in an RDF

statement (s, p, o) the property p plays the central role of the predicate that
has a subject s and an object o. This model draws on well-established princi-
ples from various data representation communities. An RDF property can be

4 For a detailed description of metadata and RDF schemas for HELM see [6].

A Query Language for a Metadata Framework 107

thought as an attribute of a resource, corresponding to traditional attribute-
value pairs. At the same time, a property can represent relationships between
resources, as in an entity-relationship model. In this sense our language is
correct and complete with respect to querying an abstract RDF data model.
The language allows to build the set of attributed references involved by a
property-relationship. In particular we regard a relation between values (that
can be resources) and resources as a named set of triples (v, r, B) where v is
a string value, r is a reference and B is a set of attributes (see 2.1), providing
additional information on the specific connection between v and r (this is
the case of a structured property or a structured value of a property).
Moreover the language allows to access any property of a resource by means
of functions that we regard as named sets of couples (r, v) where r is a
reference and {v | (r, v)} is its associated multiple string value.
Examples of possible relations and functions can be found in section 3.1
where we discuss an implementation of the language.

– Queries and query results have both a textual syntax and an XML syntax.5

2.1 Mathematical Background for MathQL-1 Operational
Semantics

We will present MathQL-1 semantics in a natural operational style [8] and we
will use a simple type system that includes basic types for strings and booleans,
plus some type constructors such as product and exponentiation. y : Y will
represent a typing judgement.

Primitive types. The type of boolean values will be denoted by Boole and its
elements are T and F.
The type of strings will be denoted by String and its elements are the finite se-
quences of characters. Grammatical productions, represented as strings in angle
brackets, will be used to denote the subtype of String containing the produced
sequences of characters.

Type constructors. Y ∗ Z denotes the product of the types Y and Z whose
elements are the ordered pairs (y, z) such that y : Y and z : Z. The notation is
also extended to a ternary product.

Y → Z denotes the type of functions from Y to Z and f y denotes the
application of f : Y → Z to y : Y . Relations over types, such as equality, are
seen as functions to Boole.

Listof Y denotes the type of lists (i.e. ordered finite sequences) over Y . We
will use the notation [y1, · · · , ym] for the list whose elements are y1, · · · , ym.

Setof Y denotes the type of finite sets (i.e. unordered finite sequences without
repetitions) over Y . With this constructor we can give a formal meaning to most
of the standard set-theoretical notation. For instance we will use the following:
5 In a distributed setting where query engines are implemented as stand-alone com-

ponents, both queries and query results must travel inside the system so both need
to be encoded in clearly defined format with a rigorous semantics.

108 F. Guidi and I. Schena

– ⊆ : (Setof Y)→ (Setof Y)→ Boole (infix)
– � : (Setof Y)→ (Setof Y)→ Boole (infix)
– � : (Setof Y)→ (Setof Y)→ (Setof Y) (the disjoint union, infix)

U � W means (∃u ∈ U) u ∈ W and expresses the fact that U ∩W is inhabited
as a primitive notion, i.e. without mentioning intersection and equality as for
U ∩W �= ∅, which is equivalent but may be implemented less efficiently in real
cases6. U � W is a natural companion of U ⊆ W being its logical dual (recall
that U ⊆ W means (∀u ∈ U) u ∈ W) and is already being used successfully
in the context of a constructive (i.e. intuitionistic and predicative) approach to
point-free topology7.

Sets of couples play a central role in our model and in particular we will use:

– Fst : (Y × Z)→ Y such that Fst (y, z) = y.
– Snd : (Y × Z)→ Z such that Snd (y, z) = z.
– with the same notation, if W contains just one couple whose first component

is y, then W (y) is the second component of that couple. In the other cases
W (y) is not defined. This operator has type (Setof (Y × Z))→ Y → Z.

– Moreover W [y ← z] is the set obtained from W removing every couple whose
first component is y and adding the couple (y, z). The type of this operator
is: (Setof (Y × Z))→ Y → Z → (Setof (Y × Z)).

– Also U + W is the union of two sets of couples in the following sense:

U + ∅ rewrites to U
U + (W � {(y, z)}) rewrites to U [y ← z] + W

The last three operators are used to read, write and join association sets, which
are sets of couples such that the first components of two different elements are
always different. These sets will be exploited to formalize the memories appearing
in evaluation contexts.

Now we are able to type the main objects needed in the formalization:

– An attribute name a is of type String.
– A multiple string value V is an object of type T0 = Setof String.
– A set of attributes A is an association set connecting the attribute names to

their values, therefore its type is T1 = Setof (String× T0).
– A reference r is an object of type String.
– The type of a collection D of the sets of attributes of a resource is T2 =

Setof T1.
– A resource is a reference with its sets of attributes, so its type is T3 =

String× T2.
– A set of resources S is an association set of type T4 = Setof T3.
– A path name s is a non-null list of strings with the first component high-

lighted therefore its type is T5 = String× Listof String.
6 As for φ ∨ ψ which may have a more efficient implementation than ¬(¬φ ∧ ¬ψ).
7 Sambin G., Gebellato S. A preview of the basic picture: a new perspective on formal

topology. Lecture Notes in Computer Science n.1657 p.194-207. Springer, 1999.

A Query Language for a Metadata Framework 109

– The sets B in the triples of relations are association sets of type Setof(T5×
T0).

We will also need some primitive functions that mostly retrieve the informa-
tions that an implemented query engine obtains reading its underlying database.
These functions are Relation, Pattern, Property, Unquote and will be ex-
plained when needed.

2.2 Textual Syntax and Semantics of MathQL-1 Queries

MathQL-1 query expressions, or simply expressions, fall into three categories.

– Expressions denoting a set of resources: belong to the grammatical produc-
tion <mq set>. Their semantics is given by the infix evaluating relation ⇓s.

– Expressions denoting a boolean condition: are evaluated by the infix relation
⇓b and belong to the grammatical production <mq boole>.

– Expressions denoting a multiple string value: are evaluated by the infix re-
lation ⇓v and belong to the grammatical production <mq val>.

Expressions can contain quoted strings with the following syntax:

<string> ::= ’"’ ["\" . | ’ˆ "\’]* ’"’
<path> ::= <string> ["/" <string>]*
<string_list> ::= <string> ["," <string>]*

When these strings are unquoted, the surrounding double quotes are deleted
and each character is not escaped (the escape character is the backslash). This
operation is formally performed by the function Unquote of type String →
String. Moreover Name : <path>→ T5 is an helper function that converts a lin-
earized path name in its structured format. Formally Name (q0 / q1 / · · · / qm)
rewrites to (Unquote i0, [Unquote i1, · · · , Unquote im]).

Expressions can also contain variables for single resources (rvar), variables
for sets of resources, i.e. for query results (svar) and variables for multiple strings
values (vvar).

<alpha> ::= [’A - Z’ | ’a - z’ | ‘:_’]+
<number> ::= [’0 - 9’]+
<id> ::= <alpha> [<alpha> | <number>]*
<rvar> ::= "@" <id>
<svar> ::= "%" <id>
<vvar> ::= "$" <id>

Expressions are evaluated in a context Γ = (Γs, Γr, Γa, Γv) which is a quadru-
ple of association sets which connect svar’s to sets of resources, rvar’s to re-
sources, rvar’s to sets of attributes and vvar’s to multiple string values8. There-
fore the type K of the context Γ is:
8 Γa is an auxiliary context used for ex and ‘‘dot’’ constructions (see below).

110 F. Guidi and I. Schena

Setof (<svar>× T4)× Setof (<rvar>× T3) ×
× Setof (<rvar>× T1)× Setof (<vvar>× T0)

and the three evaluating relations are of the following types:

⇓s : (K × <mq set>)→ T4 → Boole,
⇓b : (K × <mq boole>)→ Boole→ Boole,
⇓v : (K × <mq val>)→ T0 → Boole.

Expressions denoting a set of resources. These expressions denote queries
or subqueries.

<refine> ::= ["sub" | "super"]?
<qualifier> ::= ["inverse"]? <refine> <path>
<assign> ::= <vvar> "<-" <path>
<attr_list> ::= ["attr" <assign> ["," <assign>]*]?
<mq_set> ::= "ref" <mq_val> | "pattern" <mq_val>

| <svar> | <rvar> | "(" <mq_set> ")"
| "relation" <qualifier> <mq_val> <attr_list>
| "select" <rvar> "in" <mq_set> "where" <mq_boole>
| <mq_set> ["union" | "intersect" | "diff"] <mq_set>
| "let" <svar> "be" <mq_set> "in" <mq_set>
| "let" <vvar> "be" <mq_val> "in" <mq_set>

intersect, union, diff are left-associative and have decreasing precedence order.

– The let constructions introduce svar’s and vvar’s in the context; formally:

i : <svar> ((Γs, Γr, Γa, Γv), x1) ⇓s S1 ((Γs[i← S1], Γr, Γa, Γv), x2) ⇓s S2

((Γs, Γr, Γa, Γv), let i be x1 in x2) ⇓s S2

i : <vvar> ((Γs, Γr, Γa, Γv), x1) ⇓v V ((Γs, Γr, Γa, Γv[i← V]), x2) ⇓s S

((Γs, Γr, Γa, Γv), let i be x1 in x2) ⇓s S

– Then we have some constructions for reading variables and grouping:

i : <svar>
(Γ, i) ⇓s Γs(i)

i : <rvar>
(Γ, i) ⇓s {Γr(i)}

(Γ, x) ⇓s S

(Γ, (x)) ⇓s S

Γs(i) and {Γr(i)} mean ∅ if i is not defined and Γ is (Γs, Γr, Γa, Γv).
– The union construction ”sums” two sets of resources in the following way:

(Γ, x1) ⇓s S1 (Γ, x2) ⇓s S2

(Γ, x1 union x2) ⇓s S1 ⊕ S2

where ⊕ puts together the sets of attributes belonging to the same resource:

1 (S1 � {(r, D1)})⊕ (S2 � {(r, D2)}) rewrites to S1 ⊕ S2 ⊕ {(r, D1 ∪D2)}
2 S1 ⊕ S2 rewrites to S1 ∪ S2

⊕ is defined associative and rule 1 takes precedence over rule 2.

A Query Language for a Metadata Framework 111

– The intersect construction ”multiplies” two sets of resources in this way:

(Γ, x1) ⇓s S1 (Γ, x2) ⇓s S2

(Γ, x1 intersect x2) ⇓s S1 ⊗ S2

where ⊗ builds the product of the sets of attributes belonging to the same
resource. Here D1 ×D2 = {A1 ⊕A2 | A1 ∈ D1, A2 ∈ D2}.
1 (S1 � {(r, D1)})⊗ (S2 � {(r, D2)}) rewrites to (S1 ⊗ S2) ∪ {(r, D1 ×D2)}
2 S1 ⊗ S2 rewrites to ∅
Rule 1 takes precedence over rule 2.

– The diff construction makes the ”difference” of two sets of resources:

(Γ, x1) ⇓s S1 (Γ, x2) ⇓s S2

(Γ, x1 diff x2) ⇓s S1 � S2

where A�B gives the resources of A, with their attributes, that don’t belong
to B (without considering the associated attributes):

1 (S1 � {(r, D1)})� (S2 � {(r, D2)}) rewrites to S1 � S2
2 S1 � S2 rewrites to S1

Again rule 1 takes precedence over rule 2.
– The ref (reference) construction turns a given set of references into a set of

resources, each without attributes (i.e makes a coercion between the types
T0 and T4); formally:

(Γ, x) ⇓v V

(Γ, ref x) ⇓s {(v, ∅) | v ∈ V }
– The pattern construction gives the set of resources whose reference matches

at least one of the given POSIX 1003.2-1992 (included in POSIX 1003.1-
20019) regular expressions, each without attributes:

(Γ, x) ⇓v V

(Γ, pattern x) ⇓s {(r, ∅) | (∃v ∈ V) r ∈ Pattern v}
where Pattern v represents the set of references matching the regular ex-
pression v, among the ones available in the underlying database.

– The relation construction regards RDF properties for building the set of
the resources (r) in the specified relation {(v, r, B)}, its sub-relations (sub)
or its super-relations (super) with some resource in a given set or with
multiple string values in general. Each of these have the set of attributes
defined by the assignments following the attr clause. In this rule D2 is
{Assign B {q1, · · · , qn}} and R is Relation f (Name p):

f : <refine> p : <path> (Γ, x) ⇓v V q1 : <assign> ... qn : <assign>
(Γ, relation f p x attr q1, · · · , qn) ⇓s

⊕{{(r, D)} | (∃v ∈ V) (v, r, B) ∈ R}
9 <http://www.unix-systems.org/version3/ieee std.html>.

112 F. Guidi and I. Schena

Assign builds a set of (eventually compound) attributes whose values are
fetched from B using the correspondences given by q1, · · · , qn. Formally if
i : <vvar> and p : <path>, we define Assign B Q =

⊕{(i, B(Name p)) | (i←
p) ∈ Q}. Relation f s gives the set of triples (R) of the relation s.
If s = (s0, [s1, · · · , sm]), Relation gives the set of triples of the relation
obtained by the composition of the relations s0, s1, · · · , sm. This is the case
of a structured property s0 that has (i.e. is described by) another property
s1 and so on. If f is sub or super, Relation gives also the set of triples of
the sub-relations or super-relations of s.
If the inverse switch is present, the inverse relation must be used in place of
the direct one: while the argument x represents the subject of the property
specified by relation, on the contrary x represents the object of the property
specified by relation inverse.
Formally replace R with R′ = {(r, v, B) | (v, r, B) ∈ R} in the previous rule.
Finally note that the vvar’s introduced by relation differ from the ones
introduced by the let clause even if they have the same name.

– The select construction extracts from a given set of resources the ones
meeting a given boolean condition. The condition is tested for each resource
of the set and the resources are assigned to a given rvar before the test.
Formally we have:

i : <rvar> (Γ, x1) ⇓s S x2 : <mq boole>

(Γ, select i in x1 where x2) ⇓s Select S i Γ x2

where the Select function is defined below.

i : <rvar> x : <mq boole>

Select ∅ i Γ x rewrites to ∅
i : <rvar> ((Γs, Γr[i← R], Γa, Γv), x) ⇓b F

Select (S � {R}) i Γ x rewrites to Select S i Γ x

i : <rvar> ((Γs, Γr[i← R], Γa, Γv), x) ⇓b T

Select (S � {R}) i Γ x rewrites to (Select S i Γ x) ∪ {R}

where R is actually a couple of the form (r, D) and Γ = (Γs, Γr, Γa, Γv).

Expressions denoting a boolean condition. These expressions appear in
the where clause of a select construction.

<mq_boole> ::= "false" | "true" | "(" <mq_boole> ")"
| "not" <mq_boole> | "ex" <mq_boole>
| <mq_boole> ["and" | "or"] <mq_boole>
| <mq_val> ["sub" | "meet" | "eq"] <mq_val>

and and or are left-associative. The precedence (high to low) is: not, and, or, ex.

A Query Language for a Metadata Framework 113

– We have constructions for constants, standard operations and grouping:

(Γ, false) ⇓b F (Γ, true) ⇓b T
(Γ, x) ⇓b b

(Γ, (x)) ⇓b b

(Γ, x) ⇓b T

(g, not x) ⇓b F

(Γ, x) ⇓b F

(g, not x) ⇓b T

(Γ, x1) ⇓b F

(Γ, x1 and x2) ⇓b F

(Γ, x1) ⇓b T (Γ, x2) ⇓b b

(Γ, x1 and x2) ⇓b b

(Γ, x1) ⇓b T

(Γ, x1 or x2) ⇓b T

(Γ, x1) ⇓b F (Γ, x2) ⇓b b

(Γ, x1 or x2) ⇓b b

The binary operations are evaluated with an early-out (C-style) strategy.
– The ex (exists) construction gives access to the sets of attributes associated

to the resources in the Γr part of the context and does this by loading its
Γa part, which is used by the <rvar>.<vvar> construction (see below).
ex is true if the condition following it is satisfied by at least one pool of
attribute sets, one for each resource in the Γr part of the context. Formally
we have the rule, where All Γr = {∆a | ∆a(i) = A iff A ∈ Snd Γr(i)} and
∆a has the type of Γa:

((Γs, Γr, Γa, Γv), ex x) ⇓b ((∃∆a ∈ All Γr) ((Γs, Γr, Γa + ∆a, Γv), x) ⇓b T)

– The sub, meet and eq constructions compare two sets of string values.
The comparisons are extensional and the string equality is case-sensitive.

(Γ, x1) ⇓v V1 (Γ, x2) ⇓v V2

(Γ, x1 sub x2) ⇓b (V1 ⊆ V2)
(Γ, x1) ⇓v V1 (Γ, x2) ⇓v V2

(Γ, x1 meet x2) ⇓b (V1 � V2)

(Γ, x1) ⇓v V1 (Γ, x2) ⇓v V2

(Γ, x1 eq x2) ⇓b (V1 = V2)

The eq operator is introduced because the evaluation of x1 eq x2 may be
more efficient than that of x1 sub x2 and x2 sub x1.
As an application of the sub and meet operators, consider a set of resources
denoted by X : <mq set> and a boolean condition denoted by B : <mq boole>
and depending on the variable @u : <rvar>. The test ”is B satisfied for each
resource of X?” is expressed by ”refof X sub refof select @u in X where B”
whereas the dual test ”is B satisfied for some resource of X?” is expressed
by ”refof X meet refof select @u in X where B”.
refof makes a coercion between the types T4 and T0 (see below).

Expressions denoting a multiple string value. These expressions appear
as operands of the sub, meet and eq construction.

<mq_val> ::= "{" [<string_list>]? "}" | <string>
| <rvar> "." <vvar> | <vvar> | "(" <mq_val> ")"
| "refof" <mq_set> | "property" <qualifier> <mq_val>

114 F. Guidi and I. Schena

– A set of strings can be given explicitly with these two constructions:

q1 : <string> · · · qm : <string>
(Γ, {q1, · · · , qm}) ⇓v {Unquote q1, · · · , Unquote qm}

q : <string>
(Γ, q) ⇓v {Unquote q}

– refof (references of) allows to obtain a set of strings gathering the references
in a set of resources (i.e. it makes a coercion between the types T4 and T0):

(Γ, x) ⇓s S

(Γ, refof x) ⇓v {Fst u | u ∈ S}
– We have a construction for grouping and two for reading variables: one reads

the Γa part of the context which is updated by the ex clause, while the other
read the Γv part of the context is updated by the let clause for vvar’s:

(Γ, x) ⇓v V

(Γ, (x)) ⇓v V

i : <rvar> j : <vvar>
(Γ, i.p) ⇓v Γa(i)(j)

i : <vvar>
(Γ, i) ⇓v Γv(i)

where Γ = (Γs, Γr, Γa, Γv). Γa(i)(j) and Γv(i) mean ∅ if i or j are not defined.
With the ”dot” construction a vvar introduced by a relation (i.e. an at-
tribute) can be read only specifying an associated rvar (i.e. a resource) but
this restriction offers some advantages: it conforms to the general idea of
treating an attribute as an entity which is always related to a resource and
allows an unambiguous read of those attributes related to different resources
but sharing the same name. Note that the use of the let construction may
produce unavoidable attribute name collisions in the scope of nested where
clauses as in the following sample query where ... is a place holder:

let %s be relation "..." "..." attr $a <- "a" in
select @u1 in %s where "..." sub refof

select @u2 in %s where ex @u1.$a sub @u2.$a

– Finally a set of strings can be obtained reading the values of a named prop-
erty, its sub-properties (sub) or its super-properties (super) of a given set
of string arguments (i.e. references subjects of the specified property) with a
semantics which is very close to that of the relation construction: property
regards RDF properties to build multiple string values for checking and fil-
tering metadata information.

f : <refine> p : <path> (Γ, x) ⇓v V

(Γ, property f p V) ⇓v {v | (∃r ∈ V) (r, v) ∈ Q}
where Q = Property f (Name p) and Property f s gives the set of couples of
the property whose name is s, representing the values of the instances of the
property attributed to the item referenced in the first element of a couple.
If s = (s0, [s1, · · · , sm]), Property gives the set of couples of the property
obtained by the composition of the properties s0, · · · , sn. This is the case
of structured values of a property s0 that has (i.e. is described by) another

A Query Language for a Metadata Framework 115

property s1 and so on. If f is sub or super, Property gives also the couples
respectively of the sub or super-properties of s.
If the inverse switch is present, the inverse function must be used in place
of the direct one: while the argument x represents the subject of the property
specified by property, on the contrary x represents the object of the property
specified by property inverse.
Formally replace Q with Q′ = {(v, r) | (r, v) ∈ Q} in the previous rule.

2.3 Textual Syntax and Semantics of MathQL-1 Query Results

The textual representations of query results belong to the grammatical produc-
tion <mqr set> whose semantics is described by four (infix) evaluating relations:
⇒a, ⇒g, ⇒r and ⇒s.
⇒a: <mqr attr>→ (String× T0)→ Boole evaluates an attribute with a mul-
tiple string value.⇒g: <mqr group>→ T1 → Boole evaluates a set of attributes
with a their values. ⇒r: <mqr res> → T3 → Boole evaluates resource with its
sets of attributes. ⇒s: <mqr set> → T4 → Boole evaluates a set of resources
with their sets of attributes.
Note that a multiple string value can be empty. In fact, in an RDF data model a
property can be optionally used, even if it is always declared in an RDF schema.
Also note that the sets of attributes are always inhabited.

<mqr_attr> ::= <vvar> ["=" <string_list>]?
<mqr_group> ::= "{" <mqr_attr> [";" <mqr_attr>]* "}"
<groups> ::= <mqr_group> ["," <mqr_group>]*
<mqr_res> ::= <string> ["attr" <group>]?
<mqr_set> ::= [<mqr_res> [";" <mqr_res>]*]?

Formally the evaluation works as follows:

i : <vvar> q1 : <string> ... qm : <string>
i = q1, ..., qm ⇒a (i, {Unquote q1, ..., Unquote qm})

x1 ⇒a a1 ... xm ⇒a am

{x1; ...; xm} ⇒g {a1, ..., am}
q : <string> x1 ⇒g A1 · · · xm ⇒g Am

q attr x1, · · · , xm ⇒r (Unquote q, {A1, · · · , Am})
x1 ⇒r r1 · · · xm ⇒r rm

x1; · · · ; xm ⇒s {r1, · · · , rm}

3 Implementation and Testing

3.1 Implementation

In this section we will briefly discuss the implementation of a MathQL-1 query-
ing engine in the context of the HELM project describing the functions and
relations available from the HELM metadata schemas10 as well as other issues
concerning the underlying database management system and the implemented
software. Currently HELM metadata provide the following information on the
mathematical resources of the library.
10 <http://www.cs.unibo.it/helm/schemas/schema-h>,

<http://www.cs.unibo.it/helm/schemas/schema-hth>.

116 F. Guidi and I. Schena

– The standard Dublin Core metadata properties11.
– The list of objects the object depends on. This information is available

through a relation named refObj.
– The list of objects depending on the object. This information is available

through a relation named backPointer.
– An alias for the reference of the object, given by the function shortName.

HELM is testing PostgreSQL12 DBMS and Galax XQuery engine13 as the
support for the querying engine. The querying engine is written in Caml14 for
an easy integration with the other software developed for the HELM project,
and currently it consists of the following parts.

– The interpreter, implemented by D. Lordi [2] and now re-implemented by L.
Natile, executes a query given in its Caml representation (as a suitable data
structure) giving back a Caml representation of the query result.

– The input/output utilities interface the textual or XML representation of a
query or of a query result with its internal Caml representation.

– The query generator is the interface between the interpreter and the HELM
proof assistant which needs to search the library for various purposes like
interactive or automated proof searching. In particular the proof assistant
provides a command (or tactic) named SearchPatternApply which uses the
generator to issue a query for the set of statements that can possibly refine
the current goal.

What follows is the textual representation of the query issued by the genera-
tor when the HELM proof assistant SearchPatternApply command is applied to
the goal 2 ∗m ≤ 2 ∗ n where m and n are natural numbers and 2 is actually the
successor of the successor of 0.
The references appearing in this query denote the following HELM resources:

“cic:/Coq/Init/Peano/le.ind#1/1” less or equal
“cic:/Coq/Init/Peano/mult.con” multiplication
“cic:/Coq/Init/Datatypes/nat.ind#1/1/2” successor
“cic:/Coq/Init/Datatypes/nat.ind#1/1/1” zero

let $positions be {"MainConclusion", "InConclusion"} in
let $universe be {"cic:/Coq/Init/Datatypes/nat.ind#1/1/1",

"cic:/Coq/Init/Peano/mult.con",
"cic:/Coq/Init/Datatypes/nat.ind#1/1/2",
"cic:/Coq/Init/Peano/le.ind#1/1"} in

select @uri0 in
select @uri in relation inverse "refObj"
"cic:/Coq/Init/Peano/le.ind#1/1"

11 <http://purl.org/dc/elements/1.1/>.
12 <http://www.postgresql.org>.
13 <http://db.bell-labs.com/galax/>.
14 <http://caml.inria.fr>.

A Query Language for a Metadata Framework 117

attr $pos <- "position"
where ex "MainConclusion" sub @uri.$pos

intersect
select @uri in relation inverse "refObj"
"cic:/Coq/Init/Peano/mult.con"
attr $pos <- "position" where ex "InConclusion" sub @uri.$pos

intersect
select @uri in relation inverse "refObj"
"cic:/Coq/Init/Datatypes/nat.ind#1/1/2"
attr $pos <- "position" where ex "InConclusion" sub @uri.$pos

intersect
select @uri in relation inverse "refObj"
"cic:/Coq/Init/Datatypes/nat.ind#1/1/1"
attr $pos <- "position" where ex "InConclusion" sub @uri.$pos

where
refof select @uri in relation "refObj" refof @uri0

attr $pos <- "position"
where ex $positions meet @uri.$pos

sub $universe

The main operation in the query is the select @uri0 and its in clause builds,
through three intersect, the set of statements having each of these resources in
their conclusions (in an appropriate position). The where clause is responsible for
filtering out the statements whose conclusion refers to other resources than the
ones above. Also note the exploitation of the inverse switch to invert the refObj
relation. This query has some optimizations: the let constructions evaluate the
sets $positions and $universe (this contains the resources that must appear in
the statement), outside the where clause, which is evaluated many times during
the execution of the select. Moreover the test:

$positions meet @uri.$pos

should be more efficient than the equivalent test:

"MainConclusion" sub @uri.$pos or "InConclusion" sub @uri.$pos

as this involves a larger number of operators.

3.2 Testing

The information currently available in the PostgreSQL database concerns 15244
HELM objects and comes from the scan of 416699 RDF statements stored in 80
Mb of disk space15 while the database itself uses 382 Mb of disk space.

The following test evaluates the total processing time (including the query
building time) of 165 queries (issued by the generator and processed by the
Natile interpreter) like the one in the query example (see 3.1), with respect to
the query complexity, which is proportional to the size of the %universe set.
15 See [2] for a description of how the database is built from the RDF files.

118 F. Guidi and I. Schena

The first table concerns PostgreSQL, the second table concerns Galax. This
test shows that Natile engine handles complex queries more efficiently.

size issued queries time/size (mean) time/size (variance)
1 to 2 59 0.25 sec. 0.23 sec.
3 to 9 106 0.03 sec. 0.02 sec.
1 to 9 165 0.11 sec. 0.17 sec.

size issued queries time/size (mean) time/size (variance)
1 to 2 59 13.00 sec. 13.53 sec.
3 to 9 106 0.33 sec. 0.23 sec.
1 to 9 165 4.86 sec. 10.12 sec.

References

1. Asperti A., Padovani L., Sacerdoti Coen C., Guidi F., Schena I.: Mathematical
Knowledge Management in HELM. In Electronic Proc. of MKM 2001.
<http://www.emis.de/proceedings/MKM2001/>

2. Lordi D.: Sperimentazione e Sviluppo di Strumenti per la gestione di metadati. M.
Thesis in Computer Science, University of Bologna. Advisor: A. Asperti. 2002

3. Rayavarapu S.: W3C Query languages, 29 January 2001.
<http://www1.coe.neu.edu/∼srayavar/W3CQL/ql.html>

4. Lassila O. and others: Resource Description Framework (RDF) Model and Syntax
Specification, W3C Recommendation 22 February 1999.
<http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/>

5. Brickley D. and others: RDF Vocabulary Description Language 1.0: RDF Schema,
W3C Working Draft 30 April 2002. <http://www.w3.org/TR/rdf-schema/>

6. Schena I. Towards a Semantic Web for Formal Mathematics. Ph.D. Thesis in Com-
puter Science, University of Bologna. Supervisor: A. Asperti, February 2002.

7. Berners-Lee T. and others: Uniform Resource Identifiers (URI): Generic Syntax
(RFC 2396). <http://www.ietf.org/rfc/rfc2396.txt>

8. Winskel G.: The formal semantics of programming languages: an introduction.
MIT Press Series in the Foundations of Computing. London: MIT Press, 1993

9. Bray T. and others: Extensible Markup Language (XML) 1.0 (Second Edition),
W3C Recommendation 6 October 2000. <http://www.w3.org/TR/REC-xml/>

10. Chamberlin D. and others: XQuery 1.0: An XML Query Language, W3C Working
Draft 16 August 2002. <http://www.w3.org/TR/xquery/>

Information Retrieval in MML

Grzegorz Bancerek1 ! and Piotr Rudnicki2!!

1 Institute of Computer Science, Bia!lystok Technical University, Poland, and
Dept. of Information Engineering, Shinshu University, Nagano, Japan.

bancerek@mizar.org
2 Dept. of Computing Science, University of Alberta, Edmonton, Canada

piotr@cs.ualberta.ca

Abstract. Mizar, a proof-checking system, is used to build the Mizar
Mathematical Library (MML). This is a long term project aiming at
building a comprehensive library of mathematical knowledge. We de-
scribe issues concerning information retrieval, i.e., searching, browsing
and presentation of MML contents. A web-based tool providing such
functionalities is being implemented by G. Bancerek. We hope that our
observations are helpful when solving similar problems for other reposi-
tories of formalized mathematics.

1 Introduction

The Mizar language is a language used for the practical formalization of math-
ematics close to mathematical vernacular used in publications. The continual
development of the Mizar system, since 1973, has resulted in a language, soft-
ware for checking the correctness of texts written in the language, numerous util-
ity programs, a centrally maintained library of mathematics, and an electronic
hyper-linked journal, all available on the Internet.3 Introductory information
on Mizar can be found in [5–7]. For the rest of this paper, we assume that the
reader is at least superficially familiar with these basic texts.

The development of MML3 has been the main activity of the Mizar project
since the late 1980’s, as it has been believed within the project team that only
a substantial experience may help in improving the system. MML is a collection
of Mizar articles. An article is originally presented as a text-file and contains
theorems and definitions, at this moment—August 2002—there are 725 articles
in MML, occupying 55096 kB, containing 31942 theorems and 6110 definitions.

MML is still minuscule from the viewpoint of covering substantial chunks of
mathematical knowledge. However, the problem of information retrieval in MML
became a burning issue a long time ago. This issue takes a number of faces:

– Searching: When proving, we frequently ask the question: Is this fact present
in MML? Quite frequently we also face a more troublesome question: Has
this notion or something similar already been defined?

! Partially supported by JSPS P00025.
!! Partially supported by NSERC grant OGP9207.

3 http://mizar.org

A. Asperti, B. Buchberger, J.H. Davenport (Eds.): MKM 2003, LNCS 2594, pp. 119−132, 2003.
 Springer-Verlag Berlin Heidelberg 2003

– Browsing: In order to get acquainted with the contents of MML one has
to read it, and this reading can be substantially aided by proper browsing
tools—we do not have anything fancier than linked hypertext in mind.

– Presenting: The presentation of formal mathematical texts should proba-
bly be as close as possible to the source language in which they have been
written—at least from the viewpoint of potential authors. However, there is
a need to present search results in some other form. Also, when browsing,
we face presentation problems as seeing just one piece of text at a time is
unsatisfactory. The problems of presentation, to a large extent, fall into the
domain of graphical user interfaces and we will not discuss them here.

Little is known to us about information retrieval in other proof-assistants. David
Delahaye [2] discussed the problem for the Coq library. His approach is based on
type isomorphisms in the spirit previously applied in search tools for program
modules written in languages of the ML family. While Delahaye aimed at sound-
ness of his searching techniques, his work does not provide searching tools for
all constructs of Coq. Our approach is different: we need a practical tool that
can assist an experienced Mizar user in searching the ever growing MML. After
some small experiments, we have resigned from basing our tools on database
systems like SQL—they seem too general on one hand and too restrictive on the
other for this stage of our project.

2 Mizar Articles and the Structure of MML

A Mizar article is written as a text file and consists of two parts: the Environ-
ment Declaration and the Text Proper. The Environment Declaration consists of
Directives concerning imports from the data base. The Text Proper is a sequence
of Sections consisting of a sequence of Text Items: theorems and definitions to-
gether with their proofs.

An article accepted into MML gets a unique identifier. Each article is pro-
cessed into several forms distributed together with the checking software:

– The source text of the article (the .miz file) which may change when the
library undergoes a revision.

– An abstract of the article which is a text file (the .abs file) containing its pub-
lic information. The Text Proper of an article contains public and non-public
information. The public information are statements of: theorems, definitions
and schemes. Their justifications and all other items from Text Proper are
non-public and they leave no trace in the abstracts. The items of public
information are labeled and these labels are used for references from other
articles.

– Library (data base) files which are used when importing items from the article
to the local environment of another article. These files are not meant to be
read by Mizar authors.

Every article accepted to MML gets its presence on the web in the electronic
Journal of Formalized Mathematics3, JFM for short, which is organized into
annual volumes and each article is presented in a number of forms:

120 G. Bancerek and P. Rudnicki

– A short summary provided by the author(s) in English.
– The abstract in html format with hyperlinks from the point of use of a notion

to its definitions.
– The full text of the article.
– A postscript rendition of the abstract obtained through a mechanical trans-

lation into English and typesetting using LATEX.

As MML is continually revised, the electronic Journal is updated and presents
the up to date version of the articles. There is an associated paper publication
called Formalized Mathematics ISSN 1426-2630, which publishes the articles in
the state of their inclusion into MML.

3 html Based Browsing

The hyperlinked version of Mizar abstracts in JFM provides rudimentary but
quite satisfactory browsing facilities; satisfactory at least for Mizar authors.
Consider [10, FINSEQ 3] and the following theorem4 about a finite sequence p

theorem :: FINSEQ 3:27

n in dom p iff 1 <= n & n <= len p;

The underlined items are linked to their definitions and thus clicking on dom

shows us the definition of the domain of a relation [11, RELAT 1] (and thus of
a function and thus of a finite sequence)

let R;

func dom R -> set means :: RELAT 1:def 4

x in it iff ex y st [x,y] in R;

and clicking on len brings us the definition of the length of a finite sequence [1,
FINSEQ 1]

let p;

redefine func Card p -> Nat means :: FINSEQ 1:def 3

Seg it = dom p;

synonym len p;

This style of html browsing seems quite satisfactory.
(Please note that while in, set, and = are MML built-in notions, they have
technical introductions provided in [3, HIDDEN].)

JFM provides the presentation of Mizar abstracts also in TEXed translations
into English. Thus the last definition can be seen also as

4 In fact, not much of a theorem as its proof is immediate

n in dom p iff 1 <= n & n <= len p
proof n in Seg len p iff n in Seg len p; hence thesis by FINSEQ 1:3, def 3; end;

However, we will use this fact as our driving example.

121Information Retrieval in MML

In the sequel p, q, r are finite sequences. ...

Let us consider p. Then p is a natural number and it can be characterized
by the condition:
(Def. 3) Seg p = dom p.

We introduce len p as a synonym for p.

4 Text Based Searching

The reference information needed by Mizar authors when writing a new article
is provided by the .abs files which are conveniently located in one directory in
the system distribution. For lack of better tools one can employ textual searches
using the tools from the grep family; these can be performed from an editor5.
However, besides some usefulness such searches have serious drawbacks, even for
people thoroughly familiar with MML.

4.1 Searching for Theorems

Suppose that we are looking for a theorem which for a natural number relates its
elementhood in the domain of a finite sequence with its relationship to the length
of the sequence. In other words, our goal is to find theorems like FINSEQ 3:27

quoted above. A search invoked as grep "dom.*len" *.abs results in 59 hits.
But, we are interested in cases where there is some logical connective between
the functors. We try implies in this way grep "dom.*implies.*len" *.abs and
we get 14 hits, none of which are even remotely close to what we are looking
for. Maybe we tried the wrong connective, let us try iff instead. Executing
grep "dom.*iff.*len" *.abs seems to give us what we wanted

finseq_3.abs: n in dom p iff 1 <= n & n <= len p;

finseq_3.abs: n in dom p iff n - 1 is Nat & len p - n is Nat;

scmfsa_7.abs: insloc k in dom Load p iff k < len p;

Does it? We have assumed a specific order of the functors while equivalence
is symmetric so we try grep "(dom.*iff.*len)|(len.*iff.*dom)" *.abs which
results in 10 hits. We may look through the results but on the other hand we may
further narrow our search. The relationship we are looking for should involve the
predicate in relative to dom and the predicate <= relative to len. So we try

grep "(in.*dom.*iff.*<=.*len)|(<=.*len.*iff.*in.*dom)" *.abs

which results in

finseq_3.abs: n in dom p iff 1 <= n & n <= len p;

goboard2.abs: holds 1 <= n & n+1 <= len f iff n in dom f & n+1 in dom f;

goboard2.abs: holds 1 <= n & n+2 <= len f iff n in dom f & n+1 in dom f & n+2 in dom f;

msualg_8.abs: 1 <= n & n < len p iff n in dom p & n+1 in dom p;

5 Josef Urban (http://mizar.org/people) has prepared a Mizar mode for emacs with
rudimentary browsing, this tool will finally incorporate semantics based retrieval
which we discuss later.

122 G. Bancerek and P. Rudnicki

This is somewhat better than the last time, but is it everything that is relevant
to our interests? Hard to say.

When using grep we search single lines of text and not entire syntactic units
of Mizar. This is unsatisfactory. Also, since the output is just single lines from
.abs files, in order to find the theorem names we have to look into corresponding
articles; but this procedure is conveniently supported in editors like emacs. Of
course, it is quite easy to build a tool that would return entire items from .abs
files while still performing only a textual search (such tools were available in
the past but never caught on). grep has been used for a long time in searching
.abs files and in the hands of someone familiar with MML it is a powerful tool.
However, such searches frequently return a large number of hits as asking precise
questions is troublesome, since the same meaning can be carried out in Mizar
in a variety of ways.

4.2 Searching for Definitions

Applying textual searches when searching MML for a notion is more troublesome
than for theorems. What shall we search for? Our first guess is may be to look
for a symbol used to express such a notion. But here we can only guess the
symbol with which the notion was expressed. For instance, we might guess that
the predicate we look for has been expressed with the symbol <=. Taking into
account that this symbol could have occurred as a synonym or an antonym, we
inquire

grep "(pred|synonym|antonym).*(<=|>=)" *.abs

for which we get 35 hits. Notation in Mizar is heavily overloaded and this creates
a problem as it is not clear how to narrow our search.

Certainly, we may attempt searching for a notion in terms of symbols that
could have been used in the definiens. This, as in the case of searching for
theorems, is unsatisfactory, as we are never sure about how to form our “query”.

5 Semantics Based Retrieval

The design and implementation of semantics based retrieval in MML is still under
development but an experimental version is available at http://megrez.mizar.org.
An exhaustive presentation of this searching technique would require a sizable
and quite technical description. Therefore, we resort to giving the key ideas
illustrated by some examples.

5.1 Format, Pattern, Constructor

MML is based on built-in notions of set theory: set, in, and st =, which are tech-
nically introduced in [3, HIDDEN] but given their meaning in [8, TARSKI]. Mizar
offers a number of definitional facilities. In most cases, a definition defines a new
constructor used later in syntactic constructions, and gives its syntax and mean-
ing. However, a definition may only redefine some aspects of a previously defined

123Information Retrieval in MML

Constructor Syntactic Constructor Notation Vocabulary
construction kind/code kind/code symbol tag

Aggregate Structural term aggr aggrnot G

Attribute Adjective attr attrnot V

Functor Term func funcnot O

Mode Type mode modenot M

Predicate Atomic formula pred prednot R

Selector Structure selector sel selnot U

Structure Structure type struct structnot G

Table 1. Constructors and notations

constructor, and either introduce a new constructor or not (we will not discuss
the issue any further here as it would require a lengthy technical exposition).

The syntactic format of a constructor specifies the symbol of the constructor
and the place and number of arguments. The symbol can be placed in prefix,
infix or postfix position and take numerous arguments. The format of a con-
structor together with the information about the types of arguments is called a
pattern of the constructor. The formats are used for parsing and the patterns
for identifying constructors. A constructor may be represented by different pat-
terns as synonyms and antonyms are allowed. Available kinds of constructors are
presented in Table 1 (the right hand side of this table will be discussed later).

As an example, let us consider the following definition from [9, ORDERS 1]

let A be RelStr; let a1,a2 be Element of the carrier of A;

pred a1 <= a2 means :: ORDERS_1:def 9

[a1,a2] in the InternalRel of A;

synonym a2 >= a1;

which defines a predicate constructor. The format of this constructor is a symbol
in the infix position with (syntactically) two arguments: the left and the right
argument. The symbols used in this format were defined in vocabulary HIDDEN

as: R<= and R>=, where R indicates a predicate symbol.
The pattern of this constructor provides the information about the types of

its arguments. It turns out that the constructor really has three arguments: two
explicit ones of type Element of the carrier of A and one hidden argument, a
RelStr, that is recoverable from the types of the visible arguments. Of course,
the names of arguments in definitions are irrelevant.

The same constructor format is used in the following definition in [12, YELLOW 2]

let J be set, L be RelStr, f, g be Function of J, the carrier of L;

pred f <= g means :: YELLOW_2:def 1

for j being set st j in J

ex a, b being Element of L st a = f.j & b = g.j & a <= b;

synonym g >= f;

124 G. Bancerek and P. Rudnicki

but the constructor pattern is different: there are two visible arguments but now
we have two hidden arguments. A pattern of a constructor together with the
constructor is also called a notation. In different environments the same pattern
may identify different constructors and thus lead to different notations. Each
of the above two definitions introduces one constructor and two patterns for
the constructor, and thus we have two notations for each contractor. Note that
besides the “main” notation using symbol <= we also introduce a synonymic
notation using symbol >= but we still have only one constructor in each case.

Constructors play a central role in the semantic based information retrieval
as the meaning is attached to the constructor and not to the format or pattern.

5.2 Resources

In contrast to the text based searching where the resource we searched through
was unstructured text, now we introduce a variety of searchable resources. These
resources mirror the information stored in internal (not meant to be read by
humans) MML files and in other associated software tools. The complete list of
defined resource kinds is presented in Table 2. However, in the rest of this paper
we will essentially skip issues concerning schemes, registrations, symbols, formats
and FMKeywords6 . We use the term items in correspondence to the library items
of MML that are stored in internal data base files and can be referenced from
Mizar articles.

In the sequel, we will write the names of resources (indeed, resource classes)
capitalized in this Font as we do in Table 2. Resource kinds, resource codes
and examples of the query language will be written in the typewriter font. All
elements of a resource have unique names.

– A name of an article is an identifier.
– An element of a resource from the Items class is associated with an article.

The article name is a part of the element name which has this structure

Article-name : Resource-code Number
For example, FINSEQ 1:func 3 is the name of the 3rd functor defined in the
named article (see Appendix A). We have a Constructor-name when the
Resource-code is one of the constructor codes from Table 1.

Please note that every resource code can serve as a unique resource kind but the
converse is not true: some kinds of resources correspond to groups of resource
codes. Resource codes and resource kinds are used in the query language in a
variety of roles.

6 Mizar abstracts are mechanically translated into English, typeset using LATEX and
publish in Formalized Mathematics. In this typesetting, the symbols and names that
correspond to Mizar notions are called FMKeywords; they are carefully chosen to
be close to everyday mathematical practice. We expect that using FMKeywords for
searching may be very helpful for inexperienced or casual readers of MML.

125Information Retrieval in MML

Resource Resource Resource
kind code

Items item

Constructors constr

Individual constructors in Table 1 in Table 1
Notations notat

Individual notations in Table 1 in Table 1
Statements stat

Theorem(s) th th

Definitional theorem(s) def def

Definiens(es) dfs dfs

Scheme(s) sch sch

Theorems or Definitional theorems thdef

Registrations reg

Existential registration(s) exreg exreg

Conditional registration(s) condreg condreg

Term adjective registration(s) funcreg funcreg

Articles article

Symbols symbol

Formats format

FMKeywords keyword

Table 2. Resources

5.3 The Query Language

The query language is based on several basic notions: resource, element of a
resource, lists and operations on lists. For simplicity, we will sometimes use the
term “resource” where to be precise we should have written “an element of a
resource.” There are numerous operations on resource elements and numerous
ways of creating lists. An operation on a resource returns a list of resources. An
operation on a resource applied to a list of resources results in a list of resources
obtained by applying the operation to each element on the list. There are some
operations that are applicable only to lists. In this section we give only a brief
review of some aspects of the query language.

Primitive queries, primitive lists. A primitive query returns a list of (ele-
ments of) resources.

Article query: article Article-name returns the list of Items that reference
constructors introduced in the article Article-name.

Constructor query: Constructor-name returns the list of Items that reference
the constructor named Constructor-name.

Enumerated list :

{ Resource-or-item-name,..., Resource-or-item-name }

126 G. Bancerek and P. Rudnicki

Whenever Resource-or-item-name is just an identifier we need to indicate
which resource is meant. For example, { SUBSET 1 } is erroneous as it is am-
biguous: it can be a name of an article or a symbol and in order to remove the
ambiguity one has to use a qualifier, and thus { article SUBSET 1 } returns
the list containing one article. When all elements on the list are names of
articles we can use global qualification as in article { tarski, xboole 0 } .

Global-list : list of Item-kind returns all Items of the given kind. For instance
list of pred returns the list of all 625 predicate constructors.

Restricted global list :

list of Item-kind from (Article-name | Article-list)

returns all resources of the given kind from the given article(s). In
list of constr from article { tarski, xboole 0 }
list of constr from (list of article)

list of constr

the first query returns the list of all constructors from the listed articles while
the second and the third are equivalent and return the list of all constructors.
In the above query, the Article-list can be a result of a query resulting in a
list of articles.

Operations. There is a number of basic operations for each resource kind.
These basic operations reflect the Mizar inner representation of resources of
the given kind while the representation corresponds to the syntax of the Mizar
language used to introduce an element of such a resource. Therefore, the names
of operations are derived from terms used in Mizar grammar. An operation
applied to a resource returns a resource or a list of resources. All operations are
syntactically applicable to all resources but a specific operation may return a
non empty answer only to a specific resource. Almost all operations have inverse
operations.

Let us consider an example of resource Notations. Each notation is expressed
in a format and thus we have operation on a notation also called format, each
notation denotes a constructor and thus operation constructor. Similarly, the
operation synonym returns synonyms of a given notation (non empty) and the
operation antonym returns antonyms of the notation but this list can be empty.

Since the semantics of Mizar constructs is directly associated with construc-
tors, by far the most interesting and useful operations concern constructors.
There are numerous operations allowing us to inquire about the constituents of
a single constructor: its notation, its definition, its redefinitions, its origin, etc.
The following two operations are frequently used in queries:

ref : Items → Constructors! returns the list of constructors that are referenced
from the given item.

occur : Constructors → Items! returns the list of items in which the given con-
structor occurs.

The latter operation is a default operation on a constructor.

127Information Retrieval in MML

An interesting subclass of operations is used to inquire about types of ar-
guments or the type of result for items other than statements. In the current
version of the system the type of an argument is not a resource but we can in-
quire about the constructors occurring in types of arguments with the operation
loci ref : Items → Constructors!. This operation is similar to the operation ref

described above but is restricted to the types of arguments (a formal argument
is called a locus).

Applying operations. (Both prefix and postfix notations are supported.) The
query ABIAN:attr 1 occur is an operation on a single constructor returning 74
items (equivalent to a constructor query). ABIAN:attr 1 ref is an operation on
a single constructor returning just one constructor.

Every operation on a resource is applicable to a list of resources and results
in a list.

Resource-list | Resource-operation
Resource-list & Resource-operation

The operation is applied to each resource on the list, first obtaining a list of lists
and then in the first case returning their union and in the second the intersection
of the lists. Please note that ABIAN:attr 1 | ref is a list operation as in this
context ABIAN:attr 1 is treated as a constructor query and not the name of a
single constructor.

One category of operations on lists are filters. Every resource kind can be
used as a filter and grep is used for textual filtering.

List-of-items | Resource-kind
List-of-items | grep Grep-pattern

The following query first computes the list of Items where both the listed
constructors occur (& occur) and then filters theorems from the list.

{ XBOOLE 0:func 1, XBOOLE 0:func 3 } & occur | th

The following two queries are equivalent and filter all theorems from the series
YELLOW of articles and return 1018 theorems for further processing.

list of th | grep YELLOW

list of item | grep YELLOW | th

Compound queries are built according to the following syntax
Query (and | or | butnot) Query

and their meaning should be clear from the example in Section 5.5.

Group queries are built according to the following syntax
(atleast | atmost | exactly)

((Constructor-item { , Constructor-item }) |
* (Query))

For instance
atleast (XBOOLE 0:func 1, XBOOLE 0:func 3)

128 G. Bancerek and P. Rudnicki

returns 16 definitions and theorems where both these constructors occur together
(XBOOLE 0:func 1 is the empty set and XBOOLE 0:func 3 is set intersection).

5.4 Browsing and Reviewing Resources

The query list of pred from article ORDERS 1 results in the following “click-
able” list for further browsing

ORDERS 1:pred 1

ORDERS 1:pred 2

ORDERS 1:pred 3

Clicking on the first line gives

ORDERS 1:pred 1 component rank: 2,

[Registrations], [Constructors], [Universe]

[Search (fam ORDERS 1:pred 1) , Search (ORDERS 1:pred 1)],

definition, definiens, notation, [Neighbourhood], MXA, ABS

definition
let A1 be RelStr;

let A2 be Element of the carrier of A1;

let A3 be Element of the carrier of A1;

pred A2 <= A3;

end;

Further details about this constructor are available for browsing

component rank Component rank of an item is 1 + the maximum of component
ranks of constructors appearing in the item.

Registrations List of cluster Registrations needed by this constructor.
Constructors List of Constructors occurring in this item, i.e., the answer to

ref ORDERS 1:pred 1 .
Universe Shows the types of all terms, including arguments of attributes and

types, gradually expanded to the primitive type of set.
Search (fam ORDERS 1:pred 1) List of Items in which this constructor or some

of its redefined variants occurs, i.e., the answer to fam ORDERS 1:pred 1 , 418
items.

Search (ORDERS 1:pred 1) List of Items in which this constructor occurs, i.e.,
the answer to occur ORDERS 1:pred 1 , 256 items.

definition The definitional theorem behind this definition, ORDERS 1:def 9, i.e.,
the answer to definition ORDERS 1:pred 1 .

definiens The definiens of this definition, used when proving by definitional
expansion, ORDERS 1:dfs 6, i.e., the answer to definiens ORDERS 1:pred 1 .

notation The list of introduced Notations: ORDERS 1:prednot 1 and its synonym
ORDERS 1:prednot 2, i.e., the answer to notation ORDERS 1:pred 1 .

Neighbourhood List of Constructors which occur together with this constructor
in other items.

MXA The extended abstract of article ORDERS 1 (see Appendix A).
ABS The abstract of article ORDERS 1.

129Information Retrieval in MML

5.5 An Example of a Search for a Theorem

Let us try to perform a search with the same goal as in Section 4.1. In our first
attempt, we look for items that use the required constructors: RELAT 1:func 1

for dom and FINSEQ 1:func 3 for len and of course they must use FinSequence,
that is also FINSEQ 1:attr 1. The query

FINSEQ 1:attr 1 and RELAT 1:func 1 and FINSEQ 1:func 3

results in 23 items. For continuing in a sensible way some knowledge of MML is
required. The constructor for dom was redefined a number of times such that we
should probably allow for any of its derivatives, that is, for the entire family of
doms. Unfortunately, the query

FINSEQ 1:attr 1 and fam RELAT 1:func 1 and FINSEQ 1:func 3

results in 86 hits, much more than 23 but it could have been expected. We try to
narrow our search by also requiring the presence of the following constructors:
HIDDEN:pred 1 for in, which is needed to relate to dom and ARYTM:pred 2 for <=,
needed to relate to len

FINSEQ 1:attr 1 and fam RELAT 1:func 1 and FINSEQ 1:func 3

and HIDDEN:pred 2 and ARYTM:pred 1

and we are left with 14 items, some of them are not theorems, so we filter
(FINSEQ 1:attr 1 and fam RELAT 1:func 1 and FINSEQ 1:func 3

and HIDDEN:pred 2 and ARYTM:pred 1) | th

They are presented to us in a “clickable” form such that a cursory examination
of some of them allows us to narrow our query by indicating which constructors
are not desirable, and thus we arrive at

(FINSEQ 1:attr 1 and fam RELAT 1:func 1 and FINSEQ 1:func 3

and HIDDEN:pred 2 and ARYTM:pred 1 butnot FUNCT 1:func 1) | th

which results in 5 theorems, one more than with the textual search, namely
TOPREAL7:th 5.

5.6 An Example of a Search for a Notion

Let us try to find a notion related to “ordering” of functions, like the predicate
[12, YELLOW 2:pred 1] (see p. 6). We may reasonably suspect that such a predicate
is expressed with the predicate symbol <= or >=. The query

symbol {<=, >=} | notation

returns 18 predicate notations. But the predicate we look for should involve
the notion of a function and we first find the constructors behind the obtained
notations

symbol {<=, >=} | notation | constructor

which gives us 11 predicate constructors. The constructor we are after should
involve the notion of a function and thus FUNCT 1:attr 1, therefore we query

symbol {<=, >=} | notation | constructor and FUNCT 1:attr 1

and in return we obtain only 1 constructor YELLOW 2:pred 1. Unfortunately, the
story is not so simple as we have missed something. If we look through the

130 G. Bancerek and P. Rudnicki

originally obtained notations then we will find notation FUNCT 4:prednot 2 which
uses symbol <= and needs arguments that are functions. However, there is no
new constructor behind this notation as it really denotes predicate constructor
for the subset among sets and thus our last query missed it. The query that we
should have used is only a bit more complex

symbol { <= , >= } | notation

where [loci ref and { FUNCT 1:attr 1 }]

6 Conclusions

The work on the semantic based retrieval in MML has started only recently.
The importance of sophisticated tools for browsing and searching has become
apparent in some sub-projects within Mizar which involve many authors and
many articles. The current, still experimental implementation turned out to be
very helpful as we can now query MML in a way impossible with textual searches.
At the moment, this retrieval tool is geared toward advanced users of Mizar and
plays a crucial role in creating EMM—Encyclopedia of Mathematics in Mizar
(see [4, XBOOLE 0, XBOOLE 1]). Articles in EMM have monographical character.
The “raw” material from the original articles is semi-automatically extracted into
encyclopedic articles with the substantial assistance of the presented retrieval
machinery.

References

1. Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and
finite sequences. Formalized Mathematics, 1(1):107–114, 1990.

2. David Delahaye. Information Retrieval in a Coq Proof Library using Type Iso-
morphisms. In T. Coquand et al., editors, TYPES, volume 1956 of LNCS, pages
131–147. Springer, 2000.

3. Library Committee of the Association of Mizar Users. Mizar Built-in Notions.
http://mizar.org/JFM/Axiomatics/hidden.html.

4. Library Committee of the Association of Mizar Users. Boolean Properties of Sets.
http://mizar.org/JFM/EMM.

5. Mizar Manuals. http://mizar.org/project/bibliography.html.
6. P. Rudnicki, Ch. Schwarzweller and A. Trybulec. Commutative Algebra in the

Mizar System. Journal of Symbolic Computation, 32:143–169, 2001.
7. Piotr Rudnicki and Andrzej Trybulec. On equivalents of well-foundedness. Journal

of Automated Reasoning, 23(3-4):197–234, 1999.
8. Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics,

1(1):9–11, 1990.
9. Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–

319, 1990.
10. Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences.

Formalized Mathematics, 1(3):569–573, 1990.
11. Edmund Woronowicz. Relations and their basic properties. Formalized Mathemat-

ics, 1(1):73–83, 1990.
12. Mariusz Żynel and Czes!law Byliński. Properties of relational structures, posets,

lattices and maps. Formalized Mathematics, 6(1):123–130, 1997.

131Information Retrieval in MML

A Mizar Extended Abstracts

The primary source of information about the contents of MML is the Mizar
abstracts. They provide all the information necessary for referring to the MML
contents. Here is how the definition of the length of a finite sequence appears in
the abstract file (p denotes a FinSequence):

definition let p;

redefine func Card p -> Nat means

:: FINSEQ_1:def 3

Seg it = dom p;

synonym len p;

end;

(Please note that the hyperlinked version of this definition was presented in
Section 3). Unfortunately, this plain version of Mizar abstract does not provide
any information about the resources occurring in the corresponding library item.
To rectify this situation, Grzegorz Bancerek in his implementation generates the
so called extended abstracts in which the occurring resources are displayed in a
form of a comment. The above definition is presented in the extended abstract
as follows:

definition let p;

redefine

:: FINSEQ_1:funcnot 3 => FINSEQ_1:func 3

:: FINSEQ_1:def 3

:: Constructors:

:: ARYTM:func 1, ARYTM:func 2, FINSEQ_1:attr 1, FINSEQ_1:func 2,

:: FINSEQ_1:func 3, FUNCT_1:attr 1, HIDDEN:mode 1, HIDDEN:pred 1,

:: RELAT_1:attr 1, RELAT_1:func 1, SUBSET_1:mode 2

func Card p -> Nat means

Seg it = dom p;

:: FINSEQ_1:funcnot 4 => FINSEQ_1:func 3

synonym len p;

end;

This definition redefines the functor CARD 1:func 1 which we can learn by
inquiring origin FINSEQ 1:func 3 (it is not clear that this information should be
shown directly in the extended abstract, the contents of extended abstracts is
still experimented with).

The above definition introduces one new functor FINSEQ 1:func 3 and two
notations for the functor: FINSEQ 1:funcnot 3 and FINSEQ 1:funcnot 4. These
names are only used for searching, the name FINSEQ 1:def 3 is used in Mizar
texts to refer to the definitional theorem of this definition.

The constructors listed in the extended abstract of FINSEQ 1:def 3 are the
constructors that are obtained as a result of the query ref FINSEQ 1:def 3.

132 G. Bancerek and P. Rudnicki

An Expert System for the Flexible Processing of
Xml–Based Mathematical Knowledge in a

Prolog–Environment

Bernd D. Heumesser1, Dietmar A. Seipel2, and Ulrich Güntzer1

1 University of Tübingen, Wilhelm–Schickard Institute for Computer Science
Sand 13, D – 72076 Tübingen, Germany

{heumesser,guentzer}@informatik.uni-tuebingen.de
2 University of Würzburg, Department of Computer Science

Am Hubland, D – 97074 Würzburg, Germany
seipel@informatik.uni-wuerzburg.de

Abstract. In this paper, we describe techniques for querying and trans-
forming Xml–based mathematical knowledge. The Xml–documents are
transformed into an equivalent Prolog–structure called field notation,
which serves as our Document Object Model (DOM).
Based on the field notation we provide a powerful and flexible query
language in a Prolog–based logic programming environment enabling
intelligent reasoning about the data. It also offers a method which al-
lows for elegantly encoding transfomations on Xml–documents, using a
powerful substitution mechanism.
We are applying these techniques in an expert system for the classifica-
tion and the retrieval of ordinary differential equations. The rule–based
approach allows to provide a query and transformation language, which
can deal with different kinds of Xml–based mathematical documents,
such as documents in MathML and in OpenMath.

1 Introduction

Xml–technology [12] changed the document formats in almost all application
domains. The use of Xml has led to a separation of presentation and content in
many areas. Mathematical knowledge is more and more frequently represented in
an Xml–based document format. In fact, now the documents can not only con-
tain the mathematical notation for presentation purposes, but can also contain
the intended meaning of the described mathematical structure. Representing
and storing mathematical achievements and knowledge in a self–describing, ex-
tensible and open manner, facilitates Web information systems and simplifies
world–wide cooperation among mathematicians.

This knowledge is spread over the Web and it can only be handled if there is
a possibility to operate on and to query this information based on the underly-
ing mathematical structure. In the mathematical community there are efforts to
make mathematical knowledge more easily usable via the Web. For instance the
Mowgli–project (cf. [1]) works on a development of a technological infrastruc-
ture for the creation and the maintenance of a virtual distributed, hypertextual

A. Asperti, B. Buchberger, J.H. Davenport (Eds.): MKM 2003, LNCS 2594, pp. 133–146, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: h×N
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (h×N)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

134 B.D. Heumesser, D.A. Seipel, and U. Güntzer

library of mathematical knowledge based on a content description of the infor-
mation.

Using logic programming techniques for dealing with mathematical knowl-
edge is an approach that has also been used by Dalmas, Gaëtano and Huchet
[5], who present a deductive database Mfd2 for mathematical formulas. The
information stored in the database can be queried by using a special unification
algorithm which takes care of the conditions associated with the formulas. The
MBase system of Kohlhase and Franke [8] provides access to different theorem
proving systems based on systems using logic programming components. These
two systems put the focus on using deduction for theorem proving.

We introduce a Prolog–based environment for handling Xml–based math-
ematical knowledge. We use two aspects of Prolog: On one hand we apply
Prolog–like a procedural programming language to implement a basic library
using, e.g., its capabilites to deal with terms and its unification mechanism. On
the other hand we use its rule–based features and its inference–engine for de-
ductions based on these libraries. The system is accessed by the Http–Protocol
and can retrieve documents stored on the local file system or remote documents
adressed by a URL.

The paper is organised as follows: First, we give a brief introduction to the
modeling of mathematical knowledge in Xml–languages. In Section 3, we present
the Prolog–Document Object Model (DOM) that is used in our expert sys-
tem; it allows for handling Xml–documents nicely in Prolog. We introduce a
query language called FnQuery for accessing and for extracting parts of the
documents. We also present a method which allows for elegantly encoding trans-
fomations on Xml–documents, using a powerful substitution mechanism. In Sec-
tion 4, we show how our expert system can deal with different Xml–languages,
and we apply these techniques to the domain of ordinary differential equations.
Finally, the conclusion gives a summary of our work and a short outlook.

2 Xml–Based Mathematical Knowledge

Xml enables markup languages – so–called applications of Xml – to be defined
for a given purpose or for an application domain. Since all of these languages
share the same grammatical structure it is possible to have generic tools and
software systems to deal with all Xml–applications at least in a general way.
Documents in each Xml–application may be stored in an Xml– (or an Xml–
enabled) database. Especially the use in the Web is supported by many tools
enabling processing Xml–documents for displaying in a standard Web–browser.

At this time the two major Xml–languages for representing mathematical
knowledge are MathML and OpenMath. They are complementary (cf. [4]).
Therefore we are considering both languages in this paper.

2.1 The Content Markup of MathML

The mathematical markup language MathML [14] consists of two parts: One
part is the presentation markup used for presentation purposes. In this part of

An Expert System for the Flexible Processing 135

MathML the user specifies how the content should be presented. This may differ
from the mathematical structure, because for presentation it is not necessary to
specify the exact mathematical structure. The second part of MathML – the
content markup – is a language in which mathematical structures may be defined
in an exact way.

Since we are intereseted in the mathematical content of documents, we con-
sider only the content markup of MathML. But we have to deal with some pre-
sentation markup, too, because the two languages may be mixed, for instance if
one uses variables with subscripts in the content markup. In MathML, the set
of available Xml–tags is fixed. There are many predefined symbols, functions,
and containers. However, it is possible to use other Xml–languages like, e.g.,
OpenMath inside a MathML–structure.

2.2 The OpenMath–Standard

OpenMath [4] is another standard for representing mathematical knowledge.
This language solely deals with the semantic meaning of the knowledge. Open-
Math uses an Xml–language for exchanging mathematical objects; in this paper
we refer to this representation.

In contrast to MathML, OpenMath defines only a small set of tags. They
are just used as containers and the semantic information is given in their at-
tributes. Hence the tag names carry only general information. On the other
hand there is a concept to assign semantic information to the objects, namely
content dictionaries. Content dictionaries hold the meaning of some mathemat-
ical symbols. These symbols are used by the OMS–tag via addressing the content
dictionary with the cd–attribute and the symbol with the name–tag.

2.3 An Example for MathMl and for OpenMath

Figure 1 shows the representation of the equation y′(x) + y(x) · cos(x) = e2·x in
the content markup of MathML on the right hand side and the content markup
of OpenMath on the left hand side; this equation might appear in a document
in another Xml–language, such as, e.g., OMDoc [9] or Xhtml [13]. Observe
that – as Figure 1 suggests – the general structure is almost the same in both
languages.

In OpenMath the semantic information is encoded in the values of the tags
referencing a content dictionary and a symbol name, whereas the MathML–tags
are more readable for humans. E.g., the times–tag in MathML is denoted in
OpenMath as a generic OMS–tag with two attributes for addressing the content
dictionary and the symbol name.

3 Xml and Prolog

For the use inside of our expert system we have developed an abstract data type
called field notation for representing Xml–documents, which supports operations
such as accessing children and attributes of Xml–documents or assinging new

136 B.D. Heumesser, D.A. Seipel, and U. Güntzer

MathML OpenMath

<math>
<apply>

<eq/>
<apply>

<plus/>
<apply>

<diff/>
<bvar>

<ci>x</ci>
<degree>

<cn type="integer">1</cn>
</degree>

</bvar>
<apply>

<ci type="fn">y</ci>
<ci>x</ci>

</apply>
</apply>
<apply>

<times/>
<apply>

<ci type="fn">y</ci>
<ci>x</ci>

</apply>
<apply>

<cos/>
<ci>x</ci>

</apply>
</apply>

</apply>
<apply>

<exp/>
<apply>

<times/>
<cn type="integer">2</cn>
<ci>x</ci>

</apply>
</apply>

</apply>
</math>

<OMOBJ>
<OMA>

<OMS cd="relation1" name="eq"/>
<OMA>

<OMS cd="arith1" name="plus"/>
<OMA>

<OMS cd="calculus1" name="diff"/>
<OMBIND>

<OMS cd="fns1" name="lambda"/>
<OMBVAR>

<OMV name="x"/>
</OMBVAR>
<OMA>

<OMV name="y"/>
<OMV name="x"/>

</OMA>
</OMBIND>

</OMA>
<OMA>

<OMS cd="arith1" name="times"/>
<OMA>

<OMV name="y"/>
<OMV name="x"/>

</OMA>
<OMA>

<OMS cd="transc1" name="cos"/>
<OMV name="x"/>

</OMA>
</OMA>

</OMA>
<OMA>

<OMS cd="transc1" name="exp"/>
<OMA>

<OMS cd="arith1" name="times"/>
<OMI>2</OMI>
<OMV name="x"/>

</OMA>
</OMA>

</OMA>
</OMOBJ>

Fig. 1. Representation of y′(x) + y(x) · cos(x) = e2·x

values to them. It serves as our DOM for building a digital library of fine–grained
mathematical objects.

Based on this field notation we provide a powerful and flexible query language
in a Prolog–based logic programming environment. This bridges the gap be-
tween Xml–based digital libraries and deductive (inference–based) databases
enabling intelligent reasoning about the data by providing full access to the
Prolog programming environment. We have also implemented a transforma-
tion language that is inspired by Xslt. It can for instance be used for transform-
ing Html–documents or Xhtml–documents – which currently are available on
the Web – to well–structured, semantically enriched Xml–documents.

An Expert System for the Flexible Processing 137

3.1 A Prolog–DOM for Xml

We use association lists for representing complex objects, cf. [11]. This data
structure is familiar to Lisp programmers. An association list consists of attri-
bute/value–pairs of the form “ai : vi”, where ai is an attribute and “vi” is the
associated value. Thus, a complex object O, where vi = O.ai, 1 ≤ i ≤ n, can be
represented as an association list

O = [a1 : v1, . . . , an : vn].

Notice, that the values “vi” themselves can be association lists (i.e., the defini-
tion is inductive) or atomic values. Xml–objects can have attributes and sub–
elements. Thus, an Xml–object with the tag name “A” can be represented as a
triple A : As : Es, where “As” is an association list for its attribute/value–pairs
and “Es” represents its sub–elements. If there are no attributes, then the Xml–
object can alternatively be represented by A : Es instead of A : [] : Es. We call
the notation

O = [a1 : v1 : w1, . . . , an : vn : wn] (1)

for a list of Xml–objects field notation. An Xml–document can be represented
by a list [A : As : Es] containing one element, or simply by that single element if
no confusion arises. E.g., the Xml–documents of Figure 1 are represented in field
notation in Figure 2. Representing complex objects in field–notation rather than
as ordinary Prolog–atoms has got several advantages: Firstly, the sequence of
attribute/value–pairs is arbitrary. Secondly, values can be accessed by attributes
rather than by argument positions. Thirdly, the database schema can be changed
at run time. Fourth, null values can be omitted, and new values can be added
at run time. Fifth, semi–structured data, such as Xml–data, can be represented
and queried very elegantly; we will see this in the following.

Examples for FnQuery. In the following we give some examples for the usage
of the field notation and the language FnQuery. A more detailed description
can be found in [10].

For an object O of the form (1) in field notation we can select the list X = wi

of sub–elements using the statement “X := Oˆai”, and we can select the list
Y = vi of attribute/value–pairs using the statement “Y := O@ai”. Here “:=”
is an infix–predicate symbol with two arguments, which evaluates the terms
“Oˆai” and “O@ai”, and assigns the result to the first argument “X” and “Y”,
respectively.

?- O = [a:[d:1]:[b:2, c:3], c:4],
X := Oˆa,
Y := O@a.

X = [b:2, c:3]
Y = [d:1]

138 B.D. Heumesser, D.A. Seipel, and U. Güntzer

MathML OpenMath

math:[]:[
apply:[]:[

eq:[]:[],
apply:[]:[

plus:[]:[],
apply:[]:[

diff:[]:[],
bvar:[]:[

ci:[]:[x],
degree:[]:[

cn:[type:integer]:[1]]],
apply:[]:[

ci:[type:fn]:[y],
ci:[]:[x]]],

apply:[]:[
times:[]:[],
apply:[]:[

ci:[type:fn]:[y],
ci:[]:[x]],

apply:[]:[
cos:[]:[],
ci:[]:[x]]]],

apply:[]:[
exp:[]:[],
apply:[]:[

times:[]:[],
cn:[type:integer]:[2],
ci:[]:[x]]]]]

OMOBJ:[]:[
OMA:[]:[

OMS:[cd:relation1, name:eq]:[],
OMA:[]:[

OMS:[cd:arith1, name:plus]:[],
OMA:[]:[

OMS:[cd:calculus1, name:diff]:[],
OMBIND:[]:[

OMS:[cd:fns1, name:lambda]:[],
OMBVAR:[]:[

OMV:[name:x]:[]],
OMA:[]:[

OMV:[name:y]:[],
OMV:[name:x]:[]]]],

OMA:[]:[
OMS:[cd:arith1, name:times]:[],
OMA:[]:[

OMV:[name:y]:[],
OMV:[name:x]:[]],

OMA:[]:[
OMS:[cd:transc1, name:cos]:[],
OMV:[name:x]:[]]]],

OMA:[]:[
OMS:[cd:transc1, name:exp]:[],
OMA:[]:[

OMS:[cd:arith1, name:times]:[],
OMI:[]:[2],
OMV:[name:x]:[]]]]]

Fig. 2. Field Notation of the Xml–Documents in Figure 1

This reminds of the evaluation of an arithmetic expression “X is 3 * (4+5)”
in Prolog where “is” is an infix–predicate symbol with two arguments, which
evaluates the arithmetic term “3 * (4+5)” and assigns the result to the first
argument “X”.

It is possible to have complex paths expressions for selecting sub–elements:

?- O = [a:[d:1]:[b:2, c:3], c:4],
X := Oˆaˆb.

X = 2

In pure Prolog the previous statement would look much more complicated.
A query selecting with multiple path expressions returns a list of objects,

namely one object for each selector:

?- O = [a:[b:2, c:3], c:4],
X := Oˆ[a, c, aˆb].

X = [[b:2, c:3], 4, 2]

If a path expression contains variable symbols, then all ground instances of
the path expression which are an allowed path in the queried object are generated
(on backtracking):

An Expert System for the Flexible Processing 139

?- O = [a:[b:2, c:3], c:4],
X := OˆaˆPath.

X = 2, Path = b ;
X = 3, Path = c

?- O = [a:[b:2, c:3], c:4],
2 := OˆPath.

Path = aˆb

Finally, using the operator “*”, we can assign new values to attributes or
elements as follows:

?- O = [a:[d:1]:[b:2, c:3], c:4],
O_2 := O*[ˆa@d:5,ˆc:6],
O_3 := Oˆa*[ˆb:1].

O_2 = [a:[d:5]:[b:2, c:3], c:6],
O_3 = [b:1, c:3]

3.2 The Transformation Mechanism

To demonstrate the power of the transformation mechanism we show how easily
it can be used to convert two different Xml–languages. We have built a high
level substitution mechanism on top of the substitution mechanism provided by
Prolog. These interleaved substitutions allow complex transformations on the
documents to be encoded easily.

The following Prolog–code converts the OpenMath–document OM in field
notation from Figure 1 and 2 to a MathML–document MM in field notation:

Substitution_Symbols = [
(eq:[]:[]) - (’OMS’:[cd:relation1,name:eq]:[]),
(plus:[]:[]) - (’OMS’:[cd:arith1,name:plus]:[]),
(times:[]:[]) - (’OMS’:[cd:arith1,name:times]:[]),
(cos:[]:[]) - (’OMS’:[cd:transc1,name:cos]:[]),
(exp:[]:[]) - (’OMS’:[cd:transc1,name:exp]:[]),
(diff:[]:[]) - (’OMS’:[cd:calculus1,name:diff]:[])],

Substitution_Structure = [
(apply:[]:[Op,

bvar:[]:[ci:[]:[Var],
degree:[]:[cn:[type:integer]:[1]]],X]) -

(’OMA’:[]:[Op,
’OMBIND’:[]:[

’OMS’:[cd:fns1,name:lambda]:[],
’OMBVAR’:[]:[’OMV’:[name:Var]:[]],X]]),

(apply:[]:[ci:[type:fn]:[F]|Es]) -
(’OMA’:[]:[’OMV’:[name:F]:[]|Es]),

140 B.D. Heumesser, D.A. Seipel, and U. Güntzer

(ci:[]:[N]) - (’OMV’:[name:N]:[]),
(cn:[type:integer]:[I]) - (’OMI’:[]:[I]),
(apply:[]:Es) - (’OMA’:[]:Es),
(math:[]:Es) - (’OMOBJ’:[]:Es)],

append(Substitution_Symbols, Substitution_Structure,
Substitutions),

fn_transform_elements(Substitutions,OM,MM).

As one can see, the main work that has to be done is to define the substitu-
tions, which are then applied to the object in field notation within the predicate
fn_transform_elements of our library. Each substitution consists of two parts
separated by a minus sign, and it represents a context–sensitive rewriting rule:
the right hand expression of a substitution is replaced by the expression on the
left hand side.

There are two lists of substitutions: The first one contains the substitutions
used for converting the symbols. There are no Prolog–variables in this list
because we just need to substitute the OpenMath tags by the corresponding
tags in MathML. So we don’t need the Prolog–substitution mechanism here.
In the second list of substitutions, Substitution_Structure, there are some
variables and hence the Prolog–substitution mechanism is used.

Now we will show how this works. Consider the following substitution:

(apply:[]:[ci:[type:fn]:[F]|Es]) -
(’OMA’:[]:[’OMV’:[name:F]:[]|Es])

The predicate fn_transform_elements tries to unify the parenthesized term
behind the minus sign. This can only be done, if the content of the OMA–tag
starts with a variable. This indicates that the variable with the name F is a
function, which is applied to the other elements Es of the content. This construct
is translated in MathML by using an apply–tag and a ci–container for the
variable. This variable is characterized by the type–attribute as a function. The
remaining content Es of the OMA–tag is left unchanged.

Note that only the substitution for the derivation is a little bit complex – the
others are rather straightforward.

Of course we can use the same technology for doing the backwards conversion
from MathML to OpenMath. In [3] it is shown how this can be done. We
just have to encode the substitutions in the way shown above. The substitution
mechanism allows this to be done very easily in a Prolog–based environment
like our system.

A transformation from OpenMath to MathML is not always possible, since
OpenMath offers the possibility to define new symbols by using new content
dictionaries. As the example above shows, a subset of both languages can be
identified, which in fact can be transformed.

Another example for data extraction and transformation dealing with Html–
documents can be found in the appendix.

An Expert System for the Flexible Processing 141

Expert
Rules ...Transformations

Field Notation

FNQuery

XMLOpenMathMathML XHTML ...

Web

Prolog

Fig. 3. Architecture of the Expert System

4 Applications in an Expert System

We are currently developing an expert system based on the techniques described
in Section 3. It provides different kinds of operations on given documents: The
digitally stored and edited mathematical knowledge can be accessed by applying
a well–defined and structured access to the types and elements of the Xml–
documents. Transformations and queries encoded in this syntax are evaluated
by the system and they can be mixed with Prolog–predicates for performing
reasoning tasks. I.e., it is possible to couple FnQuery with the full programming
facilities of Prolog.

The rule–based approach allows to provide a query and transformation lan-
guage which can deal with different kinds of Xml–based mathematical docu-
ments, such as, e.g., documents in MathML, OpenMath, or yet to be defined
Xml–languages for special subject areas.

The following two subsections show how the techniques have been applied.
The queries in Section 4.1 demonstrate that our system can handle MathML–
and OpenMath–documents in a relatively uniform way. In Section 4.2 we ap-
ply the system for classifying ordinary differential equations; a more detailed
description of this second application is given in [6].

4.1 Application to MathML and to OpenMath

We are in the process of extending FnQuery to an abstract, easy–to–use query
language which can be transformed to FnQuery and then processed by the sys-
tem to give the user the possibility to define his own queries. The queries gener-
ated by the system should cover both MathML– and OpenMath–documents.
Because of the different properties of both languages, we have to identify a subset
of corresponding structures and concepts which we would like to support.

Let Object be an Xml–document – represented in field notation – containing
some sub–elements in MathML. Consider the following Prolog–rule to extract
differential equations from the document:

query_1(Object,Equations) :-
findall(Equation_1,

(Equation_1 := Objectˆ_ˆmath,

142 B.D. Heumesser, D.A. Seipel, and U. Güntzer

Equation_2 := Equation_1ˆapply,
_ := Equation_2ˆeq,
_ := Equation_2ˆ_ˆdiff),

Equations).

It extracts a list – possibly with duplicates – of MathML–objects which repre-
sent an equation containing the diff–operator. As one can see, this is encoded
in just 4 lines of FnQuery–predicates: The first matches only math–tags. The
second line ensures that the following tag is an apply–tag. Then it is checked
that the content of the apply–tag (directly) contains an eq–tag. At last it is
proven that somewhere in this object there is a diff–tag.

Note that the above procedure only works for MathML. But is is quite easy
to transform it to deal with OpenMath. We just have to use the OpenMath
terminology. This results in the following Prolog–rule to extract all equation
objects containing the diff–operator from an OpenMath–document Object in
field notation:

query_2(Object,Equations) :-
findall(Equation_1,

(Equation_1 := Objectˆ_ˆ’OMOBJ’,
Equation_2 := Equation_1ˆ_,
[relation1,eq] :=

Equation_1ˆ[’OMA’@’OMS’ˆcd,’OMA’@’OMS’ˆname],
[calculus1,diff] :=

Equation_2ˆ[’OMA’@’OMS’ˆcd,’OMA’@’OMS’ˆname]),
Equations).

The predicates look somewhat more complex, but this is only caused by the fact
that we have to access the two attributes of the OMS–tag and to check both. Since
Prolog–names starting with capital letters are variables, we have to enclose tag
names starting with a capital letter with single quotes.

The next step is to combine the predicates used in the above query to obtain
predicates working for both languages. In addition, these predicates may easily
be extended to deal with other Xml–based mathematical markup languages.
This is done like shown in the following rules:

math_object_contains(Object,diff) :-
_ := Objectˆ_ˆapplyˆdiff.

math_object_contains(Object,diff) :-
[calculus1,diff] :=

Objectˆ_ˆ[’OMA’@’OMS’ˆcd,’OMA’@’OMS’ˆname].

These two rules act as alternatives. The predicate succeeds if one of these two
rules lead to success. If a set of these predicates is available, then they can be
used to implement complex queries. Therefore it is easy to combine this rule–
based approach with FnQuery, the transformations mentioned above and the
programming facilities of Prolog within our expert system.

An Expert System for the Flexible Processing 143

4.2 Application to Ordinary Differential Equations

We have applied these techniques to the classification and the retrieval of ordi-
nary differential equations based on Kamke’s rules. Kamke provides an ordered
list of ordinary differential equations, cf. Section C of [7]. A user searching for a
solution of a given equation has to transform the equation according to a set of
rules. The form of the transformed equation determines rather precisely the place
of the differential equation within Kamke’s list. Thus the user has to browse only
a very small list of possible candidates, where he might find his equation in the
exact form or a special case of it.

Our expert system supports the search in this collection. We are in the process
of defining criteria for the equations to shrink the set of candidates in the list
which can match the given equation (in the sense given above) to a reasonable
size; for more details see [6]. If this can be done in an effective way, then we can
try to unify the given equation with the remaining candidates. This might be
done by incorporating efficient term–rewriting methods into our system.

5 Conclusions

We access the semantic information encoded in Xml–based mathematical knowl-
edge for providing querying and transformation techniques. Embedded in the
Prolog environment, our rule–based system uses the field notation as its Doc-
ument Object Model, which results in the natural and powerful query language
FnQuery, and in a mechanism for the transformation of documents based on
substitutions.

This approach features complex reasoning and retrieving tasks which can be
implemented in short time in a very powerful language. The rule–based approach
allows for a rather generic implementation, which can deal with almost arbitrary
Xml–languages that might be used for representing mathematical knowledge.
The application of our expert system to the collection of ordinary differential
equations shows that this approach is feasible.

Other concepts for transforming and querying Xml–documents are the lan-
guages Xslt [16] and XQuery [17]. Both use the language XPath [15] for
addressing objects in an Xml–document. Even though they are very power-
ful languages, our Prolog–based approach has got some advantages, since the
embedding of FnQuery in Prolog yields the full access to the potentials of
using the Prolog–predicates or self–defined predicates based on the Prolog
programming language. Hence, very complex computations and transformations
are possible. A more detailed description of the power of FnQuery and a com-
parison to other query or transformation languages dealing with Xml will be the
topic of future research. Our goal is to develop an abstract query language built
on top of FnQuery and to implement a graphical, Web–based user interface.

According to Berners–Lee et al. (cf. [2]), the goal of the Semantic Web is
to add a logic component for reasoning about the Web. Therefore embedding
techniques for dealing with Xml in a logic programming language like Prolog
is a step in this direction.

144 B.D. Heumesser, D.A. Seipel, and U. Güntzer

References

1. A. Asperti, B. Wegner. Mowgli – A New Approach for the Content Description
in Digital Documents. Proc. of the 9th Intl. Conference on Electronic Resources
and the Social Role of Libraries in the Future, Section 4, Volume 1, 2002.

2. T. Berners–Lee, J. Hendler, O. Lassila. The Semantic Web. Scientific American,
May 2001.

3. D. Carlisle, J. Davenport, M. Dewar, N. Hur, W. Naylor. Conversion between
MathML and OpenMath. Bath/NAG, 2001.

4. O. Caprotti, D. P. Carlisle, A. M. Cohen. The OpenMath Standard. The Open-
Math Esprit Consortium, February 2000.

5. S. Dalmas, M. Gaëtano, C. Huchet. A Deductive Database for Mathematical For-
mulas In: J. Calmet, C. Limongelli (Eds.): Design and Implementation of Symbolic
Computation Systems, Springer LNCS, 1996.

6. B. Heumesser, D. Seipel, R. Schimkat, U. Güntzer. A Web-Information System for
Retrieving and Reasoning about Xml–Based Mathematical Knowledge EICM’2002,
http://www-db.informatik.uni-tuebingen.de/forschung/talk_eic.shtml.

7. E. Kamke. Differentialgleichungen – Lösungsmethoden und Lösungen. Akademis-
che Verlagsgesellschaft, 8th Edition, 1967.

8. M. Kohlhase, A. Franke. MBase: Representing Knowledge and Context for the
Integration of Mathematical Software Systems. Journal of Symbolic Computation,
Volume 32, Number 4, 2001.

9. M. Kohlhase. OMDoc: An Open Markup Format for Mathematical Documents.
Technical Report, Department of Computer Science, Carnegie Mellon University,
Pittsburgh, March 2002, http://www.cs.cmu.edu/˜kolhase.

10. D. Seipel. Processing Xml–Documents in Prolog. Workshop on Logic Program-
ming WLP’2002.

11. D. Suciu, S. Abiteboul, P. Bunemann. Data on the Web – From Relations to
Semi–Structured Data and Xml. Morgan Kaufmann, 2000.

12. Extensible Markup Language (Xml) 1.0, World Wide Web Consortium, October
2000. http://www.w3.org/TR/2000/REC-xml-20001006.

13. Xhtml 2.0, World Wide Web Consortium, August 2002,
http://www.w3.org/TR/2002/WD-xhtml2-20020805/.

14. Mathematical Markup Language (MathML) Version 2.0, World Wide Web Con-
sortium, February 2001, http://www.w3.org/TR/MathML2/.

15. Xml Path Language (XPath), World Wide Web Consortium, November 1999,
http://www.w3.org/TR/xpath.

16. XSL Tranformations (Xslt), World Wide Web Consortium, August 2002,
http://www.w3.org/TR/xslt20/.

17. XQuery 1.0: An Xml Query Language, World Wide Web Consortium, August
2002, http://www.w3.org/TR/xquery.

Appendix

We show an example of extracting information from an Html–document to show
the flexibility of the substitution mechanism. Processing Html–documents is a
more difficult task than processing Xml–documents. This example shows that
our system can even deal with Html.

An Expert System for the Flexible Processing 145

Knowledge Extraction from the MathML–Tutorial

The following example has been taken from the MathML–tutorial at

http://www.dessci.com/support/tutorials/mathml/default.stm

which can be reached from http://www.w3.org/Math/. The goal was to ex-
tract the examples from the section on Containers and Operators. The Html–
document contains sequences – describing examples – of the following form:

<p>
Expression:

<p>

<p>
Markup:
<pre>

<reln> <eq/>
<set>
<bvar>
<ci>x</ci>

</bvar>
<condition>
<reln> <leq/>

<cn>0</cn> <ci>x</ci>
</reln>

</condition>
</set>
<interval closure=’closed-open’>
<cn>0</cn> <ci>&infty;</ci>

</interval>
</reln>

</pre>

The Sgml–parser of SWI–Prolog parses the Html–document into a Prolog–
atom. When the parser reaches the end of the document, then it automatically
closes all open tags. This is important, since the Html–tags <p> and
typically are not closed. Thus, the SGML–parser creates Prolog–structures,
where, e.g., the pre–element is nested within the img–element.

The following Prolog–predicate extracts the image and the markup for all
examples. Firstly, it selects a p–element “X” at any depth, such that “X” contains
a b–element with the contents ’Expression:’. Secondly, the attribute list “Img” of
the image is selected. Thirdly, the markup “Markup” is selected as the sub–
element of “X” that is formatted by “pre”. Observe that this sub–element occurs
nested within the img–element, since this was not closed in Html. Since this
element was formatted by “pre”, it is parsed into a Prolog–atom “XML Atom”
by the SGML–parser of SWI–Prolog. This Prolog–atom can be parsed into
field notation using our predicate xml atom to fn term.

146 B.D. Heumesser, D.A. Seipel, and U. Güntzer

fn_term_to_mathml_examples(FN_Term,Examples) :-
findall(example:[expression:[img:Img:[]],markup:Markup],

(X := FN_Termˆ_ˆp,
[’Expression:’] := Xˆb,
Img := Xˆp@img,
[XML_Atom] := Xˆpˆimgˆpˆpre,
xml_atom_to_fn_term(XML_Atom,Markup)),

Examples).

The following Prolog–predicate transforms all elements with the tag “SRC” by
replacing the tag by “src”.

fn_mathml_transform_elements(FN_Term_1,FN_Term_2) :-
Substitutions_1 = [

(src:Source) - (’SRC’:Source)],
fn_transform_elements(Substitutions_1,

FN_Term_1, FN_Term_2).

Thus we obtain the following Xml–element, where the reln–element is the one
from the original Html–document.

<example>
<expression>

</expression>
<markup>

<reln> ... </reln>
</markup>

</example>

Obviously, the original Html–document could also be simplified by closing all
p– and all img–tags. But it turns out that the processing of the modified Html–
document would not be easier for our system.

Towards Collaborative Content Management
and Version Control for Structured

Mathematical Knowledge

Michael Kohlhase1 and Romeo Anghelache2

1 Computer Science, Carnegie Mellon University, kohlhase+@cs.cmu.edu
2 Albert Einstein Institute, Golm, Germany, romeo@psyx.org

Abstract. We propose an infrastructure for collaborative content man-
agement and version control for structured mathematical knowledge.
This will enable multiple users to work jointly on mathematical theo-
ries with minimal interference.
We describe the API and the functionality needed to realize a CVS-
like version control and distribution model. This architecture extends
the CVS architecture in two ways, motivated by the specific needs of
distributed management of structured mathematical knowledge on the
Internet. On the one hand the one-level client/server model of CVS is
generalized to a multi-level graph of client/server relations, and on the
other hand the underlying change-detection tools take the math-specific
structure of the data into account.

Versioning is a can of worms.
But what good is a can of worms if you never open it?
Norm Walsh on the www-tag mailing list, 11 Sep. 2002

1 Introduction

In the last years we have seen the birth of a new research area: “Mathemati-
cal Knowledge Management” (MKM), which is concerned with representation
formalisms for mathematical knowledge, such as MathML [CIMP01], Open-
Math [CC98] or OMDoc [Koh00], mathematical content management sys-
tems [FK00,ABC+02,APCS01], as well as publication and education systems for
mathematics. The perceived interest in the domain of general knowledge manage-
ment tools applied to mathematics is that mathematics is a very well-structured
and well-conceptualized subject. The main focus of the MKM techniques is to
recover the content/semantics of mathematical knowledge and exploit it for the
application of automated knowledge management techniques, with an emphasis
on web-based and distributed access to the knowledge.

In this paper, we extend the focus of MKM techniques from the distributed
access to mathematical knowledge to the creation process of mathematical
knowledge, which is — for the most part — a distributed and collaborative
process. After all, even if mathematicians often develop individual contributions

A. Asperti, B. Buchberger, J.H. Davenport (Eds.): MKM 2003, LNCS 2594, pp. 147–161, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile (Ø¯P)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

148 M. Kohlhase and R. Anghelache

alone (e.g. in single-authored papers), the progress of a mathematical theory or
sub-field involves a multitude of authors — communicating via meetings, mes-
sages and publications. Moreover, in contrast to the “knowledge access” scenario,
where the mathematics is relatively static, the “knowledge creation” scenario in-
volves managing the change of resources. We claim that MKM techniques have
the potential of supporting this scenario as well, and that the “knowledge cre-
ation” scenario is potentially even more important for applications, as knowledge
can only be accessed after it has been created. In fact, we expect the implemen-
tations of techniques like the ones presented in this paper, to play a similarly
facilitating role in the development of open repositories of formal mathematical
knowledge as the code management systems like the CVS system [CVS] have
had for the creation of the wealth of open-source software we know today.

Currently, MKM systems either support simple monotonic addition of math-
ematical content or are specialized to particular applications, e.g. the Maya
system [AHMS02] which is specialized to formal software engineering and
verification. The “development graph” model for a management of theory
change [Hut00] employed in this system uses a rich set of relations among theories
to trace logical dependencies among mathematical objects and propagate/limit
the effects of changes to the theories.

Our own MKM system MBase [FK00,KF01] is currently a member of the
first class, but it can communicate with the Maya system via the joint inter-
face language OMDoc [Koh00]. As an effect, MBase/Maya support theory
management on the fragment of OMDoc that corresponds to the Maya devel-
opment graph. In fact, in [KF01] we have proposed to distinguish two kinds of
MBases, different in their data changing policies.

– An archive MBase which is epitomized by the Journal MBase MJ in our
scenario below, it archives unchanging mathematical knowledge and is ref-
erenced by many other MBases.

– A scratch-pad MBase like the personal MBases MR and MR′, that do not
have any dependents and are primarily used for theory development.

To get a feeling of the requirements for the functionality addressed in this
paper, let us take a look at a likely research communication scenario: We will
first describe the communication pattern in a neutral way — say as it could have
happened in the era of mathematics done with pen and paper (around 2001),
and then model it using distributed MKM (about 2010).

J I

R

R′

submit F = E + P ′

accept F

circulate E = D + P

see E

circulate P ′

Fig. 1. Classical Research Cooperation

Towards Collaborative Content Management and Version Control 149

Classical, see Figure 1. Researcher R works on theory T together with his
colleague R′ at institute I. The theory T is a body of mathematics laid
down in an article A published in journal J . Now, R extends theory T by
a new definition D (say for a mathematical object O), proves a set P of
theorems about O, and calls the resulting extended theory E. After that, R
tells her colleague R′ at I about D and P (say by circulating a memo in I),
who gets interested and proves a set P ′ of useful properties of O. Together,
R and R′ put the theory E into final form F , and submit it to journal J .
This accepts F and publishes it.

With MKM, see Figure 2. In 2005, the publisher of journal J has estab-
lished an MBase server MJ for J which now contains theory T . Further-
more, the institute has its own departmental MBase MI and the researchers
R and R′ have the personal MBases MR and MR′. Now R develops the

J

MJ

I

MI

R

MR

R′

MR′

formalize D, prove P

see FE, prove FP ′

provide

request F

submit F = E + P ′

accept F

move FF

request FF move FE = FD + FP

import FE

move FP ′

Fig. 2. Research Cooperation with distributed MKM

formalization FD of O, stores it in MR and formalizes the set P of theo-
rems by formalizing them and formally proving them1 (yielding FP in MR).
Instead of sending around an internal note about D and P in I, R moves
their formalizations FD and FP into the institute MBase server MI, from
where R′ can import them into his personal MBase MR′2. On this basis
R′ formally proves FP ′, and adds it to theory FE, yielding FF the formal
version of theory F . Then R and R′ submit F to journal J , who evaluates it
(possibly via his own personal MBase) it and finally accepts F . To publish
F on MJ , it requests FF from MI, which moves it there.

1 To do so, R may need to revise the initial version of D several times in order to
be able to prove the desired theorems (reproving the already obtained results that
depended on a previous version of D every time). This process is supported by
MBase/Maya based on techniques presented in [AHMS02]

2 Alternatively, R could leave FD and FP in MR and tell R′ personally about them,
allowing him to import them from MR into MR′; but this is a matter of institute
policy, which we will not address here.

150 M. Kohlhase and R. Anghelache

1.1 Contribution of This Paper

As we have seen in the scenario above, a strict division into archive and scratch-
pad knowledge bases is unrealistic, since it does not reflect the current and an-
ticipated nature of scientific communication and publication: Collaboration and
theory change occurs at every level and should be supported by an infrastructure
for collaborative content management and version control which enables multiple
users to work jointly on mathematical theories with minimal interference.

We will develop a general architecture for a collaborative content manage-
ment extending the CVS architecture and specialize it for mathematical knowl-
edge by taking into account the structure of mathematical documents. For the
second task we will build on both the work on structural diff/patch/merge
utilities in XML, as well on the semantic management of change in the Maya
system [AHMS02].

Even though the work reported in this paper is motivated by the MBase sys-
tem, it is much more general, since it only depends on the communication format
used by the system. The methods are not even specific to the OMDoc format,
we will only assume that the knowledge base systems use a similar XML-based
format for communication and provide a way to re-create the original inter-
face documents. This would for instance cover the the HELM system [APCS01],
which employs a lightweight infrastructure based mainly on XML documents
and Xsl(t) stylesheets for MKM.

2 An Infrastructure for Managing Distributed
Mathematical Knowledge Cooperatively

The proposed infrastructure for collaborative theory management is largely
based on the CVS (Concurrent Versions System [CVS]) architecture. This
system is widely used to support collaborative software development, since it
combines software versioning with controlled concurrent access to the resources
under CVS control. We will briefly review the basic notions of CVS, and describe
our multi-level architecture with reference to it.

2.1 Cooperative Version Control in CVS

CVS is a server-based system for concurrent version control, used mainly for
software development. The CVS server provides a so-called CVS repository R,
which keeps a representation of all committed versions (called revisions) of the
software together with logging information.

A CVS client C can then check out a working copy of the software and work
on it. Let us for simplicity assume that C checks out the most recent revision
in the repository, the so-called head. After completing the development task, C
can commit the changes ∆ to the repository, creating a new (current) revision in
the repository. She will usually accompany the commit with a short description
of the changes; this is also logged in the repository, eventually adding up to a
changelog for the software development.

Towards Collaborative Content Management and Version Control 151

It is a distinguishing feature of CVS that the repository is not locked when
a working copy is checked out. So another client C ′ can also have active working
copies of the software and work on them. When C commits, the working copy of
C ′ which was based on the (old) head, is no longer up to date with the repository.
As a consequence, the changes C ′ has made to the software cannot be committed
to the repository. C ′ can not simply check out a new working copy from R, since
she would lose her work; therefore (upon C ′s request) CVS merges the changes
∆ into C ′s working copy to keep it up to date with respect to the head of
R. Now (after resolving any conflicts introduced by the merge) C ′ can commit
her changes to the repository. Even though conflicts can occur in the merging
operation, they are sufficiently infrequent in practice.

We have seen above that version control in CVS protocol is based on the
computation, communication and management of differences (changes) to files.
CVS uses the unix utilities

diff for determining the changes in a working copy to be committed to the
repository

patch for updating old revisions
merge for merging changes into a working copy to keep it up to date with the

repository.

To facilitate the functionality described above, the CVS server represents
committed non-head revisions of files internally as reverse diffs from the head
revision (which is stored explicitly). Thus the head revision can be served im-
mediately, whereas older revisions can be computed by applying the respective
reverse diffs. In this model, a version can be represented as a specific sequence
of transformations (edit scripts).

2.2 A Multi-level Client/Server Architecture

CVS has a one-level client-server architecture, i.e. all the CVS clients can only
communicate with a dedicated CVS server. In the distributed MKM settings
like in Figure 2, we have a knowledge base MI that acts both as a repository
for MR and MR′ and as a client for MJ .

We will say that a knowledge base A is downstream from an knowledge base
B, iff A is a CVS client of B or any knowledge base C that is downstream from
B. The relation of being upstream is the converse relation to downstream. In Fig-
ure 2, MR, MR′, and MI are downstream from MJ . Note that commit actions
push information upstream and update actions pull information downstream.

A multi-level client-server architecture has inherent advantages: it can, for
instance simulate CVS branching: In CVS a branch is used, if a set of clients
want to make changes to software that are either too disruptive or too extensive
for the usual update/commit cycle. In essence a branch acts as a virtual reposi-
tory for the development and allows controlling revisions without disturbing the
main development (the so-called trunk).

In our multi-level architecture, a branch in repository A for clients S1, . . . , Sn

can be simulated by creating a new knowledge base B downstream from A and
upstream from the Si. B is initialized by checking out a working copy from A,

152 M. Kohlhase and R. Anghelache

and the Si can track their revisions in B and eventually commit the result to B.
Closing the branch corresponds to deleting the knowledge base B and updating
the Si.

2.3 An Atomized Version Control Relation

The CVS protocol is based on the file system hierarchy for grouping and anchor-
ing user interaction. For instance, update and commit commands issued without
reference to a particular file will be applied to all registered files in the current
directory.

The file system hierarchy is replaced with a document-centered (given by
omgroup in the OMDoc representation) or semantic hierarchies (given by theo-
ries or development graphs). The notion of a file (or equivalently of an OMDoc
document) is only a secondary concept — if present at all — in the conceptual
hierarchy of mathematical knowledge management systems. In particular, the
level of a file is not the lowest level of an object under version control. This
role is taken up by the notion of a mathematical object represented by a top-
level OMDoc element. As a consequence, the client/server relation is atomized
to mathematical objects instead of files. We speak of the version control rela-
tion that relates working copies of mathematical objects with their repository
instances. Of course this relation must be acyclic.

Just as a file system can contain working copies from multiple repositories, a
knowledge base can contain objects that are working copies checked out different
repositories, though for each mathematical object, the version control relation
is a tree, i.e. every object has at most one server it can be committed to and
updated from. Intuitively, a math object is — for the parent element — as a file
for a directory; and files have attributes like creation time, modification time,
permissions; so should the math objects, which can be stored in the Dublin Core
metadata of OMDoc elements.

2.4 Interaction of Version Control with Distribution and Knowledge
Base Consistency

In [KF01] we have identified four tasks necessary for distributing mathematical
knowledge bases: caching, moving, changing, and deleting mathematical objects.
Before we give them interpretations in our architecture, let us re-examine the
assumptions we based the analysis on; they include (paraphrased):

A3 all mathematical elements have a unique “defining” realization in the net-
work of knowledge bases.

A4 mathematical objects are never changed.

Assumption A3 is directly related to distribution: every object has a unique
description: a pair consisting of the URL of the knowledge base and the unique
identifier of the object there. All other copies of the object are just cached copies
of it.

Assumption A4 was useful for distribution, since it makes caching and main-
tenance very simple. Relaxing A4 — which is the task at hand in this paper

Towards Collaborative Content Management and Version Control 153

— has two aspects: How do we ensure consistency in situations where e.g. a
definition or theorem that other mathematical objects depend on are changed in
mathematically significant ways3. We will not deal with this problem here, since
it is already studied in great detail in the development graph model [Hut00].

The question we will address in this paper is purely at a protocol level: it can
largely be framed in terms of the interaction between A3 and version control. We
will study this with respect to the three distribution tasks identified in [KF01].

Caching Mathematical Objects: We used assumption A4 to allow trivial caching.
In the new architecture, we identify the caching relation to be the version control
relation: to cache a copy of a mathematical object, it is simply checked out from
the repository as a working copy. Note that objects that are working copies
can never be defining instances of mathematical objects in our model. In the
new model cache-consistency is a well-understood problem, since an object can
always be updated from its repository. The ensuing conflicts can be resolved by
the standard three-way merge methods described e.g. in [Lin01].

Moving Mathematical Objects: One of the most basic procedures is that of mov-
ing objects between knowledge bases, e.g. of the theory FF from MI to MJ
after the submission described in our scenario. This action can be modeled by
adding FF as a defining instance to MJ , deleting FF in MI, and checking out
FF from MJ to MI, which acts as a CVS client for MJ for this object. Note
that with this construction, we can only move mathematical objects upstream,
which is the natural direction.

Deleting and Changing Mathematical Objects: Since we leave the question of
maintaining knowledge base consistency to the development graph techniques
which entail re-examining mathematical objects that depend on the changed
ones, augmenting the “pull” technology of our CVS-like architecture with a
“push” component seems advantageous. Note that mathematical objects are al-
ways upstream from ones that logically depend upon them. Therefore a knowl-
edge base M keeps a record of all the upstream knowledge bases, so that these
can be notified of any changes and trigger propagation of the change. Apart
from notification of dependents this information can be used for optimizations
like the following: Whenever M moves the defining instance of an object O to
some knowledge base M′′, then it can send the new location of O to all up-
stream knowledge bases, asking them to update their reference objects and thus
shielding itself from future requests to O.

3 Computing Differences and Managing Change

In this section we will describe the computational utilities underlying our col-
laboration architecture. CVS uses the line-based diff/patch/merge utilities to
compute differences between versions, update files, and merge differences into
3 Of course changes like correcting typos or changing explanatory text are unproblem-

atic from a consistency point of view.

154 M. Kohlhase and R. Anghelache

modified working copies. In applications like ours, where we know more about
the structure of the data, we can do better, and arrive at more compact, less in-
trusive edit scripts4. For instance, if we know that whitespace carries no meaning
in a document format, two documents are considered equal, even if they differ
(with respect to the distribution of whitespace characters) in every single line;
as a consequence, the computed difference would be empty.

We will look at different document models and their impact on computing
differences between documents in this section. Before we do this, let us briefly
clarify what we mean by a document model by comparison to mathematical
models. In mathematics, when we define a class of mathematical objects (e.g.
vector spaces), we have to say which objects belong to this class, and when they
are to be considered equal (e.g. vector spaces are equal, iff they are isomorphic).
For document models, we do the same, only that the objects are documents.
XML supports the first task by allowing us to specify a document type defini-
tion (DTD) or an XML Schema, which can be used for mechanical document
validation, but leaves the second to be clarified in the (informal) format specifi-
cations.

Listing 1. An OMDoc definition.
<definition id=”comm−def” for=”comm”>

<CMP xml:lang=”en”>An operation <OMOBJ id=”op”><OMV name=”op”/></OMOBJ>
is called commutative, iff

<OMOBJ id=”comm1”>
<OMA><OMS cd=”relation1” name=”eq”/>

<OMA><OMV name=”op”/><OMV name=”X”/><OMV name=”Y”/></OMA>
<OMA><OMV name=”op”/><OMV name=”Y”/><OMV name=”X”/></OMA>

</OMA>
</OMOBJ> for all <OMOBJ id=”x”><OMV name=”X”/></OMOBJ>
and <OMOBJ id=”y”><OMV name=”Y”/></OMOBJ>.

</CMP>
<CMP xml:lang=”de”>

Eine Operation <OMOBJ xref=”op”/> heißt kommutativ, falls
<OMOBJ xref=”comm1”/> für alle <OMOBJ xref=”x”/> und <OMOBJ xref=”y”>.

</CMP>
</definition>

Of course, the stronger the equality modulo which differences are computed, the
better the edit scripts become. The conceptual core of the MBase data model is
given by the OMDoc format [Koh00,OMD], which is also used as an interface
representation for communication between MBases and their clients. We will
base our discussion in this section concretely on the OMDoc document model,
building up to it by discussing the underlying XML document model. We will
discuss generalizations to other document formats for MKM in section 3.4.

Let us call two documents M-equal, iff they are equal with respect to the
document model M, analogously we will call an algorithm an M-diff algorithm,
iff it computes differences modulo M-equality. In the rest of this section, we will
use the OMDoc element in Listing 1 as a running example.

4 Compactness of edit scripts is important for storage and query efficiency in MKM
systems, while minimal intrusiveness (patching does not disrupt document structure)
is important for humans to track and understand changes.

Towards Collaborative Content Management and Version Control 155

3.1 Using the Tree Structure of XML Documents

As OMDoc is an XML application, we can make use of the generic tree structure
of XML documents. For instance, XML specifies that the order of attribute
declarations in XML elements is immaterial, double and signle quotes can be
used interchangeably for strings, XML comments (<!−−...−−>) are ignored, and
whitespace characters in the UniCode serialization is only meaningful in text
nodes. As a consequence, the serialization in Listing 2 is XML-equal to the one
in Listing 1, but not to the one in Listing 4.

Listing 2. An XML-equal serialization for Listing 1
<definition for=”comm” id=”comm−def” >

...
<CMP xml:lang=’de’> <!−− note the unabbreviated empty element −−>
Eine Operation <OMOBJ xref=”op”></OMOBJ> heißt kommutativ, falls
<OMOBJ xref=’comm1’/> für alle <OMOBJ xref=”x”/> und <OMOBJ xref=’y’>.

</CMP>
</definition>

There is a large body of work on using the XML tree structure to compute
differences of XML documents modulo XML-equality (see e.g. [WDC02]). The
algorithms (see [CRGMW96] for an introduction) compute partial tree match-
ings5 and express these as so-called “edit scripts” that add and delete XML
elements and attributes in the source tree to arrive at the target tree. The work
has been mainly concerned with finding algorithms for optimal (least-cost) edit
scripts and complexity issues. Formats like XUpdate [LM00] (see Listing 3 for an
example) use XPath [Cla99] expressions to identify the elements the instructions
act upon.

The central problem of finding corresponding nodes in trees critically depends
on the notion of tree-similarity employed. If the document is strongly keyed (e.g.
all elements have unique ID attributes, which cannot be changed by the user6
or the knowledge management system employs some node numbering system
like the one proposed in [CTZZ01]), then the key structure gives a very natural
notion of node correspondence, and differencing becomes relatively simple. For
the un-keyed case, only the notion of structural isomorphism and of ordered and
un-ordered trees has been considered e.g. in [CRGMW96].

Listing 3. An XUpdate edit script (partly) updating Listing 1 to Listing 4
<xu:modifications xmlns:xu=”http://www.xmldb.org/xupdate”>

<xu:variable name=”c” select=”definition/CMP[0]/OMOBJ[@id=’comm1’]”/>
<xu:remove select=”definition/CMP[0]/OMOBJ[@id=’comm1’]/@xref”/>
<xu:append select=”definition/CMP[0]/OMOBJ[@id=’comm1’]” child=”1”>

<xu:value−of select=”$c”/>
</xu:append>
<xu:remove select=”definition/CMP[0]/OMOBJ[@xref=’comm1’]/∗”/>
<xu:update select=”definition/CMP[0]/OMOBJ[@xref=’comm1’]/@xref”>
<xu:value−of select=”’comm1’”/>

</xu:update>
</xu:modifications>

5 Which nodes correspond to each other modulo a given notion of tree similarity?
6 The action of changing keys in the data, can lead to un-intuitive and computationally

sub-optimal edit scripts, but does not compromise the method per se.

156 M. Kohlhase and R. Anghelache

3.2 The OMDoc Document Model

Let us now take a look at how the OMDoc document model can be used for
more semantic differencing (OMDoc-diff7).

Listing 4. An OMDoc-equal representation for Listings 1 and 2
<definition id=”comm−def” for=”comm”>

<CMP xml:lang=”de”>Eine Operation <OMOBJ xref=”op”/> heißt kommutativ, falls
<OMOBJ id=”comm1”>

<OMA><OMS cd=”relation1” name=”eq”/>
<OMA><OMV name=”op”/><OMV name=”X”/><OMV name=”Y”/></OMA>
<OMA><OMV name=”op”/><OMV name=”Y”/><OMV name=”X”/></OMA>

</OMA>
</OMOBJ> für alle <OMOBJ xref=”x”/> und <OMOBJ xref=”y”>.

</CMP>
<CMP xml:lang=”en”>An operation <OMOBJ id=”op”><OMV name=”op”/></OMOBJ>

is called commutative, iff <OMOBJ xref=”comm1”/> for all
<OMOBJ id=”x”><OMV name=”X”/></OMOBJ> and
<OMOBJ id=”y”><OMV name=”Y”/></OMOBJ>.

</CMP>
</definition>

The OMDoc document model extends the XML document model in var-
ious ways. For instance8, the order of CMP children of an omtext element does
not matter, and the distribution of whitespace is irrelevant even in text nodes.
More generally, as OMDoc documents have both formal and informal aspects,
they can contain data-set-based as well as document-structured information. At
one extreme an OMDoc document contains a formalization of a mathematical
theory, as a reference for automated theorem proving systems. There, logical
dependencies play a much greater role than the order of serialization in math-
ematical objects. We call such documents data set based and specify the value
DataSet in the Type element of the OMDoc metadata for such documents. On
the other extreme we have human-oriented presentations of mathematical knowl-
edge, e.g. for educational purposes, where didactic considerations determine the
order of presentation. We call such documents document-structured and specify
this by the value Text. Note that since OMDoc allows to specify Dublin Core
metadata [WKLW99] at many levels, document-structured and data set based
parts can interleave in the same document, allowing OMDoc-diff algorithms
to take this into account.

Moreover OMDoc uses a variant of OpenMath objects [CC98] that can
be represented as directed acyclic graphs (DAGs; using ID/IDREF links) rather
than regular trees: an empty element with an xref attribute is OMDoc-equal to
the element that carries the corresponding id attribute. As a consequence, the
representations in Listings 1 and 2 are OMDoc-equal to the one in Listing 4,
and an OMDoc-diff algorithm must generate the empty edit script between
7 Note that we are not proposing to use mathematical equality here, which would make

the formula X +Y = Y +X (the OMOBJ with id=”comm1” in Listing 4 instantiated
with addition for op) mathematicallly equal to the trivial condition X +Y = X +Y ,
obtained by exchaning the right hand side Y + X of the equality by X + Y , which
is mathematically equal (but not OMDoc-equal).

8 As an introduction to the OMDoc format is beyond the scope of this paper, we will
assume a basic knowledge of [Koh00] and the material at [OMD].

Towards Collaborative Content Management and Version Control 157

all three, while an XML-diff algorithm should generate an extension of the
XUpdate script in Listing 3.

In particular, the process of exploding the DAG to a tree representation or
sharing a tree to a DAG should not result in a difference computation. The
same applies to the OMDoc representation of proofs, where an additional level
of structure sharing is possible. A case where the underlying structure of the
data is not tree-like, that is, not based on structure-sharing, is the development
graph itself, which can even be cyclic. Here, first steps for defining a correspon-
dence relation and for determining changes have been taken in [AHMS00] and
implemented in the Maya system.

3.3 Challenges for OMDoc-diff Algorithms

As we have shown, taking advantage of OMDoc-equality in computing differ-
ences leads to more concise edit-scripts, which is essential in an environment
where document processing applications manipulate mathematical content by
acting on internal data structures and generate target documents from these. In
such situations, it is impossible to predict which of the possibly many OMDoc-
equal representations will be generated. Since in a CVS-like collaborative pro-
tocol any diff can lead to a conflict that will require human intervention for
resolution, the availability of such algorithms will be crucial for adoption.

Of course extending XML-equality to OMDoc-equality in computing dif-
ferences breaks the underlying assumptions of the algorithms described in sec-
tion 3.1. For instance, the DAG-nature of OMDoc documents requires the differ-
encing algorithms to (virtually) expand the objects to tree form while processing
them9.

It seems that techniques from [BKTT02] can be used to get around the
obvious computational difficulties involved in differencing modulo equality.
[BKTT02] trivialize the tree matching problem by assuming that all tree rep-
resentations are “strongly keyed”, employing a generalized notion of data base
keys to determine element correspondence in XML documents. They claim that
sensible data formats are almost always strongly keyed up to data in XML
text nodes. We have not verified this for OMDoc yet, but for instance even
though CMP nodes do not have ID attributes, they are keyed, since they have
xml:lang attributes, which must be unique among their siblings. However, CMP
content however is not keyed, since it is generic text data (which is trivially un-
keyed) mixed with representations of mathematical object represented as content
MathML or OpenMath objects (this also caused some addressing problems
in the XUpdate script in Listing 3). Note that in OMDoc documents managed
by MKM systems (as opposed to directly written by hand), the OMDoc mid
attributes can be used for keying, alleviating the higher computational costs of
the un-ordered algorithms somewhat.

Obviously, we need a combination of the XML tree-based un-keyed algo-
rithms with key-sensitive techniques for our application; such algorithms have
been requested, but to the author’s knowledge not been reported on so far.
9 In the file system metaphor, this would correspond to following symbolic links

158 M. Kohlhase and R. Anghelache

3.4 Modular M-diff Algorithms

Given that most of the OMDoc document model is rather standard (DAGs
vs. trees, sets vs. lists of children, etc.), it is appealing to develop general M-
diff algorithms, where the notion of M-equality is specified externally, e.g. by
extending the document schema to a full document model.

Note that XML Schema so far only specifies full document models (i.e. in-
cluding equality) for so-called data types (e.g. ”100” and ”1.0E2” are equal as
members of the data type float). Thus we could define the notion of XML-
Schema-diff, which would take these into account, but this is only marginally
relevant for our problem here, since it only concerns the leaves of the trees we
are dealing with.

Listing 5. Specifying Order in XML Schema using xs:appinfo

<xs:complexType name=”omtextType”>
...
<xs:sequence>

<xs:annotation><xs:appinfo><mdiff:unordered/></xs:appinfo></xs:annotation>
<xs:element name=”CMP” type=”inCMPtype” maxOccurs=”unbounded”/>
<xs:element name=”FMP” type=”FMP” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>
...

</xs:complexType>

A more promising avenue seems to be to make use of the xs:appinfo10

element to specify document models for complex types in XML Schemata — as
opposed to just content models for validation. Based on the examination of the
OMDoc document model in section 3.2, it seems plausible to assume that we
could go a long way by specifying

Document order e.g. by an element mdiff:unordered in Listing 5, and
Link semantics e.g. as in Listing 6 where we specify that the xref attribute

of an OpenMath object means that it represents a copy of the object that
carries the corresponding id attribute.

Listing 6. Specifying DAG attributes in XML Schema using xs:appinfo

<xs:attributeGroup name=”DAG.attrib”>
<xs:attribute name=”xref” type=”xs:anyURI” use=”optional”>

<xs:annotation><xs:appinfo><mdiff:dag−source/></xs:appinfo></xs:annotation>
<xs:attribute>
<xs:attribute name=”xref” type=”xs:ID” use=”optional”>

<xs:annotation><xs:appinfo><mdiff:dag−target/></xs:appinfo></xs:annotation>
<xs:attribute>

</xs:attributeGroup>

So, if an XML document (fragment) is an instance of a schema that containts
document model specifications like the ones in Listings 5 and 6, then a modular
diff algorithm can read the schema and customize — multiple times during the
parsing process if necessary — the comparison criteria used by the algorithm.

10 The xs:appinfo is introduced in XML Schema expressly for such purposes.

Towards Collaborative Content Management and Version Control 159

4 Conclusion

We have laid down first ideas for a collaborative version control model for MKM
systems, based on the OMDoc format. We have sketched the overall archi-
tecture, and determined some of the requirements for OMDoc-diff algorithms
that come from the respective structural invariants of the data in MKM systems.

We have seen that the architecture can be kept quite close to that of the
well-known CVS system11, and interacts well with the requirements for distri-
bution identified in [KF01], which is encouraging from an implementation point
of view. In particular, we are currently experimenting with the idea to annotate
all information necessary for a CVS-like file-based formalism in the metadata
elements of mathematical objects. We could for instance use the existing Dublin
Core Date and Identifier element for timestamping, and keeping version in-
formation. Further information, such as pointers to the repository in working
copy objects can be kept in the metadata/extradata element provided by OM-
Doc expressly for this purpose. We will experiment with a HELM [APCS01]-like
setup based on OMDoc files on web-servers and implement merging by server-
side Xsl(t) processing.

The main item for further research is an OMDoc-diff algorithm as de-
scribed in section 3.2. In the literature on version management in XML, we
often hear the argument that difference-computation is not needed in practice,
since documents are generated by XML structure editors, but this only moves
the burden from an independent postprocess (implement once) to a module in
every editor. Moreover, this would penalize authors for using general XML edi-
tors, since they could only incorporate XML-diff algorithms. Finally, the actual
editing process employed by the user may not correspond to the optimal edit
script.

Given a good difference computation algorithm, merging can be obtained by
relatively simple extensions, especially since our CVS-like architecture allows
the usage of the so-called three-way merge (see [Lin01]), where two revisions are
compared with respect to a known base revision, from which they have been cre-
ated. Here, edit scripts for the changes from the base can be computed for both
revisions. These can be analyzed and combined to a joint edit script which up-
dates the base revision to the merged revision. [Man01,Lin01] present algorithms
for three-way merge of XML documents and there are even commercial imple-
mentations (e.g. the one described in [LF02]). Since the merge operation only
depends on the edit scripts which act on the generic XML structure, and not
on the particular structure of the OMDoc format, we can use these algorithms
and implementations off the shelf.

Acknowledgements. The first author was supported by a Heisenberg stipend
of the German Research Agency (DFG). The authors would like to thank Serge
Autexier, Andreas Franke, Dieter Hutter, and Bernd Krieg-Brückner for stimu-
lating discussions in the early stages of this work.
11 Actually, [BKTT02] propose a repository organization that is not diff-based, which

would be interesting to experiment with, but integrating it into a collaborative version
control environment is not trivial

160 M. Kohlhase and R. Anghelache

References

[ABC+02] Stuart Allen, Mark Bickford, Robert Constable, Richard Eaton,
Christoph Kreitz, and Lori Lorigo. FDL: A prototype formal dig-
ital library – description and draft reference manual. Technical re-
port, Computer Science, Cornell, 2002. http://www.cs.cornell.edu/
Info/Projects/NuPrl/html/FDLProject/02cucs-fd\%l.pdf.

[AHMS00] Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer. To-
wards an evolutionary formal software-development using CASL. In
C. Choppy and D. Bert, editors, Proceedings Workshop on Algebraic
Development Techniques, WADT-99. Springer, LNCS 1827, 2000.

[AHMS02] Serge Autexier, Dieter Hutter, Till Mossakowski, and Axel Schairer.
The development graph manager MAYA (system description). In
Hélene Kirchner, editor, Proceedings of 9th International Conference
on Algebraic Methodology And Software Technology (AMAST’02).
Springer Verlag, 2002.

[APCS01] Andrea Asperti, Luca Padovani, Claudio Sacerdoti Coen, and Irene
Schena. HELM and the semantic math-web. In Paul B. Jackson
Richard. J. Boulton, editor, Theorem Proving in Higher Order Logics:
TPHOLs’01, volume 2152 of LNCS, pages 59–74. Springer, 2001.

[BKTT02] Peter Buneman, Sanjeev Khanna, Keishi Tajima, and Wang Chiew Tan.
Archiving scientific data. In ACM SIGMOD International Conference
on Management of Data (SIGMOD), 2002.

[CC98] Olga Caprotti and Arjeh M. Cohen. Draft of the Open Math standard.
The Open Math Society, http://www.openmath.org, 1998.

[CIMP01] David Carlisle, Patrick Ion, Robert Miner, and Nico Poppelier. Mathe-
matical Markup Language (MathML) version 2.0. W3C recommenda-
tion, World Wide Web Consortium, 2001. Available at
http://www.w3.org/TR/MathML2.

[Cla99] XML path language (XPath) Version 1.0. W3C recommendation, The
World Wide Web Consortium, 1999. available at
http://www.w3.org/TR/xpath.

[CRGMW96] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and
Jennifer Widom. Change detection in hierarchically structured infor-
mation. In ACM SIGMOD International Conference on Management
of Data (SIGMOD), pages 493–504, 1996.

[CTZZ01] Shu-Yao Chien, Vassilis J. Tsotras, Carlo Zaniolo, and Donghui Zhang.
Storing and querying multiversion XML documents using durable node
numbers. In Proc. of The 2nd International Conference on Web Infor-
mation Systems Engineering (WISE), 2001.

[CVS] Concurrent versions system: The open standard for version control.
Web site at http://www.cvshome.org.

[FK00] Andreas Franke and Michael Kohlhase. System description: MBase,
an open mathematical knowledge base. In David McAllester, editor,
Automated Deduction – CADE-17, number 1831 in LNAI, pages 455–
459. Springer Verlag, 2000.

[Hut00] Dieter Hutter. Management of change in structured verification. In
Proceedings Automated Software Engineering (ASE-2000). IEEE Press,
2000.

http://www.cs.cornell.edu/
Info/Projects/NuPrl/html/FDLProject/02cucs-fd% l.pdf
http://www.openmath.org
http://www.w3.org/TR/xpath
http://www.cvshome.org

Towards Collaborative Content Management and Version Control 161

[KF01] Michael Kohlhase and Andreas Franke. MBase: Representing knowl-
edge and context for the integration of mathematical software systems.
Journal of Symbolic Computation; Special Issue on the Integration of
Computer algebra and Deduction Systems, 32(4):365–402, 2001.

[Koh00] Michael Kohlhase. OMDoc: An open markup format for mathematical
documents. Seki Report SR-00-02, Fachbereich Informatik, Universität
des Saarlandes, 2000. http://www.mathweb.org/omdoc.

[LF02] Robin La Fontaine. Merging XML files: A new approach providing
intelligent merge of xml data sets. In XML Europe 2002 - Conference
Proceedings, 2002.

[Lin01] Tancred Lindholm. A 3-way merging algorithm for synchronizing or-
dered trees – the 3DM merging and differencing tool for XML. Master’s
thesis, Helsinki University of Technology, 2001.
http://www.cs.hut.fi/˜ctl/3dm/.

[LM00] Andreas Laux and Lars Martin. XUpdate - XML update language.
Working Draft of the XML:DB Initiative, 2000.
http://www.xmldb.org/xupdate/xupdate-wd.html.

[Man01] Gerald W. Manger. A generic algorithm for merging SGML/XML-
instances. In XML Europe 2001 - Conference Proceedings, 2001.

[OMD] The OMDoc repository. web page at http://www.mathweb.org/omdoc.
[WDC02] Yuan Wang, David J. DeWitt, and Jin-Yi Cai. X-Diff: An effective

change detection algorithm for XML documents, 2002. Submitted,
http://www.cs.wisc.edu/˜yuanwang/xdiff.html.

[WKLW99] S. Weibel, J. Kunze, C. Lagoze, and M. Wolf. Dublin Core Metadata
Element Set, Version 1.1: Reference Description. DCMI Recommenda-
tion, 1999. http://dublincore.org/documents/1999/07/02/dces/.

http://www.mathweb.org/omdoc
http://www.cs.hut.fi/~ctl/3dm/
http://www.xmldb.org/xupdate/xupdate-wd.html
http://www.mathweb.org/omdoc
http://www.cs.wisc.edu/~yuanwang/xdiff.html
http://dublincore.org/documents/1999/07/02/dces/

On the Integrity of a Repository of Formalized
Mathematics

Piotr Rudnicki1� and Andrzej Trybulec2��

1 Dept. of Computing Science, University of Alberta, Edmonton, Canada
piotr@cs.ualberta.ca

2 Institute of Informatics, University in Bia�lystok, Bia�lystok, Poland
trybulec@math.uwb.edu.pl

Abstract. Mizar, a proof-checking system, is used to build the Mizar
Mathematical Library (MML). This is a long term project aiming at
building a comprehensive library of mathematical knowledge. The lan-
guage and the checking software evolve, and the evolution is driven by
the growing library. We discuss the issues of maintaining integrity of
an electronic repository of formal mathematics, based on our experience
with MML.

1 Introduction

The Mizar language is a language used for the practical formalization of math-
ematics. The main goal for the design of Mizar was to create a formal system
close to the mathematical vernacular used in publications with the requirement
that the language be simple enough to enable computerized processing, in partic-
ular mechanical verification of correctness. The continual development of Mizar
has resulted in a language, software for checking the correctness of texts written
in it, numerous utility programs, a centrally maintained library of mathematics,
and an electronic hyper-linked journal, all of which are available on the Inter-
net1. The logic of Mizar is classical and the proofs are written in a natural
deduction style. Definitions allow for the introduction of constructors for types,
terms, adjectives, and atomic formulae. Introductory information on Mizar can
be found in [15,20,21,22,27]. For the rest of this paper, we assume that the reader
is at least superficially familiar with these basic texts.

Around 1988, a decision was made within the Mizar project to focus on
developing the mathematical library—Mizar Mathematical Library (MML1)—
based on the Tarski-Grothendieck set theory. We would like to stress the distinc-
tion between Mizar as a formal system of general applicability (which as such
has little in common with any set theory) and the specific application of Mizar
in developing MML which is based entirely on a set theory (see [24, TARSKI]).
In building MML, the Mizar language, the assumed logic, and the chosen set
� Partially supported by NSERC grant OGP9207.

�� Partially supported by FP5 grant HPRN-CT-2000-00102.
1 http://mizar.org

A. Asperti, B. Buchberger, J.H. Davenport (Eds.): MKM 2003, LNCS 2594, pp. 162–174, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile (Ø¯P)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

On the Integrity of a Repository of Formalized Mathematics 163

theory provide an environment in which all further mathematics is developed.
This development is definitional : new mathematical objects can be defined only
after supplying a model for them in the already available theories.

MML is a collection of Mizar articles. It would be difficult to define what
makes a Mizar article worthwhile for inclusion in MML; the final, typically
quite liberal, decision is with the Library Committee. An article is stored as a
text-file and contains theorems and definitions, at this moment—August 2002,
there are 725 articles in MML, occupying 55096 kB, containing 31942 theorems
and 6110 definitions. Theorems and definitions in MML are technical terms and
correspond to mathematical facts, no matter how simple or how deep.

Building and maintaining such a body of formalized mathematics as MML
forces a number of decisions and poses a number of challenges: choosing founda-
tions, soundness, organization of the repository, searching facilities, presentation
and browsing, maintenance, not to mention the problem of finding authors to
contribute to the library or who will pay for all this.

In this note we are concerned with the complex problem of maintenance of
a repository like MML over time. Such data bases are too complex to even hope
that they are designed only once, are built and then grown and are used forever.
They evolve and in the case of MML we have

– MML is based on the Mizar language which albeit slowly but continually
evolves. A substantial change to the language may prompt a comprehensive
part of MML to be rewritten in order to employ the new language features.

– The Mizar verifier is continually improved and in order to take advantage
of its new possibilities the stored articles have to be updated.

– The organization of the material stored in MML is not fixed. MML can be seen
as a collection of intertwined Mizar articles where authors include whatever
is to their liking. Such articles correspond to primary scientific information
that over time gives rise to the secondary information, i.e., overviews, mono-
graphs, textbooks. Recently, the Mizar team has begun building an Ency-
clopedia of Mathematics in Mizar, EMM, whose articles have monographical
character and are extracted from the “raw” material of the contributed ar-
ticles in a semi-automatic way. This process is assisted by retrieval tools of
Grzegorz Bancerek.

At any point, even when we neglect the evolving nature of MML, we may inves-
tigate the quality of its contents from the viewpoint of: repetitions of theorems,
overlap of defined notions, proper exploration of introduced notions, full usage
of the available features of the language, etc. The collection of such qualities we
call integrity2 of the stored material. While we would have a hard time giving
a succinct definition of the term in this context, we can offer an abundance of
excerpts from MML which illustrate violations of integrity and ways to reinstate
it.
2 From OED: integrity 1. The condition of having no part or element taken away or

wanting; undivided or unbroken state; material wholeness, completeness, entirety. 2.
The condition of not being marred or violated; unimpaired or uncorrupted condition;
original perfect state; soundness. ...

164 P. Rudnicki and A. Trybulec

Integrity of MML is not an absolute notion as it is always relative to the
Mizar language and the Mizar verifier. Whenever they change, we face the
problem of reinstating the integrity and thus we speak of the evolutionary in-
tegrity. Maintenance of the evolutionary integrity manifests itself in frequent
revisions of MML, however, many revisions are caused by other factors as in-
tegrity is not the only measure of the quality of MML.

The most interesting are the integrity issues at the semantic level and we
will spend most of our time on them; however, we face similar problems at the
syntactical and even lexical levels.

2 Lexical Integrity

The set of Mizar keywords can only be changed when the language changes but
otherwise the Mizar lexicon is not fixed as authors can add new symbols for
operators and these symbols are essential for parsing. The symbols are defined
in vocabularies and articles import needed vocabularies. One would think that
in order to maintain the integrity of symbols it would be enough to check for
their repetitions, and this is indeed done. However, there is a bit more to it and
when introducing symbols one should foresee possible troubles. Here are two
examples.

The frequently used predicate symbol c= from vocabulary HIDDEN for the sub-
set relationship, traps some people. While it is a symbol, it is properly recognized
only when the initial c cannot be tokenized as a part of an identifier. So, in ac=a
we do not state the case of reflexivity of subset, a c= a, we state the equality
of two sets, ac = a. In this case though, the advantages of the succinct notation
outweigh potential problems.

Vocabulary CAT 4 introduces a symbol [x] later used in the notation for a
functor constructing objects in product categories. Please note that x in this
symbol stands for itself and not for any argument. When defining schemes we
can use second order predicate variables. To say that a second order predicate
variable named P is true for some x we write P[x] (tokenized P [x]). And
anyone using this syntax after inserting the CAT 4 into the vocabulary directive
gets a bunch of errors as now [x] is tokenized as one symbol. The problem is
avoided by using some other identifier than x or using spacing like P[x], or
P[x], or P[x]. This is an example where the integrity of the lexicon is violated;
introducing symbols like [x] is just a mistake.

3 Syntactic Integrity

When we speak of Mizar syntax we also consider resolution of symbols and iden-
tifiers and not just the context-free part. Notations in Mizar can be overloaded
and this overloading can be easily, albeit involuntarily, abused.

Mizar offers a number of definitional facilities. In most cases, a definition
defines a new constructor of a notion and gives its syntax and meaning. And
so, predicates are constructors of atomic formulae, functors are term construc-
tors, modes are type constructors, etc. The syntactic format of a constructor

On the Integrity of a Repository of Formalized Mathematics 165

specifies the symbol of the constructor and the place and number of arguments.
The symbol can be placed in prefix, infix, or postfix position and can take nu-
merous arguments. The format of a constructor together with the information
about the types of arguments is called a pattern of the constructor. Format is
used for context free parsing and pattern for identifying constructors. A pattern
together with the identified constructor is called notation. A constructor may be
represented by different patterns as synonyms and antonyms are allowed. The
same pattern can be used for different constructors and this, if abused, renders
syntactic analysis almost impossible.

One approach to solve the problem is to require that every pattern denotes
a unique constructor or that constructors have unique names. While the former
seems overly rigorous, the latter would require a modification of the Mizar
language. The problem can be sometimes resolved using a feature of the Mizar
language. As an example consider the following two definitions

let f be Function;
func "f -> Function means :: FUNCT_3:def 2
dom it = bool rng f & for Y st Y in bool rng f holds it.Y = f"Y;

let X, Y be set, f be Function of X, Y;
func "f -> Function of bool Y, bool X means :: PSCOMP_1:def 2
for y being Subset of Y holds it.y = f"y;

Each of these definitions defines a constructor. The constructors are different
and also have different patterns. Note that these definitions coincide for func-
tions which are onto. Consider further a g of type Function of X, Y in an
environment where both of the above constructors and notations are available.
Because the type of g widens to Function we are in trouble with "g as it
is not clear which of the constructors should be identified. The problem can be
resolved by writing "(g qua Function) which excludes the second constructor
and only the first can be identified. However, which constructor will be identified
for "g depends on the order of imports of notations for the above constructors
as this order affects the identification process. In this case, if the order of imports
is FUNCT 3 and then PSCOMP 1 then "g will be always identified with the second
constructor.

4 Integrity of Notions

We present a number of cases where the integrity of MML notions is unsatisfac-
tory and some suggestions of possible techniques to improve the situation.

4.1 Typing Hierarchy

The mode for a function from a set into a set is defined in [8, FUNCT 2]

let X, Y be set;
mode Function of X,Y is quasi_total Function-like Relation of X,Y;

where

166 P. Rudnicki and A. Trybulec

let X, Y be set;
mode Relation of X,Y means :: RELSET_1:def 1
it c= [:X,Y:];

let X, Y be set; let R be Relation of X,Y;
attr R is quasi_total means :: FUNCT_2:def 1
X = dom R if Y = {} implies X = {}

otherwise R = {};

Two other notions are closely related to this notion: a function from a set and a
function into a set. Their Mizar counterparts are

let I be set;
mode ManySortedSet of I -> Function means :: PBOOLE:def 3
dom it = I;

let X be set;
mode ParametrizedSubset of X -> Relation means :: TREES_2:def 9
rng it c= X;

If f is Function of X, Y for non empty X and Y, then we can demonstrate

rng f c= Y; then f is ParametrizedSubset of Y by TREES_2:def 9;
dom f = X by FUNCT_2:def 1; then f is ManySortedSet of X by PBOOLE:def 3;

However, while in the current Mizar these claims have to be proven, they should
be available through automatic processing of types. There is no easy remedy and
to achieve the desired integrity one would have to change the Mizar language.

4.2 Different Incarnations of the Same Notion

Ordered pairs. It seems that in a well organized data base there should be one,
widely used definition of any commonly needed notion, e.g., a pair of things. At
the moment there are three notions of an ordered pair in MML:

1. [x,y] defined as equal { {x, y}, {x} }, that is the Kuratowski pair;
2. <*x, y*> defined as a FinSequence (that is a finite sequence) of length 2 ([6,

FINSEQ 1]) extensionally equal to { [1, x], [2, y] };
3. <%x, y%> defined as a finite T-Sequence ([26, AFINSQ 1], see also p. 167)

extensionally equal to { [0, x], [1, y] }.

The prevailing opinion is that only one of them should be widely used: preferably
the second or the third, while the first should be avoided. The second and third
approaches offer natural extensions toward general n-tuples but they differ in
finite sequences being numbered from 1 or from 0 (see p. 167). Note that at the
moment the first definition is used when defining relation, which is used to define
function, which is needed to define finite sequence. Therefore the first definition
cannot be eliminated so easily.

If we were a bit more ambitious and aimed at an abstract notion of a pair
then we would have to define a structure like

On the Integrity of a Repository of Formalized Mathematics 167

let S be set;
struct (1-sorted) PairStr over S (# carrier -> set,

Pair -> Function of [: S, S :], the carrier,
Left, Right -> Function of the carrier, S #)

and then for a pair we would use Element of P where P is a PairStr over some
set. Note however, that such a definition uses the notions of a Cartesian product
and a function, but in order to define them we need some notion of pairing.

So maybe we are doomed to use more than one notion of pairing after all.

Products. When dealing with products of families of sets we face a similar
situation. In MML we have

– The binary Cartesian product is defined in [7, ZFMISC 1] as a set of pairs.

let X1,X2;
func [: X1,X2 :] means :: ZFMISC_1:def 2
z in it iff ex x,y st x in X1 & y in X2 & z = [x,y];

– The product of an arbitrary family of sets is defined in [2, CARD 3].

let f be Function;
func product f -> set means :: CARD_3:def 5
x in it iff ex g being Function st x = g & dom g = dom f &

for x st x in dom f holds g.x in f.x;

If we want a Cartesian square, we can use the above as [:X, X:] or product
<*X, X*>; the latter has a semantically equal counterpart available through a
different notation: 2-tuples_on X (see [9, FINSEQ 2]).

It is a bit surprising that despite some efforts at unifying the two notations
(see [3, FUNCT 6]), they have not been unified completely. It turns out that try-
ing to work with product <*X, Y*>, that is a product of a sequence of sets with
length 2, needs quite an investment for developing additional constructors corre-
sponding to the ones already existing for [: X, Y :]. Nonetheless, the prevailing
opinion is that it is the former that should be widely used.

Similarly to the product of two sets we also have the product of two relational
structures, RelStrs [13, YELLOW 3] or lattices with topology when we have to deal
with several different products at the same time [5, WAYBEL26], and history repeats
itself as we have a binary product and a general product. Using both of them
causes repetition of essentially equivalent material. This situation indicates the
kind of housekeeping work needed for maintaining the integrity of a knowledge
base for formal mathematics.

Finite sequences. The type FinSequence for finite sequence was introduced
into MML in 1989 in [6, FINSEQ 1] as a function whose domain is defined
with the help of Seg n, the initial segment of natural numbers equal to
{ k : 1 <= k & k <= n }, [6, FINSEQ 1:def 1] and thus we have finite sequences
that are indexed from 1. This was criticized many a time and finally in 2001,
finite sequences indexed from 0 were added in [26, AFINSQ 1] as a shorthand for
finite T-Sequence, where T-Sequence [1, ORDINAL1] is a mode of functions having
an ordinal as their domain.

168 P. Rudnicki and A. Trybulec

Now, a decision needs to be made as to which of the two versions should be
kept, as maintaining both seems like a waste of effort. The latter version seems
more satisfying while much more machinery has been developed for the former.

4.3 Putting Two Notions Together

The structures used to define metric spaces and topological spaces are introduced
in [12, METRIC 1] and [19, PRE TOPC], respectively

struct(1-sorted) MetrStruct (#
carrier -> set,
distance -> Function of [:the carrier,the carrier:],REAL #);

struct(1-sorted) TopStruct (#
carrier -> set,
topology -> Subset-Family of the carrier #);

We get a metric space by imposing the usual conditions on the distance. The n
dimensional Euclidean space is defined in [11, EUCLID]

func Euclid n -> strict MetrSpace equals :: EUCLID:def 7
MetrStruct (# REAL n, Pitag_dist n #);

with n-tuples_on REAL as the carrier and the Pythagorean distance given by [11,
EUCLID:def 5] (see p. 169) as the metric. Now we would like to have a topological
space created out of a metric space. This is achieved with the functor

let PM be MetrStruct;
func TopSpaceMetr PM -> TopStruct equals :: PCOMPS_1:def 6
TopStruct (# the carrier of PM, Family_open_set(PM) #);

where open sets are defined in terms of Ball. The topological, n dimensional real
space is then defined

func TOP-REAL n -> strict TopSpace equals :: EUCLID:def 8
TopSpaceMetr (Euclid n);

but in doing so we have sort of lost the fact that TOP-REAL n is a Euclidean space.
That is, we have not lost it entirely as it can be recovered from the definitions
with some workarounds. However, the point is that frequently we want to discuss
TOP-REAL n as a topological space and at the same time treat it as Euclid n. It
seems that the appropriate solution is to introduce a new structure by multiple
derivation from both MetrStruct and TopStruct.

4.4 Repetitions

Repetition of theorems, even with minor variations, while undesirable seems rela-
tively harmless. Repetition of notions causes substantial chunks of the repository
to be repeated while elaborating essentially the same material. Repetitions of
notions should probably be classified as an error rather than as lack of integrity.

Gluing catenation. For a finite sequence p and two natural numbers m and n,
(m, n)-cut p results in a finite sequence being a subsequence of p from index m to
n. The so called gluing catenation for finite sequences is defined in [17, GRAPH 2]

On the Integrity of a Repository of Formalized Mathematics 169

let p, q be FinSequence;
func p ˆ’ q -> FinSequence equals :: GRAPH_2:def 2
pˆ(2, len q)-cut q;

The gluing catenation ˆ’ catenates two finite sequences removing the first ele-
ment from the second argument, if possible. Half a year after the above appeared
in MML, the following definition was included in [4, REWRITE1]

let p,q be FinSequence;
func p$ˆq -> FinSequence means :: REWRITE1:def 1
it = pˆq if p = {} or q = {}
otherwise ex i being Nat, r being FinSequence

st len p = i+1 & r = p|Seg i & it = rˆq;

This catenation, denoted $ˆ, also catenates two finite sequences removing the
last element from the first argument if possible.

Both these functors are meant to be used when the last element of the first
sequence is the same as the first element of the second sequence; for practical
purposes they are equivalent and one of them should be eliminated.

It is interesting to note that only an analogue of the first functor can be
defined for transfinite sequences, and, should the finite sequence be introduced
as finite transfinite sequence (see p. 167), then the second of the above functors
probably would have never seen the light of day.

Norms. The original norm for topological real space is defined in [23, TOPRNS 1]

let N be Nat; let x be Point of TOP-REAL N;
func |.x.| -> Real means :: TOPRNS_1:def 6
ex y be FinSequence of REAL st x = y & it = |.y.|;

The following definition appeared much later

let n be Nat; let p be Point of TOP-REAL n;
func |. p .| -> Real means :: JGRAPH_1:def 5
for w being Element of REAL n st p = w holds it = |.w.|;

Here Element of REAL n widens to FinSequence of REAL and Point of TOP-REAL n
is also a FinSequence of REAL and thus both these definitions are equivalent (the
second definition is bound to disappear in the next revision of MML). Yet, in the
second of these articles we find the same series of theorems that were proven in
the first one. There might be, however, conceivable reasons that someone prefers
the definiens of the latter definition, but then it should have been introduced in
a redefinition

let n be Nat; let p be Point of TOP-REAL n;
redefine func |. p .| -> Real means
for w being Element of REAL n st p = w holds it = |.w.|;

which would render many theorems in JGRAPH 1 redundant. This is because such
a redefinition does not introduce a new notion; it only adds another equivalent
definiens to the existing constructor. A current revision of MML is introducing
this redefinition and eliminating a whole bunch of theorems. Even with this
change, complete integrity will not be achieved because in EUCLID we already
have

170 P. Rudnicki and A. Trybulec

let x be FinSequence of REAL;
func |.x.| -> Real equals :: EUCLID:def 5
sqrt Sum sqr abs x;

and thus even TOPRNS_1:def 6 should have been a redefinition of the above.
This would be troublesome to get in the current version of Mizar. While a
Point of TOP-REAL n is a FinSequence of REAL, the type Point of TOP-REAL n
does not widen automatically to FinSequence of REAL. In order to achieve the
desired result, one would have to introduce a notion of a finite function into reals
and use it as the basic notion for defining norms.

5 Formulating Theorems

In [10, PSCOMP 1:8] we read

for X being non empty Subset of REAL st X is bounded_below holds
r = inf X iff (for p st p in X holds p >= r) &

(for q st (for p st p in X holds p >= q) holds r >= q);

We will argue that formulating such equivalences as two separate implications
allows us to see things in a better light. Instead of the above we could have

Th1:
for X being non empty Subset of REAL st X is bounded_below & r = inf X
holds (for p st p in X holds p >= r) &

(for q st (for p st p in X holds p >= q) holds r >= q);
Th2:
for X being non empty Subset of REAL
st X is bounded_below & (for p st p in X holds p >= r) &

(for q st (for p st p in X holds p >= q) holds r >= q);
holds r = inf X

The first fact should be rather written as

Th1’: for X being non empty Subset of REAL st X is bounded_below
holds (for p st p in X holds p >= inf X) &

(for q st (for p st p in X holds p >= q) holds inf X >= q);

But this is really two theorems bundled together, so they had better be split

Th1’1: for X being non empty Subset of REAL st X is bounded_below
holds for p st p in X holds p >= inf X;

Th1’2: for X being non empty Subset of REAL st X is bounded_below
holds for q st (for p st p in X holds p >= q) holds inf X >= q;

We learn from [10, PSCOMP 1] that inf X is just a synonym of lower bound X, the
latter defined as

let X; assume (ex r st r in X) & X is bounded_below;
func lower_bound X -> real number means :: SEQ_4:def 5
(for r st r in X holds it <= r) &
(for s st 0 < s ex r st r in X & r < it+s);

On the Integrity of a Repository of Formalized Mathematics 171

Therefore, Th1’1 is an immediate consequence of the definition and thus has
no room in any data base aspiring toward integrity. On the other hand, the
fact labeled Th1’2 should be kept as an important theorem. Continuing minor
improvements, we note that the fact labeled Th2 is better expressed by

for X being non empty Subset of REAL
st (for p st p in X holds p >= r) &

(for q st (for p st p in X holds p >= q) holds r >= q);
holds r = inf X

because of the definition of X is bounded below in [14, SEQ 4:def 2] which means
that ex p st for r st r in X holds p <= r. There is no point in saying the
same thing twice among the premises.

Achieving integrity is not only the matter of proper initial design; we have to
strive for it as the system evolves. Here are two cases in point. In a much later
article, [16, JORDAN5D:1] we have

for B being Subset of REAL, s being Real
st (ex r be Real st r in B) &

B is bounded_below & for r being Real st r in B holds s <= r
holds s <= lower_bound B;

The first condition just states that B is non empty and it is better expressed by
B <> {} or with the adjective non empty (see Section 6-3). The second condition
is spurious in the presence of the third for the reasons given above. But what is
then left after these changes is just Th1’2 that we stated above. The conclusion is
simple, if PSCOMP 1 was written with integrity in mind, then probably JORDAN5D:1
would have never been introduced.

The most dramatic changes in formulations of theorems are related to the
evolution of the Mizar language and the checking software. The original [10,
PSCOMP 1, 1997] introduced a number of unary functors for which theorems like
the following were proven

for X being Subset of REAL holds --X = X;
for X being without_zero Subset of REAL holds Inv Inv X = X;
for X being set, f being Function of X, REAL holds --f = f;

All of these theorems state that the respective functor is an involution. In 1997,
there was no better way to express such facts. In the meantime, Mizar has
evolved, and now, when introducing a unary functor, we can state that such a
functor has the desired property (see [18]), for example

let X be Subset of REAL;
func -X -> Subset of REAL equals { -r : r in X};
involutiveness;

We have to prove that the functor is indeed an involution but then the verifier
tacitly takes this fact into account and there is no need to form the above the-
orems at all. The introduction of such properties like involutiveness prompted
a revision of MML in which many theorems were eliminated.

172 P. Rudnicki and A. Trybulec

6 Various Rough Edges

1. In definition EUCLID:def 5 (p. 169), it is quite puzzling that abs x is used,
as the term is then squared rendering taking the absolute value spurious.

2. In definition FUNCT_2:def 1 (p. 165), the definiens is written in a rather
obscure way and the following would be cleaner

let X, Y be set; let R be Relation of X,Y;
attr R is quasi_total means :: FUNCT_2:def 1
X = dom R if Y <> {}

otherwise R = {};

as when X is empty we have that dom R is empty and thus R is empty as well.
3. In several theorems in article [14, SEQ 4, 1989], we see something like

for X being Subset of REAL
st (ex r being real number st r in X) & ... holds ...

which has a much cleaner formulation as

for X being non empty Subset of REAL st & ... holds ...

However, in 1989 there were no attributes in Mizar and the cleaner formu-
lation was not an option.

4. Associated with finite sequence is the choice of terminology for the length of
such a sequence. The length of a FinSequence is defined as a synonym to its
cardinality in [6, FINSEQ 1]

let p be FinSequence;
redefine func Card p -> Nat means :: FINSEQ_1:def 3
Seg it = dom p; synonym len p;

Frequently, in theorems about finite sequences we have to say that some
index i is in the domain of the sequence p, and this can be done in at least
three ways

i in dom p, or i in Seg len p, or 1 <= i & i <= len p

Although translations between these representations are trivial, we have the
following question: which of them should be used? Individual tastes differ
and thus all three are being used. However, this causes major headaches. For
instance, theorem [25, FINSEQ 3:27] was formulated, stating that

n in dom p iff 1 <= n & n <= len p;

and it is referenced at least 2397 times in MML.

On the Integrity of a Repository of Formalized Mathematics 173

7 Conclusions

Maintaining a repository of formally checked mathematics poses a number of
challenges. We attempted to illustrate one of these challenges that we christened
maintaining integrity. In our opinion such a data base can be only developed in
an evolutionary way with numerous contributors. Thus maintaining the integrity
of the data base becomes a serious issue. While we can give numerous examples
of integrity violations we are still looking for general mechanism that would
assist us in achieving the integrity of the Mizar Mathematical Library.

Numerous examples presented in this note indicate that the issues of integrity
must be considered with respect to the checking software and features of the
language. Integrity is not an absolute notion.

References

1. Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96,
1990.

2. Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593,
1990.

3. Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics,
2(4):547–552, 1991.

4. Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469–478,
1996.

5. Grzegorz Bancerek. Continuous lattices of maps between T0 spaces. Formalized
Mathematics, 9(1):111–117, 2001.

6. Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and
finite sequences. Formalized Mathematics, 1(1):107–114, 1990.

7. Czes�law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–
53, 1990.

8. Czes�law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–
164, 1990.

9. Czes�law Byliński. Finite sequences and tuples of elements of a non-empty sets.
Formalized Mathematics, 1(3):529–536, 1990.

10. Czes�law Byliński and Piotr Rudnicki. Bounding boxes for compact sets in �2.
Formalized Mathematics, 6(3):427–440, 1997.

11. Agata Darmochwa�l. The Euclidean space. Formalized Mathematics, 2(4):599–603,
1991.

12. Stanis�lawa Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized
Mathematics, 1(3):607–610, 1990.

13. Artur Korni�lowicz. Cartesian products of relations and relational structures. For-
malized Mathematics, 6(1):145–152, 1997.

14. Jaros�law Kotowicz. Convergent real sequences. Upper and lower bound of sets of
real numbers. Formalized Mathematics, 1(3):477–481, 1990.

15. Mizar Manuals. http://mizar.org/project/bibliography.html.
16. Yatsuka Nakamura and Adam Grabowski. Bounding boxes for special sequences

in �2. Formalized Mathematics, 7(1):115–121, 1998.
17. Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. For-

malized Mathematics, 5(3):297–304, 1996.

174 P. Rudnicki and A. Trybulec

18. Adam Naumowicz and Czes�law Byliński. Basic Elements of Computer Algebra in
Mizar. Mechanized Mathematics and Its Applications, 2(1):9–16, 2002.

19. Beata Padlewska and Agata Darmochwa�l. Topological spaces and continuous func-
tions. Formalized Mathematics, 1(1):223–230, 1990.

20. P. Rudnicki, Ch. Schwarzweller and A. Trybulec. Commutative Algebra in the
Mizar System. Journal of Symbolic Computation, 32:143–169, 2001.

21. Piotr Rudnicki and Andrzej Trybulec. On equivalents of well-foundedness. Journal
of Automated Reasoning, 23(3-4):197–234, 1999.

22. Piotr Rudnicki and Andrzej Trybulec. Mathematical Knowledge Management in
Mizar. 1st Int. Workshop on MKM, Sept. 24-26, 2001,
http://www.risc.uni-linz.ac.at/institute/conferences/MKM2001.

23. Agnieszka Sakowicz, Jaros�law Gryko, and Adam Grabowski. Sequences in �N
t .

Formalized Mathematics, 5(1):93–96, 1996.
24. Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics,

1(1):9–11, 1990.
25. Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences.

Formalized Mathematics, 1(3):569–573, 1990.
26. Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-Based Finite

Sequences. Formalized Mathematics, 9(4):825–829, 2001.
27. Freek Wiedijk. Mizar: An Impression. http://www.cs.kun.nl/˜freek/notes.

A Theoretical Analysis of Hierarchical Proofs

Paul Cairns and Jeremy Gow

UCL Interaction Centre, University College London,
26 Bedford Way, London WC1H 0AP, UK

{p.cairns,j.gow}@ucl.ac.uk
www.uclic.ucl.ac.uk/imp

Abstract. Hierarchical proof presentations are ubiquitous within logic
and computer science, but have made little impact on mathematics in
general. The reasons for this are not currently known, and need to be
understood if mathematical knowledge management systems are to gain
acceptance in the mathematical community. We report on some initial
experiments with three users of a set of web-based hierarchical proofs,
which suggest that usability problems could be a factor. In order to
better understand these problems we present a theoretical analysis of
hierarchical proofs using Cognitive Dimensions [6]. The analysis allows us
to formulate some concrete hypotheses about the usability of hierarchical
proof presentations.

1 Introduction

Rigorous proof is a central aspect of modern mathematics. In providing a coher-
ent organisation of mathematical knowledge, any human-oriented system must
consider not only how to organise, reference and retrieve proofs but also how to
present the retrieved proofs to the working mathematician. Hierarchical proof
presentations have a long history in logic and computer science but have received
little attention in the wider mathematical community, despite having a number
of advocates [12,13].

Hierarchical proofs seem to be an ideal technique for the presentation of
digital mathematics. Firstly, their modular structure makes them suitable for
interactive, hypertext presentations. Secondly, there is already some experience
of presenting hierarchical proofs within the theorem proving systems community.
Last but not least, they make explicit the ‘true structure’ of a proof which is sup-
pressed in textbook, linear presentations, e.g. [9]. However, a key question is still
unanswered: whether they help the reader to understand the proof, compared
to a traditional presentation.

Doubts about the usability of hierarchical proofs were raised by a small pilot
study of the Polya-Lamport framework [2], a presentation framework for math-
ematical texts, which we present in Section 3. Unfortunately, this leaves us with
few definite hypotheses which might form the basis of further experiments. We
look to theory to help — specifically, Cognitive Dimensions [6,5], a lightweight
evaluation technique for the usability of interactive devices and notations. In Sec-
tion 4, we use it to provide a theoretical analysis of hierarchical proofs. Based

A. Asperti, B. Buchberger, J.H. Davenport (Eds.): MKM 2003, LNCS 2594, pp. 175–187, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: h×N
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (h×N)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

176 P. Cairns and J. Gow

on this and the pilot study, Section 5 contributes some testable ideas on the
usefulness and usability of hierarchical presentations of mathematical proofs.

It is important to stress that the contribution of this paper is not to provide
evidence for or against the usability of hierarchical proofs, but to generate some
concrete hypotheses that will form the basis of more rigorous experimental tests.

2 Hierarchical Proofs

It has long been recognised within the mathematical community that rigorous
logical proofs can be represented hierarchically. That is, since statements of a
proof depend logically on axioms or previous statements in the proof, the struc-
ture of the proof can be understood as a directed acyclic graph (or tree). However,
in practice, the full logical structure is rarely presented, or even fully considered,
and most published proofs take a sequential form like most printed material, e.g.
[17,8]. A few explicit logical links are made through the numbering of lemmas
and definitions and the labeling of formulae rather than by any graphical means.
Most links are left implicit, to be reconstructed by the reader.

Research into proofs with an explicit hierarchical structure falls into two
broad categories: attempts to introduce hierarchical proofs into mathematics,
and work on logic, including theorem provers and related systems.

Lamport [12] proposed a standard for presenting hierarchical proof structure
that employs indentation and labeling of proof statements, without resorting to
graphical methods. A proof is made up of an optional list of labeled statements,
each with its own proof, followed by a list of references to statements and external
theorems and definitions. Thus, a proof may be broken down progressively into
finer and finer detail until the bottommost steps are trivial. Further annotations
are used to indicate definitions and case analyses within the proof. An example
proof is given in Figure 1. Lamport recommends the hierarchical format, as
it ‘makes it much harder to prove things that are not true’. He also notes its
suitability for hypertext systems.

Lamport’s approach has been implemented in HTML for calculational style
proofs (i.e. linear derivations) [7]. The hierarchical nature of the proof gives a
natural way to hide and reveal details in a proof: substeps in the proof can be
hidden or revealed on a mouse click.

An alternative way of hierarchically structuring proofs was proposed by Leron
[13]. Whereas Lamport emphasises the deductive structure of a proof, Leron ad-
vocates using a hierarchy to highlight the conceptual structure. The top level
of the proof explains the key ideas and proof outline, with lower levels making
the ideas more concrete and filling in the details, until the author has nothing
more to add. Furthermore, Leron’s format is less structured, with each node1 of
the hierarchy corresponding to a collection of paragraphs, rather than an indi-
vidual assertion. The proof presentation also incorporates heuristic and informal
knowledge, with ‘elevator’ sections discussing the transition between levels.
1 Confusingly, he calls nodes ‘levels’. Hence they may be several ‘levels’ of depth 2,

called 2.1, 2.2,...

A Theoretical Analysis of Hierarchical Proofs 177

Proof sketch: Given a finite set of triadic primes, we construct a number that has a
triadic prime factor not in the set.
Given: There are only finitely many triadic primes {p1, . . . , pn}
Then: A contradiction

〈1〉1. 3 is a triadic prime, say p1 = 3
Proof: By definitions of triadic and prime.

Let: M
.= 4p2 . . . pn + 3

〈1〉2. No p1, p2, . . . , pn divides M
〈2〉1. p1 does not divide 4p2 . . . pn

〈2〉2. p2, . . . , pn have remainder 3 from M
〈2〉3. Q.E.D.

Proof: By 〈2〉1 and 〈2〉2.
〈1〉3. M has a triadic prime factor
Given: M ’s prime factors are monadic
Then: A contradiction

〈2〉1. A product of monadic numbers is monadic
〈2〉2. M is monadic
〈2〉3. Q.E.D.

Proof: By 〈2〉2 and definition of M .
〈1〉4. Q.E.D.

Fig. 1. A partial Lamport-style proof of the infinity of triadic primes.

The difference in emphasis can be seen by comparing Figures 1 and 2. Both
are proofs of the infinity of ‘triadic primes’, defined by Leron as these with
remainder 3 on division by 4. Lamport’s proof hierarchy draws attention to the
argument structure, and omits heuristic information. Leron’s proof hierarchy
highlights the key ideas and refines them. Individual levels are written in a
traditional proof style.

Amongst the automated and interactive theorem proving community, there
are numerous examples of user interfaces that use a hierarchical representation.
XIsabelle was developed as an interface for the Isabelle interactive proof system
[3]. A goal is graphically linked to its subgoals, forming a tree structure. Inter-
active proof is supported by letting the user select goals from the tree and apply
further actions to them.

Similar presentation principles can, and have been, applied to other theo-
rem provers and proof-oriented systems. For instance, the Ωmega and λClam
proof planners both have graphical user interfaces that can represent proofs as
trees, respectively, LΩUI [18] and XBarnacle [11]. Proofs in proof planning are
not always proofs in a particular logic, but rather a tree of proof method ap-
plications. Most proof plans are considerably more logically rigorous than most
mathematicians, so deserve the term proof in this context.

Another example is the JAPE system, which is intended as a tool for teaching
logic to computing science students [1]. As such it is able to work in a variety
of logics and proof presentations. One of the presentations is like the paper
notation of tableau proofs. Another is more text-based, but the proof of a step

178 P. Cairns and J. Gow

Level 1 Suppose the theorem is false and let p1, p2, . . . , pn be all the triadic primes. We
construct in (Level 2) a number M have the following two properties:

(a) M as well as its factors are different from p1, p2, . . . , pn;
(b) M has a triadic prime factor.

These two properties clearly produce a contradiction, as we get a triadic prime which
is not one of p1, p2, . . . , pn. Thus the theorem is proved.
In The Elevator How shall we approach the definition of M? In light of Euclid’s classical
proof, it is natural to try M = p1p2 . . . pn + 1. This indeed. . .
Level 2 Let M = 4p2 . . . pn + 3 (we assume p1 = 3). We show that M satisfies the two
requirements from Level 1. Requirement (a) means. . .
Level 3 Lemma: A product of monadic numbers is again a monadic number.

Fig. 2. Extracts from a Leron-style proof of the infinity of triadic primes.

has a subproof made up of substeps and so on. In both cases though, the interface
presents the logical connection between steps and allows users to select steps for
further development of the proof.

Thus, there are many ways in which hierarchical proofs have been used both
in mathematics and in computer science. Yet despite the naturalness and ob-
viousness of the representation, it is notable that none have wide use in the
general mathematical community. This suggests that there is some factor work-
ing against the use of hierarchical presentations.

3 Initial Experiments

We developed the Polya-Lamport framework as part of an investigation into
using interaction to improve presentations of mathematical texts. The ‘Polya
part’ of the framework built on the heuristic problem solving approach proposed
by Polya [16] to provide users with structured relationships to the wider context
of a particular result or definition. The ‘Lamport part’ was based on the method
of structuring proofs to provide users with control over the amount of the detail
they see in a proof. We will only discuss the actual proof presentation here. The
full framework is described elsewhere [2].

3.1 The Web-Based Hierarchical Proofs

The presentation of proofs in our framework is very similar to that proposed
by Lamport. A proof is made up of a sequence of steps and each step may
have its own proof made up of further steps. The proof is preceded by a list of
‘background’ results and definitions. Though Lamport only demonstrated the
structure of proofs through examples, it was relatively easy to formalise the
structure into a grammar for an XML DTD. Thus, all proofs were actually
written by hand in XML and converted using XSLT to a combination of HTML,
GIFs and JavaScript that could be viewed on the two most common browser

A Theoretical Analysis of Hierarchical Proofs 179

platforms, Netscape and Internet Explorer. (See [20] for information on these
various web standards.)

The pages provided two ways to interact with a proof. First, statements that
had their own proofs had squares next to them containing + if the subproof was
hidden or − if it was revealed. Clicking the squares toggled between the states.
Hidden subproofs were summarised as a list of proof steps and external results
used in the proof, e.g. “By assumption 2 and background 3.”

Secondly, each reference to a proof step or background result/definition was
a hyperlink. Clicking the link moved the proof display to the corresponding part
of the proof. Hovering over the link displayed the target statement in a separate
frame at the bottom of the page2, without altering the main proof display. Thus,
the proof presentation was a combination of common web and user interface
interactions built into Lamport’s proof structure.

The new presentation was intended to be compared with more traditional
proof presentations on paper. Thus, the content of the hierarchical proofs was
made to resemble the normal language of the mathematical vernacular [10].
Logically necessary information was often omitted because it was irrelevant or
could be easily reconstructed from the context. For example, we say X is a
topological space even though this is formally defined as a pair (X, T).

3.2 A Limited User Study

A pilot user trial was used to elicit feedback on the Polya-Lamport framework,
including hierarchical proofs. The basic content of the trial was an undergrad-
uate course in topology written by Peter Collins, taken by all first year mathe-
maticians at Oxford University. The course notes were adapted into the Polya-
Lamport framework using the original examples, diagrams and language as far as
possible. Details of the conversion of the materials is given elsewhere [2]. These
formed a set of online materials that were used in the trial.

The online notes were made available to three first year mathematicians at
St Edmund Hall, Oxford University, who were currently studying the topology
course and hence would have a real motivation to use them. They were inter-
viewed after three weeks. The online materials were available on a lap-top as
a prompt during the interview, because users are not always explicitly able to
remember software [4]. The interviews were intended to elicit qualitative data on
the experience of using the Polya-Lamport framework, including the hierarchi-
cal proofs, and were recorded on MiniDisc for subsequent analysis. The results
presented here are just the analysis of the online materials that involved the
interactive, hierarchical proofs.

Though three users is not enough for any rigorous trial, it is enough to begin
a qualitative analysis of the data and to start the formation of a grounded theory
as part of a larger investigation [19]. Specifically, we can formulate hypotheses to
test in more focused experiments. This is discussed further in Sections 4 and 5.
2 Except in Internet Explorer — as usual, Microsoft’s interpretation of a standard

(the HTML DOM) differed from everyone else’s.

180 P. Cairns and J. Gow

One of the most noticeable outcomes of the interviews were that the users
quickly recognised the hierarchical structure even though they had not been
primed to think of it as such:
Interviewer: In terms of the proofs you’ve already mentioned . . . what do you
think about how they are laid out?
Subject 1: They seem laid out quite well. Very easy to see where it is going.

And even one student who declared himself as “not very good with comput-
ers” recognised what was going on:
Interviewer: So you are not used to seeing that [format]?
Subject 2: No, but once I worked it out, it seemed okay.

Labels were used to refer to different parts of the proof within a given proof
step and these corresponded to hyperlinks as described earlier. One user thought
that this could be confusing. Another user experienced that confusion:
Subject 3: If you need to click that to [go] back to the actual material. I just
can’t concentrate. . . to the program.

This wasn’t just a feature of the hierarchical proofs. Any links in the frame-
work which took the user away from the focus of their attention were sometimes
seen as negative.

As for the hiding and revealing of proof substeps, the response was rather
mixed, mainly because of the summaries of the proofs. The summary proofs
collected together the statements that the hidden proof steps used, referring to
them by their labels. However, this was often viewed as a meaningless list of
numbers and, without the actual statements there, tended to be off-putting:
Interviewer: What was difficult about seeing it online? . . .
Subject 2: I would like to have. . . more words.

In addition, because of problems with the XSLT used to generate the sum-
maries, the statements labels came up in the order in which they were used in
the proof, sometimes multiple times. This meant that a summary might appear
as “By background 3, background 2, background 1” which had a tendency to
distract the users:
Interviewer: How did you find the numbering of the theorem? . . .
Subject 1: I found it a bit bizarre. . .

There also seemed to be a deeper problem with the content of the hierarchi-
cal proofs themselves. The aim of the hierarchical structure was to reveal the
more detailed steps as the reader descended the hierarchy. However, though the
principle was recognised it was not understood that way:
Subject 3: It is not very detailed, I think. . . . [I found] more details but not
very clear.
And:
Subject 2: . . .it is not all out there.

It seems that the details were not in a recognisable form or that what was
there was not the “whole proof” despite being logically more complete. This
gave the tendency to “skim-read” and “go through it fast”.

On the positive side though, the hope of giving the user control over how
much detail they read was realised to some extent. One user liked it:

A Theoretical Analysis of Hierarchical Proofs 181

Subject 2: It was helpful to shrink it down . . . Because you could expand the
parts to see exactly what you wanted. It is good to have that flexibility.

In summary then, the user trial gave some initial pointers to problems of
hierarchical proofs. Though the structure of the proof is easily recognised and
manipulated, it does not seem to be easily understood. Some of this may be due
to artificial elements introduced such as labeling, especially in the summaries of
proofs. A deeper factor may be that the steps of the proof given do not seem to
have the ‘right sort’ of details even though they are logically more detailed than
traditional proofs. It seems to be the quality of the details and not the quantity
of the details that is important for the readers. However, given the small and
imprecise nature of this trial, this conclusion can only be tentative. We turn to
a more theoretical approach to look for further insights.

4 An Analysis over Cognitive Dimensions

Cognitive dimensions were developed by Thomas Green and others to reflect
aspects of the usability of information representations that can be independently
considered, though in a given situation may be mutually constraining. Where
they differ from guidelines and heuristic evaluation [14] is that they consider
inherent features of working with an information representation, rather than the
more superficial aspects of user interfaces. Moreover, they are motivated and
inspired by findings in cognitive science, although the connection is somewhat
tenuous.

Given the abstract nature of the dimensions, a considerable amount of inter-
pretation may be required to analyse a particular domain. However, they can
still serve as a very useful tool for thinking about the inherent usability issues of
some domains, over and above more superficial usability guidelines [14]. A de-
tailed description of the technique and its application to the evaluation of visual
programming languages can be found in [6].

In the analysis, we consider both the structure and the interaction of the
hierarchical proofs, often by comparison to traditional proof presentations. To
avoid the danger of the interview biasing the analysis, the second author per-
formed the analysis before learning either of the findings from the interviews or
the first author’s analysis. The analyses corresponded closely.

4.1 Applying the Dimensions

In the sections below we analyse hierarchical proofs over a range of cognitive
dimensions. Some dimensions are omitted, as they would refer to writing/editing
proofs, whereas this paper is concerned with presentation and understanding.
Another, role-expressiveness, is also omitted as it is not clear what it means —
a view that Green himself also holds [5].

Abstraction Gradient: Abstraction gradient refers to the number of ab-
stract concepts that need to be learnt by the user before they can understand

182 P. Cairns and J. Gow

the hierarchical representation of the proof. This is independent of the amount
of abstraction used in the proof or the underlying mathematics.

Any hierarchical proof requires some abstraction as the breakdown of the
proof into a hierarchy is an abstraction of logical argument into e.g. levels, steps,
assumptions. Furthermore, the steps also have individual labels such as Given
for assumptions and Let for definitions. These must be learned before the proof
can be understood.

However, the abstractions used rely on other notations within either com-
puting or mathematics. The hierarchical structure is relatively common (e.g.
Windows Explorer) and the terms used to denote elements of the hierarchy have
been taken from mathematics. Thus, though there are some abstractions to be
learnt and these can be off-putting to new users, they are not so far removed
from common mathematical experience and so should not pose an insurmount-
able barrier.

Closeness of Mapping: The closeness of mapping is about mapping the
representation of the proof to the process of proving. The closer the mapping the
easier it is for users to relate the proof to their understanding of the problem. Nei-
ther hierarchical nor traditional proof presentations could have a claim to being
‘closer to proof’ without some cognitive evidence about how users understand
the proof process. As with the psychology of programming, this is not a well
understood area [6], and we are currently unlikely to find convincing arguments
either way.

One might argue that a user’s understanding will be shaped by the traditional
proof presentations they are used to, but this dodges the questions of whether
either presentation style is in some sense better than the other, and whether the
user can adapt their understanding.

Consistency: Consistency is the extent to which users can transfer their
experience in one part of the proof to the understanding of another. Inasmuch
as a hierarchy imposes a regular structure on a proof, hierarchical proofs are
highly consistent. Certainly much more so than traditional proofs, which have
no generally accepted structure. The consistency of hierarchical proofs could
help users to learn the representation and to extract information more quickly
from unfamiliar proofs.

Diffuseness/Terseness: Diffuseness and terseness are the quantity of sym-
bols and space needed to represent an element of the hierarchical proof. They are
more diffuse than traditional presentations in that i) they use space to indicate
the hierarchical structure, and ii) making proof steps and logical dependency
explicit increases the amount of text — similar to the ‘de Bruijn factor’ of for-
mal mathematics [21]. Hiding subproofs can reduce diffuseness, at least until
the subproof is revealed. Unfortunately, the diffuseness caused by giving the
user more structure and explicit information, may have the effect of separat-
ing related information, increasing their cognitive workload (see the visibility
dimension below).

In another sense, hierarchical proofs are more terse than traditional presen-
tations, in that when explicit references are given, they use abstract labels, e.g.

A Theoretical Analysis of Hierarchical Proofs 183

“By step (3)2” rather than a description of content, e.g. “p1 does not divide
4p2, . . . , pn”. This requires the user to hold more of the proof in mind, or to look
up the references. Again, this could cause problems.

We could say that hierarchical proofs are ‘structurally diffuse’ and ‘referen-
tially terse’, whereas traditional proofs tend towards ‘structural terseness’ and
(when explicit references are made) ‘referential diffuseness’.

Hard Mental Operations: Hard mental operations refer to the user hav-
ing to spend time working to understand the proof presentation. Obviously, a
complex mathematical proof is complex no matter how it is presented. Rather,
this dimension is concerned with any mental workload placed on the user by
the presentation itself. There is some extra mental workload due to having to
remember or look up statements given their labels. This is caused by the dif-
fuseness/terseness issues discussed above.

Hidden Dependencies: These are relationships between parts of the proof
that are not made visible by the presentation. The relationship of ‘substep’
is made clear by the hierarchical structure. Also the number of hidden logical
dependencies is reduced by requiring them to be explicitly stated. They avoid the
traditional implicit argument where very few words can be used to communicate
extremely complex steps [15]. Not all relationships are made clear in hierarchical
proofs, e.g. the user cannot easily discover where a particular statement is used
later in the proof — although the same is true of traditional presentations. This
could be amended by enhancing the hierarchical presentation, but there is the
risk of unnecessarily complicating it.

Progressive Evaluation: Progressive evaluation is the ability of the user
to assess their progress through the proof either in terms of how much they
still have to read or how much they still have to understand. For novice users,
progressive evaluation is essential and it can still be useful to expert users.

By making the structure explicit, and relegating less important detail to
lower levels, the user can evaluate their progress through the proof much more
easily. For example, they can see they are reading the second of three sections to
the proof. But hiding subproofs may obscure the amount still to be understood
within a subproof. This could be relieved by adding a ‘reveal all’ option, or an
indication of the size of the hidden subproof.

Secondary Notation: This addresses the amount to which the presen-
tation can convey additional meaning beyond the actual proof, e.g. discussions
about the proof or related diagrams. The hierarchical proofs use secondary nota-
tion, namely indentation, to denote the proof structure. Keywords also indicate
various types of statement. Thus, these cues should be useful to the reader. Tra-
ditional presentations may of course include arbitrary additional information to
help the user, but the hierarchical proof format allowed ‘proof sketches’ to be
included that could also play this role. Diagrams are a special case — they were
necessarily separate from the structured proof, and thus cannot be used by the
reader without a shift of attention.

Visibility and Juxtaposition: Visibility is about how much of a proof
can be seen at any one time, that is, without cognitive work. Juxtaposition is

184 P. Cairns and J. Gow

allowing different parts of a proof to be placed side by side for comparison and
hence makes up a significant component of visibility.

It is possible to reveal all parts of a proof but usually, because of the structure
imposed on the proof, it is unlikely that it would all fit in one window. It may be
that such a full view of the proof would not actually be useful. A more serious
visibility issue is the use of abstract labels, mentioned above. With reference and
referent often not both visible, the user is required to remember the referent or
to move their attention away from their current focus in order to retrieve it.

Juxtaposition is not built in to the implementation but it would not be a
problem for users to re-open the proof in another window and so bring different
parts of the proof together. Juxtaposing two parts of the proof is easier if they
are within the same proof level — the user can simply close the intervening sub-
proofs. Comparison between levels may be harder, especially with the increased
diffuseness of the proof relative to traditional presentations.

4.2 Outcome of the Analysis

The good usability features identified by the cognitive dimension analysis are:

– A hierarchy provides a more consistent presentation.
– The proof structure helps a user to progressively evaluate their journey

through the proof.
– Logical hidden dependencies are made explicit.
– The secondary notation gives clues to structural features of proof, and the

roles of some statements.

Features of hierarchical proofs that might cause problems are:

– Introduces several abstractions which may take time to learn.
– Increased diffuseness, caused by the de Bruijn factor and proof layout. This

separates related information.
– Referring to statements by their abstract labels is overly terse.
– A diffuse proof with terse references increases the amount of hard mental

operations.
– Hidden subproofs can prevent progressive evaluation of the amount achieved

by the user.
– Reference and referent are often not both visible.

We don’t know enough to evaluate closeness of mapping — this depends on
how people understand proof.

In summary, the cognitive dimensions analysis has provided several concrete
hypotheses about the ways in which hierarchical proofs may be more or less
usable than traditional presentations. Experimental research will be required to
validate these claims.

A Theoretical Analysis of Hierarchical Proofs 185

5 Conclusions and Future Work

Comparing the analytical findings with the interview findings, it is noticeable
that the hierarchical structure was easily recognised by users and that they can
select what they want to see. However, the problems with referencing state-
ments within the proof is confirmed by the cognitive dimensions. We suggest
that abstract labels are not an effective way to present cross-references over the
increased distances of a hierarchical presentation. Traditional presentations try
to place related information nearby or use a memorable reference.

The users also seemed to dislike the particular form of hierarchical proofs.
The cognitive dimensions analysis suggests an explanation: understanding the
structure of a proof requires familiarity with new and abstract concepts — this
may put the user off, especially as they do not map closely to the form of
traditional proofs. This may go away as they become accustomed to it. However,
it may be a deeper problem related to the understanding of logical argument.
It may well be the case that readers of traditional proof presentations have the
same problem. The hierarchical presentation could be highlighting, rather than
causing, the problem.

The analysis suggests problems not specifically identified by the trial: user’s
need to be able to evaluate their progress through the proof, and hierarchical
proofs can both help and hinder this. We could also make explicit more of the
hidden dependencies between parts of the proof. Diagrams could be more tightly
integrated. Only part of the proof is visible at once, and there is no specific sup-
port for juxtaposing two parts. Any or all of these may form part of the usability
problems. An important direction for further work is to carry out experiments
to validate or invalidate our hypotheses.

We speculate that a more fundamental problem with hierarchical proofs may
be that the content of the steps is not appropriate. Our proofs were based on
traditional proofs, using similar language and symbols, but there could be an
inherent problem with hierarchical presentation. Users may not require structur-
ing of the logical detail in the proofs, but help with what is being communicated
in the proof.

Of course, the hierarchical structure that we used is just one of several possi-
ble, even within the Lamport style. Other proof styles might be more accessible.
In particular, our theoretical analysis identifies places where the style can be
developed. It would also be interesting to investigate a Leron style approach.

It may be that the usability problems are related to individual learning styles.
However, the analysis on cognitive dimensions seems to point away from this.
They are cognitively motivated, general guides to usability and they indicate
problems similar to those actually found with the users.

The way forward is to make further investigations into how users perceive
and work with hierarchical proofs and how they compare with traditional proofs.
We are planning to do a larger investigation on this aspect of the Polya-Lamport
framework involving both qualitative and quantitative feedback on the usability
issues. The analysis in this paper has identified areas of concern and given us
specific theories to work with.

186 P. Cairns and J. Gow

Regardless of what might be root cause of the usability problems, the key
lesson is that a hierarchical proof is not a fortiori the best presentation for
proofs. There may be many and complex reasons why they are not desirable at
the moment. If it is simply a matter of familiarity then steps must be taken to
introduce them earlier in a mathematical career rather than later. In any case,
systems for mathematical knowledge management should be cautious about
placing them as the main interface between mathematicians and their proofs.

Acknowledgments. Many thanks to Peter Collins and the undergraduate
mathematicians at St. Edmund Hall, Oxford University, who took part in the
user trials. This work was supported by EPSRC, UK, under grant GR/N29280.

References

1. R. Bornat, B. Sufrin, ‘Animating Formal Proofs at the Surface: The Jape Proof
Calculator,’ The Computer Journal, 42(3):177–192, 1999

2. P. Cairns, J. Gow, ‘On Dynamically Presenting a Topology Course,’ First Interna-
tional Workshop on Mathematical Knowledge Management, 2001. Revised version
submitted to Annals of A.I. & Math., 2002

3. K. Easthaughffe, ‘Support for Interactive Theorem Proving: Some Design Princi-
ples and Their Application,’ in R. Backhouse (ed.), Workshop on User Interfaces
for Theorem Provers, p96–103, 1998

4. X. Faulkner, Usability Engineering, Palgrave, 2002
5. T. R. G. Green, A. Blackwell, A tutorial on cognitive dimensions,

www.cl.cam.ac.uk/users/afb21/publications/CDtutSep98.pdf
6. T. R. G. Green, M. Petre, ‘ Usability analysis of visual programming environments:

a “cognitive dimensions” framework,’ J. Visual Languages and Computing, 7:131–
174, 1996

7. J. Grundy, ‘A Browsable Format for Proof Presentation,’ Math. Universalis, 2,
1996, www.ant.pl/MathUniversalis/2/grundy/mu.html

8. P. R. Halmos, Naive Set Theory, Springer, 1960
9. A. G. Hamilton, Logic for Mathematicians, (Revised Edn), Cambridge University

Press, 1988
10. J. Harrison, ‘Formalized Mathematics,’ Math. Universalis, 2, 1996,

www.pip.com.pl/MathUniversalis/2/harrison/jrh0100.html
11. M. Jackson, H. Lowe, ‘XBarnacle: Making Theorem Provers More Accessible,’

CADE-17, p502–506, LNAI 1831, Springer, 2000
12. L. Lamport, ‘How to write a proof’, American Mathematical Monthly, 102(7):600–

608, 1994
13. U. Leron, ‘Structuring Mathematical Proofs,’American Mathematical Monthly

90(3):174–185, 1983
14. J. Nielsen, Usability Engineering, Morgan Kaufmann, 1993
15. L. C. Paulson & K. Grabczewski, ‘Mechanizing Set Theory,’ Journal of Automated

Reasoning, 17:291–323, 1996
16. G. Polya, How to Solve It, Penguin Books, 1990
17. W. Rudin, Functional Analysis (2nd Edn), McGraw-Hill, 1991

www.cl.cam.ac.uk/users/afb21/publications/CDtutSep98.pdf
www.ant.pl/MathUniversalis/2/grundy/mu.html
www.pip.com.pl/MathUniversalis/2/harrison/jrh0100.html

A Theoretical Analysis of Hierarchical Proofs 187

18. J. Siekmann, S. Hess, C. Benzmüller, L. Cheikhrouhou, H. Horacek, M. Kohlhase,
K. Konrad, A. Meier, E. Melis, M. Pollet, V. Sorge, ‘LΩUI: Lovely Omega User
Interface,’ Formal Aspects of Computing 11(3):1–17, 1999

19. A. Strauss, J. Corbin, Basics of Qualitative Research: Techniques and Procedures
for Developing a Grounded Theory, Sage Publications, 1998

20. W3C Recommendations, www.w3.org/TR/\#Recommendations
21. F. Wiedijk, The De Bruijn Factor, www.cs.kun.nl/˜freek/factor/

www.w3.org/TR/#Recommendations
www.cs.kun.nl/~freek/factor/

Comparing Mathematical Provers

Freek Wiedijk

University of Nijmegen

Abstract. We compare fifteen systems for the formalizations of math-
ematics with the computer. We present several tables that list various
properties of these programs. The three main dimensions on which we
compare these systems are: the size of their library, the strength of their
logic and their level of automation.

1 Introduction

We realize that many judgments in this paper are rather subjective. We apologize
in advance to anyone whose system is misrepresented here. We would like to be
notified by e-mail of any errors in this paper at <freek@cs.kun.nl>.

1.1 Problem

The QED manifesto [6] describes a future in which all of mathematics is encoded
in the computer in such a way that the correctness can be mechanically verified.
During the years the same dream has been at the core of various proof check-
ing projects. Examples are the Automath project [17], the Mizar project [15,
23], the NuPRL project [8], and the Theorema project [7]. Recently, the check-
ing of mathematical proofs has become popular in the context of verification of
hardware and software: important systems in this area are ACL2 [13] and PVS
[18]. Because of this, the field of proof verification currently focuses on com-
puter science applications. The study of formal proof in mathematics is still not
widespread.

We have compiled a list of ‘state of the art’ systems for the formalization
of mathematics, systems that one might seriously consider when thinking of
implementing the QED dream. We were not so much interested in experimental
systems (systems that try out some new idea), as well as in ‘industrial strength’
systems (systems that are in at least some aspects better at the formalization
of mathematics than all other existing systems). We ended up with a list of
fifteen systems. For each of these systems we asked a user of the system to
formalize the same small theorem: the Pythagorean proof of the irrationality

A. Asperti, B. Buchberger, J.H. Davenport (Eds.): MKM 2003, LNCS 2594, pp. 188–202, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

<freek@cs.kun.nl>
Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: h×N
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (h×N)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

Comparing Mathematical Provers 189

of
√

2.1 These fifteen formalizations will be published elsewhere.2 We did not in
advance specify to the user a very specific proof problem to be solved, because
we wanted formalizations that were the most natural for the given system.

In this paper we compare these fifteen systems according to various criteria.
We do not try to establish which of these systems is ‘best’: they are too different
to say something like that. All of these fifteen systems clearly show the dedication
of their creators, they all contain important ideas, and they all merit to be
studied and used. The main purpose of this paper is to show how different this
kind of system can be. When one only knows a few of these systems, it is tempting
to think that all systems for formal mathematics have to be of a similar nature.
Instead, it is surprising how diverse these systems are.

1.2 Approach

This paper is primarily a collection of tables that show various properties of the
systems. It is something like a ‘consumer test’.

To illustrate three of the most important dimensions for comparing these
systems (the size of their library, the strength of their logic, and their level of
automation), at the end of the paper we show them together in a two-dimensional
diagram. We realize that this diagram is highly subjective. We list some aspects
of the systems that we have used to determine the positions in this diagram.
(Readers will probably disagree with the details of this diagram and are encour-
aged to make their own variant.)

The order in which we list the systems in this paper is the order in which we
received the formalizations of the irrationality of

√
2. In this way we wish to ex-

press our gratitude for the help of all the people who wrote these formalizations.

1.3 Related Work

On page 1227 of [4] there appears a comparison similar to the one in this paper.
However, it only compares nine instead of fifteen systems, and the comparison
takes only one and a half pages.
1 This proof is mentioned in Aristotle’s Prior Analytics, as follows [10]:

For all who argue per impossibile infer by syllogism a false conclusion, and
prove the original conclusion hypothetically when something impossible fol-
lows from a contradictory assumption, as, for example, that the diagonal [of
a square] is incommensurable [with the side] because odd numbers are equal to
even if it is assumed to be commensurate.

It was interpolated in Euclid’s Elements as Proposition x. 117. Due to the oral
tradition of the Pythagorean School, the origins of this proof have been covered in
‘complete darkness’ [22]. There is a legend that Pythagoras’ pupil Hippasus discov-
ered this proof and was drowned at sea to keep it a secret.

2 The current draft of this document is on the Web at
<http://www.cs.kun.nl/˜freek/comparison/comparison.ps.gz>

<http://www.cs.kun.nl/~freek/comparison/comparison.ps.gz>

190 F. Wiedijk

There are several other comparisons between provers in the literature, but
those generally compare only two systems, and often compare the systems for
applications in computer science instead of for mathematics. For instance, there
are comparisons between NuPRL and Nqthm [5], HOL and Isabelle [2], HOL
and ALF [1], Coq and HOL [12], and HOL and PVS [11].

There also has been work done on how to embed the proofs of one system
in another one. As an example, there is the work by Doug Howe and others
on how to translate HOL proofs to classical NuPRL [16]. Surprisingly, mapping
mathematics between systems is more difficult than one would expect.

1.4 Outline

In Section 2 we list the fifteen systems that are compared in this paper. We
explain why we selected these systems and also why we did not select some
other systems. In Section 3 we investigate various proof representations that
are used by the fifteen systems. We give a classification of these representations
into seven categories. Then we investigate the sizes of the irrationality of

√
2

proofs. Finally we compare the sizes of the libraries of the systems. In Section
4 we compare the logical foundations of the systems. We also look at their
architecture according to the so-called ‘de Bruijn criterion’. In Section 5 we
compare the level of automation of the systems. We study whether they satisfy
the ‘Poincaré principle’, whether they have an open architecture that allows user
automation, and whether they come with strong built-in automation. Finally in
Section 6 we put all systems in one diagram.

2 From Alfa to Ωmega: The Fifteen Provers of the World

The systems that are compared in this paper are listed in the following table:

1. HOL
Web page: <http://www.cl.cam.ac.uk/Research/HVG/HOL/>
Implementation language: ML
Main person behind the system: Mike Gordon
People who did

√
2 �∈ Q: John Harrison, Konrad Slind

2. Mizar
Web page: <http://mizar.org/>
Implementation language: Pascal
Main person behind the system: Andrzej Trybulec
Person who did

√
2 �∈ Q: Andrzej Trybulec

3. PVS
Web page: <http://pvs.csl.sri.com/>
Implementation languages: Lisp, ML
Main people behind the system: John Rushby, Natarajan Shankar, Sam Owre
People who did

√
2 �∈ Q: Bart Jacobs, John Rushby

<http://www.cl.cam.ac.uk/Research/HVG/HOL/>
<http://mizar.org/>
<http://pvs.csl.sri.com/>

Comparing Mathematical Provers 191

4. Coq
Web page: <http://pauillac.inria.fr/coq/>
Implementation language: ML
Main people behind the system: Gérard Huet, Thierry Coquand, Christine
Paulin
Person who did

√
2 �∈ Q: Laurent Théry

5. Otter/Ivy
Web pages: <http://www.mcs.anl.gov/AR/otter/> and <http://www-
unix.mcs.anl.gov/˜mccune/acl2/ivy/>
Implementation language: C
Main people behind the system: William McCune, Larry Wos, Olga Shumsky
People who did

√
2 �∈ Q: Michael Beeson, William McCune

6. Isabelle/Isar
Web pages: <http://www.cl.cam.ac.uk/Research/HVG/Isabelle/> and
<http://isabelle.in.tum.de/>
Implementation language: ML
Main people behind the system: Larry Paulson, Tobias Nipkow, Markus Wen-
zel
People who did

√
2 �∈ Q: Markus Wenzel, Larry Paulson

7. Alfa/Agda
Web page: <http://www.cs.chalmers.se/˜catarina/agda/> and
<http://www.math.chalmers.se/˜hallgren/Alfa/>
Implementation language: Haskell
Main people behind the system: Thierry Coquand, Catarina Coquand, Tho-
mas Hallgren
Person who did

√
2 �∈ Q: Thierry Coquand

8. ACL2
Web page: <http://www.cs.utexas.edu/users/moore/acl2/>
Implementation language: Lisp
Main person behind the system: J Strother Moore
Person who did

√
2 �∈ Q: Ruben Gamboa

9. PhoX
Web page: <http://lama-d134.univ-savoie.fr/sitelama/Membres/
pages_web/RAFFALLI/phox.html>
Implementation language: ML
Main person behind the system: Christophe Raffalli
People who did

√
2 �∈ Q: Christophe Raffalli, Paule Rozière

10. IMPS
Web page: <http://imps.mcmaster.ca/>
Implementation language: Lisp
Main people behind the system: William Farmer, Joshua Guttman, Javier
Thayer
Person who did

√
2 �∈ Q: William Farmer

<http://pauillac.inria.fr/coq/>
<http://www.mcs.anl.gov/AR/otter/>
<http://www-
unix.mcs.anl.gov/~mccune/acl2/ivy/>
<http://www.cl.cam.ac.uk/Research/HVG/Isabelle/>
<http://isabelle.in.tum.de/>
<http://www.cs.chalmers.se/~catarina/agda/>
<http://www.math.chalmers.se/~hallgren/Alfa/>
<http://www.cs.utexas.edu/users/moore/acl2/>
<http://lama-d134.univ-savoie.fr/sitelama/Membres/
pages_web/RAFFALLI/phox.html>
<http://imps.mcmaster.ca/>

192 F. Wiedijk

11. Metamath
Web page: <http://metamath.org/>
Implementation language: C
Main person behind the system: Norman Megill
Person who did

√
2 �∈ Q: Norman Megill

12. Theorema
Web page: <http://www.theorema.org/>
Implementation language: Mathematica
Main person behind the system: Bruno Buchberger
People who did

√
2 �∈ Q: Markus Rosenkranz, Tudor Jebelean, Bruno Buch-

berger
13. Lego

Web page: <http://www.dcs.ed.ac.uk/home/lego/>
Implementation language: ML
Main person behind the system: Randy Pollack
Person who did

√
2 �∈ Q: Conor McBride

14. NuPRL
Web page: <http://www.cs.cornell.edu/Info/Projects/NuPrl/
nuprl.html>
Implementation languages: ML, Lisp
Main person behind the system: Robert Constable
Person who did

√
2 �∈ Q: Paul Jackson

15. Ωmega
Web page: <http://www.ags.uni-sb.de/˜omega/>
Implementation language: Lisp
Main person behind the system: Jörg Siekmann
People who did

√
2 �∈ Q: Christoph Benzmüller, Armin Fiedler, Andreas

Meier, Martin Pollet

For most systems it is clear why they are in this list, but a few need explanation.
Otter is not designed for the development of a structured body of mathe-

matics in the QED style, but instead is used in a ‘one shot’ way to solve logical
puzzles. Also it is only one of the members (although the best known) of the large
class of first order theorem provers. The reason that we still have included Otter
in this list (and only Otter) is that Art Quaife has used Otter to develop a body
of mathematics in Euclidean geometry and set theory [20]. Also Otter is the only
program in the list that has been used for the solution of open mathematical
problems, as listed in <http://www-unix.mcs.anl.gov/AR/new_results/>. A
reason to single out Otter from the first order provers is that Otter has the Ivy
program for separate checking of its proofs.

ACL2 is not primarily designed for mathematics. In particular it has a rather
weak logic, without an explicit existential quantifier. However the Nqthm sys-
tem (a predecessor of ACL2, which is very similar) has been used to formalize
significant theorems like Gödels first incompleteness theorem [21]. Also Nqthm
was the system that the authors of the QED manifesto had in mind.

<http://metamath.org/>
<http://www.theorema.org/>
<http://www.dcs.ed.ac.uk/home/lego/>
<http://www.cs.cornell.edu/Info/Projects/NuPrl/
nuprl.html>
<http://www.ags.uni-sb.de/~omega/>
<http://www-unix.mcs.anl.gov/AR/new_results/>

Comparing Mathematical Provers 193

The Metamath system [14] maybe should not be counted as an ‘industrial
strength’ system: it only has one user. However, the system is beautifully exe-
cuted and differs in many respects from the other systems. For one thing it is
very fast: it can check its full (non-trivial) library in only a few seconds. Also it
really makes the logical structure of the mathematics completely transparent.

Some of the systems in the list have predecessors or (recent) successors:

ALF, Half → Agda
Nqthm → ACL2
Imps → MathScheme
Lego → Oleg, Plastic
NuPRL → MetaPRL

We did not include any of those. We expect systems from the same origin to be
reasonably close to each other.

Some recent provers, like the KIV system and the ‘B method’, have been
especially designed for verification of hardware and software. These systems can
also be used for the formalization of mathematics, but we have not included them
in our comparison. Other systems, like the Twelf system and the Typelab system,
are more for formalizing logic than for mathematics. After some discussion with
the authors of these systems we decided to omit these as well. Finally there is
the TPS system which is similar to Otter but for higher order logic. However, it
misses what makes Otter interesting for this comparison, so it was left out too.

3 Files Containing Mathematics

3.1 Seven Ways to Represent Mathematics

When we were editing the fifteen proofs of the irrationality of
√

2 for presentation
on paper, it turned out that often it was difficult to present the proofs in such
a way that it was clear what was going on. For various systems we needed to
show the proof in multiple representations. Some reflection showed that these
representations could be divided into seven groups:

H
O

L
M

iz
ar

P
V

S
C

oq
O

tt
er

/I
vy

Is
ab

el
le

/I
sa

r
A

lfa
/A

gd
a

A
C

L
2

P
ho

X
IM

P
S

M
et

am
at

h
T

he
or

em
a

L
eg

o
N

uP
R

L
Ω

m
eg

a

definitions & statements of lemmas i i i i i i i i i i i x i i i
proof scripts = = i = = = = = = = i i
trace of interactive session o o o o o o o = o o o
representation with symbols = = x o = = o
representation in natural language = = = = o
stored formalization state o o o
λ-term or other ‘proof object’ o o o = o =

194 F. Wiedijk

In this table an ‘i’ means ‘input file’ that has been made by the user. A ‘o’ means
‘output file’ that has been generated by the system. An ‘x’ means that it is a
mixture of input from the user and output from the system. An ‘=’ sign means
that this is part of the same file as the item above it in the same column. For
instance, in the Mizar system the statement of the lemmas, the ‘proof scripts’
that the user enters, and the ‘natural language’ representation, all are in one file
(the .miz file) which is written by the user.

In this table we only included files that can be displayed on paper. For some
systems the stored formalization state is not represented in this table because it
is a binary file which is not humanly readable.

3.2 Comparing the Sizes of the Input Files

We now compare the sizes of the formalization of the irrationality of
√

2 in
the fifteen systems. This not only compares the systems but also the styles
of the people who did the formalization and the complexity of the proof that
they selected for formalization. Therefore it only gives a rough indication of the
‘compactness’ of the systems.

Also, comparing systems based on a single proof problem is statistically not
meaningful. Having the same proof in fifteen systems does show the proof styles
of the systems surprisingly well, but it does not say much about the quality of
the provers. Still, we will list the sizes of the files.

Here are the precise statements that were proved (or, in the case of Otter,
disproved) in the fifteen systems:

HOL ˜rational(sqrt(&2))
Mizar sqrt 2 is irrational
PVS NOT Rational?(sqrt(2))
Coq (irrational (sqrt (S (S O))))
Otter m(a,a) = m(2,m(b,b))
Isabelle/Isar sqrt (real (2::nat)) �∈ Q

Alfa/Agda prime p → noetherA (multiple p) → isNotSquare p
ACL2 (implies (equal (* x x) 2)

(and (realp x)
(not (rationalp x))))

PhoX /\m,n : N (mˆ N2 = N2 * nˆ N2 -> m = N0 & n = N0)
IMPS not #(sqrt(2),qq)
Metamath $p |- (sqr ‘ 2_10) e/ QQ
Theorema ¬rat

[√
p
]

Lego {b|nat}{a|nat}
(Eq (times two (times a a)) (times b b))->
(Eq a zero /\ Eq b zero)

NuPRL ¬(∃u:Q. u *q u = 2 / 1)
Ωmega (not (rat (sqrt 2)))

Comparing Mathematical Provers 195

Some people proved the statement of the irrationality in the real numbers:
√

2 �∈ Q

Others did not have a library of real numbers (or did not want to use it) and
only proved a statement about natural numbers:

m2 = 2n2 ⇐⇒ m = n = 0

The Agda proof by Thierry Coquand proves something still more basic. It does
not talk about the number two in the natural numbers, but instead about any
element in a commutative monoid that satisfies some conditions. The Otter proof
has a similar structure.

Most people proved the irrationality of the square root of two, but some only
proved the irrationality of an arbitrary prime number (where ‘prime’ means that
the number divides a product if and only if it divides one of the factors). This
might sound stronger, but Conor McBride noted that it is the other way around:
it is also needs some non-trivial work to prove that two is prime.

Most people proved the statement using the library of their system, but not
all systems have a library. In that case some lemmas were proved from statements
that were taken as axioms. The Ωmega system does have a standard library, but
not all statements in this library have been proved using the system. For the
irrationality of

√
2 four lemmas were added to this library, but only one was

proved. The Agda system does not have a library, but the formalization did not
use any unproved statements. It defined everything that was used, including the
logic.

The IMPS proof is by far the largest in the collection. It could have been
quite a bit shorter, but William Farmer chose to first prove the more general
statement that the square root of any non-square number is irrational.

lines fragment

Otter 17 monoid prime one lemma
HOL 29 R 2 from library
Ωmega 38∗ R 2 from library, one lemma out of four
Theorema 39∗ R prime two lemmas
Mizar 44 R 2 from library
NuPRL 54∗ N 2 from library
Coq 68 R 2 from library
PVS 77 R 2 from library
Metamath 81 R 2 from library
Isabelle 114 R 2 from library
PhoX 151 N 2 from library
ACL2 206 R 2 from library
Agda 230 monoid prime stand alone
Lego 261 N 2 from library
IMPS 663 R 2 from library

196 F. Wiedijk

For this table we only counted non-blank non-comment lines.3 The line counts
that have been marked with an asterisk do not refer to a specific file, but instead
are combined counts of relevant parts of files. If we restrict ourselves to formal-
izations that prove the full statement about the number two in the real numbers
without omitting anything, then the three shortest proofs are the HOL, Mizar
and Coq proofs.

3.3 The Library

In practice for serious formalization of mathematics a good library is more im-
portant than a user friendly system. The Mizar systems has the largest library
by far. It proves over 32 thousand lemmas, taking 50 megabytes or 1.4 million
lines.

The following systems currently have a large mathematical library:

H
O

L
M

iz
ar

P
V

S
C

oq
O

tt
er

/I
vy

Is
ab

el
le

/I
sa

r
A

lfa
/A

gd
a

A
C

L
2

P
ho

X
IM

P
S

M
et

am
at

h
T

he
or

em
a

L
eg

o
N

uP
R

L
Ω

m
eg

a

large mathematical library • • • • • • •

4 Differences in Logical Strength

4.1 Logics and Type Systems

The systems vary in underlying logic and type system. Here is a table that shows
the different logics of the fifteen systems:

H
O

L
M

iz
ar

P
V

S
C

oq
O

tt
er

/I
vy

Is
ab

el
le

/I
sa

r
A

lfa
/A

gd
a

A
C

L
2

P
ho

X
IM

P
S

M
et

am
at

h
T

he
or

em
a

L
eg

o
N

uP
R

L
Ω

m
eg

a

primitive recursive arithmetic •
first order logic •
higher order logic • • • • • • • • •
first order set theory • • •
higher order type theory • •
classical logic • • • • • • • • • • •
constructive logic • • • •
quantum logic •
fixed logic • • • • • • • • • • • • •
logical framework • •
3 The relevant files are on the Web in
<http://www.cs.kun.nl/˜freek/comparison/comparison.tar.gz>

<http://www.cs.kun.nl/~freek/comparison/comparison.tar.gz>

Comparing Mathematical Provers 197

A logical framework does not just support some given logics, but instead the
user is able to define logics of his own. In the case of a logical framework the
first two sections of the table indicate the most commonly used logics of the
system.

Coq and NuPRL are implementations of variants of intuitionistic type theory.
The ‘classical variants’ of these systems are equiconsistent with ZFC set theory
with countably many inaccessible cardinals.4 In particular, they are quite a bit
stronger than the higher order logics of systems like HOL.

The Mizar system is logically even stronger than this, because it has arbi-
trarily large inaccessibles. However, Mizar is clearly a first order system.5 The
Coq and NuPRL systems are higher order systems.6

Here is a table that shows the type systems of the fifteen systems (a system
is only considered typed when the types are first class objects that occur in
variable declarations and quantifiers):

H
O

L
M

iz
ar

P
V

S
C

oq
O

tt
er

/I
vy

Is
ab

el
le

/I
sa

r
A

lfa
/A

gd
a

A
C

L
2

P
ho

X
IM

P
S

M
et

am
at

h
T

he
or

em
a

L
eg

o
N

uP
R

L
Ω

m
eg

a

untyped • • • •
decidable non-dependent types • • • • •
decidable dependent types • • • •
undecidable dependent types • •

4.2 The de Bruijn Criterion

The de Bruijn criterion states that the correctness of the mathematics in the
system should be guaranteed by a small checker. Architecturally this generally
means that there is a ‘proof kernel’ that all the mathematics is filtered through.
In the HOL Light variant of the HOL system this kernel is extremely small: it
consists of only 285 lines of ML. The NuPRL system is just over the border of
this criterion. It has a proof checking kernel but this kernel is not small.

4 In the NuPRL system the classical variant is officially supported. In the Coq system
the equiconsistency actually seems to break down, because the impredicativity of
Coq is inconsistent with classical mathematics.

5 Steps from Mizar proofs correspond directly to first order problems [9]. As part of
his PhD research, Josef Urban from the Charles University in Prague is developing
software that can export any Mizar step in TPTP format.

6 The NuPRL type theory is predicative, which means that it does not have just one
type for propositions, but one for each type universe. However, in practice NuPRL
is higher order logic: it can abstract and quantify over arbitrary higher order types.

198 F. Wiedijk

H
O

L
M

iz
ar

P
V

S
C

oq
O

tt
er

/I
vy

Is
ab

el
le

/I
sa

r
A

lfa
/A

gd
a

A
C

L
2

P
ho

X
IM

P
S

M
et

am
at

h
T

he
or

em
a

L
eg

o
N

uP
R

L
Ω

m
eg

a

de Bruijn criterion • • • • • • • • •

The Otter system does not have a proof checking kernel built into the system.
However, there is the Ivy system that can export Otter proofs in a form that
can be checked by a very small ACL2 program.

5 Proof Checking or Theorem Proving

5.1 Interaction Styles

Among the systems one finds three different interaction styles. First, there are the
systems in which the user writes the text of the proof and the system checks the
correctness afterwards. Second, there are the ‘proof assistants’ which keep a proof
state for the user. The user then modifies this proof state through the application
of so-called ‘tactics’. Third, there are the automated theorem provers which
automatically prove lemmas that the user states. The involvement of the user
then only consists of the selection of the lemmas (as ‘stepping stones’ towards
the final result) and the selection of parameters for the prover.

H
O

L
M

iz
ar

P
V

S
C

oq
O

tt
er

/I
vy

Is
ab

el
le

/I
sa

r
A

lfa
/A

gd
a

A
C

L
2

P
ho

X
IM

P
S

M
et

am
at

h
T

he
or

em
a

L
eg

o
N

uP
R

L
Ω

m
eg

a

proof checking • •
goal transformation through tactics • • • • • • • • • •
automated theorem proving • • •

Note that tactic-based provers can still have powerful automation. For instance
the PVS system has powerful decision procedures.

5.2 The Poincaré Principle and Automation

An important aspect of a mathematical system is automation of trivial tasks.
In particular a user should not need to spell out calculations in detail. A system
that can prove the correctness of calculations automatically is said to satisfy the
Poincaré principle [3],7 because in [19] Henri Poincaré wrote about showing the
correctness of the calculation 2 + 2 = 4:
7 Henk Barendregt links the Poincaré principle to reduction in type theory, but this

is only partially correct. The Agda system has βδι-reduction but it cannot use it for

Comparing Mathematical Provers 199

‘Ce n’est pas une démonstration proprement dite, [. . .] c’est une vérifica-
tion’. [. . .] La vérification diffère précisément de la véritable démonstra-
tion, parce qu’elle est purement analytique et parce qu’elle est stérile.

H
O

L
M

iz
ar

P
V

S
C

oq
O

tt
er

/I
vy

Is
ab

el
le

/I
sa

r
A

lfa
/A

gd
a

A
C

L
2

P
ho

X
IM

P
S

M
et

am
at

h
T

he
or

em
a

L
eg

o
N

uP
R

L
Ω

m
eg

a

Poincaré principle • • • • • • • • • • • •
user automation • • • • • •
powerful built-in automation • • • • • • • •

An important aspect of a prover is whether it has an ‘open’ architecture, i.e.,
whether the user can write programs to solve proof problems algorithmically.
Most provers allow some automation like this, but in the table we indicate
whether this programmability is on the level of the implementation of the system.

Finally there is the aspect whether a prover already has strong automation
built-in.8 Examples of such automation are decision procedures for algebraic
problems, proof search procedures, and automation of induction.

6 A Rather Subjective Two-Dimensional Diagram

We compiled some of the information about the systems into a diagram (like the
Herzsprung-Russell diagram classifying stars in astronomy). On the horizontal
axis the diagram shows how ‘mathematical’ the logic of the system is. On the
vertical axis it shows how much automation the system offers. The sizes of the
circles correspond to the sizes of the respective mathematical libraries.

The positions of the systems in this diagram are rather subjective. Most cir-
cles can be argued around quite a bit. To make the diagram somewhat objective
we have ‘scored’ various aspects of the systems. This made the diagram turn
out to be surprising to us: we had expected the Theorema and IMPS systems to
score more mathematical than they do in this diagram, and the Otter system to
score higher on the automation axis.

reflection as it lacks the automation to lift the expressions to the syntactical level, so
we claim that Agda does not satisfy the Poincaré principle. On the other hand HOL
does not have reduction in its logic, but it is easy to program HOL ‘conversions’ to
prove calculations automatically.

8 We only considered a tactic-based prover to have ‘powerful built-in automation’ if
it has a tactic that is a full first order prover, like Isabelle’s blast.

200 F. Wiedijk

Items that added to the score for ‘more mathematical’ were:

– more powerful logic
– logical framework
– dependent types
– de Bruijn criterion

while items that added to the score for ‘more automation’ were:

– more automated interaction style
– Poincaré principle
– user automation
– powerful built-in automation

7 Future Work

The comparison in this paper does not focus in detail on the automation of the
systems. It is worthwhile to investigate the various kinds of automation of these
systems in more detail, and in particular to investigate their algebraic decision
procedures.

Comparing Mathematical Provers 201

References

1. S. Agerholm, I. Beylin, and P. Dybjer. A Comparison of HOL and ALF Formaliza-
tions of a Categorical Coherence Theorem. In TPHOLs’96, volume 1125 of LNCS,
pages 17–32. Springer-Verlag, 1996.

2. S. Agerholm and M.J.C. Gordon. Experiments with ZF Set Theory in HOL and
Isabelle. In 8th International Workshop on Higher Order Logic Theorem Proving
and its Applications, volume 971, pages 32–45. Springer-Verlag, 1995.

3. Henk Barendregt. The impact of the lambda calculus. Bulletin of Symbolic Logic,
3(2), 1997.

4. Henk Barendregt and Herman Geuvers. Proof-Assistants Using Dependent Type
Systems. In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning. Elsevier Science Publishers B.V., 2001.

5. D. Basin and M. Kaufmann. The Boyer-Moore Prover and NuPRL: An experi-
mental comparison. In Proceedings of the First Workshop on ‘Logical Frameworks’,
Antibes, France, pages 89–119. Cambridge University Press, 1991.

6. R. Boyer et al. The QED Manifesto. In A. Bundy, editor, Automated Deduc-
tion – CADE 12, volume 814 of LNAI, pages 238–251. Springer-Verlag, 1994.
<http://www.cs.kun.nl/˜freek/qed/qed.ps.gz>.

7. B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, and D. Vasaru. An Overview
on the Theorema project. In W. Kuechlin, editor, Proceedings of ISSAC’97 (In-
ternational Symposium on Symbolic and Algebraic Computation), Maui, Hawaii,
1997. ACM Press.

8. Robert L. Constable, Stuart F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cre-
mer, R.W. Harper, Douglas J. Howe, T.B. Knoblock, N.P. Mendler, P. Panangaden,
James T. Sasaki, and Scott F. Smith. Implementing Mathematics with the Nuprl
Development System. Prentice-Hall, NJ, 1986.

9. Ingo Dahn and Christoph Wernhard. First Order Proof Problems Extracted from
an Article in the MIZAR Mathematical Library. In Proceedings of the International
Workshop on First order Theorem Proving, number 97-50 in RISC-Linz Report
Series, pages 58–62, Linz, 1997. Johannes Kepler Universität.

10. G.P. Goold, editor. Selections illustrating the history of Greek mathematics, with
an English translation by Ivor Thomas. Harvard University Press, London, 1939.

11. David Griffioen and Marieke Huisman. A comparison of PVS and Isabelle/HOL.
In Jim Grundy and Malcolm Newey, editors, Theorem Proving in Higher Order
Logics: 11th International Conference, TPHOLs’98, volume 1479 of LNCS, pages
123–142. Springer-Verlag, 1998.

12. L. Jakubiec, S. Coupet-Grimal, and P. Curzon. A Comparison of the Coq and
HOL Proof Systems for Specifying Hardware. In E. Gunter and A. Felty, editors,
International Conference on Theorem Proving in Higher Order Logics: B-Track,
pages 63–78, 1997.

13. Matt Kaufmann, Panagiotis Manolios, and J. Strother Moore. Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers, Boston, 2000.

14. Norman D. Megill. Metamath, A Computer Language for Pure Mathematics.
<http://metamath.org/>, 1997.

15. M. Muzalewski. An Outline of PC Mizar. Fondation Philippe le Hodey, Brussels,
1993. <http://www.cs.kun.nl/˜freek/mizar/mizarmanual.ps.gz>.

16. P. Naumov, M.-O. Stehr, and J. Meseguer. The HOL/NuPRL Proof Translator: A
Practical Approach to Formal Interoperability. In R.J. Boulton and P.B. Jackson,
editors, The 14th International Conference on Theorem Proving in Higher Order
Logics, volume 2152 of LNCS, pages 329–345. Springer-Verlag, 2001.

<http://www.cs.kun.nl/~freek/qed/qed.ps.gz>
<http://metamath.org/>
<http://www.cs.kun.nl/~freek/mizar/mizarmanual.ps.gz>

202 F. Wiedijk

17. R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer. Selected Papers on Automath,
volume 133 of Studies in Logic and the Foundations of Mathematics. Elsevier
Science, Amsterdam, 1994.

18. S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system. In
D. Kapur, editor, 11th International Conference on Automated Deduction (CADE),
volume 607 of LNAI, pages 748–752, Berlin, Heidelberg, New York, 1992. Springer-
Verlag.

19. Henri Poincaré. La Science et l’Hypothèse. Flammarion, Paris, 1902.
20. A. Quaife. Automated Development of Fundamental Mathematical Theories.

Kluwer Academic, 1992.
21. N. Shankar. Metamathematics, Machines and Gödel’s Proof. Number 38 in Cam-

bridge Tracts in Theoretical Computer Science. Cambridge University Press, 1994.
22. Otto Töplitz. The Calculus: A Genetic Approach. University of Chicago Press,

Chicago, 1963. Translated by Luise Lange.
23. F. Wiedijk. Mizar: An Impression. <http://www.cs.kun.nl/˜freek/mizar/mizar

intro.ps.gz>, 1999.

<http://www.cs.kun.nl/~freek/mizar/mizar
intro.ps.gz>

Translating Mizar for First Order Theorem
Provers

Josef Urban

Dept. of Theoretical Computer Science
Charles University

Malostranske nam. 25, Praha, Czech Republic
urban@kti.ms.mff.cuni.cz

Abstract. The constructor system of the Mizar proof checking system
is explained here on examples from Mizar articles, and its translation
to untyped first-order syntax is described and discussed. This makes
the currently largest library of formalized mathematics available to first-
order theorem provers.1

1 Introduction, Previous Work

Mizar [Rudnicky 92] is a system for computer checked mathematics. In more
detail, Mizar is associated with several things:

– The Mizar language ... this is the language in which Mizar articles must be
written, so that they can be checked by computer.

– The Mizar Mathematical Library (MML). This is the growing (now about
700) collection of Mizar articles that have already been written and computer
checked and the notation, definitions, theorems and other Mizar constructs
created in them can be used for writing new Mizar articles. Various presen-
tations of the MML exist today: Formalized Mathematics, online html-ized
abstracts, Mizar Encyclopedia.

– The Mizar checker and other software utilities for working with articles and
MML.

– The Mizar project headed by A.Trybulec, taking care of the things named
above as well as other things related to Mizar.

Several introductions to the Mizar language as well as to the practical as-
pects of writing Mizar articles exist today e.g. [Bonarska 90, Muzalewski 93,
Rudnicky 92] or [Wiedijk 99]. It is recommended to have a look at one of them,
but we will try here to explain the features of Mizar, relevant for the first order
translation.

The largest previous attempt at first order translation of the MML was done
by the ILF group [Dahn 97]. However, the work remained unfinished and only
1 A more detailed version of this article will be a part of author’s PhD thesis.

A. Asperti, B. Buchberger, J.H. Davenport (Eds.): MKM 2003, LNCS 2594, pp. 203–215, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: h×N
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (h×N)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

204 J. Urban

several basic articles were translated. The translation we present is done uni-
formly for the whole first order part of MML2, and tested even for very advanced
MML articles.

2 General Descriptions

2.1 The Mizar Language

The detailed specification of the Mizar language is given in [Syntax] and notions
defined there will be written in italics here. We recommend to have a look at a
sample Mizar article (e.g. article about real numbers [REAL 1]), to see examples
of the abstract syntax. The logic (especially constructor and type system) of
Mizar has not been formalized yet (strictly speaking, it is formalized in the
Mizar sources). So our approach is to follow the [Syntax], explaining what the
language constructs mean in the Mizar implementation, and map them into
untyped first order syntax. The most practical “proof” of the correspondence of
the translation with the Mizar sources, is then the correspondence of the results
of the Mizar checker with the results of theorem provers run on translated tasks.

The main parts of a Mizar article are definitions (Definitional-Items,(Functor,
Predicate, Mode, Structure and Attribute-Definition)), Theorems and Schemes.
Attributes are predicates handled speciallly by the system, according to the rules
defined by the user in Cluster-Registrations. All Mizar terms are typed. There
is a largest (default) type called “set” or “Any”. All other types have one or
more mother types. Types of variables are given either in global Reservations
or local Loci-Declarations or inside quantified formulas. Types of other terms
are computed according to Functor-Definitions. Types can have arguments (be
parameterized) in Mizar, e.g. “Element of X” or “Function of NAT, REAL”
are legal types with one or two arguments, respectively. Type translation is the
largest part of the first order translation. There are two possible basic approaches
to type translation3(we use the second approach, which is better for SPASS).

– Types can be thought of as set-theoretic classes (e.g. type “set” being the
universal class, type “Element of X” being the set of all elements of X, type
“Integer” being the set of all integers, etc.).

– Types can be thought of as predicates thus “set(X)” is true for any X,
“Integer(X)” is true iff X is integer, and “Element(X,Y)” is true iff X ∈ Y

2.2 Syntactic Levels

The Mizar language handles a very large database of articles about different parts
of mathematics and this necessarily leads to notation conflicts. The solution to
such conflicts is introduction of two syntactic levels of the language: the pattern
level and the constructor level.
2 For the precise meaning of this, see section Unimplemented Features of Mizar.
3 [Dahn 98] suggests another, based on inclusion operations ([Goguen 92]), but the

system of attributes (and thus vast multisortedness of MML terms) makes it probably
less efficient than the standard translations.

Translating Mizar for First Order Theorem Provers 205

Constructors are the real unambiguous functions, predicates, types and at-
tributes to which the patterns are translated before any proof checking takes
place. Patterns are mapped to the constructors; they accommodate the need for
having different symbols for the same constructor or vice versa (same symbol for
different constructors). The process of mapping patterns to constructors is done
separately for each Mizar article depending on its Environment-Declarations and
is usually quite nontrivial.

Example 1. binary symbols “in” and “<‘” define different patterns, but when
dealing with ordinals, they are mapped to the same constructor, i.e. “A in B”
and “A <‘ B” cannot be distinguished when translated to the constructor level.

Definitions can influence both the pattern and the constructor level. Typi-
cally, a definition causes a new pattern and also a new constructor to be defined,
but in many cases there is no effect on the constructor level. For the purpose
of translating Mizar articles into first order syntax, only the constructor level is
important, the patterns can be thought of as a “syntactic sugar” added on top
of the constructors.

2.3 First Order Formats, Outline of the Translation

Several kinds of first order syntax are used today for first-order provers, e.g.
TPTP format [Suttner and Sutcliffe 98], DFG format [Hahnle et all 96], Otter
format [McCune 94] and others. We chose direct translation into DFG for-
mat, since our immediate purpose was to experiment with the SPASS prover
[Weidenbach et all 99]. More generic approach is certainly desirable, however,
at a first glance, several such approaches come into mind (e.g. ILF-like approach
[Dahn 97], TPTP-like approach, or even adding direct Mizar support for other
formats than just DFG), so we postponed such decisions for later time. Note
that the dfg2tptp tool can be used for translation to TPTP and thus (using
TPTP tools) to virtually any other syntax.

So the general approach to translation is following:

– We use parts of Mizar (Parser, Analyzer) which translate the Mizar articles
to the constructor level, where our first order translation starts.

– We give absolute (context independent) names to all constructors4.
– Definitions of constructors usually translate to several first order formulas,

since we have to translate both the type hierarchy information given in the
definitions and the actual Definiens.

– Sometimes also additional properties (e.g. commutativity, transitivity, etc.)
of the defined constructors are stated inside definitions. They are also trans-
lated into corresponding first order formulas.

– All formulas are relativized with respect to the typed variables occurring
in them (using the above mentioned predicate translation of types). So e.g.
universally quantified Mizar formula

4 The naming scheme we use in what follows has obviously no importance for theorem
provers, however, it has become standard in various Mizar presentations, allowing
their interoperability.

206 J. Urban

“for x being Real holds x-x = 0” translates to first order formula
“Real(x) implies x-x = 0“.

Remark: The actual DFG syntax translation of the above mentioned Mizar for-
mula is:
forall([B1], implies(v1 arytm(B1), equal(k3 real 1(B1,B1),0))).
However, for explanation purposes, we use here rather the user-defined sym-
bols instead of the absolute constructor names, and also for the sake of better
readability, we do not strictly adhere to the DFG syntax of formulas.

Next we explain in more detail the translation of various Mizar definitions.

3 Translation of Mizar Definitions

3.1 Mode Definitions

Types in Mizar can be defined using either Mode-Definitions or Structure-
Definitions. We deal with modes first. Since structures are more complicated,
we postpone them after the explanation of functions.

As already stated, the translation of the largest (default) type “set” is a
predicate that always holds true (“set(X)” is true for all terms X). So omitting
relativization by this predicate is logically correct, and we do it for the sake
of better readability of translated formulas. For all other modes, the syntactic
structure of Mode-Definitions is:
mode Mode-Pattern ([Specification] [means Definiens]
Correctness-Conditions ; | is Type-Expression ;) { Mode-Synonym } .

Example 2.
definition let X;
mode Element of X means
:Def2: it in X if X is non empty

otherwise it is empty;
existence by BOOLE:def 1;
consistency;
end;

This is a definition of the mode “Element of X” from the article subset 1.miz.
The Loci-Declaration “let X;” declares the variables occurring in the definition.
This definition omits the optional Specification part. If the Specification is present
in the definition, it gives a mother type for the newly defined mode. If not, the
largest type “set” is used as the mother type.

The Definiens after the keyword “means” consists of an optional Label-
Identifier and either a simple sentence or several sentences separated by the
keywords “if” and “otherwise”. The latter (Conditional-Definiens) is used for
“per cases” definitions.

In our example, the Conditional-Definiens distinguishes the case when the
mode argument X is non empty from the case when the mode argument X is
empty. The sentence for the first case states, that for any “it” (special variable

Translating Mizar for First Order Theorem Provers 207

used in definitions) being of the type “Element of X” means “it in X”. The
second case sentence says, that in the degenerate case when X is empty, being
of the type “Element of X” means to be empty too5.

The keywords “existence” and “consistency” in the example introduce
Correctness-Conditions. The “existence” condition states that the extension of
the defined type is non empty. The “consistency” condition states that the dis-
junction of all the cases into which the definition was split, is true. The absolute
name given to the mode constructor created in this definition is “m1 subset 1”,
which means that it is the first mode constructor in article subset 1,

We translate types as predicates, so n-ary types will become n+1-ary predi-
cates, and e.g. the Mizar type qualification “X is Element of Y” will be trans-
lated as “m1 subset 1(X,Y)”.

Next we want to encode the part of the type hierarchy created by this defi-
nition. As noted above, the mother type of “Element of X” is the largest type
“set”. The translation would be following:

‘‘forall([X,Y], m1 subset 1(Y,X) implies set(Y)).’’
However, as already mentioned, “set(Y)” is always true and we chose not to
translate it, so in such cases (i.e. when the mother type is “set”), we do not
create the type hierarchy translation.

The definiens translates to the following formula:
‘‘m1 subset 1(Y,X) iff ((not(empty(X)) and in(Y,X))

or (empty(X) and empty(Y)))’’
(instead of “empty” and “in” their absolute names would be used).
Finally, we translate the existence condition:

‘‘forall([X], exists([Y], m1 subset 1(Y,X))).’’

3.2 Predicate and Attribute Definitions

In comparison to first order predicates, Mizar predicates can have several prede-
fined properties (e.g. reflexivity, symmetry, etc.), and they also define the type
of their arguments. Predicate-Definition has the following syntactic structure:
pred Predicate-Pattern [means Definiens] ; Correctness-Conditions
{ Predicate-Property } { Predicate-Synonym } .

e.g.:
definition let X,Y;
pred X c= Y means

:: TARSKI:def 3
x in X implies x in Y;
reflexivity;
end;

This is a definition of the subset relation from article tarski. Again first
comes a Loci-Declaration “let X,Y;”, after that the Predicate-Pattern “X c=

5 If the reader is curious about why the degenerate case is handled this way, the answer
is, that simply in many cases it turned out to be advantageous.

208 J. Urban

Y”, then the Definiens “x in X implies x in Y;” and finally one Predicate-
Property is stated: “reflexivity;”. Correctness-Conditions occur only in re-
definitions of predicates, redefinitions will be discussed later.

Again, this definition creates both a pattern and a constructor, the stan-
dard symbol for predicate constructors is “r”, so the absolute name would be
“r1 tarski” here.

The Definiens formula is simply translated as equivalence:
‘‘r1 tarski(X,Y) iff (x in X implies x in Y)’’

Predicate-Property can be:
symmetry connectedness reflexivity irreflexivity
So we add the corresponding theorem for such properties, here it is:
‘‘r1 tarski(X,X).’’

Attributes are very similar to predicates, so due to space constraints, their
explanation is omitted here.

The Cluster-Registrations, which define rules of attribute handling will be
explained later.

A possibly negated attribute is called Adjective in Mizar. A finite set of
Adjectives is called Adjective-Cluster (or just cluster) in Mizar. Clusters can
be used as prefixes to types, e.g. “finite non empty set” uses the Adjectives
“finite” and “non empty” as a prefix to the type “set”. Such types with non
empty Adjective-Cluster are translated as a conjunction of all the predicates cor-
responding to the attributes and the predicate corresponding to the underlying
type, so here it is:
“finite(X) and not(empty(X)) and set(X)” for a variable X of the type
“finite non empty set”.

Again, the “set” can be pruned, so the translations is just ‘‘finite(X) and
not(empty(X))’’.

3.3 Functor Definitions

Functions in Mizar have to define the types of their arguments and the type of
their result. Several Functor-Properties (e.g. “commutativity”) can be associ-
ated with them.

The syntax of Functor-Definition is:
func Functor-Pattern [Specification] [(means | equals) Definiens]
; Correctness-Conditions { Functor-Property } { Functor-Synonym } .

Example 3.
definition let x be real number;
func -x -> real number means :Def1: x + it = 0;
existence by AXIOMS:19;
uniqueness by Th10;

The initial Loci-Declaration declares a variable x for the type “number” with
Adjective “real”. Type “number” is now defined just as a convenient synonym
for the largest type “set” (in article arytm), “real” is an attribute defined also
in article arytm. The Functor-Pattern is “-x” here, and the Specification “->

Translating Mizar for First Order Theorem Provers 209

real number” defines the result type of the function. The Definiens “:Def1: x
+ it = 0;” is the definitional formula of the defined function.

The Correctness-Condition “existence” states, that there exists an object
(of the desired type “real number”) conforming to the Definiens . “uniqueness”
says that such object is unique (proved by previous theorem Th10). Before ac-
cepting a new Functor-Definition, the system always checks these two conditions.

This definition creates one new pattern and one new constructor. The stan-
dard Mizar symbol for functor constructors is “k” so the constructor’s absolute
name is “k1 real 1” (first functor in article real 1). We need to translate the
typing, the Definiens and possibly the Functor-Properties (none in this case).

The typing translates to:
“‘real number’(X) implies ‘real number’(k1 real 1(X)).”

Following the note above about Adjective-Clusters, ‘real number’(X) trans-
lates to “(real(X) and number(X))” and since “number” is just a synonym
for “set” it is pruned to just “real(X)”. Since “real”’s absolute name is
“v1 arytm”, the exact translation is:
“forall([X], implies(v1 arytm(X), v1 arytm(k1 real 1(X))))”.

The Definiens is translated by first instantiating the special variable “it” with
the Functor-Pattern, yielding:
“x + (-x) = 0;” and translating the result formula, which gives:
“equal(+(x,k1 real 1(x)),0)”.
After relativization and replacing “+” with its absolute name “k3 arytm”, we
get:
“forall([X], implies(v1 arytm(X), equal(k3 arytm(X,k1 real 1(X)),0)))”

3.4 Structure Definitions

Structures correspond (to some extent) to the “product” types of various other
languages. The syntax of Structure-Definition is:
struct [(Ancestors)] Structure-Symbol [over Loci] (# Fields #) ;

Example 4.
struct(1-sorted) TopStruct (# carrier -> set,

topology -> Subset-Family of the carrier #);

This is definition of the structure TopStruct from the article about Topological
Spaces “pre topc”6.

Structures can define their ancestor structures. All Fields of an ancestor must
also be Fields of the defined structure. In our example, there is given one ancestor
“1-sorted”. Ancestors of structures are treated in a way similar to the treatmnt
of mother types of modes by the system, i.e. they also define the type hierarchy.

The Structure-Symbol is “TopStruct” in our example. The optional syntax
“[over Loci]” is not used there. If used, it parameterizes the structure in the
6 This is not yet a topological space, just the underlying structure.

210 J. Urban

same way as modes can be parameterized, i.e. structures can also have any
number of arguments. Finally, the structure defines two Fields:
“carrier” of the type “set”, and
“topology” of the type “Subset-Family of the carrier”.

We will now explain the effects of the Structure-Definition on the constructor
level. Any structure defines a new type constructor. Such constructors are also
called “aggregate types”, and the standard Mizar symbol for them is “l”. So the
absolute name of the aggregate type in our example is “l1 pre topc”. Such types
behave in exactly the same way as the mode types, i.e. variables can be reserved
for them, Adjective-Clusters can be added to them as a prefix, etc. Ancestors
become the mother types of the new aggregate type, so in our example, there is
one mother type “1-sorted” (its absolute name is “l1 struct 0”).

The Fields of a structure give rise to the so called “selector constructors”. The
standard Mizar symbol for selectors is “u”. In our case, the structure contains two
selectors, but the selector “carrier” is inherited from the ancestor “1-sorted”
(l1 struct 0), where it was defined for the first time. So its absolute name
is “u1 struct 0”. The selector “topology” is defined for the first time in our
example, so its absolute name is “u1 pre topc”.

The meaning of a selector is a function operating on the aggregate type. So
e.g. “carrier” takes arguments of the type “1-sorted” (or any of its special-
izations, like TopStruct) and its result type is “set”.

Finally, we need something to create the desired structure, when the Fields
are given. This is solved in Mizar by creating “aggregate functor” for the struc-
ture. The standard Mizar symbol for aggregate functors is “g”, so for TopStruct,
its absolute name is “g1 pre topc”. The symbol for the aggregate functor is in
Mizar the same as the symbol for the aggregate type, i.e. TopStruct. Given
properly typed arguments, e.g. by following global reservations:
“reserve X for set;”
“reserve Y for Subset-Family of X;”
the Mizar term “TopStruct(#X,Y#)” means applying the aggregate functor
“TopStruct” (“g1 pre topc”) to arguments X and Y, yielding an object of
the aggregate type “TopStruct” (“l1 pre topc”).

Obviously, it holds then that
“X = the carrier of TopStruct(#X,Y#)” and
“Y = the topology of TopStruct(#X,Y#)”.

Aggregate types are translated again as predicates, selectors and aggregate
functors are translated as functions.

Axiom stating mutual interdependence of these constructors has to be added,
this is done by stating that the structures are freely generated by its Fields, using
the aggregate functor:
“TopStruct(X) implies X = TopStruct(carrier(X),topology(X));”,
in absolute notation:
“forall([X], implies(l1 pre topc(X),
equal(X,g1 pre topc(u1 struct 0(X),u1 pre topc(X)))))”.

Translating Mizar for First Order Theorem Provers 211

3.5 Cluster Registrations

We have already mentioned, that Cluster-Registrations define for the system the
special rules of attribute handling. They either state non emptiness of attributed
types (Existential-Registration) or define attribute propagation (Conditional-
Registration, Functorial-Registration).

Existential-Registration. The syntax of Existential-Registration is:
cluster Adjective-Cluster Type-Expression ; Correctness-Conditions.

Existential-Registrations assert the existence (non emptiness of the exten-
sion) of a type with some Adjective-Cluster prefix.

Example 5.
definition
cluster cardinal set;
existence
proof ...
end;

end;

in article card 1 asserts the existence of the type “set” with the Adjective
“cardinal”. Whenever a variable is being reserved for a type with some non
empty Adjective-Cluster, the non emptiness of the type’s extension is checked by
the system. We already noted how types with Adjective-Cluster are translated,
so the translation is a simple existence formula in such cases:
“exists([X], (cardinal(X) and set(X)))”.
In absolute notation and pruning the “set”:
“exists([X], v1 card 1(X))”.

Conditional-Registration. The syntax of Conditional-Registration is:
cluster Adjective-Cluster -> Adjective-Cluster Type-Expression ;
Correctness-Conditions .

Conditional-Registrations give rules for attribute propagation, e.g.:

Example 6.
definition
cluster cardinal -> Ordinal-like set;
coherence
proof ...
end;

end;

from article card 1 states that to any “set” with Adjective-Cluster “cardinal”
the system should add the Adjective-Cluster “Ordinal-like”. A proof of this
must be given after the keyword “coherence”. Conditional-Registrations are
easily translated as implication:

212 J. Urban

“set(X) and cardinal(X) implies Ordinal-like(X)”.
In absolute syntax and after “set” pruning:
“forall([X], implies(v1 card 1(X), v3 ordinal1(X)))”.

Functorial-Registration. The syntax of Functorial-Registration is:
cluster Term-Expression -> Adjective-Cluster ; Correctness-Conditions

Example 7.
definition let X be finite set;
cluster Card X -> finite;
coherence;
end;

from article card 1 says that for any X with the type “finite set”, the
attribute “finite” applies also to the term “Card X” (the cardinality of
X). While Conditional-Registrations define attribute propagation for some
underlying type (“set” in the previous example), Functorial-Registrations do
this for terms (“Card X” here). Their translation is also simple:
“(finite(X) and set(x)) implies finite(Card(X))”.
In absolute syntax and after “set” pruning :
“(forall([X], implies(v1 finset 1(X), v1 finset 1(k1 card 1(X)))))”.

4 Redefinitions

In Mizar, there can be predicate, attribute, type and functor redefinitions. Apart
from the keyword “redefine”, they have the same syntactic structure as the
respective definitions. They can introduce new notation, change the definitional
formula or the result types, or add new properties. Some redefinitions do not
touch the constructor level, they only define new notation.

If the constructor level is touched by the redefinition, Mizar usually creates a
new constructor, but knows to some extent, that it is equivalent to its redefined
counterpart. The treatment in Mizar is not complete, e.g. if several type redefi-
nitions are possible, only the last defined is chosen, since Mizar implementation
sometimes requires the terms to have unique result types. This is no serious re-
striction for Mizar, since Mizar allows explicit typing (using the “is” keyword)
of terms.

Since we translate types (and attributes) as predicates, there is no trouble
in having multiple “types” for a term. After the translation, these are simply
several unit clauses holding about the term, e.g.:
“finite(A) and Ordinal(A) and Integer(A) and Real(A)”.
So unlike Mizar, we do not create new constructors for redefinitions, we just
translate the new facts stated by the redefinitions.

5 Unimplemented Features of Mizar

Mizar Schemes and Fraenkel terms are not currently translated, numbers are
translated only in a very simple way.

Translating Mizar for First Order Theorem Provers 213

Mizar Schemes are used to express second-order assertions parameterized by
functor or predicate variables. This makes it possible, to state principles like
Separation or Induction in Mizar, e.g.:

Example 8. scheme Separation { A()-> set, P[set] } :
ex X st for x holds x in X iff x in A() & P[x]
proof ...
end;

from article boole states that for any set “A()” and any formula “P” with a
free variable of the type “set”, there is a subset of “A()” of elements with the
property “P”.

Another feature of Mizar is the Fraenkel (“setof”) operator, which (in accor-
dance with the Separation principle) creates sets of elements that satisfy a given
formula.

Example 9. {i where i is Nat: i < 5}

is the set of natural numbers smaller than 5. The result type of such terms is
the largest type “set”.

Schemes and Fraenkel terms cannot be directly translated into first-order syn-
tax. These features are relatively rare in MML and their usage is quite restricted
(full instantiation of a scheme must be given before it can be applied), so a very
large part of MML can be translated even if these features stay unhandled. We
think the performance gap between current first order provers and higher order
provers justifies this omission.

Theoretically, the Fraenkel terms and Schemes could be completely removed
using the standard set-theoretic elimination procedures (previous work with Ot-
ter in this direction is described in [Belinfante 96]), however, given the advanced
constructor system in Mizar, this could lead to very large (and thus practically
unusable) expansions. We believe, that the solution lies rather in modifying the
current efficient first order provers to handle the “real mathematics” (at least to
the extent the Mizar checker handles it today). This also applies to the Mizar
built-in handling of numbers. The current (most simple) translation creates for
each mentioned number a new constant. However, Mizar can evaluate some sim-
ple arithmetic expressions like “(5+3)*4”.

6 Related and Future Work

An important part of the translation are the scripts that generate proving prob-
lems from the translated Mizar database. Such scripts have to mimic the Mizar
theory inclusion mechanism closely, add special axioms for things that are ob-
vious to the Mizar checker, and possibly try to apply some filtering to handle
large theories. Due to space constraints, we do not describe them here, they
will probably be described in another article about experiments with theorem
provers on the translated database.

214 J. Urban

Experimenting with theorem provers (currently E and SPASS) is work in
progress at the time of writing this article. The main purpose behind the trans-
lation is to train theorem provers on the large database, and possibly also im-
plement discovery systems that could make use of it.

The most recent experiments show, that the “well-typing” inferences that
have to be carried out by the provers are much less efficient than the type sys-
tem implementation in Mizar. So another work which is currently under way,
is to add an efficient Mizar-like type system to theorem provers. It seems that
implementation of type discipline will be a necessary feature for theorem provers
to be able to handle large theories. For example, the SPASS prover, which im-
plements Mizar types to some extent, seems to perform much better in advanced
theories, than the heavily optimized recent CASC winners.

As already noted, another feature, that will eventually have to be added to
theorem provers to handle theories based on ZFC (i.e. most of current mathemat-
ics), is efficient implementation of infinite schemes of first-order axioms. We also
believe (cf. [Schumann 2001]), that provers should handle numbers efficiently.

We think a good way to boost the development of all these features for
current theorem provers, would be to have e.g. a special part of CASC devoted
to proving in large structured theory ensembles like MML. Detailed rules of
such competition concerning e.g. allowed machine learning or type translation
methods would have to be thought up.

References

[Belinfante 96] Johan Belinfante, On a Modification of Godel’s Algorithm for Class
Formation, Association for Automated Reasoning Newsletter, No. 34, pp. 1015
(1996)]

[Bonarska 90] Bonarska, E., An Introduction to PC Mizar, Fondation Ph. le Hodey,
Brussels, 1990.

[Dahn 97] First Order Proof Problems Extracted from an Article in the MIZAR Math-
ematical Library. Ingo Dahn and Christoph Wernhard Proceedings of the Interna-
tional Workshop on First order Theorem Proving. RISC-Linz Report Series, No.
97–50, Johannes Kepler Universität Linz, 1997.

[Dahn 98] Ingo Dahn. Interpretation of a Mizar-like Logic in First Order Logic. Pro-
ceedings of FTP 1998. pp. 137–151.

[Goguen 92] J.Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction
formultiple inheritance, overloading, exceptions and partial operations. Theoreti-
cal Computer Science, 105(2):217–273,1992.

[Hahnle et all 96] R. Hahnle, M. Kerber, and C. Weidenbach. Common Syntax of the
DFGSchwerpunktprogramm Deduction. Technical Report TR 10/96, Fakultät für
Informatik, Universät Karlsruhe, Karlsruhe, Germany, 1996.

[McCune 94] McCune, W. W., OTTER 3.0 Reference Manual and Guide, Technical
Report ANL-94/6, Argonne National Laboratory, Argonne, Illinois (1994).

[Muzalewski 93] Muzalewski, M., An Outline of PC Mizar, Fondation Philippe le
Hodey, Brussels, 1993.

[REAL 1] Krzysztof Hryniewiecki, Basic properties of real numbers. Journal of For-
malized Mathematics, 1, 1989.

Translating Mizar for First Order Theorem Provers 215

[Rudnicky 92] Rudnicki, P., An Overview of the Mizar Project, Proceedings of the 1992
Workshop on Types for Proofs and Programs, Chalmers University of Technology,
Bastad, 1992.

[Schumann 2001] J. M. Schumann, Automated Theorem-Proving in Software Engi-
neering. Springer-Verlag, 2001.

[Suttner and Sutcliffe 98] C. Suttner and G. Sutcliffe. The TPTP problem library
(TPTP v2.2.0). Technical Report 9704, Department of Computer Science, James
Cook University, Townsville, Australia, 1998.

[Syntax] Syntax of the Mizar Language available online at
http://mizar.uwb.edu.pl/language/syntax.html

[Weidenbach et all 99] Weidenbach C., Afshordel B., Brahm U., Cohrs C., Engel T.,
Keen R., Theobalt C. and Topic D., System description: Spass version 1.0.0, in H.
Ganzinger, ed., ’16th International Conference on Automated Deduction, CADE-
16’, Vol. 1632 of LNAI, Springer, pp 314–318

[Wiedijk 99] Freek Wiedijk. Mizar: An impression. Unpublished paper, 1999.
http://www.cs.kun.nl/˜freek/mizar/mizarintro.ps.gz.

The Mathematical Semantic Web

Massimo Marchiori

1 The World Wide Web Consortium, MIT, Cambridge, USA
2 Department of Computer Science, University of Venice, Italy

massimo@w3.org

Abstract. How can Mathematics and the Semantic Web effectively
join? In this paper we provide an account of the key standard tech-
nologies that can foster the integration of Mathematical representation
into the Semantic Web.

1 Introduction

Modern approaches to Mathematics on the web, nowadays, have in common
with XML the well-known dualism between semantics and presentation: the me-
dia should be detached from the meaning ([1]). With the advent of the Semantic
Web, however, the potential of this dualism seems to raise even higher, as that
“semantics” part can possibly be more than itself, be part of a whole, be a single
brick in a big building, the World Wide Web. For Math, this means that not only
the Semantic Structure and Presentation Structure play their obvious classical
role, but new possibilities come from the integration of various mathematical
sources, allowing more powerful global search capabilities, but also associated
metadata (context), possibility of computable math (algebraic manipulation /
calculation) and so on. In order to achieve this, however, there is the need for in-
tegration: integration of the mathematical knowledge expertize/techniques, with
the mainstream technologies that constitute the Semantic Web. Here, we focus
on those Web technologies that could be potentially low-hanging fruits: RDF,
OWL, XML-Schema, XML-Query and Functions and Operators.

2 RDF

When one talks about the Semantic Web, the first thing that comes to mind is
RDF, the milestone on which the classic Semantic Web architecture lies. RDF,
or Resource Description Framework (cf. [9,8,3]), is essentially an enriched entity-
relationship model, designed to encode data (and, so to say, “meaning”) in the
World Wide Web.

So, while there are already XML representations for Mathematics on the
Web (the most prominent example being MathML), in order to fully enter the
Semantic Web bandwagon, there is the need to go beyond a normal XML rep-
resentation, and try instead to link a bridge towards RDF-land.

A. Asperti, B. Buchberger, J.H. Davenport (Eds.): MKM 2003, LNCS 2594, pp. 216–223, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: h×N
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (h×N)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

The Mathematical Semantic Web 217

This doesn’t mean that existing XML dialects for Mathematics have to be
abandoned, or that future versions and improvements have to be based on RDF.
Rather, it means that a suitable representation to and from RDF should be
given, so that applications dealing with Mathematical knowledge can export their
knowledge to the Semantic Web (using an RDF representation), and conversely,
that such an RDF representation can be mapped back1 An example of such
approach is for example given by the P3P standard ([11]), which has its own
XML syntax, and a corresponding alternate RDF representation ([12]).

Many straightforward representations of Math knowledge to RDF are pos-
sible, given that RDF expresses, as said, a generic graph structure (entity-
relationship) that can be made to fit any generic structure. In particular, it
is rather evident that mathematical formulas, for their same nature of being
usually serializable in text form, fit rather well in the RDF graph model. For
example, the representation of a function p(2, 6) expressed in MathML as

<apply>
<csymbol encoding="text"

definitionURL="http://www.mathsw.org/scalarplus">
p
</csymbol>

<cn> 2 </cn>
<cn> 6 </cn>

</apply>

could be given an RDF representation like:
: 1 <http://www.w3.org/TR/MathML2#apply> : 2
: 1 <http://www.w3.org/TR/MathML2#csymbol> "p"
: 1 <http://www.w3.org/TR/MathML2#definitionURL>

<http://www.mathsw.org/scalarplus>
: 1 <http://www.w3.org/TR/MathML2#encoding> "text"
: 2 <http://www.w3.org/1999/02/22-rdf-syntax-ns#: 1> "2"
: 2 <http://www.w3.org/1999/02/22-rdf-syntax-ns#: 2> "6"

Here, we have used the so-called “triple” representation of an RDF graph,
where each row represents a triple

entity1 relationship entity2

(see e.g. [8] for more details).

Much like proof nets, the RDF graph structure nicely leads to encoding
mathematical structures (it allows for example easy (and effective) processing
of bound variables). For example, the function λx. x + x could be encoded in
MathML with an explicit bound variable like this:
1 Although, what is really needed is the mapping from the XML dialect to RDF, as

the reverse mapping could be (depending on the specific application) of less use, or
even impossible in some cases (when the domain of discourse is enlarged in RDF).

218 M. Marchiori

<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<plus/>
<ci> x </ci>
<ci> x </ci>

</apply>

RDF, on the other hand, allows a neater representation of the bound variable:
: 1 <http://www.w3.org/TR/MathML2#apply> : 3
: 1 <http://www.w3.org/TR/MathML2#lambda> : 2
: 3 <http://www.w3.org/TR/MathML2#definitionURL>

<http://www.w3.org/TR/MathML2#plus>
: 3 <http://www.w3.org/1999/02/22-rdf-syntax-ns#: 1> : 2
: 3 <http://www.w3.org/1999/02/22-rdf-syntax-ns#: 2> : 2

The technical details of any such mapping to RDF are unnecessary here, as
first they are rather obvious2, and second, many equivalent choices are possible.
What is important, though, is to note that the mathematical structure of objects
can/should be given an RDF formulation, so to foster integration between the
Math world and the Semantic Web. With an RDF representation for Math, we
can use all the tools developed/in development for the Semantic Web, like for
example search, inference, annotation, and so on. So, general-purpose tools can
be reused to operate with mathematical objects, and no special-purpose tools
have to be developed. Most importantly, putting mathematics inside RDF allows
a nice and smooth integration with all various other sources of data: in other
words, proper integration with the Semantic Web via RDF allows for a seamless
definition of contexts, and linkage to various other metadata related to the math
object. This allows to go way beyond the usual way of allowing metadata in
XML dialects, i.e., using specific attributes where to fit more information. So,
RDF really allows making Mathematics integrated in the World Wide Web.

3 OWL

Mathematical objects ”per se” can be very difficult objects to categorize, if
appropriate metadata is not provided. This is a general problem of many kinds
of data present on the Web, so much that W3C has addressed this issue by
chartering a new effort for the production of a standard devoted to Ontologies
for the Web: the Web Ontology Language (also called “OWL”), see for instance
[7]. OWL allows data to be attached with ontological meaning: in other words,
it allows powerful mechanisms to categorize data on the web into specific classes
and subclasses, therefore greatly facilitating the proper handling/search/query
of web data.
2 Although, note that even from the simple examples shown here, some subtleties are

present, and we have been for example sloppy in the treatment of datatypes, as we
will hint at later.

The Mathematical Semantic Web 219

What this means from a Math viewpoint is that mathematical objects, that
can by their nature be rather dense and not easily categorizable at a first inspec-
tion, can instead be nicely associated to some specific categories. Such mathe-
matical ontologies can provide a formidable help for the task of searching for
mathematics, and for the task of issuing similarity searches, avoiding the intrin-
sic difficulties of extracting this information from the semantics/structure of the
object (which might obviously be just plain impossible). OWL is flexible enough
to allow for complete mathematical hierarchies to be formed, and also to allow
for alternate hierarchies, so that no just one categorization has to be used, but
many can happily coexist.

4 XML Schema

Types are an essential component in mathematics, and it comes by no surprise
that even when attempting to formalize mathematics on the Web, types have
entered the battlefield. Numeric types like integer, real, complex and so on have
been defined in MathML, while the OpenMath Consortium has also experimen-
tally tried to give more complex typing facilities using the Extended Calculus of
Constructors ([6]). On the other hand, type systems have also been introduced in
the Web, and more specifically, one type system is now the world standard: XML
Schema ([13,4]). It is tempting therefore to analyze whether there are differences,
and where convergence is possible here.

The first big distinction that has to be done is between what XML-Schema
calls primitive datatypes. In a sense, primitive types are the basic building blocks,
from which more complex types can then be created. XML-Schema primitive
datatypes much correspond, in spirit, to MathML types. However, we can see
that there are differences, as MathML focusses on numeric types, and neglects
other specific XML datatypes. Now, here convergency is not only possible (prim-
itive datatypes can be merged with no problems), but strongly needed for the
future integration of mathematics on the web. In fact, RDF is already adopt-
ing XML-Schema primitive datatypes in the Semantic Web view of the world,
which makes even more urgent for mathematical knowledge to align. Note that
numeric datatypes currently not present in XML Schema can be added using
so-called user defined types, so the merge of the two needs (XML-Schema primi-
tive types, and “primitive types” of the mathematical community) can fit within
XML-Schema.

The other part of the XML-Schema type system is more powerful, but here,
the two types of schemas (XML, and math) diverge in a sense, as the first one
deals with structural constraints, while the second deals more with signature
definition. It seems like XML-Schema type system could accommodate some
math type systems, but the interaction here is deeper, as some desired type
system for math (like the ECC mentioned above) are more fine-grained than
XML-Schema’s type system in some circumstances, so convergence here should
be explored further.

220 M. Marchiori

5 Functions and Operators

Types are useful for a variety of task, last but not least, validation. But an-
other very useful functionality they provide is just to provide some signatures,
so that executable specification of the corresponding function/operator can be
safely activated, even when no full or accurate type system is present. And one
of the possible cool functionalities that math functions an operators could have
is just this: to be computable, in the sense that they could, somehow, be ac-
tivated (evaluated), and the appropriate result returned. There are of course
various model that would allow to have executable mathematics on the Web,
from the central server model (where requests are sent, for example using a Web
Service architecture, or classic HTTP PUT/POST methods), to the local server
model, where applets could be for example downloaded, and executed in situ.
What matters most for our discussion is, besides the need for a uniform way
(or, uniform multiple ways) to perform such activation, the necessity to have
uniformity.

The first key to successfully represent mathematics on the web is a single
acronym: URIs. As Web Architecture dictates, URIs should be used to denote
every relevant thing in the Web. Restated, in the mathematical environment
every function/operators/relations and so on, should be given an appropriate
URI, that is to say, an appropriate name in Web space. It is for this reason that
the current MathML standard ([5]) allows for new symbols to be classified using
a URI: this allows for much better search on the web, as well as, for example,
the possibility of automatic execution and/or algebraic manipulation between
different sources of math. Without URIs, we have to stick to local names, and
therefore we have names that are useful only within a single document, or within
a single application.

But, if URIs provides us with good “global addresses” along the Web, the
other crucial factor for their success is that, as far as possible, people don’t
introduce new URIs that always denote the same thing. If this happens, the
utility of the URI boils down to just a single identifier, making the web just an
isolated bunch of points, with no connections.

In our case, this means that it is of little use to use URIs for functions
and operators, if each of us creates such URIs from scratch, without reusing
existing URIs. There is the need for some appropriate standardization of common
operators, so that people can reuse it, search tools can link different occurrences
in different parts of the web, execution of a vast number of functions can be
performed. [10] is an example of a first catalog of functions and operators that
are going to be standardized, for uniform usage over the Web. Similar efforts
could be undertaken to extend such collection to more mathematical functions,
where first-order functions and operators could be considered first. In any case,
it is obviously important that uniformity prevails, and that there is convergence
between the XML/database world, and the mathematical environment on the
web (think for example at the collection in [14]).

The Mathematical Semantic Web 221

6 XML Query

From what seen previously, it would seem like RDF and OWL already provide
all what we need for a proper integration of Mathematical knowledge into the
Semantic Web. But of course, the complete picture is far from being that simple.
While, certainly, RDF and OWL can do a lot to foster reuse of Semantic Web
tools with mathematical objects, there are still some drawbacks that one has to
take into proper account.

The primary of such drawback is the complexity of the tools. Simply having
an RDF representation doesn’t solve our needs, as then we need to use some
tools that allow us to query and manipulate the mathematical objects. Therefore,
another aspect has to be considered: the tradeoff between the complexity of such
tools, and our needs.

As far as the functional requirements are concerned, we envisage that, to
start with, the primary applications in the use of mathematical knowledge on the
World Wide Web in the large will be forms of simple search, possibly extraction,
and easy manipulation.

Moreover, always talking in the large, the other factor to consider here is the
scalability of the solution. The RDF representation make mathematical objects
migrate to a more general space, the RDF graph, at a price: it can complicates
quite a lot the structure, as compared to the original XML representation. When
talking about search/extraction/manipulation in the large, therefore, we risk
that staying in the RDF graph for such operations will not scale so easily, leading
to failure of responsiveness.

The possible way out to this is not to give away the XML representation when
we need it, as in this case. Such representation can in fact be traversed much more
efficiently than an RDF representation, and as such, specific tools that operate on
XML can be used. In particular, XML Query (also known as XQuery, cf. [2]), the
future world standard for querying XML data, could be profitably reused. XML
Query itself operates on a variant of the relational model, adapted to the specific
XML data model, and has been designed with all the needs that database vendors
seek out in current SQL-like systems,, like, in primis, speed and scalability. It is
an interesting exercise to see, given a certain XML representation for math (like,
say, MathML), what is the power of queries and related operations that XQuery
can perform3 . For sure, XQuery fits perfectly in the use cases of simple search
and extraction, which makes it a good candidate for query/search application of
XML Mathematical knowledge in the Web (so, in the large). In fact, for more
sophisticated applications, one could imagine the possibility of a hybrid system,
where the mathematical objects are just seen in the RDF graph as XML literals.
This still allows the mathematical objects to interact with the semantic web, to
be given context, annotations and so on. What we would lose is easy access to the
internal structure of the objects, within the RDF world. For that access, we could
activate an XQuery processor, that could quickly find the result we need. And
in fact, such XML literals could always be exploded ”on demand” to their RDF
3 Indeed, XQuery, although Turing complete, is not functionally complete.

222 M. Marchiori

structure, like in lazy functional programming, when really needed. Therefore,
the hybrid model would work well in all those situation where full RDF access
to the internal structure of the mathematical objects is seldom needed.

7 Success?

Having seen the possible synergies, the final questions to ask is: can this inte-
gration be performed with success?

The first factor to consider is merely technical, and has to do with the prob-
lem of vastity of domain.
Mathematics is a vast field. This means that potentially, Semantic Web appli-
cation like search, similarity search, manipulation, inference, can perform badly
if not properly assisted with precise Semantic Web annotations. There is prob-
ably the need to identify some critical subsets of mathematical knowledge that
can benefit more from semantical structuring (pretty much the same kind of
selection that MathML somehow had to do when facing the creation of an XML
math dialect); this seems even more important when we go to the higher layers
(computability, typing, algebraic manipulation). Constructive mathematics here
obviously will play a much more relevant role.

The second factor to consider is societal, and concerns the cost/benefit vicious
circle.
Information encoded using the semantic web has a higher cost, like any form of
evolved semantic encoding, than a merely syntactic formatting. So, the cost to
put information on the Web gets higher. In order to make people accept this extra
cost, the cost/ratio benefit must stay low. But crucially, in the semantic web the
benefits usually depends on adoption: the more, the better. Therefore, we have
this vicious circle: people will not be very likely to contribute to a mathematical
semantic web, unless critical mass is reached. It is this vicious circle that might
slow down too much progress in the field, if not carefully weighted.

References

1. A.Asperti, L.Padovani, C.S.Coen, I.Schena, XML, Stylesheets and the rem-
mathematization of Formal Content, Proceedings of “Extreme Markup Languages
2001 Conference”, 2001. Available at
http://www.cs.unibo.it/helm/extreme2001.ps.gz.

2. S.Boag et al. (Eds.), XQuery 1.0: An XML Query Language, World Wide Web
Consortium Working Draft, November 2002. Latest version at
http://www.w3.org/TR/xquery.

3. D.Beckett (Ed.), RDF/XML Syntax Specification (Revised), World Wide Web Con-
sortium Working Draft, November 2002. Latest version at
http://www.w3.org/TR/rdf-syntax-grammar.

4. P.V.Biron and A.Malhotra (Eds.), XML Schema Part 2: Datatypes, World Wide
Web Consortium Recommendation, 2001. Available at
http://www.w3.org/TR/xmlschema-2/.

The Mathematical Semantic Web 223

5. D.Carlisle, P.Ion, R.Milner, N.Poppelier, Mathematical Markup Language
(MathML) Version 2.0, World Wide Web Consortium Recommendation, 2001.
Available at http://www.w3.org/TR/MathML2.

6. O.Caprotti and A.M.Cohen, A Type System for OpenMath, The OpenMath Con-
sortium, 1999. Available at
http://monet.nag.co.uk/cocoon/openmath/standard/ecc.pdf.

7. M.Dean et al (Eds.), Web Ontology Language (OWL) Reference Version 1.0. World
Wide Web Consortium Working Draft, November 2002. Latest version at
http://www.w3.org/TR/owl-ref.

8. P.Hayes (Ed.), RDF Semantics, World Wide Web Consortium Working Draft,
November 2002. Latest version at http://www.w3.org/TR/rdf-mt/.

9. O.Lassila and R.Swick (Eds.), Resource Description Framework (RDF) Model and
Syntax Specification, World Wide Web Consortium Recommendation, 1999. Avail-
able at http://www.w3.org/TR/REC-rdf-syntax.

10. A.Malhotra et al. (Eds.), XQuery 1.0 and XPath 2.0 Functions and Operators,
World Wide Web Consortium Working Draft, November 2002. Latest version at
http://www.w3.org/TR/xquery-operators/.

11. M.Marchiori (Ed.), The Platform for Privacy Preferences 1.0 (P3P1.0) Specifica-
tion, World Wide Web Consortium
Recommendation, 2002. Available at http://www.w3.org/TR/P3P.

12. B.McBride et al., An RDF Schema for P3P, World Wide Web Consortium Note.
Latest version at http://www.w3.org/TR/p3p-rdfschema/.

13. H.Thompson et al. (Eds.), XML Schema Part 1: Structures, World Wide Web
Consortium Recommendation, 2001. Available at
http://www.w3.org/TR/xmlschema-1/.

14. Wolfram Research, Mathematical Functions. Available at
http://functions.wolfram.com/.

	front-matter
	Title
	Preface
	Organization
	Contents
	Author Index

	p001
	Introduction
	Digitisation
	Representation
	Representation from Digital Encoding
	Representation in the Primary Source
	Representation and Explanation
	Maintenance of Archives of Represented Material

	Formalisation
	Representation Languages and Formats

	Information Dissemination
	Different Users and Their Needs
	From Caxton to CERN
	Copyright, Corporate Publishing, and Quality Concerns
	Meta-information

	Prior Art: Previous and Current Projects of Relevance to MKM
	Conclusions

	p017
	Introduction
	The ``Elementary Transcendental Functions''
	Encoding Branch Cut Information

	Codifying $mathop {mathgroup symoperators ln}nolimits $
	Square Roots

	Other Inverse Functions
	The Case for {tt ATAN2}
	Multivalued Functions
	Addition Laws

	Couthness
	Conclusion

	p030
	Introduction
	Tips and Pitfalls
	What Classes of Information Should Be Exported?
	How Should Files Be Organized?
	What Theory Should Be Described?

	Further Discussion and Future Work
	Conclusions

	p045
	MKM's Intellectual Pedigree
	Ontology Definition
	The Digital Discourse
	Ontology Development for Digital Mathematical Discourse
	The Emkara Project
	Conclusion and Future Work

	p056
	The NAG Library Documentation
	Mathematical Fragments in SGML Documents
	Classifying Mathematical Expressions
	Constraints

	Classifying Function Arguments
	Conclusions

	p066
	Introduction
	Syntax
	Semantics
	Semantics in Presentation
	Semantics in Content

	Formatting Quality
	Macros and Transformations
	Conclusions

	p080
	Motivation
	Preliminaries
	Current {{tt OMDoc}} Markup
	Current Educational Metadata in the {sc ActiveMath} {tt DTD}

	Experiences with Representing Mathematical Documents
	Example Representation: Problems and Solutions
	Exercise Representation: Problems and Solutions
	Proof Representation

	Conclusion

	p093
	Introduction
	Building a Corpus
	Preliminaries
	Sentence Structure
	Classification of Parts-of-Speech

	Extraction of Grammar
	Algorithm
	The Obtained Grammar

	Experiment
	The Corpus Operation System
	Conclusion

	p105
	Introduction
	MathQL Level 1
	Mathematical Background for {MathQL-1} Operational Semantics
	Textual Syntax and Semantics of {MathQL-1} Queries
	Textual Syntax and Semantics of {MathQL-1} Query Results

	Implementation and Testing
	Implementation
	Testing

	p119
	Introduction
	Mizar Articles and the Structure of MML
	html Based Browsing
	Text Based Searching
	Searching for Theorems
	Searching for Definitions

	Semantics Based Retrieval
	Format, Pattern, Constructor
	Resources
	The Query Language
	Browsing and Reviewing Resources
	An Example of a Search for a Theorem
	An Example of a Search for a Notion

	Conclusions
	References

	p133
	Introduction
	{sc Xml}--Based Mathematical Knowledge
	 The Content Markup of {sc MathML}
	The {sc OpenMath}--Standard
	An Example for {sc MathMl} and for {sc OpenMath}

	{sc Xml} and {sc Prolog}
	A {sc Prolog}--DOM for {sc Xml}
	The Transformation Mechanism

	Applications in an Expert System
	Application to {sc MathML} and to {sc OpenMath}
	Application to Ordinary Differential Equations

	Conclusions

	p147
	Introduction
	Contribution of This Paper

	An Infrastructure for Managing Distributed Mathematical Knowledge Cooperatively
	Cooperative Version Control in {{{sc CVS}}}
	A Multi-level Client/Server Architecture
	An Atomized Version Control Relation
	Interaction of Version Control with Distribution and Knowledge Base Consistency

	Computing Differences and Managing Change
	Using the Tree Structure of {{{sc XML}}} Documents
	The {{{sc OMDoc}}} Document Model
	Challenges for {{{sc OMDoc}}}-{{tt {diff}}} Algorithms
	Modular ${cal M}$-{{tt {diff}}} Algorithms

	Conclusion

	p162
	Introduction
	Lexical Integrity
	Syntactic Integrity
	Integrity of Notions
	Typing Hierarchy
	Different Incarnations of the Same Notion
	Putting Two Notions Together
	Repetitions

	Formulating Theorems
	Various Rough Edges
	Conclusions

	p175
	Introduction
	Hierarchical Proofs
	Initial Experiments
	The Web-Based Hierarchical Proofs
	A Limited User Study

	An Analysis over Cognitive Dimensions
	Applying the Dimensions
	Outcome of the Analysis

	Conclusions and Future Work

	p188
	Introduction
	Problem
	Approach
	Related Work
	Outline

	From Alfa to $bf rmOmega $mega: The Fifteen Provers of the World
	Files Containing Mathematics
	Seven Ways to Represent Mathematics
	Comparing the Sizes of the Input Files
	The Library

	Differences in Logical Strength
	Logics and Type Systems
	The de Bruijn Criterion

	Proof Checking or Theorem Proving
	Interaction Styles
	The Poincar{accent 19 e} Principle and Automation

	A Rather Subjective Two-Dimensional Diagram
	Future Work

	p203
	Introduction, Previous Work
	General Descriptions
	The Mizar Language
	Syntactic Levels
	First Order Formats, Outline of the Translation

	Translation of Mizar Definitions
	Mode Definitions
	Predicate and Attribute Definitions
	Functor Definitions
	Structure Definitions
	Cluster Registrations

	Redefinitions
	Unimplemented Features of Mizar
	Related and Future Work

	p216
	Introduction
	RDF
	OWL
	XML Schema
	Functions and Operators
	XML Query
	Success?

